This richly illustrated and clearly written undergraduate textbook captures
the excitement and beauty of geometry. The approach is that of Klein
in his Erlangen programme: a geometry is a space together with a set of
transformations of the space. The authors explore various geometries:
affine, projective, inversive, hyperbolic and elliptic. In each case they
carefully explain the key results and discuss the relationships between the
geometries.

New features in this Second Edition include concise end-of-chapter
summaries to aid student revision, a list of Further Reading and a list
of Special Symbols. The authors have also revised many of the end-of-
chapter exercises to make them more challenging and to include some
interesting new results. Full solutions to the 200 problems are included
in the text, while complete solutions to all of the end-of-chapter exercises
are available in a new Instructors’ Manual, which can be downloaded from
www.cambridge.org/9781107647831.
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Preface

Geometry! For over two thousand years it was one of the criteria for recog-
nition as an educated person to be acquainted with the subject of geometry.
Euclidean geometry, of course.

In the golden era of Greek civilization around 400 BC, geometry was studied
rigorously and put on a firm theoretical basis — for intellectual satisfaction, the
intrinsic beauty of many geometrical results, and the utility of the subject.
For example, it was written above the door of Plato’s Academy ‘Let no-one
ignorant of Geometry enter here!’ Indeed, Archimedes is said to have used the
reflection properties of a parabola to focus sunlight on the sails of the Roman
fleet besieging Syracuse and set them on flame.

For two millennia the children of those families sufficiently well-off to be
educated were compelled to have their minds trained in the noble art of rigor-
ous mathematical thinking by the careful study of translations of the work of
Euclid. This involved grasping the notions of axioms and postulates, the draw-
ing of suitable construction lines, and the careful deduction of the necessary
results from the given facts and the Euclidean axioms — generally in two-
dimensional or three-dimensional Euclidean space (which we shall denote by
R? and R3, respectively). Indeed, in the 1700s and 1800s popular publications
such as The Lady’s and Gentleman’s Diary published geometric problems
for the consideration of gentlefolk at their leisure. And as late as the 1950s
translations of Euclid’s Elements were being used as standard school geometry
textbooks in many countries.

Just as nowadays, not everyone enjoyed Mathematics! For instance, the
German poet and philosopher Goethe wrote that ‘Mathematicians are like
Frenchmen: whatever you say to them, they translate into their own language,
and forthwith it is something entirely different!’

The Golden Era of geometry came to an end rather abruptly. When the
USSR launched the Sputnik satellite in 1957, the Western World suddenly
decided for political and military reasons to give increased priority to its
research and educational efforts in science and mathematics, and redeveloped
the curricula in these subjects. In order to make space for subjects newly
developed or perceived as more ‘relevant in the modern age’, the amount of
geometry taught in schools and universities plummeted. Interest in geometry
languished: it was thought ‘old-fashioned’ by the fashionable majority.

Plato (c. 427-347 BC)
was an Athenian
philosopher who
established a school of
theoretical research (with
a mathematical bias),
legislation and
government.

Archimedes (c. 287-212
BC) was a Greek
geometer and physicist
who used many of the
basic limiting ideas of
differential and integral
calculus.

Euclid (c. 325-265 BC)
was a mathematician in
Hellenistic Alexandria
during the reign of
Ptolemy I (323-283 BC),
famous for his book The
Elements.

We give a careful
algebraic definition of R2
and R3 in Appendix 2.

Johann Wolfgang von
Goethe (1749-1832) is
said to have studied all
areas of science of his day
except mathematics — for
which he had no aptitude.
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Nowadays it is being realized that geometry is still a subject of abiding
beauty that provides tremendous intellectual satisfaction in return for effort put
into its study, and plays a key underlying role in the understanding, develop-
ment and applications of many other branches of mathematics. More and more
universities are reintroducing courses in geometry, to give students a ‘feel’
for the reasons for studying various areas of mathematics (such as Topology),
to service the needs of Computer Graphics courses, and so on. Geometry is
having a revival!

Since 1971, the Open University in the United Kingdom has taught math-
ematics to students via specially written correspondence texts, and has tradi-
tionally given geometry a central position in its courses. This book arises from
those correspondence texts.

We adopt the Klein approach to geometry. That is, we regard the various
geometries as each consisting of an underlying set together with a group of
transformations acting on that set. Those properties of the set that are not
altered by any of the transformations are called the properties of that geometry.

Following a historical review of the development of the various geometries,
we look at conics (and at the related quadric surfaces) in Euclidean geometry.
Then we address a whole series of different geometries in turn. First, affine
geometry (that provides simple proofs of some results in Euclidean geome-
try). Then projective geometry, which can be regarded as the most basic of
all geometries; we divide this material into a chapter on projective lines and
a chapter on projective conics. We then return to study inversive geometry,
which provides beautiful proofs of many results involving lines and circles in
Euclidean geometry. This leads naturally to the study of hyperbolic geometry
in the unit disc, in which there are two lines through any given point that are
parallel to a given line. Via the link of stereographic projection, this leads on
to spherical geometry: a natural enough concept for a human race that lives
on the surface of a sphere! Finally we tie things together, explaining how the
various geometries are inter-related.

Study Guide

The book assumes a basic knowledge of Group Theory and of Linear Alge-
bra, as these are used throughout. However, for completeness and students’
convenience we give a very rapid review of both topics in the appendices.

The book follows many of the standard teaching styles of The Open Uni-
versity. Thus, most chapters are divided into five sections (each often further
divided into subsections); sections are numbered using two digits (such as
‘Section 3.2°) and subsections using three digits (such as ‘Subsection 3.2.4").
Generally a section is considered to be about one evening’s hard work for an
average student.

We number in order the theorems, examples, problems and equations within
each section.

We use wide pages with margins in which we place various historical notes,
cross-references, teaching comments and diagrams; the cross-references need

Preface

Topics in computer
graphics such as ‘hidden’
surfaces and the shading
of curved surfaces involve
much mathematics.

Chapter 0
Chapter 1
Chapter 2
Chapters 3 and 4
Chapter 5
Chapter 6

Chapter 7
Chapter 8

Appendices 1 and 2.
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not be consulted by students unless they wish to remind themselves of some
point on that topic, but the other margin notes should be read carefully. We use
boxes in the main text to highlight definitions, strategies, and the statements of
theorems and other key results. The end of the proof of a theorem is indicated
by a solid symbol ‘W’, and the end of the solution of a worked example by a
hollow symbol ‘[1°. Occasionally the text includes a set of ‘Remarks’; these are
comments of the type that an instructor would give orally to a class, to clarify
a definition, result, or whatever, and should be read carefully. There are many
worked examples within the text to explain the concepts being taught, and it is
important that students read these carefully as they contain many key teaching
points; in addition, there is a good stock of in-text problems to reinforce the
teaching, and solutions to these are given in Appendix 3. At the end of each
chapter there are exercises covering the material of that chapter, some of which
are fairly straight-forward and some are more challenging; solutions are not
given to the exercises.

Our philosophy is to provide clear and complete explanations of all geomet-
ric facts, and to teach these in such a way that students can understand them
without much external help. As a result, students should be able to learn (and,
we hope, to enjoy) the key concepts of the subject in an uncluttered way.

Most students will have met many parts of Chapter 1 already, and so can
proceed fairly quickly through it. Thereafter it is possible to tackle Chapters 2
to 4 or Chapters 5 and 6, in either order. It is possible to omit Chapters 7 or 8,
if the time in a course runs short.

Notation for Functions as Mappings

Suppose that a function f maps some set A into some set B, and that it maps
a typical point x of A onto some image point y of B. Then we say that A is the
domain (or domain of definition) of f, B the codomain of f, and denote the
function f as a mapping (or map) as follows:

f:A—>B

X =y

We often denote y by the expression f(x) to indicate its dependence on f
and x.
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Note that we use two
different arrows here, to
distinguish between the
mapping of a set and the
mapping of an element.
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Without the assistance and the forbearance of our families, the writing of
the original OU course and its later rewriting in this form would have been
impossible. It was Michael Brannan’s idea to produce it as a book.

Changes in the Second Edition

In addition to correcting typos and errors, the authors have changed the term
‘gradient’ to ‘slope’, and avoided the use of ‘reversed square brackets’” — so
that, for instance, the interval {x : 0 < x < 1} is now written as (0,1] rather
than ]0,1]. Also, they have clarified the difference between a geometry and
models of that geometry; in particular, the term ‘non-Euclidean’ geometry has
now been largely replaced by ‘hyperbolic’ geometry, and the term ‘elliptic’
geometry has been introduced where appropriate. The problems and exercises
have been revised somewhat, and more exercises included. Each chapter now
includes a summary of the material in that chapter, and before the appendices
there are now lists of symbols and suggestions for further reading.

The authors have taken the opportunity to add some new material to enrich
the reader’s diet: a treatment of conics as envelopes of tangent families,
barycentric coordinates, Poncelet’s Porism and Ptolemy’s Theorem, and planar
maps. Also, the treatment of a number of existing topics has been significantly
changed: the geometric interpretation of projective transformations, the anal-
ysis of the formula for hyperbolic distance, and the treatment of asymptotic
d-triangles.

The authors appreciate the warm reception of the first edition, and have tried
to take on board as many as possible of the helpful comments received. Special
thanks are due to John Snygg and Jonathan I. Hall for invaluable comments and
advice.

Instructors’ Manual

Complete solutions to all of the end-of-chapter exercises are available in an
Instructors’ Manual, which can be downloaded from www.cambridge.org/
9781107647831.

Preface

Solutions to the exercises
appear in an Instructors’
Manual available from the
publisher.



Introduction: Geometry
and Geometries

Geometry is the study of shape. It takes its name from the Greek belief that
geometry began with Egyptian surveyors of two or three millennia ago mea-
suring the Earth, or at least the fertile expanse of it that was annually flooded
by the Nile.

It rapidly became more ambitious. Classical Greek geometry, called
Euclidean geometry after Euclid, who organized an extensive collection of
theorems into his definitive text The Elements, was regarded by all in the early
modern world as the true geometry of space. Isaac Newton used it to formu-
late his Principia Mathematica (1687), the book that first set out the theory
of gravity. Until the mid-19th Century, Euclidean geometry was regarded as
one of the highest points of rational thought, as a foundation for practical
mathematics as well as advanced science, and as a logical system splendidly
adapted for the training of the mind. We shall see in this book that by the 1850s
geometry had evolved considerably — indeed, whole new geometries had been
discovered.

The idea of using coordinates in geometry can be traced back to Apollo-
nius’s treatment of conic sections, written a generation after Euclid. But their
use in a systematic way with a view to simplifying the treatment of geome-
try is really due to Fermat and Descartes. Fermat showed how to obtain an
equation in two variables to describe a conic or a straight line in 1636, but his
work was only published posthumously in 1679. Meanwhile in 1637 Descartes
published his book Discourse on Method, with an extensive appendix enti-
tled La Géometrie, in which he showed how to introduce coordinates to solve
a wide variety of geometrical problems; this idea has become so central a
part of mathematics that whole sections of La Géometrie read like a modern
textbook.

A contemporary of Descartes, Girard Desargues, was interested in the ideas
of perspective that had been developed over many centuries by artists (anx-
ious to portray three-dimensional scenes in a realistic way on two-dimensional
walls or canvases). For instance, how do you draw a picture of a building,
or a staircase, which your client can understand and commission, and from
which artisans can deduce the correct dimensions of each stone? Desargues
also realized that since any two conics can always be obtained as sections of
the same cone in R3, it is possible to present the theory of conics in a unified

The word comes from the
Greek words geo (Earth)
and metria (measuring).

Isaac Newton
(1643-1727) was an
English astronomer,
physicist and
mathematician. He was
Professor of Mathematics
at Cambridge, Master of
the Royal Mint, and
successor of Samuel
Pepys as President of the
Royal Society.

Apollonius of Perga

(c. 255-170 BC) was a
Greek geometer, whose
only surviving work is a
text on conics.

Pierre de Fermat
(1601-1665) was a French
lawyer and amateur
mathematician, who
claimed to have a proof of
the recently proved
Fermat’s Last Theorem in
Number Theory.

René Descartes
(1596-1650) was a French
scientist, philosopher and
mathematician. He is also
known for the phrase
‘Cogito, ergo sum’ (I
think, therefore I am).
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way, using concepts which later mathematicians distilled into the notion of
the cross-ratio of four points. Desargues’ discoveries came to be known as
projective geometry.

Blaise Pascal was the son of a mathematician, Etienne, who attended a group
of scholars frequented by Desargues. He heard of Desargues’s work from his
father, and quickly came up with one of the most famous results in the geom-
etry of conics, Pascal’s Theorem, which we discuss in Chapter 4. By the late
19th century projective geometry came to be seen as the most basic geometry,
with Euclidean geometry as a significant but special case.

At the start of the 19th century the world of mathematics began to change.
The French Revolution saw the creation of the Ecole Polytechnique in Paris
in 1794, an entirely new kind of institution for the training of military engi-
neers. It was staffed by mathematicians of the highest calibre, and run for
many years by Gaspard Monge, an enthusiastic geometer who had invented a
simple system of descriptive geometry for the design of forts and other mili-
tary sites. Monge was one of those rare teachers who get students to see what is
going on, and he inspired a generation of French geometers. The Ecole Poly-
technique, moreover, was the sole entry-point for any one seeking a career
in engineering in France, and the stranglehold of the mathematicians ensured
that all students received a good, rigorous education in mathematics before
entering the specialist engineering schools. Thus prepared they then assisted
Napoleon’s armies everywhere across Europe and into Egypt.

One of the Ecole’s former students, Jean Victor Poncelet, was taken prisoner
in 1812 in Napoleon’s retreat from Moscow. He kept his spirits up during a
terrible winter by reviewing what his old teacher, Monge, had taught him about
descriptive geometry. This is a system of projections of a solid onto a plane —
or rather two projections, one vertically and one horizontally (giving what are
called to this day the plan and elevation of the solid). Poncelet realized that
instead of projecting ‘from infinity’ so to speak, one could adapt Monge’s ideas
to the study of projection from a point. In this way he re-discovered Desargues’
ideas of projective geometry. During his imprisonment he wrote his famous
book Traité des propriétés projectives des figures outlining the foundations of
projective geometry, which he extensively rewrote after his release in 1814 and
published in 1822.

Around the same time that projective geometry was emerging, mathemati-
cians began to realize that there was more to be said about circles than they
had previously thought. For instance, in the study of electrostatics let £; and
£> be two infinitely long parallel cylinders of opposite charge. Then the inter-
section of the surfaces of equipotential with a vertical plane is two families of
circles (and a single line), and a point charge placed in the electrostatic field
moves along a circular path through a specific point inside each cylinder, at
right angles to circles in the families. The study of properties of such fami-
lies of circles gave rise to a new geometry, called inversive geometry, which
was able to provide particularly striking proofs of previously known results in
Euclidean geometry as well as new results.

Girard Desargues
(1591-1661) was a French
architect.

We deal with these ideas
in Chapters 4 and 5.

Blaise Pascal
(1623-1662) was a French
geometer, probabilist,
physicist and philosopher.

Gaspard Monge
(1746-1818) was a French
analyst and geometer. A
strong republican and
supporter of the
Revolution, he was French
Minister of the Navy in
1792-93, but deprived of
all his honours on the
restoration of the French
monarchy.

Jean Victor Poncelet
(1788-1867) followed a
career as a military
engineer by becoming
Professor of Mechanics at
Metz, where he worked on
the efficiency of turbines.

vertical
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In inversive geometry mathematicians had to add a ‘point at infinity’ to the
plane, and had to regard circles and straight lines as equivalent figures under
the natural mappings, inversions, as these can turn circles into lines, and vice-
versa. Analogously, in projective geometry mathematicians had to add a whole
‘line at infinity’ in order to simplify the geometry, and found that there were
projective transformations that turned hyperbolas into ellipses, and so on. So
mathematicians began to move towards thinking of geometry as the study of
shapes and the transformations that preserve (at least specified properties of)
those shapes.

For example, there are very few theorems in Euclidean geometry that depend
on the size of the figure. The ability to make scale copies without altering
‘anything important’ is basic to mathematical modelling and a familiar fact
of everyday life. If we wish to restrict our attention to the transformations
that preserve length, we deal with Euclidean geometry, whereas if we allow
arbitrary changes of scale we deal with similarity geometry.

Another interesting geometry was discovered by Mobius in the 1820s, in
which transformations of the plane map lines to lines, parallel lines to parallel
lines, and preserve ratios of lengths along lines. He called this geometry affine
geometry because any two figures related by such a transformation have a like-
ness or affinity to one another. This is the geometry appropriate, in a sense, to
Monge’s descriptive geometry, and the geometry that describes the shadows of
figures in sunlight.

Since the days of Greek mathematics, with a stimulus provided by the needs
of commercial navigation, mathematicians had studied spherical geometry too;
that is, the geometry of figures on the surface of a sphere. Here geometry
is rather different from plane Euclidean geometry; for instance the area of
a triangle is proportional to the amount by which its angle sum exceeds m,
and there is a nice generalization of Pythagoras’ Theorem, which says that
in a right-angled triangle with sides a, b and the hypotenuse c, then cosc =
cosa - cosb. It turns out that there is a close connection between spherical
geometry and inversive geometry.

For nearly two millennia mathematicians had accepted as obvious the
Parallel Postulate of Euclid: namely, that given any line ¢ and any point P
not on ¢, there is a unique line m in the same plane as P and £ which passes
through P and does not meet £. Indeed much effort had been put into deter-
mining whether this Postulate could be deduced from the other assumptions
of Euclidean geometry. In the 1820s two young and little-known mathemati-
cians, Bolyai in Hungary and Lobachevskii in Russia, showed that there
were perfectly good so-called ‘non-Euclidean geometries’, namely hyper-
bolic geometry and elliptic geometry, that share all the initial assumptions of
Euclidean geometry except the parallel postulate.

In hyperbolic geometry given any line £ and any point P not on ¢, there are
infinitely many lines in the same plane as P and ¢ which pass through P and do
not meet £; in elliptic geometry all lines intersect each other. However, it still
makes sense in both hyperbolic and elliptic geometries to talk about the length

August Ferdinand Mobius
(1790-1868) was a
German geometer,
topologist, number
theorist and astronomer;
he discovered the famous
Mobius Strip (or Band).

For the surface of the
Earth is very nearly
spherical.
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Janos Bolyai (1802-1860)
was an officer in the
Hungarian Army.

Nicolai Ivanovich
Lobachevskii
(1792-1856) was a
Russian geometer who
became Rector of the
University of Kazan.
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of line segments, the distance between points, the angles between lines, and
so forth. Around 1900 Poincaré did a great deal to popularise these geometries  Jules Henri Poincaré
by demonstrating their applications in many surprising areas of mathematics, (1854-1912) was a
such as Analysis. prolific French o
By 1870, the situation was that there were many geometries: Euclidean, mathematician, physicist,
astronomer and
affine, projective, inversive, hyperbolic and elliptic geometries. One way math- philosopher at the
ematicians have of coping with the growth of their subject is to re-define it S0 University of Paris.
that different branches of it become branches of the same subject. This was
done for geometry by Klein, who developed a programme (the Erlangen Pro-  Christian Felix Klein
gramme) for classifying geometries. His elegant idea was to regard a geometry — (1849-1925) was a
as a space together with a group of transformations of that space; the proper- ~ German algebraist,
ties of ﬁgures that a.re not altered by any transformation in the group are their ﬁz(;f;l;tse: ;Zp;);gagrli znd
geometrical properties. professor at the University
For example, in two-dimensional Euclidean geometry the space is the plane  of Erlangen at the
and the group is the group of all length-preserving transformations of the plane  remarkable age of 22.
(or isometries). In projective geometry the space is the plane enlarged (in a way
we make precise in Chapter 6) by a line of extra points, and the group is the
group of all continuous transformations of the space that preserve cross-ratio.
Klein’s approach to a geometry involves three components: a set of points
(the space), a set of transformations (that specify the invariant properties — for
example, congruence in Euclidean geometry), and a group (that specifies how
the transformations may be composed). The transformations and their group
are the fundamental components of the geometry that may be applied to differ-
ent spaces. A model of a geometry is a set which possesses all the properties of
the geometry; two different models of any geometry will be isomorphic. There
may be several different models of a given geometry, which have different For example, you will
advantages and disadvantages. Therefore, we shall use the terms ‘geometry’  meet two models of
and ‘model (of a geometry)’ interchangeably whenever we think that there is nYperbolic geometry.
no risk of confusion.
In fact as Klein was keen to stress, most geometries are examples of pro-
jective geometry with some extra conditions. For example, affine geometry
emerges as the geometry obtained from projective geometry by selecting a line
and considering only those transformations that map that line to itself; the line
can then be thought of as lying ‘at infinity’ and safely ignored. The result was
that Klein not only had a real insight into the nature of geometry, he could even
show that projective geometry was almost the most basic geometry.
This philosophy of geometry, called the Kleinian view of geometry, is the
one we have adopted in this book. We hope that you will enjoy this introduction
to the various geometries that it contains, and go on to further study of one of
the oldest, and yet most fertile, branches of mathematics.



Conics

The study of conics is well over 2000 years old, and has given rise to some of
the most beautiful and striking results in the whole of geometry.

In Section 1.1 we outline the Greek idea of a conic section — that is, a conic
as defined by the curve in which a double cone is intersected by a plane. We
then look at some properties of circles, the simplest of the non-degenerate
conics, such as the condition for two circles to be orthogonal and the equations
of the family of all circles through two given points.

We explain the focus—directrix definition of the parabola, ellipse and hyper-
bola, and study the focal-distance properties of the ellipse and hyperbola.
Finally, we use the so-called Dandelin spheres to show that the Greek conic
sections are just the same as the conics defined in terms of a focus and a
directrix.

In Section 1.2 we look at tangents to conics, and the reflection properties of
the parabola, ellipse and hyperbola. It turns out that these are useful in prac-
tical situations as diverse as anti-aircraft searchlights and astronomical optical
telescopes! We also see how we can construct each non-degenerate conic as
the ‘envelope’ of lines in a suitably-chosen family of lines.

The equations of conics are all second degree equations in x and y. In
Section 1.3 we show that the converse result holds — that is, that every sec-
ond degree equation in x and y represents a conic. We also find an algorithm
for determining from its equation in x and y which type of non-degenerate
conic a given second degree equation represents, and for finding its principal
features.

The analogue in R? of a plane conic in R? is a quadric surface, specified
by a suitable second degree equation in x,y and z. A well-known example
of a quadric surface is the cooling tower of an electricity generating station.
In Section 1.4 we find an algorithm for identifying from its equation which
type of non-degenerate quadric a given second degree equation in x, y and z
represents. We also discover that two of the non-degenerate quadric surfaces
can be generated by two different families of straight lines, and that this feature
is of practical importance.

That is, they intersect at
right angles.

We use the notation R?
and R3 to denote
2-dimensional and
3-dimensional Euclidean
space, respectively.



1.1 Conic Sections and Conics

11.1 Conic Sections

Conic Section is the name given to the shapes that we obtain by taking different
plane slices through a double cone. The shapes that we obtain from these cross-
sections are as drawn below.

y y Y
o X o X o x
1. single point 2. single line 3. pair of lines

y
¥ \ y /
N

4. parabola 5. ellipse 6. hyperbola

Notice that the circle shown in slice 7 can be regarded as a special case of
an ellipse.

Notice, also, that the ellipse and the hyperbola both have a centre; that is,
there is a point C such that rotation about C through an angle 7 is a symmetry
of the conic. For example, for the ellipse and hyperbola illustrated above, the
centre is in fact just the origin. On the other hand, the parabola does not have
a centre.

In Subsection 1.1.5 we shall verify that the curves, the ‘conic sections’,
obtained by slicing through a double cone are exactly the same curves, the
‘conics’, obtained as the locus of points in the plane whose distance from
a fixed point is a constant multiple of its distance from a fixed line. As a
result, we often choose not to distinguish between the terms ‘conic section’
and ‘conic’!

We use the term non-degenerate conics to describe those conics that are
parabolas, ellipses or hyperbolas; and the term degenerate conics to describe
the single point, single line and pair of lines.

In this chapter we study conics for their own interest, and we will meet them
frequently throughout our study of geometry as the book progresses.

11.2 Circles

The first conic that we investigate is the circle. Recall that a circle in R? is the
set of points (x, y) that lie at a fixed distance, called the radius, from a fixed
point, called the centre of the circle. We can use the techniques of coordinate
geometry to find the equation of a circle with given centre and radius.

1: Conics

It is thought that the
Greek mathematician
Menaechmus discovered
the conic sections around

350 BC.

7. Circle

P(x, y)




Conic Sections and Conics

Let the circle have centre C(a, b) and radius r. Then, if P(x,y) is an arbi-
trary point on the circumference of the circle, the distance CP equals r. It
follows from the formula for the distance between two points in the plane that

rP=@ -+ -b” M
If we now expand the brackets in equation (1) and collect the corresponding
terms, we can rewrite equation (1) in the form
x2+y2—2ax—2by+(a2+b2—r2) =0.
Then, if we write f for —2a, g for —2b and h for a* +b?> — r?, this equation
takes the form
x2+y2+fx+gy—|—h=0. 2)
It turns out that in many situations, however, equation (1) is more useful
than equation (2) for determining the equation of a particular circle.

Theorem 1 The equation of a circle in R? with centre (a,b) and radius
ris .
(r—a)’ +(y—b)* =1

For example, it follows from this formula that the circle with centre (—1, 2)
and radius /3 has equation

2
DT+ -2% = (V3)
this can be simplified to give

X2+ 14yt —dy+4=3,

or
x2+y2+2x—4y+2=0.
Problem 1 Determine the equation of each of the circles with the
following centre and radius:

(a) centre the origin, radius 1;
(b) centre the origin, radius 4;
(c) centre (3, 4), radius 2;
(d) centre (3, 4), radius 3.

Problem 2 Determine the condition on the numbers f, g and  in the

equation 5 5
x“+y +fx+gy+h=0

for the circle with this equation to pass through the origin.
We have seen that the equation of a circle can be written in the form
24+ 4+ fi+gy+h=0. 2)

In the opposite direction, given an equation of the form (2), can we deter-
mine whether it represents a circle? If it does represent a circle, can we
determine its centre and radius?

Here we use the Distance
Formula for the distance d
between two points
(x1.y1), (x2, ) in R%:

d® = (x; —xp)?
+ (1 —y)*
Note here that the

coefficients of x2 and y2
are equal.




For example, consider the set of points (x, y) in the plane that satisfy the
equation:

x24+y?—4x+6y+9=0. 3)

In order to transform equation (3) into an equation of the form (1), we use the
technique called ‘completing the square’ — we rewrite the terms that involve
only xs and the terms that involve only ys as follows:

x?—dx =(x —2)* -4,
y24+6y=(y+3)2-09.

Substituting these expressions into equation (3), we obtain
(x =22+ (y+37°=4

It follows that the equation represents a circle whose centre is (2, —3) and
whose radius is 2.

In general, we can use the same method of ‘completing the square’ to rewrite
the equation

Py fitgy+h=0
in the form
1 2\? LV o121,
(x+37) +(v+1e) =472 +47 -, )

from which we can ‘read off’ the centre and radius.

Theorem 2 An equation of the form
X2+ +fr+gy+h=0
represents a circle with
centre (—% ,—%g) and radius }‘f2 + A—llg2 —h,

provided that }‘fz F %gz —h>0.

Remark

It follows from equation (4) above that if 4—1L 2+ 4—1‘ g> — h < 0, then there are
no points (x, y) that satisfy the equation x> + y*> 4+ fx + gy + h = 0; and if
}‘ 2+ }‘ g> —h = 0, then the given equation simply represents the single point

(47w)

Problem 3 Determine the centre and radius of each of the circles
given by the following equations:

(@) x24+y2—2x —6y+1=0; (b)3x2+3y2—12x — 48y = 0.

1: Conics

Note that in equation (3)
the coefficients of x2 and
y2 are both 1.

Note that —2 is half the
coefficient of x, and +3 is
half the coefficient of y, in
equation (3).

We can ‘read off” the
centre and radius of the
circle from this equation.

Here we start with the
coefficients of x2 and y2
both equal (to 1).
Otherwise the equation
cannot be reformulated in
the form (1).
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Problem 4 Determine the set of points (x, y) in R that satisfies each
of the following equations:

@ x2+y?+x+y+1=0;
b) X242 —2x+4y+5=0;
(c) 2x2 +2y>+x =3y —5=0.

Orthogonal Circles

We shall sometimes be interested in whether two intersecting circles are
orthogonal: that is, whether they meet at right angles. The following result
answers this question if we know the equations of the two circles.

Theorem 3  Orthogonality Test
Two intersecting circles C and Cp with equations

X2+y + fix+giy+h =0 and
2+ y*+ fox + gy +hy =0,
respectively, are orthogonal if and only if

fifo+ 818 = 2(h1 + ho).

Proof The circle C; has centre A = (—% f1,—%g1) and radius r; =

/}‘f% + %g% — hy; the circle Cy has centre B = (—%fz, —%82> and radius

r=\/1f3+ 583 — ha.

Let P be one of their points of intersection, and look at the triangle AABP.
If the circles meet at right angles, then the line AP is tangential to the circle
C», and is therefore at right angles to the line BP. So the triangle AABP is
right-angled, and we may apply Pythagoras’ Theorem to it to obtain

AP’ + BP? = AB. 5)

Conversely, if equation (5) holds, then AABP must be a right-angled triangle
and the circles must meet at right angles.

Now
APP =rt=1f1+ 1t~ and
B ==l lg
Also

2 2
AB = (11 = 152) + (81— 322)

= (%f% -IAf+ %f%) + (%g% —gi1g+ %gé) :

For example, in
Chapters 5 and 6.

You met these formulas in
Theorem 2.

We use the symbol A to
indicate a triangle.
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Substituting for AP?>, BP?> and AB’ into equation (5), and cancelling
common terms, we deduce that equation (5) is equivalent to

—h1 —hy=—%fifr— 38182
that is,
S1f2+ 8182 = 2(h1 + ha).
This is the required result. |

Problem 5 Determine which, if any, of the following pairs of inter-
secting circles are mutually orthogonal.

@ Cr={x,y):x*+y*—4x—4y+7=0} and
Co={(x,y) : x? +y*+2x — 8y +5 =0}
(b) Cr={(x,y) : x> +y*+3x—6y+5=0} and
Co={(x,y):3x2 +3y? +4x +y — 15=0}.

Circles through Two Points
We shall also be interested later in the family of circles through two given
points. So, let two circles C1 and C> with equations
x2+y2+f1x+g1y+h1 =0 and
4y 4 frx gy +hy =0 (©)
intersect at the distinct points P and Q, say. Then, if k # —1, the equation
Py fixt gy +h kP Y+ px gy +h) =0 ()

represents a circle since it is a second degree equation in x and y with equal
(non-zero) coefficients of x2 and y? and with no terms in xy. This circle
passes through both P and Q; for the coordinates of P and Q both satisfy
the equations in (6) and so must satisfy equation (7).

If k = —1, equation (7) is linear in x and y, and so represents a line; since
P and Q both lie on it, it must be the line through P and Q.

Conversely, given any point R in the plane that does not lie on the circle
C> we can substitute the coordinates of R into equation (7) to find the unique
value of k such that the circle with equation (7) passes through R. We can think
of the circle C; as corresponding to the case ‘k = 0o’ of equation (7). For, if
we rewrite equation (7) in the form

1
;M+ﬁ+ﬁmww+m+ﬂ+ﬁ+ﬁmmw+m=o(&

and let k — oo, then 1/k — 0 and equation (8) becomes the equation of C».

Theorem 4 Let C| and C, be circles with equations
+y + fix+gy+h =0 and
X4yt fox+gy+hy=0

1: Conics

Section 5.5

This is possible because,
since R does not lie on
C», the term in the bracket
in (7) does not vanish

at R.
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that intersect at distinct points P and Q. Then the line and all circles (other
than C») through P and Q have an equation of the form

4y 4 fix+ g1y +hi kG2 + Y2+ Hrx + gy +ha) =0

for some number k.
If k # —1, this equation is one of the circles; if Kk = —1, this is the
equation of the line.

Example 1 Find the equation of the circle that passes through (1, 2) and the
points of intersection of the circles

x2+y2—3x+4y—1=0 and x2+y2+%x—3y+%=0.

Solution By Theorem 4, the required equation is of the form
x2+y2—3x+4y—1+k(x2+y2+§x—3y+%)=0 )
for some number k. Since (1, 2) must satisfy this equation, it follows that
1+4-3+8—1+k(1+4+3-6+3)=0,

so that k = —3. Substituting k = —3 back into equation (9), we deduce that
the equation of the required circle is

x2+y2—3x+4y—1—3<x2+y2+%x—3y+%) =0,
which we can simplify to the form

4x% +4y? +21x — 26y + 11 = 0. O

Problem 6 Find the equation of the line through the points of inter-
section of the circles

x2+y2—3x+4y—1:0 and
2x2 +2y? +5x — 6y +3 =0.

113  Focus-Directrix Definition of the Non-Degenerate Conics

Earlier we defined the conic sections as the curves of intersection of a double
cone with a plane. We have seen that the circle can be defined in a different
way: as the set of points at a fixed distance from a fixed point.

Here we give a method for constructing the other non-degenerate conics,
the parabola, ellipse and hyperbola, as sets of points that satisfy a some-
what similar condition involving distances. Later we shall give a careful proof

Subsection 1.1.1

Subsection 1.1.2

Subsection 1.1.5
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that each non-degenerate conic section is a non-degenerate (plane) conic,
and vice-versa.

The three non-degenerate conics (the parabola, ellipse and hyperbola) can
be defined as the set of points P in the plane that satisfy the following condi-
tion: The distance of P from a fixed point (called the focus of the conic) is a
constant multiple (called its eccentricity, e) of the distance of P from a fixed
line (called its directrix).

The different conics arise according to the value of the eccentricity:

Eccentricity A non-degenerate conic is an ellipse if 0 < e < 1, a parabola
if e = 1, or a hyperbolaif e > 1.

Parabola (e = 1)

A parabola is defined to be the set of points P in the plane whose distance
from a fixed point F' is equal to their distance from a fixed line d. We obtain a
parabola in standard form if we choose

1. the focus F to lie on the x-axis, and to have coordinates (a,0), a > 0;
2. the directrix d to be the line with equation x = —a.

Notice in particular that the origin O(0,0) lies on the parabola since it is
equidistant from F and d.

Let P(x,y) be an arbitrary point on the parabola, and let M be the foot of
the perpendicular from P to the directrix. Since FP = PM, by the definition
of the parabola, it follows that FP> = PM?; we may rewrite this equation in
terms of coordinates as

(x —a)Y +y* =@ +a)
Multiplying out the brackets we get
x2—2ax+a2+y2 =x2+2ax+a2,

which simplifies to the equation y? = 4ax.

Notice that each point with coordinates (atz, 2at), where ¢ € R, lies on the
parabola, since (Zat)2 = 4a - at®. Conversely, we can write the coordinates of
each point on the parabola in the form (at2, 2at). For if we choose t = y/(2a),
then y = 2at and

X = 3;— (from the equation y2 = 4ax)
a

2at)?
Z(Z) =at2,
a

as required. It follows that there is a one—one correspondence between the real
numbers ¢ and the points of the parabola.

1: Conics

Theorem 4 of
Subsection 4.1.4

When e = 0, the ellipse is
actually a circle; the focus
is the centre of the circle,
and the directrix is ‘at
infinity’.

x=-a
directrix d

We use the notation R to
denote the ‘real numbers’
or the ‘real line’.



Conic Sections and Conics

‘We summarize the above facts as follows.

Parabola in Standard Form A parabola in standard form has equation
y2 = 4ax, wherea > 0.

It has focus (a,0) and directrix x =
parametric equations

—a; and it can be described by the

x = af?, y =2at (te€R).

We call the x-axis the axis of the parabola in standard form, since the
parabola is symmetric with respect to this line, and we call the origin the vertex
of a parabola in standard form, since it is the point of intersection of the axis

of the parabola with the parabola. A parabola has no centre.

Example2 This question concerns the parabola E with equation y> = 2x and
parametric equations x = %tz, y=t(teR).

(a) Write down the focus, vertex, axis and directrix of E.

(b) Determine the equation of the chord that joins distinct points P and Q on
E with parameters #; and f,, respectively. Determine the condition on 7
and 1, such that the chord PQ passes through the focus of E.

Solution

(a) The parabola E is the parabola in standard form where 4a = 2, ora = %

It follows that the focus of E is (%, O), its vertex is (0, 0), its axis is the
x-axis, and the equation of its directrix is x = —%.
(b) The coordinates of P and Q are (%t%, tl) and (%t%, tz), respectively. So,

if t% #* t%, the slope (or gradient, as it is sometimes called) of PQ is
given by

1 —n Hh—n 2
m=15 12" T1(2_,2 :
M=oty g (i—13) n+n

Since (%t%, tl) lies on the line PQ, it follows that the equation of PQ is

2 1,
x—=1%).
1+ 2

Multiplying both sides by #; + 1>, we get
(11 +0)(y —h) =2x — 17,

y—1 =

so that

(t1 +h)y — 11 —t1tp = 2x — 13,

13

‘Centre’ was defined in
Subsection 1.1.1.

We generally use the letter
E to denote a conic.

Such a chord is called
focal chord.

P&l 1)

F0) x
QG151
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or
(1 +1n)y =2x + 110, (10
If, however, t% = t%, then since #; # t, we have t; = —t,. Thus PQ is
parallel to the y-axis, and so has equation x = %t%; so in this case too, PQ
has equation given by (10).
The chord PQ with equation (10) passes through the focus (%,O) if
(1 + )0 = 1 + t1t; in other words, if t;1r, = —1. O

Problem 7 This question concerns the parabola E with equation
2

y% = x and parametric equations x =%,y =1 (t € R).

(a) Write down the focus, vertex, axis and directrix of E.

(b) Determine the equation of the chord that joins distinct points P and
Q on E with parameters #; and 7, respectively.

(c) Determine the condition on f; and #, (and so on P and Q) that the

focus of E is the midpoint of the chord PQ.

Ellipse (0 <e < 1)

We define an ellipse with eccentricity zero to be a circle. We have already
discussed circles.

We define an ellipse with eccentricity e (where 0 < e < 1) to be the set
of points P in the plane whose distance from a fixed point F is e times their
distance from a fixed line d. We obtain such an ellipse in standard form if we
choose

1. the focus F to lie on the x-axis, and to have coordinates (ae,0), a > 0;
2. the directrix d to be the line with equation x = a/e.

Let P(x, y) be an arbitrary point on the ellipse, and let M be the foot of the
perpendicular from P to the directrix. Since FP = e - PM, by the definition of
the ellipse, it follows that FP?> = e - PM?; we may rewrite this equation in
terms of coordinates as

(x — ae)2 + y2 = ¢? (x — g>2 = (ex — a)z.
Multiplying out the brackets we get
x2 — 2aex + a*e* + y2 = e?x% — 2aex + a2,
which simplifies to the equation
x2<1—ez>+y2=a2(1—e2)

or

1: Conics

Subsection 1.1.2

P(x,y)

/

—
P

F (ae/0) X
focus

x=ale
directrix
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Substituting b for av/'1 — e2, so that b = a? (1 — ez), we obtain the
standard form of the equation of the ellipse

Notice that this equation is symmetrical in x and symmetrical in y, so that
the ellipse also has a second focus F’(—ae, 0) and a second directrix d’ with
equation x = —a/e.

The ellipse intersects the axes at the points (£a,0) and (0, +b). We call
the segment joining the points (+a,0) the major axis of the ellipse, and the
segment joining the points (0, +b) the minor axis of the ellipse. Since b < a,
the minor axis is shorter than the major axis. The origin is the centre of this
ellipse.

Notice that each point with coordinates (a cost,bsint) lies on the ellipse,
since

2 N2
acost bsint

( a2) +( b2) = cos?t +sin’t = 1.
Then, just as for the parabola, we can check that

x =acost, y=bsint (te€ (—m,7])
gives a parametric representation of the ellipse.
We now summarize the above facts about ellipses (including circles) as

follows.

Ellipse in Standard Form An ellipse in standard form has equation
PLI
2 e

It can be described by the parametric equations

—1, wmmazb>0Jﬂ=a%ﬁ—¥»05e<L

x =acost, y=bsint (te€ (—m,x]).

If e > 0, it has foci (Fae, 0) and directrices x = %a/e.

Example 3 Let PQ be an arbitrary chord of the ellipse with equation

x2 2
=1

Let M be the midpoint of PQ. Prove that the following expression is
independent of the choice of P and Q:

slope of OM x slope of PQ.

15

Since 0 < ¢ < 1, we have
that0 < b < a.

y
b

‘ focus focus ‘

directrix

'minor axis
x=-ale major axis centre x= ale

directrix

Sometimes it is
convenient to assume that
t € [0,2m), for instance,
instead of (—, r]. Notice
our notation for intervals:

(p.q),1p.ql,[p,9), (P, q]

denote those real numbers
x for which p <x < ¢,
p<x=<gq,p=<x<gq,
p < x < q, respectively.

Another parametric
representation of this
ellipse is

1—1¢2
—Ta
2t
1412

y=>b

t e R.
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Solution Let P and Q have the parametric coordinates (a costy,b sinty)
and (acost,bsinty), respectively. It follows that M has coordinates
(5(costy + costr), g(sin t +sinn)).

Now,
b(sint int
a(cost; + costr)

and bsi )
1 — 15
the Slope of PQ o M’
a(cost] — costy)

SO
slope of OM x slope of PQ

b(sint; +sinty)  b(sint; — sintp)

a(cost] +costy) a(costy —costy)

b?  sin? - sin? 153
a? cos?t] —cos’t
b? sin? 1; — sin 1 In general,

a2 (1 — sin? tl) — (1 — sin? t2)

b2
a?’

cos20 = 1 —sin? .

which is independent of the values of #; and 7,. O

Problem 8 Let P be an arbitrary point on the ellipse with equation

2
Z—i + 2—2 = 1 and focus F (ae, 0). Let M be the midpoint of FP. Prove that
M lies on an ellipse whose centre is midway between the origin and F'.

y
IP (acost, bsint)

la |y Ip =1

Hyperbola (e > 1)

A hyperbola is the set of points P in the plane whose distance from a fixed
point F is e times their distance from a fixed line d, where e > 1. We obtain a y
hyperbola in standard form if we choose

1. the focus F' to lie on the x-axis, and to have coordinates (ae, 0), a > 0;
2. the directrix d to be the line with equation x = a/e.

Let P(x,y) be an arbitrary point on the hyperbola, and let M be the foot of
the perpendicular from P to the directrix. Since FP = e - PM, by the definition
of the hyperbola, it follows that FP> = ¢ - PM?; we may rewrite this equation
in terms of coordinates as

2
(x—ae)z—i-yz:ez(x—c—l)
e

= (ex — a)z.

Multiplying out the brackets we get

2

x? — 2aex + a’e® + y2 = e’x* — 2aex + a?,
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which simplifies to

or

Substituting b for a+/e? — 1, so that b2 =q? (6‘2 — 1), we obtain the standard
form of the equation of the hyperbola

Notice that this equation is symmetrical in x and symmetrical in y, so that
the hyperbola also has a second focus F’(—ae,0) and a second directrix d’
with equation x = —a/e.

The hyperbola intersects the x-axis at the points (fa,0). We call the seg-
ment joining the points (£a,0) the major axis or transverse axis of the
hyperbola, and the segment joining the points (0, £b) the minor axis or conju-
gate axis of the hyperbola (notice that this is NOT a chord of the hyperbola).
The origin is the centre of this hyperbola.

Notice also that each point with coordinates (a sect, b tant), where ¢ is not
an odd multiple of 7 /2, lies on the hyperbola, since

a’sec’t  b*tan’t B

a? b?

Then, just as for the parabola, we can check that
x =asect, y=btant (te€ (—m/2,7/2)VU (/2,31/2))

gives a parametric representation of the hyperbola.

Two other features of the shape of the hyperbola stand out. Firstly, the
hyperbola consists of two separate curves or branches.

Secondly, the lines with equations

divide the plane into two pairs of opposite sectors; the branches of the hyper-
bola lie in one pair. As x — F00 the branches of the hyperbola get closer and
closer to these two lines. We call the lines y = 4=(b/a)x the asymptotes of the
hyperbola.

17

y
b . .
major axis
focus focus /
F’ -a a F x
b
minoNgxis
dlrECln/X directrix

x=-ak x=ale

In general,

sec29 =1 +tan29.

Points for which
te(—m/2,1m/2)

lie on the right branch of

the hyperbola, and points

for which
te(mw/2,3n/2)

lie on the left branch of

the hyperbola.

S
ZZ DN

x=-ale = —(Wayx
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We summarize the above facts as follows.

Hyperbola in Standard Form A hyperbola in standard form has equation

x2 y2

i) =1 Whereb2=a2(82—1), a>0,e>1.
It has foci (fae,0) and directrices x = =£a/e; and it can be described by

the parametric equations

x =asect, y=btant (t€ (—m/2,7/2)U (x/2,37/2)).

Problem 9 ILet P be a point (sect,%tant), where (r €

(—m/2,7/2) U (/2,37 /2)), on the hyperbola E with equation x> —
2y? = 1.

(a) Determine the foci F and F’ of E.

(b) Determine the slopes of FP and F’'P, when these lines are not
parallel to the y-axis.

(c) Determine the point P in the first quadrant on E for which FP is
perpendicular to F'P.

Rectangular Hyperbola (e = /2)

When the eccentricity e of a hyperbola takes the value /2, then e2 = 2 and
b = a. Then the asymptotes of the hyperbola have equations y = =£x, so
that in particular they are at right angles. A hyperbola whose asymptotes are at
right angles is called a rectangular hyperbola.

Then, if we use the asymptotes as new x- and y-axes (instead of the original
x-and y-axes), it turns out that the equation of the hyperbola can be written in
the form xy = c2, for some positive number c.

The rectangular hyperbola with equation xy = ¢? has the origin as its centre,
and the x- and y-axes as its asymptotes. Also, each point on it can be uniquely
represented by the parametric representation

X =ct, y:% where ¢ # 0.
We shall use rectangular hyperbolas later on.

Polar Equation of a Conic

For many applications it is useful to describe the equation of a non-degenerate
conic in terms of polar coordinates r and 6. A point P(x, y) in the plane has
polar coordinates (r,0) if r is the distance OP (where O is the origin) and 6 is
the anticlockwise angle between OP and the positive direction of the x-axis.
Take the origin O to be the focus of the conic, d the directrix, M the foot
of the perpendicular from a point P on the conic to d, N the foot of the
perpendicular from O to d, and Q the foot of the perpendicular from P to ON.

1: Conics

Another parametric
representation of this
hyperbola is

In this problem you will
find the identity

sec?0 =1+ tan® 0
useful.

e
VRN

I
-b

We omit the details.

y=-x

directrix |d
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Then by the definition of the conic, we have OP = e - PM. We can rewrite
this as
r =e(ON — 0Q)
=e-0ON —ercosf,
or
r(l14+ecosf) =e-ON
=/, aconstant.

It follows that the equation of the conic can be expressed in the form
l
r=——-.
1+ ecosf
The polar form of the equation of a conic is often used in problems in
Dynamics: for example, in determining the motion of a planet or of a comet
round the Sun.

1.1.4  Focal Distance Properties of Ellipse and Hyperbola

We now prove two simple but surprising results. We deal with the ellipse first.

Theorem 5 Sum of Focal Distances of Ellipse

Let E be an ellipse with major axis (—a, a) and foci F and F’. Then, if P
is a point on the ellipse, FP + PF' = 2a. In particular, FP + PF’ is constant
for all points P on the ellipse.

directrix d' directrix d

Proof Letd and d’ be the directrices of the ellipse that correspond to the foci
F and F’, respectively. Then, since

PF = e x (distance from P to d)

and
PF' = e x (distance from P to d’),

planet

comet
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Sun®
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it follows that

PF + PF = e x (distance between d and d').
= 2a,

which is a constant. |

The result of Theorem 5 can be used to draw an ellipse, using a piece of
string fixed at both ends. A pencil is used to pull the string taut; then, as we
move the pencil round, the shape that it traces out is an ellipse whose foci are
the two ends of the string.

Notice that, if we are given any three points ', F/ and P (not on the line
segment F’F) in the plane, then there is only one ellipse through P with F
and F’ as its foci. Its centre is the midpoint, O, of the segment F'F, its axes
are the line along F’F and the line through O perpendicular to F'F, and its
major axis has length PF + PF’.

Also, if we are given any two points F and F’ in the plane, the locus of
points P (not on the line segment F'F) in the plane for which PF + PF' is a
constant is necessarily an ellipse. Thus the converse of Theorem 5 holds.

There is an analogous result for the hyperbola.

Theorem 6 Difference of Focal Distances of Hyperbola
Let H be a hyperbola with major axis (—a,a) and foci F and F’. Then, if
P is a point on the branch of the hyperbola that is closer to F,

PF — PF = 2a;
and, if P is a point on the branch of the hyperbola closer to F”,
PF — PF = —2a.

In particular, |PF’ — PF)| is constant for all points P on the hyperbola.

directrix d' directrix d

1: Conics

For, the location of the
foci and the length of the
major axis specify an
ellipse uniquely.

As a result, some books
take the ‘Sum of Focal
Distances Property’ as the
definition of the ellipse.
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Proof We shall prove only the first formula; the proof of the second is similar.

Let d and d’ be the directrices of the hyperbola that correspond to the foci
F and F’ respectively, and let P be a point on the branch of the hyperbola that
is closer to F. Then, since

PF = e x (distance from P to d)
and
PF = e x (distance from P to d’),
it follows that
PF' — PF = e x (distance between d and d’)
= 2a,

which is a constant. [ |

The result of Theorem 6 can be used to draw a hyperbola, this time using a
piece of string and a stick. Choose two points F and F’ on the x-axis, equidis-
tant from and on opposite sides of the origin. Hinge one end of a movable
stick F'X at the focus F’; attach one end of a string of length £ (where £ is
less than the length of F’X) to the end X of the stick and the other end of the
string to F', and keep the string taut by holding a pencil tight against the stick,
as shown.

Then, as we move the pencil along the stick, the shape that it traces out is
part of one branch of a hyperbola with foci F and F’. For,

PF — PF = XF' — (XP + PF)
=XF —¢
= a constant independent of P.

We obtain the other branch of the hyperbola by interchanging the roles of F
and F’ in the construction.

Notice that, if we are given any three points F, F’ and P (not on the line
through F'F or its perpendicular bisector) in the plane, then there is only one  For, the location of the
hyperbola through P with F and F’ as its foci. Its centre is the midpoint, O, foci and the length of the
of the segment F'F, its axes are the line along F'F and the line through @  Major axis specify a

. , . . . , hyperbola uniquely.

perpendicular to F'F, and its major axis has length |[PF’ — PF]|.

Also, if we are given any two points F and F’ in the plane, the locus of
points P (not on the line segment F’'F) in the plane for which PF’ — PF is a
non-zero constant is necessarily one branch of a hyperbola. Thus the converse  As a result, some books
of Theorem 6 holds, in the following sense: Given any three points F, F’ and take the ‘Difference of
P (where P must lie strictly between F and F’ if it lies on the line through Focal Distances Property”
F'F) in the plane for which PF’ — PF # 0, the locus of points Q in the plane ;;tib(iiinmon of the
for which QF — QF = +|PF — PF| is a hyperbola. )
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1.1.5 Dandelin Spheres

We now give a beautiful proof due to Dandelin of the fact that a slant plane = Germinal Pierre Dandelin
7 that cuts one portion of a right circular cone in a ‘complete’ curve E is an ~ (1794-1847) was a
ellipse, just as it appears to be! French—Belgian Pff)fessor
To do this, first fit a sphere inside the cone so that touches the plane 7 (at %fl'\/lech'an.lcs at Llege'
niversity; he made his
a point F') and the cone (in a circle C with centre O), as shown in the figure discovery in 1822.
below. The circle C lies in a horizontal plane which intersects 7 in a line d.
Take an arbitrary point P on the curve E, and extend the line from the vertex
V of the cone through P to meet C at the point L, and let D be the point on d
such that PD is perpendicular to d.
The line PD lies in a vertical plane which intersects the vertical plane VLO
in the line PM, so that APMD and APML are both right-angled triangles.
Denote by « the angle between the slant plane 7 and the horizontal plane

through C, and by B the angle ZPLM (the base angle of the cone). We use the symbol £ to
indicate an angle.

From the right-angled triangles APMD and APML, we see that

PM PM
PL = — and PD=——,
sin B8 sin «
so that )
PL  sina
PD  sinf’

Now PF = PL since they are both tangents from a given point to a given
sphere; it follows that
PF  sina
—_ = (11)
PD  sing
Now 0 < @ < B < 7, since the plane 7 is less steep than the base angle of
the cone. So if we let e = sina/ sin B, it follows that 0 < e < 1.
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It then follows from equation (11) that for any point P on the curve E,
its distance PF from the fixed point F is e times its distance PD from
the fixed line d. Since 0 <e < 1, it follows from the focus—directrix defini-
tion of an ellipse that the curve E must be an ellipse, with focus F and
directrix d.

If we then construct the other sphere that touches both 7 and the cone, a
similar argument shows that the point of contact of the sphere with 7 is the
other focus F’ of the ellipse; and the other directrix of the ellipse is the line
of intersection of 7 with the horizontal plane through the circle in which the
sphere touches the cone.

A similar construction involving spheres proves that in the cases 4 and
6 illustrated in the sketch in Subsection 1.1.1 the curve of intersection is a  We ask you to look at the
parabola and a hyperbola, respectively. two cases 4 and 6 in

This completes the proof of our claim in Subsection 1.1.1 that the curves of ~ EXercise 7 of
Subsection 1.5.

intersection of certain planes with a double cone are an ellipse, a parabola or a
hyperbola. We shall investigate the converse in Theorem 4 of Subsection 4.1.4.

1.2  Properties of Conics

121 Tangents

In the previous section you met the parametric equations of the parabola, Subsection 1.1.3
ellipse and hyperbola in standard form.

We now tackle a rather natural question: given parametric equations x = curve
x(t), y = y(t) describing a curve, what is the slope of the tangent to the curve
at the point with parameter 7? This information will enable us to determine the

@@,y
equation of the tangent to the curve at that point. tangent
Theorem 1 The slope of the tangent to a curve in R? with parametric
equations x = x(¢), y = y(¢) at the point with parameter ¢ is
y' ()
X' ()
provided that x'(¢) # 0. (s

y(t+h)
-y(@®)

Proof The points on the curve with parameters ¢ and ¢ + # have coordinates ).yt
(x(t),y(t)) and (x(t + h), y(t + h)), respectively. Then, if i1 # 0, the slope of Y+ h)—x(1)
the chord joining these two points is

yE+h)—y@)
x(t+h)—x@)’
which we can write in the form

(e +h)—y@)/h
(x(t +h) —x®)/h
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We then take the limit of this ratio as 7 — 0. The slope of the chord tends to
the slope of the tangent, namely y'(7)/x’ (). [ |

Example 1

(a) Determine the equation of the tangent at the point with parameter ¢ to the
ellipse with parametric equations

xX=acost, y=bsint,

where t € (—m, ], t #0, .

(b) Hence determine the equation of the tangent to the ellipse with parametric
equations x = 3cos t, y = sin t at the point with parameter t = /4.
Deduce the coordinates of the point of intersection of this tangent with the

X-axis.

Solution

(a) Now, y'(t) = b cos t and x'(t) = —a sin t for t € (—m,m]; it follows
that, for r # 0 or =, the slope of the tangent at the point with parameter
tis

v (1) b cos t

x'(t) —asint’
Hence the equation of the tangent at the point (a cos ¢, b sin t), t # 0,
7T, s

b cos t
y—bsint=—

——(x — acos t).
asin t

Multiplying both sides and rearranging terms, we get
xbcos t 4+ ya sin t = ab cos? t +ab sin® t = ab,
and dividing both sides by ab gives the equation
X y .
—cost+ =sint=1. (1)
a b

The point on the ellipse where t = 0 is (a, 0), at which the tangent has
equation x = a. Similarly, the point on the ellipse where t = 7 is (—a, 0),
at which the tangent has equation x = —a. It follows that equation (1)
covers these cases also.
(b) Here the curve is the ellipse in part (a) in the particular case that a = 3,
b = 1. When t = m /4, it follows from equation (1) that the equation of
the tangent at the point with parameter ¢ = 7 /4 is

1 1 _

=

1: Conics

We shall use this equation
in Subsection 1.2.2.



Properties of Conics
or
%x +y=+2

Hence, at the point 7 where the tangent crosses the x-axis, y = 0 and so
x = 34/2. Thus, T is the point (3\/5, 0). O

Problem 1 Determine the slope of the tangent to the curve in R? with
parametric equations

x =2cost +cos2t+ 1, y = 2sint + sin 2t

at the point with parameter ¢, where ¢ is not a multiple of 7. Hence
determine the equation of the tangent to this curve at the points with
parameters t = /3 and t = /2.

Problem 2

(a) Determine the equation of the tangent at a point P with parameter
t on the rectangular hyperbola with parametric equations x = f,
y=1/t.

(b) Hence determine the equations of the two tangents to the rectangular
hyperbola from the point (1, —1).

We can modify the result of Example 1(a) to find the equation of the tangent
at the point (x1, y1) on the ellipse with equation ;‘—; + Z—z = 1. We take x =
acost,y = bsint as parametric equations for the ellipse, and let x| = a cos t1
and y; = bsint;. Then it follows from equation (1) above that the equation of
the tangent is

X y .
—cost) + =sint; =1,
a b

which we can rewrite in the form % + }% =1
We can determine the equations of tangents to the hyperbola and the

parabola in a similar way; the results are given in the following theorem.

Theorem 2 The equation of the tangent at the point (x, y;) to a conic in
standard form is as follows.

Conic Tangent
2 2
Xty xxp W
Elllpsea—2+b—2—1 a—2+ﬁ—l
2y XX
Hyperbolaa—z—b—zzl a_z_ﬁZI

Parabola y* = 4ax w1 = 2a(x + x1)

25

cardioid

x=2cost+cos2t+1
y=2sint+sin 2t
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Problem 3 Prove that the equation of the tangent at the point (x1, y;)
to the rectangular hyperbola xy = 1 is %(xyl +x1y) =1.

Problem 4 For each of the following conics, determine the equation
of the tangent to the conic at the indicated point.

e 2 2 _ 11
(a) The unit circle x~ + y~ =1 at (‘Z’ 3 3).
1
(b) The hyperbola xy = 1 at (—4, _Z)'

(c) The parabola y2 =xat(l,—1).

We can deduce a useful fact from the equation xx; + yy; = 1 for the tangent
at the point (x1, y7) to the unit circle x4+ y2 = 1. Let (a, b) be some point on
this tangent, so that

axy + by, = 1. 2)

Next, let the other tangent to the unit circle through the point (a, b) touch the
circle at the point (x7, y2); it follows that

axy + by, = 1. 3)

From equations (2) and (3) we deduce that the points (x1, y;) and (x2, y2)
both satisfy the equation ax + by = 1. Since this is the equation of a line, it
must be the equation of the line through the points (x1, y;) and (x3, y»). For
historical reasons, this line is called the polar of (a, b) with respect to the unit
circle.

Theorem 3 Let (a, b) be a point outside the unit circle, and let the tangents
to the circle from (a, b) touch the circle at P; and P,. Then the equation of
the line through P; and P is

ax+by =1.

For example, the polar of (2, 0) with respect to the unit circle is the line
2x = 1.

Problem 5 Determine the equation of the polar of the point (2, 3) with
respect to the unit circle.

In the next example we meet the idea of the normal to a curve.

Definition The normal to a curve C at a point P on C is the line through
P that is perpendicular to the tangent to C at P.

1: Conics

This is because (a, b) lies
on the tangent at (x», y7),
whose equation is

x4 vy = L.

We shall meet polars of
other conics in
Subsection 4.2.1.

polar of
(a, b)

curve

P
tangent

normal
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Example 2
(a) Determine the equation of the tangent at the point with parameter ¢ to the
parabola with parametric equations

x:atz, y =2at (te€R).

(b) Hence determine the equations of the tangent and the normal to the
parabola with parametric equations x = 2¢2, y = 4¢ at the point with
parameter t = 3.

Solution
(a) Since y'(t) = 2a and x'(¢t) = 2at, it follows that, for ¢ # 0, the slope of

the tangent at this point is

Y1) 2a 1

X'(t)  2at  t
Hence the equation of the tangent at the point (atz, 2at), t # 0, is
1 2
y —2at = ;(x—at ),

which can be rearranged in the form
ty=x+ ar*. 4)

The point on the parabola at which 7 = 0 is (0, 0); there the tangent to the
parabola is the y-axis, with equation x = 0. It follows that equation (4)
covers this case also.

(b) Here the curve is the parabola in part (a) in the particular case that a = 2.
When ¢t = 3, it follows from equation (4) that the equation of the tangent
is3y=x+2-3% or3y =x+18.

To find the equation of the normal, we must find its slope and the
coordinates of the point on the parabola at which ¢ = 3.

When ¢t = 3, it follows from the equation of the tangent that the slope
of the tangent is % Since the tangent and normal are perpendicular to each
other, it follows that the slope of the normal must be —3. Also, when ¢t = 3,
we have that x = 2-32 = 18 and y = 4 - 3 = 12; s0 the corresponding
point on the parabola has coordinates (18, 12).

It follows that the equation of the normal to the parabola at the point
(18, 12) is

y—12=-3(x—18)
= —3x + 54,
or

y = —3x + 66. |

(at? 2ar)

We shall use this equation
in Subsection 1.2.2.

Recall that lines of
(non-zero) slope m| and
my are perpendicular if
and only if my -mp = —1.



28

1.2.2

Problem 6 The normal to the parabola with parametric equations
x =12, y = 2t (t € R) at the point P with parameter ¢, t # 0, meets the
parabola at a second point Q with parameter 7.

(a) Prove that the slope of the normal to the parabola at P is —f.

(b) Find the equation of the normal to the parabola at P.

(c) By substituting the coordinates of Q into your equation from part
(b), prove that T = —% — .

Problem 7 This question concerns the parabola with parametric
equations x = ar?, y = 2at (t € R).

(a) Determine the equation of the chord joining the points P} and P> on
the parabola with parameters #; and f, respectively, where #; and 1>
are unequal and non-zero.

Now assume that the chord Pj P> passes through the focus (a, 0) of the
parabola.

(b) Prove that t;1, = —1.

(c) Use the result of Example 2(a) to write down the equations of the
tangents to the parabola at P; and P,, and to prove that these
tangents are perpendicular.

(d) Find the point of intersection P of the two tangents in part (c), and
verify that it lies on the directrix x = —a of the parabola.

(e) Find the equation of the normal at the point Q(at2,2at) to the
parabola. Hence prove that if the normal at Q passes through the
focus F(a,0), then Q is the vertex of the parabola.

Reflections

We use the reflection properties of mirrors all the time. For example, we look
in plane mirrors while shaving or combing our hair, and we use electric fires
with reflecting rear surfaces to throw radiant heat out into a room.

All reflecting surfaces — mirrors, for example — obey the same Reflection

Law. The Reflection Law is often expressed in terms of the angles made with
the normal to the surface rather than the surface itself. However in this section
we shall state and use it in the following form.

The Reflection Law The angle that incoming light makes with the tangent
to a surface is the same as the angle that the reflected light makes with the
tangent.

1: Conics

P(t% 21)

O(T? 2T)

Py

directrix

A line is normal to a
surface in R3 if it is
perpendicular to the
tangent plane to the
surface at its point of
intersection with the
surface.

Radio waves or radiant
heat, etc. obey the same
Reflection Law.
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AA (6~ 5\

plane mirror curved mirror

This law applies to all mirrors, no matter whether the reflecting surface is
plane or curved. Indeed, in many practical applications the mirror is designed
to have a cross-section that is a conic curve — for example, the Lovell radio-
telescope at Jodrell Bank in Cheshire, England uses a parabolic reflector to
focus parallel radio waves from space onto a receiver.

We now investigate the reflection properties of mirrors in the shape of the
non-degenerate conics.

Reflection Property of the Ellipse Lovell radio-telescope.
We start with the following interesting property of the ellipse.

Reflection Property of the Ellipse Light which comes from one focus
of an elliptical mirror is reflected at the ellipse to pass through the second
focus.

In our proof we use the following trigonometric result for triangles.

Sine Formula In a triangle AABC with sides a, b, ¢ opposite the vertices
A, B, C, respectively,

a b @
sin /ZBAC ~ sin ZABC ~ sin ZACB’

Proof of Reflection Property Let E be the ellipse in standard form, and
P(acost,bsint) an arbitrary point on E; for simplicity, we shall assume that
P lies in the first quadrant.

Then, as we saw earlier, Subsection 1.1.3

PF = e x (distance from P to corresponding directrix d)

a
=e X (——acost) =a —aecost,
e

and .
, . /
PF = e x (distance from P to d") o o ate
a
=e X (— —|—acost) =a + aecost.
e
Hence,

PF a — aecost 1 —ecost

PF'~ a+aecost 1+ecost’
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Next, we saw earlier that the equation of the tangent at P to the ellipse is Example 1(a)

X y .
—cost + =sint = 1;

a b i’
P (acost, bsint)
hence at the point 7" where the tangent at P intersects the x-axis, we have o A r

—cost =1, or x=a/cost.

a

It follows that
TF_(a/cost)—ae 1 —ecost

TF ~ (a/cost) +ae 1-+ecost’

We deduce that
PF TF PF  PF
_—= —, ofr — = —.
PF  TF TF TF
By applying the Sine Formula to the triangles APFT and APF'T, we obtain

that

PF  sin ZPTF d PF' sin ZPTF
—=———— and — = ——,
TF  sin ZTPF TF  sin ZTPF’

so that
sin /ZPTF  sin ZPTF'

sin /ZTPF ~ sin ZTPF'"

Since Z/PTF = /PTF' it follows that sin Z/TPF = sin ZTPF’, so that p o
/TPF = 7 — /TPF since Z/TPF # /TPF'. Hence ZTPF equals the angle
denoted by the symbol « in the diagram, and this is equal to the angle S (as «
and B are vertically opposite).

This completes the proof of the Reflection Property. |

~
~
~

An amusing illustration of the property is as follows. A poor snooker player
could appear to be a ‘crack shot’ if he used a snooker table in the shape of an
ellipse: for if he places his snooker ball on the table at one focus and a target
ball at the other focus, then no matter what direction he hits his ball, he is
certain to reach his target!

Reflection Property of the Hyperbola

The hyperbola has a reflection property similar to that of the ellipse, with an
appropriate modification.
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Reflection Property of the Hyperbola Light coming from one focus of
a hyperbolic mirror is reflected at the hyperbola in such a way that the light
appears to have come from the other focus.

Also, light going towards one focus of a hyperbolic mirror is reflected at
the mirror towards the other focus.

We omit a proof of this result, as it is similar to the proof of the Reflection
Property of the ellipse.

Reflection Property of the Parabola

The Reflection Property of the parabola is also similar to the reflection property
of the ellipse.

Reflection Property of the Parabola Incoming light parallel to the axis

of a parabolic mirror is reflected at the parabola to pass through the focus.
Conversely, light coming from the focus of a parabolic mirror is reflected

at the parabola to give a beam of light parallel to the axis of the parabola.

Proof Let E be the parabola in standard form, and let P (at?,2at) be an
arbitrary point on E.

We have seen that the equation of the tangent at P to the parabola has equa-
tion ry = x + ar. If T is the point where this tangent meets the x-axis, then at
T we have y =0and?-0=x + ar?, so that x = —ar®.

In the triangle APTF we have

TF = TO + OF = at* + a

and, by the Distance Formula,

FP = /(a — a®)? + 2an? = Va2 + 2a22 + a?t*
=a -+ atz.

Then, since TF = FP, the triangle APTF is isosceles, and so ZTPF = /FTP.

Now since the horizontal line through P is parallel to the x-axis, the angle
between the tangent at P and the horizontal line through P is equal to ZFTP
(as they are corresponding angles), and so also to ZTPF. This completes the
proof of the reflection property. |

The reflection property of the parabola is also the principle behind the design
of searchlights as well as radio-telescopes. The reflector of a searchlight is a
parabolic mirror, with the bulb at its focus. Light from the bulb hits the mirror
and is reflected outwards as a parallel beam (see p. 32).

The design of optical telescopes sometimes uses the Reflection Properties
of other conics too. For example, the 4.2 metre William Herschel telescope
at the Roque de los Muchachos Observatory on the island of La Palma in the
Canary Islands, has an arrangement of mirrors known as a Cassegrain focus:
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This is called the Internal

Reflection Property.

This is called the External

Reflection Property.

~

Example 2

y,

P (at 2, 2at)

T (-at®, 0)

0 Fl(a0)

X
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a primary parabolic mirror reflects light towards a secondary hyperbolic mirror,
which reflects it again to a focus behind the primary mirror.

i
/<§ZET

receiver

bulb

ny

searchlight radio-telescope

: | |

~

1

secondary mirror

(hyperbolic) primary mirror

(parabolic)

e T

-

Cassegrain focus

The secondary mirror is used to focus the light to a much more convenient
place than the focus of the primary mirror, and to increase the effective focal
length of the telescope (and so its resolution).
We can summarize the above three Reflection Properties concisely as fol-
lows. All mirrors in the shape of a non-degenerate conic reflect light coming In the case of the

from or going to one focus towards the other focus. parabola, we regard the
second focus as ‘lying at

Problem 8 Let E and H be an ellipse and a hyperbola, both having ~ infinity’.
the same points F and F’ as their foci. Use the reflection properties of

the ellipse and hyperbola to prove that at each point of intersection, E

and H meet at right angles.

1.23  Conics as envelopes of tangent families

We now show how we can construct the non-degenerate conics as the envelope  Such methods are often
of a family of lines that are tangents to the conics. In other words, the conic  used in exhibitions to

being constructed is the curve in the plane that has each of the lines in the display the shapes of the
conics in a visually

family as a tangent. . :
. . . appealing way, using
The method depends on the use of a circle associated with each non- coloured threads or string.

degenerate conic, called its auxiliary circle. The auxiliary circle of an ellipse



Properties of Conics 33

or hyperbola is the circle whose diameter is its major axis; analogously we

shall define the tangent to a parabola at its vertex to be the auxiliary circle of  This definition for the
the parabola. parabola enables us to
give succinct statements
of properties for all

% conics.
1

A A

v

X X1 - -
verte: axis major s
parabola ellipse auxiliary
directrix circle
= auxiliary
circle

»
»

hdhs
major y\\

hyperbola hyperbola

auxiliary circle

The mathematical tool that we use in our construction is the following result.

Here by ‘non-degenerate
conic’ we mean a
parabola, a (non-circular)
ellipse or a hyperbola.

Theorem 4 A perpendicular from a focus of a non-degenerate conic to a
tangent meets the tangent on the auxiliary circle of the conic.

Proof (for a parabola) Let the point P(ar?, 2af) lie on the parabola in stan-  /Analytic proofs for an
. . 2 . ellipse or hyperbola are
dard form with equation y~ = 4ax, and let the perpendicular from the focus .
. similar; however for these
F(a,0) to the tangent at P meetitat 7. conics there are two
By Theorem 2 of Subsection 1.2.1, the tangent at P has equation perpendiculars, both of

y-2at = 2a(x + at2) which meet the tangent on

the auxiliary circle.
which we may rewrite in the form

1
y = ;x + at. (@) v

From this we see that the slope of the tangent PT is 1/¢, so that the slope of the
perpendicular FT must be —¢. Since FT also passes through F(a,0), FT must /T
have equation >
F(a,0) x

y+tx=04+1-a
which we may rewrite in the form

P(at Z, 2at)

y = —tx + at. (6)
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The equations (5) for PT and (6) for FT clearly have the solution x = 0,

y = at. This means that the point of intersection 7 of the lines PT and
FT has coordinates (0,at). Hence T lies on the directrix of the parabola, as
required. |
Remark

Given a parabola and its axis, we can use Theorem 4 to identify the focus of
the parabola. We draw the tangent at any point P on the parabola, and then
the perpendicular to the tangent at the point 7 where the tangent meets the
directrix. This perpendicular crosses the parabola’s axis at its focus.

Problem 9 Prove Theorem 4 for an ellipse.

To construct the envelopes of the conics, you will need a sheet of paper, a
pair of compasses, a set square and a pin.

Parabola

Draw a line d for the directrix of the parabola and a point F (not on d) for
its focus. Place a set square so that its right-angled vertex lies at a point of d
and one of its adjacent sides passes through F'; draw the line £ along the other
adjacent side of the set square. By Theorem 4, ¢ is a tangent to the parabola
with focus F and directrix d.

Repeating the process with the vertex of the set square at different points of
d gives a family of lines £ that is the envelope of tangents to the parabola, as
shown below.

Ellipse

Draw a circle C for the auxiliary circle of the ellipse and a point F inside C
(but not at its centre) for a focus. Place a set square so that its right-angled
vertex lies at a point of C and one of its adjacent sides passes through F'; draw

1: Conics

The directrix is simply the
tangent where the axis
cuts the parabola.

The family of lines
forming the envelope is
{€: vertex of set square
e d}.
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the line ¢ along the other adjacent side of the set square. By Theorem 4, € is a
tangent to the ellipse with focus F and auxiliary circle C.

Repeating the process with the vertex of the set square at different points
of C gives a family of lines that is the envelope of tangents to the ellipse, as
shown below.

auxiliary
circle

Hyperbola

Draw a circle C for the auxiliary circle of the hyperbola and a point F' outside
C for a focus. Place a set square so that its right-angled vertex lies at a point
of C and one of its adjacent sides passes through F; draw the line £ along
the other adjacent side of the set square. By Theorem 4, ¢ is a tangent to the
hyperbola with focus F and auxiliary circle C.

Repeating the process with the vertex of the set square at different points of
C gives a family of lines that is the envelope of tangents to one branch of the
hyperbola, as shown below.

Repeating the construction with the other focus F’ (diametrically opposite
F with respect to C) gives the other branch of the hyperbola.
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The family of lines
forming the envelope is
{€: vertex of set square
e C}.

The family of lines
forming the envelope is
{€: vertex of set square
e C}.
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1.3  Recognizing Conics

So far, we have considered the equation of a conic largely when it is in ‘stan-
dard form’; that is, when the centre of the conic (if it has a centre) is at the
origin, and the axes of the conic are parallel to the x- and y-axes. However,
most of the conics which arise in calculations are not in standard form; thus
we need some way of determining from the equation of a conic which type of
conic it describes.

First we observe that all the equations of all (non-degenerate) conics in
standard form can be expressed in the form

Ax2+Bxy—|—Cy2+Fx+Gy+H=0, (H
where not all of A, B and C are zero. For example, the equation of the circle
x> 4y +4x +6y—23=0 )

is of the form (1), withA=C =1,B=0,F =4,G =6 and H = —23.
Now we can obtain any non-degenerate conic from a conic in standard form
by a suitable rotation

(x,y) = (xcos@ — ysinf,xsinf + ycosb)
followed by a suitable translation
x,y) > (x —a,y —b).

Both of these transformations are linear, so that the equation of the conic at
each stage is a second degree equation of the type (1); in other words, any
non-degenerate conic has an equation of type (1).

The equations of degenerate conics can also be expressed in the form (1).
For example,

2 +y?2=0 represents the single point (0, 0);
y> —2xy+x2 =0 represents the single line y = x, since
y2—2xy+x2=(y —x)%
y2—x2=0 represents the pair of lines y = £x, since
Y =xt= 400 -
However, an equation of the form (1) can also describe the empty set; an
example of this is the equation x> + y? 4 1 = 0, as there are no points (x, y)
in R? for which x? 4+ y?> = —1. For simplicity in the statement of the theo-

rem below, therefore, we add the empty set to our existing list of degenerate
conics.

1: Conics

The equations we have
met were:

x—a)+ Gy -bn*=r?
2

y© = 4ax,

2 2
X y
S+2=1,
a? b2

x2 y2 .
a2 p2

This rotates the axes
through an anticlockwise
angle 0 to align them with
the axes of the conic.

This moves the centre or
vertex of the conic to the
origin.

This is an unexpected
possibility!



Recognizing Conics
In the above discussion, we proved one part of the following result.

Theorem 1 Any conic has an equation of the form

AX> + Bxy+ Cy* + Fx+ Gy + H =0, (3)

where A, B, C, I, G and H are real numbers, and not all of A, B and C are
zero. Conversely, any set of points in R?> whose coordinates (x, y) satisfy
equation (3) is a conic.

In this section we investigate the classification of conics in terms of equa-
tion (3). In particular, if we are given the equation of a non-degenerate conic
in the form (3) how can we determine whether it is a parabola, an ellipse or a
hyperbola? And how can we identify its vertex or centre? And its axis, or its
major and minor axes? A key tool in this work is the matrix representation of
the equation of a conic.

Introducing Matrices

We can express a general second degree equation in x and y

Ax* + Bxy 4+ CY? + Fx+ Gy + H = 0, )
where A, B and C are not all zero, in terms of matrices as follows.
A %B F X
Let A = ,J:( )andx:( ).Then
iB C G y
A LB
x'Ax = (x y) 2 (x )
B ¢ )\
= (Ax+ %By %Bx+ Cy) (x)
y
= A + Bxy + Cy2
and
Ix=(F G) (x )
y
= Fx+ Gy.
We may therefore write the equation (4) in the form
x'Ax+JT'x+ H =0. 5)

For example, let E be the conic with equation
3x% — 10xy +3y% 4+ 14x —2y +3 = 0.
The equation of E is of the form (4) with A =3, B = —10,C =3, F = 14,

G = —2 and H = 3. It follows from the above discussion that we can express
the equation of E in matrix form as x'Ax + J'x + H = 0, where

3 -5 14 X
A:(_5 3), J=<_2>, H =3 and x=<y>.
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We omit a proof of the
converse part. It would
simply be a reworking of
the classification methods
in the rest of the section.

This will be useful, since
we can then use the whole
armoury of Linear
Algebra to study such
equations.

Here we choose to regard
1 x 1 matrices and real
numbers as equivalent;
this will cause no
problems.

This is called the matrix
form of the equation (4).
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Problem 1 Write the equation of each of the following conics in
matrix form.

(@) 11x% +4xy+ 14y> —4x —28y — 16 =0
(b) x? —4xy+4y> —6x —8y+5=0

A key tool in our use of matrices will be the following result.

Theorem 2 A 2 x 2 matrix P represents a rotation of R? about the origin
if and only if it satisfies the following two conditions:

(a) P is orthogonal;
(b) detP = 1.

Proof A matrix P represents a rotation about the origin (anticlockwise
through an angle 6) if and only it is of the form

<cos9 —sin@)' ©)

sinf cosf
It is easy to verify that P satisfies conditions (a) and (b).
b . . ..
Next, let P = (? d) be a matrix that satisfies conditions (a) and (b).
Then, since P is orthogonal, the vector (?) has length 1; that is,
a? + ¢ = 1. Thus there is a number 6 for which

a=-cosf and c¢ =sind.

Also, since P is orthogonal, the vectors 4 = C,Ose and b are
c sin @ d

orthogonal; that is, (cos 6 sin6) (2) =0or

cos@ -b+sinf -d =0.
So there exists some number A, say, such that
b=—isinf and d = Acos6.
Then since det P = 1, we have
1 = ad — bc = A cos>6 +Asin29,

so that A = 1. It follows that P must be of the form (6), and so represent a
rotation of R? about the origin. |

1: Conics

If P is orthogonal, then
det P = %1; when

detP = —1, P represents
reflection in the x-axis
followed by a rotation.



Recognizing Conics

Using Matrices

We now use the methods of Linear Algebra to recognize conics specified by
their equations.

Example 1 Prove that the conic E with equation
3x2 — 10wy +3y*> 4+ 14x =2y +3 =0

is a hyperbola. Determine its centre, and its major and minor axes.

Solution We saw above that the equation of E can be written in matrix form
asx’ Ax + J'x + H = 0, where

3 -5 14 X
A:(_5 3>, J=<_2), H =3 and X=<y>,

that is, as

3 =5 X X
(x y)(_5 3)(y)+(14 —2)<y)+3:0.

We start by diagonalizing the matrix A. Its characteristic equation is

3—x =5
O:det(A—AI):‘ 5 33 ‘
=27 — 61— 16
=@A-8*+2),
so that the eigenvalues of A are A = 8 and A = —2. The eigenvector equations

of A are
B—-x1x—-5y=0,
—Sx+@B—-1)y=0.
When A = 8, these equations both become

—5x —5y =0,

. . 1 .
so that we may take as a corresponding eigenvector ( 1), which we

1/\/§>‘

lize to h it length
normalize to have unit leng as(_l/\/z

When A = —2, the eigenvector equations of A become
S5x =5y =0,
—5x +5y =0,

L 1 . .
so that we may take as a corresponding eigenvector 1) which we normalize

to have unit length as < i; g) .

39
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PZ(l/ﬁ 12

~1y e 1 «/5) . The transformation x = Px changes the equation of

the conic to the form

PxHTAPK)+JTPx)+ H=0

or

)T PTAP)X + J'P)X' + H = 0.

SincePTAPz[g L,
8
/ /
(x y)<0
+ (14 —2)(

We may rewrite this equation in the form
8 (x/z + ﬁx’) _2 (y/z _ 3ﬁy/) +3=0
so that, on completing the square, we have
8(x’+1/\/5)2—4—2(y’—3/\/§)2+9+3 —0,
which we can rewrite in the form

8 (x’ + 1/\/5)2 2 (y/ - 3/\6)2 — _3,

or

(v —3/\/5)2 ) (v + 1/\/5)2 B

1/3/2
—1/v2 1/V2

so we take as our rotation of the plane the transformation x = Px’ where

0 . .
:|, the equation of the conic is now

—1/V2 12

which we can rewrite in the form

8x2 — 2y? + 8V2x" + 62y +3 = 0.

This is the equation of a hyperbola.

From equation (7) it follows that the centre of the hyperbola E is the point
where x’ = —1/+/2 and y’ = 3/+/2. From the equation x = Px/, it follows
that in terms of the original coordinate system this is the point

(5)-(
-

that is, the point (1, 2).

—1/vV2 12

1: Conics

Note that we need to
check the order in which
the normalised
eigenvectors appear in P
to ensure that P represents
a rotation.

Since P is orthogonal and
det P = 1, P represents a
rotation — in fact, an
anticlockwise rotation
through —m /4; that is, a
clockwise rotation
through 7 /4.

For
2+ V2x
2
(2 L) _1
=(+755) -3
and
y/2 — 3x/§y/

We can write this equation
in (nearly) standard

form as
1\2 11\2
0D D7 1.
4 1

where x” = x’ + % and
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It also follows from equation (7) that the major axis of E has equation
x' +1/4/2=0, or X' = —1/+/2; and the minor axis of E has equation
y —=3/2=0,0ry =3/2.

Finally, since the matrix P is orthogonal we can rewrite the equation x = Px’
in the form x' = P~'x = P”x, so that

(3)
y

S5l
S5l

or as a pair of equations

!
X =

Ly _ L
nrTnar
r— L €L
y = ﬁx + 7 y.
It follows that the equation, x’ = —1/ V2, of the major axis of the hyperbola
E can be expressed in terms of the original coordinate system as

1

ﬁx—\%y:—%, or x —y=-—1.
Similarly, the equation, y' = 3/+/2, of the minor axis of the hyperbola can
be expressed in terms of the original coordinate system as

\%x+%y % or x+y=23. ]

The above problem illustrates a general strategy for identifying conics from
their second degree equations.

Strategy To classify a conic £ with equation

Ax® +Bxy+ Cy* + Fx+Gy+ H=0:

1. Write the equation of E in matrix form x’ Ax + J'x + H = 0.

2. Determine an orthogonal matrix P, with determinant 1, that diagonal-
izes A.

3. Make the change of coordinate system x = Px’. The equation of E then
becomes of the form

)\,lx/2+)\,2y/2+fx/+gyl+h=0,

where A and A, are the eigenvalues of A.

4. ‘Complete the squares’, if necessary, to rewrite the equation of E in
terms of an (x”, y”)-coordinate system as the equation of a conic in
standard form.

5. Use the equation X' = PTx to determine the centre and axes of E in
terms of the original coordinate system.
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Recall that the equation

x2 }’2
T = 1 represents a

ﬁyperbola with major axis
y = 0 and minor axis
x=0.

Recall that x”/

x4

Reorder the columns of P
if necessary to ensure that
det P = 1 rather than —1.

This is a rotation of RZ.

Here A1 corresponds to
the first column in P, and
X, to the second column
in P.

This is a translation of R2.
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Problem 2 Classify the conics in R? with the following equations.
Determine the centre of those that have a centre.

(@) 11x% +4xy+ 14y> —4x —28y — 16 =0
() x> —4xy+4y> —6x —8y+5=0

In fact, using the above strategy we can prove the following result.

Theorem 3 A non-degenerate conic with equation
Ax* +Bxy+ CY* + Fx+Gy+ H =0

A LB

d matrix A = 2
and maitrix <%B C

) can be classified as follows:
(a) Ifdet A < 0, E is a hyperbola.

(b) Ifdet A = 0, E is a parabola.

(c) If det A > 0, E is an ellipse.

Problem 3 Use Theorem 3 to classify the non-degenerate conics in
RR? with the following equations.

(a) 3x2 —8xy+2y? —2x+4y—16=0
(b) x2+8xy+16y2 —x+8y—12=0
(c) 52x% —72xy +73y? —32x — T4y +28 =0

1.4  Quadric Surfaces

141 Quadric Surfaces in R3

Quadric surfaces (or quadrics) are surfaces in R? that are the natural analogues
of those curves in R? that we call conics.

Definition A quadric surface in R is a set given by an equation of the
form

AX* +ByY* + C2 + Fxy+Gyz+ Hxz +Jx + Ky +Lz+ M =0, (1)

where A, B, C, F, G, H, J, K, L and M are real numbers, and not all of
A, B,C, F,G and H are zero.

We use the term degenerate quadrics to describe those quadrics that are the
empty set, a single point, a single line, a single plane, a pair of planes and a
cylinder.

1: Conics

We omit a proof of this
result.

Since detA = AC —

1B? = -1(B% - 4a0).
Theorem 3 is often
referred to as ‘the

B2 — 4AC test’ for conics.

Note that det A and
B2 — 4AC have opposite
signs.

You may assume that
these conics are
non-degenerate.



Quadric Surfaces

By a cylinder we mean a surface that consists of an ellipse, parabola or
hyperbola in some plane 7, together with all the lines in R? through that conic

that are normal to 7.

parabolic cylinder

hyperbolic cylinder

elliptic cylinder

This leaves six different types of quadric surface, the so-called non-
degenerate quadric surfaces. We illustrate these below, with a typical equation
for each. In each case, we state also the curve of intersection of a plane parallel
to a coordinate plane that meets the surface in a non-trivial intersection.

hyperboloid of 1 sheet

ellipsoid
SR | 2y 2oy
a*  b*  c? a? 17_2 T

hyperbola or ellipse

VRN
AN NNNITT]

elliptic paraboloid hyperbolic paraboloid
Cat e

ellipse or hyperbola hyperbola or parabola

ellipse or hyperbola

As well as being attractive visually, quadrics arise naturally in various areas

of applied mathematics.

43
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14.2

We use the notion of orthogonal diagonalization of 3 x 3 matrices to classify
non-degenerate quadrics, just as we used 2 x 2 matrices to classify conics.

Recognizing Quadric Surfaces

Introducing Matrices

Consider a quadric surface with equation

AxX* + By* + CZ2 4 Fxy + Gyz + Hxz + Jx + Ky + Lz + M = 0,

and let
A AF IH 7 .
A=|3F B 3G |, J=|K| ad x=[y
ln 6 ¢ L ¢

Then a calculation similar to that for conics shows that
x" Ax = Ax*> + By? + CZ* + Fxy + Gyz + Hxz
and
J'x=Jx+Ky+ Lz
We may therefore write the equation of the quadric surface in the form
x'Ax+JTx+ M =0. )
For example, the equation of the quadric surface given by
5x2 4+3y% 4+ 322 — 2xy +2yz — 2xz — 10x + 6y —2z — 10 =0

may be written in matrix form x” Ax + J”x + M = 0 where

5 -1 -1 —10 X
A=| -1 3 11, J= 6, x=1\|y and
—1 1 3 -2 z
M = —10.

Problem 1 Write the equation of the following quadrics in matrix

form.
2245y =22 +xy—3yz—2xz—2x —6y+ 10z —12=0

Yy —yYi=XZ

A key tool for classifying quadrics is the following result about matrices.

Theorem 1 A 3 x 3 matrix P represents a rotation of R> about the origin
if and only if it satisfies the following two conditions:

(a) P is orthogonal;
(b) detP = 1.

1: Conics

Section 1.3

This is called the matrix
form of the equation of the
quadric surface.

‘We omit a proof, as it is
similar to that of Theorem
2 in Section 1.3.

If P is orthogonal and
detP = —1, then P
represents a rotation about
the origin composed with
a reflection in a plane
through the origin.



Quadric Surfaces

Using Matrices

Our approach to classifying quadrics in R? using matrices is broadly similar to
that for classifying conics in R

Strategy To classify a quadric £ with equation
Ax® + By* + CZ2 4+ Fxy+ Gyz + Hxz + Jx + Ky + Lz + M = 0:

1. Write the equation of E in matrix form x” Ax + J"x + M = 0.

2. Determine an orthogonal matrix P, with determinant 1, that diagonal-
izes A.

3. Make the change of coordinate system x = Px’. The equation of E then
becomes of the form

Mx? 4+ 20y + 232+ X +ky +1Z +m =0,

where A1, 1> and A3 are the eigenvalues of A.

4. ‘Complete the squares’, if necessary, to rewrite the equation of E in
terms of an (x”, y”,z”)-coordinate system as the equation of a quadric
in standard form.

5. Use the equation X' = P”x to determine the centre and planes of
symmetry of E in terms of the original coordinate system.

Example 1 Prove that the quadric £ with equation
5x24+3y2 +322 = 2xy+2yz — 2xz2— 10x + 6y — 2z — 10 =0
is an ellipsoid. Determine its centre.

Solution We saw above that the equation of E can be written in matrix form
asxTAx + JTx + M = 0, where

5 -1 —1 —10 X
A=| -1 3 11, J= 61, x=1\y and
—1 1 3 -2 z
M = —10;
that is , as
5 —1 -1 X X
(x y 2)(-1 3 1]{y]+(-10 6 =2)|y]-10=0.
-1 1 3 Z Z
We start by diagonalizing the matrix A. Its characteristic equation is
S5—x -1 —1
O=dettA—AD=| -1 3-—2A 1
—1 1 3—A

= A3+ 1122 - 361 +36
=—(—2)(L —3)(» —6),
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Reorder the columns of P
if necessary to ensure that
det P = 1 rather than —1.

This is a rotation of R>.

Here X; corresponds to the
ith column in P.

This is a translation of R3.

Just before Problem 1
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so that the eigenvalues of A are . = 2, 3 and 6. The eigenvector equations of
A are
G-—Mx—-y—-2z2=0,
—x+B—-AN)y+2z=0,
—x+y+@3—-1z=0.

When A = 2, these equations become

3x—y—2z=0,
—x+y+z=0,
—x+y+z=0.

Adding the first two equations we get x = 0; it then follows from all the
equations that y + z = 0. So we may take as a corresponding eigenvector
0 0
1 |, which we normalize to have unit length as | 1/+/2

1 —1/4/2

Similarly, when A = 3, we may take as a corresponding eigenvector | 1 |,
1

1//3
which we normalize to have unit length as | 1/ V3 |; and when A = 6, we
1/v/3
2
may take as a corresponding eigenvector | —1 |, which we normalize to have
-1
2/:/6
unit length as | —1/ J6
—1//6

Now
o L Z o L Z
V3 W6 V36
1 L -l 1 |
V2 V3 Ve |T | V2 V36
-1 1 =1 0o 2 =2
V2o V3 Ve V3 V6
12
1| V3 Ne
=~5| 2 =
A Bl
—_ 1L (__6 ) _
=5 () =+t
so we take as a convenient rotation of R3 the transformation x = PX/,
0 1/v/3  2/4/6
where P = 1/¥/2  1/+/3 —1/+/6 | . This transformation changes the

—1/¥2 13 —1/4/6

equation of the quadric to the form
Px)TAPX) +JT(Px)+M =0

1: Conics

We omit the details.

Adding row 2 to row 3

Expanding in terms of the
first column of the
determinant

P represents a rotation of
R3 since it is orthogonal
anddet P = 1.
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or
T PTAPX + (JTP)X + M = 0.

2 00
Since PTAP = [ 0 3 0 |, this is the equation
0 0 6
2 00 !
(x/ y/ Z/) 0 3 O y/
0 0 6 7
L2
O 5 % /
I B
te06 o 5oy G ||y 0=0
A ) z
V236

which we can rewrite in the form
2x2 +3y% 4+ 677 +4v2x" — 24/3y — 4v67 — 10 = 0.
‘Completing the square’ in this equation, we get
2 (x/z + Zﬁx’) +3 (y/2 -2 y/> +6 (z/2 - %H) —-10=0

NG
so that
2(x’+~/§)2—4+3( /—L)2—1+6(z/—i)2—4—10—0
MV N3 =Y
We now make the transformation This is a translation of R3.
V2
-1
X=x+| 7 | 3)
=2
76

so that we can rewrite the equation of E in the form
2(x//)2 + 3()’//)2 + 6(1”)2 — 19’

or In the general form of the
@M ) (@)? equation of an ellipsoid in
19/2 19/3 19/6 =1 (4) Subsection 1.4.1, E has
2 _ 2 _
It follows from equation (4) that £ must be an ellipsoid. a d_ 219/ 21’91’ 6 =19/3
From equations (3) and (4) it follows that the centre of the ellipsoid E is the and ¢= = 19/6.
point where x" = —V2,y = % and 7 = -~. From the equation x = Px/, it
follows that in terms of the original coordinate system this is the point
R
x O A % _1ﬁ
1 L =l €
N Il v v v Al [
z =1 1 =1 2
V2 V3 Ve Vo
1
= — 1 N
1

that is, the point (1, —1, 1). O
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Problem 2 Prove that the quadric surface E with equation
y—yz=2xz

is a hyperbolic paraboloid. Determine its centre.

1.43 Rulings of Quadric Surfaces

We now turn our attention to two of the quadric surfaces, the hyperboloid of
one sheet and the hyperbolic paraboloid. Each of these can be very beautifully
constructed entirely from a family of straight lines.

Definition A ruled surface in R? is a surface that can be made up from a
family of straight lines.

The Hyperboloid of One Sheet
Firstly, we look at the hyperboloid of one sheet E with equation

PO

illustrated below.

The surface meets each horizontal plane in a circle whose centre lies on
the z-axis; for example, the circles C; and C_; drawn in the figure, where
the surface meets the planes z = 1 and z = —1, respectively; both of these
circles have radius +/2. The surface meets each plane containing the z-axis in
a rectangular hyperbola. The surface appears rather like a cooling tower at a
power station.

1: Conics

That is, each plane
parallel to the
(x, y)-plane.



Quadric Surfaces

Let £ be the line through the points («/5, 0, l) on Cy and (0, ﬁ —1) on
C_1. Any point on £ has coordinates

A (fz,o, 1) + (-2 (0, V2, —1) - (M/i (1= )V2,2% — 1) (A €R).
(5)

Clearly each point with coordinates given by equation (5) lies on the surface
E, since

(NE)Z + ((1 _ x)ﬁ)z —@h—1)?
=202 42(1 =24+ 2% — @2 —4r+1)
=1.

In other words, the point lies on E for any choice of the parameter A; so the
whole of the line £ lies in the surface E.

We now use the fact that the surface is symmetric about the z-axis; in other
words, a rotation about the z-axis carries the surface to itself. Our line ¢ meets
each horizontal circle in E in a single point; and, if we rotate the surface about
the z-axis, £ is moved to a new line, £’ say, which also lies in the surface, and
which does not meet £.

We can see that ¢’ does not meet £ because £ meets each horizontal circle
in a point different to that in which ¢ meets that horizontal circle — namely, in
the point obtained by the rotation of the intersection point with £.

So we say that the hyperboloid of one sheet E is generated by the straight
line ¢ and the rotations of ¢ described above. These straight lines are called a
family of generators (or generating lines), £ say, of E, and E is called a ruled
surface.

In fact, E possesses another family of generators too.

Problem 3 Verify that the line m through the points (v/2,0, 1) and

(0, —v/2, —1) lies entirely in the quadric surface E with equation x2 +
2 2

y-—z-=1.

There is thus a second family, .#, say, of lines that are also generators of
the surface E, and this is obtained by rotating the line m about the z-axis (as
shown dotted in the diagram in the margin).

From the construction of the families .Z and .Z, it is clear that any two
distinct lines in a given family do not meet. However, each line in £ meets
each line in .# (— with one exception, as we shall explain below).

To prove this claim, it is sufficient (in view of the rotational symmetry of
the surface E) to verify that the given line £ in .2 meets each line in .#. Now,
recall (from equation (5) above) that each point of £ has coordinates

()n/i(l V2,2 — 1), 6)
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for some A € R. In a similar way as you saw in your solution to Problem 3, a
typical point of the line m in .# has coordinates

" («/5, 0, 1) - (0, V2, —1)
= (12, = V2,20 - 1), (7)

for some © € R. We can then find the coordinates of points on any other line
m’ in the family .# by rotating m about the z-axis through a suitable angle 0;
that is, by the transformation

(x,v,z) > (xcos® — ysinf,xsinf + ycosb,z), Here we have
which sends the point on m with coordinates (7) to some point x = uv2,
(«/E(u cos@ — usin@ + sinf), y=(=1v2, and
z=2n—1.
V2(usind + pcosf — cos ), 24 — 1) (8)

onalinem’in . Z.

To find the point(s) of intersection of the lines £ and m’, we have to find the
values of A and u for which the points (6) and (8) are equal.

By comparing the third coordinates in (6) and (8), we see that we must have

A = . Then, by comparing the first coordinates, we find Here we have used the

fact that L = .
V2 = V/2(AcosO — Asin6 + sinh),

so that .
sin @
= )
14 sinf — cos6
Finally, by comparing the second coordinates in (6) and (8), we find Here we have again used
the fact that 1 = .

A

(1 - k)«/i = /2()sin6 + AcosO — cos0),
so that
1 4+ cos6

~ 1+sinf +cosd
The expressions for A in (9) and (10) are equal, since

(10)

sin 6 1+ cosf
1 +sinf — cos6 /l +sin6 + cos 6
sin@ (1 + sin6 + cos b))
~ (1 +sinf — cosO)(1 + cosf)
sin® + sin” @ + sin 6 cos O

" 1 +sin@ + sinf cos — cos? O Here we use the fact that
-1 1 —cos2 6 = sin2 6.

It follows that the value of A (and so u) given by (6) gives us the (unique)
point of intersection of £ and m’.

There is one exceptional case, however, when the expression (9) for A makes
no sense because its denominator is zero: that is, when 8 = 37/2, in which
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case cos @ = 0 and sinf = —1, and the expression for A has denominator zero.
Geometrically this corresponds to the situation in which m has been rotated
around to the back of the surface E, when m’ is actually parallel to £.

We have thus proved a special case of the following general result.

Theorem 2 A hyperboloid of one sheet contains two families of gener-
ating lines. The members of each family are disjoint, and each member
of either family intersects each member of the other — with exactly one
exception.

It is precisely the existence of these two families of generators that give
power station cooling towers great intrinsic structural strength.

The Hyperbolic Paraboloid

It turns out that the result of Theorem 2 is also valid for hyperbolic paraboloids.
In the following problem we ask you to verify this in a particular instance.

Problem 4 Let E be the hyperbolic paraboloid with equation x? —

y2+z=0.

(a) Verify that the lines A = {(x,y,2) : x+y =0,z =0} and B =
{(x,y,2) : x —y =0,z = 0} lie in the surface E.

(b) Verify that the point (A — &, A + @, 41 ) lies in E, for each value of
X and p.

(c) For each value of A, let £, denote the set £, = {(A — u, A +
w,4rpn): e € R} lying in the surface E. Prove that ¢, is a line
which meets B at (A,A,0), and which passes through the point
(A — 1,1 + 1,4A). Identify the line £, when A = 0.

(d) For each value of u, let m, denote the set m, = {(A — u,A +
w,4rw) : A € R} lying in the surface E. Prove that m, is a line
which meets A at (—u, u,0), and which passes through the point
(I — w, 1 + w,4up). Identify the line m, when pu = 0.

(e) Let £ denote the set of all lines ¢; and .# the set of all lines
m,,. Prove that the members of each family are disjoint, and that
each member of either family intersects each member of the other in
exactly one point.

A particularly astonishing result is the following. Let E be any surface in R3
that has two families of generating lines with the following property: the mem-
bers of each family are disjoint, and each member of either family intersects
each member of the other (— with at most one exception). Then E is neces-
sarily a quadric surface, and is in fact either a hyperboloid of one sheet or a
hyperbolic paraboloid.

In the 1950s in the UK, a Lincoln artist and architect, Sam Scorer, saw
the beauty of the hyperbolic paraboloid shape, and realized that the shape had
intrinsic structural strength that could be utilized for the building of large roofs.

We omit a proof.
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The bracing effect of the two families of generators meant that roofs in this

shape could be built of very thin reinforced concrete; these require relatively

few vertical supports, leaving wide unobstructed space underneath. Among

the remaining examples of his work are a library, a church and a former garage  The Little Chef at

that is now a restaurant. The roof of the Brisbane Exhibition and Conference =~ Markham Moor on the Al
Centre in Australia also uses the same shape. road in England.

15 Exercises

Section 1.1

1. Determine the equation of the circle with centre (2, 1) and radius 3.

2. Determine the points of intersection of the line with equation y = x + 2
and the circle in Exercise 1.

3. Determine whether the circles with equations

2x2+2y2—3x—4y+2:O and x2+y2—4x+2y:0 g

at,", 2at
intersect orthogonally. Find the equation of the line through their points of o
intersection.

4. This question concerns the parabola y?> = 4ax (a > 0) with parametric
equations x = ar®>, y = 2ar and focus F. Let P and Q be points on the
parabola with parameters #; and #», respectively.

(a) If PQ subtends a right angle at the vertex O of the parabola, prove that
t-tp = —4.
(b) If 11 = 2 and PQ is perpendicular to OP, prove that t, = —4.

5. This question concerns the rectangular hyperbola xy = ¢* (¢ > 0) with
parametric equations x = ct, y = c¢/t. Let P and Q be points on the
hyperbola with parameters #; and #,, respectively.

(a) Determine the equation of the chord PQ.
(b) Determine the coordinates of the point N where PQ meets the x-axis.
(c) Determine the midpoint M of PQ.
(d) Prove that OM = MN, where O is the origin.
6. Let P be a point in the plane and C a circle with centre O and radius r.

Then we define the power of P with respect to C as You will use the results of
this exercise in Chapter 5.

power of Pwith respect to C = orP? — 2.

(a) Determine the sign of the power of P with respect to C when
(i) P lies inside C;

(i) P lieson C;

(iii) P lies outside C.
In parts (b) and (c) we regard distances as directed distances; that is, dis- e ion
tances along a line in one direction have a positive sign associated with
their length and distances in the opposite direction have a negative sign
associated with their length. x
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(b)

(©)

(d)

7. (a)

(b)

If P lies inside C and a line through P meets C at two distinct points
A and B, prove that

power of P with respect to C = PA - PB.

If P lies outside C, a line through P meets C at two distinct points A
and B, and PT is one of the tangents from P to C, prove that

power of P with respectto C = PA - PB
= PT".

If C has equation x> + y%> + fx + gy + h = 0 and P has coordinates
(x,y), find the power of P with respect to C in terms of x, y, f, g
and h.

Let a plane 7 in R3 meet both portions of a right circular cone, in two
separate portions of a curve E. Let the two spheres inside the cone
(on the same side of 7 as the vertex) that each touch both the cone in
a horizontal circle (C and Ca, respectively) and 7 touch 7 at F and
F’, respectively. Let P be any point of E, and the generator of the
cone through P meet C; and C, at A and B, respectively. Prove that
PF — PF = AB. Deduce that E is a hyperbola.

Let a plane 77 in R? that is parallel to a generator of a right circular cone
meet the cone in a curve E. Let the sphere inside the cone (on the same
side of 7 as the vertex) that touches both the cone in a horizontal circle
C and m meet 7 at F. Let P be any point of E, and the generator of
the cone through P meet C at A. Let N be the foot of the perpendicular
from P to the line of intersection of the horizontal plane and 7, and
let NA meet C again at M. Prove that PF = PN. Deduce that E is a
parabola.

Section 1.2

1. Determine the slope of the tangent to the cycloid in R? with parametric
equations

x =1t—sint, y=1—cost

at the point with parameter ¢, where ¢ is not a multiple of 2.
2. Determine the equation of the tangent to the curve in R? with parametric
equations

x=14+4r+7% y=1—1

at the point where r = 1.

3. Let P be a point on the ellipse with equation Z—z—i—i—z = 1,wherea > b > 0,
b* =a’(1 —e?),and 0 < e < 1.

(a)

If P has coordinates (a cost,bsint), determine the equation of the
tangent at P to the ellipse.
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We promised to tackle
these two situations
earlier, in

Subsection 1.1.5.




(b) Determine the coordinates of the point 7 where the tangent in part (a)
meets the directrix x = a/e.

(c) Let F be the focus with coordinates (ae, 0). Prove that PF is perpendic-
ular to TF.

. The perpendicular from a point P on the hyperbola H with parametric equa-

tions x = 2sect, y = 3tant, to the x-axis meets the x-axis at the point N.

The tangent at P to H meets the x-axis at the point 7.

(a) Write down the coordinates of N.

(b) Find the coordinates of T.

(c) Prove that ON - OT = 4, where O is the origin.

. Let P be a point on the ellipse with equation jl‘—i + Z—; = 1,wherea > b > 0,

b2 =a*(1—e*),and0 < e < 1.

(a) If P has coordinates (acost,bsint), determine the equation of the
normal at P to the ellipse.

(b) Determine the coordinates of the point Q where the normal in part (a)
meets the axis y = 0.

(c) Let F be the focus with coordinates (ae, 0). Prove that QF = ¢ - PF.

. Let .% denote the family of parabolas {(x, y) : y2 = 4a(x + a)} as a takes

all positive values, and & denote the family of parabolas {(x,y) : y*> =

4a(—x + a)} as a takes all positive values. Use the reflection property of
the parabola to prove that, if F € .% and G € ¥, then, at each point of
intersection, F and G cross at right angles.

. Prove that a perpendicular from the focus nearer to a point P on an ellipse

meets the tangent at P on the auxiliary circle of the ellipse, in the following

geometric way.

It is sufficient to prove the result for the ellipse E : ;‘—z + Z—z =1a >

b > 0, and points P of E in the first quadrant. Let 7" be the foot of the

perpendicular from F(ae,0) to the tangent at P, let T’ be the foot of the

perpendicular from F’(—ae,0) to the tangent at P, and let FT meet F'P

at X.

(a) Prove that the triangles AFPT and AXPT are congruent.

(b) Using the sum of focal distances property for E, prove that F'X = 2a.

(¢) Prove that OT is parallel to F’X, where O is the centre of E.

(d) Prove that OT = a, so that T lies on the auxiliary circle of E.

Remark: A similar argument to that in parts (a)—(d) shows that OT = a,
so that T’ also lies on the auxiliary circle of E.

. (a) Let E be an ellipse with major axis AB and minor axis CD, and let the
tangents to E at A and B meet the tangent at D at the points T and 7’
respectively. Prove that the circle with diameter 7T cuts the major axis
of E at its foci.

(b) Let H be a hyperbola with major axis AB, whose midpoint is O, and let
the perpendicular at A to the major axis meet an asymptote at a point
T'. Prove that the circle with centre O and radius OT cuts the major axis
of H at its foci.

1: Conics
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This is part of Theorem 4
of Subsection 1.2.3. A
similar argument works
for the other focus, but we
do not look at that here.

circle

This gives a method of
locating the foci of an
ellipse, given its major
and minor axes.

This gives a method of
locating the foci of a
hyperbola, given its major
and minor axes.



Summary of Chapter 1

Section 1.3

1.

Classify the conics in R? with the following equations. Determine the
centre/vertex and axis of each.

(@) x> —4xy —2y? +6x + 12y +21 =0

(b) 5x% 4 4xy +5y> +20x +8y —1=0

(¢) x> —dxy+4y> —6x —8y+5=0

(d) 21x2 —24xy +31y2 +6x +4y —25=0

(e) 3x> —10xy +3y? 4+ 14x =2y +3 =0

. Determine the eccentricities of the conics in parts (a), (b) and (c) of

Exercise 1.

Section 1.4

1.

Classify the quadrics in R? with the following equations. Determine the
centre of each.

(@) 4x? +3y2 =272 +4xy+4yz+ 12x + 122+ 18 =0

b) xy—y+yz=2x2

(©) 5x% 4 5y% + 622 + 2/2y7 + 24/2xz 4+ 2xy + 24/3x —4/6y — 1 =0
(d) —3x24+7y2 +72x + 126y + 7 +95=0

. Determine the equations of the generators of the hyperboloid of one sheet

E with equation 2x? — 3y? 4 47> = 3 through the point (1, 1, 1).

Summary of Chapter 1

Section 1.1: Conic Sections and Conics

1.

Conics (or conic sections) are the shapes that we obtain by taking different
plane slices through a double cone.

The non-degenerate conic sections are parabolas, ellipses and hyper-
bolas; the degenerate conic sections are the single point, single line and
pair of lines.

The ellipse and the hyperbola both have a centre; that is, there is a point C
such that rotation about C through an angle 7 is a symmetry of the conic.

. The equation of a circle in R? with centre (a, b) and radius r is (x — a)% +

(y = by =12

An equation of the form x?+y?4-fx+gy-+h = O represents a circle with
centre (—%f, —%g) and radius ,/ }sz + }tgz — h, provided that ifZ +
%gz —h>0.

. Two intersecting circles C and C, with equations x> + y> + fix + g1y +

hy = 0and x> 4+ y? + fox + g2y + ha = 0, respectively, are orthogonal
if and only if f] fz + 818 = 2(h1 + ho).

. Let Cy and C; be circles with equations x>+ y + fix +g;y+h; = 0 and

x24+y?+ frx+g2y+hy = 0 that intersect at distinct points P and Q. Then
the line and all circles (other than C») through P and Q have an equation
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10.

11.

12.

13.

14.

of the form x% +y? 4 fix + g1y +h1 +k(x> + y> + frx + g2y + h2) =0
for some number k.

If k # —1, this equation is one of the circles; if k = —1, this is the
equation of the line.
The non-degenerate conics can be defined as the set of points P in the
plane that satisfy the following condition: The distance of P from a fixed
point (the focus) is a constant multiple e (the eccentricity) of the distance
of P from a fixed line (the directrix).

A non-degenerate conic is an ellipse if 0 < e < 1, a parabolaife = 1,
or a hyperbola if e > 1.
A parabola in standard form has equation y> = 4ax, where a > 0.

It has focus (a, 0) and directrix x = —a; and it can be described by the
parametric equations x = ar*, y = 2at (t € R).
An ellipse in standard form has equation ;C—Z + Z—i =1,wherea > b > 0,
PP=a’1-e>),0<e<1.

It can be described by the parametric equations x = acost, y = bsint
(t € (—m,m]); orby x = al+t2, y= b1+2 (t € R).

If e > 0, it has foci (Fae, 0) and directrices x = Fa/e.

. A hyperbola in standard form has equation —2 _r - 1, where b*> =

b T
a2t —1),e> 1.

It has foci (fae, 0) and directrices x = =+a/e; and it can be described
by the parametric equations x = a sect y =btant (t € (—n/2,7/2) U
(/2,31 /2)); orby x = a}*iz, y=>b= 12 (t e R —{£1}).

A rectangular hyperbola has its asymptotes at right angles, and has
eccentricity e = +/2. In standard form it has equation xy = ¢2, ¢ > 0.

It can be described by the parametric equations x = ct, y = 7 (t # 0).
The polar equation of a conic with focus O can be expressed in the form
r=1/(1+ecosf) (0 € R).

Sum of Focal Distances of Ellipse Let E be an ellipse with major axis
(—a,a) and foci F and F'. Then, if P is a point on the ellipse, FP+ PF =
2a. In particular, FP + PF’ is constant for all points P on the ellipse.

Given any two points F and F’ in the plane, the locus of points P in the

plane for which PF + PF’ is a constant is an ellipse.
Difference of Focal Distances of Hyperbola Let H be a hyperbola with
major axis (—2a,2a) and foci F and F’. Then, if P is a point on the
branch of the hyperbola that is closer to F, PF' — PF = 2a; and, if P is
a point on the branch of the hyperbola closer to F’, PF' — PF = —2a. In
particular, |PF’ — PF| is constant for all points P on the hyperbola.

Given any three points F, F" and P in the plane for which PF'—PF # 0,
the locus of points Q in the plane for which QF — QF = +|PF — PF]| is
a hyperbola.

Dandelin spheres Let a plane 7 cut one portion of a right circular cone
inacurve E. Let F and F’ be the points of contact with 7= of two spheres
that touch that portion of the cone (in circles C and C’, respectively)

1: Conics
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and 7. Then E is an ellipse, with foci F and F’, and with directrices the
lines of intersection of 7 with the planes through C and C’, respectively).

Section 1.2: Properties of Conics

1.

The slope (or gradient) of the tangent to a curve in R? with paramet-

ric equations x = x(#), y = y(¢) at the point with parameter ¢ is ro

@)’
provided that x’(z) # 0.

. The equation of the tangent at the point (x1, y1) to a conic in standard form

is as follows.

Conic Tangent
2 2
. x Yoo XL W
Elhpse a_2 + b_2 =1 _a2 _b2 =1
2 2
x Yoo XL W
Hyperbola a_2_b_2_1 a_z_ﬁ_l
Parabola  y? = 4dax 1 = 2a(x + x1)

. Let (a,b) be a point outside the unit circle, and let the tangents to the

circle from (a, b) touch the circle at P; and P,. The polar of (a,b) with
respect to the unit circle is the line through P; and P; this has equation
ax+ by = 1.

. The normal to a curve C at a point P of C is the line through P that is

perpendicular to the tangent to C at P.

. The Reflection Law The angle that incoming light makes with the tangent

to a surface is the same as the angle that the reflected light makes with the
tangent.

. Reflection Property of the Ellipse Light which comes from one focus of

an elliptical mirror is reflected at the ellipse to pass through the second
focus.

. Sine Formula In a triangle AABC with sides a, b, ¢ opposite the vertices

A, B, C, respectively,

a _ b _ c
sin /ZBAC ~ sin ZABC ~ sin ZACB’

. Reflection Property of the Hyperbola Light coming from one focus of a

hyperbolic mirror is reflected at the hyperbola in such a way that the light
appears to have come from the other focus.

Also, light going towards one focus of a hyperbolic mirror is reflected
at the mirror towards the other focus.

. Reflection Property of the Parabola Incoming light parallel to the axis

of a parabolic mirror is reflected at the parabola to pass through the focus.

Conversely, light coming from the focus of a parabolic mirror is
reflected at the parabola to give a beam of light parallel to the axis of
the parabola.
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10.

12.

Reflection Property of Conics All mirrors in the shape of a non-
degenerate conic reflect light coming from or going to one focus towards
the other focus.

. The auxiliary circle of an ellipse or hyperbola is the circle whose diameter

is its major axis. The auxiliary circle of a parabola is the tangent to the
parabola at its vertex.

A perpendicular from a focus of a non-degenerate conic to a tangent meets
the tangent on the auxiliary circle of the conic.

This property can be used to construct a parabola, ellipse or hyperbola as
the envelope of a family of lines that are tangents to the conics.

Section 1.3: Recognising Conics

1.

Any conic has an equation of the form Ax” + Bxy+ Cy* +Fx+Gy+H =0,
where A, B, C, F, G and H are real numbers, and not all of A, B and C are
zero. Conversely, any set of points in R? whose coordinates (x, y) satisfy
this equation is a conic.

This equation can be expressed in matrix form as

A Lp
xTAx +JTx + H = 0, where A = 27,
iB C

() ()

A 2 x 2 matrix P represents a rotation of R? about the origin if and only if
it satisfies the following two conditions:

(a) P is orthogonal,

(b) detP = 1.

Strategy To classify a conic E with equation

Ax* + Bxy + Cy* + Fx+ Gy + H = 0:

1. Write the equation of E in matrix form x’ Ax + J'x + H = 0.

2. Determine an orthogonal matrix P, with determinant 1, that diagonal-
izes A.

3. Make the change of coordinate system x = Px’. The equation of E then
becomes of the form A1x"> + A2y? + f' + gy + h = 0, where A and
Ao are the eigenvalues of A.

4. ‘Complete the squares’, if necessary, to rewrite the equation of E in
terms of an (x”, y”)-coordinate system as the equation of a conic in
standard form.

5. Use the equation X' = PTx to determine the centre and axes of E in
terms of the original coordinate system.

A non-degenerate conic with equation Ax*> + Bxy+ Cy*> + Fx+Gy+H = 0

and matrix A can be classified as follows:

(a) IfdetA < 0, E is a hyperbola.

(b) IfdetA =0, E is a parabola.

(c) If detA > 0, E is an ellipse.

1: Conics
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Section 1.3: Quadric surfaces

1. A quadric (or quadric surface) in R? is a set given by an equation of the
form Ax? + By? + Cz* + Fxy + Gyz + Hxz +Jx + Ky + Lz + M = 0, where
A B, C F G, H, J, K, Land M are real numbers, and not all of A, B, C, F,
G and H are zero.
This equation can be expressed in matrix form as

1 1
A SF ;H
x'Ax +J'x + M = 0, where A = %F B %G ,
1 1
sH ;G C
J X
J=1| K and x=|y
L Z

2. The degenerate quadrics are the empty set, a single point, a single line,
a single plane, a pair of planes and a cylinder. A cylinder is a surface that
consists of an ellipse, parabola or hyperbola in some plane 7, together with
all the lines in R through that conic that are normal to 7.

3. There are six non-degenerate quadrics:

Quadric Typical equation
2 2 2
. . X y Z
Ellipsoid = + 3 + 5= 1
2 2 2
. X y Z
Hyperboloid of one sheet atETa= 1
2oy 2
Hyperboloid of two sheets | — + -5 — — = —1
a b c
2 2
Elliptic cone 2=242
a b
22
Elliptic paraboloid 7= = + 3
x2 y2
Hyperbolic paraboloid 7= el

4. A 3 x 3 matrix P represents a rotation of R3 about the origin if and only if
it satisfies the following two conditions:
(a) P is orthogonal;
(b) detP =1.

5. Strategy To classify a quadric E with equation Ax> + By*> + Cz> 4 Fxy +
Gyz+Hxz+Jx+Ky+Lz+ M =0:
1. Write the equation of E in matrix form x’ Ax 4+ J'x + M = 0.



60

2. Determine an orthogonal matrix P, with determinant 1, that diagonal-
izes A.

3. Make the change of coordinate system x = Px’. The equation of E then
becomes of the form A1x? + A2y? 4+ A3z? +jx' + ky + 12 +m = 0,
where A1, Ao and A3 are the eigenvalues of A.

4. ‘Complete the squares’, if necessary, to rewrite the equation of E in
terms of an (x”, y”,z”)-coordinate system as the equation of a quadric
in standard form.

5. Use the equation X' =P7x to determine the centre and planes of
symmetry of E in terms of the original coordinate system.

A ruled surface in R is a surface that can be made up from a family of

straight lines, called its generating lines or generators.

A hyperboloid of one sheet and a hyperbolic paraboloid contain two fami-

lies of generating lines. The members of each family are disjoint, and each

member of either family intersects each member of the other — with exactly
one exception.
These are the only two quadrics that are ruled surfaces.

1: Conics



2 Affine Geometry

In Chapter 1 we studied conics in Euclidean geometry. In the rest of the book
we prove a whole range of results about figures such as lines and conics, in
geometries other than Euclidean geometry. In the process of doing this, we
meet two particular features of our approach to geometry which may be new
to you.

The first feature is the use of transformations in geometry to simplify prob-
lems and bring out their essential character. You may have met some of these
transformations previously in courses on Group Theory or on Linear Algebra.

The second feature arises from the fact that the transformations we introduce
form groups. Generally, we restrict our attention to geometry in the plane,
R2, but even in this familiar setting there may be more than one group of
transformations at our disposal. This leads to the exciting new idea that there
are many different geometries!

Each geometry consists of a space, some properties possessed by figures
in that space, and a group of transformations of the space that preserve these
properties. For example, Euclidean plane geometry uses the space R2, and
is concerned with those properties of figures that depend on the notion of dis-
tance. The group associated with Euclidean geometry is the group of isometries
of the plane.

This idea, that geometry can be thought of in terms of a space and a
group acting on it, is called the Kleinian view of geometry, after the 19th-
century German mathematician Felix Klein who proposed it first. It has the
virtue of enabling us to generate many geometries, while seeing how they are
related.

For instance, we can take R? as our space and use the group of all transfor-
mations of the form #(x) = Ax + a, where a € R% and A is a 2 x 2 invertible
matrix. These are the so-called affine transformations of R?. But what prop-
erties of figures in R? are preserved by such transformations, and what is the
corresponding geometry? The geometry is called affine geometry, and it is the
subject of this chapter. As you will see, it has some features in common with
Euclidean geometry, but also some very different features.

In Section 2.1 we examine Euclidean geometry from the Kleinian point of
view, and explain why geometries other than Euclidean geometry exist.

In this book, we shall
often use matrices to
simplify our work.

This is because isometries

of the plane preserve
distances.
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In Sections 2.2 and 2.3 we introduce affine geometry and consider its prop-
erties. In particular, we show that affine transformations map straight lines to
straight lines, map parallel lines to parallel lines, and preserve ratios of lengths
along a given line. We also discover that in affine geometry all triangles are
congruent, in the sense that any triangle can be mapped onto any other triangle
by an affine transformation. This result is known as the Fundamental Theorem
of Affine Geometry.

In Section 2.4 we establish two important theorems, due to Ceva and
Menelaus, which involve ratios of lengths along the sides of a triangle.

Finally, in Section 2.5 we investigate the effect of affine transformations on
conics, and discover that we can use the methods of affine geometry to obtain
very simple proofs of certain types of theorems about conics.

21 Geometry and Transformations

Before embarking on a study of various other geometries, it is useful first to
look back at our familiar Euclidean geometry.

211 Whatis Euclidean Geometry?

To help us answer this question, we begin by considering the following well-
known result.

Example 1 Let AABC be a triangle in which ZABC = ZACB. Prove that
AB = AC.

Solution First, reflect the triangle in the perpendicular bisector of BC, so

that the points B and C change places and the point A moves to some point

A’, say. Since reflection preserves angles, it follows that /A’BC = ZACB.
Also, we are given that ZACB = ZABC, so

ZA'BC = ZABC.
But this can happen only if A’ lies on the line through A and B. Similarly,
ZA'CB = ZABC = ZACB,

so A’ must also lie on the line through A and C. This means that A’ and A
must coincide. Hence the line segment AB reflects to the line segment AC, and
vice versa. Since reflection preserves lengths, it follows that AB = AC. O

Problem 1 Let A and B be two points on a circle, and let the tangents

to the circle at A and B meet at P. Prove that AP = BP.

Hint:  Consider a reflection in the line which passes through P and the
centre of the circle.

2: Affine Geometry
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The result in Example 1 is concerned with the properties of length and angle
associated with the triangle AABC. To investigate these properties, we intro-
duced a reflection that enabled us to compare various lengths and angles. We
were able to do this because reflections leave lengths and angles unchanged.
Of course, reflections are not the only transformations that preserve lengths
and angles: other examples include rotations and translations. In general,
any transformation that preserves lengths and angles can be used to tackle
problems which involve these properties. In fact, we need worry only about
leaving distances unchanged, since any transformation from R? onto R? that  This is because, once we
changes angles must also change lengths. Transformations that leave distances ~ know the lengths of the

unchanged are called isometries. sides of a triangle, the
angles are uniquely

determined.
Definition An isometry of R? is a function which maps R? onto R? and
preserves distances.

In fact, every isometry has one of the following forms:

a translation along a line in R?;
a reflection in a line in ]Rz;

a rotation about a point in Rz; . o
The identity isometry can

a composite of translations, reflections and rotations in R?. be regarded as a rotation
through an angle that is a
The composite of any two isometries is also an isometry, and so it is easy to  multiple of 27.

verify that the set S(R?) of isometries of R? forms a group under composition
of functions. These observations can be used to build up the transformations
we need in order to prove Euclidean results.

Example 2 Prove that if AABC and ADEF are two triangles such that
AB=DE, AC=DF and /BAC = ZEDF,

then BC = EF, ZABC = /DEF and ZACB = ZDFE.

Solution ltis sufficient to show that there is an isometry which maps AABC
onto ADEF. We construct this isometry in stages, starting with the translation
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which maps A to D. This translation maps AABC onto ADB'C’, where B’ and
C’ are the images of B and C under the translation.

translate F

A D)<
Lo rotate
/o\-\ X T
B c Bt emm oo RN

Since we are given that DF = AC, and since the translation maps AC onto

DC, it follows that DF = DC’. We can therefore rotate the point C’, about D,

until it coincides with the point F. This rotation maps ADB'C’ onto ADB"F,

as shown in the margin, where B” is the image of B” under the rotation.
Finally, notice that

/FDE = /CAB (given)
= /C'DB’ (translation)
= /FDB"” (rotation),

so either B” lies on DE or the reflection of B” in the line FD lies on DE. Also
DE =AB  (given)
= DB’ (translation)
= DB” (rotation).
1t follows that either B” coincides with E or the reflection of B” in the line
FD coincides with E.
So, composing the translation, the rotation, and (if necessary) a reflection,
we obtain the required isometry that maps AABC onto ADEF. Since isome-

tries preserve length and angle, it follows that BC = EF, ZABC = ZDEF and
/ACB = /DFE. ]

Problem 2 Prove that if AABC and ADEF are two triangles such that
AC =DF, /BAC = /EDF and /ACB = /DFE,
then BC = EF, AB = DE and ZABC = /DEF.

We can now answer the question ‘What is Euclidean geometry?’. Euclidean
geometry is the study of those properties of figures that are unchanged by the
group of isometries. We call these properties Euclidean properties. Roughly
speaking, a Euclidean property is one that is preserved by a rigid figure as
it moves around the plane. Of course, these properties include distance and
angle, but they also include other properties such as collinearity of points and
concurrence of lines.

2: Affine Geometry

Of course, A and D may
already coincide, in which
case we omit the
translation stage.

If C’ already coincides
with F, then we omit the
rotation stage.

E
r reflect
DY

B

‘We consider only
Euclidean geometry in the
plane R2.
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This idea, that geometry can be thought of in terms of a group of transforma-
tions acting on a space, is known as the Kleinian view of geometry. It enables us
to generate many geometries, without losing sight of the relationship between
them.

When we consider geometries in this way, it is often convenient to have
an algebraic representation for the transformations involved. This not only
enables us to solve problems in the geometry algebraically, but also provides
us with formulas that can be used to compare different geometries.

In the case of Euclidean geometry, perhaps the easiest way to repre-
sent isometries algebraically is to use matrices. For example, the function

defined by
X cosf —sinf X e 2
t: . , R ) 1
<y>H<51n9 cos@><y>+<f> ((xy)e M
is an isometry because it is the composite of an anticlockwise rotation through
an angle 6 about the origin, followed by a translation through the vector (e, f).

Similarly, the function
X cos @ sin 6 X e 2
=z . MeER) @
(y)'_)(sme —COSQ)(y>+<f> ((x y) € )
is an isometry because it is the composite of a reflection in the line through
the origin that makes an angle 6/2 with the x-axis, followed by a translation
through the vector (e, f).
Remarkably, we can represent any isometry by one or other of the forms
given in (1) and (2). To see this, notice that any isometry # can be written in the
form

10 =160 + (e, /) (xeR?), 3)

where f¢ is an isometry which fixes the origin. Indeed, if we let (e, f) = £(0),
then we can let 7y be the transformation defined by #o(x) = #(x) — (e, f). This
is an isometry because it is the composite of the isometry ¢ and the translation
through the vector —(e, f). It fixes the origin since #p(0) = 7(0) — (e, f) = 0.

Now an isometry that fixes the origin must be either a rotation about the
origin, or a reflection in a line through the origin. If #j is a rotation about the
origin, then (3) can be written in the matrix form given in (1), whereas if #( is
a reflection in a line through the origin, then (3) can be written in the matrix
form given in (2).

So together, equations (1) and (2) provide us with an algebraic representa-
tion of all possible isometries of the plane. The next problem indicates how we
can obtain a more concise description of this algebraic representation by using
orthogonal matrices to combine equations (1) and (2).

Problem 3 Show that both the matrices
cosd —sinf and cos 6 sin 6
sin @ cosf sinf —cosf /)’

which appear in (1) and (2), are orthogonal for each real number 6.
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Here a space is simply a
collection of points; for
example, the plane is
R? = {(x,y):

X,y are real}.

Recall that the effect of
the matrix multiplication
in (1) and (2) can be
interpreted geometrically
by examining what
happens to the vectors (1,
0) and (0, 1). For example,
in (2) the matrix
multiplication sends (1, 0)
and (0, 1) to (cos @, sin )
and (sin0, — cos 0),
respectively, so it
corresponds to the
reflection shown in the
figure below.

y

0,1e

(cos 6, sing)

(sin 6, —cos 0)

Recall that a matrix U is
orthogonal if Ul = UT,
that is, if U7 U = L This
is equivalent to saying that
the columns of U are
orthonormal.
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By applying the solution of Problem 3 to equations (1) and (2), we see that
every isometry ¢ has an algebraic representation of the form

t(x) = Ux+ a,

where U is an orthogonal 2 x 2 matrix, and a is a vector in R2.

Definition A Euclidean transformation of R? is a function ¢ : R?> — R?
of the form

t(x) =Ux +a,
where U is an orthogonal 2 x 2 matrix and a € R?. The set of all Euclidean
transformations of R? is denoted by E (2).

We may summarize the discussion above by saying that every isometry of
the plane is a Euclidean transformation of R

In fact, the converse is also true, for if U is any orthogonal matrix, then
its columns are orthonormal. In particular, its first and second columns have

unit length and can therefore be written in the form <c9s 9) and <Cés ¢),
sin 6 sin ¢

respectively, for some real 6, ¢. For these to be orthonormal, we must have
cosf-cos¢p+sinf-sing = 0, so that tan 6 -tan ¢ = —1 and hence ¢ = 9:&%.
It follows that the second column must be

cos(0 +m/2)\ [ —sinf or
sin@ +m/2) )]\ cosf
cos(0 —m/2)\ sin 0
sin@ —m/2) )] \ —cos6 /)’
cosf —siné cos b sin 0
U_<sin9 cos@) of U_<sin9 —cos@>'
It follows that every Euclidean transformation 7(x) = Ux + a of R? has one

of the forms given in equations (1) and (2). Since both of these forms represent
isometries of the plane,we have the following theorem.

So

Theorem 1 Every isometry of R? is a Euclidean transformation of R,
and vice versa.

Now the set of all isometries of R? forms a group under composition of
functions, so it follows from Theorem 1 that the same must be true of the set of
all Euclidean transformations of R2. We therefore have the following theorem.

Theorem 2 The set of Euclidean transformations of R? forms a group
under the operation of composition of functions.

2: Affine Geometry

This equation shows the
matrix U acting on the
vector X = (x,y). Strictly
speaking, U acts on the

coordinates ()yc ) of x

with respect to the
standard basis of the
vector space R2 as in
equations (1) and (2).
However, since the
numbers x and y are the
same for the vector and its
standard coordinates, no
confusion should arise.

It is not difficult to prove
that this is a group, so we
omit the proof.
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It is instructive to check the group axioms algebraically, for in the process
of doing so we obtain formulas for the composites and inverses of Euclidean

transformations.
We start by considering closure. Suppose that #; and #, are two Euclidean

transformations given by
nx)=Ux+a; and nHEx) =Uyx+ ap,

where U and U, are orthogonal 2 x 2 matrices. Then the composite 71 o 1> is
given by

t1 o (x) = t1(Uox + ap)
=U1(Uxx + ap) + a3
=UUxx + (Ujay + ay).

This is a Euclidean transformation since U1 U, is orthogonal. Indeed,
U Uy =ulul =uy'u! = oy L

So the set of Euclidean transformations is closed under composition of
functions.

Problem 4 Let the Euclidean transformations #; and f, of R? be

given by
n(x) = (

B(x) = <_

Determine ¢] ot and t o #1.

Wl W

and

Tl Wl

Wik W

S——
»
+

7N
|

—_ N

N———"

Next recall that under composition of functions the identity is the transfor-
mation given by i(x) = x. This is a Euclidean transformation since it can be
written in the form

ix) =Ix+0,

where I is the 2 x 2 identity matrix, which is orthogonal.
The next problem asks you to show that inverses exist.

Problem 5 Prove that if #; is a Euclidean transformation of R?
given by

nx)=Ux+a (xeR?,

Here we are using the
result that
(AB)T = BTAT,
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then:

(a) the transformation of R? given by
Hhx)=U'x—U'la (xeR?

is also a Euclidean transformation;
(b) the transformation 7, is the inverse of 7.

The solution of Problem 5 shows that we can calculate the inverse of a
Euclidean transformation by using the following result.

The inverse of the Euclidean transformation 7(x) = Ux + a is given by

T 'x)=U"x-U"a.

Problem 6 Determine the inverse of the Euclidean transformation

given by
t(x):( )x—i—(_;).

Finally, composition of functions is always associative. So all four group
properties hold, as we expected.

Earlier, we described Euclidean geometry as the study of those properties
of figures that are preserved by isometries. Having identified these isome-
tries with the group of Euclidean transformations, we can now give the
equivalent algebraic description of Euclidean geometry. Euclidean geome-
try is the study of those properties of figures that are preserved by Euclidean
transformations of R?.

Tl Ul
(G [SSEERV, I

21.2 Euclidean-Congruence

In the solution to Example 2 we showed that if two triangles AABC and ADEF
are such that AB = DE, AC = DF and /BAC = ZEDF, then there is a
Euclidean transformation which maps AABC onto ADEF.

The existence of this transformation enabled us to deduce that both triangles
have the same Euclidean properties. In particular, we were able to deduce that
BC = EF, ZABC = ZDEF and ZACB = ZDFE.

2: Affine Geometry
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In order to formalize this way of relating two figures, we say that two figures
are congruent if one can be moved to fill exactly the position of the other
by means of a Euclidean transformation. Loosely speaking, two figures are
congruent if they have the same size and shape.

Later we consider congruence with respect to other groups of transforma-
tions (that is, congruence in other geometries), so if there is any danger of
confusion we sometimes say that two figures are Euclidean-congruent.

Definition A figure F is Euclidean-congruent to a figure F if there is a
Euclidean transformation which maps F; onto F>.

For example, any two circles of unit radius are Euclidean-congruent to each
other because we can map one of the circles onto the other by means of a
translation that makes their centres coincide.

Problem 7 Which of the following sets consist of figures that are
Euclidean-congruent to each other?

(a) The set of all ellipses

(b) The set of all line segments of length 1

(c) The set of all triangles

(d) The set of all squares that have sides of length 2

Earlier, we emphasized that the Euclidean transformations form a group.
This is important because it ensures that Euclidean-congruence has the kind of
properties that we should expect. For example, we should expect every figure
to be congruent to itself. Also, if a figure F is congruent to a figure F>, then we
should expect F> to be congruent to F;. We can, in fact, establish the following
result.

Theorem 3 Euclidean-congruence is an equivalence relation.

Proof We show that the three equivalence relation axioms E1, E2 and E3
hold.

El REFLEXIVE  For all figures F in R?, the identity transformation maps F
onto itself; so Euclidean-congruence is reflexive.

E2 SYMMETRIC Let a figure Fj in R2 be congruent to a figure F;, and let ¢
be a Euclidean transformation which maps F; onto F>. Then
the inverse Euclidean transformation 71 maps F, onto Fi,
so that F» is congruent to F7. Thus Euclidean-congruence is
symmetric.

E3 TRANSITIVE Let a figure F| in R? be congruent to a figure F», and let
F> be congruent to a figure F3. Then there exist Euclidean

69

Of course, there are many
other Euclidean
transformations which
map one of the circles
onto the other.

This uses the existence of
an identity transformation.

This uses the existence of
inverse transformations.
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transformations #; mapping F; onto F> and #;, mapping F,
onto F3. Thus the Euclidean transformation #; o #; maps
F1 onto F3, so that F is congruent to F3. Hence Euclidean-
congruence is transitive.

It follows that Euclidean-congruence is an equivalence relation, because it
satisfies the axioms El, E2 and E3. |

Problem 8 Prove that if two figures in R? are each Euclidean-
congruent to a third figure, then they are Euclidean-congruent to each
other.

Since Euclidean-congruence is an equivalence relation, it partitions the
set of all figures into disjoint equivalence classes. Each class consists of
figures which are Euclidean-congruent to each other, and hence share the same
Euclidean properties (for example, one class consists of all circles of unit
radius, another class consists of all equilateral triangles with sides of length
3, and so on). If we wish to show that two figures have the same Euclidean
properties, then it is sufficient to show that they are Euclidean-congruent.

Now Euclidean geometry is just one of several different geometries. Each
geometry is defined by a group G of transformations that act on a space.
In general, we say that two figures are G-congruent if there is a trans-
formation in G which maps one of the figures onto the other. Since the
only properties used in the proof of Theorem 3 are the group properties of
Euclidean transformations, the theorem holds also with ‘G-congruent’ in place
of ‘Euclidean-congruent’. Thus, like Euclidean-congruence, G-congruence
is an equivalence relation that partitions the set of all figures into disjoint
equivalence classes.

This idea of partitioning figures into equivalence classes is central to geom-
etry. It enables us to distinguish between figures in different equivalence
classes, without having to worry about the differences between figures in the
same equivalence class. For example, if we are interested in whether a conic
is an ellipse rather than a hyperbola or a parabola, but do not care about
its shape (that is, the ratio of the lengths of its axes), we might choose to
work with some geometry whose group of transformations makes all ellipses
congruent to each other — but not congruent to any hyperbola or parabola.
We describe a group of transformations which defines such a geometry in
Section 2.2.

2.2 Affine Transformations and Parallel Projections

221

In Section 2.1 you met a new approach to Euclidean geometry in R? — namely,
the idea that Euclidean geometry of R? can be interpreted as a space, RZ,

Affine Transformations

2: Affine Geometry

This uses the closure
axiom for the group of
Euclidean
transformations.

For example, to show that
two triangles AABC and
ADEF have the same
Euclidean properties, it is
sufficient to show that
AB = DE, AC = DF and
/BAC = ZEDF, as you
saw in Example 2. This
congruence condition is
frequently used in
Euclidean geometry. It is
known as the ‘side angle
side’ (SAS) condition for
congruence.
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together with the group of Euclidean transformations which act on that space.
Recall that a Euclidean transformation is a function 7 : R*> — R? of the form

i(x) =Ux+a (xeR?,

where U is an orthogonal 2 x 2 matrix. Euclidean properties of figures are
those, like distance and angle, that are preserved by these transformations.

In this section we meet the first of our new geometries in R> — affine
geometry. This geometry consists of the space R? together with a group of
transformations, the affine transformations, acting on R2.

Definition An affine transformation of R? is a function 7 : R — R? of
the form

t(x) = Ax+ b,
where A is an invertible 2 x 2 matrix and b € R2. The set of all affine
transformations of R? is denoted by A(2).

Remark

Note that every Euclidean transformation of R? is an affine transformation
of R? since every orthogonal matrix is invertible. (In terms of groups, the
group of Euclidean transformations of R? is a proper subgroup of the group
of affine transformations of R?.) This means that all properties of figures that
are preserved by affine transformations must be preserved also by Euclidean
transformations.

Problem 1 Determine whether or not each of the following transfor-
mations of R? is an affine transformation.

(a) tl(X)=(i ;)er(_;) (b)tz(x)=<_§ §>x+<?)
@nw=("7 y)xr(y) @uw=(3 )

The algebra required to compose affine transformations is similar to the
algebra that we used to compose Euclidean transformations.

Problem 2 For the transformations of R? given in Problem 1, deter-
mine formulas for the following composites. In each case, state whether
or not the composite is an affine transformation.

(a) tjoty b)Y oty

We now verify our assertion above that the set of affine transformations
forms a group.

71

Affine geometry can be
defined in R”, for any

n > 2; we restrict our
attention here to the case
whenn = 2.
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Theorem 1 The set of affine transformations A(2) forms a group under
the operation of composition of functions.

Proof We check that the four group axioms hold.
Gl CLOSURE Let 71 and #, be affine transformations given by
Hn(x) =Aix+b; and £(x) =Arx+ by,

where A; and A, are invertible 2 x 2 matrices. Then, for
each x € R2,

(t1 o ) (x) = t1(Axx + by)
=A1(A2x+by) + by
= (A1A2)x + (Ayb2 + by).

Since A and A, are invertible, it follows that AjA,
is also invertible. So by definition #; o #, is an affine
transformation.

G2 IDENTITY Let i be the affine transformation given by

ix)=Ix+0 (xeR?,

where I is the 2 x 2 identity matrix. If ¢ is an affine
transformation given by

(x) =Ax+b (xeR?),
then, for each x € Rz,

(toi)(x) = AIx+0) +b = Ax + b = £(x)

and
(fot)(x) =I(Ax+b) + 0 = Ax+ b = 1(x).
Thus t oi = i ot = t. Hence i is the identity
transformation.
G3 INVERSES If ¢ is an arbitrary affine transformation given by

1(x) =Ax+b (xeR?),
then we can define another affine transformation ¢’ by
/(x) =A 'x — A" Ip.
Now for each x € RZ, we have
(tof)x) =1(A"'x — A" !b)
=AA'x—A"b)+b
= (AA'x—AA D) +Db
=x—-—b)+b

= X.

2: Affine Geometry
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Also,

' ot)(x) =1t'(Ax+b)
=A"'Ax+b)—A"'b
=ATAx+A" D) —A"Tb
=x+A"'"D)—A"b
= X.

Thust ot’ =t ot = i. Hence ¢’ is an inverse for .
G4 ASSOCIATIVITY Composition of functions is always associative.

It follows that the set of affine transformations A(2) forms a group under
composition of functions. |

The above proof shows that we can calculate the inverse of an affine
transformation by using the following result.

The inverse of the affine transformation #(x) = Ax + b is given by

'x)=A"x—A"p.

Problem 3 Find the inverse of the affine transformation
1 3 4
o= (1 ()

Having shown that the set of affine transformations forms a group under
composition of functions, we now define affine geometry to be the study of
those properties of figures in the plane R? that are preserved by affine trans-
formations. These are the so-called affine properties of figures. We begin our
investigation of affine geometry by considering the three affine properties listed
below.

Basic Properties of Affine Transformations
Affine transformations:

1. map straight lines to straight lines;
2. map parallel straight lines to parallel straight lines;
3. preserve ratios of lengths along a given straight line.

There are two approaches that we shall use to investigate these properties.
One approach is to use the definition of an affine transformation to investi-
gate the properties algebraically; we do this in Section 2.3. First, however,
we investigate the properties geometrically. We begin to do this in the next
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subsection by introducing a special type of affine transformation for which
there is a simple geometric interpretation.

2.2.2 Parallel Projections

A parallel projection is a one—one mapping from R? onto itself, defined in the
following way. First, we think of its domain and codomain as two separate

copies of R2.

domain codomain

Geometrically, we can represent these copies of R? by two separate planes,
each equipped with a pair of rectangular axes.

..

domain copy of R? codomain copy of R?

Next we place these planes into three-dimensional space; we denote the
domain plane by 71 and the codomain plane by 5.
Now imagine parallel rays of light shining through 1 and 7. Each point P
in the plane 71 has a (unique) ray passing through it, that also passes through a
point P’, say, in the plane 5. This provides us with a one—one correspondence
between points in the two planes 71 and 7. We call the function p which maps  Of course, since 71 and

each point P in m; to the corresponding point P’ in 7, a parallel projection 72 represent copies of R2,

from 771 onto 1, a parallel projection is
really a function from R2

onto itself. In

sl T2
P
PN Subsection 2.2.3 we show
that parallel projections
are affine transformations.

If the roles of the planes & and 7, are reversed, so that 7wy becomes the
domain plane and 7r; becomes the codomain plane, then we obtain the inverse
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function p~! which maps points P’ in w5 back to the corresponding points P

in 771. Clearly, p~! is a parallel projection of 75 onto 7.

Each choice of location for the domain plane 71, and the codomain plane 77,
and each choice of direction for the rays of light, yields a parallel projection.
The only constraint is that the rays of light must not be parallel to either plane.

If the planes 1 and 5 are parallel to each other, then any parallel projection
p from 71 onto 73 is an isometry, since the distance between any two points is
unaltered.

You can envisage the

mapping p from 7| onto
1y as ‘sliding 1 parallel
to itself along the family

/ of rays”

On the other hand, if the planes are not parallel to each other, then some
distances are changed under the projection, and so the parallel projection is
not an isometry; notice, however, that distances along the line of intersection
of the planes 7r; and m, do remain unchanged by the parallel projection.

v

Although distances are not always preserved by a parallel projection, there
are some basic properties that are preserved; three of these are listed below. As
you will see, these are the same as the basic affine properties that we mentioned
at the end of Subsection 2.2.1.

Basic Properties of Parallel Projections
Parallel projections:

1. map straight lines to straight lines;
2. map parallel straight lines to parallel straight lines;
3. preserve ratios of lengths along a given straight line.
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Later, we will show that each basic affine property follows directly from the
corresponding property for parallel projections. In anticipation of this, we first
show that the properties hold for parallel projections.

Property 1 A parallel projection maps straight lines to straight lines.

Proof Let ¢ be a line in the plane 771, and let p be a parallel projection map-
ping 1 onto the plane mp. Now consider all the rays associated with p that
pass through £. Since these rays are parallel, they must fill a plane. Call this

plane 7.
3 /p\\ "2 V'
| I

The image of £ under p consists of those points where the rays that pass
through ¢ meet 5. But these points are simply the points of intersection of
with 75. Since any two intersecting planes in R meet in a line, it follows that
the image of £ under p is a straight line. |

Property 2 A parallel projection maps parallel straight lines to parallel
straight lines.

Proof Let ¢ and m be parallel lines in the plane 771, and let p be a parallel
projection mapping 1 onto the plane . Let £, and my be the lines in m; that
are the images under p of £; and m.

If ¢ and m» are not parallel, they meet at some point, P, say. Let P be
the point of 71 which maps to P,. Then P; must lie on both £; and m. Since
£y and m are parallel, no such point of intersection can exist, which is a
contradiction. It follows that £, and m, must indeed be parallel. [ |

2: Affine Geometry

P, is the point p_1 (P).
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p

Property 3 A parallel projection preserves ratios of lengths along a given
straight line.
/_\
sl 7
m /.\__

Proof Let A, B, C be three points on a line in the plane 71, and let p be a
parallel projection mapping 1 onto the plane 75. Let P, Q, R be the points in
7, that are the images under p of A, B, C. We know from Property 1 that P,
O, R lie on a line; we have to show that the ratio AB : AC is equal to the ratio
PQ : PR.

If the planes 71 and m; are parallel, then the parallel projection p is an
isometry, and so the ratios AB : AC and PQ : PR are equal, as required. On
the other hand, if 71 and 7, are not parallel, then we can construct a plane
through the point P which is parallel to 1, as shown in the margin. This plane
intersects the ray through B and Q at some point B’, and the ray through C and
R at some point C’. So in this case the ratios AB : AC and PB’ : PC’ are equal.

Now consider APC'R. The lines B’Q and C’R are parallel, since they are
rays from the parallel projection. Hence B’ Q meets the sides PR and PC’ in
equal ratios. Thus PQ : PR = PB’ : PC'. 1t follows that PQ : PR = AB : AC,
as required. |

Notice, in particular, that if a point is the midpoint of a line segment, then
under a parallel projection the image of the point is the midpoint of the image
of the line segment.

In Subsection 2.2.3 you will see why the basic properties of affine trans-
formations and of parallel projections are the same, and you will meet some
further properties of each.

223 Affine Geometry

In this subsection we explore further the ideas of affine geometry and of par-
allel projection in order to prove two attractive and unexpected results about
ellipses. Also, we examine the relationship between affine transformations and
parallel projections.

Two Results about Ellipses

First, starting with any chord ¢ of an ellipse, draw all the chords paral-
lel to ¢ and construct their midpoints. We claim that these midpoints lie

77

We shall give a slightly
more general form of this
property in Theorem 4 of
Subsection 2.3.3.

We make use of this fact
in Subsection 2.2.3.
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on a chord through the centre of the ellipse — that is, on a diameter of
the ellipse.

Theorem 2 Midpoint Theorem
Let € be a chord of an ellipse. Then the midpoints of the chords parallel to
¢ lie on a diameter of the ellipse.

diameter

Next, start with any diameter £ of an ellipse and construct a second diameter
m by following the construction used in Theorem 2, as shown below. Then
repeat the construction starting this time with the diameter m; this might rea-
sonably be expected to give us a third diameter of the ellipse — but, surprisingly,
it gives us the diameter £ with which we started.

4 4
@m @m
Theorem 3 Conjugate Diameters Theorem
Let £ be a diameter of an ellipse. Then there is another diameter m of the The directions of these

ellipse such that: two diameters are called

conjugate directions, and
(a) the midpoints of all chords parallel to € lie on m; the diameters are called
(b) the midpoints of all chords parallel to m lie on £. conjugate diameters.

Proofs for the Special Case of a Circle

We now investigate these theorems for the special case when the ellipse is a

circle. To prove the Midpoint Theorem in this case, start with a chord €. If Recall that a circle is an
necessary, rotate the circle to ensure that £ is horizontal. It is then sufficient to ~ ellipse with eccentricity
prove that every horizontal chord is bisected by the vertical diameter, m. zero.

T e
e N\
[ .\
D
. ]
N
S~———

To do this note that the circle is symmetrical about m; so, reflection in m
maps that part of every horizontal chord to the left of m exactly onto the part
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to the right of m. Since reflection preserves length, these two parts must be the
same length; in other words, m bisects each horizontal chord, as required.

What about the Conjugate Diameters Theorem for the special case of the
circle?

Start with the horizontal diameter ¢, and carry out the construction of another
diameter as in Theorem 2; this yields the vertical diameter m. If we then start
with the vertical diameter m and repeat the construction, we obtain £, the hori-
zontal diameter of the circle. So Theorem 3 certainly holds when the ellipse is
a circle.

Generalizing the Proof

We now investigate how the proofs of Theorems 2 and 3 for the circle can be
turned into proofs for any kind of ellipse. The crucial fact is as follows.

Theorem 4 Given any ellipse, there is a parallel projection which maps
the ellipse onto a circle.

A suitable parallel projection is illustrated below. Here the plane | (initially
parallel to ) has been tilted about the minor axis of the ellipse. Under the
projection distances which are parallel to the minor axis remain unchanged,
but distances parallel to the major axis are scaled by a factor which depends on
the ‘angle of tilt’. By choosing just the right amount of tilt we can ensure that
the image of the major axis is equal in length to the image of the minor axis,
thereby ensuring that the image of the ellipse is a circle.

T

ellipse

Both Theorems 2 and 3 may now be proved using the following technique.
First, map the given ellipse onto a circle, using a suitable parallel projection p.

79

An algebraic proof of a
related theorem is given in
Theorem 1 of

Subsection 2.5.1.

Algebraically, in terms of
a suitable coordinate
system, the mapping
Xt =X, Yy,
a

maps the ellipse

[N]
®‘|‘<
SIS

+=1,

Q|><
)

to the circle x2 + y2 = b2
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Since we have seen that the theorems hold in the case of the circle, we then map

the circle back to the ellipse, using the inverse parallel projection p~!. Now

collinearity and parallelism are preserved under a parallel projection, as is the = Here we are using
property of being the midpoint of a line segment, so the above two theorems,  Properties 1, 2 and 3 of

which hold for a circle, must hold also for the ellipse. para}lel projections, in a
crucial way.

)4
VRN
>~ “

p—l

Notice that certain properties of figures, such as length and angle, are not
preserved under a parallel projection. This is one difference between Euclidean
geometry and affine geometry. The difference arises because the group of
affine transformations is larger than the group of Euclidean transformations.
In general, the larger the group that is used to define a geometry, the fewer
properties the geometry has.

Affine Transformations and Parallel Projections

Earlier we mentioned that a parallel projection is a special type of affine
transformation. We now show why this is indeed the case.
First, consider a parallel projection p of a plane 71 onto a plane 5. For the
moment, suppose that the planes are aligned so that the origin in 7y is mapped
to the origin in 7. Since ratios of lengths are preserved along a straight line,  Property 3,
we must have, for any vector v € R? and any A € R, Subsection 2.2.2

pV) = Ap(v). (1)

Next, let v and w be two position vectors in 1. Their sum, v + w, is found
from the Parallelogram Law for addition of vectors, as shown in the diagram
below. The images under p in 7 are p(v) and p(w), and the sum of these two
vectors is p(v) + p(w).
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But a parallel projection maps parallel lines onto parallel lines, so it must
map parallelograms onto parallelograms. Hence it must map the parallelogram
in 71 onto the parallelogram in 7>, and, in particular, it must map v + w to
p(v) + p(w). We may write this as

p(v+w) = p) + p(w). 2)

It follows from equations (1) and (2) that p must be a linear transformation of
R? onto itself.
Hence there exists some matrix A such that for each v € R2,

p(v) = Av. 3)

Since the linear transformation p is invertible, it follows that A is invertible.

Now suppose that the parallel projection maps the origin in 71 to some point
B with position vector b in 7, as shown below. If we temporarily construct a
new set of axes in 775 that are parallel to the original axes, but which intersect at
the point B, then with respect to these new axes p(v) = Av for some invertible
matrix A, as before. To express p(v) with respect to the original axes, we
simply add on the vector b to obtain

p(v) =Av+b 4

for some invertible 2 x 2 matrix A.

It follows from equation (4) that p must be an affine transformation.

Theorem 5 Each parallel projection is an affine transformation.

The converse is false, for it is not true that every affine transformation can
be represented as a parallel projection.
For example, consider the so-called ‘doubling map’ of R? to itself given by

t(v) =2v (veR?. (5)

81

Remember that 71 and 7y
represent copies of R2.
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This is an affine transformation, since it can be written in the form 7(x) =
Ax+b with A = 2Iand b = 0. However, a parallel projection is either between
two parallel planes, in which case all lengths are unchanged, or between two
intersecting planes, in which case distances along the line of intersection are
unchanged. The doubling map has neither of these properties and so is not a
parallel projection.

Observation An affine transformation is not necessarily a parallel
projection.

Although the doubling map is not a parallel projection, it is possible to dou-
ble lengths in R? by following one parallel projection by another: the first
doubles all horizontal lengths, and the second doubles all vertical lengths. Thus
the doubling map (5) can be represented as the composition of two parallel
projections.

We end this subsection by showing that every affine transformation can be
expressed as a composition of two parallel projections.

Recall that any affine transformation ¢ : R — R? has the form

(x) =Ax+b (xeR?), (6)

where A is an invertible 2 x 2 matrix. Now, ¢ is not a linear transforma-
tion unless b = 0, but we can use methods similar to those for linear
transformations to determine A and b.

First, it follows from equation (6) that #(0) = b; so b is the image of the
origin under 7. If we let e and f be the coordinates of #(0), then we can write

a b e
A:(C d) and b=<f>,

where a, b, ¢, d are real numbers that have yet to be found. It follows from
equation (6) that the images under ¢ of the points (1, 0) and (0, 1) are given by

() () (5)=(2)+ ()
(22 () (5)-(2)+ (%)

So if, in addition to #(0) = (e, f), we know the points onto which (1, 0) and
(0, 1) are mapped by ¢, then we can determine the values of a,b,c and d.
Indeed, we have

(a,c) =1t(1,0) — (e, f) and (b,d) =1(0,1) — (e, f).

and

It follows that an affine transformation is uniquely determined by its effect
on the three non-collinear points (0, 0), (1, 0) and (0, 1). We shall return to this
method of determining affine transformations in Section 2.3.

2: Affine Geometry

Notice that for an affine
transformation ¢, the
images #(1,0), 7(0, 1) and
1(0,0) = (e, f) cannot be
collinear, for if they were,
then (a, ¢) and (b, d)
would be linearly
dependent, and A would
not be invertible.
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So suppose that a given affine transformation # maps the points (0, 0), (1, 0)
and (0, 1) to three non-collinear points P, Q and R, respectively. In order to
express ¢ as the composition of two parallel projections p; and py, we need to
define p; and p; in such a way that p; o p; has the same effect as ¢ on (0, 0),
(1, 0) and (0, 1). To do this, we first define p; so that it maps (0, 0) to P, (1, 0)
to @, and (0, 1) to some point X, say, and then define p; so that it maps X to
R while leaving P and Q fixed.

T L T
P P2
o, 1)P PR x® PN
Re
0.0l 1,0
0° 0°
P. P.

To construct p; we embed its domain plane 71, and its codomain plane 7,
into R3 so that the point (0, 0) in 71 coincides with the point P in 7, as shown
below. It does not matter how this is done, provided that (1, 0) does not lie in
7. We then define p; by the family of rays that are parallel to the ray through
the point (1, 0) in 711 and the point Q in 7. When defined in this way, p; maps
(0,0)to P, (1,0) to Q, and (0, 1) to some point X, as required.

To construct p» we embed its domain plane , and its codomain plane 7,
into R3 so that the points P and Q in 7 coincide with the points P and Q in
7o, as shown below. Again it does not matter how this is done, provided that
X does not lie in . We then define p, by the family of rays that are parallel
to the ray through the point X in 7 and the point R in 7. Then p, leaves P
and Q fixed and maps X to R.

Overall, the composite py o p; of the two parallel projections maps (0, 0),
(1,0)and (0, 1) to P, Q and R, respectively. Now p; and p; are affine transfor-
mations, so p; o pp is also an affine transformation. Furthermore, p> o p; maps
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Uniqueness then
guarantees that

t=ppopj.

For clarity, we have
omitted the axes from the
plane 7.

See the figure below.
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(0, 0), (1, 0) and (0, 1) to the same points as does ¢. Since such affine transfor-
mations are unique, it follows that # = p>o p;. We have therefore demonstrated
the following result.

Theorem 6 An affine transformation can be expressed as the composite
of two parallel projections.

An important consequence of this theorem is that all properties of figures
that are unchanged by parallel projections must also be unchanged by affine
transformations. In particular, the three properties of parallel projections that
we met in Subsection 2.2.2 must, in fact, be affine properties.

2.3 Properties of Affine Transformations

In the previous section you saw how parallel projections can be used to explore
affine geometry from a visual point of view. In this section we explore some of
the same ideas from an algebraic point of view.

231 Images of Sets Under Affine Transformations

We begin by describing how to find the image of a line under an affine
transformation. To do this, recall that an affine transformation is a mapping
t : R? — R? given by a formula of the form

t(x) = Ax + b, (1)

where A is an invertible 2 x 2 matrix. The set of such transformations forms a
group, in which the transformation inverse to ¢ is given by

'x)=A"x—A"p. )

2: Affine Geometry

Subsection 2.2.1
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When equations (1) and (2) are used to find images under ¢, it is easy to
confuse points in the domain plane with points in the codomain plane, as both
planes are copies of R2. To avoid such confusion, we often reserve the symbol
x and the coordinates (x, y) for points in the domain of 7, and use the symbol
x’ and the coordinates (x’, y’) to denote the image of x under ¢.

With this notation, we may rewrite equations (1) and (2) in the form

x = Ax +b, 3)
x=A"'x — A" 'p. 4)

The next example illustrates how these equations can be used to find the
image of a line under an affine transformation.

Example 1 Determine the image of the line y = 2x under the affine

t(x):(; i)x—i—(_%) (xeR2>. (5)

Solution Let (x,y) be an arbitrary point on the line y = 2x, and let (x, y")
be the image of (x, y) under 7. Then

()=G)E) ()

Next we use equation (4) to express (x, y) in terms of (x’, y’). We have

4 1\ L1 L1 2 3
( ) — ( z 2 ) and ( 2 2 ) < ) = ( 2 ) , Recall that the inverse of
21 —1 2 —1 2 —1 —4 the invertible matrix

transformation

a b\.
SO A= ( . d) is
L1 / _3
()= D)) -
y -1 2 y 4 ad — bc
, o d —b
It follows that under the inverse mapping ¢~ we have “\ . 4 )

x:%x’—%y’—% and y=—x"+2y +4.

Since x and y are related by the equation y = 2x, it follows that x" and y’ are
related by the equation

—x'+2y' +4= 2(%)6/— 3 - %)»
which simplifies to
2x' =3y =17.

Dropping the dashes, we see that the image of the line y = 2x under ¢ is the
line

2x — 3y =T1. O
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Problem 1 Determine the image of the line 3x — y + 1 = 0 under the

affine transformation
_1 _3
2 X+ 2 (x IS Rz) .
2 4

t(x) = <
-1

Problem 2 Determine the image of the circle x> + y?> = 1 under the
affine transformation

1 1 3
_ 2 T2 -2 2
t(x)_<_1 2)x+( 4) (XER).

The same technique can be used to find the images of other types of figures,
such as other conics. You will meet some examples of this in Section 2.5.

| —

232 The Fundamental Theorem of Affine Geometry

The algebraic approach can also be used to investigate whether there is an
affine transformation which maps one given figure onto another. Recall that
if there is such a transformation, then the two figures are said to be affine-
congruent. This concept of congruence is important because, as we explained
in Section 2.1, figures that are affine-congruent to each other share the same
affine properties.

In this subsection we prove the remarkable result that all triangles are affine-
congruent and therefore share the same affine properties. In fact, since a
triangle is completely determined by its three vertices, the congruence of tri-
angles follows from the so-called Fundamental Theorem of Affine Geometry
which states that any three non-collinear points can be mapped to any other
three non-collinear points by an affine transformation.

First, recall that in Subsection 2.2.3 we described how the points (0, 0),
(1, 0) and (0, 1) in R? can be mapped to any three non-collinear points P, Q
and R by an affine transformation. This transformation is unique in the sense
that it is completely determined by the choice of P, Q and R. The following
example should remind you of how such transformations are constructed.

Example 2 Determine the affine transformation which maps the points (0, 0),
(1, 0) and (0, 1) to the points (3, 2), (5, 8) and (7, 3), respectively.

Solution Let ¢ be the affine transformation given by

()= (D0 () ©

Since ¢(0,0) = (3,2), it follows from (6) that e = 3 and [ = 2.
Next, 1(1,0) = (5, 8), so it follows from (6) that

(3)=(0 D)+ (2)-(2)+ )

2: Affine Geometry

This is very different to
Euclidean geometry,
where two triangles are
congruent only if they
have the same shape and
size.

There the mapping was
constructed in a geometric
manner. In this subsection
we construct the mapping
algebraically.
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The first column of the matrix for ¢ is therefore

()=()-()= ()

Finally, 7(0, 1) = (7,3), so that
7\ _(a b 0 n 3Y _(b n 3
3/  \c¢ d 1 2] \d 2)°
The second column of the matrix for ¢ is therefore
b\ (7 _ 3 (4
d)  \3 2) 7 \1)°

Hence the desired affine transformation is given by
AT 2 4 X n 3 -
“\y 6 1 y 2 )

In general, if we want to find an affine transformation ¢ of the form

()= (D0 () 0

which maps (0, 0) to p, (1, 0) to q and (0, 1) to r, then we must choose a, b, c,
d, e and f so that
p=1(0,0) = (e, f), so (e, f)=p;
q=1(1,0) = (a,c) + (e, f), so(a,c)=q—p;
r=1t(0,1) = (,d) + (e, f), so(b,d)=r1r—p.

Notice that any three points p, q and r uniquely determine a transformation
t of the form (7), but 7 is affine only if the matrix

= (0a)

is invertible. Since the columns of A correspond to the vectors q —p and r —p,
it follows that A is invertible only if the vectors q — p and r — p are linearly
independent. That is, provided that p, q and r are not collinear.

So if p, q and r are not collinear, then we can use the following strategy to
find an affine transformation which maps (0, 0) to p, (1, 0) to q and (0, 1) tor.

Strategy To determine the unique affine transformation #(x) = Ax+b
which maps (0, 0), (1, 0) and (0, 1) to the three non-collinear points p, q
and r, respectively:

1. take b = p;
2. take A to be the matrix with columns given by q — p and r — p.
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Problem 3 Use the strategy to determine the affine transformation
which maps the points (0, 0), (1, 0) and (0, 1) to the points (2, 3),
(1, 6) and (3, —1), respectively.

Problem 4 Use the strategy to determine the affine transformation
which maps the points (0, 0), (1, 0) and (0, 1) to the points (1, —2),
(2, 1) and (-3, 5), respectively.

Notice that the inverse of the transformation in Problem 3 is an affine trans-
formation which maps the points (2, 3), (1, 6) and (3, —1) to the points (0, 0),
(1, 0) and (0, 1), respectively. So if, after applying this inverse, we apply the
affine transformation in Problem 4, then the overall effect is that of a compos-
ite affine transformation which sends the points (2, 3), (1, 6) and (3, —1) to the
points (1, —2), (2, 1) and (-3, 5), respectively.

In a similar way, we can find an affine transformation which sends any three
non-collinear points to any other three non-collinear points.

Theorem 1 Fundamental Theorem of Affine Geometry
Let p, q, r and p/, ¢/, ' be two sets of three non-collinear points in R>.
Then:

(a) there is an affine transformation ¢ which maps p, q and r to p’, q' and
r’, respectively;
(b) the affine transformation # is unique.

Proof

(a) Let 71 be the affine transformation which maps (0, 0), (1, 0) and (0, 1) to
the points p, q and r, respectively, and let #, be the affine transformation
which maps (0, 0), (1, 0) and (0, 1) to the points p’, q’ and r’, respectively.
Then the composite t = 1 o t Uis an affine transformation, and it maps p,
qandrtop’, q' and r/, respectively.

o o, hHe

0,0) El, 0) oy

t=t01""

2: Affine Geometry

We shall use the results of
these two problems
shortly, in Example 3.

2,3) —~ (0,0) — (1,—-2)
(1,6) — (1,0) — (2, 1)
3,—1)— (0,1) =~ (=3,5)

—1
t

pts (0,0) 3 p/

q (1,0) — ¢

r— (0,1) —r
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(b) Suppose that ¢ and s are both affine transformations which map p, q and r
to p’, q' and r’/, respectively, and let ¢; be the affine transformation defined
in part (a). Then the composites 7 o #; and s o #; are both affine transforma-
tions which map (0, 0), (1, 0) and (0, 1) to p’, q’ and r’, respectively. Since
an affine transformation is uniquely determined by its effect on the points
(0, 0), (1,0) and (0, 1), it follows that t o t; = s o t].

If we then compose both 7 o #1 and s o #1 on the right with tfl, it follows
that r = s. Thus the mapping 7 constructed in part (a) is unique. |

Now suppose that we are given two arbitrary triangles AABC and ADEF.
By the Fundamental Theorem there is an affine transformation which maps the
vertices A, B, C to the vertices D, E, F, respectively. Since this transformation
maps straight lines to straight lines, it must map the sides of AABC to the sides
of ADEF, so we have the following important corollary. This will be used
extensively in Section 2.4.

Corollary All triangles are affine-congruent.

In order to find the affine transformation which maps one triangle, vertex
to vertex, onto another triangle, we follow the strategy used in part (a) of the
proof of the Fundamental Theorem.

Strategy To determine the affine transformation ¢ which maps three non-
collinear points p, q and r to another three non-collinear points p’, q' and
1’, respectively:

1. determine the affine transformation ¢; which maps (0, 0), (1, 0) and
(0, 1) to the points p, q and r, respectively;

2. determine the affine transformation #, which maps (0, 0), (1, 0) and
(0, 1) to the points p’, q" and r’, respectively;

3. calculate the composite t = 15 ot~ L

Example3 Determine the affine transformation which maps the points (2, 3),
(1, 6) and (3, —1) to the points (1, —2), (2, 1) and (-3, 5), respectively.

Solution You have already seen in Problem 3 that the affine transformation
#1 which maps the points (0, 0), (1, 0) and (0, 1) to the points (2, 3), (1, 6) and
(3, —1), respectively, is given by

nx = <_; —411)X+ <§)

&9

tors

0,05 p' S p
(1,0)>q > ¢

O,)~r — r

Recall that the previous
strategy explained how #;
and 7, can be determined.
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Also, in Problem 4 you saw that the affine transformation 7, which maps
the points (0, 0), (1, 0) and (0, 1) to the points (1, —2), (2, 1) and (-3, 5),
respectively, is given by

h(x) = (; _3>X+ <_;)

Following the strategy, we need to find the inverse of ;. We have
11\ (=4 -1
3 —4 S \-3 -1
-4 -1 2\ _ (-1
-3 -1 3) U -9)°

so that the inverse of #; is given by
-4 -1 11
—1 _

Thus the affine transformation which maps the points (2, 3), (1, 6) and
(3, —1) to the points (1, —2), (2, 1) and (-3, 5), respectively, is given by

and

t(x) =no tfl(x)

(7 ) ea (M
[\ S | 9
(1 -4 -4 -1 X+ 11 " 1
S\3 7 -3 -1 9 -2
B 8 3\ ("B)) (!
o —-33 —10 96 -2
(8 N\ (2 .
=33 —10 9 )"

Problem 5 Determine the affine transformation which maps the

points (1, —1), (2, —2) and (3, —4) to the points (8, 13), (3, 4) and
(0, —1), respectively.

233 Proofs of the Basic Properties of Affine Transformations

In Subsection 2.2.2 we used parallel projections to demonstrate that affine
transformations have the following basic properties: they map straight lines
to straight lines, they map parallel lines to parallel lines, and they preserve
ratios of lengths along a given straight line. We now give algebraic proofs of
these assertions.

2: Affine Geometry
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Theorem 2 An affine transformation maps straight lines to straight lines.

Proof

p+2ia t(p) + M(Aa)

£ 1)
Let £ be a line through a point with position vector p, and let the direction of £
be that of some vector a. Then
{={p+Ara:xeR}
Now let 7 : R?> — R? be an affine transformation given by
t(x) = Ax+b.
We can find the image under ¢ of an arbitrary point p 4+ Aa on ¢ as follows:
t(p+2a) =A(p+2ira)+b
= (Ap +b) + LAa
= t(p) + LAa.
So the image of ¢ is the set
t(0) ={t(p) + LAa: x € R},

which is a line through #(p) in the direction of the vector Aa. [ |

Theorem 3 An affine transformation maps parallel straight lines to paral-
lel straight lines.

Proof

t(q) + A(Aa)
t(p) + M(Aa)

t(L,)

1)

Let 1 and £, be parallel lines through the points with position vectors p and
q, respectively, and let the direction of the lines be that of the vector a. Then

li={p+2ra:r2eR} and £, ={q+2ra:AreR}.
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As in the proof of Theorem 2, the images of ¢; and ¢, under the affine
transformation #(x) = Ax + b are the sets

t() ={t(p) +rAa: A e R} and t(¢p) ={t(q) +2rAa: Xx € R}.

These sets are straight lines which pass through the image points 7(p) and 7(q),
both in the same direction as that of the vector Aa. Hence the two image lines
under ¢ are parallel, as claimed. |

Rather than prove that affine transformations preserve ratios of lengths along
a given straight line, as in Property 3 of Subsection 2.2.2, we prove the follow-
ing more general result illustrated in the margin. The original result follows
because any line is parallel to itself.

Theorem 4 An affine transformation preserves ratios of lengths along
parallel straight lines.

Proof We begin by examining what happens to the length of a line segment
under an affine transformation.

t(p) + A (Aa)

1(p) + hy(Aa)

tL)

Let £ be a line through a point with position vector p, and let the direction of £
be that of some unit vector a. Then

{={p+ra:xreR}L
As in the proof of Theorem 2, the image of ¢ under the affine transformation
t(x) = Ax + b is the line
t(l) ={t(p) + rAa: 1 € R}.

Now consider a segment of £ with endpoints p + Aja and p 4+ Apa. Since a is
a unit vector, the length of the segment is

[l(p + A2a) — (p+A18)|| = |A2 — Aq] - [|a]| = [A2 — Aq].

The image of the segment has endpoints 7(p) + A;Aa and (p) + A2Aa, so the
image of the segment has length

[[(z(p) + 22Aa) — (1(p) + A1Aa)|| = [A2 — A1] - [|Aa]].

So, in the process of mapping segments along £ to segments along #(£), lengths
are stretched by the factor ||Aa||. Since this factor is the same for all segments
which lie along lines parallel to a, it follows that the ratios of lengths along
parallel lines are unchanged by 7. |

2: Affine Geometry
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preserves ratio:
AB/CD=A'B'/C'D'

Recall that ||a|| means the
length of a.
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24  Using the Fundamental Theorem of Affine Geometry
In this section we explain how the Fundamental Theorem of Affine Geometry
can be used to deduce the fact that the medians of any triangle are concurrent
from the special case that the medians of an equilateral triangle are concur-
rent. We then use similar methods to prove the classical theorems of Ceva and
Menelaus.

241 The Median Theorem

Let AABC be an arbitrary triangle in the plane. If you join the midpoint of each
side of the triangle to the opposite vertex (these lines are called the medians
of the triangle), these three lines appear to pass through a single point. In fact,
no matter what triangle you choose, you find that its medians meet in a single
point.

Theorem 1 Median Theorem
The medians of any triangle are concurrent.

We can get some evidence that this theorem holds in general by looking first
at a special case where a proof of the theorem is straight-forward — namely,
when the triangle is an equilateral triangle.

To do this, consider an equilateral triangle AABC, with medians AP, BQ and
CR. Since AABC has sides of equal length, it must be symmetric about the line
AP. Thus the point at which BQ meets CR must be symmetrically placed with
respect to this line — that is, it must actually lie on the line AP. In other words,
the lines AP, BQ and CR are concurrent if the triangle is equilateral.

In order to show that the medians of an arbitrary triangle meet at a point,
consider an arbitrary triangle AABC, and let P, Q and R be the midpoints of
the sides BC, CA and AB, respectively. Next, choose a particular equilateral
triangle AA’B’C’, and let P’, Q' and R’ be the midpoints of the sides B'C’,
C’A’ and A'B’, respectively.

According to the Fundamental Theorem of Affine Geometry there is an
affine transformation ¢ which maps AABC onto AA’B’C’. Moreover, since
affine transformations preserve ratios of lengths along lines it follows that ¢
maps the mid-points P, Q and R to the mid-points P’, Q' and R’, respectively.
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These results are named
after Giovanni Ceva
(Italian mathematician,
1647/48-1734) and
Menelaus of Alexandria
(Greek geometer, 1st
Century AD).

This technique of looking
first to see whether a
result holds in a special
case is often useful.
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From the above discussion we know that the medians of any equilateral
triangle meet at a point, so in particular we know that A’P’, B’Q’ and C'R’
meet at some point X', say, as shown on the right below.

The trick now is to observe that ¢ has an inverse #~!' which is also an affine
transformation. This inverse maps the medians A’P’, B’Q’ and C’R’ back to
the medians AP, BQ and CR of the original triangle AABC. Since X’ lies on
all three of the lines A’P’, B’Q’ and C’R’ it follows that r~! maps X’ to some
point X which lies on all three of the lines AP, BQ and CR. In other words, the
medians of AABC are concurrent.
Since AABC is an arbitrary triangle we have proved the Median Theorem.
The essence of the above proof is the fact that all triangles are affine-
congruent. That powerful result enables us to prove theorems concerning the
affine properties of triangles (such as collinearity, lines being parallel, and The basic affine properties
ratios of lengths along a given line) following a standard pattern. First, we Wwere listed in
choose a particular type of triangle for which it is easy to prove the result. Subsection2.2.1.
Then, by asserting the existence of an affine transformation from that triangle
to an arbitrary triangle, we deduce that the result holds for all triangles.
This is the approach we shall use to prove the theorems of Ceva and
Menelaus later in the section.

24.2 Ceva's Theorem

We now prove the following theorem due to Ceva.

Theorem 2 Ceva’s Theorem

Let AABC be a triangle, and let X be a point which does not lie on any of

its (extended) sides. If AX meets BC at P, BX meets CA at Q and CX meets

BA at R, then R

Proof According to the Fundamental Theorem of Affine Geometry there is an
affine transformation # which maps the points A, B, C to the points A’ = (0, 1),
B’ = (0,0), C" = (1,0), respectively. This transformation maps the triangle
AABC onto the right-angled triangle AA’B’C’, and it maps the point X to
some point X’ = (u, v).
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affine
! A0, 1)

R R’ o’
0 X(u, v)

r B(0,0) P C(1,0)

Using coordinate geometry we can calculate the equations of the lines A’ X’,
B’X’, C'X’ and hence find the coordinates of the point P’ where A’X’ meets
B’C’, of the point Q" where B’ X’ meets A’C’, and of the point R’ where C’'X’
meets A’B’.

Starting with the point P’, we note that the line B’C’ has equation y = 0.

Also, the line A’X’ has slope E):Z, so its equationis y — 1 = (1):;’ (x —0).
Hence, at the point P’ where the two lines meet, we must have y = 0 and

y—1= g7 (x—0),s0
= (=)
P = ,0).
1—v

Similarly, at the point R’ we have x = 0, and y — 0 = ?:—“(x — 1), s0

u
R’:(O, Y )
1—u

Finally, at Q" we have x +y = land y = 7x,s0 x = o and y = 2o
Hence
, u v
Q= (u—}—v’u—i—v)'
Thus, using the coordinate formulas for calculating ratios we obtain These formulas are given

at the beginning of

I p! v
AR _YR YA T 1 _u +tv—1 Appendix 2 just above the

R'B~ yp—yg O0— = v Section Formula.
B'P  xp—xp 150 u
P'C" xcr—xp 11—~ l—-u—-v
and
C'o' _yo—yo _ s — 0 _v
Q/A/ yA/—yQ/ ]—% u
Hence

A/ R/ B/P/ C/ Q/
R/B/ ’ P/C/ ’ Q/A/ =
Since r~! is an affine transformation, it preserves ratios along a line. It must
therefore map P’, Q’, R’ back to the points P, Q, R in such a way that

RB PC QA

as required. |
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The next example illustrates how we can use Ceva’s Theorem to calculate
certain unknown distances along the sides of a triangle. For the method to work
correctly, it is important to remember that all the ratios in Ceva’s Theorem are
signed ratios. Thus, if X lies inside the triangle, as in part (a) of the example,
then all the ratios are positive. But if X lies outside the triangle, as in part (b),
then two of the ratios will be negative.

Example 1

(a) In the figure on the left below, AR = 1, RB = 2, BP = 3, CQ = 2 and
QA = 2. Calculate the distance PC.

(b) For the figure on the right, AR = 1, AB = 3, PC = 1, CQ = 2 and
QA = 2. Calculate the distance BC.

Solution

(a) By Ceva’s Theorem, we have

S0,

13 .2,

2 PC 2
It follows that PC = %

(b) By Ceva’s Theorem, we have
AR BP CQ _ .
S0,
1 BC+ 1 2 1
() 3
It follows that BC = 3. O
Problem 1

(a) Determine the ratio 11__3)_16" in the left diagram below, given that
AR AQ 3

RB~ QC 2

2: Affine Geometry
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0

(b) Determine the ratio g—A in the middle diagram below, given that

AR 1 BP 2
RB 2 PC T
(c) Determine the ratio ‘% in the right diagram below, given that
BP 5 C
— = - and o = -7
pPC 7 QA

A 24 XR

Ceva’s Theorem has the following converse, which can be regarded as a
generalization of the Median Theorem to configurations where P, Q, R are
not all midpoints of sides.

Theorem 3 Converse to Ceva’s Theorem
Let P, Q and R be points, other than vertices, on the (possibly extended)
sides BC, CA and AB of a triangle AABC, such that

— . — . — =1 (1)
RB PC QA
Then the lines AP, BQ and CR are concurrent.

Proof Let the lines BQ and CR intersect at a point X, and let the line AX meet
BC at some point P’. It is sufficient to prove that P = P’.
It follows from Ceva’s Theorem that
AR BP CQ
®5 PC a =
Hence, from equations (1) and (2), we have
BP  BP
PC~ PC’
so that P and P’ must indeed be the same point. |

@)

Example 2 The triangle AABC has vertices A(1,3), B(—1,0) and C(4,0),
and the points P(0,0), O (%, %) and R (—%, %) lie on BC, CA and AB,
respectively.

(a) Determine the ratios in which P, Q and R divide the sides of the triangle.
(b) Determine whether the lines AP, BQ and CR are concurrent.
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In the Median Theorem,

AR 1 BP 1
RB~ ° PC "
co_,
oA 7

so Theorem 3 generalizes
the Median Theorem.
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Solution
(a) Using the coordinate formulas for calculating ratios, we obtain

AR xp—xp  —3—1 BP xp—xg 041 1

RB ~ xp — Xz —1_{-% * PC xc—xp 4-0 &

CQ_)CQ—)CC 2—4
QA xa-xo 1-3

4 3
g’ )

so that P divides BC in the ratio 1 : 4, Q divides CA in the ratio 4 : 5 and
R divides AB in the ratio 5 : 1.
(b) It follows from (3) that the product

AR BP CO 1 4 _
5_,

L. -5.—.
RB PC QA 4

so by the converse to Ceva’s Theorem the lines AP, BQ and CR must be

concurrent. O

Problem 2 The triangle AABC has vertices A(—1, 1), B(2,—1) and
C(3,2), and the points P(%,1), 0 (2,7) and R(%,—1) lie on BC, CA
and AB, respectively.

(a) Determine the ratios in which P, Q and R divide the sides of the
triangle.

(b) Determine whether the lines AP, BQ and CR are concurrent.

243 Menelaus' Theorem

Ceva’s theorem is concerned with lines through the vertices of a triangle that
meet at a point. We now use the Fundamental Theorem of Affine Geometry to
prove an analogous theorem due to Menelaus which is concerned with points
on the sides of a triangle that are collinear.

Theorem 4 Menelaus’ Theorem

Let AABC be a triangle, and let £ be a line that crosses the sides BC, CA,
AB at three distinct points P, Q, R, respectively. Then

e . . P

Proof According to the Fundamental Theorem of Affine Geometry there is
an affine transformation 7 which maps the points A, B, C to the points A’(0, 1),
B’(0,0), C'(1,0), respectively. This transformation maps the triangle AABC
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onto the right-angled triangle AA’B’C’, and it maps the line € to some line ¢'.
Let the equation of £/ be y = mx + c.

affine
¢ A0, 1)

R 0 P V&

c B’(0, 0) Cc’(1,0)

We now calculate the coordinates of the points P/, Q" and R’ where £’ meets
the sides B'C’, C'A’ and A’ B’, respectively.
At P’ we have y = 0 and y = mx+c. This implies that x = — -, and hence

, ¢
P= (==, 0) .
m
At R" we have x = 0 and y = mx + c. This implies that y = ¢, and hence
R = (0,¢).

At Q' we have x +y = 1 and y = mx+ c. This implies that | —x = mx+c

so that x = rll:i; also y = m(1 — y) + c, so that y = ™*¢: and hence

m+1°
0 = l—c m+c
T \m+Um+1)

Using the coordinate formulas for calculating ratios we obtain

AR yp—ya c—1 c—1

R'B yg—yg O—c —c’
B'P’ Xpr — Xp/ -
P'C' ~ x¢r —xpr 1+ £ T m+c’

and e
c'Q _ Xgr — X¢r _ ﬁ—l _ —(m+c)
QA xy—xog 00— n];cl c—1
Hence,

A/R/ B/P/ C/ Q/

R/B/ ’ P/C/ ’ Q/A/ =
Since ¢! is an affine transformation, it preserves ratios along a line. It must
therefore map P’, Q’, R’ back to the points P, Q, R in such a way that

—1.

RB PC QA
as required. |

Remark

As for Ceva’s Theorem, it is important to remember that all the ratios in
Menelaus’ Theorem are signed ratios. In fact if £ passes through the interior of

99
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the triangle, then precisely one of the ratios is negative; otherwise all the ratios
are negative.

Example 3

(a) In the figure on the left below: AR = 1, RB =2, BC =2, CQ = 1 and
QA = 1. Calculate the distance PC.

(b) In the figure on the right below: AR = 2, AB=1,BC =2, CA =2 and
BP = 2. Calculate the distance QA.

Solution
(a) By Menelaus’ Theorem, we have
AR BP CO_ |
RB PC QA
So

1 2+ PC 1_1
2 PC 1

It follows that 2 + PC = 2PC, and hence PC = 2.
(b) By Menelaus’ Theorem, we have

RB PC QA

() (3232

It follows that 2 + QA = 3QA, and hence QA = 1. O

Problem 3
(a) Determine the ratio % in the left diagram below, given that
AR BP

— =2 and — = 2.
RB PC

(b) Determine the ratio 80 in the right diagram below, given that
OA g g g

AR 1 BP
— =—— and — =-2.
RB 4 PC

2: Affine Geometry
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C

Menelaus’ Theorem has a converse that enables us to check whether points
on the three sides of a triangle are collinear.

Theorem 5 Converse to Menelaus’ Theorem
Let P, O and R be points other than vertices on the (possibly extended) sides
BC, CA and AB of a triangle AABC, such that

—_—— . — = —1. 3)
RB PC QA
Then the points P, Q and R are collinear.

Proof Let the line £ that passes through Q and R meet BC at some point P’.  The strategy of the proof

It is sufficient to prove that P = P’. is the same as that of
It follows from Menelaus’ Theorem that Theorem 3.
A
AR BP C
. _Q - 1. ) R
RB P'C QA
Hence, from equations (3) and (4) we deduce that
£
BP BP' g -
PC~ P'C’ nr
It follows that P and P’ must indeed be the same point. |

Problem 4 The triangle AABC has vertices A(2,4), B(—2,0) and
C(1,0), and the points P(3,0), 0(3,2) and R(1,3) lie on BC, CA and
AB, respectively.

(a) Determine the ratios in which P, Q and R divide the sides of the
triangle.
(b) Hence determine whether the points P, Q and R are collinear.

We end this subsection with two revision problems.

Problem 5 Let AABC be a triangle, and let X be a point which does
not lie on any of its (extended) sides. Also, let AX meet BC at P, BX meet
CA at Q and CX meet BA at R; and let QR and BC meet at T'.
Given that g—g = k, determine % in terms of k. X
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Problem 6 Suppose that P and Q are the midpoints of the sides AB
and BC of a parallelogram ABCD, and that the lines DP and AQ meet
atR.

(a) Determine the image of B under the affine transformation ¢ which
maps A, D and C to (0, 1), (0, 0) and (1, 0), respectively.

(b) By considering the image of ABCD under ¢, determine the ratios
PR : RD and AR : RQ.

244

In this subsection we introduce a new coordinate system, of barycentric coor-
dinates with respect to a triangle of reference, for points in the plane, which can
simplify some calculations. Rather than use two perpendicular axes to deter-
mine the coordinates of an arbitrary point in the plane, we use a weighted sum
of the coordinates of three non-collinear points — the vertices of the triangle of

Barycentric Coordinates

reference.

Definitions Let A = (aj,az), B = (b1,b2) and C = (cy,cp) be three
non-collinear points in the plane R?; we will call AABC the triangle of
reference. Then a point (x, y) in the plane has barycentric coordinates
(&, n, ¢) with respect to AABC if

x =E&ay +nby + ¢cy,

y==E&ay + nby + ¢cp, and 5)

1=§ +n +¢.

Remark

In particular, notice that the barycentric coordinates of the vertices A, B
and C of the triangle of reference AABC are (1,0,0), (0,1,0) and (0,0,1),
respectively.

Thus, for example, if the triangle of reference AABC has vertices A = (1,2),
B = (—3,0) and C = (—2,4), then the point with barycentric coordinates

(% %, —i) has cartesian coordinates

(3-m+3- -4 2.5-@+3-0-4-4)
_<2—9+2 4+0—4>

4 4

=<—%J0.

2: Affine Geometry

A

rane

B 0 C

Barycentric coordinates
were introduced by
Mobius in 1827.

Al(ayay)

B(by,by)

C(cy,00)

Cartesian coordinates are
the standard Euclidean
coordinates in the plane.
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We may express the formula (5) for barycentric coordinates in terms of
matrices in the form

X £ ar by ¢
yl| = M ni. where M = an b2 c . (6)
1 ¢ 11 1

Since A = (aj,a2), B = (b1, b>) and C = (cy, ¢2) are non-collinear, the deter-
minant det M is non-zero. Then, since M is non-singular, we can reformulate
the representation (6) as

& X
n|=M"{y]. ©)
e 1

Example 4 Determine barycentric coordinates for the point (2,1) with respect
to the triangle of reference AABC where A = (1,0), B = (1,—1) and
C=(11.

Solution The matrix M for the triangle of reference AABC is

whose inverse is

—
()

[STE ST

It follows from the representation (7) that the point (2,1) has barycentric
coordinates with respect to the triangle of reference AABC given by

1 1 0 3
1 1
-2 L affr]=]-31:
1 1
-3 0 3 1 _ %
namely, barycentric coordinates (3, — %, — %) O

Problem 7 Determine barycentric coordinates for the point (—1,1)
with respect to the triangle of reference AABC where A = (1,1), B =
(2,2) and C = (1,2).

Next, we give barycentric versions of the condition for collinearity of three
points in the plane and of the equation of a line in the plane.

103

We do not prove that
det M # O here.

We omit the details of the
calculation of this inverse.
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Theorem 6 The points P, Q and R with barycentric coordinates
(&1, 1M1, 81), (52, M2, §2) and (&3, 773, £3) are collinear if and only if

& & &
m m m|=0.
&1 & 83

Proof Let the points P, Q and R have cartesian coordinates (xg, y1), (x2, y2)
and (x3, y3), respectively. It follows that, if the triangle of reference AABC has
vertices A = (aj,a2), B = (b1,by) and C = (cy, ¢2), then we may apply the
formula (5) to each of P, Q and R in turn to obtain

x1 = a1§1 +biny + 11 and y1 = azéy + bany + 281,

X2 =a1§ +biny + 182 and y» = a2 + bana + 242,

x3 = a1§3 + bin3 + c1¢3 and y3 = ax&3 + bons + c283.

We may write these simultaneous equations in matrix form as

X1 X2 X3 ar by ¢ & & & The results for P, Q and R
yi 2 wnl=la b o noon N3 are set out as columns 1, 2
1 1 1 1 1 1 and 3, respectively, of the
a & &G left-hand matrix.
&1 & &
=M{m m mn|, (®)
O & &
a; by ¢
where M= |ax by o
1 1 1

Now, M is non-singular since the points A, B and C are non-collinear. Then
it follows from equation (8) that

&1 & & X1 X2 X3
ni n2 n3| = 0 if and only if Y1 Y2 y3| = 0.
g & &3 1 1

But the second determinant equation here is the condition for £, Q and R to be
collinear. The desired result then follows immediately. |

Corollary The line ¢ through the points with barycentric coordinates

(&1,11,¢1) and (&2, 12, £2) has equation That is, an equation in
terms of barycentric
s & § coordinates.
nm m n|=0.

&1 & ¢
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For example, if the triangle of reference is AABC, the equation of the line
AB in terms of barycentric coordinates is

1 0 &
01 n|=0
0 0 ¢ Similarly, BC and CA
have equations & = 0 and
which simplifies to the equation ¢ = 0. n=0.

Problem 8 Determine which of the following sets of points, described
by their barycentric coordinates with respect to an unspecified triangle
of reference, are collinear; for those that are collinear, determine the
equation of the line on which they lie.

@ (1,1,—1), (4,—2,—1), (%,2,-%)
®) (1,1,—1), (2, -2, 1), (=1,7,—5)

Next, we meet a version of the Section Formula in terms of barycentric = The Section Formula is
coordinates. given in Appendix 2.

Theorem 7  Section Formula

The point R that divides the line ¢ joining the points P and Q with barycen-

tric coordinates (&1, 11,¢1) and (&, 12, &) in the ratio (1 — A) : A has 4 0
barycentric coordinates R

&.n,0) = rE1.m1,8) + (A = A)(&2,m2,82).

Proof Let P, Q and R have cartesian coordinates (x1, y1), (x2, y2) and (x, y),
respectively. It follows from the cartesian form of the Section Formula that

(x,y) = A(x1,y1) + (I — A)(x2,y2), for some real number A;

we can rewrite this equation in matrix form as

X X1 X2
y|=A{n|+A=M]|»
1 1 1

Multiplying both sides of this equation on the left by the matrix M~ ! and using
the formula (8), it follows that

§ &1 &
nl=rlm|+A=-2|mnm
¢ & '$)

This is the desired result. [ |

We can now use barycentric coordinate methods to give further proofs of
Menelaus’s Theorem and Ceva’s Theorem.
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Theorem 8 Menelaus’ Theorem
Let AABC be a triangle, and let £ be a line that crosses the sides BC, CA
and AB at three distinct points P, O, R, respectively. Then

AR BP CQ )
RB PC QA

Proof Define A, 1 and v as follows:

BP 1-% CQ 1l-p AR 1-v

R‘:A’QA_M’E_V

Hence, by the Section Formula, P has barycentric coordinates

P =x(0,1,0) + (1 —2)(0,0,1)
= (0,1, 1—=21).
Similarly, Q and R have barycentric coordinates (1 — «,0, ) and (v, 1 —
v, 0), respectively.
Then, by Theorem 6 the points P, Q and R are collinear if and only if
0 1—pu v
A 0 1—v|=0.
1—Xx % 0

Expanding this determinant, we have that P, Q and R are collinear if and only if

A 0
1—A u

1—v
1—A 0

—(1 = +v

>

that is, if and only if
(1I-=M)T = =v)+ruv =0,

or
1—x I—pu 1—v
A 0 v

=—1.

From the original definition of A, u and v, it follows that P, Q and R are
collinear if and only if

L IE .

From our assumption that £, Q and R are collinear, the desired result
follows. |

2: Affine Geometry

For, P divides BC in the
ratio (1 — 1) : A.

We omit the details of
these calculations.

Notice that we have also
obtained a proof of the
converse of Menelaus’
Theorem, since this
equality is an ‘if and only
if” result!
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Theorem 9 Ceva’s Theorem

Let AABC be a triangle, and let X be a point which does not lie on any of
its (extended) sides. If AX meets BC at P, BX meets CA at Q and CX meets
BA at R, then

AR BP CQ _

RB PC QA

Proof We use the same notation XA, x and v as in the previous proof, so that
again P, Q and R have homogeneous coordinates (0,1, 1 — A), (1 — «,0, )
and (v, 1 —v,0), respectively.

Then, using the Corollary to Theorem 6 the equation of AP is

1 0 £
0 x n|=0,
0 1—-x ¢
which simplifies to
A
T1=o.
1—-x ¢

This gives that the equation of APis A — (1 — A)n =0, or

=2
= X n.
Similarly, we find that the equation of BQ is § = I_Tug.

Since AP and BQ meet at X, it follows that the barycentric coordinates
(§,7n,¢) of X must satisfy the equations { = 1%)‘77 and & = 1_7“§; hence
its barycentric coordinates are

(1 -1 1l—pu 11—

/R , for some 0.
: p A ey n) n#

Then C, X and R are collinear if and only if

1—x 1-—
0 _._Mn
A n

0 n 1—v | =0

this simplifies to

107

We omit the details of this
calculation.
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It follows that C, X and R are collinear — that is, that AP, BQ and CR are
concurrent — if and only if

AR BP CQ _

RB PC QA
From our assumption that AP, BQ and CR are concurrent, the desired result
follows. |

2.5 Affine Transformations and Conics

251 Classifying Non-Degenerate Conics in Affine Geometry

In Section 2.2 you saw that under an affine transformation a straight line maps
to a straight line. Indeed, it follows from the Fundamental Theorem of Affine
Geometry that any straight line can be mapped to any other straight line by
some affine transformation. We now explore the corresponding situation for
conics.

Recall that a conic is a set in R? given by an equation of the form

AX> + Bxy+ Cy* + Fx+ Gy + H =0, (1)

where A, B, C, F, G and H are real numbers, and A, B and C are not all zero.
The three types of non-degenerate conic are ellipses, parabolas and hyperbo-
las. A non-degenerate conic is an ellipse if B> — 4AC < 0, a parabola if
B? — 4AC = 0, and a hyperbola if B> — 4AC > 0.

First, consider the case where equation (1) represents an ellipse, as illus-
trated on the left of the figure below. We can apply a translation to move the
centre of the ellipse to the origin, and then a rotation to align its major and
minor axes with the directions of the x-axis and y-axis, respectively. After we
have applied these two Euclidean transformations, the equation of the ellipse
becomes

x2 y2
a_2+b_2=1’ a>b>0. 2)
If we now apply the affine transformation 7, : (x,y) — (x’,y’), where

()=(5 ) C)
yv) Vo 1m)\y)
then x’ = x/a and y’ = y/b, so equation (2) becomes

N+ =1

y translation Y rotation y t v’
a
g_/‘ T T \‘_/ Wx,

2: Affine Geometry

Notice that we have also
obtained a proof of the
converse of Ceva’s
Theorem, since this
equality is an ‘if and only
if” result!

‘We discussed conics in
Chapter 1.

You met the B2 — 4AC
test for conics in
Theorem 3 of Section 1.3.
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Since the translation, the rotation and the transformation #; are all affine,
their composite must also be affine. Overall, this shows that each ellipse can
be mapped onto the unit circle by an affine transformation. We therefore have
the following theorem.

Theorem 1 Every ellipse is affine-congruent to the unit circle with
equation x> 4 y? = 1.

Secondly, consider the case where equation (1) represents a hyperbola, as
illustrated on the left of the figure below. Again, we can apply a translation to
move the centre of the hyperbola to the origin, and then a rotation to align its
major and minor axes with the directions of the x-axis and y-axis, respectively.
After we have applied these two transformations, the equation of the hyperbola
becomes

— =1 3)
Under the affine transformation #; defined above, equation (3) becomes
@ =) =1,
that is,
=y +y) =1 4)

Finally, if we apply the affine transformation 7, : (x’, y") = (x”,y”), where

X"\ (1 -1 x'

y// - 1 1 y/ >

then equation (4) becomes

translation rotation
y T~ y T~ y T~

- >

Dropping the dashes from the equation x”y” = 1, we obtain the following
theorem.
Theorem 2 Every hyperbola is affine-congruent to the rectangular hyper- Recall that ‘rectangular’
bola with equation xy = 1. means that the asymptotes

of the hyperbola are at

. . . . right angles to each other.
Finally, consider the case where equation (1) represents a parabola, as illus-

trated on the left of the figure below. We can apply a translation to move the
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vertex of the parabola to the origin, and then a rotation to align its axis with the
(positive) x-axis. After we have applied these two Euclidean transformations,
the equation of the parabola becomes

y2 = ax, 5)

where a is some positive number which depends on the coefficients in
equation (1).
Next, if we apply the affine transformation 73 : (x, y) — (x’,y’), where

X\ _(l/a O X
y') N0 1/a)\y)’
then x’ = x/a and y = y/a, so equation (5) becomes (y'a)?> = a(x'a), or

0 =x".

y translation ~ y rotation y & v’
L PN —

Dropping the dashes, we obtain the following theorem.

Theorem 3 Every parabola is affine-congruent to the parabola with
equation y? = x.

Since all parabolas are affine-congruent to y>=x, they must be
affine-congruent to each other. Similarly, by Theorem 1, all ellipses must
be affine-congruent to each other; and, by Theorem 2, all hyperbolas must
be affine-congruent to each other.

This raises the question as to whether it is possible for one type of conic
(such as an ellipse) to be affine-congruent to another type of conic (such as
a hyperbola). The next theorem shows that this cannot happen. In fact, since
an affine transformation can be expressed as the composite of two parallel
projections, this should not surprise you. After all, no parallel projection can
change a bounded curve (such as an ellipse) into an unbounded one (such as
a parabola or a hyperbola); nor can it change a curve with two branches (a
hyperbola) into a curve with just one branch (an ellipse or a parabola).

Theorem 4 Affine transformations map ellipses to ellipses, parabolas to
parabolas, and hyperbolas to hyperbolas.

Proof Consider the non-degenerate conic with equation

A +Bxy+ CY> + Fx+Gy+ H =0, (6)

2: Affine Geometry

Here we omit the details
of the particular
transformations involved,
and concentrate instead on
the principles underlying
the successive mappings
which are used.

Remember that a circle is
a special type of ellipse.
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and its image under an affine transformation 7 : x — x’ given by
x = Ax+ b,

where A is an invertible 2 x 2 matrix.
The inverse affine transformation ! : X' — x is given by

x=A"Ix — A" lp,

which we may write in the form

!/
()= D))
y ros y v
for some real numbers p, ¢, r, s, u and v. It follows that

x=pxX+q'+u and y=r+sy +v. 7

If we now substitute these expressions for x and y into equation (6), then the
resulting equation is a second-degree equation in x” and y’, so the image of the
conic under the affine transformation # must be another conic.

Next we show that this image conic cannot be degenerate. A degenerate
image would consist of a pair of lines, a single line, a point, or the empty
set. Since the affine transformation ! maps lines to lines, it would map the
degenerate image to another degenerate conic. But this cannot happen since
t~! maps the image back to the original non-degenerate conic (6). It follows
that the image of (6) cannot be degenerate.

Finally, if we substitute for x and y from equations (7) into equation (6), and
keep careful track of the algebra involved, it turns out that the discriminant of
the image conic is just

(ps — rq)*(B? — 4AC).

Here B? — 4AC is the discriminant of the original conic. Since (ps — rq)> > 0,
the sign of the discriminant is not changed by an affine transformation of a
conic. Hence the type of the conic is also unchanged. |

We can combine the results of Theorems 1-4 to obtain the following
corollary.

Corollary In affine geometry:

(a) all ellipses are congruent to each other;
(b) all hyperbolas are congruent to each other;
(c) all parabolas are congruent to each other.

Non-degenerate conics are congruent only to non-degenerate conics of the
same type.

111

You met this formula for
the inverse in
Subsection 2.2.1.

We omit the details of
these calculations, as they
are complicated and
uninformative.

Theorem 2 of Section 2.3

Recall that the sign of the
discriminant of a non-
degenerate conic
determines the type of the
conic.

Here ps — rq # 0 since A
is invertible.
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The corollary shows that affine-congruence partitions the set of non-
degenerate conics into three disjoint equivalence classes. One class consists
of all the ellipses, another class consists of all the hyperbolas, and the third
consists of all the parabolas. Each class contains one of the so-called standard
conics x2 + y2 = 1,xy = 1 and y? = x.

Just as the Fundamental Theorem of Affine Geometry enables us to deduce
a given result about an arbitrary triangle by showing that the result holds for an
equilateral triangle, so the corollary enables us to deduce a given result about
an arbitrary ellipse, hyperbola or parabola by showing that the result holds for
the corresponding standard conic. Of course, this works only if the result is
concerned with the affine properties of the conic, so we need to be able to
recognize such properties.

The following theorem shows that one such property is the property of being
the centre of an ellipse or hyperbola.

Theorem 5 Let 7 be an affine transformation, and let C be an ellipse or
hyperbola with centre R. Then #(C) has centre #(R).

Proof Let C’ and R’ be the images of C and R under ¢. If P’ is any point on
C’, then it must be the image of some point P on C. Since R is the centre of
C, we can rotate P about R through an angle 7 to a point Q which must also
lie on C. Hence Q' = 1(Q) is a point on C’.

t

—

Now 7 preserves ratios of lengths along lines, so the line segment PRQ maps
onto the line segment P'R’Q’ with P’R’ = R’ Q’. Thus if we rotate P’ about
R’ through an angle 7, it must go to Q" on C’. Now, as our choice for P’ as
a point on C’ varies, so do P = t~'(P’) and Q, but the point R is always
the same point. It follows that the midpoint of P’Q’ is always the same point
R’ = t(R). Hence R’ = t(R) is the centre of C’, as required. [ ]

Another affine property is the property of being an asymptote of a hyperbola.

Theorem 6 Let ¢ be an affine transformation, and let H be a hyperbola
with asymptotes ¢1 and £. Then ¢ (H) has asymptotes 7(£1) and #(£3).

2: Affine Geometry

Recall that a parabola
does not have a centre.

This uses the definition of
centre given in Chapter 1.

This figure illustrates the
proof for an ellipse C, but
the proof works equally
well for a hyperbola.

For since PR/RQ = 11it
follows that
P'R'/R'Q = 1.



Affine Transformations and Conics

The figure below illustrates that this theorem is plausible for parallel
projections.

Proof The hyperbola H possesses exactly two (distinct) families of parallel
lines each of which fills the plane, with each member of each family meeting
H exactly once — apart from one line in each family that is an asymptote of H,
and so does not meet H.

The image of H under the affine transformation ¢ is also a hyperbola, 7 (H).
The images under ¢ of the two families of parallel lines are also (distinct) fam-
ilies of parallel lines; within each family, a line that meets H once is mapped
onto a line that meets 7 (H) once, and the single line that does not meet H maps
onto a line that does not meet 7(H). So the two exceptional lines in the image
families must be the asymptotes of the hyperbola 7 (H).

It follows that the asymptotes of H are mapped by ¢ to the asymptotes of
t(H), as required. [ |

Many of the problems concerning conics which are particularly amenable to
solution using the methods of affine geometry involve tangents.
This is due to the following theorem, which asserts that tangency is an affine

property.

Theorem 7 Let ¢ be an affine transformation, and let £ be a tangent to a
conic C. Then #(£) is a tangent to the conic #(C).

The figure below illustrates the theorem for parallel projections.

Solution We shall use the fact that a tangent to a conic (whether it is an
ellipse, a hyperbola or a parabola) intersects the conic at exactly one point.

113

However we have to be a
little careful. For example,
any line parallel to its axis
meets a parabola in
exactly one point.
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First, the image of an ellipse E under an affine transformation ¢ is an ellipse.
A tangent to E is a line that intersects E in exactly one point. These properties
remain unchanged under an affine projection; hence the image of a tangent to
E under an affine transformation # must be a tangent to ¢ (E).

Next, the image of a hyperbola H under an affine transformation ¢ is a hyper-
bola. A tangent to H is a member of a family of parallel lines that fill the plane
such that there are lines in the family that meet H twice, once and not at all;
there are exactly two lines in the family that meet H exactly once, and these
are tangents to H. The image of the family of lines under 7 is again a family of
parallel lines that fill the plane; it contains lines that meet the parabola t(H)
twice and not at all, and exactly two lines that meet H exactly once. These lines
are the images of the original tangents to H, and must themselves be tangents
to t(H). Hence, the image of a tangent to H under an affine transformation ¢
must be a tangent to #(H).

Finally, the image of a parabola P under an affine transformation 7 is a
parabola. A tangent to P is a member of a family of parallel lines that fill
the plane such that there are lines in the family that meet P twice, once and
not at all; the tangent is the unique member of the family that meets P exactly
once. The image of the family of lines under ¢ is again a family of parallel
lines that fill the plane; it contains lines that meet the parabola 7(P) twice
and not at all, and a single line that meets P exactly once. This line is the
image of the original tangent to P, and must itself be a tangent to 7(P).
Hence, the image of a tangent to P under an affine transformation r must be
a tangent to #(P).

This completes the proof. ]

In applications we often use the following facts that you met earlier.

Tangents to Conics in Standard Form The equation of the tangent to a
standard conic at the point (x1, y1) is as follows.

Conic Tangent

Unit circle x? + y2 = 1 xx1 +yy; =1
Rectangular hyperbola xy = 1 Xy +yx; =2
Parabola y? = x 2yy; = x + x1

252 Applying Affine Geometry to Conics

We are now in a position to apply the methods of affine geometry to the
solution of problems involving conics. Of course, affine geometry can be
helpful in this task only if the property being investigated is one which is
preserved under affine transformations. The underlying idea is that we use
an affine transformation to map the original conic onto one of our standard
conics, tackle the problem in hand there, and then map back to the original
conic.

2: Affine Geometry

This characterizes
tangents to ellipses.

This characterizes
tangents to hyperbolas.

This characterizes
tangents to parabolas.

Theorem 2,
Subsection 1.2.1.

We used these techniques
in Subsection 2.2.3 to
prove the Conjugate
Diameters Theorem for
the ellipse.
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Example1 AB is adiameter of an ellipse. Prove that the tangents to the ellipse  Recall that the diameter

at A and B are parallel to the diameter conjugate to AB. conjugate to AB is the set
of midpoints of all the
Solution First, map the ellipse onto the unit circle, by an affine transforma-  chords parallel to AB (see

tion . Since the centre O of the ellipse maps to the centre O of the circle, the ~ Subsection 2.2.3).
image of the diameter AB is a diameter A’B’ of the unit circle.

All chords of the circle that are parallel to the tangents at A" and B’ are bisected
by A’B’, and so the diameter through O’ is the diameter conjugate to A’B’.
Since parallel lines map to parallel lines and ratios along parallel lines are
preserved under the inverse affine transformation ¢!, it follows that all chords
of the ellipse that are parallel to the tangents at A and B are bisected by AB,
and so the diameter through O that is parallel to the tangents at A and B is the

diameter conjugate to AB. O .
0
Problem 1 An ellipse touches the sides BC, CA and AB of AABC at R
the points P, Q and R, respectively. Prove that
AR BP CQ rT )
RB PC QA

and deduce that the lines AP, BQ and CR are concurrent.

Problem 2 The tangents to an ellipse at two points A and B meet at a
point 7. Prove that the line joining T to the centre O of the ellipse bisects
the chord AB.

The rectangular hyperbola H = {(x, y) : xy = 1} does not possess as much
symmetry as does the unit circle; so the fact that every hyperbola is affine- A “ 5
congruent to H may not be sufficient to simplify a given problem. Fortunately,
however, we can also arrange for any given point on the original hyperbola to
map to the point (1, 1) on H.
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To see this, note that for any non-zero number q, the affine transformation

(3= (6 ) )

maps H to itself. For, an arbitrary point on H has coordinates of the form
(x,1/x),x # 0, and under ¢, this is mapped to the point (ax, 1 /ax), which also
lies on H. As x varies through R — {0}, its image (ax, 1/ax) varies over the
whole of H, so the image of H under ¢, is the whole of H.

So if we start with a given hyperbola and a point P on it, we can map the
hyperbola to H by some affine transformation s. The point s(P) will then have
coordinates (b, 1/b) for some number b € R — {0}; so if we choose a = 1/b,
then the affine transformation z, will map s(P) to (1,1). Overall, the composite
t = t, 05 is an affine transformation which maps the given hyperbola to H, and
maps P to (1, 1). We now state this as a corollary to Theorem 2.

Corollary
formation which maps the hyperbola onto the rectangular hyperbola xy = 1,
and the point P to (1, 1).

Given any hyperbola and a point P on it, there is an affine trans-

Example 2 The tangent at the point P on a hyperbola meets the asymptotes
at the points A and B. Prove that PA = PB.

!

/_\

t(A) (1,1

B t(B)
H

Solution Let ¢ be an affine transformation which maps the hyperbola onto
the rectangular hyperbola H = {(x,y) : xy = 1} in such a way that
t(P) = (1,1). Then, by Theorem 6 of Subsection 2.5.1, the asymptotes of the
hyperbola map to the asymptotes of H; and, by Theorem 7 of Subsection 2.5.1,
the tangent at P maps to the tangent at (1,1).

By symmetry, (1, 1) is the midpoint of the line segment from #(A) to 7(B).
Since midpoints are preserved under the affine transformation 7!, it follows
that P is the midpoint of AB. O

Problem 3 P is a point on a hyperbola H with centre O. Prove that
there exists a line £ through O such that all chords of the hyperbola which
are parallel to £ are bisected by OP.

2: Affine Geometry

(x, 1/x)
(1, 1

This result is an analogue
for the hyperbola of the
Conjugate Diameters
Theorem for the ellipse
(Theorem 3 of
Subsection 2.2.3).
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26 Exercises

Section 2.1
1. Let AABC be a triangle in which AB = AC. Prove that

/ABC = ZACB.

Hint: Consider a reflection in the bisector of ZBAC.
2. Determine which of the following transformations f:R>—R? are
Euclidean transformations.

N e A -3
= o 7 x+( 1)
2 2

-3 -3 3

3 3

—L 2 2
@@= P ¥ x+(_3)

NN

3. The Euclidean transformations #; and #, are given by

1 2
W NG -1
n =Y v x+( 1)

55

and

12 ’
H(x) = “f “]ﬁ x—|—<_1>.

IRVANG

Determine the composites #1 o 2 and 1> o #1.
4. Determine the inverse of each of the following Euclidean transformations.

s 1 .
(a)t(x):(i 153>x+( 5)
5

12

2 -5 1
(b) t(x):(_i Q)x+<_1>
13 13

5. The Euclidean transformations ¢ and 7, are given by

1 1
NG Nz 1
n(x) = ‘/F {2 X+<_l>
22
and
_ 1 1 |
Hh(x) = \1[2 «/15 X+(1).
V22

Determine the composite 7, Lot

117
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Section 2.2

1. Determine whether or not each of the following transformations ¢ : R* —
IR? is an affine transformation.

2 -2 2
(a) r(x)=<_3 3)x+(_1>
b) t(x):(_g _§>x+<j’>

(©) t(x) = (:1 _;)x

2. Write down an example (if one exists) of each type of transformation
t : R? — R? described below. In each case, justify your answer.
(a) An affine transformation ¢ which is not a Euclidean transformation
(b) A Euclidean transformation 7 which is not an affine transformation
(c) A transformation ¢ which is both Euclidean and affine
(d) A transformation 7 which is one—one, but is neither Euclidean nor affine
3. The affine transformations #; and #, are given by

e ()
B0 = (j f)x+ (‘1)

Determine the following composites.

(@ tiory (D)ot  (O)tiol
4. Determine the inverse of each of the following affine transformations.

2 -3 2 3 2 1
(a) t(x):(3 _5>X~|—<4) (b)t(x):(4 2>x+<_2)

5. Prove that the transformation

1(x) = 3x (x € R?)

and

is an affine transformation, but not a parallel projection.

6. Which of the following are affine properties?
(a) distance (b) collinearity (c) circularity
(d) magnitude of angle (e) midpoint of line segment

Section 2.3

1. The affine transformation ¢ : R?> — R? is given by

1 -1 2
t(x)_(2 _3>X+<_4>.
Determine the image under ¢ of each of the following lines.

(@) y=—-2x ®)2y=3x—-1
2. The affine transformation 7 : R — R? is given by

et e ()
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Determine the image under ¢ of each of the following lines.
(@) 2x —5y+3=0 ®)3x+y—4=0

3. Determine the affine transformation which maps the points (0, 0), (1, 0) and
(0, 1) to the points:
(@) (0, —1), (1, 1)and (—1, 1), respectively;
(b) (—4, =5), (1,7) and (2, —9), respectively.

4. Determine the affine transformation which maps the points (1, 1), (3, 2) and
(4, 1) to the points (0, 1), (1, 2) and (3, 7), respectively.

5. Determine the affine transformation which maps the points (1, —1), (5, —4)
and (—2, 1) to the points (1, 1), (4, 0) and (0, 2), respectively.

6. Prove that the affine transformation ¢ for which

-1 2
t(x):( 3 _2)x

maps each point of the line y = x in R? onto itself.
7. Determine the matrices A and b for the affine transformation

t(x) = Ax+Db,

where A and b are 2 x 2 and 2 x | matrices, respectively, given that t maps
each point of the line y = 0 onto itself and (0,1) onto (2,3). Prove also that
t is a parallel projection of R? onto itself.

Section 2.4

1. The points P, Q, R and S lie on a line, in that order; the distances between
them are 4 units, 2 units and 3 units, respectively. Determine the ratios
PR : RS and PS : SQ.

2. A point X lies inside a triangle AABC, and the lines AX, BX and CX meet
the opposite sides of the triangle at P, Q and R, respectively. The ratios
AR : ABand BP : BCare 1 : 5 and 3 : 7, respectively. Determine the ratio
AC : AQ.

3. Let ¢ be a line that crosses the sides BC, CA and AB of a triangle AABC
at three distinct points £, Q and R, respectively. The ratios BC : CP and
CQ : QAare3:2and 1 : 3, respectively. Determine the ratio AR : RB.

4. ABCD is a parallelogram, and the point P divides AB in the ratio 2 : 1; the
lines AC and DP meet at Q, and the lines BQ and AD meet at R.

(a) Determine the images of P, Q and R under the affine transformation ¢
which maps A, D and C to (0, 1), (0, 0) and (1, 0), respectively.

(b) By considering the image of ABCD under ¢, determine the ratios
BQ : QR and AR : RD.

5. The triangle AABC has vertices A(—1,2), B(—3,—1) and C(3,1), and
the points P (1,%), Q (1,%) and R (—%, 1) lie on BC, CA and AB,
respectively.

(a) Determine the ratios in which P, Q and R divide the sides of the
triangle.
(b) Determine whether or not the lines AP, BQ and CR are concurrent.
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The triangle AABC has vertices A(2,0), B(—3,0) and C(3,—3), and
the points P(—1,—1), Q(1,3) and R (—}1,0) lic on BC, CA and AB,
respectively.
(a) Determine the ratios in which P, Q and R divide the sides of the triangle.
(b) Determine whether or not the points £, Q and R are collinear.
AABC s atriangle, and X a point which does not lie on any of its (extended)
sides. Also, AX meets BC at P, BX meets CA at Q and CX meets BA at R.
Prove that

AX AR AQ

XP _ RB + @
(This result is often known as van Aubel’s Theorem.)
AABC s atriangle, and X a point which does not lie on any of its (extended)
sides. Next, AX meets BC at P, BX meets CA at Q and CX meets BA at R.
Also, RQ meets BC at L, PR meets CA at M and PQ meets BA at N. Prove
that L, M and N are collinear.
Hint: Apply the result of Problem 5 in Subsection 2.4.3 to AABC and points
L, M and N in turn. Then evaluate the product % . 1%;[ . ?7_]1\3[ .
Three disjoint circles of unequal radii lie in the plane, their centres being
non-collinear. Pairs of tangents are drawn to each pair of circles such that
the point of intersection of the two tangents to each pair of circles lies
beyond the two circles. Prove that the three intersection points are collinear.

Section 2.5

1.

An ellipse touches the sides AB, BC, CD, DA of a parallelogram ABCD at
the points P, Q, R, S, respectively. Prove that the lengths CQ, OB, BP and
CR satisfy the equation

CO CR

0B~ BP’
Determine the equation of the image of the parabola P with equation y =
x2 under the affine transformation 7 : R> > R? given by

t(x) = (_; ?)x

Show that the image of the vertex of P is not the vertex of 7(P).

Prove that for any triangle AABC there exists an ellipse that touches the
sides AB, BC and CA at their midpoints.

Let P(acosf,bsin®), where 6 is not a multiple of /2, be a point on the

;‘—i + i—; =1, wherea > b > 0; and P’'(acosf,asinf) the
corresponding point on the ‘auxiliary circle’ C’: x> + y? = a?. Prove that
the tangents at P to C and at P’ to C’ meet on the x-axis.

Hint: Write down an affine transformation that maps C to C’ and P to P’,
and that maps each point of the x-axis to itself.

Given any two points P and P’ on ellipses E and E’, respectively, show
that there exists an affine transformation that maps E to E’ and P to P’.
Find the endpoints of the chord AB of the hyperbola H with equation xy = 1

that is bisected by the point P (2, 1).

ellipse C :
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Direct calculation using
coordinates is also
possible, but very tedious!

This proves that the
property of ‘being a vertex
of a parabola’ is not an
affine property.

This result is analogous to
that for hyperbolas in the
Corollary in

Subsection 2.5.2.



Summary of Chapter 2

7. E is the ellipse with equation 7 + 5 = 1, and P ) ise point
inside E. AB is a chord of E through P, and O is the centre of E. Find the

maximum value of ’% as A varies on E.

Summary of Chapter 2

Section 2.1: Geometry and transformations

1. An isometry of R? is a function which maps R? onto R? and preserves
distances.
Every isometry of R? has one of the following forms:

a translation along a line in R2:

a reflection in a line in R2;

a rotation about a point in R?;

a composite of translations, reflections and rotations in R2.

The set of all isometries of R? forms a group under composition of
functions; in particular, the composite of two isometries is an isometry.

2. Euclidean geometry is the study of those properties of figures that are
unchanged by the group of isometries.
These properties are called Euclidean properties, and include distance,
angle, collinearity of points and concurrence of lines.

3. The Kleinian view of geometry is the idea that geometry can be thought
of in terms of a group of transformations acting on a space.

4. The transformations of R? given by

X cosf) —sind X e d
(y>H<sin9 cose><y>+<f>’an

X cos 6 sin & X e

y)H sin @ —cos@) y>+ f)

are isometries; they represent, respectively, anticlockwise rotation about
the origin through an angle 6 followed by a translation by (e, f), and
reflection in a line through the origin that makes an angle 6/2 with the
x-axis followed by a translation by (e, f).
Every isometry of R? is of one or other of these two forms

5. A Euclidean transformation of R? is a function  : R? — R? of the form
t(x) = Ux + a, where U is an orthogonal 2 x 2 matrix and a € R?. The
set of all Euclidean transformations of R? is denoted by E(2).

6. Every isometry of R? is a Euclidean transformation of R?, and vice versa.

7. The set of Euclidean transformations of R? forms a group under the
operation of composition of functions.

8. The inverse of the Euclidean transformation #(x) = Ux + a is given by
lx)=U"'x—U"a.
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9.

Euclidean geometry is the study of those properties of figures that are
preserved by Euclidean transformations of R?,

10 A figure F) is Euclidean-congruent to a figure F if there is a Euclidean

transformation which maps F onto F>. Loosely speaking, two figures are
congruent if they have the same size and shape.

Euclidean congruence is an equivalence relation.

A figure F7 is G-congruent to a figure F, in some geometry defined
by a group G of transformations acting on the space of the geometry if
there is a transformation in G which maps F; onto F>. G-congruence is
an equivalence relation.

Section 2.2: Affine Transformations and Parallel Projections

1.

An affine transformation of R? is a function ¢ : R> — R? of the form
t(x) = AX + b, where A is an invertible 2 x 2 matrix and b € R?. The set
of all affine transformations of R? is denoted by A(2).

Every Euclidean transformation of R is an affine transformation.

. The set of affine transformations A(2) forms a group under the operation

of composition of functions.
The inverse of the affine transformation #(x) = Ax + b is r~1(x) =
A~ 'x—A7p.

. Affine geometry is the study of those properties (called affine properties)

of figures in the plane R? that are preserved by affine transformations.
Basic properties of affine transformations
Affine transformations:
1. map straight lines to straight lines;
2. map parallel straight lines to parallel straight lines;
3. preserve ratios of lengths along a given straight line.
A parallel projection is a one-one mapping of R? to itself defined in the
following way. Let 77y and 7, be planes in R3, with parallel rays of light
shining through them; then the function p which maps each point P in
71 to the corresponding point P’ in 7 is a parallel projection from 7
onto .

If 1 and 7, are parallel, then the parallel projection from | onto 75 is
an isometry.

. Basic properties of parallel projections

Parallel projections:

1. map straight lines to straight lines;

2. map parallel straight lines to parallel straight lines;
3. preserve ratios of lengths along a given straight line.

. A diameter of an ellipse is a chord of the ellipse that passes through its

centre.

Midpoint Theorem Let ¢ be a chord of an ellipse. Then the midpoints
of the chords parallel to £ lie on a diameter of the ellipse.
Conjugate Diameters Theorem Let £ be a diameter of an ellipse. Then
there is another diameter m of the ellipse such that

2: Affine Geometry
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10.

11.

12.

(a) the midpoints of all chords parallel to ¢ lie on m;

(b) the midpoints of all chords parallel to m lie on £.

The directions of these two diameters are called conjugate directions, and
the diameters are called conjugate diameters.

. Given any ellipse, there is a parallel projection which maps the ellipse onto

a circle.

. Under parallel projection certain properties of figures, such as length

and angle, are not necessarily preserved. This is one difference between
Euclidean geometry and affine geometry.
Each parallel projection is an affine transformation.

However, an affine transformation is not necessarily a parallel projec-
tion. For example, the doubling map of R? to itself given by 7(v) = 2v is
an affine transformation but cannot be modelled by a parallel projection.
An affine transformation 7 is completely determined by its effect on the
three non-collinear points (0,0), (1,0) and (0,1).

Hence if we know the points onto which (0,0), (1,0) and (0,1) are
mapped by 7, we can determine A and b in the formula 7(x) = Ax + b,
x € R2.

An affine transformation can be expressed as the composite of two parallel
projections.

Section 2.3: Properties of Affine Transformations

1.

Strategy To determine the image of a line or conic in R? under an affine
transformation 7 : R*> — R? given by 7(x) = Ax + b, let x and coordi-
nates (x, y) denote points in the domain copy of R?, and x’ and coordinates
(x’,y") denote points in the codomain copy. Then:

1. express the relationship between x and X in the form x = A~ X' —A~p;
2. determine formulas for x and y in terms of x” and y’;

3. substitute for x and y in the equation of the line or conic;

4. drop the dashes from x” and y’.

The resulting equation describes the image under ¢.

. Strategy To determine the unique affine transformation 7(x) = Ax + b

which maps (0,0), (1,0) and (0,1) to the three non-collinear points p, q and

r, respectively:

1. take b = p;

2. take A to be the matrix with columns given by q — p and r — p.
Warning This Strategy requires that p, q and r are non-collinear. If

they are collinear, the matrix A described in the Strategy is non-invertible,

and hence the transformation given by the procedure in the Strategy is not

an affine transformation.

. Fundamental Theorem of Affine Geometry Letp, q,randp’, q’, ' be

two sets of three non-collinear points in R?. Then:

(a) there is an affine transformation ¢ which maps p, q and r to p’, q’ and
r’, respectively;

(b) the affine transformation 7 is unique.
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5.

Strategy To determine the affine transformation # which maps three non-
collinear points p, q and r to another three non-collinear points p’, q' and
r’, respectively:
1. determine the affine transformation ¢#; which maps (0,0), (1,0) and (0,1)
to the points p, q and r, respectively;
2. determine the affine transformation #» which maps (0,0), (1,0) and (0,1)
to the points p’, q' and r’, respectively;
3. calculate the composite t =t o 7| !
Two figures are affine-congruent if there is an affine transformation which
maps one onto the other.
All triangles are affine-congruent.
An affine transformation preserves ratios of lengths along parallel straight
lines.

Section 2.4: Using the Fundamental Theorem of Affine
Geometry

1.
2.

Median Theorem The medians of any triangle are concurrent.
If a point R divides a line segment PQ in the ratio (I — A) : A, then

% = 1_—)‘ . The magnitude of the ratio equals the length of PR divided

by the length of RQ, and the ratio is positive if 0 < A < 1 (when PR and
RQ he in the same direction) and negative if . < 0 or A > 1 (when PR

and RQ lie in opposite directions).

If P, Q and R have coordinates (xp,yp), (xg,yo) and (xg,yRr),
respectively, then 1€_R = ig:’;‘; and I];—g = ﬁ' (If the denomina-
tor of one of these fractions vanishes, then use the other to determine the
ratio.)

Ceva’s Theorem Let AABC be a triangle, and let X be a point which
does not lie on any of its (extended) sides. If AX meets BC at P, BX meets

CA at Q and CX meets BA at R, then

AR BP CQ

RB PC QA —

Converse to Ceva’s Theorem Let P, Q and R be points other than ver-
tices on the (possibly extended) sides BC, CA and AB of a triangle AABC,
such that 55 - 5~ - 0A = 1. Then the lines AP, BQ and CR are concurrent.
Menelaus’s Theorem Let AABC be a triangle, and let £ be a line that
crosses the sides BC, CA and AB at three distinct points P, Q and R,
respectively. Then RB PC QA =

Converse to Menelaus’ Theorem Let P, Q and R be points other than
vertices on the (possibly extended) sides BC, CA and AB of a triangle
AABC, such that AR BP CO _ = —1. Then the points P, Q and R are
collinear.

2: Affine Geometry
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7.

10.

Many results about properties of triangles (such as collinearity, lines being
parallel, and ratios of lengths along a given line) are preserved under affine
transformations, are proved following a standard pattern.

First, we choose a particular type of triangle for which it is easy to prove
the result. Then, by asserting the existence of an affine transformation
from that triangle to an arbitrary triangle, we may deduce that the result
holds for all triangles.

. Let A = (aj,az), B = (b1,by) and C = (cy, c2) be three non-collinear

points in the plane R?; we call AABC the triangle of reference. Then a
point (x, y) in the plane has barycentric coordinates (£, 1, {) with respect
to AABC if

x =E&ay +nby + ¢y,
y =£&ax+nby + ¢ca,and

l=§+n+¢.
al b1 C1l X
Ifweset M = | ao by ¢ |, then M is invertible. Also | y | =
1 1 1 1
§ § x
M|yp|and|n]|=M"]y
¢ ¢ 1
. The points P, Q and R with barycentric coodinates (&1, 11, ¢1), (&2, 12, 2)
§ & &
and (&3, 13, ¢3) are collinear if and only if | n; 72 n3 | =0.
[SEEN GRS
The line £ through the points with barycentric coordinates (&1, 71, {1)
§1 & &
and (62,12, §2) hasequation | 71 m2 n | =0.
a & ¢

Section Formula The point R that divides the line £ joining the points
P and Q with barycentric coordinates (£1,7n1,¢1) and (&2, 12, ¢2) in the
ratio (1 — X&) : A has barycentric coordinates

(é’ n’g) = )‘-(Sl’ 771’4’1) + (1 - )‘)(52’ 772:;2)-

Section 2.5: Affine Transformations and Conics

1.

2.

Every ellipse is affine-congruent to the unit circle with equation
x2 4y =1.

Every hyperbola is affine-congruent to the rectangular hyperbola with
equation xy = 1.

Every parabola is affine-congruent to the parabola with equation y* = x.
Affine transformations map ellipses to ellipses, parabolas to parabolas, and
hyperbolas to hyperbolas.

In Affine Geometry:
(a) all ellipses are congruent to each other;
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(b) all hyperbolas are congruent to each other;

(c) all parabolas are congruent to each other.

Non-degenerate conics are congruent only to non-degenerate conics of the
same type.

3. Let ¢ be an affine transformation, and let C be an ellipse or hyperbola with
centre R. Then ¢(C) has centre #(R).

4. Let t be an affine transformation, and let H be a hyperbola with asymptotes
£1 and ¢;. Then ¢ (H) has asymptotes #(£1) and 7(£3).

5. Let ¢ be an affine transformation, and let £ be a tangent to a conic C. Then
t(¢) is a tangent to the conic 7(C).

6. Affine geometry can be used to tackle problems involving conics when the
property being investigated is an affine property. We first use an affine trans-
formation to map the original conic onto one of our standard conics, tackle
the problem in hand there, and then map back to the original conic.

7. Given any hyperbola and a point P on it, there is an affine transformation
which maps the hyperbola onto the rectangular hyperbola xy = 1, and the
point P to (1,1).



3 Projective Geometry: Lines

Geometry is one branch of mathematics that has an obvious relevance to the
‘real world’. Earlier, we studied some results in Euclidean geometry and we
described the group of Euclidean transformations, the isometries. We saw
that the Euclidean transformations preserve distances and angles, and have
a definite physical significance.

In this chapter we study projective geometry, a very different type of geome-
try, that has important but less obvious applications. It was discovered through
artists’ attempts over many centuries to paint realistic-looking pictures of
scenes composed of objects situated at differing distances from the eye. How
can three-dimensional scenes be represented on a two-dimensional canvas?
Projective geometry explains how an eye perceives ‘the real world’, and so
explains how artists can achieve realism in their work.

In Section 3.1, we look at the development of perspective in Art and explain
the concept of a perspectivity. We describe Desargues’ Theorem, which con-
cerns a curious property of two triangles whose vertices are in perspective
from a single point, and so explain that perspective can play a key role in the
statement and the proof of theorems in mathematics.

In Section 3.2, we define the term projective point (or Point) and call the
set of all such Points the projective plane, which we denote by RP?Z. We also
define a projective line (or Line). To enable us to tackle problems in projective
geometry algebraically, we introduce homogeneous coordinates to specify the
Points in RP2.

In Section 3.3, we define the projective transformations of RP? and use
them to define projective geometry. We also prove the Fundamental Theorem
of Projective Geometry, which states that given two sets of four Points there is
a unique projective transformation of RP? that maps the Points in one set to
the corresponding Points in the other set. This crucial result enables us to apply
a preliminary transformation to many geometric problems, thereby simplify-
ing their solution by reducing the arithmetic involved. It turns out that there
is a close connection between the idea of perspective in R and projective
transformations.

In Section 3.4, we use the Fundamental Theorem of Projective Geometry
to prove several results, including Desargues’ Theorem. We also introduce the

Chapters 1 and 2.

For example, in Computer

Graphics and in Art.

eye

We also require that no
three Points in either set

lie on a Line.
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128 3: Projective Geometry: Lines

concept of duality, which involves a remarkable relationship between Points
and Lines.

Finally, in Section 3.5, we note that the ideas of distance and ratio of dis-
tances along a line have no immediate analogues in RIP’Z; nevertheless, we are
able to define a related quantity called the cross-ratio of four collinear Points
in RP?. This quantity is very useful in proving various mathematical results,
and it has ‘real life’ applications — such as in aerial photography.

3.1  Perspective

3.1.1  Perspective in Art

The first ‘pictures’ were probably Cave Art wall paintings: for example, depic-
tions of animals and hunters. Up to the Middle Ages, most pictures were drawn
on walls, floors or ceilings of buildings and were intended to convey messages
rather than to be accurate illustrations of what an eye might see. For example,
Christian religious art portrayed Christ and the Saints, the Bayeux tapestry
outlined events such as the Norman Conquest and the Battle of Hastings, and
SO on.

(Clockwise from left)
Hunters below antelopes.
Bambata cave, Zimbabwe
© M. Jelliffe; Tomb of
Rekhmare, Thebes. 1500
BC © Ronald Sheridan;
Bayeux Tapestry: The
death of Harold.

These prints are
reproduced by kind
permission of A.A. & A.
Ancient Art and
Architecture Collection.

To the modern eye, the people and animals in these pictures appear to be
rather stylized, and the whole scene seems very two-dimensional. The events
illustrated do not appear to be properly integrated into the background, even if
this is included.

Towards the end of the 13th century, early Renaissance artists began to
attempt to portray ‘real’ situations in a realistic way. For example, people at the
back of a group would be drawn higher up than those at the front — a technique
known as ferraced perspective.



Perspective

As artists struggled to find better techniques to improve the realism of their
work, the idea of vertical perspective was developed by the Italian school of
artists (including Duccio (1255-1318) and Giotto (1266—1337)). To create an
impression of depth in a scene, the artist would represent pairs of parallel lines
that are symmetrically placed either side of the scene by lines that meet on
the centre line of the picture. The method is not totally realistic, since objects
do not appear to recede into the distance in the way that might be expected.
The problem of depicting ‘distant objects looking smaller’, with a properly
integrated foreground and background, was tackled by many artists, including
notably Ambrogio Lorenzetti (c. 1290-1348).

The modern system of focused perspective was discovered around 1425 by
the sculptor and architect Brunelleschi (1377-1446), developed by the painter
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Simone Martini ‘Maesta’
Palazzo Pubblico, Sala del
Mappamodo, Siena (su
concessione del commune
di Siena). Foto LENSINI
Siena.

Giotto is sometimes called
the ‘Father of Modern
Painting’.

‘Last Supper’ painted by
Duccio; Opera del
Duomo, Siena. Foto
LENSINI Siena.
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and architect Leone Battista Alberti (1404—1472), and finally perfected by
Leonardo da Vinci (1452-1519).

These artists realized that what the eye actually ‘sees’ of a scene are the vari-
ous rays of light travelling from each point in the scene to the eye. An effective
way of deciding how to depict a three-dimensional scene on a two-dimensional
canvas so as to create a realistic impression is therefore as follows. Imag-
ine a glass screen placed between the eye and the three-dimensional scene.
Each line joining the eye to a point of the scene pierces the glass screen at
some point. The set of all such points forms an image on the screen known
as a cross-section. Since the eye cannot distinguish between light rays coming
from the points of the actual scene and light rays coming from the correspond-
ing points of the cross-section (since these are in exactly the same direction),
the cross-section produces the same impression as the original scene. In other
words, the cross-section gives a realistic two-dimensional representation of the
three-dimensional scene.

=== eye

object screen

The German artist Albrecht Diirer (1471-1528) introduced the term per-
spective (from the Latin verb meaning ‘to see through’) to describe this
technique, and illustrated it by a series of well-known woodcuts in his book
Underweysung der Messung mit dem Zyrkel und Rychtsscheyed (1525). The
Diirer woodcut below shows an artist peering through a grid on a glass screen
to study perspective and the effect of foreshortening.

3: Projective Geometry: Lines

Alberti wrote that the first
necessity for a painter is
‘to know geometry’.

In English: Instruction on
measuring with compass
and straight edge.

We discuss foreshortening
in Subsection 3.1.2.

By permission of The
British Library. © The
British Library Board
C.119.h.7(D).



Perspective

Of course, the picture displayed on the screen is just one representation of
the scene. If the screen is placed closer to, or further away from, the eye, the
size of the cross-section changes. Also, the screen may be placed at a different
angle for a given position of the eye, or the eye itself may be moved to a
different position. In each case, a different cross-section is obtained, though
they are all related to each other.

312 Mathematical Perspective

To help us understand the relationship between different representations of a
scene, we now look at perspective from a mathematical point of view. In place
of an eye and light rays travelling to it, we use the family of all lines in R?
through a given point. For convenience, this point will often be the origin O.
The glass screen is replaced by a plane in R? that does not pass through the
origin.

In order to compare the cross-sections that appear on different screens, we
consider two planes 7 and 7’ that do not pass through O. A point P in 7 and
a point Q in 7/ are said to be in perspective from O if there is a straight line
through O, P and Q. A perspectivity from 7 to ' centred at O is a function
that maps a point P of 7 to a point Q of 7" whenever P and Q are in perspec-
tive from O. Notice that the planes 7 and 7z’ may lie on the same side of O as
shown on the left below, or they may lie on opposite sides of O as shown on
the right.
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In terms of O representing
an eye, the figure on the
right corresponds to the
observer having the ability
to look simultaneously
both forwards and
backwards!
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One complication with the above definition of a perspectivity is that the
domain of the perspectivity is not necessarily the whole of 7. Indeed, if P is
any point of = such that OP is parallel to 7/, as shown in the margin, then P
cannot have an image in 7/, and cannot therefore belong to the domain of the
perspectivity. From a mathematical point of view, this need to exclude such
exceptional points from the domain of a perspectivity turns out to be rather a
nuisance. In Subsection 3.2.3 we shall therefore reformulate the definition of
a perspectivity in such a way that these exceptional points can be included in
the domain.

Even with only the preliminary definition of perspectivity given above, it is
clear that some features of figures are preserved under a perspectivity, while
others are not. For example, the figure on the left below illustrates a particular
perspectivity in which a line segment in one plane maps onto a line segment
in another plane. This suggests that collinearity is preserved by a perspectivity.
On the other hand, the figure on the right illustrates a perspectivity in which a
circle in one plane appears to map to a parabolic shape in another plane, which
suggests that ‘circularity’ is not preserved.

One of our main tasks is to study the images of standard configurations such
as lines and conics under perspectivities. This chapter deals with lines; the next
chapter deals with conics.

Consider a perspectivity with centre O that maps points in a plane 7 to
points in a plane 77’. A convenient way to visualize the image of a line £ under
the perspectivity is to consider an arbitrary point P on £. As P moves along ¢,
the line OP sweeps out a plane. The line ¢’ where this plane intersects 7’ is the
image of £.




Perspective

To be specific, consider the perspectivity p with centre O that maps points
in a horizontal plane 7 to points in a vertical plane 7/, and let L be the line
where 7 and 7’ intersect. Under p, every line ¢ in 7 that is parallel to L maps
to a horizontal line ¢’ in 7’. In particular, L maps to itself. The only exception
is the line A that passes through the foot of the perpendicular from O to .
This line does not have an image in 7" since the lines joining points of i to O
are parallel to 7',

Next, consider the image under the same perspectivity p of a line € in 7 that
is perpendicular to L. To do this, let P denote the foot of the perpendicular
from O to the plane 7’. Although P is not the image of any point of 7, the
plane through O and ¢ meets 7’ in some line ¢’ that passes through P. It
follows that the image of £ under p is some line ¢’ through P, with the point
P itself omitted.

The above argument works for any line in 7 that is perpendicular to L. All
such lines are mapped by the perspectivity p to lines in 7’ that pass through
P, and that omit the point P itself.

We may combine our observations concerning lines in 7 that are parallel
to L or perpendicular to L in the following way. Let ABCD be a rectangle in
7 on the opposite side of L from O, with sides AB and CD that lie on lines
£1 and £;, perpendicular to L. Then AD and BC both map onto horizontal
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lines in 7w’ between L and P. As the side BC recedes from L, its image B'C’
under the perspectivity p moves further up 7’ towards P, becoming shorter as
it moves.

To an observer whose eye is located at O, the lines £ and ¢» appear to meet
‘at infinity’, and this corresponds to their images under p appearing to meet at
P. The point P is called the principal vanishing point of the perspectivity p
because the images in 7’ of all lines in 7 perpendicular to L appear to vanish
there.

In fact, a perspectivity has many vanishing points. For instance, let ¢ be any
line in 7 that intersects L at an angle of /4. Now let i’ be the horizontal line
in v/ through P, and let D be the point on 4’ such that OD is parallel to £.
Then the plane through O and ¢ meets 7’ in some line ¢ that passes through
D. It follows that the image of £ under p is a line through D, with the point D
itself omitted.

The point D is called a diagonal vanishing point of the perspectivity. All
lines in the plane 7 that are parallel to the given line ¢ have images in 7’ that
are lines through D, with the point D itself omitted.

In the same way, each point of the horizontal line /’ in " through P is a van-
ishing point for the images of all lines in 7 in some direction; hence the line 4’

Artists describe this
shortening of the image on
7’ of lines of equal length
in v as foreshortening.

You can think of ¢; and ¢,
as a pair of railroad lines
disappearing into the
distance.

Here the symbol 7 is
being used in two
different ways: as a label
for the embedding plane,
and as an angle.

That is, the images appear
to vanish at D.



Perspective

is called the vanishing line. It corresponds to the ‘horizon’ in the plane — in
other words, to the points ‘at infinity’ towards which an observer’s eye is
pointing when looking in a horizontal direction.

313 Desargues’ Theorem

The idea that information in three dimensions can be related to information in
two dimensions, and vice versa, plays an important role in mathematics just
as it does in Art. For example, consider the following three-dimensional figure
that consists of two triangles AABC and AA’B’C’ which are in perspective
from a point U. For the moment we shall assume that no pair of corresponding
sides BC and B'C’, CA and C'A’, and AB and A'B’, are parallel.

We shall show that this three-dimensional figure has the property that BC
and B'C’, CA and C'A’, AB and A'B’ meet at P, Q, R, respectively, where
P, O and R are collinear. This will enable us to formulate an equivalent two-
dimensional result, known as Desargues’ Theorem.

To prove the three-dimensional result, observe that both BC and B’C’ lie in
the plane that passes through the points U, B and C. Since BC and B'C’ are
coplanar but not parallel, they must meet at some point P.

A

_—

Pl VA

«

s~

Similarly, the sides CA and C’A’ meet at some point Q, and the sides AB and
A’ B’ meet at some point R.

Since the points P, Q and R lie both on the plane which contains the trian-
gle AABC and on the plane which contains the triangle AA’B’C’, they must
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Girard Desargues
(1593-1662) was a French
engineer and architect.
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lie on the line ¢ where the two planes meet. It follows that P, Q and R are
collinear.

To obtain the equivalent two-dimensional result, imagine that you are view-
ing the three-dimensional configuration through a transparent screen. Since
this viewing process will not alter the collinearity of points or the coincidence
of lines, we may reinterpret the three-dimensional result in terms of the image

on the screen to obtain the following theorem. We give a rigorous proof
of Desargues’ Theorem in
Theorem 1,
Theorem 1 Desargues’ Theorem Subsection 3.4.1.

Let AABC and AA’B'C’ be triangles in R? such that the lines AA’, BB and
CC’ meet at a point U. Let BC and B'C’ meet at P, CA and C’A’ meet at Q,
and AB and A’B’ meet at R. Then P, Q and R are collinear.

Strictly speaking, we have not proved this theorem since it is not immedi-
ately obvious that AABC and AA’B'C’ can be obtained as images of triangles
in R? which have corresponding sides that are not parallel. Nevertheless, the
above argument does provide reasonably convincing evidence that the theorem
is true.

One remarkable feature of the above argument is the way in which the geom-
etry of the figure on the transparent screen is characterized by the rays of light
that enter an eye. Thus a point on the screen corresponds to a single ray of
light that enters the eye, a line on the screen corresponds to a plane of rays
of light that enter the eye, and so on. The geometry of the figure can be
investigated entirely in terms of these rays of light. The screen is needed only
to interpret the result in terms of a two-dimensional figure.
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In the rest of Chapters 3 and 4, we introduce a geometry known as pro-
Jjective geometry that enables us to work with figures on a plane (a screen)
as if they correspond to rays of light that enter an eye in the way described
above.

3.2  The Projective Plane RPP?

You have already met the Kleinian view that a geometry consists of a group of
transformations acting on a space of points. In this section we begin our dis-
cussion of projective geometry by investigating its space of points. The group
of transformations is discussed in Section 3.3.

3.21 Projective Points

Imagine an eye situated at the origin of R3 looking at a fixed screen. As we
mentioned in Subsection 3.1.1, each point of the screen corresponds to the ray
of light that enters the eye from the point. This correspondence between points
of the screen and rays of light through the origin is the clue that we need to
define a space of points for our new geometry.

screen

Point

eye

Rather than use the points of the screen directly, we use the rays of light
that enable an eye to ‘see’ the points from the origin. We can express this
idea mathematically by defining a projective point to be a Euclidean line in
R3 that passes through the origin. In order to avoid confusion with Euclidean
points of R3, we write Point with a capital P whenever we mean a projective
point.

Definitions A Point (or projective point) is a line in R? that passes
through the origin of R3. The real projective plane RP? is the set of all
such Points.
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Introductary remarks to
Chapter 2

It is important that you
use the capital letter P in
‘Point’.
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In order to prove results in projective geometry algebraically, we need to 4 )

have an algebraic notation that can be used to specify the Points of RP?. To
do this, we use the fact that a line £ through the origin O in R? is uniquely
determined once we have specified a Euclidean point (other than O) that lies
on £. For example, there is a unique line ¢ in R3 through O and the point with
Euclidean coordinates (4, 2, 6), so we can use these coordinates to specify a
projective point. When doing this we write the coordinates in the form [4, 2,
6], with square brackets to indicate that the coordinates refer to a projective x
point.

(4,2,6)

Definition The expression [a, b, c], in which the numbers a, b, ¢ are not

all zero, represents the Point P in RP? which consists of the unique line

in R3 that passes through (0, 0, 0) and (a, b, ¢). We refer to [a, b, c] as Note that [0, 0, 0] is not
homogeneous coordinates of P. If (a, b, ¢) has position vector v, then we  defined.

often denote P by [v] and we say that P can be represented by v.

Remark

Often we abuse our notation slightly, by talking about ‘the Point [a, b, c]’
when strictly speaking we should say ‘the Point with homogeneous coordinates
la, b, c]’.

Notice that the homogeneous coordinates of a Point are not unique. For
example, the Point with homogeneous coordinates [4, 2, 6] consists of a line
that passes through (0, 0, 0) and (4, 2, 6). But this line also passes through
(=2,—1,-3),s0[4, 2, 6] and [—2, —1, —3] both represent the same Point.

In general, if (a, b, c¢) is any point on a line through the origin, and A is any
real number, then (Aa, Ab, Ac) also lies on the line. Moreover, if (a, b, ¢) is not
at the origin and X # 0, then (Aa, Ab, Ac) is not at the origin either. It follows
that [a, b, c] and [Aa, Ab, Lc] both represent the same Point, for any A 7# 0. We
express this by writing

la,b,c] = [Aa, Ab, Ac], for any A # 0. (1) (Aa, 1, he)
Point (a,b,c)
Conversely, if there is no non-zero real number A such that 0

(a,b',c") = (ra, rb, rc),

then (a,b,c) and (a’,b’,c’) cannot lie on the same line through the origin,
and so the homogeneous coordinates [a, b, ¢] and [a’,D’, ¢'] must represent
different Points in RP2.

Example 1 Which of the following homogeneous coordinates represent the
same Point in RP? as [6, 3, 2]?

(@) [18,9,6]  (b)[12,—6,4] (c)[l,%,%] @ 1[1,2,3]



The Projective Plane RP2

Solution
(a) This represents the same Point as [6, 3, 2], for if A = 3, then
[18,9,6] = [6X,34,2A] = [6,3,2].

(b) This represents a Point different from [6, 3, 2], for there is no A that
satisfies the simultaneous equations

12 = 6A,—6 = 31,4 = 2.
(c) This represents the same Point as [6, 3, 2], for if A = %, then
[1.5.3] = 16231221 = 16,321,

(d) This represents a Point different from [6, 3, 2], for there is no A that
satisfies the simultaneous equations

1=61 2=3A 3=2\ O

Problem 1 Which of the following homogeneous coordinates repre-
sent the same Point in RP? as [1,2,3]?

(a) [2,4,6] (b)[1,2,-3] (¢)[-1,—-2,-3] (d)[11,12,13]

At first sight it may seem rather unsatisfactory that the coordinates of a Point
are not unique. However, this ambiguity can often be turned to our advantage.
For example, if a calculation yields a Point of RP? with fractional homo-
geneous coordinates such as [1, %, %], then the rest of the calculation may
be simpler if we ‘clear’ the fractions and represent the Point by the integer

homogeneous coordinates [6, 3, 2] instead.

Problem 2 For each of the following homogeneous coordinates, find
integer homogeneous coordinates which represent the same Point.

@ [35.-4] ®[o43] ©[h-5-1]
Given a collection of homogeneous coordinates, it is not always easy to spot

those that represent the same Point. In such cases it is sometimes possible to
rewrite the coordinates in a form that makes the comparison easier.

Example 2 Determine homogeneous coordinates of the form [a, b, 1] for the
Points

[29_1’4]’ [4’ 2’ 8]3 [27.[3_]-[947[]9

1 1
[200, 100, 4001, [_E’_Z’_l} , [6,—9, —12].

Hence decide which homogeneous coordinates represent the same Points.
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Throughout the solution
we use equation (1):

[a,b,c] = [ra, Ab, Ac],

for any A # 0.
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Solution According to equation (1), a Point of RP? is unchanged if its
homogeneous coordinates are multiplied (or divided) by any non-zero real For, dividing by a
number. Since the third coordinate of each Point is non-zero, we may divide non-zero number A is

by this third coordinate to obtain homogeneous coordinates of the form €duivalent to multiplying
by the non-zero number
[a, b, 1] as follows: ] /A

[2,-1,4] = [%,—}P 1]; [4,2,8] = [%, L 1];
2, -7 4n) =3 -51]: 200,100,401 = [ 1. 4.1];
-3 -] =[581] o= [-L 3]
Since [a, b,1]1 = [a’,b’, 1] if and only if @ = a’ and b =}/, it follows that:
[2,—1,4] and [27, —7, 47 ] represent the same Point;

[4,2,8],[200, 100,400] and [—% —}‘, — 1] represent the same Point;

[6, —9, —12] represents none of the other Points. O

Notice that the method used in Example 2 works only if the third coordinates
of all the Points are non-zero. If this is not the case, then you may still be able
to apply the technique using the first or second coordinates.

Problem 3 Determine homogeneous coordinates of the form [1, b, c]
for the Points

[2.3.-5].  [=8.—12.20]. [ﬁ,«/’,—ﬁ],
[4.-6,10],  [-20.—30,50].  [74.148.0].

Hence decide which homogeneous coordinates represent the same
Points.

Having defined projective points, we are now in a position to define a pro-
Jjective figure. Just as a figure in Euclidean geometry is defined to be a subset
of R2, so figures in projective geometry are defined to be subsets of RIP2.

Definition A projective figure is a subset of RP.

Projective figures are just sets of lines in R? that pass through the origin.
Thus a double cone with a vertex at O, and a double square pyramid with
a vertex at O, are both examples of projective figures, for they can both be
formed from sets of lines that pass through the origin of R3.
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3.22 Projective Lines

A particularly simple type of projective figure is a plane through the origin.
Such a plane is a projective figure because it can be formed from the set of
all Points (lines through the origin of R?) that lie on the plane. Since all but
one of these Points can be thought of as rays of light that come from a line
on a screen, it seems reasonable to define any plane through the origin to be a
projective line.

screen
plane % ; plane

Just as we use ‘Point’ to refer to a ‘projective point’, so we use ‘Line’ to
refer to a ‘projective line’. The use of a capital L avoids any confusion with
lines in R3.

Definitions A Line (or projective line) in RP? is a plane in R> that passes
through the origin. Points in RP? are collinear if they lie on a Line.

Since a Line in RP? is simply a plane in R that passes through the origin,
it must consist of the set of Euclidean points (x, y, z) that satisfy an equation
of the form

ax +by+cz=0,

where a, b and ¢ are real and not all zero. We can interpret this fact in terms of
RP? as follows.

Theorem 1 The general equation of a Line in RP? is
ax + by +cz =0, 2

where a, b, c¢ are real and not all zero.
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The exception is the ray of
light parallel to the screen.
We shall discuss the
significance of this ray
later, in Subsection 3.2.3.
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Remark

1. The equation of a Line is not unique, for, if A # 0, then Aax+Aby+icz =0
is also an equation for the Line. We can use this fact to ‘clear fractions’ from
the coefficients just as we did for the homogeneous coordinates of a Point.

2. From the figure in the margin it is clear that a Point lies on a Line, or

a Line passes through a Point, if and only if the Point has homogeneous e
coordinates [x, v, z] which satisfy the equation of the Line. For example,

[1, -1, 1] lies on the Line 3x + y — 2z =0, but [0, 1, 3] does not. w

In Euclidean geometry there is a unique line that passes through any two
distinct points, as illustrated on the left of the figure below. Similarly, in pro-
jective geometry two distinct Points (lines through the origin) lie on a unique
Line (plane through the origin).

Line

line

point

point

>

We express this observation in the form of a theorem, as follows.

Theorem 2 Collinearity Property of RP?
Any two distinct Points of RP? lie on a unique Line.

It is sometimes possible to find an equation for the Line that passes through
two distinct Points of RP? simply by spotting an equation of the form (2) that
is satisfied by the homogeneous coordinates of both Points.

Example 3 For each of the following pairs of Points, write down an equation
for the Line that passes through them.

(a) [3,2,0]and [3, 4, 0] (b) [1,2, 1] and [3, 0, 3]
(c) [1,0,0]and [0, 0, 1]

Solution

(a) Both the Points have a z-coordinate equal to 0, so the homogeneous coor-
dinates must satisfy the equation z = 0. This equation is of the form (2) The equation x = 3 is not
witha = 0,b = 0 and ¢ = 1, so it must be the required equation for the  of the form (2), and so is

Line not the equation of a Line.
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(b) The homogeneous coordinates of both Points satisfy x = z. This equation
is of the form (2) witha = 1, b = 0 and ¢ = —1. It must therefore be the
required equation for the Line.

(c) The homogeneous coordinates of both Points satisfy y = 0. This equation
is of the form (2) witha = 0, b = 1 and ¢ = 0, so it must be the required
equation for the Line. O

Problem 4 For each of the following pairs of Points, write down an
equation for the Line that passes through them.

(a) [0, 1,0]and [0, 0, 1] (b) [2,2,3] and [3, 3, 7]

But how do we find an equation for a Line through two given Points in cases
where it cannot be found by inspection? As an example, consider the Points
[2,—1,4] and [1,—1,1]. We could certainly substitute the values x = 2,

y=—-1l,z=4andx =1, y = —1, z = 1 into equation (2), to obtain
the pair of simultaneous equations
2a —b+4c =0,
a—b+c=0.

Then subtracting twice the second equation from the first, we obtain
b = —2c. So from the second equation it follows that a = —3c. If we set
¢ = —1, say, then a = 3 and b = 2, so an equation for the Line is

3x +2y —z=0.

In this case the calculations are fairly straightforward, but there is an alter-
native method that is often simpler. Notice that the Line in RP? through the
Points [2, —1,4] and [1, —1, 1] is the Euclidean plane in R3 that contains the
position vectors of the points (2, —1,4) and (1,—1,1) in R3. A point (x, v, z)
lies in this plane if and only if the vector (x, y,z) is a linear combination of
the vectors (2, —1,4) and (1, —1, 1); in other words, if and only if the vectors
(x,y,2), (2,—1,4) and (1, —1, 1) are linearly dependent.

But three vectors in R? are linearly dependent if and only if the 3 x 3 deter-
minant that has these vectors as its rows is zero. It follows that (x, y, z) lies
in the plane containing the position vectors (2, —1,4) and (1,—1,1) if and
only if

X y z
2 —1 4/ =0.
1 -1 1

Translating this statement back into a statement concerning RP?, we deduce
that the Point [x,y,z] lies on the Line through the Points [2,—1,4] and
[1,—1, 1] if and only if

X y z
2 -1 4|=0.
1 -1 1
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Of course, we could set ¢

to have any non-zero

value, but ¢ = —1 keeps

the calculation simple.

Line

(1,-1,1)

*x,y,2)

2,-1,4)
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Expanding this determinant in terms of the entries in its first row, we obtain

rye 1 4 |2 4 |2 -1
T _i T_x—l 1‘ y’l 1‘”1 —1‘
=3x+2y—z
Hence an equation for the required Line in RP? is
3x +2y —z=0. (3)

Remark

It is always sensible to check your arithmetic by checking that the two given
Points actually lie on the Line that you have found. For instance, the answer
above is correct, since equation (3) is a homogeneous linear equation in x, y
and z, and the equation is satisfied by x =2,y = -1,z =4 and by x = 1,
y=-1,z=1.

We may summarize the above method in the form of a strategy, as follows.

Strategy To determine an equation for the Line in RP? through the Points
[d,e, f]and [g,h,k]:

1. write down the equation

2. expand the determinant in terms of the entries in its first row to obtain
the required equation in the form ax + by + cz = 0.

Example 4 Find an equation for the Line that passes through the Points
[1,2,3]and [2,—1,4].

Solution An equation for the Line is

X y z

1 2 31=0

2 —1 4

Now
X Yy z
2 3‘ ‘1 3‘ 1 2‘

1 2 3/=x -y +z
» _1 4 -1 4 2 4 2 -1

=1lx+2y —5z.
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An equation for the Line is therefore

1lx +2y —5z=0. O

Problem 5 Determine an equation for each of the following Lines in
RP*:

(a) the Line through the Points [2, 5, 4] and [3, 1, 7];
(b) the Line through the Points [-2, —4, 5] and [3, —2, —4].

A similar technique can be used to check whether three given Points are
collinear. Indeed, three Points [a, b, ], [d,e, f], [g,h, k] are collinear if and
only if the position vectors of the points (a, b, c), (d, e, f), (g, h, k) are linearly
dependent; that is, if and only if

e s
= o
>~ o
Il
o

Example 5 Determine whether the Points [2, 1, 3], [1, 2, 1] and [—1, 4, —3]
are collinear.

Solution We have

2 1 3

_11 Z _13 22‘421 —;‘_1‘—11 —13‘+3'—11 421'
=2(—6-4)— (=3+ 1) +3(4+2)
=-20+2+18
=0.

Since this is zero it follows that [2, 1, 3], [1, 2, 1] and [—1,4,—3] are
collinear. 0

We summarize the method of Example 5 in the following strategy.

Strategy To determine whether three Points [a, b, c], [d, e, f], [g, h, k] are
collinear:

£}

a
1. evaluate the determinant |d
8

S o
S x S o

2. the Points [a,b,c], [d,e, f], (g,
determinant is zero.

,k] are collinear if and only if this
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You can easily check that

the Points [1, 2, 3] and

[2,—1,4] lie on this Line.

Line

(a,b, c)
d, e, f)

(g, h, k)
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Problem 6 Determine whether the following sets of Points are
collinear.

(@ [1,2,3],[1,1,-2],[2,1,-9] ) [1,2,-1],12,1,0],[0,—1,3]

Before rushing to solve a problem using determinants, you should always
stop to see if you can solve the problem more easily by inspection. For exam-
ple, suppose that you are asked to check whether the Points [1, 0, 0], [0, 1, 0],
[1, 1, 1] are collinear. Clearly, [1, O, 0] and [0, 1, O] lie on the Line z = 0,
whereas [1, 1, 1] does not, so the Points are not collinear.

Problem 7 Verify that no three of the Points [ 1, 0, 0], [0, 1, 0],
[0,0,1]and[1, 1, 1] are collinear.

The Points that you considered in Problem 7 play an important part in our
development of the theory of projective geometry, so we give them special
names.

Definitions The Points [1, 0, 0], [0, 1, 0], [0, O, 1] are known as the
triangle of reference. The Point [1, 1, 1] is called the unit Point.

Next, observe that any two distinct Lines necessarily meet at a unique Point.
Indeed, a Line in RPP? is simply a plane in R3 that passes through the origin,
and two distinct planes through the origin of R must intersect in a unique
Euclidean line through the origin; that is, in a Point. This is very different to
the situation in Euclidean geometry where parallel lines do not meet.

Theorem 3  Incidence Property of RP?
Any two distinct Lines in RP? intersect in a unique Point of RP?.

We can determine the Point of intersection of two Lines simply by solving
the equations of the two Lines as a pair of simultaneous equations.

Example 6 Determine the Point of intersection of the Lines in RP? with
equations x + 6y —5z =0andx —2y +z = 0.

Solution At the Point of intersection [x, y, z] of the two Lines, we have
x+6y—-5z=0,
x—=2y+4+z=0.
Subtracting the second equation from the first, we obtain
8y —62=0,

so that y = % z. Substituting this into the second equation, we obtain x = % Z.

3: Projective Geometry: Lines

Point

Lines —»\

This result neatly
complements Theorem 2,
the Collinearity Property
of RP2

We know that there is a
unique Point of
intersection, by
Theorem 3.
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It follows that the Point of intersection has homogeneous coordinates
[%Z, %z,z] which we can rewrite in the form [%, %, 1] or [2, 3, 4]. O

Problem 8 Determine the Point of intersection of each of the follow-
ing pairs of Lines in RP?:

(a) the Lines with equations x —y —z =0and x + 5y 4+ 2z = 0;
(b) the Lines with equations x +2y —z =0and 2x + y —4z = 0.

Problem 9 Determine the Point of RP? at which the Line through
the Points [1,2, —3] and [2, —1, 0] meets the Line through the Points
[1,0,—1]and [1, 1, 1].

In some cases we can write down the Point at which two Lines intersect
without having to solve any equations at all. For example, the Lines with
equations x = 0 and y = 0 clearly meet at the Point [0, 0, 1].

Problem 10 Determine the Point of RP? at which the Line through
the Points [1, O, 0] and [0, 1, O] meets the Line through the Points
[0,0,1]and [1, 1, 1].

323 Embedding Planes

So far we have used three-dimensional space to develop the theory of projec-
tive geometry. In practice, however, we want to use projective geometry to
study two-dimensional figures in a plane. In order to do this, we now inves-
tigate a way of associating figures in a plane with figures in RP?, and vice
versa.

Suppose that a plane 7 contains a figure F. We can place 7 into R3, making
sure that it does not pass through the origin, and then construct a corresponding
projective figure by drawing in all the Points of RP? that pass through the
points of F. For example, if F is the triangle shown on the left below, then
the corresponding projective figure is a double triangular pyramid. Note that
if we change the position of 7 in R3, we obtain a different projective figure
corresponding to F.

T
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Note that z # 0, since
[0, O, 0] are not allowed as
homogeneous coordinates.

It is a double pyramid
because the Points which
make up the pyramid are
lines that emerge from the
origin in both directions.
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Conversely, suppose that we start with a projective figure F. The corre-
sponding Euclidean figure in 7 consists of the Euclidean points where the
Points of F' pierce m. For example, if F is a double cone whose axis is at right
angles to the embedding plane, as shown on the right above, then the corre-
sponding Euclidean figure is a circle. Note that if we change the position of
in R3, we obtain a different plane figure corresponding to F.

This correspondence between projective figures and Euclidean figures works
well provided that each Point of the projective figure pierces the plane 7, as
shown in the margin. Unfortunately, any Point of RP? that consists of a line
through the origin parallel to 7 does not pierce i, and so cannot be associated
with a point of . Such a Point is called an ideal Point for 7.

All the ideal Points for 7 lie on a plane through O parallel to z. This plane
is a projective line known as the ideal Line for 5.

T T
o0 an ideal Point
for ideal
Points
the ideal for 7t
Line for

How can we represent a projective figure on r if the figure includes some
of the ideal Points for 7? As a simple example, consider the Line illustrated
in the margin. This is a projective figure which intersects 7 in a line £. Every
Point of the Line pierces the embedding plane at a point of £ except for the
ideal Point P which cannot be represented on 7. In order to represent the Line
completely, we need not only the line ¢ but also the ideal Point P. In other
words, the Line is represented by £ U { P}.

In general, a projective figure can be represented by a figure in 7 provided
that we are prepared to include a subset of Points taken from the ideal Line for
7. In order to allow for these additional ideal Points, we introduce the concept
of an embedding plane.

Definitions An embedding plane is a plane, &, which does not pass
through the origin, together with the set of all ideal Points for r. The plane
in R? with equation z = 1 is called the standard embedding plane. The
mapping of RP? into the standard embedding plane is called the standard
embedding of RP?.

We may summarize the above discussion by saying that for a given embed-
ding plane, every projective figure in RP? corresponds to a figure in the

Point in RP2

corresponding \
Euclidean

o

An ideal
Line in Point P
R for

We frequently use 7 to
denote both a plane and an
embedding plane, but no
confusion should arise.
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embedding plane, and vice versa. The figure in the embedding plane may
include some ideal Points but is otherwise a Euclidean figure.

If two embedding planes are parallel to each other, the same Points of
RP? correspond to ideal Points of the embeddings; whereas, if the embed-
ding planes are not parallel, different Points of RP? correspond to ideal Points
of the two embedding planes.

Once we have represented a projective figure in an embedding plane, we can
investigate the relationship between its Points and Lines without having to refer
to three-dimensional space at all. For example, consider the representation
of the triangle of reference and unit Point on the embedding plane x + y +
z = 1, shown on the left below. If we extract the embedding plane from R?, as
shown on the right, we can use the algebraic theory developed earlier to write
down an equation for the Line through any two given Points, without reference
to R3.

[1,0,0]

x+y+z=1

Similarly, we can use the algebraic techniques to calculate the homogeneous
coordinates of the Point of intersection of any two given Lines.

Problem 11 On the right-hand diagram above, insert the homoge-
neous coordinates of the Points where the Lines through [1, 1, 1] meet
the sides of the triangle of reference.

Any plane may be used as an embedding plane provided that it does not pass
through the origin. For example, if we take 7 to be the plane z = —1, then the
ideal Line for 7 has equation z = 0, and the ideal Points are Points of the form
[a, b, 0], where a and b are not both zero. Any other Point [a, b, c] has ¢ # 0 and
can therefore be represented in 7 by the Euclidean point(—a/c, —b/c, —1).

Problem 12 Let 7 be the embedding plane y = —1. Describe the
ideal Points for 77, and specify the Euclidean point of = which represents
the Point [2, 4, 6].

(—ale,~ble,~1)

ideal Line
z=0

c‘mbcdding
plane z=~1
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Although we can choose any embedding plane to represent figures of RP?,
the representation does depend on the choice. For example, suppose that 77 is

the embedding plane y = —1, and that m; is the embedding plane z = —1.
Now consider the projective figure which consists of two Lines £; and ¢, with
equations x = —z and x = gz, respectively. These Lines intersect at the Point
[0, 1, O].

z=-1

On the embedding plane 7| the Lines £1 and ¢, are represented by two lines
that can be seen to meet at the point corresponding to [0, 1, O]. However, on
the embedding plane 7> the Point of intersection [0, 1, 0] is an ideal Point and
so the Lines £ and ¢, are represented by parallel lines that do not appear to
meet. The contrast between the two representations of ¢; and ¢; is particularly
striking if we extract the two embedding planes from R? and lay them side by
side, as follows.

T

[0,1,0] is

ideal for m,

£, £

This example illustrates that Lines which appear to be parallel in one embed-
ding plane may not appear to be parallel in another embedding plane. In the
next section you will see that the transformations of projective geometry are
chosen so as to ensure that the projective properties of a figure are unaffected
by the choice of embedding plane. Since parallelism does depend on the choice
of embedding plane, it cannot be a projective property, so the concept of
parallel Lines is meaningless in projective geometry.

This is the mathematical
fact which explains why
artists sometimes draw
parallel lines (such as
railroad lines) as
intersecting lines.
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3.24 An equivalent definition of Projective Geometry

In our work on projective geometry, we have used Euclidean points in a
plane in R3 to construct the projective points (Points) of the geometry RP?,
homogeneous coordinates for those Points, and projective lines (Lines).

Equivalently, we could have defined RP? as the set of ordered triples
[a, b, c], where a, b, ¢ are real and not all zero, with the convention that we
regard [Aa, Ab, Ac] and [a, b, c] (where A # 0) as the same Point in the geom-
etry. We would then have defined projective lines (Lines) as the set of points
[x,y,z]in RP? that satisfy an equation of the form ax + by + cz = 0, where
a, b, c are real and not all zero, Then we would continue to develop the theory
of projective geometry in the same way as we have done here.

However, we chose to start our work by looking at a model of RP?
obtained by using an embedding plane 7 in R that does not pass through
the origin. We modeled the projective points [a, b, c] by the Euclidean lines
through the origin and the corresponding Euclidean points (a,b,c), plus
‘points at infinity’ (the ideal Points); and we modeled the projective lines
by Euclidean planes through the origin, For convenience, we chose often to
use Euclidean points (a,b,c) on a given embedding plane to describe the
Euclidean model.

The formal method of defining projective geometry, though, is less intuitive
than the description motivated by the R? model!

3.3 Projective Transformations

3.3.1  The Group of Projective Transformations

By now you should be familiar with the idea that a geometry consists of a space
of points together with a group of transformations which act on that space.

Having introduced the space of projective points RPP? in Section 3.2, we
are now in a position to describe the transformations of RP?. First we shall
define the transformations algebraically, then we give a geometrical inter-
pretation of the transformations using the ideas of perspectivity introduced
in Section 3.1, and finally meet the Fundamental Theorem of Projective
Geometry.

Recall that a point of R? (other than the origin) on an embedding plane
7 (that does not pass through the origin) has coordinates x = (x,y,z) with
respect to the standard basis of R3, and homogeneous coordinates of the
corresponding Point [x] in RP? (which represents the points {Ax : A € R})
are [Ax, Ly, Az] for some real A # 0. Since the Points of RP? are just
lines through the origin of R3, we need a group of transformations that
map the lines through the origin of R? onto the lines through the origin
of R3. Suitable transformations of R3 that do this are the invertible linear
transformations.
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Any plane that does not
pass through the origin in
RR3 will serve as an
embedding plane.

Subsection 3.2.1
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If A is the matrix of an invertible linear transformation of R3 to itself, the
transformation maps points x = (x,y, z) of R3 to points Ax of R3; then the
projective transformation with matrix A maps Points [x] of RP? to Points
[Ax] of RPP?. This suggests that we define the transformations of projective
geometry as follows. In fact, any ‘continuous’

transformation of RP? to

. . itself that maps Lines to
Definitions A projective transformation of RP? is a function Lines and that preserves

t : RP?2 — RP? of the form incidences of Lines
corresponds to an
invertible linear
transformation of R3. We
omit a proof of this fact.

t:[x] — [AX],

where A is an invertible 3 x 3 matrix. We say that A is a matrix associated
with 7. The set of all projective transformations of RP? is denoted by P(2).

Example 1 Show that the function 7 : RP?> — RP? defined by
t:lx,y,zl = [2x +z,—x + 2y — 3z, x — y + 5z7]
is a projective transformation, and find the image of [1, 2, 3] under ¢.

Solution The transformation ¢ has the form ¢ : [x] — [AX], where x =

(x,y,z) and
2 0 1
A= -1 2 =3
1 -1 5
Now
2 0 1
det A=|—1 2 =3
1 -1 5
=2(10-3)-0+(1-2)
=13 #0.
So A is invertible. It follows that ¢ is a projective transformation.
We have
t([1,2,3)=[2+3,-14+4-9,1-24+15] =[5,—6, 14]. o

Problem 1 Decide which of the following functions ¢ from RP?
to itself are projective transformations. For those that are projective
transformations, write down a matrix associated with ¢.

@ t:[x,y,z] = [-2y + 3z, —x + 5y — z, —3x]
®) t:[x,y,zl—= [x =Ty +4z,—x + 5y —z,x — 9y + 7z]
) t:[x,y,z]—~> [x —1+2z,2y —4z +5,2x]
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Problem 2 Let ¢ be the projective transformation associated with the

matrix.
1 1 -1
A=| -1 -2 1
4 -3 4

Determine the image under ¢ of each of the following Points.

(a [1,2,—1] (b)[1,0,0] (c)[O,1,0]
(d) [0,0, 1] (e)[1, 1, 1]

Since we can multiply the homogeneous coordinates of Points in RP? by
any non-zero real number A without altering the Point itself, it follows that if
A is a matrix associated with a particular projective transformation then so is
the matrix LA, provided that A # 0. For example, another matrix associated
with the transformation in Example 1 is

—4 0 -2
B=| 2 -4 6],
2 2 -10

for we have B = —2A.

Problem 3 Write down a matrix with top left-hand entry % which is
associated with the transformation in Example 1.

Before we can use the projective transformations to define projective
geometry, we must first check that they form a group.

Theorem 1 The set of projective transformations P(2) forms a group
under the operation of composition of functions.

Proof We check that the four group axioms hold.
G1 CLOSURE Let 1 and #, be projective transformations defined by
t1:[x] = [A1x] and 1 : [x] — [Azx],
where A and A are invertible 3 x 3 matrices. Then
t1 o ([X]) = 11 (22([xD)
= t1([A2x])
= [(A1A2)x].

Since A; and A, are invertible, it follows that AjAj
is invertible. So by definition 7; o #, is a projective
transformation.

G2 IDENTITY Let i : RP?> — RP? be the transformation defined by

i [x] — [Ix],

where I is the 3 x 3 identity matrix; this is a projective
transformation, since I is invertible.
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Recall that a similar result
holds for affine
transformations.
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Let r: RP?> — RP? be an arbitrary projective transfor-
mation, defined by ¢ :[x] — [Ax], for some invertible 3
x 3 matrix A. Then for any [x] € RP?,

toi([x]) = [A(X)] = [Ax]

and
iot([x]) = [I(Ax)] = [Ax].
Thus t oi = i ot = t. Hence i is the identity
transformation.
G3 INVERSES Let 7 : RP?> — RP? be an arbitrary projective transfor-

mation defined by
t: [x] — [AX],

for some invertible 3 x 3 matrix A. Then we can define
another projective transformation ¢’ : RP> — RP? by

t': [x] —~ [A'x].
Now, for each [x] € RP?, we have
tot'([x]) = t([A™'x]) = [AA™'x)] = [x]
and
1 ot([x]) = ¢ ([Ax]) = [A~(Ax)] = [x].

Thus ¢’ is an inverse for 7.
G4 ASSOCIATIVITY Composition of functions is always associative.

It follows that the set of projective transformations P(2) forms a group. |

The above proof shows that if 7 and 7, are projective transformations with
associated matrices A and Aj, respectively, then ¢ o 77 is a projective trans-
formation with an associated matrix AjA,. We therefore have the following
strategy for composing projective transformations.

Strategy To compose two projective transformations #1 and #5:

1. write down matrices A; and A, associated with ¢ and 7;;
2. calculate AjAjp;
3. write down the composite #; o o with which A|A; is associated.

The proof also shows that if ¢ is a projective transformation with an associ-

ated matrix A, then ! is a projective transformation with associated matrix

A~!. We therefore have the following strategy for calculating the inverse of a  See Appendix 2 for one
projective transformation. method to calculate A~
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Strategy To find the inverse of a projective transformation ¢:

1. write down a matrix A associated with ¢;
2. calculate A_l;
3. write down the inverse ! with which A~! is associated.

Example 2 Let ¢ and t, be projective transformations defined by
ty:[x,y,zl = [x +z,x +y+ 3z, —2x + 2],
tr:[x,y,z] = [2x,x +y + z,4x + 2y].

Determine the projective transformations 7 o ¢ and tl_l.

Solution The transformations ¢ and ¢, have associated matrices

1 0 1 2 00
A = 1 1 3 and Ap=1|1 1 1],
-2 0 1 4 2 0

respectively. It follows that 7, o 7] has an associated matrix

2 00 1 0 1 2 0 2
AAT=11 1 1 1 1 3]1=101 51,
4 2 0 -2 0 1 6 2 10

SO
oty :[x,y,z] — [2x +2z,y +5z,6x + 2y + 10z].

Next, 1, ! has an associated matrix Al_1 given by

1 1
3 0 —3
Al=]-51 S5s
2 1
3 0 3
a simpler matrix associated with 7, Uis then
1 0 -1
-7 3 =2,
2 0 1
SO
tfl x,y,zl e [x —z,—7x + 3y — 22,2x + z]. O

Problem 4 Let ¢, and 7, be projective transformations defined by
tl1[x,y»Z]'—>[2x+y,—x+1,)’+z],
tr:[x,y,z] — [5x + 8y,3x + 5y, 2z].

Determine the projective transformations ¢10 ¢ and #1~ 1
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Having shown that the set of projective transformations forms a group
under composition of functions, we can now define projective geometry
to be the study of those properties of figures in RP? that are preserved by
projective transformations. Those properties that are preserved by projective
transformations are known as projective properties.

332 Some Properties of Projective Transformations

We now check two important properties of projective transformations, namely,
that they preserve collinearity and incidence.

A Line in RP? is a plane in R? that passes through the origin. It therefore
consists of the set of points (x, y, z) of R? that satisfy an equation of the form

ax +by+cz=0,

where a,b and c¢ are not all zero. We can write this condition equivalently
in the matrix form Lx =0, where L is the non-zero row matrix (a b ¢) and
Xx=(xy 7.

Now let ¢ be a projective transformation defined by 7 : [x] — [AX], where
A is an invertible 3 x 3 matrix, and let [x] be an arbitrary Point on the Line
Lx = 0. Then the image of [x] under ¢ is a Point [x'] where X' = Ax. Since
x satisfies the equation Lx = 0, it follows that X’ satisfies L(A~! x') = 0, or
(LA~!) X' = 0. Dropping the dash, we conclude that the image of the Line
Lx =0 under ¢ is the Line with equation Here, LA~ ! is non-zero,

(LA—l) x=0. forif
LA™ =0,
Since the image of a Line in RP? is a Line, it follows that collinearity is (ep
preserved under a projective transformation.

Notice that if B is any matrix associated with ¢~ I then B = AA~! for some
non-zero real number A, and so (LA*I)X = 0 if and only if (LB)x = 0. It =L (A—lA) =L,
follows that the image of the Line can equally well be written as (LB)x = 0. o
(For instance, since A~ = adj(A) /det(A) so that ¢~ ! also has adj(A) as an which is not the case.
associated matrix, we can express the image of the Line as (L. adj(A))x = 0.)

We therefore summarize the above discussion in the form of a strategy, as
follows.

0= (LA—l)A

Strategy To find the image of a Line
ax +by+cz=0
under a projective transformation ¢ : [x] — [AX] :

1. write the equation of the Line in the form Lx = 0, where L is the matrix
(abo)

2. find a matrix B associated with 7~ !;

3. write down the equation of the image as (LB)x = 0.

Example 3 Find the image of the Line 2x + y — 3z = 0 under the projective
transformation ¢ defined by
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t1:[x,y,zl—= [x+z,x +y+ 3z, —2x + z].

Solution The equation of the Line can be written in the form Lx = 0, where
L=2 1 -=3).

In Example 2 we showed that 74 —1 has an associated matrix

1 0 -1
B=|-7 3 =2
2 0 1
So
1 0 —1
IB=2 1-3){ -7 3 —-2|=(-11 3-7).
2 0 1
It follows that the required image has equation
—1lx+3y—7z=0. |

Problem 5 Find the image of the Line x + 2y — z = 0 under the
projective transformation 71 defined by

iy zl= Rx+y,—x+z,y+z].

Next, we consider the incidence property. If two Lines intersect at the Point
P, then P lies on both Lines. So if 7 is a projective transformation, then #(P)
lies on the images of both Lines. It follows that the image under ¢ of the Point
of intersection of the two Lines is the Point of intersection of the images of
the two Lines. In other words, incidence is also preserved under a projective g,
transformation.

P t(P)

Lt 1)
Theorem 2 Collinearity and incidence are both projective properties.

333 Fundamental Theorem of Projective Geometry

In Chapter 2 we discussed the Fundamental Theorem of Affine Geometry
. . . . 2 . unique affine
which states that given any two sets of three non-collinear points of R“ there is transformation
a unique affine transformation which maps the points in one set to the cor- A A
responding points in the other set. So an affine transformation is uniquely 7 c A
determined by its effect on any given triangle. B e rod
In this subsection we explore an analogous result for projective geometry
known as the Fundamental Theorem of Projective Geometry. We begin by
asking you to tackle the following problem.

Problem 6 Let 7; and 7, be the projective transformations with
associated matrices
—4 -1 1 -8 —6 -2
Ai=1-3 -2 1})ad Ay={|-3 4 7},
4 2 -1 6 0 —4



158

respectively. Find the images of the Points [1,—1,1], [1,—2,2] and
[—1,2,—1] under #; and 1;.

You should have found that both of the projective transformations #; and
tp map the Points [1, —1, 1], [1, —2,2] and [—1, 2, —1] to the Points [—2,0, 1],
[0,3,—2] and [1, —2, 1], respectively. Notice, however, that #; and #, are not the
same projective transformation, since their matrices are not multiples of each
other. It follows that, unlike affine transformations, projective transformations
are not uniquely determined by their effect on three (non-collinear) Points.

This raises the question as to whether it is possible to specify how many
Points are required to determine a projective transformation. According to
the Fundamental Theorem of Projective Geometry, the answer is four. In
fact the theorem states that given any two sets of four Points, no three of
which are collinear, there is a unique projective transformation that maps the
Points in one set to the corresponding Points in the second set. Thus, in pro-
jective geometry a transformation is uniquely determined by its effect on a
quadrilateral.

To understand why a triangle is insufficient to determine a projective trans-
formation uniquely, consider what happens when we look for a projective
transformation that maps the triangle of reference to three given non-collinear
Points.

Example 4 Find a projective transformation ¢ that maps the Points [1, 0, 0],
[0, 1, O] and [0, O, 1] to the non-collinear Points [1,—1,1],[1,—2,2] and
[—1,2, —1], respectively.

Solution Let A be a matrix associated with ¢, and let the first column of A

a
be | b |. Then since
c
a 1 a 1
b 0 = = —1 ,
c 0 1
1
it follows that we may take | —1 | as the first column of A.
1
Similarly, since
* d % 0 d 1
* e % 1 = e = )
* f = 0 f 2
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unique projective
transformation
A = A D

Recall that the Points

[1, 0,01, [0, 1, 0] and [O,
0, 1] are known as the
triangle of reference.

Here the asterisks *
denote unspecified
numbers.
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and
8 0 4 -1
h = h = 2 s
k 1 k -1
it follows that a suitable transformation is given by ¢ : [x] — [Ax] where Notice that because the
Points [1, —1, 1],
b~ [1,—2,2] and [=1,2, —1]
A=| -1 -2 2 1. are not collinear it follows
1 2 -1 o that the columns of A are

linearly independent, so
that A is invertible.

This example illustrates the fact that we can always find a projective
transformation ¢ : [x] +— [Ax] which maps the triangle of reference to
three non-collinear Points simply by writing the homogeneous coordinates
of the Points as the columns of A. Notice, however, that the transforma-
tion we obtain is not unique. Indeed, if the Points [1, —1,1], [1,—2,2] and
[—1,2,—1] in Example 4 are rewritten in the form [u, —u, u], [v, —2v, 2v] and
[—w, 2w, —w], for some non-zero real numbers u, v, w, then the matrix
becomes

u 20 —w

The corresponding transformation 7 : [x] — [AX] still maps the triangle of
reference to the Points [1,—1, 1], [1,—2,2] and [—1,2, —1], as required, but
the effect that ¢ has on the other Points of RP? depends on the numbers u, v
and w.

So if we wish to specify ¢ uniquely we need to assign particular values to u,

v and w. We can do this by specifying the effect that # has on a fourth Point = Recall that the Point [1, 1,
[1,1,1]. 1] is known as the unit
Point.

Example 5 Find the projective transformation ¢ which maps the Points
[1, 0, 0], [0, 1, O], [0, O, 1] and [1, 1, 1] to the Points [1,—1, 1], [1,—2,2],
[—1,2,—1] and [0, 1, 2], respectively.

Solution If A is the matrix associated with ¢, then its columns must be
multiples of the homogeneous coordinates [1, —1, 1], [1,—2,2],[—1,2,—1];
that is,

u 2 —w
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Also, to ensure that + maps [1, 1, 1] to [0, 1, 2] we must choose u«, v and w
so that

u vo—w
—u —2v 2w 1 = 1
u 2v —w 2

We can do this by solving the equations

u+v—w=0,

—u—2v+4+2w=1,

u+2v—w=2.
Adding the second and third equations we obtain w = 3. If we then subtract
the first equation from the third we obtain v = 2. Finally, if we substitute

v and w into the first equation we obtain u = 1. The required projective
transformation is therefore given by ¢ : [x] — [AX], where

1 2 -3
A=[-1 -4 6].
1 4 -3 .

It is natural to ask whether the method used in this example can be adapted to
find a projective transformation which maps the triangle of reference and unit
Point to any four given Points. The answer is usually yes, but since collinearity
is a projective property, and since no three of the Points [1, 0, 0], [0, 1, 0], [0,
0, 1], [1, 1, 1] are collinear, the method must fail if three of the four given
Points lie on a Line. Provided we exclude this possibility, the answer is yes!

Strategy To find the projective transformation which maps

[1,0,0] to [a1, a2, asl],
[0,1,0] to [by, ba, b3,
[0,0,1] to [c1, c2,c3],
[1,1,1] to [d1,da, d3],

where no three of [ay,a2,a3],[b1,b2,b3],[c1,c2,¢3],[d1,da,d3] are

collinear:

1. find u, v, w such that

aiu biv cw 1 d;
au by cw 1)1=1d |;
azu bzv czw 1 d
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The columns of A are still
linearly independent
because they are non-zero
multiples of the linearly
independent vectors
1,-1,1), (1,—-2,2) and
(—-1,2,-1).

We explain why the
method works in the
Remark that follows the
strategy.
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2. write down the required projective transformation in the form 7 : [x] —
[Ax], where A is any non-zero real multiple of the matrix

aiu biv cw
amu by cw
azu  b3v cyw

Remark

To see why this strategy always works, notice that we can rewrite the equation
from Step 1 in the form

ajy by 1 d
ula |+tvlb |+wlceo|l=|d
a3 b3 3 ds

From this we can make the following observations.

(a) The equation in Step 1 must have a unique solution for u, v, w because
the required values of u, v and w are simply the coordinates of (dy, d>, d3)
with respect to the basis of R formed from the three linearly independent
vectors (ay,ap,as), (b1, by, b3), (c1,c2,3).

(b) The values of u, v and w must all be non-zero, because otherwise
three of the vectors (ai,a»,as), (b1, b, b3), (c1,c2,c3), (d1,dr,d3) would
be linearly dependent.

(c) Since the columns of A are non-zero, multiples of the linearly independent
vectors (ap,a»,as), (by,bz,b3), (c1,c,c3) it follows that A is invertible,
and hence that 7 is a projective transformation.

There is no need to check whether any three of the four given Points are
collinear because any failure of this condition will emerge in the process of
applying the strategy. Indeed, if the equation in Step 1 fails to yield unique
non-zero values for u, v and w, then it must be because three of the Points
(al, aj, a3), (bl, b2, b3), (Cl, c2, C3), (dl, dz, d3) lie on a Line.

Problem 7 Use the above strategy to find the projective transforma-
tion which maps the Points [1, 0, 0], [0, 1, 0], [0, O, 1] and [1, 1, 1] to
the Points:

(a) [-1,0,0],[—3,2,0],[2,0,4] and [1, 2, —5], respectively;
(b) [1,0,01,[0,0, 1], [0, 1, 0] and [3, 4, 5], respectively;
(c) [2,1,0],[1,0,—11,[0,3,—1] and [3, —1, 2], respectively.

Now consider the transformation #; in Problem 7(a). The inverse of this,
t 1 , 1s a projective transformation which maps the Points [—1,0, 0],[—3, 2, 0],
[2, 0, 4] and [1,2, —5] back to the triangle of reference and unit Point. So
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The non-zero multiple can
be used to clear fractions
from the entries of the
matrix A.

Since no three of the
Points [ay,ap, a3],
[b1,b2,b3],[c1,c2, 3],
[dy, d>, d3] are collinear, it
follows that any three of
the vectors (ay,ay,as),
(b1,b2,b3), (c1, 2. ¢3),
(dy,dp,d3) must be
linearly independent.
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if, after applying this inverse, we apply the projective transformation #, in
Problem 7(c), then the overall effect of the composite #; ot !is that of a projec-
tive transformation which sends the Points [—1,0,0],[—3,2,0], [2, 0, 4] and
[1,2,—5] directly to the Points [2, 1, 0], [1,0,—1],[0,3,—1] and [3, —1, 2],
respectively.

a1
1,01,

* [2,1,0]

o [-3,2,0] ® [1,2,-5]

O [1,0,-1] ®[3,-1,2]

%[2,0,4]

% [0,3,-1]

+[1,0,0]

010,1,0] e [1,1,1]

% [0,0,1]

In a similar way we can find a projective transformation which maps any set
of four Points to any other set of four Points. The only constraint is that no
three of the Points in either set can be collinear. In the following statement of
the Fundamental Theorem we express this constraint by requiring that each of A
the four sets of Points lie at the vertices of some quadrilateral, where a quadri-

B
lateral is defined as follows. A quadrilateral is a set of four Points A, B, C
and D (no three of which are collinear), together with the Lines AB, BC, CD D
and DA. C
Theorem 3 The Fundamental Theorem of Projective Geometry unique projective
Let ABCD and A’B'C’ D’ be two quadrilaterals in RP?. Then: transformation

A, A D

(a) there is a projective transformation # which maps B @ Q
D

AtoA',BtoB',CtoC’,Dto D’; ¢ o ‘

(b) the projective transformation ¢ is unique.

Proof According to the strategy above, there is a projective transformation
t1 which maps the Points [1, 0, 0], [0, 1, O], [0, O, 1], [1, 1, 1] to the
Points A, B, C, D, respectively. Similarly, there is a projective transformation
o which maps the Points [1, 0, 0], [0, 1, 0], [0, O, 1], [1, 1, 1] to the Points
A’,B',C’', D', respectively.
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-1
1ot

% [1,0,0]

e [1,1,1]

% [0,0,1]

(a) The composite t = fo t is then a projective transformation which maps
AtoA', BtoB',CtoC’,Dto D'

(b) To check uniqueness of 7, we first check that the identity transforma-
tion is the only projective transformation which maps each of the Points
[1, 0, 0], [0, 1, O], [O, O, 1], [1, 1, 1] to themselves. In fact any projective  This follows from the
transformation with this property must have an associated matrix which is ~ discussion leading to the
some non-zero multiple of the matrix strategy above.

u 0 0 u 0 0 1 1
0O v 0}, where |0 v O 1]1=11
0O 0 w 0 0 w 1 1

Such a matrix must be (a non-zero multiple of) the identity matrix, and so
the transformation must indeed be the identity.

Next suppose that ¢ and 7’ are two projective transformations which satisfy
the conditions of the theorem. Then the composites 7, "otot and ty ot
o t; must both be projective transformations which map each of the Points
[1,0,0],[0, 1, 0], [0, O, 1], [1, 1, 1] to themselves. Since this implies that both
composites are equal to the identity, we deduce that

-1 -1
I, otof] =1, ot/otl.

If we now compose both sides of this equation with #, on the left and with 7~ !
on the right, then we obtain ¢ = ¢’, as required. |

The Fundamental Theorem tells us that there is a projective transformation
which maps any given quadrilateral onto any other given quadrilateral. So we
have the following corollary.
By projective-congruent
Corollary All quadrilaterals are projective-congruent. we mean that there is a

projective transformation
If we actually need to find the projective transformation which maps one  that maps any

given quadrilateral onto another given quadrilateral, we simply follow the —quadrilateral onto any
strategy used to prove part (a) of the Fundamental Theorem. ather quadrilateral.
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Strategy To determine the projective transformation ¢ which maps the
vertices of the quadrilateral ABCD to the corresponding vertices of the
quadrilateral A’B’C’D’:

unique projective

1. find the projective transformation #; which maps the triangle of reference ZansfforiiﬁonA, .
and unit Point to the Points A, B, C, D, respectively; B

2. find the projective transformation 7, which maps the triangle of reference @D Q
and unit Point to the Points A’, B/, C’, D/, respectively; ¢ B «

3. calculate t =t ot )

Example 6 Find the projective transformation ¢ which maps the Points
(1, —1, 2], [1, =2, 11, [5, —1, 2], [1, O, 1] to the Points [—1, 3, —2], [-3,
7, =51, [2, =5, 41, [-3, 8, —5], respectively.

Solution We follow the steps in the above strategy.

(a) Any matrix associated with the projective transformation #; which maps
the Points [1, O, 0], [0, 1, 0], [0, O, 1], [1, 1, 1] to the Points [1,—1, 2],
[1,—2,1],[5,—1,2], [1, O, 1], respectively, must be a multiple of the

matrix
u v Sw u v Sw 1 1
—u —2v —w |, where| —u —-2v —-w 11=10
2u v 2w 2u v 2w 1 1

Solving the equations
u+v—+sw=1,
—u—2v—w=0,

2ut+v+2w =1,

W=

we obtain u = %, v LW = %. So a suitable choice of matrix for #; is

3 _o 5 It is simpler to multiply
the first matrix by 6 to
obtain integer entries.

6 -2 2 This does not alter the
projective transformation
11 with which the matrix
is associated.

, ormore simply Aj = | -3 4 -1

1
2
1
2
1

W= W W—
W= = N

(b) Any matrix associated with the projective transformation #, which maps
the Points [1, O, 0], [0, 1, O], [0, O, 1], [1, 1, 1] to the Points
[—1,3,-2],[-3,7,—5],[2, —5,4],[—3, 8, —5], respectively, must be a
multiple of the matrix

—u —3v 2w —u —3v 2w 1 -3
3u Tv  —5w |, where 3u Tv  —5w 1] = 8
—2u  —5v 4w —2u  —5v 4w 1 =5
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Solving the equations
—u —3v+2w = -3,
3u+7v—5w =8,
—2u —5v+4w = -5,

we obtain u = 2,v = 1, w = 1. So a suitable choice of matrix for #, is

2 -3 2
Ar=| 6 7 =5
—4 -5 4

(¢) A matrix associated with the inverse, 7, 1, of 11 is Al_l, which we can

calculate to be

1 1 1
7 1. 1
A=l 0 L} L |
1 1 _1
4 12 12
then a simpler matrix associated with #,” is
1 -1 -3
B=| 0 -4 =2
-3 -1 1
The required projective transformation is therefore ¢ : [x] — [Ax],
where
-2 =3 2 1 -1 -3
A=AB= 6 7 -5 0 —4 =2
-4 -5 4 -3 -1 1
-8 12 14
= 21 —=29 -—-37].
—16 20 26 O

Problem 8 Find the projective transformation ¢ that maps the Points
[—1,0,0],[-3,2,0], [2, 0, 4], [1,2, —5] to the Points [2, 1, 0], [1,0, —1],
[0,3,—1], [3, —1, 2], respectively.

Problem 9 Find the projective transformation ¢ that maps the Points
[1,0,-3],[1,1,-2], [3,3,—5], [6,4,—13] to the Points [3,-5,3],
[%, —1,0],[3,-5,6], [8, —13, 12], respectively.
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In this subsection we discuss the relationship between projective transforma-
tions and the perspectivities introduced in Section 3.1.

Geometrical Interpretation of Projective Transformations
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You may omit this
subsection at a first
reading, as it is quite hard

going.
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Starting from the geometric definition of perspective in Subsection 3.1.1,
we will define the term perspective transformation, show how a perspective
transformation may be interpreted as a projective transformation, and finally
prove that any projective transformation can be expressed as the composite of
at most three perspective transformations.

So, let 7 and 77’ be two embedding planes in R3 that do not pass through the
origin O in R3, and let C (# O) be another point in R3 such that OC is not
parallel to either 7w or r’. Let C have position vector ¢ (based at O). Also, let
o denote an arbitrary perspectivity from the point C that maps the plane 7 to
the plane 7’.

Now, the perspectivity o will map any point P (with position vector p) in
onto some point P’ (with position vector p) in 7/, so long as the vector p — ¢
is not parallel to the plane 7’. We then define the perspective transformation
associated with ¢ to be the mapping of R to itself that maps the line [p — c]
onto the line [p’ — ¢]. But since C, P and P’ are collinear, it follows that the
vectors p — ¢ and p’ — ¢ must be parallel (equivalently, that [p —¢] = [p’ —c]);
hence there is some real number ¢ such that

p—c=t(p—c).
We can then rewrite this formula in the form
P=tp—0+c
or
p=tp+ -1,
so that
[p] = [rp+ (1 —1)c].

In this way, the perspectivity o gives a one-one mapping from 7 onto 7/,
except that it is not defined on the line £ in w where & cuts the plane through
C parallel to r’; also, there are no points of 7 that map onto points of 7’ on
the line £’ where 7’ cuts the plane through C parallel to 7. We use the fact that

3: Projective Geometry: Lines

Recall that a projective
transformation of RP? is
a map [x] — [Ax], where
A is an invertible 3 x 3
matrix.

Note that O, C, P and P’
are coplanar.

Recall that a line through
the origin in R2isa
1-dimensional vector
space.

The value of 7 will depend
on the particular point P
under discussion.
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the ideal Points for a plane correspond to the directions of lines in the plane,
rather than actual points in the plane, to extend our definition of the map.

So, first, let P be a point of 7 that lies on the line £; then the points O, C, P
are not collinear, since OC is not parallel to the plane 7". Denote the position
vector 0—15 by p. Let the plane through O, C and P meet the plane 7’ in a line,
and let p’ be a position vector based at O that is parallel to this line. Then we
specify that our (extended) map o maps the line [p] through O onto the line
[p’] through O.

Similarly, let P’ be a point of 7’ that lies on the line £’; then the points O,
C, P’ are not collinear, since OC is not parallel to the plane 7. Denote the

position vector HF/ by p’. Let the plane through O, C and P’ meet the plane
7 in a line, and let p be a position vector based at O that is parallel to this line.
Then we specify that our (further extended) map o maps the line [p] through
O onto the line [p’] through O.

Finally, we specify that the extended map o maps the line through O that is
parallel to the line of intersection of 7 and 7" onto itself.

In this way, we have constructed a transformation that is a one-one mapping
of 7t U {the ideal Points for 7} onto 7’ U {the ideal Points for 7’ } associated
in a natural way with the given perspectivity o, and we call it the associated
perspective transformation. This maps the family of Euclidean lines through
O onto itself, in other words RP? onto itself.

We now explain why we can think of this perspective transformation as a
projective transformation.

First, we consider a perspectivity in R? as this will prove useful later in our  In our discussion we shall
discussion. So, let £ and £’ be two lines in R? that do not pass through the —omit discussion of ‘the
origin O in R2, let L be the common point of the two lines, and let C(£ Q) €Xceptional points’, for
be another point in R? such that OC is not parallel to either £ or ¢’. Consider simplicity.
any perspectivity o, with centre some point C, say, that maps ¢ ‘onto’ ¢'.

We are interested in the map 7 that sends lines through O to lines through O %
C
¢

that is obtained from o as follows. Let o map the point P on £ onto the point )
P’ on ¢'. Then we define T(OP) = OP'. Y
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the line ¢" at P’ then O, C, P and P’ are collinear and so t(OC) = OC.

We therefore _c_lloose to take as basis vectors in R? the vector e = OL and
the vector ¢ = OC.

We now find the effect of the map t on a line through the origin O. We shall ’
suppose that the line OC meets the line ¢ at the point with position vector k¢ % ¢
and the line £’ at the point with position vector k’c. Any point P on the line £ _te+(1-tke
then has position vector te 4+ (1 — ¢)kc, for some real number ¢, and any point
P’ on the line ¢’ has position vector se + (1 — s)k’c, for some real number s. el e

Next, the line OP consists of the points with coordinates u (e + mc¢) = ue + 0
muc for a fixed value of m and varying values of u. This gives two (equivalent)
expressions for the position of the point P, namely e+ (1 — ¢)kc and ue+muc.

It follows that we must have

It is clear that T (OL) = OL, because L is fixed by o. P”(/
It is also clear that 7(OC) = OC, because if the line OC meets £ at P and /c
4 L P
f ke
C
0" ¢
o

14

P e ke
P’ c
c

u=t and mu= (1 —1)k.

Dividing the second equation by the first, we get

I —1t
m=——=k
t
so that
tm =k — kt,
which yields the formula
k
= —7-.
m+k

Similarly, the line OP’ consisting of points u’(e + m’c) = u'e + m'u’c, for a
fixed value of m’ and varying values of u’, meets the line ¢’ at the point P’

where
k/
- m + k'
Now, we have t(OP) = OP' if and only if the points C, P and P’ are collinear; . v

\

that is, if and only if there is a real number r such that

u (e\+m c)

r(te+ (1 —t)ke —c¢) =se+ (1 — s)k'ec —c.
This is the case if and only if
rt=s and r((1—-0k—1)=({—-s)k —1.

We can eliminate » by dividing the second equation by the first equation, so
obtaining
I-0k—1 (A-s5)k—1
t B s '

. . k K- . .
Then, if we substitute ¢ = T and s = w7 into this equation, after some
manipulation we obtain the remarkable result that

. (k=DK

="k
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It follows that, in terms of the basis elements e and ¢, the map t of the family
of lines through O to itself given by

()]~ 1G]

can be represented by the matrix

1 0
k=K |-
0 *—=Dk

For convenience, we write this matrix in the form

(b 7)

where r is a fixed number that depends only on the geometry of the two lines
¢ and ¢’ and on our choice of the point C. Furthermore, r # 0 since k # 1
(for k = 1 implies that C lies on 7r) and k' # 0 (for k¥’ = 0 implies that O lies
on 1’).

Now we consider the situation in R3, in relation to RIP2. Consider an arbi-
trary perspectivity o, with centre some point C, say, that maps a plane = ‘onto’
aplane 7/, with neither O nor C lying on 7 or 7r’. As before, we shall suppose
that the line OC meets the plane 7 at a point with position vector k¢ and the
plane 7’ at a point with position vector k’c.

Once again, we are interested in the map 7 that sends lines (in R?) through
O to lines through O that is obtained from o as follows. Let o map a point P
in 7r to a point P’ in 7r’. Then we define T (OP) = OP'.

Let E; and E, be any two points on the common line £ of the two planes.
Then, clearly, T(OE|) = OFE; and t(OE>) = OFE; because every point of £ is />
fixed by o. £ \‘E &, \
It is also clear that 7(OC) = OC, because if the line OC meets the plane = N
7 at Q and the plane 7’ at Q’, then O, C, Q and Q’ are collinear, and so > X\e
7(0C) = OC. o
We therefore now take as basis vectors in R3 the vectors e = O—E>1,

e = _0—_>Ez,andc= O—>C
We now find the effect of  on a line in R through the origin O. We can
simplify our task by observing that the lines OC, OP and OP’ all lie in a plane,
7" say; let this plane meet the line common to the given planes 7 and 7’ at a
point E. We then define e = &’5 T
We can now apply our earlier discussion of the planar case to the restriction R
of the mapping 7 to the plane 7”. If we denote the lines OP and OP’ by the 0
parametrizations

OP = u(e + me) = ue + ume, where m is fixed and u varies,
OP =u'(e+m'ec) =u'e+u'm'e, wherem'isfixed and u’ varies,

it follows from our earlier discussion that m’ can be expressed in the form
rm, where r is a fixed number that depends only on the geometry of the two
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planes 7= and 7" and on our choice of the point C. Hence we can rewrite the
parametrization of OP’ as

OP' =u' (e +rmc) = u'e +u'rme, where r, m are fixed and u’ varies.
Next, we can express the position vector e of the point £ in the form
e=te; + (1 —t)ep, for some number ?.
Then we have that the mapping v maps the line
OP = u(te; + (1 —t)er + mce) = ute; + u(l — t)er + ume
onto the line
OP' =u'(te; + (1 — t)ey + rme) = u'te; +u'(1 — t)ey + u'rme.

It follows analogously to the two-dimensional situation that, in terms of the
basis elements e, e», ¢, the mapping t of the family of lines in R3 to itself
can be represented by the matrix

Notice that this maps the
line represented by the
points [z, 1 — ¢,0] to itself
pointwise, as it should.

1 0 O
0o 1 0],
0O 0 r

where the (non-zero) constant r depends only on the position of the planes &
and 7', Since this is an invertible 3 x 3 matrix, this is our required description
of the perspective transformation as a projective transformation.

We now go the other way round, and obtain a projective transformation as
a sequence of three perspective transformations. We have a lot of freedom,
because we can choose the centres of perspectivities and the planes.

Suppose we are given a projective transformation t and two embedding
planes 7 and 7’. Let [a], [b], [c], [d] be any four non-collinear Points, and
[a'], [b'], [¢'], [d] be any other four non-collinear Points; we can represent
these Points by (Euclidean) points A, B, C, Din 7 and A’, B’, C/, D' inn’,
respectively.

We will use in our discussion the existence and uniqueness parts of the Fun-  Subsection 3.3.3,
damental Theorem of Projective Geometry: namely, that there is one and only =~ Theorem 3
one projective transformation mapping four non-collinear Points to any other
four non-collinear Points. This means that if we can find a composite of three
perspective transformations that maps [a], [b], [¢], [d] to [a'], [b'], [¢/], [d'],
respectively, then this composite must be a projective transformation (by the
existence part) and it must equal the given projective transformation 7 (by the
uniqueness part).

We now exhibit a sequence of three perspectivities the composite of which
mapsA, B, C,Dinx to A’, B', C’, D’ in z’. In our discussion it is convenient
to let AB and CD meet at E, AC and BD meet at I/, and AD and BC meet
at G, with analogous definitions of E’, F’ and G’. (You may find the figures
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below helpful to follow through the argument; though, for simplicity, we have
omitted the initial plane 7 and the points F’, F” and F"".)

1. The first perspectivity is from the plane 7 to a plane " that passes through
A’. The centre of this perspectivity is an arbitrary point P; on the line AA’
(if A = A’, then P; can be chosen to lie anywhere not on 7 or 7’). This
perspectivity maps Ato A’ and B, C, D, E, F, Gto B”, C", D", E", F", G”,
say, respectively. We can assume, by suitably varying 7", that B’B” and
E’E" are not parallel.

2. Now, by the definition of E’ the points A’, B’, E’ lie on a line through
A’, and since the points A, B, E are collinear the points A’, B”, E” lie
on a line through A’; so these five points lie in a plane, and because the
lines B’B” and E’'E” are not parallel they meet in a point, P, say. We then
pick a plane 7" through the line A’B’E’ and map the plane 7" onto 7"
by the perspectivity with centre P,. This sends A’, B”, E"to A’, B, E’,
respectively, and the points C”, D", F”, G” to, say, C"”", D", F"", G",
respectively. As before, we can assume that D’'D” and G’'G” are not
parallel.

3. Now, since A, D, G are collinear, the points A’, D’, G’ lie on a line through
A’ and the points A’, D", G'” lie on a line through A’, so these five points
lie in a plane; and because the lines D’ D" and G’G"" are not parallel they
meet in a point, P3 say. We then map the plane 7 onto the plane 7z’ by
the perspectivity with centre Ps. This map sends A’, B, D", E"”", G" to
A', B, D', E’, G', respectively.

This third perspectivity sends the line B’G"” to the line B’G’ and the line
D" E’ to the line D'E’, so it maps the point C” to the point C’.

Thus the composite of these three perspectivities maps the points
A, B, C, Dinmwto A’, B/, C’, D' inn’, as required.
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A A

B+ B", Cw— C”,
Dw D', Ew E",
F—F'" G~ G”

A’ fixed;
B// > B/ E// — E/

" n a n
C"—C", D"+~ D",

1 111 1 "
F'—>F", G'"— G

Refer here to the figure
below.

A’, B’, E' fixed

D/// — D/, G/// — G/
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Theorem 4 Perspectivity Theorem
Every projective transformation can be expressed as the composite of three
perspective transformations.

3.4 Using the Fundamental Theorem of Projective Geometry

In Section 3.2 we described how an embedding plane 7 can be used to rep-
resent projective space RIP?. The Points of RPP? are represented by Euclidean
points in 7 and the Lines of RP? are represented by Euclidean lines in 7.

In general, any Euclidean figure in an embedding plane corresponds to
a projective figure in RIP?, and visa versa. This correspondence enables us
to compare Euclidean theorems about a figure in an embedding plane with
projective theorems about the corresponding projective figure. Provided that
the theorems are concerned exclusively with projective properties, such as
collinearity and incidence, then a Euclidean theorem will hold if and only if
the corresponding projective theorem holds.

341 Desargues’ Theorem and Pappus’ Theorem

The advantage of interpreting a Euclidean theorem as a projective theorem
in this way is that we can often obtain a much simpler proof of the theorem
than would be possible using Euclidean geometry directly. We illustrate this
by using projective geometry to prove the theorem of Desargues.

The Euclidean figure may
have some ideal Points
attached to it.

We introduced Desargues’
Theorem in Subsection
3.1.3.
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Theorem 1  Desargues’ Theorem

Let AABC and AA’B’C’ be triangles in R? such that the lines AA’, BB’ and
CC’ meet at a point U. Let BC and B’C’ meet at P, CA and C’'A’ meet at
0O, and AB and A’ B’ meet at R. Then P, Q and R are collinear.

Q

Proof Because this theorem is concerned exclusively with the projective
properties of collinearity and incidence we can interpret it as a projective the-
orem in RP?. Moreover, by the Fundamental Theorem of Projective Geometry
we know that any configuration of the theorem is projective-congruent to a con-
figuration of the theorem in which A = [1,0,0], B = [0, 1,0], C = [0,0, 1]
and U = [1, 1, 1]. If we can prove the theorem in this special case then we
can use the fact that projective-congruence preserves projective properties to
deduce that the theorem holds in general.

To prove the special case we use the algebraic techniques described in
Section 3.2. First observe that the Line AU passes through the Points [1, 0, 0]
and [1, 1, 1], and therefore has equation y = z. Since A’ is a Point on AU, it
must have homogeneous coordinates of the form [a, b, b], for some real num-
bers a and b. Now, b # 0, since A # A’; so we may write the homogeneous
coordinates of A" in the form [p, 1, 1] (where p = a/b).

Similarly, the homogeneous coordinates of the Points B’ and C’ may be
written in the form [1, g, 1] and [1, 1, 7], respectively, for some real numbers g
and r.

We now find the Point P where BC and B’C’ intersect. The Line BC has
equation x = 0. Since the Line B’C’ passes through the Points B’ = [1, ¢, 1]
and C' =[1, 1, r], it must have equation

—_—
—_— R =
N =N
I
L
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For [a,0,0] = [1,0,0].

We omit the details of the
calculations.
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which we may rewrite in the form
(gr—Dx—@r—Dy+(1—-¢g)z=0.

It follows that at the Point P of intersection of the Lines BC and B'C’ we
musthave x =0 and (r—1)y = (1—¢)z, so that P has homogeneous coordinates

[0,1 —¢q,r —1].
Similarly, the Points Q and R have homogeneous coordinates [l — p, We omit the details of the
0,r — 1]and [1 — p,q — 1,0], respectively. calculations.

Now, the Points P, Q and R are collinear if

0 1—q r—1
1—p 0 r—1=0.
1—p qg—1 0

But

0 l—qg r—1
1—p 0 r—1
1—p g—1 0

P 1—p r—1 B 1—p 0
A FX R A
=-(l-¢9U-pd-r+0T-DHA-p)g-1

=0.

It follows that P, Q and R are collinear, as asserted. The general result now
holds, by projective-congruence. |

When using the Fundamental Theorem to simplify proofs of results in pro-
jective geometry, we do not usually refer to projective-congruence. Instead, so
long as the properties involved are projective properties, we content ourselves
with an initial remark of the type: ‘By the Fundamental Theorem of Projective
Geometry, we may choose the four Points. . ., no three of which are collinear,
to be the triangle of reference and the unit Point; that is, to have homogeneous
coordinates [1, 0, 0], [0, 1, 0], [0, O, 1] and [1, 1, 1], respectively’.

Problem 1 Let AABC be a triangle in R?, and let U be any point of R?
that is not collinear with any two of the points A, B and C. Let the lines
AU, BU and CU meet the lines BC,CA and AB at the points A’, B’
and C’, respectively. Next, let the lines BC and B’'C’ meet at P, AC and
A’C" meet at Q, and AB and A’ B’ meet at R. Prove that P, Q and R are
collinear.
Hint: Let A, B, C be the vertices of the triangle of reference, and let U
be the unit Point. Then determine the homogeneous coordinates
of the Points A’, B’ and C’.
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Next we use the Fundamental Theorem of Projective Geometry to prove
Pappus’ Theorem.

Theorem 2  Pappus’ Theorem This theorem is named
Let A, B and C be three points on a line in R?, and let A, B’ and C’ be three after Pappus, a Greek
points on another line. Let BC” and B’C meet at P, CA’ and C’A meet at mathematician who
0, and AB’ and A’ B meet at R. Then P, Q, R are collinear. discovered it in the 3rd

century AD.

Proof We interpret the theorem as a projective theorem, so: by the Funda-
mental Theorem of Projective Geometry we may choose the four Points A,
A’, P, R, no three of which are collinear, to be the triangle of reference and
the unit Point; that is, to have homogeneous coordinates [1, 0, 0], [0, 1, 0],
[0,0,1]and [1, 1, 1], respectively.

First observe that the Line AR passes through the Points [1, 0, 0] and
[1, 1, 1], and must therefore have equation y = z. Since B’ is a Point on
AR, it must have homogeneous coordinates of the form [a, b, b] for some real
numbers a and b. Now, b # 0 since A # B’, so we may write the homogeneous
coordinates of B’ in the form [r, 1, 1] (where r = a/b).

Similarly, the Point B lies on the Line x = z through the Points A" =
[0,1,0] and R = [1,1, 1], so it must have homogeneous coordinates of the
form [1, s, 1].

Next we find the Point C where the Line A B intersects the Line B’ P. Since
the Line A B passes through the Points A = [1,0,0] and B = [1, s, 1], it must
have equation y = sz. Also since the Line B’P passes through the Points
B’ =[r,1,1]and P = [0,0, 1] it must have equation x = ry . At the Point C
where AB meets B’P we have y = szand x =ry, so C = [rs,s, 1].

Similarly, C’ is the point where the Line BP intersects the Line A’B’.
Since B = [1,s,1] and P = [0,0, 1], BP has equation y = sx; and, since
A" = [0,1,0] and B’ = [r,1,1], A’B’ has equation x = rz. It follows that
C' =I[r,rs,1].

Finally we find the point Q where AC’ intersects A’C. Since the Line AC’
passes through the Points A = [1,0,0] and C' = [r,rs, 1] it must have

A 10,101
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equation y = rsz. Also the Line A’C passes through the Points A" = [0, 1, 0]
and C = [rs,s, 1] so it must have equation x = rsz. At the Point Q where
AC’ intersects A’C we have y = rsz and x = rsz,so Q = [rs,rs, 1].
To complete the proof we simply observe that the Points R = [l, 1, 1], A fortunate choice of
Q = [rs,rs,1]and P = [0,0, 1] all lie on the Line x = y. It follows that P, Q  Points for the triangle of

and R are collinear ] reference and unit Point
meant that we did not

Although we can sometimes simplify the proof of a Euclidean theorem by  have touse the. '
using projective geometry, there is another more subtle reason for interpreting determinant criterion for
a Euclidean theorem as a projective theorem. By doing so we can often avoid
having to make special provision for exceptional cases, such as when two lines
are parallel. In projective geometry, Lines which correspond to a pair of paral-
lel lines in an embedding plane actually meet and are therefore no different to
any other Lines.

As an example, consider the diagram in the margin. This illustrates the sit-
uation that occurs in Pappus’ Theorem when the Point of intersection R of
A’B and AB’ is an ideal Point for the embedding plane. The above proof of
Pappus’ Theorem is able to cope with this situation because it uses arguments
from RIP?! Our interpretation of the theorem on an embedding plane in this
situation is that the Points P and Q must be collinear with the ideal Point R at
which A’B and A B" meet. That is, P Q must be parallel to both A’B and AB’.

collinearity at the final
stage of the argument.

Problem 2 Give a Euclidean interpretation of Desargues’ Theorem on
an embedding plane 7 in the case where Q is an ideal Point for 7.

342 Duality

Recall that two key projective properties that we have met so far have a certain
symmetry between them.

Collinearity Property Incidence Property unique unique
Line Point

Any two distinct Points Any two distinct Lines
lie on a unique Line. meet in a unique Point.

We can obtain one property from the other simply by interchanging the
words ‘Point’ and ‘Line’, and making whatever other changes are needed to
ensure that the sentence makes sense. We say that this interchanging process
dualizes one statement into the other, and that each statement is the dual of the
other.

For example, ‘a family of Points on a Line’ becomes ‘a family of Lines
through a Point’ under dualization. Similarly, ‘a triangle’ or ‘a family of three
non-collinear Points and the three Lines joining them’ dualizes to ‘a family of
three non-concurrent Lines and the three Points where they meet’, which is
again a triangle. Since a triangle is thus dual to a triangle, we say that triangles
are self-dual figures.
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-y UX

The dualization process is particularly interesting when applied to theorems.
We shall illustrate this in the context of Pappus’ Theorem. In order to do this, it
is helpful to rephrase Pappus’ Theorem using the term hexagon. As you would
expect, a hexagon in RIP? consists of six Points joined by six Lines. The figure
below illustrates (Euclidean) hexagons in an embedding plane; the correspond-
ing hexagons in RP? are the corresponding six Points and six Lines — that we
model as six lines and six planes in R>.

O L YA

We can now rephrase Pappus’ Theorem in the following form.

Theorem 3 Pappus’ Theorem (rephrased)

Let the vertices A, B’,C, A’, B and C’ of a hexagon lie alternately on two You should compare this
different Lines. Then the Points of intersection of opposite sides B'C and  formulation with that in
BC',CA’ and C'A, AB’ and A’B, are collinear. Subsection 3.4.1.

A’ B’ C’

If we dualize this theorem, we obtain the following theorem.
Charles J. Brianchon
Theorem 4 Brianchon’s Theorem (1785—1864) was one of
Let the sides AB’, B'C,CA’, A'B, BC',C’ A of a hexagon pass alternately ~ Many distinguished
through two (different) Points P and Q in RP?. Then the Lines joining French geometers who

. . p p , studied under Gaspard
opposite vertices A and A’, B and B’, C and C’, are concurrent. Monge (1746—1818).
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Problem 3 Prove Brianchon’s Theorem.
Hint: Let P,C, Q, C’ be the Points [1, 0, 0], [0, 1, 0], [0, 0, 11, [1, 1, 17,

respectively.

It turns out that the dual of any true statement concerning Points, Lines and
their projective properties remains true after dualization; that is, if we dualize
any theorem in projective geometry, then the statement that we obtain is itself

a theorem.

Problem 4 Earlier you saw that ‘three Points [a,b,c], [d,e, f],

[g,h, k] are collinear if and only if |[d e f

dual result of this statement.

a b c
= 0. Write down the
g h k

We end this subsection by forming the dual of Desargues’ Theorem, as

follows.

Desargues’ Theorem

Dual Theorem

Let two triangles be such that the
Lines joining corresponding
vertices meet at a Point.

Then the Points of intersection of
the corresponding sides of the two
triangles are collinear.

Let two triangles be such that the
Points through which correspond-
ing sides pass are collinear.

Then the Lines through the corre-
sponding vertices of the two
triangles are concurrent.

Note that the dual theorem is simply the converse result for Desargues’ The-
orem! Thus the Principle of Duality enables us to deduce that the converse of

Desargues’ Theorem holds.

We do not prove this
assertion, as it would take
us beyond the scope of
this book.

Subsection 3.2.2, Strategy

\
R

!

<
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3.5 Cross-Ratio

3.51 Another Projective Property

Earlier, in Subsection 2.2.1, we noted that ratio of lengths along a line is an
affine property. Thus, in affine geometry, if we are given two points P and
Q on a line ¢, then we can locate the position of a third point R along ¢ by
specifying the ratio PR : RQ. In particular, it is possible to talk about the
point midway between P and Q.

In projective geometry it is meaningless to talk about the Point midway
between two other Points. In one embedding plane w a Point R may appear
to be midway between the Points P and Q, whereas in another embedding
plane 7’ the ratio PR : RQ may be very different.

This ambiguity arises from the fact that perspectivities do not preserve the
ratio of lengths along a line, so: ratio of lengths along a line is not a projective
property.

In some embedding planes, such as the plane 7’ illustrated in the margin,
the Point R does not even appear to lie between P and Q, so betweenness is
not a projective property either!

Fortunately, there is a quantity, known as cross-ratio, that is preserved
under all projective transformations. To see how this is defined, consider four
collinear Points A = [a], B = [b], C = [¢], D = [d] in RP2. We can express
the fact that A, B, C, D are collinear by writing ¢ and d as linear combinations
of a and b. Thus we can write

c=coa+pfb and d=ya+db,

for suitable real numbers «, 3, v, §.
The cross-ratio is then defined to be the ratio of the ratios g and %
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Definition Let A, B, C, D be four collinear Points in RP? represented by
position vectors a, b, ¢, d, and let

c=ca+pgb and d=ya+sb.

Then the cross-ratio of A, B, C, D is Equivalently, we can write

6 /s (ABCD) = Bx.
(ABCD) = —/
o

Of course, before we can be sure that this definition makes sense, we must
ensure that it does not depend on the particular choice of position vectors a,
b, ¢, d that are used to represent the Points A, B, C, D. We shall check this
shortly, but first we illustrate how cross-ratios are calculated.

Example1 Let A =1[1,2,3], B =[1,1,2],C =[3,5,8], D = [1,—1,0] be
Points of RIP?. Calculate the cross-ratio (ABCD).

Solution First, we have to find real numbers « and 8 such that the following

vector equation holds: Note that we have not
verified that A, B, C, D
(3,5,8) = a(1,2,3) + B(1,1,2). are collinear; but if they
were not, the equations for
o, B,y,8 could not be
solved.

Comparing corresponding coordinates on both sides of this vector equation,
we deduce that

3=a+pB, 5=20+pB and 8 =3a+28.

Solving these equations gives o = 2, f = 1.
Next, we find real numbers y and 6 such that the vector equation

(1’ _1?0) = y(152’ 3) + 5(1’ 1’2)

holds. Comparing corresponding coordinates on both sides of this vector
equation, we deduce that

l=y+45 —1=2y+86 and 0=3y +20.

Solving these equations gives y = —2,§ = 3.
It follows from the definition of cross-ratio that

,3/8 l/ 3 1
(ABCD)==/—=- | — =——.
af v 2 -2 3 O

Problem 1 Calculate the cross-ratio (ABCD) for each of the following
sets of collinear Points in RP?.

(a A=1[1,-1,-1], B=1[1,3,-2],C =[3,5,-5], D=[1,-5,0]
(b) A=1[1,2,3], B=1[2,2,4],C =[-3,-5,-8], D =[3,-3,0]
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You may have noticed that the Points A, B, C, D in Problem 1 (b) are the
same as those which appear in Example 1. The only difference is that different
homogeneous coordinates are used to represent the Points in each case. As
we mentioned after the definition of cross-ratio, the value of the cross-ratio
(ABCD) does not depend on the homogeneous coordinates that are used to
represent A, B, C, D, so it is not surprising that the cross-ratio turned out to
have the value —% in both cases.

Theorem 1 The cross-ratio (ABCD) is independent of the homogeneous
coordinates that are used to represent the collinear Points A, B, C, D.

Proof Suppose that A = [a], B = [b], C = [¢], D = [d], and let
c=wa+pfb and d=ya+ db. @))

Now suppose that A = [a'], B = [b’], C = [¢/], D = [d]. Then

a=gqa, b=bb, c=cc/, d=dd,

where a, b, ¢, d are some non-zero real numbers.
By substituting these expressions into the equations (1), we obtain

c =aaa’ 4+ Bbb’  and dd = yaa’ + 5bb,
which we can rewrite in the form
d=cda +pb and d =y'a +8V, (2)

where o’ = aa/c,B’ = Bb/c,y’ = ya/d,8 =8b/d.
We can now check that equations (1) and (2) yield the same value for the
cross-ratio:

g /8  Bb/c [5b/d
o 7 N aa/c/ya/d

Bb /8b

ya
B [

So, as expected, the cross-ratio is independent of the choice of homogeneous
coordinates. [ |

The next problem illustrates that although the value of the cross-ratio
(ABCD) is independent of the choice of homogeneous coordinates that are
used to represent A, B, C, D, the value of the cross-ratio does depend on the
order in which the Points A, B, C, D appear.

Problem 2 Calculate the cross-ratios (BACD) and (ACBD) for the four
Points used in Problem 1(a).
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When answering Problem 2 you may have noticed that (BACD) is the recip-
rocal of the value which we obtained for (ABCD) in Problem 1(a). Also,
(ACBD) is equal to 1 — (ABCD). The next result shows that this is not simply
chance!

Theorem 2 Let A, B, C, D be four distinct collinear Points in RIP’Z, and
let (ABC D) = k. Then

(BACD) = (ABDC) = 1/k,
(ACBD) = (DBCA) =1 —k.

Proof Let a, b, ¢, d be any position vectors in R3 in the directions of the
Points A, B, C, D, respectively, of R]P’Z, and let «, 8, y, 8 be real numbers such
that

c=ca+pfb and d=ya+éb.

Then, by definition of cross-ratio, the cross-ratio (A BC D) of the four Points
A, B, C, D is the quantity

BCcD) = P / —k say.

To determine (BACD), we interchange the roles of A and B in the evaluation
of ABCD above; it follows that, since

c=pb+wa and d=46d+ ya,

the cross-ratio (BACD) is the quantity

o [y b 1
BACD) = — | — = — = —,
(BACD) /3/8 By

To determine (ABDC), we interchange the roles of C and D in the evaluation
of (ABCD) above; it follows that, since

d=ya+5b and c=owa+ gb,

the cross-ratio (ABDC) is the quantity

(ABDC) = / L) 1.

To evaluate (ACBD), we use the equations
c=woda+pb and d=ya+db 3)

to express b and d in terms of a and ¢, as follows.

Note the way in which the
Points are changed from
their original ordering in
the various cross-ratios.
We take the reciprocal
when swapping the first or
last pair of Points, and we
subtract from 1 when
swapping the inner or
outer pair of Points.

This completes the first
part of the proof.
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From the first equation in (3) we have
b= (c—aa)/B
= (—a/B)a+(1/B)c. “

If we then substitute this expression for b into the second equation in (3),
we obtain

d=ya+di((—a/Bla+(1/p)c)

= ((By —ad)/Pla+ (§/B)c. (5
It follows from the coefficients of a and ¢ in equations (4) and (5) that
(ACBD) = 1/p 5/p

—a/Bl (By —ad)/B

_ By —adb
‘_( ab )

_1 P
od
=1—k.

Finally, we can use the previous parts of the proof to evaluate (DBCA), as
follows:

(DBCA) = 1/(BDCA) (swap first two Points)
= (BDAC) (swap last two Points)
=1— (BADC) (swap middle two Points)
=1—1/(ABDC) (swap first two Points)
=1—- (ABCD) (swap last two Points)
=1—k. |

Earlier, we showed that the cross-ratio (A BC D) of the four collinear Points
A=[1,2,3],B=[1,1,2],C=[3,5,8], D=[1,-1,0] in RP? is — 1.
Theorem 2 enables us to deduce that

(BACD)=-3,  (ABDC)=-3,
(ACBD) =1, (DBCA)=1.

Problem 3 Let the Points A = [1,—1,—1], B = [1,3,-2], C =
[3,5,—5], D = [1,-5,0] be collinear Points of RP?. By applying
Theorem 2 to the solution of Problem 1(a), determine the values of the
cross-ratios (ABDC), (DBCA) and (ACBD).

The next theorem confirms that cross-ratio is preserved by projective
transformations.

183

B cannot be zero, for if it
were then we would have
¢ = «a; this cannot happen
since A and C are distinct
Points.

This avoids the algebra
involved in expressing ¢
and a in terms of d and b.

Example 1
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Theorem 3 Let ¢ be a projective transformation, and let A, B, C, D be any
four collinear Points in RP?. If A’ = t(A), B’ = t(B),C’ = t(C),D' =
t(D), then

(ABCD) = (A'B'C'D)).
Proof Let ¢ be the projective transformation ¢ : [x] +— [AX], where A is an
invertible 3 x 3 matrix. If A = [a], B = [b], C = [¢], D = [d], and
a’=Aa, b’ =Ab, ¢ =Ac, d = Ad,

then A’ =[a'], B =[b], C' =[], D' = [d'].
Since A, B, C, D are collinear, we can write

c=ca+pb and d=ya+ b, (6)

(ABCD) = é/f.
af y

Multiplying each equation in (6) through by A, we obtain

SO

¢ =aa’ +pBb and d =ya + b/,

(A'B'C'D) = é/é.
af y

so that

It follows that
(A'B'C'D’) = (ABCD). ]
We now use Theorem 3 to prove that if four distinct Points on a Line are in

perspective with four distinct Points on another Line, then the cross-ratios of
the four Points on each Line are equal.

Theorem 4 ILet A, B, C, D be four distinct Points on a Line, and
let A’,B’,C’,D’ be four distinct Points on another Line such that
AA’, BB’, CC’, DD’ all meet at a Point U. Then

(ABCD) = (A'B'C'D)).

Proof By the Fundamental Theorem of Projective Geometry, there is a
unique projective transformation ¢ which maps B to B/,C to C’, B’ to B,
and C’ to C. We shall show that 1(A) = A’ and t(D) = D’, and hence by
Theorem 3 it follows that (ABCD) = (A’B’C'D’).

First observe that the composite ¢ o ¢ fixes the Points B, C, B’ and C’. By
the Fundamental Theorem of Projective Geometry, the only projective trans-
formation which does this is the identity transformation, so t o t = i and
t=1t"1
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Next observe that ¢ maps the Line BC onto the Line B'C’, and vice versa;
so the Point 7" at which BC and B’C’ intersect must be fixed by 7. Also, r maps
the Lines BB’ and CC’ onto themselves, so their Point of intersection U must
be fixed by ¢.

Now let X be the image of A under 7. Then X lies on B’C’. We want to
show that X = A’.

Suppose that X # A’; then AX cannot pass through U so it must intersect
BB’ at R and CC’ at S, where R, S and U are distinct Points.

Since ¢t is self-inverse, it maps X back to A and therefore maps AX onto
itself. But this implies that # fixes the four Points R, S, 7, U; so by the Funda-
mental Theorem of Projective Geometry ¢ must be the identity transformation.
This is a contradiction with the hypothesis that the Lines ABCD and A’B'C’ D’
are different. It follows that we must conclude that X = A’, thatis, 1(A) = A’.
A similar argument shows that r(D) = D’'.

Finally, it follows by Theorem 3 that (ABCD) = (A’B'C’'D’), as
required. |

In affine geometry, if we are given two points A and B, then the ratio
AC/CB uniquely determines a third point C on the line AB. We now explore
the analogous result for projective geometry, namely that if we are given
any three collinear Points A, B, C in ]RIP’z, then the value of the cross-ratio
(ABC D) uniquely determines a fourth Point D.

Theorem 5  Unique Fourth Point Theorem
Let A, B,C, X,Y be collinear Points in RP? such that

(ABCX) = (ABCY).
Then X =Y.

Proof LetA =1[a], B=[b],C =[c], X =[x],Y =[y].Since A,B,C,X,Y
are collinear, it follows that there are real numbers «, 8, v, §, A, u such that

c=waa+pb, x=ypya+db and y=ia+ ub. @)
Then
A
ABCX) =PV and (aBCcY) =P
of o
Since (ABCX) = (ABCY), it follows that This is the hypothesis of
the theorem.
Y A
s w

so . = yu/s. If we substitute this value of A into the expression for y in
equation (7), we obtain

y=(yn/da+ ub = (n/8)(ya+db) = (n/d)x.

Since y is a scalar multiple of x, it follows that X = Y, as required. |
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In Theorem 4 we showed that the cross-ratios (ABCD) and (A’B’'C’D’) are j
equal if the Points A’, B’, C’, D’ are in perspective with the Points A, B, C, D. 5 <
Our next result is a partial converse of this result.
A ¢
E|F/G

Theorem 6 lLet A,B,C,D and A, E, F, G be two sets of collinear Points
(on different Lines in RP?) such that the cross-ratios (ABCD) and (AEFG)
are equal. Then the Lines BE, CF and DG are concurrent.

Proof Let P be the Point at which the Lines BE and CF meet, and let X be
the Point at which the Line PG meets the Line ABCD. Then the Points A, B, C
and X are in perspective from P with the Points A, E, F and G, so that

(ABCX) = (AEFG).

Since we know that (AEFG) = (ABCD), it follows that )/

(ABCX) = (ABCD). )
By Theorem 5, we must therefore have X = D. Hence the Points A, B, C, D P
and the Points A, E, F, G are in perspective from P. ]

We can now use Theorem 6 together with the other properties of cross-ratio
to give a second proof of Pappus’ Theorem.

Theorem 7 Pappus’ Theorem You met this Theorem
Let A, B and C be three Points on a Line in RP?, and let A, B’ and C’ earlier, in Subsection
be three Points on another Line. Let BC’ and B’C meet at P, CA’ and C'A 3.4.1.

meet at Q, and AB’' and A’ B meet at R. Then P, Q and R are collinear.

Proof Let V be the Point of intersection of the two given Lines. Also let the
Lines BA’ and AC’ meet at the Point S, and the Lines BC’ and CA’ meet at the
Point T'.
Now, the Points V, A’, B’, C’ are in perspective from A with the Points B,
A’ R, S, so that
(VA'B'C’) = (BA'RS). (8) By Theorem 4
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Similarly, the Points V, A’, B’, C’ are in perspective from C with the Points
B,T,P,C’, sothat

(VA'B'C’y = (BTPC). ®
It follows from equations (8) and (9) that
(BA'RS) = (BTPC),

so that by Theorem 6 the Lines A’T, RP, SC’ are concurrent.

We may rephrase this statement as follows: the Line RP passes through the
Point where A’T meets SC’; that is, the Line RP passes through Q. In other
words, P, Q and R are collinear. [ |

352

So far, we have calculated a given cross-ratio (ABCD) by applying the defini-
tion of cross-ratio directly to the Points A, B, C, D. However, it is sometimes
convenient to evaluate the cross-ratio by examining the representation of the
Points on some embedding plane.

Suppose that four collinear Points of RP? pierce an embedding plane m at
the points A, B, C, D with position vectors a, b, ¢, d, respectively.

According to the Section Formula, we can write ¢ and d in the form

Cross-Ratio on Embedding Planes

c=Ara+(1—2b and d=pa+ (1—pu)b,

where (1 — A) : A is the ratio AC : CB, and (1 — w) : u is the ratio AD : DB.
Then from the definition of cross-ratio

1—2 [/1—pn
(ABCD):T/—,

"
SO
AC [AD
(ABCD) = — [ —. (10)
CB/ DB

Example 2 1In an embedding plane, the points A, B, C, D lie in order along
a line with the distances AB,BC, CD being 1 unit, 3 units and 2 units,
respectively. Determine the cross-ratios (ABCD), (BACD) and (ACBD).

Solution Using equation (10) and the sign convention for ratios, we have

=t/ 12-(3) /()Y
“cB/ DB\ 3 5/ 9°

o/ on ( 3) /( 5) 9
(BACD) = — [ == = (-2 I N
cA/ DA 4 6) 10

See Appendix 2.
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acppy ~ 2B JAD _ (1 6\ 1
oo =G/ oe= () / (2)=5 ;

and

Problem 4 The points A, B, C, D lie in order along a line with the
distances AB, BC, CD being 2 units, 1 unit and 3 units, respectively.
Determine the cross-ratios (ABCD) and (DBCA).

Sometimes one of the Points whose cross-ratio we are trying to find turns
out to be an ideal Point for the embedding plane. In such cases, formula
(10) cannot be used since some of the distances in the formula will not be
defined.

To be specific, suppose that the Points A, B, C, D are collinear, but that A is
an ideal Point for the embedding plane 7, as shown in the margin. As before, ,
we can let b, ¢, d be the position vectors of the points B, C, D on m, but we Il'J:FI)trl\E/Se:It’glrnzA
take a to be a unit vector along A. Then

c=—(CB)a+b and d=—(DB)a+b.

From the definition of cross-ratio, it follows that
1 DB

(ABCD) = —— [ — = —.
—CB/ —DB ~ CB

(1)

We can now obtain the corresponding formulas for the cases where B, C
or D is an ideal Point, by applying Theorem 2. For example, if B is an ideal

Point, then
(ABCD) = (BACD) (swap first two terms)
= (BADC) (swap last two terms)
A b tion (11)
= — 10n .
DA y equatio

Problem 5 Use Theorem 2 To prove that:

(a) (ABCD) = g—g if D is an ideal Point;
(b) (ABCD) = 85 if C is an ideal Point.

We now summarize the various formulas for cross-ratio in the form of a
strategy, as follows.

Strategy To use an embedding plane to calculate the cross-ratio of four
collinear Points:
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1. if the four Points pierce the embedding plane at A, B, C, D, then

AC [ AD
(ABCD) = — [ —;
CB DB

2. if one of the Points is an ideal Point for the embedding plane, then

DB . . .

(ABCD) = — if A is ideal,
CB
CA . . .

(ABCD) = — if B is ideal,
DA
BD

(ABCD) = D if C is ideal,

AC
(ABCD) = L= if D is ideal.

Example 3 Determine (ABCD) for the collinear points A, B, C, D illustrated

in the margin, where C is an ideal Point. 5
Solution Since C is an ideal Point, we have 3 A,
1
(ABCD) = BD _4_, =
T AD 17 O

Problem 6 Determine (ABCD) for the collinear points A, B,C, D A
illustrated in the margin, where B is an ideal Point. ~2

3.53 An Application of Cross-Ratio

Earlier, we described how projective geometry can be used to obtain two-  Subsection 3.1.1
dimensional representations of three-dimensional scenes. We now describe
how cross-ratios can be used to obtain information about a three-dimensional
scene from a two-dimensional representation of the scene. We do this in the
context of aerial photography.
For simplicity, consider an aerial camera that takes pictures on a flat film
behind its lens, L, of features on a flat piece of land in front of L. Since a point
on the ground lies on the same line through L as its image on the film, we can
regard the process of taking a photograph as a perspectivity centred at L.
Since collinearity is invariant under a perspectivity, the image of any line  Section 3.3, Theorem 2
£ on the ground is a line on the film. Moreover, the cross-ratio of any four
collinear points is invariant under a perspectivity, so the cross-ratio of any four = Theorem 3
points on £ must be equal to the cross-ratio of their images on the film.
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perspective

aerial image of
camera ground
P
- S L
_- - /
7 )/ flat
7 )/ ground

Example4 An aerial camera photographs a car travelling along a straight road

on flat ground towards a junction. Before the junction there are two warning

signs at distances of 4 km and 2 km from the junction. On the film the signs

are 1 cm and 3 cm from the junction, and the car is ; cm from the junction.  Strictly speaking, the car
How far is the car from the junction on the ground? is not in line with the two
signposts. Consequently,
the distances marked on
the photograph are
approximations measured
along the line of the
left-hand kerb of the road.

3
7cm¢

car 2 km sign
3cm
2 km sign ==
4 km sign 1 v
4 Km Sign ==
ground aerial
plan photograph
. 4 " [gem
Solution Let A and B denote the signs, C denote the car, and D denote the 1om | tC 7
junction, and let A’, B’, C’, D’ be their images on the film. Then
A'C' JA'D ’
I 0 all /
(ABCD):C’B’/D’B’ 3cm
. 18/7 3
N 4/7 1
3 v A
=3
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Now let the car be n km from the junction. Then

AC [AD
(ABCD) = — [ —
CB/ DB
_ 4—n 4
=(-2=)/(53)
_ 4-—n
T 22—n)

Since (ABCD) and (A’ B’C’ D’) must be equal, it follows that

4zn 3
22-n) 2
Hence
4—n=32-—n).
and so n = 1. That is, the car is 1 km from the junction. ]

Problem 7 An aerial camera photographs a car travelling along a
straight road on flat ground towards a junction. Before the junction there
are two warning signs, at distances of 2 km and 3 km from the junction.
On the film the signs are 4 cm and 6 cm from the junction, and the car
is 1 cm from the junction. How far is the car from the junction on the
ground?

If two lines that are known to be parallel on the ground appear to meet on the
film, then the point of intersection on the film corresponds to the ideal Point
where the ‘parallel lines meet’. We can therefore use the above technique even
when one of the Points is ideal, for we can use the second part of the strategy
in Subsection 3.5.2 to calculate the cross-ratio whenever one of the Points is
ideal.

Problem 8 An aerial camera photographs a train travelling between
two stations along a straight track on flat ground. The stations are 50 km
apart. When the film is inspected, the stations are 4 cm apart, the train
is midway between the stations, and the rails appear to meet (or vanish)
4 cm beyond the station towards which the train is travelling. How far
has the train to travel to the next station?

2 km

4 km

2 kmsign o

3 km sign ]

191

nkm

aerial
photograph
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3.6 Exercises

Section 3.2

1. (a) Write down numbers a, b, ¢ and d such that
[la.bl=[-4.3,4] and [e.d.2]=[3,0,1]

(b) Which of the following homogeneous coordinates represent the same
Point of RP? as [4, —8,2]?

M [L4,-2 @) [§.-3.4] G [-3.-2.1]
@ [-24-11 ® [-5-31]

2. Determine an equation for each of the following Lines in RP?:
(a) the Line through the Points [1, 2, 3] and [3, 0, —2];
(b) the Line through the Points [1, —1, —1] and [2, 1, —3].
3. Determine whether each of the following sets of Points are collinear:
( [1,-1,0],[1,0,—1] and [2,—1, —1];
(b) [1,0, 1], [0, 1,2] and [1, 2, 3].
4. Determine the Point of intersection of each of the following pairs of Lines
in RP?:
(a) the Lines with equations x — 2y +z=0andx —y —z = 0;
(b) the Lines with equations x + 2y + 5z =0and 3x — y +z = 0.
5. Determine the Point of RPP? at which the Line through the Points [8, —1, 2]
and [1, —2, —1] meets the Line through the Points [0, 1, —1] and [2, 3, 1].
6. Determine the Point of RIP? at which the Line through the Points [1, 2, 2]
and [2, 3, 3] meets the Line through the Points [0, 1, 2] and [0, 1, 3].

Section 3.3
In these exercises, you may find the following list of matrices and their inverses
useful.
2 10 -2 0 1 0 3 -1 0 3 4
Al -1 0 1 0o 3 =2 2 0 -1 -1 3 2
0 1 1 1 -3 1 0 0 1 3 -3 3
o 1 1
1 1 -1 -1 -1 -1 2 2 5 =7 =2
-1, 2 4 4
A7 -1 -2 2 -5 -1 -3 % 0 % 3 -4 —3
1 2 -1 -1 -2 =2 0 0 1 -2 3 1

1. Determine which of the following transformations ¢ of RP? are projective
transformations. For those that are projective transformations, write down
a matrix associated with 7.
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(a) t:[x,y,z] — [2x,y + 3z, 1]
() t:[x,y,z]— [x,x —y+3z,x + y]
(© t:lx,y,zl > [2y,y — 4z, x]
@ t:xy.zl—=>[x+y—2z,y+3z,x+ 2y +2z]
2. Determine the images of the Points [1, 2, 3], [0, 1, 0] and [1, —1, 1] under
the projective transformation ¢ associated with the matrix

2 0 1
A=-1 1 0
0 1 1

3. Let
tl : [x,y,Z]'—) [2x+ya_x+z,y+2],
t:[x,y,z] = [x +y,3x — z,4y — 27]

be projective transformations from RP? to RPP2.
(a) Write down matrices associated with each of ¢; and #,.
(b) Determine formulas for 7, o #; and ; ot I
4. Find the image of the Line x + 2y 4+ 3z = 0 under the projective
transformation ¢ defined in Exercise 3.
5. Determine matrices for the projective transformations which map the Points
[1,0,0], [0, 1,01, [0, 0, 1] and [1, 1, 1] onto the following Points:
(a) [-2,0,11,[0,1,—1],[—1,2,—1]and [—1,1,—1];
(b) [0,1,0],[1,0,0],[—1,—1,1] and [2, 1, 1];
(¢) [0,1,-3],[1,1,—1],[4,2,3] and [7, 4, 3].
6. Use the results of Exercise 5 to determine the projective transformations
that map:
(a) the Points

[_2707 1]$ [07 17_1]’ [_1929_1]7 [_171’_1]
to the Points
[O’ 150]7 [15050]7 [_la_17 1]9 [27 17 1]7

respectively;
(b) the Points
[0’ 1’ O]’ [1’ O’ O]’ [_19 _1’ 1]7 [2’ 17 1]

to the Points
(0,1,-3], [1,1,-1], [4,2,3], [7,4,3],

respectively;
(c) the Points
[0’ 1’ _3]7 [19 19 _1]7 [4’ 2’ 3]7 [7’ 4’ 3]

to the Points
[-2,0,1], [0, 1, 1], [-1,2,—1], [-1,1,—1],

respectively.
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Section 3.4

1. For which of the following configurations of Points A, B,C and D in
RP? is there a projective transformation sending A, B, C to the triangle of
reference and D to the unit Point?

2. Let AABC be a triangle in R?, and let U be any point of R? that is not
collinear with any two of the points A, B, C. Let the Lines BC and AU meet
at P, CA and BU meet at Q, and AB and CU meet at R. Prove that P, O, R
cannot be collinear.

Section 3.5

1. For each of the following sets of Points A, B, C, D, calculate the cross-ratio
(ABCD).
(a) A=1[2,1,3], B=1[1,2,3], C =[8,1,9], D =[4,—1,3]
(b) A=[2,1,1], B=[-1,1,—1], C =[1,2,0], D =[—1,4,-2]
(c) A=[-1,1,1], B=10,0,2], C =[5,-5,3], D =[-3,3,7]

2. For the Points A, B,C, D in Exercise 1(a), determine the cross-ratios
(BACD),(BDCA) and (ADBC).

3. For each set of collinear points A, B, C, D illustrated below, calculate the
cross-ratio (ABCD).

4. Calculate the cross-ratio (ABCD) for the collinear points A, B, C, D illus-
trated below, where D is an ideal Point.

C B A D

—_——— —— — -

5. The diagram in the margin represents an aerial photograph of a straight road  Fiim image

aerial

on flat ground. At A there is a sign ‘Junction 1 km’, at B a sign ‘Junction photograph
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% km’, and C is the road junction. Also, a police patrol car is at X, and a
bridge is at Y. The distances marked on the left of the diagram are measured
in cm from the photograph.

Calculate the actual distances (in km) of the patrol car and the bridge
from the junction.

Summary of Chapter 3

Section 3.1: Perspective

1.

Renaissance artists used terraced perspective and later vertical perspec-
tive in an attempt to portray 'real’ scenes in a realistic way. The modern
system of focused perspective was discovered by Brunelleschi and finally
perfected by Leonardo da Vinci; it is well illustrated by the woodcuts of
Albrecht Diirer.

The family of lines joining an eye to each point of a scene meets a screen
in front of the eye, and the image on the screen is called a cross-section (or
section). The cross-section gives a realistic two-dimensional representation
of the three-dimensional scene.

. For two planes 7 and 7’ that do not pass through the origin O in R3, points

P in 7 and Q in 7’ are in perspective from O if there is a straight line
through O, P and Q.

A perspectivity from 7 to 7’ centred at O is a function that maps a point
P of 7 to a point Q of 7’ whenever P and Q are in perspective from O.
(The planes 7 and 7' may lie on the same or on opposite sides of O.)

. The domain of a perspectivity may not be the whole of r; for, if P is any

point of = such that OP is parallel to to 7/, then P cannot have an image
inn’.

The image of a line £ under a perspectivity is another line, possibly minus
one point.

Foreshortening is the effect under a perspectivity of lines of equal

lengths at different distances from a screen corresponding to different
lengths on the screen.
Two parallel lines in a horizontal plane 7 appear to an observer to meet at
a vanishing point on a vertical screen 7’; this is the principal vanishing
point if the lines are perpendicular to the line of intersection of 7 and 7',
and a diagonal vanishing point otherwise.

The family of vanishing points is a line, the vanishing line, that
corresponds to the horizon line in a picture.

. Desargues’ Theorem Let AABC and AA’B'C’ be triangles in R? such that

the lines AA’, BB’ and CC’ meet at a point U. Let BC and B’C’meet at P,
CA and C’A’'meet at Q, and AB and A’ B'meet at R. Then P, Q and R are
collinear.

195
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Section 3.2: The Projective Plane RP?

1. A Point (or projective point) is a line in R3 that passes through the origin
of R3.

The real projective plane RPP? is the set of all such Points.

2. The expression [a, b, c], in which the numbers a, b and ¢ are not all zero,
represents the Point P of RP? which consists of the unique line in R? that
passes through (0,0,0) and (a, b, ¢). We refer to [a, b, c] as homogeneous
coordinates of P.

If (a, b, ¢) has position vector v, then we often denote P by [v] and we
say that P can be represented by v.

It makes NO sense to write the expression [0,0,0], since not all of a, b
and ¢ can be zero.

3. The homogeneous coordinates [a, b, c] and [La, Ab, Ac] (where A # 0)
represent the same Point of R]P’z; that is, [a, b, c] = [Aa, Ab, Ac], for any
A #£ 0.

If there is no non-zero real number A such that [a, b, c] = [Aa’, Ab/, Ac'],
then the homogeneous coordinates [a, b, ¢] and [a’ b, c’] represent differ-
ent Points of RP?.

Further, [a, b, 1] = [a”,b",1] if and only if ' = a” and b = b"".

4. A projective figure is a subset of RP.

5. A Line (or projective line) in RP? is a plane in R3 that passes through the
origin. Points of RP? are collinear if they lie on a Line.

6. The general equation of a Line in RP? is ax + by + ¢z = 0, where a, b, ¢
are real and not all zero.

7. Collinearity Property of RP> Any two distinct Points of RP? lie on a
unique Line.

Strategy To determine an equation for the Line in RP? through the Points
[d.e, f]and [g.h,k]:

X y z
1. write down the equation |[d e f|=0;
g h k

2. expand the determinant in terms of the entries in its first row to obtain
the required equation in the form ax + by + cz = 0.
Sometimes it is possible to ’spot’ the equation of a Line through two Points
without using the determinant.
8. Strategy To determine whether three Points [a, b, c], [d, e, f]and [g, h, k]
are collinear:

a b c
1. evaluate the determinant |d e f|;
g h k

2. the Points [a,b,c], [d,e, f] and [g, h, k] are collinear if and only if
this determinant is zero.
9. The Points [1,0,0], [0,1,0], [0,0,1] are known as the triangle of reference.
The Point [1,1,1] is called the unit Point.
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10.

11.

12.

13.

Incidence Property of RP? Any two distinct Lines in RP? intersect in a
unique Point of RP?.

Let 77 be any plane in R? that does not pass through the origin O. Then
there is a one-one correspondence between the points of 7 and those
Points of RIP?> which pierce 7. Those Points of RP? which do not pierce
7 are called ideal Points for .

The set of ideal Points for 7 is a plane through O parallel to 7, called
the ideal Line for 7.

An embedding plane is a plane, 7, which does not pass through the
origin, together with the set of all ideal Points for 7.

The plane in R? with equation z = 1 is called the standard embedding
plane. The mapping of RP? into the standard embedding plane is called
the standard embedding of RP2.

Parallelism is not a projective property.

Section 3.3: Projective Transformations

1.

A projective transformation of RP? is a function t: RP?> — RP? of the
form ¢ : [x] — [AX], where A is an invertible 3 x 3 matrix. We say that A
is a matrix associated with 7. The set of all projective transformations is
denoted by P (2).

If A is a matrix associated with 7, then so is LA for any non-zero
number A.

. The set of projective transformations P (2) forms a group under the oper-

ation of composition of functions. In particular, if #; and #, are projective
transformations with associated matrices A; and A,, respectively, then
tioty and t I are projective transformations with associated matrices
A1A; and Af] .

Strategy To compose two projective transformations ¢ and #,:

1. write down matrices A and A, associated with ¢; and 7;

2. calculate AjA»;

3. write down the composite # o t» with which AjAj is associated.
Strategy To find the inverse of a projective transformation #:

1. write down a matrix A associated with ¢;

2. calculate A~ !;

3. write down the inverse #~! with which A~! is associated.

. Strategy To find the image of a Line ax + by + ¢z = 0 under a projective

transformation 7 : [x] — [AX]:

1. write the equation of the Line in the form Lx = 0, where L is the
matrix (a b c);

2. find a matrix B associated with 7~ !;

3. write down the equation of the image as (LB) x = 0.

Projective geometry is the study of those properties of figures in RP? that

are preserved by projective transformations. Collinearity and incidence are

both projective properties.
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5. A quadrilateral is a set of four Points A, B, C and D (no three of which
are collinear), together with the Lines AB, BC, CD and DA.
All quadrilaterals are projective-congruent.

6. Strategy To find the projective transformation which maps [1,0,0]
to [ay,az,a3], [0,1,0] to [b1,bs,bs3], [0,0,1] to [cy,c2,c3], [1,1,1] to
|d1,d>,ds], where no three of [aj,az,as], [b1,ba,b3], [c1,c2,c3] and
[dy, d>, d3] are collinear:

aiu biv cw 1 d
1. find u, v, w for which | aou byv crw 1l1=11d |,
azu  bzv cyw 1 ds

2. write down the required projective transformation in the form ¢:
[x] — [Ax], where A is any non-zero real multiple of the matrix
aiu biv cw
au by cw
asu b3v c3w

7. Fundamental Theorem of Projective Geometry Let ABCD and
A’B'C'D’ be two quadrilaterals in RP?. Then:

(a) there is a projective transformation ¢ which maps A to A’, B to B/, C
toC’, Dto D’;
(a) the projective transformation ¢ is unique.

8. Strategy To determine the projective transformation ¢ which maps the
vertices of the quadrilateral ABCD to the corresponding vertices of the
quadrilateral A’B'C'D’:

1. find the projective transformation #; which maps the triangle of refer-
ence and unit Point to the Points A, B, C, D, respectively;

2. find the projective transformation #, which maps the triangle of refer-
ence and unit Point to the Points A’, B’, C’, D’, respectively;

3. calculater =t o tl_l.

9. With any given perspectivity o we can construct an associated perspective
transformation that is a one-one mapping of 7 U {the ideal Points for 7}
onto 7’ U {the ideal Points for rr'}. This maps RPP? onto itself.

Every projective transformation can be expressed as the composite of three
perspective transformations.

Section 3.4: Using the Fundamental Theorem of Projective
Geometry

1. Desargues’ Theorem Let AABC and AA’B'C’ be triangles in R? such that
the lines AA’, BB and CC’ meet at a point U. Let BC and B’C’meet at P,
CA and C’'A’ meet at Q, and AB and A’ B’ meet at R. Then P, Q and R are
collinear.

2. The Fundamental Theorem is often used to simplify proofs of results in
projective geometry, where the properties involved are projective proper-
ties. Generally, we do not explicitly refer to the corresponding auxiliary
projective transformation ¢ concerned, but simply comment that “By the
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Fundamental Theorem of Projective Geometry, we may choose the four
Points ... (no three of which are collinear) to be the triangle of reference
and the unit Point; that is, to have homogeneous coordinates [1,0,0], [0,1,0],
[0,0,1] and [1,1,1], respectively.”

. Pappus’ Theorem Let A, B and C be three points on a line in R?, and

let A’, B’ and C’ be three points on another line. Let BC' and B’C meet at
P,CA’ and C’'A meet at Q, and AB’ and A’B meet at R. Then P, Q and R
are collinear.

. Any Euclidean figure in an embedding plane corresponds to a projective

figure in RP2. It follows that a Euclidean theorem concerned with projective
properties (such as collinearity and coincidence) holds if and only if the
corresponding projective theorem holds.

. The dual of a statement about the projective properties of some figure in

RP? is the corresponding statement about RP? in which the terms ’Point’
and ’Line’ are interchanged, and such other changes are made that ensure
that the sentence makes sense.

A triangle (three non-collinear Points and the Lines joining them) is self-
dual.

. A hexagon in RP? consists of six Points joined by the six Lines joining

them in turn.

Pappus’ Theorem (rephrased) Let the vertices A, B’, C, A’, B and C’ of
a hexagon lie alternately on two different Lines. Then the Points of inter-
section of opposite sides B'C and BC', CA’ and C’'A, and AB’ and A’B, are
collinear.

. Brianchon’s Theorem (the dual of Pappus’ Theorem) Let the sides

AB',B'C,CA’,A'B,BC’, C’A of a hexagon pass alternately through two
(different) Points P and Q in RP?. Then the Lines joining opposite vertices
Aand A’, B and B’, C and C’, are concurrent.

. Converse of Desargues’ Theorem (also its dual) Let two triangles be

such that the Points through which corresponding sides pass are collinear.
Then the Lines through the corresponding vertices of the two triangles are
concurrent.

Section 3.5: Cross-Ratio

1.

Let A, B, C, D be four collinear Points in RP? represented by the position

vectors a, b, ¢, d, and let ¢ = wa 4+ Bb and d = ya + §b. Then the
cross-ratio of A, B,C, D is (ABCD) = g/%
The cross-ratio (ABCD) is independent of the homogeneous coordinates

that are used to represent the collinear Points A, B, C, D.

. Let A, B, C, D be four distinct collinear Points in RP2, and let (ABCD) =

k. Then (BACD) = (ABDC) = 1/k and (ACBD) = (DBCA) = 1 — k.

. Let ¢ be a projective transformation, and let A, B, C, D be any four collinear

Points in RP2. If A’ = 1 (A), B’ = t (B), C' = t(C), D' = t (D), then
(ABCD) = (A'B'C'D’).
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4. Let A, B, C, D be four distinct Points on a Line, and let A’, B’, C’, D’ be
four distinct Points on another Line such that AA’, BB', CC’, DD’ all meet at
aPoint U. Then (ABCD) = (A'B'C'D’).

5. Unique Fourth Point Theorem Let A, B, C, X, Y be collinear Points in
RP? such that (ABCX) = (ABCY). Then X =Y.

6. Let A, B, C, D and A, E, F, G be two sets of collinear Points (on different
Lines in RP?) such that the cross-ratios (ABCD) and (AEFG) are equal.
Then the Lines BE, CF and DG are concurrent.

7. Let four collinear Points of RP? pierce an embedding plane at the points
A, B, C, D with position vectors a, b, ¢, d, respectively. Then, if we can
write ¢ and d in the formec=Aa+ (I —A)bandd = na+ (1 — ) b, we
have

A Jl—u AC JAD
w  CB/ DB

1 —
ABCD) = ——
(ABCD) Iy

8. Strategy To use an embedding plane to calculate the cross-ratio of four
collinear Points:
1. if the four Points pierce the embedding plane at A, B,C, D, then

AC [AD.
(ABCD) = & [ 32

2. if one of the Points is an ideal Point for the embedding plane, then

DB . ..
(ABCD) = — if A isideal,

CB

cA ..
(ABCD) = — if B isideal,

DA

BD . .
(ABCD) = — if C is ideal,

AD

AC . ..
(ABCD) = — if D isideal.

BC

9. Cross-ratios can be used to measure distances on the ground from aerial
photographs, since the cross-ratio of any four points on a line on the ground
equals the cross-ratio of their images on the film.



4 Projective Geometry: Conics

In the previous chapter, we used projective geometry to prove Pappus’
Theorem.

Pappus’ Theorem Let A, B and C be three points on a line in R?, and
let A’, B’ and C’ be three points on another line. Let BC” and B'C meet at
P,CA’ and C’A meet at Q, and AB’ and A’ B meet at R. Then P, O and R
are collinear.

In fact, we could also show that if the six points A, B, C, A’, B and C’ lie not
on two lines but on an ellipse, a parabola or a hyperbola, then the three points
of intersection P, Q and R are still collinear.

The similarity of these three results is remarkable! It suggests that, instead
of being three new theorems, perhaps these results are particular instances of a
general theorem about conics. We shall show that this is indeed the case. The
general theorem, known as Pascal’s Theorem, is proved in this chapter along
with many other such results about conics.

But why should a result like Pascal’s Theorem apply to different types of
conic? A clue is provided by our discussion of conics in Chapter 1. There we
explained that conics are so called because they are the shapes that we obtain
when we take plane sections through a double cone. In particular, the non-
degenerate conics are the ellipses, parabolas and hyperbolas, and they arise
when we slice through a double cone with a plane that does not pass through
the cone’s vertex v (see the figure below).

Subsection 3.4.1,
Theorem 2

Subsections 1.1.1
and 1.1.5
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This has an exciting implication for projective geometry. Given any two
non-degenerate conics, such as the circle and the parabola shown in the mar-
gin below, there is a perspectivity centred at v that maps one onto the other.
It follows that any two non-degenerate conics are projective-congruent. Con-
sequently, any result involving the projective properties of collinearity and
concurrence that holds for ellipses, for example, necessarily holds also for
parabolas and hyperbolas.

We saw earlier that in affine geometry all ellipses are affine-congruent, all
parabolas are affine-congruent, and all hyperbolas are affine-congruent. One of
the exciting features of projective geometry is that all non-degenerate conics
are projective-congruent. Thus there is no distinction between ellipses, parabo-
las and hyperbolas in this geometry, so we simply call them projective conics.

In Section 4.1 we define the surfaces in R’ that are called projective
conics, we see that between any two non-degenerate plane conics there
is a perspectivity, and we note that (analogously) all projective conics are
projective-congruent.

In Section 4.2 we observe that tangency is a projective property. We intro-
duce a compact notation due to Joachimsthal for projective conics, and use it
to find formulas for tangents, tangent pairs and polars for projective conics.

In Section 4.3 we introduce two standard forms for the equation of a
projective conic, and use these to prove theorems such as Pascal’s Theorem.

In Section 4.4 we prove that all non-degenerate projective conics are
projective-congruent, using Linear Algebra methods.

Finally, Section 4.5 discusses duality in the context of projective conics.

41 Projective Conics

411 Whatis a Projective Conic?

In the previous chapter we described how, given any (Euclidean) figure F in  Subsection 3.2.1
an embedding plane 7, we can obtain the corresponding projective figure by
drawing in all the Points of RP? that pass through points of F.
For example, if F is the circle {(x, yv,2) x> +yr=1,z= 1} which lies in
the embedding plane 7w with equation z = 1, then the corresponding projective
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figure is a right circular cone. If a Point [x’, y’, 7] of RP? lies on this cone, then
it pierces the embedding plane at the point (x'/z’, y’/z/, 1). Since this point lies
on F, it follows that

Multiplying by (z')%, and dropping the dashes, we obtain the following
equation for the cone:

xX°+y"=z" (H

Conversely, suppose that we start with a projective figure. Then we can
represent the projective figure in an embedding plane 7. Of course, the rep-
resentation that we obtain depends on the embedding plane that we use. For
example, if the projective figure is the hollow cone x> + y> = z2, then the
representation can be bounded, unbounded, or even in two ‘bits’ depending on
the position of .

ideal
0 Points
for
T
bounded unbounded two bits

In Subsection 4.1.4 we show that these representations of the cone are, in
fact, ellipses, parabolas and hyperbolas, respectively. Notice, however, that in
the case of the parabola and the hyperbola, the representation is incomplete
unless we include additional ideal Points for the embedding plane concerned.
The parabola requires one ideal Point, and the hyperbola requires two. These
are indicated by the thick lines in the diagram above.

Let us now concentrate on just one embedding plane 7, and consider the
kinds of projective figures that correspond to conics in 7. To keep the algebra
simple, we shall choose 7 to be the so-called standard embedding plane
z = 1. We have already explained how to find the equation of the projective
figure which corresponds to the circle {(x, y, z) : x2+ y2 =1,z=1}inm,so
let us now consider what happens when we find the equation of the projective
figure which corresponds to an unbounded conic, such as the hyperbola

{(x,y,2): y2 —4x% = 1,z =1}.
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Any Point [x, y’, 7] on the corresponding projective figure must pierce 7 at
apoint (x'/z’,y’/z/, 1) on the hyperbola, and so

N\ 2 N\ 2
() —+(2) -
7/ 7

Since 7’ is non-zero, we can multiply by (z')?> and drop the dashes, to obtain
the equivalent equation

y2—4x2=zz, 7z #0.

As in the case of the circle, this is the equation of a cone-like family of
Points in RP? with vertex at the origin, as shown above. Notice, however,
that because z # 0, two Points are missing from the family. These must be
Points of the form [x, y, 0] which satisfy the equation y> —4x? = 0. Since this
equation implies that y = £2x, it follows that the missing Points are [1, 2, 0]
and [1,—2,0].

But should these Points really be omitted from the projective figure? After
all, both Points are ideal Points for the standard embedding plane, and figures
in an embedding plane often have ideal Points associated with them. In projec-
tive geometry we take the view that the ideal Points [1,2,0] and [1, —2,0] are
associated with the hyperbola y? — 4x? = 1, and hence that the corresponding
projective figure consists of the entire cone-like family of Points [x, y, z] that
satisfy the equation y* — 4x? = z2.

Problem 1 Find an equation for the projective figure in RP?> which
corresponds to the parabola {(x,y,z):y =x2z= 1} in the standard
embedding plane. Which ideal Points should be associated with the
parabola?

In general, any conic in the standard embedding plane can be expressed in
the form

{(x,y,z):Ax2+Bxy+Cy2+Fx+Gy+H=0,z= 1}.

Since any Point [x’, y’, 7] on the corresponding projective figure must pierce
the standard embedding plane at a point (x’/z’, y'/z’, 1) on the conic, it follows
that

x' 2 X' y/ y/ 2 X' y/
() () () e () +r(2) o (2) e nmo
Z Z Z Z Z Z

If 7/ were zero, then
[x",¥’, 7] would not
pierce .

[x.y. 2]
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Multiplying by (z’)?, and dropping the dashes, we obtain the equivalent
equation

Ax? 4+ Bxy 4+ Cy* 4+ Fxz 4+ Gyz + Hz> =0, 7z #0.

If we drop the constraint that z # 0, then we can include those ideal
Points for the standard embedding plane that should be associated with the
plane conic. The corresponding projective figure (including the additional ideal
Points) is known as a projective conic.

Definition A projective conic in RP? is a set of Points whose homoge-
neous coordinates satisfy a second-degree equation of the form

Ax? + Bxy + Cy? + Fxz+ Gyz+ Hz> = 0. )

For example, xy + xz 4+ yz = 0 defines a projective conic, because it has the
form of equation (2) with A = C = H =0and B = F = G = 1. However,
x2 4 y% — 3y + z? = 0 does not define a projective conic, because it includes
a linear term in y.

Problem 2 Which of the following equations define projective
conics?

@ x24+xy—3y>4+4x —3y4+z2=0
b) x> +xy+y>+yz=0

© y*=xz

@ x> +y>+2=2

We say that a Point P lies on a projective conic, or a projective conic passes
through a Point P, if the homogeneous coordinates of P satisfy the equation
of the projective conic. For example, the Point [3,4, 5] lies on the projective
conic x2 + y2 = 72, since 3% + 42 = 52; however, x% + y2 = 72 does not pass
through the Point [1, 1, 1], since 12 4+ 12 #* 12,

Problem 3 Which of the following statements are true?

(a) The projective conic xy + xz + yz = 0 passes through the Point

[1,0,0].

(b) The Point [1,2,0] lies on the projective conic 2x> — y> + xy +xz +
22 =0.

(c) The projective conic 3x2 4 2y — z2 = 0 passes through the Point
[1,2,3].

In this chapter we concentrate on those projective conics that can be
represented by non-degenerate conics in the standard embedding plane.

Definition A projective conic is non-degenerate if it can be represented
by a non-degenerate conic in the standard embedding plane.
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The additional Points have
homogeneous coordinates
of the form [x, y, 0] where

Ax? + Bxy —I—Cy2 =0.

projective
z conic

It follows that a
degenerate projective
conic consists of a pair of
Lines, a single Line, a
Point, or the empty set
(that is, ‘no Points”).
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For example, the projective conic with equation
2422 =0
is non-degenerate because it is represented in the standard embedding plane by
the ellipse
{(xr,y,2):x* +2y* =1,z =1}
On the other hand, the projective conic with equation
27x? +30xy — 8y? + 14yz =322 =0
is degenerate because
27x% 4 30xy — 8y* + 14yz — 322 = (9x — 2y + 32)(3x + 4y — 2),
so the projective conic intersects the standard embedding plane in the degen-
erate conic which consists of the following pair of lines:
{(x,9,2) :9x =2y +3=0,z=1}
and
{(x,y,2) :3x+4y—-1=0,z=1}.
The following theorem shows that non-degenerate projective conics are
preserved by projective transformations.

Theorem 1 Let ¢ be a projective transformation, and let £ be a non-
degenerate projective conic. Then #(E) is a non-degenerate projective
conic.

Proof Let E have equation
Ax> + Bxy + Cy* + Fxz+ Gyz+ Hz> = 0. )
Then any Point that lies on E has homogeneous coordinates [x, y, z] which
satisfy equation (2). If [x/, y’,z'] is the image of [x, y, z] under ¢, then under
the inverse transformation we have [x, y, z] = t~'([x’, y', 2']). It follows that if

a b ¢
d e f
g h k

is a matrix associated with r~!, then
x=ax'+by +c7, y=dx' +ey + f7, z=gx'+hy +k7.

Substituting these expressions for x, y and z into equation (2), we obtain a
second-degree equation in x’, y’ and z’. It follows that the image of E under ¢
is a projective conic.

Next we show that this image cannot be degenerate. A degenerate image
would consist of a pair of Lines, a single Line, a Point, or the empty set (that
is ‘no Points’). Since the projective transformation 7~! maps Lines to Lines
and Points to Points, it would map the degenerate image to another degenerate
projective conic. But this cannot happen since r~! maps the image back to
the original non-degenerate projective conic E. It follows that #(E) cannot be
degenerate. |
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412 Tangents to Projective Conics
Let E be any non-degenerate projective conic, and let £ be a Line in RP2.
Then ¢ is a plane in R? which passes through O, and E is a surface in R?
which consists of a ‘cone-like’” family of lines through the origin O. It follows
that there are three possibilities:

£ can meet E at a pair of Points;

£ can meet E at a single Point;
£ can meet E at no Points.

two Points of intersection one Point of intersection no Points of intersection

In the second case, ¢ just ‘touches’ E along a ‘Point of contact’ P. This
suggests that in such a case we define ¢ to be the tangent to E at P.

Definition Let E be a non-degenerate projective conic. Then a Line £ is a
tangent to E at P if £ meets E at a Point P, and at no other Point.

We can also define whether a Point lies inside or outside a projective conic.

Definitions Let £ be a non-degenerate projective conic. A Point Q lies
inside E if every Line through Q meets E at two distinct Points. A Point R
lies outside E if there is a Line through R that meets E at no Points.

a Point Q
inside E

a Point R
outside E

Lines through Q
meet £
at two Points

N\

a Line through R
that meets E
at no Points
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The following theorem shows that ‘tangency’ and ‘lying inside or outside a
projective conic’ are projective properties.

Theorem 2 Let 7 be a projective transformation, and let the Line ¢ be a
tangent to a non-degenerate projective conic E at a Point P. Then #(£) is a
tangent to 7(E) at #(P). Also, if Q is a Point inside E, then 7(Q) lies inside
t(E); and if R is a Point outside E, then ¢(R) lies outside 7(E).

Proof By the definition of tangent, P is the only Point that £ and E have in
common. Since ¢ is a one—one map of RP? onto itself, it follows that t(P) is
the only Point that #(£) and #(E) have in common. In other words, 7(£) is a
tangent to ¢ (E) at t(P).

Also, if Q lies inside E, then any Line ¢’ through 7(Q) must meet 7(E) at
two distinct Points, for otherwise the Line =1 (") through Q would not meet
E in two distinct Points. It follows that 7(Q) lies inside ¢ (E).

Again, if R lies outside E, then there is a Line £ through R that does not
meet E. It follows that 7(£) is a Line through #(R) that does not meet ¢ (E), and
so t(R) lies outside ¢ (E). |

tangent to
plane conic

tangent to
projective conic

The figure above illustrates that, in an embedding plane, tangents to projective
conics correspond to tangents to plane conics, and vice versa, and so the two
notions of tangency are consistent.

Moreover, since a projective transformation preserves the property of being
a tangent, it follows that we can use projective geometry to tackle problems
involving tangents to plane conics. You will meet several examples of this later,
but first we must show that all non-degenerate projective conics are projective-
congruent.
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41.3 Some Preliminaries

In our proof that all non-degenerate projective conics are projective-congruent
we need a number of facts concerning plane conics. In order to concentrate on
the key ideas in the proof then, we deal with these facts now.

First, in our proof we shall need to calculate the eccentricity of conics which
are symmetrical about the v-axis in the (u, v)-plane, and which have a focus
that lies on the v-axis. We do this by using the following result.

Theorem 3  Eccentricity Formula
Let E be a non-degenerate plane conic with equation

u? +Cv?>+Gu+H=0.

If E has a focus on the v-axis, then the eccentricity e of E is given by the
formula

=1-C.

For example, the eccentricity e of the ellipse with equation
u2+%v2—7u+4=0
is given by > = 1 — % = %, sothate = 1/+/2.
Proof First suppose that E is a circle. Then C = 1, and by convention e = 0,
soe2=1-C,as required.

Next suppose that E is not a circle. Since the equation of E has no terms that
involve u or uv, it follows that E is symmetrical about the v-axis. Also, since
E has a focus F on the v-axis, it follows, by symmetry, that the directrix which
corresponds to F' is perpendicular to the v-axis. Hence F has coordinates (0, r)
for some real number r, and the directrix has equation v = s, for some real
number s.

Let P(u,v) be an arbitrary point on the conic, and let PQ be the
perpendicular from P to the v-axis. Then, by Pythagoras’ Theorem, we have

PF*> = FQ*+ OP? = (v —r)* + u*.

Now let PD be the perpendicular from P to the directrix. Then, by the
focus-directrix property, we have PF = ¢ - PD = ¢ - |v — 5|, SO

62(1) — s)2 = PF* = (v — r)2 +u>.
Expanding the brackets and collecting terms, we obtain
u> + (11— e — 2(r — ezs)v + (r2 — ezsz) =0.

Comparing this with the equation of E in the statement of the theorem, we
see that C = (1 — ¢2), and hence that e2 = 1 — C. [ |

Problem 4 Determine the eccentricity of the hyperbola with equation

2u® —6v> +50—1=0.
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Theorem 5, Subsection
4.1.4

‘We use this result in
Subsection 4.1.4.

We use (u, v) as our
coordinate system here
rather than (x, y) to match
our notation in later
discussion.

F©O,r)




210 4: Projective Geometry: Conics

In our work in the following subsection we shall also need an understanding
of the relationship between conics which have the same eccentricity. So, first,
observe that all non-degenerate conics with a given distance d between the
focus and the directrix, and a given eccentricity e, are Euclidean-congruent to
each other. This means that the size and shape of a non-degenerate conic are
completely determined by the numbers e and d.

If we now fix e and vary the size of d, then the shape of the conic remains
the same but the size of the conic changes. The following figure shows the
effect that an increase in d has on each type of conic.

> O D (

double double double
d d d
By allowing d to vary throughout the interval (0, co), we obtain every size of
conic with a given eccentricity e. We can therefore obtain any non-degenerate

conic by first choosing a conic with the correct eccentricity and then adjusting
its size by varying d.

41.4 Conics in Perspective

We now demonstrate that, for any two given plane conics, there is a perspec-
tivity between them. Indeed, we can draw a right circular cone such that each
of the given plane conics arises as the intersection of the cone with a suitable
plane. It follows that there is a projective transformation that maps any given
projective conic onto any other, so the property of ‘being a conic’ is a pro-
jective property. This enables us to prove quite surprising results about plane
conics.

Plane Sections of a Right Circular Cone

Earlier, we asserted that we can construct all conics by taking different plane
sections through double cones. We now justify that claim, and describe its
relevance to projective geometry.

First, we generate a hollow right circular cone by taking a line through the
origin in R? at some angle ¢ to the (x, y)-plane, and rotating that line around
the z-axis. We call the line a generator of the cone. Next, we cut the cone with
planes (none of which passes through the origin) at various angles, and make
the following observations illustrated below. (a) When the plane is horizontal,

Euclidean-congruence
was explained in
Subsection 2.1.2.

Recall that (0, c0) denotes
the interval {x : x > 0}.

This fact about the
intersection was known to
the ancient Greek
mathematicians around
300 BC.

Subsection 1.1.1

Here 0 < ¢ < /2
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the section is a circle. (b) As the plane tilts, its curve of intersection with the
cone looks like an ellipse. (¢) When the plane becomes parallel to one of the
generators of the cone, the curve of intersection looks like a parabola. (d) As
the plane tilts further, it meets both portions of the cone, and the curve of
intersection looks like a hyperbola. (¢) When the plane is vertical we obtain the
fattest possible hyperbola that can be obtained from this cone. The asymptotes
of this hyperbola are parallel to a pair of lines on the cone that pass through
the origin.

j Oi ZZ Kﬂpwjm li
() (b) (© (d) (e)

To prove that these observations are correct, we do some algebra.

Since the generator of the cone through the first quadrant of the (y, z) -plane
has slope tan ¢, this generator has equation {(x,y,y) : z =tan¢ -y, x = 0},
or {(x,y,2) 1 y = z/tan¢, x = 0}. Rotating this generator around the z-axis
gives the whole of the cone, which must therefore have equation

Z2

tanZ ¢ 3

x4 y2 =

Next, let 7 be the plane in which we are interested that cuts the cone,

and let O be the angle between the (x, y)-plane and r. We shall assume for

convenience that the x- and y-axes have been chosen so that 7 intersects the

(x, y)-plane in a line parallel to the x-axis. Then if we rotate the (x, y)-plane
about the x-axis through an angle 0, it becomes parallel to 7.

rotate
(x, y)-plane

This rotation moves the x-, y- and z-axes into new positions, which we call
the x'-, y'- and z’-axes. If a given point in R3 has coordinates (x,y,z) and
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generator

‘\¢

This equation describes
both the upper part and
the lower part of the cone.

Here 0 < 0 < m/2.
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(x’,y’, 7)) with respect to these two sets of axes, then the connection between
these coordinates is given by the matrix equation

2
———y

(0, — sin®, cosh)

X 1 0 O xl E V' )
. , ' s (0, cos0, sinB)
=] 0 cosf —sinb y . %) 0L B
z 0 sin® cosO 4 (1,0,0)

Notice that here the columns of the 3 x 3 matrix of the rotation comprise the
coordinates (with respect to the initial x-, y-, z-axes) of the points 1 unit along
each of the final x’-, y’-, z’-axes (as shown in the margin).

Next, we translate the (x’, y’)-plane through some distance d parallel to the  Here d does not denote a

7’-axis until it coincides with the plane 7. This translation sends the x’-, y’-  focus-directrix distance,
but an arbitrary positive

number.

and 7’-axes into new positions, which we call the u-, v- and w-axes.
If a given point in R has coordinates (x’,y’,z’) and (u, v, w) with respect
to these two sets of axes, then the coordinates are related by

x’ u 0
y |=1 v |+] 0]. )
7 w d

Overall, it follows from equations (4) and (5) that if a given point has coor-
dinates (x, y, z) with respect to the x-, y- and z-axes, and coordinates (u, v, w)
with respect to the u-, v- and w-axes, then

X 1 0 0 u 0
y | =1 0 cosf —sinf v |+ O
z 0 sinf® cosO w d
1 0 0 u 0
=] 0 cosf® —sinb v + —d sin 6
0 sinf® cos6 w dcosb

Now, for points on the curve where  intersects the cone, we have w = 0.
So at these points,

X 1 0 0 u 0
y = 0 cosf® —sinb v + —d sinf s
z 0 sinf cosd 0 dcosb
that is,
X =u,
y=wvcosf —dsin6, (6)

z=wvsin6 + dcosb.

Since the points of intersection lie on the cone, their coordinates (x, y, z) must
satisfy the equation of the cone given in equation (3). Hence, if we substitute
for x, y and z from equations (6) into equation (3), we obtain

(usin® + d cos H)?
tan? ¢

u? + (vcosh — dsin0)? =
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After rearranging the terms in this equation, we obtain an equation of the form

u>+Cv>+Guv+H=0, @)
where C, G and H are expressions involving 6 and ¢. In particular,
2 sin” 0 5 tan’ 0
C =cos“ 6 — =cos“O|1———]). 8)
tan2 ¢ tan2 ¢

Since equation (7) is a second-degree equation in u and v, the curve of intersec-
tion is certainly a plane conic. Moreover, the conic is clearly non-degenerate
with a focus on the v-axis. But which type of conic is it?

First, suppose that 6 < ¢, so that 7 is less steep than the generators of the
cone. Then, it follows from equation (8) that C > 0. Hence, if we apply the
‘B? —4AC test’ to equation (7), we find that B> —4AC = —4-1-C < 0, and
so the curve of intersection is an ellipse.

It follows from equations (7) and (8) and the Eccentricity Formula that the
eccentricity e of the ellipse is given by

tan® 0
A =1-C=1-cos20 (1 - ——
tan? ¢
sin® 0
tan? ¢
sin®
tan ¢
= sin? 6(1 + cot® ¢)
sin” 0

sin ¢’

:1—005294—

= sin% 6 +

so that
sin 6
sing’

As 6 increases from 0 to ¢, e increases from O to 1. Thus, by tilting &
through a suitable angle 6 in the interval [0, ¢), we can obtain an ellipse with
any desired eccentricity between 0 and 1. If we then move 7 parallel to itself,
the angle 6 remains the same, and so the eccentricity of the ellipse remains the
same, but the size of the ellipse can be adjusted by any desired dilatation factor.
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This test was described in
Section 1.3.

Theorem 3, Subsection
413

As 0 increases, the ellipse
becomes longer and
thinner.
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It follows that we can obtain ellipses of all possible eccentricities and sizes
by choosing the intersecting plane 7 to be at the appropriate angle and at the
appropriate distance from the origin.

Next, suppose that & = ¢, so that 7 is parallel to a generator of the cone.
Then, it follows from equation (8) that C = 0. Hence, if we apply the ‘B> —
4AC test’ to equation (7), we find that B2 —4AC = —4-1-C = 0, and so the
curve of intersection is a parabola.

As the plane moves further from the origin, the size of the parabola
increases. It follows that we can obtain parabolas of all possible sizes by
choosing the intersecting plane to be at the appropriate distance from the
origin.

Finally, suppose that & > ¢, so that 7 is steeper than the generators of the
cone. Then, it follows from equation (8) that C < 0. Hence, if we apply the
‘B> —4AC test’ to equation (7), we find that B2 —4AC = —4-1-C > 0, and
so the curve of intersection is a hyperbola.

But, as we saw earlier, the eccentricity e of the hyperbola is given by
sinf
sing’

As 6 increases from ¢ to /2, e increases from 1 to cosec ¢.

In particular, for each given value of 6, the eccentricities of the hyperbolas
obtained from all planes of that slope are equal. And as the plane moves further
from the origin, the size of the hyperbolas increases.

Thus, by tilting the plane of intersection through a suitable angle 6 in the
interval [¢, /2], we can obtain a hyperbola with any eccentricity in the inter-
val [1, cosec ¢], and by moving the plane parallel to itself, we can adjust the
size of the hyperbola by any desired factor. But how can we obtain a hyperbola
with eccentricity greater than cosec ¢?

Well, notice that the asymptotes of each hyperbola are parallel to the two
lines of intersection of the cone with a plane through the origin that is parallel
to the intersecting plane. It follows that the angle between the asymptotes of
the hyperbola can be any angle from 0 to the angle between the lines of inter-
section of the cone with a vertical plane through the origin. In other words,
they can be no further apart than two opposite generators of the cone. So
not every hyperbola can be found in every cone! Hence, in order to obtain

asymptotes

any given hyperbola as a curve of intersection of a plane with a cone, we
need to choose a ‘fat enough’ cone (that is, a cone with a sufficiently small
angle ¢).

This completes the proof of the following fact.

Theorem 4 Every non-degenerate plane conic can be found as the curve
of intersection of a suitable right circular cone with a suitable plane.

We can now use this theorem to illustrate that there is a perspectivity
between any two non-degenerate plane conics.
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First, we illustrate why there is a perspectivity between any two ellipses E
and E>. Choose any right circular cone with vertex at the origin O. Then it
follows from the details in the proof of Theorem 4 that there are two planes 7}
and m whose curves of intersection with the cone are E1 and E;. The required
perspectivity is simply the point-to-point mapping of E;| onto E; along the
generators of the cone.

Similarly, there is a perspectivity between any ellipse £ and any parabola
E,. For, given any right circular cone with vertex at the origin O, it follows
from the earlier explanations that there are two planes 7| and 7ro whose curves
of intersection with the cone are E| and E>.

In the same way, there is a perspectivity between any ellipse £ and any
hyperbola E;. Again, the perspectivity maps each pair of curves point-to-point
along generators of the cone—but this time we need to choose a sufficiently
fat cone in the first place, so that some plane intersects the cone in the
hyperbola Ej.

In general, there is a perspectivity which maps any given non-degenerate
plane conic onto any other given non-degenerate plane conic. It can be realized
as a point-to-point map along the generators of a cone that is fat enough to yield
both conics as sections through the cone.

Next, just as there is a perspectivity between any two non-degenerate
plane conics there is a projective transformation that maps any non-degenerate
projective conic onto any other non-degenerate projective conic.

Theorem 5 All non-degenerate projective conics are projective-congruent.

Three Tangents Theorem

The correspondence between plane conics in an embedding plane and projec-
tive conics in RIP? enables us to match Euclidean theorems about plane conics
with projective theorems about projective conics. Provided that the theorems
are concerned exclusively with projective properties, then a Euclidean theorem
will hold if and only if the corresponding projective theorem holds.

Later we shall meet a whole range of applications of the projective-
congruence of all non-degenerate projective conics. However we end this
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Here we are assuming that
7 is an embedding plane,
and hence that its
intersection £, with the
cone includes the ideal
Point associated with the
parabola.

Here E5 includes two
ideal Points.

This map is one—one and
onto provided that the
conics include their
associated ideal Points.

We postpone the proof of
Theorem 5 to Section 4.4,
to concentrate on our
main story-line.

Section 4.3
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section with the following striking result, to give you a ‘taster’ of things
to come!

Theorem 6 Three Tangents Theorem

Let a non-degenerate plane conic touch the sides BC,CA and AB of a
triangle AABC in R? at the points P, Q and R, respectively. Then AP, BQ
and CR are concurrent.

The following figures illustrate the Three Tangents Theorem for an ellipse
and a parabola.

Proof The theorem concerns a non-degenerate conic, its tangents, and con-
currency of lines. Since all of these properties are projective properties, it is
sufficient to prove the result for any non-degenerate plane conic. For simplicity,
therefore, we take the plane conic to be a circle.

Since, by symmetry, the two tangents from a point to a circle are of equal
length, it follows that AQ = AR, BP = BR and CP = CQ, so that, in particular,

AR BP CQ

RB PC QA
By applying the converse to Ceva’s Theorem to this equation, it follows that
the lines AP, BQ and CR are concurrent. |

42 Tangents

Many results about plane conics and projective conics involve properties of
their tangents and polars. In this section we introduce a notation due to
Joachimsthal that can be used to write down the equations of such tangents
and polars.

421 Tangents to Plane Conics

Let P be a point on a non-degenerate plane conic E, and let £ be the tangent at
P to E. Next, let P’ be a point close to P on E, and let £ be the line through

A
R 0
B P c
Subsection 2.4.2

Such results appear in
Section 4.3.

Ferdinand Joachimsthal
(1818-1861) was a
distinguished German
geometer, noted for his
mature, polished
exposition.
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P and P’. If we let P’ approach P along the curve E, the direction of the
line ¢ approaches the direction of the tangent £. We may phrase this rather
loosely as follows: ‘the direction of the tangent is the limiting direction of the
chords’.

We begin by recalling that a non-degenerate plane conic has an equation of
the form

Ax?> + Bxy 4+ Cy*+ Fx+ Gy + H =0.

If we denote the expression on the left-hand side of this equation by the
symbol s, then the equation of the conic can be written very simply as

s =0.

Joachimsthal’s approach is to investigate the equations of tangents and
polars to the conic by systematically attaching subscripts to the symbol s. For
example, to check whether a point P; = (x1, y1) lies on the conic it is neces-
sary to replace the variables x and y in s by x| and yj, respectively. This yields
a number which we denote by the symbol s;1; in other words,

s11 = Ax12 + Bx1yi +Cyf + Fx;+ Gy + H.

If 511 = 0, then we can conclude that P lies on the conic; and if s1; # O,
that P; does not lie on the conic.

Similarly, the point P> = (x2, y2) lies on the conic if and only if the number
527 defined by

5220 = Ax3 4+ Bxays + Cy3 + Fxa + Gya + H

is equal to zero.

Joachimsthal’s notation can also be used to obtain a kind of ‘average’ num-
ber when we ‘mix’ the subscripts 1 and 2 to define a number 51, associated
with two given points P; = (x1,y1) and P, = (x2, y2) to be

X +x X2+ x
S12=AX1X2+B(%>+C)’I)’2+F< 22 1)

+G(ﬂ§£)+ﬂ

The reason for defining 51 in this way will become apparent shortly. Notice,
for the moment, that the definition of s> is symmetrical in the sense that the
value of s17 is unaltered if we interchange the subscripts 1 and 2. In other
words s12 = s21, a fact which we will use later.

So far we have attached double subscripts to the symbol s, and this has
always produced a number. Notice, however, that if we drop the second sub-
script in the definition of 512, then the resulting expression is a linear expression
in x and y, defined by

+ + +
n:Amx+B<ﬂl—ﬁ&>+Cmy+F(xZm)+G(M2y)+H.

2

Once again the reason for defining s in this way will become apparent
shortly. A clue is provided by the fact that in plane geometry a line can be
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P=(x;,y)

We may define a number
533 associated with a point
P3 = (x3,y3) in a similar
way.

We could define 513 and
523 in a similar way.

Here we temporarily use
the term linear expression
in x and y rather loosely,
to mean an expression of
the form ax + by + ¢, for
some real numbers a, b
and c.
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defined by setting a linear expression in x and y equal to zero. It will turn
out that the line defined by s; = 0 plays a particularly important part in our
discussion of tangents.

We may give a general summary of Joachimsthal’s notation in which we use
the symbols i and j to stand for arbitrary subscripts, each of which can take
the values 1, 2 or 3, as follows.

Joachimsthal’s Notation for Plane Conics
Let a plane conic have equation s = 0, where

s =Ax>+Bxy+Cy*+ Fx+ Gy +H,

and let P = (x1,y1), P> = (x2,y2) and P3 = (x3,y3) be points of R2.

Then we define In general it is simpler
PR P " NOT to try to remember

si ZAxix+Bu+Cyiy+F ! _|_Gy’ Y + H, these formulas, but to
2 2 2 remember the pattern for
Sii = Axl? + Bx;yi + C)’iz + Fx; +Gy; + H, obtaining the expressions

si»si; and s;; from s.

and
Xiyj +Xx;yi Xi + X i TV
sij = Axjxj + B2 T 5 D%y Cyiyj+ P 5 4G 2y, + H,

where i and j can each take the values 1, 2, or 3.

The following example illustrates how to work out these expressions in
Joachimsthal’s notation for conics.

Example 1 Determine s11, 522,512 and s; for the hyperbola with equation
3x? —2xy—y*4+5x—y—4=0

at the points P; = (3,2) and P, = (—5, —2). Hence determine whether either

Py or P lies on the hyperbola.

Solution The equation of the conic may be written in Joachimsthal’s
notation as s = 0, where
s:3x2—2xy—y2+5x—y—4.
Since here we have x| = 3, y; = 2,x, = —5 and y, = —2, we deduce that

s11=3-32-2.3.2-2245.3-2-4=20,

s =3- (—5)2 —2-(=5 (-2 — (_2)2 +5:(=5)—(=2) -4 =24,

3.(=2)+(=5)-2 3-5

=3.3.(=5 -2 —2.(=2 5——
512 (=95) 5 (=2) + 5

2-2
S R R V')
2
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and
3y+x-2 34x 24y
=3.3.x-2 -2 5 ———4
N 5 y+ 5 5
19 11 5
= —X — — —_
2 T 20T
Since 511 and s7; are both non-zero, it follows that neither of the points P;
or P lies on the hyperbola. ]

Problem 1 Determine s;1,s22,512 and s for the plane conic with
equation

202 +3xy —y2+x4+2y+1=0
at the points P; = (1,0) and P, = (2, 1).

Having introduced Joachimsthal’s notation we now turn our attention to
finding the equations of tangents to a conic s = 0. Since a tangent is a line
which intersects the conic at two coincident points, we first describe how to
determine the points where a given line £ meets s = 0.

Recall that every point P on the line £ through two given points P =
(x1,¥1) and P, = (x2,y7) divides the segment P; P> in the ratio k : 1, for
some real number k, and so has coordinates that may be written in the form

kxo +x1 ky, +y1
k+1 7 k+1 )°

It follows that the line through the points P; and P> meets the conic with
equation

(s =) Ax>+ Bxy+Cy’ + Fx+Gy+H =0
at points which divide the segment P; P> in the ratio k : 1, where
k 2 k k k 2
A X2+ X1 4B X2 + X1 y2+n ‘c y2+n
k+1 k+1 k+1 k+1
kxy + x kyz + y1

F G
T T

+ H =0.

If we multiply both sides of this equation by (k 4+ 1) and collect the coef-
ficients of the terms involving k2, k and the terms independent of k, it turns
out that we can rewrite this equation in terms of Joachimsthal’s notation in the
marvelously simple form

s20k? 4 2512k + 511 = 0.

This equation occurs so frequently in our work that we give it a special
name, Joachimsthal’s Section Equation.
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Section Formula,
Appendix 2

line /

meets
conic

We omit the unedifying
details.
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Since Joachimsthal’s Section Equation is a quadratic equation in k, the line
through P; and P, meet the conic at two distinct points, at one repeated point,
or not at all depending on whether the quadratic equation has two distinct real
roots, one repeated real root or no real roots, respectively.

Py P P

Two distinct real roots One repeated real root No real roots

Example 2 Determine the ratios in which the hyperbola with equation
3x2—2xy—y2+5x—y—4=()
divides the line segment from P; = (3,2) to P, = (-5, —-2).

Solution First observe that the hyperbola and the points P; and P, are the
same as those used in Example 1, so we can use the values 511 = 20, 522 = 24
and s1p = —34 calculated there. It follows that we can rewrite Joachimsthal’s
Section Equation in this case as

24k> — 68k 420 = 0,
or
6k> — 17k +5 = 0,
so that
(3k — 1)(2k — 5) = 0.

Thus k = % ork = % Thus, the hyperbola divides the line segment P; P at
two distinct points, in the ratios % : 1 and % . 1; that is, in the ratios 1:3 and
5:2, respectively. O

Problem 2 Determine the ratios in which the hyperbola with equation
22 4+3xy -y +x4+2y+1=0
divides the line segment from P; = (1,0) to P, = (2, 1).
Hint:  Use your results from Problem 1. ae,
We are now in a position to find the equation of the tangent to the plane

conic with equation s = 0 at a point P; = (x1, y1) on the conic. To do this, let
£ be a chord of the conic which passes through P, and let P, = (x3, y2) be
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a point on ¢ which lies outside the conic. Since the chord through P; and P,
meets the conic at two distinct points, it follows that Joachimsthal’s Section
Equation has two distinct (real) roots k.

Now let P, move so that the chord through P; and P, becomes a tangent
to the conic at Pj. This tangent is a line that meets the conic at the point P;
alone, and so the corresponding Joachimsthal’s Section Equation must have a
repeated real root. Hence it follows that we must have Recall that the condition

2 for a quadratic equation
(2s12)” = 4s11522,

2 —
or, equivalently, ax“4+bx+c=0
(s12)2 = 511522. FO havze a repeated root is
just b* = 4ac.

Since Pj lies on the conic, we know that s;; = 0; so we must have
S12 = 0.

It follows from this equation that the point P, = (x3, y») must satisfy the = Remember that s is
equation s; = 0. But P, is an arbitrary point on the tangent to the conic at P;, obtained from s1; by
and so the tangent at P; must have the equation s; = 0. dropping the subscript 2.

Theorem 1 Let P; = (x1, y1) be a point on a non-degenerate plane conic

E with equation s = 0. Then the equation of the tangent to E at P is
at P
S = O 1

Example 3 Determine the equation of the tangent at Py = (1,1) to the
hyperbola with equation

3x2—2xy—y2+5x—y—4=0.
Solution The equation of the conic may be written in Joachimsthal’s
notation as s = 0, where

s=3x2—2xy—y2+5x—y—4.
Since here we have x; = 1 and y; = 1, we deduce that

l-y+x-1 I+x I1+y
=3.1.x—2-2TY" " 1.y 45 Yy
5 o 2 Yo 2
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The equation of the tangent at (1, 1) to the hyperbola is therefore

9x —5y—-4=0. O

Problem 3 Determine the equation of the tangent to each of the
following non-degenerate plane conics at the given point:

(@) x2 —xy+2y —7 = 0 at the point (—1,2);
(b) 3x% +2xy — y2 4+ x — 2y — 3 = 0 at the point (1, 1).

Tangent Pair from a Point to a Conic

Now suppose that we wish to find the equation of a tangent to a plane conic Py
E from a point P; outside the conic. Intuitively we would expect there to be

two such tangents, as shown in the diagram in the margin. We now check this
algebraically. The technique is similar to the case where P; lies on the conic,

as we discussed above.

. . . . E s=0
First we consider a chord of E that passes through the given point P; and
another point P, that is also outside the conic; then we move P, so that the
line becomes a tangent. As before, this occurs when Joachimsthal’s Section
Equation has a repeated real root, that is, when
(S, =5,. 5, Here 511 # 0, since Py

does not lie on E.

Then, since the point P, is an arbitrary point on the tangent, we can drop the
subscript 2 to obtain the equation

2
(s1)” =s"-s11.
This is a second-degree equation in x and y; it factorizes into two linear

equations which represent the pair of tangents from Pj to E.
P, J

Theorem 2 Let P; be a point outside a non-degenerate plane conic E with
equation s = 0. Then the equation of the tangent pair from P; to E is

2
(51)° =5 - 511.
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Example 4 Find the equations of the tangents from the point (1, 1) to the
ellipse with equation x% + 2y? = 1.

Solution The equation of the ellipse may be written in Joachimsthal’s
notation as s = 0, where

s=x>4+2y* - 1.
Since here we have x; = 1 and y; = 1, we deduce that
sp=12+2-1-1=2
and
st=1-x+2-1-y—1=x+2y—1.
The equation of the tangent pair is therefore
x+2y—1D2=@x>+2y>—1)-2.

Multiplying out both sides and rearranging terms, we can rewrite this equation
in the form

x2—4xy+2x+4y—3=0,
which we can then factorize as
x—1Dkx—-4y+3)=0.

Hence the equations of the two tangents from the point (1, 1) to the ellipse
arex — 1 =0andx —4y +3=0. O

Problem 4 One of the two tangents from the point (2, 1) to the hyper-
bola 4xy + 1 = 0 has the equation y = x — 1. Find the equation of the
other.

Poles and Polars

In Subsection 1.2.1 we defined the polar of a point with respect to the unit
circle. We now extend this definition to a general non-degenerate plane conic.

Let P = (x1,y1) be a point outside a non-degenerate plane conic E with
equation s = 0 (in Joachimsthal’s notation), and suppose that P, = (x2, y2)
and Pz = (x3, y3) are the points where the tangents through P; meet E. These
tangents have equations s, = 0 and s3 = 0, respectively. Since P; lies on both
tangents, it follows that

s;2 =0 and s13=0.

It follows from these equations that the points P, and Pz both lie on the line
with equation s = 0, the so-called chord of contact or polar of P with respect
to the conic E.
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That is, (51)2 =5-51-
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Definitions Let E be a non-degenerate plane conic with equation s = 0,
and let P; = (x1, y1) be an arbitrary point of R2. Then the polar of P; with
respect to E is the line with equation s; = 0. The point P; is called the
pole of the line s; = 0 with respect to E.

We have seen that if P; lies outside the conic E, then the polar s; = 0 is the
chord which passes through the points where the tangent pair from P; touch
E. Also, if P is a point on the conic s = 0, then it follows from Theorem 1
that the polar s; = 0 is simply the tangent to E at Py. If P lies inside the
conic E, then the polar is simply a particular line outside E that corresponds
to Pj.

Example 5 Determine the polar of P; = (2,2) with respect to the hyperbola
E with equation

3x2—2xy—y*+5x—y—4=0.
Solution The equation of the hyperbola E may be written in Joachimsthal’s
notation as s = 0, where

s=3x2—2xy—y2+5x—y—4.

Since here we have x; = 2 and y; = 2, we deduce that

2- -2 2 2
2 2 2
_ .3y

It follows that the equation of the polar of P; with respect to E has equation

13 9 13
Sx—5y=0,0ry=%x. O

Problem 5 Determine the polar of (1, —1) with respect to the hyper-
bola E with equation 2x? + xy — 3y? 4+ x — 6 =0.

We are now able to state and prove a stunningly beautiful result concerning
poles and polars.

4: Projective Geometry: Conics

This definition is
analogous to the definition
of polar with respect to a
circle in Subsection 1.2.1.

We will see in Theorem 3
below that this definition
for the case that P; lies
inside E results in
theorems about poles and
polars where we do not
need to worry whether a
point in the plane lies
outside, on or inside a
given conic.

You met this hyperbola £
previously, in Example 3.
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Theorem 3 La Hire’s Theorem
Let E be a non-degenerate plane conic, and let p; be the polar of a point P;
in R2. Then each point of p; has a polar which passes through P;.

Proof Let P; = (x1,y1) be a point in R2. Then, by definition, the polar p;
of P; with respect to E has the equation s; = 0.
Let P, = (x2, y2) be any point on p1, so that in particular we have

si2 = 0.

But from the definition of polar, we know that the polar of P, with respect
to E must have equation s, = 0. It then follows from the equation s1» = 0 that
the point P; must lie on the polar of P, with respect to E. This completes the
proof. |

422 Tangents to Projective Conics

Earlier, we defined a Line £ to be a tangent to a projective conic E if £ meets E
at precisely one Point P. We then explained the connection between tangents to
projective conics and tangents to plane conics. If £ is a tangent to a projective
conic E, then the line ¢’ which represents ¢ in an embedding plane 7 is a
tangent to the plane conic E” which represents E in 7.

tangent I
toE

projective
tangent £
to E

Because of this correspondence, we are able to use results about figures in
RP? to deduce results about figures in an embedding plane, and vice versa. In
this subsection we use this correspondence to deduce Joachimsthal’s formu-
las for projective conics from the corresponding formulas for plane conics. In
preparation for this, we first extend the concepts of a tangent pair and a polar
to a projective conic in RP?.

Let E be a non-degenerate projective conic, and let P be a Point in RP?
which lies outside E. If 7 is an embedding plane, then E is represented in
by a non-degenerate plane conic E’, and P is represented by a Euclidean point
P’ in 7. Now, in the embedding plane 7 we can draw a pair of tangents £
and ¢, from P’ to E’. Back in RP?, the planes which pass through the origin
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Subsection 4.1.2
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\ projective

tangent

/ pair from
PtoE

Point P outside E P

and the lines £ and ¢, are projective tangents to E. These tangents meet at
the Point P, so they are called the projective tangent pair (or, simply, the
tangent pair) from the Point P to the projective conic E.

Now let Q' and R’ be the points in the embedding plane 7 at which ¢; and
£ touch E’. Then the polar of P’ with respect to E’ is the line ¢ through Q’
and R’. Back in RP?, the plane which passes through the origin and ¢ is a Line
which we call the projective polar (or, simply, polar) of the Point P with
respect to the projective conic E.

polar of P
with respect
to E

E P

In order to see how Joachimsthal’s notation can be extended from R? to
RP?, suppose that the work in Subsection 4.2.1 had all been carried out
in the embedding plane z = 1. To illustrate the ideas involved, recall that
Joachimsthal’s equation for a plane conic is s = 0, where

s =Ax>+ Bxy +Cy> + Fx + Gy + H.

Earlier, in Subsection 4.1.1, we described how the equation for a conic in
RP? can be obtained from the equation of the corresponding plane conic by
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replacing x by x/z and y by y/z, and then multiplying by z? to clear the
fractions. The equation is still s = 0, but now

s = Ax? —l—Bxy—l—Cy2 + Fxz+ Gyz+ HZ%.

In a similar way, Joachimsthal’s expressions, such as s; = O for a polar, or

S12 = s - 511 for a tangent pair, still hold in RP? provided that we amend the

expressions for sy and s1; by replacing x, y,x1,y1 by x/z,v/z,x1/21, y1/21,
respectively, and then multiplying by powers of z and z; to clear fractions. The
resulting amendments to s1, 511, etc., are as specified in the following notation.

Joachimsthal’s Notation for Projective Conics
Let a projective conic have equation s = 0, where

s = Ax? + Bxy + Cy2 + Fxz+ Gyz + HZ?,
and let [x1, y1, z1] and [x7, y2, z2] be Points of RP2. Then we define
s1 = Ax1x + %B(XU’ + xy1) + Cy1y
+ $F(xiz 4+ x21) + 3Gz + yz1) + Hziz,
s11 = Ax? + Bxyy; + Cy? + Fxiz1 + Gyiz1 + Hz3,
s12 = Ax1xz + 3B(x1y2 + x231) + Cy1y2 + 5 F(x122 + x221)
4+ %G(ylzz + y2z1) + Hz122.

Example 6 Determine 51,511 and s1» for the projective conic
4x? +xy —2y* —8xz —2yz+4z2=0
at the Points [x1, y1,z1] = [1,0,2] and [x2, y2,22] = [1,2, —1].

Solution Using Joachimsthal’s notation with A =4, B = 1,C = -2,
F = —-8,G = —2 and H = 4, we deduce that

s1=4x+3(y+0)—2-0—4(z+2x) — (0+2y) +4-22
=—4x—%y+4z;

s11=4-140—-0—8-2—0+4-4=4;

sp=4-1+324+0)—0—4(-14+2)— 0+4 +4-2-(=1)
=11 O

With the changes to Joachimsthal’s notation described above, all of the for-
mulas for polars, tangents and tangent pairs carry over from R? to RP?. We
therefore have the following theorem.

We omit the details.

227



228 4: Projective Geometry: Conics

Theorem 4 Let a projective conic E in RP? have equation s = 0.

(a) If P = [x1,y1,z1] lies on E, then the tangent to E at P has equation
S1 = 0.
(b) If P = [x1, y1,z1] lies outside E, then the pair of tangents to E from P
are given by the equation sl2 =551
(c) If P = [x1, y1,21] is any Point in RP?, then the polar of P with respect In fact, if P lies inside or

to E is the Line with equation s; = 0. on E, then we define the
polar of P to be the Line
with equation s; = 0.

Example 7 The projective conic E has equation
4x? +xy — 2y2 —8xz —2yz + 472 = 0.

(a) Determine the equation of the tangent to E at the Point [0, 1, 1].

(b) Determine the equations of the two tangents to E that pass through the
Point [1,0, 2].

(c) Determine the polar of the Point [1, 0, 2] with respect to E.

Solution

(a) Lets = 4x? + xy — 2y> — 8xz — 2yz + 4z and [x1, y1,z1] = [0,1,1].
Then

s1=0+10+x) =2y —40+x) — (z+y) + 4z
= —%x — 3y +3z.
Hence the equation of the tangent to E at [0, 1, 1] is
—Ix=3y+3z=0,
or
7x + 6y — 6z =0.
(b) The pair of tangents from the Point [1, 0, 2] to E are given by the equation
512 = s - 511, where, by Example 6, s| = —4x — %y + 4z and 511 = 4.
Thus the equation of the tangent pair is
3 2 2 2 2
(—4x - §y+4z> = (4x“ +xy —2y° — 8xz —2yz +4z°) - 4,
or
1652 + 2% + 1627 + 12xy — 32xz — 12yz
= 16x° + 4xy — 8y2 —32xz — 8yz + 1622
After some rearrangement, this becomes

Hy2 4 8xy —dyz =0,
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or
v (4y+8v—4) =o0.
Thus the equations of the two tangents to the projective conic are
y=0 and A'le+8x—4z=0.

(c) The polar of the Point [1, 0, 2] is given by the equation s; = 0, where, by
Example 6,

s1 = —4x — %y +4z.

Thus the equation of the polar of [1, 0, 2] with respect to E is
—4x — %y+4z =0,

or

8x +3y —8z=0. O

Problem 6 The projective conic E has equation
¥ 422 +2xy —4yz+z2x = 0.

(a) Determine the equation of the tangent to E at the Point [1, 0, O].
Verify that [0, 1, —2] lies on this tangent.

(b) Determine the equations of the two tangents to E that pass through
the Point [0, 1, —2].

(c) Determine the polar of the Point [0, 1, —2] with respect to E.

43 Theorems

In this section we use the fact that all non-degenerate (projective) conics are
projective-congruent, together with the Fundamental Theorem of Projective  Subsection 3.3.4,
Geometry, to prove many interesting results about projective conics. It then ~Theorem 4
follows that the corresponding results hold for plane conics too.

431 Points on Projective Conics
Recall that the general form of the equation of a projective conic in RP? is Subsection 4.1.1
Ax? 4 Bxy + Cy* + Fxz + Gyz + Hz> = 0.

Although this equation involves six arbitrary constants A, B,C, F,G and H,
it is only their five ratios that matter. In fact, it takes exactly five Points to
determine a projective conic.
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Example 1 Determine the equation of the projective conic which passes
through the Points [1, 0, 0], [0, 1, 0], [0, O, 1], [1, 1, 1] and [1, 2, 3].

Solution Let the projective conic have equation
Ax? 4+ Bxy 4+ Cy* + Fxz 4+ Gyz + Hz*> = 0.

Since [1, 0, 0] lies on the projective conic, we must have A = 0. Similarly,
since [0, 1, 0] and [0, O, 1] lie on the projective conic, we must also have C = 0
and H = 0. Thus the equation of the projective conic reduces to the form

Bxy + Fxz+ Gyz =0.

Since [1, 1, 1] and [1, 2, 3] both satisfy this equation, we deduce that

B+F+G=0 (1)

and
2B +3F 4+6G =0. 2)
Subtracting equation (2) from twice equation (1), we deduce that —F —4G =0
so that F = —4G; and subtracting equation (2) from three times equation (1),

we deduce that B — 3G = 0 so that B = 3G. It follows that the equation of
the projective conic must be of the form

3Gxy —4Gxz + Gyz =0,
or

3xy —4xz+yz=0. |

Problem 1 Determine the equation of the projective conic which
passes through the Points [1, 0, 0], [0, 1, O], [0, O, 1], [1,1,1] and
[_27 37 1]

We now use the approach in Example 1 to prove the following result.

Theorem 1 Five Points Theorem

There is a unique non-degenerate projective conic through any given set of
five Points, no three of which are collinear. In particular, if the five Points
are [1,0,0], [0, 1,0],[0,0, 1],[1, 1, 1] and [a, b, c], then the equation of the
conic is

cla—b)xy+b(c—a)xz+alb—c)yz =0.

Proof By the Fundamental Theorem of Projective Geometry, there is a pro-
jective transformation # which maps four of the Points to [1, 0, 0], [0, 1, 0],
[0, O, 1] and [1, 1, 1]. Let [a, b, c] be the image of the fifth Point under ¢.
Since ¢! preserves collinearity, it follows that no three of the Points [1, 0, 0],

The equation of a
projective conic is of
second degree, and so
G #0.
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[0, 1,0], [0, 0, 1], [1, 1, 1] and [a, b, c] are collinear. This observation enables
us to deduce that the numbers a, b and ¢ are all different and non-zero.

For example, b # c, for otherwise [a, b, c], [1, 0, 0] and [1, 1, 1] would all
lie on the Line y = z. Similarly, @ # b and ¢ # a.

Also, ¢ # 0, for otherwise [a, b, c], [1, 0, 0] and [0, 1, 0] would all lie on
the Line z = 0. Similarly, a # 0 and b # 0.

Since ¢ is a one-one transformation which preserves non-degenerate projec-
tive conics, the theorem holds if and only if there is a unique non-degenerate
projective conic through the Points [1, 0, 0], [0, 1, 0], [0, O, 1], [1, 1, 1] and
[a, b, c]. In fact, since no degenerate projective conic can pass through [1, 0, 0],
[0, 1, 0], [0, O, 1], [1, 1, 1] and [a, b, c], it is sufficient to show that there is a
unique projective conic (with the desired equation) through these Points.

Now any projective conic has equation

Ax? + Bxy + Cy2 4+ Fxz+ Gyz + HZ? = 0,
and if it passes through the Point [1, 0, 0], then A = 0. Similarly, if it passes
through the Points [0, 1, 0] and [0, 0, 1], then C = 0 and H = 0. It follows
that any projective conic which passes through [1, 0, 0], [0, 1, O] and [0, 0, 1]
must have an equation of the form

Bxy + Fxz + Gyz =0, (3)

for some real numbers B, F and G.
If the projective conic also passes through the Points [1, 1, 1] and [a, b, c],
then
B+F+G=0 @)
and
Bab + Fac + Gbc = 0. )

We may regard equations (4) and (5) as simultaneous equations in B and F.
If we subtract equation (5) from ab times equation (4), we obtain

F(ab —ac)+ G(ab —bc) =0,

SO
ab —bc.

F=-G ;
ab — ac

(6)

and if we subtract equation (5) from ac times equation (4), we obtain
B(ac — ab) + G(ac — bc) =0,

SO
ac — bc

B=-G (N

ac —ab’

It follows from equations (3), (6) and (7) that any projective conic through
the Points [1, 0, 0], [0, 1, O], [0, O, 1], [1, 1, 1] and [a, b, c] must have an
equation of the form

ac — bc ab — bc

— Gyz =0,
ac—abxy ab—acxz+ e
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Subsection 4.1.1,
Theorem 1

A degenerate projective
conic consists of a pair of
Lines, a single Line, a
Point, or ‘no Points’. Such
a projective conic cannot
pass through five Points
without three of the Points
being collinear.

Note that ab — ac # 0
sincea # 0and b # c.

The equation of a
projective conic is of
second degree, so G # 0.
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or
cla—b)xy+b(c—a)xz+alb—c)yz=0.

Since a, b and ¢ are uniquely determined (up to a multiple) by the fifth Point,
it follows that the projective conic is unique. |

Now any theorem which is concerned exclusively with the projective prop-
erties of Points, Lines and projective conics can be interpreted as a theorem
about the corresponding points, lines and plane conics in an embedding plane.
For example, if we are given any set of five points in an embedding plane, no
three of which are collinear, then Theorem 1 tells us that there is a unique plane
conic which passes through the points. In particular, this result remains true if
we require that none of the five points is an ideal Point for the embedding
plane, so we have the following result about plane conics.

Corollary 1 There is a unique plane conic through any given set of five
points, no three of which are collinear.

Now consider any four distinct Points A, B, C, D, no three of which are
collinear. If X is a Point in RP? that does not lie on any of the various
Lines through A, B, C, D, then Theorem 1 tells us that there is a unique non-
degenerate projective conic through A, B,C, D and X. If we now move X
around RP? (avoiding the various Lines through A, B,C, D) we obtain an
infinite family of non-degenerate projective conics through A, B,C, D. We
therefore have the following corollary of Theorem 1.

Corollary 2 There are infinitely many non-degenerate projective conics
through any given set of four Points, no three of which are collinear.

Problem 2 Find the equations of two different (non-degenerate) pro-
jective conics through the Points [1, 0, 0], [0, 1, 0], [0, 0, 1] and [1, 2, 3].

Warning
We now use this corollary to warn you about a mistake that is frequently made
in projective geometry.

The mistake is to assume that there exists a projective transformation # which
maps one projective conic Ej onto another projective conic E» in such a way
that four given Points on E| are mapped to four given Points on E».

Of course, there is certainly a projective transformation #; which maps E;
onto E», and by the Fundamental Theorem of Projective Geometry there is
certainly a projective transformation #, which maps the four Points on E; to
the four Points on E;. The trouble is that #; may not be the same transformation
as 1.

4: Projective Geometry: Conics

If we multiply a, b and ¢
by a constant A, then the
equation of the projective
conic is multiplied by A%
however, this does not
change the projective
conic.

Some of the points may be
ideal Points for the
embedding plane.
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|
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For example, consider two different projective conics £ and E; through
the Points A = [1,0,0], B = [0,1,0],C = [0,0,1], D = [1,1,1]. (This is
possible by Corollary 2.) By the Fundamental Theorem of Projective Geometry
the only projective transformation which maps each of the Points A, B, C, D to
itself is the identity transformation, and this certainly cannot map E; onto E».

The following theorem shows that the situation is very different if, instead
of having to map four given Points on one projective conic to four given Points
on another, we have to map just three.

Theorem 2  Three Points Theorem

Let E1 and E, be non-degenerate projective conics which pass through the
Points P1, Q1, R; and P, 0>, R», respectively. Then there is a projective
transformation ¢ which maps E| onto E3 in such a way that

t(P1) = P, t(Q1) =02 (R1)=Ry.

Proof First, let ¢’ be any projective transformation that maps Py, Q1, R; to
[1,0,0],[0, 1,01, [0, 0, 1], respectively. Then ¢ maps E| to a non-degenerate
projective conic E’ which passes through the triangle of reference. If E’ has

equation
Ax? + Bxy + Cy2 + Fxz+ Gyz + H7? =0,

then the fact that the Point [1, 0, 0] lies on E’ forces A to be zero, and the fact
that the Points [0, 1, 0] and [0, 0, 1] lie on E’ forces C and H to be zero. It
follows that the equation of E’ can be written in the form

Bxy + Fxz+ Gyz =0,

for some non-zero real numbers B, F' and G. By dividing by BFG we can
rewrite the equation of E’ in the form

Xy x z ¥y z
¢ rrestr ="
Now define the projective transformation t” by t”([x,y,z]) = [x,y’.7'],
where
x/ 1/G 0 0 X
v = o yF o y
7/ 0 0 1/B z

Then ¢” maps E’ to the conic with equation x'y" 4+ x'z’ 4+ y'z’ = 0, or, after
dropping the dashes, to the conic with equation xy + xz 4+ yz = 0.
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If B were zero, then the
equation of the projective
conic could be written as

(Fx+Gy)z=0,

which is the equation of a
degenerate projective
conic consisting of two
Lines. It follows that

B # 0. Similarly, F # 0
and G # 0.



234 4: Projective Geometry: Conics

Since 1" leaves the triangle of reference unchanged, it follows that the com-  For example,
posite projective transformation #; = " o ¢’ maps E; to the projective conic  ¢”([1,0,0]) = [1/G,0,0]
with equation =11,0,0].

xy+xz+yz=0

in such a way that 11 (P) = [1,0,0],#;(Q1) = [0, 1,0] and #; (Ry) = [0, 0, 1].
Similarly, there is a projective transformation #, which maps E, onto the
projective conic with equation

xy+xz+yz=0

in such a way that 1, (P>) = [1,0,0],%2(Q2) = [0, 1,0] and ,(R>) = [0,0, 1].

It follows that the composite projective transformation ¢ = ¢, Lot maps
E1 onto E; in such a way that 1(P;) = P>, 1(Q1) = 02,1(R;) = R», as
required. |

Example 2 The Points [1, 1, 1], [1, 2, 2], [1, 2, 1] lie on the projective conic
E with equation 2x% + 2xy — y> 4+ yz — 5xz + z> = 0.

(a) Verify that the projective transformation 7; : [x] — [x'] with associated
2 -1 0
matrix A = -1 0 1 maps the Points [1, 1, 1], [1, 2, 2],
0 | |
[1, 2, 1] to the Points [1, 0, 0], [0, 1, 0], [0, 0,1], respectively, and maps E
onto the projective conic E’ with equation x’y" — x'z" + y'z/ = 0.

1 1 1
Hint: The inverse of A is A~! = 1 2 2
1 2 1

(b) Determine the equation of the projective conic E” that is the image of E’
under the projective transformation #; : [x'] — [x”] with associated matrix

1 0 O
B=| 0 -1 O
0 0 1

(c) Hence determine a matrix associated with a projective transformation that
maps E onto the projective conic with equation xy + yz 4+ zx = 0.

Solution

(a) Letx’ = AX, so that

! 2 -1 0 X
y | =1 -1 0 1
7 0 1 -1 z
Since
-1 0 1 1
-1 1 1 |1=101],
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2 -1 0 1 0
—1 0 1 2 | = 1
0 1 - 2 0
and
2 -1 0 1 0
—1 0 1 2 1=1011,
0 1 - 1 1

it follows that the images under #; of [1, 1, 1], [1, 2, 2], [1, 2, 1] are
[1,0,0], [0, 1, 0], [0, O, 1], respectively.
Next, x = A~1x’ so that

X 1 1 1 X
y|l=112 2 y ol
z 1 2 1 7
thus
x=x+y+7,
y=x"+2y +27,
and

z=x"+2y +7.
It follows that #; maps the given projective conic onto the projective conic
with equation
26 +y + )20 +y + )+ 2y +22)
— 2y +22) 4 (2 2y 22+ 2y + 7))
—5G Y+ +2y + )+ (2 +2)P=0.

After some simplification, this becomes x'y’ —x'z'4+y’z" = 0, as required. = We omit the details.

1 0 0
(b) Under the projective transformation, : X'+ | 0 —1 0 |x' =x’,
0 0 11
we have
1 — x/’ y// — _y/ and Z// — Z,.
so that
x' = x//’y/ — _y// and Z/ — ZN-

Hence the image under 1, of the projective conic x'y’ — x'z' + y'z’ = 01is
the projective conic with equation

.7 n_1 n_1n
—x"y" = x"7" = y"2" =0,

or

n..1 "_n "_n

X'y +x"+y7" =0.
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(c) It follows from parts (a) and (b) that the projective transformation #, o f1,
with matrix

1 0 0 —1
BA=| 0 -1 0 —1 0
0o 0 1 1 -
2 -1 0
=1 —1 0 -1
0 I -1
maps E onto the projective conic with equation xy + yz + zx = 0, as
required. O

We can use a similar approach to find a projective transformation that maps

any given projective conic onto the standard projective conic xy+yz+zx = 0.  We explain the

designation ‘standard
projective conic’ in the

Strategy To determine a projective transformation ¢ that maps a given next subsection.

projective conic E onto the standard projective conic xy + yz +zx = 0:

1. choose three Points P, O, R on E;

2. determine a matrix A associated with a projective transformation that
maps P, O, R onto [1, 0, 0], [0, 1, 0], [0, O, 1], respectively;

3. determine the equation Bx'y’ + Fx'z’ + Gy'z’ = 0 of t(E), for some
real numbers B, F and G;

4. then a matrix associated with 7 is BA, where

/G 0 0
B=| 0 1/F o0
0 0 1/B

Problem 3 The Points [—2,0, 1], [0, —3,2], [1, —2, 1] lie on the pro-
jective conic E with equation 17x2 + 47xy + 32y + 67xz + 92yz +
667> =0.

(a) Verify that the projective transformation ¢ with an associated matrix

1 2 3
A=12 3 4 |,
3 4 6
maps [-2,0, 1], [0, -3,2], [1,—2,1] to [1, O, O], [0, 1, 0], [O, O,1],
respectively.
-2 0 1
(b) Verify that the inverse of A is Al = 0 3 =2
1 -2 1
(c) Determine the equation of the projective conic ¢(E).
(d) Hence determine a matrix associated with a projective transforma-
tion that maps E onto the projective conic with equation xy + yz +
zx =0.
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43.2

In the previous chapter you saw that we can often simplify problems about

The Standard Form xy + yz+2zx =0

Points and Lines by mapping certain Points to the triangle of reference and the
unit Point. In a similar way, we can often simplify problems about a projective
conic by mapping it onto another projective conic that has a simpler equation.

Since all non-degenerate projective conics are projective-congruent, it
follows that there is a projective transformation which maps any given non-
degenerate projective conic in RIP? onto the projective conic with equation
xy—+ yz+zx = 0. This equation turns out to be particularly useful for tackling
a large number of problems about projective conics, so we give it a special
name.

Definitions The equation
xy+yz+zx=0

is called a standard form for the equation of a projective conic.
The conic defined by this standard form is called a standard projective
conic.

The following diagram illustrates this standard projective conic together
with its representation in the standard embedding plane z = 1. The repre-
sentation has equation xy +y+x = 0, or (x + 1)(y + 1) = 1, and is therefore
a rectangular hyperbola with asymptotes x = —1 and y = —1.

standard conic

asymptotes Xy+yz+ze=0

rectangular
hyperbola

standard
embedding
plane z =1

Since this standard projective conic is defined by the equation xy + yz +
zx = 0, it must pass through the triangle of reference [1, 0, 0], [0, 1, 0],
[0, O, 1]. This fact can often be used to simplify calculations involving
projective conics. Other Points on the projective conic that appear in such
calculations may then be expressed in terms of a single real parameter.

Theorem 3 Parametrization Theorem
Let E be a projective conic with equation in the standard form

xy +yz+zx =0.
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Subsection 3.4.1

Subsection 4.1.4,
Theorem 5

The existence of such a
projective transformation
was also proved in
Theorem 2 above, and the
subsequent Strategy.

Recall that a rectangular
hyperbola is a hyperbola
whose asymptotes meet at
right angles.

Notice the unconventional
orientation of the axes in
this figure. This is done to
give a better view of the
cone and its intersection
with the embedding plane.

Recall that the sides of the
triangle of reference in
RP? are the x-, y-and
z-axes in R3.
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Then each Point on E, other than [1, 0, 0], has homogeneous coordinates
of the form [t2 +t,t + 1, —t], where t € R. Moreover, each such Point lies
on E.

Proof Let [x,y,z] be any Point on E. If x = 0, then we must have yz = 0,
so either y = 0 (in which case the Point has homogeneous coordinates
[0,0,z] = [0,0, 1]) or z = O (in which case the Point has homogeneous coor-
dinates [0, y,0] = [0, 1, 0]). A similar discussion of the possibilities when y or
z is zero shows that the only Points on E for which one of the homogeneous ~ We cannot have x, y and 7

coordinates vanishes are the three Points [1, 0, 0], [0, 1, 0] and [0, 0,1]. ?11 zeré) for Points [x, y, z]
Suppose next that [x, y, z] is a Point on E for which none of the coordinates '™ RP~.
vanishes, and let t = x/y. Then x = ¢y and so Notice that 7 # 0 since
x # 0.

ty)y +yz+z(ty) =0,
that is, 1y% + (r + 1)yz = 0. Since y # 0, it follows that

ty+ @+ 1)z=0.

Thus y = — (#) z,and so x = —(¢ + 1)z. It follows that the Point [x, y, z]

has homogeneous coordinates [—(t + 1)z, — (#) Z, z]; and, since z 7 0 and

t # 0, we may rewrite these coordinates in the form [#(r + 1),7 + 1, —¢].
Also, notice that we can obtain the Point [0, 1, 0] by choosing = 0, and
the Point [0, 0, 1] by choosing ¢t = —1; so every Point on E, other than
[1, 0, 0], can be written in the form [t + 7,7 + 1, —¢] for some 7 € R.
Conversely, every Point of the form [t2 +1t,t +1,—t], where t € R, lies on
E because

W+ + 1)+ + D(=1)+ (=)(@> +1) = 0.

This completes the proof. |

Using a preliminary projective transformation, we can transform any prob-
lem involving Points on a projective conic to a problem involving Points on the
standard projective conic with equation xy + yz+zx = 0. By the Three Points
Theorem, we can assume that three of the Points are [1, 0, 0], [0, 1, O] and
[0, 0,1], and by the Parametrization Theorem we may express any remaining
Points in the form [t2 +t,t + 1, —t] for some real number ¢.

We illustrate this technique by proving Pascal’s Theorem.

Theorem 4 Pascal’s Theorem

Let A, B,C,A’, B’ and C’ be six distinct Points on a non-degenerate pro- Blaise Pascal (1623-1662)
jective conic. Let BC and B'C intersect at P, CA’ and C’A intersect at Q, proved this theorem while
and AB’ and A’B intersect at R. Then P, Q and R are collinear. still a schoolboy aged 16.
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Proof By the Three Points Theorem we can let the equation of the projective
conic be in the standard form xy + yz + zx = 0, with A = [1,0,0],B =
[0,1,0],C = [0,0, 1]. Also, by the Parametrization Theorem, we can let A’ =
la®> +a,a+1,—al,B' = [b*> 4+ b,b+1,-b],C’ = [c* + c,c + 1, —c], for
some real numbers a, b, c.

First we find the Point P. The Line BC’ joins the Points [0, 1,0] and
[c2 +c,c+1, —c], and so clearly has equation x = — (c + 1) z since both
Points lie on this Line. The Line B’C joins the Points [b2 +b,b+1, —b] and
[0,0, 1], and so clearly has equation x = by since both Points lie on this Line.

The point P lies on both BC” and B’C, so that its homogeneous coordinates
[x, y, z] must satisfy the two equations x = — (¢ 4+ 1) z and x = by. It follows
that P has homogeneous coordinates [b (¢ + 1) ,¢ + 1, —D].

Similar arguments show that the Lines C A’ and C’ A have equations x = ay

and cy = — (¢ + 1) z, so that their Point of intersection Q has homogeneous
coordinates [a (¢ + 1),c + 1, —c]. Also, the Lines AB’ and A’B have equa-
tions by = — (b + 1)z and x = — (a + 1) z, so that their Point of intersection

R has homogeneous coordinates [b (a + 1) ,b 4 1, —b].
Finally, P, Q and R are collinear since

b(c+1) c+1 —b
alc+1) c+1 —c
ba+1) b+1 —b
bc+b c+1 —b
=|lac+a c+1 —c
ab+b b+1 —b
bc—ab c¢c—b 0
=| act+a c+1 —c | @Fowl—row?3)
ab+b b+1 —b

c+1 —c ac+a —c
=be=al i [T s
=b(c —a)(—=b+c) — (¢c — b)(—ab + bc)
=0.

This completes the proof of Pascal’s Theorem. |
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Notice that in geometric
illustrations of results in
projective geometry, we
usually draw the
projective conic as a plane
ellipse in R2. We draw it
in R2 simply for
convenience, since the
page is part of R2! We
draw it as an ellipse to
avoid having to cope with
ideal Points, etc.

Here we use the
determinant criterion for
collinearity given in
Subsection 3.2.2.

Elementary row
operations do not affect
the linear independence of
the rows.
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By representing the configuration of Pascal’s Theorem in an embedding
plane, we can obtain a version of the theorem that holds in R2. We state this in
the form of a corollary, as follows.

Corollary 3 Let A, B,C,A’, B’ and C’ be six distinct points on a non-
degenerate plane conic, with BC” and B’C intersecting at P, CA’ and C'A
intersecting at Q, and AB’ and A’ B intersecting at R. Then P, Q and R are
collinear.

Notice that because this corollary is stated as a result in R?, certain config-
urations are excluded. For example, the lines BC’ and B'C cannot be parallel
since P is assumed to lie in R?. Such cases have to be treated separately.

Problem 4 Give an interpretation in R? of Pascal’s Theorem for
which the lines AB’ and A’B are parallel (but AC’ meets A’C and BC’
meets B'C).

43.3 Converse of Pascal’s Theorem

Pascal’s Theorem states that if six distinct Points A, B, C, A’, B’ and C’ lie on  Subsection 4.3.2,
a non-degenerate projective conic with BC’ and B’C intersecting at P, CA’  Theorem 4

and C’A intersecting at Q, and AB’ and A’B intersecting at R, then P, Q

and R are collinear. The converse states that if the intersection Points P, Q

and R are collinear, then the six Points A, B,C, A’, B’ and C’ lie on a non-

degenerate projective conic. Again, our proof is algebraic, and depends on a

suitable choice of coordinates.

Theorem 5 Converse of Pascal’s Theorem

Let A, B,C,A’, B’ and C’ be six Points, no three of which are collinear,
with BC’ and B’C intersecting at P, CA’ and C’A intersecting at Q, and
AB’ and A’B intersecting at R. If P, Q and R are collinear, then the Points
A,B,C,A’, B"and C’ lie on a non-degenerate projective conic.

Proof Since no three of the Points A, B,C, A’, B’ and C’ are collinear, we
can (by a preliminary projective transformation, if necessary) assume that the  Here we are using the
points A, B,C and A’ have homogeneous coordinates [1, 0, 0], [0, 1, 0], Fundamental Theorem of
[0, 0, 1] and [1,1,1], respectively. Suppose that B’ and C’ have homogeneous Projective Geometry.
coordinates [a, b, c] and [r, s, t], respectively.

By Theorem 1 we know that there is a unique non-degenerate projective  Subsection 4.3.1
conic through the five Points A, B, C, A’ and B’, and its equation is

cla—b)xy+b(c—a)xz+alb—c)yz=0. (®)

We must verify that the Point C” also lies on this projective conic. We do
this by calculating the homogeneous coordinates of the Points P, Q and R,
and using the determinant condition that these three Points are collinear. Subsection 3.2.2
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First, the Line BC’ passes through the Points [0, 1, 0] and [r, s, ], and
therefore has equation 7x = rz. Similarly, the Line B’C passes through the
Points [a, b, c] and [0, O, 1], and therefore has equation bx = ay. It follows
that the Point P has homogeneous coordinates [ar, br, at].

Next, the line C A’ passes through the Points [0,0, 1] and [1, 1, 1], and there-
fore has equation x = y. Similarly, the line C’A passes through the points
[r,s,t] and [1,0,0], and therefore has equation ty = sz. It follows that the
Point Q has homogeneous coordinates [s, s, ¢].

Finally, the Line AB’ passes through the Points [1, 0, 0] and [a, b, ¢], and
therefore has equation cy = bz. Similarly, the Line A’B passes through the
Points [1, 1, 1] and [0, 1, 0], and therefore has equation x = z. It follows that
the Point R has homogeneous coordinates [c, b, c].

Then it follows from the fact that P, Q and R are collinear that

ar br at
0=| s s t
c b ¢

st s s
b b

=ar(sc — bt) — br(sc — ct) + at(sb — cs).

=ar

s
—br‘ ‘—i—at
c c

By rearranging the terms in this equation we get
cla—b)yrs+blc—a)rt +a(b —c)st =0. ©))

By comparing equations (8) and (9), we observe that equation (8) holds for
the Point C’ = [r, s, t]. In other words, the Point C’ lies on the protective conic
through the Points A, B, C, A’ and B’, which has equation (8). This shows that
A,B,C,A’, B’ and C’ lie on the same (non-degenerate) projective conic, as
required. |

The following corollary gives a version of the converse of Pascal’s Theorem
that holds in R?.

Corollary 4 Let A, B,C,A’, B’ and C’ be six points in R?, no three of
which are collinear, with BC’ and B’C intersecting at P,CA" and C’'A
intersecting at Q, and AB’ and A’B intersecting at R. If P, Q and R are
collinear, then the points A, B,C,A’, B’ and C’ lie on a non-degenerate
plane conic.

We conclude this subsection by showing how this corollary can be used to
construct further points on the unique plane conic which passes through five
given points A, B, C, A’ and B’, no three of which are collinear.

Let T be any point in R? such that AT does not pass through B, C, A’ or
B’. Then the following construction, using only a straight edge and pencil,
determines a sixth point, F' say, where the conic meets AT .

1. Draw the lines AB’ and A’B, and so determine the point of intersection R
of these lines.
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Recall that the collinearity
of P,Qand Risa
hypothesis of the theorem.
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2. Draw the lines CA” and TA, and so determine the point of intersection Q of
these lines.

3. Draw the lines QR and B’C, and so determine the point of intersection P
of these lines.

4. Then the point of intersection F' of the lines BP and AT lies on the conic.

We can see easily why this construction works. The points A, B,C, A, B’
and F are such that the point R where A B’ meets A’B, the point Q where CA’
meets FA, and the point P where BF meets B'C are all collinear. It follows
from the converse of Pascal’s Theorem that the points A, B,C, A’, B’ and F
all lie on the same plane conic.

Thus F is the point where AT meets the conic which passes through the five
points A, B,C, A" and B’.

434 The Standard Form x? + y? = 72

Since all non-degenerate projective conics are projective-congruent, there is
a projective transformation that maps any non-degenerate projective conic in
RP? onto the projective conic with equation x> + y2> = z2. This is usually
the simplest equation to use for problems that involve tangents and polars of
non-degenerate projective conics.

Definitions The equation

2=
is called a standard form for the equation of a projective conic.

The conic defined by this standard form is called a standard projective
conic.

This standard projective conic is a right circular cone in R>, as shown in the
margin. It meets the embedding plane z = 1 in a circle of unit radius.

The reason why this standard projective conic is so useful for studying polars
and tangents is that the equations of its polars and tangents have particularly
simple forms.

Theorem 6 Let E be the projective conic with equation

x4 yz =2
and let P = [a, b, c] be any Point in RP2. Then:

(a) if P € E, then ax 4+ by — cz = 0 is the equation of the tangent to E
at P;

(b) if P ¢ E, then ax + by — cz = 0 is the equation of the polar of P with
respect to E.

Subsection 4.1.4,
Theorem 5

This is the second
standard form that we
have discussed (see
Subsection 4.3.2 for the
other).

0 3
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(@) ()

tangent polar
P=la,b,c]
7 ax+by—cz=0 2 o ax+by—cz=0
X2+}’“=Z2 X +y =2z

Proof In Joachimsthal’s notation, the standard form becomes s = 0, where
s = x2 4+ y2 — 72. So at any Point P = [x1, y1,z1] of RP?, we have s] =
XXy 4+ yyr —zz1.

Now recall that when P lies on the projective conic, the equation s; = 0
gives the equation of the tangent to the projective conic at P, and when P does
not lie on the projective conic, it gives the equation of the polar of P. The
result follows by noting that at the Point P = [a, b, c] the equation s; = 0
becomes ax + by —cz = 0. |

Example 3 Determine whether each of the following Lines touches the pro-
jective conic with equation x> 4+ y> = z2. For each Line that does, state the
Point of tangency.

(@ 3x—5y+4z=0 ®)3x—4y+5z=0

Solution 1If a Line is the tangent to the projective conic x* + y> —z> = 0 at
some Point P = [a, b, c], say, then its equation must be ax + by — ¢z = 0 (or
some multiple of this).

(a) Comparing the equations 3x — 5y +4z = 0 and ax + by — cz = 0, we see
that P must have homogeneous coordinates [3, —5, —4]. However, since

3+ (=5)— (4> =9+25—-16=18 £ 0,

the Point [3, —5, —4] cannot lie on the projective conic; hence the Line
cannot be a tangent to the projective conic.

(b) Comparing the equations 3x — 4y +5z = 0 and ax 4+ by —cz = 0, we see
that P must have homogeneous coordinates [3, —4, —5]. Since

(32 4 (-4 —(=5)2=94+16-25=0,

the Line is a tangent to the projective conic at the Point [3, —4, —5]. 0

Problem 5 Determine whether each of the following Lines touches
the projective conic x> 4+ y?> = z2. For each Line that does, state the
Point of tangency.

(@) 91x —60y — 1092 =0  (b)4x +5y+3z=0

Subsection 4.2.2

243
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We can use these ideas to provide an alternative proof of La Hire’s Theorem
concerning polars.

Theorem 7 La Hire’s Theorem

Let E be a non-degenerate projective conic, and let P be any Point of RP?,
with polar p with respect to E. Then the polar of any Point Q on p passes
through P.

Q=[rs,t]

ax+by—-cz=0

rx+sy—tz=0 \

Proof We may assume that the equation of the projective conic is in the
standard form x2 + y2 — 72 = 0, and that P has homogeneous coordinates
[a,b,c].

Then, by Theorem 6, the equation of p is

ax +by —cz=0.
Soif Q = [r, s, t] is any Point on p, then
ar +bs —ct = 0. (10)

Now, by applying Theorem 6 again, we know that the polar of Q = [r,s,?]
with respect to the projective conic x> 4+ y*> — z2 = 0 has equation

rx +sy —tz =0,

s0, by equation (10), it passes through P. This completes the proof. |

We now prove the following interesting result as another application of
Theorem 6.

Theorem 8 Three Tangents and Three Chords Theorem

Let a non-degenerate plane conic touch the sides of a triangle at the points
P, QO and R, respectively, and let the tangents at P, QO and R meet the
extended chords QR, RP and P Q at the points A, B and C, respectively.
Then A, B and C are collinear.

We first proved a version
of La Hire’s Theorem in
R2, in Subsection 4.2.1.
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Proof Since the theorem is concerned exclusively with projective proper-
ties, we shall prove it as a projective theorem about a projective conic. Since
this projective conic is non-degenerate, we may assume that its equation is in
the standard form x2 + y2 — 72 = 0, and that the Points P, Q and R have
homogeneous coordinates [1, 0, 1], [1,0, —1] and [0, 1, 1], respectively.

By Theorem 6, part (a), the equation of the tangent to the projective conic at
P is

x—z=0. (1D

Also, the equation of the chord QR is

O = =

y
0 —1]=0,
1

which we can rewrite in the form
x—y+z=0. (12)

It follows that at the Point A, both equations (11) and (12) must hold, so that
x = zand y = x + z = 2z. Hence A must have homogeneous coordinates
[z,2z, 7] or, equivalently, [1, 2, 1].

Similar arguments show that the tangent to the projective conic at Q has
equation x + z = 0, and the chord P R has equation x + y — z = 0, so their
Point of intersection B is [—1,2, 1], Similarly, the tangent to the projective
conic at R has equation y — z = 0, and the chord P Q has equation y = 0, so
their Point of intersection C is [1, 0, O].

Finally, A, B and C are collinear since

1 2 1
2 1 —1 1 —1 2
—1 2 1 =1~‘ ‘—2~‘ '+1~’ ‘
| 0 0 0 0 0 1 0
=1-0)—-2-(-DH+1-(=2)=0. |

Problem 6 Let E| be the projective conic with equation xy + yz +
zx = 0, and E, the projective conic with equation x> 4+ y> — z2 = 0.
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The initial triangle is
drawn in the diagram with
bold lines.

The result then follows as
an interpretation in an
embedding plane.

Here we are using the
Three Points Theorem
(Subsection 4.3.1,
Theorem 2).

We omit the details.
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(a) Verify that the Points [1, 0, 0], [0, 1, O], [0, O, 1], [2,2,—1] and
[2,—1,2] lieon E].
(b) Determine the images of the Points in part (a) under the projective

1 -1 0
transformation f; with associated matrix A={ 0 0 2
1 1 2

(c) Use the results of parts (a) and (b) to write down a matrix associated
with the projective transformation that maps £ onto E>.
-1 1 -1
(d) Hence verify that B = 1 1 -1 is a matrix associated
0 -1 0
with the projective transformation #, that maps E; onto Ej.

Problem 7 Using the results of Problem 3, part (b), and Problem 6,
part (c), determine a matrix associated with a projective transformation
that maps the projective conic with equation

1752 + 47xy + 32y% + 67xz + 92yz + 6622 = 0

onto the projective conic with equation x2 + y> — z> = 0.

Parametrization of the Projective Conic x* + y* = 7?

Sometimes it is useful to have a convenient parametrization of Points on the
projective conic E with equation x* + y? = z2.

First, notice that we cannot have z = 0 for Points [x, y, z] on E; for then we
would also have x = y = 0, which is impossible. So, since the coordinates
[x, v, z] are homogeneous coordinates, we may assume temporarily that z = 1;
in other words, we consider the intersection of E with the embedding plane
z=1.

We may parametrize points of the unit circle x> + y> = 1 in the embedding
plane as {(cos0,sin@,1) : 6 € (—m,]}. Putting ¢ = tan %9, for0 € (—m,m)
we obtain the parametrization

[1 -2 2

_ _ 42 2
m7m,1:|—[1 t,Zt,l—i—t], treR.

As 0 varies over (—m, ), %0 varies over (— %71, %n). In particular, as %9 varies
over (—%n, %n),t = tan %9 takes all values in R exactly once. Finally, when
0 = m, the parametrization (cos 6, sin 9, 1) gives the Point [—1, 0, 1].

We can summarize the above discussion as follows:

Theorem 9 Parametrization Theorem

Each Point of the projective conic with equation x> + y?> = z2, other
than the Point [—1,0,1], has homogeneous coordinates of the form
[1 —1%,2t,1+4 %], wheret € R.

Earlier we described a
parametrization of Points
on the projective conic
with equation
xy+yz+zx=0.

We may multiply each
coordinate by (1 + 12)
since they are
homogeneous coordinates.
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Thus, for example, the Point P with homogeneous coordinates [1, -3 , 2]

on the projective conic E with equation x> + y? = z2 also has homogeneous

coordinates [%, _¢T§, 1]. It follows that at P we may take
1-12 1 2t V3
—_— == and —_— =
1+t2 2 1412 2

From the first equation we have 2(1 — t2) = 1+ 2 sothat 1 = 372 or
t ==£1/ /3. Since (from the second equation displayed above) 2¢ / (1412
is negative, it follows that we must have 7 negative. Hence, at the Point P,

r=—1/4/3.

Problem 8 Determine the value of the parameter ¢ at the Point
[1,2\/5, 3] in the parametrization [1 — 12,26,1 + t2] of the projective

conic with equation x? + y? = 72

This parametrization is often useful, as the following problem illustrates.

Problem 9 Let E be the projective conic with equation x2 4 y? = z2,

and let A = [0,1,1], B = [1,0,—1],C = [0,1,—1], D = [1,0,1] and
P = [1—1%2¢,1+ 2], where t € R, be Points on E. Let the tangents
to E at A, B, C and D meet the tangent to E at P at the Points A’, B, C’
and D', respectively.

(a) Determine the equations of the tangents to E at A, B,C, D and P.

(b) Determine homogeneous coordinates for the Points A’, B’,C’
and D'.

(¢) Determine the value of the cross-ratio (A’ B’C’D"). (Cross-ratio was
defined in Subsection 3.5.1)

435 Some General Remarks

One of the principal features of our approach to projective geometry is the
use of algebraic methods (via homogeneous coordinates) to prove geomet-
ric results. This is analogous to the use of Cartesian coordinates to prove
geometric results in Euclidean geometry.

In projective geometry we can often use the Fundamental Theorem of Pro-
jective Geometry, or the Three Points Theorem for projective conics, to assign
homogeneous coordinates to particular Points in some convenient way that
makes the algebra as simple as possible.

Once we have made the choice of coordinates, the proofs of many geo-
metric theorems are then simply a question of ploughing carefully through
algebraic calculations. In a way this is a great advantage, since it is often
much simpler to do routine algebra to obtain a proof than to sit and wait
for geometrical inspiration! Unfortunately, the routine nature of the algebraic
work hides the geometric ideas behind the results themselves. For example,
when we discussed Desargues’ Theorem in the previous chapter, you probably

B' /2 )
P[1-17,2t, 1417]
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gained a deeper understanding of the theorem from the geometric discussion
in Subsection 3.1.3 than from the algebraic proof in Subsection 3.4.1.

44  Applying Linear Algebra to Projective Conics

We now prove that all non-degenerate projective conics are projective-
congruent. In order to do this, we first describe how to express the general
equation of a projective conic in matrix form.

Let E be a projective conic with equation

Ax? + Bxy 4+ Cy* 4 Fxz 4+ Gyz + Hz*> = 0,

and let
1 1
A g LF
A= %B C %G and x=| y |,
1 1
so that x” = (x y z). It follows that
A IB LF x
xXTAx=(x y 2) %B C %G y
%F %G H Z

= (Ax +1By+3Fz $Bx+Cy+ Gz

X
%Fx + %Gy + Hz) y
z

= Ax> + Bxy + Cy*> 4+ Fxz + Gyz + Hz>.
‘We may therefore write the equation of the projective conic in the form
xT Ax = 0.

This suggests that we make the following definition.

Definition Let E be a projective conic with equation

Ax2+Bxy +Cy2+ sz—f-Gyz—i—Hz2 =0.

Then
1 1
A 1B AF
Ir ¢ H
is a matrix associated with E. Note that if A is a matrix
associated with a
For example, a matrix associated with the projective conic with equation projective conic £, 50 also
is AA for any non-zero

17x% + 47xy + 32y + 67xz + 92yz + 662> = 0 real number A.
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is

47 67

17 4 9

A=| 4 32 46
8 46 66

Problem 1 Write down a matrix associated with the projective conic
given by each of the following equations.

(@) x2 —xy+3y2 —2xz+3yz—122=0
(b) 2x2 —y?2 4422 —xy +yz —3zx =0

We may summarize the above discussion in the form of a theorem, as
follows.

Theorem 1 Let E be a projective conic with an associated matrix A. Then
E has an equation of the form x” Ax = 0.

Having expressed the general equation of a projective conic in matrix form,
we can prove the result we have been seeking.

Theorem 2 All non-degenerate projective conics are projective-congruent.

Proof It is sufficient to show that all non-degenerate projective conics are
projective-congruent to the standard projective conic with equation x> +
y2 =22

Let E be any non-degenerate projective conic with equation x’ Ax = 0,
where A is a matrix associated with E. Then by definition A is a symmetric
matrix.

It follows that A has three orthonormal eigenvectors v, vy and v3, with
eigenvalues A1, Ao and A3, respectively. If P is the matrix whose columns are
the coordinates of vi, vy and v3, and in this order, then

A 0 O
D= 0 x» 0 |,
0 0 X3

then P is an orthogonal matrix and PT AP = D.

Now, the transformation #; of coordinates given by x = Px’ or X' = PTx
transforms the projective conic with equation x” Ax = 0 into a projective conic
with equation (Px)T A(Px') = 0. We can rewrite this equation in the form
)T PTAP)X' = 0 or (xX')TDx’ = 0; in other words, as

M+ 20 + A3 =0. (1

Since the projective conic is non-degenerate, we cannot have all the A’s
positive or all the A’s negative, since then equation (1) describes only the origin
in R3.
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Recall that a matrix A is
symmetric if AT = A.

A matrix P is orthogonal
if PTP =T; or,
equivalently P! = P,

Geometrically, this
transformation corres-
ponds to a rotation of the
coordinate axes around
the origin, keeping the
origin fixed and the axes
at right angles to each
other, possibly composed
with a reflection in one of
the coordinate planes.
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Also, none of the A’s in equation (1) can be zero. For example, if A3 = 0,
then A1 and A, must be of opposite sign and equation (1) can be written as the
equation of a pair of Lines in RP?:

ViIdilx' = x(1xaly.

The only other possibility is that two of the A’s, say A1 and A;, are of the
same sign, positive say, and the sign of the third, A3, is negative. Then equation
(1) can be rewritten in the form

1) + 22l (N)? = 31 ()H%

This is the equation of a cone in R® whose axis is along the z’-axis and whose
horizontal cross-sections are ellipses. This ‘elliptical’ cone can be mapped
onto the ‘circular’ cone with equation (x”)? + (y")?> = (z”)? by means of
a transformation of coordinates x" > x” given by x” = Bx’, where

Sl 0 0
B = 0 VP2 0
0 0 VA3l

After dropping the dashes, it follows that we can map E onto the projective
conic with equation x> + y> = z2 by using the projective transformation ¢ :
[x] — [BP”x]. From the remark at the start of the proof, we conclude that all
projective conics are projective-congruent. |

Problem 2 Let E be the projective conic with equation x> — 4xy +
2y? —4yz 4372 =0.

(a) Write down a matrix A associated with E.

(b) Find an orthogonal matrix P such PTAPisa diagonal matrix.

(c) Find a matrix associated with a projective transformation that maps
E onto the standard projective conic x> + y? = z°.

45 Duality and Projective Conics

You saw earlier that in projective geometry there is a duality between Points
and Lines. For example, the Collinearity Property states that any two Points
lie on a unique Line, and the Incidence Property states that any two Lines
meet in a unique Point. In general, the Principle of Duality states that any true
statement about Points, Lines and their projective properties remains true after
dualization.

But why should the Principle of Duality hold? A clue is provided by La
Hire’s Theorem. Suppose that E is any projective conic. Then with respect to
this projective conic, every Point P in RP? can be associated with a Line D,
namely the polar of P with respect to E. By La Hire’s Theorem, any Points
Q and R on p have polars ¢ and r which pass through the Point P. It follows

The two Lines are
coincident if A; = 0 or
A =0.

If necessary, we can
re-order the eigenvalues
and eigenvectors to ensure
that this is the case.

Subsection 3.4.2
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that the association of Points with their polars changes collinearity into con-
currence, and vice versa. This is precisely what is required for the Duality
Principle.

%
o

We now explore the dual of a projective conic E. If P is any point on E,
then its polar with respect to E is the tangent to £ at P. The discussion above dual Ofﬁ
suggests that we should be able to dualize the projective conic E by replacing
each Point on E by the tangent to E at that Point. If we do that, then we
obtain a collection of Lines which forms an envelope around E, as shown in T
the following diagram.

tangents to E

At first sight this collection of tangents appears to be rather an unwieldy
object. Notice, however, that although we usually define a projective conic
by specifying its family of Points, we could equally well define the projective
conic by specifying its family of tangents. Both definitions uniquely determine
the projective conic. When a projective conic is defined by its family of Points,
we refer to the projective conic as a Point conic. A projective conic which is
defined by its envelope of tangents is called a Line conic. Of course, E is the
same projective conic however it is defined, so we say that E is self-dual.
We have already seen that the Principle of Duality is a powerful tool for dis- ~ Subsection 3.4.2
covering ‘new theorems from old’ when the theorems involve Lines. We now
investigate an example of its use with projective conics, by dualizing Pascal’s ~ Subsection 4.3.2,
Theorem. Theorem 4

Pascal’s Theorem Let A, B,C, A’, B’ and C’ be six distinct Points on a
non-degenerate projective conic. Let BC’ and B’C intersect at P, CA” and
C’A intersect at Q, and AB’ and A’B intersect at R. Then P, O and R are
collinear.

We proceed by making the appropriate modifications to the statement of
Pascal’s Theorem. For clarity and convenience, we reword Pascal’s Theorem
slightly and set out the theorem and its dual side by side.
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Pascal’s Theorem Its dual

Let A,B,C,A’, B’ and C’
be six distinct Points
on a non-degenerate projective conic.

Let the Lines through B and C’
and B’ and C meet at a Point P,
the Lines through C and A’
and C" and A meet at a Point Q,
and the Lines through A and B’
and A’ and B meet at a Point R.

Leta,b,c,a’,b’ and ¢’
be six distinct tangents
to a non-degenerate projective conic.

Let the Points of intersection of b and
¢’ and b’ and c lie on a Line p,
the Points of intersection of ¢ and
a’ and ¢’ and a lie on a Line ¢,
and the Points of intersection of @ and
b’ and a’ and b lie on a Line r.

Then P, Q and R are collinear. Then p, g and r are concurrent.

The dual result is known as Brianchon’s Theorem, after its discoverer, and
can be reworded rather more memorably, as follows.

Brianchon’s Theorem The diagonals joining opposite vertices of a (pro-
jective) hexagon circumscribed around a non-degenerate projective conic
are concurrent.

We may interpret this result in the plane R? as follows: if we circumscribe
a hexagon around a (non-degenerate) plane conic, then the lines joining the
opposite vertices of the hexagon meet in a single point.

Problem 1 Write down the result dual to the Five Points Theorem;
namely, that ‘There is a unique non-degenerate projective conic through
any given set of five Points, no three of which are collinear.’

Many other beautiful results concerning projective and plane conics can also
be discovered using the Principle of Duality.

46 Exercises

Section 4.1

1. Find the equation for the projective conic in RP?> which corresponds to each
of the following plane conics in the standard embedding plane z = 1.

[(x,y,z): 9x2+6xy+y2+x—3y—4=0,z=1}

{(x,y,z) :3x2 — 9xy — 12)% —30x — 64y +1 =0, z = 1}

4: Projective Geometry: Conics

Pascal’s Theorem can be
worded similarly as
follows: the opposite sides
of a (projective) hexagon
inscribed in a
non-degenerate projective
conic meet in three
collinear Points.

Here we are describing
the intersection of the
projective conic in
Brianchon’s Theorem
with an embedding plane.

Subsection 4.3.1,
Theorem 1
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In each case, which ideal Points should be associated with the plane conic?
2. Which of the following equations define projective conics?

(@) 2x% 4372 —y? 4+ xy +4xz —3yz =0

(b) x* =4yz

) x24+x—y+y>+2z=0

(d 242242 -2=0
3. Which of the following statements are true?

(a) The projective conic xy + xz + yz = 0 passes through the Point

[1, 1, 1].

(b) The Point [1, —2, 1] lies on the projective conic y2 = 4xz.

4. Determine the eccentricity of the ellipse E in R? with equation

8u’ + 50> +2v —6=0.

Section 4.2

Exercises 1-4 concern the parabola E in R? with equation
2 2 —
x4+ 2xy+y"+2x—y—-3=0.

1. Determine the ratio in which the parabola E divides the line segment from
(0,0) to (1, 2).
2. Determine the equations of the tangents to E at the points (1,—1) and
(=3,0).
3. One of the two tangents from (2, 1) to E has equation y = 2x—3. Determine
the equation of the other.
4. (a) Determine the equation of the polar of (0, %) with respect to E. Verify
that (2, 1) lies on this polar.
(b) Determine the equation of the polar of (2, 1) with respect to E. Verify
that (0, %) lies on this polar.
5. This question concerns the projective conic E with equation

x2 92 =222+ 2xy — yz +4zx = 0.

(a) Determine the equation of the tangent to E at the Point [0, 1, —1].
Verify that [3, 0, 2] lies on this tangent.

(b) Determine the equation of the other tangent to E that passes through
the Point [3, 0, 2].

(c) Determine the polar of the Point [3, 0, 2] with respect to E.

Section 4.3

Hint for Exercises 2, 3 and 7 Take the equation of the projective conic to be

xy—+yz+zx = 0, and (by the Three Points Theorem) the Points A, B and C to

have homogeneous coordinates [1, 0, 0], [0, 1,0] and [0, 0, 1], respectively.

1. Determine the equation of the projective conic through the Points [1, 0, 0],
[0, 1,0],[0,0, 11, [1,—1,1] and [4, —1, —3].
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. Let E be a projective conic through the vertices of a quadrilateral ABC D.
Let AB meet CD at P, AC meet BD at Q, and AD meet BC at R. The
triangle A P QR is called the diagonal triangle of ABCD.
(a) Prove that the tangents to E at A and B intersect at a Point on QR.
(b) Prove that the Line P Q is the polar of R.
. Let E be a projective conic through the vertices of a quadrilateral ABCD,
and let the tangents to E at A and C meet at P on the Line B D. Show that
the tangents to E at B and D meet at a Point Q on AC.
. Let A, B,C, D be the Points [1, 0, 0], [0, 1, 0], [2, 2, —1], [0, O, 1],
respectively, on the projective conic E with equation xy + yz + zx = 0.
Let T be any other Point on E, and let 7B and TC meet AD at B’ and C’,
respectively. Determine the value of the cross-ratio (AB’C’ D).
. Let A,B,C,D and P be the Points [0, 1, 1], [0, 1, —1], [3, 4, 5],
[5, 12, 13] and [1, O, 1], respectively, on the projective conic E with equa-
tion x% + y2 = z2, and let the tangents to E at A, B, C and D meet the
tangent to E at P at the Points A’, B’, C’ and D’, respectively.

Determine the value of the cross-ratio (A’ B'C'D’ )
. The Points P = [1,—1,1],0 = [1,—2,2] and R = [1,—2,1] lie on the
projective conic E with equation

—2x2 4 3xy 4 3y? + 6xz + 6yz + 22> = 0.

(a) Verify that the projective transformation ¢ : [x] > [X'], where X’ = Ax
210
and A = (’8 0 }) maps P, Q and R to [1, 0, 0], [0, 1, 0] and [0, 0, 1],
respectively.

1 1-1
(b) Verify that the inverse of A is Al =

-1-2 2.
1 2-1

(c) Determine the equation of the projective conic #(E).

(d) Determine a matrix associated with a projective transformation that
maps E onto the projective conic with equation xy + yz 4+ zx = 0.

(e) Hence determine a matrix associated with a projective transforma-
tion that maps E onto the projective conic with equation x> +

2_2

yo=z-.

. Let A and B be Points on a projective conic E, and let P be the Point in

RP? with polar AB. The Line ¢ through P meets AB at Q, and E at C and

D. Prove that (PQCD) = —1.

Section 4.4

1. Let E be the projective conic with equation

X2+ 2xy +3y? + 6xz 4+ 2yz + 22 =0.

(a) Write down a matrix A associated with E.

4: Projective Geometry: Conics

In fact, each pair of
tangents to E at vertices
of ABC D intersect on its
diagonal triangle, and
each vertex of the
diagonal triangle has its
opposite side as polar.

Cross-ratio was defined in
Subsection 3.5.1.

In tackling part (e), you
should use your result
from Problem 6, part (c),
in Subsection 4.3.4.

We shall use this result in
Section 8.3.
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(b) Find an orthogonal matrix P such P” AP is a diagonal matrix.

(c) Find a matrix associated with a projective transformation that maps E

onto the standard projective conic x2 + y? = z2.

Summary of Chapter 4

Section 4.1: Projective conics

1. A projective conic in RP? is a set of Points whose homogeneous coordi-
nates satisfy a second degree equation of the form Ax> + Bxy + Cy? +
Fxz+Gyz+ Hz?> =0.

A projective conic is non-degenerate if it can be represented by a non-
degenerate conic in the standard embedding plane (which has equation
z=1).

A degenerate projective conic consists of a pair of Lines, a single Line,
a Point, or ‘no Points’.

2. Let E be a projective conic, and let 7 be an embedding plane for RIP?.
Then E is represented in 7 by a plane conic E’, where each Point of E
either pierces 7 at a Point of E’ or is an ideal Point for 7 associated with
E’. The number of associated ideal Points depends on the type of the conic
E’: there are two such Points if E’ is a hyperbola, one if E’is a parabola,
and none if E’ is an ellipse.

3. Let t be a projective transformation, and let £ be a non-degenerate
projective conic. Then 7(E) is a non-degenerate projective conic.

4. Let E be a non-degenerate projective conic. Then a Line ¢ is a tangent to
E at P if £ meets E at a Point P, and at no other Point.

5. Let E be a non-degenerate projective conic. A Point Q lies inside E if
every Line through Q meets E at two distinct Points. A Point R lies
outside E if there is a Line through R that meets E at no Points.

6. Let ¢ be a projective transformation, and let the Line £ be a tangent to a
non-degenerate projective conic E at a Point P. Then 7(¢) is a tangent to
t(E) at t(P). Also, if Q is a Point inside E, then #(Q) lies inside ?(E);
and if R is a Point outside E, then #(R) lies outside E.

Tangency and ‘lying inside or outside a projective conic’ are projec-
tive properties. Hence we can use projective transformations to tackle
problems involving tangents to plane conics.

In an embedding plane tangents to projective conics correspond to
tangents to plane conics, and vice versa.

7. Eccentricity Formula Let E be a non-degenerate plane conic with equa-
tion u%2 + Cv? + Gv + H = 0. If E has a focus on the v-axis, then the
eccentricity e of E is given by the formula ¢’ = 1 — C.

8. Any line on the surface of a right circular cone passes through the vertex of
the cone, and is a generator of the cone; that is, the cone can be obtained



256 4: Projective Geometry: Conics

by rotating that line about a fixed line (the axis of the cone) through
the vertex.
9. Every non-degenerate plane conic can be found as the curve of intersection
of a suitable right circular cone with a suitable plane.
10. Every ellipse and every parabola occurs as the intersection of any right
circular cone and a suitable intersecting plane.

The intersection of a right circular cone and a suitable intersecting plane
is a hyperbola, with the property that the angle between its asymptotes is
less than the angle between two opposite generators of the cone. Every
hyperbola occurs as the intersection of a sufficiently ‘fat’ right circular
cone and a suitable intersecting plane

11. All non-degenerate projective conics are projective-congruent.

12. Three Tangents Theorem Let a non-degenerate plane conic touch the
sides BC, CA and AB of a triangle AABC in R at the points P, Q and R,
respectively. Then AP, BQ and CR are concurrent.

Section 4.2: Tangents

1. Joachimsthal’s notation for plane conics Let a plane conic have equation
s = 0, where s = Ax? + Bxy + Cy> + Fx + Gy + H = 0, and let
Py = (x1,y1), P = (x2,y2) and P3 = (x3, y3) be points of R2. Then we

define

Xiy +xyi Xi +x i+
Si:Axix+Bu+Cyiy+F’ +Gyt y+H’
Sii = Axi2 + Bx;y; + Cyl.2 + Fx; +Gy; + H,

Xiyj +XjYi Xi+xj Sy
sij:Axixj"‘BH-i-Cyiyj—l-F i 5 J —I-Gyl 2){, +H,

where i and j can each take the values 1, 2 or 3.

2. Joachimsthal’s Section Equation The point (k’;f:lx L k),f:_rly‘ ) divides the
line segment from the point (x1, y) to the point (x2, y7) in the ratio k:1;
and lies on the plane conic with equation s = 0 if s20k% 4+ 2510k + 511 = O.

3. The equation of the tangent at the point (x1, y;) to the non-degenerate
plane conic with equation s = 0 is 57 = 0.

4. The equation of the tangent pair from the point (x1,y;) to the non-
degenerate plane conic with equation s = 0is (s;)> = s - 511.

5. The polar (or polar line) of a point P (x1,y;) with respect to a non-
degenerate plane conic E with equation s = 0 is the line with equation
s1 = 0. P is the pole of this line with respect to E.

If P lies outside E, then the polar is the line through the two points at
which the tangents from P meet E. If P lies on E, then the polar of P is
the tangent to E at P.

6. La Hire’s Theorem Let E be a non-degenerate plane conic, and let p
be the polar of a point P; in R2. Then each point of p; has a polar which
passes through P;.
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7.

10.

Joachimsthal’s notation for projective conics Let a projective conic
have equation s = 0, where s = Ax? + Bxy 4+ Cy> + Fxz + Gyz +
Hz?, and let [x1,y1,21] and [x2,2,22] be Points of RP2. Then we
define

s1 = Axix + 3B (x1y +xy1) + Cyiy
+ 5F (xiz+x21) + %G z+yz1)+Hziz,
s11 = Ax? 4+ Bxiy1 + Cy} 4+ Fxiz1 + Gy z1 + Hz3,
s12 = Axix2 + 3B (x1y2 +x231) + Cyiy2
+ %F (x122 + x221) + %G (y1z2 +y221) + Hz120.

. The two tangents to a projective conic E that pass through a Point P out-

side E are called the projective tangent pair (or tangent pair) from P
to E.

. The projective polar (or polar) of a Point P outside a projective conic E

with respect to E is the Line through the two Points at which the tangents

from P to E meet E.

Let a projective conic E in RP? have equation s = 0.

(a) If P = [x1 V1, zl] lies on E, then the tangent to E at P has equation
s1 =0.

(b) If P = [x1 V1, zl] lies outside E, then the pair of tangents to E from
P are given by the equation s% =S5-51].

) If P = [xl,y1,zl] is any Point in RIP2, then the polar of P with
respect to E is the Line with equation s; = 0.

Section 4.3: Theorems

1.

Five Points Theorem There is a unique non-degenerate projective conic
through any given set of five Points, no three of which are collinear. In
particular, if the five Points are [1,0,0], [0, 1,0], [0,0,1], [1,1,1] and
[a, b, c], then the equation of the conic is ¢ (¢ —b)xy + b (c —a) xz +
ab—c)yz=0.

. There is a unique plane conic through any given set of five points, no three

of which are collinear.

. There are infinitely many non-degenerate projective conics through any

given set of four Points, no three of which are collinear.

. Three Points Theorem Let £ and E> be non-degenerate projective con-

ics which pass through the Points P, Q1, Ry and P>, Q2, R, respectively.
Then there is a projective transformation # which maps E1 onto E» in such
away thatt(P) = P2,1(Q1) = 02,1(R1) = Ry.

It is not always possible to map one projective conic E; onto another
projective conic E3 in such a way that four given Points of E; are mapped
to four given Points of E.
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5. Strategy To determine a projective transformation ¢ that maps a given

projective conic onto the projective conic xy + yz + zx = O:

1. choose three Points P, Q, R on E;

2. determine a matrix A associated with a projective transformation that
maps P, Q, R onto [1,0,0], [0, 1,0], [0,0, 1], respectively;

3. determine the equation Bx'y’ + Fx'z' + Gy'z’ = 0 of t (E), for some
real numbers B, F and G;

4. then a matrix associated with ¢ is BA, where

/G 0 0
B=| 0 1/F 0
0 0 1/B

6. The equation xy + yz+zx = Ois called a standard form for the equation
of a projective conic. The conic defined by this standard form is called a
standard projective conic.

7. Parametrization Theorem Let E be a projective conic with equation in
the standard form xy + yz 4+ zx = 0. Then each Point of E, other than
[1,0,0], has homogeneous coordinates of the form [t2 +t,t+ 1,—t],
where t € R. Moreover, each such Point lies on E.

8. Pascal’s Theorem Let A, B, C, A’, B’ and C’ be six distinct Points on

a non-degenerate projective conic. Let BC” and B'C intersect at P, CA’
and C’A intersect at Q, and AB’ and A’ B intersect at R. Then P, Q and R
are collinear.
Corollary Let A, B, C, A’, B’ and C’ be six distinct points on a non-
degenerate plane conic, with BC’ and B’C intersecting at P, CA’ and
C’ A intersecting at Q, and AB’ and A’B intersecting at R. Then P, Q and
R are collinear.

9. Converse of Pascal’s Theorem Let A, B, C, A’, B’ and C’ be six Points,

no three of which are collinear, with BC” and B’C intersecting at P, CA’
and C’A intersecting at Q, and AB’ and A’B intersecting at R. If P, Q
and R are collinear, then the Points A, B, C, A’, B’ and C’ lie on a
non-degenerate projective conic.
Corollary Let A, B, C, A’, B’ and C’ be six points in R?, no three of
which are collinear, with BC’ and B’C intersecting at P, CA’ and C'A
intersecting at Q, and AB’ andA’B intersecting at R. If P, Q and R are
collinear, then the points A, B, C, A’, B’ and C’ lie on a non-degenerate
plane conic.

10. To locate, using only a straight edge and a pencil, further points on the
unique plane conic through five given points A, B, C, A’ andB’, no three
of which are collinear:

1. draw the lines AB’ and A’B, and so determine the point of intersection
R of these lines;

2. for any point 7' in R? such that AT does not pass through B, C, A’ orB’,
draw the lines CA” and TA, and so determine the point of intersection
Q of these lines;
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3. draw the lines QR and B’C, and so determine the point of intersection
P of these lines;

4. then the point of intersection F' of the lines BP and AT lies on the
conic.

11. The equation x> + y> = 72 is called a standard form for the equation
of a projective conic. The conic defined by this standard form is called a
standard projective conic. It is a right circular cone in R3.

12. Let E be the projective conic with equation x> + y?> = z2, and let P =
la, b, ¢] be any Point in RP?. Then:

(a) if P € E, then ax + by — cz = 0 is the equation of the tangent to E
at P;

(b) if P ¢ E, then ax + by — cz = 0 is the equation of the polar of P
with respect to E.

13. La Hire’s Theorem Let E be a non-degenerate projective conic, and let
P be any Point of RP?, with polar p with respect to E. Then the polar of
any Point Q on p passes through P.

14. Three Tangents and Three Chords Theorem Let a non-degenerate plane
conic touch the sides of a triangle at the points P, Q and R, respectively,
and let the tangents at P, Q and R meet the extended chords OR, RP and
PQ at the points A, B and C, respectively. Then A, B and C are collinear.

15. If E| and E» are the projective conics with equations xy + yz + zx =0

2

and x% 4+ y? = 72, respectively, then matrices associated with projective
1 -1 0
transformations that map Eq onto E; and Eoonto Ejare | 0 0 2
1 1 2
-1 1 -1
and 1 1 —1 |, respectively.
0O -1 0

16. Parametrization Theorem Each Point of the projective conic with equa-
tion x2 + y2 = 72, other than the Point [—1,0, 1] has homogeneous
coordinates of the form [1 — t2,2¢,1 + %], where € R.

Section 4.4: Applying Linear Algebra to Projective Conics
1. Let E be a projective conic with equation Ax>+Bxy+Cy*+ Fxz+Gyz+

A iB IF
Hz? = 0. Then A = %B C %G is a matrix associated with E.
iF G H

The equation of E can be written in the form x” Ax = 0.
2. All non-degenerate projective conics are projective-congruent.

Section 4.5: Duality and projective conics

1. Principle of Duality Any true statement about Points, Lines and their
projective properties remains true after dualization.
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2. When a projective conic is defined by its family of Points, we refer to it as a
Point conic; when we define a projective conic by its envelope of tangents,
we refer to it as a Line conic.

3. Every projective conic is self-dual in the sense that the dual of a Point conic
is the corresponding Line conic, and vice versa.

4. Brianchon’s Theorem The diagonals joining opposite vertices of a projec-
tive hexagon circumscribed around a non-degenerate projective conic are
concurrent.

This is the dual of Pascal’s Theorem for projective conics.



Inversive Geometry

In this chapter we introduce a geometry known as inversive geometry and use
it to investigate circles and lines.

We also prove the Apollonian Circles Theorem: namely, that if A and B
are two given points in the plane, then all the points P in the plane such that
PA : PBis a fixed ratio k : 1, for some positive real number k # 1, lie on a
circle. Notice that if k = 1, the locus of points P such that PA : PB =1 : 1
is simply the set of points equidistant from A and B, namely the perpendicular
bisector of the segment AB.

So for each pair of points A, B there is a family of circles known as the
circles of Apollonius. Small values of k yield circles close to A, whereas
large values yield circles close to B. It is sometimes helpful to regard the
points A and B as point circles, corresponding to k being zero and ‘infinity’,
respectively.

The key tool in our work is inversion, which is a generalization of the notion
of reflection of points in a line. Just as reflection in a line maps points on one
side of the line to points on the other, so inversion in a circle maps points inside
the circle to points outside, and vice versa.

One difficulty that arises when we tackle problems like the Apollonian Cir-
cles Theorem is the presence of a line amongst what would otherwise be a
family of circles. Clearly, it would be convenient if we could tackle such prob-
lems without having to treat the line as a special case. An ingenious way to do
this is to think of the line as a circle of infinite radius in which the ‘ends’ of
the line have been ‘joined’ by an additional ‘point at infinity’. This interpreta-
tion enables us to introduce the term generalized circle to mean either a line
or a circle.

To make the idea of a point at infinity precise, we introduce a space known
as the extended plane. This consists of the ordinary plane R? together with
an additional point that we define to be the point at infinity. This extended
plane is the space in which we study inversive geometry. The transformations
of this geometry, known as inversive transformations, are defined to be the
composites of inversions.

Inversive transformations have the remarkable properties that they preserve
the magnitude of angles between intersecting curves, and they map generalized

This surprising fact was

proved by the Greek

geometer Apollonius of
Perga (2nd century BC).

Apollonian circles
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circles onto generalized circles. These properties enable us to use inversive
geometry to prove results like the Apollonian Circles Theorem.

In Section 5.1, we define inversion and study its basic properties.

In Section 5.2, we introduce the extended plane, and show how certain trans-
formations of this plane can be represented using complex numbers. We then
introduce the idea of a generalized circle, and show that every inversion pre-
serves the magnitude of angles, and maps generalized circles onto generalized
circles. We end the section by giving an interpretation of the extended plane in
terms of the so-called Riemann sphere. On this sphere all generalized circles
actually look like ordinary circles.

In Section 5.3, we formally define what is meant by an inversive trans-
formation and inversive geometry. The group of all inversive transformations
has a subgroup which consists of the so-called Mobius transformations. This
subgroup is analogous to the subgroup of direct isometries in Euclidean
geometry.

In Section 5.4, we prove the Fundamental Theorem of Inversive Geometry:
namely, that any three points in the extended plane can be mapped onto any
other three points by an inversive transformation. We use this result to show
that, in inversive geometry, all generalized circles are congruent.

Finally, in Section 5.5 we use inversive geometry to prove the Apollonian
Circles Theorem and to study various families of circles.

51 Inversion

5.1.1 Reflection and Inversion

We begin our exploration of inversive geometry by introducing a type of
transformation known as inversion. These transformations will be used in
Section 5.3 to define inversive geometry.

Roughly speaking, an inversion is a transformation of the plane that gener-
alizes reflection in a line. Instead of mapping points from one side of a line to
the other, an inversion maps points inside a circle to points outside the circle,
and vice versa.

Recall that under reflection in a line £, a point A is mapped to an image point
A’ that lies an equal distance from £, but on the opposite side of £. In order to
generalize this notion of a reflection, we shall reformulate it in a way that
provides us with a sensible analogue when the line ¢ is replaced by a circle C.

To do this, let m be a line parallel to AA’ that crosses £ at some point P.
Under reflection in ¢, ZPAA" maps to ZPA’A, so these two angles must be
equal. But since the lines m and AA’ are parallel, the angle Z/PA’A is equal to
the angle between PA" and m, so ZPAA’ is equal to the angle between PA’ and
m. This is the clue that we need to generalize reflection.

By a stretch of the imagination, we can think of £ as an infinitely large circle
with m lying along the radius through P. If we replace £ by a circle C of finite

5: Inversive Geometry
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radius, and we replace m by a radial line that meets C at some point P, then,
by analogy with reflection, we can define the image of A to be the point A" on
the line segment OA for which ZOPA’ is equal to Z/PAQ. We say that A’ is the
point inverse to A with respect to the circle C.

Of course, for this definition to work, we must check that for a given point
A, the position of the point A’ is independent of P. To do this, observe that the
triangles APOA’ and AAOP are similar, for they have a common angle at O
and ZOPA" = ZOAP. It follows that

OA' _ OP
OP  OA’
SO
OA - OA' = OP?.

But OP is equal to the radius r of C, so
OA-OA' = r?. 1)

Since there is only one point A’ on the line segment OA that satisfies equa-
tion (1), and since the equation does not depend on P, it follows that the
position of A” does not depend on the choice of P.

Although the above construction illustrates how inversion can be defined
as a generalization of reflection, it is worth noting that equation (1) is all
that we need to determine the point A’ that corresponds to a given point A.
For simplicity, we shall therefore use equation (1) as our formal definition of
inversion.

Definitions Let C be a circle with centre O and radius r, and let A be any
point other than O. If A’ is the point on the line OA that lies on the same
side of O as A and satisfies the equation

OA - OA' = r?, )

then we call A’ the inverse of A with respect to the circle C. The point O is
called the centre of inversion, and C is called the circle of inversion. The
transformation ¢ defined by

1(A) = A/ (A cR?— {0})

is known as inversion in C.

Remark

Since OA - OA’ = r? is non-zero, neither OA nor OA’ can be zero, and so
neither A nor A’ can coincide with O. It is for this reason that O is excluded
from the domain of the transformation ¢ since there is no point to which O can
be mapped. Likewise, there is no point that maps fo O.

OA -

OA’
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We can sometimes write down the inverse of a point directly from the above
definition. For example, if C is the unit circle {(x,y) : x* 4+ y* = 1}, then

the inverse of (0, 2) with respect to C is the point <O, %) and the inverse of

(—%, O) is the point (=3, 0).

Problem 1 Write down the inverse of each of the following points
with respect to the circle of unit radius, centred at the origin.

@ @0  ®O.D  ©(0-1) @ (40

Inversion distorts the plane considerably, for it maps points inside a circle C
to points outside C, and vice versa. Indeed, if OA < r, then OA" = r2 JOA > r,
whereas, if OA > r, then OA’ = r>/OA < r. Any point that lies on C maps to
itself.

OA < r OA > r OA = r

Note that if A’ is the inverse of A, then A must be the inverse of A’, for if
OA - OA’ = r? then clearly OA’ - OA = r?; we say that A and A’ are inverse
points with respect to C. In this sense, inversion is like reflection; if we reflect
a point in a line and then reflect the reflection, we obtain the original point
back again. Any transformation ¢ that has this property is said to be self-inverse
because it shows that #~! exists and is equal to 7.

Theorem 1 Inversion in a circle is a self-inverse transformation.

Since any transformation that has an inverse is one—one, it follows that
every inversion is a one—one transformation. Remember, however, that since
O is excluded from its domain, an inversion is a one—one transformation of
R? — {0} onto itself.

Earlier, we mentioned that inversion can be regarded as a generalization of
reflection. To see how this follows from the definition of inversion, we examine
what happens to the inverse of a point A as we increase the radius of the circle.

Let A be a point outside a circle C with centre O and radius r, let A’ be the
inverse of A with respect to C, and let the line segment AA’ meet the circle at
N.Then OA = r + AN and OA’ = r — A’N, so the equation OA - OA" = r?
becomes

(r + AN)(r — A'N) = r*.

5: Inversive Geometry
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After expanding the brackets, cancelling the 2 terms, and solving for A’N, we

obtain
AN — AN - r AN

" r4+AN  14+AN/r’

Now fix A and N, and let the radius r of the circle tend to infinity. As it
does so, it follows from the above equation that the length of A’N tends to the
length of AN. In other words, reflection in a line can be regarded as the limiting
case of inversion in circles of increasing radii. For this reason, we adopt the
following useful convention.

Convention We use the term inversion to mean either reflection in a line
or inversion in a circle.

The following gives a geometric method for constructing inverse points with
respect to a given circle.

Let A be a point outside a circle C with centre O and radius r, let AP and
AQ be the two tangents from A to C, and let A’ be the point of intersection of
OA and PQ. Then A and A’ are inverse with respect to C.

For, in the triangles AOPA” and AOAP, the angles at O are equal and the two
angles ZOA’ P and ZOPA are equal, since they are both right angles; hence all
the angles in the two triangles are equal. Thus the triangles are similar; hence,
in particular, we must have that

OA"  OP
OP ~ OA
so that
OA-O0A' = OP* = r*.
Thus A and A’ are inverse with respect to C, as claimed.

We end this subsection by showing that an inversion in a circle is a dif-
ferent type of transformation from those that arise in Euclidean and affine
geometry.

First, an inversion in a circle is not an affine transformation since it does not
map lines to lines. For example, let C be the unit circle and ¢ be the line with
equation x = 2. All the points on ¢ lie outside the unit circle, and so inversion
in C must map all the points of £ to points that lie inside the unit circle. In
particular, the image of £ cannot be a line. Thus, since the image of a line
under any affine transformation is itself a line, it follows that inversion cannot
be an affine transformation.

An inversion in a circle is not a Euclidean transformation either, for like
affine transformations, Euclidean transformations map lines to lines. Indeed, a
Euclidean transformation is just a special type of affine transformation.

51.2 The Effect of Inversion on Lines and Circles

In the previous subsection you saw how to construct the point A’ that is the
inverse of a given point A with respect to a given circle C. However, in order

Q

P>
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to study many of the properties of inversion, we require an algebraic formula
that relates the coordinates of A and A’.

For our present purposes it is sufficient to derive the formula for the case
where C is the unit circle {(x,y) : x? + y* = 1}. This circle will occur so
frequently in our work that we denote it by the special symbol %

Let A be apoint (x,y) € R2— {0}, and let A’ be its image under inversion in
the unit circle €. Since A’ lies on the same half-line from the origin as does A,
it follows that A’ must have coordinates (kx, ky), for some positive number k.

Since the radius of € is 1, we must have OA-OA’ = 1. Thus OA%.0A% = 1,
and so

(x2 + y2) (k2x2 + kzyz) =1.
It follows that
1
2 _
k= 24 .2\2°
(x +y )

and hence that
i 1
B

Thus A’ is the point ()ﬁyz, )ﬁyz) We therefore have the following
algebraic description of inversion in the unit circle.

Theorem 2 Inversion in the unit circle € is the function

t:(x,y)l—)( ¥ ) ((x,y)eRz—{O}).

X

We may use this theorem to find the image of any non-zero point of R? under
inversion in the unit circle . For example, the image of (3, —2) is the point

3 -2 :(i _l)
32+(_2)2’32+(_2)2 13> 13 )

Problem 2 Determine the image of each of the following points under
inversion in %

@ @) b (3.-4)

Now let (x’, y) be the image of (x, y) under inversion in %’. Since inversion
is self-inverse, it follows that

(x,y):( 2x 2’ zy 2)'
x>+ N @+
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Using this relationship between (x, y) and (x’, y"), we can find the image of a
curve under inversion in % in much the same way as we found the image of
a curve in affine geometry. The main difference is that we must be careful to
remember that inversion is not defined at the origin (the centre of inversion)
and that no point is mapped to the origin.

Example1 Determine the image under inversion in % of the line 2x +4y = 1.

Solution Let (x,y) be an arbitrary point on the line 2x + 4y = 1, and let
(x’,y") be the image of (x, y) under inversion in 4. Then

/! /
(x,y) = ( a Y )
’ N2+ NP ()2 + ()2
Since x and y are related by the equation 2x 4+ 4y = 1, it follows that x” and
y’ are related by the equation
2x' n 4y’ B

@2+ 0N @2+
Multiplying by (x")> 4+ (y')%, we obtain 2x’ + 4y’ = (x')?> + ('), and by
completing the square we may write this as

=D+ -2 =5

Dropping the dashes, we see that points on the image must have (x,y)-
coordinates which satisfy the equation

x—=D*4+(y-2?%=5.

This is the equation of a circle with centre (1, 2) and radius \/3 Since this
passes through the origin, and since the origin cannot be part of the image
under the inversion, the required image must be the circle with the origin
removed. O

In this example we used dashes to distinguish the coordinates of a point
(x,y) from the coordinates of its image (x’,y’). However, once you have
understood the method you may prefer to adopt the strategy below. This uses
the same method as in the example, but it drops the dashes throughout.

Strategy To determine an equation for the image of a curve under
inversion in the unit circle ¢

1. write down an equation that relates the x- and y-coordinates of points on
the curve;
2. replace x by xszyz and y by ﬁ, and simplify the resulting equation.
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We shall return to the
question of what happens
at the origin later, in
Subsection 5.2.3.

For every point on

o =D*+ (G =12 =5
other than (0, 0) is the
image of some point on
2x +4y =1.
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When using this strategy to find the image of a curve that passes through the
origin, we must first remove the origin from the curve.

Example2 Determine the image under inversion in & of the line y = x (with
the origin removed).

y
x2+yZ ’

y _ X
x2+y2_x2+y2'

Solution Replacing x by xz"w and y by we obtain

Hence

y=x.
This is the line we started with. Just as the origin had to be excluded from that
line before we could find its image, so the origin has to be excluded from the
image. Hence the line y = x (with the origin removed) maps to itself under
inversion in €. o

We shall use the term punctured to describe a line or circle that has one of
its points removed. More specifically, if A is the point removed from a line or
circle, then the line or circle is said to be punctured at A.

Problem 3 Determine the image under inversion in % of the line
y = 2x punctured at the origin.

Problem 4 Let ¢ be the line with equation x + y = 1.

(a) Determine the image of £ under inversion in €.
(b) Explain why the points (1, 0), (0, 1) lie both on £ and on its image.
(c) Sketch ¢ and its image on a single diagram.

The solutions to these problems and the preceding examples illustrate the
following general result.

Theorem 3 Images of Lines under Inversion
Under inversion in a circle with centre O:

(a) a line that does not pass through O maps onto a circle punctured at O;
(b) aline punctured at O maps onto itself.

Proof First choose a pair of coordinate axes with origin at O, and choose a
unit of length equal to the radius of the circle in which we are inverting. Then
the circle in which we are inverting becomes the unit circle .

(a) If £ is a line that does not pass through the origin, then it has an equation
of the form
ax+by+c=0,

5: Inversive Geometry

We may also have to
exclude the origin from
the image.
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where c is non-zero. Using the above strategy, we know that the image of
£ under inversion in % has equation

ax by

+ +c=0.
x2_|_y2 x2+y2

Since c is non-zero, we may rewrite this in the form
x>+ y* + (a/o)x + (bc)y = 0.

c g“ £
o X
N
This is the equation of a circle C through the origin. If the origin is
removed from this circle, then each remaining point A’ is the image of ' .
the point A at which OA’ intersects £. It follows that the image of ¢ is the
whole of the punctured circle C — {O}. 9 -
(b) Although we could use the strategy to prove this part as well, it is easier W
to work directly from the definition of inversion. Indeed, if ¢ is a line
punctured at O, then each point of £ inside % is the image of a point of
¢ outside ¥, and each point of £ outside ¥ is the image of a point of ¢
inside ¥. Points of ¢ that lie on ¥ map to themselves. It follows that the
punctured line £ maps onto itself, as required. ]

y

Next, we consider the images of circles under inversion. Since points on the
circle of inversion map to themselves, the image of that circle is also a circle.
Also, any circle C with centre the centre of inversion O must map onto another
circle C” with centre O, for, by symmetry, every point of C is mapped an equal
distance along a radial line.

This raises the question as to whether an inversion always maps circles to
circles.

@

Example 3 Use the above strategy to determine the image under inversion in
& of the circle C with centre (2, 0) and radius 1.

Solution The circle C has equation (x —2)?+y? = 1, which we may rewrite
in the form

24y —dx+3=0.

Using the above strategy, we deduce that the image of C under inversion in 4" Note that the origin does
has equation not lie on C.

X 2 y 2 4x
- 3=0.
(x2+y2> +(x2+y2> i

We may add together the first two terms of this equation to obtain

1 4x

- +3=0,
x2+y2 )C2+y2
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which we may rearrange in the form
x2+y2—%x+%=0.
By completing the square we obtain
2 2
(1) e ()

This is the equation of a circle with centre (%, 0) and radius % O

So in this example the circle C does indeed map to another circle. Notice,
however, that the centre (2, 0) of C maps to (%, 0) which is not the centre of the
image of C. It follows that even if an inversion maps one circle onto another,
it may not map the centres to each other.

Problem 5 Determine the image under inversion in % of the circle
with centre (2, 2) and radius 1.

The next example illustrates what happens when we use the strategy to find
the image of a circle that passes through the origin.

Example 4 Let C be the circle with centre (—2, 0) and radius 2, punctured at
the origin. Determine the image of C under inversion in &

Solution The circle C has equation (x + 2)> + y> = 2%, which we may
rewrite in the form
24 y? 4x =0.

Using the above strategy, we deduce that the image of C under inversion in €

has equation
S R U T P
.X2+y2 x2+y2 x2+y2_ '

Adding together the first two terms of this equation, we obtain

1 4x

A
+ =07
x24y2  x24y2 m
\_/A/S
b

which we may rearrange in the form 1 + 4x = 0.

It follows that the image of the punctured circle C is the line £ with equation
X = —4—1‘. From the figure in the margin it is clear that every point of £ is the
image of some point on C, so there is no need to puncture £. O

Problem 6 Let C be the circle with centre (0, —%) and radius }‘,

punctured at the origin. Determine the image of C under inversion in %
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The conclusions of Examples 3 and 4, and of Problems 5 and 6, suggest the
following result.

Theorem 4 Images of Circles under Inversion
Under inversion in a circle with centre O:

(a) a circle that does not pass through O maps onto a circle;
(b) acircle punctured at O maps onto a line that does not pass through O.

Proof As for Theorem 3, we choose a pair of coordinate axes that makes the
circle in which we are inverting the unit circle %'

Now let C be an arbitrary circle with centre (a,b) and radius r. This has
equation

=)+ (y—b)’ =1
which we may rewrite in the form

X2+ y2 —2ax —2by+c¢ =0, Note that this passes
through O if and only if
where ¢ = a? + b*> — r2. Using the strategy for determining the images of ¢ =0.
curves under inversion, we deduce that the image of C under inversion has
equation

X 2 n y 2 2ax 2by N 0
— — ¢ = 0.
x24y2 x24y? 24y x24y?

Adding together the first two terms of this equation, we obtain

1 2ax 2by
)C2+y2 X2+y2 .X2+y2

By multiplying this equation by (x2 + yz), we may rearrange it in the form
1—2ax—2by+c<x2+y2) —0. 3)

This is the equation of either a line or a circle, depending on whether or not C
passes through O.

(a) If C does not pass through O, then c is non-zero. We can therefore divide
equation (3) by c to obtain

x2+y2—2%x—2§y+%=0.

This is the equation of a circle on which the image of C must lie.
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(b) If C does pass through O, then ¢ = 0, so equation (3) becomes
1 —2ax —2by = 0.
This is the equation of a line ¢ that does not pass through O. u

The following box summaries the results of Theorem 3 and 4.

Under inversion with respect to a circle with centre O: If the circle of inversion is
the unit circle ¢, then O

a line punctured at O maps onto  the same line punctured at O; is the origin.

a line not through O maps onto  a circle punctured at O;
a circle punctured at O  maps onto  aline not through O;
a circle not through O maps onto  a circle not through O.

There is no need to remember the details of this summary since its predic-
tions can be recalled intuitively as follows. First, points on a line or circle
through the origin can be chosen arbitrarily close to the origin. The images
of such points can therefore be chosen arbitrarily far from the origin, and
must therefore lie on a line. Secondly, points on a line can be chosen arbitrar-
ily far from the origin. The images of these points can be chosen arbitrarily
close to the origin and must therefore lie on a circle or line punctured at
the origin.

With a little practice it is easy to use the summary to simplify the work
needed to determine the image of a circle or line under an inversion.

Example 5 Determine the image of each of the following under inversion in
the unit circle ¢

(a) the line ¢ with equation x = 2;
(b) the circle C with centre (0, 2) and radius 1.

Solution

(a) From the summary, we know that £ maps to a circle C punctured at

the origin. This circle passes through the point (%,O), since (%,0)

is the image of the point (2, 0) on the line. Since ¢ is symmetrical about
the x-axis, it follows that the image circle must also be symmetrical
about the x-axis. The only circle C that fulfils all these criteria is the circle ©.3

with radius JT and centre (3—‘, 0).

(b) From the summary, the image C’ of C is a circle that does not pass through
the origin. It must be symmetrical about the y-axis (because C is), and it 0
must pass through the points (0, %) and (0, 1) (the images of (0, 3) and o 1,)

"3

(0, 1), respectively). The only circle C’ that fulfils all these criteria is the \\

circle with radius % and centre (0, %) O
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Problem 7 Determine the image of each of the following under
inversion in the unit circle %

(a) the line ¢ with equation y = 1;
(b) the circle C with centre (0, 1) and radius 1 (punctured at the origin).

513

In this subsection we shall show that inversion preserves the magnitude of the
angle at which two curves meet. First, however, we must clarify what it means
to measure the angle between two intersecting curves.

In the case of two intersecting lines £1 and £; there are two ways in which we
can measure the angle from £; to £,. We can measure it either in a clockwise
direction, or in an anticlockwise direction, as shown in the margin. Clearly,
the magnitude of the angle depends on the direction we choose, so when
specifying an angle we must give both its magnitude and direction.

In the case of two intersecting curves, we define the angle between the
curves by using tangents, as follows.

The Effect of Inversion on Angles

Definitions Let ¢; and ¢ be two curves that intersect at the point A, and
let the tangents to the curves at A be ¢; and ¢», respectively. Then the
anticlockwise angle from c; to ¢ at A is the anticlockwise angle from £
to £», and the clockwise angle from ¢ to ¢ at A is the clockwise angle
from £ to £5.

To examine what happens to the angles between two curves under an inver-
sion, it is sufficient to examine what happens to the angles between the
corresponding tangents.

For the moment let us concentrate on what happens to a single line ¢ under
inversion in a circle centred at O. We know that £ maps onto a circle C
punctured at O. But we can say more, for if m is the line through O that is
perpendicular to £, then £ is symmetrical about m. It follows that the circle C
is symmetrical about m, and so £ is parallel to the tangent to C at O. We state
this result as the Symmetry Lemma.

Lemmal Symmetry Lemma
Let £ be a line that does not pass through the point O. Then under inversion
in a circle with centre O, ¢ maps to a circle C (punctured at O), and the
tangent to C at O is parallel to €.

Now consider what happens to the angle between two lines £1 and £, which
intersect at some point A other than O, as shown below. For the moment we
shall assume that neither line passes through O, so that under the inversion
the lines map to punctured circles C; and C», respectively. These punctured
circles meet at the point A’, where A’ is the image of A. We want to compare
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anticlockwise angle

1
clockwise angle

£,

anticlockwise angle

L,
clockwise
angle

We ask you to investigate
what happens when one of
the lines passes through O
in Problem 8.
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the angle from ¢; to ¢, at A with the angle from Cj to C; at A”. The trick we
use is to compare both angles with the angle from Cj to C; at O.

C, A
m

my ’
0

— n X

By the Symmetry Lemma, ¢, is parallel to the tangent m to C; at O, and
£, is parallel to the tangent m» to C» at O. It follows that the angle from ¢ to
£, must be equal in magnitude and direction to the angle we have shown from
mi tomy.
Next observe that the reflection in the line through the centres of C; and C;
sends the tangents m 1, m» at O to the tangents ny, np at A’. Since the reflection
preserves the magnitude of an angle but changes its orientation, we conclude
that the angle from n| to ny at A’ must be equal in magnitude but opposite in
orientation to the angle from m to m; at O.
Overall, we have shown that the angle from C| to C; at A’ must be equal in ~ We sometimes abbreviate

magnitude but opposite in orientation to the angle from £; to £; at A. this by saying that the
angle at A’ is equal but

opposite to the angle at A.
Theorem 5 Angle Theorem

An inversion in any circle preserves the magnitude of angles between curves
but reverses their orientation.

The next problem asks you to complete our proof of this theorem.

Problem 8 Prove the Angle Theorem in the case where one of the
lines passes through the centre of inversion.

The Angle Theorem provides us with a very powerful tool for locating the
images of two or more circles or lines under inversion.

Example 6 A family of circles shares a common tangent at the origin O, as 0
shown in the margin. Describe the effect of inverting the family of circles (all
punctured at O) in the unit circle ¢ llustrate your answer with a sketch.
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Solution Let ¢ be the common tangent to the circles, as shown on the left
below. If d is the punctured line through O perpendicular to ¢, then each of the
circles crosses d at right angles. Since all the circles are punctured at O, their
images under the inversion must be straight lines, as shown on the right. By the
Angle Theorem, these straight lines must cross the image of d at right angles.
But d maps onto itself under the inversion, so the punctured circles map to a
family of parallel lines perpendicular to d.

y

A
A
K x x
£

In fact, apart from ¢, every line perpendicular to d must be the image of a
punctured circle in the family. For if a perpendicular line meets d at some point
A’, then it must be the image of the punctured circle that passes through the
point A which is mapped to A" under the inversion. O

Problem 9 One family of circles touches the x-axis at the origin O,
and another family of circles touches the y-axis at O. Describe the effect
of inverting the two families of circles (all punctured at O) in the unit
circle % Illustrate your answer with a sketch.

Problem 10 A family of circles intersects at the origin O and at
another point A, as shown in the margin. Describe the effect of inverting
the family of circles (all punctured at O) in the unit circle % Illustrate
your answer with a sketch.

Problem 11 Let C;, C; and C3 be circles in the plane such that C
and C; touch at the origin O, C3 and C; touch at another point A, and
C> and C3 touch at the further point B. Describe the effect of inverting
the circles Cy, Cy (both punctured at O) and C3 in the unit circle €.
Illustrate your answer with a sketch.

These problems illustrate that, by carefully choosing centres of inversion,
we can transform some of the circles in a figure to straight lines. Since straight
lines are often easier to deal with than are circles, we can use such transformed
figures to investigate those properties of the original figures that are preserved
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by inversions. In essence, this is the idea that underlies inversive geometry, and
you will see several example of its use in Section 5.5.

52 Extending the Plane

In order to define a geometry in which we can study the properties of cir-
cles, lines and angles, we need a group of transformations that preserve these
properties. Among the transformations that do this are the Euclidean transfor-
mations, and the inversions introduced in the previous section. In this section
we describe how such transformations can be represented in terms of complex
numbers. This will enable us to manipulate the transformations by using the
algebra of complex numbers.

52.1 Transformations of the Complex Plane

We begin by reminding you of some facts concerning complex numbers.

First, there is a one—one correspondence between points (x, y) in the plane
R? and complex numbers z = x+iy in the complex plane C; we call x and y the
real part and the imaginary part of the complex number z, and denote them
by the symbols ‘Re z” and ‘Im z’, respectively. All the arithmetic operations
may be carried out in C as for real numbers, except that we replace i> by —1
wherever i? occurs.

If z is the complex number x + iy, then its conjugate 7 is defined by
Z=x—1iy,

and its modulus |z| is defined by

lz] = /x2 + y2.

Recall that |z|? = zZ.

Problem 1 Letz; =2 —3iandz, = —3 + 4i.

(a) Determine each of the following complex numbers in Cartesian
form.

(i) z1 + 22 (i) z1 — 22 (iii) z122
(iv) z1/z2 vz (vi) 22

(b) Determine |z;| and |z2].
If a non-zero complex number z = x + iy has modulus r, and if the position

vector of the point (x, y) lies at an angle 6 to the positive x-axis, then we can
express z in the form

r(cos6 +isin6).

5: Inversive Geometry

Recall that x + iy is the
Cartesian form of the
complex number.

z=r(cos 6+1isin )
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Such an expression is known as a polar form of z, and the angle 6 is known
as an argument of z, written arg z. Polar forms and arguments are not unique,
since the same z could equally well be expressed in the form

r(cos(6 + 2mn) + i sin(@ + 27n))

for any integer n. The principal argument of z, written Arg z, is the unique
value of arg z that lies in the interval (—m, ].

We can obtain the Cartesian form of a complex number from any of its polar
forms by using the equations

x=rcosf# and y=rsinb,

and we can obtain a polar form of a complex number from its Cartesian form
by using the equations

X
r=4/x24+y2 cosf =~ and sinf = 2.
r r

Problem 2 Determine the polar forms of the complex numbers
721 = 1 —iand zo = —+/3 4 i in terms of their principal arguments.

The following strategy can be used to multiply and divide complex numbers
given in polar form.

Strategy To multiply two complex numbers given in polar form, multiply
their moduli and add their arguments.

To divide two complex numbers given in polar form, divide their moduli
and subtract their arguments.

Although this strategy gives an argument for a product or quotient, you
may require the principal argument, in which case you will need to adjust
the argument by adding an appropriate multiple of 27.

Problem 3 letz; = 1 —i and 20 = —+/3 + i. Determine the
polar forms of the following complex numbers in terms of their principal
arguments.

(@) z1z2 (b)z1/22

We can now use the algebra of complex numbers described above to
represent some of the basic Euclidean transformations of the plane.

Translations

First, consider the transformation

t(z)=z+c (ze0O), (D
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where ¢ = a + ib. This maps an arbitrary point x + iy € C to the point

Z+c
(x+a)+i(y+0b),
b
and therefore corresponds to a translation through the vector (a, b). Clearly,
such transformations preserve angles, and map circles and lines to circles
and lines.

Reflection in the x-Axis

Next, consider the transformation

1@ =2 (zeO). @) 43 ‘ ‘
This maps an arbitrary point x + iy € C to the point x — iy, and therefore % l
corresponds to a reflection in the x-axis. It maps circles and lines to circles }

and lines, and it preserves the magnitude of angles; however, the orientation of
angles is reversed.

Rotation about the Origin

Now, consider the transformation
t(z) =az (ze€C), 3)

where |a|] = 1. Since |a|] = 1 we can write a = cos 8y + i sinfy, where
6o = Arg a. From the above strategy,  maps an arbitrary point  (cos 6+i sin 6)
in C to the point

r(cos(@ + 0y) + i sin(0 + 6p)),

and therefore corresponds to a rotation through the angle 6y = Arga about the
origin. The rotation is clockwise if Arg a < 0 and anticlockwise if Arga > 0.

Arbitrary Isometries

All the other isometries can be represented in the complex plane as composites
of the basic transformations described above. In fact, we have the following
result.

Theorem 1 Each isometry ¢ of the plane can be represented in the
complex plane by one of the functions

t(z) =az+b or t(z)=az+b,

where a,beC, |a]=1. Conversely, all such functions represent
isometries.

Proof The converse is easy to prove, because every function of the type
described is a composite of the basic isometries described above.
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So let ¢ be an isometry of the complex plane, and let #(0) = b, t(1) = c. If
we denote ¢ — b by a, then |a| is the distance between #(0) and 7(1), and since
t is an isometry it follows that |a| = 1. Now let s be the isometry defined by
s(z) = az + b; then

s0)=b=1t0) and s(1)=a+b=c=1t().

Thus s~ ! o7 is an isometry that fixes O and 1, and so, since it is an isometry, it
must fix each point of the x-axis.

Then using the fact that s~ o ¢ is an isometry (that is, it does not alter
distances) that leaves each point of the x-axis unaltered, we may deduce that
s~ ot is EITHER the identity transformation OR a reflection in the x-axis. If
it is the identity, then s~! o #(z) = z, in which case #(z) = s(z) = az + b. If it
is a reflection, then s ! o #(z) = Z, in which case 1(z) = s(Z) = aZ + b. |

Theorem 1 may be interpreted as saying that every isometry of the com-
plex plane can be obtained as a rotation (through an angle Arg a) followed
by a translation (through the vector (Re b, Im b)), possibly all preceded by a
reflection in the real axis.

Slightly more surprising is the fact that every isometry of the plane can be
expressed as a composite of reflections alone. This is because each rotation
and each translation can be expressed as a composite of two reflections.

rotation translation
through 6 through d

: '
dl2

7

Thus a rotation about a point O can be expressed as a reflection in any line
through O followed by a reflection in a second line through O, where the angle
from the first line to the second line is half the desired angle rotation.

Similarly, a translation can be expressed as a reflection in any line perpendic-
ular to the direction of the translation followed by a reflection in a second line
that is parallel to the first and in the direction of the translation relative to the
first line. The distance between the lines is half the distance of the translation.

So we have the following result.

Theorem 2 Every isometry can be expressed as a composite of reflections.

Example 1 Let 7 be the isometry defined by
t(z) =iz+4+2 (ze€QO).
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(a) Show that 7 represents an isometry.
(b) Interpret ¢ as the composite of a reflection, a rotation and a translation.
(c) Interpret # as a composite of reflections.

Solution

(a) The coefficient of z is i, which has modulus |i| = 1. By Theorem 1, it
follows that ¢ is an isometry.
(b) In the formula that defines ¢, the conjugation corresponds to a reflection in
the x-axis, the multiplication by i corresponds to an anticlockwise rotation
through 77 /2, and the addition of 4+2i corresponds to a translation through
the vector (4, 2). yEx
(c) First, let r be the reflection in the x-axis that corresponds to the
conjugation. r
Next, observe that the anticlockwise rotation through 7/2 can be inter- _@ =
preted as the composite | o r, where r is the reflection in the x-axis again,
and ry is the reflection in the line y = x through the origin that makes an r.
angle i /4 with the x-axis.
Finally, observe that the translation through the vector (4, 2) can be

interpreted as the composite r3 o rp, where rp is the reflection in the s avet )

line 4x + 2y = 0 through the origin that is perpendicular to the vector ) :

(4, 2), and r3 is the reflection in the parallel line 4x + 2y = 10 that passes " a0 “2
through £(4,2) = (2, 1).

Overall, we have t = r3 orp orj or or or, since r is its own inverse, PAV

t=r3orpory. O

The decompositions
illustrated above
generalize as follows.

Problem 4 Let ¢ be the transformation defined by

1(@)=—iz+6—-4 (z€O). To rotate the plane R2

(a) Show that # represents an isometry. through an angle 6 first
(b) Interpret ¢ as the composite of a rotation and a translation. reflect in the line
(c) Interpret # as a composite of reflections. {z : Argz = 0}, then

reflect in the line

Hint:  Use the decompositions described in the margin.
p & {z:Argz = %9}.

. . . . . 2
Having discussed isometries, we now turn our attention to two other trans- '1;) I ‘"El‘”e the lila“Z)R
. . through a vector (a, b):
formaFlons of the.: comple.tx plane th.at preserve the magnitude of angles and first reflect in the line
map circles and lines to circles and lines. {(x, ) : ax + by = 0},
i then reflect in the line
Scalings [(x,y) : ax+by =

The transformation defined by 3@ + 7).

t(z) =kz (z€C), “4)
where k is real and positive, multiplies the modulus of each complex number
by a factor k but leaves its argument unchanged. It is therefore a scaling by the

factor k. Clearly, scalings preserve angles, and map circles and lines to circles
and lines.
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Inversions

The primary reason for introducing complex numbers into our discussion is
that they provide a particularly convenient way in which to represent the effect
of an inversion on points in the plane.

Theorem 3 An inversion in a circle C of radius r with centre (a, b) may
be represented in the complex plane by the transformation

r2
t1(z) ==—=+c (zeC—{c)),
Z—cC

where ¢ = a + ib.

Proof We first consider the case where C is the unit circle . The image
under inversion in %’ of the point (x, y) is the point (ﬁ, ;ﬂj—_yz) We may
reformulate this expression in terms of complex numbers, by using the fact that
the modulus |z| of a complex number z = x + iy satisfies the identity

X242 =|z> =z

Thus the image under inversion of the point z = x + iy is the point

X y x +1iy b4

ny - ==
x2+y2 x24y2 x2+4y? 2%

Next we consider the general case where C is a circle of radius r with centre
(a,b). In this case the inversion in C can be expressed as the composite 1 =
t3 o tp o t], where

t(z) = Zr;c is a translation and a scaling that sends C to the unit circle;

t2(z) = 1/z is the inversion in the unit circle;

13(z) = rz + c is the inverse of 71 and sends the unit circle back to C.

Then
},2
I(Z) =18 OtZOII(Z) = —+c,

as required. |

The representation of inversion provided by Theorem 3 has a particularly
simple form in the case where C is the unit circle % In that case, r = 1 and
¢ = 0 so the inversion is represented by the transformation

tz) == (zeC—{O).

NI —
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By Theorem 2,
Subsection 5.1.2

You met this formula in
the proof of Theorem 3
above.
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For example, the image of the point 1 — i under inversion in the unit circle €
is the point
I 1—i
T—i 14i (A+i1—1i)

= $(1—1i).

Problem 5 Determine, in Cartesian form, the image under inversion
in the unit circle € of each of the following points.

(@) —v/34+i  (b)—3—4i

Problem 6 Let C be the circle of radius 2 with centre at the origin.
Write down the inversion in C as a transformation of C — {O}.

We know that inversions preserve the magnitude of angles. But what about
their effect on circles and lines? Unfortunately, it is not strictly correct to say
that an inversion maps circles and lines to circles and lines since some of the
circles and lines may have to be punctured before the map can be carried out.
We describe how to overcome this complication later, in Subsection 5.2.3.

522 Linear and Reciprocal Functions

We can use the ‘basic’ complex functions described in the previous subsec-
tion to give a geometric interpretation of many other complex functions. We
illustrate this for the so-called linear and reciprocal functions.

Definition A linear function is a function of the form
tiz)y=az+b (z€0),
where a, b € C and a # 0.

Every linear function #(z) = az + b can be decomposed into a composite
t o t; where

11 is the scaling 1 (z) = |a|z,
17 is the isometry 12(z) = (a/|a|)z + b.

The geometrical interpretation of the linear function ¢ depends on how we
choose to interpret the isometry #>. We can say that the linear function is a
scaling by the factor |a|, followed by a rotation through the angle Arg (a/|al),
followed by a translation through the vector (Re b, Imb). Alternatively, we can
use Theorem 2 and say that the linear function is a scaling composed with a
number of reflections.

Either way, since both the scaling and the isometry preserve angles and map
circles and lines to circles and lines, it follows that the same must be true of all
linear functions.

5: Inversive Geometry

Note that the technique of
multiplying both
numerator and
denominator by the
conjugate of the
denominator is often
useful.

By Theorem,
Subsection 5.1.3
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Next, we consider the reciprocal function.

Definition The reciprocal function is defined by

t(z) = é (z e C—{0)}.

This function can be decomposed into the composite #, o ¢; where

2=

t1 is the inversion 11 (z) =
tp is the conjugation #,(z)

b}

Z.

It follows that, geometrically, the reciprocal function can be interpreted as an
inversion in the unit circle & followed by a reflection in the real axis, as shown
below.

n@=1z L@ =2

R
NPARNIPARN A
\_/’

Hz)=t,0t, (2)=1/z

Since the inversion and the conjugation are both one—one functions that pre-
serve the magnitude of angles and reverse their orientation, it follows that
the reciprocal function must be a one—one function that preserves both the
magnitude and the orientation of angles.

As in the case of inversions, it is not strictly correct to say that the reciprocal
function maps circles and lines to circles and lines, because some of the cir-
cles and lines may have to be punctured before the reciprocal function can be
applied. We next show how we can overcome this complication by extending
the complex plane.

523 The Extended Plane

So far, our discussion of the effect of inversion on lines and circles has been
complicated by the need to puncture those lines and circles that pass through
the centre of inversion. Also, the need to distinguish between those images
that are circles and those that are lines makes the description of the inversion
process somewhat cumbersome. We can deal with both these difficulties in
a very elegant way by adding an additional point to the plane to obtain the
so-called extended complex plane.
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To illustrate the ideas involved, consider the line £ with equation x = 2.
Recall that inversion in the unit circle 4’ maps £ to a circle C with radius 41'1 and
centre (}T, 0), punctured at the origin.

The point (2, 0) is mapped to (%,O), (2, 1) is mapped to (%, %), 2, 2)is
mapped to (%, %), (2, 3) is mapped to (%, %) and, in general, the point (2, y)

is mapped to the point (ﬁ, 7 jyz) on C. As the point (2,y) moves from

(2, 0) up the line ¢, its image under inversion moves from (%, 0) around the
circle C towards the origin in an anticlockwise direction. Similarly, as the point
(2, y) moves from (2, 0) down the line ¢, its image under inversion moves from
(%, 0) around the circle C towards the origin in a clockwise direction. The ‘gap’
in the circle C at the origin arises because there is no point on £, or indeed
any point in R?, that is inverted to the origin. To “fill the gap’ we attach an
additional point at infinity to the plane.

Definitions The extended plane is the union of the Euclidean plane R?
and one extra point, the point at infinity, denoted by the symbol co. When
we wish to consider the plane as the complex plane C, then we call the
extended plane the extended complex plane and denote it by the symbol
C; thus C = C U {oo)}.

Remarks

1. The extended plane and the extended complex plane both consist of the
ordinary plane together with the point co. We use both terms interchange-
ably, depending on whether we wish to think of the ‘ordinary’ points in
the plane as being represented by pairs of real numbers or by complex
numbers.

2. The symbol co does not represent a complex number and so it should not be
used in association with arithmetic operations that act on complex numbers.
For example, co 4 3i is a meaningless expression.

Having extended the plane in this way, we now extend the definition of inver-
sion in a circle with centre O. We simply define the image of O to be oo, and
the image of oo to be O. Other points are mapped as specified by the definition
of inversion given in Subsection 5.1.1.

With this extended definition of inversion, the point O corresponds to oo,
and so the circle C in the above discussion now corresponds under inversion
in € to the set £ U {oo}. This certainly fills the ‘gap’ in C, but how can the set
£ U {oo} be interpreted?

As a point A on the circle C moves anticlockwise towards O, its image A’
under inversion moves up £. When A reaches O, A’ reaches co. As A continues
around C below O, its image returns up £ from below. You can think of the
point oo as ‘linking’ the two ends of the line ¢, thereby enabling points to
travel ‘round and round’ the line. With some stretch of your imagination, you

5: Inversive Geometry

Example 5, part (a),
Subsection 5.1.2

€ is read as *C hat’.

When we wish to think of
points as complex
numbers, we often denote
them by lower-case letters
such as z or a rather than
the upper case letters
usually used for points.

A more formal definition
of inversion in C is given
below.

[

N




Extending the Plane

can therefore think of the line ¢ as a circle of infinite radius, where the ‘gap at
infinity’ has been filled by the point co.

Any line ¢ in the plane may have its ‘gap at infinity’ filled by forming
the set £ U {oo}. Such a set is called an extended line. Since an extended
line can be thought of as a circle of infinite radius, we make the following
definition.

Definition A generalized circle in the extended plane is a set that is either
a circle or an extended line.

Remark

With this definition, you can think of an extended line as a generalized circle
which passes through oo, and you can think of an ordinary line as a generalized
circle which has been punctured at co.

Recall that in Subsection 5.1.1 we adopted the convention that an inversion
is either a reflection in a line, or an inversion with respect to a circle. We can
now regard both of these as inversions in generalized circles.

Definition Let C be a generalized circle in the extended complex plane.
Then an inversion of the extended plane with respect to C is a function ¢
defined by one of the following rules:

(a) if C is a circle of radius r with centre O, then

the inverse of A with respectto C, if A € C— {0},
t(A) = { oo, if A= 0,
o, if A = o0;

(b) if C is an extended line £ U {oo}, then

the reflectionof Ain ¢, if A € C,
0, if A = oo.

t(A) = {

Remark

Note that any inversion in an extended line fixes the point at infinity. Con-
versely, every inversion that fixes co must be an inversion in an extended line.

The above definition of inversion ensures that generalized circles map to
generalized circles. Indeed, we already know from Subsection 5.1.2 that this is
true if we allow the circles to be punctured, but we still need to check that the
gap in a punctured circle is mapped to the gap in its image circle.

In the case of inversion with respect to a circle with centre O, we know that
a circle or line punctured at O maps to a line, and this is consistent with the
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fact that O maps to co. Also, a line maps to a circle or line that is punctured at
0, and this is consistent with the fact that co maps to O.

In the case of inversion with respect to an extended line, we know that lines
reflect to lines, which is consistent with the fact that oo maps to co. Ordinary
circles are not a problem since they reflect onto circles.

We therefore have the following important result.

Theorem 4 Inversions of the extended plane map generalized circles onto
generalized circles.

We shall sometimes find it convenient to write inversions of the extended
plane as inversions of C. For example, by Theorem 3, we can write the
inversion of the extended plane with respect to the unit circle ¢ in the form

t(z) =

Problem 7 Write down each of the following inversions of the
extended plane as a transformation of C:

(a) the inversion with respect to the circle of radius 2 with centre the
origin;
(b) the inversion with respect to the extended real axis.

The inversion of the extended plane that we asked you to write down in
Problem 7, part (b), is particularly important because it provides us with a
natural way of extending the conjugation function from C to C.

Definition The function 7 : C — C defined by

z, ifzeC,
t1(z) =

0o, ifz= o0,

is called the extended conjugation function.

This function occurs so frequently that we shall introduce a notation for the
images of the points in its domain. Since we already have the notation z for
the conjugate of a complex number z, we simply adopt the convention that
00 = o0.

Inversions are not the only transformations that can be extended to C.
Indeed, most of the transformations discussed at the beginning of this section
can be extended in a natural way to C.

5: Inversive Geometry
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Definitions

(a) The function ¢ : C — C defined by

1
-, ifzeC-{0},
Z
t(2) = oo, ifz=0,
0, ifz=o00,

is called the extended reciprocal function.
(b) A function ¢ : C — C of the form

az+b, ifz eC,
t(z) =

00, if z = oo,

where a, b € C and a # 0, is called an extended linear function.

The solution to the next example shows that the extended reciprocal function
can be expressed as a composite of two inversions.

Example 2 Find the composite t = 1, o | where

t1 is the inversion in the unit circle €,
15 is the extended conjugation function.

Solution Since

1
=, ifzeC-{0},
z

1@ =1 oo ifz—0 and  12(2) =

z, ifzeC,
oo, ifz =00,
0, ifz=o00,

we have
t(00) =t 0 t1(00) = 12(0) =0,
t(0) =1 ot1(0) = £r(00) = 0.

For the remaining values of z € C — {O} we have

1 1 1
HD) =t oti(D) = <_) _ <_> _l
Z Z Z

It follows that r = £, o 11 is the extended reciprocal function. O

Next we describe how an extended linear function can be expressed as a
composite of inversions. In preparation for this, we ask you to tackle the
following problem.
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Problem 8 Find the composite t = #; o t; where

t1 is the inversion with respect to the unit circle €,
15 is the inversion with respect to the circle of radius 2 with centre 0.

Give an interpretation of the composite function ¢. Also describe what
would happen if the circle of radius 2 were replaced by a circle of radius
Vk with centre 0.

Earlier, we noted that every linear function is a composite 7 o s of a scaling s
followed by an isometry . Since every isometry ¢ is a composite of reflections,
it follows that every linear function is a composite r, o ... orpory os of a
scaling s followed by a number of reflections r, 72, ..., ry.

Now the only difference between a linear function and an extended linear
function is that the latter contains an additional point at infinity in its domain.
Since this additional point maps to itself, it follows that an extended linear
function is a composite of a scaling that also fixes oo, followed by a number
of reflections that also fix co.

But a reflection that fixes oo is just an inversion in an extended line. Also,
by the solution to Problem 8, a scaling that also fixes oo is a composite of
two inversions. It follows that every extended linear function is a composite of
inversions.

Combining this with the result of Example 2 above we have the following
theorem.

Theorem 5 The extended reciprocal function and the extended linear
functions can be decomposed into composites of inversions.

Since inversions of the extended plane map generalized circles onto gener-
alized circles, we have the following corollary of Theorem 5.

Corollary The extended linear functions and the extended reciprocal
function map generalized circles onto generalized circles.

Example 3 Let 7 be the extended linear function defined by
o 2(-1+3i)z+(4-20), ifzeC,
) =
00, if z = o0.
Express ¢ as a composite of inversions of the extended complex plane.

Solution In addition to mapping oo to oo, the transformation ¢ scales the
complex plane by the factor |2(—1 4 /3i)| = 4, rotates it through the angle
Arg 2(—1+ V3i ) = 27” , and then translates it through the vector (4, —2).

5: Inversive Geometry
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The scaling by the factor 4 can be decomposed into the composite #; o tq,
where

t1 is the inversion in the unit circle ¢,
15 is the inversion in the circle of radius v/4 = 2 centred at the origin.

The rotation through the angle 27 /3 can be decomposed into the composite
t4 o t3, where

t3 is the inversion in the extended real axis,
t4 is the inversion in the extended line ¢4 U {co}, where ¢4 is the line

y = +/3x.

(Here £4 is the line through the origin that makes an angle 7 /3 with the x-axis.)
The translation through the vector (4, —2) can be decomposed into the
composite t5 o t5, where

t5 is the inversion in the extended line ¢5 U {oco}, where {5 is the line

4x —2y =0,
t6 1s the inversion in the extended line £¢ U {00}, where {4 is the line
4x — 2y = 10.

(Note that ¢5 is the line through the origin that is perpendicular to the vector
(4, —2), and ¥ is the line that passes through (2, —1) parallel to ¢5.)
Since t, 15, 14, t3 and 1 o ¢ all map oo to itself, it follows that

t =tfgolsolgotz30fpol. O

Problem 9 Let 7 be the extended linear function defined by

-9z 4+ (6 —10i), ifzeC,
t(z) =

00, if z = o0.

Express ¢ as a composite of inversions of the extended complex plane.
Hint:  Use the decompositions described in the margin.

524

In the previous subsection, we introduced the point at infinity and the extended
complex plane in order to provide a simplified explanation of the effect of
inversion on lines and circles. However, it may seem unsatisfactory to have to
visualize a straight line as a (generalized) circle, since the ‘ends’ of the line
appear to be infinitely far apart. Also, it is difficult to visualize where the point
at infinity should be placed relative to C, other than to think of it as smeared in
some vague way around the ‘outer edge’ of C.

Fortunately, there is a model of the extended (complex) plane in which the
point at infinity appears as an actual point! Consider the complex plane C
as lying in R? with the real and imaginary axes aligned along the x-axis and
y-axis, respectively. Then each complex number x + iy may be represented by
the point (x, y,0) in the (x, y)-plane.

The Riemann Sphere

289

ty E /3

4x-2y=0
4x-2y=10

2,-1)
s (4, -2)

The decompositions
illustrated above
generalize as follows.

To scale C by a factor k:
first invert in the circle

{z : |z| = 1}, then invert in
the circle {z : |z| = vk}

To rotate C through an
angle 6: first invert in the
extended line {z : Arg z =
0} U {o0}, then invert in
the extended line

{z: Argz = 16} U {oo}.

To translate C through a
vector (a, b): first invert in
the extended line

{(x,y) rax+by=

0} U {oo}, then invert in
the extended line

{(x,y) rax+by=

$@® + b} U {oo}.
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North Pole N

PinC
corresponds
toP onS

Next, draw the sphere S with centre at the origin and with radius 1; we call
this the Riemann sphere. By analogy with the Earth, we refer to the point
N = (0,0, 1) at the top of the sphere as the North Pole of S, and the point
S = (0,0, —1) at the bottom of the sphere as the South Pole of S.

Each line joining a point P in the complex plane to the North Pole intersects
the Riemann sphere at some point P’, and vice versa. In this way, we obtain
a one—one correspondence between all points P in the complex plane and all
but one of the points P’ on the sphere. The one point on the sphere that cannot
be associated with a point in the complex plane is the North Pole N.

As the point P’ on the sphere moves closer to N, the corresponding point
P in the plane moves further away from the origin O. This suggests that we
associate the North Pole N with the point oo in the extended complex plane.

The function 77 : S — C, which maps points on the Riemann sphere to the
associated points in the extended complex plane, is called stereographic pro-
jection. Since 7 is one—one and onto, it follows that we can use the Riemann
sphere as a convenient visualization of the extended complex plane C.

In fact, we can find an explicit formula for stereographic projection of the
point (X, Y, Z) onto the point z = x + iy, and vice versa.

Theorem 6 Let 7 denote the mapping of the Riemann sphere S onto C
given by stereographic projection. Then the stereographic projection of the
point (X, Y, Z) of S onto the point z = x + iy of C is given by

XY, 2) = — i
X, Y, Z) = ——+i——.
1-Z7 1-Z7
Also, the inverse mapping is given by
2x 2y x24+y2 -1
-1 n
+ = 9 b .
RERAL) <x2+y2+1x2+y2+1x2+y2+1

Proof Let the point P'(X,Y, Z) be a point on S (other than N), and P(x, y)
the point in the plane that corresponds to P’ under stereographic projection.
Project the line NP’ P perpendicularly onto the (Y, Z)-plane, with P’ and P
projecting onto the points Q’ and Q; then Q’ and Q have coordinates (0, Y, Z)
and (0, y,0) in R?. Draw the perpendicular Q'R from Q’ to the Z-axis.

5: Inversive Geometry
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Extending the Plane

Since RQ' is parallel to OQ, the triangles ANRQ" and ANOQ are similar. It
follows that NR : RQ' = NO : 0Q, or

1-Z

1
Y y

s

from which we obtain that
Y
Y=oz

By projecting the line NP'P onto the (X, Z)-plane and using a similar
argument, we can show that

X
xX=—:.
1-Z
It then follows that the mapping 7 is given by
(X,Y,Z)=x+iy= X +i !
7(X,Y,Z)=x y=1—5ti;T—

Clearly this formula also holds when N is mapped to co.

To find the formula for 7!, we use the fact that X2 + Y2 + Z% = 1.
Substituting the values of X and Y from the above formulas into the equation
X% +Y? + Z? = 1 and doing some manipulation, we deduce that

2
2., .2
l=—. 5
X4+ y + T—7 5)

It follows from equation (5) and the earlier equations for X and Y that

X:x(l—Z):#
xc+y-+1
and
Y:y(l—Z):#.
x=+y-+1

Also, we may rearrange equation (5) in the form
242
-1
A
x2+y2+1

We can then combine these formulas to give the required formula for 7!

7 x +iy) = (X,Y,2)

B 2x 2y x4yt -1
22+ U2+ U242+ 1)

Notice that stereographic projection distorts the distances between points.
For example, two points that are close together on S may project onto
points that are close together in C, or onto points that are far from each
other in C.

z
N, 0, 1)
1-Z

X P(x, y)

We omit the details.

For, here Z = 1.

We omit the details.
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We can use the Riemann sphere to visualize extended lines as generalized
circles in a very natural way, as follows. Consider a point P on a line £ in C.

As P moves along ¢, the line that joins P to the North Pole sweeps out
the plane through ¢ and N; this intersects the sphere in a circle. Hence, as P
moves along £, the corresponding point P’ on the sphere traces out a circle.
As P moves further out along the line, the point P’ moves towards the North
Pole. The point P’ never actually reaches the North Pole, since the North Pole
corresponds to the ‘gap’ in the line ¢ that we mentioned earlier. Subsection 5.2.3

We filled the ‘gap’ in £ by attaching oo to ¢ to obtain the extended line
£ U {oo} in C. On the sphere, the point N fills the corresponding gap in the
circle, so that the extended line £ U {oo} corresponds to an actual circle on the
sphere — in fact, a circle through N.

This fact is a particular instance of the following general result.

Theorem 7 Under stereographic projection, circles on the Riemann
sphere map onto generalized circles in C.

In particular, circles on the sphere that pass through N map onto extended
lines in C, and circles on the sphere that do not pass through N map onto
ordinary circles in C.

Proof A circle on the sphere is the intersection of the sphere X? + Y2 +
7% = 1 with some plane aX + bY 4+ ¢Z + d = 0, where a, b and ¢ are not all

zero. It follows from substituting the expressions
You met these equations

x24yr -1 in the proof of Theorem 6
= x2+y2 41 above.

2x 2y

X=—————, Y=—"—— and Z
x24+y2 41 x2+y2 41 .
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for X, Y and Z into the equation X2 4+ Y2+ 7% =1 that

2ax +2by + ¢ (x? + y* — 1)
X2+ yr 41
This equation may be rewritten in the form
2ax+2by+c(x2+y2— 1)+d<x2+y2+1> =0,
or For its equation is that of a
2 2 N circle or of an (extended)
(c+d)x“+ (c+d)y"+2ax+2by+ (d —c) =0.

line.

+d=0.

It follows that the image of a circle on the sphere is a generalized circle in the
(extended) plane.

The circle on the sphere passes through N (0,0, 1) if the plane aX + bY +
c¢Z + d = 0 passes through N, and soif c +d = 0.

It follows that if the circle on the sphere passes through N, its image in the
extended plane has an equation of the form

2ax +2by + (d — ¢) = 0,

and is an extended line.
On the other hand, if the circle on the sphere does not pass through N, then
¢ +d # 0 and its image is an ordinary circle in the plane. |

Problem 10 Determine the images under stereographic projection
onto C of the following circles on S.

(a) Thecircle {(X,Y,2): X+ Y>+ 22> =1, X = 1}
(b) The circle of intersection of S with the plane 3X +2Y +Z =1

As an illustration of Theorem 7, we describe what happens to the ‘lines of
latitude and longitude’ of the Riemann sphere under stereographic projection.

A ‘line of longitude’ on the Riemann sphere is a circle on S that passes
through the North Pole and the South Pole of S; this projects onto a line
through the origin in the plane. Similarly, a ‘line of latitude’ on the Riemann
sphere is a circle at a constant height above the (x, y)-plane, so, by symmetry,
this projects onto a circle centred at the origin in the plane.

Just as the lines of latitude and longitude meet at right angles on the sphere,
so do their projections. This is a consequence of the following remarkable
result.
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Theorem 8 Stereographic projection preserves the magnitude of angles.

Proof First, we make the following crucial observation. Recall that if a point
P moves along a line £ in the complex plane, then the corresponding point P’
on the Riemann sphere moves round a circle through N. Indeed, as P moves
out ‘towards oo’, P’ approaches N; and the line NP (in R%) approaches the
tangent at N to the circle on the sphere. It follows that the tangent at N to the
circle on the sphere must be parallel to the original line €.

Let C; and C; be curves in the complex plane that intersect at some point
P, and let ¢; and ¢, be the tangents to C; and C, at P. (Recall that we
define the angle between C| and C; at P to be the angle between ¢; and
£ratP.)

The curves on the Riemann sphere that correspond to £ and ¢; are circles
through the North Pole N and the point P’ on the sphere that corresponds to
the point P in the plane. We have to show that the angle between these circles
at P’ (that is, the angle between their tangents at P’) is equal to the angle
between the lines £ and ¢, at P.

But, by symmetry, the angle between the circles at P’ is equal to the angle
between the same circles when they meet again at N. And, as we saw above,
the lines £1 and £, through P are parallel to the corresponding tangent lines
through N. Thus the angle between the circles at N must be equal to the
original angle between £ and ¢, at P.

Hence, stereographic projection does preserve the magnitude of angles, as
asserted. |

Earlier, we showed that inversion preserves the magnitude of angles but
reverses their orientation. Having introduced the Riemann sphere, we can now
show that there is a sense in which this is true even for angles which have a
vertex at the centre of inversion, or at co.

To see this, let £1 and £, be two lines that intersect at the centre of inversion
A. The corresponding extended lines 1 U {oo} and £, U {oo} intersect again at
the point co. On the Riemann sphere these extended lines become circles C
and C; that intersect at the North Pole and at the point A’ corresponding to A.

circle o
inyersion
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Under the inversion, each extended line maps to itself, so C; and C, also
map to themselves. Notice, however, that the points A’ and N swap over, and
so the angles at A’ and N swap over as well. By symmetry, these angles are
equal in magnitude but opposite in direction. So, provided we interpret the
angle between curves at oo as the corresponding angle on the Riemann sphere,
we can conclude that the fact that inversion preserves the magnitude of angles
holds throughout the whole of C.

53 Inversive Geometry

53.1 Inversive Geometry

We now come to the main purpose of this chapter, which is to introduce a
geometry, known as inversive geometry, that we can use to study the properties
of circles, lines and angles.

Recall that according to Klein, a geometry has the following ingredients:

a space consisting of a set of points;
a group of transformations that act on the space.

Each geometry is used to study those properties of figures in its space that are
preserved by its transformations. For example, Euclidean geometry is used to
study those properties of figures in R?, such as angle and distance, that are
preserved by the isometries of R2.

Since each isometry of R? can be decomposed into a composite of reflec-
tions, we can think of the group associated with Euclidean geometry as the
group of all possible composites of reflections.

This provides the clue that we need to define the transformations of our
new geometry. Rather than consider composites of reflections, we consider
composites of inversions.

Definition A transformation ¢t : C — C is an inversive transformation
if it can be expressed as a composite of inversions.

For example, the extended reciprocal function is an inversive transformation
because it can be expressed as a composite #, o t; where 7] is the inversion in
the unit circle and #, is the inversion in the real axis. Similarly, all extended
linear functions can be expressed as composites of inversions, so they too are
inversive transformations.

Theorem 1 The extended reciprocal function and the extended linear
functions are inversive transformations.

Since every inversion preserves the magnitude of angles and maps general-
ized circles to generalized circles, the same must be true of all composites of
inversions. We therefore have the following result.
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Theorem 2 Inversive transformations preserve the magnitude of angles,
and map generalized circles to generalized circles.

Before we can use the inversive transformations to define a geometry, we
must first check that they form a group.

Theorem 3 The set of inversive transformations forms a group under the
operation of composition of functions.

Proof We check that the four group axioms hold.

Gl CLOSURE Let r and s be inversive transformations. Then we can
write

r==tofho...ol
and
S = 1Ik+1 O0lg420...01y,
where 11,1, . .., t, are inversions. Thus
ros = (f Olzo...otk)o(tk_H Otk+20...0[n)

is a composite of inversions, and is therefore an inversive
transformation.

G2 IDENTITY The identity for composition of functions is the identity
transformation given by

1x)=z (zeC).

This is an inversive transformation since t = s os, where
s is the inversion in the unit circle.
G3 INVERSES If ¢ is an inversive transformation, then we can write

t=1folho...ofy,

where t1,1,...t, are inversions. It follows that ¢ has
inverse

ot__llo...otl_l=t,,ot,,_1o...ot1,

which is an inversive transformation.
G4 ASSOCIATIVITY Composition of functions is always associative.

Since all four group properties hold, it follows that the set of inversive
transformations forms a group under composition of functions. |

Having shown that the inversive transformations form a group, we can use
them to define a geometry. But what space should we use for the geometry?
Since the inversive transformations act on C, the space will have to be C. But
what do figures look like in this space? Just as figures in R? are defined to

5: Inversive Geometry
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be subsets of R2, so figures in C are defined to be subsets of C. Thus circles
and extended lines are both examples of figures in C. We can now make the
following definition.

Definition Inversive geometry is the study of those properties of figures
in C that are preserved by inversive transformations.

We have already met the following inversive properties: generalized circles,
magnitude of angles, and tangency (since zero angles are preserved).

53.2

Although the point at infinity is crucial to the theory of inversive geometry,
when we come to interpret results about figures we often choose to confine our
attention to points in C. By ignoring the point co in this way, the remaining
points in C can be interpreted as points of R? and any extended lines in the
figure can be interpreted as ordinary lines.

In this sense figures in R? can be interpreted as figures in C, and vice versa.
For example, the figure in the margin is a figure in R?. It consists of a family of
circles centred at the origin, and a family of lines that intersect at the origin. If
we add the point oo to the figure, then all the lines become generalized circles
and the figure becomes a figure in C.

Earlier, you saw that every Euclidean transformation can be expressed as a

Relationship with Other Geometries

composite of reflections. Since a reflection can be interpreted as an inversion
that fixes oo, it follows that we can interpret every Euclidean transformation as
a composite of inversions, and hence as an inversive transformation.

An immediate consequence of the above observations is that when figures
in C are interpreted as figures in R?, all their inversive properties become
Euclidean properties. This is because any property that is preserved by all
inversive transformations must also be preserved by all Euclidean transfor-
mations. For example, the magnitude of angles is both an inversive and a
Euclidean property.

A pictorial representation of the relationship between inversive and
Euclidean geometry is given in the margin. Provided that we ignore the point
00, the group of Euclidean transformations can be regarded as a subgroup of
the group of inversive transformations. Because the Euclidean group is smaller
than the inversive group, it follows that Euclidean geometry has more proper-
ties than does inversive geometry. For example, length is a Euclidean property
but it is not an inversive property.

How does affine geometry fit into the scheme? In Subsection 2.2.1 we
showed that every Euclidean transformation is an affine transformation. But
what is the relationship between affine transformations and inversive transfor-
mations?

Certainly, some affine transformations are inversive without being
Euclidean. For example, earlier you saw that the ‘doubling map’,

t(z) =2z (ze€O),
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is an affine transformation. This transformation is not a Euclidean transfor-
mation, and yet it can be decomposed into the composite » o 71, where #;
is the inversion in the unit circle ¥, and #, is the inversion in the circle
Izl =2 :z € @}. So, with the usual proviso about oo, ¢ is an inversive
transformation.

However, not all affine transformations are inversive transformations. For
example, the transformation

t(x):((z) ?)x (XGRZ)

represents a horizontal shear. This cannot be an inversive transformation, since
it does not preserve angles.

It follows that the affine group of transformations contains the Euclidean
group but overlaps the inversive group, as illustrated in the margin.

5.3.3 Mobius Transformations

To enable us to tackle problems in inversive geometry algebraically, we need
an algebraic representation of the inversive transformations.

We shall show that each inversive transformation has either the form
t(z) = M(z), or the form 7(z) = M(z), where M is a so-called Mobius
transformation.

Definition A Mdbius transformation is a function M : C — C of the
form

az+ b

cz+d’

M(z) =

where a, b, ¢, d € C and ad — bc # 0.
If ¢ = 0, then we adopt the convention that M (co) = oo; otherwise, we
adopt the convention that M (—d/c) = oo and M (c0) = a/c.

Remarks

1. Every (extended) linear function is a Mobius transformation, as can be seen
by setting ¢ = 0, d = 1. Also, the (extended) reciprocal function is a
Mobius transformation witha =d =0and b =c¢ = 1.

2. If ¢ = 0, then the formula for M reduces to M (z) = (a/d)z + (b/d). This
defines an extended linear function, because the condition ad — bc # 0
ensures that both @ and d are non-zero, and so a/d is also non-zero. Also,
the convention that M (co) = oo complies with the definition of an extended
linear function.

3. The condition ad — bc # 0 is equivalent to the statement that the ratios a : ¢
and b : d are unequal. This is necessary to ensure that the numerator is not
simply a multiple of the denominator, for if it were, M would be a constant
function.
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You saw how a scaling
can be decomposed into a
composite of inversions in
Problem 8,

Subsection 5.2.3.

Inversive group

Affine group

For example,
6i x2—4i x3=0,
so that
6iz + 4i
3z+2

=2i, aconstant.
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Problem 1 Which of the following formulas define a M¢bius trans-
formation?

—z+2i
) 3z —4i
© M) =—-3z+ l; ) M(z) =1+

5
(a) M(z) = z (b) M(z) =

z42i

For those formulas that do define a Mobius transformation, state the
image of oo under M.

Before we look at the properties of Mdbius transformations, we first verify
that a Mobius transformation is indeed an inversive transformation.

Theorem 4 Every Mobius transformation is an inversive transformation.

Proof Let M be the Mobius transformation defined by the formula

_az+b

M@ cz+d’

If ¢ = 0, then M is an extended linear function, and is therefore an inversive
transformation.
If ¢ # 0, then for z € C — {—d/c} we can write

—ad + bc + a(cz+ d)
c(cz+d)

(ad—bc) ( 1 > a
c cz+d c

It follows that M may be expressed as the composite 73 o f5 o t1, where 1, is
the extended reciprocal function, and #; and #3 are the extended linear functions

M(z) =

cz+d, ifz# oo,
n(z) =

00, if z = o0,
and

—((ad — be)/c)z + (a/c), if z # o0,
1(z) =

00, if z = o0.

Next, we check that the transformations 73 o #, o t; and M agree also at the
exceptional points oo and —d/c, as follows:

t30ty0t1(00) =t301(00) =13(0) =a/c = M(0);
30t oti(—d/c) =13 01(0) =13(00) =00 = M(—d/c).

Since the extended reciprocal function and the extended linear functions are
inversive transformations, it follows that A is an inversive transformation. W
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Since Mobius transformations are inversive transformations, they must pre-
serve the magnitude of angles and map generalized circles to generalized
circles. In fact, we can say slightly more than this, for in the proof of Theorem 4
we showed that every Mobius transformation is either an extended linear func-
tion or a composite of two extended linear functions and an extended reciprocal
function. Since the extended linear functions and the extended reciprocal func-
tion preserve both the magnitude and orientation of angles, the same must be
true of Mobius transformations.

Theorem 5 Mobius transformations preserve the magnitude and orienta-
tion of angles, and map generalized circles onto generalized circles.

5.3.4 Matrix Representation of Mobius Transformations

In order to explore some of the other properties of Mobius transformations, it
is helpful to establish a correspondence between Mdobius transformations and
matrices.

Recall that, if a, b, ¢, d, e, f, g, h € C, then 2 x 2 matrices have the
following properties:

<a b).<e f)_ ae +bg af + bh
c d) \g h) \cetds cf+dn)’

-1
a b 1 d —b .
<c d) —m(_c ) Had =be 20

Here, the condition ad — bc # 0 for the matrix to be invertible is reminiscent
of the condition ad — bc # 0 that appears in the definition of a Mobius trans-
formation. This suggests the following fruitful connection between Md&bius

and

transformations and 2 x 2 invertible matrices.

Definition Let M be a Mobius transformation defined by

: ey

where a, b, ¢, d € C. Then

is a matrix associated with M.

Remark
. a b . . .y .
1. Every matrix ( d) associated with a Mobius transformation
¢

M(z) = “tL s invertible because ad — be # 0.

5: Inversive Geometry
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2. A matrix associated with a Mobius transformation M is not unique, because
we can multiply the numerator and denominator of the formula (1) by the
same non-zero constant without altering the transformation. For example,
both ] )

2L and M@ = ]
3z+2i 3iz—2

specify the same Mobius transformation M, and so both the matrices

2 i and 20 —1
3 20 3 =2
are associated with M.
In general, if A is a matrix associated with a Mobius transformation M,

then for any non-zero ¢ € C, cA is also a matrix associated with M. In fact,
every matrix associated with M has the form cA for some ¢ € C — {0}.

M(z) =

Example 1 Decide which, if any, of the matrices

0 4 8§ 0 —4i 0
A“(f 0)’ A2_<—2i —8)’ A3_<o 1)

are associated with each of the following M&bius transformations M.

—3iz42 —4i 4i
@ M@ = 22 Mo =" M@= 2=
7z —3i Z 7z —4i

Solution

(a) Every matrix associated with this M is a non-zero multiple of the matrix

=3 2
1 =3i)°

Hence none of the three given matrices is associated with M.
(b) Every matrix associated with this M is a non-zero multiple of the matrix

0 —4i
(),

Since A| = iA, it follows that A is a matrix associated with M.
(c) Every matrix associated with this M is a non-zero multiple of the matrix

4i 0
A= .
(T %)

Since A, = —2iA, it follows that A, is a matrix associated with M. O

Problem 2 Decide which, if any, of the matrices

0 1 0 2 2 0
: (—%i o) n (1 —2i> » (1 —i)
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are associated with each of the following Md&bius transformations M.

2i 2i iz+2
(a) Mi(z) = m (b) M>(2) = ? (c) M3(z) = 27 —

A particularly important transformation of C is the identity function
defined by

1x)=z (zeC).

This is a Mobius transformation because it can be written in the form

740
Oz +1°

1(z) =

A matrix associated with this Mobius transformation is the identity matrix

()

535 Composing Mobius Transformations

The next example illustrates what happens when two Md&bius transformations
are composed.

Example 2 Determine the composite M| o M>, where M; and M, are the
Mobius transformations defined by

. 1 .
1Z+ and  Mo(z) = Z+1

M = .
1@ 27 —2 2z —1

Solution Since M| and M, are one-one mappings of C onto C, the same
must be true of M| o M>. A formula for M; o M>(z) is

741

My o My (z) = M, (21_ 1)
_i(;zt"l)Jrl
2(£5) -2

i@+ +@2z-1)

T2+ -2Qz—-1)
Q+i)z—-2

274+ (2 +2i)

We can check that this formula defines a Mobius transformation by noting that

Q242 +2i) — (=2)(=2) = —2 + 6i £ 0.
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Strictly speaking, we
should check our
convention for the
exceptional points
separately. For example,
by convention

Mj(00) = %, so that

My o My(00) = M, (%)

This agrees with the value
obtained when we apply
our convention to the
formula for M| o M>.
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Thus M| o M3 is a Mobius transformation given by

2+i)z—-2

M1 o M = —
re M) = o

Problem 3 Write down matrices A; and A, associated with the
Mobius transformations M and M, defined in Example 2. Calculate the
product AjAj, and compare it with the Mobius transformation M o M».

In Example 2, the composite of two Mobius transformations M and M>
turned out to be another Mdbius transformation. The solution to Problem 3
demonstrates that the product of matrices associated with M; and M> is a
matrix associated with M| o M5. The following theorem confirms that this
is always the case.

Theorem 6 Composition of Mobius Transformations

Let M; and M, be Mobius transformations with associated matrices A
and A,, respectively. Then M| o M, is a Mobius transformation with an
associated matrix AjA,.

Proof Let M| and M> be defined by

az+b ez+ f
M =—— and M = .
1) cz+d 2(2) gz+nh

Since M and M; are one—one mappings of C onto C, the same must be true
of M| o M,. We can obtain a formula for M; o M>(z) as follows:

ez+ f
MioM =M
10M>(z2) 1<gz+h>

ezt
B a(}i—#i)—l—b
- +
c(Z—JZ)—i—d
a(ez+ f)+b(gz+h)
clez+ f)+d(gz+h)

_ (ae+bg)z+ (af + bh)
 (ce+dg)z+ (cf +dh)’

Since M| o M5 is one—one, this formula cannot remain constant as z varies, SO
(ae+bg)(cf+dh) — (af+bh)(ce+dg) # 0. The formula must therefore define
a Mobius transformation.
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exceptional cases
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shall omit this checking
from here onwards.
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A matrix associated with M| o M is
ae+bg af+ bh
ce+dg cf+dh '

which is the product of the matrices

a b e f
(cd) = (7)
associated with M| and M,, respectively. | |

Theorem 6 enables us to calculate the composite of two Mobius transforma-
tions by using the following strategy.

Strategy To compose two Mobius transformations M and M>:

1. write down matrices A; and A, associated with M| and M>;

2. calculate AjAj;

3. write down the Mobius transformation M; o M, with which AjA; is
associated.

Example3 Use the strategy to determine the composite MjoM, of the Mobius
transformations

3241 2iz +3
2L ad My = 222
iz—2 z—2

Mi(z) =

Solution The Mobius transformations M and M» have associated matrices

3 1 2i 3
A1—<l_ _2> and A2—(1 _2>,

respectively. It follows that a matrix associated with M1 o M5 is

3 1\ /2 3 1+6i 7
132 (i —2><1 —2> ( 4 4+3i)

The composite M o M> is therefore the Mobius transformation defined by

(14+60)z+7
My o M = O
e M) =

Problem 4 ILet M| and M, be the Mobius transformations defined by

3z4+1 2iz+3
M1(Z)=I,ZT2 and Mj(z) = P

Use the strategy to determine each of the following composites.

(@ MaoM;  (b) MyoM,

5: Inversive Geometry
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Problem S Let M| and M, be the M&bius transformations defined by

z—1i 27+
MO =5 wd MO =50

Use the strategy to determine the composite M1 o M.

5.3.6 Inverting Mobius Transformations

In the solution to Problem 5 you saw that the composite M| o M3 of the M&bius
transformations

z—1i 2z +1
M@ =5 o M0 =5

is the identity function on C. This shows that M, is the inverse function of
M;. In terms of matrices, this is equivalent to saying that there are matri-
ces associated with M| and M, whose product is the identity matrix I. For

example,
1 —i 2 iy _ (10
i 2 —i 1)\ 1)

We can use this idea to find the inverse of any given Mobius transformation
M. The inverse function M~! certainly exists, since M is a one—one transfor-
mation from C onto C. To find the inverse, let A be a matrix associated with
M. Since A is invertible,

AAT =T =A"TA,

so the Mobius transformation associated with the matrix A~ must be the
inverse function M 1.

Now, if M(z) = %£2 we can take A = (a
c

b
td’ ) , SO that

d

L (d b
T ad—bc\—c a ]’

But any non-zero multiple of A~ is also a matrix associated with M ~!, so we

) as a matrix for M~!. Then
a

shall usually use the matrix (

We summarize the result of this discussion in the following theorem.
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Theorem 7 Inverse of a Mobius Transformation
The inverse of the Mobius transformation

az+b
M =
@ cz+d
is also a Mobius transformation, and it may be written in the form
dz—b
M= =
—czZ+a

For example, the inverse of the Mobius transformation
iz+ 1

M(z) = > _>

is given by

—2z—1 27+ 1
M () = = .
@ -2z 41 2z —1i

Problem 6 Determine the inverse of each of the following Mobius
transformations.

4iz
7—4i

(@) Mi(z) = 2Z2  (0) Myz) = 2 () Ma(2) =

z=3i

5.3.7 The Inversive Group

We now have all the information we need to prove the following theorem.

Theorem 8 The set of all Mdbius transformations forms a group under
composition of functions.

Proof We show that the four group axioms hold.

Gl CLOSURE By Theorem 6, the composite of two Mobius transforma-
tions is itself a Mobius transformation.
G2 IDENTITY The identity is the Mobius transformation given by
_ 1z40
M) = g7
G3 INVERSES By Theorem 7, every Mobius transformation has an
inverse.

G4 ASSOCIATIVITY Composition of functions is always associative.

It follows that the set of all Mobius transformations forms a group under
composition of functions. |

Having shown that the set of Mobius transformations forms a group, we
now investigate its relationship with the group of all inversive transformations.
We know from Theorem 4 that every Mdobius transformation is an inversive
transformation, but is every inversive transformation a Mdbius transforma-
tion? Clearly, the answer is no. For example, an inversion cannot be a M&bius
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transformation since it reverses the orientation of angles, whereas all M&bius
transformations preserve the orientation of angles.

Although inversions are not Mobius transformations, there is a close
connection between inversions and Mobius transformations.

Theorem 9 Every inversion ¢ has the form #(z) = M (z), where M is a
Moébius transformation.

Proof If ¢ is an inversion of C in an extended line, then by Theorem 1 of
Section 5.2 it must have the form 7(z) = az + b, with t(c0) = oo. It follows It cannot have the form

that 7(z) = M (Z), where M is the Mobius transformation 1(z) = az + b, since 1
reverses the orientation of
M@) = az + b. angles.
0z +1

On the other hand, if ¢ is an inversion of C in a circle of radius r with centre c,
then by Theorem 3 of Section 5.2,

2 2 = = = 2 =

r r-+cz—c cz+ (r°—cc

1) = te= _(_ ) _ _( - )'
z—c¢ z—c z—c¢
So once again t has the form 7(z) = M(z), where M is the Mobius Notice that
transformation - 2 -
c-(=¢)—=(r“—co)-1
cz+ (r? —cé
M(z) = # ] =—r2£0.

We can now show that every inversive transformation ¢ has the form 7(z) =
M(z) ort(z) = M(zZ), where M is a Mobius transformation.

Theorem 10 Every inversive transformation ¢ can be represented in C by
one of the formulas
or f(z)=

t
@ =13 z+d
where a, b, ¢, d € C and ad — bc # 0.

_az+b az+b

£}

Proof We first show that the composite of two inversions #; and #5 is a Mbius
transformation. By Theorem 9 above, we can write #1(z) = M{(z) and r2(z) =
M>(Z), where M| and M, are Mobius transformations. Thus

1o n(z) = n1(M2(2)) = M1 (M2(2)).

But if
az+ b

)
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then we can define a Mobius transformation M3 by

— [(az+b\ az+b

M3(z) = M) (2) = — = =.

3@) 2(2) (cz+d> cz+d
Since ) o ©h(z) = M{(M2(z2)) = M;(M3(z)), it follows that t; o fp
is a composite of two Mobius transformations, and is therefore a Mdbius

transformation.
Next, let # be an arbitrary inversive transformation, and write

t=tofho...oly,,

where t1,1,...,t, are inversions. If n is even, then we can rewrite ¢ as a
composite of Mobius transformations by pairing together the inversions in the
form

t=(tioh)o(t30t4)0...0(ty—1 01ty).

It follows that ¢ is a M&bius transformation, M say, so we can write ¢(z) =
M (z).

To deal with the case where n is odd, let r be the extended conjugation
function. Since r is its own inverse, we can write

t=(tiotho...ot,or)or.

Here the composite in the bracket involves an even number of inversions, so
it must be a Mobius transformation, M say. Hence 1(z) = M or(z) = M (2).
[ |

Theorem 10 provides us with an insight into the structure of the group G
of all inversive transformations. Those inversive transformations that can be

written in the form
az+b

1) = cz+d
are Mobius transformations, and we know from Theorem 8 that they form
a subgroup of G. We refer to these transformations as direct inversive
transformations because they preserve the orientation of angles.
The remaining inversive transformations are of the form

These are Mobius transformations composed with the extended conjugation
function, and so they reverse the orientation of angles. For this reason we shall
refer to them as indirect inversive transformations.

53.8 Images of Generalized Circles

We have shown that an inversive transformation maps generalized circles
onto generalized circles. However, apart from the special case of inversion
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in the unit circle, we have not yet given a strategy for finding the image of a
generalized circle under an inversive transformation.

One such strategy is based on the fact that every generalized circle in C is
uniquely determined by any three points lying on it. Indeed, if the three points
lie in C, and are non-collinear, then they determine a unique circle in C. On
the other hand, if the three points are collinear, or if one of the points is oo,
then they determine a unique (extended) line.

Strategy To determine the image of a generalized circle C under an
inversive transformation #:

1. write down three points z1, z2, z3 on C;
2. determine the images #(z1), #(22), 1(23);
3. the image #(C) is the (unique) generalized circle through #(z1), (z2),

1(z3).

Example 4 Use the strategy to find the image of the unit circle 4" under the
inversive transformation defined by

+1i
-1

t(z) =

21

Solution We first pick three distinct points on the unit circle. There is no
definite rule about which points should be chosen, so to keep the calculations
simple, we pick the points 1, i and —1, as shown below. Now

1(1) = o0, t(i):i—Hl —0 and
T

—14+i 1 ,
1(—1) = == S =0,

So the image of € is the generalized circle through the points co, 0 and
%(1 — i). This is an extended line through the origin with slope —1. O

an
N ™

°3
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If you can pick a point
that maps to oo then you
know immediately that the
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310

Problem 7 Let ¢ be the inversive transformation defined by

7 —20
7+2°

1(z) =

Use the strategy to determine the image of each of the following
generalized circles under #:

(a) the extended line £U{oo}, where £ is the line with equation x+y = 2;
(b) the circle with equation (x + D%+ y2 =1.

54 Fundamental Theorem of Inversive Geometry

54.1 Comparison with Affine Geometry

In Subsection 2.3.2 we introduced the Fundamental Theorem of Affine Geom-
etry, which states that, given any three non-collinear points in the plane, there
is always an affine transformation that maps the points to another three given
non-collinear points. Since a triangle is uniquely determined by its three (non-
collinear) vertices, and since affine transformations map triangles to triangles,
we were able to use the Fundamental Theorem of Affine Geometry to show
that all triangles are affine-congruent.

In this section we prove an analogous Fundamental Theorem of Inversive
Geometry which states that given any three points in the extended complex
plane C there is always an inversive transformation (in fact a Mobius transfor-
mation) that maps them to another three given points in the extended complex
plane. Since a generalized circle is uniquely determined by any three of its
points, and since inversive transformations map generalized circles to general-
ized circles, we can show that all generalized circles are inversive-congruent.
That is, given any two generalized circles C; and C3 in the extended plane,
it is always possible to find an inversive transformation (in fact a Md&bius
transformation) that maps Cp onto C.

542 Mapping Three Points to Three Points

The proof of the Fundamental Theorem of Inverse Geometry is very similar to
the proof of the Fundamental Theorem of Affine Geometry which we gave in
Subsection 2.3.2. There we described how to construct an affine transformation
which maps one given set of three (non-collinear) points in R? onto another.
We did this by forming a composite of two affine transformations which map
the points via the auxiliary points (0, 0), (1, 0) and (0, 1).

A similar idea works for the Fundamental Theorem of Inversive Geometry.
In this geometry the space is C rather than R2, and we map via the auxiliary
points 0, 1 and oco.

So let us start by considering how to construct a Mdbius transformation that
maps three given points z1, z2, z3 in C to the points 0, 1, co, respectively.

5: Inversive Geometry

Here x + iy = z, as usual.
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First observe that if z;, z2, z3 belong to C, then any M&bius transformation

of the form
Z—21

Z—13

M(z) = K

maps z; to 0 and z3 to co. We can therefore obtain the required Mobius trans-
formation by choosing K so that M (z») = 1. The following example illustrates
how this is done. It also shows how the method can be modified to deal with
cases where one of z1, zo, 73 is 0o.

Example 1 For each set of three points given below, determine a Mdbius
transformation M that maps the points to 0, 1, co, respectively.

@ 5.-13  (0o0,i,2  (0i,00,3  (d)5200

Solution

(a) To ensure that M (%) = 0and M (3) = oo we let M have the form

1
i3
M@iz)=K—=,
z—3
for some complex number K. Since M (—1) = 1, we must have
—1 _%
—1-3’

1=K

so that K = % The required Mobius transformation is therefore

8z —4
M(z) = 39
(b) To ensure that M (oco0) = 0 and M (2) = oo we let M have the form
M(z) = L.
z—2
Since M (i) = 1, we must have
1=K ,
i—2
so that K =i — 2. It follows that
M@ =2
z—2

(c) To ensure that M (i) = 0 and M (3) = oo we let M have the form

z—1i

z—3

In this case there is no need to include a constant K because M (o0) is
already equal to 1.

M(z) =

311

Here K can be any
complex number.

This has the form

az+b

M =
@ cz+d

witha = K, b= —1K,
c=1landd = -3.

This has the form
az+b
M =
@ cz+d

witha =0,b=K,c =1
and d = —2. Since ¢ # 0,
it follows from the
definition of a Mobius
transformation that
M(c0) =a/c=0,as
required.

This has the form

b
M) = &5

witha =1,b = —i,

¢ =1andd = —3. Since
¢ # 0, we have

M(oo) =aj/c=1,as
required.
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(d) Here we require M(5) = 0 and M (c0) = 00, so M is an extended linear
function of the form

M(z) = K(z—=5).

Since M (2) = 1, we must have

1=KQ2-5),
so that K = —%. It follows that
M) =—%(z—9). 0

Guided by the above example we can summarize all the possible cases to
obtain the following general strategy.

Strategy To determine the Mdobius transformation M which maps three
given points z1, z2, z3 onto the points 0, 1, oo respectively:

1. choose the appropriate form of mapping from the following formulas
for M:

o forzy, 22,23 0,1,00 use M(z)= Kﬁiﬁi?

o foroo,z2,z3—> 0,1, 00 use M(z) = zfzs;

e forzy,00,z3+—— 0,1,00 use M(Z):%;

e forzy, zp,00— 0,1,00 use M(z) =K(z—z1);

2. find the complex number K for which M (z2) = 1.

Problem 1 For each set of three points given below, determine a
Mobius transformation M that maps the points to 0, 1, co, respectively.

@ —1,-3,0 (3,2,1 (oo, -3,2 (d) 3,200

We are now in a position to prove the main theorem of this section.

Theorem 1 The Fundamental Theorem of Inversive Geometry

Let z1, 22, z3 and w;, wy, w3 be two sets of three points in the extended
complex plane C. Then there is a unique Mobius transformation M which
maps z; to wy, z2 to wy, and z3 to w3.

Proof According to the above strategy there is a Mobius transformation M
which maps the points z1, z2, z3 to the points 0, 1, co, respectively. Similarly,
there is a Mobius transformation M, which maps the points wy, w», w3 to the
points 0, 1, oo, respectively.

5: Inversive Geometry

This has the form
__ azt+b
M) = g

witha = K, b = —5K,
c=0andd = 1. Since

¢ = 0, it follows from the
definition of a Mobius
transformation that

M (c0) = o0.
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-1
M, oM,

M.\. e

The composite M = M, U'o M is therefore the required Mobius transfor-
mation which maps z1, z2, z3 to the points wy, wy, w3, respectively.

To check uniqueness we first observe that the identity is the only Md&bius
transformation which maps each of the points 0, 1, co to themselves. Indeed, if

az+b
M@ = cz+d

is a Mobius transformation which maps oo to itself, then ¢ = 0. Also, if M
maps 0 to itself, then M(0) = b/d = 0, so b = 0. It follows that M(z) =
(a/d)z. But if M maps 1 to itself, then M (1) = a/d = 1, which implies that
a = d. Putting all this together we conclude that M is the identity M (z) = z,
as required.

Next suppose that M and M’ are two Mobius transformations which satisfy
the conditions of the theorem.

M and M’

N\ - N

Then the composites Mz o M o Mfl and Mo M’ o Mfl must both be Mobius
transformations which map each of the points 0, 1, oo to themselves. Since
this implies that both composites are equal to the identity, we can write

MyoMoM;'=MyoM oM.

If we now compose both sides of this equation with M, ! on the left and
with M| on the right, then we obtain M = M’, as required. |
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If we actually need to find the Mdbius transformation which maps one set
of three points onto another set of three points we simply follow the strategy
used to prove part (a) of the Fundamental Theorem.

Strategy To determine the Mdobius transformation M which maps the
points z1, z2, z3 to the points w1, wy, w3, respectively:

1. find the Mdbius transformation M which maps the points z1, z2, z3 to
the points 0, 1, co, respectively;

2. find the Mobius transformation M, which maps the points wy, wa, w3
to the points 0, 1, oo, respectively;

3. calculate M = Mz_l o M.

The following example illustrates how to implement this strategy.

Example 2 Find the Mobius transformation M which maps the points i, 0o, 3
to the points %, —1, 3, respectively.

Solution We follow the steps in the above strategy.

1. From part (c) of Example 1, we know that the Mobius transformation M
which maps the points i, 0o, 3 to the points 0, 1, oo, respectively, is given by

z—1
M = .
1(2) 3

2. Also, from part (a) of Example 1, we know that the Mobius transformation
M3 which maps the points %, —1, 3 to the points 0, 1, oo, respectively, is
given by

8z —4

3z-9°

3. Matrices associated with M| and M, are

1 —i 8 —4
(15) = G5

also, by Theorem 7 of Subsection 5.3.6, a matrix associated with the inverse

of M> is
-9 4
-3 8)°

Hence, a matrix associated with M = M, Lo My is given by

=9 A\ (1 =i\ _ (-5 —-12+49
-3 8)\1 =3) \ 5 —24+43i)

M>(z) =

5: Inversive Geometry
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The required Mobius transformation is therefore
S5z —1249i

Miz)= — "7 O
e YWY

Problem 2

(a) Find the Mobius transformation which maps the points —1, i, 1 to
the points —1, —3, 0, respectively.

(b) Find the Mobius transformation which maps the points 3, co, —2 to
the points 3, %, 1, respectively.

543 Circles through Four Points

We now explore an application of the Fundamental Theorem which enables us
to determine whether four given points z1, z2, 73 and z4 lie on some generalized
circle.

If there is a generalized circle that passes through zj, z2, z3 and z4, then
it must be the unique generalized circle C that passes through zj, z2 and z3.
We have to decide whether C also passes through z4. To do this, consider the
Mobius transformation M that maps z1, z2, z3 to 0, 1, oo, respectively. Under
M the image of C is the extended real axis, for this is the only generalized
circle that passes through 0, 1 and oco. If z4 lies on C, then its image under M
must lie on the real axis; whereas if z4 does not lie on C, then its image under
M cannot lie on the real axis.

Example 3 Determine whether the four points i, 1 + 4i, 3, 4 + 3i lie on a
generalized circle.

Solution First, we determine the Mdbius transformation M that maps i,
1+ 4i, 3t00, 1, oo, respectively. Following the strategy in the previous
subsection, we observe that this transformation must be of the form

z—1
z—3

M@ =K

for some complex number K. Since M (1 4 4i) = 1, we must have

L U+4)—i 1430
(L4 —3 T 2440
SO
—2+4i —24+4i)(1 —3i
_D2HA (244D0-3)
1+ 3i 10
Thus the transformation M is given by
z—i)(1+i
M(z) = G=-nd+i) ).

z—3
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As a check, you can verify
that M (i) = 1,

M (c0) = —1 and
M@3)=3.

You met this method of
simplifying a quotient by
multiplying both

numerator and

denominator by the
conjugate of the
denominator earlier, in
Subsection 5.2.1.
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It follows that

@+20d+i) _2+60 _,
143i 14 3i

Since this is real, it follows that i, 1 + 4i, 3, 4 + 3i do all lie on a generalized

circle. O

M4+ 3i) =

In this example we showed that the points i, 1 + 47, 3, 4 + 3i all lie on
a generalized circle; but suppose we want to show that the points lie on an
ordinary circle. To do this we need to check that the generalized circle that
passes through the points is not an extended line. If it were an extended line,
then it would pass through oo, and so M (co) would be real. Since M (c0) =
1 4 i is not real, it follows that the points do indeed lie on an ordinary circle.

Strategy To determine whether z1, z2, z3 and z4 lie on a circle:

1. find the Mobius transformation M which maps z1, z2, z3 to 0, 1, oo,

respectively;

2. the points z1, z2, 23, z4, lie on a generalized circle if and only if M (z4)
is real;

3. the generalized circle in Step 2 is a circle provided that M (co) is not
real.

Problem 3 Determine whether each of the following sets of four
points lies on a circle.

(a) 0, -4, =2i,—1—-3i (b) -1, —i,i,2—1i

544 Congruence of Generalized Circles

We end this section by stating an important consequence of the Fundamental
Theorem of Inversive Geometry.

Theorem 2 Let C; and C be generalized circles in the extended complex
plane. Then there is a Mobius transformation that maps C; onto Cj.

Proof Leta, b, ¢ be any three points on C; and let d, e, f be any three points
on C3. By the Fundamental Theorem of Inversive Geometry, there is a M&bius
transformation M that maps a, b, c to d, e, f, respectively.

7 = C,=M(C))

¢
a
e = M(b)
b

c d=M(a)

f=M(c)

5: Inversive Geometry

M (00) cannot be oo, as M
is one—one and
M(3) = oc.

If M (z4) and M (c0) are
both real, then z1, 27, z3,
z4 lie on a line.
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Since M maps generalized circles to generalized circles, it must map Cj to
a generalized circle through d, e and f. But a generalized circle is uniquely
determined by any three of its points, so C is the only generalized circle that
passes through d, e and f. It follows that M maps C; onto C». |

One of the remarkable consequences of Theorem 2 is that all generalized
circles are inversive-congruent. In particular, an ordinary circle is inversive-
congruent to any given (extended) line. Since lines are often easier to inves-
tigate than circles, we can sometimes simplify a problem that involves the
inversive properties of a figure by using an inversive transformation to map
one or more of the circles in a figure onto (extended) lines. You will see several
examples of this in the next section.

b.b  Coaxal Families of Circles

We now prove some lovely theorems about circles, where the beauty of the
final results is matched by the beauty of the proofs themselves. Inversion is
our key tool.

55.1  Apollonian Circles Theorem

We start with the proof of the Apollonian Circles Theorem, which we stated at
the beginning of the chapter.

Theorem 1  Apollonian Circles Theorem

Let A and B be two distinct points in the plane, and let k be a positive real
number other than 1. Then the locus of points P that satisfy PA : PB =k : 1
is a circle whose centre lies on the line through A and B.

We give two proofs of this result. The first uses methods from Euclidean
geometry, and has the advantage of providing us with equations for the circles
in terms of k. The second proof uses the methods of inversive geometry, and
has the advantage of providing us with a deeper insight into the geometry of
the circles.

First Proof

To keep the algebra simple, we introduce x- and y-axes into the plane such that
A and B have coordinates (—a, 0) and (a, 0), respectively, where a > 0.

Now fix a value of k > 0, k # 1, and let C be the locus of points P that
satisfy PA : PB = k : 1. Then a point P(x,y) belongs to C if and only if
PA = k - PB, and since k > 0 this is equivalent to the equation

PA? = k. PB%.
Using the Euclidean formula for distance between points, we see that this last

equation holds if and only if
(x +a)’ + 37 = k(0 =) +y7).
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Sadly this is not always
the case in Mathematics!

Recall that if £k = 1, then
P must lie on the
perpendicular bisector of

AB.

The second proof is given

later.

A(-a, 0)
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Multiplying out the brackets and collecting terms in x2, y? and x, we see that
this is equivalent to
X2(1 =k +y2(1 = k) +2ax (1 + k) +a*(1 — k%) = 0.

Since k # 1, this holds if and only if

1+ k2
2 2 2 _
X4y +2a<1_k2>x+a =0.

It follows that the locus C is a circle with centre ¢ and radius » where )
Here we are using the

2

c=|—-a 1+k 0 formulas for centre and

1-k2)° radius given in
and Theorem 2,

2 Subsection 1.1.2.

,(1+ k2 5 2ak

r=,la —a- = ———.
1 —k2 |1 — k2|

In particular, the centre lies on the x-axis, which by our choice of axes is the  Notice that the centre of

line through A and B. W thecircle is not at either of
the points A or B.

If k£ = 1, then the locus of points that satisfy PA = k - PB is the line ¢ that
bisects AB at right angles. If we adopt the convention that this locus includes
the point co, then we can think of this locus as the extended line £ U {oo}. With
this convention, every positive value of k gives rise to a generalized circle
known as a circle of Apollonius. The family of all such circles is known as the A ‘circle of Apollonius’ is
Apollonian family of circles defined by the points A and B. often referred to as an
As k increases through the interval (0, 00), the corresponding circles range ~ /APollonian circle’.
through the Apollonian family.
When O < k£ < 1, we have that PA < PB, and so P is closer to A than it is
to B. The circles that correspond to these values of k therefore lie on the same
side of ¢ as does A. For values of k close to 0, PA = k - PB is small, and so
the corresponding circles are close to A. As k tends to 1, the circles ‘grow’ and

become ever closer to £.
When k = 1, the corresponding ‘circle’ is the extended line £ U {oco}.

When k& > 1, we have that PA > PB, so that P is closer to B than it is to A.
The circles that correspond to these values of k therefore lie on the same side
of £ as does B. As k increases from 1, PB = (1/k) - PA becomes smaller, and
the corresponding circles ‘shrink’ and become ever closer to B.

In light of the above discussion, it is sometimes convenient to refer to the
points A and B as point circles corresponding to the cases k = 0 and ‘k = o0’
respectively. With this convention, every point of the plane belongs to a unique

‘circle’ associated with the Apollonian family.

P(x, y)

w X

Example1 For the Apollonian family defined by the point circles (—1, 0) and
(1, 0), determine the equation of the circle in the family that passes through the
point (2, 1).

1,0)




Coaxal Families of Circles

Solution Let P be a point (x, y) in the plane whose distance from the point
(=1, 0) is k times its distance from the point (1, 0). Then, if we use the
Euclidean formula for distance between points in the plane, we obtain

x4+ D2+ y>=k>((x = D> +y?).

For each value of k this yields an equation for the corresponding Apollonian
circle. The point (2, 1) lies on the Apollonian circle for which

C+D*+12=k2(2-1)>+1%,

thatis, k = V5.
The equation of the Apollonian circle through the point (2, 1) is therefore

(x+ D +y? =5((c = D> + 57,
which simplifies to

x2+y2—3x+l:O. O

Problem 1 For the Apollonian family defined by the point circles
(0, —1) and (0, 2), determine the equation of the circle in the family
that passes through the point (1, 1).

Problem 2 The circles C; and C; in an Apollonian family of cir-
cles have the segments [—18, —2] and [3, 12], respectively, as diameter.
Determine the point circles in the family, and hence the equation of the
Apollonian circle in the family that passes through the point (6, 9).

We now give a second proof of the Apollonian Circles Theorem, using
inversive geometry.

Theorem 1  Apollonian Circles Theorem

Let A and B be two given points in the plane, and let k be a positive real
number other than 1. Then the locus of points P that satisfy PA : PB =k : 1
is a circle whose centre lies on the line through A and B.

Second Proof

Let C be the locus of points P that satisfy PA = k-PB, and let # be the inversion
in the circle with centre A and radius 1. We shall show that C’ = ¢(C) is a
circle, and hence that C = ¢! (C) is a generalized circle.

Let P be an arbitrary point in the extended plane, and let ¢(B)= B/,
t(P) = P’. Then by the definition of inversion,

AB-AB'=1 and AP-AP =1, (1)
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simply for definiteness;
any positive radius would
serve equally well.
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so that
AB AP
AP AB"
This shows that the sides AB and AP of AAPB are proportional to the sides AP’

and AB’ of AAB' P’. Since ZBAP is the same as ZP’AB’, it follows that AAPB
is similar to AAB’ P’. Hence

B'P’ _ AP’
PB  AB’
But, from equation (1), AP’ = 1/AP, so P is related to P’ by the equation
PB
P = . 2)
AB - AP
Now if P lies on the locus C, then AP (= PA) = k - PB, so that
B'P' = ;
k-AB’

Thus P’ lies on a circle C’ of radius 1/(k - AB) and with centre B’.
Conversely, if P’ lies on C’, then B'P’ = 1/(k - AB), so from equation (2),
1 PB
k-AB ~ AB-AP
Thus AP = k - PB, and so P lies on the locus C.
It follows that the inversion  maps the locus C onto the circle C’. But
t~! = t maps generalized circles to generalized circles, so C = ¢t~ (C’) is

a generalized circle. |

This proof sets up a one—one correspondence between the family of Apol-
lonian circles and a family of concentric circles. Each Apollonian circle In particular, the extended
corresponds to a value of k, and this in turn corresponds to a circle of radius line in the Apollonian

1/(k - AB) with centre B’ = 1(B). family corresponds to
k =1, which corresponds

to the circle of radius
! I/AB = AB’, with centre
B’. As you would expect,

this circle passes through
the centre A of the
inversion f.

The importance of this correspondence is that it enables us to characterize
Apollonian families of circles in terms of inversive transformations. Such a
characterization is ideal for tackling problems in inversive geometry so we
state it in the form of a theorem.

Theorem 2 Let A and B be distinct points in the plane, and let ¢ be the
inversion in the circle with centre A and radius 1. Then the Apollonian
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family of circles defined by the point circles A and B is mapped by ¢ to
the family of all concentric circles with centre #(B); and the family of all
concentric circles with centre 7(B) is mapped by 7 to the Apollonian family
of circles defined by the point circles A and B.

A remarkable consequence of this theorem is that in inversive geometry
all Apollonian and concentric families of circles are congruent to each other.
Indeed the theorem shows that every Apollonian family of circles is congruent
to a family of concentric circles, so it is sufficient to show that all families of
concentric circles are congruent to each other. This is easily achieved by noting
that any family of concentric circles can be mapped onto any other family of
concentric circles by a translation that makes their centres coincide.

55.2 Families of Circles

Any two (distinct) generalized circles in the extended plane are related in
precisely one of the following ways:

1. they may not intersect;
2. they may intersect in precisely one point;
3. they may intersect in fwo distinct points.

Case 1 Case 2 Case 3

In the previous subsection you met Apollonian families of circles, in which
no two circles intersect; in the following subsection we will show that any two
non-intersecting circles determine an Apollonian family of circles. We now
consider the two other families, namely families of generalized circles that
intersect at precisely one point and families of generalized circles that intersect
at precisely two points.

PYXR

Apollonian circles Circles through one point Circles through two points

Each of these three families contains precisely one extended line known as
the radical axis of the family. The centres of the circles in each family lie on
a line, or axis, that is perpendicular to the radical axis. Since all the circles in
each family are symmetrical about the axis through their centres, the families
are known as coaxal families.
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For ¢ is self-inverse.

Recall that a translation is
an inversive
transformation provided
we adopt the convention
that co maps to co.
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Definition A coaxal family of circles in the plane is a family of (general-
ized) circles of one of the following types:

1. an Apollonian family, with particular point circles;
2. a family that intersect at one particular point;
3. afamily that intersect at two particular points.

The extended line in each family is called the radical axis of the family.

Given the Apollonian family of circles .% defined by point circles A and B,
there is a corresponding coaxal family of circles ¢ that pass through A and B.
Conversely, given a coaxal family of circles ¢ that pass through distinct points
A and B, there is a corresponding Apollonian family of circles .% defined by
the point circles A and B.

The following theorem describes a remarkable relationship between the two
families of circles, .% and ¥.

Theorem 3  Coaxal Circles Theorem

Let A and B be distinct points in the plane. Let .% be the Apollonian family

defined by the point circles A and B, and let ¢ be the family of all gener-

alized circles through A and B. Then every member of .% is orthogonal to Two circles are

every member of ¢. orthogonal if they meet at
right angles.

Proof Let ¢ be the inversion in the unit circle with centre A. By Theorem 2,
the Apollonian family .% is mapped by ¢ to the family of concentric circles
with centre ¢(B).

{C)

Now let C be an arbitrary member of ¢. Since C is a generalized circle that
passes through A and B, it follows that #(C) is a generalized circle that passes
through 7(A) = oo and 7(B). In other words, #(C) is an extended line through
t(B). Clearly, this line ¢#(C) intersects each of the circles with centre #(B) at
right angles. Since inversion preserves the magnitude of angles, it follows that
C meets each of the Apollonian circles in .7 at right angles. |

For an Apollonian family of circles defined by point circles A and B, the
Coaxal Circles Theorem states that every generalized circle through A and B
meets each of the Apollonian circles at right angles. The next theorem enables
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us to use this fact to deduce that A and B are inverse points with respect to
each of the Apollonian circles.

Theorem4 Two points A and B in the extended complex plane are inverse
points with respect to a generalized circle C if and only if every generalized
circle through A and B meets C at right angles.

Proof We first show that A and B are inverse points if every generalized
circle through A and B meets C at right angles.

Let C; be any generalized circle through A and B that meets C at right
angles, at points R and S. Now invert the figure C; in the generalized circle C.
Since R and S remain fixed, C; is mapped to a generalized circle that meets
C at right angles at R and S. It follows that C; is mapped to itself; for the fact
that the image passes through R and S means that it must be a circle, and the
radii of this circle through R and S must be along the tangents to C at R and S.

In fact, by a similar argument, every generalized circle through A and B that
meets C at right angles maps to itself. The only way this can happen is if A
inverts to B, and vice versa. Hence A and B are inverse points.

Next we show that if A and B are inverse points, then every generalized
circle through A and B meets C at right angles.

Let A and B be inverse points, and let C| be a generalized circle through
A and B that meets C at R. Under inversion in C, the points A and B swap
over and R remains fixed, so C; maps to itself. It follows that both the angles
that C; makes with the circle C must be equal. These angles must therefore be
right angles, which is what we want to prove. |

Theorem 4 has two important corollaries. The first follows directly from the
Coaxal Circles Theorem.

Corollary 1 If C is an Apollonian circle defined by the point circles A
and B, then A and B are inverse points with respect to C.

Proof Let C be an Apollonian circle with respect to the point circles A and
B. Then by the Coaxal Circles Theorem, every generalized circle through A
and B meets C at right angles. By Theorem 4, A and B are inverse points with
respect to C. |

The second corollary asserts that inverse points are preserved by inversive
transformations.

Corollary 2 Let A and B be inverse points with respect to a generalized
circle C, and let ¢ be an inversive transformation. Then 7(A) and 7(B) are
inverse points with respect to the generalized circle ¢(C).
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Proof

c 1(C)

t"(Cl) t(B)

Let C; be an arbitrary generalized circle through 7(A) and 7(B). Then =y
is a generalized circle that passes through A and B. By Theorem 4, 1~/ (C})
meets C at right angles. But ¢ preserves the magnitude of angles, so C| meets
t(C) at right angles. Since C is an arbitrary generalized circle through 7(A)
and 7(B), it follows from Theorem 4 that #(A) and #(B) are inverse points with
respect to ¢(C). |

An immediate consequence of Corollary 2 is that if .% is the family of all
generalized circles that have two given points A and B as inverse points, then
under an inversive transformation ¢ the family .% maps onto the family of all
generalized circles that have #(A) and #(B) as inverse points.

At first sight this observation appears to be little more than a restatement
of Corollary 2; however the restatement has a particular significance, as the
following theorem shows.

Theorem 5 Let.% be the family of all generalized circles that have A and
B as inverse points. Then .7 is either a concentric family of circles with
centres A or B, or the Apollonian family of circles with point circles A
and B.

Proof First, suppose that either A or B is the point co; to be definite, assume
A = oo. Then each circle in .# has oo and B as inverse points. But this
can happen only if B is the centre of each circle in .%; in other words .7 is
the family of concentric circles with centre B. A similar argument applies if
B = 0.

Next suppose that neither A nor B is the point 0o, and let ¢ be the inversion
in the circle of unit radius with centre A. By Theorem 2, t maps the family
Z to the family of all generalized circles with inverse points at 7(A) = oo
and #(B), namely the family of concentric circles with centre 7(B). By The-
orem 5, .% is the Apollonian family of circles defined by the point circles
A and B. ]

5: Inversive Geometry

Roughly speaking, you
can think of the family of
concentric circles with
centre A as an Apollonian
family of circles defined
by point circles A and co.
Then an Apollonian
family of circles defined
by the point circles A and
B maps to an Apollonian
family of circles defined
by the point circles 7(A)
and t(B).
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In light of the remarks that precede this theorem, it follows that under an
inversive transformation ¢ an Apollonian family of circles defined by point
circles A and B

EITHER maps to an Apollonian family of circles defined by the point circles
t(A) and t(B),
OR maps to a concentric family of circles with centre 7(A) or ¢(B).

Similarly a concentric family of circles with centre A either maps to the Apol-
lonian family of circles defined by the point circles 7(A) and #(c0), or it maps
to a concentric family of circles with centre 7(A) or ¢(00).
So far, we have used inversive geometry to prove results about Apollonian
families of circles, but similar methods can be used to prove results about
other plane figures. The technique is to use an inversive transformation (often
an inversion) to map one or more circles in the figure to extended straight lines.
The additional symmetry that results from this transformation is then used to
establish the required result.

For future reference, we also note here a fact that we met in the proof of
Theorem 4 above.

Corollary 3 Let C and C; be circles that meet at right angles at two points
R and S. Then the centre of C is the point 7" of intersection of the tangents
to C at R and S; and C; maps to itself under inversion in C.

Example 2 Let Ci, C; and C3 be circles in the plane such that C; and C3
touch at a point P, C; and C3 touch at a point Q, and C; and C» touch at a
point R. Let C be the circle that passes through P, Q and R. Prove that C cuts
C1, Cy and C3 at right angles.

Solution Let t be an inversion in a circle with centre R. Then 7(C;) and
t(C,) are straight lines. Moreover, since C; and C, do not meet at any point
other than P, it follows that #(C;) and #(C;) cannot meet in C and must
therefore be parallel.

Now (3 is tangential to C1 and C», and does not pass through R, so #(C3)
must be a circle that touches #(C1) and #(C>) tangentially at 7(Q) and 7(P),
respectively. Next observe that C passes through R, so #(C) is the extended line
through #(Q) and 7 (P). Since the transformed figure has reflectional symmetry
about #(C), it follows that #(C) cuts #(C1), t(C3) and #(C3) at right angles at
t(P) and t(Q). But ¢ preserves angles, so C cuts C1, C; and Cs at right angles
at P and Q.

A similar argument with 7 replaced by inversion in a circle with centre P (or
Q) shows that C cuts C; and C, at right angles at R. O

G

t(C,)
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55.3 Two Circles Determine a Coaxal Family

It is clear that if we are given two circles in a coaxal family of mutually
tangential circles, this determines the whole family.

PP

Similarly if we are given two circles in a coaxal family of circles through
two fixed points, this determines the whole family. This raises the question as
to whether two circles in an Apollonian family are sufficient to determine the
whole family. We now prove that this is indeed the case. The crucial tool that
we need is the following result.

Theorem 6 The Concentricity Theorem

Let C; and C; be any two non-intersecting circles in the plane. Then there
is a inversive transformation that maps C; and C; onto a pair of concentric
circles.

Proof If the circles are concentric then there is nothing to prove, so we may
assume they are not concentric.
Step 1 Pick a point O on the circle Cq, and invert both circles in the circle of

unit radius with centre O. Under this inversion C| maps to a line, Ci, and C;
maps to a circle, CJ.

Step 1 G’
—_—
? Q

Step 2 Pick a point T on C} that does not lie on the perpendicular from the
centre of C} to the line C}, and let the tangent to C} at T intersect C| at the
point U, say. Draw the circle C} with centre U and radius UT. This circle is
perpendicular to C} at T, because a tangent to a circle is perpendicular to the
radius at the point of contact. The circle C} is perpendicular to the line C}
because its centre lies on the line C7.

5: Inversive Geometry
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c’

(o

Step 2 Step 3

Step 3 Repeat the construct in Step 2 starting with another position for the
point 7', to obtain a circle Cj perpendicular to both Cj and C} at the respective
points 7'. Let C; and C) meet at Q and R, say.

Step 4 Invert the figure again, this time in the unit circle with centre Q. Then
the line C| maps to a circle CY, and the circle C} maps to a circle CJ; the
circles C5 and C} pass through Q, so they invert to straight lines at right angles
to C{ and C}. These lines are therefore diameters of the circles C{ and C7,
and so the point where they meet (the image R” of R) must be the centre of
both circles.

Step 4
—_—

Step 5 Composing the inversion in Step 1 with the inversion in Step 4, we
obtain an inversive transformation that maps C| and C> onto the pair of con-
centric circles C{ and C}. [ ]

We can now prove the following beautiful result.

Theorem 7 Two Apollonian Circles Theorem
Let C; and C, be two non-concentric circles that do not intersect. Then
there is a unique Apollonian family of circles that contains C; and C».

Proof By the Concentricity Theorem there is an inversive transformation ¢
that maps Cy and C» onto a pair of concentric circles #(Cy) and #(C>). Let O
be the common centre of these circles, and let ¢ be the family of concentric
circles with centre O. Under the inversive transformation #~! the family ¥
maps to the family of all generalized circles that have t_l( 0) and t_l(oo) as
inverse points; we denote this family by .%. Now .%# cannot be a concentric
family of circles, since it contains C1 and C»; so, by Theorem 5, it must be an
Apollonian family of circles.
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significant.

Theorem 6 above
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To complete the proof we must show that .% is the only Apollonian family of
circles that contains C1 and C». To do this suppose that .%’ is any Apollonian
family of circles that contains C; and C,. Then .%’ is mapped by ¢ either to
an Apollonian family of circles, or to a concentric family of circles. In fact
the image of .%’ under ¢ contains the concentric circles #(Cy) and 1(C2) and
must therefore be the family ¢ of concentric circles with centre O. It follows
that .% and .%’ are the same family of circles, for they are both mapped to
9 by t. |

5.5.4 Some Applications of Inversion

As we mentioned earlier, inversion can often be used to prove results about
plane figures, using a suitable inversion to map one or more circles in the
figures to extended lines — the additional symmetry then being used to establish
the desired result.

Our first application of inversion to prove a beautiful result is known as
Steiner’s Porism. A porism is a mathematical construction problem that has
a surprising answer: either the construction cannot be carried out or it has
infinitely many solutions.

Theorem 8  Steiner’s Porism
Let C; and C, be non-intersecting circles, with C; inside C,. Then:

EITHER it is impossible to fit a chain of circles between C; and C,, with
each circle touching C; and C> and two other circles in the chain;

OR it is possible to construct such a chain, and the first circle in the
chain can be placed in any convenient position.

Proof There are two possibilities.

EITHER It is impossible to fit a chain between Cy and C; with the properties
described, in which case the porism is established.

OR There is at least one chain F that fits between C; and C;. To estab-
lish the porism in this case we must show that a chain also exists for
each choice of a first circle C between C; and C,.

By the Concentricity Theorem there is an inversive transformation ¢ that maps
C1 and C; onto concentric circles C| and C5. Under ¢ the chain F maps onto
a chain of circles F’ between C| and C}, and C maps onto a circle C" which
touches C i and Cé. Since Ci and Cé have a common centre O, we can rotate
the chain F’ about O until its first circle is superimposed on C’. If we denote
the rotated chain by G’, then the inversive transformation =/ maps G’ back
to a chain G between C; and C,. Moreover, the first circle of G is C as
required.
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Jakob Steiner
(1796-1863) was a
19th-century Swiss
geometer.

chain of circles

Recall that ! must be an
inversive transformation,
since f is.
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chain of circles F' .

chain of circles F'

Another famous porism is Poncelet’s Porism: If C; and C; are any two plane
conics for which (for any given n > 2)itis possible to find one n-sided polygon
which is simultaneously inscribed in C and circumscribed around C, then it
is possible to find infinitely many of them.

Next, we prove a classical result known as Ptolemy’s Theorem — but using
inversion rather than using Ptolemy’s Pythagorean geometry methods! A key
tool in our proof is the following useful result.

Lemma 1 Let a and b be points in C — {O}. Then, under inversion in a

circle C with centre O and radius r the distance between the images of a
.2

and b is |a|.|b||a b|.

Proof Inversion in C may be represented in the complex plane by the
transformation

~l| o

t(z) = —, wherez e C—{0}.

It follows from this formula that

2 2
ta)—th)=—— =
(@) —t(D) 773
2 f—
=——=(0b-a),
a
from which we may deduce that
)
lt(a) —t (D) = b —al,
lal - D]
which is equivalent to the desired result. |

The formula for distances in Lemma 1 plays a crucial role in our proof of
Ptolemy’s Theorem that the sum of the product of the lengths of opposite sides
of a cyclic quadrilateral equals the product of the lengths of the diagonals.
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We omit a proof, as it is
beyond the scope of this
book.

Claudius Ptolemaus

(c. 85-165 AD) was a
geometer, astronomer and
geographer in Alexandria,

Egypt.

o 1(a)

\It(a)—z(b) |

t(b)

This is a special case of a
general formula for
inversion in C that you
met in Theorem 3,
Subsection 5.2.1.
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Theorem 9 Ptolemy’s Theorem
Let A, B, C, D be the vertices (in order round a circle) of a quadrilateral
ABCD inscribed in a circle. Then

AD-BC+AB-CD =AC - BD.

Proof Let the transformation ¢ be inversion of the figure ABCD in the circle
% with centre A and radius 1. This inversion maps A to oo, the circle % to an
extended line (which we will denote by ¢), and the points B, C, D on % to
points B/, C’, D' on .

Since B, C, D are in order on %, it follows that B/, C’, D’ are in order on
£. Consequently,

B'C'+C'D =B'D. 3)

Since ¢ is self-inverse, the images of B’, C’, D’ under inversion in & are
B,C, D. Hence, if we apply the result of Lemma 1 in turn to the distances
B'C’, C'D’, B’ D' under the inversion ¢, it follows from equation (3) that

BC n CD  BD
AB-AC ~ AC-AD AB-AD’
Multiplying both sides of this equation by the product AB - AC - AD, we obtain
the desired result

AD -BC+AB-CD =AC-BD. ]
Our final application of inversion is particularly attractive visually.

Theorem 10 Shoemaker’s Knife

Let D be a region in the upper half-plane, whose boundary consists of
three semicircles S1, S> and S3 that meet at three points A, B and C on the
x-axis, as shown. Then it is possible to fit a chain of circles into D between
S1 and S, with the first circle touching Sj, S and S3, and with each suc-
cessive circle touching S7, S> and the previous and following circles in the
chain.

Proof Let r denote inversion in the circle € with centre A and radius 1.

Under #, the positive x-axis maps to itself, and points in the upper half-plane
(the set of points above the x-axis) map to points in the upper half-plane.

The circle of which S3 is a portion is mapped by ¢ to another circle, which
crosses the x-axis at right angles, at points B and C’ say. The image of S5 is
therefore another semicircle in the upper half-plane, with endpoints B’ and C’.

Under ¢, the origin A maps to 0o, so the semicircles S; and S» map to
portions of (generalized) circles in the upper half-plane that join oo to B’ and
C’, respectively. These portions do not intersect in the (ordinary) plane C, and
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Exercises

they meet the x-axis at right angles. Hence the images of S and S, are two
vertical half-lines with endpoints B” and C’.

Now, it is obviously possible to fit a chain of circles into the vertical strip
bounded by the semicircle 7(S3) and the vertical lines 7(S1) and 7(S3), with the
first circle touching #(S53) and with each successive circle touching #(S7), #(S>)
and the previous and following circles in the chain.

We can transform this new configuration back into the original configuration
by applying the inverse transformation r~!. Since #~! preserves circles and
their tangencies, the required result now follows. |

Problem 3 Prove that the height above the x-axis of the centre of the

n-th circle, C, say, in the chain of circles constructed in Theorem 10 is

n times the diameter of that circle.

Hint: Invert the figure in a circle with centre A that intersects C,, at
right angles.

Problem 4 1In the figure for Theorem 10, let A, B and C have coor-
dinates (0,0), (b,0) and (c, 0), respectively. Show that the centres of the
circles in the chain constructed in Theorem 10 all lie on an ellipse with
foci F(4b,0) and F’(1c,0), and major axis [(0,0), (3 (b + ¢),0)].
Hint:  Use the Sum of Focal Distances of the Ellipse theorem.

5.6 Exercises

Section 5.1

1. Determine the image under inversion in the unit circle € of each of the
following points.

@ G~ OELD ©O.0 @(3-%)

2. Determine the image under inversion in the unit circle € of the following
circles C (with the origin removed if it belongs to C):

(a) the circle with centre (3, —4) and radius 5;
(b) the circle with centre (1, 2) and radius 3.

3. Determine the image under inversion in the unit circle € of the following
lines ¢ (with the origin removed if it belongs to £):
(a) theline y + 3x = 5;

(b) the line y 4+ 2x = 0.

4. Three circles C1, C, C3 pass through the origin O, and meet at three other
distinct points D, E and F, as shown. The following sets of points are
collinear: A, O and D; B, O and E; C, O and F. OA and OB are diameters
of C1 and C», respectively. Prove that OC is a diameter of C3.

Hint: Invert the figure in a unit circle with centre O, and then use the fact
that the altitudes of a triangle are concurrent.
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5. By means of a specific example, show that the centre of the image circle
t(Cy) of a circle C, under inversion ¢ in another circle C; may not be the
image of the centre of C, under ¢.

6. Letthe origin O, P and Q be distinct points; and let P" and Q’, respectively,
be the images of P and Q under inversion in the circle with centre O and
radius r. Prove that

r2

oY

PQ = mPQ.

(For simplicity, you may assume that O, Q, P are points inside the circle
of inversion and occur in this order along the radius outwards from O. The
result holds in all other cases too, by a similar argument.)

7. Let P and Q be distinct points in C — {0} with the origin O, P and
Q not being collinear; and let P’ and Q’, respectively, be their images
under inversion in the circle with centre O and radius r. Let ON and ON’
be the perpendiculars from O to PQ and P’Q’ (extended, if necessary),
respectively.

(a) Prove that

/ r2
PO =Gp 00"
(b) Prove that
ON _ ON
PO~ PO

8. Let AB be a diameter of a circle C, and let chords AD and BE (extended,
if necessary) of C intersect at a point F. Prove that the circle DEF is
orthogonal to the circle C.

Section 5.2
1. Let 7 be the transformation defined by

1) =31 ++3)z+2i (z€O).

(a) Show that ¢ represents an isometry.
(b) Interpret ¢ as the composite of a rotation and a translation.
(c) Interpret ¢ as a composite of reflections.
2. Determine the image under inversion in the unit circle € of each of the
following points.
(a) =3+4i (b)5—12i
3. Let C be the circle of radius 2 with centre 1 + i.
(a) Write down the inversion in C of the extended complex plane, as a
transformation of C.
(b) Determine the image of i under the inversion in C.

5: Inversive Geometry
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4. Let t be the extended linear function defined by

—5iz+ 2+ 6i), ifzeC,
1(z) =

00, if z = oo.

Express t as a composite of inversions of the extended complex plane.

5. Prove that two points z and z* in the complex plane correspond to

two diametrically-opposite points on the Riemann sphere if and only if
z-(z%) = —1.

Section 5.3

1.

Z
. Decide which, if any, of the following matrices

Which of the following formulas define a Mobius transformation? For each
formula that does define a Mobius transformation, state the image of oo
under M.

@ M@) =28 M@ =2+ (©Me =22

1 —i 1 —i i
= () =) ()

are associated with each of the following M&bius transformations.

@ M) =EL 0 M) =5 (0 Ma(e) = =H

. Determine a formula for each of the following Md&bius transformations,

where M; and M, are the M&bius transformations defined in Exercise 2.
(@) MioMi(z) (b)MjoMyz) (c)MaoM;'(2)

State which of the following transformations of C onto itself are inversive
transformations, giving a brief reason in each case.
@ 1) =373 bt =5 (1t =5

. Let ¢ be the inversive transformation defined by

@) =2

Z—1

Determine the image of each of the following generalized circles under ¢:
(a) the extended line £ U {oo}, where ¢ is the line with equation y = x;
(b) the unit circle %'.

Section 5.4

1.

For each set of three points below, determine the Mdobius transformation
that maps the three points to 0, 1, oo, respectively.

(a) i,—i,00 (b)oo,1,i (c)2i,00,3 (d)1,2,3

Using the results of Exercise 1, determine the Mobius transformations that
map:

(a1,2,3 to 2i,00,3; (b)oo,1,i to 1i,—i,00;

(c)2i,00,3 to oo, 1,i; di,—i,o0 to 1,2, 3.

. Determine whether each of the following sets of points are collinear:

@ 3+i,2i,—6+6i (b)1+2i,4—5i,10—20i
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4. Determine whether each of the following sets of points lies on a circle:
(@ i,-3,1+2i,2+4 (b)1—-2i,—4+i,44+i,1+6i

Section 5.5

1. An Apollonian family of circles .% includes (6,0) as a point circle and also
the circle C with equation x> 4+ y*> = 4. Determine the other point circle in
the family.

2. The circles C1 and C» in an Apollonian family of circles have the segments
[0,8] and [1, %], respectively, of the x-axis as diameters.

(a) Determine the point circles of the family.
(b) Hence determine the equation of the Apollonian circle in the family
that passes through the point (1,1).

3. Determine the images under inversion in a unit circle with centre A of the
following families .7 of coaxal circles.

(a) Z is the family of all generalized circles tangential to the y-axis at the
origin, and A = (0,0).

(b) # is the family of all generalized circles through the points
A =(-1,0)and B = (1,0).

(c) & is the Apollonian family of all generalized circles with point circles
A =(-1,0)and B = (1,0).

4. Let C; be the (extended) y-axis in the plane, and C, the circle with centre
(2, 0) and radius 1. Find a sequence of inversions whose composite inversive
transformation maps C and C; onto concentric circles.

5. Let Cy and C3 be circles that touch at a point P, apart from which C»
lies inside Cj. Prove that it is possible to fit a chain of circles between
C1 and C3, with each circle touching Cy and C; and two other circles in
the chain, and with the first circle in the chain placed in any convenient
position.

6. Prove that, if the Mdbius transformation M maps %, the unit circle with
centre the origin, to itself, then M is necessarily of the form

7 —
M(z) = K= R
oz — 1

where |K| =1 and |a|# 1.

7. Let .% be an Apollonian family of circles with point circles A and B and
radical axis £. Prove that, for any given point P on the radical axis, all the
tangents from P to circles in .# are of equal length.

8. Let D be the region in the upper half-plane whose boundary consists of

S
three semicircles S1, S> and S3 with diameter the segments [—1, 0], [0, 1] D :
and [—1, 1], respectively, of the x-axis, as shown. 5

(a) Prove that it is possible to fit a chain of circles into D between S; and T\ 0 /T
S>, with the first circle touching S, S> and S3, and with each successive w =N “
circle touching S, S> and the previous and following circles in the AR Y

chain.
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2n
4n2—1

(b) Prove that the n' circle in the chain has its centre at a height

above the x-axis, and has radius 4]12%1.

9. Let Cy, C3, C3 be three circles, external to each other, where the pairs C;

and Cp, C7 and C3, and C3 and C7 each touch at a point. Prove that there
are exactly two circles that touch all of Cy, C», C3.
These circles are sometimes called kissing circles or Soddy circles, and
were discovered by René Descartes (1643), then rediscovered by Jakob
Steiner (1826) and Frederick Soddy (1936). Soddy published his discov-
ery as a poem titled The Kiss Precise, in the scientific journal Nature; it
starts:

For pairs of lips to kiss maybe

Involves no trigonometry. Frederick Soddy

“Tis not so when four circles kiss (1877-1956) won the
Each one the other three. 1921 Nobel Prize in

To bring this off the four must be chemistry for research

As three in one or one in three. into radioactive decay and
If one in three, beyond a doubt the theory of isotopes.

Each gets three kisses from without.
If three in one, then is that one
Thrice kissed internally.

Summary of Chapter 5

Section 5.1: Inversion

1. Under reflection in a line ¢ in the plane, a point A is mapped to an
image point A’ that lies an equal distance from ¢, but on the opposite side
of £.

2. Let C be a circle in the plane, with centre O and radius r, and let A be any
point other than O. If A’ is the point on the line OA that lies on the same
side of O as A and satisfies the equation OA - OA’ = r2, then we call A’ the
inverse of A with respect to (or ‘in’) the circle C. The point O is called
the centre of inversion, and C the circle of inversion. The transformation
t defined by 1(A) = A’ (A € R2 — {O}) is known as inversion in C.

There is no point to which O is mapped by the inversion, and no point
that is mapped to O by the inversion.

Inversion in a circle is a generalization of reflection in a line.

We often use the term inversion to mean EITHER reflection in a line OR
inversion in a circle.

3. If A is a point outside a circle C with centre O, AB and AC are the two
tangents from A to C, and A’ is the point of intersection of OA and BC,
then A and A’ are inverse points with respect to C.

4. Inversion in a circle C maps points outside C to points inside C, and vice-
versa; points on C map to themselves.
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10.

Inversion in a circle is a one-one transformation of the plane minus the
centre of inversion onto itself.

Inversion is a self-inverse transformation.
Inversion is not a Euclidean transformation; for example, it does not
preserve lengths.

Inversion is not an affine transformation; for example, it does not
preserve straight lines.
Inversion in the unit circle % is the function  : (x,y) > (}ﬁyz, )ﬁ),

where (x, y) € R?2 — {0}.
Strategy To determine an equation for the image of a curve under
inversion in the unit circle
1. write down an equation that relates the x- and y-coordinates of the
points on the curve;
2. replace x by x/(x?> + y?) and y by y/(x> 4+ y?), and simplify the
resulting equation.
If the curve passes through the origin we must first remove the origin from
the curve. If we remove a point A from a curve, the curve is said to be
punctured at A.

. Images of lines under inversion Under inversion in a circle with cen-

tre O:
(a) aline that does not pass through O maps onto a circle punctured at O;
(b) aline punctured at O maps onto itself.
Images of circles under inversion Under inversion in a circle with
centre O:
(a) a circle that does not pass through O maps onto a circle;
(b) acircle punctured at O maps onto a line that does not pass through O.
Even if inversion maps one circle onto another, it may not map centre
to centre.

. Let ¢1 and ¢y be two curves that intersect at the point A, and let the tan-

gents to the curves at A be £1 and £,, respectively. Then the anti-clockwise
angle from ¢ to ¢; at A is the anti-clockwise angle from ¢; to £>, and the
clockwise angle from c; to ¢ at A is the clockwise angle from £ to £;.
Symmetry Lemma Let ¢ be a line that does not pass through the point
O. Then under inversion in a circle with centre O, £ maps to a circle C
(punctured at O), and the tangent to C at O is parallel to £.

Angle Theorem An inversion in any circle preserves the magnitude of
angles between curves but reverses their orientation.

Section 5.2: Extending the Plane

1.

The transformation ¢(z) = z+c (z € C), where ¢ = a—+ib, is a translation
through the vector (a, b).

The transformation #(z) = z (z € C) is a reflection in the x-axis.

The transformation 7(z) = az (z € C), where |a| = 1, a = cosfy +
i sin 6, is a rotation through an anti-clockwise angle 6y about the origin.

5: Inversive Geometry
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Each isometry 7 of the plane can be represented in the complex plane
by one of the functions 7(z) = az + b or t(z) = az + b, where a, b € C,
la] = 1. Conversely, all such functions represent isometries.

Every isometry can be expressed as a composite of reflections.

2. The transformation ¢(z) = kz (z € C), where k is real and positive, is a
scaling by a factor k.

3. Aninversion in a circle C of radius r with centre (a, b) may be represented
in the complex plane by the transformation 7(z) = Z% +c(zeC—{c}),
where ¢ = a + ib.

In particular, inversion in the unit circle ¥’ may be represented by the
transformation #(z) = % (z e C—{0O)}.

4. A linear function is a function of the form 7(z) = az + b (z € C), where
a,beCanda #0.

It may be decomposed into a composite #; o t;, where #; is the scaling
t1(z) = |a|z and 1, is the isometry t>(z) = (a/lal)z + b. This can be
described geometrically as a scaling by the factor |a|, followed by a rota-
tion through the angle Arg(a/|a|), followed by a translation through the
vector (Re b, Im b).

Linear functions preserve angles, and map circles and lines to circles
and lines.

5. The reciprocal function is the function of the form f(z)= %
(zeC—-{0O}.

It may be decomposed into a composite 7, o ¢1, where #1 is the inversion
t1(z) = 1/7 and ¢, is the conjugation #;(z) = Z.

The reciprocal function preserves angles.

6. The extended (complex) plane C is the union of the complex plane C and
one extra point, the point at infinity, denoted by the symbol co.

7. An extended line is any line ¢ in the plane together with the point co. An
extended line can be thought of as a circle of infinite radius.

A generalized circle in the extended plane is a set that is either a circle
or an extended line.

8. Let C be a generalized circle in the extended complex plane. Then an
inversion of the extended plane with respect to C is a function ¢ defined
by one of the following rules.

(a) If C is a circle of radius r with centre O, then

the inverse of A with respect to C,

if AeC—-{0},
t(A) =
00, ifA=0,
0, if A = oo0.

(b) If C is an extended line £ U {oo}, then

the reflectionof Ain ¢, if A € C,
t(A) = .
00, if A = o0.
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1.

12.

13.

Inversions of the extended plane map generalized circles onto gener-
alized circles.
The extended conjugation function, extended reciprocal function and
extended linear functions may be defined in the natural way as mappings
of C to itself.

. The extended reciprocal function and the extended linear functions can be

decomposed into a composite of inversions, and map generalized circles
onto generalized circles.

Strategy To scale @ by a factor k:

1. invert in the circle {z : |z| = 1}, then

2. invert in the circle {z : |z| = vk}

Strategy To rotate ¢ through an angle 6:

1. invert in the line {z : Arg z = 0} U {00}, then

2. invert in the line iz cArgz = %6} U {o0}.

Strategy To translate ¢ through a vector (a, b):

1. invert in the line {(x, y) : ax + by = 0} U {o0}, then

2. invert in the line {(x, y) : ax + by = %(cz2 + b%)} U {o0}.

The Riemann sphere S is the sphere in R® with centre the origin and
radius 1. The points N(0,0,1) and S = (0,0, —1) are called the North
Pole and the South Pole of S, respectively.

Lines through the North Pole intersecting S at points P’and the (x, y)-
plane at points P give a one—one correspondence between points on S and
points in the plane. (We associate the North Pole with the point co in the
extended complex plane.)

The one-one onto function 7 : S — C which maps points on S to the
associated points in the extended complex plane is called stereographic
projection. If (X,Y,Z) e Sandz = x + iy € (@, then

(X,Y,Z) X it
s = — —_—
e 11—z "=z
and
_ 2x 2y x24y2 -1
1 .
b4 X +1y) = s s .
) <x2+y2~|—1 X2+ + 1 x2+y2+1

Under stereographic projection, circles on the Riemann sphere map onto
generalized circles in C. In particular, circles on the sphere that pass
through N map onto extended lines in C, and circles on the sphere that
do not pass through N map onto ordinary circles in C.

Stereographic projection preserves the magnitude of angles.

Section 5.3: Inversive Geometry

1.

A transformation ¢ : C — C is an inversive transformation if it can be
expressed as a composite of inversions.

Inversive geometry is the study of those properties of figures in C that
are preserved by inversive transformations.

5: Inversive Geometry
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10.

. The inverse of the Mobius transformation M (z) =

The extended reciprocal function and the extended linear functions are
inversive transformations.
Inversive transformations preserve the magnitude of angles, map general-
ized circles to generalized circles, and preserve tangency.

The set of inversive transformations forms a group under the operation
of composition of functions, called the inversive group.
Every Euclidean transformation is also an inversive transformation, and
every Euclidean property is also an inversive property.

The ‘doubling map’ #(z) = 2z (z € C) is an affine transformation and
an inversive transformation, but is not a Euclidean transformation.

2
The transformation of R? to itself given by #(x) = < 0 (1)) X rep-

resents a horizontal shear; it is an affine transformation, but is not an
inversive transformation.
A Mébius transformation is a function 7 : C — C of the form M (z) =
@b where a, b, c,d € C,and ad — be # 0.

If ¢ = 0, we adopt the convention that M (co) = 00; otherwise we adopt
the convention that M (—d/c) = oo and M (co) = a/c.

The extended linear functions and the extended reciprocal function are
Mobius transformations.

Every Mobius transformation is an inversive transformation.
Mobius transformations preserve the magnitude and orientation of angles,
and map generalized circles onto generalized circles.

Let M be a Mobius transformation defined by M (z) = Z;ig, where a, b,

¢,d € C,and ad — bc # 0; then A = <i Z) is a matrix associated

with M.

A matrix associated with a Mobius transformation is invertible.

If A is a matrix associated with a Mobius transformation M, then so is
cA for any non-zero ¢ € C. Every matrix associated with M has the form
cA for some ¢ € C — {O}.

. Let M| and M, be Mobius transformations with associated matrices A

and Aj, respectively. Then M| o M, is a Mdbius transformation with
associated matrix AjA,.

Strategy To compose two Mobius transformations M| and M»:

1. write down matrices A| and A, associated with M and M>;

2. calculate AjA»;

3. write down the Mobius transformation M; o M, with which AjA, is

associated.

az+b
cz+d

transformation, and it may be written in the form M~ (z) =

is also a Mobius
dz—b
—cz+a’

. The set of all Mobius transformations forms a group under composition of

functions.
Every inversion ¢ has the form #(z) =M(Z), where M is a Mobius
transformation.
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1.

Every inversive transformation ¢ can be represented in @ by one of
the formulas 7(z) = ‘ijr’g or t(z) = Z;st, where a, b, ¢, d € C, and
ad — bc # 0.

The composite of an even number of inversions is a Mobius transfor-
mation and is called a direct inversive transformation (since it preserves
the orientation of angles); the composite of an odd number of inver-
sions is called an indirect inversive transformation (since it reverses the
orientation of angles).

Strategy To determine the image of a generalized circle C under an

inversive transformation ¢:

1. write down three points z1, z2, z3 on C;

2. determine the images 7(z1),1(22),1(z3);

3. the image #(C) is the (unique) generalized circle through 7(z1), t(z2),
t(z3).

Section 5.4: Fundamental Theorem of Inversive Geometry

L.

Fundamental Theorem of Inversive Geometry

Let z1, 22, z3 and w1, wa, w3 be two sets of three points in the extended

complex plane C. Then there is a unique Mobius transformation M which

maps z1 to wi, z2 to wo, and z3 to w3.

Strategy To determine the Mobius transformation M which maps three

given points z1, z2, z3 onto the points 0, 1 and oo, respectively:

1. choose the appropriate form of mapping from the following formulas
for M:

mapping form of M
21,722,230 0, 1,00 | K=
00,22,23 — 0,1, 00 %
21,00,23 > 0,1, 00 | =21
21,22,00 > 0,1,00 | K(z—z1)

2. find the complex number K for which M (z2) = 1.

. Strategy To determine the M&bius transformation M which maps the points

71, 22, 23 to the points wi, wa, w3, respectively:

1. find the Mobius transformation M; which maps the points z1, z2, z3 to
the points 0, 1, co, respectively;

2. find the Mobius transformation M> which maps the points wy, wa, w3
to the points 0, 1, oo, respectively;

3. calculate M = M2_1 o Mj.

Strategy To determine whether z1, z2, z3 and z4 lie on a circle:

1. find the Mobius transformation M which maps z1, z2, z3 to 0, 1, oo,
respectively;

2. the points z1, 22, 23, 24 lie on a generalized circle if and only if M (z4) is
real;

5: Inversive Geometry



Summary of Chapter 5

3. the generalized circle in Step 2 is a circle provided that M (co) is not
real.
If M (z4) and M (c0) are both real, then z1, 22, 23, z4 lie on a line.
5. Let C; and C; be generalized circles in the extended complex plane. Then
there is a Mobius transformation that maps C1 onto C».
All generalized circles are inversive-congruent.

Section 5.5: Coaxal Families of Circles

1. Apollonian Circles Theorem Let A and B be two distinct points in the
plane, and let k be a positive real number other than 1. Then the locus of
points P that satisfy PA: PB = k : 1 is a circle whose centre lies on the line
through A and B.

The centre of the circle is not at either A or B. If A=(—a,0) and B =

2
(a,0), then the circle has centre ¢ and radius r where ¢ = (— l+k ) )
_ 2ak
and r = e

If k = 1, then P lies on the perpendicular bisector of AB.

Every positive value of k gives rise to a generalized circle, known as a cir-
cle of Apollonius; the family of all such circles is known as the Apollonian
family of circles defined by the points A and B.

If 0 < k < 1, the Apollonian circle surrounds A; if k > 1, the Apollonian
circle surrounds B. The points A and B are called point circles, corre-
sponding to the cases k = 0 and ‘k = o0’, respectively. Every point in the
plane lies on precisely one circle (or generalized circle) in each Apollonian
family.

2. Let A and B be distinct points in the plane, and let ¢ be the inversion in
the circle with centre A and radius 1. Then the Apollonian family of circles
defined by the point circles A and B is mapped by ¢ to the family of all
concentric circles with centre 7(B); and the family of all concentric circles
with centre #(B) is mapped by ¢ to the Apollonian family of circles defined
by the point circles A and B.

3. A coaxal family of circles in the plane is a family of (generalized) circles
of one of the following types:

1. an Apollonian family, with particular point circles;
2. afamily that intersect at one particular point;
3. afamily that intersect at two particular points.

The extended line in each family is called the radical axis of the family.

Coaxal Circles Theorem Let A and B be distinct points in the plane.
Let .7 be the Apollonian family defined by the point circles A and B, and
let ¢ be the family of all generalized circles through A and B. Then every
member of .% is orthogonal to every member of ¢.

4. Two points A and B in the extended complex plane are inverse points with
respect to a generalized circle C if and only if every generalized circle
through A and B meets C at right angles.
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If C is an Apollonian circle defined by the point circles A and B, then A
and B are inverse points with respect to C.

Let A and B be inverse points with respect to a generalized circle C, and
let t be an inversive transformation. Then 7(A) and #(B) are inverse points
with respect to the generalized circle 7 (C).

Let .7 be the family of all generalized circles that have A and B as
inverse points. Then .% is either a concentric family of circles with centre
A or B, or an Apollonian family of circles with point circles A and B.

Let C and Cj be circles that meet at right angles at two points R and S.
Then the centre of C; is the point 7" of intersection of the tangents to C at
R and §; and C1 maps to itself under inversion in C.

5. Concentricity Theorem Let C; and C, be any two non-intersecting circles
in the plane. Then there is an inversive transformation that maps C; and C;
onto a pair of concentric circles.

6. Two Apollonian Circles Theorem Let C; and C»> be two non-concentric
circles that do not intersect. Then there is a unique Apollonian family of
circles that contains C| and C».

7. A porism is a mathematical construction problem that has a surprising
answer: either the construction cannot be carried out or it has infinitely
many solutions.

Steiner’s Porism Let C; and C, be non-intersecting circles, with Cj
inside C. Then EITHER it is impossible to fit a chain of circles between
C1 and C,, with each circle touching C1 and C» and two other circles in the
chain OR it is possible to construct such a chain, and the first circle in the
chain can be placed in any convenient position.

Poncelet’s Porism If C| and C, are any two plane conics for which (for
any given n > 2) it is possible to find one n—sided polygon which is simul-
taneously inscribed in C; and circumscribed around C», then it is possible
to find infinitely many of them.

7. Let a and b be points in C — {O}. Then, under inversion in a circle C
with centre O and radius r the distance between the images of a and b is
la = bl.

Ptolemy’s Theorem Let A,B,C,D be the vertices (in order) of a
quadrilateral inscribed in a circle. Then AD - BC + AB - CD = AC - BD.

8. Shoemaker’s Knife/Arbelos Let D be a region in the upper half-plane,
whose boundary consists of three semicircles Sy, So and S3 that meet at
three points A, B and C on the x-axis. Then it is possible to fit a chain of
circles into D between S; and S», with the first circle touching Sy, S» and
S3, and with each successive circle touching S;, S> and the previous and
following circles in the chain.



6 Hyperbolic Geometry:
the Poincare Model

The book, Euclid’s Elements, which underlay most geometrical teaching in
Western Europe for over 2000 years, gave definitions of the basic terms in
geometry and rules (called postulates) for their use. Many of Euclid’s assump-
tions seem entirely uncontroversial, such as the assertions that through any
two distinct points in a plane or in space there passes a unique line, and that
a line can be extended indefinitely in both directions. On these foundations
Euclid gave rigorous proofs of theorems in elementary geometry, which could
be accepted as true because of the way they had been established.

Among the postulates for Euclidean geometry is one about parallel lines
which is equivalent to the following statement.

The (Euclidean) Parallel Postulate Given any line £ and a point P not
on ¢, there is a unique line m in the same plane as P and £ which passes
through P and does not meet £.

Note that the parallel postulate makes two assertions: first that the parallel
line exists, and second that it is unique.

Historically it was felt that the Parallel Postulate as it stands is not obvious.
It implies that every line through P other than m eventually meets £, but plainly
this meeting place can be a long way away. How much confidence would you
place in an assumption about lines meeting somewhere in the Virgo star cluster,
some 100 million light years away?

Many Greek, Arab and later Western geometers had felt that the answer was
‘not much’, and had tried to delete the Euclidean Parallel Postulate from the
list and instead derive it as a theorem. They all failed, and in the end the reason
was laid bare: the Parallel Postulate cannot be made into a theorem in this way
because there are internally consistent models of geometries which obey all
the Euclidean postulates except the Parallel Postulate.

But how do we obtain geometries other than Euclidean geometry with its
Parallel Postulate? One way to do this might be to insist that any two lines
intersect. The geometry to which this gives rise is called Elliptic Geometry.
One model of elliptic geometry is Spherical Geometry (for example, on the
surface of the Earth), and we shall investigate this model in Chapter 7.

great circle

%)
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A ‘line’ PQ on the surface of a sphere (which we call $2), such as on the

Earth’s surface, can be defined to be the great circle (that is, the intersection

of the plane through the centre O of the sphere with the surface of the sphere)

through the two points P and Q. Any two distinct great circles meet in two

(diametrically opposite) points, such as P and P’ shown in the margin, so any )

two lines in spherical geometry meet in two points. \ s
Generalizing this fact, in Elliptic Geometry we keep all the other postulates

that collectively describe Euclidean geometry, remove the Parallel Postulate,

and replace it with the following analogue.

The (Elliptic) Parallel Postulate Given any line ¢ and a point P not on
£, all lines through P meet €. (That is, there are no lines through P that are
parallel to €.)

Another way to obtain a non-Euclidean geometry is to insist that the line
through P that does not meet ¢ is not unique. We could again keep all the other
postulates that collectively describe Euclidean geometry, remove the Parallel
Postulate, and replace it with the following.

The (Hyperbolic) Parallel Postulate Given any line ¢ and a point P not
on £, there are at least two lines m through P that do not meet £. (That is, ¢
there are at least two lines through P that are parallel to £.)

The geometry whose postulates are those of Euclidean geometry but with  In fact there are still other
this variant of the Euclidean parallel postulate is called Hyperbolic Geome- ~ geometries (and other
try. The term non-Euclidean Geometry is often used to describe elliptic and ~ Models of both hyperbolic
hyperbolic g.eometries together. . . . 3?3 Til‘?gg;()gn??lzt?ﬁ;’e

Non-Euclidean geometry was discovered independently in the late 18208 ¢ this book.

by the distinguished Russian mathematician Nicolai Ivanovich Lobachevskii
(1792-1856), working at the University of Kazan, and the Hungarian Janos
Bolyai (1802-1860), an Army officer whose father, Farkas (or Wolfgang)
(1775-1856), was also a mathematician. Many of the same ideas were also
known to Carl Friedrich Gauss (1777-1855), but he did not publish them.
However, non-Euclidean geometry was not accepted until after these three
were dead, when the German Bernhard Riemann (1826-1866) and the Ital-
ian Eugenio Beltrami (1835-1900) published their ideas about geometry in the
late 1860s. Riemann gave the appropriate general setting, Beltrami a specific
account of non-Euclidean geometry. Only then did the new geometry become
rapidly accepted. Amongst other things, it spurred Felix Klein (1849-1925) to
propose his view of geometry.

Non-Euclidean geometry was one of the most momentous mathematical dis-
coveries of the 19th century. It had several revolutionary implications, because
it provided a physically plausible description of space that differed markedly
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from Euclid’s. It became possible to imagine that the universe is not Euclidean,
and in the 19th century some mathematicians and astronomers, such as Gauss
and his friend Bessel), entertained the idea quite seriously.

The theorems in non-Euclidean geometries often differ markedly from their
Euclidean equivalents. For example, in Euclidean geometry the angles of any
triangle sum to 7r; in elliptic geometry the angle sum of any triangle turns out
to be strictly greater than 7, whereas in hyperbolic geometry the angle sum of
any triangle turns out to be strictly less than 7.

In this chapter we shall concentrate on a model of hyperbolic geometry due
to the French mathematician Henri Poincaré. In this model (which we will
generally call ‘hyperbolic geometry’ for simplicity), the space of points is
the interior of the unit disc 4 = {z: |z| < 1}. All figures in this geometry
will be drawn as they appear in this disc. In Section 6.1 we define hyperbolic
lines and hyperbolic angles. We then introduce hyperbolic reflections in these
lines, and obtain the group of hyperbolic transformations: a hyperbolic trans-
formation is a composite of hyperbolic reflections. In Section 6.2 we see that
every hyperbolic transformation can be described as either a Mdbius transfor-
mation (of a certain form) or a Mobius transformation composed with complex
conjugation.

The properties of hyperbolic geometry include angle and length, and so we
can define hyperbolic circles, which we do in Section 6.3. We also obtain a
formula relating Euclidean lengths and hyperbolic lengths (at least in special
cases), and in Section 6.4 we give useful formulas for the study of hyper-
bolic triangles. In Section 6.5 we look at area in hyperbolic geometry, and at
hyperbolic tilings, or fessellations, such as the one displayed on the cover of
this book. Finally, in Section 6.6 we briefly discuss the half-plane model of
hyperbolic geometry.

6.1 Hyperbolic Geometry: the Disc Model

6.1.1

The points or d-points (where ‘d’ stands for ‘disc’) in (Poincaré’s version of)
hyperbolic geometry consist of the points in the unit disc

What is Hyperbolic Geometry?

9 ={z:]z] < 1}:{(x,y):x2—|—y2 < 1}.
In sketches we usually illustrate & by drawing in its boundary
¢ =lz:ld=1=[ya? 4y =1],

but you should note that points on ¥ are not points which belong to the
geometry.

A crucial feature of this geometry is the concept of a d-line, or a line in
hyperbolic geometry.
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Friedrich Wilhelm Bessel
(1784-1846) was a
German mathematician
and astronomer, after
whom Bessel functions
are named.

You met Mdbius
transformations in
Subsection 5.3.3.

Note that we shall use the
alternative notations z and
(x,y) freely to describe
points in &, according to
convenience.
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Definition A d-line is that part of a (Euclidean) generalized circle which A generalized circle is

meets ¢ at right angles and which lies in 2. either a circle or a
(Euclidean) line; see

Subsection 5.2.3.
Every d-line is part of a generalized (Euclidean) circle which meets the
boundary circle in two points. We call these two points the boundary points
of the d-line. Notice that the boundary points of a d-line are not d-points — for
they are not points in Z.
The sketch below illustrates various d-lines. Some of these d-lines are arcs
of (Euclidean) circles; some are (Euclidean) line segments, in fact, diameters

of 9.

a diameter You may find the
following figure a helpful
reminder for the shapes of
d-lines:

N/

boundary points

In fact, any d-line that is part of a Euclidean line must be a diameter of 2,
since otherwise it cannot meet % at right angles.

Conversely, any d-line ¢ that is an arc of a Euclidean circle cannot pass
through the origin. For if £ meets ¢ at a point P, then the tangent ¢ to £ at P < A p
is a radius of % and so passes through the origin O, which is the centre of %
But then ¢’ is a line touching the Euclidean circle £ at P, and because circles
lie entirely on one side of their tangents, £ cannot meet £ again. Thus £ cannot
pass through O.

Indeed, if £ is a d-line that is an arc of a Euclidean circle, then there is a
diameter of Z that does not meet it. For, if £ meets % at the points P and
Q, then the tangents to £ at P and Q are radii of 4 and so pass through

the origin. They divide the disc Z into four regions, one of which con-
tains £. Clearly, a diameter can be drawn that lies entirely in two of the other € 0’
regions — in fact, you can see that there are infinitely many such diameters. \ =
Each of these divides Z into two regions, one which contains ¢ and one which
does not.

Notice also that if a d-line £ is part of a Euclidean circle meeting ¢ at points

P and Q, then its centre is the point R where the tangents to ¢ at P and Q@
meet. So the point R lies outside the circle €.




Hyperbolic Geometry: the Disc Model

Sometimes it is clear from a (reasonably accurate) sketch whether or not
part of a generalized circle is a d-line. For example, consider

L= {(x,y):x2+y2—4y=0}ﬂ@.
Since
4y —dy=0e x>+ (y—-272=4,
we can sketch ¢, and deduce that it is not a d-line since it clearly does not meet

% right angles. (The tangents to £ at its boundary points on % do not pass
through the origin.)

Problem 1 Sketch the following parts of generalized circles, and
determine which of them are d-lines.

G ={(x,y):y=3x}NZ
O={(,y:3x+y=1}NZ
b= {(x,y):x2+y2+2x+2y+1 =O}m@
Now, it is rather easy to be mislead by a sketch into believing that something

is true in general whereas it is not! So, we now give an analytic criterion for
identifying d-lines.

Lemma 1 The equation of a d-line £ is of one of the following forms:
ax+ by =0, where a and b are not both zero;

X2+ Y2 +fx+gy+1=0, where f>+g* > 4.

Proof If a d-line ¢ is (part of) a Euclidean line through the origin, then cer-
tainly its equation is of the form ax 4+ by = 0, where a and b are not both
Zero.

The other possibility is that the d-line £ is (part of) a Euclidean circle C that
intersects the boundary % of & at right angles. So, let C have equation

x? + y2 + fx+ gy + h =0, for some real numbers f, g and A.

First, it follows from the Orthogonality Test that any circle with this equation
intersects the unit circle 4’ with equation

x24+y2—1=0
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Subsection 1.1.2,
Theorem 3
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if and only if
fO+g-0=2(h+(-1);
that is, if and only if # = 1. So the equation of C must be of the form

x>+ y*+fr+gy+1=0, for some f and g.
2
Next, the centre (—%f, —%g) of C must be outside &, so that (—% ) +

2
—% g) > 1, which we can equivalently write in the form 2 + g2 > 4.
Finally, we need the circle C to meet 2. This happens if and only if

1 4+ radius of C > distance of the centre of C from O;

since 1 = 1 we can write this requirement in the form

1 1 1 1
1 —f24 —g2 1 \/-2 — g2, 1
+/4f+4g > 4f+4g (L)

Since we already know that /1 f2 4+ 1¢2 > 1, the inequality (1) follows at
once if we can prove that

1+t —1>+/t, whenevert > 1. (2) Here we are writing ¢ in
lace of L f2 4+ 1¢2.
So,let F(t) = 1 4+ +/t — 1 — /1. Then place of 7 /= + 7¢
F)=1+v0-V1

=0,

and
F'(t) = ; — L
2Vt —1 2t
Vi—i—1
= ﬁ > 0.

It follows at once that F () > F(1) = 0 for t > 1, and so that the inequality
(2) holds, as required. [ |
Thus, for example, let C be the circle in R? with equation In fact, C is the circle with

centre (—%, l) and radius

x2+y2+3x—2y+1:O,
and let £ be the part of C that lies in &. Then £ is a d-line since its equation is (_§)2+(_1)2_ 1=3
of the form required by Lemma 1, with f = 3 and g = —2, and f? + g° = : .
324+ (=2)2=13> 4.
Note the following useful result that we obtain from putting a = — % 7>
b= —%g into Lemma 1.

Corollary 1 Let o = a + ib be a point outside the unit circle ¢". Then the
d-line that is part of a Euclidean circle with centre o has equation

x2+y2—2ax—2by—|—1=0.
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We can now turn to the question of parallelism, the notion that gave rise to
the discovery of non-Euclidean geometries in the first place.

Definition Two d-lines that do not meet in & are: Recall that the boundary
parallel if the generalized Euclidean circles of which they are parts meet at f 18 ;"t part of the unit
a point on € 15¢ 7.

ultra-parallel if the generalized Euclidean circles of which they are parts
do not meet on %

Remarks

1. It follows that given any d-line ¢ and any point P in & which is not on ¢,
there exist exactly two d-lines through P which are parallel to ¢, as the next
figure shows. A rigorous proof that such d-lines exist will be found below
(Problem 5).

2. Similarly, corresponding to any given d-line £ and any point P in & which
is not on ¢, there exist infinitely many d-lines through P which are ultra-
parallel to £.

Problem 2 The following sets represent d-lines:
{(e,y)y=x}NZ;
{(x,y) :x2+y2—4x+1=0}ﬂ9;

£
1)
1%

) X2+ —2v2x +1 =0} N Z;
ly={G.y) 2+ + 2 +2y +1=0}N 2.

Sketch them, and decide from your figure which of the d-lines intersect
each other, which are parallel, and which are ultra-parallel.



350

Problem 3 Sketch three d-lines £, €5 and €3 with the property that
£ is parallel to £, and £; is parallel to £3, but £ is not parallel to £3.

In Euclidean geometry and in inversive geometry, reflection and inversion
played important roles; this is also the case in hyperbolic geometry. Obviously,
reflection of the unit disc & in a diameter maps & onto itself; in fact, so does
inversion of ¥ in a d-line that does not pass through the origin.

Theorem 1 Let ¢ be a d-line that is part of a Euclidean circle C. Then
inversion in C maps % onto %, and Z onto 2.

Proof Let C meet ¢ at the points A and B.

Under inversion in C, A and B map to themselves. Since inversion preserves
angles, the circle 4" maps onto some circle that meets C at right angles at the
points A and B. There is only one such circle, ¢ itself; it follows that inversion
in C maps ¢ onto itself.

Hence the inside & of ¥ must map either to the inside or to the outside of
the image of &, namely ¢ itself. But the points of £ map to themselves under
this inversion, so the image of 2 must be Z itself. |

We now know that inversion in a d-line maps the disc 2 onto itself. We
also know that the composition of an inversion with itself is the identity map.
Because the analogous properties are true of Euclidean reflections, we make
the following definition.

Definition A hyperbolic reflection in a d-line ¢ is the restriction to & of
the inversion in the generalized circle of which ¢ is part.

Remarks

1. If the d-line ¢ is part of a Euclidean circle C meeting the boundary circle
% at points P and Q, then the point R where the tangents to % at P and Q
meet is the centre of the inversion.

2. Notice that Theorem 1 may be reformulated as follows: hyperbolic reflec-
tion in any d-line maps the unit disc Z onto itself.

Hyperbolic reflections are the building blocks of transformations in hyper-
bolic geometry. Composites of a finite number of hyperbolic reflections are
called hyperbolic transformations. The set of all such transformations under
the operation of composition of functions forms a group, called the hyperbolic
group, G g.

Definition Hyperbolic geometry consists of the unit disc, &, together
with the group G ¢ of hyperbolic transformations.

6: Hyperbolic Geometry: the Poincaré Model

It follows that the relation
‘is parallel to’ is not an
equivalence relation in
hyperbolic geometry.

Subsection 5.1.3,
Theorem 5

Inversion in C maps the
shorter arc AB of € onto
the longer arc AB of ¥,
and vice versa.

Inversion in C maps the
region bounded by ¢ and
the shorter arc AB of €
onto the region bounded
by € and the longer arc AB
of &, and vice versa.

Recall that we use the
term ‘inversion’ to mean
either reflection in a line
or inversion in a circle
(see Subsection 5.1.1,
‘Convention’).

A proof of the fact that
these form a group will be
found as an Exercise in
Section 6.7; it consists
simply of checking the
axioms for a group.
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Remarks

1. Notice, in particular, that the identity mapping of & to itself belongs to G ¢,
since it may be expressed as the finite composition r o r~! for any hyper-
bolic reflection . Also, if 1 o 5 0 ... o t,, is any hyperbolic transformation,
then its inverse is another hyperbolic transformation#, ' o ... 0 ty o t L

2. Let the generalized circle C of which a d-line £ is part meet the boundary
circle ¢ in points P and Q, and let r be the hyperbolic reflection in £. Then
although r has domain the unit disc &, and P, Q ¢ &, we sometimes find it
convenient to call P and Q the boundary points of £ and to write the images
of P and Q under inversion in C (of which r is a restriction) as r(P) and
r(Q). The same convention is extended to the case where r is a hyperbolic
transformation.

Next, we define the idea of angle in hyperbolic geometry.

Definition The (hyperbolic) angle between two curves (for example,
two d-lines) through a given point A in Z is the Euclidean angle between
their (Euclidean) tangents at A.

Now, Euclidean reflections and inversions both preserve the magnitudes of
angles. It follows that hyperbolic transformations also preserve magnitudes of
angles. Also, Euclidean reflections and inversions map generalized circles onto
generalized circles. Combining this with the angle-preservation property, we
deduce that hyperbolic reflections and inversions map d-lines onto d-lines —
and so compositions of a finite number of such transformations also have this
property. We summarize these facts in the following result.

Theorem 2 Hyperbolic transformations map d-lines onto d-lines, and
preserve the magnitudes of angles.

In the remainder of Chapter 6 we study the properties of various figures
under hyperbolic transformations, and obtain surprising (and sometimes
beautiful) results!

6.1.2 Existence of d-lines

Through a typical point A of Z there is at least one d-line: namely, the diameter
through the origin O and A. But through the origin there are infinitely many
d-lines: the diameters of Z. Is there more than one d-line through an arbitrary
point A of 2?

The first step towards answering this question is the following useful result,
which shows that there is a hyperbolic transformation which maps A to O.

Lemma 2 Origin Lemma
Let A be a point of Z other than the origin O. Then there exists a d-line £
such that hyperbolic reflection in £ maps A to O.

&
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Proof We seek a d-line £ which is part of a Euclidean circle with centre R,
say, such that inversion in this circle maps A to O. Suppose that this circle
meets 4 at the point P.

The condition that this inversion maps A to O is

RO - RA = RP?, (3)

since RP is a radius of the circle we seek.
The condition that part of this circle is a d-line is that triangle ARPO is
right-angled at P. By Pythagoras’ Theorem, this implies that

RP?> + PO* = RO,
which, since OP = 1, is equivalent to
RP?> =RO*> — 1. 4)
Eliminating the radius R P2 from equations (3) and (4), we deduce that
RO -RA = RO* — 1.

This is equivalent to
RO?> —RO-RA =1
or
RO - (RO — RA) = 1.
But RO — RA = AO, so we deduce that
RO -AO0 =1

which is equivalent to
OA-OR=1.
This tells us that the circle we seek has for its centre the point R which is
found by inverting the given point A in the boundary circle € — an unexpectedly
memorable result! |

The great value of the Origin Lemma is that it enables us to study any prob-
lem in hyperbolic geometry by mapping a suitably chosen point to the origin,
thereby yielding a (frequently) simpler picture than before — yet without losing
any generality. We shall use this method often in this chapter.

We can, for example, use this approach to answer the question of how many
d-lines pass through a given point of Z.

Theorem 3 Let A be a point of Z. Then there exist infinitely many d-lines
through A.

Proof Let A be the origin. As we said above, each of the infinitely many
diameters of & passes through the origin, and each of these diameters is a
d-line.

If A is not the origin, then by the Origin Lemma, there is a hyperbolic trans-
formation, r say, that maps A to the origin O, through which pass infinitely
many d-lines — all the diameters of Z.
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& & &
Since ! is also a hyperbolic transformation, it follows that the images of
these diameters are also d-lines — and they pass through A. |

An important result in Euclidean geometry is that there is exactly one line
through any two given points. There is an analogous result in hyperbolic
geometry.

Theorem 4 Let A and B be any two distinct points of Z. Then there exists
a unique d-line £ through A and B.

Proof (Existence) By the Origin Lemma, there is a hyperbolic transformation
r that maps A to the origin O; let the image of B under r be the point B of 2.

& &

Then there is a unique d-line ¢’ (a diameter of &) that passes through O and
B'. Since r~! is also a hyperbolic transformation, it follows that £ = r~1(¢")
is also a d-line (by Theorem 2) — and it passes through A and B.

(Uniqueness) Suppose that £; is another d-line through A and B. Then r(£1)
is a d-line that passes through O and B’. It follows that r(£) = £/, so £; must
be the same as ' (¢') = £. This proves the uniqueness of the d-line through
A and B. |

Problem 4 Let A; and A; be any two points of 2. Use the Origin
Lemma to prove that there is a hyperbolic transformation that maps A
to As.

In fact, we can establish a result stronger than that of Problem 4: we can
determine a hyperbolic transformation which maps A to A, and maps any
given d-line through A to any given d-line through A,.

Theorem 5 Let A; and A be any two points of &, and let £; and ¢;
be d-lines through A; and A;, respectively. Then there is a hyperbolic
transformation which maps A to A, and £; to £;.

For, hyperbolic
transformations map
d-lines to d-lines, by
Theorem 2.
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Proof By the Origin Lemma, there are hyperbolic transformations r and
which map A and Aj, respectively, to the origin O. Let the images of ¢;
and ¢, under r; and rp be the d-lines £/1 and E/z, respectively. Let r3 be the
hyperbolic transformation which rotates 2 about O so that 5/1 maps onto E/Z.

Now let r be the hyperbolic transformation given by

—1
r=r, orjori.

Then r maps Aj to Az and € to {5, as required. |

Remark

We can choose the rotation r3 to map the two parts of E/l — O onto the two parts
of 6/2 — O in whichever way we please. Hence we can arrange for r to map
the two parts of £; — A onto the two parts of £, — A, in whichever way we
please.

In the following example we show that parallel d-lines map to parallel
d-lines under a hyperbolic transformation.

Example 1 Let A, B and C be points of & such that the d-lines AB and BC
are parallel. Let r be a hyperbolic transformation under which the images of
AB and BC are the d-lines A’B’ and B'C’, respectively, where A’, B’ and C’
are points of €. Show that A’B’ and B’'C’ are parallel d-lines.

Solution First, we show that A’B’ and B'C’ do not meet in 2. If they do,
let them meet at the point P’, say. Then the point P’ corresponds to a point
P, say, on the d-lines AB and BC; that is, r_l(P’) = P. But there is no such
point, since AB and BC are parallel; it follows that A’B” and B’C’ do not meet
in 2.

Next, the generalized circles of which A’B” and B'C’ are parts meet at a
point B’ on €. So we conclude that the images of A’B’ and B'C’ are parallel
d-lines. o

Problem S Show that, given a d-line £ and a point P not on ¢, there
are exactly two d-lines through P which are parallel to €.
Hint:  Use the Origin Lemma.
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We shall verify in
Subsection 6.2.1 that any
rotation of & about O is a
hyperbolic transformation.

Note the convenient use of
the label AB for a d-line
even though A and B do
not lie on that d-line (they
lie on ). There is no
ambiguity since there is
only one circle through A
and B with centre the
point where the tangents
to ¢ at A and B meet.
Analogously, we shall say
that a d-line passes
through its boundary
points.
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6.1.3 Inversion Preserves Inverse Points

Earlier, we proved the following result.

Let A and B be inverse points with respect to a generalized circle C, and let 7 be
an inversive transformation. Then 7#(A) and #(B) are inverse points with respect
to the generalized circle #(C).

We now consider a special case of this result, which we can interpret in
terms of hyperbolic geometry.

We take C to be a generalized circle of which part (a d-line ¢) lies inside the
unit disc 2. Let A be a point in Z; then its inverse with respect to £, B say, is
also in &. We take 7 to be an inversion for which the generalized circle of inver-
sion C* is such that part (a d-line £*) lies inside &. Then, by the above result,
A" = t(A) and B’ = 1(B) are inverse points in & with respect to the general-
ized circle C’ = 1(C), part of which lies in &, namely the d-line ¢’ = 1(£).

We now interpret this special case in terms of hyperbolic geometry.

Theorem 6 Let A, B € 2 be inverse points with respect to the d-line ¢,
and let A’, B’ and ¢’ be the images of A, B and £ under inversion (hyperbolic
reflection) in another d-line £*. Then A’ and B’ are inverse points with
respect to inversion in £'.

Remark

Note the convenient use of the term ‘inversion’ to mean ‘hyperbolic reflection’.
This is consistent with the use of this term in Chapter 5.

We shall make use of this theorem in Section 6.5, when we study the design
on the cover of the book.

We finish this section with an illustration of the use of Theorem 6.

Example 2 Let ¢ be a d-line and P be a point in Z. Let Q be the image of P
under inversion in the circle C of which ¢ is part. Let £ be the d-line through
P and Q, meeting ¢ at the point S.

(a) Show that inversion in C maps £’ to itself.
(b) Deduce that the d-lines ¢ and £’ meet at right angles.

355

Subsection 5.5.2,
Corollary 2

See the diagram below.

Every inversion is an
inversive transformation.
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(c) Use Theorems 5 and 6 to show that there is a hyperbolic transformation
mapping the figure to one in which the d-line ¢ is the x-axis and P and Q
are complex conjugates.

Solution

(a) Inversion in C exchanges P and Q. So it maps ¢/, the unique d-line
through P and Q, to itself.

(b) Inversion in C exchanges the angles ¢’ makes with ¢, and maps angles to
angles of equal magnitude. So the angles must be equal, and since their
sum is 7, each must be /2. Thus £ and ¢’ meet at right angles.

(c) We use Theorem 5 to map the point S to O and the d-line £ to the x-axis.
This makes the d-line ¢’ part of the y-axis. By Theorem 6, P and Q are
mapped to points that are inverse with respect to the x-axis, and so are
complex conjugates of each other. O

6.2 Hyperbolic Transformations

6.21  Hyperbolic Transformations and Mobius Transformations

Each element of the group G ¢ of hyperbolic transformations is the composite
of a finite number of reflections in d-lines. In this subsection we shall estab-
lish an explicit formula for a hyperbolic transformation in terms of Mobius — Subsection 5.3.3
transformations.
We start by considering reflection in a d-line £ which is part of a circle C
with centre the point R and radius r. Suppose that the d-line has boundary
points P and Q. We let the coordinates of the point R be (a, b), and write the
complex number a + ib as «, so that |@| > 1 (which follows because ¢ is a
d-line). We shall need the following observation: because the d-line £ is part
of the circle with centre « and radius r, the triangle ARPO is right angled at  We shall call this d-line

P. So, by Pythagoras’ Theorem, RP> + PO?> = RO?. This implies that the “d-line obtained
from o’.

2+ 1=d>+b>
Using the fact that a> + b> = a@, we may rewrite this equation as

r?—aqa =—1. (1)

We now use equation (1), and the fact that inversion ¢ in the circle C has
the form

2

t(z) = +a (zeC—{a)),

This follows from
Subsection 5.2.1,
to obtain the form of the hyperbolic reflection p in the d-line £. Theorem 3.

I—«
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Since £ is part of C, p is given by

72

p(z) = +a
-

r2 4+ a7 —aa
I—a

z—1
— ze D),

by equation (1). Thus we have proved the following lemma.

Lemma 1 The hyperbolic reflection p in the d-line £ that is part of a
Euclidean circle with centre « is given by the hyperbolic transformation
oz

p(z) = — __1 (z € 2). Recall that |o| > 1.
Z—a

Notice that we may write

p(z) = (M o B)(z), forz € 7,

where M(z) = ”;ZT_; is a Mobius transformation, and B(z) = Z is complex

conjugation. You know from Chapter 5 that Mobius transformations are impor- ~ Subsection 5.3.3,
tant in inversive geometry: they preserve the magnitudes of angles, and they =~ Theorem 5

map generalized circles to generalized circles. Since angles and generalized

circles are important in hyperbolic geometry, it is not surprising that particular

sorts of Mobius transformations turn up here too.

Problem 1 Find the point which has image 0 under reflection in the
d-line obtained from «. Hence obtain a second proof of the Origin
Lemma.

Reflection in a d-line which is a diameter of & is simply (Euclidean)
reflection in that line. Recall that Subsection 5.2.1

t(iz) =2
is reflection in the x-axis, and
h(z) = az,

where o = cos 6 + i sin@ with § = Arg «, is rotation about the origin through
the angle 6. It follows that the composite

(nonon!) @ =atd) =a* Forty ! (@) = éz

is reflection in the line with equation y = x tan6.
Thus hyperbolic reflection o in the diameter on which y = xtan@ is
given by
o) =0’z (z€9),

where oo = cosf + i sinf.
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Example 1 Find the composite 07 o o7 of the hyperbolic reflections
01(z) =’z and o02(z) = B%Z,

where o= cosf; + isinf; and B=cosf, + isinfp, and interpret the
transformation o, o o) geometrically.

Solution We have
(02 001)(2) = B*(@?2) = p*a’z,

which is a Euclidean rotation about the origin of Z. O

The composite of reflections p and o in two d-lines that are obtained from
a and B, respectively, is found as follows. By Lemma 1, we have

p(z) = Oiz __1 = (M o B)(2) Recall that M (z) = %
7— and B(z) = Z.
and
z—1
o(z) = ﬂ_ = = (M'o B)(2),
i=p
where M'(z) = % is a Mobius transformation. So
(0 0p)(z) = (M oBoMoB)(2).
But

oz ~
(BoM)(z) = —— = (M o B)(2),
I—a

where M (z) is the Mobius transformation M () = % So

(00p)(2) = (M oBoMoB)()

=(M' oMo BoB)z) = (M oM)(z),
because (B o B)(z) = z.
Now matrices associated with M’ and M are ( Bl ) and ( a -l ),

1 -8B -
respectively. Hence a matrix associated with the composite M’ o M is Here we are using the
~ _ strategy in Subsection
B —1_ a —1 _ af —_1 o — B 5.3.5 for finding
1 -8B 1 —« a—-B apfp-—-1)" composites.
so that the composite o o p of the hyperbolic reflections o and p is of the form
az+b
(0o0p)(2) ==——,
r bz+a

wherea =af — 1,b =ao — B.
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For ease of reference, we record this last result as a theorem.

Theorem 1 The composite of the hyperbolic reflections

z—1 z—1
p() =2 and o(2) = ﬂ_z = (z€2)
z—a _
is the hyperbolic transformation
(@B —Dz+a—p
= = = 9).
(0 0p)(2) G—Prztap_1 (z€2)

Example 2 Show that the hyperbolic reflection p is its own inverse, by
showing that p(p(z)) = z.

Solution From Theorem 1, we know that the composite of the reflection p
with itself is given by
(e — z+a—« _ (aa — 1)z .

PP =G Setaa—1" aa—1

as required. O

Example 3 Show that the composite M, o M| of the Mobius transformations

az+b cz+d
M@ =57 = ME=7-7

is a Mobius transformation of the same form.

Solution By the strategy for finding composites of Mobius transformations,
a matrix associated with the composite M, o M| is the matrix product

c d a b\ ca+db c¢b+da
d ¢ b a) \da+chb db+ca )
This product is of the required form, because

(ca+db) =db+¢a and (cb+da)=da+ cbh. O

It follows from this example that every composite of an even number of
hyperbolic reflections in d-lines can be represented as a Mobius transforma-
tion, restricted to &, of the form

M(Z)ZEZ , z€9.

Similarly, it can be shown that every composite of an odd number of reflections
can be represented as a Mobius transformation of this form composed with
complex conjugation.

359

aa # 1 since |o| > 1.

That is, of the form <L
fzte

for some e, f € C.

We omit the details of a
proof of this.
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It follows from the above discussion that any composite of a finite number of

hyperbolic reflections, that is, any hyperbolic transformation, can be expressed
in one of the forms

2> M) or z+—=> M) (z€ 9),
where M is the Mobius transformation
az +b
M(z) = = —, 7€ 9.
bz+a

Moreover, since M (0) = b/a and the image of 0 under a hyperbolic transfor-
mation must be in &, we require that the above Mobius transformation must
be such that

b| < lal.
The remaining question is: ‘Do all such Mobius transformations represent
hyperbolic transformations?” In fact the answer is YES, as the following
theorem shows.

Theorem 2 The restriction to 2 of every Mobius transformation of
the form M (z) = % with |b| < |a| is a composite of two hyperbolic
reflections, and is therefore a hyperbolic transformation.

The proof is a little devious (and no less elegant for that). We first prove it
for the special case when the Mdbius transformation maps the origin to itself.
Using this special case, we then prove the general case.

Proof
Case 1 The Mo6bius transformation M(z) = Z;i‘g maps the origin to itself.
We shall show that M is the composite of two reflections.
The condition M (0) = 0 implies that b = 0, so that the Mobius transfor-
mation is simply M (z) = £z — a rotation about the origin.

Now, if we let a = re'?, then

— 6216.

QI

So, if we let o1 and o be the reflections in diameters of & given by

01(z)=2%, z€9, and o(z) ="z, 7€ 9,

then
o o01(z) = (@) =¥z,
so that M = o3 o 01, as required.

Case 2
to itself.
We shall again show that M is the composite of two hyperbolic reflections.
Consider a hyperbolic transformation p given by p(z) = (M’ o B)(z), where
M'(z) = ";Z__&l is a Mobius transformation, and B(z) = Z is complex conjuga-
tion. We shall choose « so as to make p and M o p hyperbolic reflections. This
will show that M = (M o p)o p~! is a composite of two hyperbolic reflections.

The Mobius transformation M (z) = % does not map the origin

6: Hyperbolic Geometry: the Poincaré Model

When the context is clear,
we often omit to say that
the Mdbius transformation
we are considering is
restricted to 2.

Recall that reflection in
the diameter y = x tan 6
of & is a mapping of the
form z — azz, where

o =¥ =cosh +isind
andz € 9.
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Since M and M’ are associated with the matrices

a b a —1
(5 a) and (1 —&)’

respectively, the composite M o M’ is associated with the matrix

a b a =1\ (aa+b —(ab+a)
b a 1 —a ) \ab+a —b-aa ’

so we deduce that

(aa +b)z — (@b +a)
(ab+a)z—b—aa

Now since M (0) # 0, it follows that b # 0. Hence we may choose o =
— (a/b), so that

(M oM oB)(z) =

ab+a=—(a/b)b+a=0.

Next, since |b| < |a|, we deduce that |o| = % > 1, and so the transformation

0 = M’ o B is a hyperbolic reflection as required. Moreover,

o
(Mop)(2) = (Mo M o B)z) = C2TD2

is of the form —%Z, where y = aa + b, and so the transformation M o p is
a hyperbolic reflection. It follows that the transformation M is a composite of
two hyperbolic reflections, M o p and p~!. |

A similar argument shows that the more general transformation

az+b

bz+a

is a composite of three reflections. For it is the composite (M o B)(z) of the
Mobius transformation

=

M@ = 2t0
bz+a
with complex conjugation B(z) = z. Now, the Mobius transformation M is a
composite of two reflections, and complex conjugation B is reflection in the
x-axis. So M o B is a composite of three reflections, as claimed.

Putting together all the above results, we have shown the following.

Theorem 3 Every hyperbolic transformation can be written as a compos-
ite of at most three hyperbolic reflections.

Example 4 Show that the composite o, o o7 of the two reflections in lines
through the origin given by o(z) = «?Z and 02(z) = B>Z can be written in

__az+b
the form M (z) = hva

For, p is of the form
required by Lemma 1.

361
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Solution From Example 1, we know that
(02001)(z) = B’z
Since |¢| = 1 and |8] = 1,

a'=a and p'=8,

and so
(02 001)(2) = M(2),
where
b
M) = Z2 Githa = Baand b = 0. 0
bz+a

Problem 2 LetM(z) = %zis be a hyperbolic transformation mapping
the origin to itself. Show that b = 0.

Hyperbolic Rotations and Translations

It follows from the Angle Theorem of inversive geometry that a single hyper-  Subsection 5.1.3,
bolic reflection reverses the orientation of angles between d-lines. So a  Theorem 5
composite of two such transformations leaves the orientation unchanged, while

a composite of three reverses it again. We call a hyperbolic transformation that

leaves orientation unchanged a direct hyperbolic transformation, and one that

reverses orientation indirect. So, by Theorem 3 above, we deduce that

a direct hyperbolic transformation can be written as a Theorem 1 gives the form
composite of at most two hyperbolic reflections of a composite of two
reflections.

and

an indirect hyperbolic transformation can be written as a
composite of at most three hyperbolic reflections.

It is possible to say more about the direct transformations. Let r; and r» be
reflections in the d-lines 1 and £;, respectively.

First, suppose that £; and ¢, intersect at some point A. (Certainly they
cannot intersect at more than one point if they are distinct d-lines, since by
Theorem 4 of Subsection 6.1.2 there is a unique d-line through any two points
of Z.) Then the composition r; o | leaves the point A fixed, moves the points
of & ‘around A’, and does not alter the orientation of &. Such a hyperbolic
transformation is called a (hyperbolic) rotation, and has exactly one fixed
point in Z.

Next, suppose that the d-lines £1 and £, are parallel, that is, the generalized
circles of which they are parts do not meet in & but do meet at some point P
on %. Then the composite r; o r; moves the points of & ‘around P’, and does
not alter the orientation of Z; it has no fixed point in &, but it leaves all the
parallel lines with P as their common boundary point as parallel lines ending
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at P. We can regard this as the limiting case of a rotation (about a point of %),
and so call it a (hyperbolic) limit rotation.

Finally, suppose that the d-lines ¢; and ¢, are ultra-parallel, that is, the
generalized circles of which they are parts do not meet in & or on %. Then the
composite 7, o r; moves all the points of & in one general direction, and does
not alter the orientation of Z; but no point of & (or %) remains fixed. Such a
hyperbolic transformation is called a (hyperbolic) translation.

The analogy between Euclidean geometry and hyperbolic geometry is not
exact, however. For instance, the composite of two Euclidean translations is
independent of the order in which they are applied, whereas the composite of
two hyperbolic translations may not be independent of the order in which they
are applied.

6.2.2 The Canonical Form of a Hyperbolic Transformation

In this subsection we show how to write a hyperbolic transformation in the
most suitable form for applications. We shall do this only for a direct transfor-
mation of the form M (z) = g—ig, where |b| < |a|. Our result is the following
theorem.

Theorem 4 A direct hyperbolic transformation M can be written in the

form
Z—m

1 —mz’
where K and m are complex numbers with |K| =1 and m € 2.

M(z) = K

Remark

We call this form the canonical form of a direct hyperbolic transformation. It
has the great advantage of showing that the transformation M maps the point
m to the origin.

Proof We know from the previous subsection that a direct hyperbolic
transformation can always be written in the form

b
M@ =252 it b] < lal.
bz+a
Indeed, on dividing the expression for M (z) above and below by a, we can
write it as
b —b
M=o _afiTT )
- =z a\1-=;

which is of the required form, with K = a/a and m = —b/a. Since |a| = |a|,
it follows that | K| = 1, as required. Since |b| < |a], it follows that [m| < 1, as
required. ]

363

See the discussion before
Theorem 2.
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We can now find the form of every direct hyperbolic transformation that
maps a point m of & to the origin. We know from Theorem 4 that it must be
of the form

z—m' ,
M(z) =K —, where |K| = 1and |[m'| < 1.
1 —m'z

The condition that M (m) = 0 implies that m = m’, so we deduce that in fact
every direct hyperbolic transformation mapping the point m to the origin is of
the form

z—m
M(z):K1

—mz

The direct hyperbolic transformations that map the origin to itself are there-
fore those for which m = 0, so they are of the form M (z) = Kz with |K| = 1.
These are (Euclidean) rotations of the disc & about the origin through an angle
0, where K = cos# +i sin 6. In general, if all that is required is just one direct
hyperbolic transformation sending a given point m to the origin, then we may
—m

set K = 1, and use the transformation M (z) = lz—mz' K = 1is the most

convenient value to
choose.

Example 5

(a) Find the general form of a direct hyperbolic transformation that maps the
point %i to the origin.
(b) Find one direct hyperbolic transformation that maps % to the origin.

Solution
(a) The general form is
[ 27 —1i

= K- , where |K| = 1.
i)z iz+2

=

(b) Taking K = 1 in the formula of Theorem 4, as suggested above, one such

M(z) =K

N — [DI—

transformation is
7 —
1 —

E[oN)

M(z) =

Bl
N

Problem 3 Determine all the direct hyperbolic transformations that
map the origin to the origin and the line y = x/+/3 to the line y = +/3x.

Problem 4 For each of the following points, determine all the direct
hyperbolic transformations that map it to the origin.
@ gi () —3+3i
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The general form of the inverse of a direct hyperbolic transformation M
mapping the point m to the origin is a direct hyperbolic transformation sending
the origin to m. To find this inverse explicitly, we write

M(z) =K < - (by Theorem 4)
1 —mz
_ Kz —Km
- —mz+ 1]

and make use of the fact that M is the restriction to & of a Mobius
transformation to write
z4+ Km

M (7)) =
@=""T%

, @)
where |[K| = 1.

Problem 5 Determine the general form of the inverse of the direct
hyperbolic transformation M which maps % to the origin.

Problem 6 Prove that any direct hyperbolic transformation M that
maps the diameter (—1, 1) onto itself must be of the form

—m

M(z) =+ R where m € (—1,1).

1—mz

Since an indirect hyperbolic transformation can be written as the compos-
ite of at most three reflections, it follows that the general form of such a
transformation is
az+>b
bz+a

An argument similar to that for direct transformations shows that this
transformation can always be written in the form

=

z—m
—

—mz

z—> K where |k| = 1 and [m| < 1.

We call this form the canonical form of an indirect hyperbolic transfor-
mation.

Theorem 4 gives the general form of a direct hyperbolic transformation that
maps a given point m in Z to the origin. By two applications of the theorem,
therefore, we can obtain the general form of a direct hyperbolic transformation
that maps any given point in & to any other given point in Z.

Strategy To determine the general form of the direct hyperbolic transfor-
mation that maps one point p in & to another point g in Z:

1. write down the general form of the direct transformation M/ that maps
p to 0, and a matrix A associated with M;

2. write down a direct transformation M, that maps ¢ to 0, and a matrix A,
associated with M»;
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By ‘restriction to 2’ we
mean that we only
consider those z in 2.

This form for M ~!
follows immediately from
Subsection 5.3.6,
Theorem 7.

See the discussion
preceding Theorem 2.

If we require a particular
direct transformation that
maps p to g, then we may
choose a particular M
and a particular Aj.

The constant arising in
Step 1 means that it is
sufficient to use any
particular transformation
in Step 2, since the final
general transformation
requires only

one constant.



366 6: Hyperbolic Geometry: the Poincaré Model

3. form the matrix product A5 'A| associated with the direct transformation
My !5 My, and hence write down the general form of the required direct
transformation M, LoMm 1.

The following figure illustrates this strategy.

_— -~
M, M,
My oM,

Example 6 Determine the general form of the direct hyperbolic transforma-

tion that maps %i to %.

Solution We have already seen that the general form of the direct hyperbolic =~ Example 5, part (a).

transformation M that maps %i to 0 is

27 —i
+2’

Mi(z) =

a matrix associated with M is

2K —iK
A= :

Also, the direct transformation

where |[K| = 1;

7z —
1 —

9]

M>(z) =

z Example 5, part (b).

Al

maps % to 0; a matrix associated with M is

1 =3
AQZ( 3 4).

-2 1
-5(1 1)
_7 .

So a matrix associated with the required direct transformation is
3

3

1

di
sy (3 )T )

_4_1(81(4—31 —41K+6>

The inverse of A is

6K +4i —3iK+8

Hence any direct transformation that maps %i to % may be written in the form  The fraction ‘71 disappears

(8K +3i)z + (—4iK + 6) at this point, as it is
M(z) = . g ,  Where |[K| = 1. O  simpl Itiple of th
¥ @K i K+ " whole maiix,
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Problem 7

(a) Determine the general form of the direct hyperbolic transformation
that maps —%i to %
(b) Determine the direct hyperbolic transformation that also maps i to 1.

Problem 8 Determine the general form of the direct hyperbolic
transformation that maps % to %

Problem 9 For each of the following pairs of points, either find a
direct hyperbolic transformation mapping the first point to 0 and the
second point to %, or prove that no such transformation exists.

(@ Liand0  ®1and? (@10 +i) and -

6.3 Distance in Hyperbolic Geometry

In the Euclidean geometry of the plane, corresponding to any two points there
exists a non-negative number called the distance between the points. This is
given by the formula

d(z1,22) =lz1 — 22|, z1,22 € C.

In this section, we introduce an analogous formula for the distance in
hyperbolic geometry between any two points of the unit disc Z.

6.3.1 The Distance Formula

We begin by looking at various properties that we would expect any distance
function d to have in any geometry whose points lie in the complex plane C.
‘Ordinary’ Euclidean distance, for example, clearly possesses the following
four properties.

Properties of a Distance Function d

1. d(z1,2z2) > 0 for all z; and z7;
d(z1,7z2) = 0if and only if z; = z».

2. d(z1,22) = d(z2,71) for all z; and z5.

d(z1,23) + d(z3,22) > d(z1,z2) for all z1, 2z and z3.

4. d(z1,23) +d(z3,22) = d(z1,22) if and only if z1,23 and 2> lie in this
order on a line.

s

Property 1 asserts that the distance between any two points in the geometry
is always positive, unless the two points coincide — in which case the distance
between them must be zero.

Property 2 asserts that the distance from z; to z; is the same as the distance
from zp to z7.

367

These functions fix the
point %

So d(z1,722) = d(z2,21)-

Property 3 is known as the
Triangle Inequality.
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Property 3 asserts that the distance from z; to z5 is always less than (or equal 3
to) the distance from z; to another point z3 plus the distance from z3 to z>. In
Euclidean geometry this property may be rewritten in the form

|zt — z3] + 123 — 22| = |z1 — 22l

Property 4 asserts that distance along a line is additive.
However, there are some additional properties that we wish the distance
function in hyperbolic geometry to possess.

Additional Properties of the Distance Function d in Hyperbolic
Geometry

5. d(z1,22) = d(Z1,7) forall z; and z5 in 9.
6. d(z1,22) = d(M(z1),M(zp)) for all z; and zp in 2 and all direct
hyperbolic transformations M in G g. ol

Properties 5 and 6 together assert that hyperbolic transformations of the unit
disc Z do not alter distances between points, since a hyperbolic transformation
is either a direct transformation of the unit disc to itself (as in Property 6) or
the composite of such a function with the conjugation function z + z (which,
by Property 5, preserves distance).

These additional properties enable us to make some useful observations
about the form of the distance function. First, the direct hyperbolic transfor-
mation

Z—21

M: 71— -
1 —z12

, wherez; € 9,

1254 If R is the rotation of the unit disc 2 about ~ Recall that any rotation of

2 about the origin is a

maps z; to 0 and z> to

the origin which sends % to the point 125.22,12 - then overall the composite girect hyperbolic

R o M is a direct hyperbolic transformation which sends z; to 0 and z> to  transformation
22—121 (Subsection 6.2.1).
I-z122 |

By Property 6 it follows that
22 — 121

d(z1,22) =d (0, —
1—-72122

), forall z1,zp € 2.

This shows that the distance d(z1, z2) must be some function of the quantity
22—21
1-z122
Indeed, does such a function exist? In fact, there is essentially only one ‘well-  We verify this assertion in
behaved’ function which yields these properties, and it turns out to be the Subsection 6.3.5.

function tanh ~!.

alone. But what function ensures that d has the Properties 1-6 above?

Definition The hyperbolic distance d(z;,z2) between the points z; and
z7 in the unit disc Z is defined by

22 — 121

d(z1,22) = tanh™! ( _
1—2122




Distance in Hyperbolic Geometry

Of course before we can be sure that this is a reasonable definition of dis-
tance we need to check that d satisfies all the Properties 1-6. Clearly d satisfies
Properties 1, 2, 5, and we shall prove the other properties later in this section;
for the moment we assume that all the properties hold, and we use them to
explore some of the practical consequences of the definition.

First observe that the formula for the distance between two given points is
particularly simple in the case where one of the points lies at the origin. Indeed
we have

Definition The hyperbolic distance d (0, z) between the points 0 and z in
the unit disc Z is
d(0,z) = tanh~!(Jz]).

Since |z| is just the Euclidean distance of z from the origin, this equation
tells us that we can obtain the hyperbolic distance of a point z from the ori-
gin by applying the inverse tanh function to the Euclidean distance of z from
the origin. The graph of the inverse tanh function in the margin reveals two
important characteristics of hyperbolic distance.

1. Near the origin the graph is nearly a straight line with slope 1, so for a point
z near the origin the hyperbolic distance of z from 0 is approximately equal
to the Euclidean distance of z from 0. (This is analogous to the situation on
the surface of the Earth; small portions of the Earth’s surface look flat and
distances between its points are approximately Euclidean.)

2. As the point z approaches the boundary of the disc &, the hyperbolic dis-
tance of z from the origin increases without bound. Indeed, as the Euclidean
distance |z| tends to 1, the hyperbolic distance tanh~'(|z|) tends to oo.
From the point of view of someone living in the hyperbolic geometry, the
boundary points appear to be ‘infinitely far away’ — an observation that is
consistent with the idea that parallel lines ‘meet’ on the boundary.

With the help of a calculator we can easily use the formula
d(0,2) = tanh™(|z]) M

to calculate the hyperbolic distance of a point from the origin.
For example, the hyperbolic distance of % from the origin is given by

1
l = -1 — = —1 ~
d (O, 2) tanh <2> tanh™ " (0.5) =~ 0.549.

But we can also use equation (1) to calculate the hyperbolic distance
between any two points which lie on a diameter of the disc Z.
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Since this formula is
simpler to remember, we
shall tend to use it more
often than the formula for
d(z1,22)!

tanh™'(I21)

U

At the end of this
subsection we prove the
alternative formula

1
a(0.2) = $og, (1)

which you can use if your
calculator does not have a
tanh function.
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Example 1 Find the hyperbolic distance between the points 0.1 and 0.2.

Solution Here we use Property 4, which states that distances along a

(hyperbolic) line are additive. In particular, this implies that 0 0.1 0.2
d(0.1,0.2) =d(0,0.2) — d(0,0.1),
SO We can Write Throughout Section 63
we shall work to the full
d(0.1,0.2) = d(0,02) — d(0,0.1) accuracy of our calculator,
— tanh~! 0.2) — tanh~! 0.1) but we shall record our
results only to 3 or 4
~(0.203 — 0.100 decimal places.
~ (0.102. O

Problem 1 Determine the hyperbolic distances d (O,%i) and
d(0.8,0.9).

By rearranging equation (1) we obtain the formula
|z| = tanhd (0, z). (2)
This can be used to locate a point, given its hyperbolic distance along a

radius of the disc Z. For example, the point a that is at a hyperbolic distance

0.1 from the origin along the positive real axis is given by a = tanh0.1 ~
0.0997.

Problem 2 The following table (plotted in the margin) illustrates how

points bunch up towards the boundary of & as their hyperbolic distance B -
from O doubles. 0 0.197 0380  0.664

Find the two missing entries in the table.

d0,a),a >0 0.2 0.4 0.8 1.6 32
a 0.197... 0.380... 0.664...

If we have to calculate the distance between two points that do not lie on a
diameter of &, then we can use the distance formula given in the definition.

Example 2 Find the hyperbolic distance between the points % and %i .

Solution From the definition of hyperbolic distance we have

L_1;
d(547) =tanh ! | |2
1—4;.1

3 2

— tanh™! ﬂ
6+1i

-1 13
= tanh ( ﬁ>

>~ 0.6819. O
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We can use the distances that we have calculated above to demonstrate that
Pythagoras’ Theorem fails to hold in hyperbolic geometry, at least without
some rewording. For, if we consider the hyperbolic right-angled triangle with
vertices at 0, %i and %, then the square of the hypotenuse is

2
d(3.41) = 0.6819% = 0.4650,

whereas the sum of the squares of the other two sides is We evaluated d (0, %)
2 2 before Example 1, and
a(0.3) +a(0,47) = 05493 +03466> ~ 0.4219. 4 (0.47) in Problem 1.

We shall see later on how Pythagoras’ Theorem can be reformulated in  Subsection 6.4.3,
hyperbolic geometry. Theorem 8

We end this subsection by giving an alternative formula for the hyperbolic
distance of a point z from the origin. First, observe that

|z| = tanhd (0, z)
sinh d (0, 2)
~ coshd ©,z2)
¢d0.0) _ ,=d(0,2)
2d0.2) _ 1
= 2000 1 1
‘We can solve this equation to obtain an expression for d (0, z) in terms of |z|.
By cross-multiplication, we obtain

20D _ 1 = | (€2d(0’Z) + 1),
which implies that
0D —Jz) =1+ 2],
which is equivalent to

200 _ 11zl
1 —|z]

Taking natural logarithms of both sides, we deduce that

1
2d(0,7) = loge< + |Z|),

1 —z]
and so
1 1+z| This formula is useful if
d(0,z) = 3 log, <l—> . (3)  your calculator does not
— Izl have a tanh function.

The formula for d(0, z) is sometimes quoted in this form.

6.3.2 Hyperbolic Midpoints

Having described how to calculate hyperbolic distances we now introduce the
idea of the hyperbolic midpoint of a hyperbolic line segment.
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d(a,m) d(m,b)

Definition A point m is the hyperbolic midpoint of the hyperbolic line

segment joining a and b if m lies on this segment and ¢ "

d(a,m) =d(m,b) = %d(a,b).

For simplicity, we confine our attention to midpoints of line segments that
lie along a diameter of &. The method depends on whether the endpoints of
the segment lie on the same side of the origin O, or on opposite sides of O.

Example 3 Find the hyperbolic midpoint m of the line segment which joins
each of the following pairs of points.

(a) Jiand 3i (b) 4i and —3i
Solution First observe that
d (0,4i) =tanh™" (|4i]) = @nh~'0.25) = 0.255.....,

and
d(0,3i) = tanh™" (|3i]) = nh~' 0.75) = 0,973 ...

(a) Here %i and %i lie on the same side of 0, so the midpoint must lie at a
hyperbolic distance

1 (d (o, %i) +d (o, }Ti)) ~ 1(0.973 +0.255) = 0.614

from O on the radius through %i. That is, m >~ (tanh 0.614)i ~ 0.547i.
(Notice that this is further from O than the Euclidean midpoint 0.5i.)

(b) Here —%i and ‘—111' lie on opposite sides of 0, so the midpoint lies at a of
hyperbolic distance i
L(a(0.-31) —a(0.47)) = $0.973 - 0.255) = 0.359

from O on the radius through —%i. That is, m~ —(tanh0.359)i ~
—0.344;. o -2l

The following strategy generalizes the method used in Example 3.

Strategy To find the hyperbolic midpoint of a line segment joining two
points p, g on a diameter of &, where |p| > |q| :

1. calculate d(0, p) and d(0, q);
2. if p and g lie on opposite sides of 0, then calculate

d = 3(d(0, p) — d(0,9)),
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otherwise calculate
d = 5(d(0, p) +d(0,9));

3. then the hyperbolic midpoint is the point 7 on the radius through 0 and
p at a Euclidean distance tanh(d) from 0.

Problem 3 Find the hyperbolic midpoint m of the line segment which
joins each of the following pairs of points:

0.5 and 0.8; —0.2 and 0.8.

Remark

To calculate the hyperbolic midpoint of a line segment which joins two arbi-
trary points p, g in & we would use a Mobius transformation M to map p to
0 and g to M(q). After calculating the hyperbolic midpoint m’ of the segment
from 0 to M (g), we would then obtain the midpoint of the original segment by
calculating M~ (m’).

6.3.3 Hyperbolic Circles

By analogy with Euclidean circles, we define a hyperbolic circle to be the locus
of points which are a fixed hyperbolic distance from a fixed point.

Definition The hyperbolic circle with hyperbolic radius » and hyper-
bolic centre at c is the set defined by

{z:d(c,z)=r, z€ P}

It is natural to ask what a hyperbolic circle looks like to the Euclidean eye.
In the case of a hyperbolic circle with radius r centred at the origin, it is just
the set of points given by

{z:d0,2)=r, z€D};
that is, the set
{z: tanh_l(lzl) =r, z¢€Y}

or

{z:]z| =tanhr, z e Z}.

This is a Euclidean circle with radius tanh r centred at the origin! Even more
remarkable is the fact that every hyperbolic circle is a Euclidean circle.
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Theorem 1 Every hyperbolic circle is a Euclidean circle in &, and vice
versa.

Proof We have already established the result for circles centred at 0, so let  For the steps in the

C be any hyperbolic circle with hyperbolic centre m # 0. Let the diameter of ~ argument before Theorem
2 through m meet C at the points a and b, and let K be the Euclidean circle I can be reversed.

which has ab as a diameter and (Euclidean) centre p.

Hyperbolic
circle Ccentred
atm C

z-m
I—mz

M(z) =

Euclidean

circle K %
centred at the
midpoint p
of ab
9

We will show that C is a Euclidean circle by showing that it coincides with
K. To do this let M be the hyperbolic transformation defined by

z—m
, 1€9,

M@ =17,

and let a’ and b’ be the images of a and b under M.

Since M preserves hyperbolic distances, and maps m to O, it must map C
to a hyperbolic circle C” with centre O. But we already know that such a circle
is also a Euclidean circle. Moreover, since the line segment ab passes through
m, its image a’b’ passes through O and is therefore a diameter of C’.

Also, since M is angle-preserving, and since ab meets K at right angles, it  Theorem 2, Subsection
follows that M maps K to a circle K’ which meets a’b’ at right angles at the ~ 6.1.1
points a” and b'. This implies that a’b’ is also a diameter of K’. It follows that
C’ coincides with K/, and hence that C coincides with K.

Conversely, let K be any Euclidean circle in & with Euclidean centre p # 0,
and let the diameter of 2 through p meet K at the points a and b. If C is
the hyperbolic circle through a and b with hyperbolic centre the hyperbolic
midpoint m of ab, then we can use the same argument as before to deduce that
K coincides with C, and so we conclude that K is a hyperbolic circle. |

The above proof shows that the Euclidean and hyperbolic centres of a circle
lie on the same line through O. This observation enables us to write down the
following strategy for finding the Euclidean centre and radius of a hyperbolic
circle.
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Strategy To find the Euclidean centre and radius of a hyperbolic circle C
with hyperbolic centre m:

1. find the points a, b where Om meets C;
2. the Euclidean centre of C is the Euclidean midpoint of ab;
3. the Euclidean radius of C is %|a — b|.

Example 4 Find the Euclidean centre and radius of the hyperbolic circle

. 1y _ 1
C=[Z.d<z,§)—§}.
Solution Here the hyperbolic centre m is the point %, and so
d(,m) = tanh™" (1) = 0.549.

Since the hyperbolic radius of C is equal to % it follows that Om meets C
at the points a, b, where

d(0,a) ~0.549 — 0.5 = 0.049,
d(0,b) >~ 0.549 4+ 0.5 = 1.049.
So
a =~ tanh 0.049 ~ 0.049,
b ~ tanh 1.049 ~ 0.782.
Since a and b both lie on the same side of 0, we have

Euclidean centre = %(a +b) ~0.415,

Euclidean radius = §|a — b| ~ 0.366. 0

Problem 4 Determine the Euclidean centre and radius of the hyper-
bolic circle
—ferafent) 4]

A similar strategy can be used to find the hyperbolic centre and radius of a
Euclidean circle.

Strategy To find the hyperbolic centre and radius of a Euclidean circle K
with Euclidean centre p:

1. find the points a, b where Op meets K;
2. the hyperbolic centre of K is the hyperbolic midpoint of ab;
3. the hyperbolic radius of K is %d (a,b).

375
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Example 5 Find the hyperbolic centre and radius of the Euclidean circle
Kz{z: ‘z—i—%i‘:}—‘}.

Solution Here the Euclidean centre p is the point —%i, and the Euclidean

radius is J—P so Op meets K at the points a = —%i and b = —%i. Thus
d(0,a) = tanh™"! (‘—%i‘) — tanh~1(0.25) ~ 0.255 . . .;
d(0,a) = anh™" (|~ i]) = nh ™' 0.75) = 0.973....

Since a and b both lie on the same side of O, the hyperbolic centre m of K is
given by
d0,m) = %(d(O,a) +d(0,b)) ~0.614,
so that
hyperbolic centre m >~ —i - tanh 0.614 ~ —0.547i;

hyperbolic radius = 1[d(0,a) — d(0,b)| =~ 0.359. O

Problem 5 Determine the hyperbolic centre and radius of the
Euclidean circle

e fesk-1-4)

We now use the fact that hyperbolic circles are also Euclidean circles to
prove the Triangle Inequality property of hyperbolic distance.

Theorem 2 For all z;, 22,23 in Z:

d(z1,23) + d(z3,22) = d(z1,22).

Proof First let M be a hyperbolic transformation that maps z; to 0, and let
M (z2) = b and M(z3) = c¢. Then Ob is a straight line.

Property 3 of a distance
function, Subsection
6.3.1.
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Taking O as centre we draw a hyperbolic circle C, through ¢ to meet Ob
at the point ¢; then d(0,q) = d(O, c). Similarly, taking b as centre we draw
a hyperbolic circle Cy through ¢ to meet Ob at the point p, where d(b, p) =
d(b,c).

hyperbolic circle
with hyperbolic
centre O

hyperbolic circle
with hyperbolic
centre b

Since both circles are also Euclidean circles with centres on Ob, and since
the circles intersect, it follows that

d(0,¢) +d(c,b) = d(0,q) +d(p,b)
>d(0,q) +d(g,b)
=d(0, b).

Since M preserves hyperbolic distances, we deduce that

d(z1,23) +d(z3,22) = d(z1,22),

as required. |

We can deduce from the Triangle Inequality (Property 3) that in hyperbolic
geometry the curve of shortest length or ‘geodesic’ between two points of & is
the segment of the d-line that joins them. Rather loosely, we can express this
fact as follows: ‘Distances are measured along d-lines in hyperbolic geometry.’

6.3.4

In Euclidean geometry the image A’ of a point A under reflection in a line ¢ is
an equal distance from the line and on the opposite side of the line, so that ¢
is the perpendicular bisector of the line segment AA’. We now prove that the
same result also holds in hyperbolic geometry, where the distances and lines
are hyperbolic ones.

To state the result, we need the concept of hyperbolic line segment, or
d-line segment; this is just that part of the d-line through two points which
lies between those points.

Reflected Points in Hyperbolic Geometry
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We have drawn this figure
in the case that p and ¢ lie
between O and b. The
argument also holds if ¢
lies beyond b or p

beyond O.

Recall that hyperbolic
circles are Euclidean
circles, by Theorem 1.

Property 6, Subsection
6.3.1

We omit a formal
definition of ‘length of a
curve’, and so a proof of
this claim.
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Theorem 3 Let A and A’ be points in the unit disc Z that are images
of each other under reflection in a d-line £. Then ¢ is the hyperbolic
perpendicular bisector of the hyperbolic line segment AA’.

Proof Let the d-line ¢’ through A and A" meet ¢ at P.

Now A and A" map to each other under hyperbolic reflection in ¢, and P
remains invariant. But hyperbolic reflection maps d-lines to d-lines, and there
is exactly one d-line through A and A’. Thus ¢’ must map onto itself under the
hyperbolic reflection in ¢, and the hyperbolic line segment PA must map onto
the hyperbolic line segment PA’.

But hyperbolic reflection preserves angles and lengths. Since lengths are
preserved, it follows that PA and PA’ must be of equal hyperbolic length.
Also, since the angles that PA and PA’ make with the same part of £ at P map
onto each other, they must be equal too; since they must add up to a total angle
7 at P (because APA’ is a hyperbolic line segment through P), it follows that
PA and PA’ both meet ¢ at right angles. |

We already know one case where we can find the hyperbolic perpendicular
bisector of a hyperbolic line segment AA’. This is the case where one of the
vertices, say A’, coincides with O, the centre of the disc 2. In that case, the
reflection that sends A (represented by the complex number §) to O is given
by M(z) = %=, for some a = a + ib, with |a| > 1.

The equation of the d-line obtained from « in which the reflection takes
place is, as we saw earlier,

x2+y2 —2ax —2by+1=0.

Since M (B) = 0, it follows from the formula for M that — 1 = 0.

More generally, suppose we want to find a hyperbolic reflection that
exchanges the points p and ¢ in 2. Again, the hyperbolic reflection that does
this must be of the form

az—1
M@) = ——
7—a
The condition M (p) = g implies
ap—1
9=—=——>:
p—a
which is equivalent to
1+ pg=aqg+ap. 4)
The condition M (q) = p implies
ag — 1
pP=—=—"=:
q—a

which is equivalent to
l+gp=ap-+aqg. (5)

By Corollary 1,
Subsection 6.1.1

Subsection 6.2.1,
Lemma 1

ex=a+ ib
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Equations (4) and (5) can be solved for « provided that pp —gg # 0. Indeed,
if we subtract ¢ times equation (5) from p times equation (4), and then divide
by pp — qq, we obtain
woP=a4tprap—q)
PP —49

If pp —qq = 0, then |p| = |gq|, in which case the sought-for reflection
is simply Euclidean reflection in the diameter of & which bisects the angle
/p0gq.

We summarize this discussion in the following lemma.

Lemma1l Reflection Lemma
Let p and ¢ be points in the unit disc 2. If |p| # |g|, then the hyperbolic
reflection that maps p and g onto each other is given by

- - o
M(z) = Oiz—_ where o = 21 —|:pq(1_) q).
I—Q PP —49

The d-line in which this reflection takes place has equation

x?+y?> —2ax —2by +1=0, wherea =a+ib.

Example 6 Determine the equation of the hyperbolic perpendicular bisector
of [0.2, 0.9], the line segment from 0.2 to 0.9.

Solution Using the Reflection Lemma, with p = 0.9 and ¢ = 0.2, we
find that
0.74+09-0.2-0.7
T T 081-004
So the equation of the d-line which is the (hyperbolic) perpendicular bisector
of [0.2,0.9] is

~ 1.0727.

2+ y2 —2ax +1=0, wherea >~ 1.0727. O

Problem 6

(a) Determine the equation of the hyperbolic perpendicular bisector £ of
the line segment [0.5, 0.8].

(b) Deduce the equations of the hyperbolic perpendicular bisectors of
the line segments [—0.8, —0.5] and [0.57, 0.8i].

Problem 7

(a) Let A be a pointin Z, £ a d-line through A, and 0 < 6 < 7. Prove
that there are exactly two d-lines through A that make an angle 6
with £.
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Notice that in the special
case when ¢ = 0, this
formula gives o = 1/p, as
it should.

By Lemma 1,
Subsection 6.1.1

We often write [z, z2] to
mean the Euclidean line
segment in C with
endpoints z1,22.
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(b) Prove that, if AABC is a d-triangle, then there is a unique d-line
¢ that bisects ZBAC, and that reflection in ¢ maps the d-lines
containing BA and CA onto each other.

6.3.5 Proofs

In Subsection 6.3.1 we asserted that the hyperbolic distance between two
points is invariant under hyperbolic transformations. We now supply a proof
of this fact.

Theorem 4 The formula for hyperbolic distance
22 — 21

d(z1,22) = tanh™! ( _
1—z122

) , Wwherez|,z0 € 9,

satisfies Property 6; that is, See Subsection 6.3.1.
d(z1,22) = d(M(z1), M(z2))

for all z; and z3 in Z and all direct hyperbolic transformations M in G ¢.

Proof First, we define the expression R(z1,z2) to be

22— 121

R(z1,22) = %23

,  wherez|,z0 € 2. (6)

It follows from the definition of d(z1, z2) above that We omit the details of
this, for brevity.

d(z1,22) = tanh™ " (R(z1,22));
hence d possesses Property 6 if we can prove that
R(z1,22) = R(M(z1), M(22)) (N

forall 71,20 € Zandall M € G g.
So, let 71,220 € Z and M € G ¢. Then the direct hyperbolic transformation
M; in G ¢ given by

Z—1Z21

My:z— —, €9,

1-71z

maps z1 to 0, and z; to g
. 1 _.ZIZZ . . .
Also, the direct hyperbolic transformation M5 in G ¢ given by
— M
M2 e Z—i]), S @,
1—M(z1)z

where M € Gy so that |M(z1)| <1, maps M(z;) to 0, and M(z) to

M(z2)—M(z1)
1-M(z)M(z2)"
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Now, the composite mapping Mo M o M, !is also a transformation in G 9.
It maps Z to 2, 0 to 0, and

2= M(z2) — M(z1)
1—Zi2 1 - MEDM(z2)

But any direct transformation in G ¢ that maps O to 0 is simply a (Euclidean)
rotation; so it follows from equation (8) that

_ M(z2) — M(z1)
1—-M@)M(z2) |

It follows from the definition of R that we can rewrite equation (9) in the

®)

2 — 11
1 -z122

©))

desired form
R(z1,22) = R(M(z1), M (22)). u

Next, we stated earlier that the function d that we used to define the hyperbolic
distance function in & was ‘essentially’ the only ‘well-behaved’ function with
Properties 1-6 of Subsection 6.3.1. We now explain why this is so.

Theorem 5 Let d(z1,z2) be any ‘well-behaved’ function defined for all
71,22 € 2 that satisfies Properties 1-6 of Subsection 6.3.1. Then
22— 21

d(z1,22) = K tanh™! < —
1—7120

) , for some K > 0. (10)

Proof Letzy,z2 € Z. Since hyperbolic distances are invariant under Mobius
transformations, d(z1, z2) is unchanged if we map z; to the origin by the direct
hyperbolic transformation (a Mdbius transformation)
Z—1Z21
> —.
1 -7z
Next, hyperbolic distances are invariant under rotations of &, since such rota-
tions are hyperbolic transformations. So, we may also assume that z; lies on
the positive real axis.

Hence, in order to prove the formula (10) it is sufficient to prove that

d(0,z) = K tanh™!(z), for some K > O and all z € (0, 1). an

For simplicity, we will now simply write d(z) in place of d(0, z) whenever the
context means that no confusion will arise.
Let 0 < a,c < 1. Then the direct hyperbolic transformation (a M&bius

transformation)
z+a

M(z) = T z7€9
maps O to a, and ¢ onto b = fj;c Since M maps [0, 1) one-one to [a, 1), we

must havea < b < 1.
Now, hyperbolic distances are additive along a line, so that

d(b) = d(a) + d(a,b). (12)
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Note that M- ! maps 0 to
72— 21

z1, and to 2.

1—-2120

See Case 1 of Theorem 2,
Subsection 6.2.1.

We defined R in
equation (6).

By Property 6

) c 1
\ ) \
) a b 1

By Property 4
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But, since hyperbolic distances are invariant under hyperbolic transformations,
we have By Property 6

d(a,b) =d(0,c)
=d(o),

so that it follows from equation (12) that
In this equation, @ and ¢

d cta =d(a) +d(c). (13) are independent variables.
1 +ac

Now we will assume that the function d is differentiable on [0, 1). If we then  This is where we use the

differentiate both sides of equation (13) with respect to the variable ¢, we get ~ hypothesis that the
distance function is

J (€ +a (14ac)-1—(c+a)-a — 04 d'©): cwell behaved .
1 +ac (1 +ac)?
and we may rewrite this equation in the form
J c+a _ (1 4 ac)? 4.
1 +ac 1 —a?
If we substitute O for ¢ into this equation, we get Here d/, (0) is the right
dy (0) derivative of d at 0.

d'(a) =

1 —a?
K
= , for some real K.

1 —a?
Since d must be an increasing function on [0, 1), we must have K > 0. But  yis follows from
we cannot have K = 0, as it would then follow from the above equation that  Property 1.
d'(a) =0foralla € [0,1) - so that d(0, a) takes the same value (which would
have to be 0) for all a € [0, 1). Hence

d'(a) =

1 = for some K > 0, and alla € (0,1).
—da

If we then integrate both sides of this formula from 0 to z, we get

d(z) = K tanh~!(z), for some K > 0, and all z € [0, 1). u

Remarks
1. For any (complex) point z near the origin, equation (10) gives
d(0,z) = K tanh ™' (|z])
~ K|zl

so it is natural to make the choice K = 1 for the definition of distance in

hyperbolic geometry. Then d(0, z) = tanh~!(|z]), forall z € 2.
2. When d(0,z) = tanh~!(|z]), z € Z, we can reformulate the equation

1

Fen .
d'(z) = 1—|z|2 in the form In advanced texts, the
|dz| formula for hyperbolic

=, distance is often used in
1—|z)?

o o o ) o ) this infinitesimal form.
relating infinitesimal hyperbolic distances ds to infinitesimal Euclidean
distances |dz| in Z near any point z € Z.

ds
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6.4 Geometrical Theorems

6.41 Triangles

A triangle in hyperbolic geometry, or a d-triangle, consists of three points
in the unit disc Z that do not lie on a single d-line, together with the seg-
ments of the three d-lines joining them. One or two of the sides may be
segments of diameters of Z; but, in general, the sides are parts of Euclidean
circles.

Notice that if AABC is a d-triangle, then the extended sides can meet only
at A, B and C. For if the d-lines through A and B and through B and C meet
at a point P distinct from B, then the two d-lines meet at B and P. But we saw
earlier that there is a unique d-line through any two points of Z; so it would
follow that AB and BC are part of a single d-line, a possibility that we have
already excluded. So the sides of a d-triangle cannot ‘overlap’.

One of the basic results in Euclidean geometry is that the sum of the angles
of a (Euclidean) triangle is 7. This is not true for d-triangles in hyperbolic
geometry!

Theorem 1 The sum of the angles of a d-triangle is less than .

Proof By the Origin Lemma, we can map the d-triangle AABC onto a
d-triangle AOB’'C’ by any hyperbolic transformation that sends A to the origin
O. Since hyperbolic transformations preserve angles, the sums of the angles
of the two d-triangles are the same.

Then OB’ and OC’ are parts of Euclidean lines, and B'C’ is part of a
Euclidean circle that ‘bends towards’ the origin. Thus the angles at B’ and
C’ of the d-triangle AOB'C’ are less than the corresponding angles of the
Euclidean triangle AOB'C’, and the angles of both triangles at O are the
same.

Since the sum of the angles of the Euclidean triangle AOB'C’ is 7, it follows
that the sum of the angles of the d-triangle AOB'C’ is (strictly) less than 7.
The result then follows. |

Problem 1 Prove that each external angle of a d-triangle is greater
than the sum of the opposite two internal angles. (See the diagram on the
left below.)

Subsection 6.1.2,
Theorem 4

Subsection 6.1.2,
Lemma 2
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o>p+y

Problem 2 Let AABC and AABC' be two hyperbolic triangles such
that A, C and C’ lie on a d-line in this order. Let the angles at A, B, C
in the first triangle and at A, B, C’ in the second triangle be «, 8, ¥ and
a, B+ B,y respectively. Show thata +B8+y > a+ B+ B +y . (See
the diagram on the right, above.)

It will be seen from Problem 2 that the larger triangle, AABC’, has the
smaller angle sum. This is true in general, not only when one triangle fits
neatly inside another. In fact, it can be shown that the area of a hyperbolic
triangle with angles «, 8 and y is proportional to 7 — (¢ + B + y), and we
shall prove this in Subsection 6.5.1. You may for the moment use the following
result as a useful memory aid:

small triangles have angle sums close to (but less than) , and triangles with
large areas have angle sums close to zero.

In Euclidean geometry, we can also prove that the sum of the angles of a
(Euclidean) quadrilateral equals 2. Now, a quadrilateral ABCD in hyper-
bolic geometry, or a d-quadrilateral, consists of four points A, B,C, D in &
(no three of which lie on a single d-line), together with the segments AB, BC,
CD and DA of the four d-lines joining them. We require also that no two of
these segments meet except at one of the points A, B, C or D.

How large can the sum of the angles of a d-quadrilateral be?

Theorem 2 The sum of the angles of a d-quadrilateral is less than 2.

We shall assume this fact
Proof Any d-quadrilateral can be divided into two (non-overlapping) without proof; see the

d-triangles by one or other of the d-lines joining alternate vertices. figures below.
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C

The angles of each d-triangle sum to less than m. The angles of the
d-quadrilateral belong to one or other d-triangle, or partly to one and partly
to the other. It follows that the angles of the d-quadrilateral sum to less
than 2. |

In hyperbolic geometry there are many theorems about d-triangles that are
analogues of the corresponding theorems about Euclidean triangles, such as
the following.

Theorem 3 Let AABC be a d-triangle in which ZABC = ZACB. Then
the sides AB and AC are of equal length.

Proof Let D be the midpoint of the d-line segment BC. By applying the Ori-
gin Lemma, if necessary, we may assume that D coincides with O, the centre
of the disc Z. (Although this is not strictly necessary for the proof, it simplifies
the picture.) Then BC is part of a diameter of 2.

Let the d-line £ be the perpendicular bisector of BC; it is the diameter of
2 perpendicular to BC. Reflect (in both the Euclidean and hyperbolic senses)
the triangle AABC in the d-line ¢. Because reflections preserve length, and
DB =DC, it follows that B and C change places. Suppose that A moves to
some point A’. Since reflection preserves angles, it follows that ZA'BC =
Z/ACB. Also, recall that we are given that ZACB = Z/ABC, so ZA'BC =
ZABC. But this can happen only if A" lies on the d-line through A and B.
Similarly, /A’CB = ZABC = ZACB, so A’ must also lie on the d-line through
A and C. This means that A and A" must coincide. Hence the d-line segment
BA reflects to the d-line segment CA, and vice versa; so these d-line segments
have the same length. |

Problem 3 Let AABC be a d-triangle in which the sides AB and AC
have equal hyperbolic length. Prove that ZABC = ZACB.
Hint:  Consider reflection in the d-line that bisects angle Z BAC.

The notion of mapping one figure onto another exactly by a transformation
in the geometry (for example, the reflection in the d-line £ in the proof of
Theorem 3) is one that we met previously: namely, congruence.

Definition Two figures in the unit disc & are d-congruent if there is a
hyperbolic transformation that maps one onto the other.
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‘We shall use this fact later.

This is the hyperbolic
analogue of the Euclidean
result in Example 1,
Subsection 2.1.1.
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For example, if A, B, C and D are four points in Z such that the hyperbolic
distances d(A, B) and d(C, D) are equal, then the d-line segment AB is con-
gruent to the d-line segment CD. For, as we saw earlier, there is a hyperbolic
transformation ¢ that maps A to C and the d-line through A and B onto the
d-line through C and D, in such a way that D and #(B) lie on the same side of
C along #(¢). Then, since B and D are the same hyperbolic distances from A
and C, respectively, it follows that # must map B onto D. Thus AB and CD are
congruent.

Now, since hyperbolic transformations preserve angles, it follows that if
two d-triangles do not have corresponding angles equal (that is, they are not
similar), then they certainly cannot be d-congruent.

However, the following result is still very surprising, because the analogous
result is false in Euclidean geometry.

Theorem 4 Similar d-triangles are d-congruent.

Proof We have to prove that if the d-triangles AABC and APQR have the
angles at A, B and C and the angles at P, Q and R equal, respectively, then the
two d-triangles are d-congruent.

We may apply a hyperbolic transformation to map A to the origin O; this
does not change the angles of the triangle. To avoid complicated notation, we
shall still denote this image d-triangle by AABC.

We can also apply a hyperbolic transformation to map P to the origin and the
radius on which Q lies to the radius on which B lies. By reflecting in the d-line
through O and B, if necessary, we can deduce from the fact that the angles at
A and P are equal that the image of R lies on the same radius as (the image of)
C. Again, we shall denote the image d-triangle still by the notation APQR, for
simplicity.

The following figure shows the result of the transformations described
above.

R lies
on this
radius

0 lies
on this
radius

To prove the result, we have to show (in terms of the points obtained by the
above preliminary mappings) that B = Q and C = R. We proceed by considering
the various possible situations that would arise if the result were false.

(a) The d-line segment BC might lie between the origin and the d-line segment
OR. (The argument is similar if QR lies between O and BC.)

6: Hyperbolic Geometry: the Poincaré Model

Subsection 6.1.2,
Theorem 5, and the
Remark following that
theorem.

Recall that two Euclidean
figures are similar if one
is a scale copy of the
other; in particular, two
Euclidean triangles are
similar if they have
corresponding angles
equal.
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In this case,
/RCB=mn—/0CB and Z/CBQ =nmx — Z0OBC,
so the angle sum of the d-quadrilateral CBOR is
(m — £LOCB) + (# — LOBC) + LOQR + ZORQ = 2m,
which is impossible, by Theorem 2.
(b) B and Q may coincide, but not C and R. (The argument is similar if R lies
between O and C, or if C and R coincide, but not B and Q.)

In this case, if C lies between O and R, the external angle at C of the
d-triangle ABCR is less than or equal to the sum of the opposite two
internal angles, which is impossible by the result of Problem 1.

(c) The d-line segments BC and QR may cross.

Let the point of intersection of BC and QR be X. In this case, the exter-
nal angle at B of the d-triangle AXBQ is less than or equal to the sum
of the opposite two internal angles, which is impossible by the result of
Problem 1.

It follows that the only possibility is that B = Q and C = R, as required. W

In the following diagram, all the d-triangles have the same angles at
their vertices, and so are similar. It follows from Theorem 4 that they are
d-congruent to each other.

This looks very unlikely, since the triangles ‘seem’ to be getting smaller as
they move away from the origin towards 4’; however, it is a consequence of
the way in which we defined both hyperbolic transformations and hyperbolic
distance that all the triangles have sides of the same (hyperbolic) lengths as
well as angles of the same sizes. This results from the fact that equal Euclidean
distances on a ruler correspond to increasing hyperbolic distances as the ruler
is moved outwards.

387
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Asymptotic Triangles

The vertices of d-triangles lie in the unit disc . However, it is often useful to doubly asymptotc
talk about figures in & with three sides that are d-lines but where one or more
of the Euclidean circles or lines of which they are part meet on ¢ rather than
in 2. In this sense, we say that they are triangles ‘with one or more vertices on
%”; such triangles are called asymptotic triangles.
If an asymptotic triangle has one vertex on % is said to be simply asymp-
totic, if it has two vertices on % doubly asymptotic, and three vertices on &
trebly asymptotic. &
There is no hyperbolic transformation that maps points of ¢’ to points of &,

trebly asymptotic

simply asymptotic
or vice-versa; so asymptotic triangles are essentially different from ‘ordi-
nary’ d-triangles. However, it turns out that many of the results that hold for
d-triangles hold also for asymptotic triangles, and that their proofs are similar.

Theorem 5 The angle sum of an asymptotic triangle is less than 7. The We omit the proof of this

angle sum of a trebly asymptotic triangle is zero. result. The proof of the
first assertion is similar to

that of Theorem 1.

Problem 4 Prove that two doubly asymptotic triangles are
d-congruent if and only if they have the same angle at their vertex in Z.

In hyperbolic geometry you should be careful not to assume that results are
valid simply because they hold in Euclidean geometry. Sometimes asymptotic

triangles are useful in constructing counter-examples. We shall do exactly this at
the end of
6.4.2 Perpendicular Lines Subsection 6.4.2.

In Euclidean geometry, two given lines £ and ¢’ have a common perpendicular
if and only if they are parallel to each other. In hyperbolic geometry, the sit-
uation is somewhat different, as you will see. First, we must define the term
common perpendicular in hyperbolic geometry.

Definition Let £ and £’ be two d-lines, and suppose that there exist points
A on £ and A’ on £ such that the d-line segment AA’ meets £ and ¢’ at right
angles. Then AA’ is a common perpendicular to £ and ¢'.

Theorem 6 Common Perpendiculars Theorem
Two d-lines have a common perpendicular if and only they are
ultra-parallel. This common perpendicular is unique.

Proof First we show that if two d-lines £ and ¢’ have a common perpendic-
ular, then they are ultra-parallel. Let the common perpendicular be the d-line
segment AA’, where A is on ¢ and A’ is on ¢'. By the Origin Lemma, we can
find a transformation r € G ¢ which maps the point A to the origin, O. Then
the d-line r(£) is a diameter of the disc &, as shown on the left below. The
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d-line r(¢') is part of a Euclidean circle whose centre R lies somewhere out-
side the disc Z on the continuation of the diameter joining O to r(A’). The
radius of this Euclidean circle is less than RO, and RO is perpendicular to r(€£),
so this circle cannot meet r(£), and hence r(£) and r(¢) are ultra-parallel. Tt
follows that the d-lines ¢ and ¢’ are ultra-parallel.

Secondly, we show that if two d-lines ¢ and £’ are ultra-parallel, then they
have a common perpendicular. As shown in the figure on the right above, let
the boundary points of £ be A and B, and the boundary points of ¢/ be A’ and
B’. Consider the Euclidean lines AB and A’B’.

If the Euclidean lines AB and A’ B’ are not parallel, then they meet at a point
R outside &, as shown on the right above. Let RT be a tangent from R to the
boundary circle %. Consider the circle C with centre R and radius R7. This
circle meets % at right angles, so the part of it in & is a d-line, £” say.

The Euclidean triangles ARTB and ARAT are similar, since ZTRB = ZART
(being the same angle) and ZRTB = ZRAT (since the exterior angle equals the
interior opposite angle for a tangent and chord of a circle). Hence, in particular,
RB/RT = RT/RA so that RA - RB = RT?. In other words, A and B are inverse
points with respect to the circle with centre R and radius RT.

Inversion in C exchanges A and B, and exchanges A" and B’. So it maps the
d-line £ to itself, and the d-line ¢’ to itself. It follows that £” intersects £ and ¢’
at right angles, and so a common perpendicular to the d-lines £ and ¢’ exists.
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If the Euclidean lines AB and A’ B’ are parallel, then there is a diameter ¢” of
2 that is the perpendicular bisector of AB and A’ B’. It therefore passes through
the centres R and R’ of the Euclidean circles of which £ and ¢’ are parts, and
so it is perpendicular to both £ and ¢'. Since €” is a diameter of 2 it is a d-line,
and the common perpendicular we seek exists.

Finally, the common perpendicular to two ultra-parallel lines is unique. For,
if there were two, and they were disjoint (as shown on the top illustration &
alongside), they and the two ultra-parallel lines would form four sides of a
hyperbolic quadrilateral all of whose angles were right angles. But then the
angle sum of such a quadrilateral would be 27, which is impossible. Similarly,
if there were two common perpendiculars that intersected each other (as shown
in the lower illustration alongside), we should have a d-triangle whose angle
sum was > 1, which is impossible.

It follows that the common perpendicular to two ultra-parallel lines is
unique. ]

In Euclidean geometry, the altitudes of a triangle play an interesting role;
this is also the case in hyperbolic geometry.

Before we can talk about altitudes, we need to prove that through any point  This fact is needed in
P not on a given d-line ¢ there is necessarily another (unique) d-line p such order to prove that

that p meets £ at right angles. altitudes of a given
d-triangle exist.

By a preliminary hyperbolic transformation, if necessary, we may assume
that P is the origin. Let £ have boundary points A and B, and let R be the
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centre of the Euclidean circle of which ¢ is a part. Let the (Euclidean) line OR
meet £ at X; OR and ¢ intersect at right angles at X, so that the d-line segment
OX is a perpendicular from O to £. The diameter which includes OX meets ¢
at right angles, as required. It is unique because no other line through O can
meet £ at right angles.

Thus it is possible to ‘drop’ a perpendicular from a point to a d-line, and so
it makes sense to talk about the altitude through a vertex of a d-triangle.

Definition Let ¢ be a d-line which passes through one vertex A of a
d-triangle AABC and which is perpendicular to the side BC at the point D.
The d-line segment AD is an altitude of the triangle AABC.

Theorem 7  Altitude Theorem

Let the sides AB and AC of a d-triangle AABC be of equal hyperbolic
length, and let the angle at A be 6. Then the hyperbolic length of the altitude
through A of the triangle is less than some number that depends only on 6.

Proof Map the d-triangle AABC onto a d-triangle AOB'C’ by any hyperbolic
transformation that sends A to the origin O. Since hyperbolic transformations
preserve (hyperbolic) lengths and angles, OB’ and OC" are of equal length and
/B'OC =6.

Let the diameter m of 2 that bisects the angle /B’OC’ meet the d-line
segment B'C’ at D’. It is clear, by symmetry, that the d-line segment OD’
must be perpendicular to the d-line segment B’C’, so that OD’ (which is part
of a Euclidean line) is the altitude of the d-triangle AOB'C’ through O. Since
d-triangles have a unique altitude through each vertex, the altitude AD of the
d-triangle AABC must map onto the altitude OD’, and so they are of equal
hyperbolic length.

Then the length of OD’ is less than the length of OD”, where D" lies on
m and the d-line joining the boundary points B” and C” of the lines OB’ and
OC’ (as shown). It follows that the hyperbolic length of the original altitude
AD is less than the hyperbolic length of OD”, which clearly depends only
on6. ]

Problem 5 Prove that the d-triangles AOB'D’ and AOC'D’ in the
proof of Theorem 7 are d-congruent.

Problem 6 Determine a (numerical) upper bound for the hyperbolic
length of the altitude AD of an isosceles d-triangle AABC in which AB
and AC are of equal hyperbolic length and the angle at A is a right angle.
Hint: This situation is a special case of that in Theorem 7: 6 = 7/2,
so B” and C” in the proof of that theorem are 1 and i, respectively.

In Euclidean geometry the altitudes of a triangle are concurrent; but this is
not true in general in hyperbolic geometry. For example, let A, B and C be
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the points —1, 0 and 1% Then the altitudes through A and C of the d-triangle
AABC are the d-lines with endpoints —1, —i and %, %, respectively. These
d-lines do not meet anywhere in & or on €. So certainly the altitudes of a
doubly asymptotic triangle are not concurrent.

Finally, if we choose a (non-asymptotic) d-triangle with one vertex at O
and the other two vertices in & but very close to A and C, it is clear that the

altitudes of this d-triangle cannot be concurrent.

6.4.3 Right-Angled d-Triangles

In Euclidean geometry, Pythagoras’ Theorem plays a central role in many
calculations. As we have seen, however, the theorem does not hold in hyper-
bolic geometry if we simply replace Euclidean lines by d-lines and Euclidean
distances by hyperbolic distances in its statement.

However it seems reasonable to imagine that hyperbolic functions might
play some role in a version of Pythagoras’ Theorem in hyperbolic geometry,
and indeed this is the case.

Theorem 8 Pythagoras’ Theorem
Let AABC be a d-triangle in which the angle at C is a right angle. If a,b
and c are the hyperbolic lengths of BC, CA and AB, then

cosh 2¢ = cosh 2a x cosh 2b.

Problem 7 Use Pythagoras’ Theorem to determine the hyperbolic
lengths of the sides of the d-triangle with vertices 0, (1 + i)/2+/2 and
(—1 4 i)/5+/2, which has a right angle at O.

Problem 8 Use Pythagoras’ Theorem to determine the hyperbolic
lengths of the sides of the d-triangles with vertices at the following

points:
(a) 0, % and %i; (b) 0,r and ir (where 0 < r < 1).

We can use these ideas to provide another solution to Problem 6 above.

Example 1 Prove that, if AABC is an isosceles d-triangle in which AB and
AC are of equal hyperbolic lengths and the angle at A is a right angle, then

the hyperbolic length of the altitude AD is less than L cosh™! (ﬁ) ~ 0.4407
(which is § log, (1+v2)).

Solution The given triangle is d-congruent to the d-triangle AOB'C’ with
vertices at 0,7 and ir, for some r with 0 < r < 1. Let OD’ be an altitude of
this triangle. Let the hyperbolic lengths of the sides OB" and OC’ be denoted
by b, of side B'C’ by a, and of the altitude OD’ by d.
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Paragraph following
Example 2 of Subsection
6.3.1.

We prove Theorem 8 later
in this subsection.

In Problem 6 we found
that this upper bound

% cosh™! (ﬁ) was equal

to tanh ™1 (ﬁ — 1); in
fact the two numbers are
equal. Such unexpected
identities involving
hyperbolic functions
occur surprisingly often!
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It follows from Problem 5 (or by symmetry) that D’ is the Euclidean mid-

point and the hyperbolic midpoint of the d-line segment B’C’, so that the d-line C
segments B’ D’ and C’ D’ both have hyperbolic length %a. " L1a
By applying Pythagoras’ Theorem to the d-triangle AOB'D’, we find that
cosh2b = (cosh2d) x (CoshZ (%a)) ,
= (cosh2d) x cosha. (1) 2
d
Next, by applying Pythagoras’ Theorem to the d-triangle AOB'C’, we find o - -
that
cosh2a = cosh? 2b. 2)
Now, we may rewrite equation (2) in the form Here we use the identity
2 2
2 . 2nr. cosh”2x = 2cosh“x — 1,
2cosh“a — 1 = cosh” 2b; 3) forx € R.
and if we then substitute for cosha from equation (1) into equation (3),
we obtain
h2b\?
o8 — 1 = cosh?® 2b.
cosh 2d

We may rearrange this equation in the form
(cosh 2d)2 B 2
cosh2b ) 14 cosh?2b’
ﬁ cosh 2b

V(1 4 cosh? 2b)
V2

1
(1 + cosh22b>
< V2.

It follows that d < % cosh™! (ﬁ) ~ 0.4407, as claimed. O

so that

cosh2d =

Pythagoras’ Theorem takes a simple, if unexpected, form in hyperbolic
geometry. Moreover, the relationship closely approximates the Euclidean one
if the sides of the triangle are very small, which is what you would expect
because small hyperbolic triangles have angle sums nearly equal to 7 and so
are nearly Euclidean themselves. To see the relationship, we expand the cosh  Recall that

terms as power series, using the formula 2 4
X X
(2C)2 COShX:1+§+$+
cosh2c =1+ + higher powers of 2c. ) ’
2! 00 x2n
If we ignore the higher powers of 2¢, as we may when 2c¢ is very small, = et 2n)!

we find
cosh2c >~ 1+ 202 for all x € R.
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and

cosh2a x cosh2b ~ (1 + 2a2) (1 + 2b2)
=1+ 24 + 2b* + 4a*b>.

If we ignore the term 4a%b? on the grounds that it is as small as other terms we
have already dropped, then we are left with

14+2¢2 ~ 14 24% +2b2,

which reduces to
c? ~a®+ b2
So for ‘small” d-triangles the hyperbolic version of Pythagoras’ Theorem is
essentially the same as the Euclidean version.

In Euclidean geometry there is a simple connection between the lengths of
the sides of a right-angled triangle and its angles. An analogous result exists in

hyperbolic geometry also.

Theorem 9  Lobachevskii’s Formula
Let the d-triangle AABC have a right angle at C, and let the hyperbolic
lengths of sides AC and BC be b and a, respectively. Then

an A — tanh 2a We prove this result later
ana = sinh 2b in the subsection.

For example, let the points A, B, C be % %i and 0, respectively. Then it
follows from Lobachevskii’s Formula that

B =%l
tanh 2d (o, 3i)
tan A =
sinh 24 (0, )
tanh 2d (o, 1)
= A= 1
sinh 2d (0, 1) =0

cosh 2d (O, %

v

= 16667
so that A ~ tan—! 0.6 ~ 0.5404 radians.

Remark

It can be shown that when the triangle is very small, and so nearly Euclidean,
tanh2a is approximately 2a and sinh2b is approximately 2b, so that
tan A >~ a/b, which is the Euclidean value.
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Problem 9 Determine the angle at A in the d-triangle AABC with
vertices —%i, —‘5—‘ and 0, respectively.

We can also use these ideas to answer another question that loomed very
large in the discovery of hyperbolic geometry.

Let ¢’ be the d-line from a point P that is perpendicular to a d-line £ not
through P, and let p be the length of the segment of ¢’ from P to £. What is  The angle ¢ is called ‘the
the angle ¢ between £’ and a d-line through P which is parallel to £? angle of parallelism’.

Let Q be the foot of the perpendicular from P to ¢, and R a point on ¢ dif-
ferent from Q. As the point R moves away from Q towards %, the hyperbolic
length of OR, d(Q, R), tends to infinity; it follows that tanh 2d (Q, R) tends to
1 as R approaches €.

From Lobachevskii’s Formula,

tanh 2d(Q, R)

tan Z/QPR =
an 20 sinh 2p

and so, if we let R approach % along ¢, it follows that

1
sinh2p”

tangp =

We have proved the following result.

Corollary 1 Angle of Parallelism

Let £ be a d-line, and P a point of Z that does not lie on £. Then the angle ¢
between the perpendicular from P to £ (of hyperbolic length p) and either
d-line through P that is parallel to £ is given by

| N
tan g = — . a1 P~
sinh2p v

For example, the hyperbolic distance of the point %i from the diameter
¢ = (—1,1) is tanh~1 0.5 ~ 0.5493. It follows that the angle ¢ between the
perpendicular from %i to ¢ and either parallel to £ through %i is given by

1 In fact, the remarkable
tang =
sinh (2 tanh~! 0.5) formula
2x
. 1\
~ ; Slnh<2tanh x) =1
sinh 1.0986°

; _3
hence, ¢ =~ 0.6435 radians. gives tang = g exactly.

Problem 10 Determine the angle between the perpendicular from the
point % to the d-line ¢ with equation x = 0 and either parallel to ¢
through %.

Finally we give, without proof, another useful formula.
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Theorem 10  Sine Formula
Let AABC be a d-triangle right-angled at C. Let a and ¢ be the hyperbolic A proof of this result will

lengths of BC and AB. Then be found as an Exercise in
Section 6.7.

Remark

This result agrees with the expected one when the triangle is small, for in such
cases sinh 2a >~ 2a and sinh 2¢ >~ 2¢, so sin A >~ a/c, which is the Euclidean
result.

Problem 11 Use the Sine Formula to find the length a of the sides of
a hyperbolic equilateral triangle AABC with angle 0, as a function of 6.
Hint:  Apply the Sine Formula to the triangle obtained by dropping the
perpendicular AD from A to BC.

Proofs

We now supply proofs of two results that you met earlier in this subsection.
The formulas in Theorems 8 and 9 depend on the following remarkable

formula:

1 2
cosh (2 tanh ™! x) =1 i_iZ 4)

The substitution x = tanh ¢ shows that equation (4) holds if and only if

1 + tanh? ¢
cosh2t = +—2,
1 — tanh” ¢
and this formula follows from the definitions of cosh and tanh, as you can

check.
For future convenience, we now list various expressions that we have now
met for the inverse tanh function.

For x € (—1, 1), the following are all equal to tanh ™! x:

1 Igx Lo g 20 1 P T+x2
—log, ——, —sin , —CO .
2% 112 1—x2’ 2 T

Theorem 8 Pythagoras’ Theorem
Let AABC be a d-triangle in which the angle at C is a right angle. If a,b
and c are the hyperbolic lengths of BC, CA and AB, then

cosh2¢ = cosh 2a x cosh2b.
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Proof To prove Pythagoras’ Theorem in hyperbolic geometry, by the Origin
Lemma we may assume that C is at the centre of 2, the point A is at the point
a’ on the horizontal diameter and the point B is at ib" on the vertical diameter,
where a’ and b’ are real and positive.

Here a, b, ¢ are real
because they are the
hyperbolic lengths of the
sides of the d-triangle
AABC.

From the Distance Formula, it follows that
a=tanh~'s and b =tanh 'd’. 5)

We now map Z to itself by the hyperbolic transformation

z—d

l—az
Under M, A goes to the origin (which we shall also call A’, for clarity), B goes
to the point B’, with complex coordinates
b =d
1 —iab”
and C goes to the point C’, with coordinates —a’'.
Because the hyperbolic transformation preserves lengths, the hyperbolic
length ¢ of AB is equal to the hyperbolic length of A’B’.

To find ¢, the hyperbolic length of AB, we first find the modulus of »”.
We calculate its square:

M(z) =

b//

_ |l'b/_a/|2 _ a/2+b/2
- 11 _ia/b/|2 - 1+a/2b/2'

Now we observe from formula (4) and equation (5) above that

b (©6)

1 b/2
cosh2a = cosh (2 tanh~! b/> = +—,
1= b2
1 2
cosh 2b = cosh (2 tanh ™! a’) = i;
1 —a?

also, since ¢ = tanh~! |b”|, we get from the formula (4) that

1+ b
cosh2¢ = cosh (2 tanh ™! |b”|> = L
1 —|b"|?
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But, it then follows from equation (6) that

23,02

72 a”+b"”

cosh2c = L+ 10717 L+ 1+a”b"”
1 — |b//|2 1— a24p2

1+a’2h’2

1+a/2+b/2+a12b/2
1—(1/2 _b/z +a/2b/2
1+b6% 1+ad”
1—02 " 1—a”

= cosh (2 tanh ™! b’) x cosh (2 tanh ™! a’)

= cosh 2a x cosh2b.

This proves the analogue of Pythagoras® Theorem in hyperbolic
geometry. |

Theorem 9 Lobachevskii’s Formula
Let the d-triangle AABC have a right angle at C, and let the hyperbolic
lengths of sides AC and BC be b and a, respectively. Then

Proof We proceed as in the proof of Theorem 8, by mapping the
d-triangle AABC with vertices at a’, ib’ and 0, respectively, by the hyperbolic

transformation M (z) = f;f,; onto the d-triangle with vertices at 0,

We obtain the second

iV —a  —a (1+0?) +ib (1—d?)

b = — (7 fraction in equation (7) by
1 —ia'd 1+ a”b? multiplying the numerator
and denominator of the
and —a’, respectively, where b = tanh~' @’ and @ = tanh™! &/, so that first fraction by 1 +ia’b’.

a’ =tanhb and b’ =tanha.

The mapping also sends the angle A in AABC onto an angle of equal size ' %"

i angle A
(which we also denote by A by a slight abuse of notation) at the origin. Since N

the triangle with vertices at 0,b” and —a’ is right-angled at —a’, it follows ¢ & A
from equation (7) that -

b/ (1 _ a/2)

A= ——=.
tan o (1 n b’2)

®)
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Now, since a’ = tanh b, we can write
1—a”? 1—tanh?b
a’ tanh b
B cosh? b — sinh? b B 2
sinhb-coshb ~ sinh2b’
Similarly, we can verify that

b/

1+b7?

_ 1
=3 tanh 2a.

. . . _ 2 / .
Hence, if we substitute these expressions for la‘,’ and 14f7 into equa-

tion (8), we find that

tanh 2a

tan A = .
MA = inh2b u

6.44 Equidistant Curves to d-Lines

In the Euclidean plane R?, the set of points at a fixed distance from a given
line £ is a pair of straight lines parallel to £. In the hyperbolic disc Z there are
two curves equidistant from a given d-line, though neither is itself a d-line.

Theorem 11 Let £ be a d-line that ends at points A and B on ¢, and let £/
be that part in Z of a (Euclidean) circle through A and B, and let & be the
angle (in 2) between £ and £'. Then all points on £ are the same hyperbolic
distance d from £, where

d = L1og, [ (% + 3)}.

Proof First, map ¢ and Z to themselves by a Mdbius transformation M that
maps A and B to —1 and 1 (not necessarily respectively) and maps £ to a
curve in the upper half of &. Since Mobius transformations preserve angles
and generalized circles, it follows that the image of the d-line AB is the diam-
eter [—1, 1], and the image of £’ is an arc of a circle in the upper half of 2
through 1 making an angle « (in 2) with [—1, 1].

399

Here we use the identities
cosh? x — sinh®x = 1
and
sinh 2x = 2 sinh x cosh x

for x € R.

It is not hard to verify that
such an M exists.
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In view of the above remarks, it is sufficient to assume that the d-line £
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Similarly, we shall refer

is the diameter (—1,1) of 2. Let p be a point on £, and m the foot of below to ¢’ rather than to

the perpendicular » from p to (—1,1). Let M; be the Md&bius transformation
defined by

Z—m

Mi(z) = .
1 —mz

Then M| maps 2 to itself, and (—1, 1) to itself. It maps m to 0, £’ to an arc
of a (Euclidean) circle, with radius R and centre C (say), through =£1; and it
maps r to a portion of a d-line through O that is perpendicular to (—1,1)—
and so to a portion of the imaginary axis. It follows that the point P = M/ (p)
is of the form ai, for some real number a € (—1, 1). Since M| is a hyperbolic
transformation it does not alter hyperbolic distances, so that

d(p,m) =d(0,ai) = d(0,a)
=d, say.

Now, if Q is the point where the perpendicular to CB at B meets OC, the
triangles ACBQ and ABOQ are similar, since Z/CBQ = 5 = ZBOQ and
/BCQ = ZOQB. It follows that /BCQ = ZOBQ = «. Also, from AOBC we
see that Rsina = OB = 1. Hence

a=R— Rcosu
_ 1 —cosa
T sina
2in? () .
~ 2sin (%) cos (%) =tan (7) '

It follows that

d =tanh~! ¢ = tanh ™! (tan (%))
_ éloge (l —l—tan(%))
o
1 —tan (%)
~ Jlog, (tan (5 +7)).
This completes the proof of the theorem. |

For example, the portion in the upper half of & of the Euclidean circle

through £1 that makes an angle of 7 /4 with the segment [—1, 1] is a set of

points equidistant in & from [—1, 1], with the distance of separation being

d= %loge (tan (% + %)) = %loge (tan (%T)) ~ 0.4407.

M.

Property 6, Subsection
6.3.1

Here we use the identities
cos2x = 1 — 2sin® x
and
sin2x = 2sin x cos x

for x € R.

Recall from equation (3)
of Subsection 6.3.1 that

- 1+k
1 1
tanh™ "k = zloge<1 —k)

for any k > 0.



Area

6.5 Area

6.5.1 Area of a d-triangle

In the Euclidean plane R2, the area of a set is defined in terms of the union
of areas of small rectangles. In the hyperbolic disc Z the situation is some-
what different; d-quadrilaterals cannot have four right angles and so do not
conveniently exhaust areas in an analogous way.

We want our definition of area in hyperbolic geometry to have such
properties as the following:

e The area of a d-triangle is non-negative, and is zero only if its Euclidean
area is zero;

e d-congruent d-triangles (and d-congruent asymptotic d-triangles) should
have the same area;

e if one d-triangle can be fitted inside another, it should have smaller area;

e area should be additive.

Then we can determine the area of any figure in & that can be divided up into
d-triangles.

Throughout this subsection, all ‘lines’ and ‘line segments’ will be d-lines and
d-line segments, but to avoid constant repetition we will simply drop the ‘d’.

Notice first that as d-triangles grow in size their angle sum decreases. For
example, let AABC be contained in AAB’C, where A, B and B’ are collinear,
as shown. Denote by «, 8,y and «, B/,  the angles of the two d-triangles,
as shown. Consider the d-triangle ABC B’. The angles at B and C in this are
7 — B and y’ — y. Then, since the sum of the angles of a d-triangle is less than
7, it follows that

TP+ -n+p <m,
sothat B+y > B+ y’shencea + B+ y > a+ B’ + 3/, as asserted.

Problem 1 Prove that a trebly asymptotic d-triangle can be divided
into two doubly asymptotic right-angled d-triangles.

Hint: Consider a new vertex sliding along one edge; how do the angles
vary?

Now, since ‘very small’ d-triangles are d-congruent to small d-triangles near
the origin, where d-lines are ‘approximately Euclidean’ lines, the sum of the
angles of ‘very small’ d-triangles is close to 7.

At the opposite end of the size scale, we can use the result of Problem 1
above to prove the surprising fact that all trebly asymptotic d-triangles are
d-congruent to each other.

Theorem 1 All trebly asymptotic d-triangles are d-congruent to each
other.
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Theorem 2, Sub