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This richly illustrated and clearly written undergraduate textbook captures 
the excitement and beauty of geometry. The approach is that of Klein 
in his Erlangen programme: a geometry is a space together with a set of 
transformations of the space. The authors explore various geometries: 
affi ne, projective, inversive, hyperbolic and elliptic. In each case they 
carefully explain the key results and discuss the relationships between the 
geometries.
 New features in this Second Edition include concise end-of-chapter 
summaries to aid student revision, a list of Further Reading and a list 
of Special Symbols. The authors have also revised many of the end-of-
chapter exercises to make them more challenging and to include some 
interesting new results. Full solutions to the 200 problems are included 
in the text, while complete solutions to all of the end-of-chapter exercises 
are available in a new Instructors’ Manual, which can be downloaded from 
www.cambridge.org/9781107647831.

Praise for the First Edition

‘To my mind, this is the best introductory book ever written on 
introductory university geometry… Not only are students introduced to a 
wide range of algebraic methods, but they will encounter a most pleasing 
combination of process and product.’
 P.  N. RUANE , MAA Focus

‘… an excellent and precisely written textbook that should be studied in 
depth by all would-be mathematicians.’
 HANS SACHS, American Mathematical Society

‘It conveys the beauty and excitement of the subject, avoiding the dryness 
of many geometry texts.’
 J.  I .  HALL , Michigan State University
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Preface

Geometry! For over two thousand years it was one of the criteria for recog- Plato (c. 427–347 BC)
was an Athenian
philosopher who
established a school of
theoretical research (with
a mathematical bias),
legislation and
government.

Archimedes (c. 287–212
BC) was a Greek
geometer and physicist
who used many of the
basic limiting ideas of
differential and integral
calculus.

nition as an educated person to be acquainted with the subject of geometry.
Euclidean geometry, of course.

In the golden era of Greek civilization around 400 BC, geometry was studied
rigorously and put on a firm theoretical basis – for intellectual satisfaction, the
intrinsic beauty of many geometrical results, and the utility of the subject.
For example, it was written above the door of Plato’s Academy ‘Let no-one
ignorant of Geometry enter here!’ Indeed, Archimedes is said to have used the
reflection properties of a parabola to focus sunlight on the sails of the Roman
fleet besieging Syracuse and set them on flame.

For two millennia the children of those families sufficiently well-off to be
educated were compelled to have their minds trained in the noble art of rigor-
ous mathematical thinking by the careful study of translations of the work of
Euclid. This involved grasping the notions of axioms and postulates, the draw- Euclid (c. 325–265 BC)

was a mathematician in
Hellenistic Alexandria
during the reign of
Ptolemy I (323–283 BC),
famous for his book The
Elements.

ing of suitable construction lines, and the careful deduction of the necessary
results from the given facts and the Euclidean axioms – generally in two-
dimensional or three-dimensional Euclidean space (which we shall denote by
R

2 and R
3, respectively). Indeed, in the 1700s and 1800s popular publications

such as The Lady’s and Gentleman’s Diary published geometric problems
for the consideration of gentlefolk at their leisure. And as late as the 1950s We give a careful

algebraic definition of R
2

and R
3 in Appendix 2.

translations of Euclid’s Elements were being used as standard school geometry
textbooks in many countries.

Just as nowadays, not everyone enjoyed Mathematics! For instance, the
German poet and philosopher Goethe wrote that ‘Mathematicians are like Johann Wolfgang von

Goethe (1749–1832) is
said to have studied all
areas of science of his day
except mathematics – for
which he had no aptitude.

Frenchmen: whatever you say to them, they translate into their own language,
and forthwith it is something entirely different!’

The Golden Era of geometry came to an end rather abruptly. When the
USSR launched the Sputnik satellite in 1957, the Western World suddenly
decided for political and military reasons to give increased priority to its
research and educational efforts in science and mathematics, and redeveloped
the curricula in these subjects. In order to make space for subjects newly
developed or perceived as more ‘relevant in the modern age’, the amount of
geometry taught in schools and universities plummeted. Interest in geometry
languished: it was thought ‘old-fashioned’ by the fashionable majority.

xi



xii Preface

Nowadays it is being realized that geometry is still a subject of abiding
beauty that provides tremendous intellectual satisfaction in return for effort put
into its study, and plays a key underlying role in the understanding, develop-
ment and applications of many other branches of mathematics. More and more
universities are reintroducing courses in geometry, to give students a ‘feel’ Topics in computer

graphics such as ‘hidden’
surfaces and the shading
of curved surfaces involve
much mathematics.

for the reasons for studying various areas of mathematics (such as Topology),
to service the needs of Computer Graphics courses, and so on. Geometry is
having a revival!

Since 1971, the Open University in the United Kingdom has taught math-
ematics to students via specially written correspondence texts, and has tradi-
tionally given geometry a central position in its courses. This book arises from
those correspondence texts.

We adopt the Klein approach to geometry. That is, we regard the various
geometries as each consisting of an underlying set together with a group of
transformations acting on that set. Those properties of the set that are not
altered by any of the transformations are called the properties of that geometry.

Following a historical review of the development of the various geometries, Chapter 0

we look at conics (and at the related quadric surfaces) in Euclidean geometry. Chapter 1

Then we address a whole series of different geometries in turn. First, affine Chapter 2

geometry (that provides simple proofs of some results in Euclidean geome-
try). Then projective geometry, which can be regarded as the most basic of Chapters 3 and 4

all geometries; we divide this material into a chapter on projective lines and
a chapter on projective conics. We then return to study inversive geometry, Chapter 5

which provides beautiful proofs of many results involving lines and circles in
Euclidean geometry. This leads naturally to the study of hyperbolic geometry Chapter 6

in the unit disc, in which there are two lines through any given point that are
parallel to a given line. Via the link of stereographic projection, this leads on
to spherical geometry: a natural enough concept for a human race that lives Chapter 7

on the surface of a sphere! Finally we tie things together, explaining how the Chapter 8

various geometries are inter-related.

Study Guide
The book assumes a basic knowledge of Group Theory and of Linear Alge-
bra, as these are used throughout. However, for completeness and students’
convenience we give a very rapid review of both topics in the appendices. Appendices 1 and 2.

The book follows many of the standard teaching styles of The Open Uni-
versity. Thus, most chapters are divided into five sections (each often further
divided into subsections); sections are numbered using two digits (such as
‘Section 3.2’) and subsections using three digits (such as ‘Subsection 3.2.4’).
Generally a section is considered to be about one evening’s hard work for an
average student.

We number in order the theorems, examples, problems and equations within
each section.

We use wide pages with margins in which we place various historical notes,
cross-references, teaching comments and diagrams; the cross-references need
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not be consulted by students unless they wish to remind themselves of some
point on that topic, but the other margin notes should be read carefully. We use
boxes in the main text to highlight definitions, strategies, and the statements of
theorems and other key results. The end of the proof of a theorem is indicated
by a solid symbol ‘�’, and the end of the solution of a worked example by a
hollow symbol ‘�’. Occasionally the text includes a set of ‘Remarks’; these are
comments of the type that an instructor would give orally to a class, to clarify
a definition, result, or whatever, and should be read carefully. There are many
worked examples within the text to explain the concepts being taught, and it is
important that students read these carefully as they contain many key teaching
points; in addition, there is a good stock of in-text problems to reinforce the
teaching, and solutions to these are given in Appendix 3. At the end of each
chapter there are exercises covering the material of that chapter, some of which
are fairly straight-forward and some are more challenging; solutions are not
given to the exercises.

Our philosophy is to provide clear and complete explanations of all geomet-
ric facts, and to teach these in such a way that students can understand them
without much external help. As a result, students should be able to learn (and,
we hope, to enjoy) the key concepts of the subject in an uncluttered way.

Most students will have met many parts of Chapter 1 already, and so can
proceed fairly quickly through it. Thereafter it is possible to tackle Chapters 2
to 4 or Chapters 5 and 6, in either order. It is possible to omit Chapters 7 or 8,
if the time in a course runs short.

Notation for Functions as Mappings
Suppose that a function f maps some set A into some set B, and that it maps
a typical point x of A onto some image point y of B. Then we say that A is the
domain (or domain of definition) of f , B the codomain of f , and denote the
function f as a mapping (or map) as follows: Note that we use two

different arrows here, to
distinguish between the
mapping of a set and the
mapping of an element.

f : A → B

x �→ y

We often denote y by the expression f (x) to indicate its dependence on f
and x .
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Without the assistance and the forbearance of our families, the writing of
the original OU course and its later rewriting in this form would have been
impossible. It was Michael Brannan’s idea to produce it as a book.

Changes in the Second Edition
In addition to correcting typos and errors, the authors have changed the term
‘gradient’ to ‘slope’, and avoided the use of ‘reversed square brackets’ — so
that, for instance, the interval {x : 0 < x ≤ 1} is now written as (0,1] rather
than ]0,1]. Also, they have clarified the difference between a geometry and

Solutions to the exercises
appear in an Instructors’
Manual available from the
publisher.

models of that geometry; in particular, the term ‘non-Euclidean’ geometry has
now been largely replaced by ‘hyperbolic’ geometry, and the term ‘elliptic’
geometry has been introduced where appropriate. The problems and exercises
have been revised somewhat, and more exercises included. Each chapter now
includes a summary of the material in that chapter, and before the appendices
there are now lists of symbols and suggestions for further reading.

The authors have taken the opportunity to add some new material to enrich
the reader’s diet: a treatment of conics as envelopes of tangent families,
barycentric coordinates, Poncelet’s Porism and Ptolemy’s Theorem, and planar
maps. Also, the treatment of a number of existing topics has been significantly
changed: the geometric interpretation of projective transformations, the anal-
ysis of the formula for hyperbolic distance, and the treatment of asymptotic
d-triangles.

The authors appreciate the warm reception of the first edition, and have tried
to take on board as many as possible of the helpful comments received. Special
thanks are due to John Snygg and Jonathan I. Hall for invaluable comments and
advice.

Instructors’ Manual
Complete solutions to all of the end-of-chapter exercises are available in an
Instructors’ Manual, which can be downloaded from www.cambridge.org/
9781107647831.



0 Introduction: Geometry
and Geometries

Geometry is the study of shape. It takes its name from the Greek belief that The word comes from the
Greek words geo (Earth)
and metria (measuring).

geometry began with Egyptian surveyors of two or three millennia ago mea-
suring the Earth, or at least the fertile expanse of it that was annually flooded
by the Nile.

It rapidly became more ambitious. Classical Greek geometry, called
Euclidean geometry after Euclid, who organized an extensive collection of
theorems into his definitive text The Elements, was regarded by all in the early Isaac Newton

(1643–1727) was an
English astronomer,
physicist and
mathematician. He was
Professor of Mathematics
at Cambridge, Master of
the Royal Mint, and
successor of Samuel
Pepys as President of the
Royal Society.

modern world as the true geometry of space. Isaac Newton used it to formu-
late his Principia Mathematica (1687), the book that first set out the theory
of gravity. Until the mid-19th Century, Euclidean geometry was regarded as
one of the highest points of rational thought, as a foundation for practical
mathematics as well as advanced science, and as a logical system splendidly
adapted for the training of the mind. We shall see in this book that by the 1850s
geometry had evolved considerably – indeed, whole new geometries had been
discovered.

The idea of using coordinates in geometry can be traced back to Apollo-
nius’s treatment of conic sections, written a generation after Euclid. But their Apollonius of Perga

(c. 255–170 BC) was a
Greek geometer, whose
only surviving work is a
text on conics.

use in a systematic way with a view to simplifying the treatment of geome-
try is really due to Fermat and Descartes. Fermat showed how to obtain an
equation in two variables to describe a conic or a straight line in 1636, but his
work was only published posthumously in 1679. Meanwhile in 1637 Descartes
published his book Discourse on Method, with an extensive appendix enti- Pierre de Fermat

(1601–1665) was a French
lawyer and amateur
mathematician, who
claimed to have a proof of
the recently proved
Fermat’s Last Theorem in
Number Theory.

tled La Géometrie, in which he showed how to introduce coordinates to solve
a wide variety of geometrical problems; this idea has become so central a
part of mathematics that whole sections of La Géometrie read like a modern
textbook.

A contemporary of Descartes, Girard Desargues, was interested in the ideas

René Descartes
(1596–1650) was a French
scientist, philosopher and
mathematician. He is also
known for the phrase
‘Cogito, ergo sum’ (I
think, therefore I am).

of perspective that had been developed over many centuries by artists (anx-
ious to portray three-dimensional scenes in a realistic way on two-dimensional
walls or canvases). For instance, how do you draw a picture of a building,
or a staircase, which your client can understand and commission, and from
which artisans can deduce the correct dimensions of each stone? Desargues
also realized that since any two conics can always be obtained as sections of
the same cone in R

3, it is possible to present the theory of conics in a unified

1



2 0: Introduction: Geometry and Geometries

way, using concepts which later mathematicians distilled into the notion of Girard Desargues
(1591–1661) was a French
architect.

the cross-ratio of four points. Desargues’ discoveries came to be known as
projective geometry.

We deal with these ideas
in Chapters 4 and 5.Blaise Pascal was the son of a mathematician, Étienne, who attended a group

of scholars frequented by Desargues. He heard of Desargues’s work from his
father, and quickly came up with one of the most famous results in the geom-
etry of conics, Pascal’s Theorem, which we discuss in Chapter 4. By the late Blaise Pascal

(1623–1662) was a French
geometer, probabilist,
physicist and philosopher.

19th century projective geometry came to be seen as the most basic geometry,
with Euclidean geometry as a significant but special case.

At the start of the 19th century the world of mathematics began to change.
The French Revolution saw the creation of the École Polytechnique in Paris
in 1794, an entirely new kind of institution for the training of military engi-
neers. It was staffed by mathematicians of the highest calibre, and run for Gaspard Monge

(1746–1818) was a French
analyst and geometer. A
strong republican and
supporter of the
Revolution, he was French
Minister of the Navy in
1792–93, but deprived of
all his honours on the
restoration of the French
monarchy.

many years by Gaspard Monge, an enthusiastic geometer who had invented a
simple system of descriptive geometry for the design of forts and other mili-
tary sites. Monge was one of those rare teachers who get students to see what is
going on, and he inspired a generation of French geometers. The École Poly-
technique, moreover, was the sole entry-point for any one seeking a career
in engineering in France, and the stranglehold of the mathematicians ensured
that all students received a good, rigorous education in mathematics before
entering the specialist engineering schools. Thus prepared they then assisted
Napoleon’s armies everywhere across Europe and into Egypt.

One of the École’s former students, Jean Victor Poncelet, was taken prisoner Jean Victor Poncelet
(1788–1867) followed a
career as a military
engineer by becoming
Professor of Mechanics at
Metz, where he worked on
the efficiency of turbines.

in 1812 in Napoleon’s retreat from Moscow. He kept his spirits up during a
terrible winter by reviewing what his old teacher, Monge, had taught him about
descriptive geometry. This is a system of projections of a solid onto a plane –
or rather two projections, one vertically and one horizontally (giving what are
called to this day the plan and elevation of the solid). Poncelet realized that
instead of projecting ‘from infinity’ so to speak, one could adapt Monge’s ideas

vertical
projection

horizontal
projection

elevation

plan

21

to the study of projection from a point. In this way he re-discovered Desargues’
ideas of projective geometry. During his imprisonment he wrote his famous
book Traité des propriétés projectives des figures outlining the foundations of
projective geometry, which he extensively rewrote after his release in 1814 and
published in 1822.

Around the same time that projective geometry was emerging, mathemati-
cians began to realize that there was more to be said about circles than they
had previously thought. For instance, in the study of electrostatics let �1 and
�2 be two infinitely long parallel cylinders of opposite charge. Then the inter-
section of the surfaces of equipotential with a vertical plane is two families of
circles (and a single line), and a point charge placed in the electrostatic field
moves along a circular path through a specific point inside each cylinder, at
right angles to circles in the families. The study of properties of such fami-
lies of circles gave rise to a new geometry, called inversive geometry, which
was able to provide particularly striking proofs of previously known results in
Euclidean geometry as well as new results.
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In inversive geometry mathematicians had to add a ‘point at infinity’ to the
plane, and had to regard circles and straight lines as equivalent figures under
the natural mappings, inversions, as these can turn circles into lines, and vice-
versa. Analogously, in projective geometry mathematicians had to add a whole
‘line at infinity’ in order to simplify the geometry, and found that there were
projective transformations that turned hyperbolas into ellipses, and so on. So
mathematicians began to move towards thinking of geometry as the study of
shapes and the transformations that preserve (at least specified properties of)
those shapes.

For example, there are very few theorems in Euclidean geometry that depend
on the size of the figure. The ability to make scale copies without altering
‘anything important’ is basic to mathematical modelling and a familiar fact
of everyday life. If we wish to restrict our attention to the transformations
that preserve length, we deal with Euclidean geometry, whereas if we allow
arbitrary changes of scale we deal with similarity geometry.

Another interesting geometry was discovered by Möbius in the 1820s, in August Ferdinand Möbius
(1790–1868) was a
German geometer,
topologist, number
theorist and astronomer;
he discovered the famous
Möbius Strip (or Band).

which transformations of the plane map lines to lines, parallel lines to parallel
lines, and preserve ratios of lengths along lines. He called this geometry affine
geometry because any two figures related by such a transformation have a like-
ness or affinity to one another. This is the geometry appropriate, in a sense, to
Monge’s descriptive geometry, and the geometry that describes the shadows of
figures in sunlight.

Since the days of Greek mathematics, with a stimulus provided by the needs For the surface of the
Earth is very nearly
spherical.

of commercial navigation, mathematicians had studied spherical geometry too;
that is, the geometry of figures on the surface of a sphere. Here geometry

a

b

c
is rather different from plane Euclidean geometry; for instance the area of
a triangle is proportional to the amount by which its angle sum exceeds π ,
and there is a nice generalization of Pythagoras’ Theorem, which says that
in a right-angled triangle with sides a, b and the hypotenuse c, then cos c =
cos a · cos b. It turns out that there is a close connection between spherical
geometry and inversive geometry.

For nearly two millennia mathematicians had accepted as obvious the p
m lParallel Postulate of Euclid: namely, that given any line � and any point P

not on �, there is a unique line m in the same plane as P and � which passes
through P and does not meet �. Indeed much effort had been put into deter-
mining whether this Postulate could be deduced from the other assumptions Janos Bolyai (1802–1860)

was an officer in the
Hungarian Army.

of Euclidean geometry. In the 1820s two young and little-known mathemati-
cians, Bolyai in Hungary and Lobachevskii in Russia, showed that there
were perfectly good so-called ‘non-Euclidean geometries’, namely hyper-
bolic geometry and elliptic geometry, that share all the initial assumptions of Nicolai Ivanovich

Lobachevskii
(1792–1856) was a
Russian geometer who
became Rector of the
University of Kazan.

Euclidean geometry except the parallel postulate.
In hyperbolic geometry given any line � and any point P not on �, there are

infinitely many lines in the same plane as P and � which pass through P and do
not meet �; in elliptic geometry all lines intersect each other. However, it still
makes sense in both hyperbolic and elliptic geometries to talk about the length
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of line segments, the distance between points, the angles between lines, and
so forth. Around 1900 Poincaré did a great deal to popularise these geometries Jules Henri Poincaré

(1854–1912) was a
prolific French
mathematician, physicist,
astronomer and
philosopher at the
University of Paris.

by demonstrating their applications in many surprising areas of mathematics,
such as Analysis.

By 1870, the situation was that there were many geometries: Euclidean,
affine, projective, inversive, hyperbolic and elliptic geometries. One way math-
ematicians have of coping with the growth of their subject is to re-define it so
that different branches of it become branches of the same subject. This was
done for geometry by Klein, who developed a programme (the Erlangen Pro- Christian Felix Klein

(1849–1925) was a
German algebraist,
geometer, topologist and
physicist; he became a
professor at the University
of Erlangen at the
remarkable age of 22.

gramme) for classifying geometries. His elegant idea was to regard a geometry
as a space together with a group of transformations of that space; the proper-
ties of figures that are not altered by any transformation in the group are their
geometrical properties.

For example, in two-dimensional Euclidean geometry the space is the plane
and the group is the group of all length-preserving transformations of the plane
(or isometries). In projective geometry the space is the plane enlarged (in a way
we make precise in Chapter 6) by a line of extra points, and the group is the
group of all continuous transformations of the space that preserve cross-ratio.

Klein’s approach to a geometry involves three components: a set of points
(the space), a set of transformations (that specify the invariant properties – for
example, congruence in Euclidean geometry), and a group (that specifies how
the transformations may be composed). The transformations and their group
are the fundamental components of the geometry that may be applied to differ-
ent spaces. A model of a geometry is a set which possesses all the properties of
the geometry; two different models of any geometry will be isomorphic. There
may be several different models of a given geometry, which have different For example, you will

meet two models of
hyperbolic geometry.

advantages and disadvantages. Therefore, we shall use the terms ‘geometry’
and ‘model (of a geometry)’ interchangeably whenever we think that there is
no risk of confusion.

In fact as Klein was keen to stress, most geometries are examples of pro-
jective geometry with some extra conditions. For example, affine geometry
emerges as the geometry obtained from projective geometry by selecting a line
and considering only those transformations that map that line to itself; the line
can then be thought of as lying ‘at infinity’ and safely ignored. The result was
that Klein not only had a real insight into the nature of geometry, he could even
show that projective geometry was almost the most basic geometry.

This philosophy of geometry, called the Kleinian view of geometry, is the
one we have adopted in this book. We hope that you will enjoy this introduction
to the various geometries that it contains, and go on to further study of one of
the oldest, and yet most fertile, branches of mathematics.



1 Conics

The study of conics is well over 2000 years old, and has given rise to some of
the most beautiful and striking results in the whole of geometry.

In Section 1.1 we outline the Greek idea of a conic section – that is, a conic
as defined by the curve in which a double cone is intersected by a plane. We
then look at some properties of circles, the simplest of the non-degenerate
conics, such as the condition for two circles to be orthogonal and the equations That is, they intersect at

right angles.of the family of all circles through two given points.
We explain the focus–directrix definition of the parabola, ellipse and hyper-

bola, and study the focal-distance properties of the ellipse and hyperbola.
Finally, we use the so-called Dandelin spheres to show that the Greek conic
sections are just the same as the conics defined in terms of a focus and a
directrix.

In Section 1.2 we look at tangents to conics, and the reflection properties of
the parabola, ellipse and hyperbola. It turns out that these are useful in prac-
tical situations as diverse as anti-aircraft searchlights and astronomical optical
telescopes! We also see how we can construct each non-degenerate conic as
the ‘envelope’ of lines in a suitably-chosen family of lines.

The equations of conics are all second degree equations in x and y. In
Section 1.3 we show that the converse result holds – that is, that every sec-
ond degree equation in x and y represents a conic. We also find an algorithm
for determining from its equation in x and y which type of non-degenerate
conic a given second degree equation represents, and for finding its principal
features.

The analogue in R
3 of a plane conic in R

2 is a quadric surface, specified We use the notation R
2

and R
3 to denote

2-dimensional and
3-dimensional Euclidean
space, respectively.

by a suitable second degree equation in x , y and z. A well-known example
of a quadric surface is the cooling tower of an electricity generating station.
In Section 1.4 we find an algorithm for identifying from its equation which
type of non-degenerate quadric a given second degree equation in x, y and z
represents. We also discover that two of the non-degenerate quadric surfaces
can be generated by two different families of straight lines, and that this feature
is of practical importance.

5
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1.1 Conic Sections and Conics

1.1.1 Conic Sections
Conic Section is the name given to the shapes that we obtain by taking different

It is thought that the
Greek mathematician
Menaechmus discovered
the conic sections around
350 BC.

plane slices through a double cone. The shapes that we obtain from these cross-
sections are as drawn below.

6

5

1. single point 2. single line 3. pair of lines

O

O O
O

O Ox

x x x

x x

y

y
y y

y y

1
3

7

6 4 2

4. parabola 5. ellipse 6. hyperbola

Notice that the circle shown in slice 7 can be regarded as a special case of

y

O

7. Circle

x
an ellipse.

Notice, also, that the ellipse and the hyperbola both have a centre; that is,
there is a point C such that rotation about C through an angle π is a symmetry
of the conic. For example, for the ellipse and hyperbola illustrated above, the
centre is in fact just the origin. On the other hand, the parabola does not have
a centre.

In Subsection 1.1.5 we shall verify that the curves, the ‘conic sections’,
obtained by slicing through a double cone are exactly the same curves, the
‘conics’, obtained as the locus of points in the plane whose distance from
a fixed point is a constant multiple of its distance from a fixed line. As a
result, we often choose not to distinguish between the terms ‘conic section’
and ‘conic’!

We use the term non-degenerate conics to describe those conics that are
parabolas, ellipses or hyperbolas; and the term degenerate conics to describe
the single point, single line and pair of lines.

In this chapter we study conics for their own interest, and we will meet them
frequently throughout our study of geometry as the book progresses.

1.1.2 Circles
The first conic that we investigate is the circle. Recall that a circle in R

2 is the
C(a, b)

y

P(x, y)

r

x

set of points (x , y) that lie at a fixed distance, called the radius, from a fixed
point, called the centre of the circle. We can use the techniques of coordinate
geometry to find the equation of a circle with given centre and radius.
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Let the circle have centre C(a, b) and radius r . Then, if P(x , y) is an arbi-
trary point on the circumference of the circle, the distance CP equals r . It
follows from the formula for the distance between two points in the plane that

Here we use the Distance
Formula for the distance d
between two points
(x1, y1), (x2, y2) in R

2:

d2 = (x1 − x2)2

+ (y1 − y2)2.

r2 = (x − a)2 + (y − b)2. (1)

If we now expand the brackets in equation (1) and collect the corresponding
terms, we can rewrite equation (1) in the form

x2 + y2 − 2ax − 2by + (a2 + b2 − r2) = 0.

Then, if we write f for −2a, g for −2b and h for a2 +b2 −r2, this equation
takes the form

Note here that the
coefficients of x2 and y2

are equal.

x2 + y2 + fx + gy + h = 0. (2)

It turns out that in many situations, however, equation (1) is more useful
than equation (2) for determining the equation of a particular circle.

Theorem 1 The equation of a circle in R
2 with centre (a, b) and radius

r is
(x − a)2 + (y − b)2 = r2.

For example, it follows from this formula that the circle with centre (−1, 2)
and radius

√
3 has equation

(x + 1)2 + (y − 2)2 =
(√

3
)2

;

this can be simplified to give

x2 + 2x + 1 + y2 − 4y + 4 = 3,

or
x2 + y2 + 2x − 4y + 2 = 0.

Problem 1 Determine the equation of each of the circles with the
following centre and radius:

(a) centre the origin, radius 1;
(b) centre the origin, radius 4;
(c) centre (3, 4), radius 2;
(d) centre (3, 4), radius 3.

y

O x

Problem 2 Determine the condition on the numbers f , g and h in the
equation

x2 + y2 + fx + gy + h = 0

for the circle with this equation to pass through the origin.

We have seen that the equation of a circle can be written in the form

x2 + y2 + fx + gy + h = 0. (2)

In the opposite direction, given an equation of the form (2), can we deter-
mine whether it represents a circle? If it does represent a circle, can we
determine its centre and radius?
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For example, consider the set of points (x , y) in the plane that satisfy the

Note that in equation (3)
the coefficients of x2 and
y2 are both 1.

equation:

x2 + y2 − 4x + 6y + 9 = 0. (3)

In order to transform equation (3) into an equation of the form (1), we use the
technique called ‘completing the square’ − we rewrite the terms that involve
only xs and the terms that involve only ys as follows:

Note that −2 is half the
coefficient of x , and +3 is
half the coefficient of y, in
equation (3).

x2 − 4x = (x − 2)2 − 4,

y2 + 6y = (y + 3)2 − 9.

Substituting these expressions into equation (3), we obtain

We can ‘read off’ the
centre and radius of the
circle from this equation.

(x − 2)2 + (y + 3)2 = 4.

It follows that the equation represents a circle whose centre is (2, −3) and
whose radius is 2.

In general, we can use the same method of ‘completing the square’ to rewrite Here we start with the
coefficients of x2 and y2

both equal (to 1).
Otherwise the equation
cannot be reformulated in
the form (1).

the equation

x2 + y2 + fx + gy + h = 0

in the form (
x + 1

2 f
)2 +

(
y + 1

2 g
)2 = 1

4 f 2 + 1
4 g2 − h, (4)

from which we can ‘read off’ the centre and radius.

Theorem 2 An equation of the form

x2 + y2 + fx + gy + h = 0

represents a circle with

centre
(
− 1

2 f , − 1
2 g
)

and radius
√

1
4 f 2 + 1

4 g2 − h,

provided that 1
4 f 2 + 1

4 g2 − h > 0.

Remark

It follows from equation (4) above that if 1
4 f 2 + 1

4 g2 − h < 0, then there are
no points (x , y) that satisfy the equation x2 + y2 + fx + gy + h = 0; and if
1
4 f 2 + 1

4 g2 −h = 0, then the given equation simply represents the single point(
− 1

2 f , − 1
2 g
)

.

Problem 3 Determine the centre and radius of each of the circles
given by the following equations:

(a) x2 + y2 − 2x − 6y + 1 = 0; (b) 3x2 + 3y2 − 12x − 48y = 0.
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Problem 4 Determine the set of points (x , y) in R
2 that satisfies each

of the following equations:

(a) x2 + y2 + x + y + 1 = 0;
(b) x2 + y2 − 2x + 4y + 5 = 0;
(c) 2x2 + 2y2 + x − 3y − 5 = 0.

Orthogonal Circles
We shall sometimes be interested in whether two intersecting circles are For example, in

Chapters 5 and 6.orthogonal: that is, whether they meet at right angles. The following result
answers this question if we know the equations of the two circles.

Theorem 3 Orthogonality Test
Two intersecting circles C1 and C2 with equations

x2 + y2 + f1x + g1 y + h1 = 0 and

x2 + y2 + f2x + g2 y + h2 = 0,

respectively, are orthogonal if and only if

f1 f2 + g1g2 = 2(h1 + h2).

Proof The circle C1 has centre A =
(
− 1

2 f1, − 1
2 g1

)
and radius r1 = You met these formulas in

Theorem 2.√
1
4 f 2

1 + 1
4 g2

1 − h1; the circle C2 has centre B =
(
− 1

2 f2, − 1
2 g2

)
and radius

r2 =
√

1
4 f 2

2 + 1
2 g2

2 − h2.
Let P be one of their points of intersection, and look at the triangle �ABP. We use the symbol � to

indicate a triangle.If the circles meet at right angles, then the line AP is tangential to the circle
C2, and is therefore at right angles to the line BP. So the triangle �ABP is

A

C1 C2

P

B

right-angled, and we may apply Pythagoras’ Theorem to it to obtain

AP2 + BP2 = AB2. (5)

Conversely, if equation (5) holds, then �ABP must be a right-angled triangle
and the circles must meet at right angles.

Now

AP2 = r2
1 = 1

4 f 2
1 + 1

4 g2
1 − h1 and

BP2 = r2
2 = 1

4 f 2
2 + 1

4 g2
2 − h2.

Also

AB2 =
(

1
2 f1 − 1

2 f2

)2 +
(

1
2 g1 − 1

2 g2

)2

=
(

1
4 f 2

1 − 1
2 f1 f2 + 1

4 f 2
2

)
+
(

1
4 g2

1 − 1
2 g1g2 + 1

4 g2
2

)
.
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Substituting for AP2, BP2 and AB2 into equation (5), and cancelling
common terms, we deduce that equation (5) is equivalent to

−h1 − h2 = − 1
2 f1 f2 − 1

2 g1g2,

that is,
f1 f2 + g1g2 = 2(h1 + h2).

This is the required result. �

Problem 5 Determine which, if any, of the following pairs of inter-
secting circles are mutually orthogonal.

(a) C1 = {
(x , y) : x2 + y2 − 4x − 4y + 7 = 0

}
and

C2 = {
(x , y) : x2 + y2 + 2x − 8y + 5 = 0

}
(b) C1 = {

(x , y) : x2 + y2 + 3x − 6y + 5 = 0
}

and
C2 = {

(x , y) : 3x2 + 3y2 + 4x + y − 15 = 0
}
.

Circles through Two Points
We shall also be interested later in the family of circles through two given Section 5.5

points. So, let two circles C1 and C2 with equations

P
R

C1

C2

Q

x2 + y2 + f1x + g1 y + h1 = 0 and

x2 + y2 + f2x + g2 y + h2 = 0 (6)

intersect at the distinct points P and Q, say. Then, if k �= −1, the equation

x2 + y2 + f1x + g1 y + h1 + k(x2 + y2 + f2x + g2 y + h2) = 0 (7)

represents a circle since it is a second degree equation in x and y with equal
(non-zero) coefficients of x2 and y2 and with no terms in xy. This circle
passes through both P and Q; for the coordinates of P and Q both satisfy
the equations in (6) and so must satisfy equation (7).

If k = −1, equation (7) is linear in x and y, and so represents a line; since
P and Q both lie on it, it must be the line through P and Q.

Conversely, given any point R in the plane that does not lie on the circle
C2 we can substitute the coordinates of R into equation (7) to find the unique This is possible because,

since R does not lie on
C2, the term in the bracket
in (7) does not vanish
at R.

value of k such that the circle with equation (7) passes through R. We can think
of the circle C2 as corresponding to the case ‘k = ∞’ of equation (7). For, if
we rewrite equation (7) in the form

1

k
(x2 + y2 + f1x + g1 y + h1) + x2 + y2 + f2x + g2 y + h2 = 0 (8)

and let k → ∞, then 1/k → 0 and equation (8) becomes the equation of C2.

Theorem 4 Let C1 and C2 be circles with equations

x2 + y2 + f1x + g1 y + h1 = 0 and

x2 + y2 + f2x + g2 y + h2 = 0
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that intersect at distinct points P and Q. Then the line and all circles (other
than C2) through P and Q have an equation of the form

x2 + y2 + f1x + g1 y + h1 + k(x2 + y2 + f2x + g2 y + h2) = 0

for some number k.
If k �= −1, this equation is one of the circles; if k = −1, this is the

equation of the line.

Example 1 Find the equation of the circle that passes through (1, 2) and the
points of intersection of the circles

x2 + y2 − 3x + 4y − 1 = 0 and x2 + y2 + 5
2 x − 3y + 3

2 = 0.

Solution By Theorem 4, the required equation is of the form

x2 + y2 − 3x + 4y − 1 + k
(

x2 + y2 + 5
2 x − 3y + 3

2

)
= 0 (9)

for some number k. Since (1, 2) must satisfy this equation, it follows that

1 + 4 − 3 + 8 − 1 + k
(

1 + 4 + 5
2 − 6 + 3

2

)
= 0,

so that k = −3. Substituting k = −3 back into equation (9), we deduce that
the equation of the required circle is

x2 + y2 − 3x + 4y − 1 − 3
(

x2 + y2 + 5
2 x − 3y + 3

2

)
= 0,

which we can simplify to the form

4x2 + 4y2 + 21x − 26y + 11 = 0.

Problem 6 Find the equation of the line through the points of inter-
section of the circles

x2 + y2 − 3x + 4y − 1 = 0 and

2x2 + 2y2 + 5x − 6y + 3 = 0.

1.1.3 Focus-Directrix Definition of the Non-Degenerate Conics
Earlier we defined the conic sections as the curves of intersection of a double Subsection 1.1.1

cone with a plane. We have seen that the circle can be defined in a different Subsection 1.1.2

way: as the set of points at a fixed distance from a fixed point.
Here we give a method for constructing the other non-degenerate conics,

the parabola, ellipse and hyperbola, as sets of points that satisfy a some-
what similar condition involving distances. Later we shall give a careful proof Subsection 1.1.5
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that each non-degenerate conic section is a non-degenerate (plane) conic,
and vice-versa. Theorem 4 of

Subsection 4.1.4The three non-degenerate conics (the parabola, ellipse and hyperbola) can
be defined as the set of points P in the plane that satisfy the following condi-
tion: The distance of P from a fixed point (called the focus of the conic) is a
constant multiple (called its eccentricity, e) of the distance of P from a fixed
line (called its directrix).

The different conics arise according to the value of the eccentricity:

Eccentricity A non-degenerate conic is an ellipse if 0 ≤ e < 1, a parabola When e = 0, the ellipse is
actually a circle; the focus
is the centre of the circle,
and the directrix is ‘at
infinity’.

if e = 1, or a hyperbola if e > 1.

Parabola (e = 1)
A parabola is defined to be the set of points P in the plane whose distance

M

O

x = –a
directrix d

x

focus

F (a, 0)

y FP = PM

P (x, y)
from a fixed point F is equal to their distance from a fixed line d. We obtain a
parabola in standard form if we choose

1. the focus F to lie on the x-axis, and to have coordinates (a, 0), a > 0;
2. the directrix d to be the line with equation x = −a.

Notice in particular that the origin O(0, 0) lies on the parabola since it is
equidistant from F and d.

Let P(x , y) be an arbitrary point on the parabola, and let M be the foot of
the perpendicular from P to the directrix. Since FP = PM, by the definition
of the parabola, it follows that FP2 = PM2; we may rewrite this equation in
terms of coordinates as

(x − a)2 + y2 = (x + a)2.

Multiplying out the brackets we get

x2 − 2ax + a2 + y2 = x2 + 2ax + a2,

which simplifies to the equation y2 = 4ax.
Notice that each point with coordinates

(
at2, 2at

)
, where t ∈ R, lies on the We use the notation R to

denote the ‘real numbers’
or the ‘real line’.

parabola, since (2at)2 = 4a · at2. Conversely, we can write the coordinates of
each point on the parabola in the form

(
at2, 2at

)
. For if we choose t = y/(2a),

then y = 2at and

x = y2

4a
(from the equation y2 = 4ax)

= (2at)2

4a
= at2,

as required. It follows that there is a one–one correspondence between the real
numbers t and the points of the parabola.
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We summarize the above facts as follows.

Parabola in Standard Form A parabola in standard form has equation

y2 = 4ax, where a > 0.

It has focus (a, 0) and directrix x = −a; and it can be described by the
parametric equations

x = at2, y = 2at (t ∈ R).

We call the x-axis the axis of the parabola in standard form, since the
parabola is symmetric with respect to this line, and we call the origin the vertex
of a parabola in standard form, since it is the point of intersection of the axis ‘Centre’ was defined in

Subsection 1.1.1.of the parabola with the parabola. A parabola has no centre.

Example 2 This question concerns the parabola E with equation y2 = 2x and We generally use the letter
E to denote a conic.parametric equations x = 1

2 t2, y = t (t ∈ R).

(a) Write down the focus, vertex, axis and directrix of E .
(b) Determine the equation of the chord that joins distinct points P and Q on

E with parameters t1 and t2, respectively. Determine the condition on t1
and t2 such that the chord PQ passes through the focus of E . Such a chord is called

focal chord.

Solution

(a) The parabola E is the parabola in standard form where 4a = 2, or a = 1
2 .

y

xF (1–
2
, 0)

Q (1–
2  
t 2

2, t2)

P (1–
2  
t 2

1, t1)

It follows that the focus of E is
(

1
2 , 0
)

, its vertex is (0, 0), its axis is the

x-axis, and the equation of its directrix is x = − 1
2 .

(b) The coordinates of P and Q are
(

1
2 t2

1, t1
)

and
(

1
2 t2

2, t2
)

, respectively. So,

if t2
1 �= t2

2, the slope (or gradient, as it is sometimes called) of PQ is
given by

m = t1 − t2
1
2 t2

1 − 1
2 t2

2

= t1 − t2
1
2

(
t2
1 − t2

2

) = 2

t1 + t2
.

Since
(

1
2 t2

1, t1
)

lies on the line PQ, it follows that the equation of PQ is

y − t1 = 2

t1 + t2

(
x − 1

2
t2
1

)
.

Multiplying both sides by t1 + t2, we get

(t1 + t2)(y − t1) = 2x − t2
1,

so that

(t1 + t2)y − t2
1 − t1t2 = 2x − t2

1,
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or
y

F

E

P (t 21,t1)

Q (t 22,t2)
x

y2= x(t1 + t2)y = 2x + t1t2. (10)

If, however, t2
1 = t2

2, then since t1 �= t2 we have t1 = −t2. Thus PQ is
parallel to the y-axis, and so has equation x = 1

2 t2
1; so in this case too, PQ

has equation given by (10).

The chord PQ with equation (10) passes through the focus
(

1
2 , 0
)

if

(t1 + t2)0 = 1 + t1t2; in other words, if t1t2 = −1.

Problem 7 This question concerns the parabola E with equation
y2 = x and parametric equations x = t2, y = t (t ∈ R).

(a) Write down the focus, vertex, axis and directrix of E .
(b) Determine the equation of the chord that joins distinct points P and

Q on E with parameters t1 and t2, respectively.
(c) Determine the condition on t1 and t2 (and so on P and Q) that the

focus of E is the midpoint of the chord PQ.

Ellipse (0 ≤ e < 1)
We define an ellipse with eccentricity zero to be a circle. We have already Subsection 1.1.2

discussed circles.
We define an ellipse with eccentricity e (where 0 < e < 1) to be the set

y

M
P (x, y)

F (ae, 0)
focus

x = a /e
directrix

xO

of points P in the plane whose distance from a fixed point F is e times their
distance from a fixed line d. We obtain such an ellipse in standard form if we
choose

1. the focus F to lie on the x-axis, and to have coordinates (ae, 0), a > 0;
2. the directrix d to be the line with equation x = a/e.

Let P(x , y) be an arbitrary point on the ellipse, and let M be the foot of the
perpendicular from P to the directrix. Since FP = e · PM, by the definition of
the ellipse, it follows that FP2 = e2 · PM2; we may rewrite this equation in
terms of coordinates as

(x − ae)2 + y2 = e2
(

x − a

e

)2 = (ex − a)2.

Multiplying out the brackets we get

x2 − 2aex + a2e2 + y2 = e2x2 − 2aex + a2,

which simplifies to the equation

x2
(

1 − e2
)

+ y2 = a2
(

1 − e2
)

or
x2

a2
+ y2

a2
(
1 − e2

) = 1.
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Substituting b for a
√

1 − e2, so that b2 = a2
(
1 − e2

)
, we obtain the Since 0 < e < 1, we have

that 0 < b < a.standard form of the equation of the ellipse

y
b

focus

directrix
x = –a /e

directrix
x = a /e

focus

minor axis

major axis centre

F a xF ′–a

–b

x2

a2
+ y2

b2
= 1.

Notice that this equation is symmetrical in x and symmetrical in y, so that
the ellipse also has a second focus F ′(−ae, 0) and a second directrix d ′ with
equation x = −a/e.

The ellipse intersects the axes at the points (±a, 0) and (0, ±b). We call
the segment joining the points (±a, 0) the major axis of the ellipse, and the
segment joining the points (0, ±b) the minor axis of the ellipse. Since b < a,
the minor axis is shorter than the major axis. The origin is the centre of this Sometimes it is

convenient to assume that
t ∈ [0, 2π), for instance,
instead of (−π , π ]. Notice
our notation for intervals:

(p, q), [p, q], [p, q), (p, q]
denote those real numbers
x for which p < x < q ,
p ≤ x ≤ q , p ≤ x < q ,
p < x ≤ q , respectively.

ellipse.
Notice that each point with coordinates (a cos t , b sin t) lies on the ellipse,

since

(a cos t)2

a2
+ (b sin t)2

b2
= cos2 t + sin2 t = 1.

Then, just as for the parabola, we can check that

x = a cos t , y = b sin t (t ∈ (−π , π ])

gives a parametric representation of the ellipse.
We now summarize the above facts about ellipses (including circles) as

follows.

Ellipse in Standard Form An ellipse in standard form has equation Another parametric
representation of this
ellipse is

x = a
1 − t2

1 + t2
,

y = b
2t

1 + t2
,

t ∈ R.

x2

a2
+ y2

b2
= 1, where a ≥ b > 0, b2 = a2

(
1 − e2

)
, 0 ≤ e < 1.

It can be described by the parametric equations

x = a cos t , y = b sin t (t ∈ (−π , π ]).
If e > 0, it has foci (±ae, 0) and directrices x = ±a/e.

Example 3 Let PQ be an arbitrary chord of the ellipse with equation
y
P

O

x2/a2 + y2/b2 = 1

M

Q x

x2

a2
+ y2

b2
= 1.

Let M be the midpoint of PQ. Prove that the following expression is
independent of the choice of P and Q:

slope of OM × slope of PQ.



16 1: Conics

Solution Let P and Q have the parametric coordinates (a cos t1, b sin t1)
and (a cos t2, b sin t2), respectively. It follows that M has coordinates
( a

2 (cos t1 + cos t2), b
2 (sin t1 + sin t2)).

Now,

the slope of OM = b(sin t1 + sin t2)

a(cos t1 + cos t2)
and

the slope of PQ = b(sin t1 − sin t2)

a(cos t1 − cos t2)
,

so

In general,

cos2 θ = 1 − sin2 θ .

slope of OM × slope of PQ

= b(sin t1 + sin t2)

a(cos t1 + cos t2)
· b(sin t1 − sin t2)

a(cos t1 − cos t2)

= b2

a2
· sin2 t1 − sin2 t2

cos2 t1 − cos2 t2

= b2

a2
· sin2 t1 − sin2 t2(

1 − sin2 t1
)− (

1 − sin2 t2
)

= −b2

a2
,

which is independent of the values of t1 and t2.

Problem 8 Let P be an arbitrary point on the ellipse with equation y

x

x
2
/a

2 + y
2
/b

2 = 1

M

P (a cos t, b sin t)

F (ae, 0)

x2

a2 + y2

b2 = 1 and focus F(ae, 0). Let M be the midpoint of FP. Prove that
M lies on an ellipse whose centre is midway between the origin and F .

Hyperbola (e > 1)
A hyperbola is the set of points P in the plane whose distance from a fixed

y

x

M
P(x, y )

F (ae, 0)
focus

x = a/e
directrix

O

point F is e times their distance from a fixed line d, where e > 1. We obtain a
hyperbola in standard form if we choose

1. the focus F to lie on the x-axis, and to have coordinates (ae, 0), a > 0;
2. the directrix d to be the line with equation x = a/e.

Let P(x , y) be an arbitrary point on the hyperbola, and let M be the foot of
the perpendicular from P to the directrix. Since FP = e · PM, by the definition
of the hyperbola, it follows that FP2 = e2 · PM2; we may rewrite this equation
in terms of coordinates as

(x − ae)2 + y2 = e2
(

x − a

e

)2

= (ex − a)2.

Multiplying out the brackets we get

x2 − 2aex + a2e2 + y2 = e2x2 − 2aex + a2,
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which simplifies to

x2
(

e2 − 1
)

− y2 = a2
(

e2 − 1
)

,

or

x2

a2
− y2

a2
(
e2 − 1

) = 1.

Substituting b for a
√

e2 − 1, so that b2 = a2
(
e2 − 1

)
, we obtain the standard

form of the equation of the hyperbola

x2

a2
− y2

b2
= 1.

Notice that this equation is symmetrical in x and symmetrical in y, so that
y

xFF’ –a a

focus

directrix
x = –a/e

directrix
x = a/e

focus
major axis

minor axis

b

b

the hyperbola also has a second focus F ′(−ae, 0) and a second directrix d ′
with equation x = −a/e.

The hyperbola intersects the x-axis at the points (±a, 0). We call the seg-
ment joining the points (±a, 0) the major axis or transverse axis of the
hyperbola, and the segment joining the points (0, ±b) the minor axis or conju-
gate axis of the hyperbola (notice that this is NOT a chord of the hyperbola).
The origin is the centre of this hyperbola.

Notice also that each point with coordinates (a sec t , b tan t), where t is not
an odd multiple of π/2, lies on the hyperbola, since

In general,

sec2 θ = 1 + tan2 θ .

a2 sec2 t

a2
− b2 tan2 t

b2
= 1.

Then, just as for the parabola, we can check that

Points for which
t ∈ (−π/2, π/2)

lie on the right branch of
the hyperbola, and points
for which

t ∈ (π/2, 3π/2)

lie on the left branch of
the hyperbola.

x = a sec t , y = b tan t (t ∈ (−π/2, π/2) ∪ (π/2, 3π/2))

gives a parametric representation of the hyperbola.
Two other features of the shape of the hyperbola stand out. Firstly, the

hyperbola consists of two separate curves or branches.
Secondly, the lines with equations

x2

a2
− y2

b2
= 0, or y = ±b

a
x ,

divide the plane into two pairs of opposite sectors; the branches of the hyper-

y

b

–b
x = –a/e x = a/e

y = – (b/a)x

F ′ –a a F x

y = (b/a)x

bola lie in one pair. As x → ±∞ the branches of the hyperbola get closer and
closer to these two lines. We call the lines y = ±(b/a)x the asymptotes of the
hyperbola.
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We summarize the above facts as follows.

Hyperbola in Standard Form A hyperbola in standard form has equation Another parametric
representation of this
hyperbola is

x = a
1 + t2

1 − t2
, y = b

2t

1 − t2

t ∈ R − {±1}.

x2

a2
− y2

b2
= 1, where b2 = a2

(
e2 − 1

)
, a > 0, e > 1.

It has foci (±ae, 0) and directrices x = ±a/e; and it can be described by
the parametric equations

x = a sec t , y = b tan t (t ∈ (−π/2, π/2) ∪ (π/2, 3π/2)).

Problem 9 Let P be a point (sec t , 1√
2

tan t), where (t ∈ In this problem you will
find the identity

sec2 θ = 1 + tan2 θ

useful.

(−π/2, π/2) ∪ (π/2, 3π/2)), on the hyperbola E with equation x2 −
2y2 = 1.

(a) Determine the foci F and F ′ of E .
(b) Determine the slopes of FP and F ′ P , when these lines are not

parallel to the y-axis.
(c) Determine the point P in the first quadrant on E for which FP is

perpendicular to F ′ P .

y

y = x

y= –x

b

–aF ′ F xa

–b

Rectangular Hyperbola (e = √
2)

When the eccentricity e of a hyperbola takes the value
√

2, then e2 = 2 and
b = a. Then the asymptotes of the hyperbola have equations y = ±x , so
that in particular they are at right angles. A hyperbola whose asymptotes are at
right angles is called a rectangular hyperbola.

Then, if we use the asymptotes as new x- and y-axes (instead of the original We omit the details.

x- and y-axes), it turns out that the equation of the hyperbola can be written in
the form xy = c2, for some positive number c.

y

x

xy= c2
The rectangular hyperbola with equation xy = c2 has the origin as its centre,

and the x- and y-axes as its asymptotes. Also, each point on it can be uniquely
represented by the parametric representation

x = ct, y = c

t
where t �= 0.

We shall use rectangular hyperbolas later on. Section 2.5

Polar Equation of a Conic
For many applications it is useful to describe the equation of a non-degenerate

P

r

O Q
N

directrix d

M

q

conic in terms of polar coordinates r and θ . A point P(x , y) in the plane has
polar coordinates (r , θ) if r is the distance OP (where O is the origin) and θ is
the anticlockwise angle between OP and the positive direction of the x-axis.

Take the origin O to be the focus of the conic, d the directrix, M the foot
of the perpendicular from a point P on the conic to d, N the foot of the
perpendicular from O to d, and Q the foot of the perpendicular from P to ON.



Conic Sections and Conics 19

Then by the definition of the conic, we have OP = e · PM. We can rewrite
this as

r = e(ON − OQ)

= e · ON − er cos θ ,

or

r(1 + e cos θ) = e · ON

= l, a constant.

It follows that the equation of the conic can be expressed in the form

r = l

1 + e cos θ
.

The polar form of the equation of a conic is often used in problems in
planet

Sun Sun

comet
Dynamics: for example, in determining the motion of a planet or of a comet
round the Sun.

1.1.4 Focal Distance Properties of Ellipse and Hyperbola
We now prove two simple but surprising results. We deal with the ellipse first.

Theorem 5 Sum of Focal Distances of Ellipse
Let E be an ellipse with major axis (−a, a) and foci F and F ′. Then, if P
is a point on the ellipse, FP + PF′ = 2a. In particular, FP + PF′ is constant
for all points P on the ellipse.

y

x

directrix ddirectrix d ′

P

F ′ F

Proof Let d and d ′ be the directrices of the ellipse that correspond to the foci
F and F ′, respectively. Then, since

PF = e × (distance from P to d)

and
PF′ = e × (distance from P to d ′),
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it follows that

PF + PF′ = e × (distance between d and d ′).

= 2a,

which is a constant. �

The result of Theorem 5 can be used to draw an ellipse, using a piece of

pencil

ellipse

fixed ends
string fixed at both ends. A pencil is used to pull the string taut; then, as we
move the pencil round, the shape that it traces out is an ellipse whose foci are
the two ends of the string.

Notice that, if we are given any three points F , F ′ and P (not on the line
segment F ′F) in the plane, then there is only one ellipse through P with F For, the location of the

foci and the length of the
major axis specify an
ellipse uniquely.

and F ′ as its foci. Its centre is the midpoint, O , of the segment F ′F , its axes
are the line along F ′F and the line through O perpendicular to F ′F , and its
major axis has length PF + PF′.

Also, if we are given any two points F and F ′ in the plane, the locus of As a result, some books
take the ‘Sum of Focal
Distances Property’ as the
definition of the ellipse.

points P (not on the line segment F ′F) in the plane for which PF + PF′ is a
constant is necessarily an ellipse. Thus the converse of Theorem 5 holds.

There is an analogous result for the hyperbola.

Theorem 6 Difference of Focal Distances of Hyperbola
Let H be a hyperbola with major axis (−a, a) and foci F and F ′. Then, if
P is a point on the branch of the hyperbola that is closer to F ,

PF′ − PF = 2a;

and, if P is a point on the branch of the hyperbola closer to F ′,

PF′ − PF = −2a.

In particular, |PF′ − PF| is constant for all points P on the hyperbola.

y

P

xFF ′

directrix d ′ directrix d
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Proof We shall prove only the first formula; the proof of the second is similar.
Let d and d ′ be the directrices of the hyperbola that correspond to the foci

F and F ′ respectively, and let P be a point on the branch of the hyperbola that
is closer to F . Then, since

PF = e × (distance from P to d)

and

PF′ = e × (distance from P to d ′),

it follows that

X

P

FF ′

pencil

PF′ − PF = e × (distance between d and d ′)

= 2a,

which is a constant. �

The result of Theorem 6 can be used to draw a hyperbola, this time using a
piece of string and a stick. Choose two points F and F ′ on the x-axis, equidis-
tant from and on opposite sides of the origin. Hinge one end of a movable
stick F ′ X at the focus F ′; attach one end of a string of length � (where � is
less than the length of F ′ X ) to the end X of the stick and the other end of the
string to F , and keep the string taut by holding a pencil tight against the stick,
as shown.

Then, as we move the pencil along the stick, the shape that it traces out is
part of one branch of a hyperbola with foci F and F ′. For,

PF′ − PF = XF′ − (XP + PF)

= XF′ − �

= a constant independent of P .

We obtain the other branch of the hyperbola by interchanging the roles of F
and F ′ in the construction.

Notice that, if we are given any three points F , F ′ and P (not on the line
through F ′F or its perpendicular bisector) in the plane, then there is only one For, the location of the

foci and the length of the
major axis specify a
hyperbola uniquely.

hyperbola through P with F and F ′ as its foci. Its centre is the midpoint, O ,
of the segment F ′F , its axes are the line along F ′F and the line through O
perpendicular to F ′F , and its major axis has length |PF′ − PF|.

Also, if we are given any two points F and F ′ in the plane, the locus of
points P (not on the line segment F ′F) in the plane for which PF′ − PF is a
non-zero constant is necessarily one branch of a hyperbola. Thus the converse As a result, some books

take the ‘Difference of
Focal Distances Property’
as the definition of the
hyperbola.

of Theorem 6 holds, in the following sense: Given any three points F , F ′ and
P (where P must lie strictly between F and F ′ if it lies on the line through
F ′F) in the plane for which PF′ − PF �= 0, the locus of points Q in the plane
for which QF′ − QF = ±|PF′ − PF| is a hyperbola.
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1.1.5 Dandelin Spheres
We now give a beautiful proof due to Dandelin of the fact that a slant plane Germinal Pierre Dandelin

(1794–1847) was a
French–Belgian Professor
of Mechanics at Liège
University; he made his
discovery in 1822.

π that cuts one portion of a right circular cone in a ‘complete’ curve E is an
ellipse, just as it appears to be!

To do this, first fit a sphere inside the cone so that touches the plane π (at
a point F) and the cone (in a circle C with centre O), as shown in the figure
below. The circle C lies in a horizontal plane which intersects π in a line d.
Take an arbitrary point P on the curve E , and extend the line from the vertex
V of the cone through P to meet C at the point L , and let D be the point on d
such that PD is perpendicular to d.

The line PD lies in a vertical plane which intersects the vertical plane VLO
in the line PM, so that �PMD and �PML are both right-angled triangles.

Denote by α the angle between the slant plane π and the horizontal plane
through C , and by β the angle ∠PLM (the base angle of the cone). We use the symbol ∠ to

indicate an angle.

V

E

F
P

D

d

O

C
M

L

a

b

p

From the right-angled triangles �PMD and �PML, we see that

PL = PM

sin β
and PD = PM

sin α
,

so that
PL

PD
= sin α

sin β
.

Now PF = PL since they are both tangents from a given point to a given
sphere; it follows that

PF

PD
= sin α

sin β
. (11)

Now 0 < α < β < π
2 , since the plane π is less steep than the base angle of

the cone. So if we let e = sin α/ sin β, it follows that 0 < e < 1.
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It then follows from equation (11) that for any point P on the curve E , V

d ′

F ′

d

F

p

its distance PF from the fixed point F is e times its distance PD from
the fixed line d. Since 0 < e < 1, it follows from the focus–directrix defini-
tion of an ellipse that the curve E must be an ellipse, with focus F and
directrix d.

If we then construct the other sphere that touches both π and the cone, a
similar argument shows that the point of contact of the sphere with π is the
other focus F ′ of the ellipse; and the other directrix of the ellipse is the line
of intersection of π with the horizontal plane through the circle in which the
sphere touches the cone.

A similar construction involving spheres proves that in the cases 4 and
6 illustrated in the sketch in Subsection 1.1.1 the curve of intersection is a We ask you to look at the

two cases 4 and 6 in
Exercise 7 of
Subsection 1.5.

parabola and a hyperbola, respectively.
This completes the proof of our claim in Subsection 1.1.1 that the curves of

intersection of certain planes with a double cone are an ellipse, a parabola or a
hyperbola. We shall investigate the converse in Theorem 4 of Subsection 4.1.4.

1.2 Properties of Conics

1.2.1 Tangents
In the previous section you met the parametric equations of the parabola, Subsection 1.1.3

ellipse and hyperbola in standard form.
We now tackle a rather natural question: given parametric equations x = curve

tangent

(x (t ) , y(t))

x(t), y = y(t) describing a curve, what is the slope of the tangent to the curve
at the point with parameter t? This information will enable us to determine the
equation of the tangent to the curve at that point.

(x(t ), y (t ))

(x(t + h), y (t + h))

y(t + h)
– y(t )

y (t + h) – x (t )

Theorem 1 The slope of the tangent to a curve in R
2 with parametric

equations x = x(t), y = y(t) at the point with parameter t is

y′(t)
x ′(t)

,

provided that x ′(t) �= 0.

Proof The points on the curve with parameters t and t + h have coordinates
(x(t), y(t)) and (x(t + h), y(t + h)), respectively. Then, if h �= 0, the slope of
the chord joining these two points is

y(t + h) − y(t)

x(t + h) − x(t)
,

which we can write in the form

(y(t + h) − y(t))/h

(x(t + h) − x(t))/h
.
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We then take the limit of this ratio as h → 0. The slope of the chord tends to
the slope of the tangent, namely y′(t)/x ′(t). �

Example 1

(a) Determine the equation of the tangent at the point with parameter t to the

–a

–b

b

y

xa

ellipse with parametric equations

x = a cos t , y = b sin t ,

where t ∈ (−π , π ], t �= 0, π .
(b) Hence determine the equation of the tangent to the ellipse with parametric

equations x = 3 cos t , y = sin t at the point with parameter t = π/4.
Deduce the coordinates of the point of intersection of this tangent with the
x-axis.

Solution

(a) Now, y′(t) = b cos t and x ′(t) = −a sin t for t ∈ (−π , π ]; it follows
that, for t �= 0 or π , the slope of the tangent at the point with parameter
t is

y′(t)
x ′(t)

= b cos t

−a sin t
.

Hence the equation of the tangent at the point (a cos t , b sin t), t �= 0,
π , is

y − b sin t = −b cos t

a sin t
(x − a cos t).

Multiplying both sides and rearranging terms, we get

xb cos t + ya sin t = ab cos2 t + ab sin2 t = ab,

and dividing both sides by ab gives the equation

We shall use this equation
in Subsection 1.2.2.

x

a
cos t + y

b
sin t = 1. (1)

The point on the ellipse where t = 0 is (a, 0), at which the tangent has
equation x = a. Similarly, the point on the ellipse where t = π is (−a, 0),
at which the tangent has equation x = −a. It follows that equation (1)
covers these cases also.

(b) Here the curve is the ellipse in part (a) in the particular case that a = 3,
b = 1. When t = π/4, it follows from equation (1) that the equation of
the tangent at the point with parameter t = π/4 is

x
3 . 1√

2
+ y · 1√

2
= 1,
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or
1
3 x + y = √

2.

Hence, at the point T where the tangent crosses the x-axis, y = 0 and so

x = 3
√

2. Thus, T is the point
(

3
√

2, 0
)

.

Problem 1 Determine the slope of the tangent to the curve in R
2 with

y

x
cardioid

x = 2 cos t + cos 2t + 1
y = 2 sin t + sin 2t

parametric equations

x = 2 cos t + cos 2t + 1, y = 2 sin t + sin 2t

at the point with parameter t, where t is not a multiple of π . Hence
determine the equation of the tangent to this curve at the points with
parameters t = π/3 and t = π/2.

Problem 2

(a) Determine the equation of the tangent at a point P with parameter
t on the rectangular hyperbola with parametric equations x = t ,
y = 1/t .

(b) Hence determine the equations of the two tangents to the rectangular

y

xy = 1

x(1, –1)

P(t,1–t )

hyperbola from the point (1, −1).

We can modify the result of Example l(a) to find the equation of the tangent

at the point (x1, y1) on the ellipse with equation x2

a2 + y2

b2 = 1. We take x =
a cos t , y = b sin t as parametric equations for the ellipse, and let x1 = a cos t1
and y1 = b sin t1. Then it follows from equation (1) above that the equation of
the tangent is

x

a
cos t1 + y

b
sin t1 = 1,

which we can rewrite in the form xx1
a2 + yy1

b2 = 1.
We can determine the equations of tangents to the hyperbola and the

parabola in a similar way; the results are given in the following theorem.

Theorem 2 The equation of the tangent at the point (x1, y1) to a conic in
standard form is as follows.

Conic Tangent

Ellipse
x2

a2
+ y2

b2
= 1

xx1

a2
+ yy1

b2
= 1

Hyperbola
x2

a2
− y2

b2
= 1

xx1

a2
− yy1

b2
= 1

Parabola y2 = 4ax yy1 = 2a(x + x1)
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Problem 3 Prove that the equation of the tangent at the point (x1, y1)

to the rectangular hyperbola xy = 1 is 1
2 (xy1 + x1 y) = 1.

Problem 4 For each of the following conics, determine the equation
(a, b)

(x2, y2)

(x1, y1)

of the tangent to the conic at the indicated point.

(a) The unit circle x2 + y2 = 1 at
(
− 1

2 , 1
2

√
3
)

.

(b) The hyperbola xy = 1 at
(
−4, − 1

4

)
.

(c) The parabola y2 = x at (1, −1).

We can deduce a useful fact from the equation xx1 + yy1 = 1 for the tangent
at the point (x1, y1) to the unit circle x2 + y2 = 1. Let (a, b) be some point on
this tangent, so that

ax1 + by1 = 1. (2)

Next, let the other tangent to the unit circle through the point (a, b) touch the
circle at the point (x2, y2); it follows that This is because (a, b) lies

on the tangent at (x2, y2),
whose equation is
xx2 + yy2 = 1.

ax2 + by2 = 1. (3)

From equations (2) and (3) we deduce that the points (x1, y1) and (x2, y2)

both satisfy the equation ax + by = 1. Since this is the equation of a line, it
must be the equation of the line through the points (x1, y1) and (x2, y2). For
historical reasons, this line is called the polar of (a, b) with respect to the unit We shall meet polars of

other conics in
Subsection 4.2.1.

circle.

Theorem 3 Let (a, b) be a point outside the unit circle, and let the tangents

polar of
(a, b)

(a, b)

P1

P2

curve

normal
tangent

P

to the circle from (a, b) touch the circle at P1 and P2. Then the equation of
the line through P1 and P2 is

ax + by = 1.

For example, the polar of (2, 0) with respect to the unit circle is the line
2x = 1.

Problem 5 Determine the equation of the polar of the point (2, 3) with
respect to the unit circle.

In the next example we meet the idea of the normal to a curve.

Definition The normal to a curve C at a point P on C is the line through
P that is perpendicular to the tangent to C at P.
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Example 2

(a) Determine the equation of the tangent at the point with parameter t to the
y

x

(at 2, 2at)

parabola with parametric equations

x = at2, y = 2at (t ∈ R).

(b) Hence determine the equations of the tangent and the normal to the
parabola with parametric equations x = 2t2, y = 4t at the point with
parameter t = 3.

Solution

(a) Since y′(t) = 2a and x ′(t) = 2at, it follows that, for t �= 0, the slope of
the tangent at this point is

y′(t)
x ′(t)

= 2a

2at
= 1

t
.

Hence the equation of the tangent at the point (at2, 2at), t �= 0, is

y − 2at = 1

t
(x − at2),

which can be rearranged in the form

We shall use this equation
in Subsection 1.2.2.

ty = x + at2. (4)

The point on the parabola at which t = 0 is (0, 0); there the tangent to the
parabola is the y-axis, with equation x = 0. It follows that equation (4)
covers this case also.

(b) Here the curve is the parabola in part (a) in the particular case that a = 2.
When t = 3, it follows from equation (4) that the equation of the tangent
is 3y = x + 2 · 32, or 3y = x + 18.

To find the equation of the normal, we must find its slope and the Recall that lines of
(non-zero) slope m1 and
m2 are perpendicular if
and only if m1 · m2 = −1.

coordinates of the point on the parabola at which t = 3.
When t = 3, it follows from the equation of the tangent that the slope

of the tangent is 1
3 . Since the tangent and normal are perpendicular to each

other, it follows that the slope of the normal must be −3. Also, when t = 3,
we have that x = 2 · 32 = 18 and y = 4 · 3 = 12; so the corresponding
point on the parabola has coordinates (18, 12).

It follows that the equation of the normal to the parabola at the point
(18, 12) is

y − 12 = −3(x − 18)

= −3x + 54,

or

y = −3x + 66.



28 1: Conics

Problem 6 The normal to the parabola with parametric equations
y

x

Q(T 2, 2T )

P (t 2, 2t )

x = t2, y = 2t (t ∈ R) at the point P with parameter t , t �= 0, meets the
parabola at a second point Q with parameter T.

(a) Prove that the slope of the normal to the parabola at P is −t .
(b) Find the equation of the normal to the parabola at P.
(c) By substituting the coordinates of Q into your equation from part

(b), prove that T = − 2
t − t .

Problem 7 This question concerns the parabola with parametric
equations x = at2, y = 2at (t ∈ R).

directrix

F (a, 0)

P2

P1

y
Q

x

–a

(a) Determine the equation of the chord joining the points P1 and P2 on
the parabola with parameters t1 and t2, respectively, where t1 and t2
are unequal and non-zero.

Now assume that the chord P1 P2 passes through the focus (a, 0) of the
parabola.

(b) Prove that t1t2 = −1.
(c) Use the result of Example 2(a) to write down the equations of the

tangents to the parabola at P1 and P2, and to prove that these
tangents are perpendicular.

(d) Find the point of intersection P of the two tangents in part (c), and
verify that it lies on the directrix x = −a of the parabola.

(e) Find the equation of the normal at the point Q(at2, 2at) to the
parabola. Hence prove that if the normal at Q passes through the
focus F(a, 0), then Q is the vertex of the parabola.

1.2.2 Reflections
We use the reflection properties of mirrors all the time. For example, we look
in plane mirrors while shaving or combing our hair, and we use electric fires
with reflecting rear surfaces to throw radiant heat out into a room. A line is normal to a

surface in R
3 if it is

perpendicular to the
tangent plane to the
surface at its point of
intersection with the
surface.

All reflecting surfaces − mirrors, for example − obey the same Reflection
Law. The Reflection Law is often expressed in terms of the angles made with
the normal to the surface rather than the surface itself. However in this section
we shall state and use it in the following form.

The Reflection Law The angle that incoming light makes with the tangent Radio waves or radiant
heat, etc. obey the same
Reflection Law.

to a surface is the same as the angle that the reflected light makes with the
tangent.
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plane mirror curved mirror

θθθθ

This law applies to all mirrors, no matter whether the reflecting surface is

Lovell radio-telescope.

plane or curved. Indeed, in many practical applications the mirror is designed
to have a cross-section that is a conic curve – for example, the Lovell radio-
telescope at Jodrell Bank in Cheshire, England uses a parabolic reflector to
focus parallel radio waves from space onto a receiver.

We now investigate the reflection properties of mirrors in the shape of the
non-degenerate conics.

Reflection Property of the Ellipse
We start with the following interesting property of the ellipse.

Reflection Property of the Ellipse Light which comes from one focus

F ′ Fof an elliptical mirror is reflected at the ellipse to pass through the second
focus.

In our proof we use the following trigonometric result for triangles.

Sine Formula In a triangle �ABC with sides a, b, c opposite the vertices
A

b

a

CB

c

A, B, C, respectively,

a

sin ∠BAC
= b

sin ∠ABC
= c

sin ∠ACB
.

Proof of Reflection Property Let E be the ellipse in standard form, and
P(a cos t , b sin t) an arbitrary point on E ; for simplicity, we shall assume that
P lies in the first quadrant.

Then, as we saw earlier, Subsection 1.1.3

d ′
y

d
P (a cos t, b sin t)

(–ae, 0) (ae, 0)
F ′ T

x

x = a/ex = –a/e

F

PF = e × (distance from P to corresponding directrix d)

= e ×
(a

e
− a cos t

)
= a − ae cos t ,

and

PF′ = e × (distance from P to d ′)

= e ×
(a

e
+ a cos t

)
= a + ae cos t .

Hence,
PF

PF′ = a − ae cos t

a + ae cos t
= 1 − e cos t

1 + e cos t
.
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Next, we saw earlier that the equation of the tangent at P to the ellipse is Example 1(a)

y

x

TF ′ F

P (a cos t, b sin t )

(–ae, 0) (ae, 0)

x

a
cos t + y

b
sin t = 1;

hence at the point T where the tangent at P intersects the x-axis, we have

x

a
cos t = 1, or x = a/ cos t .

It follows that

TF

TF′ = (a/ cos t) − ae

(a/ cos t) + ae
= 1 − e cos t

1 + e cos t
.

We deduce that
PF

PF′ = TF

TF′ , or
PF

TF
= PF′

TF′ .

By applying the Sine Formula to the triangles �PFT and �PF′T , we obtain
that

PF

TF
= sin ∠PTF

sin ∠T PF
and

PF′

TF′ = sin ∠PTF′

sin ∠TPF′ ,

so that
sin ∠PTF

sin ∠TPF
= sin ∠PTF′

sin ∠TPF′ .

Since ∠PTF = ∠PTF′ it follows that sin ∠TPF = sin ∠TPF′, so that
P

αβ

F ′ F T

∠TPF = π − ∠TPF′ since ∠TPF �= ∠TPF′. Hence ∠TPF equals the angle
denoted by the symbol α in the diagram, and this is equal to the angle β (as α

and β are vertically opposite).
This completes the proof of the Reflection Property. �

An amusing illustration of the property is as follows. A poor snooker player

F ′ F

could appear to be a ‘crack shot’ if he used a snooker table in the shape of an
ellipse: for if he places his snooker ball on the table at one focus and a target
ball at the other focus, then no matter what direction he hits his ball, he is
certain to reach his target!

Reflection Property of the Hyperbola
The hyperbola has a reflection property similar to that of the ellipse, with an
appropriate modification.

F’ F’F F
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Reflection Property of the Hyperbola Light coming from one focus of
a hyperbolic mirror is reflected at the hyperbola in such a way that the light This is called the Internal

Reflection Property.appears to have come from the other focus.
Also, light going towards one focus of a hyperbolic mirror is reflected at This is called the External

Reflection Property.the mirror towards the other focus.

We omit a proof of this result, as it is similar to the proof of the Reflection
Property of the ellipse.

Reflection Property of the Parabola
The Reflection Property of the parabola is also similar to the reflection property
of the ellipse.

Reflection Property of the Parabola Incoming light parallel to the axis

y

F x

of a parabolic mirror is reflected at the parabola to pass through the focus.
Conversely, light coming from the focus of a parabolic mirror is reflected

at the parabola to give a beam of light parallel to the axis of the parabola.

Proof Let E be the parabola in standard form, and let P(at2, 2at) be an
arbitrary point on E .

We have seen that the equation of the tangent at P to the parabola has equa- Example 2

tion ty = x + at2. If T is the point where this tangent meets the x-axis, then at
y

xT (–at 2, 0)

P (at 2, 2at)

F (a, 0)O

T we have y = 0 and t · 0 = x + at2, so that x = −at2.
In the triangle �PTF we have

TF = TO + OF = at2 + a

and, by the Distance Formula,

FP =
√

(a − at2)2 + (2at)2 =
√

a2 + 2a2t2 + a2t4

= a + at2.

Then, since TF = FP, the triangle �PTF is isosceles, and so ∠TPF = ∠FTP.
Now since the horizontal line through P is parallel to the x-axis, the angle

between the tangent at P and the horizontal line through P is equal to ∠FTP
(as they are corresponding angles), and so also to ∠TPF. This completes the
proof of the reflection property. �

The reflection property of the parabola is also the principle behind the design
of searchlights as well as radio-telescopes. The reflector of a searchlight is a
parabolic mirror, with the bulb at its focus. Light from the bulb hits the mirror
and is reflected outwards as a parallel beam (see p. 32).

The design of optical telescopes sometimes uses the Reflection Properties
of other conics too. For example, the 4.2 metre William Herschel telescope
at the Roque de los Muchachos Observatory on the island of La Palma in the
Canary Islands, has an arrangement of mirrors known as a Cassegrain focus:
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a primary parabolic mirror reflects light towards a secondary hyperbolic mirror,
which reflects it again to a focus behind the primary mirror.

receiver

radio-telescopesearchlight

bulb

Cassegrain focus

secondary mirror
(hyperbolic) primary mirror

(parabolic)

The secondary mirror is used to focus the light to a much more convenient
place than the focus of the primary mirror, and to increase the effective focal
length of the telescope (and so its resolution).

We can summarize the above three Reflection Properties concisely as fol-
lows. All mirrors in the shape of a non-degenerate conic reflect light coming In the case of the

parabola, we regard the
second focus as ‘lying at
infinity’.

from or going to one focus towards the other focus.

Problem 8 Let E and H be an ellipse and a hyperbola, both having
the same points F and F ′ as their foci. Use the reflection properties of
the ellipse and hyperbola to prove that at each point of intersection, E
and H meet at right angles.

1.2.3 Conics as envelopes of tangent families
We now show how we can construct the non-degenerate conics as the envelope Such methods are often

used in exhibitions to
display the shapes of the
conics in a visually
appealing way, using
coloured threads or string.

of a family of lines that are tangents to the conics. In other words, the conic
being constructed is the curve in the plane that has each of the lines in the
family as a tangent.

The method depends on the use of a circle associated with each non-
degenerate conic, called its auxiliary circle. The auxiliary circle of an ellipse
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or hyperbola is the circle whose diameter is its major axis; analogously we
shall define the tangent to a parabola at its vertex to be the auxiliary circle of This definition for the

parabola enables us to
give succinct statements
of properties for all
conics.

the parabola.

axis axis

parabola

hyperbola hyperbola

ellipse auxiliary
circle

auxiliary circle

directrix
= auxiliary

circle

vertex major

axismajor

The mathematical tool that we use in our construction is the following result.

Theorem 4 A perpendicular from a focus of a non-degenerate conic to a

Here by ‘non-degenerate
conic’ we mean a
parabola, a (non-circular)
ellipse or a hyperbola.tangent meets the tangent on the auxiliary circle of the conic.

Proof (for a parabola) Let the point P(at2, 2at) lie on the parabola in stan- Analytic proofs for an
ellipse or hyperbola are
similar; however for these
conics there are two
perpendiculars, both of
which meet the tangent on
the auxiliary circle.

dard form with equation y2 = 4ax, and let the perpendicular from the focus
F(a, 0) to the tangent at P meet it at T .

By Theorem 2 of Subsection 1.2.1, the tangent at P has equation

y · 2at = 2a(x + at2),

which we may rewrite in the form

y

x

T
P(at 2, 2at )

F (a, 0)

y = 1

t
x + at. (5)

From this we see that the slope of the tangent PT is 1/t , so that the slope of the
perpendicular FT must be −t . Since FT also passes through F(a, 0), FT must
have equation

y + tx = 0 + t · a

which we may rewrite in the form

y = −tx + at. (6)
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The equations (5) for PT and (6) for FT clearly have the solution x = 0,
y = at. This means that the point of intersection T of the lines PT and
FT has coordinates (0, at). Hence T lies on the directrix of the parabola, as
required. �

Remark

Given a parabola and its axis, we can use Theorem 4 to identify the focus of
the parabola. We draw the tangent at any point P on the parabola, and then
the perpendicular to the tangent at the point T where the tangent meets the
directrix. This perpendicular crosses the parabola’s axis at its focus. The directrix is simply the

tangent where the axis
cuts the parabola.

Problem 9 Prove Theorem 4 for an ellipse.

To construct the envelopes of the conics, you will need a sheet of paper, a
pair of compasses, a set square and a pin.

Parabola
Draw a line d for the directrix of the parabola and a point F (not on d) for
its focus. Place a set square so that its right-angled vertex lies at a point of d
and one of its adjacent sides passes through F ; draw the line � along the other
adjacent side of the set square. By Theorem 4, � is a tangent to the parabola
with focus F and directrix d.

Repeating the process with the vertex of the set square at different points of The family of lines
forming the envelope is
{�: vertex of set square
∈ d}.

d gives a family of lines � that is the envelope of tangents to the parabola, as
shown below.

F F

d

d

l

Ellipse
Draw a circle C for the auxiliary circle of the ellipse and a point F inside C
(but not at its centre) for a focus. Place a set square so that its right-angled
vertex lies at a point of C and one of its adjacent sides passes through F ; draw
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the line � along the other adjacent side of the set square. By Theorem 4, � is a
tangent to the ellipse with focus F and auxiliary circle C .

Repeating the process with the vertex of the set square at different points The family of lines
forming the envelope is
{�: vertex of set square
∈ C}.

of C gives a family of lines that is the envelope of tangents to the ellipse, as
shown below.

F F

ellipse

auxiliary
circle

Hyperbola
Draw a circle C for the auxiliary circle of the hyperbola and a point F outside
C for a focus. Place a set square so that its right-angled vertex lies at a point
of C and one of its adjacent sides passes through F ; draw the line � along
the other adjacent side of the set square. By Theorem 4, � is a tangent to the
hyperbola with focus F and auxiliary circle C .

Repeating the process with the vertex of the set square at different points of
C gives a family of lines that is the envelope of tangents to one branch of the The family of lines

forming the envelope is
{�: vertex of set square
∈ C}.

hyperbola, as shown below.
Repeating the construction with the other focus F ′ (diametrically opposite

F with respect to C) gives the other branch of the hyperbola.

F´ F
F

C
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1.3 Recognizing Conics

So far, we have considered the equation of a conic largely when it is in ‘stan- The equations we have
met were:

(x − a)2 + (y − b)2 = r2,

y2 = 4ax,

x2

a2
+ y2

b2
= 1,

x2

a2
− y2

b2
= 1.

dard form’; that is, when the centre of the conic (if it has a centre) is at the
origin, and the axes of the conic are parallel to the x- and y-axes. However,
most of the conics which arise in calculations are not in standard form; thus
we need some way of determining from the equation of a conic which type of
conic it describes.

First we observe that all the equations of all (non-degenerate) conics in
standard form can be expressed in the form

Ax2 + Bxy + Cy2 + Fx + Gy + H = 0, (1)

where not all of A, B and C are zero. For example, the equation of the circle

x2 + y2 + 4x + 6y − 23 = 0 (2)

is of the form (1), with A = C = 1, B = 0, F = 4, G = 6 and H = −23.
Now we can obtain any non-degenerate conic from a conic in standard form This rotates the axes

through an anticlockwise
angle θ to align them with
the axes of the conic.

by a suitable rotation

(x , y) �→ (x cos θ − y sin θ , x sin θ + y cos θ)

followed by a suitable translation This moves the centre or
vertex of the conic to the
origin.(x , y) �→ (x − a, y − b).

Both of these transformations are linear, so that the equation of the conic at
each stage is a second degree equation of the type (1); in other words, any
non-degenerate conic has an equation of type (1).

The equations of degenerate conics can also be expressed in the form (1).
For example,

x2 + y2 = 0 represents the single point (0, 0);

y2 − 2xy + x2 = 0 represents the single line y = x , since

y2 − 2xy + x2 = (y − x)2;

y2 − x2 = 0 represents the pair of lines y = ±x , since

y2 − x2 = (y + x)(y − x).

However, an equation of the form (1) can also describe the empty set; an This is an unexpected
possibility!example of this is the equation x2 + y2 + 1 = 0, as there are no points (x , y)

in R
2 for which x2 + y2 = −1. For simplicity in the statement of the theo-

rem below, therefore, we add the empty set to our existing list of degenerate
conics.
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In the above discussion, we proved one part of the following result.

Theorem 1 Any conic has an equation of the form

Ax2 + Bxy + Cy2 + Fx + Gy + H = 0, (3)

where A, B, C , F , G and H are real numbers, and not all of A, B and C are
zero. Conversely, any set of points in R

2 whose coordinates (x , y) satisfy We omit a proof of the
converse part. It would
simply be a reworking of
the classification methods
in the rest of the section.

equation (3) is a conic.

In this section we investigate the classification of conics in terms of equa-
tion (3). In particular, if we are given the equation of a non-degenerate conic
in the form (3) how can we determine whether it is a parabola, an ellipse or a
hyperbola? And how can we identify its vertex or centre? And its axis, or its
major and minor axes? A key tool in this work is the matrix representation of
the equation of a conic.

Introducing Matrices
We can express a general second degree equation in x and y

Ax2 + Bxy + Cy2 + Fx + Gy + H = 0, (4)

where A, B and C are not all zero, in terms of matrices as follows. This will be useful, since
we can then use the whole
armoury of Linear
Algebra to study such
equations.

Let A =
(

A 1
2 B

1
2 B C

)
, J =

(
F
G

)
and x =

(
x
y

)
. Then

xT Ax = ( x y )

(
A 1

2 B

1
2 B C

)(
x
y

)

=
(

Ax + 1
2 By 1

2 Bx + Cy
)( x

y

)

= Ax2 + Bxy + Cy2

and

Here we choose to regard
1 × 1 matrices and real
numbers as equivalent;
this will cause no
problems.JT x = ( F G )

(
x
y

)
= Fx + Gy.

We may therefore write the equation (4) in the form

This is called the matrix
form of the equation (4).

xT Ax + JT x + H = 0. (5)

For example, let E be the conic with equation

3x2 − 10xy + 3y2 + 14x − 2y + 3 = 0.

The equation of E is of the form (4) with A = 3, B = −10, C = 3, F = 14,
G = −2 and H = 3. It follows from the above discussion that we can express
the equation of E in matrix form as xTAx + JTx + H = 0, where

A =
(

3 −5
−5 3

)
, J =

(
14
−2

)
, H = 3 and x =

(
x
y

)
.
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Problem 1 Write the equation of each of the following conics in
matrix form.

(a) 11x2 + 4xy + 14y2 − 4x − 28y − 16 = 0
(b) x2 − 4xy + 4y2 − 6x − 8y + 5 = 0

A key tool in our use of matrices will be the following result.

Theorem 2 A 2 × 2 matrix P represents a rotation of R
2 about the origin If P is orthogonal, then

det P = ±1; when
det P = −1, P represents
reflection in the x-axis
followed by a rotation.

if and only if it satisfies the following two conditions:

(a) P is orthogonal;
(b) det P = 1.

Proof A matrix P represents a rotation about the origin (anticlockwise
through an angle θ ) if and only it is of the form(

cos θ − sin θ

sin θ cos θ

)
. (6)

It is easy to verify that P satisfies conditions (a) and (b).

Next, let P =
(

a b
c d

)
be a matrix that satisfies conditions (a) and (b).

Then, since P is orthogonal, the vector

(
a
c

)
has length 1; that is,

a2 + c2 = 1. Thus there is a number θ for which

a = cos θ and c = sin θ .

Also, since P is orthogonal, the vectors

(
a
c

)
=
(

cos θ

sin θ

)
and

(
b
d

)
are

orthogonal; that is, (cos θ sin θ)

(
b
d

)
= 0 or

cos θ · b + sin θ · d = 0.

So there exists some number λ, say, such that

b = −λ sin θ and d = λ cos θ .

Then since det P = 1, we have

1 = ad − bc = λ cos2 θ + λ sin2 θ ,

so that λ = 1. It follows that P must be of the form (6), and so represent a
rotation of R

2 about the origin. �
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Using Matrices
We now use the methods of Linear Algebra to recognize conics specified by
their equations.

Example 1 Prove that the conic E with equation

3x2 − 10xy + 3y2 + 14x − 2y + 3 = 0

is a hyperbola. Determine its centre, and its major and minor axes.

Solution We saw above that the equation of E can be written in matrix form
as xT Ax + JT x + H = 0, where

A =
(

3 −5
−5 3

)
, J =

(
14
−2

)
, H = 3 and x =

(
x
y

)
;

that is, as

( x y )

(
3 −5

−5 3

)(
x
y

)
+ ( 14 −2 )

(
x
y

)
+ 3 = 0.

We start by diagonalizing the matrix A. Its characteristic equation is

0 = det(A − λI) =
∣∣∣∣ 3 − λ −5

−5 3 − λ

∣∣∣∣
= λ2 − 6λ − 16

= (λ − 8)(λ + 2),

so that the eigenvalues of A are λ = 8 and λ = −2. The eigenvector equations
of A are

(3 − λ)x − 5y = 0,

−5x + (3 − λ)y = 0.

When λ = 8, these equations both become

−5x − 5y = 0,

so that we may take as a corresponding eigenvector

(
1

−1

)
, which we

normalize to have unit length as

(
1/

√
2

−1/
√

2

)
.

When λ = −2, the eigenvector equations of A become

5x − 5y = 0,

−5x + 5y = 0,

so that we may take as a corresponding eigenvector

(
1
1

)
, which we normalize

to have unit length as

(
1/

√
2

1/
√

2

)
.
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Now Note that we need to
check the order in which
the normalised
eigenvectors appear in P
to ensure that P represents
a rotation.

∣∣∣∣ 1/
√

2 1/
√

2
−1/

√
2 1/

√
2

∣∣∣∣ = 1

2
+ 1

2
= 1,

so we take as our rotation of the plane the transformation x = Px′ where

P =
(

1/
√

2 1/
√

2
−1/

√
2 1/

√
2

)
. The transformation x = Px changes the equation of

the conic to the form Since P is orthogonal and
det P = 1, P represents a
rotation − in fact, an
anticlockwise rotation
through −π/4; that is, a
clockwise rotation
through π/4.

(Px′)T A(Px′) + JT (Px′) + H = 0

or

(x′)T (PT AP)x′ + (JT P)x′ + H = 0.

Since PT AP =
[

8 0
0 −2

]
, the equation of the conic is now

y

x

x

E

E

y
( x ′ y′ )

(
8 0
0 −2

)(
x ′
y′
)

+ (14 − 2)

(
1/

√
2 1/

√
2

−1/
√

2 1/
√

2

)(
x ′
y′
)

+ 3 = 0,

which we can rewrite in the form

8x ′2 − 2y′2 + 8
√

2x ′ + 6
√

2y′ + 3 = 0.

We may rewrite this equation in the form For

x ′2 + √
2x ′

=
(

x ′ + 1√
2

)2 − 1
2

and

y
′2 − 3

√
2y′

=
(

y′ − 3√
2

)2 − 9
2 .

8
(

x ′2 + √
2x ′)− 2

(
y′2 − 3

√
2y′)+ 3 = 0

so that, on completing the square, we have

8
(

x ′ + 1/
√

2
)2 − 4 − 2

(
y′ − 3/

√
2
)2 + 9 + 3 = 0,

which we can rewrite in the form

8
(

x ′ + 1/
√

2
)2 − 2

(
y′ − 3/

√
2
)2 = −8,

or

We can write this equation
in (nearly) standard
form as

(y′′)2

4
− (x ′′)2

1
= 1,

where x ′′ = x ′ + 1√
2

and

y′′ = y′ − 3√
2

.

(
y′ − 3/

√
2
)2

4
−
(

x ′ + 1/
√

2
)2

1
= 1. (7)

This is the equation of a hyperbola.
From equation (7) it follows that the centre of the hyperbola E is the point

where x ′ = −1/
√

2 and y′ = 3/
√

2. From the equation x = Px′, it follows
that in terms of the original coordinate system this is the point(

x
y

)
=
(

1/
√

2 1/
√

2

−1/
√

2 1/
√

2

)(−1/
√

2

3/
√

2

)

=
(

1
2

)
,

that is, the point (1, 2).
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It also follows from equation (7) that the major axis of E has equation Recall that the equation
x2

a2 − y2

b2 = 1 represents a
hyperbola with major axis
y = 0 and minor axis
x = 0.

x ′ + 1/
√

2 = 0, or x ′ = −1/
√

2; and the minor axis of E has equation
y′ − 3/

√
2 = 0, or y′ = 3/

√
2.

Finally, since the matrix P is orthogonal we can rewrite the equation x = Px′
in the form x′ = P−1x = PT x, so that

(
x ′
y′
)

=
(

1√
2

−1√
2

1√
2

1√
2

)(
x
y

)

or as a pair of equations

x ′ = 1√
2

x − 1√
2

y,

y′ = 1√
2

x + 1√
2

y.

It follows that the equation, x ′ = −1/
√

2, of the major axis of the hyperbola Recall that x ′′ = x ′ + 1√
2

and y′′ = y′ − 3√
2

.E can be expressed in terms of the original coordinate system as

1√
2

x − 1√
2

y = − 1√
2
, or x − y = −1.

Similarly, the equation, y′ = 3/
√

2, of the minor axis of the hyperbola can

y
E

E

y
y

x

x
x

be expressed in terms of the original coordinate system as

1√
2

x + 1√
2

y = 3√
2
, or x + y = 3.

The above problem illustrates a general strategy for identifying conics from
their second degree equations.

Strategy To classify a conic E with equation

Ax2 + Bxy + Cy2 + Fx + Gy + H = 0 :

1. Write the equation of E in matrix form xT Ax + JT x + H = 0.
2. Determine an orthogonal matrix P, with determinant 1, that diagonal- Reorder the columns of P

if necessary to ensure that
det P = 1 rather than −1.

izes A.
3. Make the change of coordinate system x = Px′. The equation of E then

becomes of the form This is a rotation of R
2.

λ1x ′2 + λ2 y′2 + f x ′ + gy′ + h = 0,

where λ1 and λ2 are the eigenvalues of A.

Here λ1 corresponds to
the first column in P, and
λ2 to the second column
in P.

4. ‘Complete the squares’, if necessary, to rewrite the equation of E in
This is a translation of R

2.terms of an (x ′′, y′′)-coordinate system as the equation of a conic in
standard form.

5. Use the equation x′ = PT x to determine the centre and axes of E in
terms of the original coordinate system.
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Problem 2 Classify the conics in R
2 with the following equations.

Determine the centre of those that have a centre.

(a) 11x2 + 4xy + 14y2 − 4x − 28y − 16 = 0
(b) x2 − 4xy + 4y2 − 6x − 8y + 5 = 0

In fact, using the above strategy we can prove the following result.

Theorem 3 A non-degenerate conic with equation We omit a proof of this
result.

Ax2 + Bxy + Cy2 + Fx + Gy + H = 0

and matrix A =
(

A 1
2 B

1
2 B C

)
can be classified as follows:

Since det A = AC −
1
4 B2 = − 1

4 (B2 − 4AC).
Theorem 3 is often
referred to as ‘the
B2 − 4AC test’ for conics.

(a) If det A < 0, E is a hyperbola.
(b) If det A = 0, E is a parabola.

Note that det A and
B2 − 4AC have opposite
signs.

(c) If det A > 0, E is an ellipse.

Problem 3 Use Theorem 3 to classify the non-degenerate conics in

You may assume that
these conics are
non-degenerate.

R
2 with the following equations.

(a) 3x2 − 8xy + 2y2 − 2x + 4y − 16 = 0
(b) x2 + 8xy + 16y2 − x + 8y − 12 = 0
(c) 52x2 − 72xy + 73y2 − 32x − 74y + 28 = 0

1.4 Quadric Surfaces

1.4.1 Quadric Surfaces in R
3

Quadric surfaces (or quadrics) are surfaces in R
3 that are the natural analogues

of those curves in R
2 that we call conics.

Definition A quadric surface in R
3 is a set given by an equation of the

form

Ax2 + By2 + Cz2 + Fxy + Gyz + Hxz + Jx + Ky + Lz + M = 0, (1)

where A, B, C , F , G, H , J , K , L and M are real numbers, and not all of
A, B, C , F , G and H are zero.

We use the term degenerate quadrics to describe those quadrics that are the
empty set, a single point, a single line, a single plane, a pair of planes and a
cylinder.
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By a cylinder we mean a surface that consists of an ellipse, parabola or
hyperbola in some plane π , together with all the lines in R

3 through that conic
that are normal to π .

elliptic cylinder
hyperbolic cylinder parabolic cylinder

This leaves six different types of quadric surface, the so-called non-
degenerate quadric surfaces. We illustrate these below, with a typical equation
for each. In each case, we state also the curve of intersection of a plane parallel
to a coordinate plane that meets the surface in a non-trivial intersection.

z

y

ellipsoid

x

z

z

z
zz

y

x

y

x

y

y

y

x
x

x

x 2 y 2

b 2a 2
+ = 1z 2

c 2
+

intersection is ellipse 

elliptic cone

x 2 y 2

b 2a 2
+z 2 =

ellipse or hyperbola

elliptic paraboloid

x 2 y 2

b 2a 2
+z  =

ellipse or hyperbola

hyperbolic paraboloid

x 2 y 2

b 2a 2
–z =

hyperbola or parabola

hyperboloid of 1 sheet

x 2 y 2

b 2a 2
+ = 1z 2

c 2
–

hyperbola or ellipse

hyperboloid of 2 sheets

hyperbola or ellipse 

x 2 y 2

b 2a 2
+ = –1z 2

c 2
–

As well as being attractive visually, quadrics arise naturally in various areas
of applied mathematics.
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1.4.2 Recognizing Quadric Surfaces
We use the notion of orthogonal diagonalization of 3 × 3 matrices to classify
non-degenerate quadrics, just as we used 2 × 2 matrices to classify conics.

Introducing Matrices
Consider a quadric surface with equation

Ax2 + By2 + Cz2 + Fxy + Gyz + Hxz + Jx + Ky + Lz + M = 0,

and let

A =

⎛
⎜⎜⎝

A 1
2 F 1

2 H

1
2 F B 1

2 G

1
2 H 1

2 G C

⎞
⎟⎟⎠ , J =

⎛
⎝ J

K
L

⎞
⎠ and x =

⎛
⎝ x

y
z

⎞
⎠ .

Then a calculation similar to that for conics shows that Section 1.3

xT Ax = Ax2 + By2 + Cz2 + Fxy + Gyz + Hxz

and

JT x = Jx + Ky + Lz.

We may therefore write the equation of the quadric surface in the form

This is called the matrix
form of the equation of the
quadric surface.

xT Ax + JT x + M = 0. (2)

For example, the equation of the quadric surface given by

5x2 + 3y2 + 3z2 − 2xy + 2yz − 2xz − 10x + 6y − 2z − 10 = 0

may be written in matrix form xT Ax + JT x + M = 0 where

A =
⎛
⎝ 5 −1 −1

−1 3 1
−1 1 3

⎞
⎠ , J =

⎛
⎝−10

6
−2

⎞
⎠ , x =

⎛
⎝ x

y
z

⎞
⎠ and

M = −10.

Problem 1 Write the equation of the following quadrics in matrix
form.

2x2 + 5y2 − z2 + xy − 3yz − 2xz − 2x − 6y + 10z − 12 = 0

y − yz = xz

A key tool for classifying quadrics is the following result about matrices.

Theorem 1 A 3 × 3 matrix P represents a rotation of R
3 about the origin

We omit a proof, as it is
similar to that of Theorem
2 in Section 1.3.

if and only if it satisfies the following two conditions:

(a) P is orthogonal;

If P is orthogonal and
det P = −1, then P
represents a rotation about
the origin composed with
a reflection in a plane
through the origin.

(b) det P = 1.
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Using Matrices
Our approach to classifying quadrics in R

3 using matrices is broadly similar to
that for classifying conics in R

2.

Strategy To classify a quadric E with equation

Ax2 + By2 + Cz2 + Fxy + Gyz + Hxz + Jx + Ky + Lz + M = 0:

1. Write the equation of E in matrix form xT Ax + JT x + M = 0.
2. Determine an orthogonal matrix P, with determinant 1, that diagonal- Reorder the columns of P

if necessary to ensure that
det P = 1 rather than −1.

izes A.
3. Make the change of coordinate system x = Px′. The equation of E then

This is a rotation of R
3.becomes of the form

Here λi corresponds to the
i th column in P.

λ1x ′2 + λ2 y′2 + λ3z′2 + jx′ + ky′ + lz′ + m = 0,

where λ1, λ2 and λ3 are the eigenvalues of A.
4. ‘Complete the squares’, if necessary, to rewrite the equation of E in This is a translation of R

3.
terms of an (x ′′, y′′, z′′)-coordinate system as the equation of a quadric
in standard form.

5. Use the equation x′ = PT x to determine the centre and planes of
symmetry of E in terms of the original coordinate system.

Example 1 Prove that the quadric E with equation

5x2 + 3y2 + 3z2 − 2xy + 2yz − 2xz − 10x + 6y − 2z − 10 = 0

is an ellipsoid. Determine its centre.

Solution We saw above that the equation of E can be written in matrix form Just before Problem 1

as xT Ax + JT x + M = 0, where

A =
⎛
⎝ 5 −1 −1

−1 3 1
−1 1 3

⎞
⎠ , J =

⎛
⎝−10

6
−2

⎞
⎠ , x =

⎛
⎝ x

y
z

⎞
⎠ and

M = −10;

that is , as

( x y z )

⎛
⎝ 5 −1 −1

−1 3 1
−1 1 3

⎞
⎠
⎛
⎝ x

y
z

⎞
⎠+ (−10 6 −2

)⎛⎝ x
y
z

⎞
⎠− 10 = 0.

We start by diagonalizing the matrix A. Its characteristic equation is

0 = det(A − λI) =
∣∣∣∣∣∣
5 − λ −1 −1
−1 3 − λ 1
−1 1 3 − λ

∣∣∣∣∣∣
= −λ3 + 11λ2 − 36λ + 36

= −(λ − 2)(λ − 3)(λ − 6),
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so that the eigenvalues of A are λ = 2, 3 and 6. The eigenvector equations of
A are

(5 − λ)x − y − z = 0,

−x + (3 − λ)y + z = 0,

−x + y + (3 − λ)z = 0.

When λ = 2, these equations become

3x − y − z = 0,

−x + y + z = 0,

−x + y + z = 0.

Adding the first two equations we get x = 0; it then follows from all the
equations that y + z = 0. So we may take as a corresponding eigenvector⎛
⎝ 0

1
−1

⎞
⎠, which we normalize to have unit length as

⎛
⎝ 0

1/
√

2
−1/

√
2

⎞
⎠ .

Similarly, when λ = 3, we may take as a corresponding eigenvector

⎛
⎝ 1

1
1

⎞
⎠, We omit the details.

which we normalize to have unit length as

⎛
⎝ 1/

√
3

1/
√

3
1/

√
3

⎞
⎠; and when λ = 6, we

may take as a corresponding eigenvector

⎛
⎝ 2

−1
−1

⎞
⎠, which we normalize to have

unit length as

⎛
⎝ 2/

√
6

−1/
√

6
−1/

√
6

⎞
⎠.

Now

Adding row 2 to row 3

Expanding in terms of the
first column of the
determinant

∣∣∣∣∣∣∣∣
0 1√

3
2√
6

1√
2

1√
3

−1√
6

−1√
2

1√
3

−1√
6

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
0 1√

3
2√
6

1√
2

1√
3

−1√
6

0 2√
3

−2√
6

∣∣∣∣∣∣∣∣
= − 1√

2

∣∣∣∣∣∣
1√
3

2√
6

2√
3

−2√
6

∣∣∣∣∣∣
= − 1√

2

(
− 6√

18

)
= +1,

so we take as a convenient rotation of R
3 the transformation x = Px′,

P represents a rotation of
R

3 since it is orthogonal
and det P = 1.

where P =
⎛
⎝ 0 1/

√
3 2/

√
6

1/
√

2 1/
√

3 −1/
√

6
−1/

√
2 1/

√
3 −1/

√
6

⎞
⎠ . This transformation changes the

equation of the quadric to the form

(Px′)T A(Px′) + JT (Px′) + M = 0
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or

(x′)T (PT AP)x′ + (JT P)x′ + M = 0.

Since PT AP =
⎛
⎝ 2 0 0

0 3 0
0 0 6

⎞
⎠, this is the equation

( x ′ y′ z′ )

⎛
⎝ 2 0 0

0 3 0
0 0 6

⎞
⎠
⎛
⎝ x ′

y′
z′

⎞
⎠

+ (−10 6 − 2)

⎛
⎜⎜⎝

0 1√
3

2√
6

1√
2

1√
3

−1√
6

−1√
2

1√
3

−1√
6

⎞
⎟⎟⎠
⎛
⎝ x ′

y′
z′

⎞
⎠− 10 = 0,

which we can rewrite in the form

2x ′2 + 3y′2 + 6z′2 + 4
√

2x ′ − 2
√

3y′ − 4
√

6z′ − 10 = 0.

‘Completing the square’ in this equation, we get

2
(

x ′2 + 2
√

2x ′)+ 3
(

y′2 − 2√
3

y′)+ 6
(

z′2 − 4√
6

z′)− 10 = 0

so that

2
(

x ′ + √
2
)2 − 4 + 3

(
y′ − 1√

3

)2 − 1 + 6
(

z′ − 2√
6

)2 − 4 − 10 = 0.

We now make the transformation This is a translation of R
3.

x′′ = x′ +

⎛
⎜⎜⎝

√
2

−1√
3

−2√
6

⎞
⎟⎟⎠ , (3)

so that we can rewrite the equation of E in the form

2(x ′′)2 + 3(y′′)2 + 6(z′′)2 = 19,

or In the general form of the
equation of an ellipsoid in
Subsection 1.4.1, E has
a2 = 19/2, b2 = 19/3
and c2 = 19/6.

(x ′′)2

19/2
+ (y′′)2

19/3
+ (z′′)2

19/6
= 1. (4)

It follows from equation (4) that E must be an ellipsoid.
From equations (3) and (4) it follows that the centre of the ellipsoid E is the

point where x ′ = −√
2, y′ = 1√

3
and z′ = 2√

6
. From the equation x = Px′, it

follows that in terms of the original coordinate system this is the point⎛
⎝ x

y
z

⎞
⎠ =

⎛
⎜⎜⎝

0 1√
3

2√
6

1√
2

1√
3

−1√
6

−1√
2

1√
3

−1√
6

⎞
⎟⎟⎠
⎛
⎜⎜⎝

−√
2

1√
3

2√
6

⎞
⎟⎟⎠

=
⎛
⎝ 1

−1
1

⎞
⎠ ,

that is, the point (1, −1, 1).
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Problem 2 Prove that the quadric surface E with equation

y − yz = xz

is a hyperbolic paraboloid. Determine its centre.

1.4.3 Rulings of Quadric Surfaces
We now turn our attention to two of the quadric surfaces, the hyperboloid of
one sheet and the hyperbolic paraboloid. Each of these can be very beautifully
constructed entirely from a family of straight lines.

Definition A ruled surface in R
3 is a surface that can be made up from a

family of straight lines.

The Hyperboloid of One Sheet
Firstly, we look at the hyperboloid of one sheet E with equation

x2 + y2 − z2 = 1,

illustrated below.

z

y

x

C1

C–1

1

(√2,0, 1)

(0,√2,−1)–1

l

The surface meets each horizontal plane in a circle whose centre lies on That is, each plane
parallel to the
(x , y)-plane.

the z-axis; for example, the circles C1 and C−1 drawn in the figure, where
the surface meets the planes z = 1 and z = −1, respectively; both of these
circles have radius

√
2. The surface meets each plane containing the z-axis in

a rectangular hyperbola. The surface appears rather like a cooling tower at a
power station.
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Let � be the line through the points
(√

2, 0, 1
)

on C1 and
(

0,
√

2, −1
)

on

C−1. Any point on � has coordinates

λ
(√

2, 0, 1
)

+ (1 − λ)
(

0,
√

2, −1
)

=
(
λ
√

2, (1 − λ)
√

2, 2λ − 1
)

(λ ∈ R).

(5)

Clearly each point with coordinates given by equation (5) lies on the surface
E, since (

λ
√

2
)2 +

(
(1 − λ)

√
2
)2 − (2λ − 1)2

= 2λ2 + 2(1 − 2λ + λ2) − (4λ2 − 4λ + 1)

= 1.

In other words, the point lies on E for any choice of the parameter λ; so the

l′
l

whole of the line � lies in the surface E.
We now use the fact that the surface is symmetric about the z-axis; in other

words, a rotation about the z-axis carries the surface to itself. Our line � meets
each horizontal circle in E in a single point; and, if we rotate the surface about
the z-axis, � is moved to a new line, �′ say, which also lies in the surface, and
which does not meet �.

We can see that �′ does not meet � because �′ meets each horizontal circle
in a point different to that in which � meets that horizontal circle − namely, in
the point obtained by the rotation of the intersection point with �.

So we say that the hyperboloid of one sheet E is generated by the straight
line � and the rotations of � described above. These straight lines are called a
family of generators (or generating lines), L say, of E, and E is called a ruled
surface.

In fact, E possesses another family of generators too.

Problem 3 Verify that the line m through the points (
√

2, 0, 1) and
(0, −√

2, −1) lies entirely in the quadric surface E with equation x2 +
y2 − z2 = 1.

There is thus a second family, M , say, of lines that are also generators of

m

the surface E, and this is obtained by rotating the line m about the z-axis (as
shown dotted in the diagram in the margin).

From the construction of the families L and M , it is clear that any two
distinct lines in a given family do not meet. However, each line in L meets
each line in M (− with one exception, as we shall explain below).

To prove this claim, it is sufficient (in view of the rotational symmetry of
the surface E) to verify that the given line � in L meets each line in M . Now,
recall (from equation (5) above) that each point of � has coordinates(

λ
√

2, (1 − λ)
√

2, 2λ − 1
)

, (6)
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for some λ ∈ R. In a similar way as you saw in your solution to Problem 3, a
typical point of the line m in M has coordinates

μ
(√

2, 0, 1
)

+ (1 − μ)
(

0, −√
2, −1

)
=
(
μ

√
2, (μ − 1)

√
2, 2μ − 1

)
, (7)

for some μ ∈ R. We can then find the coordinates of points on any other line
m′ in the family M by rotating m about the z-axis through a suitable angle θ ;
that is, by the transformation

Here we have

x = μ
√

2,

y = (μ − 1)
√

2, and

z = 2μ − 1.

(x , y, z) �→ (x cos θ − y sin θ , x sin θ + y cos θ , z),

which sends the point on m with coordinates (7) to some point(√
2(μ cos θ − μ sin θ + sin θ),

√
2(μ sin θ + μ cos θ − cos θ), 2μ − 1

)
(8)

on a line m′ in M .
To find the point(s) of intersection of the lines � and m′, we have to find the

values of λ and μ for which the points (6) and (8) are equal.
By comparing the third coordinates in (6) and (8), we see that we must have

λ = μ. Then, by comparing the first coordinates, we find Here we have used the
fact that λ = μ.

λ
√

2 = √
2(λ cos θ − λ sin θ + sin θ),

so that

λ = sin θ

1 + sin θ − cos θ
. (9)

Finally, by comparing the second coordinates in (6) and (8), we find Here we have again used
the fact that λ = μ.

(1 − λ)
√

2 = √
2(λ sin θ + λ cos θ − cos θ),

so that

λ = 1 + cos θ

1 + sin θ + cos θ
. (10)

The expressions for λ in (9) and (10) are equal, since

sin θ

1 + sin θ − cos θ

/
1 + cos θ

1 + sin θ + cos θ

= sin θ(1 + sin θ + cos θ)

(1 + sin θ − cos θ)(1 + cos θ)

= sin θ + sin2 θ + sin θ cos θ

1 + sin θ + sin θ cos θ − cos2 θ

= 1.

It follows that the value of λ (and so μ) given by (6) gives us the (unique)

Here we use the fact that
1 − cos2 θ = sin2 θ .

point of intersection of � and m′.
There is one exceptional case, however, when the expression (9) for λ makes

no sense because its denominator is zero: that is, when θ = 3π/2, in which
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case cos θ = 0 and sin θ = −1, and the expression for λ has denominator zero.

m′

l

Geometrically this corresponds to the situation in which m has been rotated
around to the back of the surface E, when m′ is actually parallel to �.

We have thus proved a special case of the following general result.

Theorem 2 A hyperboloid of one sheet contains two families of gener-
ating lines. The members of each family are disjoint, and each member
of either family intersects each member of the other – with exactly one
exception.

It is precisely the existence of these two families of generators that give
power station cooling towers great intrinsic structural strength.

The Hyperbolic Paraboloid
It turns out that the result of Theorem 2 is also valid for hyperbolic paraboloids.
In the following problem we ask you to verify this in a particular instance.

Problem 4 Let E be the hyperbolic paraboloid with equation x2 −

x2 – y2 + z= 0

y

z

x

y2 + z = 0.

(a) Verify that the lines A = {(x , y, z) : x + y = 0, z = 0} and B =
{(x , y, z) : x − y = 0, z = 0} lie in the surface E.

(b) Verify that the point (λ − μ, λ + μ, 4λμ) lies in E, for each value of
λ and μ.

(c) For each value of λ, let �λ denote the set �λ = {(λ − μ, λ +
μ, 4λμ):μ ∈ R} lying in the surface E. Prove that �λ is a line
which meets B at (λ, λ, 0), and which passes through the point
(λ − 1, λ + 1, 4λ). Identify the line �λ when λ = 0.

(d) For each value of μ, let mμ denote the set mμ = {(λ − μ, λ +
μ, 4λμ) : λ ∈ R} lying in the surface E. Prove that mμ is a line
which meets A at (−μ, μ, 0), and which passes through the point
(1 − μ, 1 + μ, 4μ). Identify the line mμ when μ = 0.

(e) Let L denote the set of all lines �λ and M the set of all lines
mμ. Prove that the members of each family are disjoint, and that
each member of either family intersects each member of the other in
exactly one point.

A particularly astonishing result is the following. Let E be any surface in R
3

that has two families of generating lines with the following property: the mem-
bers of each family are disjoint, and each member of either family intersects
each member of the other (− with at most one exception). Then E is neces-
sarily a quadric surface, and is in fact either a hyperboloid of one sheet or a We omit a proof.

hyperbolic paraboloid.
In the 1950s in the UK, a Lincoln artist and architect, Sam Scorer, saw

the beauty of the hyperbolic paraboloid shape, and realized that the shape had
intrinsic structural strength that could be utilized for the building of large roofs.
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The bracing effect of the two families of generators meant that roofs in this
shape could be built of very thin reinforced concrete; these require relatively
few vertical supports, leaving wide unobstructed space underneath. Among
the remaining examples of his work are a library, a church and a former garage The Little Chef at

Markham Moor on the Al
road in England.

that is now a restaurant. The roof of the Brisbane Exhibition and Conference
Centre in Australia also uses the same shape.

1.5 Exercises

Section 1.1
1. Determine the equation of the circle with centre (2, 1) and radius 3.
2. Determine the points of intersection of the line with equation y = x + 2

and the circle in Exercise 1.
3. Determine whether the circles with equations

P

F

y

x

(at1 , 2at1)2

Q(at2 , 2at2)2

O

2x2 + 2y2 − 3x − 4y + 2 = 0 and x2 + y2 − 4x + 2y = 0

intersect orthogonally. Find the equation of the line through their points of
intersection.

4. This question concerns the parabola y2 = 4ax (a > 0) with parametric
equations x = at2, y = 2at and focus F. Let P and Q be points on the
parabola with parameters t1 and t2, respectively.
(a) If PQ subtends a right angle at the vertex O of the parabola, prove that

t1 · t2 = −4.
(b) If t1 = 2 and PQ is perpendicular to OP, prove that t2 = −4.

5. This question concerns the rectangular hyperbola xy = c2 (c > 0) with
y xy = c2

P

M

Q

O N x

parametric equations x = ct, y = c/t . Let P and Q be points on the
hyperbola with parameters t1 and t2, respectively.
(a) Determine the equation of the chord PQ.
(b) Determine the coordinates of the point N where PQ meets the x-axis.
(c) Determine the midpoint M of PQ.
(d) Prove that OM = MN, where O is the origin.

6. Let P be a point in the plane and C a circle with centre O and radius r .
Then we define the power of P with respect to C as You will use the results of

this exercise in Chapter 5.
power of Pwith respect to C = OP2 − r2.

(a) Determine the sign of the power of P with respect to C when

(i) P lies inside C ;
(ii) P lies on C ;

(iii) P lies outside C .

In parts (b) and (c) we regard distances as directed distances; that is, dis-

x

y

+ ve
direction

tances along a line in one direction have a positive sign associated with
their length and distances in the opposite direction have a negative sign
associated with their length.
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(b) If P lies inside C and a line through P meets C at two distinct points
A and B, prove that

power of P with respect to C = PA · PB.

(c) If P lies outside C , a line through P meets C at two distinct points A
and B, and PT is one of the tangents from P to C , prove that

power of P with respect to C = PA · PB

= PT2.

(d) If C has equation x2 + y2 + fx + gy + h = 0 and P has coordinates
(x , y), find the power of P with respect to C in terms of x , y, f , g
and h.

7. (a) Let a plane π in R
3 meet both portions of a right circular cone, in two We promised to tackle

these two situations
earlier, in
Subsection 1.1.5.

separate portions of a curve E . Let the two spheres inside the cone
(on the same side of π as the vertex) that each touch both the cone in
a horizontal circle (C1 and C2, respectively) and π touch π at F and
F ′, respectively. Let P be any point of E , and the generator of the
cone through P meet C1 and C2 at A and B, respectively. Prove that
PF′ − PF = AB. Deduce that E is a hyperbola.

(b) Let a plane π in R
3 that is parallel to a generator of a right circular cone

meet the cone in a curve E . Let the sphere inside the cone (on the same
side of π as the vertex) that touches both the cone in a horizontal circle
C and π meet π at F . Let P be any point of E , and the generator of
the cone through P meet C at A. Let N be the foot of the perpendicular
from P to the line of intersection of the horizontal plane and π , and
let NA meet C again at M . Prove that PF = PN. Deduce that E is a
parabola.

Section 1.2
1. Determine the slope of the tangent to the cycloid in R

2 with parametric
equations

x = t − sin t , y = 1 − cos t

at the point with parameter t, where t is not a multiple of 2π .
2. Determine the equation of the tangent to the curve in R

2 with parametric
equations

x = 1 + 4t + t2, y = 1 − t

at the point where t = 1.

x2 y
2

F x

T

y

b2a 2 + = 1
directrix

P
3. Let P be a point on the ellipse with equation x2

a2 + y2

b2 = 1, where a > b > 0,

b2 = a2(1 − e2), and 0 < e < 1.
(a) If P has coordinates (a cos t , b sin t), determine the equation of the

tangent at P to the ellipse.
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(b) Determine the coordinates of the point T where the tangent in part (a)
meets the directrix x = a/e.

(c) Let F be the focus with coordinates (ae, 0). Prove that PF is perpendic-
ular to TF.

4. The perpendicular from a point P on the hyperbola H with parametric equa-

x2 y2

9
H

NTO x

P

y

4
– = 1

tions x = 2 sec t , y = 3 tan t , to the x-axis meets the x-axis at the point N.
The tangent at P to H meets the x-axis at the point T.
(a) Write down the coordinates of N.
(b) Find the coordinates of T.
(c) Prove that ON · OT = 4, where O is the origin.

5. Let P be a point on the ellipse with equation x2

a2 + y2

b2 = 1, where a > b > 0,

b2 = a2(1 − e2), and 0 < e < 1.

x 2 y 2

b2a2 + = 1

Q

F (ae,0) x

y

P

normaltangent(a) If P has coordinates (a cos t , b sin t), determine the equation of the
normal at P to the ellipse.

(b) Determine the coordinates of the point Q where the normal in part (a)
meets the axis y = 0.

(c) Let F be the focus with coordinates (ae, 0). Prove that QF = e · PF.
6. Let F denote the family of parabolas {(x , y) : y2 = 4a(x + a)} as a takes

all positive values, and G denote the family of parabolas {(x , y) : y2 =
4a(−x + a)} as a takes all positive values. Use the reflection property of
the parabola to prove that, if F ∈ F and G ∈ G , then, at each point of
intersection, F and G cross at right angles.

7. Prove that a perpendicular from the focus nearer to a point P on an ellipse This is part of Theorem 4
of Subsection 1.2.3. A
similar argument works
for the other focus, but we
do not look at that here.

meets the tangent at P on the auxiliary circle of the ellipse, in the following
geometric way.

It is sufficient to prove the result for the ellipse E : x2

a2 + y2

b2 = 1, a >

b > 0, and points P of E in the first quadrant. Let T be the foot of the

O

E

auxiliary
circle

aF (–ae,0)

T

F(ae,0)

b
P

X

T

perpendicular from F(ae, 0) to the tangent at P , let T ′ be the foot of the
perpendicular from F ′(−ae, 0) to the tangent at P , and let FT meet F ′ P
at X .
(a) Prove that the triangles �FPT and �XPT are congruent.
(b) Using the sum of focal distances property for E , prove that F ′ X = 2a.
(c) Prove that OT is parallel to F ′ X , where O is the centre of E .
(d) Prove that OT = a, so that T lies on the auxiliary circle of E .

Remark: A similar argument to that in parts (a)–(d) shows that OT′ = a,
so that T ′ also lies on the auxiliary circle of E .

8. (a) Let E be an ellipse with major axis AB and minor axis CD, and let the This gives a method of
locating the foci of an
ellipse, given its major
and minor axes.

tangents to E at A and B meet the tangent at D at the points T and T ′,
respectively. Prove that the circle with diameter TT′ cuts the major axis
of E at its foci.

(b) Let H be a hyperbola with major axis AB, whose midpoint is O , and let This gives a method of
locating the foci of a
hyperbola, given its major
and minor axes.

the perpendicular at A to the major axis meet an asymptote at a point
T . Prove that the circle with centre O and radius OT cuts the major axis
of H at its foci.
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Section 1.3
1. Classify the conics in R

2 with the following equations. Determine the
centre/vertex and axis of each.
(a) x2 − 4xy − 2y2 + 6x + 12y + 21 = 0
(b) 5x2 + 4xy + 5y2 + 20x + 8y − 1 = 0
(c) x2 − 4xy + 4y2 − 6x − 8y + 5 = 0
(d) 21x2 − 24xy + 31y2 + 6x + 4y − 25 = 0
(e) 3x2 − 10xy + 3y2 + 14x − 2y + 3 = 0

2. Determine the eccentricities of the conics in parts (a), (b) and (c) of
Exercise 1.

Section 1.4
1. Classify the quadrics in R

3 with the following equations. Determine the
centre of each.
(a) 4x2 + 3y2 − 2z2 + 4xy + 4yz + 12x + 12z + 18 = 0
(b) xy − y + yz = xz
(c) 5x2 + 5y2 + 6z2 + 2

√
2yz + 2

√
2xz + 2xy + 2

√
3x − 4

√
6y − 1 = 0

(d) −3x2 + 7y2 + 72x + 126y + z + 95 = 0
2. Determine the equations of the generators of the hyperboloid of one sheet

E with equation 2x2 − 3y2 + 4z2 = 3 through the point (1, 1, 1).

Summary of Chapter 1

Section 1.1: Conic Sections and Conics
1. Conics (or conic sections) are the shapes that we obtain by taking different

plane slices through a double cone.
The non-degenerate conic sections are parabolas, ellipses and hyper-

bolas; the degenerate conic sections are the single point, single line and
pair of lines.

2. The ellipse and the hyperbola both have a centre; that is, there is a point C
such that rotation about C through an angle π is a symmetry of the conic.

3. The equation of a circle in R
2 with centre (a, b) and radius r is (x − a)2 +

(y − b)2 = r2.
An equation of the form x2+y2+fx+gy+h = 0 represents a circle with

centre
(
− 1

2 f , − 1
2 g
)

and radius
√

1
4 f 2 + 1

4 g2 − h, provided that 1
4 f 2 +

1
4 g2 − h > 0.

4. Two intersecting circles C1 and C2 with equations x2 + y2 + f1x + g1 y +
h1 = 0 and x2 + y2 + f2x + g2 y + h2 = 0, respectively, are orthogonal
if and only if f1 f2 + g1g2 = 2(h1 + h2).

5. Let C1 and C2 be circles with equations x2 + y2 + f1x +g1 y +h1 = 0 and
x2+y2+ f2x+g2 y+h2 = 0 that intersect at distinct points P and Q. Then
the line and all circles (other than C2) through P and Q have an equation
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of the form x2 + y2 + f1x +g1 y+h1 +k(x2 + y2 + f2x + g2 y + h2) = 0
for some number k.

If k �= −1, this equation is one of the circles; if k = −1, this is the
equation of the line.

6. The non-degenerate conics can be defined as the set of points P in the
plane that satisfy the following condition: The distance of P from a fixed
point (the focus) is a constant multiple e (the eccentricity) of the distance
of P from a fixed line (the directrix).

A non-degenerate conic is an ellipse if 0 ≤ e < 1, a parabola if e = 1,
or a hyperbola if e > 1.

7. A parabola in standard form has equation y2 = 4ax, where a > 0.
It has focus (a, 0) and directrix x = −a; and it can be described by the

parametric equations x = at2, y = 2at (t ∈ R).

8. An ellipse in standard form has equation x2

a2 + y2

b2 = 1, where a ≥ b > 0,

b2 = a2(1 − e2), 0 ≤ e < 1.
It can be described by the parametric equations x = a cos t , y = b sin t

(t ∈ (−π , π ]); or by x = a 1−t2

1+t2 , y = b 2t
1+t2 (t ∈ R).

If e > 0, it has foci (±ae, 0) and directrices x = ±a/e.

9. A hyperbola in standard form has equation x2

a2 − y2

b2 = 1, where b2 =
a2(e2 − 1), e > 1.

It has foci (±ae, 0) and directrices x = ±a/e; and it can be described
by the parametric equations x = a sec t , y = b tan t (t ∈ (−π/2, π/2) ∪
(π/2, 3π/2)); or by x = a 1+t2

1−t2 , y = b 2t
1−t2 (t ∈ R − {±1}).

10. A rectangular hyperbola has its asymptotes at right angles, and has
eccentricity e = √

2. In standard form it has equation xy = c2, c > 0.
It can be described by the parametric equations x = ct, y = c

t (t �= 0).
11. The polar equation of a conic with focus O can be expressed in the form

r = l/(1 + e cos θ) (θ ∈ R).
12. Sum of Focal Distances of Ellipse Let E be an ellipse with major axis

(−a, a) and foci F and F ′. Then, if P is a point on the ellipse, FP+PF′ =
2a. In particular, FP + PF′ is constant for all points P on the ellipse.

Given any two points F and F ′ in the plane, the locus of points P in the
plane for which PF + PF′ is a constant is an ellipse.

13. Difference of Focal Distances of Hyperbola Let H be a hyperbola with
major axis (−2a, 2a) and foci F and F ′. Then, if P is a point on the
branch of the hyperbola that is closer to F , PF′ − PF = 2a; and, if P is
a point on the branch of the hyperbola closer to F ′, PF′ − PF = −2a. In
particular, |PF′ − PF| is constant for all points P on the hyperbola.

Given any three points F , F ′ and P in the plane for which PF′−PF �= 0,
the locus of points Q in the plane for which QF′ − QF = ±|PF′ − PF| is
a hyperbola.

14. Dandelin spheres Let a plane π cut one portion of a right circular cone
in a curve E . Let F and F ′ be the points of contact with π of two spheres
that touch that portion of the cone (in circles C and C ′, respectively)
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and π . Then E is an ellipse, with foci F and F ′, and with directrices the
lines of intersection of π with the planes through C and C ′, respectively).

Section 1.2: Properties of Conics
1. The slope (or gradient) of the tangent to a curve in R

2 with paramet-
ric equations x = x(t), y = y(t) at the point with parameter t is y′(t)

x ′(t) ,
provided that x ′(t) �= 0.

2. The equation of the tangent at the point (x1, y1) to a conic in standard form
is as follows.

Conic Tangent

Ellipse
x2

a2
+ y2

b2
= 1

xx1

a2
+ yy1

b2
= 1

Hyperbola
x2

a2
− y2

b2
= 1

xx1

a2
− yy1

b2
= 1

Parabola y2 = 4ax yy1 = 2a(x + x1)

3. Let (a, b) be a point outside the unit circle, and let the tangents to the
circle from (a, b) touch the circle at P1 and P2. The polar of (a, b) with
respect to the unit circle is the line through P1 and P2; this has equation
ax + by = 1.

4. The normal to a curve C at a point P of C is the line through P that is
perpendicular to the tangent to C at P .

5. The Reflection Law The angle that incoming light makes with the tangent
to a surface is the same as the angle that the reflected light makes with the
tangent.

6. Reflection Property of the Ellipse Light which comes from one focus of
an elliptical mirror is reflected at the ellipse to pass through the second
focus.

7. Sine Formula In a triangle �ABC with sides a, b, c opposite the vertices
A, B, C, respectively,

a

sin ∠BAC
= b

sin ∠ABC
= c

sin ∠ACB
.

8. Reflection Property of the Hyperbola Light coming from one focus of a
hyperbolic mirror is reflected at the hyperbola in such a way that the light
appears to have come from the other focus.

Also, light going towards one focus of a hyperbolic mirror is reflected
at the mirror towards the other focus.

9. Reflection Property of the Parabola Incoming light parallel to the axis
of a parabolic mirror is reflected at the parabola to pass through the focus.

Conversely, light coming from the focus of a parabolic mirror is
reflected at the parabola to give a beam of light parallel to the axis of
the parabola.
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10. Reflection Property of Conics All mirrors in the shape of a non-
degenerate conic reflect light coming from or going to one focus towards
the other focus.

11. The auxiliary circle of an ellipse or hyperbola is the circle whose diameter
is its major axis. The auxiliary circle of a parabola is the tangent to the
parabola at its vertex.

12. A perpendicular from a focus of a non-degenerate conic to a tangent meets
the tangent on the auxiliary circle of the conic.
This property can be used to construct a parabola, ellipse or hyperbola as
the envelope of a family of lines that are tangents to the conics.

Section 1.3: Recognising Conics
1. Any conic has an equation of the form Ax2 +Bxy+Cy2 +Fx+Gy+ H = 0,

where A, B, C, F, G and H are real numbers, and not all of A, B and C are
zero. Conversely, any set of points in R

2 whose coordinates (x , y) satisfy
this equation is a conic.

This equation can be expressed in matrix form as

xT Ax + JT x + H = 0, where A =
(

A 1
2 B

1
2 B C

)
,

J =
(

F
G

)
and x =

(
x
y

)
.

2. A 2 × 2 matrix P represents a rotation of R
2 about the origin if and only if

it satisfies the following two conditions:
(a) P is orthogonal;
(b) det P = 1.

3. Strategy To classify a conic E with equation

Ax2 + Bxy + Cy2 + Fx + Gy + H = 0:

1. Write the equation of E in matrix form xT Ax + JT x + H = 0.
2. Determine an orthogonal matrix P, with determinant 1, that diagonal-

izes A.
3. Make the change of coordinate system x = Px′. The equation of E then

becomes of the form λ1x ′2 + λ2 y′2 + fx′ + gy′ + h = 0, where λ1 and
λ2 are the eigenvalues of A.

4. ‘Complete the squares’, if necessary, to rewrite the equation of E in
terms of an (x ′′, y′′)-coordinate system as the equation of a conic in
standard form.

5. Use the equation x′ = PT x to determine the centre and axes of E in
terms of the original coordinate system.

4. A non-degenerate conic with equation Ax2 +Bxy+Cy2 +Fx+Gy+ H = 0
and matrix A can be classified as follows:
(a) If det A < 0, E is a hyperbola.
(b) If det A = 0, E is a parabola.
(c) If det A > 0, E is an ellipse.
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Section 1.3: Quadric surfaces
1. A quadric (or quadric surface) in R

3 is a set given by an equation of the
form Ax2 + By2 + Cz2 + Fxy + Gyz + Hxz + Jx + Ky + Lz + M = 0, where
A, B, C, F, G, H, J, K, L and M are real numbers, and not all of A, B, C , F ,
G and H are zero.

This equation can be expressed in matrix form as

xT Ax + JT x + M = 0, where A =

⎛
⎜⎜⎜⎝

A 1
2 F 1

2 H

1
2 F B 1

2 G

1
2 H 1

2 G C

⎞
⎟⎟⎟⎠ ,

J =
⎛
⎝ J

K
L

⎞
⎠ and x =

⎛
⎝ x

y
z

⎞
⎠ .

2. The degenerate quadrics are the empty set, a single point, a single line,
a single plane, a pair of planes and a cylinder. A cylinder is a surface that
consists of an ellipse, parabola or hyperbola in some plane π , together with
all the lines in R

3 through that conic that are normal to π .
3. There are six non-degenerate quadrics:

Quadric Typical equation

Ellipsoid
x2

a2
+ y2

b2
+ z2

c2
= 1

Hyperboloid of one sheet
x2

a2
+ y2

b2
− z2

c2
= 1

Hyperboloid of two sheets
x2

a2
+ y2

b2
− z2

c2
= −1

Elliptic cone z2 = x2

a2
+ y2

b2

Elliptic paraboloid z = x2

a2
+ y2

b2

Hyperbolic paraboloid z = x2

a2
− y2

b2

4. A 3 × 3 matrix P represents a rotation of R
3 about the origin if and only if

it satisfies the following two conditions:
(a) P is orthogonal;
(b) det P = 1.

5. Strategy To classify a quadric E with equation Ax2 + By2 + Cz2 + Fxy +
Gyz + Hxz + Jx + Ky + Lz + M = 0:
1. Write the equation of E in matrix form xT Ax + JT x + M = 0.
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2. Determine an orthogonal matrix P, with determinant 1, that diagonal-
izes A.

3. Make the change of coordinate system x = Px′. The equation of E then
becomes of the form λ1x ′2 + λ2 y′2 + λ3z′2 + jx′ + ky′ + lz′ + m = 0,
where λ1, λ2 and λ3 are the eigenvalues of A.

4. ‘Complete the squares’, if necessary, to rewrite the equation of E in
terms of an (x ′′, y′′, z′′)-coordinate system as the equation of a quadric
in standard form.

5. Use the equation x′ = PT x to determine the centre and planes of
symmetry of E in terms of the original coordinate system.

6. A ruled surface in R
3 is a surface that can be made up from a family of

straight lines, called its generating lines or generators.
7. A hyperboloid of one sheet and a hyperbolic paraboloid contain two fami-

lies of generating lines. The members of each family are disjoint, and each
member of either family intersects each member of the other – with exactly
one exception.

These are the only two quadrics that are ruled surfaces.



2 Affine Geometry

In Chapter 1 we studied conics in Euclidean geometry. In the rest of the book
we prove a whole range of results about figures such as lines and conics, in
geometries other than Euclidean geometry. In the process of doing this, we
meet two particular features of our approach to geometry which may be new
to you.

The first feature is the use of transformations in geometry to simplify prob-
lems and bring out their essential character. You may have met some of these
transformations previously in courses on Group Theory or on Linear Algebra. In this book, we shall

often use matrices to
simplify our work.

The second feature arises from the fact that the transformations we introduce
form groups. Generally, we restrict our attention to geometry in the plane,
R

2, but even in this familiar setting there may be more than one group of
transformations at our disposal. This leads to the exciting new idea that there
are many different geometries!

Each geometry consists of a space, some properties possessed by figures
in that space, and a group of transformations of the space that preserve these
properties. For example, Euclidean plane geometry uses the space R

2, and
is concerned with those properties of figures that depend on the notion of dis-
tance. The group associated with Euclidean geometry is the group of isometries This is because isometries

of the plane preserve
distances.

of the plane.
This idea, that geometry can be thought of in terms of a space and a

group acting on it, is called the Kleinian view of geometry, after the 19th-
century German mathematician Felix Klein who proposed it first. It has the
virtue of enabling us to generate many geometries, while seeing how they are
related.

For instance, we can take R
2 as our space and use the group of all transfor-

mations of the form t(x) = Ax + a, where a ∈ R
2 and A is a 2 × 2 invertible

matrix. These are the so-called affine transformations of R
2. But what prop-

erties of figures in R
2 are preserved by such transformations, and what is the

corresponding geometry? The geometry is called affine geometry, and it is the
subject of this chapter. As you will see, it has some features in common with
Euclidean geometry, but also some very different features.

In Section 2.1 we examine Euclidean geometry from the Kleinian point of
view, and explain why geometries other than Euclidean geometry exist.

61
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In Sections 2.2 and 2.3 we introduce affine geometry and consider its prop-
erties. In particular, we show that affine transformations map straight lines to
straight lines, map parallel lines to parallel lines, and preserve ratios of lengths
along a given line. We also discover that in affine geometry all triangles are
congruent, in the sense that any triangle can be mapped onto any other triangle
by an affine transformation. This result is known as the Fundamental Theorem
of Affine Geometry.

In Section 2.4 we establish two important theorems, due to Ceva and
Menelaus, which involve ratios of lengths along the sides of a triangle.

Finally, in Section 2.5 we investigate the effect of affine transformations on
conics, and discover that we can use the methods of affine geometry to obtain
very simple proofs of certain types of theorems about conics.

2.1 Geometry and Transformations

Before embarking on a study of various other geometries, it is useful first to
look back at our familiar Euclidean geometry.

2.1.1 What is Euclidean Geometry?
To help us answer this question, we begin by considering the following well-
known result.

Example 1 Let �ABC be a triangle in which ∠ABC = ∠ACB. Prove that
AB = AC.

Solution First, reflect the triangle in the perpendicular bisector of BC, so
that the points B and C change places and the point A moves to some point
A′, say. Since reflection preserves angles, it follows that ∠A′BC = ∠ACB.

Also, we are given that ∠ACB = ∠ABC, so
A

B C

A

∠A′BC = ∠ABC.

But this can happen only if A′ lies on the line through A and B. Similarly,

∠A′CB = ∠ABC = ∠ACB,

so A′ must also lie on the line through A and C . This means that A′ and A
must coincide. Hence the line segment AB reflects to the line segment AC, and

B

P

A

vice versa. Since reflection preserves lengths, it follows that AB = AC.

Problem 1 Let A and B be two points on a circle, and let the tangents
to the circle at A and B meet at P . Prove that AP = BP.
Hint: Consider a reflection in the line which passes through P and the

centre of the circle.
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The result in Example 1 is concerned with the properties of length and angle
associated with the triangle �ABC. To investigate these properties, we intro-
duced a reflection that enabled us to compare various lengths and angles. We
were able to do this because reflections leave lengths and angles unchanged.

Of course, reflections are not the only transformations that preserve lengths
and angles: other examples include rotations and translations. In general,
any transformation that preserves lengths and angles can be used to tackle
problems which involve these properties. In fact, we need worry only about
leaving distances unchanged, since any transformation from R

2 onto R
2 that This is because, once we

know the lengths of the
sides of a triangle, the
angles are uniquely
determined.

changes angles must also change lengths. Transformations that leave distances
unchanged are called isometries.

Definition An isometry of R
2 is a function which maps R

2 onto R
2 and

preserves distances.

In fact, every isometry has one of the following forms:

The identity isometry can
be regarded as a rotation
through an angle that is a
multiple of 2π .

a translation along a line in R
2;

a reflection in a line in R
2;

a rotation about a point in R
2;

a composite of translations, reflections and rotations in R
2.

The composite of any two isometries is also an isometry, and so it is easy to
verify that the set S(R2) of isometries of R

2 forms a group under composition
of functions. These observations can be used to build up the transformations
we need in order to prove Euclidean results.

Example 2 Prove that if �ABC and �DEF are two triangles such that

AB = DE, AC = DF and ∠BAC = ∠EDF,

then BC = EF, ∠ABC = ∠DEF and ∠ACB = ∠DFE.

B

A

C

E

D

F

Solution It is sufficient to show that there is an isometry which maps �ABC
onto �DEF. We construct this isometry in stages, starting with the translation
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which maps A to D. This translation maps �ABC onto �DB′C ′, where B ′ and Of course, A and D may
already coincide, in which
case we omit the
translation stage.

C ′ are the images of B and C under the translation.

B

A

C

E

D

B C

Ftranslate

rotate

Since we are given that DF = AC, and since the translation maps AC onto
DC′, it follows that DF = DC′. We can therefore rotate the point C ′, about D,
until it coincides with the point F . This rotation maps �DB′C ′ onto �DB′′F , If C ′ already coincides

with F , then we omit the
rotation stage.

as shown in the margin, where B ′′ is the image of B ′ under the rotation.
Finally, notice that

E

D

B

F
reflect∠FDE = ∠CAB (given)

= ∠C ′DB′ (translation)

= ∠FDB′′ (rotation),

so either B ′′ lies on DE or the reflection of B ′′ in the line FD lies on DE. Also

DE = AB (given)

= DB′ (translation)

= DB′′ (rotation).

It follows that either B ′′ coincides with E or the reflection of B ′′ in the line
FD coincides with E .

So, composing the translation, the rotation, and (if necessary) a reflection,
we obtain the required isometry that maps �ABC onto �DEF. Since isome-
tries preserve length and angle, it follows that BC = EF, ∠ABC = ∠DEF and
∠ACB = ∠DFE.

Problem 2 Prove that if �ABC and �DEF are two triangles such that

AC = DF, ∠BAC = ∠EDF and ∠ACB = ∠DFE,

then BC = EF, AB = DE and ∠ABC = ∠DEF.

We can now answer the question ‘What is Euclidean geometry?’. Euclidean We consider only
Euclidean geometry in the
plane R

2.
geometry is the study of those properties of figures that are unchanged by the
group of isometries. We call these properties Euclidean properties. Roughly
speaking, a Euclidean property is one that is preserved by a rigid figure as
it moves around the plane. Of course, these properties include distance and
angle, but they also include other properties such as collinearity of points and
concurrence of lines.
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This idea, that geometry can be thought of in terms of a group of transforma-
tions acting on a space, is known as the Kleinian view of geometry. It enables us Here a space is simply a

collection of points; for
example, the plane is
R

2 = {(x , y) :
x , y are real}.

to generate many geometries, without losing sight of the relationship between
them.

When we consider geometries in this way, it is often convenient to have
an algebraic representation for the transformations involved. This not only
enables us to solve problems in the geometry algebraically, but also provides
us with formulas that can be used to compare different geometries.

In the case of Euclidean geometry, perhaps the easiest way to repre-
sent isometries algebraically is to use matrices. For example, the function

Recall that the effect of
the matrix multiplication
in (1) and (2) can be
interpreted geometrically
by examining what
happens to the vectors (1,
0) and (0, 1). For example,
in (2) the matrix
multiplication sends (1, 0)
and (0, 1) to (cos θ , sin θ )
and (sin θ , − cos θ ),
respectively, so it
corresponds to the
reflection shown in the
figure below.

defined by

t :

(
x
y

)
�→
(

cos θ − sin θ

sin θ cos θ

)(
x
y

)
+
(

e
f

) (
(x , y) ∈ R

2
)

(1)

is an isometry because it is the composite of an anticlockwise rotation through
an angle θ about the origin, followed by a translation through the vector (e, f ).

Similarly, the function

t :

(
x
y

)
�→
(

cos θ sin θ

sin θ − cos θ

)(
x
y

)
+
(

e
f

) (
(x , y) ∈ R

2
)

(2)

is an isometry because it is the composite of a reflection in the line through
the origin that makes an angle θ/2 with the x-axis, followed by a translation
through the vector (e, f ).

Remarkably, we can represent any isometry by one or other of the forms

(sin   , –cos    )

(cos   , sin   )

(1, 0)

(0, 1)

 / 2

x

y

t

given in (1) and (2). To see this, notice that any isometry t can be written in the
form

t(x) = t0(x) + (e, f )
(

x ∈ R
2
)

, (3)

where t0 is an isometry which fixes the origin. Indeed, if we let (e, f ) = t(0),
then we can let t0 be the transformation defined by t0(x) = t(x) − (e, f ). This
is an isometry because it is the composite of the isometry t and the translation
through the vector −(e, f ). It fixes the origin since t0(0) = t(0) − (e, f ) = 0.

Now an isometry that fixes the origin must be either a rotation about the
origin, or a reflection in a line through the origin. If t0 is a rotation about the
origin, then (3) can be written in the matrix form given in (1), whereas if t0 is
a reflection in a line through the origin, then (3) can be written in the matrix
form given in (2).

So together, equations (1) and (2) provide us with an algebraic representa-
tion of all possible isometries of the plane. The next problem indicates how we
can obtain a more concise description of this algebraic representation by using
orthogonal matrices to combine equations (1) and (2). Recall that a matrix U is

orthogonal if U−1 = UT ,
that is, if UT U = I. This
is equivalent to saying that
the columns of U are
orthonormal.

Problem 3 Show that both the matrices(
cos θ − sin θ

sin θ cos θ

)
and

(
cos θ sin θ

sin θ − cos θ

)
,

which appear in (1) and (2), are orthogonal for each real number θ .
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By applying the solution of Problem 3 to equations (1) and (2), we see that
every isometry t has an algebraic representation of the form

This equation shows the
matrix U acting on the
vector x = (x , y). Strictly
speaking, U acts on the

coordinates
( x

y

)
of x

with respect to the
standard basis of the
vector space R

2 as in
equations (1) and (2).
However, since the
numbers x and y are the
same for the vector and its
standard coordinates, no
confusion should arise.

t(x) = Ux + a,

where U is an orthogonal 2 × 2 matrix, and a is a vector in R
2.

Definition A Euclidean transformation of R
2 is a function t : R

2 → R
2

of the form
t(x) = Ux + a,

where U is an orthogonal 2 × 2 matrix and a ∈ R
2. The set of all Euclidean

transformations of R
2 is denoted by E (2).

We may summarize the discussion above by saying that every isometry of
the plane is a Euclidean transformation of R

2.
In fact, the converse is also true, for if U is any orthogonal matrix, then

its columns are orthonormal. In particular, its first and second columns have

unit length and can therefore be written in the form

(
cos θ

sin θ

)
and

(
cos φ

sin φ

)
,

respectively, for some real θ , φ. For these to be orthonormal, we must have
cos θ ·cos φ+sin θ ·sin φ = 0, so that tan θ · tan φ = −1 and hence φ = θ ± π

2 .
It follows that the second column must be(

cos(θ + π/2)

sin(θ + π/2)

)
=
(− sin θ

cos θ

)
or

(
cos(θ − π/2)

sin(θ − π/2)

)
=
(

sin θ

− cos θ

)
.

So

U =
(

cos θ − sin θ

sin θ cos θ

)
or U =

(
cos θ sin θ

sin θ − cos θ

)
.

It follows that every Euclidean transformation t(x) = Ux + a of R
2 has one

of the forms given in equations (1) and (2). Since both of these forms represent
isometries of the plane,we have the following theorem.

Theorem 1 Every isometry of R
2 is a Euclidean transformation of R

2,
and vice versa.

Now the set of all isometries of R
2 forms a group under composition of It is not difficult to prove

that this is a group, so we
omit the proof.

functions, so it follows from Theorem 1 that the same must be true of the set of
all Euclidean transformations of R

2. We therefore have the following theorem.

Theorem 2 The set of Euclidean transformations of R
2 forms a group

under the operation of composition of functions.
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It is instructive to check the group axioms algebraically, for in the process
of doing so we obtain formulas for the composites and inverses of Euclidean
transformations.

We start by considering closure. Suppose that t1 and t2 are two Euclidean
transformations given by

t1(x) = U1x + a1 and t2(x) = U2x + a2,

where U1 and U2 are orthogonal 2 × 2 matrices. Then the composite t1 ◦ t2 is
given by

t1 ◦ t2(x) = t1(U2x + a2)

= U1(U2x + a2) + a1

= U1U2x + (U1a2 + a1).

This is a Euclidean transformation since U1U2 is orthogonal. Indeed,

Here we are using the
result that
(AB)T = BT AT .

(U1U2)
T = UT

2 UT
1 = U−1

2 U−1
1 = (U1U2)

−1.

So the set of Euclidean transformations is closed under composition of
functions.

Problem 4 Let the Euclidean transformations t1 and t2 of R
2 be

given by

t1(x) =
( 3

5 − 4
5

4
5

3
5

)
x +

(
1

−2

)

and

t2(x) =
(− 4

5
3
5

3
5

4
5

)
x +

(−2
1

)
.

Determine t1 ◦ t2 and t2 ◦ t1.

Next recall that under composition of functions the identity is the transfor-
mation given by i(x) = x. This is a Euclidean transformation since it can be
written in the form

i(x) = Ix + 0,

where I is the 2 × 2 identity matrix, which is orthogonal.
The next problem asks you to show that inverses exist.

Problem 5 Prove that if t1 is a Euclidean transformation of R
2

given by

t1(x) = Ux + a (x ∈ R
2),
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then:

(a) the transformation of R
2 given by

t2(x) = U−1x − U−1a (x ∈ R
2)

is also a Euclidean transformation;
(b) the transformation t2 is the inverse of t1.

The solution of Problem 5 shows that we can calculate the inverse of a
Euclidean transformation by using the following result.

The inverse of the Euclidean transformation t(x) = Ux + a is given by

t−1(x) = U−1x − U−1a.

Problem 6 Determine the inverse of the Euclidean transformation
given by

t(x) =
( 3

5 − 4
5

4
5

3
5

)
x +

(
1

−2

)
.

Finally, composition of functions is always associative. So all four group
properties hold, as we expected.

Earlier, we described Euclidean geometry as the study of those properties
of figures that are preserved by isometries. Having identified these isome-
tries with the group of Euclidean transformations, we can now give the
equivalent algebraic description of Euclidean geometry. Euclidean geome-
try is the study of those properties of figures that are preserved by Euclidean
transformations of R

2.

2.1.2 Euclidean-Congruence
In the solution to Example 2 we showed that if two triangles �ABC and �DEF
are such that AB = DE, AC = DF and ∠BAC = ∠EDF, then there is a
Euclidean transformation which maps �ABC onto �DEF.

B

A

C

E

D

F

The existence of this transformation enabled us to deduce that both triangles
have the same Euclidean properties. In particular, we were able to deduce that
BC = EF, ∠ABC = ∠DEF and ∠ACB = ∠DFE.
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In order to formalize this way of relating two figures, we say that two figures
are congruent if one can be moved to fill exactly the position of the other
by means of a Euclidean transformation. Loosely speaking, two figures are
congruent if they have the same size and shape.

Later we consider congruence with respect to other groups of transforma-
tions (that is, congruence in other geometries), so if there is any danger of
confusion we sometimes say that two figures are Euclidean-congruent.

Definition A figure F1 is Euclidean-congruent to a figure F2 if there is a
Euclidean transformation which maps F1 onto F2.

For example, any two circles of unit radius are Euclidean-congruent to each
other because we can map one of the circles onto the other by means of a
translation that makes their centres coincide. Of course, there are many

other Euclidean
transformations which
map one of the circles
onto the other.

Problem 7 Which of the following sets consist of figures that are
Euclidean-congruent to each other?

(a) The set of all ellipses
(b) The set of all line segments of length 1
(c) The set of all triangles
(d) The set of all squares that have sides of length 2

Earlier, we emphasized that the Euclidean transformations form a group.
This is important because it ensures that Euclidean-congruence has the kind of
properties that we should expect. For example, we should expect every figure
to be congruent to itself. Also, if a figure F1 is congruent to a figure F2, then we
should expect F2 to be congruent to F1. We can, in fact, establish the following
result.

Theorem 3 Euclidean-congruence is an equivalence relation.

Proof We show that the three equivalence relation axioms E1, E2 and E3
hold.

El REFLEXIVE For all figures F in R
2, the identity transformation maps F This uses the existence of

an identity transformation.onto itself; so Euclidean-congruence is reflexive.
E2 SYMMETRIC Let a figure F1 in R

2 be congruent to a figure F2, and let t
be a Euclidean transformation which maps F1 onto F2. Then
the inverse Euclidean transformation t−1 maps F2 onto F1, This uses the existence of

inverse transformations.so that F2 is congruent to F1. Thus Euclidean-congruence is
symmetric.

E3 TRANSITIVE Let a figure F1 in R
2 be congruent to a figure F2, and let

F2 be congruent to a figure F3. Then there exist Euclidean
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transformations t1 mapping F1 onto F2 and t2 mapping F2

onto F3. Thus the Euclidean transformation t2 ◦ t1 maps This uses the closure
axiom for the group of
Euclidean
transformations.

F1 onto F3, so that F1 is congruent to F3. Hence Euclidean-
congruence is transitive.

It follows that Euclidean-congruence is an equivalence relation, because it
satisfies the axioms El, E2 and E3. �

Problem 8 Prove that if two figures in R
2 are each Euclidean-

congruent to a third figure, then they are Euclidean-congruent to each
other.

Since Euclidean-congruence is an equivalence relation, it partitions the
set of all figures into disjoint equivalence classes. Each class consists of
figures which are Euclidean-congruent to each other, and hence share the same
Euclidean properties (for example, one class consists of all circles of unit For example, to show that

two triangles �ABC and
�DEF have the same
Euclidean properties, it is
sufficient to show that
AB = DE, AC = DF and
∠BAC = ∠EDF, as you
saw in Example 2. This
congruence condition is
frequently used in
Euclidean geometry. It is
known as the ‘side angle
side’ (SAS) condition for
congruence.

radius, another class consists of all equilateral triangles with sides of length
3, and so on). If we wish to show that two figures have the same Euclidean
properties, then it is sufficient to show that they are Euclidean-congruent.

Now Euclidean geometry is just one of several different geometries. Each
geometry is defined by a group G of transformations that act on a space.
In general, we say that two figures are G-congruent if there is a trans-
formation in G which maps one of the figures onto the other. Since the
only properties used in the proof of Theorem 3 are the group properties of
Euclidean transformations, the theorem holds also with ‘G-congruent’ in place
of ‘Euclidean-congruent’. Thus, like Euclidean-congruence, G-congruence
is an equivalence relation that partitions the set of all figures into disjoint
equivalence classes.

This idea of partitioning figures into equivalence classes is central to geom-
etry. It enables us to distinguish between figures in different equivalence
classes, without having to worry about the differences between figures in the
same equivalence class. For example, if we are interested in whether a conic
is an ellipse rather than a hyperbola or a parabola, but do not care about
its shape (that is, the ratio of the lengths of its axes), we might choose to
work with some geometry whose group of transformations makes all ellipses
congruent to each other – but not congruent to any hyperbola or parabola.
We describe a group of transformations which defines such a geometry in
Section 2.2.

2.2 Affine Transformations and Parallel Projections

2.2.1 Affine Transformations
In Section 2.1 you met a new approach to Euclidean geometry in R

2 – namely,
the idea that Euclidean geometry of R

2 can be interpreted as a space, R
2,
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together with the group of Euclidean transformations which act on that space.
Recall that a Euclidean transformation is a function t : R

2 → R
2 of the form

t(x) = Ux + a (x ∈ R
2),

where U is an orthogonal 2 × 2 matrix. Euclidean properties of figures are
those, like distance and angle, that are preserved by these transformations.

In this section we meet the first of our new geometries in R
2 – affine Affine geometry can be

defined in R
n , for any

n ≥ 2; we restrict our
attention here to the case
when n = 2.

geometry. This geometry consists of the space R
2 together with a group of

transformations, the affine transformations, acting on R
2.

Definition An affine transformation of R
2 is a function t : R

2 → R
2 of

the form
t(x) = Ax + b,

where A is an invertible 2 × 2 matrix and b ∈ R
2. The set of all affine

transformations of R
2 is denoted by A(2).

Remark

Note that every Euclidean transformation of R
2 is an affine transformation

of R
2 since every orthogonal matrix is invertible. (In terms of groups, the

group of Euclidean transformations of R
2 is a proper subgroup of the group

of affine transformations of R
2.) This means that all properties of figures that

are preserved by affine transformations must be preserved also by Euclidean
transformations.

Problem 1 Determine whether or not each of the following transfor-
mations of R

2 is an affine transformation.

(a) t1(x) =
(

1 3
1 2

)
x +

(
4

−2

)
(b) t2(x) =

(−6 5
3 2

)
x +

(
2
1

)

(c) t3(x) =
(−2 −1

8 4

)
x +

(
1
3

)
(d) t4(x) =

(
5 −3

−2 2

)
x

The algebra required to compose affine transformations is similar to the
algebra that we used to compose Euclidean transformations.

Problem 2 For the transformations of R
2 given in Problem 1, deter-

mine formulas for the following composites. In each case, state whether
or not the composite is an affine transformation.

(a) t1 ◦ t2 (b) t2 ◦ t4

We now verify our assertion above that the set of affine transformations
forms a group.
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Theorem 1 The set of affine transformations A(2) forms a group under
the operation of composition of functions.

Proof We check that the four group axioms hold.

Gl CLOSURE Let t1 and t2 be affine transformations given by

t1(x) = A1x + b1 and t2(x) = A2x + b2,

where A1 and A2 are invertible 2 × 2 matrices. Then, for
each x ∈ R

2,

(t1 ◦ t2)(x) = t1(A2x + b2)

= A1(A2x + b2) + b1

= (A1A2)x + (A1b2 + b1).

Since A1 and A2 are invertible, it follows that A1A2

is also invertible. So by definition t1 ◦ t2 is an affine
transformation.

G2 IDENTITY Let i be the affine transformation given by

i(x) = Ix + 0 (x ∈ R
2),

where I is the 2 × 2 identity matrix. If t is an affine
transformation given by

t(x) = Ax + b (x ∈ R
2),

then, for each x ∈ R
2,

(t ◦ i)(x) = A(Ix + 0) + b = Ax + b = t(x)

and

(i ◦ t)(x) = I(Ax + b) + 0 = Ax + b = t(x).

Thus t ◦ i = i ◦ t = t . Hence i is the identity
transformation.

G3 INVERSES If t is an arbitrary affine transformation given by

t(x) = Ax + b (x ∈ R
2),

then we can define another affine transformation t ′ by

t ′(x) = A−1x − A−1b.

Now for each x ∈ R
2, we have

(t ◦ t ′)(x) = t(A−1x − A−1b)

= A(A−1x − A−1b) + b

= (AA−1x − AA−1b) + b

= (x − b) + b

= x.
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Also,

(t ′ ◦ t)(x) = t ′(Ax + b)

= A−1(Ax + b) − A−1b

= (A−1Ax + A−1b) − A−1b

= (x + A−1b) − A−1b

= x.

Thus t ◦ t ′ = t ′ ◦ t = i . Hence t ′ is an inverse for t.
G4 ASSOCIATIVITY Composition of functions is always associative.

It follows that the set of affine transformations A(2) forms a group under
composition of functions. �

The above proof shows that we can calculate the inverse of an affine
transformation by using the following result.

The inverse of the affine transformation t(x) = Ax + b is given by

t−1(x) = A−1x − A−1b.

Problem 3 Find the inverse of the affine transformation

t(x) =
(

1 3
1 2

)
x +

(
4

−2

)
.

Having shown that the set of affine transformations forms a group under
composition of functions, we now define affine geometry to be the study of
those properties of figures in the plane R

2 that are preserved by affine trans-
formations. These are the so-called affine properties of figures. We begin our
investigation of affine geometry by considering the three affine properties listed
below.

Basic Properties of Affine Transformations
Affine transformations:

1. map straight lines to straight lines;
2. map parallel straight lines to parallel straight lines;
3. preserve ratios of lengths along a given straight line.

There are two approaches that we shall use to investigate these properties.
One approach is to use the definition of an affine transformation to investi-
gate the properties algebraically; we do this in Section 2.3. First, however,
we investigate the properties geometrically. We begin to do this in the next
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subsection by introducing a special type of affine transformation for which
there is a simple geometric interpretation.

2.2.2 Parallel Projections
A parallel projection is a one–one mapping from R

2 onto itself, defined in the
following way. First, we think of its domain and codomain as two separate
copies of R

2.

domain codomain

Geometrically, we can represent these copies of R
2 by two separate planes,

each equipped with a pair of rectangular axes.

domain copy of codomain copy of 

y

x

y

x

Next we place these planes into three-dimensional space; we denote the
domain plane by π1 and the codomain plane by π2.

Now imagine parallel rays of light shining through π1 and π2. Each point P
in the plane π1 has a (unique) ray passing through it, that also passes through a
point P ′, say, in the plane π2. This provides us with a one–one correspondence
between points in the two planes π1 and π2. We call the function p which maps Of course, since π1 and

π2 represent copies of R
2,

a parallel projection is
really a function from R

2

onto itself. In
Subsection 2.2.3 we show
that parallel projections
are affine transformations.

each point P in π1 to the corresponding point P ′ in π2 a parallel projection
from π1 onto π2.

p p

p1 2

If the roles of the planes π1 and π2 are reversed, so that π2 becomes the
domain plane and π1 becomes the codomain plane, then we obtain the inverse
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function p−1 which maps points P ′ in π2 back to the corresponding points P
in π1. Clearly, p−1 is a parallel projection of π2 onto π1.

Each choice of location for the domain plane π1, and the codomain plane π2,
and each choice of direction for the rays of light, yields a parallel projection.
The only constraint is that the rays of light must not be parallel to either plane.

If the planes π1 and π2 are parallel to each other, then any parallel projection
p from π1 onto π2 is an isometry, since the distance between any two points is

You can envisage the
mapping p from π1 onto
π2 as ‘sliding π1 parallel
to itself along the family
of rays’.

unaltered.

p p2p1

On the other hand, if the planes are not parallel to each other, then some
distances are changed under the projection, and so the parallel projection is
not an isometry; notice, however, that distances along the line of intersection
of the planes π1 and π2 do remain unchanged by the parallel projection.

1

2p

Although distances are not always preserved by a parallel projection, there
are some basic properties that are preserved; three of these are listed below. As
you will see, these are the same as the basic affine properties that we mentioned
at the end of Subsection 2.2.1.

Basic Properties of Parallel Projections
Parallel projections:

1. map straight lines to straight lines;
2. map parallel straight lines to parallel straight lines;
3. preserve ratios of lengths along a given straight line.
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Later, we will show that each basic affine property follows directly from the
corresponding property for parallel projections. In anticipation of this, we first
show that the properties hold for parallel projections.

Property 1 A parallel projection maps straight lines to straight lines.

Proof Let � be a line in the plane π1, and let p be a parallel projection map-
ping π1 onto the plane π2. Now consider all the rays associated with p that
pass through �. Since these rays are parallel, they must fill a plane. Call this
plane π .

1 2
p

The image of � under p consists of those points where the rays that pass
through � meet π2. But these points are simply the points of intersection of π

with π2. Since any two intersecting planes in R
3 meet in a line, it follows that

the image of � under p is a straight line. �

Property 2 A parallel projection maps parallel straight lines to parallel
straight lines.

1 2

2

2

1

1

p

Proof Let �1 and m1 be parallel lines in the plane π1, and let p be a parallel
projection mapping π1 onto the plane π2. Let �2 and m2 be the lines in π2 that
are the images under p of �1 and m1.

If �2 and m2 are not parallel, they meet at some point, P2 say. Let P1 be P1 is the point p−1(P2).

the point of π1 which maps to P2. Then P1 must lie on both �1 and m1. Since
�1 and m1 are parallel, no such point of intersection can exist, which is a
contradiction. It follows that �2 and m2 must indeed be parallel. �
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Property 3 A parallel projection preserves ratios of lengths along a given We shall give a slightly
more general form of this
property in Theorem 4 of
Subsection 2.3.3.

straight line.

1
2

p

A P

Q

R

B

C

Proof Let A, B, C be three points on a line in the plane π1, and let p be a
parallel projection mapping π1 onto the plane π2. Let P , Q, R be the points in
π2 that are the images under p of A, B, C . We know from Property 1 that P ,
Q, R lie on a line; we have to show that the ratio AB : AC is equal to the ratio
PQ : PR.

If the planes π1 and π2 are parallel, then the parallel projection p is an

2

P

Q

R

B

C

isometry, and so the ratios AB : AC and PQ : PR are equal, as required. On
the other hand, if π1 and π2 are not parallel, then we can construct a plane π

through the point P which is parallel to π1, as shown in the margin. This plane
intersects the ray through B and Q at some point B ′, and the ray through C and
R at some point C ′. So in this case the ratios AB : AC and PB′ : PC′ are equal.

Now consider �PC′ R. The lines B ′Q and C ′ R are parallel, since they are
rays from the parallel projection. Hence B ′Q meets the sides PR and PC′ in
equal ratios. Thus PQ : PR = PB′ : PC′. It follows that PQ : PR = AB : AC,
as required. �

Notice, in particular, that if a point is the midpoint of a line segment, then We make use of this fact
in Subsection 2.2.3.under a parallel projection the image of the point is the midpoint of the image

of the line segment.
In Subsection 2.2.3 you will see why the basic properties of affine trans-

formations and of parallel projections are the same, and you will meet some
further properties of each.

2.2.3 Affine Geometry
In this subsection we explore further the ideas of affine geometry and of par-
allel projection in order to prove two attractive and unexpected results about
ellipses. Also, we examine the relationship between affine transformations and
parallel projections.

Two Results about Ellipses
First, starting with any chord � of an ellipse, draw all the chords paral-
lel to � and construct their midpoints. We claim that these midpoints lie
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on a chord through the centre of the ellipse – that is, on a diameter of
the ellipse.

diameter

Theorem 2 Midpoint Theorem
Let � be a chord of an ellipse. Then the midpoints of the chords parallel to
� lie on a diameter of the ellipse.

Next, start with any diameter � of an ellipse and construct a second diameter
m by following the construction used in Theorem 2, as shown below. Then
repeat the construction starting this time with the diameter m; this might rea-
sonably be expected to give us a third diameter of the ellipse – but, surprisingly,
it gives us the diameter � with which we started.

m m

Theorem 3 Conjugate Diameters Theorem
Let � be a diameter of an ellipse. Then there is another diameter m of the The directions of these

two diameters are called
conjugate directions, and
the diameters are called
conjugate diameters.

ellipse such that:

(a) the midpoints of all chords parallel to � lie on m;
(b) the midpoints of all chords parallel to m lie on �.

Proofs for the Special Case of a Circle
We now investigate these theorems for the special case when the ellipse is a
circle. To prove the Midpoint Theorem in this case, start with a chord �. If Recall that a circle is an

ellipse with eccentricity
zero.

necessary, rotate the circle to ensure that � is horizontal. It is then sufficient to
prove that every horizontal chord is bisected by the vertical diameter, m.

m

To do this note that the circle is symmetrical about m; so, reflection in m
maps that part of every horizontal chord to the left of m exactly onto the part
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to the right of m. Since reflection preserves length, these two parts must be the
same length; in other words, m bisects each horizontal chord, as required.

What about the Conjugate Diameters Theorem for the special case of the
circle?

l l

m m

l

m

Start with the horizontal diameter �, and carry out the construction of another
diameter as in Theorem 2; this yields the vertical diameter m. If we then start
with the vertical diameter m and repeat the construction, we obtain �, the hori-
zontal diameter of the circle. So Theorem 3 certainly holds when the ellipse is
a circle.

Generalizing the Proof
We now investigate how the proofs of Theorems 2 and 3 for the circle can be
turned into proofs for any kind of ellipse. The crucial fact is as follows.

Theorem 4 Given any ellipse, there is a parallel projection which maps An algebraic proof of a
related theorem is given in
Theorem 1 of
Subsection 2.5.1.

the ellipse onto a circle.

A suitable parallel projection is illustrated below. Here the plane π1 (initially
parallel to π2) has been tilted about the minor axis of the ellipse. Under the
projection distances which are parallel to the minor axis remain unchanged,
but distances parallel to the major axis are scaled by a factor which depends on Algebraically, in terms of

a suitable coordinate
system, the mapping

x �→ b

a
x , y �→ y,

maps the ellipse

x2

a2
+ y2

b2
= 1,

to the circle x2 + y2 = b2.

the ‘angle of tilt’. By choosing just the right amount of tilt we can ensure that
the image of the major axis is equal in length to the image of the minor axis,
thereby ensuring that the image of the ellipse is a circle.

π1 π2

ellipse circle

Both Theorems 2 and 3 may now be proved using the following technique.
First, map the given ellipse onto a circle, using a suitable parallel projection p.
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Since we have seen that the theorems hold in the case of the circle, we then map
the circle back to the ellipse, using the inverse parallel projection p−1. Now
collinearity and parallelism are preserved under a parallel projection, as is the Here we are using

Properties 1, 2 and 3 of
parallel projections, in a
crucial way.

property of being the midpoint of a line segment, so the above two theorems,
which hold for a circle, must hold also for the ellipse.

p–1

p

Notice that certain properties of figures, such as length and angle, are not
preserved under a parallel projection. This is one difference between Euclidean
geometry and affine geometry. The difference arises because the group of
affine transformations is larger than the group of Euclidean transformations.
In general, the larger the group that is used to define a geometry, the fewer
properties the geometry has.

Affine Transformations and Parallel Projections
Earlier we mentioned that a parallel projection is a special type of affine
transformation. We now show why this is indeed the case.

First, consider a parallel projection p of a plane π1 onto a plane π2. For the
moment, suppose that the planes are aligned so that the origin in π1 is mapped
to the origin in π2. Since ratios of lengths are preserved along a straight line, Property 3,

Subsection 2.2.2we must have, for any vector v ∈ R
2 and any λ ∈ R,

p(λv) = λp(v). (1)

Next, let v and w be two position vectors in π1. Their sum, v + w, is found
from the Parallelogram Law for addition of vectors, as shown in the diagram
below. The images under p in π2 are p(v) and p(w), and the sum of these two
vectors is p(v) + p(w).

π2π1

p (w)

p(v)

w

v

v+w p (v+w)

p
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But a parallel projection maps parallel lines onto parallel lines, so it must
map parallelograms onto parallelograms. Hence it must map the parallelogram
in π1 onto the parallelogram in π2, and, in particular, it must map v + w to
p(v) + p(w). We may write this as

p(v + w) = p(v) + p(w). (2)

It follows from equations (1) and (2) that p must be a linear transformation of Remember that π1 and π2
represent copies of R

2.R
2 onto itself.
Hence there exists some matrix A such that for each v ∈ R

2,

p(v) = Av. (3)

Since the linear transformation p is invertible, it follows that A is invertible.
Now suppose that the parallel projection maps the origin in π1 to some point

B with position vector b in π2, as shown below. If we temporarily construct a
new set of axes in π2 that are parallel to the original axes, but which intersect at
the point B, then with respect to these new axes p(v) = Av for some invertible
matrix A, as before. To express p(v) with respect to the original axes, we
simply add on the vector b to obtain

p(v) = Av + b (4)

for some invertible 2 × 2 matrix A.

π1

π2

v

b

Av

It follows from equation (4) that p must be an affine transformation.

Theorem 5 Each parallel projection is an affine transformation.

The converse is false, for it is not true that every affine transformation can
be represented as a parallel projection.

For example, consider the so-called ‘doubling map’ of R
2 to itself given by

t(v) = 2v (v ∈ R
2). (5)



82 2: Affine Geometry

This is an affine transformation, since it can be written in the form t(x) =
Ax+b with A = 2I and b = 0. However, a parallel projection is either between
two parallel planes, in which case all lengths are unchanged, or between two
intersecting planes, in which case distances along the line of intersection are
unchanged. The doubling map has neither of these properties and so is not a
parallel projection.

Observation An affine transformation is not necessarily a parallel
projection.

Although the doubling map is not a parallel projection, it is possible to dou-
ble lengths in R

2 by following one parallel projection by another: the first
doubles all horizontal lengths, and the second doubles all vertical lengths. Thus
the doubling map (5) can be represented as the composition of two parallel
projections.

We end this subsection by showing that every affine transformation can be
expressed as a composition of two parallel projections.

Recall that any affine transformation t : R
2 → R

2 has the form

t(x) = Ax + b (x ∈ R
2), (6)

where A is an invertible 2 × 2 matrix. Now, t is not a linear transforma-
tion unless b = 0, but we can use methods similar to those for linear
transformations to determine A and b.

First, it follows from equation (6) that t(0) = b; so b is the image of the
origin under t . If we let e and f be the coordinates of t(0), then we can write

A =
(

a b
c d

)
and b =

(
e
f

)
,

where a, b, c, d are real numbers that have yet to be found. It follows from
equation (6) that the images under t of the points (1, 0) and (0, 1) are given by(

a b
c d

)(
1
0

)
+
(

e
f

)
=
(

a
c

)
+
(

e
f

)

and (
a b
c d

)(
0
1

)
+
(

e
f

)
=
(

b
d

)
+
(

e
f

)
.

So if, in addition to t(0) = (e, f ), we know the points onto which (1, 0) and Notice that for an affine
transformation t , the
images t(1, 0), t(0, 1) and
t(0, 0) = (e, f ) cannot be
collinear, for if they were,
then (a, c) and (b, d)
would be linearly
dependent, and A would
not be invertible.

(0, 1) are mapped by t , then we can determine the values of a, b, c and d.
Indeed, we have

(a, c) = t(1, 0) − (e, f ) and (b, d) = t(0, 1) − (e, f ).

It follows that an affine transformation is uniquely determined by its effect
on the three non-collinear points (0, 0), (1, 0) and (0, 1). We shall return to this
method of determining affine transformations in Section 2.3.
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So suppose that a given affine transformation t maps the points (0, 0), (1, 0)
and (0, 1) to three non-collinear points P , Q and R, respectively. In order to
express t as the composition of two parallel projections p1 and p2, we need to
define p1 and p2 in such a way that p2 ◦ p1 has the same effect as t on (0, 0), Uniqueness then

guarantees that
t = p2 ◦ p1.

(1, 0) and (0, 1). To do this, we first define p1 so that it maps (0, 0) to P , (1, 0)
to Q, and (0, 1) to some point X , say, and then define p2 so that it maps X to
R while leaving P and Q fixed.

π1 π2π

(0, 1)

(0, 0) (1, 0)

p1

Q Q

P

t

P

X
R

p2

To construct p1 we embed its domain plane π1, and its codomain plane π ,
into R

3 so that the point (0, 0) in π1 coincides with the point P in π , as shown
below. It does not matter how this is done, provided that (1, 0) does not lie in
π . We then define p1 by the family of rays that are parallel to the ray through
the point (1, 0) in π1 and the point Q in π . When defined in this way, p1 maps
(0, 0) to P , (1, 0) to Q, and (0, 1) to some point X , as required.

For clarity, we have
omitted the axes from the
plane π .

π1

π

p1

Q

X

P

To construct p2 we embed its domain plane π , and its codomain plane π2,
into R

3 so that the points P and Q in π coincide with the points P and Q in
π2, as shown below. Again it does not matter how this is done, provided that See the figure below.

X does not lie in π2. We then define p2 by the family of rays that are parallel
to the ray through the point X in π and the point R in π2. Then p2 leaves P
and Q fixed and maps X to R.
Overall, the composite p2 ◦ p1 of the two parallel projections maps (0, 0),
(1, 0) and (0, 1) to P , Q and R, respectively. Now p1 and p2 are affine transfor-
mations, so p2 ◦ p1 is also an affine transformation. Furthermore, p2 ◦ p1 maps
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π
p2

π2

Q

R

P

X

(0, 0), (1, 0) and (0, 1) to the same points as does t . Since such affine transfor-
mations are unique, it follows that t = p2◦ p1. We have therefore demonstrated
the following result.

Theorem 6 An affine transformation can be expressed as the composite
of two parallel projections.

An important consequence of this theorem is that all properties of figures
that are unchanged by parallel projections must also be unchanged by affine
transformations. In particular, the three properties of parallel projections that
we met in Subsection 2.2.2 must, in fact, be affine properties.

2.3 Properties of Affine Transformations

In the previous section you saw how parallel projections can be used to explore
affine geometry from a visual point of view. In this section we explore some of
the same ideas from an algebraic point of view.

2.3.1 Images of Sets Under Affine Transformations
We begin by describing how to find the image of a line under an affine
transformation. To do this, recall that an affine transformation is a mapping
t : R

2 → R
2 given by a formula of the form

t(x) = Ax + b, (1)

where A is an invertible 2 × 2 matrix. The set of such transformations forms a
group, in which the transformation inverse to t is given by

Subsection 2.2.1t−1(x) = A−1x − A−1b. (2)
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When equations (1) and (2) are used to find images under t , it is easy to
confuse points in the domain plane with points in the codomain plane, as both
planes are copies of R

2. To avoid such confusion, we often reserve the symbol
x and the coordinates (x , y) for points in the domain of t , and use the symbol
x′ and the coordinates (x ′, y′) to denote the image of x under t .

With this notation, we may rewrite equations (1) and (2) in the form

x′ = Ax + b, (3)

x = A−1x′ − A−1b. (4)

The next example illustrates how these equations can be used to find the
image of a line under an affine transformation.

Example 1 Determine the image of the line y = 2x under the affine
y

x

y = 2x
transformation

t(x) =
(

4 1
2 1

)
x +

(
2

−1

) (
x ∈ R

2
)

. (5)

Solution Let (x , y) be an arbitrary point on the line y = 2x , and let (x ′, y′)
be the image of (x , y) under t . Then(

x ′
y′
)

=
(

4 1
2 1

)(
x
y

)
+
(

2
−1

)
.

Next we use equation (4) to express (x , y) in terms of (x ′, y′). We have

Recall that the inverse of
the invertible matrix

A =
(

a b
c d

)
is

A−1 = 1

ad − bc

×
(

d −b
−c a

)
.

(
4 1
2 1

)−1

=
( 1

2 − 1
2

−1 2

)
and

( 1
2 − 1

2

−1 2

)(
2

−1

)
=
( 3

2

−4

)
,

so (
x
y

)
=
( 1

2 − 1
2

−1 2

)(
x ′
y′
)

+
(− 3

2

4

)
.

It follows that under the inverse mapping t−1 we have

x = 1
2 x ′ − 1

2 y′ − 3
2 and y = −x ′ + 2y′ + 4.

Since x and y are related by the equation y = 2x , it follows that x ′ and y′ are
related by the equation

−x ′ + 2y′ + 4 = 2
(

1
2 x ′ − 1

2 y′ − 3
2

)
,

which simplifies to
2x ′ − 3y′ = 7.

Dropping the dashes, we see that the image of the line y = 2x under t is the
line

2x − 3y = 7.
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Problem 1 Determine the image of the line 3x − y + 1 = 0 under the
affine transformation

t(x) =
( 1

2 − 1
2

−1 2

)
x +

(− 3
2

4

) (
x ∈ R

2
)

.

Problem 2 Determine the image of the circle x2 + y2 = 1 under the
affine transformation

t(x) =
( 1

2 − 1
2

−1 2

)
x +

(− 3
2

4

) (
x ∈ R

2
)

.

The same technique can be used to find the images of other types of figures,
such as other conics. You will meet some examples of this in Section 2.5.

2.3.2 The Fundamental Theorem of Affine Geometry
The algebraic approach can also be used to investigate whether there is an
affine transformation which maps one given figure onto another. Recall that
if there is such a transformation, then the two figures are said to be affine-
congruent. This concept of congruence is important because, as we explained
in Section 2.1, figures that are affine-congruent to each other share the same
affine properties.

In this subsection we prove the remarkable result that all triangles are affine- This is very different to
Euclidean geometry,
where two triangles are
congruent only if they
have the same shape and
size.

congruent and therefore share the same affine properties. In fact, since a
triangle is completely determined by its three vertices, the congruence of tri-
angles follows from the so-called Fundamental Theorem of Affine Geometry
which states that any three non-collinear points can be mapped to any other
three non-collinear points by an affine transformation.

First, recall that in Subsection 2.2.3 we described how the points (0, 0),
(1, 0) and (0, 1) in R

2 can be mapped to any three non-collinear points P , Q There the mapping was
constructed in a geometric
manner. In this subsection
we construct the mapping
algebraically.

and R by an affine transformation. This transformation is unique in the sense
that it is completely determined by the choice of P , Q and R. The following
example should remind you of how such transformations are constructed.

Example 2 Determine the affine transformation which maps the points (0, 0),
(1, 0) and (0, 1) to the points (3, 2), (5, 8) and (7, 3), respectively.

Solution Let t be the affine transformation given by

t :

(
x
y

)
�→
(

a b
c d

)(
x
y

)
+
(

e
f

)
. (6)

Since t(0, 0) = (3, 2), it follows from (6) that e = 3 and f = 2.
Next, t(1, 0) = (5, 8), so it follows from (6) that(

5
8

)
=
(

a b
c d

)(
1
0

)
+
(

3
2

)
=
(

a
c

)
+
(

3
2

)
.
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The first column of the matrix for t is therefore(
a
c

)
=
(

5
8

)
−
(

3
2

)
=
(

2
6

)
.

Finally, t(0, 1) = (7, 3), so that(
7
3

)
=
(

a b
c d

)(
0
1

)
+
(

3
2

)
=
(

b
d

)
+
(

3
2

)
.

The second column of the matrix for t is therefore(
b
d

)
=
(

7
3

)
−
(

3
2

)
=
(

4
1

)
.

Hence the desired affine transformation is given by

t :

(
x
y

)
�→
(

2 4
6 1

)(
x
y

)
+
(

3
2

)
.

In general, if we want to find an affine transformation t of the form

t :

(
x
y

)
�→
(

a b
c d

)(
x
y

)
+
(

e
f

)
(7)

which maps (0, 0) to p, (1, 0) to q and (0, 1) to r, then we must choose a, b, c,
d, e and f so that

p = t(0, 0) = (e, f ), so (e, f ) = p;

q = t(1, 0) = (a, c) + (e, f ), so (a, c) = q − p;

r = t(0, 1) = (b, d) + (e, f ), so (b, d) = r − p.

Notice that any three points p, q and r uniquely determine a transformation
t of the form (7), but t is affine only if the matrix

A =
(

a b
c d

)

is invertible. Since the columns of A correspond to the vectors q−p and r−p,
it follows that A is invertible only if the vectors q − p and r − p are linearly
independent. That is, provided that p, q and r are not collinear.

So if p, q and r are not collinear, then we can use the following strategy to
find an affine transformation which maps (0, 0) to p, (1, 0) to q and (0, 1) to r.

Strategy To determine the unique affine transformation t(x) = Ax + b
which maps (0, 0), (1, 0) and (0, 1) to the three non-collinear points p, q
and r, respectively:

1. take b = p;
2. take A to be the matrix with columns given by q − p and r − p.
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Problem 3 Use the strategy to determine the affine transformation We shall use the results of
these two problems
shortly, in Example 3.

which maps the points (0, 0), (1, 0) and (0, 1) to the points (2, 3),
(1, 6) and (3, −1), respectively.

Problem 4 Use the strategy to determine the affine transformation
which maps the points (0, 0), (1, 0) and (0, 1) to the points (1, −2),
(2, 1) and (−3, 5), respectively.

Notice that the inverse of the transformation in Problem 3 is an affine trans-
formation which maps the points (2, 3), (1, 6) and (3, −1) to the points (0, 0),
(1, 0) and (0, 1), respectively. So if, after applying this inverse, we apply the
affine transformation in Problem 4, then the overall effect is that of a compos-
ite affine transformation which sends the points (2, 3), (1, 6) and (3, −1) to the (2, 3) �→ (0, 0) �→ (1, −2)

(1, 6) �→ (1, 0) �→ (2, 1)

(3, −1) �→ (0, 1) �→ (−3, 5)

points (1, −2), (2, 1) and (−3, 5), respectively.
In a similar way, we can find an affine transformation which sends any three

non-collinear points to any other three non-collinear points.

Theorem 1 Fundamental Theorem of Affine Geometry
Let p, q, r and p′, q′, r′ be two sets of three non-collinear points in R

2.
Then:

(a) there is an affine transformation t which maps p, q and r to p′, q′ and
r′, respectively;

(b) the affine transformation t is unique.

Proof

(a) Let t1 be the affine transformation which maps (0, 0), (1, 0) and (0, 1) to
the points p, q and r, respectively, and let t2 be the affine transformation
which maps (0, 0), (1, 0) and (0, 1) to the points p′, q′ and r′, respectively.
Then the composite t = t2 ◦ t−1

1 is an affine transformation, and it maps p,
q and r to p′, q′ and r′, respectively.

p
t−1
1�→ (0, 0)

t2�→ p′
q �→ (1, 0) �→ q′
r �→ (0, 1) �→ r′

p
(0, 1)

(0, 0) (1, 0)

r

t1

t = t2o t1
–1

t2

r'

q'

p'

q
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(b) Suppose that t and s are both affine transformations which map p, q and r
to p′, q′ and r′, respectively, and let t1 be the affine transformation defined
in part (a). Then the composites t ◦ t1 and s ◦ t1 are both affine transforma-
tions which map (0, 0), (1, 0) and (0, 1) to p′, q′ and r′, respectively. Since (0, 0)

t1�→ p
t or s�→ p′

(1, 0) �→ q �→ q′
(0, 1) �→ r �→ r′

an affine transformation is uniquely determined by its effect on the points
(0, 0), (1, 0) and (0, 1), it follows that t ◦ t1 = s ◦ t1.

If we then compose both t ◦ t1 and s ◦ t1 on the right with t−1
1 , it follows

that t = s. Thus the mapping t constructed in part (a) is unique. �

Now suppose that we are given two arbitrary triangles �ABC and �DEF.
By the Fundamental Theorem there is an affine transformation which maps the

A

B

C

E F

Daffine
vertices A, B, C to the vertices D, E , F , respectively. Since this transformation
maps straight lines to straight lines, it must map the sides of �ABC to the sides
of �DEF, so we have the following important corollary. This will be used
extensively in Section 2.4.

Corollary All triangles are affine-congruent.

In order to find the affine transformation which maps one triangle, vertex
to vertex, onto another triangle, we follow the strategy used in part (a) of the
proof of the Fundamental Theorem.

Strategy To determine the affine transformation t which maps three non-
collinear points p, q and r to another three non-collinear points p′, q′ and
r′, respectively:

1. determine the affine transformation t1 which maps (0, 0), (1, 0) and Recall that the previous
strategy explained how t1
and t2 can be determined.

(0, 1) to the points p, q and r, respectively;
2. determine the affine transformation t2 which maps (0, 0), (1, 0) and

(0, 1) to the points p′, q′ and r′, respectively;
3. calculate the composite t = t2 ◦ t−1

1 .

Example 3 Determine the affine transformation which maps the points (2, 3),
(1, 6) and (3, −1) to the points (1, −2), (2, 1) and (−3, 5), respectively.

Solution You have already seen in Problem 3 that the affine transformation
t1 which maps the points (0, 0), (1, 0) and (0, 1) to the points (2, 3), (1, 6) and
(3, −1), respectively, is given by

t1(x) =
(−1 1

3 −4

)
x +

(
2
3

)
.
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Also, in Problem 4 you saw that the affine transformation t2 which maps
the points (0, 0), (1, 0) and (0, 1) to the points (1, −2), (2, 1) and (−3, 5),
respectively, is given by

t2(x) =
(

1 −4
3 7

)
x +

(
1

−2

)
.

Following the strategy, we need to find the inverse of t1. We have

(−1 1
3 −4

)−1

=
(−4 −1

−3 −1

)

and (−4 −1
−3 −1

)(
2
3

)
=
(−11

−9

)
,

so that the inverse of t1 is given by

t−1
1 (x) =

(−4 −1
−3 −1

)
x +

(
11

9

)
.

Thus the affine transformation which maps the points (2, 3), (1, 6) and
(3, −1) to the points (1, −2), (2, 1) and (−3, 5), respectively, is given by

t(x) = t2 ◦ t−1
1 (x)

= t2

((−4 −1
−3 −1

)
x +

(
11
9

))

=
(

1 −4
3 7

)((−4 −1
−3 −1

)
x +

(
11

9

))
+
(

1
−2

)

=
((

8 3
−33 −10

)
x +

(−25
96

))
+
(

1
−2

)

=
(

8 3
−33 −10

)
x +

(−24
94

)
.

Problem 5 Determine the affine transformation which maps the
points (1, −1), (2, −2) and (3, −4) to the points (8, 13), (3, 4) and
(0, −1), respectively.

2.3.3 Proofs of the Basic Properties of Affine Transformations
In Subsection 2.2.2 we used parallel projections to demonstrate that affine
transformations have the following basic properties: they map straight lines
to straight lines, they map parallel lines to parallel lines, and they preserve
ratios of lengths along a given straight line. We now give algebraic proofs of
these assertions.
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Theorem 2 An affine transformation maps straight lines to straight lines.

Proof

l t (l)

t (p)

t

p

p + λa t (p) + λ(Aa)

Let � be a line through a point with position vector p, and let the direction of �

be that of some vector a. Then

� = {p + λa : λ ∈ R}.
Now let t : R

2 → R
2 be an affine transformation given by

t(x) = Ax + b.

We can find the image under t of an arbitrary point p + λa on � as follows:

t(p + λa) = A(p + λa) + b

= (Ap + b) + λAa

= t(p) + λAa.

So the image of � is the set

t(�) = {t(p) + λAa : λ ∈ R},
which is a line through t(p) in the direction of the vector Aa. �

Theorem 3 An affine transformation maps parallel straight lines to paral-
lel straight lines.

Proof

l1
l2 t (l1)

t (l2)

t (p)

t (q)

t

p

q

q + λa

p + λa

t (p) + λ(Aa)

t (q) + λ(Aa)

Let �1 and �2 be parallel lines through the points with position vectors p and
q, respectively, and let the direction of the lines be that of the vector a. Then

�1 = {p + λa : λ ∈ R} and �2 = {q + λa : λ ∈ R}.
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As in the proof of Theorem 2, the images of �1 and �2 under the affine
transformation t(x) = Ax + b are the sets

t(�1) = {t(p) + λAa : λ ∈ R} and t(�2) = {t(q) + λAa : λ ∈ R}.
These sets are straight lines which pass through the image points t(p) and t(q),
both in the same direction as that of the vector Aa. Hence the two image lines
under t are parallel, as claimed. �

Rather than prove that affine transformations preserve ratios of lengths along

B

A

C

B′

A′

D′

C ′

D

affine

preserves ratio:
AB /CD = A′B′ /C′D′

a given straight line, as in Property 3 of Subsection 2.2.2, we prove the follow-
ing more general result illustrated in the margin. The original result follows
because any line is parallel to itself.

Theorem 4 An affine transformation preserves ratios of lengths along
parallel straight lines.

Proof We begin by examining what happens to the length of a line segment
under an affine transformation.

l

p

t

p + λ1a

p + λ2a

t (p) + λ1(Aa)

t (p) + λ2(Aa)

t (p)

t (l)

Let � be a line through a point with position vector p, and let the direction of �

be that of some unit vector a. Then

� = {p + λa : λ ∈ R}.
As in the proof of Theorem 2, the image of � under the affine transformation
t(x) = Ax + b is the line

t(�) = {t(p) + λAa : λ ∈ R}.
Now consider a segment of � with endpoints p + λ1a and p + λ2a. Since a is
a unit vector, the length of the segment is

Recall that ||a|| means the
length of a.

||(p + λ2a) − (p + λ1a)|| = |λ2 − λ1| · ||a|| = |λ2 − λ1|.
The image of the segment has endpoints t(p) + λ1Aa and t(p) + λ2Aa, so the
image of the segment has length

||(t(p) + λ2Aa) − (t(p) + λ1Aa)|| = |λ2 − λ1| · ||Aa||.
So, in the process of mapping segments along � to segments along t(�), lengths
are stretched by the factor ||Aa||. Since this factor is the same for all segments
which lie along lines parallel to a, it follows that the ratios of lengths along
parallel lines are unchanged by t . �



Using the Fundamental Theorem of Affine Geometry 93

2.4 Using the Fundamental Theorem of Affine Geometry

In this section we explain how the Fundamental Theorem of Affine Geometry
can be used to deduce the fact that the medians of any triangle are concurrent
from the special case that the medians of an equilateral triangle are concur-
rent. We then use similar methods to prove the classical theorems of Ceva and These results are named

after Giovanni Ceva
(Italian mathematician,
1647/48–1734) and
Menelaus of Alexandria
(Greek geometer, 1st
Century AD).

Menelaus.

2.4.1 The Median Theorem
Let �ABC be an arbitrary triangle in the plane. If you join the midpoint of each

A

B C

side of the triangle to the opposite vertex (these lines are called the medians
of the triangle), these three lines appear to pass through a single point. In fact,
no matter what triangle you choose, you find that its medians meet in a single
point.

Theorem 1 Median Theorem
The medians of any triangle are concurrent.

We can get some evidence that this theorem holds in general by looking first This technique of looking
first to see whether a
result holds in a special
case is often useful.

at a special case where a proof of the theorem is straight-forward – namely,
when the triangle is an equilateral triangle.

To do this, consider an equilateral triangle �ABC, with medians AP, BQ and
CR. Since �ABC has sides of equal length, it must be symmetric about the line

A

R

B P

Q

C

AP. Thus the point at which BQ meets CR must be symmetrically placed with
respect to this line – that is, it must actually lie on the line AP. In other words,
the lines AP, BQ and CR are concurrent if the triangle is equilateral.

In order to show that the medians of an arbitrary triangle meet at a point,
consider an arbitrary triangle �ABC, and let P , Q and R be the midpoints of
the sides BC, CA and AB, respectively. Next, choose a particular equilateral
triangle �A′ B ′C ′, and let P ′, Q′ and R′ be the midpoints of the sides B ′C ′,
C ′ A′ and A′B ′, respectively.

A

R

B
P

Q

C

A

R

affine
t

B
P

Q

C

According to the Fundamental Theorem of Affine Geometry there is an
affine transformation t which maps �ABC onto �A′B ′C ′. Moreover, since
affine transformations preserve ratios of lengths along lines it follows that t
maps the mid-points P , Q and R to the mid-points P ′, Q′ and R′, respectively.
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From the above discussion we know that the medians of any equilateral
triangle meet at a point, so in particular we know that A′ P ′, B ′Q′ and C ′ R′
meet at some point X ′, say, as shown on the right below.

A

R X

B
P

Q

C

A¢

R¢

affine

t –1

B¢ P¢

Q¢X¢

C¢

The trick now is to observe that t has an inverse t−1 which is also an affine
transformation. This inverse maps the medians A′ P ′, B ′Q′ and C ′ R′ back to
the medians AP, BQ and CR of the original triangle �ABC. Since X ′ lies on
all three of the lines A′ P ′, B ′Q′ and C ′ R′ it follows that t−1 maps X ′ to some
point X which lies on all three of the lines AP, BQ and CR. In other words, the
medians of �ABC are concurrent.

Since �ABC is an arbitrary triangle we have proved the Median Theorem.
The essence of the above proof is the fact that all triangles are affine-

congruent. That powerful result enables us to prove theorems concerning the
affine properties of triangles (such as collinearity, lines being parallel, and The basic affine properties

were listed in
Subsection 2.2.1.

ratios of lengths along a given line) following a standard pattern. First, we
choose a particular type of triangle for which it is easy to prove the result.
Then, by asserting the existence of an affine transformation from that triangle
to an arbitrary triangle, we deduce that the result holds for all triangles.

This is the approach we shall use to prove the theorems of Ceva and
Menelaus later in the section.

2.4.2 Ceva’s Theorem
We now prove the following theorem due to Ceva.

Theorem 2 Ceva’s Theorem
Let �ABC be a triangle, and let X be a point which does not lie on any of

A

R

B
P

Q

X
C

its (extended) sides. If AX meets BC at P , BX meets CA at Q and CX meets
BA at R, then

AR

RB
· BP

PC
· CQ

QA
= 1.

Proof According to the Fundamental Theorem of Affine Geometry there is an
affine transformation t which maps the points A, B, C to the points A′ = (0, 1),
B ′ = (0, 0), C ′ = (1, 0), respectively. This transformation maps the triangle
�ABC onto the right-angled triangle �A′ B ′C ′, and it maps the point X to
some point X ′ = (u, v).
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A

R

B P

Q

X

affine
t

C

A¢ (0, 1)

B¢ (0, 0) C¢ (1, 0)

X¢ (u, n)
R ¢

Q ¢

P¢

Using coordinate geometry we can calculate the equations of the lines A′ X ′,
B ′ X ′, C ′ X ′ and hence find the coordinates of the point P ′ where A′ X ′ meets
B ′C ′, of the point Q′ where B ′ X ′ meets A′C ′, and of the point R′ where C ′ X ′
meets A′B ′.

Starting with the point P ′, we note that the line B ′C ′ has equation y = 0.
Also, the line A′ X ′ has slope 1−υ

0−u , so its equation is y − 1 = 1−υ
0−u (x − 0).

Hence, at the point P ′ where the two lines meet, we must have y = 0 and
y − 1 = 1−υ

0−u (x − 0), so

P ′ =
(

u

1 − υ
, 0

)
.

Similarly, at the point R′ we have x = 0, and y − 0 = 0−υ
1−u (x − 1), so

R′ =
(

0,
υ

1 − u

)
.

Finally, at Q′ we have x + y = 1 and y = υ
u x , so x = u

u+υ
and y = υ

u+υ
.

Hence

Q′ =
(

u

u + υ
,

υ

u + υ

)
.

Thus, using the coordinate formulas for calculating ratios we obtain These formulas are given
at the beginning of
Appendix 2 just above the
Section Formula.

A′ R′

R′B ′ = yR′ − yA′

yB′ − yR′
=

υ
1−u − 1

0 − υ
1−u

= u + υ − 1

−υ
,

B ′ P ′

P ′C ′ = xP ′ − xB′

xC ′ − xP ′
=

u
1−υ

− 0

1 − u
1−υ

= u

1 − u − υ
,

and

C ′Q′

Q′ A′ = yQ′ − yC ′

yA′ − yQ′
=

υ
u+υ

− 0

1 − υ
u+υ

= υ

u
.

Hence
A′ R′

R′ B ′ · B ′ P ′

P ′C ′ · C ′Q′

Q′ A′ = 1.

Since t−1 is an affine transformation, it preserves ratios along a line. It must
therefore map P ′, Q′, R′ back to the points P , Q, R in such a way that

AR

RB
· BP

PC
· CQ

QA
= 1,

as required. �
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The next example illustrates how we can use Ceva’s Theorem to calculate
certain unknown distances along the sides of a triangle. For the method to work
correctly, it is important to remember that all the ratios in Ceva’s Theorem are
signed ratios. Thus, if X lies inside the triangle, as in part (a) of the example,
then all the ratios are positive. But if X lies outside the triangle, as in part (b),
then two of the ratios will be negative.

Example 1

(a) In the figure on the left below, AR = 1, RB = 2, BP = 3, CQ = 2 and
QA = 2. Calculate the distance PC.

(b) For the figure on the right, AR = 1, AB = 3, PC = 1, CQ = 2 and
QA = 2. Calculate the distance BC.

B B

A

X

R

R

Q

Q

C CP
P

X

A

3 ? ?

2

1

1

2

2
3

1

2

2

Solution

(a) By Ceva’s Theorem, we have

AR

RB
· BP

PC
· CQ

QA
= 1;

so,
1

2
· 3

PC
· 2

2
= 1.

It follows that PC = 3
2 .

(b) By Ceva’s Theorem, we have

AR

RB
· BP

PC
· CQ

QA
= 1;

so,

−1

4
·
(

−BC + 1

1

)
· 2

2
= 1.

It follows that BC = 3.

Problem 1

(a) Determine the ratio BP
PC in the left diagram below, given that

AR

RB
= AQ

QC
= 3

2
.
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(b) Determine the ratio CQ
QA in the middle diagram below, given that

AR

RB
= 1

2
and

BP

PC
= −2

7
.

(c) Determine the ratio AR
RB in the right diagram below, given that

BP

PC
= 5

7
and

CQ

QA
= −7.

P P P

X

X

X

R R

R

B B B

Q

Q
Q

C C C

A A
A

Ceva’s Theorem has the following converse, which can be regarded as a
generalization of the Median Theorem to configurations where P , Q, R are
not all midpoints of sides.

In the Median Theorem,

AR

RB
= 1,

BP

PC
= 1,

CQ

QA
= 1,

so Theorem 3 generalizes
the Median Theorem.

Theorem 3 Converse to Ceva’s Theorem
Let P , Q and R be points, other than vertices, on the (possibly extended)
sides BC, CA and AB of a triangle �ABC, such that

AR

RB
· BP

PC
· CQ

QA
= 1. (1)

Then the lines AP, BQ and CR are concurrent.

Proof Let the lines BQ and CR intersect at a point X , and let the line AX meet

R

B

X

A

Q

C
PP¢

BC at some point P ′. It is sufficient to prove that P = P ′.
It follows from Ceva’s Theorem that

AR

RB
· BP′

P ′C
· CQ

QA
= 1. (2)

Hence, from equations (1) and (2), we have

BP

PC
= BP′

P ′C
,

so that P and P ′ must indeed be the same point. �

Example 2 The triangle �ABC has vertices A(1, 3), B(−1, 0) and C(4, 0),

R

B
P

Q

C

A

and the points P(0, 0), Q
(

8
3 , 4

3

)
and R

(
− 2

3 , 1
2

)
lie on BC, CA and AB,

respectively.

(a) Determine the ratios in which P , Q and R divide the sides of the triangle.
(b) Determine whether the lines AP, BQ and CR are concurrent.
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Solution

(a) Using the coordinate formulas for calculating ratios, we obtain

AR

RB
= xR − xA

xB − xR
= − 2

3 − 1

−1 + 2
3

= 5,
BP

PC
= xP − xB

xC − xP
= 0 + 1

4 − 0
= 1

4
,

CQ

QA
= xQ − xC

xA − xQ
=

8
3 − 4

1 − 8
3

= 4

5
, (3)

so that P divides BC in the ratio 1 : 4, Q divides CA in the ratio 4 : 5 and
R divides AB in the ratio 5 : 1.

(b) It follows from (3) that the product

AR

RB
· BP

PC
· CQ

QA
= 5 · 1

4
· 4

5
= 1;

so by the converse to Ceva’s Theorem the lines AP, BQ and CR must be
concurrent.

Problem 2 The triangle �ABC has vertices A(−1, 1), B(2, −1) and
C(3, 2), and the points P

( 8
3 , 1
)
, Q

(
2, 7

4

)
and R

( 4
5 , − 1

5

)
lie on BC, CA

and AB, respectively.

(a) Determine the ratios in which P, Q and R divide the sides of the
triangle.

(b) Determine whether the lines AP, BQ and CR are concurrent.

2.4.3 Menelaus’ Theorem
Ceva’s theorem is concerned with lines through the vertices of a triangle that
meet at a point. We now use the Fundamental Theorem of Affine Geometry to
prove an analogous theorem due to Menelaus which is concerned with points
on the sides of a triangle that are collinear.

B

R

A

Q

C
P

Theorem 4 Menelaus’ Theorem
Let �ABC be a triangle, and let � be a line that crosses the sides BC, CA,
AB at three distinct points P , Q, R, respectively. Then

AR

RB
· BP

PC
· CQ

QA
= −1.

Proof According to the Fundamental Theorem of Affine Geometry there is
an affine transformation t which maps the points A, B, C to the points A′(0, 1),
B ′(0, 0), C ′(1, 0), respectively. This transformation maps the triangle �ABC
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onto the right-angled triangle �A′B ′C ′, and it maps the line � to some line �′.
Let the equation of �′ be y = mx + c.

A

affine
A¢ (0, 1)

C¢ (1, 0)B¢ (0, 0)

R

R ¢
Q ¢

P¢

l¢

B

Q

C

l
P

t

We now calculate the coordinates of the points P ′, Q′ and R′ where �′ meets
the sides B ′C ′, C ′ A′ and A′B ′, respectively.

At P ′ we have y = 0 and y = mx+ c. This implies that x = − c
m , and hence

P ′ =
(
− c

m
, 0
)

.

At R′ we have x = 0 and y = mx + c. This implies that y = c, and hence

R′ = (0, c).

At Q′ we have x + y = 1 and y = mx + c. This implies that 1 − x = mx + c
so that x = 1−c

m+1 ; also y = m(1 − y) + c, so that y = m+c
m+1 ; and hence

Q′ =
(

1 − c

m + 1
,

m + c

m + 1

)
.

Using the coordinate formulas for calculating ratios we obtain

A′ R′

R′ B ′ = yR′ − yA′

yB′ − yR′
= c − 1

0 − c
= c − 1

−c
,

B ′ P ′

P ′C ′ = xP ′ − xB′

xC ′ − xP ′
= − c

m − 0

1 + c
m

= −c

m + c
,

and
C ′Q′

Q′ A′ = xQ′ − xC ′

xA′ − xQ′
=

1−c
m+1 − 1

0 − 1−c
m+1

= −(m + c)

c − 1
.

Hence,
A′ R′

R′ B ′ · B ′ P ′

P ′C ′ · C ′Q′

Q′ A′ = −1.

Since t−1 is an affine transformation, it preserves ratios along a line. It must
therefore map P ′, Q′, R′ back to the points P , Q, R in such a way that

AR

RB
· BP

PC
· CQ

QA
= −1,

as required. �

Remark

As for Ceva’s Theorem, it is important to remember that all the ratios in
Menelaus’ Theorem are signed ratios. In fact if � passes through the interior of
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the triangle, then precisely one of the ratios is negative; otherwise all the ratios
are negative.

Example 3

(a) In the figure on the left below: AR = 1, RB = 2, BC = 2, CQ = 1 and
QA = 1. Calculate the distance PC.

(b) In the figure on the right below: AR = 2, AB = 1, BC = 2, CA = 2 and
BP = 2. Calculate the distance QA.

B

B

R

A

Q

Q

R

A

C
P

P

1 1

1

1

2

2
2 2

C

2

2

?

?

Solution

(a) By Menelaus’ Theorem, we have

AR

RB
· BP

PC
· CQ

QA
= −1.

So
1

2
·
(

−2 + PC

PC

)
· 1

1
= −1.

It follows that 2 + PC = 2PC, and hence PC = 2.
(b) By Menelaus’ Theorem, we have

AR

RB
· BP

PC
· CQ

QA
= −1.

So (
−2

3

)
.

(
−2

4

)
.

(
−2 + QA

QA

)
= −1.

It follows that 2 + QA = 3QA, and hence QA = 1.

Problem 3
(a) Determine the ratio CQ

QA in the left diagram below, given that

AR

RB
= 2 and

BP

PC
= −2.

(b) Determine the ratio CQ
QA in the right diagram below, given that

AR

RB
= −1

4
and

BP

PC
= −2.
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A

R

R

B B
C

Q

Q

A

PPC

Menelaus’ Theorem has a converse that enables us to check whether points
on the three sides of a triangle are collinear.

Theorem 5 Converse to Menelaus’ Theorem
Let P, Q and R be points other than vertices on the (possibly extended) sides
BC, CA and AB of a triangle �ABC, such that

AR

RB
· BP

PC
· CQ

QA
= −1. (3)

Then the points P, Q and R are collinear.

Proof Let the line � that passes through Q and R meet BC at some point P ′. The strategy of the proof
is the same as that of
Theorem 3.

It is sufficient to prove that P = P ′.
It follows from Menelaus’ Theorem that

B

R

A

Q

l

C P P¢

AR

RB
· BP′

P ′C
· CQ

QA
= −1. (4)

Hence, from equations (3) and (4) we deduce that

BP

PC
= BP′

P ′C
.

It follows that P and P ′ must indeed be the same point. �

Problem 4 The triangle �ABC has vertices A(2, 4), B(−2, 0) and
C(1, 0), and the points P

( 5
2 , 0
)
, Q
( 3

2 , 2
)

and R(1, 3) lie on BC, CA and
AB, respectively.

(a) Determine the ratios in which P , Q and R divide the sides of the
triangle.

(b) Hence determine whether the points P , Q and R are collinear.

We end this subsection with two revision problems.

Problem 5 Let �ABC be a triangle, and let X be a point which does

B

R

A

Q

X

C TP

not lie on any of its (extended) sides. Also, let AX meet BC at P, BX meet
CA at Q and CX meet BA at R; and let QR and BC meet at T .

Given that BP
PC = k, determine BT

TC in terms of k.
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Problem 6 Suppose that P and Q are the midpoints of the sides AB
and BC of a parallelogram ABCD, and that the lines DP and AQ meet
at R.

B

R

A

Q

D

C

P
(a) Determine the image of B under the affine transformation t which

maps A, D and C to (0, 1), (0, 0) and (1, 0), respectively.
(b) By considering the image of ABCD under t, determine the ratios

PR : RD and AR : RQ.

2.4.4 Barycentric Coordinates
In this subsection we introduce a new coordinate system, of barycentric coor- Barycentric coordinates

were introduced by
Möbius in 1827.

dinates with respect to a triangle of reference, for points in the plane, which can
simplify some calculations. Rather than use two perpendicular axes to deter-
mine the coordinates of an arbitrary point in the plane, we use a weighted sum
of the coordinates of three non-collinear points – the vertices of the triangle of
reference.

Definitions Let A = (a1, a2), B = (b1, b2) and C = (c1, c2) be three

B(b1,b2)

C(c1,c2)

A (a1,a2)non-collinear points in the plane R
2; we will call �ABC the triangle of

reference. Then a point (x , y) in the plane has barycentric coordinates
(ξ , η, ζ ) with respect to �ABC if

x = ξa1 + ηb1 + ζc1,

y = ξa2 + ηb2 + ζc2, and

1 = ξ + η + ζ .

⎫⎪⎬
⎪⎭ (5)

Remark

In particular, notice that the barycentric coordinates of the vertices A, B
and C of the triangle of reference �ABC are (1,0,0), (0,1,0) and (0,0,1),
respectively.

Thus, for example, if the triangle of reference �ABC has vertices A = (1, 2),
B = (−3, 0) and C = (−2, 4), then the point with barycentric coordinates(

1
2 , 3

4 , − 1
4

)
has cartesian coordinates Cartesian coordinates are

the standard Euclidean
coordinates in the plane.(

1
2 · (1) + 3

4 · (−3) − 1
4 · (−2) , 1

2 · (2) + 3
4 · (0) − 1

4 · 4
)

=
(

2 − 9 + 2

4
,

4 + 0 − 4

4

)

=
(
− 5

4 , 0
)

.
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We may express the formula (5) for barycentric coordinates in terms of
matrices in the form⎛

⎝x
y
1

⎞
⎠ = M

⎛
⎝ξ

η

ζ

⎞
⎠ , where M =

⎛
⎜⎝

a1 b1 c1

a2 b2 c2

1 1 1

⎞
⎟⎠ . (6)

Since A = (a1, a2), B = (b1, b2) and C = (c1, c2) are non-collinear, the deter-
minant det M is non-zero. Then, since M is non-singular, we can reformulate We do not prove that

det M �= 0 here.the representation (6) as ⎛
⎝ξ

η

ζ

⎞
⎠ = M−1

⎛
⎝x

y
1

⎞
⎠ . (7)

Example 4 Determine barycentric coordinates for the point (2,1) with respect
to the triangle of reference �ABC where A = (1, 0), B = (1, −1) and
C = (−1, 1).

Solution The matrix M for the triangle of reference �ABC is

M =
⎛
⎝ 1 1 −1

0 −1 1
1 1 1

⎞
⎠ ,

whose inverse is We omit the details of the
calculation of this inverse.⎛

⎜⎜⎝
1 1 0

− 1
2 −1 1

2

− 1
2 0 1

2

⎞
⎟⎟⎠ .

It follows from the representation (7) that the point (2,1) has barycentric
coordinates with respect to the triangle of reference �ABC given by⎛

⎜⎜⎝
1 1 0

− 1
2 −1 1

2

− 1
2 0 1

2

⎞
⎟⎟⎠
⎛
⎝2

1
1

⎞
⎠ =

⎛
⎜⎜⎝

3

− 3
2

− 1
2

⎞
⎟⎟⎠ ;

namely, barycentric coordinates
(

3, − 3
2 , − 1

2

)
.

Problem 7 Determine barycentric coordinates for the point (−1, 1)

with respect to the triangle of reference �ABC where A = (1, 1), B =
(2, 2) and C = (1, 2).

Next, we give barycentric versions of the condition for collinearity of three
points in the plane and of the equation of a line in the plane.
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Theorem 6 The points P, Q and R with barycentric coordinates
(ξ1, η1, ζ1), (ξ2, η2, ζ2) and (ξ3, η3, ζ3) are collinear if and only if∣∣∣∣∣∣

ξ1 ξ2 ξ3

η1 η2 η2

ζ1 ζ2 ζ3

∣∣∣∣∣∣ = 0.

Proof Let the points P, Q and R have cartesian coordinates (x1, y1), (x2, y2)

and (x3, y3), respectively. It follows that, if the triangle of reference �ABC has
vertices A = (a1, a2), B = (b1, b2) and C = (c1, c2), then we may apply the
formula (5) to each of P, Q and R in turn to obtain

x1 = a1ξ1 + b1η1 + c1ζ1 and y1 = a2ξ1 + b2η1 + c2ζ1,

x2 = a1ξ2 + b1η2 + c1ζ2 and y2 = a2ξ2 + b2η2 + c2ζ2,

x3 = a1ξ3 + b1η3 + c1ζ3 and y3 = a2ξ3 + b2η3 + c2ζ3.

We may write these simultaneous equations in matrix form as

The results for P, Q and R
are set out as columns 1, 2
and 3, respectively, of the
left-hand matrix.

⎛
⎝x1 x2 x3

y1 y2 y3

1 1 1

⎞
⎠ =

⎛
⎝a1 b1 c1

a2 b2 c2

1 1 1

⎞
⎠
⎛
⎝ξ1 ξ2 ξ3

η1 η2 η3

ζ1 ζ2 ζ3

⎞
⎠

= M

⎛
⎝ξ1 ξ2 ξ3

η1 η2 η3

ζ1 ζ2 ζ3

⎞
⎠ , (8)

where M =
⎛
⎝a1 b1 c1

a2 b2 c2

1 1 1

⎞
⎠.

Now, M is non-singular since the points A, B and C are non-collinear. Then
it follows from equation (8) that∣∣∣∣∣∣

ξ1 ξ2 ξ3

η1 η2 η3

ζ1 ζ2 ζ3

∣∣∣∣∣∣ = 0 if and only if

∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

1 1 1

∣∣∣∣∣∣ = 0.

But the second determinant equation here is the condition for P, Q and R to be
collinear. The desired result then follows immediately. �

Corollary The line � through the points with barycentric coordinates
(ξ1, η1, ζ1) and (ξ2, η2, ζ2) has equation That is, an equation in

terms of barycentric
coordinates.

∣∣∣∣∣∣
ξ1 ξ2 ξ

η1 η2 η

ζ1 ζ2 ζ

∣∣∣∣∣∣ = 0.
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For example, if the triangle of reference is �ABC, the equation of the line
AB in terms of barycentric coordinates is∣∣∣∣∣∣

1 0 ξ

0 1 η

0 0 ζ

∣∣∣∣∣∣ = 0;

which simplifies to the equation ζ = 0.

Similarly, BC and CA
have equations ξ = 0 and
η = 0.

Problem 8 Determine which of the following sets of points, described
by their barycentric coordinates with respect to an unspecified triangle
of reference, are collinear; for those that are collinear, determine the
equation of the line on which they lie.

(a) (1, 1, −1), (4, −2, −1),
(

1
2 , 2, − 3

2

)
(b) (1, 1, −1), (2, −2, 1), (−1, 7, −5)

Next, we meet a version of the Section Formula in terms of barycentric The Section Formula is
given in Appendix 2.coordinates.

Theorem 7 Section Formula
The point R that divides the line � joining the points P and Q with barycen-

P
R

Q1–
tric coordinates (ξ1, η1, ζ1) and (ξ2, η2, ζ2) in the ratio (1 − λ) : λ has
barycentric coordinates

(ξ , η, ζ ) = λ(ξ1, η1, ζ1) + (1 − λ)(ξ2, η2, ζ2).

Proof Let P , Q and R have cartesian coordinates (x1, y1), (x2, y2) and (x , y),
respectively. It follows from the cartesian form of the Section Formula that

(x , y) = λ(x1, y1) + (1 − λ)(x2, y2), for some real number λ;

we can rewrite this equation in matrix form as⎛
⎝ x

y
1

⎞
⎠ = λ

⎛
⎝ x1

y1

1

⎞
⎠+ (1 − λ)

⎛
⎝ x2

y2

1

⎞
⎠ .

Multiplying both sides of this equation on the left by the matrix M−1 and using
the formula (8), it follows that⎛

⎝ ξ

η

ζ

⎞
⎠ = λ

⎛
⎝ ξ1

η1

ζ1

⎞
⎠+ (1 − λ)

⎛
⎝ ξ2

η2

ζ2

⎞
⎠ .

This is the desired result. �

We can now use barycentric coordinate methods to give further proofs of
Menelaus’s Theorem and Ceva’s Theorem.
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Theorem 8 Menelaus’ Theorem
Let �ABC be a triangle, and let � be a line that crosses the sides BC, CA

R

A

B
C

Q

P

and AB at three distinct points P, Q, R, respectively. Then

AR

RB
· BP

PC
· CQ

QA
= −1.

Proof Define λ, μ and ν as follows:

BP

PC
= 1 − λ

λ
,

CQ

QA
= 1 − μ

μ
,

AR

RB
= 1 − ν

ν
.

Hence, by the Section Formula, P has barycentric coordinates

For, P divides BC in the
ratio (1 − λ) : λ.

P = λ(0, 1, 0) + (1 − λ)(0, 0, 1)

= (0, λ, 1 − λ).

Similarly, Q and R have barycentric coordinates (1 − μ, 0, μ) and (ν, 1 −
ν, 0), respectively. We omit the details of

these calculations.Then, by Theorem 6 the points P, Q and R are collinear if and only if

∣∣∣∣∣∣∣
0 1 − μ ν

λ 0 1 − ν

1 − λ μ 0

∣∣∣∣∣∣∣ = 0.

Expanding this determinant, we have that P, Q and R are collinear if and only if

−(1 − μ)

∣∣∣∣∣ λ 1 − ν

1 − λ 0

∣∣∣∣∣+ ν

∣∣∣∣∣ λ 0

1 − λ μ

∣∣∣∣∣ = 0;

that is, if and only if

(1 − λ)(1 − μ)(1 − ν) + λμν = 0,

or

1 − λ

λ
· 1 − μ

μ
· 1 − ν

ν
= −1.

From the original definition of λ, μ and ν, it follows that P, Q and R are
collinear if and only if Notice that we have also

obtained a proof of the
converse of Menelaus’
Theorem, since this
equality is an ‘if and only
if’ result!

AR

RB
· BP

PC
· CQ

QA
= −1.

From our assumption that P, Q and R are collinear, the desired result
follows. �
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Theorem 9 Ceva’s Theorem
Let �ABC be a triangle, and let X be a point which does not lie on any of

B

R

A

Q

C
P

X

its (extended) sides. If AX meets BC at P, BX meets CA at Q and CX meets
BA at R, then

AR

RB
· BP

PC
· CQ

QA
= 1.

Proof We use the same notation λ, μ and ν as in the previous proof, so that
again P, Q and R have homogeneous coordinates (0, λ, 1 − λ), (1 − μ, 0, μ)

and (ν, 1 − ν, 0), respectively.
Then, using the Corollary to Theorem 6 the equation of AP is∣∣∣∣∣∣∣

1 0 ξ

0 λ η

0 1 − λ ζ

∣∣∣∣∣∣∣ = 0,

which simplifies to ∣∣∣∣∣ λ η

1 − λ ζ

∣∣∣∣∣ = 0.

This gives that the equation of AP is λζ − (1 − λ)η = 0, or

ζ = 1 − λ

λ
η.

Similarly, we find that the equation of BQ is ξ = 1−μ
μ

ζ .
We omit the details of this
calculation.

Since AP and BQ meet at X , it follows that the barycentric coordinates
(ξ , η, ζ ) of X must satisfy the equations ζ = 1−λ

λ
η and ξ = 1−μ

μ
ζ ; hence

its barycentric coordinates are(
1 − λ

λ
· 1 − μ

μ
η, η,

1 − λ

λ
η

)
, for some η �= 0.

Then C, X and R are collinear if and only if∣∣∣∣∣∣∣∣∣∣∣

0
1 − λ

λ
· 1 − μ

μ
η ν

0 η 1 − ν

1
1 − λ

λ
η 0

∣∣∣∣∣∣∣∣∣∣∣
= 0;

this simplifies to

1 − λ

λ
· 1 − μ

μ
· 1 − ν

ν
= 1.
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It follows that C, X and R are collinear – that is, that AP, BQ and CR are
concurrent – if and only if Notice that we have also

obtained a proof of the
converse of Ceva’s
Theorem, since this
equality is an ‘if and only
if’ result!

AR

RB
· BP

PC
· CQ

QA
= 1.

From our assumption that AP, BQ and CR are concurrent, the desired result
follows. �

2.5 Affine Transformations and Conics

2.5.1 Classifying Non-Degenerate Conics in Affine Geometry
In Section 2.2 you saw that under an affine transformation a straight line maps
to a straight line. Indeed, it follows from the Fundamental Theorem of Affine
Geometry that any straight line can be mapped to any other straight line by
some affine transformation. We now explore the corresponding situation for We discussed conics in

Chapter 1.conics.
Recall that a conic is a set in R

2 given by an equation of the form

Ax2 + Bxy + Cy2 + Fx + Gy + H = 0, (1)

where A, B, C , F , G and H are real numbers, and A, B and C are not all zero.
The three types of non-degenerate conic are ellipses, parabolas and hyperbo-
las. A non-degenerate conic is an ellipse if B2 − 4AC < 0, a parabola if You met the B2 − 4AC

test for conics in
Theorem 3 of Section 1.3.

B2 − 4AC = 0, and a hyperbola if B2 − 4AC > 0.
First, consider the case where equation (1) represents an ellipse, as illus-

trated on the left of the figure below. We can apply a translation to move the
centre of the ellipse to the origin, and then a rotation to align its major and
minor axes with the directions of the x-axis and y-axis, respectively. After we
have applied these two Euclidean transformations, the equation of the ellipse
becomes

x2

a2
+ y2

b2
= 1, a ≥ b > 0. (2)

If we now apply the affine transformation t1 : (x , y) �→ (x ′, y′), where(
x ′
y′
)

=
(

1/a 0

0 1/b

)(
x
y

)
,

then x ′ = x/a and y′ = y/b, so equation (2) becomes

(x ′)2 + (y′)2 = 1.

x x x x¢
a

b

y y y t1 y¢translation rotation
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Since the translation, the rotation and the transformation t1 are all affine,
their composite must also be affine. Overall, this shows that each ellipse can
be mapped onto the unit circle by an affine transformation. We therefore have
the following theorem.

Theorem 1 Every ellipse is affine-congruent to the unit circle with
equation x2 + y2 = 1.

Secondly, consider the case where equation (1) represents a hyperbola, as
illustrated on the left of the figure below. Again, we can apply a translation to
move the centre of the hyperbola to the origin, and then a rotation to align its
major and minor axes with the directions of the x-axis and y-axis, respectively.
After we have applied these two transformations, the equation of the hyperbola
becomes

x2

a2
− y2

b2
= 1. (3)

Under the affine transformation t1 defined above, equation (3) becomes

(x ′)2 − (y′)2 = 1,

that is,

(x ′ − y′)(x ′ + y′) = 1. (4)

Finally, if we apply the affine transformation t2 : (x ′, y′) �→ (x ′′, y′′), where(
x ′′
y′′
)

=
(

1 −1
1 1

)(
x ′
y′
)

,

then equation (4) becomes

x ′′y′′ = 1.

y y y y¢ y≤

x≤

t1 t2

x

x x x¢

–1 1

translation rotation

Dropping the dashes from the equation x ′′y′′ = 1, we obtain the following
theorem.

Theorem 2 Every hyperbola is affine-congruent to the rectangular hyper- Recall that ‘rectangular’
means that the asymptotes
of the hyperbola are at
right angles to each other.

bola with equation xy = 1.

Finally, consider the case where equation (1) represents a parabola, as illus-
trated on the left of the figure below. We can apply a translation to move the
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vertex of the parabola to the origin, and then a rotation to align its axis with the Here we omit the details
of the particular
transformations involved,
and concentrate instead on
the principles underlying
the successive mappings
which are used.

(positive) x-axis. After we have applied these two Euclidean transformations,
the equation of the parabola becomes

y2 = ax, (5)

where a is some positive number which depends on the coefficients in
equation (1).

Next, if we apply the affine transformation t3 : (x , y) �→ (x ′, y′), where(
x ′
y′
)

=
(

1/a 0
0 1/a

)(
x
y

)
,

then x ′ = x/a and y′ = y/a, so equation (5) becomes (y′a)2 = a(x ′a), or

(y′)2 = x ′.

y y y

x x x x ¢

y ¢translation rotation t3

Dropping the dashes, we obtain the following theorem.

Theorem 3 Every parabola is affine-congruent to the parabola with
equation y2 = x .

Since all parabolas are affine-congruent to y2 = x , they must be
affine-congruent to each other. Similarly, by Theorem 1, all ellipses must
be affine-congruent to each other; and, by Theorem 2, all hyperbolas must
be affine-congruent to each other.

This raises the question as to whether it is possible for one type of conic
(such as an ellipse) to be affine-congruent to another type of conic (such as
a hyperbola). The next theorem shows that this cannot happen. In fact, since
an affine transformation can be expressed as the composite of two parallel
projections, this should not surprise you. After all, no parallel projection can
change a bounded curve (such as an ellipse) into an unbounded one (such as
a parabola or a hyperbola); nor can it change a curve with two branches (a
hyperbola) into a curve with just one branch (an ellipse or a parabola).

Theorem 4 Affine transformations map ellipses to ellipses, parabolas to Remember that a circle is
a special type of ellipse.parabolas, and hyperbolas to hyperbolas.

Proof Consider the non-degenerate conic with equation

Ax2 + Bxy + Cy2 + Fx + Gy + H = 0, (6)
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and its image under an affine transformation t : x �→ x′ given by

x′ = Ax + b,

where A is an invertible 2 × 2 matrix.
The inverse affine transformation t−1 : x′ �→ x is given by

You met this formula for
the inverse in
Subsection 2.2.1.

x = A−1x′ − A−1b,

which we may write in the form(
x
y

)
=
(

p q
r s

)(
x ′
y′
)

+
(

u
v

)
,

for some real numbers p, q, r , s, u and v. It follows that

x = px′ + qy′ + u and y = rx′ + sy′ + v. (7)

If we now substitute these expressions for x and y into equation (6), then the We omit the details of
these calculations, as they
are complicated and
uninformative.

resulting equation is a second-degree equation in x ′ and y′, so the image of the
conic under the affine transformation t must be another conic.

Next we show that this image conic cannot be degenerate. A degenerate
image would consist of a pair of lines, a single line, a point, or the empty
set. Since the affine transformation t−1 maps lines to lines, it would map the Theorem 2 of Section 2.3

degenerate image to another degenerate conic. But this cannot happen since
t−1 maps the image back to the original non-degenerate conic (6). It follows
that the image of (6) cannot be degenerate.

Finally, if we substitute for x and y from equations (7) into equation (6), and
keep careful track of the algebra involved, it turns out that the discriminant of Recall that the sign of the

discriminant of a non-
degenerate conic
determines the type of the
conic.

the image conic is just

(ps − rq)2(B2 − 4AC).

Here B2 − 4AC is the discriminant of the original conic. Since (ps − rq)2 > 0, Here ps − rq �= 0 since A
is invertible.the sign of the discriminant is not changed by an affine transformation of a

conic. Hence the type of the conic is also unchanged. �

We can combine the results of Theorems 1–4 to obtain the following
corollary.

Corollary In affine geometry:

(a) all ellipses are congruent to each other;
(b) all hyperbolas are congruent to each other;
(c) all parabolas are congruent to each other.

Non-degenerate conics are congruent only to non-degenerate conics of the
same type.
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The corollary shows that affine-congruence partitions the set of non-
degenerate conics into three disjoint equivalence classes. One class consists
of all the ellipses, another class consists of all the hyperbolas, and the third
consists of all the parabolas. Each class contains one of the so-called standard
conics x2 + y2 = 1, xy = 1 and y2 = x .

Just as the Fundamental Theorem of Affine Geometry enables us to deduce
a given result about an arbitrary triangle by showing that the result holds for an
equilateral triangle, so the corollary enables us to deduce a given result about
an arbitrary ellipse, hyperbola or parabola by showing that the result holds for
the corresponding standard conic. Of course, this works only if the result is
concerned with the affine properties of the conic, so we need to be able to
recognize such properties.

The following theorem shows that one such property is the property of being
the centre of an ellipse or hyperbola.

Theorem 5 Let t be an affine transformation, and let C be an ellipse or Recall that a parabola
does not have a centre.hyperbola with centre R. Then t(C) has centre t(R).

Proof Let C ′ and R′ be the images of C and R under t. If P ′ is any point on
C ′, then it must be the image of some point P on C . Since R is the centre of This uses the definition of

centre given in Chapter 1.C , we can rotate P about R through an angle π to a point Q which must also
lie on C . Hence Q′ = t(Q) is a point on C ′.

This figure illustrates the
proof for an ellipse C , but
the proof works equally
well for a hyperbola.

Q ′

t

QC

R

P

R ′

C ′

P ′

Now t preserves ratios of lengths along lines, so the line segment PRQ maps
onto the line segment P ′ R′Q′ with P ′ R′ = R′Q′. Thus if we rotate P ′ about For since PR/RQ = 1 it

follows that
P ′ R′/R′Q′ = 1.

R′ through an angle π , it must go to Q′ on C ′. Now, as our choice for P ′ as
a point on C ′ varies, so do P = t−1(P ′) and Q, but the point R is always
the same point. It follows that the midpoint of P ′Q′ is always the same point
R′ = t(R). Hence R′ = t(R) is the centre of C ′, as required. �

Another affine property is the property of being an asymptote of a hyperbola.

Theorem 6 Let t be an affine transformation, and let H be a hyperbola
with asymptotes �1 and �2. Then t(H) has asymptotes t(�1) and t(�2).



Affine Transformations and Conics 113

The figure below illustrates that this theorem is plausible for parallel
projections.

H

l1

l2
t (l2)

t

t (H)

t (l1)

Proof The hyperbola H possesses exactly two (distinct) families of parallel
lines each of which fills the plane, with each member of each family meeting
H exactly once – apart from one line in each family that is an asymptote of H,
and so does not meet H.

The image of H under the affine transformation t is also a hyperbola, t(H).
The images under t of the two families of parallel lines are also (distinct) fam-
ilies of parallel lines; within each family, a line that meets H once is mapped
onto a line that meets t(H) once, and the single line that does not meet H maps
onto a line that does not meet t(H). So the two exceptional lines in the image
families must be the asymptotes of the hyperbola t(H).

It follows that the asymptotes of H are mapped by t to the asymptotes of
t(H), as required. �

Many of the problems concerning conics which are particularly amenable to
solution using the methods of affine geometry involve tangents.

This is due to the following theorem, which asserts that tangency is an affine
property.

Theorem 7 Let t be an affine transformation, and let � be a tangent to a
conic C . Then t(�) is a tangent to the conic t(C).

The figure below illustrates the theorem for parallel projections.

l

C

t t (l)

t (C)

Solution We shall use the fact that a tangent to a conic (whether it is an

However we have to be a
little careful. For example,
any line parallel to its axis
meets a parabola in
exactly one point.ellipse, a hyperbola or a parabola) intersects the conic at exactly one point.
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First, the image of an ellipse E under an affine transformation t is an ellipse.
A tangent to E is a line that intersects E in exactly one point. These properties This characterizes

tangents to ellipses.remain unchanged under an affine projection; hence the image of a tangent to
E under an affine transformation t must be a tangent to t(E).

Next, the image of a hyperbola H under an affine transformation t is a hyper-
bola. A tangent to H is a member of a family of parallel lines that fill the plane
such that there are lines in the family that meet H twice, once and not at all;
there are exactly two lines in the family that meet H exactly once, and these
are tangents to H. The image of the family of lines under t is again a family of This characterizes

tangents to hyperbolas.parallel lines that fill the plane; it contains lines that meet the parabola t(H)

twice and not at all, and exactly two lines that meet H exactly once. These lines
are the images of the original tangents to H, and must themselves be tangents
to t(H). Hence, the image of a tangent to H under an affine transformation t
must be a tangent to t(H).

Finally, the image of a parabola P under an affine transformation t is a
parabola. A tangent to P is a member of a family of parallel lines that fill
the plane such that there are lines in the family that meet P twice, once and
not at all; the tangent is the unique member of the family that meets P exactly This characterizes

tangents to parabolas.once. The image of the family of lines under t is again a family of parallel
lines that fill the plane; it contains lines that meet the parabola t(P) twice
and not at all, and a single line that meets P exactly once. This line is the
image of the original tangent to P , and must itself be a tangent to t(P).
Hence, the image of a tangent to P under an affine transformation t must be
a tangent to t(P).

This completes the proof. �

In applications we often use the following facts that you met earlier. Theorem 2,
Subsection 1.2.1.

Tangents to Conics in Standard Form The equation of the tangent to a
standard conic at the point (x1, y1) is as follows.

Conic Tangent
Unit circle x2 + y2 = 1 xx1 + yy1 = 1
Rectangular hyperbola xy = 1 xy1 + yx1 = 2
Parabola y2 = x 2yy1 = x + x1

2.5.2 Applying Affine Geometry to Conics
We are now in a position to apply the methods of affine geometry to the
solution of problems involving conics. Of course, affine geometry can be
helpful in this task only if the property being investigated is one which is We used these techniques

in Subsection 2.2.3 to
prove the Conjugate
Diameters Theorem for
the ellipse.

preserved under affine transformations. The underlying idea is that we use
an affine transformation to map the original conic onto one of our standard
conics, tackle the problem in hand there, and then map back to the original
conic.
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Example 1 AB is a diameter of an ellipse. Prove that the tangents to the ellipse Recall that the diameter
conjugate to AB is the set
of midpoints of all the
chords parallel to AB (see
Subsection 2.2.3).

at A and B are parallel to the diameter conjugate to AB.

Solution First, map the ellipse onto the unit circle, by an affine transforma-
tion t. Since the centre O of the ellipse maps to the centre O ′ of the circle, the
image of the diameter AB is a diameter A′ B ′ of the unit circle.

A O

d

B

A′

O ′

d ′

t

B ′

All chords of the circle that are parallel to the tangents at A′ and B ′ are bisected
by A′ B ′, and so the diameter through O ′ is the diameter conjugate to A′B ′.
Since parallel lines map to parallel lines and ratios along parallel lines are
preserved under the inverse affine transformation t−1, it follows that all chords
of the ellipse that are parallel to the tangents at A and B are bisected by AB,
and so the diameter through O that is parallel to the tangents at A and B is the
diameter conjugate to AB.

A

Q
R

B P C

Problem 1 An ellipse touches the sides BC, CA and AB of �ABC at
the points P , Q and R, respectively. Prove that

AR

RB
· BP

PC
· CQ

QA
= 1,

and deduce that the lines AP, BQ and CR are concurrent.

Problem 2 The tangents to an ellipse at two points A and B meet at a
point T. Prove that the line joining T to the centre O of the ellipse bisects

A
B

O

T
the chord AB.

The rectangular hyperbola H = {(x , y) : xy = 1} does not possess as much
symmetry as does the unit circle; so the fact that every hyperbola is affine-
congruent to H may not be sufficient to simplify a given problem. Fortunately,
however, we can also arrange for any given point on the original hyperbola to
map to the point (1, 1) on H.
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To see this, note that for any non-zero number a, the affine transformation
y

H
x

(1, 1)

(x, 1 / x)
ta :

(
x
y

)
�→
(

a 0
0 1/a

)(
x
y

)

maps H to itself. For, an arbitrary point on H has coordinates of the form
(x , 1/x), x �= 0, and under ta this is mapped to the point (ax, 1/ax), which also
lies on H . As x varies through R − {0}, its image (ax, 1/ax) varies over the
whole of H, so the image of H under ta is the whole of H.

So if we start with a given hyperbola and a point P on it, we can map the
hyperbola to H by some affine transformation s. The point s(P) will then have
coordinates (b, 1/b) for some number b ∈ R − {0}; so if we choose a = 1/b,
then the affine transformation ta will map s(P) to (1,1). Overall, the composite
t = ta ◦ s is an affine transformation which maps the given hyperbola to H, and
maps P to (1, 1). We now state this as a corollary to Theorem 2.

Corollary Given any hyperbola and a point P on it, there is an affine trans-
formation which maps the hyperbola onto the rectangular hyperbola xy = 1,
and the point P to (1, 1).

Example 2 The tangent at the point P on a hyperbola meets the asymptotes
at the points A and B. Prove that PA = PB.

A

P

B

t

t (A)

t (B)

(1, 1)

H

Solution Let t be an affine transformation which maps the hyperbola onto
the rectangular hyperbola H = {(x , y) : xy = 1} in such a way that
t(P) = (1, 1). Then, by Theorem 6 of Subsection 2.5.1, the asymptotes of the
hyperbola map to the asymptotes of H ; and, by Theorem 7 of Subsection 2.5.1,
the tangent at P maps to the tangent at (1,1).

By symmetry, (1, 1) is the midpoint of the line segment from t(A) to t(B).
Since midpoints are preserved under the affine transformation t−1, it follows
that P is the midpoint of AB.

This result is an analogue
for the hyperbola of the
Conjugate Diameters
Theorem for the ellipse
(Theorem 3 of
Subsection 2.2.3).

Problem 3 P is a point on a hyperbola H with centre O. Prove that
there exists a line � through O such that all chords of the hyperbola which
are parallel to � are bisected by OP.
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2.6 Exercises

Section 2.1
1. Let �ABC be a triangle in which AB = AC. Prove that

∠ABC = ∠ACB.

Hint: Consider a reflection in the bisector of ∠BAC.
2. Determine which of the following transformations t : R

2 → R
2 are

Euclidean transformations.

(a) t(x) =
⎛
⎝ − 1

2 −
√

3
2

−
√

3
2

1
2

⎞
⎠ x +

(−3
1

)

(b) t(x) =
(− 2

3 − 1
3

− 1
3

2
3

)
x +

(
3
2

)

(c) t(x) =
⎛
⎝− 1√

5
2√
5

− 2√
5

− 1√
5

⎞
⎠ x +

(
2

−3

)

3. The Euclidean transformations t1 and t2 are given by

t1(x) =
⎛
⎝ 1√

5
2√
5

2√
5

− 1√
5

⎞
⎠ x +

(−1
1

)

and

t2(x) =
⎛
⎝ 1√

5
2√
5

− 2√
5

1√
5

⎞
⎠ x +

(
2

−1

)
.

Determine the composites t1 ◦ t2 and t2 ◦ t1.
4. Determine the inverse of each of the following Euclidean transformations.

(a) t(x) =
( 5

13 − 12
13

12
13

5
13

)
x +

(−4
5

)

(b) t(x) =
(− 12

13 − 5
13

− 5
13

12
13

)
x +

(
1

−1

)

5. The Euclidean transformations t1 and t2 are given by

t1(x) =
⎛
⎝ 1√

2
1√
2

1√
2

− 1√
2

⎞
⎠ x +

(
1

−1

)

and

t2(x) =
⎛
⎝− 1√

2
1√
2

− 1√
2

− 1√
2

⎞
⎠ x +

(
1
1

)
.

Determine the composite t−1
2 ◦ t1.
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Section 2.2
1. Determine whether or not each of the following transformations t : R

2 →
R

2 is an affine transformation.

(a) t(x) =
(

2 −2
−3 3

)
x +

(
2

−1

)

(b) t(x) =
(

5 −2
−2 5

)
x +

(−3
−1

)

(c) t(x) =
(−1 1

−1 −2

)
x

2. Write down an example (if one exists) of each type of transformation
t : R

2 → R
2 described below. In each case, justify your answer.

(a) An affine transformation t which is not a Euclidean transformation
(b) A Euclidean transformation t which is not an affine transformation
(c) A transformation t which is both Euclidean and affine
(d) A transformation t which is one–one, but is neither Euclidean nor affine

3. The affine transformations t1 and t2 are given by

t1(x) =
(

2 −3
1 −1

)
x +

(
1

−1

)
and

t2(x) =
(−1 2

−1 1

)
x +

(−1
1

)
.

Determine the following composites.
(a) t1 ◦ t2 (b) t2 ◦ t1 (c) t1 ◦ t1

4. Determine the inverse of each of the following affine transformations.

(a) t(x) =
(

2 −3
3 −5

)
x +

(
2
4

)
(b) t(x) =

(
3 2
4 2

)
x +

(
1

−2

)
5. Prove that the transformation

t(x) = 3x (x ∈ R
2)

is an affine transformation, but not a parallel projection.
6. Which of the following are affine properties?

(a) distance (b) collinearity (c) circularity
(d) magnitude of angle (e) midpoint of line segment

Section 2.3
1. The affine transformation t : R

2 → R
2 is given by

t(x) =
(

1 −1
2 −3

)
x +

(
2

−4

)
.

Determine the image under t of each of the following lines.
(a) y = −2x (b) 2y = 3x − 1

2. The affine transformation t : R
2 → R

2 is given by

t(x) =
(

4 5
1 1

)
x +

(
1

−1

)
.
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Determine the image under t of each of the following lines.
(a) 2x − 5y + 3 = 0 (b) 3x + y − 4 = 0

3. Determine the affine transformation which maps the points (0, 0), (1, 0) and
(0, 1) to the points:
(a) (0, −1), (1, 1) and (−1, 1), respectively;
(b) (−4, −5), (1, 7) and (2, −9), respectively.

4. Determine the affine transformation which maps the points (1, 1), (3, 2) and
(4, 1) to the points (0, 1), (1, 2) and (3, 7), respectively.

5. Determine the affine transformation which maps the points (1, −1), (5, −4)
and (−2, 1) to the points (1, 1), (4, 0) and (0, 2), respectively.

6. Prove that the affine transformation t for which

t(x) =
(−1 2

3 −2

)
x

maps each point of the line y = x in R
2 onto itself.

7. Determine the matrices A and b for the affine transformation

t(x) = Ax + b,

where A and b are 2 × 2 and 2 × 1 matrices, respectively, given that t maps
each point of the line y = 0 onto itself and (0,1) onto (2,3). Prove also that
t is a parallel projection of R

2 onto itself.

Section 2.4
1. The points P , Q, R and S lie on a line, in that order; the distances between

them are 4 units, 2 units and 3 units, respectively. Determine the ratios
PR : RS and PS : SQ.

2. A point X lies inside a triangle �ABC, and the lines AX, BX and CX meet
the opposite sides of the triangle at P , Q and R, respectively. The ratios
AR : AB and BP : BC are 1 : 5 and 3 : 7, respectively. Determine the ratio
AC : AQ.

3. Let � be a line that crosses the sides BC, CA and AB of a triangle �ABC
at three distinct points P, Q and R, respectively. The ratios BC : CP and
CQ : QA are 3 : 2 and 1 : 3, respectively. Determine the ratio AR : RB.

4. ABCD is a parallelogram, and the point P divides AB in the ratio 2 : 1; the
lines AC and DP meet at Q, and the lines BQ and AD meet at R.
(a) Determine the images of P , Q and R under the affine transformation t

which maps A, D and C to (0, 1), (0, 0) and (1, 0), respectively.
(b) By considering the image of ABCD under t, determine the ratios

BQ : QR and AR : RD.
5. The triangle �ABC has vertices A(−1, 2), B(−3, −1) and C(3, 1), and

the points P
(

1, 1
3

)
, Q

(
1, 3

2

)
and R

(
− 5

3 , 1
)

lie on BC, CA and AB,

respectively.
(a) Determine the ratios in which P , Q and R divide the sides of the

triangle.
(b) Determine whether or not the lines AP, BQ and CR are concurrent.
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6. The triangle �ABC has vertices A(2, 0), B(−3, 0) and C(3, −3), and

the points P(−1, −1), Q(1, 3) and R
(
− 1

4 , 0
)

lie on BC, CA and AB,

respectively.
(a) Determine the ratios in which P, Q and R divide the sides of the triangle.
(b) Determine whether or not the points P, Q and R are collinear.

7. �ABC is a triangle, and X a point which does not lie on any of its (extended)
A

Q

CP
B

R

X

sides. Also, AX meets BC at P, BX meets CA at Q and CX meets BA at R.
Prove that

AX

XP
= AR

RB
+ AQ

QC
.

(This result is often known as van Aubel’s Theorem.)
8. �ABC is a triangle, and X a point which does not lie on any of its (extended)

sides. Next, AX meets BC at P, BX meets CA at Q and CX meets BA at R.
Also, RQ meets BC at L, PR meets CA at M and PQ meets BA at N . Prove
that L, M and N are collinear.
Hint: Apply the result of Problem 5 in Subsection 2.4.3 to �ABC and points Direct calculation using

coordinates is also
possible, but very tedious!

L, M and N in turn. Then evaluate the product BL
LC · CM

MA · AN
NB .

9. Three disjoint circles of unequal radii lie in the plane, their centres being
non-collinear. Pairs of tangents are drawn to each pair of circles such that
the point of intersection of the two tangents to each pair of circles lies
beyond the two circles. Prove that the three intersection points are collinear.

Section 2.5
1. An ellipse touches the sides AB, BC, CD, DA of a parallelogram ABCD at

the points P , Q, R, S, respectively. Prove that the lengths CQ, QB, BP and
P B

Q

C

RD

A

S

CR satisfy the equation
CQ

QB
= CR

BP
.

2. Determine the equation of the image of the parabola P with equation y =
x2 under the affine transformation t : R

2 �→ R
2 given by

t(x) =
(

1 0
−2 1

)
x.

Show that the image of the vertex of P is not the vertex of t(P).

This proves that the
property of ‘being a vertex
of a parabola’ is not an
affine property.

3. Prove that for any triangle �ABC there exists an ellipse that touches the
sides AB, BC and CA at their midpoints.

4. Let P(a cos θ , b sin θ), where θ is not a multiple of π/2, be a point on the

ellipse C : x2

a2 + y2

b2 = 1, where a ≥ b > 0; and P ′(a cos θ , a sin θ) the

corresponding point on the ‘auxiliary circle’ C ′: x2 + y2 = a2. Prove that
the tangents at P to C and at P ′ to C ′ meet on the x-axis.
Hint: Write down an affine transformation that maps C to C ′ and P to P ′,
and that maps each point of the x-axis to itself.

5. Given any two points P and P ′ on ellipses E and E ′, respectively, show This result is analogous to
that for hyperbolas in the
Corollary in
Subsection 2.5.2.

that there exists an affine transformation that maps E to E ′ and P to P ′.
6. Find the endpoints of the chord AB of the hyperbola H with equation xy = 1

that is bisected by the point P(2, 1).
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7. E is the ellipse with equation x2

9 + y2

4 = 1, and P
(

3√
5

, 2√
5

)
is a point

inside E . AB is a chord of E through P , and O is the centre of E . Find the
maximum value of AP

PB as A varies on E .

Summary of Chapter 2

Section 2.1: Geometry and transformations
1. An isometry of R

2 is a function which maps R
2 onto R

2 and preserves
distances.
Every isometry of R

2 has one of the following forms:
• a translation along a line in R

2;
• a reflection in a line in R

2;
• a rotation about a point in R

2;
• a composite of translations, reflections and rotations in R

2.
The set of all isometries of R

2 forms a group under composition of
functions; in particular, the composite of two isometries is an isometry.

2. Euclidean geometry is the study of those properties of figures that are
unchanged by the group of isometries.
These properties are called Euclidean properties, and include distance,
angle, collinearity of points and concurrence of lines.

3. The Kleinian view of geometry is the idea that geometry can be thought
of in terms of a group of transformations acting on a space.

4. The transformations of R
2 given by(

x
y

)
�→
(

cos θ − sin θ

sin θ cos θ

)(
x
y

)
+
(

e
f

)
, and

(
x
y

)
�→
(

cos θ sin θ

sin θ − cos θ

)(
x
y

)
+
(

e
f

)

are isometries; they represent, respectively, anticlockwise rotation about
the origin through an angle θ followed by a translation by (e, f ), and
reflection in a line through the origin that makes an angle θ/2 with the
x-axis followed by a translation by (e, f ).

Every isometry of R
2 is of one or other of these two forms

5. A Euclidean transformation of R
2 is a function t : R

2 → R
2 of the form

t(x) = Ux + a, where U is an orthogonal 2 × 2 matrix and a ∈ R
2. The

set of all Euclidean transformations of R
2 is denoted by E(2).

6. Every isometry of R
2 is a Euclidean transformation of R

2, and vice versa.
7. The set of Euclidean transformations of R

2 forms a group under the
operation of composition of functions.

8. The inverse of the Euclidean transformation t(x) = Ux + a is given by
t−1(x) = U−1x − U−1a.
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9. Euclidean geometry is the study of those properties of figures that are
preserved by Euclidean transformations of R

2.
10 A figure F1 is Euclidean-congruent to a figure F2 if there is a Euclidean

transformation which maps F1 onto F2. Loosely speaking, two figures are
congruent if they have the same size and shape.

Euclidean congruence is an equivalence relation.
A figure F1 is G-congruent to a figure F2 in some geometry defined

by a group G of transformations acting on the space of the geometry if
there is a transformation in G which maps F1 onto F2. G-congruence is
an equivalence relation.

Section 2.2: Affine Transformations and Parallel Projections
1. An affine transformation of R

2 is a function t : R
2 → R

2 of the form
t(x) = Ax + b, where A is an invertible 2 × 2 matrix and b ∈ R

2. The set
of all affine transformations of R

2 is denoted by A(2).
Every Euclidean transformation of R

2 is an affine transformation.
2. The set of affine transformations A(2) forms a group under the operation

of composition of functions.
The inverse of the affine transformation t(x) = Ax + b is t−1(x) =

A−1x − A−1b.
3. Affine geometry is the study of those properties (called affine properties)

of figures in the plane R
2 that are preserved by affine transformations.

Basic properties of affine transformations
Affine transformations:
1. map straight lines to straight lines;
2. map parallel straight lines to parallel straight lines;
3. preserve ratios of lengths along a given straight line.

4. A parallel projection is a one-one mapping of R
2 to itself defined in the

following way. Let π1 and π2 be planes in R
3, with parallel rays of light

shining through them; then the function p which maps each point P in
π1 to the corresponding point P ′ in π2 is a parallel projection from π1

onto π2.
If π1 and π2 are parallel, then the parallel projection from π1 onto π2 is

an isometry.
5. Basic properties of parallel projections

Parallel projections:
1. map straight lines to straight lines;
2. map parallel straight lines to parallel straight lines;
3. preserve ratios of lengths along a given straight line.

6. A diameter of an ellipse is a chord of the ellipse that passes through its
centre.

Midpoint Theorem Let � be a chord of an ellipse. Then the midpoints
of the chords parallel to � lie on a diameter of the ellipse.

7. Conjugate Diameters Theorem Let � be a diameter of an ellipse. Then
there is another diameter m of the ellipse such that
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(a) the midpoints of all chords parallel to � lie on m;
(b) the midpoints of all chords parallel to m lie on �.
The directions of these two diameters are called conjugate directions, and
the diameters are called conjugate diameters.

8. Given any ellipse, there is a parallel projection which maps the ellipse onto
a circle.

9. Under parallel projection certain properties of figures, such as length
and angle, are not necessarily preserved. This is one difference between
Euclidean geometry and affine geometry.

10. Each parallel projection is an affine transformation.
However, an affine transformation is not necessarily a parallel projec-

tion. For example, the doubling map of R
2 to itself given by t(v) = 2v is

an affine transformation but cannot be modelled by a parallel projection.
11. An affine transformation t is completely determined by its effect on the

three non-collinear points (0,0), (1,0) and (0,1).
Hence if we know the points onto which (0,0), (1,0) and (0,1) are

mapped by t , we can determine A and b in the formula t(x) = Ax + b,
x ∈ R

2.
12. An affine transformation can be expressed as the composite of two parallel

projections.

Section 2.3: Properties of Affine Transformations
1. Strategy To determine the image of a line or conic in R

2 under an affine
transformation t : R

2 → R
2 given by t(x) = Ax + b, let x and coordi-

nates (x , y) denote points in the domain copy of R
2, and x′ and coordinates

(x ′, y′) denote points in the codomain copy. Then:
1. express the relationship between x and x′ in the form x = A−1x′−A−1b;
2. determine formulas for x and y in terms of x ′ and y′;
3. substitute for x and y in the equation of the line or conic;
4. drop the dashes from x ′ and y′.
The resulting equation describes the image under t .

2. Strategy To determine the unique affine transformation t(x) = Ax + b
which maps (0,0), (1,0) and (0,1) to the three non-collinear points p, q and
r, respectively:
1. take b = p;
2. take A to be the matrix with columns given by q − p and r − p.

Warning This Strategy requires that p, q and r are non-collinear. If
they are collinear, the matrix A described in the Strategy is non-invertible,
and hence the transformation given by the procedure in the Strategy is not
an affine transformation.

3. Fundamental Theorem of Affine Geometry Let p, q, r and p′, q′, r′ be
two sets of three non-collinear points in R

2. Then:
(a) there is an affine transformation t which maps p, q and r to p′, q′ and

r′, respectively;
(b) the affine transformation t is unique.
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Strategy To determine the affine transformation t which maps three non-
collinear points p, q and r to another three non-collinear points p′, q′ and
r′, respectively:
1. determine the affine transformation t1 which maps (0,0), (1,0) and (0,1)

to the points p, q and r, respectively;
2. determine the affine transformation t2 which maps (0,0), (1,0) and (0,1)

to the points p′, q′ and r′, respectively;
3. calculate the composite t = t2 ◦ t−1

1 .
4. Two figures are affine-congruent if there is an affine transformation which

maps one onto the other.
All triangles are affine-congruent.

5. An affine transformation preserves ratios of lengths along parallel straight
lines.

Section 2.4: Using the Fundamental Theorem of Affine
Geometry
1. Median Theorem The medians of any triangle are concurrent.
2. If a point R divides a line segment PQ in the ratio (1 − λ) : λ, then

PR
RQ = 1−λ

λ
. The magnitude of the ratio equals the length of PR divided

by the length of RQ, and the ratio is positive if 0 < λ < 1 (when
→
PR and

→
RQ lie in the same direction) and negative if λ < 0 or λ > 1 (when

→
PR

and
→
RQ lie in opposite directions).

If P , Q and R have coordinates (xP , yP ), (xQ , yQ) and (xR , yR),

respectively, then PR
RQ = xR−xP

xQ−xR
and PR

RQ = yR−yP
yQ−yR

. (If the denomina-

tor of one of these fractions vanishes, then use the other to determine the
ratio.)

3. Ceva’s Theorem Let �ABC be a triangle, and let X be a point which
does not lie on any of its (extended) sides. If AX meets BC at P , BX meets
CA at Q and CX meets BA at R, then

AR

RB
· BP

PC
· CQ

QA
= 1.

4. Converse to Ceva’s Theorem Let P, Q and R be points other than ver-
tices on the (possibly extended) sides BC, CA and AB of a triangle �ABC,

such that AR
RB · BP

PC · CQ
QA = 1. Then the lines AP, BQ and CR are concurrent.

5. Menelaus’s Theorem Let �ABC be a triangle, and let � be a line that
crosses the sides BC, CA and AB at three distinct points P, Q and R,

respectively. Then AR
RB · BP

PC · CQ
QA = −1.

6. Converse to Menelaus’ Theorem Let P, Q and R be points other than
vertices on the (possibly extended) sides BC, CA and AB of a triangle

�ABC, such that AR
RB · BP

PC · CQ
QA = −1. Then the points P, Q and R are

collinear.
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7. Many results about properties of triangles (such as collinearity, lines being
parallel, and ratios of lengths along a given line) are preserved under affine
transformations, are proved following a standard pattern.

First, we choose a particular type of triangle for which it is easy to prove
the result. Then, by asserting the existence of an affine transformation
from that triangle to an arbitrary triangle, we may deduce that the result
holds for all triangles.

8. Let A = (a1, a2), B = (b1, b2) and C = (c1, c2) be three non-collinear
points in the plane R

2; we call �ABC the triangle of reference. Then a
point (x , y) in the plane has barycentric coordinates (ξ , η, ζ ) with respect
to �ABC if

x = ξa1 + ηb1 + ζc1,

y = ξa2 + ηb2 + ζc2, and

1 = ξ + η + ζ .

If we set M =
⎛
⎝ a1 b1 c1

a2 b2 c2

1 1 1

⎞
⎠, then M is invertible. Also

⎛
⎝ x

y
1

⎞
⎠ =

M

⎛
⎝ ξ

η

ζ

⎞
⎠ and

⎛
⎝ ξ

η

ζ

⎞
⎠ = M−1

⎛
⎝ x

y
1

⎞
⎠.

9. The points P, Q and R with barycentric coodinates (ξ1, η1, ζ1), (ξ2, η2, ζ2)

and (ξ3, η3, ζ3) are collinear if and only if

∣∣∣∣∣∣
ξ1 ξ2 ξ3

η1 η2 η3

ζ1 ζ2 ζ3

∣∣∣∣∣∣ = 0.

The line � through the points with barycentric coordinates (ξ1, η1, ζ1)

and (ξ2, η2, ζ2) has equation

∣∣∣∣∣∣
ξ1 ξ2 ξ

η1 η2 η

ζ1 ζ2 ζ

∣∣∣∣∣∣ = 0.

10. Section Formula The point R that divides the line � joining the points
P and Q with barycentric coordinates (ξ1, η1, ζ1) and (ξ2, η2, ζ2) in the
ratio (1 − λ) : λ has barycentric coordinates

(ξ , η, ζ ) = λ(ξ1, η1, ζ1) + (1 − λ)(ξ2, η2, ζ2).

Section 2.5: Affine Transformations and Conics
1. Every ellipse is affine-congruent to the unit circle with equation

x2 + y2 = 1.
Every hyperbola is affine-congruent to the rectangular hyperbola with

equation xy = 1.
Every parabola is affine-congruent to the parabola with equation y2 = x .

2. Affine transformations map ellipses to ellipses, parabolas to parabolas, and
hyperbolas to hyperbolas.
In Affine Geometry:
(a) all ellipses are congruent to each other;
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(b) all hyperbolas are congruent to each other;
(c) all parabolas are congruent to each other.
Non-degenerate conics are congruent only to non-degenerate conics of the
same type.

3. Let t be an affine transformation, and let C be an ellipse or hyperbola with
centre R. Then t(C) has centre t(R).

4. Let t be an affine transformation, and let H be a hyperbola with asymptotes
�1 and �2. Then t(H) has asymptotes t(�1) and t(�2).

5. Let t be an affine transformation, and let � be a tangent to a conic C . Then
t(�) is a tangent to the conic t(C).

6. Affine geometry can be used to tackle problems involving conics when the
property being investigated is an affine property. We first use an affine trans-
formation to map the original conic onto one of our standard conics, tackle
the problem in hand there, and then map back to the original conic.

7. Given any hyperbola and a point P on it, there is an affine transformation
which maps the hyperbola onto the rectangular hyperbola xy = 1, and the
point P to (1,1).



3 Projective Geometry: Lines

Geometry is one branch of mathematics that has an obvious relevance to the
‘real world’. Earlier, we studied some results in Euclidean geometry and we Chapters 1 and 2.

described the group of Euclidean transformations, the isometries. We saw
that the Euclidean transformations preserve distances and angles, and have
a definite physical significance.

In this chapter we study projective geometry, a very different type of geome-
try, that has important but less obvious applications. It was discovered through For example, in Computer

Graphics and in Art.artists’ attempts over many centuries to paint realistic-looking pictures of
scenes composed of objects situated at differing distances from the eye. How

eyecan three-dimensional scenes be represented on a two-dimensional canvas?
Projective geometry explains how an eye perceives ‘the real world’, and so
explains how artists can achieve realism in their work.

In Section 3.1, we look at the development of perspective in Art and explain
the concept of a perspectivity. We describe Desargues’ Theorem, which con-
cerns a curious property of two triangles whose vertices are in perspective
from a single point, and so explain that perspective can play a key role in the
statement and the proof of theorems in mathematics.

In Section 3.2, we define the term projective point (or Point) and call the
set of all such Points the projective plane, which we denote by RP

2. We also
define a projective line (or Line). To enable us to tackle problems in projective
geometry algebraically, we introduce homogeneous coordinates to specify the
Points in RP

2.
In Section 3.3, we define the projective transformations of RP

2 and use
them to define projective geometry. We also prove the Fundamental Theorem
of Projective Geometry, which states that given two sets of four Points there is
a unique projective transformation of RP

2 that maps the Points in one set to We also require that no
three Points in either set
lie on a Line.

the corresponding Points in the other set. This crucial result enables us to apply
a preliminary transformation to many geometric problems, thereby simplify-
ing their solution by reducing the arithmetic involved. It turns out that there
is a close connection between the idea of perspective in R

3 and projective
transformations.

In Section 3.4, we use the Fundamental Theorem of Projective Geometry
to prove several results, including Desargues’ Theorem. We also introduce the

127
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concept of duality, which involves a remarkable relationship between Points
and Lines.

Finally, in Section 3.5, we note that the ideas of distance and ratio of dis-
tances along a line have no immediate analogues in RP

2; nevertheless, we are
able to define a related quantity called the cross-ratio of four collinear Points
in RP

2. This quantity is very useful in proving various mathematical results,
and it has ‘real life’ applications – such as in aerial photography.

3.1 Perspective

3.1.1 Perspective in Art
The first ‘pictures’ were probably Cave Art wall paintings: for example, depic-
tions of animals and hunters. Up to the Middle Ages, most pictures were drawn
on walls, floors or ceilings of buildings and were intended to convey messages
rather than to be accurate illustrations of what an eye might see. For example,
Christian religious art portrayed Christ and the Saints, the Bayeux tapestry
outlined events such as the Norman Conquest and the Battle of Hastings, and
so on.

(Clockwise from left)
Hunters below antelopes.
Bambata cave, Zimbabwe
c© M. Jelliffe; Tomb of

Rekhmare, Thebes. 1500
BC c© Ronald Sheridan;
Bayeux Tapestry: The
death of Harold.
These prints are
reproduced by kind
permission of A.A. & A.
Ancient Art and
Architecture Collection.

To the modern eye, the people and animals in these pictures appear to be
rather stylized, and the whole scene seems very two-dimensional. The events
illustrated do not appear to be properly integrated into the background, even if
this is included.

Towards the end of the 13th century, early Renaissance artists began to
attempt to portray ‘real’ situations in a realistic way. For example, people at the
back of a group would be drawn higher up than those at the front – a technique
known as terraced perspective.
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As artists struggled to find better techniques to improve the realism of their

Simone Martini ‘Maestà’
Palazzo Pubblico, Sala del
Mappamodo, Siena (su
concessione del commune
di Siena). Foto LENSINI
Siena.

work, the idea of vertical perspective was developed by the Italian school of
artists (including Duccio (1255–1318) and Giotto (1266–1337)). To create an Giotto is sometimes called

the ‘Father of Modern
Painting’.

impression of depth in a scene, the artist would represent pairs of parallel lines
that are symmetrically placed either side of the scene by lines that meet on
the centre line of the picture. The method is not totally realistic, since objects
do not appear to recede into the distance in the way that might be expected.
The problem of depicting ‘distant objects looking smaller’, with a properly
integrated foreground and background, was tackled by many artists, including
notably Ambrogio Lorenzetti (c. 1290–1348).

The modern system of focused perspective was discovered around 1425 by

‘Last Supper’ painted by
Duccio; Opera del
Duomo, Siena. Foto
LENSINI Siena.

the sculptor and architect Brunelleschi (1377–1446), developed by the painter
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and architect Leone Battista Alberti (1404–1472), and finally perfected by Alberti wrote that the first
necessity for a painter is
‘to know geometry’.

Leonardo da Vinci (1452–1519).
These artists realized that what the eye actually ‘sees’ of a scene are the vari-

ous rays of light travelling from each point in the scene to the eye. An effective
way of deciding how to depict a three-dimensional scene on a two-dimensional
canvas so as to create a realistic impression is therefore as follows. Imag-
ine a glass screen placed between the eye and the three-dimensional scene.
Each line joining the eye to a point of the scene pierces the glass screen at
some point. The set of all such points forms an image on the screen known
as a cross-section. Since the eye cannot distinguish between light rays coming
from the points of the actual scene and light rays coming from the correspond-
ing points of the cross-section (since these are in exactly the same direction),
the cross-section produces the same impression as the original scene. In other
words, the cross-section gives a realistic two-dimensional representation of the
three-dimensional scene.

object screen

eye

The German artist Albrecht Dürer (1471–1528) introduced the term per-
spective (from the Latin verb meaning ‘to see through’) to describe this
technique, and illustrated it by a series of well-known woodcuts in his book In English: Instruction on

measuring with compass
and straight edge.
We discuss foreshortening
in Subsection 3.1.2.

Underweysung der Messung mit dem Zyrkel und Rychtsscheyed (1525). The
Dürer woodcut below shows an artist peering through a grid on a glass screen
to study perspective and the effect of foreshortening.

By permission of The
British Library. c© The
British Library Board
C.119.h.7(l).
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Of course, the picture displayed on the screen is just one representation of
the scene. If the screen is placed closer to, or further away from, the eye, the
size of the cross-section changes. Also, the screen may be placed at a different
angle for a given position of the eye, or the eye itself may be moved to a
different position. In each case, a different cross-section is obtained, though
they are all related to each other.

3.1.2 Mathematical Perspective
To help us understand the relationship between different representations of a
scene, we now look at perspective from a mathematical point of view. In place
of an eye and light rays travelling to it, we use the family of all lines in R

3

through a given point. For convenience, this point will often be the origin O .
The glass screen is replaced by a plane in R

3 that does not pass through the
origin.

In order to compare the cross-sections that appear on different screens, we

In terms of O representing
an eye, the figure on the
right corresponds to the
observer having the ability
to look simultaneously
both forwards and
backwards!

consider two planes π and π ′ that do not pass through O . A point P in π and
a point Q in π ′ are said to be in perspective from O if there is a straight line
through O , P and Q. A perspectivity from π to π ′ centred at O is a function
that maps a point P of π to a point Q of π ′ whenever P and Q are in perspec-
tive from O . Notice that the planes π and π ′ may lie on the same side of O as
shown on the left below, or they may lie on opposite sides of O as shown on
the right.

P

P

O

π ′

O
Q

Q

p
p

p¢
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One complication with the above definition of a perspectivity is that the

O P

p

p¢

domain of the perspectivity is not necessarily the whole of π . Indeed, if P is
any point of π such that OP is parallel to π ′, as shown in the margin, then P
cannot have an image in π ′, and cannot therefore belong to the domain of the
perspectivity. From a mathematical point of view, this need to exclude such
exceptional points from the domain of a perspectivity turns out to be rather a
nuisance. In Subsection 3.2.3 we shall therefore reformulate the definition of
a perspectivity in such a way that these exceptional points can be included in
the domain.

Even with only the preliminary definition of perspectivity given above, it is
clear that some features of figures are preserved under a perspectivity, while
others are not. For example, the figure on the left below illustrates a particular
perspectivity in which a line segment in one plane maps onto a line segment
in another plane. This suggests that collinearity is preserved by a perspectivity.
On the other hand, the figure on the right illustrates a perspectivity in which a
circle in one plane appears to map to a parabolic shape in another plane, which
suggests that ‘circularity’ is not preserved.

O O Circlep p

p¢ p¢

One of our main tasks is to study the images of standard configurations such
as lines and conics under perspectivities. This chapter deals with lines; the next
chapter deals with conics.

Consider a perspectivity with centre O that maps points in a plane π to
points in a plane π ′. A convenient way to visualize the image of a line � under
the perspectivity is to consider an arbitrary point P on �. As P moves along �,
the line OP sweeps out a plane. The line �′ where this plane intersects π ′ is the
image of �.

O

P

l

l¢

p

p¢
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To be specific, consider the perspectivity p with centre O that maps points
in a horizontal plane π to points in a vertical plane π ′, and let L be the line
where π and π ′ intersect. Under p, every line � in π that is parallel to L maps
to a horizontal line �′ in π ′. In particular, L maps to itself. The only exception
is the line h that passes through the foot of the perpendicular from O to π .
This line does not have an image in π ′ since the lines joining points of h to O
are parallel to π ′.

O

L
l

l¢

p

O

L

h

p p

p¢ p¢

Next, consider the image under the same perspectivity p of a line � in π that
is perpendicular to L . To do this, let P denote the foot of the perpendicular
from O to the plane π ′. Although P is not the image of any point of π , the
plane through O and � meets π ′ in some line �′ that passes through P . It
follows that the image of � under p is some line �′ through P , with the point
P itself omitted.

O P

l

lL

O

L

P

The above argument works for any line in π that is perpendicular to L . All
such lines are mapped by the perspectivity p to lines in π ′ that pass through
P , and that omit the point P itself.

We may combine our observations concerning lines in π that are parallel
to L or perpendicular to L in the following way. Let ABCD be a rectangle in
π on the opposite side of L from O , with sides AB and CD that lie on lines
�1 and �2, perpendicular to L . Then AD and BC both map onto horizontal
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lines in π ′ between L and P . As the side BC recedes from L , its image B ′C ′
under the perspectivity p moves further up π ′ towards P , becoming shorter as Artists describe this

shortening of the image on
π ′ of lines of equal length
in π as foreshortening.

it moves.

B¢
A¢ C¢

D¢ A 

O
P

B l1
l2

DL
C

p¢

p

To an observer whose eye is located at O , the lines �1 and �2 appear to meet You can think of �1 and �2
as a pair of railroad lines
disappearing into the
distance.

‘at infinity’, and this corresponds to their images under p appearing to meet at
P . The point P is called the principal vanishing point of the perspectivity p
because the images in π ′ of all lines in π perpendicular to L appear to vanish
there.

In fact, a perspectivity has many vanishing points. For instance, let � be any
line in π that intersects L at an angle of π /4. Now let h′ be the horizontal line Here the symbol π is

being used in two
different ways: as a label
for the embedding plane,
and as an angle.

in π ′ through P , and let D be the point on h′ such that OD is parallel to �.
Then the plane through O and � meets π ′ in some line �′ that passes through
D. It follows that the image of � under p is a line through D, with the point D
itself omitted.

π/4

π/4
O

P
h'

D

L

l'

l

π′

π

The point D is called a diagonal vanishing point of the perspectivity. All
lines in the plane π that are parallel to the given line � have images in π ′ that That is, the images appear

to vanish at D.are lines through D, with the point D itself omitted.
In the same way, each point of the horizontal line h′ in π ′ through P is a van-

ishing point for the images of all lines in π in some direction; hence the line h′
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is called the vanishing line. It corresponds to the ‘horizon’ in the plane – in
other words, to the points ‘at infinity’ towards which an observer’s eye is
pointing when looking in a horizontal direction.

3.1.3 Desargues’ Theorem
The idea that information in three dimensions can be related to information in
two dimensions, and vice versa, plays an important role in mathematics just
as it does in Art. For example, consider the following three-dimensional figure
that consists of two triangles �ABC and �A′B ′C ′ which are in perspective
from a point U . For the moment we shall assume that no pair of corresponding
sides BC and B ′C ′, CA and C ′A′, and AB and A′B ′, are parallel.

A

A '

B'

C '

B
U

C

We shall show that this three-dimensional figure has the property that BC
and B ′C ′, CA and C ′A′, AB and A′B ′ meet at P, Q, R, respectively, where
P , Q and R are collinear. This will enable us to formulate an equivalent two-
dimensional result, known as Desargues’ Theorem. Girard Desargues

(1593–1662) was a French
engineer and architect.

To prove the three-dimensional result, observe that both BC and B ′C ′ lie in
the plane that passes through the points U , B and C . Since BC and B ′C ′ are
coplanar but not parallel, they must meet at some point P .

A

A '

B'

C '

B

P

U

C

Similarly, the sides CA and C ′A′ meet at some point Q, and the sides AB and
A′ B ′ meet at some point R.

Since the points P , Q and R lie both on the plane which contains the trian-
gle �ABC and on the plane which contains the triangle �A′ B ′C ′, they must



136 3: Projective Geometry: Lines

lie on the line � where the two planes meet. It follows that P , Q and R are
collinear.

A

A '

B'

C '

B

R

l

P

U

C

Q

To obtain the equivalent two-dimensional result, imagine that you are view-
ing the three-dimensional configuration through a transparent screen. Since
this viewing process will not alter the collinearity of points or the coincidence
of lines, we may reinterpret the three-dimensional result in terms of the image
on the screen to obtain the following theorem. We give a rigorous proof

of Desargues’ Theorem in
Theorem 1,
Subsection 3.4.1.Theorem 1 Desargues’ Theorem

Let �ABC and �A′ B ′C ′ be triangles in R
2 such that the lines AA′, BB′ and

CC′ meet at a point U . Let BC and B ′C ′ meet at P , CA and C ′A′ meet at Q,
and AB and A′B ′ meet at R. Then P , Q and R are collinear.

Strictly speaking, we have not proved this theorem since it is not immedi-
ately obvious that �ABC and �A′B ′C ′ can be obtained as images of triangles
in R

3 which have corresponding sides that are not parallel. Nevertheless, the
above argument does provide reasonably convincing evidence that the theorem
is true.

One remarkable feature of the above argument is the way in which the geom-
etry of the figure on the transparent screen is characterized by the rays of light
that enter an eye. Thus a point on the screen corresponds to a single ray of
light that enters the eye, a line on the screen corresponds to a plane of rays
of light that enter the eye, and so on. The geometry of the figure can be
investigated entirely in terms of these rays of light. The screen is needed only
to interpret the result in terms of a two-dimensional figure.
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In the rest of Chapters 3 and 4, we introduce a geometry known as pro-
jective geometry that enables us to work with figures on a plane (a screen)
as if they correspond to rays of light that enter an eye in the way described
above.

3.2 The Projective Plane RP
2

You have already met the Kleinian view that a geometry consists of a group of Introductary remarks to
Chapter 2transformations acting on a space of points. In this section we begin our dis-

cussion of projective geometry by investigating its space of points. The group
of transformations is discussed in Section 3.3.

3.2.1 Projective Points
Imagine an eye situated at the origin of R

3 looking at a fixed screen. As we
mentioned in Subsection 3.1.1, each point of the screen corresponds to the ray
of light that enters the eye from the point. This correspondence between points
of the screen and rays of light through the origin is the clue that we need to
define a space of points for our new geometry.

eye

ray

screen

Point

z

y

x

O

Rather than use the points of the screen directly, we use the rays of light
that enable an eye to ‘see’ the points from the origin. We can express this
idea mathematically by defining a projective point to be a Euclidean line in
R

3 that passes through the origin. In order to avoid confusion with Euclidean
points of R

3, we write Point with a capital P whenever we mean a projective It is important that you
use the capital letter P in
‘Point’.

point.

Definitions A Point (or projective point) is a line in R
3 that passes

through the origin of R
3. The real projective plane RP

2 is the set of all
such Points.
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In order to prove results in projective geometry algebraically, we need to

(4, 2, 6)

z
l

y

x

O

have an algebraic notation that can be used to specify the Points of RP
2. To

do this, we use the fact that a line � through the origin O in R
3 is uniquely

determined once we have specified a Euclidean point (other than O) that lies
on �. For example, there is a unique line � in R

3 through O and the point with
Euclidean coordinates (4, 2, 6), so we can use these coordinates to specify a
projective point. When doing this we write the coordinates in the form [4, 2,
6], with square brackets to indicate that the coordinates refer to a projective
point.

Definition The expression [a, b, c], in which the numbers a, b, c are not
all zero, represents the Point P in RP

2 which consists of the unique line
in R

3 that passes through (0, 0, 0) and (a, b, c). We refer to [a, b, c] as Note that [0, 0, 0] is not
defined.homogeneous coordinates of P . If (a, b, c) has position vector v, then we

often denote P by [v] and we say that P can be represented by v.

Remark

Often we abuse our notation slightly, by talking about ‘the Point [a, b, c]’

(4, 2, 6)

(−2, −1, −3)

z

y

x

O

when strictly speaking we should say ‘the Point with homogeneous coordinates
[a, b, c]’.

Notice that the homogeneous coordinates of a Point are not unique. For
example, the Point with homogeneous coordinates [4, 2, 6] consists of a line
that passes through (0, 0, 0) and (4, 2, 6). But this line also passes through
(−2, −1, −3), so [4, 2, 6] and [−2, −1, −3] both represent the same Point.

In general, if (a, b, c) is any point on a line through the origin, and λ is any
real number, then (λa, λb, λc) also lies on the line. Moreover, if (a, b, c) is not
at the origin and λ �= 0, then (λa, λb, λc) is not at the origin either. It follows
that [a, b, c] and [λa, λb, λc] both represent the same Point, for any λ �= 0. We
express this by writing

( a, b, c)

(a, b, c)
O

Point
[a, b, c] = [λa, λb, λc], for any λ �= 0. (1)

Conversely, if there is no non-zero real number λ such that

(a′, b′, c′) = (λa, λb, λc),

then (a, b, c) and (a′, b′, c′) cannot lie on the same line through the origin,
and so the homogeneous coordinates [a, b, c] and [a′, b′, c′] must represent
different Points in RP

2.

Example 1 Which of the following homogeneous coordinates represent the
same Point in RP

2 as [6, 3, 2]?

(a) [18, 9, 6] (b) [12, −6, 4] (c)
[
1, 1

2 , 1
3

]
(d) [1, 2, 3]
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Solution Throughout the solution
we use equation (1):

[a, b, c] = [λa, λb, λc],
for any λ �= 0.

(a) This represents the same Point as [6, 3, 2], for if λ = 3, then

[18, 9, 6] = [6λ, 3λ, 2λ] = [6, 3, 2].
(b) This represents a Point different from [6, 3, 2], for there is no λ that

satisfies the simultaneous equations

12 = 6λ, −6 = 3λ, 4 = 2λ.

(c) This represents the same Point as [6, 3, 2], for if λ = 1
6 , then[

1, 1
2 , 1

3

]
= [6λ, 3λ, 2λ] = [6, 3, 2].

(d) This represents a Point different from [6, 3, 2], for there is no λ that
satisfies the simultaneous equations

1 = 6λ, 2 = 3λ, 3 = 2λ.

Problem 1 Which of the following homogeneous coordinates repre-
sent the same Point in RP

2 as [1, 2, 3]?

(a) [2, 4, 6] (b) [1, 2, −3] (c) [−1, −2, −3] (d) [11, 12, 13]

At first sight it may seem rather unsatisfactory that the coordinates of a Point
are not unique. However, this ambiguity can often be turned to our advantage.
For example, if a calculation yields a Point of RP

2 with fractional homo-

geneous coordinates such as
[
1, 1

2 , 1
3

]
, then the rest of the calculation may

be simpler if we ‘clear’ the fractions and represent the Point by the integer
homogeneous coordinates [6, 3, 2] instead.

Problem 2 For each of the following homogeneous coordinates, find
integer homogeneous coordinates which represent the same Point.

(a)
[

3
4 , 1

2 , − 1
8

]
(b)
[
0, 4, 2

3

]
(c)
[

1
6 , − 1

3 , − 1
2

]
Given a collection of homogeneous coordinates, it is not always easy to spot

those that represent the same Point. In such cases it is sometimes possible to
rewrite the coordinates in a form that makes the comparison easier.

Example 2 Determine homogeneous coordinates of the form [a, b, 1] for the
Points

[2, −1, 4], [4, 2, 8], [2π , −π , 4π ],

[200, 100, 400],
[
−1

2
, −1

4
, −1

]
, [6, −9, −12].

Hence decide which homogeneous coordinates represent the same Points.
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Solution According to equation (1), a Point of RP
2 is unchanged if its

homogeneous coordinates are multiplied (or divided) by any non-zero real
number. Since the third coordinate of each Point is non-zero, we may divide

For, dividing by a
non-zero number λ is
equivalent to multiplying
by the non-zero number
1
/
λ.

by this third coordinate to obtain homogeneous coordinates of the form
[a, b, 1] as follows:

[2, −1, 4] =
[

1
2 , − 1

4 , 1
]

; [4, 2, 8] =
[

1
2 , 1

4 , 1
]

;

[2π , −π , 4π ] =
[

1
2 , − 1

4 , 1
]

; [200, 100, 400] =
[

1
2 , 1

4 , 1
]

;[
− 1

2 , − 1
4 , −1

]
=
[

1
2 , 1

4 , 1
]

; [6, −9, −12] =
[
− 1

2 , 3
4 , 1
]

.

Since [a, b,1] = [a′, b′, 1] if and only if a = a′ and b = b′, it follows that:

[2, −1, 4] and [2π , −π , 4π ] represent the same Point;

[4, 2, 8], [200, 100, 400] and
[
− 1

2 , − 1
4 , −1

]
represent the same Point;

[6, −9, −12] represents none of the other Points.

Notice that the method used in Example 2 works only if the third coordinates
of all the Points are non-zero. If this is not the case, then you may still be able
to apply the technique using the first or second coordinates.

Problem 3 Determine homogeneous coordinates of the form [1, b, c]
for the Points

[2, 3, −5], [−8, −12, 20],
[√

2,
√

3, −√
5
]

,

[4, −6, 10], [−20, −30, 50], [74, 148, 0].

Hence decide which homogeneous coordinates represent the same
Points.

Having defined projective points, we are now in a position to define a pro-
jective figure. Just as a figure in Euclidean geometry is defined to be a subset
of R

2, so figures in projective geometry are defined to be subsets of RP
2.

Definition A projective figure is a subset of RP
2.

Projective figures are just sets of lines in R
3 that pass through the origin.

Thus a double cone with a vertex at O , and a double square pyramid with
a vertex at O , are both examples of projective figures, for they can both be
formed from sets of lines that pass through the origin of R

3.
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O
O

3.2.2 Projective Lines
A particularly simple type of projective figure is a plane through the origin.
Such a plane is a projective figure because it can be formed from the set of
all Points (lines through the origin of R

3) that lie on the plane. Since all but
one of these Points can be thought of as rays of light that come from a line The exception is the ray of

light parallel to the screen.
We shall discuss the
significance of this ray
later, in Subsection 3.2.3.

on a screen, it seems reasonable to define any plane through the origin to be a
projective line.

plane plane

screen

Point

O

Just as we use ‘Point’ to refer to a ‘projective point’, so we use ‘Line’ to
refer to a ‘projective line’. The use of a capital L avoids any confusion with
lines in R

3.

Definitions A Line (or projective line) in RP
2 is a plane in R

3 that passes
through the origin. Points in RP

2 are collinear if they lie on a Line.

Since a Line in RP
2 is simply a plane in R

3 that passes through the origin,
it must consist of the set of Euclidean points (x , y, z) that satisfy an equation
of the form

ax + by + cz = 0,

where a, b and c are real and not all zero. We can interpret this fact in terms of
RP

2 as follows.

Theorem 1 The general equation of a Line in RP
2 is

ax + by + cz = 0, (2)

where a, b, c are real and not all zero.
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Remark

1. The equation of a Line is not unique, for, if λ �= 0, then λax+λby+λcz = 0
is also an equation for the Line. We can use this fact to ‘clear fractions’ from
the coefficients just as we did for the homogeneous coordinates of a Point.

2. From the figure in the margin it is clear that a Point lies on a Line, or

Point
Line

(x, y, z)O

a Line passes through a Point, if and only if the Point has homogeneous
coordinates [x , y, z] which satisfy the equation of the Line. For example,
[1, –1, 1] lies on the Line 3x + y – 2z = 0, but [0, 1, 3] does not.

In Euclidean geometry there is a unique line that passes through any two
distinct points, as illustrated on the left of the figure below. Similarly, in pro-
jective geometry two distinct Points (lines through the origin) lie on a unique
Line (plane through the origin).

Point O

line

point

point

Point

Line

We express this observation in the form of a theorem, as follows.

Theorem 2 Collinearity Property of RP
2

Any two distinct Points of RP
2 lie on a unique Line.

It is sometimes possible to find an equation for the Line that passes through
two distinct Points of RP

2 simply by spotting an equation of the form (2) that
is satisfied by the homogeneous coordinates of both Points.

Example 3 For each of the following pairs of Points, write down an equation
for the Line that passes through them.

(a) [3, 2, 0] and [3, 4, 0] (b) [1, 2, 1] and [3, 0, 3]
(c) [1, 0, 0] and [0, 0, 1]

Solution

(a) Both the Points have a z-coordinate equal to 0, so the homogeneous coor-
dinates must satisfy the equation z = 0. This equation is of the form (2) The equation x = 3 is not

of the form (2), and so is
not the equation of a Line.

with a = 0, b = 0 and c = 1, so it must be the required equation for the
Line.
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(b) The homogeneous coordinates of both Points satisfy x = z. This equation
is of the form (2) with a = 1, b = 0 and c = −1. It must therefore be the
required equation for the Line.

(c) The homogeneous coordinates of both Points satisfy y = 0. This equation
is of the form (2) with a = 0, b = 1 and c = 0, so it must be the required
equation for the Line.

Problem 4 For each of the following pairs of Points, write down an
equation for the Line that passes through them.

(a) [0, 1, 0] and [0, 0, 1] (b) [2, 2, 3] and [3, 3, 7]

But how do we find an equation for a Line through two given Points in cases
where it cannot be found by inspection? As an example, consider the Points
[2, −1, 4] and [1, −1, 1]. We could certainly substitute the values x = 2,
y = −1, z = 4 and x = 1, y = −1, z = 1 into equation (2), to obtain
the pair of simultaneous equations

2a − b + 4c = 0,

a − b + c = 0.

Then subtracting twice the second equation from the first, we obtain
b = −2c. So from the second equation it follows that a = −3c. If we set Of course, we could set c

to have any non-zero
value, but c = −1 keeps
the calculation simple.

c = −1, say, then a = 3 and b = 2, so an equation for the Line is

3x + 2y − z = 0.

In this case the calculations are fairly straightforward, but there is an alter-
native method that is often simpler. Notice that the Line in RP

2 through the
Line

O

(x, y, z)

(1, –1,1)

(2, –1,4)

Points [2, −1, 4] and [1, −1, 1] is the Euclidean plane in R
3 that contains the

position vectors of the points (2, −1, 4) and (1, −1, 1) in R
3. A point (x , y, z)

lies in this plane if and only if the vector (x , y, z) is a linear combination of
the vectors (2, −1, 4) and (1, −1, 1); in other words, if and only if the vectors
(x , y, z), (2, −1, 4) and (1, −1, 1) are linearly dependent.

But three vectors in R
3 are linearly dependent if and only if the 3 × 3 deter-

minant that has these vectors as its rows is zero. It follows that (x , y, z) lies
in the plane containing the position vectors (2, −1, 4) and (1, −1, 1) if and
only if ∣∣∣∣∣∣

x y z
2 −1 4
1 −1 1

∣∣∣∣∣∣ = 0.

Translating this statement back into a statement concerning RP
2, we deduce

that the Point [x , y, z] lies on the Line through the Points [2, −1, 4] and
[1, −1, 1] if and only if ∣∣∣∣∣∣

x y z
2 −1 4
1 −1 1

∣∣∣∣∣∣ = 0.
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Expanding this determinant in terms of the entries in its first row, we obtain∣∣∣∣∣∣
x y z
2 −1 4
1 −1 1

∣∣∣∣∣∣ = x

∣∣∣∣−1 4
−1 1

∣∣∣∣− y

∣∣∣∣2 4
1 1

∣∣∣∣+ z

∣∣∣∣2 −1
1 −1

∣∣∣∣
= 3x + 2y − z.

Hence an equation for the required Line in RP
2 is

3x + 2y − z = 0. (3)

Remark

It is always sensible to check your arithmetic by checking that the two given
Points actually lie on the Line that you have found. For instance, the answer
above is correct, since equation (3) is a homogeneous linear equation in x , y
and z, and the equation is satisfied by x = 2, y = −1, z = 4 and by x = 1,
y = −1, z = 1.

We may summarize the above method in the form of a strategy, as follows.

Strategy To determine an equation for the Line in RP
2 through the Points

[d, e, f ] and [g, h, k]:

1. write down the equation ∣∣∣∣∣∣
x y z
d e f
g h k

∣∣∣∣∣∣ = 0;

2. expand the determinant in terms of the entries in its first row to obtain
the required equation in the form ax + by + cz = 0.

Example 4 Find an equation for the Line that passes through the Points
[1, 2, 3] and [2, −1, 4].
Solution An equation for the Line is∣∣∣∣∣∣

x y z
1 2 3
2 −1 4

∣∣∣∣∣∣ = 0.

Now ∣∣∣∣∣∣
x y z
1 2 3
2 −1 4

∣∣∣∣∣∣ = x

∣∣∣∣ 2 3
−1 4

∣∣∣∣− y

∣∣∣∣1 3
2 4

∣∣∣∣+ z

∣∣∣∣1 2
2 −1

∣∣∣∣
= 11x + 2y − 5z.
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An equation for the Line is therefore You can easily check that
the Points [1, 2, 3] and
[2, −1, 4] lie on this Line.11x + 2y − 5z = 0.

Problem 5 Determine an equation for each of the following Lines in
RP

2:

(a) the Line through the Points [2, 5, 4] and [3, 1, 7];
(b) the Line through the Points [−2, −4, 5] and [3, −2, −4].

A similar technique can be used to check whether three given Points are Line

O

(d, e, f )

(a, b, c)

(g, h, k)

collinear. Indeed, three Points [a, b, c], [d, e, f ], [g, h, k] are collinear if and
only if the position vectors of the points (a, b, c), (d, e, f), (g, h, k) are linearly
dependent; that is, if and only if∣∣∣∣∣∣

a b c
d e f
g h k

∣∣∣∣∣∣ = 0.

Example 5 Determine whether the Points [2, 1, 3], [1, 2, 1] and [−1, 4, −3]
are collinear.

Solution We have∣∣∣∣∣∣
2 1 3
1 2 1

−1 4 −3

∣∣∣∣∣∣ = 2

∣∣∣∣2 1
4 −3

∣∣∣∣− 1

∣∣∣∣ 1 1
−1 −3

∣∣∣∣+ 3

∣∣∣∣ 1 2
−1 4

∣∣∣∣
= 2(−6 − 4) − (−3 + 1) + 3(4 + 2)

= −20 + 2 + 18

= 0.

Since this is zero it follows that [2, 1, 3], [1, 2, 1] and [−1, 4, −3] are
collinear.

We summarize the method of Example 5 in the following strategy.

Strategy To determine whether three Points [a, b, c], [d, e, f ], [g, h, k] are
collinear:

1. evaluate the determinant

∣∣∣∣∣∣
a b c
d e f
g h k

∣∣∣∣∣∣ ;
2. the Points [a, b, c], [d, e, f ], [g, h, k] are collinear if and only if this

determinant is zero.
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Problem 6 Determine whether the following sets of Points are
collinear.

(a) [1, 2, 3], [1, 1, −2], [2, 1, −9] (b) [1, 2, −1], [2, 1, 0], [0, −1, 3]
Before rushing to solve a problem using determinants, you should always

stop to see if you can solve the problem more easily by inspection. For exam-
ple, suppose that you are asked to check whether the Points [1, 0, 0], [0, 1, 0],
[1, 1, 1] are collinear. Clearly, [1, 0, 0] and [0, 1, 0] lie on the Line z = 0,
whereas [1, 1, 1] does not, so the Points are not collinear.

Problem 7 Verify that no three of the Points [ 1, 0, 0], [0, 1, 0],
[0, 0, 1 ] and [1, 1, 1] are collinear.

The Points that you considered in Problem 7 play an important part in our
development of the theory of projective geometry, so we give them special
names.

Definitions The Points [1, 0, 0], [0, 1, 0], [0, 0, 1] are known as the Point

Lines

triangle of reference. The Point [1, 1, 1] is called the unit Point.

Next, observe that any two distinct Lines necessarily meet at a unique Point.
Indeed, a Line in RP

2 is simply a plane in R
3 that passes through the origin,

and two distinct planes through the origin of R
3 must intersect in a unique

Euclidean line through the origin; that is, in a Point. This is very different to
the situation in Euclidean geometry where parallel lines do not meet.

Theorem 3 Incidence Property of RP
2

Any two distinct Lines in RP
2 intersect in a unique Point of RP

2.

This result neatly
complements Theorem 2,
the Collinearity Property
of RP

2.

We can determine the Point of intersection of two Lines simply by solving
the equations of the two Lines as a pair of simultaneous equations.

Example 6 Determine the Point of intersection of the Lines in RP
2 with We know that there is a

unique Point of
intersection, by
Theorem 3.

equations x + 6y − 5z = 0 and x − 2y + z = 0.

Solution At the Point of intersection [x , y, z] of the two Lines, we have

x + 6y − 5z = 0,

x − 2y + z = 0.

Subtracting the second equation from the first, we obtain

8y − 6z = 0,

so that y = 3
4 z. Substituting this into the second equation, we obtain x = 1

2 z.
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It follows that the Point of intersection has homogeneous coordinates[
1
2 z, 3

4 z, z
]

which we can rewrite in the form
[

1
2 , 3

4 , 1
]

or [2, 3, 4]. Note that z �= 0, since
[0, 0, 0] are not allowed as
homogeneous coordinates.

Problem 8 Determine the Point of intersection of each of the follow-
ing pairs of Lines in RP

2:

(a) the Lines with equations x − y − z = 0 and x + 5y + 2z = 0;
(b) the Lines with equations x + 2y − z = 0 and 2x + y − 4z = 0.

Problem 9 Determine the Point of RP
2 at which the Line through

the Points [1, 2, −3] and [2, −1, 0] meets the Line through the Points
[1, 0, −1] and [1, 1, 1].

In some cases we can write down the Point at which two Lines intersect
without having to solve any equations at all. For example, the Lines with
equations x = 0 and y = 0 clearly meet at the Point [0, 0, 1].

Problem 10 Determine the Point of RP
2 at which the Line through

the Points [1, 0, 0] and [0, 1, 0] meets the Line through the Points
[0, 0, 1] and [1, 1, 1].

3.2.3 Embedding Planes
So far we have used three-dimensional space to develop the theory of projec-
tive geometry. In practice, however, we want to use projective geometry to
study two-dimensional figures in a plane. In order to do this, we now inves-
tigate a way of associating figures in a plane with figures in RP

2, and vice
versa.

Suppose that a plane π contains a figure F . We can place π into R
3, making

sure that it does not pass through the origin, and then construct a corresponding
projective figure by drawing in all the Points of RP

2 that pass through the
points of F . For example, if F is the triangle shown on the left below, then
the corresponding projective figure is a double triangular pyramid. Note that It is a double pyramid

because the Points which
make up the pyramid are
lines that emerge from the
origin in both directions.

if we change the position of π in R
3, we obtain a different projective figure

corresponding to F .

O

F

π

O

F

circle
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Conversely, suppose that we start with a projective figure F . The corre-
sponding Euclidean figure in π consists of the Euclidean points where the
Points of F pierce π . For example, if F is a double cone whose axis is at right
angles to the embedding plane, as shown on the right above, then the corre-
sponding Euclidean figure is a circle. Note that if we change the position of π

corresponding
Euclidean
point

Point in       2

O

in R
3, we obtain a different plane figure corresponding to F .

This correspondence between projective figures and Euclidean figures works
well provided that each Point of the projective figure pierces the plane π , as
shown in the margin. Unfortunately, any Point of RP

2 that consists of a line
through the origin parallel to π does not pierce π , and so cannot be associated
with a point of π . Such a Point is called an ideal Point for π .

All the ideal Points for π lie on a plane through O parallel to π . This plane
is a projective line known as the ideal Line for π .

an ideal Point
for p

the ideal 
Line for p

ideal
Points
for p

O O

p p

How can we represent a projective figure on π if the figure includes some

Line in
An ideal
Point P

for π

O

l πof the ideal Points for π? As a simple example, consider the Line illustrated
in the margin. This is a projective figure which intersects π in a line �. Every
Point of the Line pierces the embedding plane at a point of � except for the
ideal Point P which cannot be represented on π . In order to represent the Line
completely, we need not only the line � but also the ideal Point P . In other
words, the Line is represented by � ∪ {P}.

In general, a projective figure can be represented by a figure in π provided
that we are prepared to include a subset of Points taken from the ideal Line for
π . In order to allow for these additional ideal Points, we introduce the concept
of an embedding plane.

Definitions An embedding plane is a plane, π , which does not pass We frequently use π to
denote both a plane and an
embedding plane, but no
confusion should arise.

through the origin, together with the set of all ideal Points for π . The plane
in R

3 with equation z = 1 is called the standard embedding plane. The
mapping of RP

2 into the standard embedding plane is called the standard
embedding of RP

2.

We may summarize the above discussion by saying that for a given embed-
ding plane, every projective figure in RP

2 corresponds to a figure in the
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embedding plane, and vice versa. The figure in the embedding plane may
include some ideal Points but is otherwise a Euclidean figure.

If two embedding planes are parallel to each other, the same Points of
RP

2 correspond to ideal Points of the embeddings; whereas, if the embed-
ding planes are not parallel, different Points of RP

2 correspond to ideal Points
of the two embedding planes.

Once we have represented a projective figure in an embedding plane, we can
investigate the relationship between its Points and Lines without having to refer
to three-dimensional space at all. For example, consider the representation
of the triangle of reference and unit Point on the embedding plane x + y +
z = 1, shown on the left below. If we extract the embedding plane from R

3, as
shown on the right, we can use the algebraic theory developed earlier to write
down an equation for the Line through any two given Points, without reference
to R

3.

O

[0,0,1]

[0,0,1]

[1,1,1]

[1,1,1 ]     

[0,1,0]

[0,1,0]
[1,0,0]

[1,0,0]

x+ y+ z= 1

x= y

z= 0

y= 0

x= 0

z= x

y= z

y

z

x

Similarly, we can use the algebraic techniques to calculate the homogeneous
coordinates of the Point of intersection of any two given Lines.

Problem 11 On the right-hand diagram above, insert the homoge-
neous coordinates of the Points where the Lines through [1, 1, 1] meet
the sides of the triangle of reference.

Any plane may be used as an embedding plane provided that it does not pass

O

π

z

[a,b,c]

embedding
plane z= −1

(−a /c,−b /c,−1)

y
x

ideal Line
z= 0through the origin. For example, if we take π to be the plane z = −1, then the

ideal Line for π has equation z = 0, and the ideal Points are Points of the form
[a, b, 0], where a and b are not both zero. Any other Point [a, b, c] has c �= 0 and
can therefore be represented in π by the Euclidean point(−a/c, −b/c, −1).

Problem 12 Let π be the embedding plane y = −1. Describe the
ideal Points for π , and specify the Euclidean point of π which represents
the Point [2, 4, 6].
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Although we can choose any embedding plane to represent figures of RP
2,

the representation does depend on the choice. For example, suppose that π1 is
the embedding plane y = −1, and that π2 is the embedding plane z = −1.
Now consider the projective figure which consists of two Lines �1 and �2 with
equations x = −z and x = z, respectively. These Lines intersect at the Point
[0, 1, 0].

π1

z= −1

y= −1

x= −z

x= z

l1

l2

[0,1,0]

π2

o

On the embedding plane π1 the Lines �1 and �2 are represented by two lines This is the mathematical
fact which explains why
artists sometimes draw
parallel lines (such as
railroad lines) as
intersecting lines.

that can be seen to meet at the point corresponding to [0, 1, 0]. However, on
the embedding plane π2 the Point of intersection [0, 1, 0] is an ideal Point and
so the Lines �1 and �2 are represented by parallel lines that do not appear to
meet. The contrast between the two representations of �1 and �2 is particularly
striking if we extract the two embedding planes from R

3 and lay them side by
side, as follows.

π2π1

[0,1,0] [0,1,0] is
ideal for π2 

l1

l1

l2

l2

This example illustrates that Lines which appear to be parallel in one embed-
ding plane may not appear to be parallel in another embedding plane. In the
next section you will see that the transformations of projective geometry are
chosen so as to ensure that the projective properties of a figure are unaffected
by the choice of embedding plane. Since parallelism does depend on the choice
of embedding plane, it cannot be a projective property, so the concept of
parallel Lines is meaningless in projective geometry.
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3.2.4 An equivalent definition of Projective Geometry
In our work on projective geometry, we have used Euclidean points in a
plane in R

3 to construct the projective points (Points) of the geometry RP
2,

homogeneous coordinates for those Points, and projective lines (Lines).
Equivalently, we could have defined RP

2 as the set of ordered triples
[a, b, c], where a, b, c are real and not all zero, with the convention that we
regard [λa, λb, λc] and [a, b, c] (where λ �= 0) as the same Point in the geom-
etry. We would then have defined projective lines (Lines) as the set of points
[x , y, z] in RP

2 that satisfy an equation of the form ax + by + cz = 0, where
a, b, c are real and not all zero, Then we would continue to develop the theory
of projective geometry in the same way as we have done here.

However, we chose to start our work by looking at a model of RP
2

obtained by using an embedding plane π in R
3 that does not pass through

the origin. We modeled the projective points [a, b, c] by the Euclidean lines
through the origin and the corresponding Euclidean points (a, b, c), plus
‘points at infinity’ (the ideal Points); and we modeled the projective lines
by Euclidean planes through the origin, For convenience, we chose often to
use Euclidean points (a, b, c) on a given embedding plane to describe the Any plane that does not

pass through the origin in
R

3 will serve as an
embedding plane.

Euclidean model.
The formal method of defining projective geometry, though, is less intuitive

than the description motivated by the R
3 model!

3.3 Projective Transformations

3.3.1 The Group of Projective Transformations
By now you should be familiar with the idea that a geometry consists of a space
of points together with a group of transformations which act on that space.

Having introduced the space of projective points RP
2 in Section 3.2, we

are now in a position to describe the transformations of RP
2. First we shall

define the transformations algebraically, then we give a geometrical inter-
pretation of the transformations using the ideas of perspectivity introduced
in Section 3.1, and finally meet the Fundamental Theorem of Projective
Geometry.

Recall that a point of R
3 (other than the origin) on an embedding plane Subsection 3.2.1

π (that does not pass through the origin) has coordinates x = (x , y, z) with
respect to the standard basis of R

3, and homogeneous coordinates of the
corresponding Point [x] in RP

2 (which represents the points {λx : λ ∈ R})
are [λx , λy, λz] for some real λ �= 0. Since the Points of RP

2 are just
lines through the origin of R

3, we need a group of transformations that
map the lines through the origin of R

3 onto the lines through the origin
of R

3. Suitable transformations of R
3 that do this are the invertible linear

transformations.



152 3: Projective Geometry: Lines

If A is the matrix of an invertible linear transformation of R
3 to itself, the

transformation maps points x = (x , y, z) of R
3 to points Ax of R

3; then the
projective transformation with matrix A maps Points [x] of RP

2 to Points
[Ax] of RP

2. This suggests that we define the transformations of projective
geometry as follows. In fact, any ‘continuous’

transformation of RP
2 to

itself that maps Lines to
Lines and that preserves
incidences of Lines
corresponds to an
invertible linear
transformation of R

3. We
omit a proof of this fact.

Definitions A projective transformation of RP
2 is a function

t : RP
2 → RP

2 of the form

t : [x] �→ [Ax],
where A is an invertible 3 × 3 matrix. We say that A is a matrix associated
with t . The set of all projective transformations of RP

2 is denoted by P(2).

Example 1 Show that the function t : RP
2 → RP

2 defined by

t : [x , y, z] �→ [2x + z, −x + 2y − 3z, x − y + 5z]
is a projective transformation, and find the image of [1, 2, 3] under t .

Solution The transformation t has the form t : [x] �→ [Ax], where x =
(x , y, z) and

A =
⎛
⎝ 2 0 1

−1 2 −3
1 −1 5

⎞
⎠ .

Now

det A =
∣∣∣∣∣∣

2 0 1
−1 2 −3
1 −1 5

∣∣∣∣∣∣
= 2(10 − 3) − 0 + (1 − 2)

= 13 �= 0.

So A is invertible. It follows that t is a projective transformation.
We have

t([1, 2, 3]) = [2 + 3, −1 + 4 − 9, 1 − 2 + 15] = [5, −6, 14].

Problem 1 Decide which of the following functions t from RP
2

to itself are projective transformations. For those that are projective
transformations, write down a matrix associated with t .

(a) t : [x , y, z] �→ [−2y + 3z, −x + 5y − z, −3x]
(b) t : [x , y, z] �→ [x − 7y + 4z, −x + 5y − z, x − 9y + 7z]
(c) t : [x , y, z] �→ [x − 1 + z, 2y − 4z + 5, 2x]
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Problem 2 Let t be the projective transformation associated with the
matrix.

A =
⎛
⎝ 1 1 −1

−1 −2 1
4 −3 4

⎞
⎠ .

Determine the image under t of each of the following Points.

(a) [1, 2, −1] (b) [1, 0, 0] (c) [0, 1, 0]
(d) [0, 0, 1] (e) [1, 1, 1]

Since we can multiply the homogeneous coordinates of Points in RP
2 by

any non-zero real number λ without altering the Point itself, it follows that if
A is a matrix associated with a particular projective transformation then so is
the matrix λA, provided that λ �= 0. For example, another matrix associated
with the transformation in Example 1 is

B =
⎛
⎝−4 0 −2

2 −4 6
−2 2 −10

⎞
⎠ ,

for we have B = −2A.

Problem 3 Write down a matrix with top left-hand entry 1
2 which is

associated with the transformation in Example 1.

Before we can use the projective transformations to define projective
geometry, we must first check that they form a group.

Theorem 1 The set of projective transformations P(2) forms a group Recall that a similar result
holds for affine
transformations.

under the operation of composition of functions.

Proof We check that the four group axioms hold.

G1 CLOSURE Let t1 and t2 be projective transformations defined by

t1 : [x] �→ [A1x] and t2 : [x] �→ [A2x],
where A1 and A2 are invertible 3 × 3 matrices. Then

t1 ◦ t2([x]) = t1(t2([x]))
= t1([A2x])
= [(A1A2)x].

Since A1 and A2 are invertible, it follows that A1A2

is invertible. So by definition t1 ◦ t2 is a projective
transformation.

G2 IDENTITY Let i : RP
2 → RP

2 be the transformation defined by

i : [x] �→ [Ix],
where I is the 3 × 3 identity matrix; this is a projective
transformation, since I is invertible.
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Let t : RP
2 → RP

2 be an arbitrary projective transfor-
mation, defined by t :[x] �→ [Ax], for some invertible 3
× 3 matrix A. Then for any [x] ∈ RP

2,

t ◦ i([x]) = [A(Ix)] = [Ax]
and

i ◦ t([x]) = [I(Ax)] = [Ax].
Thus t ◦ i = i ◦ t = t . Hence i is the identity
transformation.

G3 INVERSES Let t : RP
2 → RP

2 be an arbitrary projective transfor-
mation defined by

t : [x] �→ [Ax],
for some invertible 3 × 3 matrix A. Then we can define
another projective transformation t ′ : RP

2 → RP
2 by

t ′: [x] �→ [A−1x].
Now, for each [x] ε RP

2, we have

t ◦ t ′([x]) = t([A−1x]) = [A(A−1x)] = [x]
and

t ′ ◦ t([x]) = t ′([Ax]) = [A−1(Ax)] = [x].
Thus t ′ is an inverse for t .

G4 ASSOCIATIVITY Composition of functions is always associative.

It follows that the set of projective transformations P(2) forms a group. �

The above proof shows that if t1 and t2 are projective transformations with
associated matrices A1 and A2, respectively, then t1 ◦ t2 is a projective trans-
formation with an associated matrix A1A2. We therefore have the following
strategy for composing projective transformations.

Strategy To compose two projective transformations t1 and t2:

1. write down matrices A1 and A2 associated with t1 and t2;
2. calculate A1A2;
3. write down the composite t1 ◦ t2 with which A1A2 is associated.

The proof also shows that if t is a projective transformation with an associ-
ated matrix A, then t−1 is a projective transformation with associated matrix
A−1. We therefore have the following strategy for calculating the inverse of a See Appendix 2 for one

method to calculate A−1.projective transformation.
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Strategy To find the inverse of a projective transformation t :

1. write down a matrix A associated with t ;
2. calculate A−1;
3. write down the inverse t−1 with which A−1 is associated.

Example 2 Let t1 and t2 be projective transformations defined by

t1 : [x , y, z] �→ [x + z, x + y + 3z, −2x + z],
t2 : [x , y, z] �→ [2x , x + y + z, 4x + 2y].

Determine the projective transformations t2 ◦ t1 and t−1 1.

Solution The transformations t1 and t2 have associated matrices

A1 =
⎛
⎝ 1 0 1

1 1 3
−2 0 1

⎞
⎠ and A2 =

⎛
⎝ 2 0 0

1 1 1
4 2 0

⎞
⎠,

respectively. It follows that t2 ◦ t1 has an associated matrix

A2A1 =
⎛
⎝ 2 0 0

1 1 1
4 2 0

⎞
⎠
⎛
⎝ 1 0 1

1 1 3
−2 0 1

⎞
⎠ =

⎛
⎝ 2 0 2

0 1 5
6 2 10

⎞
⎠,

so

t2 ◦ t1 : [x , y, z] �→ [2x + 2z, y + 5z, 6x + 2y + 10z].
Next, t−1

1 has an associated matrix A−1
1 given by

A−1
1 =

⎛
⎜⎜⎝

1
3 0 − 1

3

− 7
3 1 − 2

3
2
3 0 1

3

⎞
⎟⎟⎠;

a simpler matrix associated with t−1
1 is then⎛

⎝ 1 0 −1
−7 3 −2
2 0 1

⎞
⎠,

so

t1
−1 : [x , y, z] �→ [x − z, −7x + 3y − 2z, 2x + z].

Problem 4 Let t1 and t2 be projective transformations defined by

t1 : [x , y, z] �→ [2x + y, −x + z, y + z],
t2 : [x , y, z] �→ [5x + 8y, 3x + 5y, 2z].

Determine the projective transformations t1◦ t2 and t1
−1.
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Having shown that the set of projective transformations forms a group
under composition of functions, we can now define projective geometry
to be the study of those properties of figures in RP

2 that are preserved by
projective transformations. Those properties that are preserved by projective
transformations are known as projective properties.

3.3.2 Some Properties of Projective Transformations
We now check two important properties of projective transformations, namely,
that they preserve collinearity and incidence.

A Line in RP
2 is a plane in R

3 that passes through the origin. It therefore
consists of the set of points (x , y, z) of R

3 that satisfy an equation of the form

ax + by + cz = 0,

where a, b and c are not all zero. We can write this condition equivalently
in the matrix form Lx = 0, where L is the non-zero row matrix (a b c) and
x = (x y z)T .

Now let t be a projective transformation defined by t : [x] �→ [Ax], where
A is an invertible 3 × 3 matrix, and let [x] be an arbitrary Point on the Line
Lx = 0. Then the image of [x] under t is a Point [x′] where x′ = Ax. Since
x satisfies the equation Lx = 0, it follows that x′ satisfies L(A−1 x′) = 0, or
(LA−1) x′ = 0. Dropping the dash, we conclude that the image of the Line
Lx = 0 under t is the Line with equation Here, LA−1 is non-zero,

for if

LA−1 = 0,

then

0 =
(

LA−1
)

A

= L
(

A−1A
)

= L,

which is not the case.

(
LA−1

)
x = 0.

Since the image of a Line in RP
2 is a Line, it follows that collinearity is

preserved under a projective transformation.
Notice that if B is any matrix associated with t−1, then B = λA−1 for some

non-zero real number λ, and so
(
LA−1

)
x = 0 if and only if (LB)x = 0. It

follows that the image of the Line can equally well be written as (LB)x = 0.
(For instance, since A−1 = adj(A)

/
det(A) so that t−1 also has adj(A) as an

associated matrix, we can express the image of the Line as (L adj(A))x = 0.)
We therefore summarize the above discussion in the form of a strategy, as

follows.

Strategy To find the image of a Line

ax + by + cz = 0

under a projective transformation t : [x] �→ [AX] :

1. write the equation of the Line in the form Lx = 0, where L is the matrix
(a b c);

2. find a matrix B associated with t−1;
3. write down the equation of the image as (LB)x = 0.

Example 3 Find the image of the Line 2x + y − 3z = 0 under the projective
transformation t1 defined by
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t1 : [x , y, z] �→ [x + z, x + y + 3z, −2x + z].

Solution The equation of the Line can be written in the form Lx = 0, where

L = (2 1 − 3).

In Example 2 we showed that t1
−1 has an associated matrix

B =
⎛
⎝ 1 0 −1

−7 3 −2
2 0 1

⎞
⎠ .

So

LB = (2 1 − 3)

⎛
⎝ 1 0 −1

−7 3 −2
2 0 1

⎞
⎠ = (−11 3 − 7).

It follows that the required image has equation

−11x + 3y − 7z = 0.

Problem 5 Find the image of the Line x + 2y − z = 0 under the
projective transformation t1 defined by

t1 : [x , y, z] �→ [2x + y, −x + z, y + z].
Next, we consider the incidence property. If two Lines intersect at the Point

P , then P lies on both Lines. So if t is a projective transformation, then t(P)

lies on the images of both Lines. It follows that the image under t of the Point
of intersection of the two Lines is the Point of intersection of the images of
the two Lines. In other words, incidence is also preserved under a projective
transformation.

P t (P )

t (l1) t (l2)
l1 l2

Theorem 2 Collinearity and incidence are both projective properties.

3.3.3 Fundamental Theorem of Projective Geometry
In Chapter 2 we discussed the Fundamental Theorem of Affine Geometry

A A'

B B'

C

C'

unique affine
transformationwhich states that given any two sets of three non-collinear points of R

2 there is
a unique affine transformation which maps the points in one set to the cor-
responding points in the other set. So an affine transformation is uniquely
determined by its effect on any given triangle.

In this subsection we explore an analogous result for projective geometry
known as the Fundamental Theorem of Projective Geometry. We begin by
asking you to tackle the following problem.

Problem 6 Let t1 and t2 be the projective transformations with
associated matrices

A1 =
⎛
⎝−4 −1 1

−3 −2 1
4 2 −1

⎞
⎠ and A2 =

⎛
⎝−8 −6 −2

−3 4 7
6 0 −4

⎞
⎠ ,
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respectively. Find the images of the Points [1, −1, 1], [1, −2, 2] and
[−1, 2, −1] under t1 and t2.

You should have found that both of the projective transformations t1 and
t2 map the Points [1, −1, 1], [1, −2, 2] and [−1, 2, −1] to the Points [−2, 0, 1],
[0, 3, −2] and [1, −2, 1], respectively. Notice, however, that t1 and t2 are not the
same projective transformation, since their matrices are not multiples of each
other. It follows that, unlike affine transformations, projective transformations
are not uniquely determined by their effect on three (non-collinear) Points.

This raises the question as to whether it is possible to specify how many

A A'

B

B'C
D C'

D'

unique projective
transformationPoints are required to determine a projective transformation. According to

the Fundamental Theorem of Projective Geometry, the answer is four. In
fact the theorem states that given any two sets of four Points, no three of
which are collinear, there is a unique projective transformation that maps the
Points in one set to the corresponding Points in the second set. Thus, in pro-
jective geometry a transformation is uniquely determined by its effect on a
quadrilateral.

To understand why a triangle is insufficient to determine a projective trans-
formation uniquely, consider what happens when we look for a projective
transformation that maps the triangle of reference to three given non-collinear
Points. Recall that the Points

[1, 0, 0], [0, 1, 0] and [0,
0, 1] are known as the
triangle of reference.

Example 4 Find a projective transformation t that maps the Points [1, 0, 0],
[0, 1, 0] and [0, 0, 1] to the non-collinear Points [1, −1, 1], [1, −2, 2] and
[−1, 2, −1], respectively.

Solution Let A be a matrix associated with t , and let the first column of A

be

⎛
⎝ a

b
c

⎞
⎠. Then since

Here the asterisks *
denote unspecified
numbers.

⎡
⎣
⎛
⎝ a ∗ ∗

b ∗ ∗
c ∗ ∗

⎞
⎠
⎛
⎝ 1

0
0

⎞
⎠
⎤
⎦ =

⎡
⎣
⎛
⎝ a

b
c

⎞
⎠
⎤
⎦ =

⎡
⎣
⎛
⎝ 1

−1
1

⎞
⎠
⎤
⎦ ,

it follows that we may take

⎛
⎝ 1

−1
1

⎞
⎠ as the first column of A.

Similarly, since

⎡
⎣
⎛
⎝ ∗ d ∗

∗ e ∗
∗ f ∗

⎞
⎠
⎛
⎝ 0

1
0

⎞
⎠
⎤
⎦ =

⎡
⎣
⎛
⎝ d

e
f

⎞
⎠
⎤
⎦ =

⎡
⎣
⎛
⎝ 1

−2
2

⎞
⎠
⎤
⎦
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and ⎡
⎣
⎛
⎝ ∗ ∗ g

∗ ∗ h
∗ ∗ k

⎞
⎠
⎛
⎝ 0

0
1

⎞
⎠
⎤
⎦ =

⎡
⎣
⎛
⎝ g

h
k

⎞
⎠
⎤
⎦ =

⎡
⎣
⎛
⎝−1

2
−1

⎞
⎠
⎤
⎦ ,

it follows that a suitable transformation is given by t : [x] �→ [Ax] where Notice that because the
Points [1, −1, 1],
[1, −2, 2] and [−1, 2, −1]
are not collinear it follows
that the columns of A are
linearly independent, so
that A is invertible.

A =
⎛
⎝ 1 1 −1

−1 −2 2
1 2 −1

⎞
⎠ .

This example illustrates the fact that we can always find a projective
transformation t : [x] �→ [Ax] which maps the triangle of reference to
three non-collinear Points simply by writing the homogeneous coordinates
of the Points as the columns of A. Notice, however, that the transforma-
tion we obtain is not unique. Indeed, if the Points [1, −1, 1], [1, −2, 2] and
[−1, 2, −1] in Example 4 are rewritten in the form [u, −u, u], [υ, −2υ, 2υ] and
[−w, 2w, −w], for some non-zero real numbers u, υ, w, then the matrix
becomes

A =
⎛
⎝ u υ −w

−u −2υ 2w

u 2υ −w

⎞
⎠ .

The corresponding transformation t : [x] �→ [Ax] still maps the triangle of
reference to the Points [1, −1, 1], [1, −2, 2] and [−1, 2, −1], as required, but
the effect that t has on the other Points of RP

2 depends on the numbers u, v
and w.

So if we wish to specify t uniquely we need to assign particular values to u,
v and w. We can do this by specifying the effect that t has on a fourth Point Recall that the Point [1, 1,

1] is known as the unit
Point.

[1, 1, 1].

Example 5 Find the projective transformation t which maps the Points
[1, 0, 0], [0, 1, 0], [0, 0, 1] and [1, 1, 1] to the Points [1, −1, 1], [1, −2, 2],
[−1, 2, −1] and [0, 1, 2], respectively.

Solution If A is the matrix associated with t , then its columns must be
multiples of the homogeneous coordinates [1, −1, 1], [1, −2, 2], [−1, 2, −1];
that is,

A =
⎛
⎝ u υ −w

−u −2υ 2w

u 2υ −w

⎞
⎠ .
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Also, to ensure that t maps [1, 1, 1] to [0, 1, 2] we must choose u, v and w

so that ⎡
⎣
⎛
⎝ u v −w

−u −2v 2w

u 2v −w

⎞
⎠
⎛
⎝ 1

1
1

⎞
⎠
⎤
⎦ =

⎡
⎣
⎛
⎝ 0

1
2

⎞
⎠
⎤
⎦ .

We can do this by solving the equations

u + v − w = 0,

−u − 2v + 2w = 1,

u + 2v − w = 2.

Adding the second and third equations we obtain w = 3. If we then subtract
the first equation from the third we obtain υ = 2. Finally, if we substitute
υ and w into the first equation we obtain u = 1. The required projective
transformation is therefore given by t : [x] �→ [Ax], where The columns of A are still

linearly independent
because they are non-zero
multiples of the linearly
independent vectors
(1, −1, 1), (1, −2, 2) and
(−1, 2, −1).

A =
⎛
⎝ 1 2 −3

−1 −4 6
1 4 −3

⎞
⎠ .

It is natural to ask whether the method used in this example can be adapted to
find a projective transformation which maps the triangle of reference and unit
Point to any four given Points. The answer is usually yes, but since collinearity
is a projective property, and since no three of the Points [1, 0, 0], [0, 1, 0], [0,
0, 1], [1, 1, 1] are collinear, the method must fail if three of the four given
Points lie on a Line. Provided we exclude this possibility, the answer is yes!

Strategy To find the projective transformation which maps We explain why the
method works in the
Remark that follows the
strategy.

[1, 0, 0] to [a1, a2, a3],

[0, 1, 0] to [b1, b2, b3],

[0, 0, 1] to [c1, c2, c3],

[1, 1, 1] to [d1, d2, d3],

where no three of [a1, a2, a3], [b1, b2, b3], [c1, c2, c3], [d1, d2, d3] are
collinear:

1. find u, v, w such that⎛
⎝ a1u b1v c1w

a2u b2v c2w

a3u b3v c3w

⎞
⎠
⎛
⎝ 1

1
1

⎞
⎠ =

⎛
⎝ d1

d2

d3

⎞
⎠;
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2. write down the required projective transformation in the form t : [x] �→
[Ax], where A is any non-zero real multiple of the matrix The non-zero multiple can

be used to clear fractions
from the entries of the
matrix A.

⎛
⎝ a1u b1v c1w

a2u b2v c2w

a3u b3v c3w

⎞
⎠ .

Remark

To see why this strategy always works, notice that we can rewrite the equation
from Step 1 in the form

u

⎛
⎝ a1

a2

a3

⎞
⎠+ v

⎛
⎝ b1

b2

b3

⎞
⎠+ w

⎛
⎝ c1

c2

c3

⎞
⎠ =

⎛
⎝ d1

d2

d3

⎞
⎠ .

From this we can make the following observations.

(a) The equation in Step 1 must have a unique solution for u, v, w because
the required values of u, v and w are simply the coordinates of (d1, d2, d3)

with respect to the basis of R
3 formed from the three linearly independent Since no three of the

Points [a1, a2, a3],
[b1, b2, b3], [c1, c2, c3],
[d1, d2, d3] are collinear, it
follows that any three of
the vectors (a1, a2, a3),
(b1, b2, b3), (c1, c2, c3),
(d1, d2, d3) must be
linearly independent.

vectors (a1, a2, a3), (b1, b2, b3), (c1, c2, c3).
(b) The values of u, v and w must all be non-zero, because otherwise

three of the vectors (a1, a2, a3), (b1, b2, b3), (c1, c2, c3), (d1, d2, d3) would
be linearly dependent.

(c) Since the columns of A are non-zero, multiples of the linearly independent
vectors (a1, a2, a3), (b1, b2, b3), (c1, c2, c3) it follows that A is invertible,
and hence that t is a projective transformation.

There is no need to check whether any three of the four given Points are
collinear because any failure of this condition will emerge in the process of
applying the strategy. Indeed, if the equation in Step 1 fails to yield unique
non-zero values for u, v and w, then it must be because three of the Points
(a1, a2, a3), (b1, b2, b3), (c1, c2, c3), (d1, d2, d3) lie on a Line.

Problem 7 Use the above strategy to find the projective transforma-
tion which maps the Points [1, 0, 0], [0, 1, 0], [0, 0, 1] and [1, 1, 1] to
the Points:

(a) [−1, 0, 0], [−3, 2, 0], [2, 0, 4] and [1, 2, −5], respectively;
(b) [1, 0, 0], [0, 0, 1], [0, 1, 0] and [3, 4, 5], respectively;
(c) [2, 1, 0], [1, 0, −1], [0, 3, −1] and [3, −1, 2], respectively.

Now consider the transformation t1 in Problem 7(a). The inverse of this,
t−1
1 , is a projective transformation which maps the Points [−1, 0, 0], [−3, 2, 0],

[2, 0, 4] and [1, 2, −5] back to the triangle of reference and unit Point. So
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if, after applying this inverse, we apply the projective transformation t2 in
Problem 7(c), then the overall effect of the composite t2◦t−1

1 is that of a projec-
tive transformation which sends the Points [−1, 0, 0], [−3, 2, 0], [2, 0, 4] and
[1, 2, −5] directly to the Points [2, 1, 0], [1, 0, −1], [0, 3, −1] and [3, −1, 2],
respectively.

[−1,0,0]

[−3,2,0] [1,2,−5]

[2,0,4]

[1,0,0]

[0,1,0] [1,1,1]

[0,0,1]

[2,1,0]

[1,0,−1] [3,−1,2]

[0,3,−1]

t2

t2

t1
–1

t1
–1

In a similar way we can find a projective transformation which maps any set
of four Points to any other set of four Points. The only constraint is that no
three of the Points in either set can be collinear. In the following statement of
the Fundamental Theorem we express this constraint by requiring that each of A

D
C

Bthe four sets of Points lie at the vertices of some quadrilateral, where a quadri-
lateral is defined as follows. A quadrilateral is a set of four Points A, B, C
and D (no three of which are collinear), together with the Lines AB, BC, CD
and DA.

Theorem 3 The Fundamental Theorem of Projective Geometry
Let ABC D and A′ B ′C ′D′ be two quadrilaterals in RP

2. Then:
A A'

B

B'C
D

C'

D'

unique projective
transformation

(a) there is a projective transformation t which maps

A to A′, B to B ′, C to C ′, D to D′;

(b) the projective transformation t is unique.

Proof According to the strategy above, there is a projective transformation
t1 which maps the Points [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1] to the
Points A, B, C , D, respectively. Similarly, there is a projective transformation
t2 which maps the Points [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1] to the Points
A′, B ′, C ′, D′, respectively.
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[1,0,0]

[0,1,0] [1,1,1]

[0,0,1]

t2

t2

t1
–1

t1

A

B

C

D

A'

B'

C'

D'

(a) The composite t = t2◦ t−1
1 is then a projective transformation which maps

A to A′, B to B ′, C to C ′, D to D′.
(b) To check uniqueness of t , we first check that the identity transforma-

tion is the only projective transformation which maps each of the Points
[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1] to themselves. In fact any projective This follows from the

discussion leading to the
strategy above.

transformation with this property must have an associated matrix which is
some non-zero multiple of the matrix⎛

⎝ u 0 0
0 v 0
0 0 w

⎞
⎠, where

⎛
⎝ u 0 0

0 v 0
0 0 w

⎞
⎠
⎛
⎝ 1

1
1

⎞
⎠ =

⎛
⎝ 1

1
1

⎞
⎠.

Such a matrix must be (a non-zero multiple of) the identity matrix, and so
the transformation must indeed be the identity.

Next suppose that t and t ′ are two projective transformations which satisfy
the conditions of the theorem. Then the composites t−1

2 ◦ t ◦ t1 and t−1
2 ◦ t′

◦ t1 must both be projective transformations which map each of the Points
[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1] to themselves. Since this implies that both
composites are equal to the identity, we deduce that

t−1
2 ◦ t ◦ t1 = t−1

2 ◦ t ′ ◦ t1.

If we now compose both sides of this equation with t2 on the left and with t−1
1

on the right, then we obtain t = t ′, as required. �

The Fundamental Theorem tells us that there is a projective transformation
which maps any given quadrilateral onto any other given quadrilateral. So we
have the following corollary.

Corollary All quadrilaterals are projective-congruent.
By projective-congruent
we mean that there is a
projective transformation
that maps any
quadrilateral onto any
other quadrilateral.

If we actually need to find the projective transformation which maps one
given quadrilateral onto another given quadrilateral, we simply follow the
strategy used to prove part (a) of the Fundamental Theorem.
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Strategy To determine the projective transformation t which maps the
vertices of the quadrilateral ABC D to the corresponding vertices of the
quadrilateral A′ B ′C ′ D′:

A A'

B

B'C

D

C'

D'

unique projective
transformation1. find the projective transformation t1 which maps the triangle of reference

and unit Point to the Points A, B, C , D, respectively;
2. find the projective transformation t2 which maps the triangle of reference

and unit Point to the Points A′, B ′, C ′, D′, respectively;
3. calculate t = t2 ◦ t−1

1 .

Example 6 Find the projective transformation t which maps the Points
[1, −1, 2], [1, −2, 1], [5, −1, 2], [1, 0, 1] to the Points [−1, 3, −2], [−3,
7, −5], [2, −5, 4], [−3, 8, −5], respectively.

Solution We follow the steps in the above strategy.

(a) Any matrix associated with the projective transformation t1 which maps
the Points [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1] to the Points [1, −1, 2],
[1, −2, 1], [5, −1, 2], [1, 0, 1], respectively, must be a multiple of the
matrix⎛
⎝ u v 5w

−u −2v −w

2u v 2w

⎞
⎠, where

⎛
⎝ u v 5w

−u −2v −w

2u v 2w

⎞
⎠
⎛
⎝ 1

1
1

⎞
⎠ =

⎛
⎝ 1

0
1

⎞
⎠.

Solving the equations

u + v + 5w = 1,

−u − 2v − w = 0,

2u + v + 2w = 1,

we obtain u = 1
2 , v = − 1

3 , w = 1
6 . So a suitable choice of matrix for t1 is

It is simpler to multiply
the first matrix by 6 to
obtain integer entries.
This does not alter the
projective transformation
t1 with which the matrix
is associated.

⎛
⎜⎝

1
2 − 1

3
5
6

− 1
2

2
3 − 1

6

1 − 1
3

1
3

⎞
⎟⎠ , or more simply A1 =

⎛
⎝ 3 −2 5

−3 4 −1
6 −2 2

⎞
⎠.

(b) Any matrix associated with the projective transformation t2 which maps
the Points [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1] to the Points
[−1, 3, −2], [−3, 7, −5], [2, −5, 4], [−3, 8, −5], respectively, must be a
multiple of the matrix⎛
⎝ −u −3v 2w

3u 7v −5w

−2u −5v 4w

⎞
⎠, where

⎛
⎝ −u −3v 2w

3u 7v −5w

−2u −5v 4w

⎞
⎠
⎛
⎝1

1
1

⎞
⎠ =

⎛
⎝−3

8
−5

⎞
⎠.
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Solving the equations

−u − 3v + 2w = −3,

3u + 7v − 5w = 8,

−2u − 5v + 4w = −5,

we obtain u = 2, v = 1, w = 1. So a suitable choice of matrix for t2 is

A2 =
⎛
⎝−2 −3 2

6 7 −5
−4 −5 4

⎞
⎠ .

(c) A matrix associated with the inverse, t−1
1 , of t1 is A−1

1 , which we can
calculate to be

A1
−1 =

⎛
⎜⎜⎝

− 1
12

1
12

1
4

0 1
3

1
6

1
4

1
12 − 1

12

⎞
⎟⎟⎠ ;

then a simpler matrix associated with t−1
1 is

B =
⎛
⎝ 1 −1 −3

0 −4 −2
−3 −1 1

⎞
⎠ .

The required projective transformation is therefore t : [x] �→ [Ax],
where

A = A2B =
⎛
⎝−2 −3 2

6 7 −5
−4 −5 4

⎞
⎠
⎛
⎝ 1 −1 −3

0 −4 −2
−3 −1 1

⎞
⎠

=
⎛
⎝ −8 12 14

21 −29 −37
−16 20 26

⎞
⎠ .

Problem 8 Find the projective transformation t that maps the Points
[−1, 0, 0], [−3, 2, 0], [2, 0, 4], [1, 2, −5] to the Points [2, 1, 0], [1, 0, −1],
[0, 3, −1], [3, −1, 2], respectively.

Problem 9 Find the projective transformation t that maps the Points
[1, 0, −3], [1, 1, −2], [3, 3, −5], [6, 4, −13] to the Points [3, −5, 3],
[ 1

2 , −1, 0], [3, −5, 6], [8, −13, 12], respectively.

3.3.4 Geometrical Interpretation of Projective Transformations
In this subsection we discuss the relationship between projective transforma-

You may omit this
subsection at a first
reading, as it is quite hard
going.tions and the perspectivities introduced in Section 3.1.
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Starting from the geometric definition of perspective in Subsection 3.1.1, Recall that a projective
transformation of RP

2 is
a map [x] → [Ax], where
A is an invertible 3 × 3
matrix.

we will define the term perspective transformation, show how a perspective
transformation may be interpreted as a projective transformation, and finally
prove that any projective transformation can be expressed as the composite of
at most three perspective transformations.

So, let π and π ′ be two embedding planes in R
3 that do not pass through the

origin O in R
3, and let C ( �= O) be another point in R

3 such that OC is not
parallel to either π or π ′. Let C have position vector c (based at O). Also, let
σ denote an arbitrary perspectivity from the point C that maps the plane π to
the plane π ′.

Note that O, C, P and P ′
are coplanar.P

p

p
c

C

O

P

Now, the perspectivity σ will map any point P (with position vector p) in π

onto some point P ′ (with position vector p′) in π ′, so long as the vector p − c
is not parallel to the plane π ′. We then define the perspective transformation
associated with σ to be the mapping of R

3 to itself that maps the line [p − c] Recall that a line through
the origin in R

2 is a
1-dimensional vector
space.
The value of t will depend
on the particular point P
under discussion.

onto the line [p′ − c]. But since C, P and P ′ are collinear, it follows that the
vectors p− c and p′ − c must be parallel (equivalently, that [p− c] = [p′ − c]);
hence there is some real number t such that

p′ − c = t(p − c).

We can then rewrite this formula in the form

p′ = t(p − c) + c,

or

p′ = tp + (1 − t)c,

so that

[p] �→ [tp + (1 − t)c].
In this way, the perspectivity σ gives a one-one mapping from π onto π ′,
except that it is not defined on the line � in π where π cuts the plane through
C parallel to π ′; also, there are no points of π that map onto points of π ′ on
the line �′ where π ′ cuts the plane through C parallel to π . We use the fact that
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the ideal Points for a plane correspond to the directions of lines in the plane,
rather than actual points in the plane, to extend our definition of the map.

P

p

p
C

O

p

C

p

p O

So, first, let P be a point of π that lies on the line �; then the points O, C, P
are not collinear, since OC is not parallel to the plane π ′. Denote the position

vector
−→
OP by p. Let the plane through O, C and P meet the plane π ′ in a line,

and let p′ be a position vector based at O that is parallel to this line. Then we
specify that our (extended) map σ maps the line [p] through O onto the line
[p′] through O .

Similarly, let P ′ be a point of π ′ that lies on the line �′; then the points O,
C, P ′ are not collinear, since OC is not parallel to the plane π . Denote the

position vector
−−→
O P ′ by p′. Let the plane through O, C and P ′ meet the plane

π in a line, and let p be a position vector based at O that is parallel to this line.
Then we specify that our (further extended) map σ maps the line [p] through
O onto the line [p′] through O .

Finally, we specify that the extended map σ maps the line through O that is
parallel to the line of intersection of π and π ′ onto itself.

In this way, we have constructed a transformation that is a one-one mapping
of π ∪ {the ideal Points for π} onto π ′ ∪ {the ideal Points for π ′} associated
in a natural way with the given perspectivity σ , and we call it the associated
perspective transformation. This maps the family of Euclidean lines through
O onto itself, in other words RP

2 onto itself.
We now explain why we can think of this perspective transformation as a

projective transformation.
First, we consider a perspectivity in R

2 as this will prove useful later in our In our discussion we shall
omit discussion of ‘the
exceptional points’, for
simplicity.

discussion. So, let � and �′ be two lines in R
2 that do not pass through the

origin O in R
2, let L be the common point of the two lines, and let C( �= O)

P

P

C

O

L

be another point in R
2 such that OC is not parallel to either � or �′. Consider

any perspectivity σ , with centre some point C , say, that maps � ‘onto’ �′.
We are interested in the map τ that sends lines through O to lines through O

that is obtained from σ as follows. Let σ map the point P on � onto the point
P ′ on �′. Then we define τ(OP) = OP′.
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It is clear that τ(OL) = OL, because L is fixed by σ .
It is also clear that τ(OC) = OC, because if the line OC meets � at P and

L

e

P

P

c

k c

kc

C

O

the line �′ at P ′ then O, C, P and P ′ are collinear and so τ(OC) = OC.
We therefore choose to take as basis vectors in R

2 the vector e = −→
OL and

the vector c = −→
OC.

We now find the effect of the map τ on a line through the origin O . We shall

t e+(1–t)kc

s e+(1–s)k c

k c

kc

C

P

P

O

c

e

suppose that the line OC meets the line � at the point with position vector kc
and the line �′ at the point with position vector k′c. Any point P on the line �

then has position vector te + (1 − t)kc, for some real number t , and any point
P ′ on the line �′ has position vector se + (1 − s)k′c, for some real number s.

Next, the line OP consists of the points with coordinates u(e + mc) = ue +
muc for a fixed value of m and varying values of u. This gives two (equivalent)
expressions for the position of the point P , namely te+(1 − t)kc and ue+muc.
It follows that we must have

u = t and mu = (1 − t)k.

Dividing the second equation by the first, we get

m = 1 − t

t
k

so that
tm = k − kt,

which yields the formula

t = k

m + k
.

Similarly, the line OP′ consisting of points u′(e + m′c) = u′e + m′u′c, for a
fixed value of m′ and varying values of u′, meets the line �′ at the point P ′
where

s = k′

m′ + k′ .

Now, we have τ(OP) = OP′ if and only if the points C, P and P ′ are collinear;
that is, if and only if there is a real number r such that

r(te + (1 − t)kc − c) = se + (1 − s)k′c − c.

This is the case if and only if

u (e+mc)

u (e+m c)

e

C

O

c

P

P

rt = s and r((1 − t)k − 1) = (1 − s)k′ − 1.

We can eliminate r by dividing the second equation by the first equation, so
obtaining

(1 − t)k − 1

t
= (1 − s)k′ − 1

s
.

Then, if we substitute t = k
m+k and s = k′

m′+k′ into this equation, after some
manipulation we obtain the remarkable result that

m′ = m
(k − 1)k′

(k′ − 1)k
.
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It follows that, in terms of the basis elements e and c, the map τ of the family
of lines through O to itself given by[(

1
m

)]
�→
[(

1
m′
)]

can be represented by the matrix(
1 0

0 (k−1)k′
(k′−1)k

)
.

For convenience, we write this matrix in the form(
1 0
0 r

)
,

where r is a fixed number that depends only on the geometry of the two lines
� and �′ and on our choice of the point C . Furthermore, r �= 0 since k �= 1
(for k = 1 implies that C lies on π ) and k′ �= 0 (for k′ = 0 implies that O lies
on π ′).

Now we consider the situation in R
3, in relation to RP

2. Consider an arbi-
trary perspectivity σ , with centre some point C, say, that maps a plane π ‘onto’
a plane π ′, with neither O nor C lying on π or π ′. As before, we shall suppose
that the line OC meets the plane π at a point with position vector kc and the
plane π ′ at a point with position vector k′c.

Once again, we are interested in the map τ that sends lines (in R
3) through

O to lines through O that is obtained from σ as follows. Let σ map a point P
in π to a point P ′ in π ′. Then we define τ(OP) = OP′.

Let E1 and E2 be any two points on the common line � of the two planes.

E1

p

E2

C

O

P

Then, clearly, τ(OE1) = OE1 and τ(OE2) = OE2 because every point of � is
fixed by σ .

It is also clear that τ(OC) = OC, because if the line OC meets the plane
π at Q and the plane π ′ at Q′, then O, C, Q and Q′ are collinear, and so
τ(OC) = OC.

We therefore now take as basis vectors in R
3 the vectors e1 = −−→

OE1,
e2 = −−→

OE2, and c = −→
OC.

We now find the effect of τ on a line in R
3 through the origin O . We can

E1

E2

O

C
c

kc

k c

P E

P

simplify our task by observing that the lines OC, OP and OP′ all lie in a plane,
π ′′ say; let this plane meet the line common to the given planes π and π ′ at a

point E . We then define e = −→
OE.

We can now apply our earlier discussion of the planar case to the restriction
of the mapping τ to the plane π ′′. If we denote the lines OP and OP′ by the
parametrizations

OP = u(e + mc) = ue + umc, where m is fixed and u varies,

OP′ = u′(e + m′c) = u′e + u′m′c, where m′ is fixed and u′ varies,

it follows from our earlier discussion that m′ can be expressed in the form
rm, where r is a fixed number that depends only on the geometry of the two
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planes π and π ′ and on our choice of the point C . Hence we can rewrite the
parametrization of OP′ as

OP′ = u′ (e + rmc) = u′e + u′rmc, where r , m are fixed and u′ varies.

Next, we can express the position vector e of the point E in the form

e = te1 + (1 − t)e2, for some number t .

Then we have that the mapping τ maps the line

OP = u(te1 + (1 − t)e2 + mc) = ute1 + u(1 − t)e2 + umc

onto the line

OP′ = u′(te1 + (1 − t)e2 + rmc) = u′te1 + u′(1 − t)e2 + u′rmc.

It follows analogously to the two-dimensional situation that, in terms of the
basis elements e1, e2, c, the mapping τ of the family of lines in R

3 to itself
can be represented by the matrix

Notice that this maps the
line represented by the
points [t , 1 − t , 0] to itself
pointwise, as it should.

⎛
⎝ 1 0 0

0 1 0
0 0 r

⎞
⎠,

where the (non-zero) constant r depends only on the position of the planes π

and π ′. Since this is an invertible 3 × 3 matrix, this is our required description
of the perspective transformation as a projective transformation.

We now go the other way round, and obtain a projective transformation as
a sequence of three perspective transformations. We have a lot of freedom,
because we can choose the centres of perspectivities and the planes.

Suppose we are given a projective transformation τ and two embedding
planes π and π ′. Let [a], [b], [c], [d] be any four non-collinear Points, and
[a′], [b′], [c′], [d′] be any other four non-collinear Points; we can represent
these Points by (Euclidean) points A, B, C, D in π and A′, B ′, C ′, D′ in π ′,
respectively.

We will use in our discussion the existence and uniqueness parts of the Fun- Subsection 3.3.3,
Theorem 3damental Theorem of Projective Geometry: namely, that there is one and only

one projective transformation mapping four non-collinear Points to any other
four non-collinear Points. This means that if we can find a composite of three
perspective transformations that maps [a], [b], [c], [d] to [a′], [b′], [c′], [d′],
respectively, then this composite must be a projective transformation (by the

C

D

G

FB

E

A

existence part) and it must equal the given projective transformation τ (by the
uniqueness part).

We now exhibit a sequence of three perspectivities the composite of which
maps A, B, C, D in π to A′, B ′, C ′, D′ in π ′. In our discussion it is convenient
to let AB and CD meet at E, AC and BD meet at F , and AD and BC meet
at G, with analogous definitions of E ′, F ′ and G ′. (You may find the figures



Projective Transformations 171

below helpful to follow through the argument; though, for simplicity, we have
omitted the initial plane π and the points F ′, F ′′ and F ′′′.)
1. The first perspectivity is from the plane π to a plane π ′′ that passes through

A′. The centre of this perspectivity is an arbitrary point P1 on the line AA′
(if A = A′, then P1 can be chosen to lie anywhere not on π or π ′). This A �→ A′
perspectivity maps A to A′ and B, C, D, E, F, G to B ′′, C ′′, D′′, E ′′, F ′′, G ′′,

B �→ B′′, C �→ C ′′,
D �→ D′′, E �→ E ′′,
F �→ F ′′, G �→ G′′

say, respectively. We can assume, by suitably varying π ′′, that B ′B ′′ and
E ′E ′′ are not parallel.

G

G

G

C

C

EBA

B

E

P2

D
D

D

2. Now, by the definition of E ′ the points A′, B ′, E ′ lie on a line through
A′, and since the points A, B, E are collinear the points A′, B ′′, E ′′ lie
on a line through A′; so these five points lie in a plane, and because the A′ fixed;

B′′ �→ B′, E ′′ �→ E ′lines B ′B ′′ and E ′E ′′ are not parallel they meet in a point, P2 say. We then

C ′′ �→ C ′′′, D′′ �→ D′′′,
F ′′ �→ F ′′′, G′′ �→ G′′′

pick a plane π ′′′ through the line A′ B ′E ′ and map the plane π ′′ onto π ′′′
by the perspectivity with centre P2. This sends A′, B ′′, E ′′ to A′, B ′, E ′,
respectively, and the points C ′′, D′′, F ′′, G ′′ to, say, C ′′′, D′′′, F ′′′, G ′′′,
respectively. As before, we can assume that D′D′′′ and G ′G ′′′ are not
parallel.

3. Now, since A, D, G are collinear, the points A′, D′, G ′ lie on a line through Refer here to the figure
below.A′ and the points A′, D′′′, G ′′′ lie on a line through A′, so these five points

lie in a plane; and because the lines D′ D′′′ and G ′G ′′′ are not parallel they A′, B′, E ′ fixed

meet in a point, P3 say. We then map the plane π ′′′ onto the plane π ′ by

D′′′ �→ D′, G′′′ �→ G′the perspectivity with centre P3. This map sends A′, B ′, D′′′, E ′′′, G ′′′ to
A′, B ′, D′, E ′, G ′, respectively.

This third perspectivity sends the line B ′G ′′′ to the line B ′G ′ and the line
D′′′E ′ to the line D′E ′, so it maps the point C ′′′ to the point C ′.

Thus the composite of these three perspectivities maps the points
A, B, C , D in π to A′, B ′, C ′, D′ in π ′, as required.
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G

P3

D
C

C

B

E

A

D

G

p

p

Theorem 4 Perspectivity Theorem
Every projective transformation can be expressed as the composite of three
perspective transformations.

3.4 Using the Fundamental Theorem of Projective Geometry

In Section 3.2 we described how an embedding plane π can be used to rep-
resent projective space RP

2. The Points of RP
2 are represented by Euclidean

points in π and the Lines of RP
2 are represented by Euclidean lines in π .

In general, any Euclidean figure in an embedding plane corresponds to The Euclidean figure may
have some ideal Points
attached to it.

a projective figure in RP
2, and visa versa. This correspondence enables us

to compare Euclidean theorems about a figure in an embedding plane with
projective theorems about the corresponding projective figure. Provided that
the theorems are concerned exclusively with projective properties, such as
collinearity and incidence, then a Euclidean theorem will hold if and only if
the corresponding projective theorem holds.

3.4.1 Desargues’ Theorem and Pappus’ Theorem
The advantage of interpreting a Euclidean theorem as a projective theorem
in this way is that we can often obtain a much simpler proof of the theorem We introduced Desargues’

Theorem in Subsection
3.1.3.

than would be possible using Euclidean geometry directly. We illustrate this
by using projective geometry to prove the theorem of Desargues.
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Theorem 1 Desargues’ Theorem
Let �ABC and �A′ B ′C ′ be triangles in R

2 such that the lines AA′, BB′ and
CC′ meet at a point U . Let BC and B ′C ′ meet at P , CA and C ′ A′ meet at
Q, and AB and A′B ′ meet at R. Then P , Q and R are collinear.

U

A

C

Q

C'

B

R

P

B'

A'

Proof Because this theorem is concerned exclusively with the projective
properties of collinearity and incidence we can interpret it as a projective the-
orem in RP

2. Moreover, by the Fundamental Theorem of Projective Geometry
we know that any configuration of the theorem is projective-congruent to a con-
figuration of the theorem in which A = [1, 0, 0], B = [0, 1, 0], C = [0, 0, 1]
and U = [1, 1, 1]. If we can prove the theorem in this special case then we
can use the fact that projective-congruence preserves projective properties to
deduce that the theorem holds in general.

To prove the special case we use the algebraic techniques described in
Section 3.2. First observe that the Line AU passes through the Points [1, 0, 0]
and [1, 1, 1], and therefore has equation y = z. Since A′ is a Point on AU , it
must have homogeneous coordinates of the form [a, b, b], for some real num-
bers a and b. Now, b �= 0, since A �= A′; so we may write the homogeneous For [a, 0, 0] = [1, 0, 0].
coordinates of A′ in the form [p, 1, 1] (where p = a/b).

Similarly, the homogeneous coordinates of the Points B ′ and C ′ may be We omit the details of the
calculations.written in the form [1, q, 1] and [1, 1, r ], respectively, for some real numbers q

and r .
We now find the Point P where BC and B ′C ′ intersect. The Line BC has

equation x = 0. Since the Line B ′C ′ passes through the Points B ′ = [1, q, 1]
and C ′ = [1, 1, r ], it must have equation∣∣∣∣∣∣

x y z
1 q 1
1 1 r

∣∣∣∣∣∣ = 0,
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which we may rewrite in the form

(qr − 1)x − (r − 1)y + (1 − q)z = 0.

It follows that at the Point P of intersection of the Lines BC and B ′C ′ we
must have x = 0 and (r−1)y = (1−q)z, so that P has homogeneous coordinates
[0, 1 − q, r − 1].

Similarly, the Points Q and R have homogeneous coordinates [1 − p, We omit the details of the
calculations.0, r − 1] and [1 − p, q − 1, 0], respectively.

Now, the Points P , Q and R are collinear if∣∣∣∣∣∣
0 1 − q r − 1

1 − p 0 r − 1
1 − p q − 1 0

∣∣∣∣∣∣ = 0.

But ∣∣∣∣∣∣
0 1 − q r − 1

1 − p 0 r − 1
1 − p q − 1 0

∣∣∣∣∣∣
= −(1 − q)

∣∣∣∣1 − p r − 1
1 − p 0

∣∣∣∣+ (r − 1)

∣∣∣∣1 − p 0
1 − p q − 1

∣∣∣∣
= −(1 − q)(1 − p)(1 − r) + (r − 1)(1 − p)(q − 1)

= 0.

It follows that P , Q and R are collinear, as asserted. The general result now
holds, by projective-congruence. �

When using the Fundamental Theorem to simplify proofs of results in pro-
jective geometry, we do not usually refer to projective-congruence. Instead, so
long as the properties involved are projective properties, we content ourselves
with an initial remark of the type: ‘By the Fundamental Theorem of Projective
Geometry, we may choose the four Points. . ., no three of which are collinear,
to be the triangle of reference and the unit Point; that is, to have homogeneous
coordinates [1, 0, 0], [0, 1, 0], [0, 0, 1] and [1, 1, 1], respectively’.

C'

A'

B'

A

B
U

R

P C

Q

Problem 1 Let �ABC be a triangle in R
2, and let U be any point of R

2

that is not collinear with any two of the points A, B and C . Let the lines
AU , BU and CU meet the lines BC , C A and AB at the points A′, B ′
and C ′, respectively. Next, let the lines BC and B ′C ′ meet at P , AC and
A′C ′ meet at Q, and AB and A′B ′ meet at R. Prove that P , Q and R are
collinear.
Hint: Let A, B, C be the vertices of the triangle of reference, and let U

be the unit Point. Then determine the homogeneous coordinates
of the Points A′, B ′ and C ′.
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Next we use the Fundamental Theorem of Projective Geometry to prove
Pappus’ Theorem.

Theorem 2 Pappus’ Theorem
Let A, B and C be three points on a line in R

2, and let A′, B ′ and C ′ be three
This theorem is named
after Pappus, a Greek
mathematician who
discovered it in the 3rd
century AD.

points on another line. Let BC ′ and B ′C meet at P , C A′ and C ′ A meet at
Q, and AB ′ and A′B meet at R. Then P , Q, R are collinear.

A

A'

B'
C'

R Q P

B

C

Proof We interpret the theorem as a projective theorem, so: by the Funda-

A' [0,1,0]
B'

C'

R [1,1,1] Q P [0,0,1]

A [1,0,0]
B

C

mental Theorem of Projective Geometry we may choose the four Points A,
A′, P , R, no three of which are collinear, to be the triangle of reference and
the unit Point; that is, to have homogeneous coordinates [1, 0, 0], [0, 1, 0],
[0, 0, 1 ] and [1, 1, 1], respectively.

First observe that the Line AR passes through the Points [1, 0, 0] and
[1, 1, 1], and must therefore have equation y = z. Since B ′ is a Point on
AR, it must have homogeneous coordinates of the form [a, b, b] for some real
numbers a and b. Now, b �= 0 since A �= B ′, so we may write the homogeneous
coordinates of B ′ in the form [r , 1, 1] (where r = a/b).

Similarly, the Point B lies on the Line x = z through the Points A′ =
[0, 1, 0] and R = [1, 1, 1], so it must have homogeneous coordinates of the
form [1, s, 1].

Next we find the Point C where the Line AB intersects the Line B ′ P . Since
the Line AB passes through the Points A = [1, 0, 0] and B = [1, s, 1], it must
have equation y = sz. Also since the Line B ′ P passes through the Points
B ′ = [r , 1, 1] and P = [0, 0, 1] it must have equation x = r y . At the Point C
where AB meets B ′ P we have y = sz and x = r y, so C = [rs, s, 1].

Similarly, C ′ is the point where the Line BP intersects the Line A′B ′.
Since B = [1, s, 1] and P = [0, 0, 1], BP has equation y = sx; and, since
A′ = [0, 1, 0] and B ′ = [r , 1, 1], A′ B ′ has equation x = rz. It follows that
C ′ = [r , rs, 1].

Finally we find the point Q where AC ′ intersects A′C . Since the Line AC ′
passes through the Points A = [1, 0, 0] and C ′ = [r , rs, 1] it must have
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equation y = rsz. Also the Line A′C passes through the Points A′ = [0, 1, 0]
and C = [rs, s, 1] so it must have equation x = rsz. At the Point Q where
AC ′ intersects A′C we have y = rsz and x = rsz, so Q = [rs, rs, 1].

To complete the proof we simply observe that the Points R = [l, 1, 1], A fortunate choice of
Points for the triangle of
reference and unit Point
meant that we did not
have to use the
determinant criterion for
collinearity at the final
stage of the argument.

Q = [rs, rs, 1] and P = [0, 0, 1] all lie on the Line x = y. It follows that P , Q
and R are collinear. �

Although we can sometimes simplify the proof of a Euclidean theorem by
using projective geometry, there is another more subtle reason for interpreting
a Euclidean theorem as a projective theorem. By doing so we can often avoid
having to make special provision for exceptional cases, such as when two lines
are parallel. In projective geometry, Lines which correspond to a pair of paral-
lel lines in an embedding plane actually meet and are therefore no different to
any other Lines.

As an example, consider the diagram in the margin. This illustrates the sit-

A

P

Q

B
C

C'
B'

A'

to R

uation that occurs in Pappus’ Theorem when the Point of intersection R of
A′B and AB ′ is an ideal Point for the embedding plane. The above proof of
Pappus’ Theorem is able to cope with this situation because it uses arguments
from RP

2! Our interpretation of the theorem on an embedding plane in this
situation is that the Points P and Q must be collinear with the ideal Point R at
which A′B and AB ′ meet. That is, P Q must be parallel to both A′ B and AB ′.

Problem 2 Give a Euclidean interpretation of Desargues’ Theorem on
an embedding plane π in the case where Q is an ideal Point for π .

3.4.2 Duality
Recall that two key projective properties that we have met so far have a certain
symmetry between them.

unique
Line

unique
Point

Collinearity Property Incidence Property

Any two distinct Points Any two distinct Lines
lie on a unique Line. meet in a unique Point.

We can obtain one property from the other simply by interchanging the
words ‘Point’ and ‘Line’, and making whatever other changes are needed to
ensure that the sentence makes sense. We say that this interchanging process
dualizes one statement into the other, and that each statement is the dual of the
other.

For example, ‘a family of Points on a Line’ becomes ‘a family of Lines
through a Point’ under dualization. Similarly, ‘a triangle’ or ‘a family of three
non-collinear Points and the three Lines joining them’ dualizes to ‘a family of
three non-concurrent Lines and the three Points where they meet’, which is
again a triangle. Since a triangle is thus dual to a triangle, we say that triangles
are self-dual figures.
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dual

self-dual

The dualization process is particularly interesting when applied to theorems.
We shall illustrate this in the context of Pappus’ Theorem. In order to do this, it
is helpful to rephrase Pappus’ Theorem using the term hexagon. As you would
expect, a hexagon in RP

2 consists of six Points joined by six Lines. The figure
below illustrates (Euclidean) hexagons in an embedding plane; the correspond-
ing hexagons in RP

2 are the corresponding six Points and six Lines — that we
model as six lines and six planes in R

3.

We can now rephrase Pappus’ Theorem in the following form.

Theorem 3 Pappus’ Theorem (rephrased)
Let the vertices A, B ′, C , A′, B and C ′ of a hexagon lie alternately on two You should compare this

formulation with that in
Subsection 3.4.1.

different Lines. Then the Points of intersection of opposite sides B ′C and
BC ′, C A′ and C ′ A, AB ′ and A′B, are collinear.

A

A' B' C'

B

C

If we dualize this theorem, we obtain the following theorem.

Theorem 4 Brianchon’s Theorem
Let the sides AB ′, B ′C , C A′, A′ B, BC ′, C ′ A of a hexagon pass alternately

Charles J. Brianchon
(1785−1864) was one of
many distinguished
French geometers who
studied under Gaspard
Monge (1746−1818).

through two (different) Points P and Q in RP
2. Then the Lines joining

opposite vertices A and A′, B and B ′, C and C ′, are concurrent.
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P

Q

C'

C

B'

A'

A

B

Problem 3 Prove Brianchon’s Theorem.
Hint: Let P , C , Q, C ′ be the Points [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1],

respectively.

It turns out that the dual of any true statement concerning Points, Lines and We do not prove this
assertion, as it would take
us beyond the scope of
this book.

their projective properties remains true after dualization; that is, if we dualize
any theorem in projective geometry, then the statement that we obtain is itself
a theorem.

Problem 4 Earlier you saw that ‘three Points [a, b, c], [d, e, f ], Subsection 3.2.2, Strategy

[g, h, k] are collinear if and only if

∣∣∣∣∣∣
a b c
d e f
g h k

∣∣∣∣∣∣ = 0′. Write down the

dual result of this statement.

We end this subsection by forming the dual of Desargues’ Theorem, as
follows.

Desargues’ Theorem Dual Theorem

Let two triangles be such that the
Lines joining corresponding
vertices meet at a Point.

Let two triangles be such that the
Points through which correspond-
ing sides pass are collinear.

Then the Points of intersection of
the corresponding sides of the two
triangles are collinear.

Then the Lines through the corre-
sponding vertices of the two
triangles are concurrent.

Note that the dual theorem is simply the converse result for Desargues’ The-
orem! Thus the Principle of Duality enables us to deduce that the converse of
Desargues’ Theorem holds.
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3.5 Cross-Ratio

3.5.1 Another Projective Property
Earlier, in Subsection 2.2.1, we noted that ratio of lengths along a line is an

P
R

Q

affine property. Thus, in affine geometry, if we are given two points P and
Q on a line �, then we can locate the position of a third point R along � by
specifying the ratio P R : RQ. In particular, it is possible to talk about the
point midway between P and Q.

In projective geometry it is meaningless to talk about the Point midway
between two other Points. In one embedding plane π a Point R may appear
to be midway between the Points P and Q, whereas in another embedding
plane π ′ the ratio P R : RQ may be very different.

P

P

R

Q

R Q

O

π

π′

This ambiguity arises from the fact that perspectivities do not preserve the
ratio of lengths along a line, so: ratio of lengths along a line is not a projective
property.

O

P
Q

Q

P

π′

πR

R

In some embedding planes, such as the plane π ′ illustrated in the margin,
the Point R does not even appear to lie between P and Q, so betweenness is
not a projective property either!

Fortunately, there is a quantity, known as cross-ratio, that is preserved
under all projective transformations. To see how this is defined, consider four
collinear Points A = [a], B = [b], C = [c], D = [d] in RP

2. We can express
the fact that A, B, C , D are collinear by writing c and d as linear combinations
of a and b. Thus we can write

c = αa + βb and d = γ a + δb,

for suitable real numbers α, β, γ , δ.
The cross-ratio is then defined to be the ratio of the ratios β

α
and δ

γ
.
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Definition Let A, B, C , D be four collinear Points in RP
2 represented by

position vectors a, b, c, d, and let

c = αa + βb and d = γ a + δb.

Then the cross-ratio of A, B, C , D is Equivalently, we can write
(ABCD) = βγ

αδ .
(ABC D) = β

α

/
δ

γ
.

Of course, before we can be sure that this definition makes sense, we must
ensure that it does not depend on the particular choice of position vectors a,
b, c, d that are used to represent the Points A, B, C , D. We shall check this
shortly, but first we illustrate how cross-ratios are calculated.

Example 1 Let A = [1, 2, 3], B = [1, 1, 2], C = [3, 5, 8], D = [1, −1, 0] be
Points of RP

2. Calculate the cross-ratio (ABCD).

Solution First, we have to find real numbers α and β such that the following
vector equation holds: Note that we have not

verified that A, B, C , D
are collinear; but if they
were not, the equations for
α, β, γ , δ could not be
solved.

(3, 5, 8) = α(1, 2, 3) + β(1, 1, 2).

Comparing corresponding coordinates on both sides of this vector equation,
we deduce that

3 = α + β, 5 = 2α + β and 8 = 3α + 2β.

Solving these equations gives α = 2, β = 1.
Next, we find real numbers γ and δ such that the vector equation

(1, −1, 0) = γ (1, 2, 3) + δ(1, 1, 2)

holds. Comparing corresponding coordinates on both sides of this vector
equation, we deduce that

1 = γ + δ, −1 = 2γ + δ and 0 = 3γ + 2δ.

Solving these equations gives γ = −2, δ = 3.
It follows from the definition of cross-ratio that

(ABC D) = β

α

/
δ

γ
= 1

2

/
3

−2
= −1

3
.

Problem 1 Calculate the cross-ratio (ABCD) for each of the following
sets of collinear Points in RP

2.

(a) A = [1, −1, −1], B = [1, 3, −2], C = [3, 5, −5], D = [1, −5, 0]
(b) A = [1, 2, 3], B = [2, 2, 4], C = [−3, −5, −8], D = [3, −3, 0]
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You may have noticed that the Points A, B, C , D in Problem l (b) are the
same as those which appear in Example 1. The only difference is that different
homogeneous coordinates are used to represent the Points in each case. As
we mentioned after the definition of cross-ratio, the value of the cross-ratio
(ABCD) does not depend on the homogeneous coordinates that are used to
represent A, B, C , D, so it is not surprising that the cross-ratio turned out to
have the value − 1

3 in both cases.

Theorem 1 The cross-ratio (ABCD) is independent of the homogeneous
coordinates that are used to represent the collinear Points A, B, C , D.

Proof Suppose that A = [a], B = [b], C = [c], D = [d], and let
a=aa'

b=bb' c= cc'
d=dd'

A
B C

D
a' b' c'

d'

c = αa + βb and d = γ a + δb. (1)

Now suppose that A = [a′], B = [b′], C = [c′], D = [d′]. Then

a = aa′, b = bb′, c = cc′, d = dd′,

where a, b, c, d are some non-zero real numbers.
By substituting these expressions into the equations (1), we obtain

cc′ = αaa′ + βbb′ and dd′ = γ aa′ + δbb′,

which we can rewrite in the form

c′ = α′a′ + β ′b′ and d′ = γ ′a′ + δ′b′, (2)

where α′ = αa/c, β ′ = βb/c, γ ′ = γ a/d, δ′ = δb/d.
We can now check that equations (1) and (2) yield the same value for the

cross-ratio:

β ′

α′

/
δ′

γ ′ = βb/c

αa/c

/
δb/d

γ a/d

= βb

αa

/
δb

γ a

= β

α

/
δ

γ
.

So, as expected, the cross-ratio is independent of the choice of homogeneous
coordinates. �

The next problem illustrates that although the value of the cross-ratio
(ABCD) is independent of the choice of homogeneous coordinates that are
used to represent A, B, C, D, the value of the cross-ratio does depend on the
order in which the Points A, B, C , D appear.

Problem 2 Calculate the cross-ratios (BACD) and (ACBD) for the four
Points used in Problem l(a).



182 3: Projective Geometry: Lines

When answering Problem 2 you may have noticed that (BACD) is the recip-
rocal of the value which we obtained for (ABCD) in Problem l(a). Also,
(ACBD) is equal to 1 − (ABCD). The next result shows that this is not simply
chance! Note the way in which the

Points are changed from
their original ordering in
the various cross-ratios.
We take the reciprocal
when swapping the first or
last pair of Points, and we
subtract from 1 when
swapping the inner or
outer pair of Points.

Theorem 2 Let A, B, C , D be four distinct collinear Points in RP
2, and

let (ABC D) = k. Then

(B AC D) = (AB DC) = 1/k,

(AC B D) = (DBC A) = 1 − k.

Proof Let a, b, c, d be any position vectors in R
3 in the directions of the

Points A, B, C , D, respectively, of RP
2, and let α, β, γ , δ be real numbers such

that

c = αa + βb and d = γ a + δb.

Then, by definition of cross-ratio, the cross-ratio (ABC D) of the four Points
A, B, C , D is the quantity

(ABCD) = β

α

/
δ

γ
= βγ

αδ
= k, say.

To determine (BACD), we interchange the roles of A and B in the evaluation
of ABCD above; it follows that, since

c = βb + αa and d = δd + γ a,

the cross-ratio (BACD) is the quantity

(BACD) = α

β

/
γ

δ
= αδ

βγ
= 1

k
.

To determine (ABDC), we interchange the roles of C and D in the evaluation
of (ABCD) above; it follows that, since

d = γ a + δ b and c = αa + βb,

the cross-ratio (ABDC) is the quantity

This completes the first
part of the proof.

(ABDC) = δ

γ

/
β

α
= αδ

βγ
= 1

k
.

To evaluate (ACBD), we use the equations

c = αa + βb and d = γ a + δb (3)

to express b and d in terms of a and c, as follows.
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From the first equation in (3) we have β cannot be zero, for if it
were then we would have
c = αa; this cannot happen
since A and C are distinct
Points.

b = (c − αa)/β

= (−α/β)a + (1/β)c. (4)

If we then substitute this expression for b into the second equation in (3),
we obtain

d = γ a + δ((−α/β)a + (1/β)c)

= ((βγ − αδ)/β)a + (δ/β)c. (5)

It follows from the coefficients of a and c in equations (4) and (5) that

(AC B D) = 1/β

−α/β

/
δ/β

(βγ − αδ)/β

= −
(

βγ − αδ

αδ

)

= 1 − βγ

αδ

= 1 − k.

Finally, we can use the previous parts of the proof to evaluate (DBC A), as This avoids the algebra
involved in expressing c
and a in terms of d and b.

follows:

(DBCA) = 1/(BDCA) (swap first two Points)

= (BDAC) (swap last two Points)

= 1 − (BADC) (swap middle two Points)

= 1 − 1/(ABDC) (swap first two Points)

= 1 − (ABCD) (swap last two Points)

= 1 − k. �

Earlier, we showed that the cross-ratio (ABC D) of the four collinear Points Example 1

A = [1, 2, 3], B = [1, 1, 2], C = [3, 5, 8], D = [1, –1, 0] in RP
2 is − 1

3 .
Theorem 2 enables us to deduce that

(BACD) = −3, (ABDC)= −3,

(ACBD) = 4
3 , (DBCA)= 4

3 .

Problem 3 Let the Points A = [1, −1, −1], B = [1, 3, −2], C =
[3, 5, −5], D = [1, −5, 0] be collinear Points of RP

2. By applying
Theorem 2 to the solution of Problem l(a), determine the values of the
cross-ratios (ABDC), (DBCA) and (ACBD).

The next theorem confirms that cross-ratio is preserved by projective
transformations.
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Theorem 3 Let t be a projective transformation, and let A, B, C , D be any
four collinear Points in RP

2. If A′ = t(A), B ′ = t(B), C ′ = t(C), D′ =
t(D), then

(ABCD) = (A′B ′C ′ D′).

Proof Let t be the projective transformation t : [x] �→ [Ax], where A is an
invertible 3 × 3 matrix. If A = [a], B = [b], C = [c], D = [d], and

a′ = Aa, b′ = Ab, c′ = Ac, d′ = Ad,

then A′ = [a′], B ′ = [b′], C ′ = [c′], D′ = [d′].
Since A, B, C , D are collinear, we can write

c = αa + βb and d = γ a + δb, (6)

so

(ABC D) = β

α

/
δ

γ
.

Multiplying each equation in (6) through by A, we obtain

c′ = αa′ + βb′ and d′ = γ a′ + δb′,

so that

(A′ B ′C ′ D′) = β

α

/
δ

γ
.

It follows that

(A′ B ′C ′D′) = (ABCD). �

We now use Theorem 3 to prove that if four distinct Points on a Line are in
perspective with four distinct Points on another Line, then the cross-ratios of
the four Points on each Line are equal.

A B
C

U

D

D'C'B'A'

Theorem 4 Let A, B, C , D be four distinct Points on a Line, and
let A′, B ′, C ′, D′ be four distinct Points on another Line such that
AA′, B B ′, CC ′, DD′ all meet at a Point U . Then

(ABCD) = (A′B ′C ′ D′).

Proof By the Fundamental Theorem of Projective Geometry, there is a
unique projective transformation t which maps B to B ′, C to C ′, B ′ to B,
and C ′ to C . We shall show that t(A) = A′ and t(D) = D′, and hence by
Theorem 3 it follows that (ABCD) = (A′ B ′C ′ D′).

First observe that the composite t ◦ t fixes the Points B, C , B ′ and C ′. By
the Fundamental Theorem of Projective Geometry, the only projective trans-
formation which does this is the identity transformation, so t ◦ t = i and
t = t−1.
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Next observe that t maps the Line BC onto the Line B ′C ′, and vice versa;

A

X

T

U

B

R

S

C
D

D'C'B'A'

so the Point T at which BC and B ′C ′ intersect must be fixed by t . Also, t maps
the Lines B B ′ and CC ′ onto themselves, so their Point of intersection U must
be fixed by t .

Now let X be the image of A under t . Then X lies on B ′C ′. We want to
show that X = A′.

Suppose that X �= A′; then AX cannot pass through U so it must intersect
B B ′ at R and CC ′ at S, where R, S and U are distinct Points.

Since t is self-inverse, it maps X back to A and therefore maps AX onto
itself. But this implies that t fixes the four Points R, S, T, U; so by the Funda-
mental Theorem of Projective Geometry t must be the identity transformation.
This is a contradiction with the hypothesis that the Lines ABCD and A′ B ′C ′D′
are different. It follows that we must conclude that X = A′, that is, t(A) = A′.
A similar argument shows that t(D) = D′.

Finally, it follows by Theorem 3 that (ABCD) = (A′ B ′C ′ D′), as
required. �

In affine geometry, if we are given two points A and B, then the ratio
AC/C B uniquely determines a third point C on the line AB. We now explore
the analogous result for projective geometry, namely that if we are given
any three collinear Points A, B, C in RP

2, then the value of the cross-ratio
(ABC D) uniquely determines a fourth Point D.

Theorem 5 Unique Fourth Point Theorem
Let A, B, C , X , Y be collinear Points in RP

2 such that

(ABC X) = (ABCY ).

Then X = Y .

Proof Let A = [a], B = [b], C = [c], X = [x], Y = [y]. Since A, B, C , X , Y
are collinear, it follows that there are real numbers α, β, γ , δ, λ, μ such that

c = αa + βb, x = γ a + δb and y = λa + μb. (7)

Then

(ABC X) = βγ

αδ
and (ABCY ) = βλ

αμ
.

Since (ABC X) = (ABCY ), it follows that This is the hypothesis of
the theorem.

γ

δ
= λ

μ
,

so λ = γμ/δ. If we substitute this value of λ into the expression for y in
equation (7), we obtain

y = (γμ/δ)a + μb = (μ/δ)(γ a + δb) = (μ/δ)x.

Since y is a scalar multiple of x, it follows that X = Y , as required. �
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In Theorem 4 we showed that the cross-ratios (ABCD) and (A′ B ′C ′ D′) are

A

B

E F G

C

D

equal if the Points A′, B ′, C ′, D′ are in perspective with the Points A, B, C , D.
Our next result is a partial converse of this result.

Theorem 6 Let A, B, C , D and A, E , F , G be two sets of collinear Points
(on different Lines in RP

2) such that the cross-ratios (ABCD) and (AEFG)

are equal. Then the Lines BE, CF and DG are concurrent.

Proof Let P be the Point at which the Lines BE and CF meet, and let X be

A

B

E F

P

G

C

X
Dthe Point at which the Line PG meets the Line ABCD. Then the Points A, B, C

and X are in perspective from P with the Points A, E , F and G, so that

(ABCX) = (AEFG).

Since we know that (AEFG) = (ABCD), it follows that

(ABCX) = (ABCD).

By Theorem 5, we must therefore have X = D. Hence the Points A, B, C, D
and the Points A, E, F, G are in perspective from P . �

We can now use Theorem 6 together with the other properties of cross-ratio
to give a second proof of Pappus’ Theorem.

Theorem 7 Pappus’ Theorem
Let A, B and C be three Points on a Line in RP

2, and let A′, B ′ and C ′
You met this Theorem
earlier, in Subsection
3.4.1.be three Points on another Line. Let BC′ and B ′C meet at P , CA′ and C ′ A

meet at Q, and AB′ and A′B meet at R. Then P , Q and R are collinear.

A

B

B '

C'

A'

T

S
R

V

Q
P

C

Proof Let V be the Point of intersection of the two given Lines. Also let the
Lines BA′ and AC′ meet at the Point S, and the Lines BC ′ and CA′ meet at the
Point T .

Now, the Points V , A′, B ′, C ′ are in perspective from A with the Points B,
A′, R, S, so that

By Theorem 4(VA′B ′C ′) = (BA′RS). (8)
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Similarly, the Points V , A′, B ′, C ′ are in perspective from C with the Points
B, T , P , C ′, so that

(VA′ B ′C ′) = (BTPC′). (9)

It follows from equations (8) and (9) that

(BA′RS) = (BTPC′),

so that by Theorem 6 the Lines A′T , RP, SC′ are concurrent.
We may rephrase this statement as follows: the Line RP passes through the

Point where A′T meets SC′; that is, the Line RP passes through Q. In other
words, P , Q and R are collinear. �

3.5.2 Cross-Ratio on Embedding Planes
So far, we have calculated a given cross-ratio (ABCD) by applying the defini-

O

D
C

B
A

a
b

c
d

tion of cross-ratio directly to the Points A, B, C , D. However, it is sometimes
convenient to evaluate the cross-ratio by examining the representation of the
Points on some embedding plane.

Suppose that four collinear Points of RP
2 pierce an embedding plane π at

the points A, B, C , D with position vectors a, b, c, d, respectively.
According to the Section Formula, we can write c and d in the form See Appendix 2.

c = λa + (1 − λ)b and d = μa + (1 − μ)b,

where (1 − λ) : λ is the ratio AC : CB, and (1 − μ) : μ is the ratio AD : DB.
Then from the definition of cross-ratio

(ABCD) = 1 − λ

λ

/
1 − μ

μ
,

so

(ABCD) = AC

CB

/
AD

DB
. (10)

Example 2 In an embedding plane, the points A, B, C , D lie in order along
A

1
3

2

B

C
D

a line with the distances AB, BC, CD being 1 unit, 3 units and 2 units,
respectively. Determine the cross-ratios (ABCD), (BACD) and (ACBD).

Solution Using equation (10) and the sign convention for ratios, we have

(ABCD) = AC

CB

/
AD

DB
=
(

−4

3

) / (
−6

5

)
= 10

9
,

(BACD) = BC

CA

/
BD

DA
=
(

−3

4

) / (
−5

6

)
= 9

10
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and

(ACBD) = AB

BC

/
AD

DC
=
(

1

3

) / (
−6

2

)
= −1

9
.

Problem 4 The points A, B, C , D lie in order along a line with the
A

2
1

3

B
C

D

distances AB, BC, CD being 2 units, 1 unit and 3 units, respectively.
Determine the cross-ratios (ABCD) and (DBCA).

Sometimes one of the Points whose cross-ratio we are trying to find turns
out to be an ideal Point for the embedding plane. In such cases, formula
(10) cannot be used since some of the distances in the formula will not be
defined.

To be specific, suppose that the Points A, B, C , D are collinear, but that A is

unit vector a
representing A

O

D
C

B
b

c
d

an ideal Point for the embedding plane π , as shown in the margin. As before,
we can let b, c, d be the position vectors of the points B, C , D on π , but we
take a to be a unit vector along A. Then

c = −(C B)a + b and d = −(DB)a + b.

From the definition of cross-ratio, it follows that

(ABCD) = 1

−CB

/
1

−DB
= DB

CB
. (11)

We can now obtain the corresponding formulas for the cases where B, C
or D is an ideal Point, by applying Theorem 2. For example, if B is an ideal
Point, then

(ABCD) = 1

(BACD)
(swap first two terms)

= (BADC) (swap last two terms)

= CA

DA
by equation (11).

Problem 5 Use Theorem 2 To prove that:

(a) (ABCD) = AC
BC if D is an ideal Point;

(b) (ABCD) = BD
AD if C is an ideal Point.

We now summarize the various formulas for cross-ratio in the form of a
strategy, as follows.

Strategy To use an embedding plane to calculate the cross-ratio of four
collinear Points:
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1. if the four Points pierce the embedding plane at A, B, C , D, then

(ABCD) = AC

CB

/
AD

DB
;

2. if one of the Points is an ideal Point for the embedding plane, then

(ABCD) = DB

CB
if A is ideal,

(ABCD) = CA

DA
if B is ideal,

(ABCD) = BD

AD
if C is ideal,

(ABCD) = AC

BC
if D is ideal.

Example 3 Determine (ABCD) for the collinear points A, B, C , D illustrated

A

B

1

3 D

C

in the margin, where C is an ideal Point.
Solution Since C is an ideal Point, we have

(ABCD) = BD

AD
= 4

1
= 4.

Problem 6 Determine (ABCD) for the collinear points A, B, C , D A

D

3

2
C

B

illustrated in the margin, where B is an ideal Point.

3.5.3 An Application of Cross-Ratio
Earlier, we described how projective geometry can be used to obtain two- Subsection 3.1.1

dimensional representations of three-dimensional scenes. We now describe
how cross-ratios can be used to obtain information about a three-dimensional
scene from a two-dimensional representation of the scene. We do this in the
context of aerial photography.

For simplicity, consider an aerial camera that takes pictures on a flat film
behind its lens, L , of features on a flat piece of land in front of L . Since a point
on the ground lies on the same line through L as its image on the film, we can
regard the process of taking a photograph as a perspectivity centred at L .

Since collinearity is invariant under a perspectivity, the image of any line Section 3.3, Theorem 2

� on the ground is a line on the film. Moreover, the cross-ratio of any four
collinear points is invariant under a perspectivity, so the cross-ratio of any four Theorem 3

points on � must be equal to the cross-ratio of their images on the film.
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aerial
camera

perspective
image of
ground

flat
ground

L

Example 4 An aerial camera photographs a car travelling along a straight road
on flat ground towards a junction. Before the junction there are two warning
signs at distances of 4 km and 2 km from the junction. On the film the signs
are 1 cm and 3 cm from the junction, and the car is 3

7 cm from the junction. Strictly speaking, the car
is not in line with the two
signposts. Consequently,
the distances marked on
the photograph are
approximations measured
along the line of the
left-hand kerb of the road.

How far is the car from the junction on the ground?

car

2 km sign

2 km sign

aerial
photograph

3 cm

1 cm

4 km sign
4 km sign

ground
plan

cm3
7

Solution Let A and B denote the signs, C denote the car, and D denote the
cm3

7

B'

A'

C'

D'

1 cm

3 cm

junction, and let A′, B ′, C ′, D′ be their images on the film. Then

(A′ B ′C ′D′) = A′C ′

C ′B ′

/
A′ D′

D′ B ′

=
(

−18/7

4/7

)/(
−3

1

)

= 3

2
.
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Now let the car be n km from the junction. Then

n km

B

A

C

D

2 km

4 km

(ABCD) = AC

CB

/
AD

DB

=
(

−4 − n

2 − n

)/(
−4

2

)

= 4 − n

2(2 − n)
.

Since (ABCD) and (A′B ′C ′D′) must be equal, it follows that

4 − n

2(2 − n)
= 3

2
.

Hence

4 − n = 3(2 − n).

and so n = 1. That is, the car is 1 km from the junction.

aerial
photograph

6 cm

4 cm
1 cm

3 km sign

2 km sign

Problem 7 An aerial camera photographs a car travelling along a
straight road on flat ground towards a junction. Before the junction there
are two warning signs, at distances of 2 km and 3 km from the junction.
On the film the signs are 4 cm and 6 cm from the junction, and the car
is 1 cm from the junction. How far is the car from the junction on the
ground?

If two lines that are known to be parallel on the ground appear to meet on the
film, then the point of intersection on the film corresponds to the ideal Point

4 cm

2 cm

next station50 km

4 cm

where the ‘parallel lines meet’. We can therefore use the above technique even
when one of the Points is ideal, for we can use the second part of the strategy
in Subsection 3.5.2 to calculate the cross-ratio whenever one of the Points is
ideal.

Problem 8 An aerial camera photographs a train travelling between
two stations along a straight track on flat ground. The stations are 50 km
apart. When the film is inspected, the stations are 4 cm apart, the train
is midway between the stations, and the rails appear to meet (or vanish)
4 cm beyond the station towards which the train is travelling. How far
has the train to travel to the next station?
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3.6 Exercises

Section 3.2
1. (a) Write down numbers a, b, c and d such that

[1, a, b] =
[
− 1

2 , 3, 4
]

and [c, d, 2] = [3, 0, 1].

(b) Which of the following homogeneous coordinates represent the same
Point of RP

2 as [4, −8, 2]?

(i) [1, 4, −2] (ii)
[

1
4 , − 1

2 , 1
8

]
(iii)

[
− 1

2 , −2, 1
]

(iv) [−2, 4, −1] (v)
[
− 1

8 , − 1
2 , 1

4

]
2. Determine an equation for each of the following Lines in RP

2:
(a) the Line through the Points [1, 2, 3] and [3, 0, −2];
(b) the Line through the Points [1, −1, −1] and [2, 1, −3].

3. Determine whether each of the following sets of Points are collinear:
(a) [1, −1, 0], [1, 0, −1] and [2, −1, −1];
(b) [1, 0, 1], [0, 1, 2] and [1, 2, 3].

4. Determine the Point of intersection of each of the following pairs of Lines
in RP

2:
(a) the Lines with equations x − 2y + z = 0 and x − y − z = 0;
(b) the Lines with equations x + 2y + 5z = 0 and 3x − y + z = 0.

5. Determine the Point of RP
2 at which the Line through the Points [8, −1, 2]

and [1, −2, −1] meets the Line through the Points [0, 1, −1] and [2, 3, 1].
6. Determine the Point of RP

2 at which the Line through the Points [1, 2, 2]
and [2, 3, 3] meets the Line through the Points [0, 1, 2] and [0, 1, 3].

Section 3.3
In these exercises, you may find the following list of matrices and their inverses
useful.

A :

⎛
⎝ 2 1 0

−1 0 1
0 1 1

⎞
⎠

⎛
⎝−2 0 1

0 3 −2
1 −3 1

⎞
⎠
⎛
⎝ 0 3 −1

2 0 −1
0 0 1

⎞
⎠
⎛
⎝ 0 3 4

−1 3 2
3 −3 3

⎞
⎠

A−1 :

⎛
⎝ 1 1 −1

−1 −2 2
1 2 −1

⎞
⎠
⎛
⎝−1 −1 −1

− 2
3 −1 − 4

3
−1 −2 −2

⎞
⎠
⎛
⎜⎜⎝

0 1
2

1
2

1
3 0 1

3

0 0 1

⎞
⎟⎟⎠
⎛
⎝ 5 −7 −2

3 −4 − 4
3

−2 3 1

⎞
⎠

1. Determine which of the following transformations t of RP
2 are projective

transformations. For those that are projective transformations, write down
a matrix associated with t .
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(a) t : [x , y, z] �→ [2x , y + 3z, 1]
(b) t : [x , y, z] �→ [x , x − y + 3z, x + y]
(c) t : [x , y, z] �→ [2y, y − 4z, x]
(d) t : [x , y, z] �→ [x + y − z, y + 3z, x + 2y + 2z]

2. Determine the images of the Points [1, 2, 3], [0, 1, 0] and [1, −1, 1] under
the projective transformation t associated with the matrix

A =
⎛
⎝ 2 0 1

−1 1 0
0 1 1

⎞
⎠ .

3. Let

t1 : [x , y, z] �→ [2x + y, −x + z, y + z],
t2 : [x , y, z] �→ [x + y, 3x − z, 4y − 2z]

be projective transformations from RP
2 to RP

2.
(a) Write down matrices associated with each of t1 and t2.
(b) Determine formulas for t2 ◦ t1 and t2 ◦ t−1

1 .
4. Find the image of the Line x + 2y + 3z = 0 under the projective

transformation t1 defined in Exercise 3.
5. Determine matrices for the projective transformations which map the Points

[1, 0, 0], [0, 1, 0], [0, 0, 1] and [1, 1, 1] onto the following Points:
(a) [−2, 0, 1], [0, 1, −1], [−1, 2, −1] and [−1, 1, −1];
(b) [0, 1, 0], [1, 0, 0], [−1, −1, 1] and [2, 1, 1];
(c) [0, 1, −3], [1, 1, −1], [4, 2, 3] and [7, 4, 3].

6. Use the results of Exercise 5 to determine the projective transformations
that map:
(a) the Points

[−2, 0, 1], [0, 1, −1], [−1, 2, −1], [−1, 1, −1]
to the Points

[0, 1, 0], [1, 0, 0], [−1, −1, 1], [2, 1, 1],
respectively;

(b) the Points
[0, 1, 0], [1, 0, 0], [−1, −1, 1], [2, 1, 1]

to the Points

[0, 1, −3], [1, 1, −1], [4, 2, 3], [7, 4, 3],
respectively;

(c) the Points
[0, 1, −3], [1, 1, −1], [4, 2, 3], [7, 4, 3]

to the Points

[−2, 0, 1], [0, 1, −1], [−1, 2, −1], [−1, 1, −1],
respectively.
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Section 3.4
1. For which of the following configurations of Points A, B, C and D in

RP
2 is there a projective transformation sending A, B, C to the triangle of

reference and D to the unit Point?

B B

C

C
D

D

A

A

2. Let �ABC be a triangle in R
2, and let U be any point of R

2 that is not
collinear with any two of the points A, B, C. Let the Lines BC and AU meet
at P, CA and BU meet at Q, and AB and CU meet at R. Prove that P, Q, R
cannot be collinear.

Section 3.5
1. For each of the following sets of Points A, B, C , D, calculate the cross-ratio

(ABCD).
(a) A = [2, 1, 3], B = [1, 2, 3], C = [8, 1, 9], D = [4, −1, 3]
(b) A = [2, 1, 1], B = [−1, 1, −1], C = [1, 2, 0], D = [−1, 4, −2]
(c) A = [−1, 1, 1], B = [0, 0, 2], C = [5, −5, 3], D = [−3, 3, 7]

2. For the Points A, B, C , D in Exercise l(a), determine the cross-ratios
(BACD), (B DC A) and (ADBC).

3. For each set of collinear points A, B, C , D illustrated below, calculate the
cross-ratio (ABCD).

aerial
photograph

1 km

4

4

2

1

Y

A

X

B

C

km1
2

Film image

A

2

3

(a) (b)

4

6

2

3

B

C

D

A

B

C

D

4. Calculate the cross-ratio (ABCD) for the collinear points A, B, C , D illus-
trated below, where D is an ideal Point.

C

2 6

B A D

5. The diagram in the margin represents an aerial photograph of a straight road
on flat ground. At A there is a sign ‘Junction 1 km’, at B a sign ‘Junction
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1
2 km’, and C is the road junction. Also, a police patrol car is at X , and a
bridge is at Y . The distances marked on the left of the diagram are measured
in cm from the photograph.

Calculate the actual distances (in km) of the patrol car and the bridge
from the junction.

Summary of Chapter 3

Section 3.1: Perspective
1. Renaissance artists used terraced perspective and later vertical perspec-

tive in an attempt to portray ’real’ scenes in a realistic way. The modern
system of focused perspective was discovered by Brunelleschi and finally
perfected by Leonardo da Vinci; it is well illustrated by the woodcuts of
Albrecht Dürer.

The family of lines joining an eye to each point of a scene meets a screen
in front of the eye, and the image on the screen is called a cross-section (or
section). The cross-section gives a realistic two-dimensional representation
of the three-dimensional scene.

2. For two planes π and π ′ that do not pass through the origin O in R
3, points

P in π and Q in π ′ are in perspective from O if there is a straight line
through O , P and Q.

A perspectivity from π to π ′ centred at O is a function that maps a point
P of π to a point Q of π ′ whenever P and Q are in perspective from O .
(The planes π and π ′ may lie on the same or on opposite sides of O .)

3. The domain of a perspectivity may not be the whole of π ; for, if P is any
point of π such that OP is parallel to to π ′, then P cannot have an image
in π ′.

The image of a line � under a perspectivity is another line, possibly minus
one point.

Foreshortening is the effect under a perspectivity of lines of equal
lengths at different distances from a screen corresponding to different
lengths on the screen.

4. Two parallel lines in a horizontal plane π appear to an observer to meet at
a vanishing point on a vertical screen π ′; this is the principal vanishing
point if the lines are perpendicular to the line of intersection of π and π ′,
and a diagonal vanishing point otherwise.

The family of vanishing points is a line, the vanishing line, that
corresponds to the horizon line in a picture.

5. Desargues’ Theorem Let �ABC and �A′ B ′C ′ be triangles in R
2 such that

the lines AA′, BB′ and CC′ meet at a point U . Let BC and B ′C ′meet at P ,
CA and C ′ A′meet at Q, and AB and A′ B ′meet at R. Then P , Q and R are
collinear.
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Section 3.2: The Projective Plane RP
2

1. A Point (or projective point) is a line in R
3 that passes through the origin

of R
3.

The real projective plane RP
2 is the set of all such Points.

2. The expression [a, b, c], in which the numbers a, b and c are not all zero,
represents the Point P of RP

2 which consists of the unique line in R
3 that

passes through (0,0,0) and (a, b, c). We refer to [a, b, c] as homogeneous
coordinates of P .

If (a, b, c) has position vector v, then we often denote P by [v] and we
say that P can be represented by v.

It makes NO sense to write the expression [0,0,0], since not all of a, b
and c can be zero.

3. The homogeneous coordinates [a, b, c] and [λa, λb, λc] (where λ �= 0)

represent the same Point of RP
2; that is, [a, b, c] = [λa, λb, λc], for any

λ �= 0.
If there is no non-zero real number λ such that [a, b, c] = [

λa′, λb′, λc′],
then the homogeneous coordinates [a, b, c] and

[
a′, b′, c′] represent differ-

ent Points of RP
2.

Further,
[
a′, b′, 1

] = [
a′′, b′′, 1

]
if and only if a′ = a′′ and b′ = b′′.

4. A projective figure is a subset of RP
2.

5. A Line (or projective line) in RP
2 is a plane in R

3 that passes through the
origin. Points of RP

2 are collinear if they lie on a Line.
6. The general equation of a Line in RP

2 is ax + by + cz = 0, where a, b, c
are real and not all zero.

7. Collinearity Property of RP
2 Any two distinct Points of RP

2 lie on a
unique Line.
Strategy To determine an equation for the Line in RP

2 through the Points[
d, e, f

]
and

[
g, h, k

]
:

1. write down the equation

∣∣∣∣∣∣
x y z
d e f
g h k

∣∣∣∣∣∣ = 0;

2. expand the determinant in terms of the entries in its first row to obtain
the required equation in the form ax + by + cz = 0.

Sometimes it is possible to ’spot’ the equation of a Line through two Points
without using the determinant.

8. Strategy To determine whether three Points [a, b, c], [d, e, f ] and [g, h, k]
are collinear:

1. evaluate the determinant

∣∣∣∣∣∣
a b c
d e f
g h k

∣∣∣∣∣∣;
2. the Points [a, b, c], [d, e, f ] and [g, h, k] are collinear if and only if

this determinant is zero.
9. The Points [1,0,0], [0,1,0], [0,0,1] are known as the triangle of reference.

The Point [1,1,1] is called the unit Point.
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10. Incidence Property of RP
2 Any two distinct Lines in RP

2 intersect in a
unique Point of RP

2.
11. Let π be any plane in R

3 that does not pass through the origin O . Then
there is a one-one correspondence between the points of π and those
Points of RP

2 which pierce π . Those Points of RP
2 which do not pierce

π are called ideal Points for π .
The set of ideal Points for π is a plane through O parallel to π , called

the ideal Line for π .
12. An embedding plane is a plane, π , which does not pass through the

origin, together with the set of all ideal Points for π .
The plane in R

3 with equation z = 1 is called the standard embedding
plane. The mapping of RP

2 into the standard embedding plane is called
the standard embedding of RP

2.
13. Parallelism is not a projective property.

Section 3.3: Projective Transformations
1. A projective transformation of RP

2 is a function t : RP
2 → RP

2 of the
form t : [x] �→ [Ax], where A is an invertible 3 × 3 matrix. We say that A
is a matrix associated with t . The set of all projective transformations is
denoted by P(2).

If A is a matrix associated with t , then so is λA for any non-zero
number λ.

2. The set of projective transformations P(2) forms a group under the oper-
ation of composition of functions. In particular, if t1 and t2 are projective
transformations with associated matrices A1 and A2, respectively, then
t1 ◦ t2 and t−1

1 are projective transformations with associated matrices
A1A2 and A−1

1 .
Strategy To compose two projective transformations t1 and t2:
1. write down matrices A1 and A2 associated with t1 and t2;
2. calculate A1A2;
3. write down the composite t1 ◦ t2 with which A1A2 is associated.
Strategy To find the inverse of a projective transformation t :
1. write down a matrix A associated with t ;
2. calculate A−1;
3. write down the inverse t−1 with which A−1 is associated.

3. Strategy To find the image of a Line ax + by + cz = 0 under a projective
transformation t : [x] �→ [Ax]:
1. write the equation of the Line in the form Lx = 0, where L is the

matrix (a b c);
2. find a matrix B associated with t−1;
3. write down the equation of the image as (LB) x = 0.

4. Projective geometry is the study of those properties of figures in RP
2 that

are preserved by projective transformations. Collinearity and incidence are
both projective properties.
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5. A quadrilateral is a set of four Points A, B, C and D (no three of which
are collinear), together with the Lines AB, BC, CD and DA.
All quadrilaterals are projective-congruent.

6. Strategy To find the projective transformation which maps [1,0,0]
to [a1, a2, a3], [0,1,0] to [b1, b2, b3], [0,0,1] to [c1, c2, c3], [1,1,1] to
[d1, d2, d3], where no three of [a1, a2, a3], [b1, b2, b3], [c1, c2, c3] and
[d1, d2, d3] are collinear:

1. find u, v, w for which

⎛
⎝ a1u b1v c1w

a2u b2v c2w

a3u b3v c3w

⎞
⎠
⎛
⎝ 1

1
1

⎞
⎠ =

⎛
⎝ d1

d2

d3

⎞
⎠;

2. write down the required projective transformation in the form t :
[x] �→ [Ax], where A is any non-zero real multiple of the matrix⎛
⎝ a1u b1v c1w

a2u b2v c2w

a3u b3v c3w

⎞
⎠.

7. Fundamental Theorem of Projective Geometry Let ABCD and
A′B ′C ′ D′ be two quadrilaterals in RP

2. Then:
(a) there is a projective transformation t which maps A to A′, B to B ′, C

to C ′, D to D′;
(a) the projective transformation t is unique.

8. Strategy To determine the projective transformation t which maps the
vertices of the quadrilateral ABCD to the corresponding vertices of the
quadrilateral A′ B ′C ′ D′:
1. find the projective transformation t1 which maps the triangle of refer-

ence and unit Point to the Points A, B, C, D, respectively;
2. find the projective transformation t2 which maps the triangle of refer-

ence and unit Point to the Points A′, B ′, C ′, D′, respectively;
3. calculate t = t2 ◦ t−1

1 .
9. With any given perspectivity σ we can construct an associated perspective

transformation that is a one-one mapping of π ∪ {the ideal Points for π}
onto π ′ ∪ {the ideal Points for π ′}. This maps RP

2 onto itself.
Every projective transformation can be expressed as the composite of three
perspective transformations.

Section 3.4: Using the Fundamental Theorem of Projective
Geometry
1. Desargues’ Theorem Let �ABC and �A′ B ′C ′ be triangles in R

2 such that
the lines AA′, BB′ and CC′ meet at a point U . Let BC and B ′C ′meet at P ,
CA and C ′ A′ meet at Q, and AB and A′B ′ meet at R. Then P , Q and R are
collinear.

2. The Fundamental Theorem is often used to simplify proofs of results in
projective geometry, where the properties involved are projective proper-
ties. Generally, we do not explicitly refer to the corresponding auxiliary
projective transformation t concerned, but simply comment that “By the
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Fundamental Theorem of Projective Geometry, we may choose the four
Points . . . (no three of which are collinear) to be the triangle of reference
and the unit Point; that is, to have homogeneous coordinates [1,0,0], [0,1,0],
[0,0,1] and [1,1,1], respectively.”

3. Pappus’ Theorem Let A, B and C be three points on a line in R
2, and

let A′, B ′ and C ′ be three points on another line. Let BC′ and B ′C meet at
P , CA′ and C ′ A meet at Q, and AB′ and A′B meet at R. Then P , Q and R
are collinear.

4. Any Euclidean figure in an embedding plane corresponds to a projective
figure in RP

2. It follows that a Euclidean theorem concerned with projective
properties (such as collinearity and coincidence) holds if and only if the
corresponding projective theorem holds.

5. The dual of a statement about the projective properties of some figure in
RP

2 is the corresponding statement about RP
2 in which the terms ’Point’

and ’Line’ are interchanged, and such other changes are made that ensure
that the sentence makes sense.

A triangle (three non-collinear Points and the Lines joining them) is self-
dual.

6. A hexagon in RP
2 consists of six Points joined by the six Lines joining

them in turn.
Pappus’ Theorem (rephrased) Let the vertices A, B ′, C , A′, B and C ′ of

a hexagon lie alternately on two different Lines. Then the Points of inter-
section of opposite sides B ′C and BC′, CA′ and C ′ A, and AB′ and A′ B, are
collinear.

7. Brianchon’s Theorem (the dual of Pappus’ Theorem) Let the sides
AB′, B ′C , CA′, A′ B, BC′, C ′ A of a hexagon pass alternately through two
(different) Points P and Q in RP

2. Then the Lines joining opposite vertices
A and A′, B and B ′, C and C ′, are concurrent.

8. Converse of Desargues’ Theorem (also its dual) Let two triangles be
such that the Points through which corresponding sides pass are collinear.
Then the Lines through the corresponding vertices of the two triangles are
concurrent.

Section 3.5: Cross-Ratio
1. Let A, B, C , D be four collinear Points in RP

2 represented by the position
vectors a, b, c, d, and let c = αa + βb and d = γ a + δb. Then the

cross-ratio of A, B, C , D is (ABCD) = β
α

/
δ
γ

.

The cross-ratio (ABCD) is independent of the homogeneous coordinates
that are used to represent the collinear Points A, B, C , D.

2. Let A, B, C , D be four distinct collinear Points in RP
2, and let (ABCD) =

k. Then (BACD) = (ABDC) = 1
/

k and (ACBD) = (DBCA) = 1 − k.
3. Let t be a projective transformation, and let A, B, C , D be any four collinear

Points in RP
2. If A′ = t (A), B ′ = t (B), C ′ = t (C), D′ = t (D), then

(ABCD) = (
A′B ′C ′ D′).
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4. Let A, B, C , D be four distinct Points on a Line, and let A′, B ′, C ′, D′ be
four distinct Points on another Line such that AA′, BB′, CC′, DD′ all meet at
a Point U . Then (ABCD) = (

A′ B ′C ′D′).
5. Unique Fourth Point Theorem Let A, B, C, X, Y be collinear Points in

RP
2 such that (ABCX) = (ABCY). Then X = Y .

6. Let A, B, C, D and A, E, F, G be two sets of collinear Points (on different
Lines in RP

2) such that the cross-ratios (ABCD) and (AEFG) are equal.
Then the Lines BE, CF and DG are concurrent.

7. Let four collinear Points of RP
2 pierce an embedding plane at the points

A, B, C , D with position vectors a, b, c, d, respectively. Then, if we can
write c and d in the form c = λa + (1 − λ) b and d = μa + (1 − μ) b, we
have

(ABCD) = 1 − λ

λ

/
1 − μ

μ
= AC

CB

/
AD

DB
.

8. Strategy To use an embedding plane to calculate the cross-ratio of four
collinear Points:
1. if the four Points pierce the embedding plane at A, B, C , D, then

(ABCD) = AC
CB

/
AD
DB ;

2. if one of the Points is an ideal Point for the embedding plane, then

(ABCD) = DB

CB
if A is ideal,

(ABCD) = CA

DA
if B is ideal,

(ABCD) = BD

AD
if C is ideal,

(ABCD) = AC

BC
if D is ideal.

9. Cross-ratios can be used to measure distances on the ground from aerial
photographs, since the cross-ratio of any four points on a line on the ground
equals the cross-ratio of their images on the film.
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In the previous chapter, we used projective geometry to prove Pappus’ Subsection 3.4.1,
Theorem 2Theorem.

Pappus’ Theorem Let A, B and C be three points on a line in R
2, and B

A
Q

R
P

C

CBA

let A′, B ′ and C ′ be three points on another line. Let BC ′ and B ′C meet at
P , C A′ and C ′ A meet at Q, and AB ′ and A′B meet at R. Then P , Q and R
are collinear.

In fact, we could also show that if the six points A, B, C , A′, B ′ and C ′ lie not
on two lines but on an ellipse, a parabola or a hyperbola, then the three points
of intersection P , Q and R are still collinear.

A A

A
C

C

C

B

B

B
P

P
PR

R R
Q

Q Q

C

C
C

B
B

B

A

A

A

The similarity of these three results is remarkable! It suggests that, instead
of being three new theorems, perhaps these results are particular instances of a
general theorem about conics. We shall show that this is indeed the case. The
general theorem, known as Pascal’s Theorem, is proved in this chapter along
with many other such results about conics.

But why should a result like Pascal’s Theorem apply to different types of
conic? A clue is provided by our discussion of conics in Chapter 1. There we Subsections 1.1.1

and 1.1.5explained that conics are so called because they are the shapes that we obtain
when we take plane sections through a double cone. In particular, the non-
degenerate conics are the ellipses, parabolas and hyperbolas, and they arise
when we slice through a double cone with a plane that does not pass through
the cone’s vertex v (see the figure below).

201



202 4: Projective Geometry: Conics

This has an exciting implication for projective geometry. Given any two
non-degenerate conics, such as the circle and the parabola shown in the mar-
gin below, there is a perspectivity centred at v that maps one onto the other.
It follows that any two non-degenerate conics are projective-congruent. Con-
sequently, any result involving the projective properties of collinearity and
concurrence that holds for ellipses, for example, necessarily holds also for
parabolas and hyperbolas.

υ

υ υ υ

We saw earlier that in affine geometry all ellipses are affine-congruent, all
parabolas are affine-congruent, and all hyperbolas are affine-congruent. One of
the exciting features of projective geometry is that all non-degenerate conics
are projective-congruent. Thus there is no distinction between ellipses, parabo-
las and hyperbolas in this geometry, so we simply call them projective conics.

In Section 4.1 we define the surfaces in R
3 that are called projective

conics, we see that between any two non-degenerate plane conics there
is a perspectivity, and we note that (analogously) all projective conics are
projective-congruent.

In Section 4.2 we observe that tangency is a projective property. We intro-
duce a compact notation due to Joachimsthal for projective conics, and use it
to find formulas for tangents, tangent pairs and polars for projective conics.

In Section 4.3 we introduce two standard forms for the equation of a
projective conic, and use these to prove theorems such as Pascal’s Theorem.

In Section 4.4 we prove that all non-degenerate projective conics are
projective-congruent, using Linear Algebra methods.

Finally, Section 4.5 discusses duality in the context of projective conics.

4.1 Projective Conics

4.1.1 What is a Projective Conic?
In the previous chapter we described how, given any (Euclidean) figure F in Subsection 3.2.1

an embedding plane π , we can obtain the corresponding projective figure by
drawing in all the Points of RP

2 that pass through points of F .
For example, if F is the circle

{
(x , y, z) : x2 + y2 = 1, z = 1

}
which lies in

the embedding plane π with equation z = 1, then the corresponding projective
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figure is a right circular cone. If a Point [x ′, y′, z′] of RP
2 lies on this cone, then

z= 1

z

x

O
(x /z , y /z , 1)

[x , y , z ]

y

F

it pierces the embedding plane at the point (x ′/z′, y′/z′, 1). Since this point lies
on F , it follows that

(
x ′

z′

)2

+
(

y′

z′

)2

= 1.

Multiplying by (z′)2, and dropping the dashes, we obtain the following
equation for the cone:

x2 + y2 = z2. (1)

Conversely, suppose that we start with a projective figure. Then we can
represent the projective figure in an embedding plane π . Of course, the rep-
resentation that we obtain depends on the embedding plane that we use. For
example, if the projective figure is the hollow cone x2 + y2 = z2, then the
representation can be bounded, unbounded, or even in two ‘bits’ depending on
the position of π .

O O
ideal
Point
for

ideal
Points
for 

bounded unbounded two bits

O

In Subsection 4.1.4 we show that these representations of the cone are, in
fact, ellipses, parabolas and hyperbolas, respectively. Notice, however, that in
the case of the parabola and the hyperbola, the representation is incomplete
unless we include additional ideal Points for the embedding plane concerned.
The parabola requires one ideal Point, and the hyperbola requires two. These
are indicated by the thick lines in the diagram above.

Let us now concentrate on just one embedding plane π , and consider the
kinds of projective figures that correspond to conics in π . To keep the algebra
simple, we shall choose π to be the so-called standard embedding plane
z = 1. We have already explained how to find the equation of the projective
figure which corresponds to the circle {(x , y, z) : x2 + y2 = 1, z = 1} in π , so
let us now consider what happens when we find the equation of the projective
figure which corresponds to an unbounded conic, such as the hyperbola

{(x , y, z) : y2 − 4x2 = 1, z = 1}.
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‘missing’
Points

( x /z , y /z , 1 )

y

x

z

[ x , y , z ]

Any Point [x ′, y′, z′] on the corresponding projective figure must pierce π at
a point (x ′/z′, y′/z′, 1) on the hyperbola, and so(

y′

z′

)2

− 4

(
x ′

z′

)2

= 1.

Since z′ is non-zero, we can multiply by (z′)2 and drop the dashes, to obtain If z′ were zero, then
[x ′, y′, z′] would not
pierce π .

the equivalent equation

y2 − 4x2 = z2, z �= 0.

As in the case of the circle, this is the equation of a cone-like family of
Points in RP

2 with vertex at the origin, as shown above. Notice, however,
that because z �= 0, two Points are missing from the family. These must be
Points of the form [x , y, 0] which satisfy the equation y2 − 4x2 = 0. Since this
equation implies that y = ±2x , it follows that the missing Points are [1, 2, 0]
and [1, −2, 0].

But should these Points really be omitted from the projective figure? After
all, both Points are ideal Points for the standard embedding plane, and figures
in an embedding plane often have ideal Points associated with them. In projec-
tive geometry we take the view that the ideal Points [1, 2, 0] and [1, −2, 0] are
associated with the hyperbola y2 − 4x2 = 1, and hence that the corresponding
projective figure consists of the entire cone-like family of Points [x , y, z] that
satisfy the equation y2 − 4x2 = z2.

Problem 1 Find an equation for the projective figure in RP
2 which

(x / z , y / z ,1)

x

z

y

[x , y , z ]

corresponds to the parabola {(x , y, z) : y = x2, z = 1} in the standard
embedding plane. Which ideal Points should be associated with the
parabola?

In general, any conic in the standard embedding plane can be expressed in
the form

{(x , y, z) : Ax2 + Bxy + Cy2 + Fx + Gy + H = 0, z = 1}.
Since any Point [x ′, y′, z′] on the corresponding projective figure must pierce

the standard embedding plane at a point (x ′/z′, y′/z′, 1) on the conic, it follows
that

A

(
x ′

z′

)2

+ B

(
x ′

z′

)(
y′

z′

)
+ C

(
y′

z′

)2

+ F

(
x ′

z′

)
+ G

(
y′

z′

)
+ H = 0.
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Multiplying by (z′)2, and dropping the dashes, we obtain the equivalent
equation

Ax2 + Bxy + Cy2 + Fxz + Gyz + H z2 = 0, z �= 0.

If we drop the constraint that z �= 0, then we can include those ideal The additional Points have
homogeneous coordinates
of the form [x , y, 0] where

Ax2 + Bxy + Cy2 = 0.

Points for the standard embedding plane that should be associated with the
plane conic. The corresponding projective figure (including the additional ideal
Points) is known as a projective conic.

Definition A projective conic in RP
2 is a set of Points whose homoge-

neous coordinates satisfy a second-degree equation of the form

Ax2 + Bxy + Cy2 + Fxz + Gyz + H z2 = 0. (2)

For example, xy + xz + yz = 0 defines a projective conic, because it has the
form of equation (2) with A = C = H = 0 and B = F = G = 1. However,
x2 + y2 − 3y + z2 = 0 does not define a projective conic, because it includes
a linear term in y.

Problem 2 Which of the following equations define projective
conics?

(a) x2 + xy − 3y2 + 4x − 3y + z2 = 0
(b) x2 + xy + y2 + yz = 0
(c) y2 = xz
(d) x2 + y2 + z2 = 2

We say that a Point P lies on a projective conic, or a projective conic passes

x

y

z
projective

conic
Point Pthrough a Point P , if the homogeneous coordinates of P satisfy the equation

of the projective conic. For example, the Point [3, 4, 5] lies on the projective
conic x2 + y2 = z2, since 32 + 42 = 52; however, x2 + y2 = z2 does not pass
through the Point [1, 1, 1], since 12 + 12 �= 12.

Problem 3 Which of the following statements are true?

(a) The projective conic xy + xz + yz = 0 passes through the Point
[1, 0, 0].

(b) The Point [1, 2, 0] lies on the projective conic 2x2 − y2 + xy + xz +
z2 = 0.

(c) The projective conic 3x2 + 2y2 − z2 = 0 passes through the Point
[1, 2, 3].

In this chapter we concentrate on those projective conics that can be It follows that a
degenerate projective
conic consists of a pair of
Lines, a single Line, a
Point, or the empty set
(that is, ‘no Points’).

represented by non-degenerate conics in the standard embedding plane.

Definition A projective conic is non-degenerate if it can be represented
by a non-degenerate conic in the standard embedding plane.
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For example, the projective conic with equation

x2 + 2y2 − z2 = 0

is non-degenerate because it is represented in the standard embedding plane by
the ellipse

{(x , y, z) : x2 + 2y2 = 1, z = 1}.
On the other hand, the projective conic with equation

27x2 + 30xy − 8y2 + 14yz − 3z2 = 0

is degenerate because

27x2 + 30xy − 8y2 + 14yz − 3z2 = (9x − 2y + 3z)(3x + 4y − z),

so the projective conic intersects the standard embedding plane in the degen-
erate conic which consists of the following pair of lines:

{(x , y, z) : 9x − 2y + 3 = 0, z = 1}
and

{(x , y, z) : 3x + 4y − 1 = 0, z = 1}.
The following theorem shows that non-degenerate projective conics are

preserved by projective transformations.

Theorem 1 Let t be a projective transformation, and let E be a non-
degenerate projective conic. Then t(E) is a non-degenerate projective
conic.

Proof Let E have equation

Ax2 + Bxy + Cy2 + Fxz + Gyz + H z2 = 0. (2)

Then any Point that lies on E has homogeneous coordinates [x , y, z] which
satisfy equation (2). If [x ′, y′, z′] is the image of [x , y, z] under t , then under
the inverse transformation we have [x , y, z] = t−1([x ′, y′, z′]). It follows that if⎛

⎝ a b c
d e f
g h k

⎞
⎠

is a matrix associated with t−1, then

x = ax ′ + by′ + cz′, y = dx ′ + ey′ + f z′, z = gx ′ + hy′ + kz′.
Substituting these expressions for x , y and z into equation (2), we obtain a

second-degree equation in x ′, y′ and z′. It follows that the image of E under t
is a projective conic.

Next we show that this image cannot be degenerate. A degenerate image
would consist of a pair of Lines, a single Line, a Point, or the empty set (that
is ‘no Points’). Since the projective transformation t−1 maps Lines to Lines
and Points to Points, it would map the degenerate image to another degenerate
projective conic. But this cannot happen since t−1 maps the image back to
the original non-degenerate projective conic E . It follows that t(E) cannot be
degenerate. �
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4.1.2 Tangents to Projective Conics
Let E be any non-degenerate projective conic, and let � be a Line in RP

2.
Then � is a plane in R

3 which passes through O , and E is a surface in R
3

which consists of a ‘cone-like’ family of lines through the origin O . It follows
that there are three possibilities:

� can meet E at a pair of Points;
� can meet E at a single Point;
� can meet E at no Points.

two Points of intersection one Point of intersection no Points of intersection

O

E

O

EE

O

In the second case, � just ‘touches’ E along a ‘Point of contact’ P . This
suggests that in such a case we define � to be the tangent to E at P .

Definition Let E be a non-degenerate projective conic. Then a Line � is a
tangent to E at P if � meets E at a Point P , and at no other Point.

We can also define whether a Point lies inside or outside a projective conic.

Definitions Let E be a non-degenerate projective conic. A Point Q lies
inside E if every Line through Q meets E at two distinct Points. A Point R
lies outside E if there is a Line through R that meets E at no Points.

O

EE

O

Lines through Q
meet E

at two Points

a Line through R
 that meets E
at no Points

a Point Q
inside E

a Point R
outside E
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The following theorem shows that ‘tangency’ and ‘lying inside or outside a
projective conic’ are projective properties.

Theorem 2 Let t be a projective transformation, and let the Line � be a
tangent to a non-degenerate projective conic E at a Point P . Then t(�) is a
tangent to t(E) at t(P). Also, if Q is a Point inside E , then t(Q) lies inside
t(E); and if R is a Point outside E , then t(R) lies outside t(E).

Proof By the definition of tangent, P is the only Point that � and E have in
common. Since t is a one–one map of RP

2 onto itself, it follows that t(P) is
the only Point that t(�) and t(E) have in common. In other words, t(�) is a
tangent to t(E) at t(P).

Also, if Q lies inside E , then any Line �′ through t(Q) must meet t(E) at
two distinct Points, for otherwise the Line t−1(�′) through Q would not meet
E in two distinct Points. It follows that t(Q) lies inside t(E).

Again, if R lies outside E , then there is a Line � through R that does not
meet E . It follows that t(�) is a Line through t(R) that does not meet t(E), and
so t(R) lies outside t(E). �

tangent to
plane conic

tangent to
projective conic O

E

P

The figure above illustrates that, in an embedding plane, tangents to projective
conics correspond to tangents to plane conics, and vice versa, and so the two
notions of tangency are consistent.

Moreover, since a projective transformation preserves the property of being
a tangent, it follows that we can use projective geometry to tackle problems
involving tangents to plane conics. You will meet several examples of this later,
but first we must show that all non-degenerate projective conics are projective-
congruent.
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4.1.3 Some Preliminaries
In our proof that all non-degenerate projective conics are projective-congruent Theorem 5, Subsection

4.1.4we need a number of facts concerning plane conics. In order to concentrate on
the key ideas in the proof then, we deal with these facts now.

First, in our proof we shall need to calculate the eccentricity of conics which
are symmetrical about the υ-axis in the (u, υ)-plane, and which have a focus
that lies on the υ-axis. We do this by using the following result.

Theorem 3 Eccentricity Formula
Let E be a non-degenerate plane conic with equation We use this result in

Subsection 4.1.4.
u2 + Cυ2 + Gυ + H = 0.

If E has a focus on the υ-axis, then the eccentricity e of E is given by the We use (u, v) as our
coordinate system here
rather than (x , y) to match
our notation in later
discussion.

formula

e2 = 1 − C .

For example, the eccentricity e of the ellipse with equation

u2 + 1
2υ2 − 7υ + 4 = 0

is given by e2 = 1 − 1
2 = 1

2 , so that e = 1/
√

2.

Proof First suppose that E is a circle. Then C = 1, and by convention e = 0,

F (0, r )

P (u, υ )

u

(0, s)

QE

Dυ = s

υ
so e2 = 1 − C , as required.

Next suppose that E is not a circle. Since the equation of E has no terms that
involve u or uυ, it follows that E is symmetrical about the υ-axis. Also, since
E has a focus F on the υ-axis, it follows, by symmetry, that the directrix which
corresponds to F is perpendicular to the υ-axis. Hence F has coordinates (0, r)

for some real number r , and the directrix has equation υ = s, for some real
number s.

Let P(u, v) be an arbitrary point on the conic, and let P Q be the
perpendicular from P to the υ-axis. Then, by Pythagoras’ Theorem, we have

PF2 = FQ2 + QP2 = (υ − r)2 + u2.

Now let PD be the perpendicular from P to the directrix. Then, by the
focus-directrix property, we have PF = e · PD = e · |v − s|, so

e2(υ − s)2 = PF2 = (υ − r)2 + u2.

Expanding the brackets and collecting terms, we obtain

u2 + (1 − e2)υ2 − 2(r − e2s)υ + (r2 − e2s2) = 0.

Comparing this with the equation of E in the statement of the theorem, we
see that C = (1 − e2), and hence that e2 = 1 − C . �

Problem 4 Determine the eccentricity of the hyperbola with equation

2u2 − 6v2 + 5v − 1 = 0.
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In our work in the following subsection we shall also need an understanding
of the relationship between conics which have the same eccentricity. So, first,
observe that all non-degenerate conics with a given distance d between the
focus and the directrix, and a given eccentricity e, are Euclidean-congruent to Euclidean-congruence

was explained in
Subsection 2.1.2.

each other. This means that the size and shape of a non-degenerate conic are
completely determined by the numbers e and d.

If we now fix e and vary the size of d, then the shape of the conic remains
the same but the size of the conic changes. The following figure shows the
effect that an increase in d has on each type of conic.

double
d

double
d

double
d

By allowing d to vary throughout the interval (0, ∞), we obtain every size of Recall that (0, ∞) denotes
the interval {x : x > 0}.conic with a given eccentricity e. We can therefore obtain any non-degenerate

conic by first choosing a conic with the correct eccentricity and then adjusting
its size by varying d.

4.1.4 Conics in Perspective
We now demonstrate that, for any two given plane conics, there is a perspec-
tivity between them. Indeed, we can draw a right circular cone such that each
of the given plane conics arises as the intersection of the cone with a suitable This fact about the

intersection was known to
the ancient Greek
mathematicians around
300 BC.

plane. It follows that there is a projective transformation that maps any given
projective conic onto any other, so the property of ‘being a conic’ is a pro-
jective property. This enables us to prove quite surprising results about plane
conics.

Plane Sections of a Right Circular Cone
Earlier, we asserted that we can construct all conics by taking different plane Subsection 1.1.1

sections through double cones. We now justify that claim, and describe its
relevance to projective geometry.

First, we generate a hollow right circular cone by taking a line through the
origin in R

3 at some angle φ to the (x , y)-plane, and rotating that line around Here 0 < φ < π/2

the z-axis. We call the line a generator of the cone. Next, we cut the cone with
planes (none of which passes through the origin) at various angles, and make
the following observations illustrated below. (a) When the plane is horizontal,
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the section is a circle. (b) As the plane tilts, its curve of intersection with the

O

generator

x

z

y

f

cone looks like an ellipse. (c) When the plane becomes parallel to one of the
generators of the cone, the curve of intersection looks like a parabola. (d) As
the plane tilts further, it meets both portions of the cone, and the curve of
intersection looks like a hyperbola. (e) When the plane is vertical we obtain the
fattest possible hyperbola that can be obtained from this cone. The asymptotes
of this hyperbola are parallel to a pair of lines on the cone that pass through
the origin.

O O O asymptotes

(a) (b) (c) (d) (e)

To prove that these observations are correct, we do some algebra.
Since the generator of the cone through the first quadrant of the (y, z) -plane

has slope tan φ, this generator has equation {(x , y, y) : z = tan φ · y, x = 0},
or
{
(x , y, z) : y = z

/
tan φ, x = 0

}
. Rotating this generator around the z-axis

gives the whole of the cone, which must therefore have equation

This equation describes
both the upper part and
the lower part of the cone.

x2 + y2 = z2

tan2 φ
. (3)

Next, let π be the plane in which we are interested that cuts the cone,
and let θ be the angle between the (x , y)-plane and π . We shall assume for
convenience that the x- and y-axes have been chosen so that π intersects the Here 0 ≤ θ < π/2.

(x , y)-plane in a line parallel to the x-axis. Then if we rotate the (x , y)-plane
about the x-axis through an angle θ , it becomes parallel to π .

z

rotate
(x, y)-plane

z

O O

f

x
y q

q

π π

z ¢

y ¢

x ¢

This rotation moves the x-, y- and z-axes into new positions, which we call
the x ′-, y′- and z′-axes. If a given point in R

3 has coordinates (x , y, z) and
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(x ′, y′, z′) with respect to these two sets of axes, then the connection between
these coordinates is given by the matrix equation

(0, cosq, sinq)

(1, 0, 0)

(0, – sinq, cosq )

y ¢

z ¢

O

z

y

x = x ¢

q

⎛
⎝ x

y
z

⎞
⎠ =

⎛
⎝ 1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎞
⎠
⎛
⎝ x ′

y′
z′

⎞
⎠ . (4)

Notice that here the columns of the 3 × 3 matrix of the rotation comprise the
coordinates (with respect to the initial x-, y-, z-axes) of the points 1 unit along
each of the final x ′-, y′-, z′-axes (as shown in the margin).

Next, we translate the (x ′, y′)-plane through some distance d parallel to the Here d does not denote a
focus-directrix distance,
but an arbitrary positive
number.

z′-axis until it coincides with the plane π . This translation sends the x ′-, y′-
and z′-axes into new positions, which we call the u-, υ- and w-axes.

If a given point in R
3 has coordinates (x ′, y′, z′) and (u, υ, w) with respect

to these two sets of axes, then the coordinates are related by

u

x ¢

d

υ π

q

⎛
⎝ x ′

y′
z′

⎞
⎠ =

⎛
⎝ u

υ

w

⎞
⎠+

⎛
⎝ 0

0
d

⎞
⎠ . (5)

Overall, it follows from equations (4) and (5) that if a given point has coor-
dinates (x , y, z) with respect to the x-, y- and z-axes, and coordinates (u, υ, w)

with respect to the u-, υ- and w-axes, then⎛
⎝ x

y
z

⎞
⎠ =

⎛
⎝ 1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎞
⎠
⎛
⎝
⎛
⎝ u

υ

w

⎞
⎠+

⎛
⎝ 0

0
d

⎞
⎠
⎞
⎠

=
⎛
⎝ 1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎞
⎠
⎛
⎝ u

υ

w

⎞
⎠+

⎛
⎝ 0

−d sin θ

d cos θ

⎞
⎠ .

Now, for points on the curve where π intersects the cone, we have w = 0.
So at these points,⎛

⎝ x
y
z

⎞
⎠ =

⎛
⎝ 1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎞
⎠
⎛
⎝ u

υ

0

⎞
⎠+

⎛
⎝ 0

−d sin θ

d cos θ

⎞
⎠ ,

that is,
x = u,
y = υ cos θ − d sin θ ,
z = υ sin θ + d cos θ .

⎫⎬
⎭ (6)

Since the points of intersection lie on the cone, their coordinates (x , y, z) must
satisfy the equation of the cone given in equation (3). Hence, if we substitute
for x , y and z from equations (6) into equation (3), we obtain

u2 + (υ cos θ − d sin θ)2 = (υ sin θ + d cos θ)2

tan2 φ
.
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After rearranging the terms in this equation, we obtain an equation of the form

u2 + Cυ2 + Gυ + H = 0, (7)

where C , G and H are expressions involving θ and φ. In particular,

C = cos2 θ − sin2 θ

tan2 φ
= cos2 θ

(
1 − tan2 θ

tan2 φ

)
. (8)

Since equation (7) is a second-degree equation in u and υ, the curve of intersec-
tion is certainly a plane conic. Moreover, the conic is clearly non-degenerate
with a focus on the υ-axis. But which type of conic is it?

First, suppose that θ < φ, so that π is less steep than the generators of the
cone. Then, it follows from equation (8) that C > 0. Hence, if we apply the
‘B2 − 4AC test’ to equation (7), we find that B2 − 4AC = −4 · 1 · C < 0, and This test was described in

Section 1.3.so the curve of intersection is an ellipse.
It follows from equations (7) and (8) and the Eccentricity Formula that the Theorem 3, Subsection

4.1.3eccentricity e of the ellipse is given by

e2 = 1 − C = 1 − cos2 θ

(
1 − tan2 θ

tan2 φ

)

= 1 − cos2 θ + sin2 θ

tan2 φ

= sin2 θ + sin2 θ

tan2 φ

= sin2 θ(1 + cot2 φ)

= sin2 θ

sin2 φ
,

so that

e = sin θ

sin φ
.

q

q

O

q
O

x
y

z

π

f

As θ increases from 0 to φ, e increases from 0 to 1. Thus, by tilting π As θ increases, the ellipse
becomes longer and
thinner.

through a suitable angle θ in the interval [0, φ), we can obtain an ellipse with
any desired eccentricity between 0 and 1. If we then move π parallel to itself,
the angle θ remains the same, and so the eccentricity of the ellipse remains the
same, but the size of the ellipse can be adjusted by any desired dilatation factor.
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It follows that we can obtain ellipses of all possible eccentricities and sizes
by choosing the intersecting plane π to be at the appropriate angle and at the

q = f
q

appropriate distance from the origin.
Next, suppose that θ = φ, so that π is parallel to a generator of the cone.

Then, it follows from equation (8) that C = 0. Hence, if we apply the ‘B2 −
4AC test’ to equation (7), we find that B2 − 4AC = −4 · 1 · C = 0, and so the
curve of intersection is a parabola.

As the plane moves further from the origin, the size of the parabola
increases. It follows that we can obtain parabolas of all possible sizes by
choosing the intersecting plane to be at the appropriate distance from the
origin.

Finally, suppose that θ > φ, so that π is steeper than the generators of the
cone. Then, it follows from equation (8) that C < 0. Hence, if we apply the
‘B2 − 4AC test’ to equation (7), we find that B2 − 4AC = −4 · 1 · C > 0, and
so the curve of intersection is a hyperbola.

But, as we saw earlier, the eccentricity e of the hyperbola is given by

e = sin θ

sin φ
.

As θ increases from φ to π/2, e increases from 1 to cosec φ.

asymptotes
O

x
yq

π

f

In particular, for each given value of θ , the eccentricities of the hyperbolas
obtained from all planes of that slope are equal. And as the plane moves further
from the origin, the size of the hyperbolas increases.

Thus, by tilting the plane of intersection through a suitable angle θ in the
interval [φ, π/2], we can obtain a hyperbola with any eccentricity in the inter-
val [1, cosec φ], and by moving the plane parallel to itself, we can adjust the
size of the hyperbola by any desired factor. But how can we obtain a hyperbola
with eccentricity greater than cosec φ?

Well, notice that the asymptotes of each hyperbola are parallel to the two
lines of intersection of the cone with a plane through the origin that is parallel
to the intersecting plane. It follows that the angle between the asymptotes of
the hyperbola can be any angle from 0 to the angle between the lines of inter-
section of the cone with a vertical plane through the origin. In other words,
they can be no further apart than two opposite generators of the cone. So
not every hyperbola can be found in every cone! Hence, in order to obtain
any given hyperbola as a curve of intersection of a plane with a cone, we
need to choose a ‘fat enough’ cone (that is, a cone with a sufficiently small
angle φ).

This completes the proof of the following fact.

Theorem 4 Every non-degenerate plane conic can be found as the curve
of intersection of a suitable right circular cone with a suitable plane.

We can now use this theorem to illustrate that there is a perspectivity
between any two non-degenerate plane conics.
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First, we illustrate why there is a perspectivity between any two ellipses E1

and E2. Choose any right circular cone with vertex at the origin O . Then it
follows from the details in the proof of Theorem 4 that there are two planes π1

and π2 whose curves of intersection with the cone are E1 and E2. The required
perspectivity is simply the point-to-point mapping of E1 onto E2 along the
generators of the cone.

π2

π1
O

E1

E2

π2
π2

π1 π1
O O

E1 E1

E2 E2

Similarly, there is a perspectivity between any ellipse E1 and any parabola
E2. For, given any right circular cone with vertex at the origin O , it follows Here we are assuming that

π2 is an embedding plane,
and hence that its
intersection E2 with the
cone includes the ideal
Point associated with the
parabola.

from the earlier explanations that there are two planes π1 and π2 whose curves
of intersection with the cone are E1 and E2.

In the same way, there is a perspectivity between any ellipse E1 and any
hyperbola E2. Again, the perspectivity maps each pair of curves point-to-point
along generators of the cone−but this time we need to choose a sufficiently
fat cone in the first place, so that some plane intersects the cone in the
hyperbola E2. Here E2 includes two

ideal Points.In general, there is a perspectivity which maps any given non-degenerate
plane conic onto any other given non-degenerate plane conic. It can be realized
as a point-to-point map along the generators of a cone that is fat enough to yield This map is one–one and

onto provided that the
conics include their
associated ideal Points.

both conics as sections through the cone.
Next, just as there is a perspectivity between any two non-degenerate

plane conics there is a projective transformation that maps any non-degenerate
projective conic onto any other non-degenerate projective conic.

Theorem 5 All non-degenerate projective conics are projective-congruent. We postpone the proof of
Theorem 5 to Section 4.4,
to concentrate on our
main story-line.Three Tangents Theorem

The correspondence between plane conics in an embedding plane and projec-
tive conics in RP

2 enables us to match Euclidean theorems about plane conics
with projective theorems about projective conics. Provided that the theorems
are concerned exclusively with projective properties, then a Euclidean theorem
will hold if and only if the corresponding projective theorem holds.

Later we shall meet a whole range of applications of the projective- Section 4.3

congruence of all non-degenerate projective conics. However we end this
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section with the following striking result, to give you a ‘taster’ of things
to come!

Theorem 6 Three Tangents Theorem
Let a non-degenerate plane conic touch the sides BC, CA and AB of a
triangle �ABC in R

2 at the points P , Q and R, respectively. Then AP, BQ
and CR are concurrent.

The following figures illustrate the Three Tangents Theorem for an ellipse
and a parabola.

A

A

R

R

P PB

B

C

C

Q
Q

Proof The theorem concerns a non-degenerate conic, its tangents, and con-

PB

R Q

A

C

currency of lines. Since all of these properties are projective properties, it is
sufficient to prove the result for any non-degenerate plane conic. For simplicity,
therefore, we take the plane conic to be a circle.

Since, by symmetry, the two tangents from a point to a circle are of equal
length, it follows that AQ = AR, BP = BR and CP = CQ, so that, in particular,

AR

RB
· BP

PC
· CQ

QA
= 1.

By applying the converse to Ceva’s Theorem to this equation, it follows that Subsection 2.4.2

the lines AP, BQ and CR are concurrent. �

4.2 Tangents

Many results about plane conics and projective conics involve properties of Such results appear in
Section 4.3.their tangents and polars. In this section we introduce a notation due to

Joachimsthal that can be used to write down the equations of such tangents Ferdinand Joachimsthal
(1818–1861) was a
distinguished German
geometer, noted for his
mature, polished
exposition.

and polars.

4.2.1 Tangents to Plane Conics
Let P be a point on a non-degenerate plane conic E , and let � be the tangent at
P to E . Next, let P ′ be a point close to P on E , and let �′ be the line through
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P and P ′. If we let P ′ approach P along the curve E , the direction of the P

¢

P ¢

E

line �′ approaches the direction of the tangent �. We may phrase this rather
loosely as follows: ‘the direction of the tangent is the limiting direction of the
chords’.

We begin by recalling that a non-degenerate plane conic has an equation of Subsection 1.2.1

the form

Ax2 + Bxy + Cy2 + Fx + Gy + H = 0.

If we denote the expression on the left-hand side of this equation by the
symbol s, then the equation of the conic can be written very simply as

s = 0.

Joachimsthal’s approach is to investigate the equations of tangents and
s= 0

P1 = (x1, y1)

polars to the conic by systematically attaching subscripts to the symbol s. For
example, to check whether a point P1 = (x1, y1) lies on the conic it is neces-
sary to replace the variables x and y in s by x1 and y1, respectively. This yields
a number which we denote by the symbol s11; in other words,

s11 = Ax2
1 + Bx1 y1 + Cy2

1 + Fx1 + Gy1 + H .

If s11 = 0, then we can conclude that P1 lies on the conic; and if s11 �= 0,
that P1 does not lie on the conic.

Similarly, the point P2 = (x2, y2) lies on the conic if and only if the number
s22 defined by

We may define a number
s33 associated with a point
P3 = (x3, y3) in a similar
way.

s22 = Ax2
2 + Bx2 y2 + Cy2

2 + Fx2 + Gy2 + H

is equal to zero.
Joachimsthal’s notation can also be used to obtain a kind of ‘average’ num-

ber when we ‘mix’ the subscripts 1 and 2 to define a number s12 associated
with two given points P1 = (x1, y1) and P2 = (x2, y2) to be

We could define s13 and
s23 in a similar way.s12 = Ax1x2 + B

(
x1 y2 + x2 y1

2

)
+ Cy1 y2 + F

(
x2 + x1

2

)

+ G

(
y1 + y2

2

)
+ H .

The reason for defining s12 in this way will become apparent shortly. Notice,
for the moment, that the definition of s12 is symmetrical in the sense that the
value of s12 is unaltered if we interchange the subscripts 1 and 2. In other
words s12 = s21, a fact which we will use later.

So far we have attached double subscripts to the symbol s, and this has
always produced a number. Notice, however, that if we drop the second sub-
script in the definition of s12, then the resulting expression is a linear expression Here we temporarily use

the term linear expression
in x and y rather loosely,
to mean an expression of
the form ax + by + c, for
some real numbers a, b
and c.

in x and y, defined by

s1 = Ax1x + B

(
x1 y + xy1

2

)
+ Cy1 y + F

(
x + x1

2

)
+ G

(
y1 + y

2

)
+ H .

Once again the reason for defining s1 in this way will become apparent
shortly. A clue is provided by the fact that in plane geometry a line can be
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defined by setting a linear expression in x and y equal to zero. It will turn
out that the line defined by s1 = 0 plays a particularly important part in our
discussion of tangents.

We may give a general summary of Joachimsthal’s notation in which we use
the symbols i and j to stand for arbitrary subscripts, each of which can take
the values 1, 2 or 3, as follows.

Joachimsthal’s Notation for Plane Conics
Let a plane conic have equation s = 0, where

s = Ax2 + Bxy + Cy2 + Fx + Gy + H ,

and let P1 = (x1, y1), P2 = (x2, y2) and P3 = (x3, y3) be points of R
2.

Then we define In general it is simpler
NOT to try to remember
these formulas, but to
remember the pattern for
obtaining the expressions
si , sii and si j from s.

si = Axi x + B
xi y + xyi

2
+ Cyi y + F

xi + x

2
+ G

yi + y

2
+ H ,

sii = Ax2
i + Bxi yi + Cy2

i + Fxi + Gyi + H ,

and

si j = Axi x j + B
xi y j + x j yi

2
+ Cyi y j + F

xi + x j

2
+ G

yi + y j

2
+ H ,

where i and j can each take the values 1, 2, or 3.

The following example illustrates how to work out these expressions in
Joachimsthal’s notation for conics.

Example 1 Determine s11, s22, s12 and s1 for the hyperbola with equation

3x2 − 2xy − y2 + 5x − y − 4 = 0

at the points P1 = (3, 2) and P2 = (−5, −2). Hence determine whether either
P1 or P2 lies on the hyperbola.

Solution The equation of the conic may be written in Joachimsthal’s
notation as s = 0, where

s = 3x2 − 2xy − y2 + 5x − y − 4.

Since here we have x1 = 3, y1 = 2, x2 = −5 and y2 = −2, we deduce that

s11 = 3 · 32 − 2 · 3 · 2 − 22 + 5 · 3 − 2 − 4 = 20,

s22 = 3 · (−5)2 − 2 · (−5) · (−2) − (−2)2 + 5 · (−5) − (−2) − 4 = 24,

s12 = 3 · 3 · (−5) − 2
3 · (−2) + (−5) · 2

2
− 2 · (−2) + 5

3 − 5

2

− 2 − 2

2
− 4 = −34,
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and

s1 = 3 · 3 · x − 2
3y + x · 2

2
− 2 · y + 5

3 + x

2
− 2 + y

2
− 4

= 19

2
x − 11

2
y + 5

2
.

Since s11 and s22 are both non-zero, it follows that neither of the points P1

or P2 lies on the hyperbola.

Problem 1 Determine s11, s22, s12 and s1 for the plane conic with
equation

2x2 + 3xy − y2 + x + 2y + 1 = 0

at the points P1 = (1, 0) and P2 = (2, 1).

Having introduced Joachimsthal’s notation we now turn our attention to
finding the equations of tangents to a conic s = 0. Since a tangent is a line
which intersects the conic at two coincident points, we first describe how to
determine the points where a given line � meets s = 0.

Recall that every point P on the line � through two given points P1 = Section Formula,
Appendix 2(x1, y1) and P2 = (x2, y2) divides the segment P1 P2 in the ratio k : 1, for

some real number k, and so has coordinates that may be written in the form

(x1, y1)

(x2, y2)

P1

P1

P2

P2

P
1

k

line
meets
conic ,

s= 0

(
kx2 + x1

k + 1
,

ky2 + y1

k + 1

)
.

It follows that the line through the points P1 and P2 meets the conic with
equation

(s =) Ax2 + Bxy + Cy2 + Fx + Gy + H = 0

at points which divide the segment P1 P2 in the ratio k : 1, where

A

(
kx2 + x1

k + 1

)2

+ B

(
kx2 + x1

k + 1

)(
ky2 + y1

k + 1

)
+ C

(
ky2 + y1

k + 1

)2

+ F
kx2 + x1

k + 1
+ G

ky2 + y1

k + 1
+ H = 0.

If we multiply both sides of this equation by (k + 1)2 and collect the coef-
ficients of the terms involving k2, k and the terms independent of k, it turns
out that we can rewrite this equation in terms of Joachimsthal’s notation in the
marvelously simple form We omit the unedifying

details.
s22k2 + 2s12k + s11 = 0.

This equation occurs so frequently in our work that we give it a special
name, Joachimsthal’s Section Equation.
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Since Joachimsthal’s Section Equation is a quadratic equation in k, the line
through P1 and P2 meet the conic at two distinct points, at one repeated point,
or not at all depending on whether the quadratic equation has two distinct real
roots, one repeated real root or no real roots, respectively.

P2

P1

s= 0 s= 0 s= 0
P2

P1

P2

P1

Two distinct real roots One repeated real root No real roots

Example 2 Determine the ratios in which the hyperbola with equation

3x2 − 2xy − y2 + 5x − y − 4 = 0

divides the line segment from P1 = (3, 2) to P2 = (−5, −2).

Solution First observe that the hyperbola and the points P1 and P2 are the
same as those used in Example 1, so we can use the values s11 = 20, s22 = 24
and s12 = −34 calculated there. It follows that we can rewrite Joachimsthal’s
Section Equation in this case as

24k2 − 68k + 20 = 0,

or

6k2 − 17k + 5 = 0,

so that

(3k − 1)(2k − 5) = 0.

Thus k = 1
3 or k = 5

2 . Thus, the hyperbola divides the line segment P1 P2 at
two distinct points, in the ratios 1

3 : 1 and 5
2 : 1; that is, in the ratios 1:3 and

5:2, respectively.

Problem 2 Determine the ratios in which the hyperbola with equation

P1

s = 0

P1

tangent
at P1

2x2 + 3xy − y2 + x + 2y + 1 = 0

divides the line segment from P1 = (1, 0) to P2 = (2, 1).
Hint: Use your results from Problem 1.

We are now in a position to find the equation of the tangent to the plane
conic with equation s = 0 at a point P1 = (x1, y1) on the conic. To do this, let
� be a chord of the conic which passes through P1, and let P2 = (x2, y2) be
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a point on � which lies outside the conic. Since the chord through P1 and P2

meets the conic at two distinct points, it follows that Joachimsthal’s Section
Equation has two distinct (real) roots k.

P1P1
l

P2

P2

Now let P2 move so that the chord through P1 and P2 becomes a tangent
to the conic at P1. This tangent is a line that meets the conic at the point P1

alone, and so the corresponding Joachimsthal’s Section Equation must have a
repeated real root. Hence it follows that we must have Recall that the condition

for a quadratic equation

ax2 + bx + c = 0

to have a repeated root is
just b2 = 4ac.

(2s12)
2 = 4s11s22,

or, equivalently,

(s12)
2 = s11s22.

Since P1 lies on the conic, we know that s11 = 0; so we must have

s12 = 0.

It follows from this equation that the point P2 = (x2, y2) must satisfy the Remember that s1 is
obtained from s12 by
dropping the subscript 2.

equation s1 = 0. But P2 is an arbitrary point on the tangent to the conic at P1,
and so the tangent at P1 must have the equation s1 = 0.

Theorem 1 Let P1 = (x1, y1) be a point on a non-degenerate plane conic

s = 0

s1 = 0

P1

tangent
at P1

E with equation s = 0. Then the equation of the tangent to E at P1 is
s1 = 0.

Example 3 Determine the equation of the tangent at P1 = (1, 1) to the
hyperbola with equation

3x2 − 2xy − y2 + 5x − y − 4 = 0.

Solution The equation of the conic may be written in Joachimsthal’s
notation as s = 0, where

s = 3x2 − 2xy − y2 + 5x − y − 4.

Since here we have x1 = 1 and y1 = 1, we deduce that

s1 = 3 · 1 · x − 2
1 · y + x · 1

2
− 1 · y + 5

1 + x

2
− 1 + y

2
− 4

= 9
2 x − 5

2 y − 2.



222 4: Projective Geometry: Conics

The equation of the tangent at (1, 1) to the hyperbola is therefore

9x − 5y − 4 = 0.

Problem 3 Determine the equation of the tangent to each of the
following non-degenerate plane conics at the given point:

(a) x2 − xy + 2y − 7 = 0 at the point (−1, 2);
(b) 3x2 + 2xy − y2 + x − 2y − 3 = 0 at the point (1, 1).

Tangent Pair from a Point to a Conic
Now suppose that we wish to find the equation of a tangent to a plane conic

s = 0

P1

E

E from a point P1 outside the conic. Intuitively we would expect there to be
two such tangents, as shown in the diagram in the margin. We now check this
algebraically. The technique is similar to the case where P1 lies on the conic,
as we discussed above.

First we consider a chord of E that passes through the given point P1 and
another point P2 that is also outside the conic; then we move P2 so that the
line becomes a tangent. As before, this occurs when Joachimsthal’s Section
Equation has a repeated real root, that is, when

Here s11 �= 0, since P1
does not lie on E .

P1 P1

P2

P2

E

(S12)
2 = S22 . S11.

E

Then, since the point P2 is an arbitrary point on the tangent, we can drop the
subscript 2 to obtain the equation

(s1)
2 = s · s11.

This is a second-degree equation in x and y; it factorizes into two linear

P1

E

tangent pair

s = 0

equations which represent the pair of tangents from P1 to E .

Theorem 2 Let P1 be a point outside a non-degenerate plane conic E with
equation s = 0. Then the equation of the tangent pair from P1 to E is

(s1)
2 = s · s11.
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Example 4 Find the equations of the tangents from the point (1, 1) to the
ellipse with equation x2 + 2y2 = 1.

Solution The equation of the ellipse may be written in Joachimsthal’s
notation as s = 0, where

s = x2 + 2y2 − 1.

Since here we have x1 = 1 and y1 = 1, we deduce that

s11 = 12 + 2 · 12 − 1 = 2

and

s1 = 1 · x + 2 · 1 · y − 1 = x + 2y − 1.

The equation of the tangent pair is therefore That is, (s1)2 = s · s11.

(x + 2y − 1)2 = (x2 + 2y2 − 1) · 2.

Multiplying out both sides and rearranging terms, we can rewrite this equation
in the form

x2 − 4xy + 2x + 4y − 3 = 0,

which we can then factorize as

(x − 1)(x − 4y + 3) = 0.

Hence the equations of the two tangents from the point (1, 1) to the ellipse
are x − 1 = 0 and x − 4y + 3 = 0.

Problem 4 One of the two tangents from the point (2, 1) to the hyper-
bola 4xy + 1 = 0 has the equation y = x − 1. Find the equation of the
other.

Poles and Polars
In Subsection 1.2.1 we defined the polar of a point with respect to the unit

P2

E

P3

polar

pole

P1

s2 = 0

s1 = 0

s = 0

s3 = 0

circle. We now extend this definition to a general non-degenerate plane conic.
Let P1 = (x1, y1) be a point outside a non-degenerate plane conic E with

equation s = 0 (in Joachimsthal’s notation), and suppose that P2 = (x2, y2)

and P3 = (x3, y3) are the points where the tangents through P1 meet E . These
tangents have equations s2 = 0 and s3 = 0, respectively. Since P1 lies on both
tangents, it follows that

s12 = 0 and s13 = 0.

It follows from these equations that the points P2 and P3 both lie on the line
with equation s1 = 0, the so-called chord of contact or polar of P1 with respect
to the conic E .
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Definitions Let E be a non-degenerate plane conic with equation s = 0, This definition is
analogous to the definition
of polar with respect to a
circle in Subsection 1.2.1.

and let P1 = (x1, y1) be an arbitrary point of R
2. Then the polar of P1 with

respect to E is the line with equation s1 = 0. The point P1 is called the
pole of the line s1 = 0 with respect to E .

P1

P1

E
s= 0E E

P1

chord

tangent

s1 =  0

s1 =  0
s1 =  0

?

s= 0 s=  0

We have seen that if P1 lies outside the conic E , then the polar s1 = 0 is the
chord which passes through the points where the tangent pair from P1 touch
E . Also, if P1 is a point on the conic s = 0, then it follows from Theorem 1
that the polar s1 = 0 is simply the tangent to E at P1. If P1 lies inside the We will see in Theorem 3

below that this definition
for the case that P1 lies
inside E results in
theorems about poles and
polars where we do not
need to worry whether a
point in the plane lies
outside, on or inside a
given conic.

conic E , then the polar is simply a particular line outside E that corresponds
to P1.

Example 5 Determine the polar of P1 = (2, 2) with respect to the hyperbola
E with equation

3x2 − 2xy − y2 + 5x − y − 4 = 0.

Solution The equation of the hyperbola E may be written in Joachimsthal’s You met this hyperbola E
previously, in Example 3.notation as s = 0, where

s = 3x2 − 2xy − y2 + 5x − y − 4.

Since here we have x1 = 2 and y1 = 2, we deduce that

s1 = 3 · 2 · x − 2
2 · y + x · 2

2
− 2 · y + 5

2 + x

2
− 2 + y

2
− 4

= 13
2 x − 9

2 y.

It follows that the equation of the polar of P1 with respect to E has equation
13
2 x − 9

2 y = 0, or y = 13
9 x .

Problem 5 Determine the polar of (1, −1) with respect to the hyper-
bola E with equation 2x2 + xy − 3y2 + x − 6 = 0.

We are now able to state and prove a stunningly beautiful result concerning
poles and polars.
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Theorem 3 La Hire’s Theorem
Let E be a non-degenerate plane conic, and let p1 be the polar of a point P1

E
(x1, y1)

(x2, y2)

s1 = 0

s = 0

in R
2. Then each point of p1 has a polar which passes through P1.

Proof Let P1 = (x1, y1) be a point in R
2. Then, by definition, the polar p1

of P1 with respect to E has the equation s1 = 0.
Let P2 = (x2, y2) be any point on p1, so that in particular we have

s12 = 0.

But from the definition of polar, we know that the polar of P2 with respect
to E must have equation s2 = 0. It then follows from the equation s12 = 0 that
the point P1 must lie on the polar of P2 with respect to E . This completes the
proof. �

4.2.2 Tangents to Projective Conics
Earlier, we defined a Line � to be a tangent to a projective conic E if � meets E Subsection 4.1.2

at precisely one Point P . We then explained the connection between tangents to
projective conics and tangents to plane conics. If � is a tangent to a projective
conic E , then the line �′ which represents � in an embedding plane π is a
tangent to the plane conic E ′ which represents E in π .

tangent  
to E ¢

projective
tangent  

to E OO

P
P

P ¢E ¢

EE

p

P

O

¢

Because of this correspondence, we are able to use results about figures in
RP

2 to deduce results about figures in an embedding plane, and vice versa. In
this subsection we use this correspondence to deduce Joachimsthal’s formu-
las for projective conics from the corresponding formulas for plane conics. In
preparation for this, we first extend the concepts of a tangent pair and a polar
to a projective conic in RP

2.
Let E be a non-degenerate projective conic, and let P be a Point in RP

2

which lies outside E . If π is an embedding plane, then E is represented in π

by a non-degenerate plane conic E ′, and P is represented by a Euclidean point
P ′ in π. Now, in the embedding plane π we can draw a pair of tangents �1

and �2 from P ′ to E ′. Back in RP
2, the planes which pass through the origin
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E E

E ¢

P ¢
2 1

P

O O

Point P  outside E

projective
tangent

pair from
P  to E

p

and the lines �1 and �2 are projective tangents to E . These tangents meet at
the Point P , so they are called the projective tangent pair (or, simply, the
tangent pair) from the Point P to the projective conic E .

Now let Q′ and R′ be the points in the embedding plane π at which �1 and
�2 touch E ′. Then the polar of P ′ with respect to E ′ is the line � through Q′
and R′. Back in RP

2, the plane which passes through the origin and � is a Line
which we call the projective polar (or, simply, polar) of the Point P with
respect to the projective conic E .

O

E

E ¢

Q ¢
R ¢

P ¢

12

P

polar of P
with respect

to E

p

In order to see how Joachimsthal’s notation can be extended from R
2 to

RP
2, suppose that the work in Subsection 4.2.1 had all been carried out

in the embedding plane z = 1. To illustrate the ideas involved, recall that
Joachimsthal’s equation for a plane conic is s = 0, where

s = Ax2 + Bxy + Cy2 + Fx + Gy + H .

Earlier, in Subsection 4.1.1, we described how the equation for a conic in
RP

2 can be obtained from the equation of the corresponding plane conic by
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replacing x by x/z and y by y/z, and then multiplying by z2 to clear the
fractions. The equation is still s = 0, but now

s = Ax2 + Bxy + Cy2 + Fxz + Gyz + H z2.

In a similar way, Joachimsthal’s expressions, such as s1 = 0 for a polar, or
s2

1 = s · s11 for a tangent pair, still hold in RP
2 provided that we amend the

expressions for s1 and s11 by replacing x , y, x1, y1 by x/z, y/z, x1/z1, y1/z1,
respectively, and then multiplying by powers of z and z1 to clear fractions. The
resulting amendments to s1, s11, etc., are as specified in the following notation.

Joachimsthal’s Notation for Projective Conics
Let a projective conic have equation s = 0, where

s = Ax2 + Bxy + Cy2 + Fxz + Gyz + H z2,

and let [x1, y1, z1] and [x2, y2, z2] be Points of RP
2. Then we define

s1 = Ax1x + 1
2 B(x1 y + xy1) + Cy1 y

+ 1
2 F(x1z + xz1) + 1

2 G(y1z + yz1) + H z1z,

s11 = Ax2
1 + Bx1 y1 + Cy2

1 + Fx1z1 + Gy1z1 + H z2
1,

s12 = Ax1x2 + 1
2 B(x1 y2 + x2 y1) + Cy1 y2 + 1

2 F(x1z2 + x2z1)

+ 1
2 G(y1z2 + y2z1) + H z1z2.

Example 6 Determine s1, s11 and s12 for the projective conic

4x2 + xy − 2y2 − 8xz − 2yz + 4z2 = 0

at the Points [x1, y1, z1] = [1, 0, 2] and [x2, y2, z2] = [1, 2, −1].
Solution Using Joachimsthal’s notation with A = 4, B = 1, C = −2,
F = −8, G = −2 and H = 4, we deduce that

s1 = 4x + 1
2 (y + 0) − 2 · 0 − 4(z + 2x) − (0 + 2y) + 4 · 2z

= −4x − 3
2 y + 4z;

s11 = 4 · 1 + 0 − 0 − 8 · 2 − 0 + 4 · 4 = 4;

s12 = 4 · 1 + 1
2 (2 + 0) − 0 − 4(−1 + 2) − (0 + 4) + 4 · 2 · (−1)

= −11.

With the changes to Joachimsthal’s notation described above, all of the for-
mulas for polars, tangents and tangent pairs carry over from R

2 to RP
2. We We omit the details.

therefore have the following theorem.
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Theorem 4 Let a projective conic E in RP
2 have equation s = 0.

(a) If P = [x1, y1, z1] lies on E , then the tangent to E at P has equation
s1 = 0.

(b) If P = [x1, y1, z1] lies outside E , then the pair of tangents to E from P
are given by the equation s2

1 = s · s11.
(c) If P = [x1, y1, z1] is any Point in RP

2, then the polar of P with respect In fact, if P lies inside or
on E , then we define the
polar of P to be the Line
with equation s1 = 0.

to E is the Line with equation s1 = 0.

Example 7 The projective conic E has equation

4x2 + xy − 2y2 − 8xz − 2yz + 4z2 = 0.

(a) Determine the equation of the tangent to E at the Point [0, 1, 1].
(b) Determine the equations of the two tangents to E that pass through the

Point [1, 0, 2].
(c) Determine the polar of the Point [1, 0, 2] with respect to E .

Solution

(a) Let s = 4x2 + xy − 2y2 − 8xz − 2yz + 4z2 and [x1, y1, z1] = [0, 1, 1].
Then

s1 = 0 + 1
2 (0 + x) − 2y − 4(0 + x) − (z + y) + 4z

= − 7
2 x − 3y + 3z.

Hence the equation of the tangent to E at [0, 1, 1] is

− 7
2 x − 3y + 3z = 0,

or

7x + 6y − 6z = 0.

(b) The pair of tangents from the Point [1, 0, 2] to E are given by the equation
s2

1 = s · s11, where, by Example 6, s1 = −4x − 3
2 y + 4z and s11 = 4.

Thus the equation of the tangent pair is(
−4x − 3

2 y + 4z
)2 = (4x2 + xy − 2y2 − 8xz − 2yz + 4z2) · 4,

or

16x2 + 9
4 y2 + 16z2 + 12xy − 32xz − 12yz

= 16x2 + 4xy − 8y2 − 32xz − 8yz + 16z2.

After some rearrangement, this becomes

41
4 y2 + 8xy − 4yz = 0,
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or

y
(

41
4 y + 8x − 4z

)
= 0.

Thus the equations of the two tangents to the projective conic are

y = 0 and 41
4 y + 8x − 4z = 0.

(c) The polar of the Point [1, 0, 2] is given by the equation s1 = 0, where, by
Example 6,

s1 = −4x − 3
2 y + 4z.

Thus the equation of the polar of [1, 0, 2] with respect to E is

−4x − 3
2 y + 4z = 0,

or

8x + 3y − 8z = 0.

Problem 6 The projective conic E has equation

y2 + z2 + 2xy − 4yz + zx = 0.

(a) Determine the equation of the tangent to E at the Point [1, 0, 0].
Verify that [0, 1, −2] lies on this tangent.

(b) Determine the equations of the two tangents to E that pass through
the Point [0, 1, −2].

(c) Determine the polar of the Point [0, 1, −2] with respect to E .

4.3 Theorems

In this section we use the fact that all non-degenerate (projective) conics are
projective-congruent, together with the Fundamental Theorem of Projective Subsection 3.3.4,

Theorem 4Geometry, to prove many interesting results about projective conics. It then
follows that the corresponding results hold for plane conics too.

4.3.1 Points on Projective Conics
Recall that the general form of the equation of a projective conic in RP

2 is Subsection 4.1.1

Ax2 + Bxy + Cy2 + Fxz + Gyz + H z2 = 0.

Although this equation involves six arbitrary constants A, B, C , F , G and H ,
it is only their five ratios that matter. In fact, it takes exactly five Points to
determine a projective conic.
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Example 1 Determine the equation of the projective conic which passes
through the Points [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1] and [1, 2, 3].

Solution Let the projective conic have equation

Ax2 + Bxy + Cy2 + Fxz + Gyz + H z2 = 0.

Since [1, 0, 0] lies on the projective conic, we must have A = 0. Similarly,
since [0, 1, 0] and [0, 0, 1] lie on the projective conic, we must also have C = 0
and H = 0. Thus the equation of the projective conic reduces to the form

Bxy + Fxz + Gyz = 0.

Since [1, 1, 1] and [1, 2, 3] both satisfy this equation, we deduce that

B + F + G = 0 (1)

and
2B + 3F + 6G = 0. (2)

Subtracting equation (2) from twice equation (1), we deduce that −F−4G = 0
so that F = −4G; and subtracting equation (2) from three times equation (1),
we deduce that B − 3G = 0 so that B = 3G. It follows that the equation of
the projective conic must be of the form

The equation of a
projective conic is of
second degree, and so
G �= 0.

3Gxy − 4Gxz + Gyz = 0,

or

3xy − 4xz + yz = 0.

Problem 1 Determine the equation of the projective conic which
passes through the Points [1, 0, 0], [0, 1, 0], [0, 0, 1], [1,1,1] and
[−2, 3, 1].

We now use the approach in Example 1 to prove the following result.

Theorem 1 Five Points Theorem
There is a unique non-degenerate projective conic through any given set of
five Points, no three of which are collinear. In particular, if the five Points
are [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1] and [a, b, c], then the equation of the
conic is

c(a − b)xy + b(c − a)xz + a(b − c)yz = 0.

Proof By the Fundamental Theorem of Projective Geometry, there is a pro-
jective transformation t which maps four of the Points to [1, 0, 0], [0, 1, 0],
[0, 0, 1] and [1, 1, 1]. Let [a, b, c] be the image of the fifth Point under t .
Since t−1 preserves collinearity, it follows that no three of the Points [1, 0, 0],
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[0, 1, 0], [0, 0, 1], [1, 1, 1] and [a, b, c] are collinear. This observation enables
us to deduce that the numbers a, b and c are all different and non-zero.

For example, b �= c, for otherwise [a, b, c], [1, 0, 0] and [1, 1, 1] would all
lie on the Line y = z. Similarly, a �= b and c �= a.

Also, c �= 0, for otherwise [a, b, c], [1, 0, 0] and [0, 1, 0] would all lie on
the Line z = 0. Similarly, a �= 0 and b �= 0.

Since t is a one-one transformation which preserves non-degenerate projec- Subsection 4.1.1,
Theorem 1tive conics, the theorem holds if and only if there is a unique non-degenerate

projective conic through the Points [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1] and
[a, b, c]. In fact, since no degenerate projective conic can pass through [1, 0, 0], A degenerate projective

conic consists of a pair of
Lines, a single Line, a
Point, or ‘no Points’. Such
a projective conic cannot
pass through five Points
without three of the Points
being collinear.

[0, 1, 0], [0, 0, 1], [1, 1, 1] and [a, b, c], it is sufficient to show that there is a
unique projective conic (with the desired equation) through these Points.

Now any projective conic has equation

Ax2 + Bxy + Cy2 + Fxz + Gyz + H z2 = 0,

and if it passes through the Point [1, 0, 0], then A = 0. Similarly, if it passes
through the Points [0, 1, 0] and [0, 0, 1], then C = 0 and H = 0. It follows
that any projective conic which passes through [1, 0, 0], [0, 1, 0] and [0, 0, 1]
must have an equation of the form

Bxy + Fxz + Gyz = 0, (3)

for some real numbers B, F and G.
If the projective conic also passes through the Points [1, 1, 1] and [a, b, c],

then
B + F + G = 0 (4)

and

Bab + Fac + Gbc = 0. (5)

We may regard equations (4) and (5) as simultaneous equations in B and F .
If we subtract equation (5) from ab times equation (4), we obtain

F(ab − ac) + G(ab − bc) = 0,

so

Note that ab − ac �= 0
since a �= 0 and b �= c.

F = −G
ab − bc

ab − ac
; (6)

and if we subtract equation (5) from ac times equation (4), we obtain

B(ac − ab) + G(ac − bc) = 0,

so

B = −G
ac − bc

ac − ab
. (7)

It follows from equations (3), (6) and (7) that any projective conic through
the Points [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1] and [a, b, c] must have an
equation of the form The equation of a

projective conic is of
second degree, so G �= 0.−G

ac − bc

ac − ab
xy − G

ab − bc

ab − ac
xz + Gyz = 0,
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or

c(a − b)xy + b(c − a)xz + a(b − c)yz = 0.

Since a, b and c are uniquely determined (up to a multiple) by the fifth Point, If we multiply a, b and c
by a constant λ, then the
equation of the projective
conic is multiplied by λ2;
however, this does not
change the projective
conic.

it follows that the projective conic is unique. �

Now any theorem which is concerned exclusively with the projective prop-
erties of Points, Lines and projective conics can be interpreted as a theorem
about the corresponding points, lines and plane conics in an embedding plane.
For example, if we are given any set of five points in an embedding plane, no
three of which are collinear, then Theorem 1 tells us that there is a unique plane Some of the points may be

ideal Points for the
embedding plane.

conic which passes through the points. In particular, this result remains true if
we require that none of the five points is an ideal Point for the embedding
plane, so we have the following result about plane conics.

Corollary 1 There is a unique plane conic through any given set of five

X

A

B

D

C

points, no three of which are collinear.

Now consider any four distinct Points A, B, C , D, no three of which are
collinear. If X is a Point in RP

2 that does not lie on any of the various
Lines through A, B, C , D, then Theorem 1 tells us that there is a unique non-
degenerate projective conic through A, B, C , D and X . If we now move X
around RP

2 (avoiding the various Lines through A, B, C , D) we obtain an
infinite family of non-degenerate projective conics through A, B, C , D. We
therefore have the following corollary of Theorem 1.

Corollary 2 There are infinitely many non-degenerate projective conics
through any given set of four Points, no three of which are collinear.

Problem 2 Find the equations of two different (non-degenerate) pro-
jective conics through the Points [1, 0, 0], [0, 1, 0], [0, 0, 1] and [1, 2, 3].

Warning
We now use this corollary to warn you about a mistake that is frequently made
in projective geometry.

The mistake is to assume that there exists a projective transformation t which

Warning

maps one projective conic E1 onto another projective conic E2 in such a way
that four given Points on E1 are mapped to four given Points on E2.

Of course, there is certainly a projective transformation t1 which maps E1

onto E2, and by the Fundamental Theorem of Projective Geometry there is
certainly a projective transformation t2 which maps the four Points on E1 to
the four Points on E2. The trouble is that t1 may not be the same transformation
as t2.
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A D

E1 E2

t (B) t (C)

t (D)t (A)

B
C

t

For example, consider two different projective conics E1 and E2 through

D
A

B
C

E2

E1

?

the Points A = [1, 0, 0], B = [0, 1, 0], C = [0, 0, 1], D = [1, 1, 1]. (This is
possible by Corollary 2.) By the Fundamental Theorem of Projective Geometry
the only projective transformation which maps each of the Points A, B, C , D to
itself is the identity transformation, and this certainly cannot map E1 onto E2.

The following theorem shows that the situation is very different if, instead
of having to map four given Points on one projective conic to four given Points
on another, we have to map just three.

Theorem 2 Three Points Theorem
Let E1 and E2 be non-degenerate projective conics which pass through the
Points P1, Q1, R1 and P2, Q2, R2, respectively. Then there is a projective
transformation t which maps E1 onto E2 in such a way that

t(P1) = P2, t(Q1) = Q2, t(R1) = R2.

Proof First, let t ′ be any projective transformation that maps P1, Q1, R1 to
[1, 0, 0], [0, 1, 0], [0, 0, 1], respectively. Then t ′ maps E1 to a non-degenerate
projective conic E ′ which passes through the triangle of reference. If E ′ has
equation

Ax2 + Bxy + Cy2 + Fxz + Gyz + H z2 = 0,

then the fact that the Point [1, 0, 0] lies on E ′ forces A to be zero, and the fact
that the Points [0, 1, 0] and [0, 0, 1] lie on E ′ forces C and H to be zero. It
follows that the equation of E ′ can be written in the form

Bxy + Fxz + Gyz = 0,

for some non-zero real numbers B, F and G. By dividing by B FG we can If B were zero, then the
equation of the projective
conic could be written as

(Fx + Gy)z = 0,

which is the equation of a
degenerate projective
conic consisting of two
Lines. It follows that
B �= 0. Similarly, F �= 0
and G �= 0.

rewrite the equation of E ′ in the form
x

G
· y

F
+ x

G
· z

B
+ y

F
· z

B
= 0.

Now define the projective transformation t ′′ by t ′′([x , y, z]) = [x ′, y′, z′],
where ⎛

⎝ x ′
y′
z′

⎞
⎠ =

⎛
⎝ 1/G 0 0

0 1/F 0
0 0 1/B

⎞
⎠
⎛
⎝ x

y
z

⎞
⎠ .

Then t ′′ maps E ′ to the conic with equation x ′y′ + x ′z′ + y′z′ = 0, or, after
dropping the dashes, to the conic with equation xy + xz + yz = 0.
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Since t ′′ leaves the triangle of reference unchanged, it follows that the com- For example,

t ′′([1, 0, 0]) = [1/G, 0, 0]
= [1, 0, 0].

posite projective transformation t1 = t ′′ ◦ t ′ maps E1 to the projective conic
with equation

xy + xz + yz = 0

in such a way that t1(P1) = [1, 0, 0], t1(Q1) = [0, 1, 0] and t1(R1) = [0, 0, 1].
Similarly, there is a projective transformation t2 which maps E2 onto the

projective conic with equation

xy + xz + yz = 0

in such a way that t2(P2) = [1, 0, 0], t2(Q2) = [0, 1, 0] and t2(R2) = [0, 0, 1].
It follows that the composite projective transformation t = t−1

2 ◦ t1 maps
E1 onto E2 in such a way that t(P1) = P2, t(Q1) = Q2, t(R1) = R2, as
required. �

Example 2 The Points [1, 1, 1], [1, 2, 2], [1, 2, 1] lie on the projective conic
E with equation 2x2 + 2xy − y2 + yz − 5xz + z2 = 0.

(a) Verify that the projective transformation t1 : [x] �→ [x′] with associated

matrix A =
⎛
⎝ 2 −1 0

−1 0 1
0 1 −1

⎞
⎠ maps the Points [1, 1, 1], [1, 2, 2],

[1, 2, 1] to the Points [1, 0, 0], [0, 1, 0], [0, 0,1], respectively, and maps E
onto the projective conic E ′ with equation x ′y′ − x ′z′ + y′z′ = 0.

Hint: The inverse of A is A−1 =
⎛
⎝ 1 1 1

1 2 2
1 2 1

⎞
⎠.

(b) Determine the equation of the projective conic E ′′ that is the image of E ′
under the projective transformation t2 : [x′] �→ [x′′] with associated matrix

B =
⎛
⎝ 1 0 0

0 −1 0
0 0 1

⎞
⎠.

(c) Hence determine a matrix associated with a projective transformation that
maps E onto the projective conic with equation xy + yz + zx = 0.

Solution

(a) Let x′ = Ax, so that⎛
⎝ x ′

y′
z′

⎞
⎠ =

⎛
⎝ 2 −1 0

−1 0 1
0 1 −1

⎞
⎠
⎛
⎝ x

y
z

⎞
⎠ .

Since ⎛
⎝ 2 −1 0

−1 0 1
0 1 −1

⎞
⎠
⎛
⎝ 1

1
1

⎞
⎠ =

⎛
⎝ 1

0
0

⎞
⎠ ,
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⎛
⎝ 2 −1 0

−1 0 1
0 1 −1

⎞
⎠
⎛
⎝ 1

2
2

⎞
⎠ =

⎛
⎝ 0

1
0

⎞
⎠ .

and ⎛
⎝ 2 −1 0

−1 0 1
0 1 −1

⎞
⎠
⎛
⎝ 1

2
1

⎞
⎠ =

⎛
⎝ 0

0
1

⎞
⎠ ,

it follows that the images under t1 of [1, 1, 1], [1, 2, 2], [1, 2, 1] are
[1, 0, 0], [0, 1, 0], [0, 0, 1], respectively.
Next, x = A−1x′ so that⎛

⎝ x
y
z

⎞
⎠ =

⎛
⎝ 1 1 1

1 2 2
1 2 1

⎞
⎠
⎛
⎝ x ′

y′
z′

⎞
⎠ ;

thus

x = x ′ + y′ + z′,

y = x ′ + 2y′ + 2z′,

and

z = x ′ + 2y′ + z′.

It follows that t1 maps the given projective conic onto the projective conic
with equation

2(x ′ + y′ + z′)2 + 2(x ′ + y′ + z′)(x ′ + 2y′ + 2z′)

− (x ′ + 2y′ + 2z′)2 + (x ′ + 2y′ + 2z′)(x ′ + 2y′ + z′)

− 5(x ′ + y′ + z′)(x ′ + 2y′ + z′) + (x ′ + 2y′ + z′)2 = 0.

After some simplification, this becomes x ′y′−x ′z′+ y′z′ = 0, as required. We omit the details.

(b) Under the projective transformation t2 : x′ �→
⎛
⎝ 1 0 0

0 −1 0
0 0 11

⎞
⎠ x′ = x′′,

we have

x ′′ = x ′, y′′ = −y′ and z′′ = z′.

so that

x ′ = x ′′, y′ = −y′′ and z′ = z′′.

Hence the image under t2 of the projective conic x ′y′ − x ′z′ + y′z′ = 0 is
the projective conic with equation

−x ′′y′′ − x ′′z′′ − y′′z′′ = 0,

or

x ′′y′′ + x ′′z′′ + y′′z′′ = 0.
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(c) It follows from parts (a) and (b) that the projective transformation t2 ◦ t1,
with matrix

BA =
⎛
⎝ 1 0 0

0 −1 0
0 0 1

⎞
⎠
⎛
⎝ 2 −1 0

−1 0 1
0 1 −1

⎞
⎠

=
⎛
⎝ 2 −1 0

−1 0 −1
0 1 −1

⎞
⎠

maps E onto the projective conic with equation xy + yz + zx = 0, as
required.

We can use a similar approach to find a projective transformation that maps
We explain the
designation ‘standard
projective conic’ in the
next subsection.

any given projective conic onto the standard projective conic xy+ yz+zx = 0.

Strategy To determine a projective transformation t that maps a given
projective conic E onto the standard projective conic xy + yz + zx = 0:

1. choose three Points P , Q, R on E ;
2. determine a matrix A associated with a projective transformation that

maps P , Q, R onto [1, 0, 0], [0, 1, 0], [0, 0, 1], respectively;
3. determine the equation Bx ′y′ + Fx ′z′ + Gy′z′ = 0 of t(E), for some

real numbers B, F and G;
4. then a matrix associated with t is BA, where

B =
⎛
⎝ 1/G 0 0

0 1/F 0
0 0 1/B

⎞
⎠.

Problem 3 The Points [−2, 0, 1], [0, −3, 2], [1, −2, 1] lie on the pro-
jective conic E with equation 17x2 + 47xy + 32y2 + 67xz + 92yz +
66z2 = 0.

(a) Verify that the projective transformation t with an associated matrix

A =
⎛
⎝ 1 2 3

2 3 4
3 4 6

⎞
⎠ ,

maps [−2, 0, 1], [0, −3, 2], [1, −2, 1] to [1, 0, 0], [0, 1, 0], [0, 0,1],
respectively.

(b) Verify that the inverse of A is A−1 =
⎛
⎝ −2 0 1

0 3 −2
1 −2 1

⎞
⎠.

(c) Determine the equation of the projective conic t(E).
(d) Hence determine a matrix associated with a projective transforma-

tion that maps E onto the projective conic with equation xy + yz +
zx = 0.
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4.3.2 The Standard Form xy + yz + zx = 0
In the previous chapter you saw that we can often simplify problems about Subsection 3.4.1

Points and Lines by mapping certain Points to the triangle of reference and the
unit Point. In a similar way, we can often simplify problems about a projective
conic by mapping it onto another projective conic that has a simpler equation.

Since all non-degenerate projective conics are projective-congruent, it Subsection 4.1.4,
Theorem 5follows that there is a projective transformation which maps any given non-

degenerate projective conic in RP
2 onto the projective conic with equation The existence of such a

projective transformation
was also proved in
Theorem 2 above, and the
subsequent Strategy.

xy + yz + zx = 0. This equation turns out to be particularly useful for tackling
a large number of problems about projective conics, so we give it a special
name.

Definitions The equation

xy + yz + zx = 0

is called a standard form for the equation of a projective conic.
The conic defined by this standard form is called a standard projective

conic.

The following diagram illustrates this standard projective conic together
with its representation in the standard embedding plane z = 1. The repre-
sentation has equation xy + y + x = 0, or (x + 1)(y + 1) = 1, and is therefore
a rectangular hyperbola with asymptotes x = −1 and y = −1. Recall that a rectangular

hyperbola is a hyperbola
whose asymptotes meet at
right angles.

Notice the unconventional
orientation of the axes in
this figure. This is done to
give a better view of the
cone and its intersection
with the embedding plane.

standard
embedding
plane z = 1

standard conic
xy+ yz+ zx= 0

rectangular
hyperbola

asymptotes

x

z

y

Since this standard projective conic is defined by the equation xy + yz +
zx = 0, it must pass through the triangle of reference [1, 0, 0], [0, 1, 0], Recall that the sides of the

triangle of reference in
RP

2 are the x-, y- and
z-axes in R

3.

[0, 0, 1]. This fact can often be used to simplify calculations involving
projective conics. Other Points on the projective conic that appear in such
calculations may then be expressed in terms of a single real parameter.

Theorem 3 Parametrization Theorem
Let E be a projective conic with equation in the standard form

xy + yz + zx = 0.
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Then each Point on E , other than [1, 0, 0], has homogeneous coordinates
of the form [t2 + t , t + 1, −t], where t ∈ R. Moreover, each such Point lies
on E .

Proof Let [x , y, z] be any Point on E . If x = 0, then we must have yz = 0,
so either y = 0 (in which case the Point has homogeneous coordinates
[0, 0, z] = [0, 0, 1]) or z = 0 (in which case the Point has homogeneous coor-
dinates [0, y, 0] = [0, 1, 0]). A similar discussion of the possibilities when y or
z is zero shows that the only Points on E for which one of the homogeneous We cannot have x , y and z

all zero for Points [x , y, z]
in RP

2.
coordinates vanishes are the three Points [1, 0, 0], [0, 1, 0] and [0, 0,1].

Suppose next that [x , y, z] is a Point on E for which none of the coordinates
vanishes, and let t = x/y. Then x = t y and so Notice that t �= 0 since

x �= 0.
(t y)y + yz + z(t y) = 0,

that is, t y2 + (t + 1)yz = 0. Since y �= 0, it follows that

t y + (t + 1)z = 0.

Thus y = −
(

t+1
t

)
z, and so x = −(t + 1)z. It follows that the Point [x , y, z]

has homogeneous coordinates
[
−(t + 1)z, −

(
t+1

t

)
z, z
]
; and, since z �= 0 and

t �= 0, we may rewrite these coordinates in the form [t(t + 1), t + 1, −t].
Also, notice that we can obtain the Point [0, 1, 0] by choosing t = 0, and

the Point [0, 0, 1] by choosing t = −1; so every Point on E , other than
[1, 0, 0], can be written in the form [t2 + t , t + 1, −t] for some t ∈ R.

Conversely, every Point of the form [t2 + t , t + 1, −t], where t ∈ R, lies on
E because

(t2 + t)(t + 1) + (t + 1)(−t) + (−t)(t2 + t) = 0.

This completes the proof. �

Using a preliminary projective transformation, we can transform any prob-
lem involving Points on a projective conic to a problem involving Points on the
standard projective conic with equation xy + yz + zx = 0. By the Three Points
Theorem, we can assume that three of the Points are [1, 0, 0], [0, 1, 0] and
[0, 0,1], and by the Parametrization Theorem we may express any remaining
Points in the form [t2 + t , t + 1, −t] for some real number t .

We illustrate this technique by proving Pascal’s Theorem.

Theorem 4 Pascal’s Theorem
Let A, B, C , A′, B ′ and C ′ be six distinct Points on a non-degenerate pro- Blaise Pascal (1623–1662)

proved this theorem while
still a schoolboy aged 16.

jective conic. Let BC and B ′C intersect at P , C A′ and C ′ A intersect at Q,
and AB ′ and A′B intersect at R. Then P , Q and R are collinear.
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A
B

C

PQR

A ¢
B¢

C ¢ 

Proof By the Three Points Theorem we can let the equation of the projective

Notice that in geometric
illustrations of results in
projective geometry, we
usually draw the
projective conic as a plane
ellipse in R

2. We draw it
in R

2 simply for
convenience, since the
page is part of R

2! We
draw it as an ellipse to
avoid having to cope with
ideal Points, etc.

conic be in the standard form xy + yz + zx = 0, with A = [1, 0, 0], B =
[0, 1, 0], C = [0, 0, 1]. Also, by the Parametrization Theorem, we can let A′ =
[a2 + a, a + 1, −a], B ′ = [b2 + b, b + 1, −b], C ′ = [c2 + c, c + 1, −c], for
some real numbers a, b, c.

First we find the Point P . The Line BC ′ joins the Points [0, 1, 0] and[
c2 + c, c + 1, −c

]
, and so clearly has equation x = − (c + 1) z since both

Points lie on this Line. The Line B ′C joins the Points
[
b2 + b, b + 1, −b

]
and

[0, 0, 1], and so clearly has equation x = by since both Points lie on this Line.
The point P lies on both BC ′ and B ′C , so that its homogeneous coordinates[

x , y, z
]

must satisfy the two equations x = − (c + 1) z and x = by. It follows
that P has homogeneous coordinates [b (c + 1) , c + 1, −b].

Similar arguments show that the Lines C A′ and C ′ A have equations x = ay
and cy = − (c + 1) z, so that their Point of intersection Q has homogeneous
coordinates [a (c + 1) , c + 1, −c]. Also, the Lines AB ′ and A′ B have equa-
tions by = − (b + 1) z and x = − (a + 1) z, so that their Point of intersection
R has homogeneous coordinates [b (a + 1) , b + 1, −b].

Finally, P , Q and R are collinear since Here we use the
determinant criterion for
collinearity given in
Subsection 3.2.2.

∣∣∣∣∣∣
b(c + 1) c + 1 −b
a(c + 1) c + 1 −c
b(a + 1) b + 1 −b

∣∣∣∣∣∣
=
∣∣∣∣∣∣

bc + b c + 1 −b
ac + a c + 1 −c
ab + b b + 1 −b

∣∣∣∣∣∣
=
∣∣∣∣∣∣

bc − ab c − b 0
ac + a c + 1 −c
ab + b b + 1 −b

∣∣∣∣∣∣ (row 1 − row 3)

= b(c − a)

∣∣∣∣ c + 1 −c
b + 1 −b

∣∣∣∣− (c − b)

∣∣∣∣ ac + a −c
ab + b −b

∣∣∣∣
= b(c − a)(−b + c) − (c − b)(−ab + bc)

= 0.

This completes the proof of Pascal’s Theorem. �

Elementary row
operations do not affect
the linear independence of
the rows.
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By representing the configuration of Pascal’s Theorem in an embedding
plane, we can obtain a version of the theorem that holds in R

2. We state this in
the form of a corollary, as follows.

Corollary 3 Let A, B, C , A′, B ′ and C ′ be six distinct points on a non-
degenerate plane conic, with BC ′ and B ′C intersecting at P , C A′ and C ′ A
intersecting at Q, and AB ′ and A′ B intersecting at R. Then P , Q and R are
collinear.

Notice that because this corollary is stated as a result in R
2, certain config-

urations are excluded. For example, the lines BC ′ and B ′C cannot be parallel
since P is assumed to lie in R

2. Such cases have to be treated separately.

Problem 4 Give an interpretation in R
2 of Pascal’s Theorem for

which the lines AB ′ and A′ B are parallel (but AC ′ meets A′C and BC ′
meets B ′C).

4.3.3 Converse of Pascal’s Theorem
Pascal’s Theorem states that if six distinct Points A, B, C , A′, B ′ and C ′ lie on Subsection 4.3.2,

Theorem 4a non-degenerate projective conic with BC ′ and B ′C intersecting at P , C A′
and C ′ A intersecting at Q, and AB ′ and A′ B intersecting at R, then P , Q
and R are collinear. The converse states that if the intersection Points P , Q
and R are collinear, then the six Points A, B, C , A′, B ′ and C ′ lie on a non-
degenerate projective conic. Again, our proof is algebraic, and depends on a
suitable choice of coordinates.

Theorem 5 Converse of Pascal’s Theorem
Let A, B, C , A′, B ′ and C ′ be six Points, no three of which are collinear,

A
B

C

PQR

A ¢
B ¢

C ¢

with BC ′ and B ′C intersecting at P , C A′ and C ′ A intersecting at Q, and
AB ′ and A′B intersecting at R. If P , Q and R are collinear, then the Points
A, B, C , A′, B ′ and C ′ lie on a non-degenerate projective conic.

Proof Since no three of the Points A, B, C , A′, B ′ and C ′ are collinear, we
can (by a preliminary projective transformation, if necessary) assume that the Here we are using the

Fundamental Theorem of
Projective Geometry.

points A, B, C and A′ have homogeneous coordinates [1, 0, 0], [0, 1, 0],
[0, 0, 1] and [1,1,1], respectively. Suppose that B ′ and C ′ have homogeneous
coordinates [a, b, c] and [r , s, t], respectively.

By Theorem 1 we know that there is a unique non-degenerate projective Subsection 4.3.1

conic through the five Points A, B, C , A′ and B ′, and its equation is

c(a − b)xy + b(c − a)xz + a(b − c)yz = 0. (8)

We must verify that the Point C ′ also lies on this projective conic. We do
this by calculating the homogeneous coordinates of the Points P , Q and R,
and using the determinant condition that these three Points are collinear. Subsection 3.2.2
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First, the Line BC ′ passes through the Points [0, 1, 0] and [r , s, t], and
therefore has equation t x = r z. Similarly, the Line B ′C passes through the
Points [a, b, c] and [0, 0, 1], and therefore has equation bx = ay. It follows
that the Point P has homogeneous coordinates [ar , br , at].

Next, the line C A′ passes through the Points [0, 0, 1] and [1, 1, 1], and there-
fore has equation x = y. Similarly, the line C ′ A passes through the points
[r , s, t] and [1, 0, 0], and therefore has equation t y = sz. It follows that the
Point Q has homogeneous coordinates [s, s, t].

Finally, the Line AB ′ passes through the Points [1, 0, 0] and [a, b, c], and
therefore has equation cy = bz. Similarly, the Line A′B passes through the
Points [1, 1, 1] and [0, 1, 0], and therefore has equation x = z. It follows that
the Point R has homogeneous coordinates [c, b, c].

Then it follows from the fact that P , Q and R are collinear that Recall that the collinearity
of P , Q and R is a
hypothesis of the theorem.

0 =
∣∣∣∣∣∣

ar br at
s s t
c b c

∣∣∣∣∣∣
= ar

∣∣∣∣ s t
b c

∣∣∣∣− br

∣∣∣∣ s t
c c

∣∣∣∣+ at

∣∣∣∣ s s
c b

∣∣∣∣
= ar(sc − bt) − br(sc − ct) + at(sb − cs).

By rearranging the terms in this equation we get

c(a − b)rs + b(c − a)r t + a(b − c)st = 0. (9)

By comparing equations (8) and (9), we observe that equation (8) holds for
the Point C ′ = [r , s, t]. In other words, the Point C ′ lies on the protective conic
through the Points A, B, C , A′ and B ′, which has equation (8). This shows that
A, B, C , A′, B ′ and C ′ lie on the same (non-degenerate) projective conic, as
required. �

The following corollary gives a version of the converse of Pascal’s Theorem
that holds in R

2.

Corollary 4 Let A, B, C , A′, B ′ and C ′ be six points in R
2, no three of

which are collinear, with BC ′ and B ′C intersecting at P , C A′ and C ′ A
intersecting at Q, and AB ′ and A′ B intersecting at R. If P , Q and R are
collinear, then the points A, B, C , A′, B ′ and C ′ lie on a non-degenerate
plane conic.

We conclude this subsection by showing how this corollary can be used to C

F

T

B
A

A¢
B¢

construct further points on the unique plane conic which passes through five
given points A, B, C , A′ and B ′, no three of which are collinear.

Let T be any point in R
2 such that AT does not pass through B, C , A′ or

B ′. Then the following construction, using only a straight edge and pencil,
determines a sixth point, F say, where the conic meets AT .

1. Draw the lines AB ′ and A′ B, and so determine the point of intersection R
of these lines.
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2. Draw the lines CA′ and TA, and so determine the point of intersection Q of

F

P
Q

R

A
B

C

T
A¢

B ¢

these lines.
3. Draw the lines QR and B ′C , and so determine the point of intersection P

of these lines.
4. Then the point of intersection F of the lines B P and AT lies on the conic.

We can see easily why this construction works. The points A, B, C , A′, B ′
and F are such that the point R where AB ′ meets A′ B, the point Q where CA′
meets F A, and the point P where B F meets B ′C are all collinear. It follows
from the converse of Pascal’s Theorem that the points A, B, C , A′, B ′ and F
all lie on the same plane conic.

Thus F is the point where AT meets the conic which passes through the five
points A, B, C , A′ and B ′.

4.3.4 The Standard Form x2 + y 2 = z2

Since all non-degenerate projective conics are projective-congruent, there is Subsection 4.1.4,
Theorem 5a projective transformation that maps any non-degenerate projective conic in

RP
2 onto the projective conic with equation x2 + y2 = z2. This is usually

the simplest equation to use for problems that involve tangents and polars of
non-degenerate projective conics.

Definitions The equation

x2 + y2 = z2

is called a standard form for the equation of a projective conic. This is the second
standard form that we
have discussed (see
Subsection 4.3.2 for the
other).

The conic defined by this standard form is called a standard projective
conic.

This standard projective conic is a right circular cone in R
3, as shown in the

z

z = 1

y

x

O

margin. It meets the embedding plane z = 1 in a circle of unit radius.
The reason why this standard projective conic is so useful for studying polars

and tangents is that the equations of its polars and tangents have particularly
simple forms.

Theorem 6 Let E be the projective conic with equation

x2 + y2 = z2,

and let P = [a, b, c] be any Point in RP
2. Then:

(a) if P ∈ E , then ax + by − cz = 0 is the equation of the tangent to E
at P;

(b) if P �∈ E , then ax + by − cz = 0 is the equation of the polar of P with
respect to E .
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(a)

x2 + y2 = z2 x2 + y2 = z2
ax + by – cz = 0 ax + by – cz = 0

P = [a,b,c]  
P = [a,b,c]

tangent polar
(b)

Proof In Joachimsthal’s notation, the standard form becomes s = 0, where Subsection 4.2.2

s = x2 + y2 − z2. So at any Point P = [x1, y1, z1] of RP
2, we have s1 =

xx1 + yy1 − zz1.
Now recall that when P lies on the projective conic, the equation s1 = 0

gives the equation of the tangent to the projective conic at P , and when P does
not lie on the projective conic, it gives the equation of the polar of P . The
result follows by noting that at the Point P = [a, b, c] the equation s1 = 0
becomes ax + by − cz = 0. �

Example 3 Determine whether each of the following Lines touches the pro-
jective conic with equation x2 + y2 = z2. For each Line that does, state the
Point of tangency.

(a) 3x − 5y + 4z = 0 (b) 3x − 4y + 5z = 0

Solution If a Line is the tangent to the projective conic x2 + y2 − z2 = 0 at
some Point P = [a, b, c], say, then its equation must be ax + by − cz = 0 (or
some multiple of this).

(a) Comparing the equations 3x − 5y + 4z = 0 and ax + by − cz = 0, we see
that P must have homogeneous coordinates [3, −5, −4]. However, since

(3)2 + (−5)2 − (−4)2 = 9 + 25 − 16 = 18 �= 0,

the Point [3, −5, −4] cannot lie on the projective conic; hence the Line
cannot be a tangent to the projective conic.

(b) Comparing the equations 3x − 4y + 5z = 0 and ax + by − cz = 0, we see
that P must have homogeneous coordinates [3, −4, −5]. Since

(3)2 + (−4)2 − (−5)2 = 9 + 16 − 25 = 0,

the Line is a tangent to the projective conic at the Point [3, −4, −5].

Problem 5 Determine whether each of the following Lines touches
the projective conic x2 + y2 = z2. For each Line that does, state the
Point of tangency.

(a) 91x − 60y − 109z = 0 (b) 4x + 5y + 3z = 0
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We can use these ideas to provide an alternative proof of La Hire’s Theorem We first proved a version
of La Hire’s Theorem in
R

2, in Subsection 4.2.1.
concerning polars.

Theorem 7 La Hire’s Theorem
Let E be a non-degenerate projective conic, and let P be any Point of RP

2,
with polar p with respect to E . Then the polar of any Point Q on p passes
through P .

rx + sy – tz = 0
ax + by – cz = 0

P = [a,b,c]

Q = [r,s,t]

E

p

Proof We may assume that the equation of the projective conic is in the
standard form x2 + y2 − z2 = 0, and that P has homogeneous coordinates
[a, b, c].

Then, by Theorem 6, the equation of p is

ax + by − cz = 0.

So if Q = [r , s, t] is any Point on p, then

ar + bs − ct = 0. (10)

Now, by applying Theorem 6 again, we know that the polar of Q = [r , s, t]
with respect to the projective conic x2 + y2 − z2 = 0 has equation

r x + sy − t z = 0,

so, by equation (10), it passes through P . This completes the proof. �

We now prove the following interesting result as another application of
Theorem 6.

Theorem 8 Three Tangents and Three Chords Theorem
Let a non-degenerate plane conic touch the sides of a triangle at the points
P , Q and R, respectively, and let the tangents at P , Q and R meet the
extended chords Q R, R P and P Q at the points A, B and C , respectively.
Then A, B and C are collinear.
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conic

R

B

C

Q

P
A

Proof Since the theorem is concerned exclusively with projective proper-

The initial triangle is
drawn in the diagram with
bold lines.

ties, we shall prove it as a projective theorem about a projective conic. Since The result then follows as
an interpretation in an
embedding plane.

this projective conic is non-degenerate, we may assume that its equation is in
the standard form x2 + y2 − z2 = 0, and that the Points P , Q and R have
homogeneous coordinates [1, 0, 1], [1, 0, −1] and [0, 1, 1], respectively. Here we are using the

Three Points Theorem
(Subsection 4.3.1,
Theorem 2).

By Theorem 6, part (a), the equation of the tangent to the projective conic at
P is

x − z = 0. (11)

Also, the equation of the chord Q R is∣∣∣∣∣∣
x y z
1 0 −1
0 1 1

∣∣∣∣∣∣ = 0,

which we can rewrite in the form

x − y + z = 0. (12)

It follows that at the Point A, both equations (11) and (12) must hold, so that
x = z and y = x + z = 2z. Hence A must have homogeneous coordinates
[z, 2z, z] or, equivalently, [1, 2, 1].

Similar arguments show that the tangent to the projective conic at Q has We omit the details.

equation x + z = 0, and the chord P R has equation x + y − z = 0, so their
Point of intersection B is [−1, 2, 1], Similarly, the tangent to the projective
conic at R has equation y − z = 0, and the chord P Q has equation y = 0, so
their Point of intersection C is [1, 0, 0].

Finally, A, B and C are collinear since∣∣∣∣∣∣
1 2 1

−1 2 1
1 0 0

∣∣∣∣∣∣ = 1 ·
∣∣∣∣ 2 1

0 0

∣∣∣∣− 2 ·
∣∣∣∣ −1 1

1 0

∣∣∣∣+ 1 ·
∣∣∣∣ −1 2

1 0

∣∣∣∣
= 1 · (0) − 2 · (−1) + 1 · (−2) = 0. �

Problem 6 Let E1 be the projective conic with equation xy + yz +
zx = 0, and E2 the projective conic with equation x2 + y2 − z2 = 0.
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(a) Verify that the Points [1, 0, 0], [0, 1, 0], [0, 0, 1], [2, 2, −1] and
[2, −1, 2] lie on E1.

(b) Determine the images of the Points in part (a) under the projective

transformation t1 with associated matrix A =
⎛
⎝ 1 −1 0

0 0 2
1 1 2

⎞
⎠ .

(c) Use the results of parts (a) and (b) to write down a matrix associated
with the projective transformation that maps E1 onto E2.

(d) Hence verify that B =
⎛
⎝ −1 1 −1

1 1 −1
0 −1 0

⎞
⎠ is a matrix associated

with the projective transformation t2 that maps E2 onto E1.

Problem 7 Using the results of Problem 3, part (b), and Problem 6,
part (c), determine a matrix associated with a projective transformation
that maps the projective conic with equation

17x2 + 47xy + 32y2 + 67xz + 92yz + 66z2 = 0

onto the projective conic with equation x2 + y2 − z2 = 0.

Parametrization of the Projective Conic x2 + y2 = z2

Sometimes it is useful to have a convenient parametrization of Points on the Earlier we described a
parametrization of Points
on the projective conic
with equation
xy + yz + zx = 0.

projective conic E with equation x2 + y2 = z2.
First, notice that we cannot have z = 0 for Points [x , y, z] on E ; for then we

would also have x = y = 0, which is impossible. So, since the coordinates
[x , y, z] are homogeneous coordinates, we may assume temporarily that z = 1;
in other words, we consider the intersection of E with the embedding plane
z = 1.

We may parametrize points of the unit circle x2 + y2 = 1 in the embedding
plane as {(cos θ , sin θ , 1) : θ ∈ (−π , π ]}. Putting t = tan 1

2θ , for θ ∈ (−π , π)

we obtain the parametrization

We may multiply each
coordinate by (1 + t2)

since they are
homogeneous coordinates.

[
1 − t2

1 + t2
,

2t

1 + t2
, 1

]
=
[
1 − t2, 2t , 1 + t2

]
, t ∈ R.

As θ varies over (−π , π), 1
2θ varies over (− 1

2π , 1
2π). In particular, as 1

2θ varies
over (− 1

2π , 1
2π), t = tan 1

2θ takes all values in R exactly once. Finally, when
θ = π , the parametrization (cos θ , sin θ , 1) gives the Point [−1, 0, 1].

We can summarize the above discussion as follows:

Theorem 9 Parametrization Theorem
Each Point of the projective conic with equation x2 + y2 = z2, other
than the Point [−1, 0, 1], has homogeneous coordinates of the form[
1 − t2, 2t , 1 + t2

]
, where t ∈ R.
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Thus, for example, the Point P with homogeneous coordinates
[
1, −√

3, 2
]

on the projective conic E with equation x2 + y2 = z2 also has homogeneous

coordinates
[

1
2 , −

√
3

2 , 1
]
. It follows that at P we may take

1 − t2

1 + t2
= 1

2
and

2t

1 + t2
= −

√
3

2
.

From the first equation we have 2(1 − t2) = 1 + t2, so that 1 = 3t2 or
t = ±1/

√
3. Since (from the second equation displayed above) 2t

/
(1 + t2)

is negative, it follows that we must have t negative. Hence, at the Point P ,
t = −1/

√
3.

Problem 8 Determine the value of the parameter t at the Point
[1, 2

√
2, 3] in the parametrization [1 − t2, 2t , 1 + t2] of the projective

conic with equation x2 + y2 = z2.

This parametrization is often useful, as the following problem illustrates.

Problem 9 Let E be the projective conic with equation x2 + y2 = z2,
and let A = [0, 1, 1], B = [1, 0, −1], C = [0, 1, −1], D = [1, 0, 1] and
P = [1 − t2, 2t , 1 + t2], where t ∈ R, be Points on E . Let the tangents
to E at A, B, C and D meet the tangent to E at P at the Points A′, B ′, C ′
and D′, respectively.

B [1,0,–1]

P [1–t 2, 2t, 1+t 2]

D [1,0,1]

C [0,1, –1]

E

A ¢ C ¢D ¢
B ¢

A[0,1,1]

(a) Determine the equations of the tangents to E at A, B, C , D and P .
(b) Determine homogeneous coordinates for the Points A′, B ′, C ′

and D′.
(c) Determine the value of the cross-ratio (A′B ′C ′D′). (Cross-ratio was

defined in Subsection 3.5.1)

4.3.5 Some General Remarks
One of the principal features of our approach to projective geometry is the
use of algebraic methods (via homogeneous coordinates) to prove geomet-
ric results. This is analogous to the use of Cartesian coordinates to prove
geometric results in Euclidean geometry.

In projective geometry we can often use the Fundamental Theorem of Pro-
jective Geometry, or the Three Points Theorem for projective conics, to assign
homogeneous coordinates to particular Points in some convenient way that
makes the algebra as simple as possible.

Once we have made the choice of coordinates, the proofs of many geo-
metric theorems are then simply a question of ploughing carefully through
algebraic calculations. In a way this is a great advantage, since it is often
much simpler to do routine algebra to obtain a proof than to sit and wait
for geometrical inspiration! Unfortunately, the routine nature of the algebraic
work hides the geometric ideas behind the results themselves. For example,
when we discussed Desargues’ Theorem in the previous chapter, you probably
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gained a deeper understanding of the theorem from the geometric discussion
in Subsection 3.1.3 than from the algebraic proof in Subsection 3.4.1.

4.4 Applying Linear Algebra to Projective Conics

We now prove that all non-degenerate projective conics are projective-
congruent. In order to do this, we first describe how to express the general
equation of a projective conic in matrix form.

Let E be a projective conic with equation

Ax2 + Bxy + Cy2 + Fxz + Gyz + H z2 = 0,

and let

A =
⎛
⎝ A 1

2 B 1
2 F

1
2 B C 1

2 G
1
2 F 1

2 G H

⎞
⎠ and x =

⎛
⎝ x

y
z

⎞
⎠ ,

so that xT = (x y z). It follows that

xT Ax = (x y z)

⎛
⎝ A 1

2 B 1
2 F

1
2 B C 1

2 G
1
2 F 1

2 G H

⎞
⎠
⎛
⎝ x

y
z

⎞
⎠

=
(

Ax + 1
2 By + 1

2 Fz 1
2 Bx + Cy + 1

2 Gz

1
2 Fx + 1

2 Gy + H z
)⎛⎝ x

y
z

⎞
⎠

= Ax2 + Bxy + Cy2 + Fxz + Gyz + H z2.

We may therefore write the equation of the projective conic in the form

xT Ax = 0.

This suggests that we make the following definition.

Definition Let E be a projective conic with equation

Ax2 + Bxy + Cy2 + Fxz + Gyz + H z2 = 0.

Then

Note that if A is a matrix
associated with a
projective conic E , so also
is λA for any non-zero
real number λ.

A =
⎛
⎝ A 1

2 B 1
2 F

1
2 B C 1

2 G
1
2 F 1

2 G H

⎞
⎠

is a matrix associated with E .

For example, a matrix associated with the projective conic with equation

17x2 + 47xy + 32y2 + 67xz + 92yz + 66z2 = 0
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is

A =
⎛
⎝ 17 47

2
67
2

47
2 32 46
67
2 46 66

⎞
⎠ .

Problem 1 Write down a matrix associated with the projective conic
given by each of the following equations.

(a) x2 − xy + 3y2 − 2xz + 3yz − 1
2 z2 = 0

(b) 2x2 − y2 + 4z2 − xy + yz − 3zx = 0

We may summarize the above discussion in the form of a theorem, as
follows.

Theorem 1 Let E be a projective conic with an associated matrix A. Then
E has an equation of the form xT Ax = 0.

Having expressed the general equation of a projective conic in matrix form,
we can prove the result we have been seeking.

Theorem 2 All non-degenerate projective conics are projective-congruent.

Proof It is sufficient to show that all non-degenerate projective conics are
projective-congruent to the standard projective conic with equation x2 +
y2 = z2.

Let E be any non-degenerate projective conic with equation xT Ax = 0,
where A is a matrix associated with E . Then by definition A is a symmetric Recall that a matrix A is

symmetric if AT = A.matrix.
It follows that A has three orthonormal eigenvectors v1, v2 and v3, with

eigenvalues λ1, λ2 and λ3, respectively. If P is the matrix whose columns are
the coordinates of v1, v2 and v3, and in this order, then

A matrix P is orthogonal
if PT P = I; or,
equivalently P−1 = PT .

D =
⎛
⎝ λ1 0 0

0 λ2 0
0 0 λ3

⎞
⎠ ,

then P is an orthogonal matrix and PT AP = D.
Now, the transformation t1 of coordinates given by x = Px′ or x′ = PT x Geometrically, this

transformation corres-
ponds to a rotation of the
coordinate axes around
the origin, keeping the
origin fixed and the axes
at right angles to each
other, possibly composed
with a reflection in one of
the coordinate planes.

transforms the projective conic with equation xT Ax = 0 into a projective conic
with equation (Px′)T A(Px′) = 0. We can rewrite this equation in the form
(x′)T (PT AP)x′ = 0 or (x′)T Dx′ = 0; in other words, as

λ1(x ′)2 + λ2(y′)2 + λ3(z
′)2 = 0. (1)

Since the projective conic is non-degenerate, we cannot have all the λ’s
positive or all the λ’s negative, since then equation (1) describes only the origin
in R

3.



250 4: Projective Geometry: Conics

Also, none of the λ’s in equation (1) can be zero. For example, if λ3 = 0,
then λ1 and λ2 must be of opposite sign and equation (1) can be written as the
equation of a pair of Lines in RP

2: The two Lines are
coincident if λ1 = 0 or
λ2 = 0.

√|λ1|x ′ = ±√|λ2|y′.

The only other possibility is that two of the λ’s, say λ1 and λ2, are of the If necessary, we can
re-order the eigenvalues
and eigenvectors to ensure
that this is the case.

same sign, positive say, and the sign of the third, λ3, is negative. Then equation
(1) can be rewritten in the form

|λ1|(x ′)2 + |λ2|(y′)2 = |λ3|(z′)2.

This is the equation of a cone in R
3 whose axis is along the z′-axis and whose

x

y

z

O

horizontal cross-sections are ellipses. This ‘elliptical’ cone can be mapped
onto the ‘circular’ cone with equation (x ′′)2 + (y′′)2 = (z′′)2 by means of
a transformation of coordinates x′ �→ x′′ given by x′′ = Bx′, where

B =
⎛
⎝

√|λ1| 0 0
0

√|λ2| 0
0 0

√|λ3|

⎞
⎠ .

After dropping the dashes, it follows that we can map E onto the projective
conic with equation x2 + y2 = z2 by using the projective transformation t :
[x] �→ [BPT x]. From the remark at the start of the proof, we conclude that all
projective conics are projective-congruent. �

Problem 2 Let E be the projective conic with equation x2 − 4xy +
2y2 − 4yz + 3z2 = 0.

(a) Write down a matrix A associated with E .
(b) Find an orthogonal matrix P such PT AP is a diagonal matrix.
(c) Find a matrix associated with a projective transformation that maps

E onto the standard projective conic x2 + y2 = z2.

4.5 Duality and Projective Conics

You saw earlier that in projective geometry there is a duality between Points Subsection 3.4.2

and Lines. For example, the Collinearity Property states that any two Points
lie on a unique Line, and the Incidence Property states that any two Lines
meet in a unique Point. In general, the Principle of Duality states that any true
statement about Points, Lines and their projective properties remains true after
dualization.

But why should the Principle of Duality hold? A clue is provided by La
Hire’s Theorem. Suppose that E is any projective conic. Then with respect to
this projective conic, every Point P in RP

2 can be associated with a Line p,
namely the polar of P with respect to E . By La Hire’s Theorem, any Points
Q and R on p have polars q and r which pass through the Point P . It follows
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that the association of Points with their polars changes collinearity into con-
currence, and vice versa. This is precisely what is required for the Duality
Principle.

Q

E
R

p
P

q

r

We now explore the dual of a projective conic E . If P is any point on E ,

P

E

dual of P
then its polar with respect to E is the tangent to E at P . The discussion above
suggests that we should be able to dualize the projective conic E by replacing
each Point on E by the tangent to E at that Point. If we do that, then we
obtain a collection of Lines which forms an envelope around E , as shown in
the following diagram.

E

tangents to E

At first sight this collection of tangents appears to be rather an unwieldy
object. Notice, however, that although we usually define a projective conic
by specifying its family of Points, we could equally well define the projective
conic by specifying its family of tangents. Both definitions uniquely determine
the projective conic. When a projective conic is defined by its family of Points,
we refer to the projective conic as a Point conic. A projective conic which is
defined by its envelope of tangents is called a Line conic. Of course, E is the
same projective conic however it is defined, so we say that E is self-dual.

We have already seen that the Principle of Duality is a powerful tool for dis- Subsection 3.4.2

covering ‘new theorems from old’ when the theorems involve Lines. We now
investigate an example of its use with projective conics, by dualizing Pascal’s Subsection 4.3.2,

Theorem 4Theorem.

Pascal’s Theorem Let A, B, C , A′, B ′ and C ′ be six distinct Points on a
non-degenerate projective conic. Let BC ′ and B ′C intersect at P , C A′ and
C ′ A intersect at Q, and AB ′ and A′ B intersect at R. Then P , Q and R are
collinear.

We proceed by making the appropriate modifications to the statement of
Pascal’s Theorem. For clarity and convenience, we reword Pascal’s Theorem
slightly and set out the theorem and its dual side by side.
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Pascal’s Theorem Its dual

Let A, B, C , A′, B ′ and C ′ Let a, b, c, a′, b′ and c′
be six distinct Points be six distinct tangents

on a non-degenerate projective conic. to a non-degenerate projective conic.

Let the Lines through B and C ′ Let the Points of intersection of b and
and B ′ and C meet at a Point P , c′ and b′ and c lie on a Line p,

the Lines through C and A′ the Points of intersection of c and
and C ′ and A meet at a Point Q, a′ and c′ and a lie on a Line q,
and the Lines through A and B ′ and the Points of intersection of a and
and A′ and B meet at a Point R. b′ and a′ and b lie on a Line r .

Then P , Q and R are collinear. Then p, q and r are concurrent.

The dual result is known as Brianchon’s Theorem, after its discoverer, and
can be reworded rather more memorably, as follows.

Brianchon’s Theorem The diagonals joining opposite vertices of a (pro-
Pascal’s Theorem can be
worded similarly as
follows: the opposite sides
of a (projective) hexagon
inscribed in a
non-degenerate projective
conic meet in three
collinear Points.

jective) hexagon circumscribed around a non-degenerate projective conic
are concurrent.

We may interpret this result in the plane R
2 as follows: if we circumscribe

Here we are describing
the intersection of the
projective conic in
Brianchon’s Theorem
with an embedding plane.

a hexagon around a (non-degenerate) plane conic, then the lines joining the
opposite vertices of the hexagon meet in a single point.

Problem 1 Write down the result dual to the Five Points Theorem;
namely, that ‘There is a unique non-degenerate projective conic through

Subsection 4.3.1,
Theorem 1

any given set of five Points, no three of which are collinear.’

Many other beautiful results concerning projective and plane conics can also
be discovered using the Principle of Duality.

4.6 Exercises

Section 4.1
1. Find the equation for the projective conic in RP

2 which corresponds to each
of the following plane conics in the standard embedding plane z = 1.{

(x , y, z) : 9x2 + 6xy + y2 + x − 3y − 4 = 0, z = 1
}

{
(x , y, z) : 3x2 − 9xy − 12y2 − 30x − 64y + 1 = 0, z = 1

}
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In each case, which ideal Points should be associated with the plane conic?
2. Which of the following equations define projective conics?

(a) 2x2 + 3z2 − y2 + xy + 4xz − 3yz = 0
(b) x2 = 4yz
(c) x2 + x − y + y2 + z = 0
(d) x2 + z2 + y2 − 2 = 0

3. Which of the following statements are true?
(a) The projective conic xy + xz + yz = 0 passes through the Point

[1, 1, 1].
(b) The Point [1, −2, 1] lies on the projective conic y2 = 4xz.

4. Determine the eccentricity of the ellipse E in R
2 with equation

8u2 + 5υ2 + 2υ − 6 = 0.

Section 4.2
Exercises 1–4 concern the parabola E in R

2 with equation

x2 + 2xy + y2 + 2x − y − 3 = 0.

1. Determine the ratio in which the parabola E divides the line segment from
(0, 0) to (1, 2).

2. Determine the equations of the tangents to E at the points (1, −1) and
(−3, 0).

3. One of the two tangents from (2, 1) to E has equation y = 2x−3. Determine
the equation of the other.

4. (a) Determine the equation of the polar of (0, 3
5 ) with respect to E . Verify

that (2, 1) lies on this polar.
(b) Determine the equation of the polar of (2, 1) with respect to E . Verify

that (0, 3
5 ) lies on this polar.

5. This question concerns the projective conic E with equation

x2 + y2 − 2z2 + 2xy − yz + 4zx = 0.

(a) Determine the equation of the tangent to E at the Point [0, 1, −1].
Verify that [3, 0, 2] lies on this tangent.

(b) Determine the equation of the other tangent to E that passes through
the Point [3, 0, 2].

(c) Determine the polar of the Point [3, 0, 2] with respect to E .

Section 4.3
Hint for Exercises 2, 3 and 7 Take the equation of the projective conic to be
xy + yz + zx = 0, and (by the Three Points Theorem) the Points A, B and C to
have homogeneous coordinates [1, 0, 0], [0, 1, 0] and [0, 0, 1], respectively.

1. Determine the equation of the projective conic through the Points [1, 0, 0],
[0, 1, 0], [0, 0, 1], [1, −1, 1] and [4, −1, −3].
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2. Let E be a projective conic through the vertices of a quadrilateral ABC D. In fact, each pair of
tangents to E at vertices
of ABC D intersect on its
diagonal triangle, and
each vertex of the
diagonal triangle has its
opposite side as polar.

Let AB meet C D at P , AC meet B D at Q, and AD meet BC at R. The
triangle �P Q R is called the diagonal triangle of ABC D.
(a) Prove that the tangents to E at A and B intersect at a Point on Q R.
(b) Prove that the Line P Q is the polar of R.

3. Let E be a projective conic through the vertices of a quadrilateral ABCD,
and let the tangents to E at A and C meet at P on the Line B D. Show that
the tangents to E at B and D meet at a Point Q on AC .

4. Let A, B, C , D be the Points [1, 0, 0], [0, 1, 0], [2, 2, −1], [0, 0, 1],
respectively, on the projective conic E with equation xy + yz + zx = 0.
Let T be any other Point on E , and let T B and T C meet AD at B ′ and C ′,
respectively. Determine the value of the cross-ratio (AB ′C ′D). Cross-ratio was defined in

Subsection 3.5.1.5. Let A, B, C , D and P be the Points [0, 1, 1], [0, 1, −1], [3, 4, 5],
[5, 12, 13] and [1, 0, 1], respectively, on the projective conic E with equa-
tion x2 + y2 = z2, and let the tangents to E at A, B, C and D meet the
tangent to E at P at the Points A′, B ′, C ′ and D′, respectively.

Determine the value of the cross-ratio
(

A′B ′C ′ D′).
6. The Points P = [1, −1, 1], Q = [1, −2, 2] and R = [1, −2, 1] lie on the

projective conic E with equation

−2x2 + 3xy + 3y2 + 6xz + 6yz + 2z2 = 0.

(a) Verify that the projective transformation t : [x] �→ [x′], where x′ = Ax

and A =
( 2 1 0−1 0 1

0 1 1

)
maps P , Q and R to [1, 0, 0], [0, 1, 0] and [0, 0, 1],

respectively.

(b) Verify that the inverse of A is A−1 =
(

1 1 −1
−1 −2 2

1 2 −1

)
.

(c) Determine the equation of the projective conic t(E).
(d) Determine a matrix associated with a projective transformation that

maps E onto the projective conic with equation xy + yz + zx = 0.
(e) Hence determine a matrix associated with a projective transforma- In tackling part (e), you

should use your result
from Problem 6, part (c),
in Subsection 4.3.4.

tion that maps E onto the projective conic with equation x2 +
y2 = z2.

7. Let A and B be Points on a projective conic E , and let P be the Point in
RP

2 with polar AB. The Line � through P meets AB at Q, and E at C and We shall use this result in
Section 8.3.D. Prove that (P QC D) = −1.

Section 4.4
1. Let E be the projective conic with equation

x2 + 2xy + 3y2 + 6xz + 2yz + z2 = 0.

(a) Write down a matrix A associated with E .
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(b) Find an orthogonal matrix P such PT AP is a diagonal matrix.
(c) Find a matrix associated with a projective transformation that maps E

onto the standard projective conic x2 + y2 = z2.

Summary of Chapter 4

Section 4.1: Projective conics
1. A projective conic in RP

2 is a set of Points whose homogeneous coordi-
nates satisfy a second degree equation of the form Ax2 + Bxy + Cy2 +
Fxz + Gyz + H z2 = 0.

A projective conic is non-degenerate if it can be represented by a non-
degenerate conic in the standard embedding plane (which has equation
z = 1).

A degenerate projective conic consists of a pair of Lines, a single Line,
a Point, or ‘no Points’.

2. Let E be a projective conic, and let π be an embedding plane for RP
2.

Then E is represented in π by a plane conic E ′, where each Point of E
either pierces π at a Point of E ′ or is an ideal Point for π associated with
E ′. The number of associated ideal Points depends on the type of the conic
E ′: there are two such Points if E ′ is a hyperbola, one if E ′is a parabola,
and none if E ′ is an ellipse.

3. Let t be a projective transformation, and let E be a non-degenerate
projective conic. Then t(E) is a non-degenerate projective conic.

4. Let E be a non-degenerate projective conic. Then a Line � is a tangent to
E at P if � meets E at a Point P , and at no other Point.

5. Let E be a non-degenerate projective conic. A Point Q lies inside E if
every Line through Q meets E at two distinct Points. A Point R lies
outside E if there is a Line through R that meets E at no Points.

6. Let t be a projective transformation, and let the Line � be a tangent to a
non-degenerate projective conic E at a Point P . Then t(�) is a tangent to
t(E) at t(P). Also, if Q is a Point inside E , then t(Q) lies inside t(E);
and if R is a Point outside E , then t(R) lies outside E .

Tangency and ‘lying inside or outside a projective conic’ are projec-
tive properties. Hence we can use projective transformations to tackle
problems involving tangents to plane conics.

In an embedding plane tangents to projective conics correspond to
tangents to plane conics, and vice versa.

7. Eccentricity Formula Let E be a non-degenerate plane conic with equa-
tion u2 + Cv2 + Gv + H = 0. If E has a focus on the v-axis, then the
eccentricity e of E is given by the formula e2 = 1 − C .

8. Any line on the surface of a right circular cone passes through the vertex of
the cone, and is a generator of the cone; that is, the cone can be obtained
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by rotating that line about a fixed line (the axis of the cone) through
the vertex.

9. Every non-degenerate plane conic can be found as the curve of intersection
of a suitable right circular cone with a suitable plane.

10. Every ellipse and every parabola occurs as the intersection of any right
circular cone and a suitable intersecting plane.

The intersection of a right circular cone and a suitable intersecting plane
is a hyperbola, with the property that the angle between its asymptotes is
less than the angle between two opposite generators of the cone. Every
hyperbola occurs as the intersection of a sufficiently ‘fat’ right circular
cone and a suitable intersecting plane

11. All non-degenerate projective conics are projective-congruent.
12. Three Tangents Theorem Let a non-degenerate plane conic touch the

sides BC, CA and AB of a triangle �ABC in R
2 at the points P , Q and R,

respectively. Then AP, BQ and CR are concurrent.

Section 4.2: Tangents
1. Joachimsthal’s notation for plane conics Let a plane conic have equation

s = 0, where s = Ax2 + Bxy + Cy2 + Fx + Gy + H = 0, and let
P1 = (x1, y1), P2 = (x2, y2) and P3 = (x3, y3) be points of R

2. Then we
define

si = Axi x + B
xi y + xyi

2
+ Cyi y + F

xi + x

2
+ G

yi + y

2
+ H ,

sii = Ax2
i + Bxi yi + Cy2

i + Fxi + Gyi + H ,

si j = Axi x j + B
xi y j + x j yi

2
+ Cyi y j + F

xi + x j

2
+ G

yi + y j

2
+ H ,

where i and j can each take the values 1, 2 or 3.

2. Joachimsthal’s Section Equation The point
(

kx2+x1
k+1 , ky2+y1

k+1

)
divides the

line segment from the point (x1, y1) to the point (x2, y2) in the ratio k:1;
and lies on the plane conic with equation s = 0 if s22k2 +2s12k + s11 = 0.

3. The equation of the tangent at the point (x1, y1) to the non-degenerate
plane conic with equation s = 0 is s1 = 0.

4. The equation of the tangent pair from the point (x1, y1) to the non-
degenerate plane conic with equation s = 0 is (s1)

2 = s · s11.
5. The polar (or polar line) of a point P (x1, y1) with respect to a non-

degenerate plane conic E with equation s = 0 is the line with equation
s1 = 0. P is the pole of this line with respect to E .

If P lies outside E , then the polar is the line through the two points at
which the tangents from P meet E . If P lies on E , then the polar of P is
the tangent to E at P .

6. La Hire’s Theorem Let E be a non-degenerate plane conic, and let p1

be the polar of a point P1 in R
2. Then each point of p1 has a polar which

passes through P1.
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7. Joachimsthal’s notation for projective conics Let a projective conic
have equation s = 0, where s = Ax2 + Bxy + Cy2 + Fxz + Gyz +
H z2, and let

[
x1, y1, z1

]
and

[
x2, y2, z2

]
be Points of RP

2. Then we
define

s1 = Ax1x + 1
2 B (x1 y + xy1) + Cy1 y

+ 1
2 F (x1z + xz1) + 1

2 G (y1z + yz1) + H z1z,

s11 = Ax2
1 + Bx1 y1 + Cy2

1 + Fx1z1 + Gy1z1 + H z2
1,

s12 = Ax1x2 + 1
2 B (x1 y2 + x2 y1) + Cy1 y2

+ 1
2 F (x1z2 + x2z1) + 1

2 G (y1z2 + y2z1) + H z1z2.

8. The two tangents to a projective conic E that pass through a Point P out-
side E are called the projective tangent pair (or tangent pair) from P
to E .

9. The projective polar (or polar) of a Point P outside a projective conic E
with respect to E is the Line through the two Points at which the tangents
from P to E meet E .

10. Let a projective conic E in RP
2 have equation s = 0.

(a) If P = [
x1, y1, z1

]
lies on E , then the tangent to E at P has equation

s1 = 0.
(b) If P = [

x1, y1, z1
]

lies outside E , then the pair of tangents to E from
P are given by the equation s2

1 = s · s11.
(c) If P = [

x1, y1, z1
]

is any Point in RP
2, then the polar of P with

respect to E is the Line with equation s1 = 0.

Section 4.3: Theorems
1. Five Points Theorem There is a unique non-degenerate projective conic

through any given set of five Points, no three of which are collinear. In
particular, if the five Points are [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1] and
[a, b, c], then the equation of the conic is c (a − b) xy + b (c − a) xz +
a (b − c) yz = 0.

2. There is a unique plane conic through any given set of five points, no three
of which are collinear.

3. There are infinitely many non-degenerate projective conics through any
given set of four Points, no three of which are collinear.

4. Three Points Theorem Let E1 and E2 be non-degenerate projective con-
ics which pass through the Points P1, Q1, R1 and P2, Q2, R2, respectively.
Then there is a projective transformation t which maps E1 onto E2 in such
a way that t(P1) = P2, t(Q1) = Q2, t(R1) = R2.

It is not always possible to map one projective conic E1 onto another
projective conic E2 in such a way that four given Points of E1 are mapped
to four given Points of E2.
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5. Strategy To determine a projective transformation t that maps a given
projective conic onto the projective conic xy + yz + zx = 0:
1. choose three Points P , Q, R on E ;
2. determine a matrix A associated with a projective transformation that

maps P , Q, R onto [1, 0, 0], [0, 1, 0], [0, 0, 1], respectively;
3. determine the equation Bx ′y′ + Fx ′z′ + Gy′z′ = 0 of t (E), for some

real numbers B, F and G;
4. then a matrix associated with t is BA, where

B =
⎛
⎝ 1/G 0 0

0 1/F 0
0 0 1/B

⎞
⎠ .

6. The equation xy + yz + zx = 0 is called a standard form for the equation
of a projective conic. The conic defined by this standard form is called a
standard projective conic.

7. Parametrization Theorem Let E be a projective conic with equation in
the standard form xy + yz + zx = 0. Then each Point of E , other than
[1, 0, 0], has homogeneous coordinates of the form

[
t2 + t , t + 1, −t

]
,

where t ∈ R. Moreover, each such Point lies on E .
8. Pascal’s Theorem Let A, B, C , A′, B ′ and C ′ be six distinct Points on

a non-degenerate projective conic. Let BC ′ and B ′C intersect at P , C A′
and C ′ A intersect at Q, and AB’ and A′B intersect at R. Then P , Q and R
are collinear.
Corollary Let A, B, C , A′, B ′ and C ′ be six distinct points on a non-
degenerate plane conic, with BC ′ and B ′C intersecting at P , C A′ and
C ′ A intersecting at Q, and AB ′ and A′B intersecting at R. Then P , Q and
R are collinear.

9. Converse of Pascal’s Theorem Let A, B, C , A′, B ′ and C ′ be six Points,
no three of which are collinear, with BC ′ and B ′C intersecting at P , C A′
and C ′ A intersecting at Q, and AB ′ and A′ B intersecting at R. If P , Q
and R are collinear, then the Points A, B, C , A′, B ′ and C ′ lie on a
non-degenerate projective conic.
Corollary Let A, B, C , A′, B ′ and C ′ be six points in R

2, no three of
which are collinear, with BC ′ and B ′C intersecting at P , C A′ and C ′ A
intersecting at Q, and AB ′ andA′ B intersecting at R. If P , Q and R are
collinear, then the points A, B, C , A′, B ′ and C ′ lie on a non-degenerate
plane conic.

10. To locate, using only a straight edge and a pencil, further points on the
unique plane conic through five given points A, B, C , A′ andB ′, no three
of which are collinear:
1. draw the lines AB ′ and A′B, and so determine the point of intersection

R of these lines;
2. for any point T in R

2 such that AT does not pass through B, C , A′ orB ′,
draw the lines C A′ and TA, and so determine the point of intersection
Q of these lines;
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3. draw the lines QR and B ′C , and so determine the point of intersection
P of these lines;

4. then the point of intersection F of the lines BP and AT lies on the
conic.

11. The equation x2 + y2 = z2 is called a standard form for the equation
of a projective conic. The conic defined by this standard form is called a
standard projective conic. It is a right circular cone in R

3.
12. Let E be the projective conic with equation x2 + y2 = z2, and let P =

[a, b, c] be any Point in RP
2. Then:

(a) if P ∈ E , then ax + by − cz = 0 is the equation of the tangent to E
at P;

(b) if P /∈ E , then ax + by − cz = 0 is the equation of the polar of P
with respect to E .

13. La Hire’s Theorem Let E be a non-degenerate projective conic, and let
P be any Point of RP

2, with polar p with respect to E . Then the polar of
any Point Q on p passes through P .

14. Three Tangents and Three Chords Theorem Let a non-degenerate plane
conic touch the sides of a triangle at the points P , Q and R, respectively,
and let the tangents at P , Q and R meet the extended chords QR, RP and
PQ at the points A, B and C , respectively. Then A, B and C are collinear.

15. If E1 and E2 are the projective conics with equations xy + yz + zx = 0
and x2 + y2 = z2, respectively, then matrices associated with projective

transformations that map E1 onto E2 and E2 onto E1 are

⎛
⎝ 1 −1 0

0 0 2
1 1 2

⎞
⎠

and

⎛
⎝ −1 1 −1

1 1 −1
0 −1 0

⎞
⎠, respectively.

16. Parametrization Theorem Each Point of the projective conic with equa-
tion x2 + y2 = z2, other than the Point [−1, 0, 1] has homogeneous
coordinates of the form

[
1 − t2, 2t , 1 + t2

]
, where t ∈ R.

Section 4.4: Applying Linear Algebra to Projective Conics
1. Let E be a projective conic with equation Ax2+ Bxy+Cy2+ Fxz+Gyz+

H z2 = 0. Then A =
⎛
⎜⎝ A 1

2 B 1
2 F

1
2 B C 1

2 G
1
2 F 1

2 G H

⎞
⎟⎠ is a matrix associated with E .

The equation of E can be written in the form xT Ax = 0.
2. All non-degenerate projective conics are projective-congruent.

Section 4.5: Duality and projective conics
1. Principle of Duality Any true statement about Points, Lines and their

projective properties remains true after dualization.
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2. When a projective conic is defined by its family of Points, we refer to it as a
Point conic; when we define a projective conic by its envelope of tangents,
we refer to it as a Line conic.

3. Every projective conic is self-dual in the sense that the dual of a Point conic
is the corresponding Line conic, and vice versa.

4. Brianchon’s Theorem The diagonals joining opposite vertices of a projec-
tive hexagon circumscribed around a non-degenerate projective conic are
concurrent.

This is the dual of Pascal’s Theorem for projective conics.



5 Inversive Geometry

In this chapter we introduce a geometry known as inversive geometry and use
it to investigate circles and lines.

We also prove the Apollonian Circles Theorem: namely, that if A and B
are two given points in the plane, then all the points P in the plane such that
PA : PB is a fixed ratio k : 1, for some positive real number k �= 1, lie on a
circle. Notice that if k = 1, the locus of points P such that PA : PB = 1 : 1
is simply the set of points equidistant from A and B, namely the perpendicular
bisector of the segment AB.

So for each pair of points A, B there is a family of circles known as the

This surprising fact was
proved by the Greek
geometer Apollonius of
Perga (2nd century BC).

circles of Apollonius. Small values of k yield circles close to A, whereas
large values yield circles close to B. It is sometimes helpful to regard the
points A and B as point circles, corresponding to k being zero and ‘infinity’,
respectively.

The key tool in our work is inversion, which is a generalization of the notion
of reflection of points in a line. Just as reflection in a line maps points on one
side of the line to points on the other, so inversion in a circle maps points inside
the circle to points outside, and vice versa.

One difficulty that arises when we tackle problems like the Apollonian Cir-

A B

Apollonian circles

cles Theorem is the presence of a line amongst what would otherwise be a
family of circles. Clearly, it would be convenient if we could tackle such prob-
lems without having to treat the line as a special case. An ingenious way to do
this is to think of the line as a circle of infinite radius in which the ‘ends’ of
the line have been ‘joined’ by an additional ‘point at infinity’. This interpreta-
tion enables us to introduce the term generalized circle to mean either a line
or a circle.

To make the idea of a point at infinity precise, we introduce a space known
as the extended plane. This consists of the ordinary plane R

2 together with
an additional point that we define to be the point at infinity. This extended
plane is the space in which we study inversive geometry. The transformations
of this geometry, known as inversive transformations, are defined to be the
composites of inversions.

Inversive transformations have the remarkable properties that they preserve
the magnitude of angles between intersecting curves, and they map generalized

261
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circles onto generalized circles. These properties enable us to use inversive
geometry to prove results like the Apollonian Circles Theorem.

In Section 5.1, we define inversion and study its basic properties.
In Section 5.2, we introduce the extended plane, and show how certain trans-

formations of this plane can be represented using complex numbers. We then
introduce the idea of a generalized circle, and show that every inversion pre-
serves the magnitude of angles, and maps generalized circles onto generalized
circles. We end the section by giving an interpretation of the extended plane in
terms of the so-called Riemann sphere. On this sphere all generalized circles
actually look like ordinary circles.

In Section 5.3, we formally define what is meant by an inversive trans-
formation and inversive geometry. The group of all inversive transformations
has a subgroup which consists of the so-called Möbius transformations. This
subgroup is analogous to the subgroup of direct isometries in Euclidean
geometry.

In Section 5.4, we prove the Fundamental Theorem of Inversive Geometry:
namely, that any three points in the extended plane can be mapped onto any
other three points by an inversive transformation. We use this result to show
that, in inversive geometry, all generalized circles are congruent.

Finally, in Section 5.5 we use inversive geometry to prove the Apollonian
Circles Theorem and to study various families of circles.

5.1 Inversion

5.1.1 Reflection and Inversion
We begin our exploration of inversive geometry by introducing a type of
transformation known as inversion. These transformations will be used in
Section 5.3 to define inversive geometry.

Roughly speaking, an inversion is a transformation of the plane that gener-
alizes reflection in a line. Instead of mapping points from one side of a line to
the other, an inversion maps points inside a circle to points outside the circle,
and vice versa.

A′ A
l

Recall that under reflection in a line �, a point A is mapped to an image point
A′ that lies an equal distance from �, but on the opposite side of �. In order to
generalize this notion of a reflection, we shall reformulate it in a way that
provides us with a sensible analogue when the line � is replaced by a circle C .

To do this, let m be a line parallel to AA′ that crosses � at some point P .
m

A′ A

l

P
Under reflection in �, ∠PAA′ maps to ∠PA′ A, so these two angles must be
equal. But since the lines m and AA′ are parallel, the angle ∠PA′ A is equal to
the angle between PA′ and m, so ∠PAA′ is equal to the angle between PA′ and
m. This is the clue that we need to generalize reflection.

By a stretch of the imagination, we can think of � as an infinitely large circle
with m lying along the radius through P . If we replace � by a circle C of finite
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radius, and we replace m by a radial line that meets C at some point P , then,

A

C

P

m

O A¢

r

by analogy with reflection, we can define the image of A to be the point A′ on
the line segment OA for which ∠OPA′ is equal to ∠PAO. We say that A′ is the
point inverse to A with respect to the circle C .

Of course, for this definition to work, we must check that for a given point
A, the position of the point A′ is independent of P . To do this, observe that the
triangles �POA′ and �AOP are similar, for they have a common angle at O
and ∠OPA′ = ∠OAP. It follows that

A

C

O A¢

OA′

OP
= OP

OA
,

so

OA · OA′ = OP2.

But OP is equal to the radius r of C , so

OA · OA′ = r2. (1)

Since there is only one point A′ on the line segment OA that satisfies equa-
tion (1), and since the equation does not depend on P , it follows that the
position of A′ does not depend on the choice of P .

Although the above construction illustrates how inversion can be defined
as a generalization of reflection, it is worth noting that equation (1) is all
that we need to determine the point A′ that corresponds to a given point A.
For simplicity, we shall therefore use equation (1) as our formal definition of
inversion.

Definitions Let C be a circle with centre O and radius r , and let A be any
point other than O . If A′ is the point on the line OA that lies on the same

C

O

A

OA . OA¢ = r 2

A¢

r

side of O as A and satisfies the equation

OA · OA′ = r2, (2)

then we call A′ the inverse of A with respect to the circle C . The point O is
called the centre of inversion, and C is called the circle of inversion. The
transformation t defined by

t(A) = A′ (
A ∈ R

2 − {O}
)

is known as inversion in C .

Remark

Since OA · OA′ = r2 is non-zero, neither OA nor OA′ can be zero, and so
neither A nor A′ can coincide with O . It is for this reason that O is excluded
from the domain of the transformation t since there is no point to which O can
be mapped. Likewise, there is no point that maps to O .
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We can sometimes write down the inverse of a point directly from the above
definition. For example, if C is the unit circle

{
(x , y) : x2 + y2 = 1

}
, then

the inverse of (0, 2) with respect to C is the point
(

0, 1
2

)
, and the inverse of(

− 1
3 , 0
)

is the point (−3, 0).

Problem 1 Write down the inverse of each of the following points
with respect to the circle of unit radius, centred at the origin.

(a) (4, 0) (b) (0, 1) (c)
(

0, − 1
3

)
(d)
(

1
4 , 0
)

Inversion distorts the plane considerably, for it maps points inside a circle C
to points outside C , and vice versa. Indeed, if OA < r , then OA′ = r2/OA > r ,
whereas, if OA > r , then OA′ = r2/OA < r . Any point that lies on C maps to
itself.

O O O

A

A

A

C C C

OA < r OA > r OA = r

A¢

A¢

Note that if A′ is the inverse of A, then A must be the inverse of A′, for if

C

O

A

t
A¢

t –1= t

OA · OA′ = r2 then clearly OA′ · OA = r2; we say that A and A′ are inverse
points with respect to C . In this sense, inversion is like reflection; if we reflect
a point in a line and then reflect the reflection, we obtain the original point
back again. Any transformation t that has this property is said to be self-inverse
because it shows that t−1 exists and is equal to t .

Theorem 1 Inversion in a circle is a self-inverse transformation.

Since any transformation that has an inverse is one–one, it follows that
every inversion is a one–one transformation. Remember, however, that since
O is excluded from its domain, an inversion is a one–one transformation of
R

2 − {O} onto itself.
Earlier, we mentioned that inversion can be regarded as a generalization of

reflection. To see how this follows from the definition of inversion, we examine
what happens to the inverse of a point A as we increase the radius of the circle.

Let A be a point outside a circle C with centre O and radius r , let A′ be the

r

O

AN

C

A¢

inverse of A with respect to C , and let the line segment AA′ meet the circle at
N . Then OA = r + AN and OA′ = r − A′N , so the equation OA · OA′ = r2

becomes

(r + AN)(r − A′N ) = r2.



Inversion 265

After expanding the brackets, cancelling the r2 terms, and solving for A′N , we

N AO

l

obtain

A′N = AN · r

r + AN
= AN

1 + AN/r
.

Now fix A and N , and let the radius r of the circle tend to infinity. As it
does so, it follows from the above equation that the length of A′N tends to the
length of AN. In other words, reflection in a line can be regarded as the limiting
case of inversion in circles of increasing radii. For this reason, we adopt the
following useful convention.

Convention We use the term inversion to mean either reflection in a line
or inversion in a circle.

The following gives a geometric method for constructing inverse points with
respect to a given circle.

Let A be a point outside a circle C with centre O and radius r , let AP and
P

C O

Q

A¢
A

AQ be the two tangents from A to C , and let A′ be the point of intersection of
OA and PQ. Then A and A′ are inverse with respect to C .

For, in the triangles �OPA′ and �OAP, the angles at O are equal and the two
angles ∠OA′ P and ∠OPA are equal, since they are both right angles; hence all
the angles in the two triangles are equal. Thus the triangles are similar; hence,
in particular, we must have that

OA′

OP
= OP

OA
,

so that
OA · OA′ = OP2 = r2.

Thus A and A′ are inverse with respect to C , as claimed.
We end this subsection by showing that an inversion in a circle is a dif-

ferent type of transformation from those that arise in Euclidean and affine
geometry.

First, an inversion in a circle is not an affine transformation since it does not
y

l

C

x = 2

x1 2

map lines to lines. For example, let C be the unit circle and � be the line with
equation x = 2. All the points on � lie outside the unit circle, and so inversion
in C must map all the points of � to points that lie inside the unit circle. In
particular, the image of � cannot be a line. Thus, since the image of a line
under any affine transformation is itself a line, it follows that inversion cannot
be an affine transformation.

An inversion in a circle is not a Euclidean transformation either, for like
affine transformations, Euclidean transformations map lines to lines. Indeed, a
Euclidean transformation is just a special type of affine transformation.

5.1.2 The Effect of Inversion on Lines and Circles
In the previous subsection you saw how to construct the point A′ that is the
inverse of a given point A with respect to a given circle C . However, in order
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to study many of the properties of inversion, we require an algebraic formula
that relates the coordinates of A and A′.

A¢(kx, ky)

A(x, y)

O

For our present purposes it is sufficient to derive the formula for the case
where C is the unit circle

{
(x , y) : x2 + y2 = 1

}
. This circle will occur so

frequently in our work that we denote it by the special symbol C .
Let A be a point (x , y) ∈ R

2−{O}, and let A′ be its image under inversion in
the unit circle C . Since A′ lies on the same half-line from the origin as does A,
it follows that A′ must have coordinates (kx, ky), for some positive number k.

Since the radius of C is 1, we must have OA ·OA′ = 1. Thus OA2 ·OA′2 = 1,
and so (

x2 + y2
) (

k2x2 + k2 y2
)

= 1.

It follows that

k2 = 1(
x2 + y2

)2 ,

and hence that

k = 1

x2 + y2
.

Thus A′ is the point
(

x
x2+y2 , y

x2+y2

)
. We therefore have the following

algebraic description of inversion in the unit circle.

Theorem 2 Inversion in the unit circle C is the function

t : (x , y) �→
(

x

x2 + y2
,

y

x2 + y2

) (
(x , y) ∈ R

2 − {O}
)

.

We may use this theorem to find the image of any non-zero point of R
2 under

inversion in the unit circle C . For example, the image of (3, −2) is the point(
3

32 + (−2)2
,

−2

32 + (−2)2

)
=
(

3
13 , − 2

13

)
.

Problem 2 Determine the image of each of the following points under
inversion in C .

(a) (4,1) (b)
(

1
2 , − 1

4

)

Now let (x ′, y′) be the image of (x , y) under inversion in C . Since inversion
is self-inverse, it follows that

(x , y) =
(

x ′

(x ′)2 + (y′)2
,

y′

(x ′)2 + (y′)2

)
.
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Using this relationship between (x , y) and (x ′, y′), we can find the image of a
curve under inversion in C in much the same way as we found the image of
a curve in affine geometry. The main difference is that we must be careful to We shall return to the

question of what happens
at the origin later, in
Subsection 5.2.3.

remember that inversion is not defined at the origin (the centre of inversion)
and that no point is mapped to the origin.

Example 1 Determine the image under inversion in C of the line 2x +4y = 1.

Solution Let (x , y) be an arbitrary point on the line 2x + 4y = 1, and let
(x ′, y′) be the image of (x , y) under inversion in C . Then

(x , y) =
(

x ′

(x ′)2 + (y′)2
,

y′

(x ′)2 + (y′)2

)
.

Since x and y are related by the equation 2x + 4y = 1, it follows that x ′ and
y′ are related by the equation

2x ′

(x ′)2 + (y′)2
+ 4y′

(x ′)2 + (y′)2
= 1.

Multiplying by (x ′)2 + (y′)2, we obtain 2x ′ + 4y′ = (x ′)2 + (y′)2, and by
completing the square we may write this as

(x ′ − 1)2 + (y′ − 2)2 = 5.

Dropping the dashes, we see that points on the image must have (x , y)-
coordinates which satisfy the equation

(x − 1)2 + (y − 2)2 = 5.

This is the equation of a circle with centre (1, 2) and radius
√

5. Since this
passes through the origin, and since the origin cannot be part of the image For every point on

(x ′ − 1)2 + (y′ − 1)2 = 5
other than (0, 0) is the
image of some point on
2x + 4y = 1.

under the inversion, the required image must be the circle with the origin
removed.

In this example we used dashes to distinguish the coordinates of a point
(x , y) from the coordinates of its image (x ′, y′). However, once you have
understood the method you may prefer to adopt the strategy below. This uses
the same method as in the example, but it drops the dashes throughout.

Strategy To determine an equation for the image of a curve under
inversion in the unit circle C :

1. write down an equation that relates the x- and y-coordinates of points on
the curve;

2. replace x by x
x2+y2 and y by y

x2+y2 , and simplify the resulting equation.
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When using this strategy to find the image of a curve that passes through the
origin, we must first remove the origin from the curve. We may also have to

exclude the origin from
the image.

Example 2 Determine the image under inversion in C of the line y = x (with
the origin removed).

Solution Replacing x by x
x2+y2 and y by y

x2+y2 , we obtain

y
y = x

x
O

y

x2 + y2
= x

x2 + y2
.

Hence
y = x .

This is the line we started with. Just as the origin had to be excluded from that
line before we could find its image, so the origin has to be excluded from the
image. Hence the line y = x (with the origin removed) maps to itself under
inversion in C .

We shall use the term punctured to describe a line or circle that has one of
its points removed. More specifically, if A is the point removed from a line or
circle, then the line or circle is said to be punctured at A.

Problem 3 Determine the image under inversion in C of the line
y = 2x punctured at the origin.

Problem 4 Let � be the line with equation x + y = 1.

(a) Determine the image of � under inversion in C .
(b) Explain why the points (1, 0), (0, 1) lie both on � and on its image.
(c) Sketch � and its image on a single diagram.

The solutions to these problems and the preceding examples illustrate the
following general result.

Theorem 3 Images of Lines under Inversion
Under inversion in a circle with centre O:

(a) a line that does not pass through O maps onto a circle punctured at O;
(b) a line punctured at O maps onto itself.

Proof First choose a pair of coordinate axes with origin at O , and choose a
unit of length equal to the radius of the circle in which we are inverting. Then
the circle in which we are inverting becomes the unit circle C .

(a) If � is a line that does not pass through the origin, then it has an equation
of the form

ax + by + c = 0,
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where c is non-zero. Using the above strategy, we know that the image of
y A

l

xO

C
A¢

� under inversion in C has equation

ax

x2 + y2
+ by

x2 + y2
+ c = 0.

Since c is non-zero, we may rewrite this in the form

x2 + y2 + (a/c)x + (b/c)y = 0.

This is the equation of a circle C through the origin. If the origin is
y

l

x
O

removed from this circle, then each remaining point A′ is the image of
the point A at which OA′ intersects �. It follows that the image of � is the
whole of the punctured circle C − {O}.

(b) Although we could use the strategy to prove this part as well, it is easier
to work directly from the definition of inversion. Indeed, if � is a line
punctured at O , then each point of � inside C is the image of a point of
� outside C , and each point of � outside C is the image of a point of �

inside C . Points of � that lie on C map to themselves. It follows that the
y

x

C

O

C¢

punctured line � maps onto itself, as required. �

Next, we consider the images of circles under inversion. Since points on the
circle of inversion map to themselves, the image of that circle is also a circle.
Also, any circle C with centre the centre of inversion O must map onto another
circle C ′ with centre O , for, by symmetry, every point of C is mapped an equal
distance along a radial line.

This raises the question as to whether an inversion always maps circles to
circles.

Example 3 Use the above strategy to determine the image under inversion in
C of the circle C with centre (2, 0) and radius 1.

Solution The circle C has equation (x−2)2+y2 = 1, which we may rewrite
in the form

x2 + y2 − 4x + 3 = 0.

Using the above strategy, we deduce that the image of C under inversion in C Note that the origin does
not lie on C .has equation

(
x

x2 + y2

)2

+
(

y

x2 + y2

)2

− 4x

x2 + y2
+ 3 = 0.

We may add together the first two terms of this equation to obtain

1

x2 + y2
− 4x

x2 + y2
+ 3 = 0,
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which we may rearrange in the form

x2 + y2 − 4
3 x + 1

3 = 0.

By completing the square we obtain(
x − 2

3

)2 + y2 =
(

1
3

)2
.

This is the equation of a circle with centre
(

2
3 , 0
)

and radius 1
3 .

So in this example the circle C does indeed map to another circle. Notice,
however, that the centre (2, 0) of C maps to ( 1

2 , 0) which is not the centre of the
image of C . It follows that even if an inversion maps one circle onto another,
it may not map the centres to each other.

Problem 5 Determine the image under inversion in C of the circle
with centre (2, 2) and radius 1.

The next example illustrates what happens when we use the strategy to find
the image of a circle that passes through the origin.

Example 4 Let C be the circle with centre (−2, 0) and radius 2, punctured at
the origin. Determine the image of C under inversion in C .

Solution The circle C has equation (x + 2)2 + y2 = 22, which we may
rewrite in the form

x2 + y2 + 4x = 0.

Using the above strategy, we deduce that the image of C under inversion in C

has equation (
x

x2 + y2

)2

+
(

y

x2 + y2

)2

+ 4x

x2 + y2
= 0.

Adding together the first two terms of this equation, we obtain

C

A

y

xO
A¢

l

1

x2 + y2
+ 4x

x2 + y2
= 0,

which we may rearrange in the form 1 + 4x = 0.
It follows that the image of the punctured circle C is the line � with equation

x = − 1
4 . From the figure in the margin it is clear that every point of � is the

image of some point on C , so there is no need to puncture �.

Problem 6 Let C be the circle with centre
(

0, − 1
4

)
and radius 1

4 ,

punctured at the origin. Determine the image of C under inversion in C .
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The conclusions of Examples 3 and 4, and of Problems 5 and 6, suggest the
following result.

Theorem 4 Images of Circles under Inversion
Under inversion in a circle with centre O:

(a) a circle that does not pass through O maps onto a circle;
(b) a circle punctured at O maps onto a line that does not pass through O .

Proof As for Theorem 3, we choose a pair of coordinate axes that makes the
circle in which we are inverting the unit circle C .

Now let C be an arbitrary circle with centre (a, b) and radius r . This has
equation

(x − a)2 + (y − b)2 = r2,

which we may rewrite in the form

Note that this passes
through O if and only if
c = 0.

x2 + y2 − 2ax − 2by + c = 0,

where c = a2 + b2 − r2. Using the strategy for determining the images of
curves under inversion, we deduce that the image of C under inversion has
equation

(
x

x2 + y2

)2

+
(

y

x2 + y2

)2

− 2ax

x2 + y2
− 2by

x2 + y2
+ c = 0.

Adding together the first two terms of this equation, we obtain

1

x2 + y2
− 2ax

x2 + y2
− 2by

x2 + y2
+ c = 0.

By multiplying this equation by
(
x2 + y2

)
, we may rearrange it in the form

1 − 2ax − 2by + c
(

x2 + y2
)

= 0. (3)

This is the equation of either a line or a circle, depending on whether or not C
passes through O .

(a) If C does not pass through O , then c is non-zero. We can therefore divide
equation (3) by c to obtain

x2 + y2 − 2 a
c x − 2 b

c y + 1
c = 0.

This is the equation of a circle on which the image of C must lie.
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(b) If C does pass through O , then c = 0, so equation (3) becomes

1 − 2ax − 2by = 0.

This is the equation of a line � that does not pass through O . �

The following box summaries the results of Theorem 3 and 4.

Under inversion with respect to a circle with centre O: If the circle of inversion is
the unit circle C , then O
is the origin.a line punctured at O maps onto the same line punctured at O;

a line not through O maps onto a circle punctured at O;
a circle punctured at O maps onto a line not through O;
a circle not through O maps onto a circle not through O .

There is no need to remember the details of this summary since its predic-
tions can be recalled intuitively as follows. First, points on a line or circle
through the origin can be chosen arbitrarily close to the origin. The images
of such points can therefore be chosen arbitrarily far from the origin, and
must therefore lie on a line. Secondly, points on a line can be chosen arbitrar-
ily far from the origin. The images of these points can be chosen arbitrarily
close to the origin and must therefore lie on a circle or line punctured at
the origin.

With a little practice it is easy to use the summary to simplify the work
needed to determine the image of a circle or line under an inversion.

Example 5 Determine the image of each of the following under inversion in
the unit circle C :

(a) the line � with equation x = 2;
(b) the circle C with centre (0, 2) and radius 1.

Solution

(a) From the summary, we know that � maps to a circle C punctured at

y

l

C

x21
2the origin. This circle passes through the point

(
1
2 , 0
)

, since
(

1
2 , 0
)

is the image of the point (2, 0) on the line. Since � is symmetrical about
the x-axis, it follows that the image circle must also be symmetrical
about the x-axis. The only circle C that fulfils all these criteria is the circle

with radius 1
4 and centre

(
1
4 , 0
)

.

(b) From the summary, the image C ′ of C is a circle that does not pass through

y
(0, 3)

(0, 2)

(0, 1)

(0,  

C

x

1
3

) C¢

the origin. It must be symmetrical about the y-axis (because C is), and it

must pass through the points
(

0, 1
3

)
and (0, 1) (the images of (0, 3) and

(0, 1), respectively). The only circle C ′ that fulfils all these criteria is the

circle with radius 1
3 and centre

(
0, 2

3

)
.
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Problem 7 Determine the image of each of the following under
inversion in the unit circle C :

(a) the line � with equation y = 1;
(b) the circle C with centre (0, 1) and radius 1 (punctured at the origin).

5.1.3 The Effect of Inversion on Angles
In this subsection we shall show that inversion preserves the magnitude of the
angle at which two curves meet. First, however, we must clarify what it means

clockwise angle

anticlockwise angle

l1

l2

to measure the angle between two intersecting curves.
In the case of two intersecting lines �1 and �2 there are two ways in which we

can measure the angle from �1 to �2. We can measure it either in a clockwise
direction, or in an anticlockwise direction, as shown in the margin. Clearly,
the magnitude of the angle depends on the direction we choose, so when
specifying an angle we must give both its magnitude and direction.

In the case of two intersecting curves, we define the angle between the
curves by using tangents, as follows.

Definitions Let c1 and c2 be two curves that intersect at the point A, and

clockwise
angle

anticlockwise angle

l1

l2

c2

c1

A

let the tangents to the curves at A be �1 and �2, respectively. Then the
anticlockwise angle from c1 to c2 at A is the anticlockwise angle from �1

to �2, and the clockwise angle from c1 to c2 at A is the clockwise angle
from �1 to �2.

To examine what happens to the angles between two curves under an inver-
sion, it is sufficient to examine what happens to the angles between the
corresponding tangents.

For the moment let us concentrate on what happens to a single line � under

C

O

l

m

inversion in a circle centred at O . We know that � maps onto a circle C
punctured at O . But we can say more, for if m is the line through O that is
perpendicular to �, then � is symmetrical about m. It follows that the circle C
is symmetrical about m, and so � is parallel to the tangent to C at O . We state
this result as the Symmetry Lemma.

Lemma 1 Symmetry Lemma
Let � be a line that does not pass through the point O . Then under inversion
in a circle with centre O , � maps to a circle C (punctured at O), and the
tangent to C at O is parallel to �.

Now consider what happens to the angle between two lines �1 and �2 which
intersect at some point A other than O , as shown below. For the moment we
shall assume that neither line passes through O , so that under the inversion

We ask you to investigate
what happens when one of
the lines passes through O
in Problem 8.

the lines map to punctured circles C1 and C2, respectively. These punctured
circles meet at the point A′, where A′ is the image of A. We want to compare
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the angle from �1 to �2 at A with the angle from C1 to C2 at A′. The trick we
use is to compare both angles with the angle from C1 to C2 at O .

O

C1

y

n1

l1

l2

A

xn2

m2

C2

m1 A′

By the Symmetry Lemma, �1 is parallel to the tangent m1 to C1 at O , and
�2 is parallel to the tangent m2 to C2 at O . It follows that the angle from �1 to
�2 must be equal in magnitude and direction to the angle we have shown from
m1 to m2.

Next observe that the reflection in the line through the centres of C1 and C2

sends the tangents m1, m2 at O to the tangents n1, n2 at A′. Since the reflection
preserves the magnitude of an angle but changes its orientation, we conclude
that the angle from n1 to n2 at A′ must be equal in magnitude but opposite in
orientation to the angle from m1 to m2 at O .

Overall, we have shown that the angle from C1 to C2 at A′ must be equal in We sometimes abbreviate
this by saying that the
angle at A′ is equal but
opposite to the angle at A.

magnitude but opposite in orientation to the angle from �1 to �2 at A.

Theorem 5 Angle Theorem
An inversion in any circle preserves the magnitude of angles between curves
but reverses their orientation.

The next problem asks you to complete our proof of this theorem.

Problem 8 Prove the Angle Theorem in the case where one of the
lines passes through the centre of inversion.

The Angle Theorem provides us with a very powerful tool for locating the
images of two or more circles or lines under inversion.

Example 6 A family of circles shares a common tangent at the origin O , as
shown in the margin. Describe the effect of inverting the family of circles (all
punctured at O) in the unit circle C . Illustrate your answer with a sketch.

O
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Solution Let � be the common tangent to the circles, as shown on the left
below. If d is the punctured line through O perpendicular to �, then each of the
circles crosses d at right angles. Since all the circles are punctured at O , their
images under the inversion must be straight lines, as shown on the right. By the
Angle Theorem, these straight lines must cross the image of d at right angles.
But d maps onto itself under the inversion, so the punctured circles map to a
family of parallel lines perpendicular to d.

O

l

A

d

x

A′

l

x

d

y

y

In fact, apart from �, every line perpendicular to d must be the image of a
punctured circle in the family. For if a perpendicular line meets d at some point
A′, then it must be the image of the punctured circle that passes through the
point A which is mapped to A′ under the inversion.

Problem 9 One family of circles touches the x-axis at the origin O ,
and another family of circles touches the y-axis at O . Describe the effect
of inverting the two families of circles (all punctured at O) in the unit
circle C . Illustrate your answer with a sketch.

O

A

Problem 10 A family of circles intersects at the origin O and at
another point A, as shown in the margin. Describe the effect of inverting
the family of circles (all punctured at O) in the unit circle C . Illustrate
your answer with a sketch.

Problem 11 Let C1, C2 and C3 be circles in the plane such that C1

and C2 touch at the origin O , C3 and C1 touch at another point A, and
C2 and C3 touch at the further point B. Describe the effect of inverting
the circles C1, C2 (both punctured at O) and C3 in the unit circle C .
Illustrate your answer with a sketch.

These problems illustrate that, by carefully choosing centres of inversion,
we can transform some of the circles in a figure to straight lines. Since straight
lines are often easier to deal with than are circles, we can use such transformed
figures to investigate those properties of the original figures that are preserved
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by inversions. In essence, this is the idea that underlies inversive geometry, and
you will see several example of its use in Section 5.5.

5.2 Extending the Plane

In order to define a geometry in which we can study the properties of cir-
cles, lines and angles, we need a group of transformations that preserve these
properties. Among the transformations that do this are the Euclidean transfor-
mations, and the inversions introduced in the previous section. In this section
we describe how such transformations can be represented in terms of complex
numbers. This will enable us to manipulate the transformations by using the
algebra of complex numbers.

5.2.1 Transformations of the Complex Plane
We begin by reminding you of some facts concerning complex numbers.

First, there is a one–one correspondence between points (x , y) in the plane
R

2 and complex numbers z = x+iy in the complex plane C; we call x and y the Recall that x + iy is the
Cartesian form of the
complex number.

real part and the imaginary part of the complex number z, and denote them
by the symbols ‘Re z’ and ‘Im z’, respectively. All the arithmetic operations
may be carried out in C as for real numbers, except that we replace i2 by −1
wherever i2 occurs.

If z is the complex number x + iy, then its conjugate z̄ is defined by

|z|
z = x + iy

z = x – iy

z̄ = x − iy,

and its modulus |z| is defined by

|z| =
√

x2 + y2.

Recall that |z|2 = zz̄.

Problem 1 Let z1 = 2 − 3i and z2 = −3 + 4i .

(a) Determine each of the following complex numbers in Cartesian
form.

(i) z1 + z2 (ii) z1 − z2 (iii) z1z2

(iv) z1/z2 (v) z1 (vi) z2

(b) Determine |z1| and |z2|.

If a non-zero complex number z = x + iy has modulus r , and if the position

z = r (cos q + i sin q)

r

qvector of the point (x , y) lies at an angle θ to the positive x-axis, then we can
express z in the form

r(cos θ + i sin θ).
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Such an expression is known as a polar form of z, and the angle θ is known
as an argument of z, written arg z. Polar forms and arguments are not unique,
since the same z could equally well be expressed in the form

r(cos(θ + 2πn) + i sin(θ + 2πn))

for any integer n. The principal argument of z, written Arg z, is the unique
value of arg z that lies in the interval (−π , π ].

We can obtain the Cartesian form of a complex number from any of its polar
forms by using the equations

x = r cos θ and y = r sin θ ,

and we can obtain a polar form of a complex number from its Cartesian form
by using the equations

r =
√

x2 + y2, cos θ = x

r
and sin θ = y

r
.

Problem 2 Determine the polar forms of the complex numbers
z1 = 1 − i and z2 = −√

3 + i in terms of their principal arguments.

The following strategy can be used to multiply and divide complex numbers
given in polar form.

Strategy To multiply two complex numbers given in polar form, multiply
their moduli and add their arguments.

To divide two complex numbers given in polar form, divide their moduli
and subtract their arguments.

Although this strategy gives an argument for a product or quotient, you
may require the principal argument, in which case you will need to adjust
the argument by adding an appropriate multiple of 2π .

Problem 3 Let z1 = 1 − i and z2 = −√
3 + i . Determine the

polar forms of the following complex numbers in terms of their principal
arguments.

(a) z1z2 (b) z1/z2

We can now use the algebra of complex numbers described above to
represent some of the basic Euclidean transformations of the plane.

Translations
First, consider the transformation

t(z) = z + c (z ∈ C), (1)
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where c = a + ib. This maps an arbitrary point x + iy ∈ C to the point
z + c

a
z

b

(x + a) + i(y + b),

and therefore corresponds to a translation through the vector (a, b). Clearly,
such transformations preserve angles, and map circles and lines to circles
and lines.

Reflection in the x-Axis
Next, consider the transformation

z

z

t(z) = z̄ (z ∈ C). (2)

This maps an arbitrary point x + iy ∈ C to the point x − iy, and therefore
corresponds to a reflection in the x-axis. It maps circles and lines to circles
and lines, and it preserves the magnitude of angles; however, the orientation of
angles is reversed.

Rotation about the Origin
Now, consider the transformation

t(z) = az (z ∈ C), (3)

where |a| = 1. Since |a| = 1 we can write a = cos θ0 + i sin θ0, where
az

z
q0

θ0 = Arg a. From the above strategy, t maps an arbitrary point r(cos θ+i sin θ)

in C to the point

r(cos(θ + θ0) + i sin(θ + θ0)),

and therefore corresponds to a rotation through the angle θ0 = Arg a about the
origin. The rotation is clockwise if Arg a < 0 and anticlockwise if Arg a > 0.

Arbitrary Isometries
All the other isometries can be represented in the complex plane as composites
of the basic transformations described above. In fact, we have the following
result.

Theorem 1 Each isometry t of the plane can be represented in the
complex plane by one of the functions

t(z) = az + b or t(z) = az̄ + b,

where a, b ∈ C, |a| = 1. Conversely, all such functions represent
isometries.

Proof The converse is easy to prove, because every function of the type
described is a composite of the basic isometries described above.
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So let t be an isometry of the complex plane, and let t(0) = b, t(1) = c. If
we denote c − b by a, then |a| is the distance between t(0) and t(1), and since
t is an isometry it follows that |a| = 1. Now let s be the isometry defined by
s(z) = az + b; then

s(0) = b = t(0) and s(1) = a + b = c = t(1).

Thus s−1 ◦ t is an isometry that fixes 0 and 1, and so, since it is an isometry, it
must fix each point of the x-axis.

Then using the fact that s−1 ◦ t is an isometry (that is, it does not alter
distances) that leaves each point of the x-axis unaltered, we may deduce that
s−1 ◦ t is EITHER the identity transformation OR a reflection in the x-axis. If
it is the identity, then s−1 ◦ t(z) = z, in which case t(z) = s(z) = az + b. If it
is a reflection, then s−1 ◦ t(z) = z̄, in which case t(z) = s(z̄) = az̄ + b. �

Theorem 1 may be interpreted as saying that every isometry of the com-

az

Arg a

az + b

z

plex plane can be obtained as a rotation (through an angle Arg a) followed
by a translation (through the vector (Re b, Im b)), possibly all preceded by a
reflection in the real axis.

Slightly more surprising is the fact that every isometry of the plane can be
expressed as a composite of reflections alone. This is because each rotation
and each translation can be expressed as a composite of two reflections.

d / 2

O

rotation
through q

translation
through d

q / 2

Thus a rotation about a point O can be expressed as a reflection in any line
through O followed by a reflection in a second line through O , where the angle
from the first line to the second line is half the desired angle rotation.

Similarly, a translation can be expressed as a reflection in any line perpendic-
ular to the direction of the translation followed by a reflection in a second line
that is parallel to the first and in the direction of the translation relative to the
first line. The distance between the lines is half the distance of the translation.

So we have the following result.

Theorem 2 Every isometry can be expressed as a composite of reflections.

Example 1 Let t be the isometry defined by

t(z) = i z̄ + 4 + 2i (z ∈ C).
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(a) Show that t represents an isometry.
(b) Interpret t as the composite of a reflection, a rotation and a translation.
(c) Interpret t as a composite of reflections.

Solution

(a) The coefficient of z̄ is i , which has modulus |i | = 1. By Theorem 1, it
follows that t is an isometry.

(b) In the formula that defines t , the conjugation corresponds to a reflection in
the x-axis, the multiplication by i corresponds to an anticlockwise rotation
through π/2, and the addition of 4+2i corresponds to a translation through

r

y = x

π / 4

r1

the vector (4, 2).
(c) First, let r be the reflection in the x-axis that corresponds to the

conjugation.
Next, observe that the anticlockwise rotation through π/2 can be inter-
preted as the composite r1 ◦ r , where r is the reflection in the x-axis again,
and r1 is the reflection in the line y = x through the origin that makes an
angle π/4 with the x-axis.
Finally, observe that the translation through the vector (4, 2) can be

r3

r2

4x + 2y = 0

4x + 2y = 10

(4, 2)

(2, 1)

interpreted as the composite r3 ◦ r2, where r2 is the reflection in the
line 4x + 2y = 0 through the origin that is perpendicular to the vector
(4, 2), and r3 is the reflection in the parallel line 4x + 2y = 10 that passes
through 1

2 (4, 2) = (2, 1).
Overall, we have t = r3 ◦ r2 ◦ r1 ◦ r ◦ r or, since r is its own inverse,
t = r3 ◦ r2 ◦ r1.

Problem 4 Let t be the transformation defined by

The decompositions
illustrated above
generalize as follows.

t(z) = −iz + 6 − 4i (z ∈ C).

(a) Show that t represents an isometry.
To rotate the plane R

2

through an angle θ : first
reflect in the line
{z : Arg z = 0}, then
reflect in the line
{z : Arg z = 1

2 θ}.

(b) Interpret t as the composite of a rotation and a translation.
(c) Interpret t as a composite of reflections.

Hint: Use the decompositions described in the margin.

To translate the plane R
2

through a vector (a, b):
first reflect in the line
{(x , y) : ax + by = 0},
then reflect in the line
{(x , y) : ax + by =
1
2 (a2 + b2)}.

Having discussed isometries, we now turn our attention to two other trans-
formations of the complex plane that preserve the magnitude of angles and
map circles and lines to circles and lines.

Scalings
The transformation defined by

z

kzt(z) = kz (z ∈ C), (4)

where k is real and positive, multiplies the modulus of each complex number
by a factor k but leaves its argument unchanged. It is therefore a scaling by the
factor k. Clearly, scalings preserve angles, and map circles and lines to circles
and lines.
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Inversions
The primary reason for introducing complex numbers into our discussion is
that they provide a particularly convenient way in which to represent the effect
of an inversion on points in the plane.

Theorem 3 An inversion in a circle C of radius r with centre (a, b) may
be represented in the complex plane by the transformation

t(z) = r2

z − c
+ c (z ∈ C − {c}),

where c = a + ib.

Proof We first consider the case where C is the unit circle C . The image

under inversion in C of the point (x , y) is the point
(

x
x2+y2 , y

x2+y2

)
. We may By Theorem 2,

Subsection 5.1.2reformulate this expression in terms of complex numbers, by using the fact that
the modulus |z| of a complex number z = x + iy satisfies the identity

x2 + y2 = |z|2 = zz̄.

Thus the image under inversion of the point z = x + iy is the point

x

x2 + y2
+ i

y

x2 + y2
= x + iy

x2 + y2
= z

zz̄
= 1

z̄
.

Next we consider the general case where C is a circle of radius r with centre
(a, b). In this case the inversion in C can be expressed as the composite t =
t3 ◦ t2 ◦ t1, where

t1(z) = z−c
r is a translation and a scaling that sends C to the unit circle;

t2(z) = 1/z̄ is the inversion in the unit circle;

t3(z) = rz + c is the inverse of t1 and sends the unit circle back to C .

Then

t(z) = t3 ◦ t2 ◦ t1(z) = r2

z − c
+ c,

as required. �

The representation of inversion provided by Theorem 3 has a particularly
simple form in the case where C is the unit circle C . In that case, r = 1 and
c = 0 so the inversion is represented by the transformation

You met this formula in
the proof of Theorem 3
above.

t(z) = 1

z̄
(z ∈ C − {O}).
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For example, the image of the point 1 − i under inversion in the unit circle C

Note that the technique of
multiplying both
numerator and
denominator by the
conjugate of the
denominator is often
useful.

is the point

1

1 − i
= 1

1 + i
= 1 − i

(1 + i)(1 − i)
= 1

2 (1 − i).

Problem 5 Determine, in Cartesian form, the image under inversion
in the unit circle C of each of the following points.

(a) −√
3 + i (b) −3 − 4i

Problem 6 Let C be the circle of radius 2 with centre at the origin.
Write down the inversion in C as a transformation of C − {O}.

We know that inversions preserve the magnitude of angles. But what about By Theorem,
Subsection 5.1.3their effect on circles and lines? Unfortunately, it is not strictly correct to say

that an inversion maps circles and lines to circles and lines since some of the
circles and lines may have to be punctured before the map can be carried out.
We describe how to overcome this complication later, in Subsection 5.2.3.

5.2.2 Linear and Reciprocal Functions
We can use the ‘basic’ complex functions described in the previous subsec-
tion to give a geometric interpretation of many other complex functions. We
illustrate this for the so-called linear and reciprocal functions.

Definition A linear function is a function of the form

t(z) = az + b (z ∈ C),

where a, b ∈ C and a �= 0.

Every linear function t(z) = az + b can be decomposed into a composite
t2 ◦ t1 where

t1 is the scaling t1(z) = |a|z,
t2 is the isometry t2(z) = (a/|a|)z + b.

The geometrical interpretation of the linear function t depends on how we
choose to interpret the isometry t2. We can say that the linear function is a
scaling by the factor |a|, followed by a rotation through the angle Arg (a/|a|),
followed by a translation through the vector (Re b, Im b). Alternatively, we can
use Theorem 2 and say that the linear function is a scaling composed with a
number of reflections.

Either way, since both the scaling and the isometry preserve angles and map
circles and lines to circles and lines, it follows that the same must be true of all
linear functions.
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Next, we consider the reciprocal function.

Definition The reciprocal function is defined by

t(z) = 1

z
(z ∈ C − {O}).

This function can be decomposed into the composite t2 ◦ t1 where

t1 is the inversion t1(z) = 1
z̄ ,

t2 is the conjugation t2(z) = z̄.

It follows that, geometrically, the reciprocal function can be interpreted as an
inversion in the unit circle C followed by a reflection in the real axis, as shown
below.

t(z) = t2 o t1 (z) = 1/z

t1(z) = 1/z t2(z) = z

Since the inversion and the conjugation are both one–one functions that pre-
serve the magnitude of angles and reverse their orientation, it follows that
the reciprocal function must be a one–one function that preserves both the
magnitude and the orientation of angles.

As in the case of inversions, it is not strictly correct to say that the reciprocal
function maps circles and lines to circles and lines, because some of the cir-
cles and lines may have to be punctured before the reciprocal function can be
applied. We next show how we can overcome this complication by extending
the complex plane.

5.2.3 The Extended Plane
So far, our discussion of the effect of inversion on lines and circles has been
complicated by the need to puncture those lines and circles that pass through
the centre of inversion. Also, the need to distinguish between those images
that are circles and those that are lines makes the description of the inversion
process somewhat cumbersome. We can deal with both these difficulties in
a very elegant way by adding an additional point to the plane to obtain the
so-called extended complex plane.
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To illustrate the ideas involved, consider the line � with equation x = 2.
Recall that inversion in the unit circle C maps � to a circle C with radius 1

4 and
Example 5, part (a),
Subsection 5.1.2

centre ( 1
4 , 0), punctured at the origin.

The point (2, 0) is mapped to ( 1
2 , 0), (2, 1) is mapped to ( 2

5 , 1
5 ), (2, 2) is

l

(2, y)C

mapped to ( 1
4 , 1

4 ), (2, 3) is mapped to ( 2
13 , 3

13 ) and, in general, the point (2, y)

is mapped to the point ( 2
4+y2 , y

4+y2 ) on C . As the point (2, y) moves from

(2, 0) up the line �, its image under inversion moves from ( 1
2 , 0) around the

circle C towards the origin in an anticlockwise direction. Similarly, as the point
(2, y) moves from (2, 0) down the line �, its image under inversion moves from
( 1

2 , 0) around the circle C towards the origin in a clockwise direction. The ‘gap’
in the circle C at the origin arises because there is no point on �, or indeed
any point in R

2, that is inverted to the origin. To ‘fill the gap’ we attach an
additional point at infinity to the plane.

Definitions The extended plane is the union of the Euclidean plane R
2

and one extra point, the point at infinity, denoted by the symbol ∞. When
we wish to consider the plane as the complex plane C, then we call the
extended plane the extended complex plane and denote it by the symbol
Ĉ; thus Ĉ = C ∪ {∞}. Ĉ is read as ‘C hat’.

Remarks

1. The extended plane and the extended complex plane both consist of the
ordinary plane together with the point ∞. We use both terms interchange- When we wish to think of

points as complex
numbers, we often denote
them by lower-case letters
such as z or a rather than
the upper case letters
usually used for points.

ably, depending on whether we wish to think of the ‘ordinary’ points in
the plane as being represented by pairs of real numbers or by complex
numbers.

2. The symbol ∞ does not represent a complex number and so it should not be
used in association with arithmetic operations that act on complex numbers.
For example, ∞ + 3i is a meaningless expression.

Having extended the plane in this way, we now extend the definition of inver-
sion in a circle with centre O . We simply define the image of O to be ∞, and A more formal definition

of inversion in Ĉ is given
below.

the image of ∞ to be O . Other points are mapped as specified by the definition
of inversion given in Subsection 5.1.1.

l

A

A′

CO

With this extended definition of inversion, the point O corresponds to ∞,
and so the circle C in the above discussion now corresponds under inversion
in C to the set � ∪ {∞}. This certainly fills the ‘gap’ in C , but how can the set
� ∪ {∞} be interpreted?

As a point A on the circle C moves anticlockwise towards O , its image A′
under inversion moves up �. When A reaches O , A′ reaches ∞. As A continues
around C below O , its image returns up � from below. You can think of the
point ∞ as ‘linking’ the two ends of the line �, thereby enabling points to
travel ‘round and round’ the line. With some stretch of your imagination, you
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can therefore think of the line � as a circle of infinite radius, where the ‘gap at
infinity’ has been filled by the point ∞.

Any line � in the plane may have its ‘gap at infinity’ filled by forming
the set � ∪ {∞}. Such a set is called an extended line. Since an extended
line can be thought of as a circle of infinite radius, we make the following
definition.

Definition A generalized circle in the extended plane is a set that is either
a circle or an extended line.

Remark

With this definition, you can think of an extended line as a generalized circle
which passes through ∞, and you can think of an ordinary line as a generalized
circle which has been punctured at ∞.

Recall that in Subsection 5.1.1 we adopted the convention that an inversion
is either a reflection in a line, or an inversion with respect to a circle. We can
now regard both of these as inversions in generalized circles.

Definition Let C be a generalized circle in the extended complex plane.
Then an inversion of the extended plane with respect to C is a function t
defined by one of the following rules:

(a) if C is a circle of radius r with centre O , then

Remember that A′ is the
inverse of A with respect
to C if it lies on the same
radial half-line from O as
A, and OA · OA′ = r2.

t(A) =

⎧⎪⎨
⎪⎩

the inverse of A with respect to C , if A ∈ C − {O},
∞, if A = O ,

O , if A = ∞;

(b) if C is an extended line � ∪ {∞}, then

t(A) =
{

the reflection of A in �, if A ∈ C,
∞, if A = ∞.

Remark

Note that any inversion in an extended line fixes the point at infinity. Con-
versely, every inversion that fixes ∞ must be an inversion in an extended line.

The above definition of inversion ensures that generalized circles map to
generalized circles. Indeed, we already know from Subsection 5.1.2 that this is
true if we allow the circles to be punctured, but we still need to check that the
gap in a punctured circle is mapped to the gap in its image circle.

In the case of inversion with respect to a circle with centre O , we know that
a circle or line punctured at O maps to a line, and this is consistent with the
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fact that O maps to ∞. Also, a line maps to a circle or line that is punctured at
O , and this is consistent with the fact that ∞ maps to O .

In the case of inversion with respect to an extended line, we know that lines
reflect to lines, which is consistent with the fact that ∞ maps to ∞. Ordinary
circles are not a problem since they reflect onto circles.

We therefore have the following important result.

Theorem 4 Inversions of the extended plane map generalized circles onto
generalized circles.

We shall sometimes find it convenient to write inversions of the extended
plane as inversions of Ĉ. For example, by Theorem 3, we can write the Subsection 5.2.1

inversion of the extended plane with respect to the unit circle C in the form

t(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

z̄
, if z ∈ C − {O},

0, if z = ∞,

∞, if z = 0.

Problem 7 Write down each of the following inversions of the
extended plane as a transformation of Ĉ:

(a) the inversion with respect to the circle of radius 2 with centre the
origin;

(b) the inversion with respect to the extended real axis.

The inversion of the extended plane that we asked you to write down in
Problem 7, part (b), is particularly important because it provides us with a
natural way of extending the conjugation function from C to Ĉ.

Definition The function t : Ĉ → Ĉ defined by

t(z) =
{

z̄, if z ∈ C,

∞, if z = ∞,

is called the extended conjugation function.

This function occurs so frequently that we shall introduce a notation for the
images of the points in its domain. Since we already have the notation z̄ for
the conjugate of a complex number z, we simply adopt the convention that
∞ = ∞.

Inversions are not the only transformations that can be extended to Ĉ.
Indeed, most of the transformations discussed at the beginning of this section
can be extended in a natural way to Ĉ.
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Definitions

(a) The function t : Ĉ → Ĉ defined by

t(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

z
, if z ∈ C − {O},

∞, if z = 0,

0, if z = ∞,

is called the extended reciprocal function.
(b) A function t : Ĉ → Ĉ of the form Since scalings, rotations

and translations are all
special types of linear
function, they too are
extended to Ĉ by this
definition.

t(z) =
{

az + b, if z ∈ C,

∞, if z = ∞,

where a, b ∈ C and a �= 0, is called an extended linear function.

The solution to the next example shows that the extended reciprocal function
can be expressed as a composite of two inversions.

Example 2 Find the composite t = t2 ◦ t1 where

t1 is the inversion in the unit circle C ,
t2 is the extended conjugation function.

Solution Since

t1(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

z̄
, if z ∈ C − {O},

∞, if z = 0,

0, if z = ∞,

and t2(z) =
{

z̄, if z ∈ C,

∞, if z = ∞,

we have

t(∞) = t2 ◦ t1(∞) = t2(0) = 0,

t(0) = t2 ◦ t1(0) = t2(∞) = ∞.

For the remaining values of z ∈ C − {O} we have

t(z) = t2 ◦ t1(z) = t2

(
1

z̄

)
=
(

1

z̄

)
= 1

z
.

It follows that t = t2 ◦ t1 is the extended reciprocal function.

Next we describe how an extended linear function can be expressed as a
composite of inversions. In preparation for this, we ask you to tackle the
following problem.
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Problem 8 Find the composite t = t2 ◦ t1 where

t1 is the inversion with respect to the unit circle C ,
t2 is the inversion with respect to the circle of radius 2 with centre 0.

Give an interpretation of the composite function t . Also describe what
would happen if the circle of radius 2 were replaced by a circle of radius√

k with centre 0.

Earlier, we noted that every linear function is a composite t ◦ s of a scaling s
followed by an isometry t . Since every isometry t is a composite of reflections,
it follows that every linear function is a composite rn ◦ . . . ◦ r2 ◦ r1 ◦ s of a
scaling s followed by a number of reflections r1, r2, . . . , rn .

Now the only difference between a linear function and an extended linear
function is that the latter contains an additional point at infinity in its domain.
Since this additional point maps to itself, it follows that an extended linear
function is a composite of a scaling that also fixes ∞, followed by a number
of reflections that also fix ∞.

But a reflection that fixes ∞ is just an inversion in an extended line. Also,
by the solution to Problem 8, a scaling that also fixes ∞ is a composite of
two inversions. It follows that every extended linear function is a composite of
inversions.

Combining this with the result of Example 2 above we have the following
theorem.

Theorem 5 The extended reciprocal function and the extended linear
functions can be decomposed into composites of inversions.

Since inversions of the extended plane map generalized circles onto gener-
alized circles, we have the following corollary of Theorem 5.

Corollary The extended linear functions and the extended reciprocal
function map generalized circles onto generalized circles.

Example 3 Let t be the extended linear function defined by

1

t1

t2

2

t(z) =
{

2
(
−1 + √

3i
)

z + (4 − 2i), if z ∈ C,

∞, if z = ∞.

Express t as a composite of inversions of the extended complex plane.

Solution In addition to mapping ∞ to ∞, the transformation t scales the
complex plane by the factor |2(−1 + √

3i)| = 4, rotates it through the angle
Arg (2(−1 + √

3i)) = 2π
3 , and then translates it through the vector (4, −2).
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The scaling by the factor 4 can be decomposed into the composite t2 ◦ t1,

t4

t3

l4

p / 3

y = √3x
where

t1 is the inversion in the unit circle C ,
t2 is the inversion in the circle of radius

√
4 = 2 centred at the origin.

The rotation through the angle 2π/3 can be decomposed into the composite
t4 ◦ t3, where

t3 is the inversion in the extended real axis,
t4 is the inversion in the extended line �4 ∪ {∞}, where �4 is the line

y = √
3x .

(Here �4 is the line through the origin that makes an angle π/3 with the x-axis.)

t6

t5

l5

l6

4x – 2y = 0

4x – 2y = 10

(2, –1)
(4, –2)

The translation through the vector (4, −2) can be decomposed into the
composite t6 ◦ t5, where

t5 is the inversion in the extended line �5 ∪ {∞}, where �5 is the line
4x − 2y = 0,

t6 is the inversion in the extended line �6 ∪ {∞}, where �6 is the line
4x − 2y = 10.

(Note that �5 is the line through the origin that is perpendicular to the vector
(4, −2), and �6 is the line that passes through (2, −1) parallel to �5.)

Since t6, t5, t4, t3 and t2 ◦ t1 all map ∞ to itself, it follows that

t = t6 ◦ t5 ◦ t4 ◦ t3 ◦ t2 ◦ t1.

Problem 9 Let t be the extended linear function defined by The decompositions
illustrated above
generalize as follows.

To scale Ĉ by a factor k:
first invert in the circle
{z : |z| = 1}, then invert in
the circle {z : |z| = √

k}.

t(z) =
{−9z + (6 − 10i), if z ∈ C,

∞, if z = ∞.

Express t as a composite of inversions of the extended complex plane.
Hint: Use the decompositions described in the margin.

To rotate Ĉ through an
angle θ : first invert in the
extended line {z : Arg z =
0} ∪ {∞}, then invert in
the extended line
{z : Arg z = 1

2 θ} ∪ {∞}.

5.2.4 The Riemann Sphere
In the previous subsection, we introduced the point at infinity and the extended
complex plane in order to provide a simplified explanation of the effect of

To translate Ĉ through a
vector (a, b): first invert in
the extended line
{(x , y) : ax + by =
0} ∪ {∞}, then invert in
the extended line
{(x , y) : ax + by =
1
2 (a2 + b2)} ∪ {∞}.

inversion on lines and circles. However, it may seem unsatisfactory to have to
visualize a straight line as a (generalized) circle, since the ‘ends’ of the line
appear to be infinitely far apart. Also, it is difficult to visualize where the point
at infinity should be placed relative to C, other than to think of it as smeared in
some vague way around the ‘outer edge’ of C.

Fortunately, there is a model of the extended (complex) plane in which the
point at infinity appears as an actual point! Consider the complex plane C

as lying in R
3 with the real and imaginary axes aligned along the x-axis and

y-axis, respectively. Then each complex number x + iy may be represented by
the point (x , y, 0) in the (x , y)-plane.
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P′

y

P

x

P in
corresponds

to P ′ on

O

North Pole N

Next, draw the sphere S with centre at the origin and with radius 1; we call
this the Riemann sphere. By analogy with the Earth, we refer to the point
N = (0, 0, 1) at the top of the sphere as the North Pole of S, and the point
S = (0, 0, −1) at the bottom of the sphere as the South Pole of S.

Each line joining a point P in the complex plane to the North Pole intersects
the Riemann sphere at some point P ′, and vice versa. In this way, we obtain
a one–one correspondence between all points P in the complex plane and all
but one of the points P ′ on the sphere. The one point on the sphere that cannot
be associated with a point in the complex plane is the North Pole N .

As the point P ′ on the sphere moves closer to N , the corresponding point
P in the plane moves further away from the origin O . This suggests that we
associate the North Pole N with the point ∞ in the extended complex plane.

The function π : S → Ĉ, which maps points on the Riemann sphere to the
associated points in the extended complex plane, is called stereographic pro-
jection. Since π is one–one and onto, it follows that we can use the Riemann
sphere as a convenient visualization of the extended complex plane Ĉ.

In fact, we can find an explicit formula for stereographic projection of the
point (X , Y , Z) onto the point z = x + iy, and vice versa. We use capital letters to

denote coordinates of
points in R

3, and small
letters to denote points or
coordinates in the
complex plane.

Theorem 6 Let π denote the mapping of the Riemann sphere S onto Ĉ

given by stereographic projection. Then the stereographic projection of the
point (X , Y , Z) of S onto the point z = x + iy of Ĉ is given by

N(0, 0, 1)

P ′(X, Y, Z)

P(x, y)

π(X , Y , Z) = X

1 − Z
+ i

Y

1 − Z
.

Also, the inverse mapping is given by

π−1(x + iy) =
(

2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,

x2 + y2 − 1

x2 + y2 + 1

)
.

Proof Let the point P ′(X , Y , Z) be a point on S (other than N ), and P(x , y)

the point in the plane that corresponds to P ′ under stereographic projection.
Project the line NP′ P perpendicularly onto the (Y , Z)-plane, with P ′ and P
projecting onto the points Q′ and Q; then Q′ and Q have coordinates (0, Y , Z)

and (0, y, 0) in R
3. Draw the perpendicular Q′ R from Q′ to the Z -axis.



Extending the Plane 291

Since RQ′ is parallel to OQ, the triangles �NRQ′ and �NOQ are similar. It
N(0, 0, 1)

1–Z
R

Z

X
x

O
y Q

Q ′

Y

y

y
Z

P ′(X, Y, Z)

P(x, y)

follows that NR : RQ′ = NO : OQ, or

1 − Z

Y
= 1

y
,

from which we obtain that

y = Y

1 − Z
.

By projecting the line NP′ P onto the (X , Z)-plane and using a similar
argument, we can show that We omit the details.

x = X

1 − Z
.

It then follows that the mapping π is given by

π(X , Y , Z) = x + iy = X

1 − Z
+ i

Y

1 − Z
.

Clearly this formula also holds when N is mapped to ∞. For, here Z = 1.

To find the formula for π−1, we use the fact that X2 + Y 2 + Z2 = 1.
Substituting the values of X and Y from the above formulas into the equation
X2 + Y 2 + Z2 = 1 and doing some manipulation, we deduce that We omit the details.

x2 + y2 + 1 = 2

1 − Z
. (5)

It follows from equation (5) and the earlier equations for X and Y that

X = x(1 − Z) = 2x

x2 + y2 + 1

and

Y = y(1 − Z) = 2y

x2 + y2 + 1
.

Also, we may rearrange equation (5) in the form

Z = x2 + y2 − 1

x2 + y2 + 1
.

We can then combine these formulas to give the required formula for π−1:

π−1(x + iy) = (X , Y , Z)

=
(

2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,

x2 + y2 − 1

x2 + y2 + 1

)
. �

Notice that stereographic projection distorts the distances between points.
For example, two points that are close together on S may project onto
points that are close together in C, or onto points that are far from each
other in C.
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close

close

closeN

far apart

We can use the Riemann sphere to visualize extended lines as generalized
circles in a very natural way, as follows. Consider a point P on a line � in C.

circle

N

l
P

P ′

As P moves along �, the line that joins P to the North Pole sweeps out
the plane through � and N ; this intersects the sphere in a circle. Hence, as P
moves along �, the corresponding point P ′ on the sphere traces out a circle.
As P moves further out along the line, the point P ′ moves towards the North
Pole. The point P ′ never actually reaches the North Pole, since the North Pole
corresponds to the ‘gap’ in the line � that we mentioned earlier.

We filled the ‘gap’ in � by attaching ∞ to � to obtain the extended line
Subsection 5.2.3

� ∪ {∞} in Ĉ. On the sphere, the point N fills the corresponding gap in the
circle, so that the extended line � ∪ {∞} corresponds to an actual circle on the
sphere – in fact, a circle through N .

This fact is a particular instance of the following general result.

Theorem 7 Under stereographic projection, circles on the Riemann
sphere map onto generalized circles in Ĉ.

In particular, circles on the sphere that pass through N map onto extended
lines in Ĉ, and circles on the sphere that do not pass through N map onto
ordinary circles in Ĉ.

Proof A circle on the sphere is the intersection of the sphere X2 + Y 2 +
Z2 = 1 with some plane aX + bY + cZ + d = 0, where a, b and c are not all
zero. It follows from substituting the expressions

You met these equations
in the proof of Theorem 6
above.X = 2x

x2 + y2 + 1
, Y = 2y

x2 + y2 + 1
and Z = x2 + y2 − 1

x2 + y2 + 1
,
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for X , Y and Z into the equation X2 + Y 2 + Z2 = 1 that

2ax + 2by + c
(
x2 + y2 − 1

)
x2 + y2 + 1

+ d = 0.

This equation may be rewritten in the form

2ax + 2by + c
(

x2 + y2 − 1
)

+ d
(

x2 + y2 + 1
)

= 0,

or For its equation is that of a
circle or of an (extended)
line.

(c + d)x2 + (c + d)y2 + 2ax + 2by + (d − c) = 0.

It follows that the image of a circle on the sphere is a generalized circle in the
(extended) plane.

The circle on the sphere passes through N (0, 0, 1) if the plane aX + bY +
cZ + d = 0 passes through N , and so if c + d = 0.

It follows that if the circle on the sphere passes through N , its image in the
extended plane has an equation of the form

2ax + 2by + (d − c) = 0,

and is an extended line.
On the other hand, if the circle on the sphere does not pass through N , then

c + d �= 0 and its image is an ordinary circle in the plane. �

Problem 10 Determine the images under stereographic projection
onto Ĉ of the following circles on S.

(a) The circle {(X , Y , Z) : X2 + Y 2 + Z2 = 1, X = 1
2 }

(b) The circle of intersection of S with the plane 3X + 2Y + Z = 1

As an illustration of Theorem 7, we describe what happens to the ‘lines of
latitude and longitude’ of the Riemann sphere under stereographic projection.

A ‘line of longitude’ on the Riemann sphere is a circle on S that passes
through the North Pole and the South Pole of S; this projects onto a line
through the origin in the plane. Similarly, a ‘line of latitude’ on the Riemann
sphere is a circle at a constant height above the (x , y)-plane, so, by symmetry,
this projects onto a circle centred at the origin in the plane.

SN latitude
longitude

Just as the lines of latitude and longitude meet at right angles on the sphere,
so do their projections. This is a consequence of the following remarkable
result.
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Theorem 8 Stereographic projection preserves the magnitude of angles. Recall that inversion has a
similar property (see
Theorem 5,
Subsection 5.1.3).Proof First, we make the following crucial observation. Recall that if a point

N tangent to C

C
P¢

P
l

P moves along a line � in the complex plane, then the corresponding point P ′
on the Riemann sphere moves round a circle through N . Indeed, as P moves
out ‘towards ∞’, P ′ approaches N ; and the line NP′ (in R

3) approaches the
tangent at N to the circle on the sphere. It follows that the tangent at N to the
circle on the sphere must be parallel to the original line �.

Let C1 and C2 be curves in the complex plane that intersect at some point

N

P

P¢

C1

l1
l2

C2

P , and let �1 and �2 be the tangents to C1 and C2 at P . (Recall that we
define the angle between C1 and C2 at P to be the angle between �1 and
�2 at P .)

The curves on the Riemann sphere that correspond to �1 and �2 are circles
through the North Pole N and the point P ′ on the sphere that corresponds to
the point P in the plane. We have to show that the angle between these circles
at P ′ (that is, the angle between their tangents at P ′) is equal to the angle
between the lines �1 and �2 at P .

But, by symmetry, the angle between the circles at P ′ is equal to the angle
between the same circles when they meet again at N . And, as we saw above,
the lines �1 and �2 through P are parallel to the corresponding tangent lines
through N . Thus the angle between the circles at N must be equal to the
original angle between �1 and �2 at P .

Hence, stereographic projection does preserve the magnitude of angles, as
asserted. �

Earlier, we showed that inversion preserves the magnitude of angles but
reverses their orientation. Having introduced the Riemann sphere, we can now
show that there is a sense in which this is true even for angles which have a
vertex at the centre of inversion, or at ∞.

To see this, let �1 and �2 be two lines that intersect at the centre of inversion
A. The corresponding extended lines �1 ∪ {∞} and �2 ∪ {∞} intersect again at
the point ∞. On the Riemann sphere these extended lines become circles C1

and C2 that intersect at the North Pole and at the point A′ corresponding to A.

N

circle of
inversion

C1

l1
l2

C2

A′

A
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Under the inversion, each extended line maps to itself, so C1 and C2 also
map to themselves. Notice, however, that the points A′ and N swap over, and
so the angles at A′ and N swap over as well. By symmetry, these angles are
equal in magnitude but opposite in direction. So, provided we interpret the
angle between curves at ∞ as the corresponding angle on the Riemann sphere,
we can conclude that the fact that inversion preserves the magnitude of angles
holds throughout the whole of Ĉ.

5.3 Inversive Geometry

5.3.1 Inversive Geometry
We now come to the main purpose of this chapter, which is to introduce a
geometry, known as inversive geometry, that we can use to study the properties
of circles, lines and angles.

Recall that according to Klein, a geometry has the following ingredients: Introduction to Chapter 2,
before Subsection 2.1.1

a space consisting of a set of points;
a group of transformations that act on the space.

Each geometry is used to study those properties of figures in its space that are
preserved by its transformations. For example, Euclidean geometry is used to
study those properties of figures in R

2, such as angle and distance, that are
preserved by the isometries of R

2.
Since each isometry of R

2 can be decomposed into a composite of reflec-
tions, we can think of the group associated with Euclidean geometry as the
group of all possible composites of reflections.

This provides the clue that we need to define the transformations of our
new geometry. Rather than consider composites of reflections, we consider
composites of inversions.

Definition A transformation t : Ĉ → Ĉ is an inversive transformation It is important to
distinguish between
inversions and inversive
transformations.

if it can be expressed as a composite of inversions.

For example, the extended reciprocal function is an inversive transformation
because it can be expressed as a composite t2 ◦ t1 where t1 is the inversion in
the unit circle and t2 is the inversion in the real axis. Similarly, all extended
linear functions can be expressed as composites of inversions, so they too are
inversive transformations.

Theorem 1 The extended reciprocal function and the extended linear
functions are inversive transformations.

Since every inversion preserves the magnitude of angles and maps general-
ized circles to generalized circles, the same must be true of all composites of
inversions. We therefore have the following result.
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Theorem 2 Inversive transformations preserve the magnitude of angles,
and map generalized circles to generalized circles.

Before we can use the inversive transformations to define a geometry, we
must first check that they form a group.

Theorem 3 The set of inversive transformations forms a group under the
operation of composition of functions.

Proof We check that the four group axioms hold.

Gl CLOSURE Let r and s be inversive transformations. Then we can
write

r = t1 ◦ t2 ◦ . . . ◦ tk

and

s = tk+1 ◦ tk+2 ◦ . . . ◦ tn ,

where t1, t2, . . . , tn are inversions. Thus

r ◦ s = (t1 ◦ t2 ◦ . . . ◦ tk) ◦ (tk+1 ◦ tk+2 ◦ . . . ◦ tn)

is a composite of inversions, and is therefore an inversive
transformation.

G2 IDENTITY The identity for composition of functions is the identity
transformation given by

t(z) = z (z ∈ Ĉ).

This is an inversive transformation since t = s ◦ s, where
s is the inversion in the unit circle. Here we could have

chosen any other inversion
for s since all inversions
are self-inverse.

G3 INVERSES If t is an inversive transformation, then we can write

t = t1 ◦ t2 ◦ . . . ◦ tn ,

where t1, t2, . . . tn are inversions. It follows that t has
inverse

t−1 = t−1
n ◦ t−1

n−1 ◦ . . . ◦ t−1
1 = tn ◦ tn−1 ◦ . . . ◦ t1,

which is an inversive transformation.
G4 ASSOCIATIVITY Composition of functions is always associative.

Since all four group properties hold, it follows that the set of inversive
transformations forms a group under composition of functions. �

Having shown that the inversive transformations form a group, we can use
them to define a geometry. But what space should we use for the geometry?
Since the inversive transformations act on Ĉ, the space will have to be Ĉ. But
what do figures look like in this space? Just as figures in R

2 are defined to
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be subsets of R
2, so figures in Ĉ are defined to be subsets of Ĉ. Thus circles

and extended lines are both examples of figures in Ĉ. We can now make the
following definition.

Definition Inversive geometry is the study of those properties of figures
in Ĉ that are preserved by inversive transformations.

We have already met the following inversive properties: generalized circles,
magnitude of angles, and tangency (since zero angles are preserved).

5.3.2 Relationship with Other Geometries
Although the point at infinity is crucial to the theory of inversive geometry,
when we come to interpret results about figures we often choose to confine our
attention to points in C. By ignoring the point ∞ in this way, the remaining
points in Ĉ can be interpreted as points of R

2 and any extended lines in the

2
figure can be interpreted as ordinary lines.

In this sense figures in R
2 can be interpreted as figures in Ĉ, and vice versa.

For example, the figure in the margin is a figure in R
2. It consists of a family of

circles centred at the origin, and a family of lines that intersect at the origin. If
we add the point ∞ to the figure, then all the lines become generalized circles
and the figure becomes a figure in Ĉ.

Earlier, you saw that every Euclidean transformation can be expressed as a
composite of reflections. Since a reflection can be interpreted as an inversion
that fixes ∞, it follows that we can interpret every Euclidean transformation as
a composite of inversions, and hence as an inversive transformation. We could make this

interpretation precise by
adopting the convention
that a Euclidean
transformation maps ∞ to
∞ when it acts on Ĉ.

An immediate consequence of the above observations is that when figures
in Ĉ are interpreted as figures in R

2, all their inversive properties become
Euclidean properties. This is because any property that is preserved by all
inversive transformations must also be preserved by all Euclidean transfor-
mations. For example, the magnitude of angles is both an inversive and a
Euclidean property.

Inversive group

Affine group

Euclidean
group

Euclidean
group

A pictorial representation of the relationship between inversive and
Euclidean geometry is given in the margin. Provided that we ignore the point
∞, the group of Euclidean transformations can be regarded as a subgroup of
the group of inversive transformations. Because the Euclidean group is smaller
than the inversive group, it follows that Euclidean geometry has more proper-
ties than does inversive geometry. For example, length is a Euclidean property
but it is not an inversive property.

How does affine geometry fit into the scheme? In Subsection 2.2.1 we
showed that every Euclidean transformation is an affine transformation. But
what is the relationship between affine transformations and inversive transfor-
mations?

Certainly, some affine transformations are inversive without being
Euclidean. For example, earlier you saw that the ‘doubling map’, See Subsection 2.2.3

t(z) = 2z (z ∈ C),
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is an affine transformation. This transformation is not a Euclidean transfor-
mation, and yet it can be decomposed into the composite t2 ◦ t1, where t1 You saw how a scaling

can be decomposed into a
composite of inversions in
Problem 8,
Subsection 5.2.3.

is the inversion in the unit circle C , and t2 is the inversion in the circle
{|z| = √

2 : z ∈ Ĉ}. So, with the usual proviso about ∞, t is an inversive
transformation.

However, not all affine transformations are inversive transformations. For
example, the transformation

t(x) =
(

2 0
0 1

)
x

(
x ∈ R

2
)

represents a horizontal shear. This cannot be an inversive transformation, since
it does not preserve angles.

It follows that the affine group of transformations contains the Euclidean

Inversive group

Affine group

Euclidean
group

group but overlaps the inversive group, as illustrated in the margin.

5.3.3 Möbius Transformations
To enable us to tackle problems in inversive geometry algebraically, we need
an algebraic representation of the inversive transformations.

We shall show that each inversive transformation has either the form
t(z) = M(z), or the form t(z) = M(z̄), where M is a so-called Möbius
transformation.

Definition A Möbius transformation is a function M : Ĉ → Ĉ of the
form

M(z) = az + b

cz + d
,

where a, b, c, d ∈ C and ad − bc �= 0.
If c = 0, then we adopt the convention that M(∞) = ∞; otherwise, we

adopt the convention that M(−d/c) = ∞ and M(∞) = a/c.

Remarks

1. Every (extended) linear function is a Möbius transformation, as can be seen
by setting c = 0, d = 1. Also, the (extended) reciprocal function is a
Möbius transformation with a = d = 0 and b = c = 1.

2. If c = 0, then the formula for M reduces to M(z) = (a/d)z + (b/d). This
defines an extended linear function, because the condition ad − bc �= 0
ensures that both a and d are non-zero, and so a/d is also non-zero. Also,
the convention that M(∞) = ∞ complies with the definition of an extended
linear function. For example,

6i × 2 − 4i × 3 = 0,
so that

6iz + 4i

3z + 2
= 2i , a constant.

3. The condition ad−bc �= 0 is equivalent to the statement that the ratios a : c
and b : d are unequal. This is necessary to ensure that the numerator is not
simply a multiple of the denominator, for if it were, M would be a constant
function.
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Problem 1 Which of the following formulas define a Möbius trans-
formation?

(a) M(z) = 5

z
(b) M(z) = −z + 2i

3z − 4i

(c) M(z) = −3z + i

z
(d) M(z) = 1 + 5

z + 2i

For those formulas that do define a Möbius transformation, state the
image of ∞ under M .

Before we look at the properties of Möbius transformations, we first verify
that a Möbius transformation is indeed an inversive transformation.

Theorem 4 Every Möbius transformation is an inversive transformation.

Proof Let M be the Möbius transformation defined by the formula

M(z) = az + b

cz + d
.

If c = 0, then M is an extended linear function, and is therefore an inversive
transformation.

If c �= 0, then for z ∈ C − {−d/c} we can write

M(z) = −ad + bc + a(cz + d)

c(cz + d)

= −
(

ad − bc

c

)
·
(

1

cz + d

)
+ a

c
.

It follows that M may be expressed as the composite t3 ◦ t2 ◦ t1, where t2 is
the extended reciprocal function, and t1 and t3 are the extended linear functions

t1(z) =
{

cz + d, if z �= ∞,

∞, if z = ∞,

and

t3(z) =
{−((ad − bc)/c)z + (a/c), if z �= ∞,

∞, if z = ∞.

Next, we check that the transformations t3 ◦ t2 ◦ t1 and M agree also at the
exceptional points ∞ and −d/c, as follows:

t3 ◦ t2 ◦ t1(∞) = t3 ◦ t2(∞) = t3(0) = a/c = M(∞);

t3 ◦ t2 ◦ t1(−d/c) = t3 ◦ t2(0) = t3(∞) = ∞ = M(−d/c).

Since the extended reciprocal function and the extended linear functions are
inversive transformations, it follows that M is an inversive transformation. �
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Since Möbius transformations are inversive transformations, they must pre-
serve the magnitude of angles and map generalized circles to generalized
circles. In fact, we can say slightly more than this, for in the proof of Theorem 4
we showed that every Möbius transformation is either an extended linear func-
tion or a composite of two extended linear functions and an extended reciprocal
function. Since the extended linear functions and the extended reciprocal func-
tion preserve both the magnitude and orientation of angles, the same must be
true of Möbius transformations.

Theorem 5 Möbius transformations preserve the magnitude and orienta-
tion of angles, and map generalized circles onto generalized circles.

5.3.4 Matrix Representation of Möbius Transformations
In order to explore some of the other properties of Möbius transformations, it
is helpful to establish a correspondence between Möbius transformations and
matrices.

Recall that, if a, b, c, d, e, f , g, h ∈ C, then 2 × 2 matrices have the
following properties:(

a b
c d

)
·
(

e f
g h

)
=
(

ae + bg af + bh

ce + dg cf + dh

)
,

and (
a b
c d

)−1

= 1

ad − bc

(
d −b

−c a

)
, if ad − bc �= 0.

Here, the condition ad − bc �= 0 for the matrix to be invertible is reminiscent
of the condition ad − bc �= 0 that appears in the definition of a Möbius trans-
formation. This suggests the following fruitful connection between Möbius
transformations and 2 × 2 invertible matrices.

Definition Let M be a Möbius transformation defined by

M(z) = az + b

cz + d
, (1)

where a, b, c, d ∈ C. Then

A =
(

a b
c d

)

is a matrix associated with M .

Remark

1. Every matrix

(
a b
c d

)
associated with a Möbius transformation

M(z) = az+b
cz+d is invertible because ad − bc �= 0.
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2. A matrix associated with a Möbius transformation M is not unique, because
we can multiply the numerator and denominator of the formula (1) by the
same non-zero constant without altering the transformation. For example,
both

M(z) = 2z + i

3z + 2i
and M(z) = 2iz − 1

3iz − 2
specify the same Möbius transformation M , and so both the matrices(

2 i
3 2i

)
and

(
2i −1
3i −2

)

are associated with M .
In general, if A is a matrix associated with a Möbius transformation M ,

then for any non-zero c ∈ C, cA is also a matrix associated with M . In fact,
every matrix associated with M has the form cA for some c ∈ C − {0}.

Example 1 Decide which, if any, of the matrices

A1 =
(

0 4
i 0

)
, A2 =

(
8 0

−2i −8

)
, A3 =

(−4i 0
0 1

)

are associated with each of the following Möbius transformations M .

(a) M(z) = −3iz + 2

z − 3i
(b) M(z) = −4i

z
(c) M(z) = 4iz

z − 4i

Solution

(a) Every matrix associated with this M is a non-zero multiple of the matrix(−3i 2
1 −3i

)
.

Hence none of the three given matrices is associated with M .
(b) Every matrix associated with this M is a non-zero multiple of the matrix

A =
(

0 −4i
1 0

)
.

Since A1 = iA, it follows that A1 is a matrix associated with M .
(c) Every matrix associated with this M is a non-zero multiple of the matrix

A =
(

4i 0
1 −4i

)
.

Since A2 = −2iA, it follows that A2 is a matrix associated with M .

Problem 2 Decide which, if any, of the matrices

A1 =
(

0 1
− 1

2 i 0

)
, A2 =

(
0 2
1 −2i

)
, A3 =

(
2i 0
1 −i

)
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are associated with each of the following Möbius transformations M .

(a) M1(z) = 2i

iz + 2
(b) M2(z) = 2i

z
(c) M3(z) = iz + 2

2z − i

A particularly important transformation of Ĉ is the identity function
defined by

t(z) = z (z ∈ Ĉ).

This is a Möbius transformation because it can be written in the form

t(z) = z + 0

0z + 1
.

A matrix associated with this Möbius transformation is the identity matrix

I =
(

1 0
0 1

)
.

5.3.5 Composing Möbius Transformations
The next example illustrates what happens when two Möbius transformations
are composed.

Strictly speaking, we
should check our
convention for the
exceptional points
separately. For example,
by convention
M2(∞) = 1

2 , so that

M1 ◦ M2(∞) = M1

(
1
2

)

=
1
2 i + 1

1 − 2

= 2 + i

−2
.

Example 2 Determine the composite M1 ◦ M2, where M1 and M2 are the
Möbius transformations defined by

M1(z) = iz + 1

2z − 2
and M2(z) = z + i

2z − 1
.

Solution Since M1 and M2 are one–one mappings of Ĉ onto Ĉ, the same
must be true of M1 ◦ M2. A formula for M1 ◦ M2(z) is

M1 ◦ M2(z) = M1

(
z + i

2z − 1

)

=
i
(

z+i
2z−1

)
+ 1

2
(

z+i
2z−1

)
− 2

= i (z + i) + (2z − 1)

2 (z + i) − 2 (2z − 1)

= (2 + i) z − 2

−2z + (2 + 2i)
.

We can check that this formula defines a Möbius transformation by noting that
This agrees with the value
obtained when we apply
our convention to the
formula for M1 ◦ M2.(2 + i)(2 + 2i) − (−2)(−2) = −2 + 6i �= 0.
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Thus M1 ◦ M2 is a Möbius transformation given by

M1 ◦ M2(z) = (2 + i)z − 2

−2z + (2 + 2i)
.

Problem 3 Write down matrices A1 and A2 associated with the
Möbius transformations M1 and M2 defined in Example 2. Calculate the
product A1A2, and compare it with the Möbius transformation M1 ◦ M2.

In Example 2, the composite of two Möbius transformations M1 and M2

turned out to be another Möbius transformation. The solution to Problem 3
demonstrates that the product of matrices associated with M1 and M2 is a
matrix associated with M1 ◦ M2. The following theorem confirms that this
is always the case.

Theorem 6 Composition of Möbius Transformations
Let M1 and M2 be Möbius transformations with associated matrices A1

and A2, respectively. Then M1 ◦ M2 is a Möbius transformation with an
associated matrix A1A2.

Proof Let M1 and M2 be defined by

M1(z) = az + b

cz + d
and M2(z) = ez + f

gz + h
.

Since M1 and M2 are one–one mappings of Ĉ onto Ĉ, the same must be true
of M1 ◦ M2. We can obtain a formula for M1 ◦ M2(z) as follows:

Strictly speaking, we
should check the
exceptional cases
separately. However, we
shall omit this checking
from here onwards.

M1 ◦ M2(z) = M1

(
ez + f

gz + h

)

=
a
(

ez+ f
gz+h

)
+ b

c
(

ez+ f
gz+h

)
+ d

= a (ez + f ) + b (gz + h)

c (ez + f ) + d (gz + h)

= (ae + bg) z + (af + bh)

(ce + dg) z + (cf + dh)
.

Since M1 ◦ M2 is one–one, this formula cannot remain constant as z varies, so
(ae+bg)(cf+dh)−(af+bh)(ce+dg) �= 0. The formula must therefore define
a Möbius transformation.
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A matrix associated with M1 ◦ M2 is(
ae + bg af + bh

ce + dg cf + dh

)
,

which is the product of the matrices(
a b
c d

)
and

(
e f
g h

)

associated with M1 and M2, respectively. �

Theorem 6 enables us to calculate the composite of two Möbius transforma-
tions by using the following strategy.

Strategy To compose two Möbius transformations M1 and M2:

1. write down matrices A1 and A2 associated with M1 and M2;
2. calculate A1A2;
3. write down the Möbius transformation M1 ◦ M2 with which A1A2 is

associated.

Example 3 Use the strategy to determine the composite M1◦M2 of the Möbius
transformations

M1(z) = 3z + 1

iz − 2
and M2(z) = 2iz + 3

z − 2
.

Solution The Möbius transformations M1 and M2 have associated matrices

A1 =
(

3 1
i −2

)
and A2 =

(
2i 3
1 −2

)
,

respectively. It follows that a matrix associated with M1 ◦ M2 is

A1A2 =
(

3 1
i −2

)(
2i 3
1 −2

)
=
(

1 + 6i 7
−4 4 + 3i

)
.

The composite M1 ◦ M2 is therefore the Möbius transformation defined by

M1 ◦ M2(z) = (1 + 6i)z + 7

−4z + (4 + 3i)
.

Problem 4 Let M1 and M2 be the Möbius transformations defined by

M1(z) = 3z + 1

iz − 2
and M2(z) = 2iz + 3

z − 2
.

Use the strategy to determine each of the following composites.

(a) M2 ◦ M1 (b) M1 ◦ M1
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Problem 5 Let M1 and M2 be the Möbius transformations defined by

M1(z) = z − i

iz + 2
and M2(z) = 2z + i

−iz + 1
.

Use the strategy to determine the composite M1 ◦ M2.

5.3.6 Inverting Möbius Transformations
In the solution to Problem 5 you saw that the composite M1◦M2 of the Möbius
transformations

M1(z) = z − i

iz + 2
and M2(z) = 2z + i

−iz + 1

is the identity function on Ĉ. This shows that M2 is the inverse function of
M1. In terms of matrices, this is equivalent to saying that there are matri-
ces associated with M1 and M2 whose product is the identity matrix I. For
example,

(
1 −i
i 2

)(
2 i
−i 1

)
=
(

1 0
0 1

)
.

We can use this idea to find the inverse of any given Möbius transformation
M . The inverse function M−1 certainly exists, since M is a one–one transfor-
mation from Ĉ onto Ĉ. To find the inverse, let A be a matrix associated with
M . Since A is invertible,

AA−1 = I = A−1A,

so the Möbius transformation associated with the matrix A−1 must be the
inverse function M−1.

Now, if M(z) = az+b
cz+d , we can take A =

(
a b
c d

)
, so that

A−1 = 1

ad − bc

(
d −b

−c a

)
.

But any non-zero multiple of A−1 is also a matrix associated with M−1, so we

shall usually use the matrix

(
d −b

−c a

)
as a matrix for M−1. Then

M−1(z) = dz − b

−cz + a
.

We summarize the result of this discussion in the following theorem.
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Theorem 7 Inverse of a Möbius Transformation
The inverse of the Möbius transformation

M(z) = az + b

cz + d

is also a Möbius transformation, and it may be written in the form

M−1(z) = dz − b

−cz + a
.

For example, the inverse of the Möbius transformation

M(z) = iz + 1

2z − 2

is given by

M−1(z) = −2z − 1

−2z + i
= 2z + 1

2z − i
.

Problem 6 Determine the inverse of each of the following Möbius
transformations.

(a) M1(z) = −3iz+2
z−3i (b) M2(z) = −4i

z (c) M3(z) = 4iz
z−4i

5.3.7 The Inversive Group
We now have all the information we need to prove the following theorem.

Theorem 8 The set of all Möbius transformations forms a group under
composition of functions.

Proof We show that the four group axioms hold.

Gl CLOSURE By Theorem 6, the composite of two Möbius transforma-
tions is itself a Möbius transformation.

G2 IDENTITY The identity is the Möbius transformation given by
M(z) = 1z+0

0z+1 .
G3 INVERSES By Theorem 7, every Möbius transformation has an

inverse.
G4 ASSOCIATIVITY Composition of functions is always associative.

It follows that the set of all Möbius transformations forms a group under
composition of functions. �

Having shown that the set of Möbius transformations forms a group, we
now investigate its relationship with the group of all inversive transformations.
We know from Theorem 4 that every Möbius transformation is an inversive
transformation, but is every inversive transformation a Möbius transforma-
tion? Clearly, the answer is no. For example, an inversion cannot be a Möbius
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transformation since it reverses the orientation of angles, whereas all Möbius
transformations preserve the orientation of angles.

Although inversions are not Möbius transformations, there is a close
connection between inversions and Möbius transformations.

Theorem 9 Every inversion t has the form t(z) = M(z̄), where M is a
Möbius transformation.

Proof If t is an inversion of Ĉ in an extended line, then by Theorem 1 of
Section 5.2 it must have the form t(z) = az̄ + b, with t(∞) = ∞. It follows It cannot have the form

t(z) = az + b, since t
reverses the orientation of
angles.

that t(z) = M(z̄), where M is the Möbius transformation

M(z) = az + b

0z + 1
.

On the other hand, if t is an inversion of Ĉ in a circle of radius r with centre c,
then by Theorem 3 of Section 5.2,

t(z) = r2

z − c
+ c = r2 + c(z̄ − c̄)

z̄ − c̄
= cz̄ + (r2 − cc̄)

z̄ − c̄
.

So once again t has the form t(z) = M(z̄), where M is the Möbius Notice that

c · (−c̄) − (r2 − cc̄) · 1

= −r2 �= 0.

transformation

M(z) = cz + (
r2 − cc̄

)
z − c̄

. �

We can now show that every inversive transformation t has the form t(z) =
M(z) or t(z) = M(z̄), where M is a Möbius transformation.

Theorem 10 Every inversive transformation t can be represented in Ĉ by
one of the formulas

t(z) = az + b

cz + d
or t(z) = az̄ + b

cz̄ + d
,

where a, b, c, d ∈ C and ad − bc �= 0.

Proof We first show that the composite of two inversions t1 and t2 is a Möbius
transformation. By Theorem 9 above, we can write t1(z) = M1(z̄) and t2(z) =
M2(z̄), where M1 and M2 are Möbius transformations. Thus

t1 ◦ t2(z) = t1(M2(z̄)) = M1(M2(z̄)).

But if

M2(z) = az + b

cz + d
,
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then we can define a Möbius transformation M3 by

M3(z) = M2(z̄) =
(

az̄ + b

cz̄ + d

)
= āz + b̄

c̄z + d̄
.

Since t1 ◦ t2(z) = M1(M2(z̄)) = M1(M3(z)), it follows that t1 ◦ t2
is a composite of two Möbius transformations, and is therefore a Möbius
transformation.

Next, let t be an arbitrary inversive transformation, and write

t = t1 ◦ t2 ◦ . . . ◦ tn ,

where t1, t2, . . . , tn are inversions. If n is even, then we can rewrite t as a
composite of Möbius transformations by pairing together the inversions in the
form

t = (t1 ◦ t2) ◦ (t3 ◦ t4) ◦ . . . ◦ (tn−1 ◦ tn).

It follows that t is a Möbius transformation, M say, so we can write t(z) =
M(z).

To deal with the case where n is odd, let r be the extended conjugation
function. Since r is its own inverse, we can write

t = (t1 ◦ t2 ◦ . . . ◦ tn ◦ r) ◦ r .

Here the composite in the bracket involves an even number of inversions, so
it must be a Möbius transformation, M say. Hence t(z) = M ◦ r(z) = M(z̄).

�

Theorem 10 provides us with an insight into the structure of the group G
of all inversive transformations. Those inversive transformations that can be
written in the form

t(z) = az + b

cz + d

are Möbius transformations, and we know from Theorem 8 that they form
a subgroup of G. We refer to these transformations as direct inversive
transformations because they preserve the orientation of angles.

The remaining inversive transformations are of the form

t(z) = az̄ + b

cz̄ + d
.

These are Möbius transformations composed with the extended conjugation
function, and so they reverse the orientation of angles. For this reason we shall
refer to them as indirect inversive transformations.

5.3.8 Images of Generalized Circles
We have shown that an inversive transformation maps generalized circles
onto generalized circles. However, apart from the special case of inversion
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in the unit circle, we have not yet given a strategy for finding the image of a
generalized circle under an inversive transformation.

One such strategy is based on the fact that every generalized circle in C is
uniquely determined by any three points lying on it. Indeed, if the three points
lie in C, and are non-collinear, then they determine a unique circle in C. On
the other hand, if the three points are collinear, or if one of the points is ∞,
then they determine a unique (extended) line.

Strategy To determine the image of a generalized circle C under an
t t(C)

t(z2)

t(z3)

t(z1)

z1

z2 z3

Cinversive transformation t :

1. write down three points z1, z2, z3 on C ;
2. determine the images t(z1), t(z2), t(z3);
3. the image t(C) is the (unique) generalized circle through t(z1), t(z2),

t(z3).

Example 4 Use the strategy to find the image of the unit circle C under the
inversive transformation defined by

t(z) = z̄ + i

z̄ − 1
.

Solution We first pick three distinct points on the unit circle. There is no
definite rule about which points should be chosen, so to keep the calculations
simple, we pick the points 1, i and −1, as shown below. Now

If you can pick a point
that maps to ∞ then you
know immediately that the
image is an extended line.

t(1) = ∞, t(i) = ī + i

ī − 1
= 0 and

t(−1) = −1 + i

−1 − 1
= 1

2
(1 − i).

So the image of C is the generalized circle through the points ∞, 0 and
1
2 (1 − i). This is an extended line through the origin with slope −1.

1–1

i

t

0 (1 – i)1
2

∞
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Problem 7 Let t be the inversive transformation defined by

t(z) = z − 2i

z + 2
.

Use the strategy to determine the image of each of the following
generalized circles under t :

(a) the extended line �∪{∞}, where � is the line with equation x+y = 2; Here x + iy = z, as usual.

(b) the circle with equation (x + 1)2 + y2 = 1.

5.4 Fundamental Theorem of Inversive Geometry

5.4.1 Comparison with Affine Geometry
In Subsection 2.3.2 we introduced the Fundamental Theorem of Affine Geom-

affine

inversive

etry, which states that, given any three non-collinear points in the plane, there
is always an affine transformation that maps the points to another three given
non-collinear points. Since a triangle is uniquely determined by its three (non-
collinear) vertices, and since affine transformations map triangles to triangles,
we were able to use the Fundamental Theorem of Affine Geometry to show
that all triangles are affine-congruent.

In this section we prove an analogous Fundamental Theorem of Inversive
Geometry which states that given any three points in the extended complex
plane Ĉ there is always an inversive transformation (in fact a Möbius transfor-
mation) that maps them to another three given points in the extended complex
plane. Since a generalized circle is uniquely determined by any three of its
points, and since inversive transformations map generalized circles to general-
ized circles, we can show that all generalized circles are inversive-congruent.
That is, given any two generalized circles C1 and C2 in the extended plane,
it is always possible to find an inversive transformation (in fact a Möbius
transformation) that maps C1 onto C2.

5.4.2 Mapping Three Points to Three Points
The proof of the Fundamental Theorem of Inverse Geometry is very similar to

∗ (0, 0)

∗ z
1

×w
2
 

∗ 0 

∗ p¢ ∗ p

•w
3

∗ w
1

• ∞×1

•z
3

×z
2

×(1, 0) • (0, 1)

•r¢×q¢•r×q
the proof of the Fundamental Theorem of Affine Geometry which we gave in
Subsection 2.3.2. There we described how to construct an affine transformation
which maps one given set of three (non-collinear) points in R

2 onto another.
We did this by forming a composite of two affine transformations which map
the points via the auxiliary points (0, 0), (1, 0) and (0, 1).

A similar idea works for the Fundamental Theorem of Inversive Geometry.
In this geometry the space is Ĉ rather than R

2, and we map via the auxiliary
points 0, 1 and ∞.

So let us start by considering how to construct a Möbius transformation that
maps three given points z1, z2, z3 in Ĉ to the points 0, 1, ∞, respectively.
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First observe that if z1, z2, z3 belong to C, then any Möbius transformation

Here K can be any
complex number.

of the form
M(z) = K

z − z1

z − z3

maps z1 to 0 and z3 to ∞. We can therefore obtain the required Möbius trans-
formation by choosing K so that M(z2) = 1. The following example illustrates
how this is done. It also shows how the method can be modified to deal with
cases where one of z1, z2, z3 is ∞.

Example 1 For each set of three points given below, determine a Möbius
transformation M that maps the points to 0, 1, ∞, respectively.

(a) 1
2 , −1, 3 (b) ∞, i , 2 (c) i , ∞, 3 (d) 5, 2, ∞

Solution

(a) To ensure that M
(

1
2

)
= 0 and M(3) = ∞ we let M have the form

This has the form

M(z) = az + b

cz + d

with a = K , b = − 1
2 K ,

c = 1 and d = −3.

M(z) = K
z − 1

2

z − 3
,

for some complex number K . Since M(−1) = 1, we must have

1 = K
−1 − 1

2

−1 − 3
,

so that K = 8
3 . The required Möbius transformation is therefore

This has the form

M(z) = az + b

cz + d

with a = 0, b = K , c = 1
and d = −2. Since c �= 0,
it follows from the
definition of a Möbius
transformation that
M(∞) = a/c = 0, as
required.

M(z) = 8z − 4

3z − 9
.

(b) To ensure that M(∞) = 0 and M(2) = ∞ we let M have the form

M(z) = K

z − 2
.

Since M(i) = 1, we must have

1 = K

i − 2
,

so that K = i − 2. It follows that

This has the form

M(z) = az+b
cz+d

with a = 1, b = −i ,
c = 1 and d = −3. Since
c �= 0, we have
M(∞) = a/c = 1, as
required.

M(z) = i − 2

z − 2
.

(c) To ensure that M(i) = 0 and M(3) = ∞ we let M have the form

M(z) = z − i

z − 3
.

In this case there is no need to include a constant K because M(∞) is
already equal to 1.
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(d) Here we require M(5) = 0 and M(∞) = ∞, so M is an extended linear
function of the form

This has the form

M(z) = az+b
cz+d

with a = K , b = −5K ,
c = 0 and d = 1. Since
c = 0, it follows from the
definition of a Möbius
transformation that
M(∞) = ∞.

M(z) = K (z − 5).

Since M(2) = 1, we must have

1 = K (2 − 5),

so that K = − 1
3 . It follows that

M(z) = − 1
3 (z − 5).

Guided by the above example we can summarize all the possible cases to
obtain the following general strategy.

Strategy To determine the Möbius transformation M which maps three
given points z1, z2, z3 onto the points 0, 1, ∞ respectively:

1. choose the appropriate form of mapping from the following formulas
for M :
• for z1, z2, z3 �−→ 0, 1, ∞ use M(z) = K z−z1

z−z3
;

• for ∞, z2, z3 �−→ 0, 1, ∞ use M(z) = K
z−z3

;

• for z1, ∞, z3 �−→ 0, 1, ∞ use M(z) = z−z1
z−z3

;
• for z1, z2, ∞ �−→ 0, 1, ∞ use M(z) = K (z − z1);

2. find the complex number K for which M(z2) = 1.

Problem 1 For each set of three points given below, determine a
Möbius transformation M that maps the points to 0, 1, ∞, respectively.

(a) −1, −3, 0 (b) 3
2 , 2, 1 (c) ∞, −3, 2 (d) 3

2 , 2, ∞

We are now in a position to prove the main theorem of this section.

Theorem 1 The Fundamental Theorem of Inversive Geometry
Let z1, z2, z3 and w1, w2, w3 be two sets of three points in the extended
complex plane Ĉ. Then there is a unique Möbius transformation M which
maps z1 to w1, z2 to w2, and z3 to w3.

Proof According to the above strategy there is a Möbius transformation M1

which maps the points z1, z2, z3 to the points 0, 1, ∞, respectively. Similarly,
there is a Möbius transformation M2 which maps the points w1, w2, w3 to the
points 0, 1, ∞, respectively.
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M2
–1 o M1

M1 M2

∗z1

∗0

* w1

×z2

×1

×w2
•z3

• ∞

• w3

The composite M = M−1
2 ◦ M1 is therefore the required Möbius transfor-

mation which maps z1, z2, z3 to the points w1, w2, w3, respectively.
To check uniqueness we first observe that the identity is the only Möbius

transformation which maps each of the points 0, 1, ∞ to themselves. Indeed, if

M(z) = az + b

cz + d

is a Möbius transformation which maps ∞ to itself, then c = 0. Also, if M
maps 0 to itself, then M(0) = b/d = 0, so b = 0. It follows that M(z) =
(a/d)z. But if M maps 1 to itself, then M(1) = a/d = 1, which implies that
a = d. Putting all this together we conclude that M is the identity M(z) = z,
as required.

Next suppose that M and M ′ are two Möbius transformations which satisfy
the conditions of the theorem.

M1
–1 M2

×z2 ×w2

×1

∗0

• ∞

•w3

∗z1 ∗w1

• z3

M and M′

Then the composites M2 ◦ M ◦ M−1
1 and M2 ◦ M ′ ◦ M−1

1 must both be Möbius
transformations which map each of the points 0, 1, ∞ to themselves. Since
this implies that both composites are equal to the identity, we can write

M2 ◦ M ◦ M−1
1 = M2 ◦ M ′ ◦ M−1

1 .

If we now compose both sides of this equation with M−1
2 on the left and

with M1 on the right, then we obtain M = M ′, as required. �
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If we actually need to find the Möbius transformation which maps one set
of three points onto another set of three points we simply follow the strategy
used to prove part (a) of the Fundamental Theorem.

Strategy To determine the Möbius transformation M which maps the
points z1, z2, z3 to the points w1, w2, w3, respectively:

1. find the Möbius transformation M1 which maps the points z1, z2, z3 to
the points 0, 1, ∞, respectively;

2. find the Möbius transformation M2 which maps the points w1, w2, w3

to the points 0, 1, ∞, respectively;
3. calculate M = M−1

2 ◦ M1.

The following example illustrates how to implement this strategy.

Example 2 Find the Möbius transformation M which maps the points i , ∞, 3
to the points 1

2 , −1, 3, respectively.

Solution We follow the steps in the above strategy.

1. From part (c) of Example 1, we know that the Möbius transformation M1

which maps the points i , ∞, 3 to the points 0, 1, ∞, respectively, is given by

M1(z) = z − i

z − 3
.

2. Also, from part (a) of Example 1, we know that the Möbius transformation
M2 which maps the points 1

2 , −1, 3 to the points 0, 1, ∞, respectively, is
given by

M2(z) = 8z − 4

3z − 9
.

3. Matrices associated with M1 and M2 are(
1 −i
1 −3

)
and

(
8 −4
3 −9

)
;

also, by Theorem 7 of Subsection 5.3.6, a matrix associated with the inverse
of M2 is (−9 4

−3 8

)
.

Hence, a matrix associated with M = M−l
2 ◦ M1 is given by

(−9 4
−3 8

)(
1 −i
1 −3

)
=
(−5 −12 + 9i

5 −24 + 3i

)
.
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The required Möbius transformation is therefore As a check, you can verify
that M(i) = 1

2 ,
M(∞) = −1 and
M(3) = 3.

M(z) = −5z − 12 + 9i

5z − 24 + 3i
.

Problem 2

(a) Find the Möbius transformation which maps the points −1, i , 1 to
the points −1, −3, 0, respectively.

(b) Find the Möbius transformation which maps the points 3, ∞, −2 to
the points 3, 7

3 , 1, respectively.

5.4.3 Circles through Four Points
We now explore an application of the Fundamental Theorem which enables us
to determine whether four given points z1, z2, z3 and z4 lie on some generalized
circle.

If there is a generalized circle that passes through z1, z2, z3 and z4, then

0 1

?

∞

z4

z1

z2

z3C
it must be the unique generalized circle C that passes through z1, z2 and z3.
We have to decide whether C also passes through z4. To do this, consider the
Möbius transformation M that maps z1, z2, z3 to 0, 1, ∞, respectively. Under
M the image of C is the extended real axis, for this is the only generalized
circle that passes through 0, 1 and ∞. If z4 lies on C , then its image under M
must lie on the real axis; whereas if z4 does not lie on C , then its image under
M cannot lie on the real axis.

Example 3 Determine whether the four points i , 1 + 4i , 3, 4 + 3i lie on a
generalized circle.

Solution First, we determine the Möbius transformation M that maps i ,
1 + 4i , 3 to 0, 1, ∞, respectively. Following the strategy in the previous
subsection, we observe that this transformation must be of the form

M(z) = K
z − i

z − 3

for some complex number K . Since M(1 + 4i) = 1, we must have

You met this method of
simplifying a quotient by
multiplying both
numerator and
denominator by the
conjugate of the
denominator earlier, in
Subsection 5.2.1.

1 = K
(1 + 4i) − i

(1 + 4i) − 3
= K

1 + 3i

−2 + 4i
,

so

K = −2 + 4i

1 + 3i
= (−2 + 4i)(1 − 3i)

10
= 1 + i .

Thus the transformation M is given by

M(z) = (z − i)(1 + i)

z − 3
.
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It follows that

M(4 + 3i) = (4 + 2i)(1 + i)

1 + 3i
= 2 + 6i

1 + 3i
= 2.

Since this is real, it follows that i , 1 + 4i , 3, 4 + 3i do all lie on a generalized
circle.

In this example we showed that the points i , 1 + 4i , 3, 4 + 3i all lie on
a generalized circle; but suppose we want to show that the points lie on an
ordinary circle. To do this we need to check that the generalized circle that
passes through the points is not an extended line. If it were an extended line,
then it would pass through ∞, and so M(∞) would be real. Since M(∞) =
1 + i is not real, it follows that the points do indeed lie on an ordinary circle. M(∞) cannot be ∞, as M

is one–one and
M(3) = ∞.Strategy To determine whether z1, z2, z3 and z4 lie on a circle:

1. find the Möbius transformation M which maps z1, z2, z3 to 0, 1, ∞,
respectively;

2. the points z1, z2, z3, z4, lie on a generalized circle if and only if M(z4)

is real;
3. the generalized circle in Step 2 is a circle provided that M(∞) is not If M(z4) and M(∞) are

both real, then z1, z2, z3,
z4 lie on a line.

real.

Problem 3 Determine whether each of the following sets of four
points lies on a circle.

(a) 0, −4, −2i , −1 − 3i (b) −1, −i , i , 2 − i

5.4.4 Congruence of Generalized Circles
We end this section by stating an important consequence of the Fundamental
Theorem of Inversive Geometry.

Theorem 2 Let C1 and C2 be generalized circles in the extended complex
plane. Then there is a Möbius transformation that maps C1 onto C2.

Proof Let a, b, c be any three points on C1 and let d, e, f be any three points
on C2. By the Fundamental Theorem of Inversive Geometry, there is a Möbius
transformation M that maps a, b, c to d, e, f , respectively.

C2 = M(C1)
M

e = M(b)

d = M(a)

f = M(c)

a

c
b

C1
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Since M maps generalized circles to generalized circles, it must map C1 to
a generalized circle through d, e and f . But a generalized circle is uniquely
determined by any three of its points, so C2 is the only generalized circle that
passes through d, e and f . It follows that M maps C1 onto C2. �

One of the remarkable consequences of Theorem 2 is that all generalized
circles are inversive-congruent. In particular, an ordinary circle is inversive-
congruent to any given (extended) line. Since lines are often easier to inves-
tigate than circles, we can sometimes simplify a problem that involves the
inversive properties of a figure by using an inversive transformation to map
one or more of the circles in a figure onto (extended) lines. You will see several
examples of this in the next section.

5.5 Coaxal Families of Circles

We now prove some lovely theorems about circles, where the beauty of the Sadly this is not always
the case in Mathematics!final results is matched by the beauty of the proofs themselves. Inversion is

our key tool.

5.5.1 Apollonian Circles Theorem
We start with the proof of the Apollonian Circles Theorem, which we stated at
the beginning of the chapter.

Theorem 1 Apollonian Circles Theorem
Let A and B be two distinct points in the plane, and let k be a positive real Recall that if k = 1, then

P must lie on the
perpendicular bisector of
AB.

number other than 1. Then the locus of points P that satisfy PA : PB = k : 1
is a circle whose centre lies on the line through A and B.

We give two proofs of this result. The first uses methods from Euclidean
geometry, and has the advantage of providing us with equations for the circles
in terms of k. The second proof uses the methods of inversive geometry, and The second proof is given

later.has the advantage of providing us with a deeper insight into the geometry of
the circles.

First Proof
To keep the algebra simple, we introduce x- and y-axes into the plane such that
A and B have coordinates (−a, 0) and (a, 0), respectively, where a > 0.

Now fix a value of k > 0, k �= 1, and let C be the locus of points P that

A(–a, 0) B(a, 0)

y

P(x, y)

C

x

satisfy PA : PB = k : 1. Then a point P(x , y) belongs to C if and only if
PA = k · PB, and since k > 0 this is equivalent to the equation

PA2 = k2 · PB2.

Using the Euclidean formula for distance between points, we see that this last
equation holds if and only if

(x + a)2 + y2 = k2((x − a)2 + y2).
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Multiplying out the brackets and collecting terms in x2, y2 and x , we see that
this is equivalent to

x2(1 − k2) + y2(1 − k2) + 2ax (1 + k2) + a2(1 − k2) = 0.

Since k �= 1, this holds if and only if

x2 + y2 + 2a

(
1 + k2

1 − k2

)
x + a2 = 0.

It follows that the locus C is a circle with centre c and radius r where
Here we are using the
formulas for centre and
radius given in
Theorem 2,
Subsection 1.1.2.

c =
(

−a

(
1 + k2

1 − k2

)
, 0

)
and

r =
√

a2

(
1 + k2

1 − k2

)2

− a2 = 2ak

|1 − k2| .

In particular, the centre lies on the x-axis, which by our choice of axes is the Notice that the centre of
the circle is not at either of
the points A or B.

line through A and B. �

If k = 1, then the locus of points that satisfy PA = k · PB is the line � that
bisects AB at right angles. If we adopt the convention that this locus includes
the point ∞, then we can think of this locus as the extended line �∪{∞}. With
this convention, every positive value of k gives rise to a generalized circle
known as a circle of Apollonius. The family of all such circles is known as the A ‘circle of Apollonius’ is

often referred to as an
‘Apollonian circle’.

Apollonian family of circles defined by the points A and B.
As k increases through the interval (0, ∞), the corresponding circles range

through the Apollonian family.
When 0 < k < 1, we have that PA < PB, and so P is closer to A than it is

to B. The circles that correspond to these values of k therefore lie on the same
side of � as does A. For values of k close to 0, PA = k · PB is small, and so

A

0 < k < 1 1 < k

k = 1

B

l
the corresponding circles are close to A. As k tends to 1, the circles ‘grow’ and
become ever closer to �.

When k = 1, the corresponding ‘circle’ is the extended line � ∪ {∞}.
When k > 1, we have that PA > PB, so that P is closer to B than it is to A.

The circles that correspond to these values of k therefore lie on the same side
of � as does B. As k increases from 1, PB = (1/k) · PA becomes smaller, and
the corresponding circles ‘shrink’ and become ever closer to B.

In light of the above discussion, it is sometimes convenient to refer to the
points A and B as point circles corresponding to the cases k = 0 and ‘k = ∞’,
respectively. With this convention, every point of the plane belongs to a unique
‘circle’ associated with the Apollonian family.

Example 1 For the Apollonian family defined by the point circles (−1, 0) and

y

x

P(x, y)

(–1, 0) (1, 0)
(1, 0), determine the equation of the circle in the family that passes through the
point (2, 1).
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Solution Let P be a point (x , y) in the plane whose distance from the point
(−1, 0) is k times its distance from the point (1, 0). Then, if we use the
Euclidean formula for distance between points in the plane, we obtain

(x + 1)2 + y2 = k2((x − 1)2 + y2).

For each value of k this yields an equation for the corresponding Apollonian
circle. The point (2, 1) lies on the Apollonian circle for which

(2 + 1)2 + 12 = k2((2 − 1)2 + 12),

that is, k = √
5.

The equation of the Apollonian circle through the point (2, 1) is therefore

(x + 1)2 + y2 = 5((x − 1)2 + y2),

which simplifies to

x2 + y2 − 3x + 1 = 0.

Problem 1 For the Apollonian family defined by the point circles
(0, −1) and (0, 2), determine the equation of the circle in the family
that passes through the point (1, 1).

Problem 2 The circles C1 and C2 in an Apollonian family of cir-
cles have the segments [−18, −2] and [3, 12], respectively, as diameter.
Determine the point circles in the family, and hence the equation of the
Apollonian circle in the family that passes through the point (6, 9).

We now give a second proof of the Apollonian Circles Theorem, using
inversive geometry.

Theorem 1 Apollonian Circles Theorem
Let A and B be two given points in the plane, and let k be a positive real
number other than 1. Then the locus of points P that satisfy PA : PB = k : 1
is a circle whose centre lies on the line through A and B.

Second Proof
Let C be the locus of points P that satisfy PA = k ·PB, and let t be the inversion
in the circle with centre A and radius 1. We shall show that C ′ = t(C) is a We specify radius 1 here

simply for definiteness;
any positive radius would
serve equally well.

circle, and hence that C = t−1(C ′) is a generalized circle.
Let P be an arbitrary point in the extended plane, and let t(B)= B ′,

t(P) = P ′. Then by the definition of inversion,

AB · AB′ = 1 and AP · AP′ = 1, (1)
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so that

A

P

B

t

t

P¢

B¢

AB

AP′ = AP

AB′ .

This shows that the sides AB and AP of �APB are proportional to the sides AP′
and AB′ of �AB′ P ′. Since ∠BAP is the same as ∠P ′AB′, it follows that �APB
is similar to �AB′ P ′. Hence

B ′ P ′

PB
= AP′

AB
.

But, from equation (1), AP′ = 1/AP, so P is related to P ′ by the equation

B ′ P ′ = PB

AB · AP
. (2)

Now if P lies on the locus C , then AP (= PA) = k · PB, so that

B ′ P ′ = 1

k · AB
.

Thus P ′ lies on a circle C ′ of radius 1/(k · AB) and with centre B ′.
Conversely, if P ′ lies on C ′, then B ′ P ′ = 1/(k · AB), so from equation (2),

1

k · AB
= PB

AB · AP
.

Thus AP = k · PB, and so P lies on the locus C .
It follows that the inversion t maps the locus C onto the circle C ′. But

t−1 = t maps generalized circles to generalized circles, so C = t−1(C ′) is
a generalized circle. �

This proof sets up a one–one correspondence between the family of Apol-
lonian circles and a family of concentric circles. Each Apollonian circle In particular, the extended

line in the Apollonian
family corresponds to
k = 1, which corresponds
to the circle of radius
l/AB = AB′, with centre
B′. As you would expect,
this circle passes through
the centre A of the
inversion t .

corresponds to a value of k, and this in turn corresponds to a circle of radius
1/(k · AB) with centre B ′ = t(B).

A B

t

t (B)

The importance of this correspondence is that it enables us to characterize
Apollonian families of circles in terms of inversive transformations. Such a
characterization is ideal for tackling problems in inversive geometry so we
state it in the form of a theorem.

Theorem 2 Let A and B be distinct points in the plane, and let t be the
inversion in the circle with centre A and radius 1. Then the Apollonian
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family of circles defined by the point circles A and B is mapped by t to
the family of all concentric circles with centre t(B); and the family of all
concentric circles with centre t(B) is mapped by t to the Apollonian family For t is self-inverse.

of circles defined by the point circles A and B.

A remarkable consequence of this theorem is that in inversive geometry
all Apollonian and concentric families of circles are congruent to each other.
Indeed the theorem shows that every Apollonian family of circles is congruent
to a family of concentric circles, so it is sufficient to show that all families of
concentric circles are congruent to each other. This is easily achieved by noting Recall that a translation is

an inversive
transformation provided
we adopt the convention
that ∞ maps to ∞.

that any family of concentric circles can be mapped onto any other family of
concentric circles by a translation that makes their centres coincide.

5.5.2 Families of Circles
Any two (distinct) generalized circles in the extended plane are related in
precisely one of the following ways:

1. they may not intersect;
2. they may intersect in precisely one point;
3. they may intersect in two distinct points.

Case 1 Case 2 Case 3

In the previous subsection you met Apollonian families of circles, in which
no two circles intersect; in the following subsection we will show that any two
non-intersecting circles determine an Apollonian family of circles. We now
consider the two other families, namely families of generalized circles that
intersect at precisely one point and families of generalized circles that intersect
at precisely two points.

Apollonian circles Circles through one point Circles through two points

Each of these three families contains precisely one extended line known as
the radical axis of the family. The centres of the circles in each family lie on
a line, or axis, that is perpendicular to the radical axis. Since all the circles in
each family are symmetrical about the axis through their centres, the families
are known as coaxal families.
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Definition A coaxal family of circles in the plane is a family of (general-
ized) circles of one of the following types:

1. an Apollonian family, with particular point circles;
2. a family that intersect at one particular point;
3. a family that intersect at two particular points.

The extended line in each family is called the radical axis of the family.

Given the Apollonian family of circles F defined by point circles A and B,

A B

there is a corresponding coaxal family of circles G that pass through A and B.
Conversely, given a coaxal family of circles G that pass through distinct points
A and B, there is a corresponding Apollonian family of circles F defined by
the point circles A and B.

The following theorem describes a remarkable relationship between the two
families of circles, F and G .

Theorem 3 Coaxal Circles Theorem
Let A and B be distinct points in the plane. Let F be the Apollonian family
defined by the point circles A and B, and let G be the family of all gener-
alized circles through A and B. Then every member of F is orthogonal to Two circles are

orthogonal if they meet at
right angles.

every member of G .

Proof Let t be the inversion in the unit circle with centre A. By Theorem 2,
the Apollonian family F is mapped by t to the family of concentric circles
with centre t(B).

A B

t

t(B)

t(C)

C ∈

Now let C be an arbitrary member of G . Since C is a generalized circle that
passes through A and B, it follows that t(C) is a generalized circle that passes
through t(A) = ∞ and t(B). In other words, t(C) is an extended line through
t(B). Clearly, this line t(C) intersects each of the circles with centre t(B) at
right angles. Since inversion preserves the magnitude of angles, it follows that
C meets each of the Apollonian circles in F at right angles. �

For an Apollonian family of circles defined by point circles A and B, the
Coaxal Circles Theorem states that every generalized circle through A and B
meets each of the Apollonian circles at right angles. The next theorem enables
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us to use this fact to deduce that A and B are inverse points with respect to
each of the Apollonian circles.

Theorem 4 Two points A and B in the extended complex plane are inverse
points with respect to a generalized circle C if and only if every generalized
circle through A and B meets C at right angles.

Proof We first show that A and B are inverse points if every generalized
circle through A and B meets C at right angles.

Let C1 be any generalized circle through A and B that meets C at right

C
1

C
1

C

A

R

B

T

S

C

R

A

B

angles, at points R and S. Now invert the figure C1 in the generalized circle C .
Since R and S remain fixed, C1 is mapped to a generalized circle that meets
C at right angles at R and S. It follows that C1 is mapped to itself; for the fact
that the image passes through R and S means that it must be a circle, and the
radii of this circle through R and S must be along the tangents to C at R and S.

In fact, by a similar argument, every generalized circle through A and B that
meets C at right angles maps to itself. The only way this can happen is if A
inverts to B, and vice versa. Hence A and B are inverse points.

Next we show that if A and B are inverse points, then every generalized
circle through A and B meets C at right angles.

Let A and B be inverse points, and let C1 be a generalized circle through
A and B that meets C at R. Under inversion in C , the points A and B swap
over and R remains fixed, so C1 maps to itself. It follows that both the angles
that C1 makes with the circle C must be equal. These angles must therefore be
right angles, which is what we want to prove. �

Theorem 4 has two important corollaries. The first follows directly from the
Coaxal Circles Theorem.

Corollary 1 If C is an Apollonian circle defined by the point circles A
and B, then A and B are inverse points with respect to C .

Proof Let C be an Apollonian circle with respect to the point circles A and
B. Then by the Coaxal Circles Theorem, every generalized circle through A
and B meets C at right angles. By Theorem 4, A and B are inverse points with
respect to C . �

The second corollary asserts that inverse points are preserved by inversive
transformations.

Corollary 2 Let A and B be inverse points with respect to a generalized
circle C , and let t be an inversive transformation. Then t(A) and t(B) are
inverse points with respect to the generalized circle t(C).
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Proof

A

C

t

t (C )

t (B)

t (A)

t –1(C1)

C1

B

Let C1 be an arbitrary generalized circle through t(A) and t(B). Then t−l(C1)

is a generalized circle that passes through A and B. By Theorem 4, t−l(C1)

meets C at right angles. But t preserves the magnitude of angles, so C1 meets
t(C) at right angles. Since C1 is an arbitrary generalized circle through t(A)

and t(B), it follows from Theorem 4 that t(A) and t(B) are inverse points with
respect to t(C). �

An immediate consequence of Corollary 2 is that if F is the family of all
generalized circles that have two given points A and B as inverse points, then
under an inversive transformation t the family F maps onto the family of all
generalized circles that have t(A) and t(B) as inverse points.

At first sight this observation appears to be little more than a restatement
of Corollary 2; however the restatement has a particular significance, as the
following theorem shows.

Theorem 5 Let F be the family of all generalized circles that have A and
B as inverse points. Then F is either a concentric family of circles with
centres A or B, or the Apollonian family of circles with point circles A
and B.

Proof First, suppose that either A or B is the point ∞; to be definite, assume Roughly speaking, you
can think of the family of
concentric circles with
centre A as an Apollonian
family of circles defined
by point circles A and ∞.
Then an Apollonian
family of circles defined
by the point circles A and
B maps to an Apollonian
family of circles defined
by the point circles t(A)

and t(B).

A = ∞. Then each circle in F has ∞ and B as inverse points. But this
can happen only if B is the centre of each circle in F ; in other words F is
the family of concentric circles with centre B. A similar argument applies if
B = ∞.

Next suppose that neither A nor B is the point ∞, and let t be the inversion
in the circle of unit radius with centre A. By Theorem 2, t maps the family
F to the family of all generalized circles with inverse points at t(A) = ∞
and t(B), namely the family of concentric circles with centre t(B). By The-
orem 5, F is the Apollonian family of circles defined by the point circles
A and B. �
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In light of the remarks that precede this theorem, it follows that under an
inversive transformation t an Apollonian family of circles defined by point
circles A and B

EITHER maps to an Apollonian family of circles defined by the point circles
t(A) and t(B),

OR maps to a concentric family of circles with centre t(A) or t(B).

Similarly a concentric family of circles with centre A either maps to the Apol-
lonian family of circles defined by the point circles t(A) and t(∞), or it maps
to a concentric family of circles with centre t(A) or t(∞).
So far, we have used inversive geometry to prove results about Apollonian
families of circles, but similar methods can be used to prove results about
other plane figures. The technique is to use an inversive transformation (often
an inversion) to map one or more circles in the figure to extended straight lines.
The additional symmetry that results from this transformation is then used to
establish the required result.

For future reference, we also note here a fact that we met in the proof of

T

S

C
R

C1

Theorem 4 above.

Corollary 3 Let C and C1 be circles that meet at right angles at two points
R and S. Then the centre of C1 is the point T of intersection of the tangents
to C at R and S; and C1 maps to itself under inversion in C .

Example 2 Let C1, C2 and C3 be circles in the plane such that C2 and C3

C3

C2

C1

R

P

C

Q
touch at a point P , C1 and C3 touch at a point Q, and C1 and C2 touch at a
point R. Let C be the circle that passes through P , Q and R. Prove that C cuts
C1, C2 and C3 at right angles.

Solution Let t be an inversion in a circle with centre R. Then t(C1) and
t(C2) are straight lines. Moreover, since C1 and C2 do not meet at any point
other than P , it follows that t(C1) and t(C2) cannot meet in C and must

t (Q )

t (C1)

t (C2)
t (C )

t(P )

t(C3)

therefore be parallel.
Now C3 is tangential to C1 and C2, and does not pass through R, so t(C3)

must be a circle that touches t(C1) and t(C2) tangentially at t(Q) and t(P),
respectively. Next observe that C passes through R, so t(C) is the extended line
through t(Q) and t(P). Since the transformed figure has reflectional symmetry
about t(C), it follows that t(C) cuts t(C1), t(C2) and t(C3) at right angles at
t(P) and t(Q). But t preserves angles, so C cuts C1, C2 and C3 at right angles
at P and Q.

A similar argument with t replaced by inversion in a circle with centre P (or
Q) shows that C cuts C1 and C2 at right angles at R.
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5.5.3 Two Circles Determine a Coaxal Family
It is clear that if we are given two circles in a coaxal family of mutually
tangential circles, this determines the whole family.

Similarly if we are given two circles in a coaxal family of circles through
two fixed points, this determines the whole family. This raises the question as
to whether two circles in an Apollonian family are sufficient to determine the
whole family. We now prove that this is indeed the case. The crucial tool that
we need is the following result.

Theorem 6 The Concentricity Theorem
Let C1 and C2 be any two non-intersecting circles in the plane. Then there
is a inversive transformation that maps C1 and C2 onto a pair of concentric
circles.

Proof If the circles are concentric then there is nothing to prove, so we may
assume they are not concentric.

Step 1 Pick a point O on the circle C1, and invert both circles in the circle of
unit radius with centre O . Under this inversion C1 maps to a line, C ′

1, and C2

maps to a circle, C ′
2.

C1

C1¢

C2¢

O

C2

Step 1

Step 2 Pick a point T on C ′
2 that does not lie on the perpendicular from the

centre of C ′
2 to the line C ′

1, and let the tangent to C ′
2 at T intersect C ′

1 at the
point U , say. Draw the circle C ′

3 with centre U and radius UT. This circle is
perpendicular to C ′

2 at T , because a tangent to a circle is perpendicular to the
radius at the point of contact. The circle C ′

3 is perpendicular to the line C ′
1

because its centre lies on the line C ′
1.
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Step 2

U

U

Q R

T

T

C3¢
C3¢

C1¢ C1¢

C2¢

C4¢

C2¢

Step 3

Step 3 Repeat the construct in Step 2 starting with another position for the
point T , to obtain a circle C ′

4 perpendicular to both C ′
1 and C ′

2 at the respective
points T . Let C ′

3 and C ′
4 meet at Q and R, say.

Step 4 Invert the figure again, this time in the unit circle with centre Q. Then As in the (second) proof
of Theorem 1, the choice
of 1 for the radius is not
significant.

the line C ′
1 maps to a circle C ′′

1 , and the circle C ′
2 maps to a circle C ′′

2 ; the
circles C ′

3 and C ′
4 pass through Q, so they invert to straight lines at right angles

to C ′′
1 and C ′′

2 . These lines are therefore diameters of the circles C ′′
1 and C ′′

2 ,
and so the point where they meet (the image R′′ of R) must be the centre of
both circles.

Q R

C4¢

C2¢
Step 4

C3¢
C3≤

C1≤

C4≤

C2≤
R≤

C1¢

Step 5 Composing the inversion in Step 1 with the inversion in Step 4, we
obtain an inversive transformation that maps C1 and C2 onto the pair of con-
centric circles C ′′

1 and C ′′
2 . �

We can now prove the following beautiful result.

Theorem 7 Two Apollonian Circles Theorem
Let C1 and C2 be two non-concentric circles that do not intersect. Then
there is a unique Apollonian family of circles that contains C1 and C2.

Proof By the Concentricity Theorem there is an inversive transformation t Theorem 6 above

that maps C1 and C2 onto a pair of concentric circles t(C1) and t(C2). Let O
be the common centre of these circles, and let G be the family of concentric
circles with centre O . Under the inversive transformation t−1 the family G

maps to the family of all generalized circles that have t−l(O) and t−l(∞) as
inverse points; we denote this family by F . Now F cannot be a concentric
family of circles, since it contains C1 and C2; so, by Theorem 5, it must be an
Apollonian family of circles.
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To complete the proof we must show that F is the only Apollonian family of
circles that contains C1 and C2. To do this suppose that F ′ is any Apollonian
family of circles that contains C1 and C2. Then F ′ is mapped by t either to
an Apollonian family of circles, or to a concentric family of circles. In fact
the image of F ′ under t contains the concentric circles t(C1) and t(C2) and
must therefore be the family G of concentric circles with centre O . It follows
that F and F ′ are the same family of circles, for they are both mapped to
G by t . �

5.5.4 Some Applications of Inversion
As we mentioned earlier, inversion can often be used to prove results about
plane figures, using a suitable inversion to map one or more circles in the
figures to extended lines – the additional symmetry then being used to establish
the desired result.

Our first application of inversion to prove a beautiful result is known as
Steiner’s Porism. A porism is a mathematical construction problem that has Jakob Steiner

(1796–1863) was a
19th-century Swiss
geometer.

a surprising answer: either the construction cannot be carried out or it has
infinitely many solutions.

Theorem 8 Steiner’s Porism
Let C1 and C2 be non-intersecting circles, with C1 inside C2. Then:

C2

C1

chain of circles

EITHER it is impossible to fit a chain of circles between C1 and C2, with
each circle touching C1 and C2 and two other circles in the chain;

OR it is possible to construct such a chain, and the first circle in the
chain can be placed in any convenient position.

Proof There are two possibilities.

EITHER It is impossible to fit a chain between C1 and C2 with the properties
described, in which case the porism is established.

OR There is at least one chain F that fits between C1 and C2. To estab-
lish the porism in this case we must show that a chain also exists for
each choice of a first circle C between C1 and C2.

By the Concentricity Theorem there is an inversive transformation t that maps Recall that t−l must be an
inversive transformation,
since t is.

C1 and C2 onto concentric circles C ′
1 and C ′

2. Under t the chain F maps onto
a chain of circles F ′ between C ′

1 and C ′
2, and C maps onto a circle C ′ which

touches C ′
1 and C ′

2. Since C ′
1 and C ′

2 have a common centre O , we can rotate
the chain F ′ about O until its first circle is superimposed on C ′. If we denote
the rotated chain by G ′, then the inversive transformation t−l maps G ′ back
to a chain G between C1 and C2. Moreover, the first circle of G is C as
required.



Coaxal Families of Circles 329

C1′

C2′

C

t

C′

C2

chain of circles F chain of circles F ′

C1

�

Another famous porism is Poncelet’s Porism: If C1 and C2 are any two plane
conics for which (for any given n > 2) it is possible to find one n-sided polygon We omit a proof, as it is

beyond the scope of this
book.

which is simultaneously inscribed in C1 and circumscribed around C2, then it
is possible to find infinitely many of them.

Next, we prove a classical result known as Ptolemy’s Theorem – but using Claudius Ptolemaus
(c. 85–165 AD) was a
geometer, astronomer and
geographer in Alexandria,
Egypt.

inversion rather than using Ptolemy’s Pythagorean geometry methods! A key
tool in our proof is the following useful result.

Lemma 1 Let a and b be points in C − {O}. Then, under inversion in a

C

O
b

a

a–b

r t (a)

t (b)

t (a)–t (b)

circle C with centre O and radius r the distance between the images of a

and b is r2

|a|·|b| |a − b|.

Proof Inversion in C may be represented in the complex plane by the

This is a special case of a
general formula for
inversion in C that you
met in Theorem 3,
Subsection 5.2.1.

transformation

t(z) = r2

z
, where z ∈ C − {O}.

It follows from this formula that

t(a) − t(b) = r2

a
− r2

b

= r2

a · b
(b − a),

from which we may deduce that

|t(a) − t(b)| = r2

|a| · |b| |b − a|,

which is equivalent to the desired result. �

The formula for distances in Lemma 1 plays a crucial role in our proof of
Ptolemy’s Theorem that the sum of the product of the lengths of opposite sides
of a cyclic quadrilateral equals the product of the lengths of the diagonals.
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Theorem 9 Ptolemy’s Theorem
Let A, B, C , D be the vertices (in order round a circle) of a quadrilateral
ABCD inscribed in a circle. Then

AD · BC + AB · CD = AC · BD.

Proof Let the transformation t be inversion of the figure ABCD in the circle
C with centre A and radius 1. This inversion maps A to ∞, the circle C to an
extended line (which we will denote by �), and the points B, C , D on C to

A

B
C

C

D

B¢
C¢

D¢
l

points B ′, C ′, D′ on �.
Since B, C , D are in order on C , it follows that B ′, C ′, D′ are in order on

�. Consequently,

B ′C ′ + C ′ D′ = B ′ D′. (3)

Since t is self-inverse, the images of B ′, C ′, D′ under inversion in C are
B, C , D. Hence, if we apply the result of Lemma 1 in turn to the distances
B ′C ′, C ′ D′, B ′ D′ under the inversion t , it follows from equation (3) that

BC

AB · AC
+ CD

AC · AD
= BD

AB · AD
.

Multiplying both sides of this equation by the product AB · AC · AD, we obtain
the desired result

AD · BC + AB · CD = AC · BD. �

Our final application of inversion is particularly attractive visually.

Theorem 10 Shoemaker’s Knife
Let D be a region in the upper half-plane, whose boundary consists of

The name ‘Shoemaker’s
Knife’ (or αρβελoσ ,
Arbelos) is due to
Archimedes.

three semicircles S1, S2 and S3 that meet at three points A, B and C on the
x-axis, as shown. Then it is possible to fit a chain of circles into D between
S1 and S2, with the first circle touching Si , S2 and S3, and with each suc-

B CA

DS2

S3

S1
y

x

cessive circle touching S1, S2 and the previous and following circles in the
chain.

Proof Let t denote inversion in the circle C with centre A and radius 1.
Under t , the positive x-axis maps to itself, and points in the upper half-plane

(the set of points above the x-axis) map to points in the upper half-plane. y

x

t (S1) t (S2)

t (S3)

B¢=t (B) C ¢=t (C)

The circle of which S3 is a portion is mapped by t to another circle, which
crosses the x-axis at right angles, at points B ′ and C ′ say. The image of S3 is
therefore another semicircle in the upper half-plane, with endpoints B ′ and C ′.

Under t , the origin A maps to ∞, so the semicircles S1 and S2 map to
portions of (generalized) circles in the upper half-plane that join ∞ to B ′ and
C ′, respectively. These portions do not intersect in the (ordinary) plane C, and
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they meet the x-axis at right angles. Hence the images of S1 and S2 are two
vertical half-lines with endpoints B ′ and C ′.

S2

S3

S1y

A B C x

Now, it is obviously possible to fit a chain of circles into the vertical strip
bounded by the semicircle t(S3) and the vertical lines t(S1) and t(S2), with the
first circle touching t(S3) and with each successive circle touching t(S1), t(S2)

and the previous and following circles in the chain.
We can transform this new configuration back into the original configuration

by applying the inverse transformation t−1. Since t−1 preserves circles and
their tangencies, the required result now follows. �

Problem 3 Prove that the height above the x-axis of the centre of the
n-th circle, Cn say, in the chain of circles constructed in Theorem 10 is
n times the diameter of that circle.
Hint: Invert the figure in a circle with centre A that intersects Cn at

right angles.

Problem 4 In the figure for Theorem 10, let A, B and C have coor-
dinates (0,0), (b, 0) and (c, 0), respectively. Show that the centres of the
circles in the chain constructed in Theorem 10 all lie on an ellipse with
foci F

( 1
2 b, 0

)
and F ′( 1

2 c, 0
)
, and major axis

[
(0, 0),

( 1
2 (b + c), 0

)]
.

Hint: Use the Sum of Focal Distances of the Ellipse theorem.
Theorem 5, Subsection
1.1.4

5.6 Exercises

Section 5.1
1. Determine the image under inversion in the unit circle C of each of the

following points.

(a) (3, −4) (b) (−1, 1) (c) (9, 0) (d)
(

1
2 , −

√
3

2

)
2. Determine the image under inversion in the unit circle C of the following

circles C (with the origin removed if it belongs to C):
(a) the circle with centre (3, −4) and radius 5;
(b) the circle with centre (1, 2) and radius 3.

3. Determine the image under inversion in the unit circle C of the following
lines � (with the origin removed if it belongs to �):
(a) the line y + 3x = 5;

O D

F B

E

C

A

C1

C2

C3

(b) the line y + 2x = 0.
4. Three circles C1, C2, C3 pass through the origin O , and meet at three other

distinct points D, E and F , as shown. The following sets of points are
collinear: A, O and D; B, O and E ; C , O and F . OA and OB are diameters
of C1 and C2, respectively. Prove that OC is a diameter of C3.
Hint: Invert the figure in a unit circle with centre O , and then use the fact

that the altitudes of a triangle are concurrent.
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5. By means of a specific example, show that the centre of the image circle
t(C2) of a circle C2 under inversion t in another circle C1 may not be the
image of the centre of C2 under t .

6. Let the origin O , P and Q be distinct points; and let P ′ and Q′, respectively,
be the images of P and Q under inversion in the circle with centre O and
radius r . Prove that

P ′Q′ = r2

OP · OQ
PQ.

(For simplicity, you may assume that O , Q, P are points inside the circle
of inversion and occur in this order along the radius outwards from O . The
result holds in all other cases too, by a similar argument.)

7. Let P and Q be distinct points in C − {O} with the origin O , P and
Q not being collinear; and let P ′ and Q′, respectively, be their images
under inversion in the circle with centre O and radius r . Let ON and ON′
be the perpendiculars from O to PQ and P ′Q′ (extended, if necessary),
respectively.
(a) Prove that

P ′Q′ = r2

OP · OQ
PQ.

(b) Prove that

ON

PQ
= ON′

P ′Q′ .

8. Let AB be a diameter of a circle C , and let chords AD and BE (extended,
if necessary) of C intersect at a point F . Prove that the circle DEF is
orthogonal to the circle C .

Section 5.2
1. Let t be the transformation defined by

t(z) = 1
2 (1 + √

3i)z + 2i (z ∈ C).

(a) Show that t represents an isometry.
(b) Interpret t as the composite of a rotation and a translation.
(c) Interpret t as a composite of reflections.

2. Determine the image under inversion in the unit circle C of each of the
following points.
(a) −3 + 4i (b) 5 − 12i

3. Let C be the circle of radius 2 with centre 1 + i .
(a) Write down the inversion in C of the extended complex plane, as a

transformation of Ĉ.
(b) Determine the image of i under the inversion in C .
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4. Let t be the extended linear function defined by

t(z) =
{−5iz + (2 + 6i), if z ∈ C,

∞, if z = ∞.

Express t as a composite of inversions of the extended complex plane.
5. Prove that two points z and z∗ in the complex plane correspond to

two diametrically-opposite points on the Riemann sphere if and only if
z · (z∗) = −1.

Section 5.3
1. Which of the following formulas define a Möbius transformation? For each

formula that does define a Möbius transformation, state the image of ∞
under M .
(a) M(z) = −2 z+1

z−2 (b) M(z) = −2z + 1
z−2 (c) M(z) = 2iz−2

z+i

2. Decide which, if any, of the following matrices

A1 =
(−1 −i

i 1

)
, A2 =

(
1 i
i 1

)
, A3 =

(−i i
1 −i

)
,

are associated with each of the following Möbius transformations.

(a) M1(z) = z−1
iz+1

(b) M2(z) = iz−1
z−i (c) M3(z) = −z−1

z+i

3. Determine a formula for each of the following Möbius transformations,
where M1 and M2 are the Möbius transformations defined in Exercise 2.
(a) M1 ◦ M1(z) (b) M1 ◦ M2(z) (c) M2 ◦ M−1

1 (z)

4. State which of the following transformations of Ĉ onto itself are inversive
transformations, giving a brief reason in each case.
(a) t(z) = 4z̄−2

3z̄−2 (b) t(z) = 5 (c) t(z) = iz+2
z−2i

5. Let t be the inversive transformation defined by

t(z) = z + i

z − i
.

Determine the image of each of the following generalized circles under t :
(a) the extended line � ∪ {∞}, where � is the line with equation y = x ;
(b) the unit circle C .

Section 5.4
1. For each set of three points below, determine the Möbius transformation

that maps the three points to 0, 1, ∞, respectively.
(a) i , −i , ∞ (b) ∞, 1, i (c) 2i , ∞, 3 (d) 1, 2, 3

2. Using the results of Exercise 1, determine the Möbius transformations that
map:
(a) 1, 2, 3 to 2i , ∞, 3; (b) ∞, 1, i to i , −i , ∞;
(c) 2i , ∞, 3 to ∞, 1, i ; (d) i , −i , ∞ to 1, 2, 3.

3. Determine whether each of the following sets of points are collinear:
(a) 3

2 + i , 2i , −6 + 6i (b) 1 + 2i , 4 − 5i , 10 − 20i
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4. Determine whether each of the following sets of points lies on a circle:
(a) i , −3, 1 + 2i , 2 + 4i (b) 1 − 2i , −4 + i , 4 + i , 1 + 6i

Section 5.5
1. An Apollonian family of circles F includes (6,0) as a point circle and also

the circle C with equation x2 + y2 = 4. Determine the other point circle in
the family.

2. The circles C1 and C2 in an Apollonian family of circles have the segments
[0,8] and

[
1, 7

2

]
, respectively, of the x-axis as diameters.

(a) Determine the point circles of the family.
(b) Hence determine the equation of the Apollonian circle in the family

that passes through the point (1,1).
3. Determine the images under inversion in a unit circle with centre A of the

following families F of coaxal circles.
(a) F is the family of all generalized circles tangential to the y-axis at the

origin, and A = (0, 0).
(b) F is the family of all generalized circles through the points

A = (−1, 0) and B = (1, 0).
(c) F is the Apollonian family of all generalized circles with point circles

A = (−1, 0) and B = (1, 0).
4. Let C1 be the (extended) y-axis in the plane, and C2 the circle with centre

(2, 0) and radius 1. Find a sequence of inversions whose composite inversive
transformation maps C1 and C2 onto concentric circles.

5. Let C1 and C2 be circles that touch at a point P , apart from which C2

lies inside C1. Prove that it is possible to fit a chain of circles between
C1 and C2, with each circle touching C1 and C2 and two other circles in
the chain, and with the first circle in the chain placed in any convenient
position.

6. Prove that, if the Möbius transformation M maps C , the unit circle with
centre the origin, to itself, then M is necessarily of the form

M(z) = K
z − α

αz − 1
, where |K | = 1 and |α| �= 1.

7. Let F be an Apollonian family of circles with point circles A and B and
radical axis �. Prove that, for any given point P on the radical axis, all the
tangents from P to circles in F are of equal length.

-1 0 1

S1 S2

S3

D

8. Let D be the region in the upper half-plane whose boundary consists of
three semicircles S1, S2 and S3 with diameter the segments [−1, 0], [0, 1]
and [−1, 1], respectively, of the x-axis, as shown.
(a) Prove that it is possible to fit a chain of circles into D between S1 and

S2, with the first circle touching S1, S2 and S3, and with each successive
circle touching S1, S2 and the previous and following circles in the
chain.
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(b) Prove that the nth circle in the chain has its centre at a height 2n
4n2−1

above the x-axis, and has radius 1
4n2−1

.
9. Let C1, C2, C3 be three circles, external to each other, where the pairs C1

C2

C3

C1

and C2, C2 and C3, and C3 and C1 each touch at a point. Prove that there
are exactly two circles that touch all of C1, C2, C3.
These circles are sometimes called kissing circles or Soddy circles, and
were discovered by René Descartes (1643), then rediscovered by Jakob
Steiner (1826) and Frederick Soddy (1936). Soddy published his discov-
ery as a poem titled The Kiss Precise, in the scientific journal Nature; it
starts:

For pairs of lips to kiss maybe
Involves no trigonometry. Frederick Soddy

(1877–1956) won the
1921 Nobel Prize in
chemistry for research
into radioactive decay and
the theory of isotopes.

‘Tis not so when four circles kiss
Each one the other three.
To bring this off the four must be
As three in one or one in three.
If one in three, beyond a doubt
Each gets three kisses from without.
If three in one, then is that one
Thrice kissed internally.

Summary of Chapter 5

Section 5.1: Inversion
1. Under reflection in a line � in the plane, a point A is mapped to an

image point A′ that lies an equal distance from �, but on the opposite side
of �.

2. Let C be a circle in the plane, with centre O and radius r , and let A be any
point other than O . If A′ is the point on the line OA that lies on the same
side of O as A and satisfies the equation OA ·OA′ = r2, then we call A′ the
inverse of A with respect to (or ‘in’) the circle C . The point O is called
the centre of inversion, and C the circle of inversion. The transformation
t defined by t(A) = A′ (A ∈ R

2 − {O}) is known as inversion in C .
There is no point to which O is mapped by the inversion, and no point

that is mapped to O by the inversion.
Inversion in a circle is a generalization of reflection in a line.
We often use the term inversion to mean EITHER reflection in a line OR

inversion in a circle.
3. If A is a point outside a circle C with centre O , AB and AC are the two

tangents from A to C , and A′ is the point of intersection of OA and BC,
then A and A′ are inverse points with respect to C .

4. Inversion in a circle C maps points outside C to points inside C , and vice-
versa; points on C map to themselves.
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Inversion in a circle is a one-one transformation of the plane minus the
centre of inversion onto itself.

Inversion is a self-inverse transformation.
5. Inversion is not a Euclidean transformation; for example, it does not

preserve lengths.
Inversion is not an affine transformation; for example, it does not

preserve straight lines.

6. Inversion in the unit circle C is the function t : (x , y) �→
(

x
x2+y2 , y

x2+y2

)
,

where (x , y) ∈ R
2 − {O}.

Strategy To determine an equation for the image of a curve under
inversion in the unit circle C :
1. write down an equation that relates the x- and y-coordinates of the

points on the curve;
2. replace x by x/(x2 + y2) and y by y/(x2 + y2), and simplify the

resulting equation.
If the curve passes through the origin we must first remove the origin from
the curve. If we remove a point A from a curve, the curve is said to be
punctured at A.

7. Images of lines under inversion Under inversion in a circle with cen-
tre O:
(a) a line that does not pass through O maps onto a circle punctured at O;
(b) a line punctured at O maps onto itself.

Images of circles under inversion Under inversion in a circle with
centre O:
(a) a circle that does not pass through O maps onto a circle;
(b) a circle punctured at O maps onto a line that does not pass through O .

Even if inversion maps one circle onto another, it may not map centre
to centre.

8. Let c1 and c2 be two curves that intersect at the point A, and let the tan-
gents to the curves at A be �1 and �2, respectively. Then the anti-clockwise
angle from c1 to c2 at A is the anti-clockwise angle from �1 to �2, and the
clockwise angle from c1 to c2 at A is the clockwise angle from �1 to �2.

9. Symmetry Lemma Let � be a line that does not pass through the point
O . Then under inversion in a circle with centre O , � maps to a circle C
(punctured at O), and the tangent to C at O is parallel to �.

10. Angle Theorem An inversion in any circle preserves the magnitude of
angles between curves but reverses their orientation.

Section 5.2: Extending the Plane
1. The transformation t(z) = z+c (z ∈ C), where c = a+ib, is a translation

through the vector (a, b).
The transformation t(z) = z (z ∈ C) is a reflection in the x-axis.
The transformation t(z) = az (z ∈ C), where |a| = 1, a = cos θ0 +

i sin θ0, is a rotation through an anti-clockwise angle θ0 about the origin.
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Each isometry t of the plane can be represented in the complex plane
by one of the functions t(z) = az + b or t(z) = az + b, where a, b ∈ C,
|a| = 1. Conversely, all such functions represent isometries.

Every isometry can be expressed as a composite of reflections.
2. The transformation t(z) = kz (z ∈ C), where k is real and positive, is a

scaling by a factor k.
3. An inversion in a circle C of radius r with centre (a, b) may be represented

in the complex plane by the transformation t(z) = r2

z−c
+ c (z ∈ C − {c}),

where c = a + ib.
In particular, inversion in the unit circle C may be represented by the

transformation t(z) = 1
z (z ∈ C − {O}).

4. A linear function is a function of the form t(z) = az + b (z ∈ C), where
a, b ∈ C and a �= 0.

It may be decomposed into a composite t2 ◦ t1, where t1 is the scaling
t1(z) = |a|z and t2 is the isometry t2(z) = (a/|a|)z + b. This can be
described geometrically as a scaling by the factor |a|, followed by a rota-
tion through the angle Arg(a/|a|), followed by a translation through the
vector (Re b, Im b).

Linear functions preserve angles, and map circles and lines to circles
and lines.

5. The reciprocal function is the function of the form t(z)= 1
z

(z ∈ C − {O}).
It may be decomposed into a composite t2 ◦ t1, where t1 is the inversion

t1(z) = 1/z and t2 is the conjugation t2(z) = z.
The reciprocal function preserves angles.

6. The extended (complex) plane Ĉ is the union of the complex plane C and
one extra point, the point at infinity, denoted by the symbol ∞.

7. An extended line is any line � in the plane together with the point ∞. An
extended line can be thought of as a circle of infinite radius.

A generalized circle in the extended plane is a set that is either a circle
or an extended line.

8. Let C be a generalized circle in the extended complex plane. Then an
inversion of the extended plane with respect to C is a function t defined
by one of the following rules.
(a) If C is a circle of radius r with centre O , then

t(A) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

the inverse of A with respect to C ,

if A ∈ C − {O},
∞, if A = O ,

O , if A = ∞.

(b) If C is an extended line � ∪ {∞}, then

t(A) =
{

the reflection of A in �, if A ∈ C,

∞, if A = ∞.
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Inversions of the extended plane map generalized circles onto gener-
alized circles.

9. The extended conjugation function, extended reciprocal function and
extended linear functions may be defined in the natural way as mappings
of Ĉ to itself.

10. The extended reciprocal function and the extended linear functions can be
decomposed into a composite of inversions, and map generalized circles
onto generalized circles.

11. Strategy To scale Ĉ by a factor k:
1. invert in the circle {z : |z| = 1}, then
2. invert in the circle {z : |z| = √

k}.
Strategy To rotate Ĉ through an angle θ :
1. invert in the line {z : Arg z = 0} ∪ {∞}, then

2. invert in the line
{

z : Arg z = 1
2θ
}

∪ {∞}.
Strategy To translate Ĉ through a vector (a, b):
1. invert in the line {(x , y) : ax + by = 0} ∪ {∞}, then
2. invert in the line {(x , y) : ax + by = 1

2 (a2 + b2)} ∪ {∞}.
12. The Riemann sphere S is the sphere in R

3 with centre the origin and
radius 1. The points N (0, 0, 1) and S = (0, 0, −1) are called the North
Pole and the South Pole of S, respectively.

Lines through the North Pole intersecting S at points P ′and the (x , y)-
plane at points P give a one–one correspondence between points on S and
points in the plane. (We associate the North Pole with the point ∞ in the
extended complex plane.)

The one-one onto function π : S → Ĉ which maps points on S to the
associated points in the extended complex plane is called stereographic
projection. If (X , Y , Z) ∈ S and z = x + iy ∈ Ĉ, then

π(X , Y , Z) = X

1 − Z
+ i

Y

1 − Z

and

π−1(x + iy) =
(

2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,

x2 + y2 − 1

x2 + y2 + 1

)
.

13. Under stereographic projection, circles on the Riemann sphere map onto
generalized circles in Ĉ. In particular, circles on the sphere that pass
through N map onto extended lines in Ĉ, and circles on the sphere that
do not pass through N map onto ordinary circles in Ĉ.

Stereographic projection preserves the magnitude of angles.

Section 5.3: Inversive Geometry
1. A transformation t : Ĉ → Ĉ is an inversive transformation if it can be

expressed as a composite of inversions.
Inversive geometry is the study of those properties of figures in Ĉ that

are preserved by inversive transformations.
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The extended reciprocal function and the extended linear functions are
inversive transformations.

2. Inversive transformations preserve the magnitude of angles, map general-
ized circles to generalized circles, and preserve tangency.

The set of inversive transformations forms a group under the operation
of composition of functions, called the inversive group.

3. Every Euclidean transformation is also an inversive transformation, and
every Euclidean property is also an inversive property.

The ‘doubling map’ t(z) = 2z (z ∈ C) is an affine transformation and
an inversive transformation, but is not a Euclidean transformation.

The transformation of R
2 to itself given by t(x) =

(
2 0
0 1

)
x rep-

resents a horizontal shear; it is an affine transformation, but is not an
inversive transformation.

4. A Möbius transformation is a function t : Ĉ → Ĉ of the form M(z) =
az+b
cz+d , where a, b, c, d ∈ C, and ad − bc �= 0.

If c = 0, we adopt the convention that M(∞) = ∞; otherwise we adopt
the convention that M(−d/c) = ∞ and M(∞) = a/c.

The extended linear functions and the extended reciprocal function are
Möbius transformations.

Every Möbius transformation is an inversive transformation.
5. Möbius transformations preserve the magnitude and orientation of angles,

and map generalized circles onto generalized circles.
6. Let M be a Möbius transformation defined by M(z) = az+b

cz+d , where a, b,

c, d ∈ C, and ad − bc �= 0; then A =
(

a b
c d

)
is a matrix associated

with M .
A matrix associated with a Möbius transformation is invertible.
If A is a matrix associated with a Möbius transformation M , then so is

cA for any non-zero c ∈ C. Every matrix associated with M has the form
cA for some c ∈ C − {O}.

7. Let M1 and M2 be Möbius transformations with associated matrices A1

and A2, respectively. Then M1 ◦ M2 is a Möbius transformation with
associated matrix A1A2.
Strategy To compose two Möbius transformations M1 and M2:
1. write down matrices A1 and A2 associated with M1 and M2;
2. calculate A1A2;
3. write down the Möbius transformation M1 ◦ M2 with which A1A2 is

associated.
8. The inverse of the Möbius transformation M(z) = az+b

cz+d is also a Möbius

transformation, and it may be written in the form M−1(z) = dz−b
−cz+a .

9. The set of all Möbius transformations forms a group under composition of
functions.

10. Every inversion t has the form t(z)= M(z), where M is a Möbius
transformation.
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Every inversive transformation t can be represented in Ĉ by one of
the formulas t(z) = az+b

cz+d or t(z) = az+b
cz+d , where a, b, c, d ∈ C, and

ad − bc �= 0.
The composite of an even number of inversions is a Möbius transfor-

mation and is called a direct inversive transformation (since it preserves
the orientation of angles); the composite of an odd number of inver-
sions is called an indirect inversive transformation (since it reverses the
orientation of angles).

11. Strategy To determine the image of a generalized circle C under an
inversive transformation t :
1. write down three points z1, z2, z3 on C ;
2. determine the images t(z1), t(z2), t(z3);
3. the image t(C) is the (unique) generalized circle through t(z1), t(z2),

t(z3).

Section 5.4: Fundamental Theorem of Inversive Geometry
1. Fundamental Theorem of Inversive Geometry

Let z1, z2, z3 and w1, w2, w3 be two sets of three points in the extended
complex plane Ĉ. Then there is a unique Möbius transformation M which
maps z1 to w1, z2 to w2, and z3 to w3.

2. Strategy To determine the Möbius transformation M which maps three
given points z1, z2, z3 onto the points 0, 1 and ∞, respectively:
1. choose the appropriate form of mapping from the following formulas

for M :
mapping form of M
z1, z2, z3 �→ 0, 1, ∞ K z−z1

z−z3

∞, z2, z3 �→ 0, 1, ∞ K
z−z3

z1, ∞, z3 �→ 0, 1, ∞ z−z1
z−z3

z1, z2, ∞ �→ 0, 1, ∞ K (z − z1)

2. find the complex number K for which M(z2) = 1.
3. Strategy To determine the Möbius transformation M which maps the points

z1, z2, z3 to the points w1, w2, w3, respectively:
1. find the Möbius transformation M1 which maps the points z1, z2, z3 to

the points 0, 1, ∞, respectively;
2. find the Möbius transformation M2 which maps the points w1, w2, w3

to the points 0, 1, ∞, respectively;
3. calculate M = M−1

2 ◦ M1.
4. Strategy To determine whether z1, z2, z3 and z4 lie on a circle:

1. find the Möbius transformation M which maps z1, z2, z3 to 0, 1, ∞,
respectively;

2. the points z1, z2, z3, z4 lie on a generalized circle if and only if M(z4) is
real;



Summary of Chapter 5 341

3. the generalized circle in Step 2 is a circle provided that M(∞) is not
real.

If M(z4) and M(∞) are both real, then z1, z2, z3, z4 lie on a line.
5. Let C1 and C2 be generalized circles in the extended complex plane. Then

there is a Möbius transformation that maps C1 onto C2.
All generalized circles are inversive-congruent.

Section 5.5: Coaxal Families of Circles
1. Apollonian Circles Theorem Let A and B be two distinct points in the

plane, and let k be a positive real number other than 1. Then the locus of
points P that satisfy PA : PB = k : 1 is a circle whose centre lies on the line
through A and B.

The centre of the circle is not at either A or B. If A = (−a, 0) and B =
(a, 0), then the circle has centre c and radius r where c =

(
−a

(
1+k2

1−k2

)
, 0
)

and r = 2ak
|1−k2| .

If k = 1, then P lies on the perpendicular bisector of AB.
Every positive value of k gives rise to a generalized circle, known as a cir-

cle of Apollonius; the family of all such circles is known as the Apollonian
family of circles defined by the points A and B.

If 0 < k < 1, the Apollonian circle surrounds A; if k > 1, the Apollonian
circle surrounds B. The points A and B are called point circles, corre-
sponding to the cases k = 0 and ‘k = ∞’, respectively. Every point in the
plane lies on precisely one circle (or generalized circle) in each Apollonian
family.

2. Let A and B be distinct points in the plane, and let t be the inversion in
the circle with centre A and radius 1. Then the Apollonian family of circles
defined by the point circles A and B is mapped by t to the family of all
concentric circles with centre t(B); and the family of all concentric circles
with centre t(B) is mapped by t to the Apollonian family of circles defined
by the point circles A and B.

3. A coaxal family of circles in the plane is a family of (generalized) circles
of one of the following types:
1. an Apollonian family, with particular point circles;
2. a family that intersect at one particular point;
3. a family that intersect at two particular points.

The extended line in each family is called the radical axis of the family.
Coaxal Circles Theorem Let A and B be distinct points in the plane.

Let F be the Apollonian family defined by the point circles A and B, and
let G be the family of all generalized circles through A and B. Then every
member of F is orthogonal to every member of G .

4. Two points A and B in the extended complex plane are inverse points with
respect to a generalized circle C if and only if every generalized circle
through A and B meets C at right angles.
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If C is an Apollonian circle defined by the point circles A and B, then A
and B are inverse points with respect to C .

Let A and B be inverse points with respect to a generalized circle C , and
let t be an inversive transformation. Then t(A) and t(B) are inverse points
with respect to the generalized circle t (C).

Let F be the family of all generalized circles that have A and B as
inverse points. Then F is either a concentric family of circles with centre
A or B, or an Apollonian family of circles with point circles A and B.

Let C and C1 be circles that meet at right angles at two points R and S.
Then the centre of C1 is the point T of intersection of the tangents to C at
R and S; and C1 maps to itself under inversion in C .

5. Concentricity Theorem Let C1 and C2 be any two non-intersecting circles
in the plane. Then there is an inversive transformation that maps C1 and C2

onto a pair of concentric circles.
6. Two Apollonian Circles Theorem Let C1 and C2 be two non-concentric

circles that do not intersect. Then there is a unique Apollonian family of
circles that contains C1 and C2.

7. A porism is a mathematical construction problem that has a surprising
answer: either the construction cannot be carried out or it has infinitely
many solutions.

Steiner’s Porism Let C1 and C2 be non-intersecting circles, with C1

inside C2. Then EITHER it is impossible to fit a chain of circles between
C1 and C2, with each circle touching C1 and C2 and two other circles in the
chain OR it is possible to construct such a chain, and the first circle in the
chain can be placed in any convenient position.

Poncelet’s Porism If C1 and C2 are any two plane conics for which (for
any given n > 2) it is possible to find one n−sided polygon which is simul-
taneously inscribed in C1 and circumscribed around C2, then it is possible
to find infinitely many of them.

7. Let a and b be points in C − {O}. Then, under inversion in a circle C
with centre O and radius r the distance between the images of a and b is

r2

|a|·|b| |a − b|.
Ptolemy’s Theorem Let A,B,C ,D be the vertices (in order) of a

quadrilateral inscribed in a circle. Then AD · BC + AB · CD = AC · BD.
8. Shoemaker’s Knife/Arbelos Let D be a region in the upper half-plane,

whose boundary consists of three semicircles S1, S2 and S3 that meet at
three points A, B and C on the x-axis. Then it is possible to fit a chain of
circles into D between S1 and S2, with the first circle touching S1, S2 and
S3, and with each successive circle touching S1, S2 and the previous and
following circles in the chain.



6 Hyperbolic Geometry:
the Poincaré Model

The book, Euclid’s Elements, which underlay most geometrical teaching in
Western Europe for over 2000 years, gave definitions of the basic terms in
geometry and rules (called postulates) for their use. Many of Euclid’s assump-
tions seem entirely uncontroversial, such as the assertions that through any
two distinct points in a plane or in space there passes a unique line, and that
a line can be extended indefinitely in both directions. On these foundations
Euclid gave rigorous proofs of theorems in elementary geometry, which could
be accepted as true because of the way they had been established.

Among the postulates for Euclidean geometry is one about parallel lines
which is equivalent to the following statement.

P m

l

The (Euclidean) Parallel Postulate Given any line � and a point P not
on �, there is a unique line m in the same plane as P and � which passes
through P and does not meet �.

Note that the parallel postulate makes two assertions: first that the parallel
line exists, and second that it is unique.

Historically it was felt that the Parallel Postulate as it stands is not obvious.
It implies that every line through P other than m eventually meets �, but plainly
this meeting place can be a long way away. How much confidence would you
place in an assumption about lines meeting somewhere in the Virgo star cluster,
some 100 million light years away?

Many Greek, Arab and later Western geometers had felt that the answer was
‘not much’, and had tried to delete the Euclidean Parallel Postulate from the

P

Q

0

S 2

great circle

list and instead derive it as a theorem. They all failed, and in the end the reason
was laid bare: the Parallel Postulate cannot be made into a theorem in this way
because there are internally consistent models of geometries which obey all
the Euclidean postulates except the Parallel Postulate.

But how do we obtain geometries other than Euclidean geometry with its
Parallel Postulate? One way to do this might be to insist that any two lines
intersect. The geometry to which this gives rise is called Elliptic Geometry.
One model of elliptic geometry is Spherical Geometry (for example, on the
surface of the Earth), and we shall investigate this model in Chapter 7.

343
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A ‘line’ PQ on the surface of a sphere (which we call S2), such as on the

S2
P

P ′Earth’s surface, can be defined to be the great circle (that is, the intersection
of the plane through the centre O of the sphere with the surface of the sphere)
through the two points P and Q. Any two distinct great circles meet in two
(diametrically opposite) points, such as P and P ′ shown in the margin, so any
two lines in spherical geometry meet in two points.

Generalizing this fact, in Elliptic Geometry we keep all the other postulates
that collectively describe Euclidean geometry, remove the Parallel Postulate,
and replace it with the following analogue.

The (Elliptic) Parallel Postulate Given any line � and a point P not on
�, all lines through P meet �. (That is, there are no lines through P that are
parallel to �.)

Another way to obtain a non-Euclidean geometry is to insist that the line
through P that does not meet � is not unique. We could again keep all the other
postulates that collectively describe Euclidean geometry, remove the Parallel
Postulate, and replace it with the following.

P
m

m

l

The (Hyperbolic) Parallel Postulate Given any line � and a point P not
on �, there are at least two lines m through P that do not meet �. (That is,
there are at least two lines through P that are parallel to �.)

The geometry whose postulates are those of Euclidean geometry but with In fact there are still other
geometries (and other
models of both hyperbolic
and elliptic geometries),
that lie beyond the scope
of this book.

this variant of the Euclidean parallel postulate is called Hyperbolic Geome-
try. The term non-Euclidean Geometry is often used to describe elliptic and
hyperbolic geometries together.

Non-Euclidean geometry was discovered independently in the late 1820s
by the distinguished Russian mathematician Nicolai Ivanovich Lobachevskii
(1792–1856), working at the University of Kazan, and the Hungarian János
Bolyai (1802–1860), an Army officer whose father, Farkas (or Wolfgang)
(1775–1856), was also a mathematician. Many of the same ideas were also
known to Carl Friedrich Gauss (1777–1855), but he did not publish them.
However, non-Euclidean geometry was not accepted until after these three
were dead, when the German Bernhard Riemann (1826–1866) and the Ital-
ian Eugenio Beltrami (1835–1900) published their ideas about geometry in the
late 1860s. Riemann gave the appropriate general setting, Beltrami a specific
account of non-Euclidean geometry. Only then did the new geometry become
rapidly accepted. Amongst other things, it spurred Felix Klein (1849–1925) to
propose his view of geometry.

Non-Euclidean geometry was one of the most momentous mathematical dis-
coveries of the l9th century. It had several revolutionary implications, because
it provided a physically plausible description of space that differed markedly
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from Euclid’s. It became possible to imagine that the universe is not Euclidean, Friedrich Wilhelm Bessel
(1784–1846) was a
German mathematician
and astronomer, after
whom Bessel functions
are named.

and in the l9th century some mathematicians and astronomers, such as Gauss
and his friend Bessel), entertained the idea quite seriously.

The theorems in non-Euclidean geometries often differ markedly from their
Euclidean equivalents. For example, in Euclidean geometry the angles of any
triangle sum to π ; in elliptic geometry the angle sum of any triangle turns out
to be strictly greater than π , whereas in hyperbolic geometry the angle sum of
any triangle turns out to be strictly less than π .

In this chapter we shall concentrate on a model of hyperbolic geometry due
to the French mathematician Henri Poincaré. In this model (which we will
generally call ‘hyperbolic geometry’ for simplicity), the space of points is
the interior of the unit disc D = {z : |z| < 1}. All figures in this geometry
will be drawn as they appear in this disc. In Section 6.1 we define hyperbolic
lines and hyperbolic angles. We then introduce hyperbolic reflections in these
lines, and obtain the group of hyperbolic transformations: a hyperbolic trans-
formation is a composite of hyperbolic reflections. In Section 6.2 we see that

You met Möbius
transformations in
Subsection 5.3.3.

every hyperbolic transformation can be described as either a Möbius transfor-
mation (of a certain form) or a Möbius transformation composed with complex
conjugation.

The properties of hyperbolic geometry include angle and length, and so we
can define hyperbolic circles, which we do in Section 6.3. We also obtain a
formula relating Euclidean lengths and hyperbolic lengths (at least in special
cases), and in Section 6.4 we give useful formulas for the study of hyper-
bolic triangles. In Section 6.5 we look at area in hyperbolic geometry, and at
hyperbolic tilings, or tessellations, such as the one displayed on the cover of
this book. Finally, in Section 6.6 we briefly discuss the half-plane model of
hyperbolic geometry.

6.1 Hyperbolic Geometry: the Disc Model

6.1.1 What is Hyperbolic Geometry?
The points or d-points (where ‘d’ stands for ‘disc’) in (Poincaré’s version of)

Note that we shall use the
alternative notations z and
(x , y) freely to describe
points in D , according to
convenience.

hyperbolic geometry consist of the points in the unit disc

D = {z : |z| < 1} =
{
(x , y) : x2 + y2 < 1

}
.

In sketches we usually illustrate D by drawing in its boundary

C = {z : |z| = 1} =
{
(x , y) : x2 + y2 = 1

}
,

but you should note that points on C are not points which belong to the
geometry.

A crucial feature of this geometry is the concept of a d-line, or a line in
hyperbolic geometry.
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Definition A d-line is that part of a (Euclidean) generalized circle which A generalized circle is
either a circle or a
(Euclidean) line; see
Subsection 5.2.3.

meets C at right angles and which lies in D .

Every d-line is part of a generalized (Euclidean) circle which meets the
boundary circle in two points. We call these two points the boundary points
of the d-line. Notice that the boundary points of a d-line are not d-points – for
they are not points in D .

The sketch below illustrates various d-lines. Some of these d-lines are arcs
of (Euclidean) circles; some are (Euclidean) line segments, in fact, diameters

You may find the
following figure a helpful
reminder for the shapes of
d-lines:

of D .

boundary points

a diameter

In fact, any d-line that is part of a Euclidean line must be a diameter of D ,
since otherwise it cannot meet C at right angles.

O
l′

l P

O

Q

l P

Conversely, any d-line � that is an arc of a Euclidean circle cannot pass
through the origin. For if � meets C at a point P , then the tangent �′ to � at P
is a radius of C and so passes through the origin O , which is the centre of C .
But then �′ is a line touching the Euclidean circle � at P , and because circles
lie entirely on one side of their tangents, �′ cannot meet � again. Thus � cannot
pass through O .

Indeed, if � is a d-line that is an arc of a Euclidean circle, then there is a
diameter of D that does not meet it. For, if � meets C at the points P and
Q, then the tangents to � at P and Q are radii of C and so pass through
the origin. They divide the disc D into four regions, one of which con-
tains �. Clearly, a diameter can be drawn that lies entirely in two of the other
regions – in fact, you can see that there are infinitely many such diameters.
Each of these divides D into two regions, one which contains � and one which
does not.

Notice also that if a d-line � is part of a Euclidean circle meeting C at points
P and Q, then its centre is the point R where the tangents to C at P and Q
meet. So the point R lies outside the circle C .
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Q

R

P

l

Sometimes it is clear from a (reasonably accurate) sketch whether or not
part of a generalized circle is a d-line. For example, consider

� =
{
(x , y) : x2 + y2 − 4y = 0

}
∩ D .

Since
(0, 2)

l

x2 + y2 − 4y = 0 ⇔ x2 + (y − 2)2 = 4,

we can sketch �, and deduce that it is not a d-line since it clearly does not meet
C right angles. (The tangents to � at its boundary points on C do not pass
through the origin.)

Problem 1 Sketch the following parts of generalized circles, and
determine which of them are d-lines.

�1 = {(x , y) : y = 3x} ∩ D

�2 = {(x , y) : 3x + y = 1} ∩ D

�3 =
{
(x , y) : x2 + y2 + 2x + 2y + 1 = 0

}
∩ D

Now, it is rather easy to be mislead by a sketch into believing that something
is true in general whereas it is not! So, we now give an analytic criterion for
identifying d-lines.

P

R

Q

1

(– 1
2 – 1

2f, g)

0 l

Lemma 1 The equation of a d-line � is of one of the following forms:

ax + by = 0, where a and b are not both zero;

x2 + y2 + fx + gy + 1 = 0, where f 2 + g2 > 4.

Proof If a d-line � is (part of) a Euclidean line through the origin, then cer-
tainly its equation is of the form ax + by = 0, where a and b are not both
zero.

The other possibility is that the d-line � is (part of) a Euclidean circle C that
intersects the boundary C of D at right angles. So, let C have equation

x2 + y2 + fx + gy + h = 0, for some real numbers f , g and h.

First, it follows from the Orthogonality Test that any circle with this equation Subsection 1.1.2,
Theorem 3intersects the unit circle C with equation

x2 + y2 − 1 = 0
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if and only if

f · 0 + g · 0 = 2 · (h + (−1));

that is, if and only if h = 1. So the equation of C must be of the form

x2 + y2 + fx + gy + 1 = 0, for some f and g.

Next, the centre
(
− 1

2 f , − 1
2 g
)

of C must be outside C , so that
(
− 1

2 f
)2 +(

− 1
2 g
)2

> 1, which we can equivalently write in the form f 2 + g2 > 4.

Finally, we need the circle C to meet D . This happens if and only if

1 + radius of C > distance of the centre of C from O;

since h = 1 we can write this requirement in the form

1 +
√

1

4
f 2 + 1

4
g2 − 1 >

√
1

4
f 2 + 1

4
g2. (1)

Since we already know that
√

1
4 f 2 + 1

4 g2 > 1, the inequality (1) follows at
once if we can prove that

Here we are writing t in
place of 1

4 f 2 + 1
4 g2.

1 + √
t − 1 >

√
t , whenever t > 1. (2)

So, let F(t) = 1 + √
t − 1 − √

t . Then

F(1) = 1 + √
0 − √

1

= 0,

and

F ′(t) = 1

2
√

t − 1
− 1

2
√

t

=
√

t − √
t − 1

2
√

t − 1
√

t
> 0.

It follows at once that F(t) > F(1) = 0 for t > 1, and so that the inequality
(2) holds, as required. �

Thus, for example, let C be the circle in R
2 with equation In fact, C is the circle with

centre
(
− 3

2 , 1
)

and radius√(
− 3

2

)2+(−1)2− 1 = 3
2 .

x2 + y2 + 3x − 2y + 1 = 0,

and let � be the part of C that lies in D . Then � is a d-line since its equation is
of the form required by Lemma 1, with f = 3 and g = −2, and f 2 + g2 =
32 + (−2)2 = 13 > 4.

Note the following useful result that we obtain from putting a = − 1
2 f ,

b = − 1
2 g into Lemma 1.

Corollary 1 Let α = a + ib be a point outside the unit circle C . Then the
d-line that is part of a Euclidean circle with centre α has equation

x2 + y2 − 2ax − 2by + 1 = 0.
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We can now turn to the question of parallelism, the notion that gave rise to
the discovery of non-Euclidean geometries in the first place.

Definition Two d-lines that do not meet in D are: Recall that the boundary
C is not part of the unit
disc D .

parallel if the generalized Euclidean circles of which they are parts meet at
a point on C ;
ultra-parallel if the generalized Euclidean circles of which they are parts
do not meet on C .

Remarks

1. It follows that given any d-line � and any point P in D which is not on �,
there exist exactly two d-lines through P which are parallel to �, as the next
figure shows. A rigorous proof that such d-lines exist will be found below
(Problem 5).

parallels
to l P

l

2. Similarly, corresponding to any given d-line � and any point P in D which
is not on �, there exist infinitely many d-lines through P which are ultra-
parallel to �.

ultra-parallels
to l

P

l

Problem 2 The following sets represent d-lines:

�1 = {(x , y) : y = x} ∩ D ;

�2 = {
(x , y) : x2 + y2 − 4x + 1 = 0

} ∩ D ;

�3 = {
(x , y) : x2 + y2 − 2

√
2x + 1 = 0

} ∩ D ;

�4 = {
(x , y) : x2 + y2 + 2x + 2y + 1 = 0

} ∩ D .

Sketch them, and decide from your figure which of the d-lines intersect
each other, which are parallel, and which are ultra-parallel.
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Problem 3 Sketch three d-lines �1, �2 and �3 with the property that It follows that the relation
‘is parallel to’ is not an
equivalence relation in
hyperbolic geometry.

�1 is parallel to �2, and �2 is parallel to �3, but �1 is not parallel to �3.

In Euclidean geometry and in inversive geometry, reflection and inversion
played important roles; this is also the case in hyperbolic geometry. Obviously,
reflection of the unit disc D in a diameter maps D onto itself; in fact, so does
inversion of D in a d-line that does not pass through the origin.

B C

AlTheorem 1 Let � be a d-line that is part of a Euclidean circle C . Then
inversion in C maps C onto C , and D onto D .

Proof Let C meet C at the points A and B.
Under inversion in C , A and B map to themselves. Since inversion preserves Subsection 5.1.3,

Theorem 5angles, the circle C maps onto some circle that meets C at right angles at the
points A and B. There is only one such circle, C itself; it follows that inversion Inversion in C maps the

shorter arc AB of C onto
the longer arc AB of C ,
and vice versa.

in C maps C onto itself.
Hence the inside D of C must map either to the inside or to the outside of

the image of C , namely C itself. But the points of � map to themselves under
this inversion, so the image of D must be D itself. � Inversion in C maps the

region bounded by � and
the shorter arc AB of C
onto the region bounded
by � and the longer arc AB
of C , and vice versa.

We now know that inversion in a d-line maps the disc D onto itself. We
also know that the composition of an inversion with itself is the identity map.
Because the analogous properties are true of Euclidean reflections, we make
the following definition.

Definition A hyperbolic reflection in a d-line � is the restriction to D of
the inversion in the generalized circle of which � is part. Recall that we use the

term ‘inversion’ to mean
either reflection in a line
or inversion in a circle
(see Subsection 5.1.1,
‘Convention’).

Remarks

1. If the d-line � is part of a Euclidean circle C meeting the boundary circle

P

R

Q C

l

C at points P and Q, then the point R where the tangents to C at P and Q
meet is the centre of the inversion.

2. Notice that Theorem 1 may be reformulated as follows: hyperbolic reflec-
tion in any d-line maps the unit disc D onto itself.

Hyperbolic reflections are the building blocks of transformations in hyper-
bolic geometry. Composites of a finite number of hyperbolic reflections are
called hyperbolic transformations. The set of all such transformations under
the operation of composition of functions forms a group, called the hyperbolic A proof of the fact that

these form a group will be
found as an Exercise in
Section 6.7; it consists
simply of checking the
axioms for a group.

group, GD .

Definition Hyperbolic geometry consists of the unit disc, D , together
with the group GD of hyperbolic transformations.
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Remarks

1. Notice, in particular, that the identity mapping of D to itself belongs to GD ,
since it may be expressed as the finite composition r ◦ r−1 for any hyper-
bolic reflection r . Also, if t1 ◦ t2 ◦ . . . ◦ tn is any hyperbolic transformation,
then its inverse is another hyperbolic transformation t−1

n ◦ . . . ◦ t−1
2 ◦ t−1

1 .
2. Let the generalized circle C of which a d-line � is part meet the boundary

circle C in points P and Q, and let r be the hyperbolic reflection in �. Then
although r has domain the unit disc D , and P , Q /∈ D , we sometimes find it
convenient to call P and Q the boundary points of � and to write the images
of P and Q under inversion in C (of which r is a restriction) as r(P) and
r(Q). The same convention is extended to the case where r is a hyperbolic
transformation.

Next, we define the idea of angle in hyperbolic geometry.

A

Definition The (hyperbolic) angle between two curves (for example,
two d-lines) through a given point A in D is the Euclidean angle between
their (Euclidean) tangents at A.

Now, Euclidean reflections and inversions both preserve the magnitudes of
angles. It follows that hyperbolic transformations also preserve magnitudes of
angles. Also, Euclidean reflections and inversions map generalized circles onto
generalized circles. Combining this with the angle-preservation property, we
deduce that hyperbolic reflections and inversions map d-lines onto d-lines −
and so compositions of a finite number of such transformations also have this
property. We summarize these facts in the following result.

Theorem 2 Hyperbolic transformations map d-lines onto d-lines, and
preserve the magnitudes of angles.

In the remainder of Chapter 6 we study the properties of various figures
under hyperbolic transformations, and obtain surprising (and sometimes
beautiful) results!

6.1.2 Existence of d-lines
Through a typical point A of D there is at least one d-line: namely, the diameter
through the origin O and A. But through the origin there are infinitely many
d-lines: the diameters of D . Is there more than one d-line through an arbitrary
point A of D?

The first step towards answering this question is the following useful result,
which shows that there is a hyperbolic transformation which maps A to O .

Lemma 2 Origin Lemma
Let A be a point of D other than the origin O . Then there exists a d-line �

such that hyperbolic reflection in � maps A to O .
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Proof We seek a d-line � which is part of a Euclidean circle with centre R,
say, such that inversion in this circle maps A to O . Suppose that this circle
meets C at the point P .

The condition that this inversion maps A to O is

RO · RA = RP2, (3)

since RP is a radius of the circle we seek.
The condition that part of this circle is a d-line is that triangle �RPO is

P
R

A

O

l

right-angled at P . By Pythagoras’ Theorem, this implies that

RP2 + PO2 = RO2,

which, since OP = 1, is equivalent to

RP2 = RO2 − 1. (4)

Eliminating the radius R P2 from equations (3) and (4), we deduce that

RO · RA = RO2 − 1.

This is equivalent to
RO2 − RO · RA = 1

or
RO · (RO − RA) = 1.

But RO − RA = AO, so we deduce that

RO · AO = 1

which is equivalent to
OA · OR = 1.

This tells us that the circle we seek has for its centre the point R which is
found by inverting the given point A in the boundary circle C – an unexpectedly
memorable result! �

The great value of the Origin Lemma is that it enables us to study any prob-
lem in hyperbolic geometry by mapping a suitably chosen point to the origin,
thereby yielding a (frequently) simpler picture than before − yet without losing
any generality. We shall use this method often in this chapter.

We can, for example, use this approach to answer the question of how many
d-lines pass through a given point of D .

Theorem 3 Let A be a point of D . Then there exist infinitely many d-lines
through A.

Proof Let A be the origin. As we said above, each of the infinitely many
diameters of D passes through the origin, and each of these diameters is a
d-line.

If A is not the origin, then by the Origin Lemma, there is a hyperbolic trans-
formation, r say, that maps A to the origin O , through which pass infinitely
many d-lines – all the diameters of D .
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A

O r O

A

r–1

Since r−1 is also a hyperbolic transformation, it follows that the images of For, hyperbolic
transformations map
d-lines to d-lines, by
Theorem 2.

these diameters are also d-lines – and they pass through A. �

An important result in Euclidean geometry is that there is exactly one line
through any two given points. There is an analogous result in hyperbolic
geometry.

Theorem 4 Let A and B be any two distinct points of D . Then there exists
a unique d-line � through A and B.

Proof (Existence) By the Origin Lemma, there is a hyperbolic transformation
r that maps A to the origin O; let the image of B under r be the point B ′ of D .

A

B r
O

l′

l

B′
B

r –1

A

Then there is a unique d-line �′ (a diameter of D) that passes through O and
B ′. Since r−1 is also a hyperbolic transformation, it follows that � = r−1(�′)
is also a d-line (by Theorem 2) – and it passes through A and B.

(Uniqueness) Suppose that �1 is another d-line through A and B. Then r(�1)

is a d-line that passes through O and B ′. It follows that r(�1) = �′, so �1 must
be the same as r−1(�′) = �. This proves the uniqueness of the d-line through
A and B. �

Problem 4 Let A1 and A2 be any two points of D . Use the Origin
Lemma to prove that there is a hyperbolic transformation that maps A1

to A2.

In fact, we can establish a result stronger than that of Problem 4: we can
determine a hyperbolic transformation which maps A1 to A2 and maps any
given d-line through A1 to any given d-line through A2.

Theorem 5 Let A1 and A2 be any two points of D , and let �1 and �2

be d-lines through A1 and A2, respectively. Then there is a hyperbolic
transformation which maps A1 to A2 and �1 to �2.
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Proof By the Origin Lemma, there are hyperbolic transformations r1 and r2

which map A1 and A2, respectively, to the origin O . Let the images of �1

and �2 under r1 and r2 be the d-lines �
′
1 and �

′
2, respectively. Let r3 be the

hyperbolic transformation which rotates D about O so that �
′
1 maps onto �

′
2. We shall verify in

Subsection 6.2.1 that any
rotation of D about O is a
hyperbolic transformation.D D

D D

l1 r1 r3 r2

r2
–1

A1

r

O Ol′1

l′2 l2

A2

Now let r be the hyperbolic transformation given by

r = r−1
2 ◦ r3 ◦ r1.

Then r maps A1 to A2 and �1 to �2, as required. �

Remark

We can choose the rotation r3 to map the two parts of �
′
1 − O onto the two parts

of �
′
2 − O in whichever way we please. Hence we can arrange for r to map

the two parts of �1 − A1 onto the two parts of �2 − A2 in whichever way we
please.

In the following example we show that parallel d-lines map to parallel
d-lines under a hyperbolic transformation.

Example 1 Let A, B and C be points of C such that the d-lines AB and BC Note the convenient use of
the label AB for a d-line
even though A and B do
not lie on that d-line (they
lie on C ). There is no
ambiguity since there is
only one circle through A
and B with centre the
point where the tangents
to C at A and B meet.
Analogously, we shall say
that a d-line passes
through its boundary
points.

are parallel. Let r be a hyperbolic transformation under which the images of
AB and BC are the d-lines A′ B ′ and B ′C ′, respectively, where A′, B ′ and C ′
are points of C . Show that A′B ′ and B ′C ′ are parallel d-lines.

Solution First, we show that A′B ′ and B ′C ′ do not meet in D . If they do,
let them meet at the point P ′, say. Then the point P ′ corresponds to a point
P , say, on the d-lines AB and BC ; that is, r−1(P ′) = P . But there is no such
point, since AB and BC are parallel; it follows that A′ B ′ and B ′C ′ do not meet
in D .

Next, the generalized circles of which A′B ′ and B ′C ′ are parts meet at a
point B ′ on C . So we conclude that the images of A′B ′ and B ′C ′ are parallel
d-lines.

Problem 5 Show that, given a d-line � and a point P not on �, there
are exactly two d-lines through P which are parallel to �.
Hint: Use the Origin Lemma.
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6.1.3 Inversion Preserves Inverse Points
Earlier, we proved the following result. Subsection 5.5.2,

Corollary 2
Let A and B be inverse points with respect to a generalized circle C , and let t be
an inversive transformation. Then t(A) and t(B) are inverse points with respect
to the generalized circle t(C).

We now consider a special case of this result, which we can interpret in
terms of hyperbolic geometry.

We take C to be a generalized circle of which part (a d-line �) lies inside the See the diagram below.

unit disc D . Let A be a point in D ; then its inverse with respect to �, B say, is
also in D . We take t to be an inversion for which the generalized circle of inver- Every inversion is an

inversive transformation.sion C* is such that part (a d-line �*) lies inside D . Then, by the above result,
A′ = t(A) and B ′ = t(B) are inverse points in D with respect to the general-
ized circle C ′ = t(C), part of which lies in D , namely the d-line �′ = t(�).

We now interpret this special case in terms of hyperbolic geometry.

Theorem 6 Let A, B ∈ D be inverse points with respect to the d-line �,
and let A′, B ′ and �′ be the images of A, B and � under inversion (hyperbolic
reflection) in another d-line �*. Then A′ and B ′ are inverse points with
respect to inversion in �′.

A

A′
B′

l′

l*

B l

Remark

Note the convenient use of the term ‘inversion’ to mean ‘hyperbolic reflection’.
This is consistent with the use of this term in Chapter 5.

We shall make use of this theorem in Section 6.5, when we study the design
on the cover of the book.

We finish this section with an illustration of the use of Theorem 6.

Example 2 Let � be a d-line and P be a point in D . Let Q be the image of P
l

P

C

Q

S
l´

under inversion in the circle C of which � is part. Let �′ be the d-line through
P and Q, meeting � at the point S.

(a) Show that inversion in C maps �′ to itself.
(b) Deduce that the d-lines � and �′ meet at right angles.
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(c) Use Theorems 5 and 6 to show that there is a hyperbolic transformation
mapping the figure to one in which the d-line � is the x-axis and P and Q
are complex conjugates.

Solution

(a) Inversion in C exchanges P and Q. So it maps �′, the unique d-line
through P and Q, to itself.

(b) Inversion in C exchanges the angles �′ makes with �, and maps angles to
angles of equal magnitude. So the angles must be equal, and since their
sum is π , each must be π/2. Thus � and �′ meet at right angles.

(c) We use Theorem 5 to map the point S to O and the d-line � to the x-axis.
This makes the d-line �′ part of the y-axis. By Theorem 6, P and Q are
mapped to points that are inverse with respect to the x-axis, and so are
complex conjugates of each other.

6.2 Hyperbolic Transformations

6.2.1 Hyperbolic Transformations and Möbius Transformations
Each element of the group GD of hyperbolic transformations is the composite
of a finite number of reflections in d-lines. In this subsection we shall estab-
lish an explicit formula for a hyperbolic transformation in terms of Möbius Subsection 5.3.3

transformations.
We start by considering reflection in a d-line � which is part of a circle C

with centre the point R and radius r . Suppose that the d-line has boundary
points P and Q. We let the coordinates of the point R be (a, b), and write the
complex number a + ib as α, so that |α| > 1 (which follows because � is a
d-line). We shall need the following observation: because the d-line � is part
of the circle with centre α and radius r , the triangle �RPO is right angled at We shall call this d-line

the ‘d-line obtained
from α’.

P . So, by Pythagoras’ Theorem, RP2 + PO2 = RO2. This implies that

r2 + 1 = a2 + b2.

Using the fact that a2 + b2 = αᾱ, we may rewrite this equation as

O

Q

C

R

P
r

(a, b)
1

lr2 − αᾱ = −1. (1)

We now use equation (1), and the fact that inversion t in the circle C has
the form

t(z) = r2

z − α
+ α (z ∈ C − {α}),

to obtain the form of the hyperbolic reflection ρ in the d-line �.

This follows from
Subsection 5.2.1,
Theorem 3.
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Since � is part of C , ρ is given by

ρ(z) = r2

z − α
+ α

= r2 + αz̄ − αᾱ

z̄ − ᾱ

= αz̄ − 1

z̄ − ᾱ
(z ∈ D),

by equation (1). Thus we have proved the following lemma.

Lemma 1 The hyperbolic reflection ρ in the d-line � that is part of a
Euclidean circle with centre α is given by the hyperbolic transformation

Recall that |α| > 1.ρ(z) = αz̄ − 1

z̄ − ᾱ
(z ∈ D).

Notice that we may write

ρ(z) = (M ◦ B)(z), for z ∈ D ,

where M(z) = αz−1
z−ᾱ

is a Möbius transformation, and B(z) = z̄ is complex
conjugation. You know from Chapter 5 that Möbius transformations are impor- Subsection 5.3.3,

Theorem 5tant in inversive geometry: they preserve the magnitudes of angles, and they
map generalized circles to generalized circles. Since angles and generalized
circles are important in hyperbolic geometry, it is not surprising that particular
sorts of Möbius transformations turn up here too.

Problem 1 Find the point which has image 0 under reflection in the
d-line obtained from α. Hence obtain a second proof of the Origin
Lemma.

Reflection in a d-line which is a diameter of D is simply (Euclidean)
reflection in that line. Recall that Subsection 5.2.1

t1(z) = z̄

is reflection in the x-axis, and

t2(z) = αz,

where α = cos θ + i sin θ with θ = Arg α, is rotation about the origin through
the angle θ . It follows that the composite

For t−1
2 (z) = ᾱz

(
t2 ◦ t1 ◦ t−1

2

)
(z) = α(αz̄) = α2 z̄

is reflection in the line with equation y = x tan θ .
Thus hyperbolic reflection σ in the diameter on which y = x tan θ is

given by
σ(z) = α2 z̄ (z ∈ D),

where α = cos θ + i sin θ .
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Example 1 Find the composite σ2 ◦ σ1 of the hyperbolic reflections

σ1(z) = α2 z̄ and σ2(z) = β2 z̄,

where α = cos θ1 + i sin θ1 and β = cos θ2 + i sin θ2, and interpret the
transformation σ2 ◦ σ1 geometrically.

Solution We have

(σ2 ◦ σ1)(z) = β2(α2 z̄) = β2ᾱ2z,

which is a Euclidean rotation about the origin of D .

The composite of reflections ρ and σ in two d-lines that are obtained from
α and β, respectively, is found as follows. By Lemma 1, we have

Recall that M(z) = αz−1
z−α

and B(z) = z̄.
ρ(z) = αz̄ − 1

z̄ − ᾱ
= (M ◦ B)(z)

and

σ(z) = β z̄ − 1

z̄ − β̄
= (M ′ ◦ B)(z),

where M ′(z) = βz−1
z−β̄

is a Möbius transformation. So

(σ ◦ ρ)(z) = (M ′ ◦ B ◦ M ◦ B)(z).

But

(B ◦ M)(z) = αz − 1

z̄ − α
= (M̃ ◦ B)(z),

where M̃(z) is the Möbius transformation M̃(z) = ᾱz−1
z−α

. So

(σ ◦ ρ)(z) = (M ′ ◦ B ◦ M ◦ B)(z)

= (M ′ ◦ M̃ ◦ B ◦ B)(z) = (M ′ ◦ M̃)(z),

because (B ◦ B)(z) = z.

Now matrices associated with M ′ and M̃ are

(
β −1
1 −β̄

)
and

(
ᾱ −1
1 −α

)
,

respectively. Hence a matrix associated with the composite M ′ ◦ M̃ is Here we are using the
strategy in Subsection
5.3.5 for finding
composites.

(
β −1
1 −β̄

)(
ᾱ −1
1 −α

)
=
(

ᾱβ − 1 α − β

ᾱ − β̄ αβ̄ − 1

)
,

so that the composite σ ◦ρ of the hyperbolic reflections σ and ρ is of the form

(σ ◦ ρ)(z) = az + b

b̄z + ā
,

where a = ᾱβ − 1, b = α − β.
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For ease of reference, we record this last result as a theorem.

Theorem 1 The composite of the hyperbolic reflections

ρ(z) = αz̄ − 1

z̄ − ᾱ
and σ(z) = β z̄ − 1

z̄ − β̄
(z ∈ D)

is the hyperbolic transformation

(σ ◦ ρ)(z) = (ᾱβ − 1)z + α − β

(ᾱ − β̄)z + αβ̄ − 1
(z ∈ D).

Example 2 Show that the hyperbolic reflection ρ is its own inverse, by
showing that ρ(ρ(z)) = z.

Solution From Theorem 1, we know that the composite of the reflection ρ

with itself is given by

αᾱ �= 1 since |α| > 1.(ρ ◦ ρ)(z) = (ᾱα − 1)z + α − α

(ᾱ − ᾱ)z + αᾱ − 1
= (ᾱα − 1)z

αᾱ − 1
= z,

as required.

Example 3 Show that the composite M2 ◦ M1 of the Möbius transformations

M1(z) = az + b

b̄z + ā
and M2(z) = cz + d

d̄z + c̄
is a Möbius transformation of the same form. That is, of the form ez+ f

f̄ z+ē
,

for some e, f ∈ C.
Solution By the strategy for finding composites of Möbius transformations,
a matrix associated with the composite M2 ◦ M1 is the matrix product(

c d
d̄ c̄

)(
a b
b̄ ā

)
=
(

ca + db̄ cb + dā
d̄a + c̄b̄ d̄b + c̄ā

)
.

This product is of the required form, because

(ca + db̄) = d̄b + c̄ā and (cb + dā) = d̄a + c̄b̄.

It follows from this example that every composite of an even number of
hyperbolic reflections in d-lines can be represented as a Möbius transforma-
tion, restricted to D , of the form

M(z) = az + b

b̄z + ā
, z ∈ D .

Similarly, it can be shown that every composite of an odd number of reflections
can be represented as a Möbius transformation of this form composed with We omit the details of a

proof of this.complex conjugation.
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It follows from the above discussion that any composite of a finite number of
hyperbolic reflections, that is, any hyperbolic transformation, can be expressed
in one of the forms

z �→ M(z) or z �→ M(z̄) (z ∈ D),

where M is the Möbius transformation

M(z) = az + b

b̄z + ā
, z ∈ D .

Moreover, since M(0) = b/ā and the image of 0 under a hyperbolic transfor-
mation must be in D , we require that the above Möbius transformation must
be such that

|b| < |a|.
The remaining question is: ‘Do all such Möbius transformations represent
hyperbolic transformations?’ In fact the answer is YES, as the following
theorem shows.

Theorem 2 The restriction to D of every Möbius transformation of
the form M(z) = az+b

b̄z+ā
with |b| < |a| is a composite of two hyperbolic

reflections, and is therefore a hyperbolic transformation. When the context is clear,
we often omit to say that
the Möbius transformation
we are considering is
restricted to D .

The proof is a little devious (and no less elegant for that). We first prove it
for the special case when the Möbius transformation maps the origin to itself.
Using this special case, we then prove the general case.

Proof
Case 1 The Möbius transformation M(z) = az+b

b̄z+ā
maps the origin to itself.

We shall show that M is the composite of two reflections.
The condition M(0) = 0 implies that b = 0, so that the Möbius transfor-

mation is simply M(z) = a
ā z — a rotation about the origin.

Now, if we let a = reiθ , then
a

ā
= e2iθ .

So, if we let σ1 and σ2 be the reflections in diameters of D given by Recall that reflection in
the diameter y = x tan θ

of D is a mapping of the
form z �→ α2 z̄, where
α = eiθ = cos θ + i sin θ

and z ∈ D .

σ1(z) = z̄, z ∈ D , and σ2(z) = e2iθ z̄, z ∈ D ,

then
σ2 ◦ σ1(z) = e2iθ (z̄) = e2iθ z,

so that M = σ2 ◦ σ1, as required.

Case 2 The Möbius transformation M(z) = az+b
b̄z+ā

does not map the origin
to itself.

We shall again show that M is the composite of two hyperbolic reflections.
Consider a hyperbolic transformation ρ given by ρ(z) = (M ′ ◦ B)(z), where

M ′(z) = αz−1
z−ᾱ

is a Möbius transformation, and B(z) = z̄ is complex conjuga-
tion. We shall choose α so as to make ρ and M ◦ρ hyperbolic reflections. This
will show that M = (M ◦ρ)◦ρ−1 is a composite of two hyperbolic reflections.
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Since M and M ′ are associated with the matrices(
a b
b̄ ā

)
and

(
α −1
1 −ᾱ

)
,

respectively, the composite M ◦ M ′ is associated with the matrix(
a b
b̄ ā

)(
α −1
1 −ᾱ

)
=
(

αa + b −(ᾱb + a)

αb̄ + ā −b̄ − āᾱ

)
,

so we deduce that

(M ◦ M ′ ◦ B)(z) = (aα + b)z̄ − (ᾱb + a)

(αb̄ + ā)z̄ − b̄ − āᾱ
.

Now since M(0) �= 0, it follows that b �= 0. Hence we may choose α =
− (a/b), so that

ᾱb + a = −(a/b)b + a = 0.

Next, since |b| < |a|, we deduce that |α| = |a|
|b| > 1, and so the transformation For, ρ is of the form

required by Lemma 1.ρ = M ′ ◦ B is a hyperbolic reflection as required. Moreover,

(M ◦ ρ)(z) = (M ◦ M ′ ◦ B)(z) = (aα + b)z̄

−b̄ − āᾱ

is of the form − γ
γ̄

z̄, where γ = aα + b, and so the transformation M ◦ ρ is
a hyperbolic reflection. It follows that the transformation M is a composite of
two hyperbolic reflections, M ◦ ρ and ρ−1. �

A similar argument shows that the more general transformation

z �→ az̄ + b

b̄z̄ + ā

is a composite of three reflections. For it is the composite (M ◦ B)(z) of the
Möbius transformation

M(z) = az + b

b̄z + ā

with complex conjugation B(z) = z̄. Now, the Möbius transformation M is a
composite of two reflections, and complex conjugation B is reflection in the
x-axis. So M ◦ B is a composite of three reflections, as claimed.

Putting together all the above results, we have shown the following.

Theorem 3 Every hyperbolic transformation can be written as a compos-
ite of at most three hyperbolic reflections.

Example 4 Show that the composite σ2 ◦ σ1 of the two reflections in lines
through the origin given by σ1(z) = α2 z̄ and σ2(z) = β2 z̄ can be written in
the form M(z) = az+b

b̄z+ā
.
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Solution From Example 1, we know that

(σ2 ◦ σ1)(z) = β2ᾱ2z.

Since |α| = 1 and |β| = 1,

α−1 = ᾱ and β−1 = β̄,

and so
(σ2 ◦ σ1)(z) = M(z),

where

M(z) = az + b

b̄z + ā
with a = βᾱ and b = 0.

Problem 2 Let M(z) = az+b
b̄z+ā

be a hyperbolic transformation mapping
the origin to itself. Show that b = 0.

Hyperbolic Rotations and Translations
It follows from the Angle Theorem of inversive geometry that a single hyper- Subsection 5.1.3,

Theorem 5bolic reflection reverses the orientation of angles between d-lines. So a
composite of two such transformations leaves the orientation unchanged, while
a composite of three reverses it again. We call a hyperbolic transformation that
leaves orientation unchanged a direct hyperbolic transformation, and one that
reverses orientation indirect. So, by Theorem 3 above, we deduce that

Theorem 1 gives the form
of a composite of two
reflections.

a direct hyperbolic transformation can be written as a
composite of at most two hyperbolic reflections

and

an indirect hyperbolic transformation can be written as a
composite of at most three hyperbolic reflections.

It is possible to say more about the direct transformations. Let r1 and r2 be
reflections in the d-lines �1 and �2, respectively. A

l1

l2

First, suppose that �1 and �2 intersect at some point A. (Certainly they
cannot intersect at more than one point if they are distinct d-lines, since by
Theorem 4 of Subsection 6.1.2 there is a unique d-line through any two points
of D .) Then the composition r2 ◦ r1 leaves the point A fixed, moves the points
of D ‘around A’, and does not alter the orientation of D . Such a hyperbolic
transformation is called a (hyperbolic) rotation, and has exactly one fixed
point in D .

Next, suppose that the d-lines �1 and �2 are parallel, that is, the generalized

P

l1
l2

circles of which they are parts do not meet in D but do meet at some point P
on C . Then the composite r2 ◦ r1 moves the points of D ‘around P’, and does
not alter the orientation of D ; it has no fixed point in D , but it leaves all the
parallel lines with P as their common boundary point as parallel lines ending
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at P . We can regard this as the limiting case of a rotation (about a point of C ),
and so call it a (hyperbolic) limit rotation.

Finally, suppose that the d-lines �1 and �2 are ultra-parallel, that is, the

l1

l2

generalized circles of which they are parts do not meet in D or on C . Then the
composite r2 ◦ r1 moves all the points of D in one general direction, and does
not alter the orientation of D ; but no point of D (or C ) remains fixed. Such a
hyperbolic transformation is called a (hyperbolic) translation.

The analogy between Euclidean geometry and hyperbolic geometry is not
exact, however. For instance, the composite of two Euclidean translations is
independent of the order in which they are applied, whereas the composite of
two hyperbolic translations may not be independent of the order in which they
are applied.

6.2.2 The Canonical Form of a Hyperbolic Transformation
In this subsection we show how to write a hyperbolic transformation in the
most suitable form for applications. We shall do this only for a direct transfor-
mation of the form M(z) = az+b

b̄z+ā
, where |b| < |a|. Our result is the following

theorem.

Theorem 4 A direct hyperbolic transformation M can be written in the
form

M(z) = K
z − m

1 − m̄z
,

where K and m are complex numbers with |K | = 1 and m ∈ D .

Remark

We call this form the canonical form of a direct hyperbolic transformation. It
has the great advantage of showing that the transformation M maps the point
m to the origin.

Proof We know from the previous subsection that a direct hyperbolic
transformation can always be written in the form

See the discussion before
Theorem 2.

M(z) = az + b

b̄z + ā
, with |b| < |a|.

Indeed, on dividing the expression for M(z) above and below by ā, we can
write it as

M(z) =
a
ā z + b

ā

1 − −b̄
ā z

= a

ā

(
z − −b

a

1 − −b̄
ā z

)
,

which is of the required form, with K = a/ā and m = −b/a. Since |a| = |ā|,
it follows that |K | = 1, as required. Since |b| < |a|, it follows that |m| < 1, as
required. �
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We can now find the form of every direct hyperbolic transformation that
maps a point m of D to the origin. We know from Theorem 4 that it must be
of the form

M(z) = K
z − m′

1 − m′z
, where |K | = 1 and |m′| < 1.

The condition that M(m) = 0 implies that m = m′, so we deduce that in fact
every direct hyperbolic transformation mapping the point m to the origin is of
the form

M(z) = K
z − m

1 − mz
.

The direct hyperbolic transformations that map the origin to itself are there-
fore those for which m = 0, so they are of the form M(z) = K z with |K | = 1.
These are (Euclidean) rotations of the disc D about the origin through an angle
θ , where K = cos θ + i sin θ . In general, if all that is required is just one direct
hyperbolic transformation sending a given point m to the origin, then we may
set K = 1, and use the transformation M(z) = z−m

1−mz . K = 1 is the most
convenient value to
choose.

Example 5

(a) Find the general form of a direct hyperbolic transformation that maps the
point 1

2 i to the origin.
(b) Find one direct hyperbolic transformation that maps 3

4 to the origin.

Solution

(a) The general form is

M(z) = K
z − 1

2 i

1 −
(
− 1

2 i
)

z
= K

2z − i

i z + 2
, where |K | = 1.

(b) Taking K = 1 in the formula of Theorem 4, as suggested above, one such
transformation is

M(z) = z − 3
4

1 − 3
4 z

.

Problem 3 Determine all the direct hyperbolic transformations that
map the origin to the origin and the line y = x/

√
3 to the line y = √

3x .

Problem 4 For each of the following points, determine all the direct
hyperbolic transformations that map it to the origin.
(a) 1

4 i (b) − 1
3 + 2

3 i
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The general form of the inverse of a direct hyperbolic transformation M
mapping the point m to the origin is a direct hyperbolic transformation sending
the origin to m. To find this inverse explicitly, we write

M(z) = K
z − m

1 − mz
(by Theorem 4)

= K z − K m

−mz + 1
,

and make use of the fact that M is the restriction to D of a Möbius By ‘restriction to D’ we
mean that we only
consider those z in D .

transformation to write

M−1(z) = z + K m

mz + K
, (2)

where |K | = 1.
This form for M−1

follows immediately from
Subsection 5.3.6,
Theorem 7.Problem 5 Determine the general form of the inverse of the direct

hyperbolic transformation M which maps 3
4 to the origin.

Problem 6 Prove that any direct hyperbolic transformation M that
maps the diameter (−1, 1) onto itself must be of the form

M(z) = ± z − m

1 − mz
, where m ∈ (−1, 1).

Since an indirect hyperbolic transformation can be written as the compos-
ite of at most three reflections, it follows that the general form of such a
transformation is

See the discussion
preceding Theorem 2.

z �→ az̄ + b

b̄z̄ + ā
.

An argument similar to that for direct transformations shows that this
transformation can always be written in the form

z �→ K
z̄ − m

1 − mz̄
, where |k| = 1 and |m| < 1.

We call this form the canonical form of an indirect hyperbolic transfor-
mation.

Theorem 4 gives the general form of a direct hyperbolic transformation that
maps a given point m in D to the origin. By two applications of the theorem,
therefore, we can obtain the general form of a direct hyperbolic transformation
that maps any given point in D to any other given point in D .

Strategy To determine the general form of the direct hyperbolic transfor-

If we require a particular
direct transformation that
maps p to q , then we may
choose a particular M1
and a particular A1.

mation that maps one point p in D to another point q in D :

1. write down the general form of the direct transformation M1 that maps
p to 0, and a matrix A1 associated with M1;

2. write down a direct transformation M2 that maps q to 0, and a matrix A2

The constant arising in
Step 1 means that it is
sufficient to use any
particular transformation
in Step 2, since the final
general transformation
requires only
one constant.

associated with M2;
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3. form the matrix product A−1
2 A1 associated with the direct transformation

M−1
2 ◦ M1, and hence write down the general form of the required direct

transformation M−1
2 ◦ M1.

The following figure illustrates this strategy.

M1

p

O

q
M2

M2
–1

 o M1

Example 6 Determine the general form of the direct hyperbolic transforma-
tion that maps 1

2 i to 3
4 .

Solution We have already seen that the general form of the direct hyperbolic Example 5, part (a).

transformation M1 that maps 1
2 i to 0 is

M1(z) = K
2z − i

i z + 2
, where |K | = 1;

a matrix associated with M1 is

A1 =
(

2K −i K
i 2

)
.

Also, the direct transformation

Example 5, part (b).
M2(z) = z − 3

4

1 − 3
4 z

maps 3
4 to 0; a matrix associated with M2 is

A2 =
(

1 − 3
4

− 3
4 1

)
.

The inverse of A2 is

A−1
2 = 16

7

(
1 3

4
3
4 1

)
.

So a matrix associated with the required direct transformation is

A−1
2 A1 = 16

7

(
1 3

4
3
4 1

)(
2K −i K
i 2

)

= 4
7

(
8K + 3i −4i K + 6
6K + 4i −3i K + 8

)
.

Hence any direct transformation that maps 1
2 i to 3

4 may be written in the form The fraction 4
7 disappears

at this point, as it is
simply a multiple of the
whole matrix.

M(z) = (8K + 3i)z + (−4i K + 6)

(6K + 4i)z + (−3i K + 8)
, where |K | = 1.
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Problem 7

(a) Determine the general form of the direct hyperbolic transformation
that maps − 1

3 i to 2
3 .

(b) Determine the direct hyperbolic transformation that also maps i to l.

Problem 8 Determine the general form of the direct hyperbolic These functions fix the
point 1

2 .transformation that maps 1
2 to 1

2 .

Problem 9 For each of the following pairs of points, either find a
direct hyperbolic transformation mapping the first point to 0 and the
second point to 1

2 , or prove that no such transformation exists.

(a) 1
2 i and 0 (b) 1

2 and 2
3 (c) 1

3 (1 + i) and 1
3 (1 − i).

6.3 Distance in Hyperbolic Geometry

In the Euclidean geometry of the plane, corresponding to any two points there
exists a non-negative number called the distance between the points. This is
given by the formula

So d(z1, z2) = d(z2, z1).d(z1, z2) = |z1 − z2|, z1, z2 ∈ C.

In this section, we introduce an analogous formula for the distance in
hyperbolic geometry between any two points of the unit disc D .

6.3.1 The Distance Formula
We begin by looking at various properties that we would expect any distance
function d to have in any geometry whose points lie in the complex plane C.
‘Ordinary’ Euclidean distance, for example, clearly possesses the following
four properties.

Properties of a Distance Function d

1. d(z1, z2) ≥ 0 for all z1 and z2;
d(z1, z2) = 0 if and only if z1 = z2.

2. d(z1, z2) = d(z2, z1) for all z1 and z2.
3. d(z1, z3) + d(z3, z2) ≥ d(z1, z2) for all z1, z2 and z3. Property 3 is known as the

Triangle Inequality.4. d(z1, z3) + d(z3, z2) = d(z1, z2) if and only if z1, z3 and z2 lie in this
order on a line.

Property 1 asserts that the distance between any two points in the geometry
is always positive, unless the two points coincide – in which case the distance
between them must be zero.

Property 2 asserts that the distance from z1 to z2 is the same as the distance
from z2 to z1.
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Property 3 asserts that the distance from z1 to z2 is always less than (or equal

z1

z1

z3

z3

z2

z2

to) the distance from z1 to another point z3 plus the distance from z3 to z2. In
Euclidean geometry this property may be rewritten in the form

|z1 − z3| + |z3 − z2| ≥ |z1 − z2|.
Property 4 asserts that distance along a line is additive.
However, there are some additional properties that we wish the distance

function in hyperbolic geometry to possess.

Additional Properties of the Distance Function d in Hyperbolic
Geometry

5. d(z1, z2) = d(z̄1, z̄2) for all z1 and z2 in D .
6. d(z1, z2) = d(M(z1), M(z2)) for all z1 and z2 in D and all direct

hyperbolic transformations M in GD .

Properties 5 and 6 together assert that hyperbolic transformations of the unit

z1

z2

z1

O

z2

disc D do not alter distances between points, since a hyperbolic transformation
is either a direct transformation of the unit disc to itself (as in Property 6) or
the composite of such a function with the conjugation function z �→ z̄ (which,
by Property 5, preserves distance).

These additional properties enable us to make some useful observations
about the form of the distance function. First, the direct hyperbolic transfor-
mation

M : z �→ z − z1

1 − z̄1z
, where z1 ∈ D ,

maps z1 to 0 and z2 to z2−z1
1−z̄1z2

. If R is the rotation of the unit disc D about Recall that any rotation of
D about the origin is a
direct hyperbolic
transformation
(Subsection 6.2.1).

the origin which sends z2−z1
1−z̄1z2

to the point
∣∣∣ z2−z1

1−z̄1z2

∣∣∣, then overall the composite

R ◦ M is a direct hyperbolic transformation which sends z1 to 0 and z2 to∣∣∣ z2−z1
1−z̄1z2

∣∣∣.
By Property 6 it follows that

d(z1, z2) = d

(
0,

∣∣∣∣ z2 − z1

1 − z̄1z2

∣∣∣∣
)

, for all z1, z2 ∈ D .

This shows that the distance d(z1, z2) must be some function of the quantity∣∣∣ z2−z1
1−z̄1z2

∣∣∣ alone. But what function ensures that d has the Properties 1-6 above?

Indeed, does such a function exist? In fact, there is essentially only one ‘well- We verify this assertion in
Subsection 6.3.5.behaved’ function which yields these properties, and it turns out to be the

function tanh −1.

Definition The hyperbolic distance d(z1, z2) between the points z1 and
z2 in the unit disc D is defined by

d(z1, z2) = tanh−1
(∣∣∣∣ z2 − z1

1 − z̄1z2

∣∣∣∣
)

.
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Of course before we can be sure that this is a reasonable definition of dis-
tance we need to check that d satisfies all the Properties 1–6. Clearly d satisfies
Properties 1, 2, 5, and we shall prove the other properties later in this section;
for the moment we assume that all the properties hold, and we use them to
explore some of the practical consequences of the definition.

First observe that the formula for the distance between two given points is
particularly simple in the case where one of the points lies at the origin. Indeed
we have

Definition The hyperbolic distance d(0, z) between the points 0 and z in Since this formula is
simpler to remember, we
shall tend to use it more
often than the formula for
d(z1, z2)!

the unit disc D is
d(0, z) = tanh−1(|z|).

Since |z| is just the Euclidean distance of z from the origin, this equation
tells us that we can obtain the hyperbolic distance of a point z from the ori-
gin by applying the inverse tanh function to the Euclidean distance of z from
the origin. The graph of the inverse tanh function in the margin reveals two
important characteristics of hyperbolic distance.

tanh–1(|z|)

1

0 1 |z|

1. Near the origin the graph is nearly a straight line with slope 1, so for a point
z near the origin the hyperbolic distance of z from 0 is approximately equal
to the Euclidean distance of z from 0. (This is analogous to the situation on
the surface of the Earth; small portions of the Earth’s surface look flat and
distances between its points are approximately Euclidean.)

2. As the point z approaches the boundary of the disc D , the hyperbolic dis-
tance of z from the origin increases without bound. Indeed, as the Euclidean
distance |z| tends to 1, the hyperbolic distance tanh−1(|z|) tends to ∞.
From the point of view of someone living in the hyperbolic geometry, the
boundary points appear to be ‘infinitely far away’ – an observation that is
consistent with the idea that parallel lines ‘meet’ on the boundary.

With the help of a calculator we can easily use the formula

At the end of this
subsection we prove the
alternative formula

d(0, z) = 1
2 loge

(
1+|z|
1−|z|

)
which you can use if your
calculator does not have a
tanh function.

d(0, z) = tanh−1(|z|) (1)

to calculate the hyperbolic distance of a point from the origin.
For example, the hyperbolic distance of 1

2 from the origin is given by

d
(

0, 1
2

)
= tanh−1

(
1

2

)
= tanh−1(0.5) � 0.549.

But we can also use equation (1) to calculate the hyperbolic distance
between any two points which lie on a diameter of the disc D .
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Example 1 Find the hyperbolic distance between the points 0.1 and 0.2.

Solution Here we use Property 4, which states that distances along a
0 0.1 0.2(hyperbolic) line are additive. In particular, this implies that

d(0.1, 0.2) = d(0, 0.2) − d(0, 0.1),

so we can write Throughout Section 6.3
we shall work to the full
accuracy of our calculator,
but we shall record our
results only to 3 or 4
decimal places.

d(0.1, 0.2) = d(0, 0.2) − d(0, 0.1)

= tanh−1(0.2) − tanh−1(0.1)

� 0.203 − 0.100

� 0.102.

Problem 1 Determine the hyperbolic distances d
(

0, 1
3 i
)

and

d(0.8, 0.9).

By rearranging equation (1) we obtain the formula

|z| = tanh d(0, z). (2)

This can be used to locate a point, given its hyperbolic distance along a
radius of the disc D . For example, the point a that is at a hyperbolic distance
0.1 from the origin along the positive real axis is given by a = tanh 0.1 �
0.0997.

Problem 2 The following table (plotted in the margin) illustrates how
points bunch up towards the boundary of D as their hyperbolic distance

0 0.197 0.380 0.664from 0 doubles.
Find the two missing entries in the table.

d(0, a), a > 0 0.2 0.4 0.8 1.6 3.2
a 0.197 . . . 0.380 . . . 0.664 . . .

If we have to calculate the distance between two points that do not lie on a
diameter of D , then we can use the distance formula given in the definition.

Example 2 Find the hyperbolic distance between the points 1
2 and 1

3 i .

1
3
i

1
2

0

Solution From the definition of hyperbolic distance we have

d
(

1
2 , 1

3 i
)

= tanh−1

⎛
⎝
∣∣∣∣∣∣

1
2 − 1

3 i

1 − 1
3 i · 1

2

∣∣∣∣∣∣
⎞
⎠

= tanh−1
(∣∣∣∣3 − 2i

6 + i

∣∣∣∣
)

= tanh−1
(√

13
37

)

� 0.6819.
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We can use the distances that we have calculated above to demonstrate that
Pythagoras’ Theorem fails to hold in hyperbolic geometry, at least without
some rewording. For, if we consider the hyperbolic right-angled triangle with
vertices at 0, 1

3 i and 1
2 , then the square of the hypotenuse is

d
(

1
2 , 1

3 i
)2 � 0.68192 � 0.4650,

whereas the sum of the squares of the other two sides is We evaluated d
(

0, 1
2

)
before Example 1, and

d
(

0, 1
3 i
)

in Problem 1.d
(

0, 1
2

)2 + d
(

0, 1
3 i
)2 � 0.54932 + 0.34662 � 0.4219.

We shall see later on how Pythagoras’ Theorem can be reformulated in Subsection 6.4.3,
Theorem 8hyperbolic geometry.

We end this subsection by giving an alternative formula for the hyperbolic
distance of a point z from the origin. First, observe that

|z| = tanh d(0, z)

= sinh d(0, z)

cosh d(0, z)

= ed(0,z) − e−d(0,z)

ed(0,z) + e−d(0,z)

= e2d(0,z) − 1

e2d(0,z) + 1
.

We can solve this equation to obtain an expression for d(0, z) in terms of |z|.
By cross-multiplication, we obtain

e2d(0,z) − 1 = |z|
(

e2d(0,z) + 1
)

,

which implies that

e2d(0,z)(1 − |z|) = 1 + |z|,
which is equivalent to

e2d(0,z) = 1 + |z|
1 − |z| .

Taking natural logarithms of both sides, we deduce that

2d(0, z) = loge

(
1 + |z|
1 − |z|

)
,

and so
This formula is useful if
your calculator does not
have a tanh function.

d(0, z) = 1

2
loge

(
1 + |z|
1 − |z|

)
. (3)

The formula for d(0, z) is sometimes quoted in this form.

6.3.2 Hyperbolic Midpoints
Having described how to calculate hyperbolic distances we now introduce the
idea of the hyperbolic midpoint of a hyperbolic line segment.
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Definition A point m is the hyperbolic midpoint of the hyperbolic line
d(a,m)

a m b

d(m,b)

segment joining a and b if m lies on this segment and

d(a, m) = d(m, b) = 1

2
d(a, b).

For simplicity, we confine our attention to midpoints of line segments that
lie along a diameter of D . The method depends on whether the endpoints of
the segment lie on the same side of the origin O , or on opposite sides of O .

Example 3 Find the hyperbolic midpoint m of the line segment which joins
each of the following pairs of points.

(a) 1
4 i and 3

4 i (b) 1
4 i and − 3

4 i

Solution First observe that

d
(

0, 1
4 i
)

= tanh−1
(∣∣∣ 1

4 i
∣∣∣) = tanh−1(0.25) = 0.255 . . . ,

and
d
(

0, 3
4 i
)

= tanh−1
(∣∣∣ 3

4 i
∣∣∣) = tanh−1(0.75) = 0.973 . . . .

(a) Here 3
4 i and 1

4 i lie on the same side of 0, so the midpoint must lie at a

0.547i is
further
from 0

than 0.5i

–0.344i

0

– i3
4

i3
4

i1
4

hyperbolic distance

1
2

(
d
(

0, 3
4 i
)

+ d
(

0, 1
4 i
))

� 1
2 (0.973 + 0.255) = 0.614

from 0 on the radius through 3
4 i . That is, m � (tanh 0.614)i � 0.547i .

(Notice that this is further from 0 than the Euclidean midpoint 0.5i .)
(b) Here − 3

4 i and 1
4 i lie on opposite sides of 0, so the midpoint lies at a

hyperbolic distance

1
2

(
d
(

0, − 3
4 i
)

− d
(

0, 1
4 i
))

� 1
2 (0.973 − 0.255) = 0.359

from 0 on the radius through − 3
4 i . That is, m � −(tanh 0.359)i �

−0.344i .

The following strategy generalizes the method used in Example 3.

Strategy To find the hyperbolic midpoint of a line segment joining two
points p, q on a diameter of D , where |p| > |q| :

1. calculate d(0, p) and d(0, q);
2. if p and q lie on opposite sides of 0, then calculate

d = 1
2 (d(0, p) − d(0, q)),
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otherwise calculate

d = 1
2 (d(0, p) + d(0, q));

3. then the hyperbolic midpoint is the point m on the radius through 0 and
p at a Euclidean distance tanh(d) from 0.

Problem 3 Find the hyperbolic midpoint m of the line segment which
joins each of the following pairs of points:

0.5 and 0.8; −0.2 and 0.8.

Remark

To calculate the hyperbolic midpoint of a line segment which joins two arbi-
trary points p, q in D we would use a Möbius transformation M to map p to
0 and q to M(q). After calculating the hyperbolic midpoint m′ of the segment
from 0 to M(q), we would then obtain the midpoint of the original segment by
calculating M−1(m′).

6.3.3 Hyperbolic Circles
By analogy with Euclidean circles, we define a hyperbolic circle to be the locus
of points which are a fixed hyperbolic distance from a fixed point.

Definition The hyperbolic circle with hyperbolic radius r and hyper-
bolic centre at c is the set defined by

{z : d(c, z) = r , z ∈ D}.

It is natural to ask what a hyperbolic circle looks like to the Euclidean eye.
In the case of a hyperbolic circle with radius r centred at the origin, it is just
the set of points given by

{z : d(0, z) = r , z ∈ D};
that is, the set

{z : tanh−1(|z|) = r , z ∈ D},
or

{z : |z| = tanh r , z ∈ D}.
This is a Euclidean circle with radius tanh r centred at the origin! Even more
remarkable is the fact that every hyperbolic circle is a Euclidean circle.
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Theorem 1 Every hyperbolic circle is a Euclidean circle in D , and vice
versa.

Proof We have already established the result for circles centred at 0, so let For the steps in the
argument before Theorem
1 can be reversed.

C be any hyperbolic circle with hyperbolic centre m �= 0. Let the diameter of
D through m meet C at the points a and b, and let K be the Euclidean circle
which has ab as a diameter and (Euclidean) centre p.

Hyperbolic
circle Ccentred

at m

Euclidean
circle K

centred at the
midpoint p

of ab

b

b′

m
p
O

O

M(z) =

K

K ′

a

a′

C

C ′
m → O
a |→ a′

b |→ b ′

C |→ C ′
K |→ K ′

z–m
1 –mz

We will show that C is a Euclidean circle by showing that it coincides with
K . To do this let M be the hyperbolic transformation defined by

M(z) = z − m

1 − mz
, z ∈ D ,

and let a′ and b′ be the images of a and b under M .
Since M preserves hyperbolic distances, and maps m to O , it must map C

to a hyperbolic circle C ′ with centre O . But we already know that such a circle
is also a Euclidean circle. Moreover, since the line segment ab passes through
m, its image a′b′ passes through O and is therefore a diameter of C ′.

Also, since M is angle-preserving, and since ab meets K at right angles, it Theorem 2, Subsection
6.1.1follows that M maps K to a circle K ′ which meets a′b′ at right angles at the

points a′ and b′. This implies that a′b′ is also a diameter of K ′. It follows that
C ′ coincides with K ′, and hence that C coincides with K .

Conversely, let K be any Euclidean circle in D with Euclidean centre p �= 0,
and let the diameter of D through p meet K at the points a and b. If C is
the hyperbolic circle through a and b with hyperbolic centre the hyperbolic
midpoint m of ab, then we can use the same argument as before to deduce that
K coincides with C , and so we conclude that K is a hyperbolic circle. �

The above proof shows that the Euclidean and hyperbolic centres of a circle
lie on the same line through O . This observation enables us to write down the
following strategy for finding the Euclidean centre and radius of a hyperbolic
circle.
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Strategy To find the Euclidean centre and radius of a hyperbolic circle C
with hyperbolic centre m:

1. find the points a, b where Om meets C ;
2. the Euclidean centre of C is the Euclidean midpoint of ab;
3. the Euclidean radius of C is 1

2 |a − b|.

Example 4 Find the Euclidean centre and radius of the hyperbolic circle

C

ba
O

1
2

C =
{

z : d
(

z, 1
2

)
= 1

2

}
.

Solution Here the hyperbolic centre m is the point 1
2 , and so

d(0, m) = tanh−1
(

1
2

)
� 0.549.

Since the hyperbolic radius of C is equal to 1
2 , it follows that Om meets C

at the points a, b, where

d(0, a) � 0.549 − 0.5 = 0.049,

d(0, b) � 0.549 + 0.5 = 1.049.

So

a � tanh 0.049 � 0.049,

b � tanh 1.049 � 0.782.

Since a and b both lie on the same side of 0, we have

Euclidean centre = 1
2 (a + b) � 0.415,

Euclidean radius = 1
2 |a − b| � 0.366.

Problem 4 Determine the Euclidean centre and radius of the hyper-
bolic circle

C =
{

z : d
(

z, − 1
4

)
= 1

2

}
.

A similar strategy can be used to find the hyperbolic centre and radius of a
Euclidean circle.

Strategy To find the hyperbolic centre and radius of a Euclidean circle K
with Euclidean centre p:

1. find the points a, b where Op meets K ;
2. the hyperbolic centre of K is the hyperbolic midpoint of ab;
3. the hyperbolic radius of K is 1

2 d(a, b).
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Example 5 Find the hyperbolic centre and radius of the Euclidean circle

K =
{

z :
∣∣∣z + 1

2 i
∣∣∣ = 1

4

}
.

Solution Here the Euclidean centre p is the point − 1
2 i , and the Euclidean

i

i
K

O

1–

–

2

1
4

radius is 1
4 , so Op meets K at the points a = − 1

4 i and b = − 3
4 i . Thus

d(0, a) = tanh−1
(∣∣∣− 1

4 i
∣∣∣) = tanh−1(0.25) � 0.255 . . . ;

d(0, a) = tanh−1
(∣∣∣− 3

4 i
∣∣∣) = tanh−1(0.75) � 0.973 . . . .

Since a and b both lie on the same side of O , the hyperbolic centre m of K is
given by

d(0, m) = 1
2 (d(0, a) + d(0, b)) � 0.614,

so that

hyperbolic centre m � −i · tanh 0.614 � −0.547i ;

hyperbolic radius = 1
2 |d(0, a) − d(0, b)| � 0.359.

Problem 5 Determine the hyperbolic centre and radius of the
Euclidean circle

K =
{

z :
∣∣∣z − 1

4

∣∣∣ = 1
2

}
.

We now use the fact that hyperbolic circles are also Euclidean circles to
prove the Triangle Inequality property of hyperbolic distance. Property 3 of a distance

function, Subsection
6.3.1.

Theorem 2 For all z1, z2, z3 in D :

d(z1, z3) + d(z3, z2) ≥ d(z1, z2).

Proof First let M be a hyperbolic transformation that maps z1 to 0, and let
M(z2) = b and M(z3) = c. Then Ob is a straight line.

z1 |→ O

z3

z2z1

O

b

c

z2 |→ b

z3 |→ c
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Taking O as centre we draw a hyperbolic circle C2 through c to meet Ob
at the point q; then d(O , q) = d(O , c). Similarly, taking b as centre we draw
a hyperbolic circle C1 through c to meet Ob at the point p, where d(b, p) =
d(b, c).

b

hyperbolic circle
with hyperbolic

centre b

hyperbolic circle
with hyperbolic

centre O

p
O

C

C1 C2

q

Since both circles are also Euclidean circles with centres on Ob, and since Recall that hyperbolic
circles are Euclidean
circles, by Theorem 1.

the circles intersect, it follows that

d(0, c) + d(c, b) = d(0, q) + d(p, b)

≥ d(0, q) + d(q, b)

= d(0, b).

We have drawn this figure
in the case that p and q lie
between O and b. The
argument also holds if q
lies beyond b or p
beyond O .

Since M preserves hyperbolic distances, we deduce that Property 6, Subsection
6.3.1

d(z1, z3) + d(z3, z2) ≥ d(z1, z2),

as required. �

We can deduce from the Triangle Inequality (Property 3) that in hyperbolic
geometry the curve of shortest length or ‘geodesic’ between two points of D is We omit a formal

definition of ‘length of a
curve’, and so a proof of
this claim.

the segment of the d-line that joins them. Rather loosely, we can express this
fact as follows: ‘Distances are measured along d-lines in hyperbolic geometry.’

6.3.4 Reflected Points in Hyperbolic Geometry
In Euclidean geometry the image A′ of a point A under reflection in a line � is
an equal distance from the line and on the opposite side of the line, so that �

is the perpendicular bisector of the line segment AA′. We now prove that the
same result also holds in hyperbolic geometry, where the distances and lines
are hyperbolic ones.

To state the result, we need the concept of hyperbolic line segment, or
d-line segment; this is just that part of the d-line through two points which
lies between those points.
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Theorem 3 Let A and A′ be points in the unit disc D that are images
of each other under reflection in a d-line �. Then � is the hyperbolic
perpendicular bisector of the hyperbolic line segment AA′.

Proof Let the d-line �′ through A and A′ meet � at P .

Pl′

l A

A′

Now A and A′ map to each other under hyperbolic reflection in �, and P
remains invariant. But hyperbolic reflection maps d-lines to d-lines, and there
is exactly one d-line through A and A′. Thus �′ must map onto itself under the
hyperbolic reflection in �, and the hyperbolic line segment PA must map onto
the hyperbolic line segment PA′.

But hyperbolic reflection preserves angles and lengths. Since lengths are
preserved, it follows that PA and PA′ must be of equal hyperbolic length.
Also, since the angles that PA and PA′ make with the same part of � at P map
onto each other, they must be equal too; since they must add up to a total angle

b

a = a + ib
A

A′ = O

π at P (because APA′ is a hyperbolic line segment through P), it follows that
PA and PA′ both meet � at right angles. �

We already know one case where we can find the hyperbolic perpendicular
bisector of a hyperbolic line segment AA′. This is the case where one of the
vertices, say A′, coincides with O , the centre of the disc D . In that case, the
reflection that sends A (represented by the complex number β) to O is given
by M(z) = αz̄−1

z̄−ᾱ
, for some α = a + ib, with |α| > 1.

The equation of the d-line obtained from α in which the reflection takes
place is, as we saw earlier, By Corollary 1,

Subsection 6.1.1
x2 + y2 − 2ax − 2by + 1 = 0.

Since M(β) = 0, it follows from the formula for M that αβ̄ − 1 = 0.
More generally, suppose we want to find a hyperbolic reflection that

exchanges the points p and q in D . Again, the hyperbolic reflection that does
this must be of the form

Subsection 6.2.1,
Lemma 1

M(z) = αz̄ − 1

z̄ − ᾱ
.

The condition M(p) = q implies

a

p

q

q = α p̄ − 1

p̄ − ᾱ
,

which is equivalent to

1 + p̄q = ᾱq + α p̄. (4)

The condition M(q) = p implies

p = αq̄ − 1

q̄ − ᾱ
,

which is equivalent to

1 + q̄ p = ᾱ p + αq̄ . (5)
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Equations (4) and (5) can be solved for α provided that p p̄ − qq̄ �= 0 . Indeed,
if we subtract q times equation (5) from p times equation (4), and then divide
by p p̄ − qq̄ , we obtain Notice that in the special

case when q = 0, this
formula gives α = 1/ p̄, as
it should.

α = p − q + pq( p̄ − q̄)

p p̄ − qq̄
.

If p p̄ − qq̄ = 0, then |p| = |q|, in which case the sought-for reflection
is simply Euclidean reflection in the diameter of D which bisects the angle
∠pOq.

We summarize this discussion in the following lemma.

Lemma 1 Reflection Lemma
Let p and q be points in the unit disc D . If |p| �= |q|, then the hyperbolic
reflection that maps p and q onto each other is given by

M(z) = αz̄ − 1

z̄ − ᾱ
, where α = p − q + pq( p̄ − q̄)

p p̄ − qq̄
.

The d-line in which this reflection takes place has equation By Lemma 1,
Subsection 6.1.1

x2 + y2 − 2ax − 2by + 1 = 0, where α = a + ib.

Example 6 Determine the equation of the hyperbolic perpendicular bisector
of [0.2, 0.9], the line segment from 0.2 to 0.9.

Solution Using the Reflection Lemma, with p = 0.9 and q = 0.2, we
find that

α = 0.7 + 0.9 · 0.2 · 0.7

0.81 − 0.04
� 1.0727.

So the equation of the d-line which is the (hyperbolic) perpendicular bisector
of [0.2, 0.9] is

x2 + y2 − 2ax + 1 = 0, where a � 1.0727.

Problem 6

(a) Determine the equation of the hyperbolic perpendicular bisector � of
the line segment [0.5, 0.8].

(b) Deduce the equations of the hyperbolic perpendicular bisectors of We often write [z1, z2] to
mean the Euclidean line
segment in C with
endpoints z1, z2.

the line segments [−0.8, −0.5] and [0.5i , 0.8i].

Problem 7

(a) Let A be a point in D , � a d-line through A, and 0 < θ < π . Prove
that there are exactly two d-lines through A that make an angle θ

with �.
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(b) Prove that, if �ABC is a d-triangle, then there is a unique d-line
� that bisects ∠BAC, and that reflection in � maps the d-lines
containing BA and CA onto each other.

6.3.5 Proofs
In Subsection 6.3.1 we asserted that the hyperbolic distance between two
points is invariant under hyperbolic transformations. We now supply a proof
of this fact.

Theorem 4 The formula for hyperbolic distance

d(z1, z2) = tanh−1
(∣∣∣∣ z2 − z1

1 − z̄1z2

∣∣∣∣
)

, where z1, z2 ∈ D ,

satisfies Property 6; that is, See Subsection 6.3.1.

d(z1, z2) = d(M(z1), M(z2))

for all z1 and z2 in D and all direct hyperbolic transformations M in GD .

Proof First, we define the expression R(z1, z2) to be

R(z1, z2) =
∣∣∣∣ z2 − z1

1 − z̄1z2

∣∣∣∣ , where z1, z2 ∈ D . (6)

It follows from the definition of d(z1, z2) above that We omit the details of
this, for brevity.

d(z1, z2) = tanh−1(R(z1, z2));

hence d possesses Property 6 if we can prove that

R(z1, z2) = R(M(z1), M(z2)) (7)

for all z1, z2 ∈ D and all M ∈ GD .
So, let z1, z2 ∈ D and M ∈ GD . Then the direct hyperbolic transformation

M1 in GD given by

M1 : z �→ z − z1

1 − z1z
, z ∈ D ,

maps z1 to 0, and z2 to
z2 − z1

1 − z̄1z2
.

Also, the direct hyperbolic transformation M2 in GD given by

M2 : z �→ z − M(z1)

1 − M(z1)z
, z ∈ D ,

where M ∈ GD so that |M(z1)| < 1, maps M(z1) to 0, and M(z2) to
M(z2)−M(z1)

1−M(z1)M(z2)
.
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Now, the composite mapping M2 ◦ M ◦ M−1
1 is also a transformation in GD . Note that M−1

1 maps 0 to

z1, and
z2 − z1

1 − z̄1z2
to z2.It maps D to D , 0 to 0, and

z2 − z1

1 − z̄1z2
to

M(z2) − M(z1)

1 − M(z1)M(z2)
. (8)

But any direct transformation in GD that maps 0 to 0 is simply a (Euclidean) See Case 1 of Theorem 2,
Subsection 6.2.1.rotation; so it follows from equation (8) that∣∣∣∣ z2 − z1

1 − z̄1z2

∣∣∣∣ =
∣∣∣∣ M(z2) − M(z1)

1 − M(z1)M(z2)

∣∣∣∣ . (9)

It follows from the definition of R that we can rewrite equation (9) in the We defined R in
equation (6).desired form

R(z1, z2) = R(M(z1), M(z2)). �

Next, we stated earlier that the function d that we used to define the hyperbolic
distance function in D was ‘essentially’ the only ‘well-behaved’ function with
Properties 1-6 of Subsection 6.3.1. We now explain why this is so.

Theorem 5 Let d(z1, z2) be any ‘well-behaved’ function defined for all
z1, z2 ∈ D that satisfies Properties 1-6 of Subsection 6.3.1. Then

d(z1, z2) = K tanh−1
(∣∣∣∣ z2 − z1

1 − z1z2

∣∣∣∣
)

, for some K > 0. (10)

Proof Let z1, z2 ∈ D . Since hyperbolic distances are invariant under Möbius
transformations, d(z1, z2) is unchanged if we map z1 to the origin by the direct By Property 6

hyperbolic transformation (a Möbius transformation)

z �→ z − z1

1 − z1z
.

Next, hyperbolic distances are invariant under rotations of D , since such rota-
tions are hyperbolic transformations. So, we may also assume that z2 lies on
the positive real axis.

Hence, in order to prove the formula (10) it is sufficient to prove that

d(0, z) = K tanh−1(z), for some K > 0 and all z ∈ (0, 1). (11)

For simplicity, we will now simply write d(z) in place of d(0, z) whenever the
context means that no confusion will arise.

Let 0 < a, c < 1. Then the direct hyperbolic transformation (a Möbius O

O a b

M

1

c 1

transformation)

M(z) = z + a

1 + az
, z ∈ D

maps 0 to a, and c onto b = c+a
1+ac . Since M maps [0, 1) one-one to [a, 1), we

must have a < b < 1.
Now, hyperbolic distances are additive along a line, so that By Property 4

d(b) = d(a) + d(a, b). (12)
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But, since hyperbolic distances are invariant under hyperbolic transformations,
we have By Property 6

d(a, b) = d(0, c)

= d(c),

so that it follows from equation (12) that
In this equation, a and c
are independent variables.d

(
c + a

1 + ac

)
= d(a) + d(c). (13)

Now we will assume that the function d is differentiable on [0, 1). If we then This is where we use the
hypothesis that the
distance function is
‘well-behaved’.

differentiate both sides of equation (13) with respect to the variable c, we get

d ′
(

c + a

1 + ac

)
· (1 + ac) · 1 − (c + a) · a

(1 + ac)2
= 0 + d ′(c);

and we may rewrite this equation in the form

d ′
(

c + a

1 + ac

)
= (1 + ac)2

1 − a2
· d ′(c).

If we substitute 0 for c into this equation, we get Here d ′
R(0) is the right

derivative of d at 0.
d ′(a) = d ′

R(0)

1 − a2

= K

1 − a2
, for some real K .

Since d must be an increasing function on [0, 1), we must have K ≥ 0. But This follows from
Property 1.we cannot have K = 0, as it would then follow from the above equation that

d ′(a) = 0 for all a ∈ [0, 1) - so that d(0, a) takes the same value (which would
have to be 0) for all a ∈ [0, 1). Hence

d ′(a) = K

1 − a2
, for some K > 0, and all a ∈ (0, 1).

If we then integrate both sides of this formula from 0 to z, we get

d(z) = K tanh−1(z), for some K > 0, and all z ∈ [0, 1). �

Remarks

1. For any (complex) point z near the origin, equation (10) gives

d(0, z) = K tanh−1(|z|)
� K |z|,

so it is natural to make the choice K = 1 for the definition of distance in
hyperbolic geometry. Then d(0, z) = tanh−1(|z|), for all z ∈ D .

2. When d(0, z) = tanh−1(|z|), z ∈ D , we can reformulate the equation
d ′(z) = 1

1−|z|2 in the form In advanced texts, the
formula for hyperbolic
distance is often used in
this infinitesimal form.

ds = |dz|
1 − |z|2 ,

relating infinitesimal hyperbolic distances ds to infinitesimal Euclidean
distances |dz| in D near any point z ∈ D .
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6.4 Geometrical Theorems

6.4.1 Triangles
A triangle in hyperbolic geometry, or a d-triangle, consists of three points
in the unit disc D that do not lie on a single d-line, together with the seg-
ments of the three d-lines joining them. One or two of the sides may be
segments of diameters of D ; but, in general, the sides are parts of Euclidean

P

A C

B

circles.

Notice that if �ABC is a d-triangle, then the extended sides can meet only
at A, B and C . For if the d-lines through A and B and through B and C meet
at a point P distinct from B, then the two d-lines meet at B and P. But we saw
earlier that there is a unique d-line through any two points of D ; so it would Subsection 6.1.2,

Theorem 4follow that AB and BC are part of a single d-line, a possibility that we have
already excluded. So the sides of a d-triangle cannot ‘overlap’.

One of the basic results in Euclidean geometry is that the sum of the angles
of a (Euclidean) triangle is π . This is not true for d-triangles in hyperbolic
geometry!

Theorem 1 The sum of the angles of a d-triangle is less than π .

Proof By the Origin Lemma, we can map the d-triangle �ABC onto a Subsection 6.1.2,
Lemma 2d-triangle �OB′C ′ by any hyperbolic transformation that sends A to the origin

O . Since hyperbolic transformations preserve angles, the sums of the angles

O

B
C

A

C¢

B¢

of the two d-triangles are the same.
Then OB′ and OC′ are parts of Euclidean lines, and B ′C ′ is part of a

Euclidean circle that ‘bends towards’ the origin. Thus the angles at B ′ and
C ′ of the d-triangle �OB′C ′ are less than the corresponding angles of the
Euclidean triangle �OB′C ′, and the angles of both triangles at O are the
same.

Since the sum of the angles of the Euclidean triangle �OB′C ′ is π , it follows
that the sum of the angles of the d-triangle �OB′C ′ is (strictly) less than π .
The result then follows. �

Problem 1 Prove that each external angle of a d-triangle is greater
than the sum of the opposite two internal angles. (See the diagram on the
left below.)
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b b b¢

g ¢

B

C¢A C

d g

ga
d > b + g

Problem 2 Let �ABC and �ABC′ be two hyperbolic triangles such
that A, C and C ′ lie on a d-line in this order. Let the angles at A, B, C
in the first triangle and at A, B, C ′ in the second triangle be α, β, γ and
α, β +β ′, γ ′, respectively. Show that α +β +γ > α +β +β ′ +γ ′. (See
the diagram on the right, above.)

It will be seen from Problem 2 that the larger triangle, �ABC′, has the
smaller angle sum. This is true in general, not only when one triangle fits
neatly inside another. In fact, it can be shown that the area of a hyperbolic
triangle with angles α, β and γ is proportional to π − (α + β + γ ), and we
shall prove this in Subsection 6.5.1. You may for the moment use the following
result as a useful memory aid:

small triangles have angle sums close to (but less than) π , and triangles with
large areas have angle sums close to zero.

In Euclidean geometry, we can also prove that the sum of the angles of a
(Euclidean) quadrilateral equals 2π . Now, a quadrilateral ABCD in hyper-
bolic geometry, or a d-quadrilateral, consists of four points A, B, C , D in D

(no three of which lie on a single d-line), together with the segments AB, BC,
CD and DA of the four d-lines joining them. We require also that no two of
these segments meet except at one of the points A, B, C or D.

A

D

D
C

C

A

B B

How large can the sum of the angles of a d-quadrilateral be?

Theorem 2 The sum of the angles of a d-quadrilateral is less than 2π .

Proof Any d-quadrilateral can be divided into two (non-overlapping)
We shall assume this fact
without proof; see the
figures below.d-triangles by one or other of the d-lines joining alternate vertices.
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A

A

B

C

C

D
D

B

The angles of each d-triangle sum to less than π . The angles of the
d-quadrilateral belong to one or other d-triangle, or partly to one and partly
to the other. It follows that the angles of the d-quadrilateral sum to less
than 2π . � We shall use this fact later.

In hyperbolic geometry there are many theorems about d-triangles that are
analogues of the corresponding theorems about Euclidean triangles, such as
the following.

Theorem 3 Let �ABC be a d-triangle in which ∠ABC = ∠ACB. Then This is the hyperbolic
analogue of the Euclidean
result in Example 1,
Subsection 2.1.1.

the sides AB and AC are of equal length.

Proof Let D be the midpoint of the d-line segment BC. By applying the Ori-
gin Lemma, if necessary, we may assume that D coincides with O, the centre
of the disc D . (Although this is not strictly necessary for the proof, it simplifies
the picture.) Then BC is part of a diameter of D .

Let the d-line � be the perpendicular bisector of BC; it is the diameter of

A′

l A

B

C

D (=O)

D perpendicular to BC. Reflect (in both the Euclidean and hyperbolic senses)
the triangle �ABC in the d-line �. Because reflections preserve length, and
DB = DC, it follows that B and C change places. Suppose that A moves to
some point A′. Since reflection preserves angles, it follows that ∠A′BC =
∠ACB. Also, recall that we are given that ∠ACB = ∠ABC, so ∠A′BC =
∠ABC. But this can happen only if A′ lies on the d-line through A and B.
Similarly, ∠A′CB = ∠ABC = ∠ACB, so A′ must also lie on the d-line through
A and C . This means that A and A′ must coincide. Hence the d-line segment
BA reflects to the d-line segment CA, and vice versa; so these d-line segments
have the same length. �

Problem 3 Let �ABC be a d-triangle in which the sides AB and AC
have equal hyperbolic length. Prove that ∠ABC = ∠ACB.
Hint: Consider reflection in the d-line that bisects angle ∠ BAC.

The notion of mapping one figure onto another exactly by a transformation
in the geometry (for example, the reflection in the d-line � in the proof of
Theorem 3) is one that we met previously: namely, congruence.

Definition Two figures in the unit disc D are d-congruent if there is a
hyperbolic transformation that maps one onto the other.
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For example, if A, B, C and D are four points in D such that the hyperbolic
distances d(A, B) and d(C , D) are equal, then the d-line segment AB is con-
gruent to the d-line segment CD. For, as we saw earlier, there is a hyperbolic
transformation t that maps A to C and the d-line through A and B onto the Subsection 6.1.2,

Theorem 5, and the
Remark following that
theorem.

d-line through C and D, in such a way that D and t(B) lie on the same side of
C along t(�). Then, since B and D are the same hyperbolic distances from A
and C , respectively, it follows that t must map B onto D. Thus AB and CD are
congruent.

Now, since hyperbolic transformations preserve angles, it follows that if
two d-triangles do not have corresponding angles equal (that is, they are not
similar), then they certainly cannot be d-congruent. Recall that two Euclidean

figures are similar if one
is a scale copy of the
other; in particular, two
Euclidean triangles are
similar if they have
corresponding angles
equal.

However, the following result is still very surprising, because the analogous
result is false in Euclidean geometry.

Theorem 4 Similar d-triangles are d-congruent.

Proof We have to prove that if the d-triangles �ABC and �PQR have the
angles at A, B and C and the angles at P, Q and R equal, respectively, then the
two d-triangles are d-congruent.

We may apply a hyperbolic transformation to map A to the origin O; this

P

C

A B

R
Q

does not change the angles of the triangle. To avoid complicated notation, we
shall still denote this image d-triangle by �ABC.

We can also apply a hyperbolic transformation to map P to the origin and the
radius on which Q lies to the radius on which B lies. By reflecting in the d-line
through O and B, if necessary, we can deduce from the fact that the angles at
A and P are equal that the image of R lies on the same radius as (the image of)
C . Again, we shall denote the image d-triangle still by the notation �PQR, for
simplicity.

The following figure shows the result of the transformations described
above.

A = O = P B

Q

C

R lies 
on this 
radius

   lies 
on this 
radius

To prove the result, we have to show (in terms of the points obtained by the
above preliminary mappings) that B = Q and C = R. We proceed by considering
the various possible situations that would arise if the result were false.

(a) The d-line segment BC might lie between the origin and the d-line segment
QR. (The argument is similar if QR lies between O and BC.)
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In this case,

A = O = P B Q

R

C∠RCB = π − ∠OCB and ∠CBQ = π − ∠OBC,

so the angle sum of the d-quadrilateral CBQR is

(π − ∠OCB) + (π − ∠OBC) + ∠OQR + ∠ORQ = 2π ,

which is impossible, by Theorem 2.
(b) B and Q may coincide, but not C and R. (The argument is similar if R lies

A = O = P B = 

R

C

Q

between O and C , or if C and R coincide, but not B and Q.)
In this case, if C lies between O and R, the external angle at C of the

d-triangle �BCR is less than or equal to the sum of the opposite two
internal angles, which is impossible by the result of Problem 1.

(c) The d-line segments BC and QR may cross.
Let the point of intersection of BC and QR be X . In this case, the exter-

A = O = P B Q

R
C

X

nal angle at B of the d-triangle �XBQ is less than or equal to the sum
of the opposite two internal angles, which is impossible by the result of
Problem 1.

It follows that the only possibility is that B = Q and C = R, as required. �

In the following diagram, all the d-triangles have the same angles at
their vertices, and so are similar. It follows from Theorem 4 that they are
d-congruent to each other.

This looks very unlikely, since the triangles ‘seem’ to be getting smaller as
they move away from the origin towards C ; however, it is a consequence of
the way in which we defined both hyperbolic transformations and hyperbolic
distance that all the triangles have sides of the same (hyperbolic) lengths as
well as angles of the same sizes. This results from the fact that equal Euclidean
distances on a ruler correspond to increasing hyperbolic distances as the ruler
is moved outwards.
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Asymptotic Triangles
The vertices of d-triangles lie in the unit disc D . However, it is often useful to

doubly asymptotic
trebly asymptotic

simply asymptotic

talk about figures in D with three sides that are d-lines but where one or more
of the Euclidean circles or lines of which they are part meet on C rather than
in D . In this sense, we say that they are triangles ‘with one or more vertices on
C ’; such triangles are called asymptotic triangles.

If an asymptotic triangle has one vertex on C is said to be simply asymp-
totic, if it has two vertices on C doubly asymptotic, and three vertices on C

trebly asymptotic.
There is no hyperbolic transformation that maps points of C to points of D ,

or vice-versa; so asymptotic triangles are essentially different from ‘ordi-
nary’ d-triangles. However, it turns out that many of the results that hold for
d-triangles hold also for asymptotic triangles, and that their proofs are similar.

Theorem 5 The angle sum of an asymptotic triangle is less than π . The We omit the proof of this
result. The proof of the
first assertion is similar to
that of Theorem 1.

angle sum of a trebly asymptotic triangle is zero.

Problem 4 Prove that two doubly asymptotic triangles are
d-congruent if and only if they have the same angle at their vertex in D .

In hyperbolic geometry you should be careful not to assume that results are
valid simply because they hold in Euclidean geometry. Sometimes asymptotic
triangles are useful in constructing counter-examples. We shall do exactly this at

the end of
Subsection 6.4.2.6.4.2 Perpendicular Lines

In Euclidean geometry, two given lines � and �′ have a common perpendicular
if and only if they are parallel to each other. In hyperbolic geometry, the sit-
uation is somewhat different, as you will see. First, we must define the term
common perpendicular in hyperbolic geometry.

Definition Let � and �′ be two d-lines, and suppose that there exist points

A′ A

l′ l

A on � and A′ on �′ such that the d-line segment AA′ meets � and �′ at right
angles. Then AA′ is a common perpendicular to � and �′.

Theorem 6 Common Perpendiculars Theorem
Two d-lines have a common perpendicular if and only they are
ultra-parallel. This common perpendicular is unique.

Proof First we show that if two d-lines � and �′ have a common perpendic-
ular, then they are ultra-parallel. Let the common perpendicular be the d-line
segment AA′, where A is on � and A′ is on �′. By the Origin Lemma, we can
find a transformation r ∈ GD which maps the point A to the origin, O . Then
the d-line r(�) is a diameter of the disc D , as shown on the left below. The
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d-line r(�′) is part of a Euclidean circle whose centre R lies somewhere out-
side the disc D on the continuation of the diameter joining O to r(A′). The
radius of this Euclidean circle is less than RO, and RO is perpendicular to r(�),
so this circle cannot meet r(�), and hence r(�) and r(�′) are ultra-parallel. It
follows that the d-lines � and �′ are ultra-parallel.

A

r(A) = O

r(A′)

A′

B ′

r(l′)

l′l

l″

r(l)

R

R

B
T

C

Secondly, we show that if two d-lines � and �′ are ultra-parallel, then they
have a common perpendicular. As shown in the figure on the right above, let
the boundary points of � be A and B, and the boundary points of �′ be A′ and
B ′. Consider the Euclidean lines AB and A′B ′.

If the Euclidean lines AB and A′ B ′ are not parallel, then they meet at a point
R outside D , as shown on the right above. Let RT be a tangent from R to the
boundary circle C . Consider the circle C with centre R and radius RT. This
circle meets C at right angles, so the part of it in D is a d-line, �′′ say.

The Euclidean triangles �RTB and �RAT are similar, since ∠TRB = ∠ART
(being the same angle) and ∠RTB = ∠RAT (since the exterior angle equals the
interior opposite angle for a tangent and chord of a circle). Hence, in particular,
RB/RT = RT/RA so that RA · RB = RT2. In other words, A and B are inverse
points with respect to the circle with centre R and radius RT.

Inversion in C exchanges A and B, and exchanges A′ and B ′. So it maps the
d-line � to itself, and the d-line �′ to itself. It follows that �′′ intersects � and �′
at right angles, and so a common perpendicular to the d-lines � and �′ exists.
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B ′

R ′

l″

l′

A′

l

R

B

A

If the Euclidean lines AB and A′ B ′ are parallel, then there is a diameter �′′ of
D that is the perpendicular bisector of AB and A′ B ′. It therefore passes through

angle
sum > p

the centres R and R′ of the Euclidean circles of which � and �′ are parts, and
so it is perpendicular to both � and �′. Since �′′ is a diameter of D it is a d-line,
and the common perpendicular we seek exists.

Finally, the common perpendicular to two ultra-parallel lines is unique. For,
if there were two, and they were disjoint (as shown on the top illustration
alongside), they and the two ultra-parallel lines would form four sides of a
hyperbolic quadrilateral all of whose angles were right angles. But then the
angle sum of such a quadrilateral would be 2π , which is impossible. Similarly,
if there were two common perpendiculars that intersected each other (as shown
in the lower illustration alongside), we should have a d-triangle whose angle
sum was ≥ π , which is impossible.

It follows that the common perpendicular to two ultra-parallel lines is
unique. �

In Euclidean geometry, the altitudes of a triangle play an interesting role;
this is also the case in hyperbolic geometry.

Before we can talk about altitudes, we need to prove that through any point This fact is needed in
order to prove that
altitudes of a given
d-triangle exist.

P not on a given d-line � there is necessarily another (unique) d-line p such
that p meets � at right angles.

P l
l

A
X

P = O

B
R

By a preliminary hyperbolic transformation, if necessary, we may assume
that P is the origin. Let � have boundary points A and B, and let R be the
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centre of the Euclidean circle of which � is a part. Let the (Euclidean) line OR
meet � at X ; OR and � intersect at right angles at X , so that the d-line segment
OX is a perpendicular from O to �. The diameter which includes OX meets �

at right angles, as required. It is unique because no other line through O can
meet � at right angles.

Thus it is possible to ‘drop’ a perpendicular from a point to a d-line, and so
it makes sense to talk about the altitude through a vertex of a d-triangle.

Definition Let � be a d-line which passes through one vertex A of a
d-triangle �ABC and which is perpendicular to the side BC at the point D.
The d-line segment AD is an altitude of the triangle �ABC.

Theorem 7 Altitude Theorem
Let the sides AB and AC of a d-triangle �ABC be of equal hyperbolic
length, and let the angle at A be θ . Then the hyperbolic length of the altitude
through A of the triangle is less than some number that depends only on θ .

Proof Map the d-triangle �ABC onto a d-triangle �OB′C ′ by any hyperbolic

O

A

B

B¢

C¢ D¢

B¢¢

D¢¢

C¢¢

C

D

m

q

q

transformation that sends A to the origin O . Since hyperbolic transformations
preserve (hyperbolic) lengths and angles, OB′ and OC′ are of equal length and
∠B ′OC′ = θ .

Let the diameter m of D that bisects the angle ∠B ′OC′ meet the d-line
segment B ′C ′ at D′. It is clear, by symmetry, that the d-line segment OD′
must be perpendicular to the d-line segment B ′C ′, so that OD′ (which is part
of a Euclidean line) is the altitude of the d-triangle �OB′C ′ through O . Since
d-triangles have a unique altitude through each vertex, the altitude AD of the
d-triangle �ABC must map onto the altitude OD′, and so they are of equal
hyperbolic length.

Then the length of OD′ is less than the length of OD′′, where D′′ lies on
m and the d-line joining the boundary points B ′′ and C ′′ of the lines OB′ and
OC′ (as shown). It follows that the hyperbolic length of the original altitude
AD is less than the hyperbolic length of OD′′, which clearly depends only
on θ . �

Problem 5 Prove that the d-triangles �OB′ D′ and �OC′D′ in the
proof of Theorem 7 are d-congruent.

Problem 6 Determine a (numerical) upper bound for the hyperbolic
length of the altitude AD of an isosceles d-triangle �ABC in which AB
and AC are of equal hyperbolic length and the angle at A is a right angle.
Hint: This situation is a special case of that in Theorem 7: θ = π/2,
so B ′′ and C ′′ in the proof of that theorem are 1 and i , respectively.

In Euclidean geometry the altitudes of a triangle are concurrent; but this is
not true in general in hyperbolic geometry. For example, let A, B and C be
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the points −1, 0 and 1+i√
2

. Then the altitudes through A and C of the d-triangle

–1– i

–i

–1

A
B

C

√2 1– i

√2

1+ i

√2�ABC are the d-lines with endpoints −1, −i and 1+i√
2

, 1−i√
2

, respectively. These

d-lines do not meet anywhere in D or on C . So certainly the altitudes of a
doubly asymptotic triangle are not concurrent.

Finally, if we choose a (non-asymptotic) d-triangle with one vertex at O
and the other two vertices in D but very close to A and C , it is clear that the
altitudes of this d-triangle cannot be concurrent.

6.4.3 Right-Angled d-Triangles
In Euclidean geometry, Pythagoras’ Theorem plays a central role in many
calculations. As we have seen, however, the theorem does not hold in hyper- Paragraph following

Example 2 of Subsection
6.3.1.

bolic geometry if we simply replace Euclidean lines by d-lines and Euclidean
distances by hyperbolic distances in its statement.

However it seems reasonable to imagine that hyperbolic functions might
play some role in a version of Pythagoras’ Theorem in hyperbolic geometry,
and indeed this is the case.

Theorem 8 Pythagoras’ Theorem
Let �ABC be a d-triangle in which the angle at C is a right angle. If a, b

We prove Theorem 8 later
in this subsection.

and c are the hyperbolic lengths of BC, CA and AB, then

A

C

B

a
b

c

cosh 2c = cosh 2a × cosh 2b.

Problem 7 Use Pythagoras’ Theorem to determine the hyperbolic
lengths of the sides of the d-triangle with vertices 0, (1 + i)/2

√
2 and

(−1 + i)/5
√

2, which has a right angle at O .

Problem 8 Use Pythagoras’ Theorem to determine the hyperbolic
lengths of the sides of the d-triangles with vertices at the following
points:

(a) 0, 3
4 and 3

4 i ; (b) 0, r and ir (where 0 < r < 1).

We can use these ideas to provide another solution to Problem 6 above.

Example 1 Prove that, if �ABC is an isosceles d-triangle in which AB and In Problem 6 we found
that this upper bound
1
2 cosh−1

(√
2
)

was equal

to tanh−1
(√

2 − 1
)

; in

fact the two numbers are
equal. Such unexpected
identities involving
hyperbolic functions
occur surprisingly often!

AC are of equal hyperbolic lengths and the angle at A is a right angle, then

the hyperbolic length of the altitude AD is less than 1
2 cosh−1

(√
2
)

� 0.4407(
which is 1

2 loge

(
1 + √

2
))

.

Solution The given triangle is d-congruent to the d-triangle �OB′C ′ with
vertices at 0, r and ir , for some r with 0 < r < 1. Let OD′ be an altitude of
this triangle. Let the hyperbolic lengths of the sides OB′ and OC′ be denoted
by b, of side B ′C ′ by a, and of the altitude OD′ by d.
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It follows from Problem 5 (or by symmetry) that D′ is the Euclidean mid-

ir

C ′

B ′

D ′
b

O b r

d

1
2
a

point and the hyperbolic midpoint of the d-line segment B ′C ′, so that the d-line
segments B ′D′ and C ′D′ both have hyperbolic length 1

2 a.
By applying Pythagoras’ Theorem to the d-triangle �OB′D′, we find that

cosh 2b = (cosh 2d) ×
(

cosh 2
(

1
2 a
))

= (cosh 2d) × cosh a. (1)

Next, by applying Pythagoras’ Theorem to the d-triangle �OB′C ′, we find
that

cosh 2a = cosh2 2b. (2)

Now, we may rewrite equation (2) in the form Here we use the identity
cosh2 2x = 2 cosh2 x − 1,
for x ∈ R.2 cosh2 a − 1 = cosh2 2b; (3)

and if we then substitute for cosh a from equation (1) into equation (3),
we obtain

2

(
cosh 2b

cosh 2d

)2

− 1 = cosh2 2b.

We may rearrange this equation in the form(
cosh 2d

cosh 2b

)2

= 2

1 + cosh2 2b
,

so that

cosh 2d =
√

2 cosh 2b√
(1 + cosh2 2b)

=
√

2√(
1 + 1

cosh2 2b

)
<

√
2.

It follows that d < 1
2 cosh−1

(√
2
)

� 0.4407, as claimed.

Pythagoras’ Theorem takes a simple, if unexpected, form in hyperbolic
geometry. Moreover, the relationship closely approximates the Euclidean one
if the sides of the triangle are very small, which is what you would expect
because small hyperbolic triangles have angle sums nearly equal to π and so
are nearly Euclidean themselves. To see the relationship, we expand the cosh Recall that

cosh x = 1 + x2

2! + x4

4! + . . .

=
∞∑

n=0

x2n

(2n)!

for all x ∈ R.

terms as power series, using the formula

cosh 2c = 1 + (2c)2

2! + higher powers of 2c.

If we ignore the higher powers of 2c, as we may when 2c is very small,
we find

cosh 2c � 1 + 2c2
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and

cosh 2a × cosh 2b �
(

1 + 2a2
) (

1 + 2b2
)

= 1 + 2a2 + 2b2 + 4a2b2.

If we ignore the term 4a2b2 on the grounds that it is as small as other terms we
have already dropped, then we are left with

1 + 2c2 � 1 + 2a2 + 2b2,

which reduces to
c2 � a2 + b2.

So for ‘small’ d-triangles the hyperbolic version of Pythagoras’ Theorem is

A

B

C

a

b

angle A

essentially the same as the Euclidean version.

In Euclidean geometry there is a simple connection between the lengths of
the sides of a right-angled triangle and its angles. An analogous result exists in
hyperbolic geometry also.

Theorem 9 Lobachevskii’s Formula
Let the d-triangle �ABC have a right angle at C , and let the hyperbolic
lengths of sides AC and BC be b and a, respectively. Then

We prove this result later
in the subsection.tan A = tanh 2a

sinh 2b
.

For example, let the points A, B, C be 1
2 , 1

2 i and 0, respectively. Then it
follows from Lobachevskii’s Formula that

C = 0
A = 

B = i

1

1

2

2

tan A =
tanh 2d

(
0, 1

2 i
)

sinh 2d
(

0, 1
2

)

=
tanh 2d

(
0, 1

2

)
sinh 2d

(
0, 1

2

)
= 1

cosh 2d
(

0, 1
2

)
� 1

1.6667
� 0.6,

so that A � tan−1 0.6 � 0.5404 radians.

Remark

It can be shown that when the triangle is very small, and so nearly Euclidean,
tanh 2a is approximately 2a and sinh 2b is approximately 2b, so that
tan A � a/b, which is the Euclidean value.
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Problem 9 Determine the angle at A in the d-triangle �ABC with
vertices − 3

5 i , − 4
5 and 0, respectively.

We can also use these ideas to answer another question that loomed very
large in the discovery of hyperbolic geometry.

Let �′ be the d-line from a point P that is perpendicular to a d-line � not
through P , and let p be the length of the segment of �′ from P to �. What is The angle ϕ is called ‘the

angle of parallelism’.the angle ϕ between �′ and a d-line through P which is parallel to �?
Let Q be the foot of the perpendicular from P to �, and R a point on � dif-

P

R

p

l

l ϕ

ferent from Q. As the point R moves away from Q towards C , the hyperbolic
length of QR, d(Q, R), tends to infinity; it follows that tanh 2d(Q, R) tends to
1 as R approaches C .

From Lobachevskii’s Formula,

tan ∠QPR = tanh 2d(Q, R)

sinh 2p
,

and so, if we let R approach C along �, it follows that

tan ϕ = 1

sinh 2p
.

We have proved the following result.

Corollary 1 Angle of Parallelism
Let � be a d-line, and P a point of D that does not lie on �. Then the angle ϕ

1

1

–1

2 i

1
2 i) = pd(0,between the perpendicular from P to � (of hyperbolic length p) and either

d-line through P that is parallel to � is given by

tan ϕ = 1

sinh 2p
.

For example, the hyperbolic distance of the point 1
2 i from the diameter

� = (−1, 1) is tanh−1 0.5 � 0.5493. It follows that the angle ϕ between the
perpendicular from 1

2 i to � and either parallel to � through 1
2 i is given by

In fact, the remarkable
formula

sinh
(

2 tanh−1x
)

= 2x

1 − x2

gives tan ϕ = 3
4 exactly.

tan ϕ = 1

sinh
(
2 tanh−1 0.5

)
� 1

sinh 1.0986
;

hence, ϕ � 0.6435 radians.

Problem 10 Determine the angle between the perpendicular from the
point 3

4 to the d-line � with equation x = 0 and either parallel to �

through 3
4 .

Finally we give, without proof, another useful formula.
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Theorem 10 Sine Formula
Let �ABC be a d-triangle right-angled at C . Let a and c be the hyperbolic A proof of this result will

be found as an Exercise in
Section 6.7.

lengths of BC and AB. Then

A

B

C

ca

angle A

sin A = sinh 2a

sinh 2c
.

Remark

This result agrees with the expected one when the triangle is small, for in such
cases sinh 2a � 2a and sinh 2c � 2c, so sin A � a/c, which is the Euclidean
result.

Problem 11 Use the Sine Formula to find the length a of the sides of
a hyperbolic equilateral triangle �ABC with angle θ , as a function of θ .
Hint: Apply the Sine Formula to the triangle obtained by dropping the
perpendicular AD from A to BC.

Proofs
We now supply proofs of two results that you met earlier in this subsection.

The formulas in Theorems 8 and 9 depend on the following remarkable
formula:

cosh
(

2 tanh−1 x
)

= 1 + x2

1 − x2
. (4)

The substitution x = tanh t shows that equation (4) holds if and only if

cosh 2t = 1 + tanh2 t

1 − tanh2 t
,

and this formula follows from the definitions of cosh and tanh, as you can
check.

For future convenience, we now list various expressions that we have now
met for the inverse tanh function.

For x ∈ (−1, 1), the following are all equal to tanh−1 x :

1

2
loge

1 + x

1 − x
,

1

2
sinh−1 2x

1 − x2
,

1

2
cosh−1 1 + x2

1 − x2
.

Theorem 8 Pythagoras’ Theorem
Let �ABC be a d-triangle in which the angle at C is a right angle. If a, b
and c are the hyperbolic lengths of BC, CA and AB, then

cosh 2c = cosh 2a × cosh 2b.
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Proof To prove Pythagoras’ Theorem in hyperbolic geometry, by the Origin
Lemma we may assume that C is at the centre of D , the point A is at the point
a′ on the horizontal diameter and the point B is at ib′ on the vertical diameter,
where a′ and b′ are real and positive.

Here a, b, c are real
because they are the
hyperbolic lengths of the
sides of the d-triangle
�ABC.

A

B

C

a

b

c

0 a′

ib′

From the Distance Formula, it follows that

a = tanh−1 b′ and b = tanh−1 a′. (5)

We now map D to itself by the hyperbolic transformation

M(z) = z − a′

1 − a′z
.

Under M , A goes to the origin (which we shall also call A′, for clarity), B goes

C′ A′
c

B′ b″

–a′

to the point B ′, with complex coordinates

b′′ = ib′ − a′

1 − ia′b′ ,

and C goes to the point C ′, with coordinates −a′.
Because the hyperbolic transformation preserves lengths, the hyperbolic

length c of AB is equal to the hyperbolic length of A′B ′.
To find c, the hyperbolic length of AB, we first find the modulus of b′′.

We calculate its square:

|b′′|2 = |ib′ − a′|2
|1 − ia′b′|2 = a′2 + b′2

1 + a′2b′2 . (6)

Now we observe from formula (4) and equation (5) above that

cosh 2a = cosh
(

2 tanh−1 b′) = 1 + b′2

1 − b′2 ,

cosh 2b = cosh
(

2 tanh−1 a′) = 1 + a′2

1 − a′2 ;

also, since c = tanh−1 |b′′|, we get from the formula (4) that

cosh 2c = cosh
(

2 tanh−1 |b′′|
)

= 1 + |b′′|2
1 − |b′′|2 .
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But, it then follows from equation (6) that

cosh 2c = 1 + |b′′|2
1 − |b′′|2 = 1 + a′2+b′2

1+a′2b′2

1 − a′2+b′2
1+a′2b′2

= 1 + a′2 + b′2 + a′2b′2

1 − a′2 − b′2 + a′2b′2

= 1 + b′2

1 − b′2 × 1 + a′2

1 − a′2 ,

= cosh
(

2 tanh−1 b′)× cosh
(

2 tanh−1 a′)
= cosh 2a × cosh 2b.

This proves the analogue of Pythagoras’ Theorem in hyperbolic
geometry. �

Theorem 9 Lobachevskii’s Formula
Let the d-triangle �ABC have a right angle at C , and let the hyperbolic
lengths of sides AC and BC be b and a, respectively. Then

tan A = tanh 2a

sinh 2b
.

Proof We proceed as in the proof of Theorem 8, by mapping the
d-triangle �ABC with vertices at a′, ib′ and 0, respectively, by the hyperbolic
transformation M(z) = z−a′

1−a′z onto the d-triangle with vertices at 0,

We obtain the second
fraction in equation (7) by
multiplying the numerator
and denominator of the
first fraction by 1 + ia′b′.

b′′ = ib′ − a′

1 − ia′b′ = −a′ (1 + b′2)+ ib′ (1 − a′2)
1 + a′2b′2 (7)

and −a′, respectively, where b = tanh−1 a′ and a = tanh−1 b′, so that

a′ = tanh b and b′ = tanh a.

The mapping also sends the angle A in �ABC onto an angle of equal size angle A

A′C ′

B ′
c

b ′′

–a ′

(which we also denote by A by a slight abuse of notation) at the origin. Since
the triangle with vertices at 0, b′′ and −a′ is right-angled at −a′, it follows
from equation (7) that

tan A = b′ (1 − a′2)
a′ (1 + b′2) . (8)
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Now, since a′ = tanh b, we can write

Here we use the identities

cosh2 x − sinh2 x = 1

and

sinh 2x = 2 sinh x cosh x

for x ∈ R.

1 − a′2

a′ = 1 − tanh2 b

tanh b

= cosh2 b − sinh2 b

sinh b · cosh b
= 2

sinh 2b
.

Similarly, we can verify that

b′

1 + b′2 = 1
2 tanh 2a.

Hence, if we substitute these expressions for 1−a′2
a′ and b′

1+b′2 into equa-
tion (8), we find that

tan A = tanh 2a

sinh 2b
. �

6.4.4 Equidistant Curves to d-Lines
In the Euclidean plane R

2, the set of points at a fixed distance from a given l′
l

l′
line � is a pair of straight lines parallel to �. In the hyperbolic disc D there are
two curves equidistant from a given d-line, though neither is itself a d-line.

Theorem 11 Let � be a d-line that ends at points A and B on C , and let �′

A

l

B

l′

a

be that part in D of a (Euclidean) circle through A and B, and let α be the
angle (in D) between � and �′. Then all points on �′ are the same hyperbolic
distance d from �, where

d = 1
2 loge

{
tan
(

α
2 + π

4

)}
.

Proof First, map C and D to themselves by a Möbius transformation M that
maps A and B to −1 and 1 (not necessarily respectively) and maps �′ to a
curve in the upper half of D . Since Möbius transformations preserve angles It is not hard to verify that

such an M exists.and generalized circles, it follows that the image of the d-line AB is the diam-
eter [−1, 1], and the image of �′ is an arc of a circle in the upper half of D

through ±1 making an angle α (in D) with [−1, 1].

–1 –1

l′

O A

C

ai
P

O

Q

1

R

B
α

α

r
p

m
1
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In view of the above remarks, it is sufficient to assume that the d-line � Similarly, we shall refer
below to �′ rather than to
M(�′).

is the diameter (−1, 1) of D . Let p be a point on �′, and m the foot of
the perpendicular r from p to (−1, 1). Let M1 be the Möbius transformation
defined by

M1(z) = z − m

1 − mz
.

Then M1 maps D to itself, and (−1, 1) to itself. It maps m to 0, �′ to an arc
of a (Euclidean) circle, with radius R and centre C (say), through ±1; and it
maps r to a portion of a d-line through O that is perpendicular to (−1, 1)−
and so to a portion of the imaginary axis. It follows that the point P = M1(p)

is of the form ai , for some real number a ∈ (−1, 1). Since M1 is a hyperbolic
transformation it does not alter hyperbolic distances, so that Property 6, Subsection

6.3.1

d(p, m) = d(0, ai) = d(0, a)

= d, say.

Now, if Q is the point where the perpendicular to CB at B meets OC, the
triangles �CBQ and �BOQ are similar, since ∠CBQ = π

2 = ∠BOQ and
∠BCQ = ∠OQB. It follows that ∠BCQ = ∠OBQ = α. Also, from �OBC we

Here we use the identities

cos 2x = 1 − 2 sin2 x

and

sin 2x = 2 sin x cos x

for x ∈ R.

see that R sin α = OB = 1. Hence

a = R − R cos α

= 1 − cos α

sin α

= 2 sin2 (α
2

)
2 sin

(
α
2

)
cos

(
α
2

) = tan
(

α
2

)
.

It follows that Recall from equation (3)
of Subsection 6.3.1 that

tanh−1k = 1
2 loge

(
1 + k

1 − k

)

for any k ≥ 0.

d = tanh−1 a = tanh−1
(

tan
(α

2

))

= 1
2 loge

(
1 + tan

(
α
2

)
1 − tan

(
α
2

)
)

= 1
2 loge

(
tan
(

α
2 + π

4

))
.

This completes the proof of the theorem. �

For example, the portion in the upper half of D of the Euclidean circle
through ±1 that makes an angle of π/4 with the segment [−1, 1] is a set of
points equidistant in D from [−1, 1], with the distance of separation being

d = 1

2
loge

(
tan
(π

8
+ π

4

))
= 1

2
loge

(
tan

(
3π

8

))
� 0.4407.
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6.5 Area

6.5.1 Area of a d-triangle
In the Euclidean plane R

2, the area of a set is defined in terms of the union
of areas of small rectangles. In the hyperbolic disc D the situation is some-
what different; d-quadrilaterals cannot have four right angles and so do not Theorem 2, Subsection

6.4.1
conveniently exhaust areas in an analogous way.

We want our definition of area in hyperbolic geometry to have such
properties as the following:

• The area of a d-triangle is non-negative, and is zero only if its Euclidean
area is zero;

• d-congruent d-triangles (and d-congruent asymptotic d-triangles) should
have the same area;

• if one d-triangle can be fitted inside another, it should have smaller area;
• area should be additive.

Then we can determine the area of any figure in D that can be divided up into
d-triangles.
Throughout this subsection, all ‘lines’ and ‘line segments’ will be d-lines and
d-line segments, but to avoid constant repetition we will simply drop the ‘d’.

Notice first that as d-triangles grow in size their angle sum decreases. For

βα

γ
γ′

β′

B′BA

C

example, let �ABC be contained in �AB ′C , where A, B and B ′ are collinear,
as shown. Denote by α, β, γ and α, β ′, γ ′ the angles of the two d-triangles,
as shown. Consider the d-triangle �BC B ′. The angles at B and C in this are
π −β and γ ′ −γ . Then, since the sum of the angles of a d-triangle is less than
π , it follows that Theorem 1, Subsection

6.4.1(π − β) + (γ ′ − γ ) + β ′ < π ,

so that β + γ > β ′ + γ ′; hence α + β + γ > α + β ′ + γ ′, as asserted.

Problem 1 Prove that a trebly asymptotic d-triangle can be divided
into two doubly asymptotic right-angled d-triangles.
Hint: Consider a new vertex sliding along one edge; how do the angles
vary?

Now, since ‘very small’ d-triangles are d-congruent to small d-triangles near
the origin, where d-lines are ‘approximately Euclidean’ lines, the sum of the
angles of ‘very small’ d-triangles is close to π .

At the opposite end of the size scale, we can use the result of Problem 1
above to prove the surprising fact that all trebly asymptotic d-triangles are Theorem 1 below

d-congruent to each other.

Theorem 1 All trebly asymptotic d-triangles are d-congruent to each
other.
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Proof It is sufficient to prove that trebly asymptotic d-triangles are
d-congruent to the trebly asymptotic d-triangle with vertices −1, 1 and i .

So, let �ABC be any trebly asymptotic d-triangle, where (for convenience)
we assume that the vertices A, B, C occur in clockwise order on C . Let � denote
the line AB, and let D be any point of � in D .

Then, by the Origin Lemma, we can map D to itself and D onto the origin
O by a Möbius transformation, M1 say. It follows that M1 maps AB onto a
diameter of D .

D
O

p i

O

l

A

B
C

–1 –11 1

M1 M2 M3

We can then map D to itself by another Möbius transformation, M2 say, that
rotates the disc about the origin and maps A and B onto −1 and 1, respectively.
Since Möbius transformations are direct hyperbolic transformations, they pre-
serve the orientation of points; it follows that the image of C under M2 ◦ M1 is
some point p, say, on the upper half of C .

Now, for any real number m ∈ (−1, 1), the Möbius transformation

M3(z) = z − m

1 − mz

maps D to D , C to C , −1 to −1, 1 to 1, and the upper halves of D and C to
themselves. It also maps p to i if m is chosen so that

i = p − m

1 − mp
,

which we can rewrite in the form

m = p − i

1 − pi
. (1)

Then, using the facts that |p| = 1 and Im p > 0, we can check that equation (1) We omit the details.

indeed provides a value of m that is real and strictly between −1 and 1.
Composing the three Möbius transformations that we have met, the compos-

ite Möbius transformation M3 ◦ M2 ◦ M1 maps the trebly asymptotic d-triangle
�ABC onto the trebly asymptotic d-triangle with vertices −1, 1 and i , as
required. �

Trebly asymptotic d-triangles will play a crucial role in our discussion of
hyperbolic area. First, we see that every d-triangle can be fitted inside some
trebly asymptotic d-triangle.
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Theorem 2 Let �ABC be a d-triangle. Then there exists a trebly asymp-
totic d-triangle �DEF that contains �ABC.

Proof First, we construct a trebly asymptotic d-triangle �DEF as follows:

D

B
C

A

F

E

extend the segment AB beyond B to meet C at D, the segment BC beyond C
to meet C at E , and the segment CA beyond A to meet C at F . Then draw the
trebly asymptotic d-triangle �DEF.

Now, the d-line containing the points A, B, D cuts off a minor arc of C that
contains F . It follows that the d-line through D and F lies on that side of
the d-line through A, B, D, and (in particular) that the d-triangles �DAF and
�ABC do not overlap.

Similarly, the d-triangles �EBD and �ABC do not overlap, and also the
d-triangles �FCE and �ABC do not overlap. Also, none of the d-triangles
�DAF, �EBD, �FCE overlap.

It follows that �ABC is contained within �DEF, as required. �

Then, since every d-triangle can be fitted inside some trebly asymptotic
d-triangle, the following completely surprising result (which holds whatever
our definition of hyperbolic area is) proves the existence of an upper bound for
the area of all d-triangles.

Theorem 3 All trebly asymptotic d-triangles have the same (hyperbolic) Note that the area must be
finite, whatever definition
of hyperbolic area we
choose to use.

area, and this is a finite number.

Proof Using the result of Problem 1, we can divide a given trebly asymp-
totic d-triangle into six singly asymptotic d-triangles, as shown in the margin
diagram. Therefore it is sufficient to prove that the area of a singly asymptotic
d-triangle is finite.

Let �ABC be a singly-asymptotic d-triangle, with C on C (as in the left
figure below). First, extend AB to meet C at a point C ′, and bisect ∠BAC by
AD, where D is a point on CC′. Next, (hyperbolically) reflect ∠BAC in AD;
since AB has finite hyperbolic length and AC has infinite hyperbolic length
(since C lies on C ), this reflection maps B to some point A1, say, on AC,
as shown in the right diagram below. Also, the reflection must map BC onto
A1C ′; and, by symmetry, BC and A1C ′ must meet at some point, B1 say,
on AD.

Next, bisect ∠C ′ BC by B D0, where D0 is on C ′C , and bisect ∠C ′ A1C by
A1 D1, where D1 is on C ′C , as shown below.



404 6: Hyperbolic Geometry: the Poincaré Model

A

B

C
C¢ D0 D1

B1

B

A

A1

CD

Our strategy of proof is now as follows. The d-pentagon AA1 D1 D0 B and
its boundary all lie in D , and so at a minimum positive distance from C , the
boundary of D . Also, by adding additional line segments B1 D0 and B1 D1 we
can divide the d-pentagon into eight d-triangles; each d-triangle has finite area,
and so the d-pentagon must also have finite area. We will show that �B AC
can be cut up and reassembled (iteratively) inside this d-pentagon, and so has
an area less than or equal to the area of the d-pentagon; in particular, it must
have finite area.

C′ D0 D1

B1
B2 A2

A1

A

B

D2 C
D

We now do to �B1 A1C what we did previously to �B AC . Reflect (in a
hyperbolic way) �B1 A1C in A1 D1 : B1 maps to some point A2 on A1C and
B1C maps to A2C ′, which meets B1C at some point B2 on A1 D1.

�B2 A1 A2 is congruent to several d-triangles in the d-pentagon; for con-
venience we choose the black one on the left in the figure above. We then
repeat the process for �B2 A2C . We bisect �B2 A2C with A2 D2, where D2

is some point on C ′C . The cross-hatched d-triangles in the above figure are
d-congruent – one is in �B AC and one is in the d-pentagon.

Continuing indefinitely, we do for �Bn+1 An+1C what we have just done for
�Bn AnC . With each pair of hyperbolic reflections we get two new d-triangles
in �B AC and two new d-triangles in the d-pentagon. These d-triangles are
d-congruent by means of a sequence of hyperbolic reflections in the d-lines
An+1 Dn+1, An Dn , . . . , A1 D1 and AD.

In this way, we reassemble the asymptotic d-triangle inside the d-pentagon;
hence the asymptotic d-triangle must have finite area.

It follows that all trebly asymptotic d-triangles have finite area, and so
(as we noted before the theorem that all trebly asymptotic d-triangles are
d-congruent) they have the same area. �

Problem 2

(a) Prove that a doubly asymptotic d-triangle is a subset of a suitably
chosen trebly asymptotic d-triangle, and so is finite.

(b) Prove that the area of a doubly asymptotic d-triangle depends only
on the angle at its vertex in D .
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We can now give Gauss’ magnificent proof that the area of each d-triangle

D

B
β

α
γ C

A

F

E

is proportional to the quantity

π − (angle sum).

Theorem 4 The area of a d-triangle with angles α, β, γ is given by K (π −
(α + β + γ )), where K is the same constant for all d-triangles.

Proof Let �ABC be a d-triangle with angles α, β, γ at vertices A, B, C ,
respectively. Extend the line segment AB to a point D on C , the segment BC to
a point E on C , and the segment CA to a point F on C . Since �DEF is trebly
asymptotic, it has finite area, k say, by Theorem 3.

Now, we have seen that any doubly asymptotic d-triangle has an area which
Problem 2, part (b)depends only on the angle at its vertex in D , and so only on the ‘exterior angle’

of the triangle at its vertex in D . So, we define a function f such that the area
of any doubly asymptotic d-triangle with exterior angle θ , say, in D is f (θ).

Then, it is clear from the margin figure above that in �FAD this exterior
angle equals α; so, the (hyperbolic) area of �FAD is f (α).

If the segment F AC extended meets C at X (as in the left figure below), then
�DX F is trebly asymptotic and is composed of the two doubly asymptotic
d-triangles �FAD and �DAX. Then, if we denote the area of each trebly-
asymptotic d-triangle (such as �DXF) by k, say, and notice that (from our
definition of f ) the area of �DAX is f (π − α) since its exterior angle at A is
π − α, it follows that

Here we use the fact that
(hyperbolic) area is
additive.

k = f (α) + f (π − α). (2)

Our next objective is to use equation (2) to determine an explicit formula for f .

π –βα
π–α
α+β

E

C

X

D

B

A

F

So, consider any trebly asymptotic d-triangle, as shown in the figure on the
right above. By drawing radii from the center of D to its vertices on C , we can
divide this d-triangle into three doubly asymptotic d-triangles. If we denote
the angles at O of these three d-triangles by π −α, π −β and α+β, as shown
above, we have

k = f (α) + f (β) + f (π − (α + β))
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By equation (2), f (π − (α + β)) = k − f (α + β), so that

f (α) + f (β) + k − f (α + β) = k,

that is,

f (α) + f (β) = f (α + β). (3)

It follows from equation (3) that f is linear, so that f (α) = λα for some We omit the details of this
fact, which uses a
continuity argument.

constant λ.
Using this formula for f , we deduce from equation (2) that

λ(α) + λ(π − α) = k,

so that λ = k
π

. Hence f (α) = k
π
α.

Returning to the original d-triangle �ABC in the margin figure above, the

We again use the fact that
(hyperbolic) area is
additive.

area of �ABC is equal to the area of �DEF minus the sum of the areas of
the three doubly asymptotic d-triangles �FAD, �DBE and �CAF. Since the
latter four areas are k, f (α), f (β) and f (γ ), respectively, it follows that

area of �ABC = k − ( f (α) + f (β) + f (γ )).

Using the formula for f that we have just found, we can write this equation as

area of �ABC = k −
(

k

π
α + k

π
β + k

π
γ

)
,

and so as

Note that here K is
arbitrary.

area of �ABC = K (π − (α + β + γ )),

where K = k
/
π . �

It is usual to take K = 1 (which is equivalent to taking the area of a trebly The expression
π − (α + β + γ ) is called
the angular defect of
�ABC.

asymptotic d-triangle to be π ). Then

area of �ABC = π − (α + β + γ ).

Now this result is all very well, but how do we know whether, given any pos-

Recall that, if α, β, γ are
positive real numbers with
α + β + γ = π , then such
a Euclidean triangle
exists.

itive real numbers α, β, γ with α + β + γ < π , there actually is a d-triangle
whose angles are α, β, γ ?

A key tool in showing that such a d-triangle exists, is the following result.

Lemma 1 Let P be a point on a d-line � of D , and let 0 < β < π
2 . Then

βl

P

there are exactly two d-lines through P that make an acute angle β with �,
and each is a (hyperbolic) reflection of the other in �.

Proof Since all the properties in the statement of the Lemma are hyperbolic
properties, and there is a hyperbolic transformation (for example, a Möbius
transformation) that maps the point P to the origin O , it is sufficient to prove
the result when P is the origin.
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Then there are (by Euclidean geometry) exactly two diameters of D (and

lβ
diameters are d-lines) through the origin that make an acute angle β with the
given diameter �, and each is a reflection of the other in �. This completes the
proof. �

We are now in a position to prove the final result in this subsection.

Theorem 5 Let α, β, γ be positive real numbers with 0 < α+β +γ < π .
Then there is a d-triangle in D with angles α, β, γ .

Proof Since 0 < α + β + γ < π , at least one of the numbers lies strictly

A

l

P

Q

α

between 0 and π
2 ; let us suppose that this number is β. Next, let A, P, Q be the

points in D with coordinates 0, 1, cos α + i sin α , and let � be a variable d-line
in D whose initial position is as the d-line with endpoints P and Q. Then the
angles of the doubly-asymptotic d-triangle �APQ are α, 0 and 0.

The first step is to keep fixed the endpoint of � that is originally at Q, and
let the endpoint that is originally at P move round C away from Q. As this
endpoint moves away from P , the angle θ between � and the radius AP varies

A
R P

l

Q

Q ′

b

continuously, starting at 0. By the time that the moving endpoint reaches Q′,
the image of Q under Euclidean reflection in the radius AP, the angle θ has
reached the value π

2 . It follows, by continuity and the intermediate value prop-
erty, that there is some point, R say, on AP such that for the d-line through P
and R the corresponding value of the angle θ is β.

Now, it follows from Lemma 1 that through every point S between A and R
there is a d-line that makes an angle β with the radius AP; also, if we assume
that this angle β lies above the radius AP and contains part of the second
quadrant of D in its interior, this d-line is unique.

We now let S move along AP from R towards A, taking with it the corre-

bb

S R
P

Q

T

A

sponding d-line �. Denote by T the point where the variable d-line � intersects
the radius AQ. Then, as S moves along AP from R towards A, T moves along
AQ from Q towards A.

The d-lines �1 and �2 corresponding to successive positions S1 and S2 of S
do not meet in D . For, if they met at a point X in D , then the external angle
at S2 of the d-triangle �XS1S2 would be less than or equal to the sum of the
opposite two internal angles, which is impossible by the result of Problem 1 in
Subsection 6.4.1. (The following figure shows the situation when X is in the
upper/lower half of D , respectively.)

A

A

S2

S2
S2

X

R X

R

S1

b b

bb

p-b
p-b
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Hence as S moves monotonically along AP from R towards A, T moves
monotonically along AQ from Q towards A. As S approaches A, the curvature
of the d-line � decreases, and � approaches the diameter d of D that makes an
angle β with the diameter containing AP.

As T moves monotonically along AQ from Q towards A, the angle at T

P
B

b
A

C

d

Q

between the radial line AT and � starts at 0, and approaches the value π −
(α + β) as T approaches A. It follows, by continuity and the intermediate
value property, that there is some point, C say, on AQ such that at C the d-line
� makes an angle γ with the radius through C .

If we denote by B the point where the d-line � through C meets AP, then
the triangle �ABC has the desired angles α, β, γ . �

6.5.2 Tessellations
The term tessellate means ‘fit together exactly a number of identical shapes,
leaving no spaces’, as in the making of a mosaic. For example, we may tes-
sellate the Euclidean plane using rectangles of a given size in several ways,
and we may tessellate it in other ways as well – as illustrated below. In these

You saw in Theorem 2 of
Subsection 5.2.1 that
every Euclidean
transformation is a
composite of reflections.

examples, we may move a given occurrence of any shape onto any other occur-
rence by a Euclidean transformation, and so by a combination of Euclidean
reflections.

Euclidean tessellations using a single figure are sometimes called ‘wallpaper Patterns like those in the
figure above are found
among the tilings of the
Alhambra Palace in
Granada (Spain), and
elsewhere in Moorish art.

patterns’, for obvious reasons! With each such figure we can associate its group
of symmetries; it is an interesting piece of mathematics that there are only
17 different wallpaper patterns, in the sense that the symmetry group of any
wallpaper pattern is isomorphic to one of only 17 non-isomorphic groups.
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Tessellations occur in hyperbolic geometry also. For example, we may start
with a symmetric figure, a symmetric d-triangle �ABC, in D bounded by
three d-lines (as in the following figure), reflect �ABC in each d-line in turn
to obtain 3 copies each d-congruent to �ABC, and so on. This produces a
hyperbolic tessellation of D , as shown in the figure below; for clarity we have
shaded all the copies that can be obtained from �ABC by direct hyperbolic
transformations. All the copies are d-congruent to each other, even though to
a Euclidean eye they seem to be of various different shapes and sizes!

Harold Scott MacDonald
Coxeter (1907–2003) was
born in London, guided
towards mathematics by
Bertrand Russell, and
spent most of his life in
Canada. His work on
regular polytopes led to
the discovery of Carbon
60, and to the famous
geodesic dome of
Buckminster Fuller.

A

B C

Another tessellation of D was suggested to the graphic artist M. C. Escher
by the geometer H. S. M. Coxeter, and resulted in the picture below, Circle
Limit IV. The angels and devils rest on a tessellation of D by d-triangles.

Maurits Cornelis Escher
(1898–1972) received his
graphic art training in
Arnhem and Haarlem, and
worked in Italy,
Switzerland, Belgium and
Holland.
M. C. Escher’s ‘Circle
Limit IV’ c© 2010.
The M. C. Escher
Company-Holland. All
rights reserved.
www.mcescher.com

6.5.3 Kaleidoscopes
We now explore the ideas underlying the (Euclidean) kaleidoscope, and

A kaleidoscope is a
machine that produces
wallpaper patterns using
reflections in mirrors.explain how hyperbolic tessellations can be constructed.
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A Euclidean Kaleidoscope
If two mirrors meet at right angles, an angle of π/2, any point between the
mirrors has an image in each mirror; then, each image itself has an image in
the mirrors – giving a total of four points in all, lying on a circle centred at the
vertex where the mirrors meet.

If the mirrors meet at an angle of π/3, there are 6 points in all; and, in
general, if the mirrors meet at an angle π/k there are 2k points in all.

initial point

initial point
π / 3

A real kaleidoscope has three mirrors, each pair meeting at an angle π/k,
where k is some integer. For example, consider the case where the mirrors
meet at angles of π/2, π/3 and π/6. Corresponding to these vertices there are
4 points, 6 points and 12 points – making a total (in the first instance) of 17

The total number is 17
rather than 22, since some
of them are repeated.

points. But each of these points in turn has images in the mirrors, and so on . . ..
The whole pattern of images spreads through the plane!

π / 3

π / 6

initial point
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Since reflection is a Euclidean isometry, the process of reflections fills the
whole plane with congruent shapes.

A ‘Hyperbolic Kaleidoscope’
Hyperbolic reflections and transformations are hyperbolic isometries; that is,
they map figures without altering the hyperbolic distances between their points
even though the images may look (to a Euclidean eye) very different in size
and shape from the originals. In particular, they map d-triangles to d-congruent
d-triangles.

If two mirrors along d-lines meet at an angle of π/2, any point between the
mirrors has an image under hyperbolic reflection in each mirror; then, each
image itself has an image in the mirrors. Again, we obtain a total of four points
in all, lying on a hyperbolic circle centred at the vertex.

Similarly, if the mirrors along d-lines meet at an angle of π/3, there are 6
points in all; and, in general, if the mirrors meet at an angle of π/k, there are
2k points in all.

initial point

initial point
π / 3

π
2

π
7

π
3initial triangle

O

Now construct a hyperbolic analogue of the Euclidean kaleidoscope, with
three mirrors along d-lines in D : two of them lying along d-lines through the
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origin that meet at O at an angle of π/7, and the third lying along a d-line that
It is not hard to verify that
such a d-line must exist.meets the first two at angles of π/2 and π/3. We reflect the triangle in each

Note that
π
7 + π

2 + π
3 < π .

side in turn (using hyperbolic reflections), and continue to reflect indefinitely
in the three d-lines.

Since hyperbolic reflection is a hyperbolic isometry, the process of reflec-
tions fills the whole unit disc with d-congruent d-triangles. The figure that we
end up with is just the design on the front of the book and in Subsection 6.4.1.

6.6 Hyperbolic Geometry: the Half-Plane Model

In previous sections we described the disc model of hyperbolic geometry, in
which the unit disc D is the space of points, and the transformations of this
space as being of the form

z �→ M(z) = az + b

b̄z + ā
or z �→ M(z̄) = az̄ + b

b̄z̄ + ā
, where |b| < |a|.

However there is a completely equivalent hyperbolic geometry, in which the

That is, there is a one–one
correspondence between
points of the two spaces
and the transformations in
the two geometries.

space (the set of points) is the upper half-plane

H = {z : z ∈ C, Im z > 0} ,

and the h-lines in H (the analogues of d-lines in D) are the restriction to H
of vertical lines in the plane together with the restriction to H of circles with
centre on the real axis in C. Notice that the h-lines are all arcs of generalized
circles that meet the boundary of H at right angles, just as d-lines are all arcs
of generalized circles that meet the boundary C of D at right angles.

The Möbius transformation z �→ i 1+z
1−z maps D one–one onto H , and pro-

vides a convenient method for ‘transferring’ the geometric properties in D to
corresponding properties in H . For example, it maps the d-lines in D to the
h-lines in H .

The hyperbolic transformations in H are the mappings of H to itself
given by

z �→ M(z) = az + b

cz + d
or z �→ M(−z̄) = a(−z̄) + b

c(−z̄) + d
,

where a, b, c and d are real, and ad − bc > 0. These are the composites
of reflections in h-lines, which are just inversions in the Euclidean circles of
which the h-lines form a part.

The geometry in H has many properties similar to those in D :

• the sum of the angles of an h-triangle is less than π ;
• two h-triangles are h-congruent if their angles are equal in pairs;
• the area of an h-triangle with angles α, β, γ is K (π −(α+β +γ )), for some Generally we take K = 1,

as in Subsection 6.5.1.K > 0;
• h-circles are Euclidean circles in H , and vice-versa.

Infinitesimal hyperbolic distances ds in H are related to their Euclidean
lengths by the formula ds = |dz|

y , from which it can be shown that geodesics

Recall that a geodesic is
the curve of shortest
length joining two points
in the space.in H are the h-lines.
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Finally, we comment that the hyperbolic geometry of H turns out to be
of great importance in many unexpected branches of mathematics – such as
Number Theory, in which tessellations of H such as the following occur
naturally.

6.7 Exercises

Section 6.1
1. Sketch the following d-lines:

�1 = {(x , y) : x + y = 0} ∩ D ;

�2 =
{
(x , y) : x2 + y2 + 2

√
2y + 1 = 0

}
∩ D ;

�3 =
{
(x , y) : x2 + y2 − √

5y + 1 = 0
}

∩ D ;

�4 =
{
(x , y) : x2 + y2 − 3x + 1 = 0

}
∩ D .

Hence decide which of the d-lines intersect, which are parallel and which
are ultra-parallel.

2. Sketch three d-lines �1, �2 and �3 with the following properties: �1 and �3

are parallel, �2 intersects �1 and �3, and the angles at which �2 crosses �1

and �3 are not equal.
(This shows that the Corresponding Angles Theorem in Euclidean geom-

etry does not hold in hyperbolic geometry.)

3. Verify that the points
(
− 1√

2
, 1√

2

)
and

(
− 1√

2
, − 1√

2

)
lie on the circle C with

equation

x2 + y2 + 2
√

2x + 1 = 0.
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Hence write down the equations of the diameters of D which are parallel to
the d-line � which is part of C .

4. Use the Origin Lemma to show that, given two d-lines meeting at right
angles, there is a hyperbolic reflection mapping them to two perpendicular
diameters of D .

5. Let �1, �2 and �3 be any three d-lines such that hyperbolic reflection in any
one exchanges the other two.
(a) Prove that there is some point P of D which lies on each of the three

d-lines.
(b) Use the Origin Lemma to prove that the acute angle between any two

of the d-lines is π
3 .

6. Verify that the following equations are the equations of generalized circles
of which d-lines are a part, and sketch the corresponding d-lines.
(a) x2 + y2 + 4x + 1 = 0
(b) x2 + y2 + 2x − 2y + 1 = 0

7. Use the fact that the circle with radius a and centre (1, a), where a > 0,
touches the x-axis to write down the equation of a d-line through the point
1
2 i that is parallel to the d-line with equation y = 0.

Section 6.2
1. Determine the general form of the direct hyperbolic transformations that

map 0 to 0 and the diameter y = x of D to the diameter y = 0 of D .
2. (a) Determine the general form of the direct hyperbolic transformations

that map each of the following points to 0:

− 1
2 , 1

2 − 1
2 i .

(b) Determine a direct hyperbolic transformation that maps − 1
2 to 1

2 − 1
2 i .

(c) Determine the general form of the direct hyperbolic transformation that
maps 1

2 − 1
2 i to − 1

2 .
3. By drawing a sketch, or in some other way, decide whether the effect

of successive hyperbolic reflections in d-lines �1 and then �2 given by
the following equations is a (hyperbolic) rotation, a limit rotation or a
translation.
(a) �1 : x2 + y2 − 2x − 2y + 1 = 0; �2 : x2 + y2 + 2x + 2y + 1 = 0.
(b) �1 : x2 + y2 − 2x − 2y + 1 = 0; �2 : x2 + y2 − 2x + 2y + 1 = 0.

4. Let M be a direct hyperbolic transformation mapping the point p in D to
the point q. Let Mq be a direct hyperbolic transformation mapping the point
q to 0.
(a) Show that the composite transformation M ′ = Mq ◦ M maps p to 0.
(b) Deduce that M is the composite of a hyperbolic transformation

mapping p to 0 followed by a hyperbolic transformation mapping
0 to q.
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5. (a) Prove that the set of all direct hyperbolic transformations forms a group
under the operation of composition of functions.

(b) Prove that the set of all hyperbolic transformations forms a group under
the operation of composition of functions.

Section 6.3
1. Determine d

(
− 1

5 i , 0
)

and d(0.9, 0.99).

2. Determine the positive number a for which d(0, a) = 2, and the negative
number b for which d(0, b) = 10.

3. Determined d
(
− 1

2 , 1
2 i
)

.

4. (a) Determine the hyperbolic midpoints of the d-line segments [0.1, 0.9]
and [−0.1, 0.9].

(b) Determine the hyperbolic centre and radius of the circle C =
{z : |z − 0.5| = 0.4}.

(c) Determine the equation of the hyperbolic perpendicular bisector � of
[0.1, 0.9].

5. Determine the Euclidean centre and radius of the hyperbolic circle

C =
{

z : d
(

1
2 , z
)

= 1
}

.

6. Let 0 < a < b < 1, and let the d-line � with equation x2+y2−2cx+1 = 0,
where c > 1, intersect the radius [0, 1) between A(a, 0) and B(b, 0).

(a) Prove that � intersects AB at the point
(

c − √
c2 − 1, 0

)
.

Now assume that � is the hyperbolic perpendicular bisector of AB.
(b) Use the Reflection Lemma to prove that

c = 1 + ab

a + b
.

(c) Deduce from parts (a) and (b) that the hyperbolic midpoint of AB is(
1 + ab −√

(1 − a2)(1 − b2)

a + b
, 0

)
.

7. Let � be a d-line that is not a diameter of D and whose endpoints on C

subtend an angle θ , 0 < θ < π , at the centre of D . Prove that the hyperbolic
length of the d-line segment from the origin to � that is perpendicular to �

is tanh−1
(

cot 1
4 (θ + π)

)
.

Section 6.4
1. ABC D is a d-quadrilateral. The d-lines through A and B and through D

P
BA

C

D

E

and C are parallel, with a common boundary point P on C ; the d-lines
through D and A and through C and B meet at a point E in D , as in the
figure in the margin (in which A is at the origin).
(a) Prove that it is impossible that ∠EAB = ∠EDC.

Hint: Consider the Euclidean triangle �ADP.
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(b) Prove that it is impossible that ∠EBA = ∠ECD.
Hint: Consider the Euclidean triangle �PBC, with B at the centre

of D .
(c) Prove that the following combination is impossible:

∠EAB = ∠ECD and ∠EBA = ∠EDC.

(d) Prove that the following combination is impossible:

∠EAB = ∠EBA and ∠EDC = ∠ECD.

2. Let �1 and �2 be a pair of perpendicular diameters of D . Sketch �1 and
�2, and some of the ultra-parallels to �1 for which �2 is their common
perpendicular with �1.

3. ABCD is a d-quadrilateral such that the hyperbolic length of each side is 1.
ABCD is a hyperbolic
square of side-length 1.The d-line segments AC and BD are of equal hyperbolic length and inter-

sect at right angles at the origin O , their common midpoint, and OE is an
altitude of the d-triangle �OAB. Also, P is the hyperbolic midpoint of OE.

Determine the hyperbolic length of OE, the Euclidean length of OP, the

P

O

B

A

C

DE

angle ∠ABC, the hyperbolic length of OB, the Euclidean length of BD, and
the angle ϕ between PE and either d-line through P that is parallel to the
d-line through A and B.

4. Let �ABC be a d-triangle with ∠ABC = π/3, and let the sides BA and BC
have the same hyperbolic length c. Let B D be the altitude from B to the
side AC. Show that the hyperbolic length b of AC is greater than c.
Hint: Apply the Sine Formula to triangle �BDA.

5. Show that if �ABC is a d-triangle right-angled at C , then Proof of the Sine Formula
(Subsection 6.4.3,
Theorem 10).sin A = sinh 2a

sinh 2c
,

where a and c are the hyperbolic lengths of the sides BC and AB.

Hint: If tan φ = t , then sin2 φ = t2

1+t2 .
6. Determine the hyperbolic lengths of the sides of the d-triangle with angles

π
2 , π

6 and π
6 .

Section 6.5
1. Determine the hyperbolic area of the d-triangle �ABC with vertices at the

points A(0, 0), B
(

1
2 , 0
)

and C
(

0, 1
2

)
.

2. Let A, B, C and D be the points (0,0), (1,0), (0,1) and (−1, 0), respectively,
and let � be the d-line BC.
(a) Determine the vertices of the d-triangle that is the image of the

d-triangle �ABC under hyperbolic reflection in �.
(b) Determine the vertices of the d-triangle that is the image of the

d-triangle �ACD under hyperbolic reflection in �.
(c) Sketch the d-triangles �ABC and �ACD, and their images under

hyperbolic reflection in �.
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(d) Determine the areas of the d-triangles �ABC and �ACD, and of their
images under hyperbolic reflection in �.
Hint: You may assume that Theorem 4 of Subsection 6.5.1 holds for

asymptotic triangles, with K = 1.

Summary of Chapter 6

Introduction
1. The (Euclidean) Parallel Postulate Given any line � and a point P not

on �, there is a unique line m in the same plane as P and � which passes
through P and does not meet �.

2. The (Elliptic) Parallel Postulate Given any line � and a point P not on �,
all lines through P meet �. (That is, there are no lines through P that are
parallel to �.)

3. The (Hyperbolic) Parallel Postulate Given any line � and a point P not
on �, there are at least two lines m through P that do not meet �. (That is,
there are at least two lines through P that are parallel to �.)

Section 6.1: Hyperbolic Geometry: the Disc Model
1. In (Poincaré’s model of) hyperbolic geometry, points (or d-points, where

‘d’ stands for ‘disc’) consists of the points in the unit disc D =
{z : |z| < 1} = {(x , y) : x2 + y2 < 1}.

The points on the boundary C = {z : |z| = 1} = {(x , y) : x2 + y2 = 1}
of D are not points that belong to the geometry.

2. A d-line (or line in hyperbolic geometry) is that part of a (Euclidean)
generalized circle which meets C at right angles and which lies in D .
A d-line may be an arc of a (Euclidean) circle or a Euclidean line
segment that is a diameter of D . The points where the correspond-
ing generalised circle meets C are called the boundary points of the
d-line.

d-lines that are arcs of Euclidean circles all lie in one-half of the disc
D , and all curve away from the diameter bounding the half-disc.

The equation of a d-line � is of the form ax + by = 0, where a and b
are not both zero, or x2 + y2 + fx + gy + 1 = 0, where f 2 + g2 > 4.

3. Two d-lines that do not meet in D are parallel if the generalized Euclidean
circles of which they are parts meet at a point on C , or ultra-parallel
if the generalized Euclidean circles of which they are parts do not meet
on C .

Corresponding to any given d-line � and any point P in D that is not
on �, there exist exactly two d-lines through P that are parallel to �, and
infinitely many d-lines through P that are ultra-parallel to �.

4. Let � be a d-line that is part of a Euclidean circle C . Then inversion in C
maps C onto C , and D onto D .
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5. A hyperbolic reflection in a d-line � is the restriction to D of the inversion
in the generalized circle C of which � is part.

The centre of such a circle C is the point of intersection of the tangents
to C where C and C intersect.

6. Hyperbolic transformations are the composites of a finite number of
hyperbolic reflections, and form a group called the hyperbolic group,
GD , under the operation of composition of functions.

Hyperbolic geometry consists of the unit disc D together with the
group GD of hyperbolic transformations.

7. The (hyperbolic) angle between two curves through a given point A in
D is the Euclidean angle between their (Euclidean) tangents at A.

8. Hyperbolic transformations map d-lines onto d-lines, and preserve the
magnitudes of angles.

9. Origin Lemma Let A be a point of D other than the origin O . Then there
exists a d-line � such that hyperbolic reflection in � maps A to O .

10. Let A be a point of D . Then there exist infinitely many d-lines through A.
Let A and B be two distinct points of D . Then there exists a unique

d-line � through A and B.
11. Let A1 and A2 be any two points of D , and let �1 and �2 be d-lines through

A1 and A2, respectively. Then there is a hyperbolic transformation which
maps A1 to A2 and �1 to �2.

12. Let A, B ∈ D be inverse points with respect to the d-line �, and let A′, B ′
and �′ be the images of A, B and � under hyperbolic reflection in another
d-line �∗. Then A′ and B ′ are inverse points with respect to inversion
in �′.

Section 6.2: Hyperbolic Transformations
1. Hyperbolic reflection ρ in the d-line � which is part of a Euclidean circle C

with centre α is given by the formula

ρ(z) = αz − 1

z − α
, z ∈ D .

Hyperbolic reflection is self-inverse.
Hyperbolic reflection σ in the diameter of D on which y = x tan θ is

given by the formula σ(z) = α2z, z ∈ D , where α = cos θ + i sin θ .
2. The composite of the hyperbolic reflections ρ(z) = αz−1

z−α
and σ(z) = βz−1

z−β

is (σ ◦ ρ)(z) = (αβ−1)z+α−β

(α−β)z+αβ−1
.

3. The restriction to D of every Möbius transformation of the form M(z) =
az+b
bz+a

, with |b| < |a|, is a composite of two hyperbolic reflections, and is
therefore a hyperbolic transformation.

4. Every hyperbolic transformation can be expressed as a composite of at most
three hyperbolic reflections.

5. The composition of an even number of hyperbolic reflections does not
change the orientation of the unit disc, and is called a direct hyperbolic
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transformation. A direct hyperbolic transformation can be expressed as a
composite of at most two hyperbolic reflections.

Any direct hyperbolic transformation is given by z �→ M(z) = az+b
bz+a

, z ∈
D , for some a, b with |b| < |a|.

The composition of an odd number of hyperbolic reflections changes
the orientation of the unit disc, and is called an indirect hyperbolic
transformation.

Any indirect hyperbolic transformation is given by z �→ M(z), where
M(z) = az+b

bz+a
, z ∈ D , for some a,b with |b| < |a|.

6. The composite of hyperbolic reflections in d-lines �1 and �2 that intersect
at a point in D is called a (hyperbolic) rotation and has exactly one fixed
point in D .

The composite of hyperbolic reflections in d-lines �1 and �2 that do not
meet in D but do meet at a point on C is called a (hyperbolic) limit
rotation, and has no fixed points in D but leaves one point of C fixed.

The composite of hyperbolic reflections in d-lines �1 and �2 that do not
meet in D or on C is called a (hyperbolic) translation, and has no fixed
points in D or on C .

The composite of two hyperbolic translations may depend on the order
in which they are applied.

7. A direct hyperbolic transformation M can be written in the (canonical) form
M(z) = K z−m

1−mz , where K and m are complex numbers with |K | = 1 and
m ∈ D .

Conversely, every direct hyperbolic transformation M that maps a point
m of D to the origin is of this form.

A direct hyperbolic transformation M that maps the diameter (−1, 1)

onto itself is of the form M(z) = ± z−m
1−mz , where m ∈ (−1, 1).

An indirect hyperbolic transformation M can be written in the (canoni-
cal) form z �→ K z−m

1−mz , where |K | = 1 and m ∈ D .
8. Strategy To determine the general form of the direct hyperbolic transfor-

mation that maps one point p in D to another point q in D :
1. write down the general form of the direct hyperbolic transformation M1

that maps p to 0, and a matrix A1 associated with M1;
2. write down a direct hyperbolic transformation M2 that maps q to 0, and

a matrix A2 associated with M2;
3. form the matrix product A−1

2 A1 associated with the direct transfor-
mation M−1

2 ◦ M1, and hence write down the general form of the
transformation.

Section 6.3: Distance in Hyperbolic Geometry
1. Properties of a Distance Function d

1. d(z1, z2) ≥ 0 for all z1 and z2;
d(z1, z2) = 0 if and only if z1 = z2.

2. d(z1, z2) = d(z2, z1) for all z1 and z2.
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3. d(z1, z3) + d(z3, z2) ≥ d(z1, z2) for all z1, z2 and z3. (Triangle
Inequality)

4. d(z1, z3) + d(z3, z2) = d(z1, z2) if and only if z1, z2 and z3 lie in this
order on a line.

Additional Properties of the Distance Function d in Hyperbolic
Geometry
5. d(z1, z2) = d(z1, z2) for all z1 and z2 in D .
6. d(z1, z2) = d(M(z1), M(z2)) for all z1 and z2 in D and all direct

hyperbolic transformations M in GD .
2. The hyperbolic distance d(0, z) between the origin and any point z ∈

D is given by d(0, z) = tanh−1(|z|) = 1
2 loge

(
1+|z|
1−|z|

)
. Also, |z| =

(e2d(0,z) − 1)
/
(e2d(0,z) + 1).

In general, the hyperbolic distance between two arbitrary points z1 and

z2 in D is given by d(z1, z2) = tanh−1
(∣∣∣ z2−z1

1−z1z2

∣∣∣).

3. For small z, d(0, z) � |z|; as |z| → 1, d(0, z) → +∞; for z �=
0, d(0, z) > |z|.

4. A point m in D is the hyperbolic midpoint of the hyperbolic line segment
joining a and b in D if m lies on this segment and d(a, m) = d(m, b) =
1
2 d(a, b).

5. Strategy To find the hyperbolic midpoint of a hyperbolic line segment
joining two points p, q on a diameter of D , where |p| > |q|:
1. calculate d(0, p) and d(0, q);
2. if p and q lie on opposite sides of O , then calculate d =

1
2 (d(0, p) − d(0, q)); otherwise calculate d = 1

2 (d(0, p) + d(0, q));
3. then the hyperbolic midpoint is the point m on the radius through O and

p at a Euclidean distance tanh(d) from O .
6. The hyperbolic circle with hyperbolic radius r and hyperbolic centre c

is the set {z : d(c, z) = r , z ∈ D}.
7. Every hyperbolic circle in D is a Euclidean circle, and vice versa.

Strategy To find the Euclidean centre and radius of a hyperbolic circle C
with hyperbolic centre m:
1. find the points a, b where Om meets C ;
2. the Euclidean centre of C is the Euclidean mid-point of ab;
3. the Euclidean radius of C is 1

2 |a − b|.
Strategy To find the hyperbolic centre and radius of a Euclidean circle K
with Euclidean centre p:
1. find the points a, b where Op meets K ;
2. the hyperbolic centre of K is the hyperbolic mid-point of ab;
3. the hyperbolic radius of K is 1

2 d(a, b).
8. Let A and A′ be points in the unit disc D that are images of each other under

reflection in a d-line �. Then � is the (hyperbolic) perpendicular bisector of
the hyperbolic line segment AA′.

9. Reflection Lemma Let p and q be points of D . If |p| �= |q|, then
the hyperbolic reflection that maps p and q onto each other is given by
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M(z) = (αz − 1)
/
(z − α), where

α = (p − q + pq (p − q))
/
(p p − qq).

The d-line in which this reflection takes place has equation

x2 + y2 − 2ax − 2by + 1 = 0, where α = a + ib.

If |p| = |q|, then the reflection that maps p and q onto each other is
reflection in the diameter of D that bisects the angle ∠pOq.

Section 6.4: Geometrical theorems
1. A d-triangle consists of three points in the unit disc D that do not lie on a

single d-line, together with the segments of the three d-lines joining them.
2. The sum of the angles of a d-triangle is less than π .

Each external angle of a d-triangle is greater than the sum of the
opposite two internal angles.

Small triangles have angle sums close to (but less than) π , and triangles
with large areas have angle sums close to zero.

3. A d-quadrilateral ABCD consists of four points A, B, C , D in D (no
three of which lie on a single d-line), together with the segments AB, BC,
CD and DA of the four d-lines joining them. We also require that no two
of these segments meet except at one of the points A, B, C or D.

The sum of the angles of a d-quadrilateral is less than 2π .
4. In a d-triangle �ABC the angles ∠ABC and ∠ACB are equal if and only if

the sides AB and AC are of equal (hyperbolic) length.
5. Two figures in the unit disc D are d-congruent if there is a hyperbolic

transformation that maps one onto the other.
Similar d-triangles (that is, d-triangles with corresponding angles equal)
are d-congruent.

6. An asymptotic triangle is a d-triangle, except that one or more of its
vertices lie on C rather than in D . Simply asymptotic, doubly asymptotic
and trebly asymptotic triangles have 1, 2 and 3 vertices on C , respectively.

The angle sum of an asymptotic triangle is less than π . The angle sum
of a trebly asymptotic triangle is zero.

7. Let � and �′ be two d-lines, and suppose that there exist points A on � and
A′ on �′ such that the d-line segment AA′ meets � and �′ at right angles.
Then AA′ is a common perpendicular to � and �′.

Common Perpendiculars Theorem Two d-lines have a common
perpendicular if and only if they are ultra-parallel. This common perpen-
dicular is unique.

8. Through any point P of D not on a d-line �, there is a unique d-line that
meets � at right angles.

Let � be a d-line which passes through one vertex A of a d-triangle
�ABC and which is perpendicular to the side BC at the point D. The
d-line segment AD is an altitude of the triangle �ABC.

Altitude Theorem Let the sides AB and AC of a d-triangle �ABC be of
equal hyperbolic length, and let the angle at A be θ . Then the hyperbolic
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length of the altitude through A of the triangle is less than some number
that depends only on θ .

9. Pythagoras’ Theorem Let �ABC be a d-triangle in which the angle at C
is a right angle. If a, b and c are the hyperbolic lengths of BC, CA and AB,
then cosh 2c = cosh 2a × cosh 2b.

10. Lobachevskii’s Formula Let the d-triangle �ABC have a right angle at
C , and let the hyperbolic lengths of AC and BC be b and a, respectively.
Then tan A = tanh 2a

/
sinh 2b.

11. Angle of Parallelism Let � be a d-line, and P a point of D that does
not lie on �. Then the angle ϕ between the perpendicular from P to � (of
hyperbolic length p) and either d-line through P that is parallel to � is
given by tan ϕ = 1

/
sinh 2p.

12. Sine Formula Let �ABC be a d-triangle right-angled at C . Let a and
c be the hyperbolic lengths of BC and AB, respectively. Then sin A =
sinh 2a

/
sinh 2c.

13. Let � be a d-line that ends at points A and B on C , and let �′ be that part
in D of a (Euclidean) circle through A and B, and let α be the angle
(in D) between � and �′. Then all points on �′ are the same distance
1
2 loge

{
tan
(

α
2 + π

4

)}
from �.

14. For x ∈ (−1, 1), the following are all equal to tanh−1 x : 1
2 loge

1+x
1−x ,

1
2 sinh−1 2x

1−x2 , 1
2 cosh−1 1+x2

1−x2 .

Section 6.5: Area
1. Area in hyperbolic geometry has the following properties:

• the area of a d-triangle is non-negative, and is zero only if its Euclidean
area is zero;

• d-congruent d-triangles (and d-congruent asymptotic d-triangles) have
the same area;

• if one d-triangle can be fitted inside another, it has a smaller area;
• area is additive.

2. All trebly asymptotic d-triangles are d-congruent to each other.
3. Let �ABC be a d-triangle. Then there exists a trebly asymptotic d-triangle

�DEF that contains �ABC.
4. All trebly asymptotic d-triangles have the same (hyperbolic) area, and this

is a finite number.
5. The area of a d-triangle with angles α, β, γ is given by

K (π − (α + β + γ )), where K is the same constant for all d-triangles. It
is usual to take K = 1, so that the area of a d-triangle is its angular defect.

Let α, β, γ be positive real numbers with 0 < α + β + γ < π . Then
there is a d-triangle in D with angles α, β, γ .

6. Let P be a point on a d-line � of D , and let 0 < β < π
2 . Then there are

exactly two d-lines through P that make an acute angle β with �, and each
is a (hyperbolic) reflection of the other in �.
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7. Tessellate means ‘fit together exactly a number of identical shapes, leaving
no spaces’.

Tessellations of the Euclidean plane using a single figure are sometimes
called wallpaper patterns. There are only 17 different wallpaper patterns,
in the sense that the symmetry group of any wallpaper pattern is isomorphic
to one of only 17 non-isomorphic groups.

8. A kaleidoscope is a machine that produces wallpaper patterns using
reflections in mirrors.

Successive reflections of a point in two plane mirrors that meet at an
angle π

/
k give 2k points in all.

Successive (hyperbolic) reflections of a point in two mirrors along d-
lines in D that meet at an angle π

/
k give 2k points in all. We may obtain

a hyperbolic tessellation of D (with d-congruent d-triangles) by succes-
sive hyperbolic reflections starting from a d-triangle in D formed by three
mirrors along d-lines at angles of π

/
7 (at the origin), π

/
2 and π

/
3.

Section 6.6: Hyperbolic Geometry: the Half-Plane Model
1. In the half-plane model, the set of points is the upper half-plane H =

{z : z ∈ C, Imz > 0}; h-lines are the restriction to H of vertical lines in
the plane together with the restriction to H of circles with centre on the
real axis in C; and the hyperbolic transformations are the mappings of H
to itself given by z �→ (az + b)

/
(cz + d) or z �→ (−az + b)

/
(−cz + d),

where a, b, c, d are real and ad − bc > 0.



7 Elliptic Geometry: the Spherical Model

In the introduction to Chapter 6, we saw that in Elliptic Geometry all the postu- We usually take the sphere
to have radius 1.lates of Euclidean Geometry hold except that the Euclidean Parallel Postulate

is replaced by the following.

The (Elliptic) Parallel Postulate Given any line � and a point P not on

O

great circle

Q

P
S 2

�, all lines through P meet �. (That is, there are no lines through P that are
parallel to �.)

In this chapter we study the geometry of the sphere (which we call S2), such
as the surface of the Earth, as a model of elliptic geometry.

A ‘line’ joining two points P and Q on the surface of a sphere is the curve
of shortest length (that is, a geodesic) on the sphere between the points: it is
actually the great circle (that is, the intersection of the plane through the centre
O of the sphere with the surface of the sphere) through the two points. Any

P

P¢

S 2

two distinct great circles meet in two (diametrically opposite) points, so any
two lines in spherical geometry meet in two points.

The group of transformations in spherical geometry is the group of isome-
tries of the sphere. Clearly a rotation of the sphere is an isometry, and we shall
see that the group of isometries is composed of rotations of the sphere together
with reflections in great circles. It turns out that any orientation-preserving
isometry of the sphere is in fact a single rotation. Recall that an isometry is

a one–one mapping that
preserves distances.

In Section 7.1, we establish a system of coordinates for the sphere; these
are essentially the familiar coordinates of latitude and longitude. Then, in
Section 7.2, we obtain matrix representations for the isometries of the sphere:
every isometry can be written as a 3 × 3 matrix.

Next, in Section 7.3, we define a triangle on the sphere, find a formula
expressing its area in terms of the sum of its angles, and show that every spher-
ical triangle has a dual triangle whose sides and angles have the magnitudes
of the angles and sides, respectively, of the original triangle.

There is an attractive formula for the distance between two points on the
sphere in terms of their coordinates. There is also an attractive generalization
of Pythagoras’ Theorem in spherical geometry, and in proving it we are led
to the trigonometric formulas connecting the sides and angles of a spherical

424
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triangle. These establish that of the six measurements that describe a spheri-
cal triangle (three side lengths, three angles) any set of three determines the
other three. This is not the case in Euclidean geometry (where similar, non-
congruent figures exist), but it is also true in hyperbolic geometry. Indeed, there
are closer analogies between spherical geometry and hyperbolic geometry than
there are between either geometry and Euclidean geometry.

Many aspects of spherical geometry may be studied more easily if we first
map the sphere onto a plane. This can be done in many ways, although, none
of the mappings (or projections) is an isometry of the sphere onto the plane. In
Section 7.4, we revisit stereographic projection, which maps the sphere onto
the plane in a way that preserves angles and generalized circles. We also show
how to obtain the group of isometries of the stereographic image of the sphere
on the plane; and revisit coaxal circles. Finally, in Section 7.5, we look briefly
at the problem of mapping the spherical Earth onto a flat map.

7.1 Spherical Space

7.1.1 Spherical Geometry
Spherical geometry is the study of geometry on the surface of a sphere. It is
simplest to choose this sphere to have unit radius; we therefore concentrate on It is usually straight-

forward to modify our
results to the case of a
sphere of arbitrary radius,
R say.

what we call the unit sphere in Euclidean 3-dimensional space R
3, namely the

sphere whose centre is at the origin and which has radius 1. In terms of the
usual x-, y-, z-Cartesian coordinates in R

3 with origin O at the centre of the
sphere, the unit sphere has the equation x2 + y2 + z2 = 1. We shall denote it
by the symbol S2. C

z

A

O
B y

x

S2

P

P´

O

Antipodal points

S2

The positive x-, y-, z-axes meet the sphere S2 at the points A(1, 0, 0),
B(0, 1, 0), C(0, 0, 1), respectively. For obvious reasons the point C is
sometimes called the North Pole of the sphere, and denoted by N . Every
point (x , y, z) on the sphere S2 has a diametrically opposite or antipodal point
(−x , −y, −z); for example, the antipodal point to the North Pole is the South
Pole S(0, 0, −1). The plane through O perpendicular to the line ON cuts the
sphere in a circle called the equator.

Example 1 Prove that any plane that cuts the sphere S2 in more than one point
cuts it in a circle.

Solution Let OT be a radius of the sphere perpendicular to the given plane.
A rotation of the sphere about this axis maps the plane to itself, and the sphere
to itself; so it maps their intersection to itself. Each point on the intersection
traces out a circle (of the same radius and centre) under the rotation, so the
intersection is a circle.
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The analogue in spherical geometry of a straight line in the plane is a curve
on S2 called a great circle.

Definition A great circle is the circle cut out on the sphere S2 by a plane

O

N

O

A

S

Circle of
latitude

Great circles

Greenwich meridian

through the centre of the sphere.

Note that, by Example 1, a great circle is indeed a circle. Moreover, it is a
circle of maximal radius 1 on the sphere, which gives rise to the name ‘great’
circle.

Definitions Any great circle through N is called a circle of longitude.
The part of the circle of longitude through A(1, 0, 0) which has positive x-
coordinates we call the Greenwich Meridian. The curve of intersection of
S2 with a plane parallel to the equator is a circle called a circle of latitude.
The curve of intersection of S2 with a plane that is not a great circle is called
a little circle.

The equator is a circle of latitude; circles of latitude other than the equator
are little circles.

We define distance in spherical geometry (on S2) in the natural way.

Definitions Let P and Q be any two points on S2, and C a great circle
through P and Q. Then either arc with endpoints P and Q is said to be a Thus ‘the line PQ’ is not

unique.line on S2 joining P and Q, or a line PQ. The length of a given line on
S2 is defined to be the Euclidean length of the corresponding circular arc;
the distance (or spherical distance) between two points P and Q on S2 is
the length of the shorter of the two lines PQ, and is often denoted simply
as PQ.

Let P , Q and R be any three points on S2 that do not lie on a single great Thus there are several
triangles �PQR.circle. Then a line PQ, a line QR and a line RP form a triangle �PQR.

A property of great circles that we state without proof is that great circles

Q

O

P

great circle

S2

are geodesics on S2; that is, curves of shortest length between any of their
points. This is intuitively clear for the circles of longitude from the North Pole,
for instance. Note that little circles are not geodesics on S2.

The distance between any two points on S2 is a portion of a great circle
through the points. This circle has radius 1, and so has circumference 2π – the
same as the angle that the great circle subtends at its center (the centre of the
sphere). It follows, by proportion, that the distance between any two points on
S2 is equal to the angle that they subtend at the centre of S2.

Theorem 1 The distance between any two points P and Q on S2 is equal
to the angle that they subtend at the centre of S2.
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Thus, for example, the distance from the North Pole to any point on the
equator is π/2, and the distance from the North Pole to the South Pole is π .

With the above definition, spherical distance possesses all the ‘natural’ prop-

N

S

S2p

p
2

erties that a distance function should possess. (We listed these in Subsection
6.3.1.)

For example, it satisfies the Triangle Inequality; that is, if P , Q and R are
any three points on S2, then the side lengths of the triangle �PQR satisfy the
inequality PQ+Q R ≥ P R. This can be proved in a similar way to the Triangle

P

RQ

Inequality in hyperbolic geometry (Theorem 2, Subsection 6.3.3).
Great circles in spherical geometry play many of the roles that lines play in

Euclidean plane geometry. There is always a great circle joining any two points
on S2, because there is always a plane passing through them and the origin.
The plane and the corresponding great circle are unique unless the points are
diametrically opposite, in which case there are infinitely many great circles
joining the points.

However, one way in which spherical geometry differs markedly from
Euclidean plane geometry comes from observing that any two great circles
meet not in one, but in two (diametrically opposite) points. They do so because
the planes that define them have a common point, the origin, and therefore a
common line in R

3, which cuts S2 in the given points. So although great cir-
cles are analogous to the straight lines of the plane, the analogy breaks down
almost at once. There are certainly no ‘parallel lines’ on the sphere, because

P

P ¢
The antipodal points P and P ¢ have

a common equator

S2
O

any two great circles meet in two points.
It is sometimes helpful to observe that corresponding to each point P on S2

there is a unique great circle of points π/2 distant from P , which plays the role
of the equator with P as a ‘pole’. We shall call this great circle the great circle
associated with the point P . Conversely, given any great circle there are two
points of S2 which play the role of its ‘poles’.

Example 2 Let P and Q be any two points on S2. Show that there is a rotation

T

P O

Q

S2

of S2 that maps P to Q.

Solution Consider the great circle through P and Q, and let T be one of its
poles. The rotation of S2 about the axis OT and through the angle ∠P O Q (in
the appropriate direction) sends P to Q, as required.

Problem 1 Determine whether rotations of S2 exist with the following
properties.

(a) (1, 0, 0) �→ (0, −1, 0)

(b) (1, 0, 0) �→ (0, 1, 0) and (0, 1, 0) �→ (0, 0, 1)

(c) (1, 0, 0) �→ (0, −1, 0) and (0, 0, 1) �→ (0, 1, 0)
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7.1.2 Coordinates on S2

We now set up a system of spherical polar coordinates on S2. We start by y

B

O

Equatorial plane of S 2

A
f

x

P1defining the direction along the equator from A(1, 0, 0) to B(0, 1, 0) to be the
positive direction on the equator. Then for any point P1 on the equator let φ be
the angle ∠AO P1 measured in the positive direction along the equator; then
we assign the coordinates (cos φ, sin φ, 0) to P1, where 0 ≤ φ < 2π .

P has spherical coordinates
(cos f sin q, sin f, sin q, cos q).

f P1

B

P

A

q

N

S2

Next, let P be any point on S2 (other than the North and South Poles) that
does not lie on the equator. Let P1 be the point on the equator that lies on the
arc N S of the great circle through N and P .

Then let φ be the angle ∠AO P1 measured in the positive direction along the
equator (0 ≤ φ < 2π ), and let θ be the angle ∠N O P (0 < θ < π); we assign
the coordinates (cos φ sin θ , sin φ sin θ , cos θ ) to P .

For example, the point of S2 with spherical polar coordinates(
cos π

3 sin π
4 , sin π

3 sin π
4 , cos π

4

)
is the point

(
1

2
√

2
,

√
3

2
√

2
, 1√

2

)
.

Problem 2 Determine the angles φ and θ in the spherical polar repre-

sentation (cos φ sin θ , sin φ sin θ , cos θ ) of the points
(

0, −
√

3
2 , 1

2

)
and(

1√
14

, −
√

2√
14

, 3√
14

)
.

In this way every point on S2 other than the North and South Poles has been
given spherical polar coordinates involving appropriate values of φ and θ . At
the North Pole we take θ to be zero and let φ take any value in the interval
[0, 2π), and at the South Pole we take θ to be π and let φ take any value in the
interval [0, 2π); the non-uniqueness of coordinates at the Poles will cause us
no problems.

Definitions Let P be a point on S2 with spherical polar coordinates
(cos φ sin θ , sin φ sin θ , cos θ ), where 0 ≤ φ < 2π and 0 ≤ θ ≤ π . The Sometimes we shall find it

convenient to regard φ as
being defined on R rather
than on [0, 2π), as a
periodic function with
period 2π .

angle θ of P is called its colatitude; the quantity θ ′ = π
2 − θ is called its

latitude (note that −π
2 ≤ θ ′ ≤ π

2 ). The angle φ of P is called its longitude.

Notice, for example, that the distance of a point P with colatitude θ on S2

from the North Pole is simply θ .

Problem 3 Determine the latitude, colatitude and longitude of the

point
(

1
2
√

2
,

√
3

2
√

2
, 1√

2

)
on S2.

Hint: You met this point just before Problem 2 above.

Problem 4 Determine the spherical polar coordinates of the point Note that 30◦ S means
‘30◦ below the equatorial
plane’. Also, sometimes
we take the phrase ‘of the
Greenwich meridian’ as
understood when
describing longitude.

45◦ W of the Greenwich meridian on S2 and 30◦ S.

Notice also that the set of points on the sphere with a common colatitude
θ forms a circle, Cθ say; this is a little circle if θ �= π/2, and a great circle
(the equator) if θ = π/2. Since θ measures the distance of each point of the
circle Cθ from the North Pole N , we shall say that Cθ is a circle on the sphere
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with centre N. Since any point on S2 may be chosen as the North Pole (with
a suitable choice of coordinate axes), it follows that a circle on S2, defined as
the set of points equidistant from a given point, is either a great circle or a little
circle.

Problem 5 Show that, given any two great circles on S2, there are two

tangent

S2

tangent

great circles bisecting the angles between them, each at right angles to
the other.
Hint: The angle between two curves on S2 at one of their points of
intersection is the angle between their tangents at that point.

7.2 Spherical Transformations

7.2.1 Isometries of S2

An isometry of S2 is a mapping of the unit sphere to itself that preserves
distances between points. In fact the isometries of a sphere form a group,
since

• the composition of two isometries is also an isometry;
• the identity mapping is an isometry, and it is the identity element of the

group;
• the inverse of any isometry is an isometry;
• the composition of isometries is associative, since the composition of

functions is always associative.

We have therefore established the following theorem.

Theorem 1 The isometries of S2 form a group.

We call this group the group of spherical isometries, and denote it by the
symbol S(2).

We shall see at the end of this section that the rotations of S2 form a group,
A transformation is direct
if it preserves the
orientation of angles, and
indirect if it reverses them.

which is identical to the group of direct isometries of the sphere. A reflection
of S2 in a plane through the centre of the unit sphere is not a direct isometry
of S2, but every composition of an even number of such reflections is a direct
isometry of S2.

We now consider the three elementary rotations of S2 (that is, its rotations z

y

x

Z

O

S2X

Y

about the coordinates axes) and their composites.
The elementary rotation about O Z leaves the z-axis fixed, and rotates the

(x , y)-plane. The positive direction of this rotation is anticlockwise as seen
from above (that is, as viewed from a point of the positive z-axis), from the pos-
itive x-axis towards the positive y-axis. So a rotation of S2 about OZ through
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an angle γ , which we denote by R(Z , γ ), is given by

We say that A is the
matrix associated with (or
of) the elementary rotation
R(Z , γ ).

R(Z , γ ): S2 → S2

x �→ Ax

where x =
⎛
⎝ x

y
z

⎞
⎠ and A is the matrix

⎛
⎝ cos γ − sin γ 0

sin γ cos γ 0
0 0 1

⎞
⎠.

Next, the elementary rotation about OX leaves the x-axis fixed, and rotates z

y

x

Z

YO

X
S2

the (y, z)-plane. The positive direction of this rotation is taken to be anticlock-
wise as seen from above (that is, as viewed from a point of the positive x-axis),
from the positive y-axis towards the positive z-axis. So a rotation of S2 about
O X through an angle α, which we denote by R(X , α), is given by

R(x , α): S2 → S2

x �→ Ax

where x =
⎛
⎝ x

y
z

⎞
⎠ and A is the matrix

⎛
⎝ 1 0 0

0 cos α − sin α

0 sin α cos α

⎞
⎠.

Here A is the matrix
associated with (or of) the
elementary rotation
R(X , α).Finally, the elementary rotation about OY leaves the y-axis fixed, and

Z

O

X

Y

S2

z

y

x

rotates the (x , z)-plane. The positive direction of this rotation is taken to be
anticlockwise as seen from above (that is, as viewed from a point of the posi-
tive y-axis), from the positive z-axis towards the positive x-axis. So a rotation
of S2 about OY through an angle β, which we denote by R(Y , β), is given by

R(Y , β): S2 → S2

x �→ Ax

where x =
⎛
⎝ x

y
z

⎞
⎠ and A is the matrix

⎛
⎝ cos β 0 sin β

0 1 0
− sin β 0 cos β

⎞
⎠.

Here A is the matrix
associated with (or of) the
elementary rotation
R(y, β).It is easy to verify that the determinants of the elementary rotations R (X , α),
We will prove this fact in
Theorem 7, Subsection
7.2.3.

R (Y , β) and R (Z , γ ) are all equal to 1. Since any rotation can be expressed
as a finite composition of these rotations, it follows that the determinant of the
matrix of any rotation of S2 also has determinant 1.

Problem 1 Determine the images of the points (1, 0, 0), (0, 1, 0),

(0, 0, 1) and
(

1√
14

, − 2√
14

, 3√
14

)
under the transformation R

(
Y , π

4

)
.

Notice that the simple cases of these rotations when α, β or γ = π/2 z

y
p
2

x

Z

O

X

Y

S 2

correspond to rotations of one axis onto another. For example,

R
(
Y , π

2

) =
⎛
⎝ cos π

2 0 sin π
2

0 1 0
− sin π

2 0 cos π
2

⎞
⎠ =

⎛
⎝ 0 0 1

0 1 0
−1 0 0

⎞
⎠ ;

under this mapping, (1, 0, 0) �→ (0, 0, −1), (0, 1, 0) �→ (0, 1, 0) and
(0, 0, 1) �→ (1, 0, 0).
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Example 1 Show that R
(
X , π

2

) · R
(
Y , π

2

) �= R
(
Y , π

2

) · R
(
X , π

2

)
. This shows that

multiplication of the
matrices of elementary
rotations (and hence
composition of
elementary rotations) is
not commutative.

Solution Here

R
(
X , π

2

) · R
(
Y , π

2

) =
⎛
⎝ 1 0 0

0 cos π
2 − sin π

2
0 sin π

2 cos π
2

⎞
⎠

×
⎛
⎝ cos π

2 0 sin π
2

0 1 0
− sin π

2 0 cos π
2

⎞
⎠

=
⎛
⎝ 1 0 0

0 0 −1
0 1 0

⎞
⎠
⎛
⎝ 0 0 1

0 1 0
−1 0 0

⎞
⎠

=
⎛
⎝ 0 0 1

1 0 0
0 1 0

⎞
⎠ ,

and

R
(
Y , π

2

) · R
(
X , π

2

) =
⎛
⎝ cos π

2 0 sin π
2

0 1 0
− sin π

2 0 cos π
2

⎞
⎠

×
⎛
⎝ 1 0 0

0 cos π
2 − sin π

2
0 sin π

2 cos π
2

⎞
⎠

=
⎛
⎝ 0 0 1

0 1 0
−1 0 0

⎞
⎠
⎛
⎝ 1 0 0

0 0 −1
0 1 0

⎞
⎠

=
⎛
⎝ 0 1 0

0 0 −1
−1 0 0

⎞
⎠ .

Thus R
(
X , π

2

) · R
(
Y , π

2

) �= R
(
Y , π

2

) · R
(
X , π

2

)
, as required.

Problem 2 Calculate R(Z , γ ) · R(Y , β) and R(Y , β) · R(Z , γ ).

Problem 3 For the elementary rotation R(X , α), verify that the trans-
pose of its matrix is equal to the matrix of the elementary rotation
R(X , −α). State and prove the corresponding results for the elementary
rotations R(Y , β) and R(Z , γ ).

Notice that the inverse of an elementary rotation through a given angle is
an elementary rotation through the same angle but in the opposite direction;
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that is,

R(X , α)−1 = R(X , −α),

R(Y , β)−1 = R(Y , −β)

and R(Z , γ )−1 = R(Z , −γ ).

Combining this observation with the result of Problem 3, we obtain the
agreeable consequence that the inverse of a matrix representing an elemen-
tary rotation is equal to the transpose of that matrix. For example the matrix A Recall that any square

matrix A with the
property that A−1 = AT

or AAT = I is an
orthogonal matrix.

of the elementary rotation R(Y , β) is

A =
⎛
⎝ cos β 0 sin β

0 1 0
− sin β 0 cos β

⎞
⎠ ;

then A−1 = AT .
We saw earlier that we can rotate S2 in such a way as to map any particular Subsection 7.1.1,

Example 2point onto any other. We now see how we can determine the matrix of such a
rotation explicitly.

First, we see how to rotate S2 so as to send the point A(1, 0, 0) to any point z

y

x

P

O

A

From A to P1, and from P1
to P by rotations

S2

P1

P(cos φ sin θ , sin φ sin θ , cos θ) of S2. First we rotate S2 to send A to the point
P1(cos φ, sin φ, 0); then we rotate S2 to send P1 to P .

The first rotation is the elementary rotation R(Z , φ); but what is the sec-
ond rotation? It is a rotation of S2 ‘towards the North Pole’ through an angle
θ ′ = π

2 − θ , so it is something like R(Y , −θ ′) or R
(
Y , θ − π

2

)
. But it is not

a rotation about the y-axis; instead, it is a rotation of S2 about the direction
where the first rotation sent the y-axis. We may perform such a rotation in sev-
eral stages: rotate the sphere first by the reverse transformation R(Z , −φ), then
by the elementary rotation R

(
Y , θ − π

2

)
, and then finally by the transformation

For θ ′ = π
2 − θ , and

R(Z , φ)−1 = R(Z , −φ).
R(Z , φ).

Thus the second rotation is the composition mapping

R(Z , φ)R(Y , −θ ′)R(Z , −φ) = R(Z , φ)R(Y , −θ ′)R(Z , φ)−1.

It follows that the final transformation that sends A to P is given by(
R(Z , φ)R(Y , −θ ′)R(Z , φ)−1

)
R(Z , φ) = R(Z , φ)R(Y , −θ ′).

Theorem 2 A rotation of S2 that maps A(1, 0, 0) to P(cos φ sin θ , Note that there are many
such rotations. Any
composition of this
particular rotation with a
subsequent rotation about
O P has the required
properties.

sin φ sin θ , cos θ) is given by the composition R(Z , φ)R(Y , −θ ′), where
θ ′ = π

2 − θ .

Problem 4 Determine the matrix A of a rotation x �→ Ax of S2

that maps A(1, 0, 0) to P
(

1
2
√

2
,

√
3

2
√

2
, 1√

2

)
. Verify your answer by direct

calculation.
Hint: You met this point P in Problem 3 of Subsection 7.1.2.



Spherical Transformations 433

Example 2 Determine a rotation that maps the point P(cos φ sin θ ,
sin φ sin θ , cos θ) of S2 to N (0, 0, 1), in terms of elementary rotations.

Solution By Theorem 2, one rotation that sends A to P is given by the
composition R(Z , φ)R(Y , −θ ′), where θ ′ = π

2 −θ . It follows that the mapping(
R(Z , φ)R(Y , −θ ′)

)−1 = R(Y , −θ ′)−1 R(Z , φ)−1

= R(Y , θ ′)R(Z , −φ)

sends P to A.
Now at the North Pole φ = 0 and θ = 0, so that θ ′ = π

2 . Hence one rota-
tion that sends A to N is R

(
Y , −π

2

)
. It follows that one rotation that sends

P to N is

For
R (Y , β1) R (Y , β2)

= R (Y , β1 + β2) ,
for any angles β1 , β2.

R
(

Y , −π

2

)
◦ R

(
Y , θ ′) R (Z , −φ)

= R
(

Y , θ ′ − π

2

)
R (Z , −φ)

= R (Y , −θ) R (Z , −φ) .

Problem 5 Determine the matrix A of a rotation x �→ Ax of S2 that
maps P

(
1

2
√

2
,

√
3

2
√

2
, 1√

2

)
to N . Verify your answer by direct calculation.

Hint: You met this point P in Problem 4.

Problem 6 Determine the matrix A of a rotation x �→ Ax of S2

that maps Q
(

1
2 , − 1

2 , − 1√
2

)
to P

(
1

2
√

2
,

√
3

2
√

2
, 1√

2

)
. Verify your answer

by direct calculation.

7.2.2 Reflections in Great Circles
Reflection in the equatorial plane of S2 (that is, in the plane z = 0 that contains S2

equatorial plane

S2

a

reflection of x in
the plane p

p

x

O

ta

the equator of S2) is the mapping x �→ Ax that sends the point x = (x , y, z) to

the point (x , y, −z), so A =
⎛
⎝ 1 0 0

0 1 0
0 0 −1

⎞
⎠. Each point lies vertically above

or below its image, unless it lies in the equatorial plane – in which case it
coincides with its image.

Problem 7 Evaluate the determinant of the above matrix A.

Next, let π be any plane that passes through the centre O of the sphere S2.
The equation of π must be of the form ax+by+cz = 0, since it passes through
O; if we define the vectors a and x to be (a, b, c) and (x , y, z), respectively,
then we can express the equation of π in the form

a · x = 0.
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This defines a plane with the vector a as a normal to it; without loss of
generality, we shall assume that a, b and c have been chosen so that a has
length 1.

Let r be the reflection of S2 in the plane π ; we shall find a matrix for this We shall interchangeably
call this reflection in π

and reflection in the great
circle in which π

intersects S2.

mapping r of S2 to itself.
The image of a point x of S2 is the point r(x). Now the line joining the

points x and r(x) is a line parallel to the normal vector a, so we must have that

r(x) = x + ta, for some value of the parameter t .

We can find this value of t by observing that since x lies on S2 so does its

For r(x) − x = ta, for
some t .

image r(x), and so

(x + ta) · (x + ta) = 1.

This implies that

x · x + 2t x · a + t2a · a = 1,

so that For x · x = 1 and
a · a = 1.

2t x · a + t2 = 0.

Now, if x · a = 0, then the point x lies in the plane π in which we are
reflecting, and then as you would expect t = 0 and r(x) = x.

If x · a �= 0, then we may exclude the possibility that t = 0. It follows from For then clearly r(x) �= x.

the equation 2tx · a + t2 = 0 that t = −2x · a, and so

r(x) = x − 2(x · a)a.

To represent this mapping via a matrix, we express this equation in terms of
coordinates and group the terms carefully:

r(x , y, z) = (x , y, z) − 2(ax + by + cz)(a, b, c)

=
((

1 − 2a2
)

x − 2aby − 2acz, −2abx +
(

1 − 2b2
)

y

−2bcz, −2acx − 2bcy +
(

1 − 2c2
)

z
)

,

so that it can be expressed in matrix form as⎛
⎝ x

y
z

⎞
⎠ �→

⎛
⎝ 1 − 2a2 −2ab −2ac

−2ab 1 − 2b2 −2bc
−2ac −2bc 1 − 2c2

⎞
⎠
⎛
⎝ x

y
z

⎞
⎠ .

Theorem 3 Reflection of S2 in the plane π with equation ax+by+cz = 0,
where a2 + b2 + c2 = 1, is given by the mapping x �→ Ax where

A =
⎛
⎝ 1 − 2a2 −2ab −2ac

−2ab 1 − 2b2 −2bc
−2ac −2bc 1 − 2c2

⎞
⎠.
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Notice that in the particular case when the plane is the equatorial plane, with
equation z = 0 (so that a = b = 0 and c = 1), Theorem 3 gives the matrix for
the mapping x �→ Ax to be

A =
⎛
⎝ 1 0 0

0 1 0
0 0 −1

⎞
⎠

that you met above.

Problem 8 Determine the matrix A such that the mapping x �→ Ax
represents reflection of S2 in the plane π with equation 3x +4y−5z = 0.

Remark

There is another way to find the matrix representing a reflection in a great
circle. Let the point P be one of the polar points of the plane π through O
that meets S2 in the given great circle. Let R be a rotation taking P to the
North Pole N , and let r be reflection in the equatorial plane of S2. Then the
composition mapping R−1r R represents reflection of S2 in π .

We omit the details of this
calculation.

We now establish a result relating products of reflections of S2 to rotations
of S2. It is the exact analogue of a result in Euclidean geometry. The result Subsection 5.2.1, margin

note alongside Problem 4holds also for general reflections and rotations of R
3, so we prove it in that

more general setting.

Theorem 4 The product of any two reflections of R
3 in planes through O

that meet in a common line is a rotation about that common line.

Pp1 p2

P′

P″

q + 2(a–b)

2a–qqbaProof By choosing coordinate axes suitably, we may arrange that the com-
mon line is the z-axis. The planes are therefore vertical, and it follows that
each reflection leaves the z-coordinate of each point unaltered. It is there-
fore sufficient to look at the effect of each reflection and composite on planes
perpendicular to the z-axis; we shall discuss the (x , y)-plane, but a similar
argument applies to all planes parallel to this one.

Let the first plane π1 make an angle α with the positive x-axis and the second
p2

p1

q b
a

q + 2 (a – b)

2a – q

P= (r,q)

P′

P′′

plane π2 make an angle β with the positive x-axis. Let a point P in the (x , y)-
plane have plane polar coordinates (r , θ). Then the image of P under reflection
in π1 is the point P ′ with polar coordinates (r , 2α − θ). The image of P ′ under
the reflection in π2 is the point P ′′ with polar coordinates (r , 2β − (2α −θ)) =
(r , θ +2(α−β)). This is the image of P under rotation about the common line
of π1 and π2, through twice the angle between the planes. �

We deduce from this theorem that the composite of reflections in two great
circles on S2 is a rotation of S2 about the line common to the planes defin-
ing the great circles, and through twice the angle between them. We can also
deduce that every rotation is a product of two reflections; these reflections are
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in planes that have the axis of rotation as their common line, and are separated
by half the angle of the rotation (but they are otherwise arbitrary).

Example 3 Prove that the image of a circle C on S2 under an isometry t of S2

to itself is a circle.

Solution Let the circle C be cut out by a plane π , and let � be the line
through the origin perpendicular to π . Let � meet S2 at the points P and P ′.
Then all points of C are the same distance from P .

Since t is an isometry, the points of t(C) are all the same distance from t(P).
It follows that they lie on a circle, which must be the circle cut out on S2 by
the plane t(π).

We now establish the following important result.

Theorem 5 The Product Theorem
Every isometry of S2 is a product of at most three reflections in great circles.

Proof The key idea in this proof is the observation that an isometry of S2 is
known completely when its effect on three points (which do not lie on a common
great circle) is known. We shall prove this observation in the course of proving
the theorem.

R′

P′ P′ P

rp(R′)

rp(Q)

rp(R)

rp(Q)
rp

R
Q

Q′

R′′
C

P′P

R

Q
S2S2 S2

Q′

Let P , Q and R be three points not lying on the same great circle, and let
P ′, Q′ and R′ be their images under an isometry t of S2 to itself. Let rP be See left figure above.

a reflection of S2 in a great circle that sends P to P ′. Consider the angle in See centre figure above.

R
3 with arms P ′rP (Q) and P ′Q′, and let C be the great circle that bisects

this angle and the segment joining rP (Q) and Q′. Reflection in C fixes P ′ and
sends rp(Q) to Q′. Suppose that this reflection sends rP (R′) to R′′. See right figure above.

The distance of R′′ from P ′ is the same as the distance RP (call it dP ), and
the distance of R′′ from Q′ is the same as the distance QR (call it dQ), since
both reflections are isometries. So the point R′′ lies on the intersection of the
circle with centre P ′ and radius dP and the circle with centre Q′ and radius
dQ ; so too does the point R′.
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Then it may be that R′ and R′′ coincide, in which case we have found a
product of two reflections sending R to R′. Or it may be that R′ and R′′ do not
coincide but a reflection in the great circle through P ′ and Q′ maps R′′ to R′,
and so three reflections have been used.

We now claim that any isometry fixing three points on S2 fixes every point
of S2. Let P , Q and R be the points, let M be any other point on S2, and let
t be the isometry fixing the points P , Q and R. Then t(M) lies on the circle
with centre P and radius PM and on the circle with centre Q and radius QM.
Of the two points satisfying this condition, only one also lies on the circle with
centre R and radius RM , and that is the point M itself; so the image of M
under t is M , and therefore t fixes every point of S2. It follows that if two
isometries t1 and t2 agree on three points, then they agree on every point, since
the composite t−1

2 ◦ t1 satisfies the conditions of our last remark. It does not follow that
these reflections are
uniquely determined –
recall the case of the
rotation discussed above.

We deduce that the isometry mapping the points P , Q and R to the points
P ′, Q′ and R′ must be the product of the two or three reflections that we
described above. This completes the proof. �

Finally in this subsection we show that the Isosceles Triangle Theorem in
spherical geometry can be established using a reflection in a great circle.

Theorem 6 Isosceles Triangle Theorem
Let a triangle �PQR on S2 have sides PQ of length r , Q R of length p, and

R

P Q

p

r

a b

g

q

S2RP of length q, and let p = q. Also, let the angles at the vertices P , Q and
R be α, β and γ , respectively. Then α = β.

Proof Consider the reflection in the great circle that is the internal bisector
of the angle ∠P RQ.

It maps the great circle through R and P to the great circle through R and
Q; and, since it is an isometry and p = q, it therefore maps P to Q, and Q
to P . It maps the great circle through P and Q to itself, and so it interchanges
the angles α and β, which shows that α = β. �

7.2.3 Direct Isometries
The Product Theorem allows us to deduce that every isometry is either a reflec- Theorem 5

tion, a rotation or the composite of a rotation and a reflection. For if it is a
composite of two reflections, then it is a rotation; and if it is a composite of
three reflections, then the composite of the first two is a rotation.

It is clear that every rotation of S2 is an direct isometry of S2.
We shall now see that every direct isometry of S2 is a product of rotations.

For each reflection reverses the orientation of angles, and so the product of
two reflections preserves the orientation of angles, while the product of three
reflections reverses it again. So a direct isometry must be the product of an For the product of any pair

of reflections is a rotation.even number of reflections and therefore be a rotation.
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It is instructive to give a direct proof of this result that does not use the
Product Theorem, because reflections are not easy to handle geometrically or
algebraically.

First, any direct isometry of S2 that fixes the North Pole N must map each
circle of latitude to itself, and so must be a rotation of that circle. Let D and E
be points on different circles of latitude; they remain the same distance apart,
so the rotation of their two circles of latitude must be through the same angle. It
follows that every circle of latitude on S2 is rotated equally, and so the isometry
fixing N must be a rotation about ON.

Next, let M be a direct isometry that sends a point P to P ′ and a point Q to
Q′, and let R be a rotation that sends P to P ′. Then M ◦R−1 is an isometry that
fixes P ′. We may assume that P ′ = N (if need be by additionally composing
with a rotation that sends P ′to N ). Then the isometry M ◦ R−1 = R(Z , γ ), by
the remarks in the previous paragraph; so the direct isometry M = R(Z , γ )◦ R
is a product of two rotations. We deduce that every direct isometry is a product
of rotations.

We shall now see that every direct isometry of S2 is a single rotation.
Since every 3 × 3 matrix with real entries (such as a product of rotations

must be) must have a real eigenspace, then any such 3 × 3 matrix describing See Appendix 2.

an isometry of S2 to itself must leave the points where its eigenspace meets S2

fixed. Since it is also a direct symmetry, it must therefore be a rotation about
those points. It follows that every direct isometry of S2 to itself is simply a
rotation.

We can deduce from this also the fact that the composite of two rotations of
S2 is also a rotation of S2, since the composite is itself a direct isometry.

We summarize these facts as follows.

Theorem 7

(a) Every isometry of S2 is a reflection, a rotation, or the composite of a
reflection and a rotation.

(b) Every direct isometry of S2 is a rotation, and vice versa.

Problem 9 Prove that the composite of an even number of reflections
of S2 in great circles is a rotation of S2.

7.3 Spherical Trigonometry

7.3.1 Spherical Triangles
Recall that a triangle on S2, or a spherical triangle, consists of the arcs of three

S 2

a

g

bgreat circles joining three points on S2. We first establish that spherical trian-
gles exist with any given angles; more precisely, we establish the following
result.
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Theorem 1 Given any three angles α, β and γ with α +β +γ > π , there
In fact we also require that
α + β + γ < 5π in view
of Theorem 3 below – but
we shall not go into this
here.

exists a spherical triangle with those angles.

Proof We use the idea of stereographic projection, under which circles on Theorem 7 of Subsection
5.2.4 (in which
stereographic projection
was introduced).

S2 correspond to generalized circles (that is, lines or circles) in the extended
plane.

By a rotation of S2, if necessary, we may assume that one of the vertices of
a triangle on the unit sphere is at the South Pole, S.

Under stereographic projection a triangle on S2 with one vertex at the South
Pole S corresponds to a circular-arc triangle in the plane (that is, a ‘triangle’
in C whose sides are arcs of generalized circles) with one vertex at O , the
centre of the unit circle C , and two straight sides. It follows that to prove
the theorem it is enough to construct a triangle of this form in C that has the
specified angles. This we now do; in our construction we assume that α and β Recall that stereographic

projection is
angle-preserving
(Theorem 8 of Subsection
5.2.4).

lie between 0 and π
2 , for simplicity.

Consider the circular-arc triangle �ABP in C that has angles π
2 at A, π

2 at
B, and θ at P , where PA and PB are straight lines (so that P is the centre of the
circle through A and B). Let D be the point on PB such that the angle ∠BAD

P

D
xa

b

q
C

O
A

B

equals α, let C be the point on PA such that the angle ∠ABC equals β, let AD
and BC meet at O , and let the angle ∠AO B equal x (as shown). Our first task
is to evaluate x .

Both the angles ∠AOC and ∠BOD are equal to π − x . By considering the
triangles �AOC and �BOD in turn, we deduce that

∠PCO = (π − x) + (
π
2 − α

) = 3π
2 − x − α,

and

∠PDO = (π − x) + (
π
2 − β

) = 3π
2 − x − β.

Then the sum of the angles of the quadrilateral PCOD is

2π = θ +
(

3π
2 − x − α

)
+ x +

(
3π
2 − x − β

)
,

so that

x = π + θ − α − β.

It follows that x = γ if and only if

This is possible, since by
hypothesis
α + β + γ > π .

θ = α + β + γ − π .

Hence if we repeat the construction with the value α + β + γ − π for θ , the
circular-arc triangle �ABO has the desired angles α, β and γ . It follows from
the earlier discussion that by stereographic projection we can then construct
the required spherical triangle on S2 with these angles. �

A modification of the above argument gives the following important result,
which we state without proof.
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Theorem 2 The sum of the angles of any spherical triangle is greater
than π .

In view of Theorems 1 and 2, it is useful to assign a name to the difference
between the sum of the angles of a spherical triangle and π : this measures how
far the triangle departs from being Euclidean.

Definition The angular excess of a spherical triangle is the difference
between the sum of the angles of the triangle and π .

Problem 1 Construct spherical triangles with angular excess of

(a) 0.01 radians, (b) 3.14 radians.

Recall that earlier when we defined a distance PQ between two given points Subsection 7.1.1

P and Q on S2, we noted that there were two ‘line segments’ PQ. Now, for
definiteness, we call the shorter of these two the strict line segment PQ. (If

R

Q

P

S2

both are of length π , we choose either in some explicit way.)
Similarly, when we defined a triangle �PQR with three given vertices P , Q

and R on S2, we noted that there were several such triangles. For definiteness,
we now call the triangle whose sides are strict line segments the strict triangle
�PQR. Then it is possible to rotate the sphere in such a way that the whole of
the strict triangle can be seen at one time. (You should convince yourself that
this is the case.) The inside of the strict triangle �PQR is then defined to be
the region of S2 bounded by the three strict line segments. The outside is the
complement of the inside.

We now investigate the regions into which the corresponding great circles
defining the strict triangle �PQR divide S2. Notice first that the equatorial
plane defining each of the relevant great circles cuts S2 into two regions. A
second great circle (and equatorial plane) divides each of these regions into

R

Q

P

two, giving four regions. Finally a third great circle (and equatorial plane)
divides each of these regions into two, giving eight regions: so there are eight
spherical triangles with given vertices P , Q and R on S2.

Now let us look at the strict triangle �PQR more closely. For definiteness,
we will assume that the vertices P , Q and R are chosen in clockwise order as
viewed by an observer at the centre of the sphere. Rotate the sphere to move
R to the North Pole, and Q to some point in the (y, z)-plane. By our choice
of the orientation of �PQR and the fact that the line segments PR and PQ are R

P ¢ Q

P

R ¢

Q ¢
S2

strict line segments, it follows that this rotation leaves P on ‘the front’ of the
sphere, where we can see it.

The great circle through R and Q is the ‘rim’ of S2 that we can see. So the
great circle RP meets it again at R′, say, the diametrically opposite point to R;
and the great circle QP meets it again at Q′, say, the diametrically opposite
point to Q. Similarly the great circles PR and PQ meet again at P ′, say, the
diametrically opposite point to P .
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So, associated with the strict triangle �PQR in this particular position on S2

there are three great circles, each meeting in two diametrically opposite points;
a total of six points in all. The great circles define eight triangles:

• the strict triangle �PQR and the triangles �PQ′ R, �PQ′ R′ and �PR′Q (all
visible on the ‘front’ of S2), and

• four triangles �P ′QR, �P ′Q′ R, �P ′Q′ R′ and �P ′ R′Q ‘round the back’.

In fact, each of the eight triangles has a diametrically opposite triangle to
R

Q

Q ′

R ′

P a

b

g

II

III IV

I

which it is congruent (under the map (x , y, z) �→ (−x , −y, −z)). For example,
the triangle �PQR is diametrically opposite to the triangle �P ′Q′ R′.

In the figure in the margin we have marked the four ‘visible’ triangles
�PQR, �PQ′ R, �PQ′ R′ and �PR′Q with Roman numerals I, II, III and
IV, respectively. Similarly, we denote their diametrically opposite triangles
�P ′Q′ R′, �P ′QR′, �P ′QR and �P ′RQ′ with Roman numerals I′, II′, III′
and IV′, respectively.

In order to label equal angles conveniently, let us denote by α the angle
∠QPR in the strict triangle �PQR, by β the angle ∠PQR, and by γ the angle
∠QRP. A useful observation is that two great circles meet at the same angles
at each of their points of intersection; so, for example, the angles ∠QPR and
∠Q′ P ′ R′ are equal.

Example 1 Show that the triangles �PQR and �P ′Q′ R′ have their angles
equal in pairs.

Solution The angle ∠QPR at P in �PQR is formed by two great circles that
meet again at P ′, forming the angle ∠Q′ P ′ R′ at P ′ in �P ′Q′ R′, so they must
be equal.

A similar argument shows that the angles at vertices Q and Q′, and the
angles at vertices R and R′, are also equal.

Problem 2 Determine the angles in each of triangles II, III, and IV, in
terms of α, β and γ .

Area of a Triangle
We next find the area of a spherical triangle in terms of its angles. In this

N

S

S2

m

m

discussion, we introduce the term lune to denote a two-sided polygon defined
by two great circles, choosing arbitrarily which of the four such regions on the
sphere we mean.

The area of a lune is clearly proportional to the corresponding angle between
the two great circles, the angle of the lune. Now when the lune has angle π

2 ,
its area is π (for the lune is then one-quarter of S2, which has area 4π ); so by A lune with vertices at N

and S, and angle μ.proportion the area of a lune of angle μ, say, is 2μ.
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The ‘front’ of S2 as shown in the margin consists of two lunes with vertices
R and R′, each formed of two strict triangles, I + IV and II + III (using the
above notation for triangles). The lune I + IV has area 2γ , since it has angle γ .

R

Q

Q ′ P

II
I

g

b

a

IVIII

R ′

S 2

With a slight abuse of notation we express this fact about areas in the form

I + IV = 2γ .

A similar argument involving the lune with vertices Q and Q′ yields the
equation

I + II = 2β,

and then with the lune with vertices P and P ′ yields the equation

I + III′ = 2α.

Since triangles III and III′ are congruent, we may rewrite this last equation
as

I + III = 2α.

Adding the three equations, we obtain

3 · I + II + III + IV = 2(α + β + γ ).

Also, the area of the front of S2 is

I + II + III + IV = 2π .

It follows that
2 · I + 2π = 2(α + β + γ )

or
I = (α + β + γ ) − π .

This completes the proof of the following theorem for triangles, in the The general case is proved
by dividing an arbitrary
triangle into strict
triangles, and applying the
special case to each; we
omit the details.

special case that they are strict triangles.

Theorem 3 The area of a spherical triangle is equal to its angular excess.

Problem 3 Construct a spherical triangle of area 3π
4 .

7.3.2 Dual Triangles
The somewhat fiddly nature of the definition of a strict triangle pays off hand-
somely in a feature of spherical geometry that was often exploited in the
18th century by Euler and Lagrange, two of the pioneer figures in spherical
geometry.

We required that the sides of a strict triangle be less than or equal to π in
length; for simplicity in what follows, we shall ignore the case of equality.

Let A, B and C be the vertices of a strict triangle, with angles α, β and γ at
the vertices, respectively, and opposite sides of length a, b and c, respectively.
Each side and angle of the triangle �ABC has magnitude between 0 and π .
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We now construct a new spherical triangle �A′ B ′C ′, called the dual of the
A¢
A

b g

a

F

c b

C

E

C¢a
B

O

D D¢ S2

B¢

F¢

E¢original triangle �ABC, with vertices A′, B ′ and C ′, as follows. Its angles at
A′, B ′ and C ′ are π − a, π − b and π − c, respectively; and its sides are A′ B ′
of length π − γ , B ′C ′ of length π − α, and C ′ A′ of length π − β.

One way of constructing such a triangle is as follows. Extend the segments
AB and AC to segments AD and AD′, each of length π

2 , and draw the great circle
through D and D′ (this is the equator for A). Similarly, extend the segments
BC and BA to segments BE and BE′, each of length π

2 , and draw the great
circle through E and E ′ (this is the equator for B); and extend the segments �A′B′C ′ is dual to

�ABC.CA and CB to segments CF and CF′, each of length π
2 , and draw the great

circle through F and F ′ (this is the equator for C). Then either of the strict
triangles defined by the great circles DD′, EE′ and FF′ is a spherical triangle
with the desired properties.

For example, choose the one that overlaps �ABC, and denote its vertex on
EE′ and FF′ by A′, its vertex on FF′ and DD′ by B ′, and its vertex on DD′
and EE′ by C ′. We now check that the triangle �A′B ′C ′ is indeed dual to the
original triangle �ABC.

The lengths of CF′ and CB′ are both π
2 , since A′FF′ B ′ is the equator for C .

But B ′ is on the equator B ′DD′C ′ for A, so B ′ A = π
2 . Thus A and C are on

the equator for B ′, so that the great circle F AC D′ defined by A and C must be
the equator for B ′. This means that D′ lies on the equator for B ′, so B ′ D′ = π

2 .
Similarly DC ′ = π

2 .
Now consider the equator B ′DD′C ′ for A, and denote by O the centre of

the sphere. The angle ∠DOD′ is equal to ∠BAC = α (since both ∠DOD′ and
∠BAC are just the angle between the planes O AB and OAC); thus DD′ lies
on a (great) circle of radius 1, and so the length of DD′ is also α (since DD′ is
equal to ∠DOD′). It follows that the length of B ′C ′ is

B ′C ′ = B ′ D′ + DC ′ − DD′ = π
2 + π

2 − α = π − α.

Similarly the length of C ′ A′ is π − β, and the length of A′B ′ is π − γ .
Next, by construction CF′ = π

2 and BE = π
2 . It follows that the length of

F ′E is
F ′E = F ′C + BE − BC = π

2 + π
2 − a = π − a.

Hence the angle ∠F ′OE equals π − a (since F ′BCE is a circle of radius 1
with centre O and hence ∠F ′OE equals the length of F ′E), so that the angle
∠F ′ A′E also equals π − a (since both are just the angle between the planes
OA′F ′ and OA′E). It follows that the angle ∠B ′ A′C ′ equals π −a, as required.
Similarly, ∠A′ B ′C ′ = π − b and ∠B ′C ′ A′ = π − c.

We have therefore established the following theorem.

Theorem 4 Dual Triangles Theorem
With every strict spherical triangle � there is associated another triangle

Here by the ‘complement’
of a quantity x we mean
the quantity π − x .

�′, called its dual, whose angles are the complements of the sides of � and
whose sides are the complements of the angles of �.
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Here is an example of how the theorem proves useful. Let �ABC be a strict
triangle with ∠ABC = ∠ACB. Then, if �A′ B ′C ′ is its dual (which exists by
Theorem 4), we have A′C ′ = A′ B ′; it then follows from the Isosceles Triangle Section 7.2.2, Theorem 6

Theorem that ∠A′ B ′C ′ = ∠A′C ′B ′. It then follows by duality that AC = AB.
This is the converse of the Isosceles Triangle Theorem, in the case of strict We ask you to prove the

general case of the
converse in Section 7.6.

triangles.

Problem 4 Let A, B and N be the points (1, 0, 0), (0, 1, 0) and
(0, 0, 1) on S2. Prove that the triangle �ABN is congruent to any of
its duals.

7.3.3 Distance between Two Points
In real life we are often interested in the (spherical) distance between points on

In metric units, the radius
of the Earth is about
6378 km.

the surface E of the Earth, whose radius is about 4000 miles. The comparable
problem for S2 is to find a formula for the distance between two points of S2.
Then a scaling map

Here we take the unit of
measurement for the
radius S2 to be 1 mile.

t : S2 → E

x �→ 4000x

provides an answer to the original question concerning E .
Let P and Q be points on S2 with Cartesian coordinates (p1, p2, p3) and

great circle

O

d
d

1

1

Q

P

(q1, q2, q3), respectively, whose distance apart on S2 is d. It follows that, if O
denotes the centre of S2, the angle ∠POQ also equals d.

Then the dot product of the vectors
−→
OP and

−→
OQ is

−→
OP · −→

OQ = p1q1 + p2q2 + p3q3 = 1 · 1 · cos d,

so that cos d = p1q1 + p2q2 + p3q3.

Theorem 5 The distance d on S2 between the points (p1, p2, p3) and
(q1, q2, q3) is given by

In the expression cos d , d
must be taken in radians,
as usual.

cos d = p1q1 + p2q2 + p3q3.

In applications to E , we must remember that if a point has latitude θ ′ and
longitude φ then it has colatitude θ = π

2 − θ ′ and Cartesian coordinates
(cos φ sin θ , sin φ sin θ , cos θ).

The latitudes and longitudes of various cities are approximately as follows.

Remember that
(geographers’) longitude
West of the Greenwich
meridian is negative.

City Latitude Longitude

New York 41◦ −74◦
Rio de Janeiro −23◦ −43◦
Sydney −34◦ 151◦
Tokyo 36◦ 140◦
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Example 2 Estimate the distance between New York and Sydney, taking the
radius of the Earth as 4000 miles.

Solution The colatitudes of New York and Sydney are 90◦ −41◦ = 49◦ and
90◦ + 34◦ = 124◦, so that the coordinates of the corresponding points P and
Q on S2 are

(cos(−74◦) sin(49◦), sin(−74◦) sin(49◦), cos(49◦))
� (0.2756 · 0.7547, −0.9613 · 0.7547, 0.6561)

� (0.208, −0.725, 0.656),

and

(cos(151◦) sin(124◦), sin(151◦) sin(124◦), cos(124◦))
� (−0.8746 · 0.8290, 0.4848 · 0.8290, −0.5592)

� (−0.725, 0.402, −0.559).

Hence the distance between New York and Sydney is approximately 4000d
miles, where

cos d � −0.208 · 0.725 − 0.725 · 0.402 − 0.656 · 0.559

� −0.151 − 0.291 − 0.367 = −0.809.

Thus d � cos−1(−0.809) � 2.513 radians, and the required distance 4000d
� 4000 · 2.51 � 10 050 miles.

Problem 5 Estimate the distance between Tokyo and Rio de Janeiro,
taking the radius of the Earth as 4000 miles.

Right-Angled Triangles
It only makes sense to discuss Pythagoras’ Theorem in those geometries with a Theorem 8 of Subsection

6.4.3distance. We have already seen Pythagoras’ Theorem in hyperbolic geometry,
so what is the analogue in spherical geometry?

C

B

a

b
a

A
S2

O

Theorem 6 Pythagoras’ Theorem
Let �ABC be a triangle on S2 in which the angle at C is a right angle. If a,
b and c are the lengths of BC , C A and AB, then

cos c = cos a × cos b.

Proof We may rotate S2 so that C is the North Pole N (0, 0, 1) of S2, A lies Since the sphere has
radius 1, at A, θ = b and
φ = 0; and at B, φ = π

2
and θ = a.

on the Greenwich meridian and has coordinates (sin b, 0, cos b), and B has
coordinates (0, sin a, cos a).

We then apply the rotation R(Y , −b) to S2. This maps A to C , C to some
point C ′, and B to some point B ′.
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Let α denote the angle ∠CAB. Then the rotation R(Y , −b) maps the angle C

B¢

C¢

A
S2

B

∠CAB to the angle ∠C ′CB′, so that the angle ∠C ′CB′ = α; it follows that the
angle ∠ACB′ = π − α since ∠ACB′ + ∠B ′CC′ = π . Hence the longitude of
B ′ is π − α. Also, the colatitude of B ′ is

length of CB′ = length of AB = c.

So the coordinates of B ′ are

(cos(π − α) sin c, sin(π − α) sin c, cos c)

= (− cos α sin c, sin α sin c, cos c). (1)

But we also have as coordinates of B ′

R(Y , −b)(B) =
⎛
⎝ cos b 0 − sin b

0 1 0
sin b 0 cos b

⎞
⎠
⎛
⎝ 0

sin a
cos a

⎞
⎠

=
⎛
⎝− sin b cos a

sin a
cos b cos a

⎞
⎠ · (2)

Equating the third coordinates in (1) and (2), we get the formula

Here we use the formulas
for coordinates under
isometries given in
Subsection 7.2.1.

cos c = cos a × cos b,

as required. �

For example, if a = 1, b = 2 and ∠ACB = π
2 , then

cos c = cos 1 × cos 2 � 0.5403 · (−0.4161) � −0.2248,

so that c � 1.798.

Problem 6 �PQR is a triangle on S2 in which the angle at R is a
right angle and the lengths of PQ and PR are 1.7 and 1.9, respectively.
Estimate the length of QR.

Remark

For all values of x , cos x = 1 − x2

2! + higher powers of x ; so, when x is small,
cos x � 1 − 1

2 x2. It follows that, if we are dealing with small triangles on S2,
then the conclusion of Theorem 6 may be interpreted in the form

Here we drop the term in
a2b2, since it is smaller
than the remaining terms.

1 − 1
2 c2 �

(
1 − 1

2 a2
)

·
(

1 − 1
2 b2
)

� 1 − 1
2 a2 − 1

2 b2,

so that c2 � a2+b2. Thus Theorem 6 is a close approximation to the Euclidean
version of Pythagoras’ Theorem in R

2.

The area formula for S2 suggests that the angles of a spherical triangle deter- Theorem 3

mine its size as well as its shape. In fact, any three pieces of the six possible
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pieces of information about a triangle (its three angles and the lengths of its We prove this fact here for
right angled triangles; a
proof for general triangles
can then be constructed by
dividing a general triangle
into two right angled
triangles using an altitude.

three sides) determine the remaining three.
Returning to the formula in the proof of Theorem 6 for the coordinates of

B ′ and equating the first and second coordinates, we obtain

cos α sin c = sin b cos a and sin α sin c = sin a.

Dividing the second of these by the first, we get tan α = tan a/ sin b.
Re-arranging the above formulas to make them easier to remember, we have

the following result.

Theorem 7 Let �ABC be a triangle on S2 in which the angle at C is a
C

A

B

c

b

a

a

b

right angle. If a, b and c are the lengths of BC , C A and AB, and α denotes
the angle ∠C AB, then

cos c = cos a × cos b,

sin α = sin a

sin c
, and tan α = tan a

sin b
·

A similar discussion to that above gives that In the proof of Theorem 6
and before Theorem 7

cos β sin c = sin a cos b and sin β sin c = sin b,

so that

sin β = sin b

sin c
and tan β = tan b

sin a
·

From these formulas and those in Theorem 7 above, it follows that in a right-
angled triangle two further pieces of information about the triangle enable us
to determine all its angles and sides.

Problem 7 �PQR is a triangle on S2 in which the angle at R is a
right angle and the lengths of PQ and PR are 1.7 and 1.9, respectively.
Estimate the angle ∠QPR.

7.3.4 Spherical Trigonometry
In this subsection we deduce various formulas of spherical trigonometry for
strict triangles by dropping perpendiculars from a vertex of a spherical triangle
to the opposite side, giving two right-angled ones for which we already have
formulas. First, we verify that we can always drop a perpendicular from a point
to a line. It follows that a spherical triangle has 3 altitudes.

Given a strict segment AB and a point C on S2 that form a triangle �ABC,

C

B = D

A

there is always a great circle through C perpendicular to AB. This great circle
meets the great circle of which AB is part in two points, which we call D and
D′. Since D and D′ are antipodal points, they are a distance π apart, so one of
three things must happen.
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1. One of D and D′ coincides with A or B. The corresponding strict line C

D

D

B

D

A

c

b a

a b

g

d

C

C

B

B

A

A

segment is the perpendicular from C to AB. This case will not lead us to
any new results, so we do not consider it further.

2. One of D and D′, say D, lies between A and B. Then we call C D the
perpendicular from C to AB; it lies inside �ABC.

3. One of D and D′, say D, is such that the distance AD is less than π and B
lies between A and D. Then we again call C D the perpendicular from C
to AB; in this case it lies outside �ABC.

Now consider a strict spherical triangle �ABC, in which the sides AB, BC
and C A have lengths c, a and b, respectively, and the angles at A, B and C are
α, β and γ , respectively. Drop the perpendicular C D from C to AB, and let d
denote the length of C D.

If we apply the second formula in Theorem 7 to triangle �ADC we get

sin α = sin d

sin b
,

so that sin d = sin α × sin b. Applying a similar argument to triangle �B DC
we get sin d = sin β × sin a.

Thus, sin α × sin b = sin β × sin a, which is more memorable in the form

sin α

sin a
= sin β

sin b
·

Then, by a similar argument involving the perpendicular from A to BC , we
obtain the following result.

Theorem 8 Sine Rule for a Strict Spherical Triangle
Let �ABC be a strict triangle on S2, in which the sides AB, BC and C A
have lengths c, a and b, respectively, and the angles at A, B and C are α, β
and γ respectively. Then

sin α

sin a
= sin β

sin b
= sin γ

sin c
·

We can use an argument similar to that in the proof of Pythagoras’ Theorem Theorem 6

to find further results.
Let �ABC be a strict triangle on S2. We may rotate S2 so that C is the

North Pole N (0, 0, 1), A lies on the Greenwich meridian and has coordinates
(sin b, 0, cos b), and B has coordinates (cos γ sin a, sin γ sin a, cos a).

We then apply the rotation R(Y , −b) to S2. This maps A to C , C to some
point C ′, and B to some point B ′. As we saw earlier, the coordinates of B ′ are In the proof of Theorem 6

(− cos α sin c, sin α sin c, cos c).
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But we also have as coordinates of B ′

R(Y , −b)(B) =
⎛
⎝ cos b 0 − sin b

0 1 0
sin b 0 cos b

⎞
⎠
⎛
⎝ cos γ sin a

sin γ sin a
cos a

⎞
⎠

=
⎛
⎝ cos b cos γ sin a − sin b cos a

sin γ sin a
sin b cos γ sin a + cos b cos a

⎞
⎠ ·

Equating the third coordinates in the two expressions for B ′ we get

cos c = sin b cos γ sin a + cos b cos a.

Theorem 9 Cosine Rule for Sides of a Strict Spherical Triangle
Let �ABC be a strict triangle on S2, in which the sides AB, BC and C A
have lengths c, a and b, respectively, and the angles at A, B and C are α, β
and γ , respectively. Then Notice that this formula

reduces to Pythagoras’
Theorem when γ is a
right-angle.

cos c = cos a cos b + sin a sin b cos γ .

Example 3 Let �ABC be a strict isosceles triangle on S2, in which the sides
AB, BC and C A have lengths c, a and a, respectively, and the angles at A, B
and C are α, α and γ , respectively. Prove that

(a) cos c = cos2 a + sin2 a cos γ ; (b) cos α =
tan
(

1
2 c
)

tan a
.

Solution Putting b = a in the conclusion of Theorem 9, we obtain the
formula (a).

Next, by applying Theorem 9 to find cos a, we get

cos a = cos a cos c + sin a sin c cos α.

We may then rearrange this formula to get

Here we use the identities

cos 2x = 1 − 2 sin2 x

and

sin 2x = 2 sin x cos x

for x ∈ R.

cos α = cos a(1 − cos c)

sin a sin c

=
cos a · 2 sin2

(
1
2 c
)

sin a · 2 sin
(

1
2 c
)

cos
(

1
2 c
) =

tan
(

1
2 c
)

tan a
,

as required.

Problem 8 Let �ABC be a strict equilateral triangle on S2, in which
the sides have length a and the angles are equal to α. Prove that

cos α = cos a

1 + cos a
.
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We can now use any dual triangle �A′B ′C ′ of �ABC to prove a new You met dual triangles in
Subsection 7.3.2.trigonometric result. The dual triangle has sides of length π − α, π − β and

π − γ , and has angles of magnitude π − a, π − b and π − c. By applying
Theorem 9 to the dual triangle and using the formulas sin(π − x) = sin x and
cos(π − x) = − cos x , we get

− cos γ = cos α cos β − sin α sin β cos c;

and we can reformulate this formula as follows.

Theorem 10 Cosine Rule for Angles of a Strict Spherical Triangle
Let �ABC be a strict triangle on S2, in which the sides AB, BC and C A
have lengths c, a and b, respectively, and the angles at A, B and C are α, β

and γ , respectively. Then

cos γ = sin α sin β cos c − cos α cos β.

7.4 Spherical Geometry and the Extended Complex Plane

Earlier we studied the Riemann sphere and stereographic projection of the Subsection 5.2.4

sphere onto the extended complex plane Ĉ = C ∪ {∞}. Here we denote the
Riemann sphere by S2

rather than S.7.4.1 Stereographic Projection
In this section we regard stereographic projection as a mapping π of the sphere z

NS 2

P′

P

y

x

S2 onto an extended plane R
2 ∪ {∞}, under which the point (X , Y , Z) maps

onto the point π(X , Y , Z) =
(

X
1−Z , Y

1−Z

)
; the inverse mapping is given by

π−1(x , y) =
(

2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,

x2 + y2 − 1

x2 + y2 + 1

)
.

Example 1 Let C denote a great circle on S2 that is the intersection of S2 with Since c �= 0, C does not
pass through the North
Pole N of S2.

the plane aX + bY + cZ = 0, where a2 + b2 + c2 = 1, c �= 0.

(a) Determine the point N ′ that is the image of N under reflection in C .
(b) Determine the images of N ′ and C in R

2 under stereographic
projection π .

(c) Verify that π(N ′) is the centre of the circle π(C).

Solution

(a) The point N ′ has coordinates We follow the approach of
Subsection 7.2.2.

(0, 0, 1) − 2{(0, 0, 1) · (a, b, c)}(a, b, c)

= (0, 0, 1) − 2c(a, b, c) =
(
−2ac, −2bc, 1 − 2c2

)
.
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(b) From the formula for π , the image of N ′ under π is N

aX + bY + cZ = 0

C N ′
pπ(−2ac, −2bc, 1 − 2c2) =

( −2ac

1 − (1 − 2c2)
,

−2bc

1 − (1 − 2c2)

)

=
(

−a

c
, −b

c

)
.

From the formula for π−1 the image π(C) of C has equation

Here we use the fact
c �= 0.

a
2x

x2 + y2 + 1
+ b

2y

x2 + y2 + 1
+ c

x2 + y2 − 1

x2 + y2 + 1
= 0;

we may rewrite this in the form

2ax + 2by + c
(

x2 + y2 − 1
)

= 0,

or

Again we use the fact
c �= 0.

x2 + y2 + 2
a

c
x + 2

b

c
y − 1 = 0.

(c) Since the equation of the circle π(C) may be written in the form

(
x + a

c

)2 +
(

y + b

c

)2

= 1 + a2 + b2

c2
= 1

c2
,

the centre of π(C) is the point
(− a

c , − b
c

)
, that is, the point π(N ′).

Problem 1 Let P = (x , y) be a point in R
2 other than the origin.

N

P¢

P

P¢¢

QO

S 2

Let P ′ be the point on S2 that corresponds to P under stereographic
projection, P ′′ the reflection of P ′ in the (X , Y )-plane, and Q the point
in R

2 that corresponds to P ′′ under stereographic projection.

(a) Determine the coordinates of P ′, P ′′ and Q.
(b) Prove that P and Q are inverse points with respect to the unit circle

x2 + y2 = 1 in R
2.

There is a simple and useful expression for the image under stereographic
projection of a point on S2 with given colatitude and longitude.

Example 2 The point P ′ on S2 with colatitude θ and longitude φ has coor- Recall that the latitude of
P is θ ′ = π

2 − θ .dinates (cos φ sin θ , sin φ sin θ , cos θ). Prove that the image P of P ′ under

stereographic projection has coordinates

(
cos φ

tan
(

1
2 θ
) , sin φ

tan
(

1
2 θ
)
)

.
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Solution From the formula for π , the image P of P ′ under π is the point

N

P¢

P

S2

(
cos φ sin θ

1 − cos θ
,

sin φ sin θ

1 − cos θ

)

=
⎛
⎝cos φ · 2 sin

(
1
2θ
)

cos
(

1
2θ
)

2 sin2
(

1
2θ
) ,

sin φ · 2 sin
(

1
2θ
)

cos
(

1
2θ
)

2 sin2
(

1
2θ
)

⎞
⎠

=
⎛
⎝ cos φ

tan
(

1
2θ
) ,

sin φ

tan
(

1
2θ
)
⎞
⎠ ,

as required.

Next, we obtain a neat formula relating the distance on S2 between the
South Pole S and a point P ′ on S2 to the distance of the corresponding point
P = π(P ′) from O in R

2.
Let P be a point (x , 0) in R

2, x > 0. The corresponding point P ′ = π−1(P)

on S2 has coordinates
(

2x
1+x2 , 0, x2−1

x2+1

)
; it follows from the definition of spher-

ical polar coordinates on S2 as (cos φ sin θ , sin φ sin θ , cos θ), where θ is
colatitude, that the colatitude θ of P ′ satisfies the equation

tan θ = 2x

x2 − 1
. (1)

Then if the spherical distance of P ′ from S is d, the colatitude θ of P ′ also
satisfies the equation θ + d = π , so that

tan θ = − tan d. (2)

Then, if we denote by T the quantity tan
(

1
2 d
)

, it follows from equations
N

O

q

1–
2

q
S

S2

P

P¢
(1) and (2) that 2x

x2−1
= − 2T

1−T 2 . We can write this equation in the form
(T − x)(1 + xT ) = 0; and, since both x and T are positive it follows that
T = x . In other words tan−1 x = tan−1 T = 1

2 d, so that d = 2 tan−1 x .
Since a rotation of S2 and R

2 about the Z -axis does not change any of the
distances in the above argument, we deduce the following result.

Theorem 1 Let a point P ′ on S2 map under stereographic projection to a Here Q does not
represent colatitude.point P in R

2 with coordinates (r cos θ , r sin θ). Then the spherical distance
of P ′ from the South Pole S is 2 tan−1(r).

Problem 2 Let P and Q be the points (2, 2) and (3, 3) in R
2, and

P ′ and Q′ the corresponding points on S2 under the mapping π−1. Use
Theorem 1 to determine the spherical distance P ′Q′.
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7.4.2 Conjugate Transformations
We have seen a correspondence between points of the sphere S2 and points of Subsection 7.4.1

the extended plane. We now investigate the correspondence between spherical
transformations and Möbius transformations.

Earlier we saw that a spherical transformation is the composition of at most Theorems 5 and 4 of
Subsection 7.2.2three reflections in great circles, and that the composition of any two reflections

is a rotation. Here we shall see that reflection in a great circle corresponds to
inversion in the image of that circle under stereographic projection, and that
a rotation of S2 corresponds to a particular kind of Möbius transformation.
Thus we have two equivalent descriptions of spherical transformations, one on
the sphere using 3 × 3 matrices, and one in the extended plane using Möbius
transformations.

Firstly, we establish the following pleasant result.

Theorem 2 Let P ′ and Q′ be points on S2 that are mirror images under
reflection in a great circle C ′, and let the images of P ′, Q′ and C ′ under
stereographic projection π be P , Q and C , respectively. Then P and Q are
inverse points with respect to C .

S 2

C ′

C
P ′

P

Q ′

Q

Proof The great circle lies in a plane, � say, through the origin. � consists
of those points in R

3 that are equidistant from the points P ′ and Q′. So any
sphere through P ′ and Q′ has its centre somewhere in �, and so any circle
on S2 through P ′ and Q′ also has its centre in �. Thus any circle C ′′ on S2

through P ′ and Q′ meets the great circle C ′ at right angles.
Under stereographic projection π , the circles C ′ and C ′′ map to generalized

circles; since stereographic projection is angle-preserving, these images meet
at right angles.

Now let C∗ be any generalized circle through P and Q. The image of C∗
under π−1 is a circle on S2 through P ′ and Q′; so π−1(C∗) is some circle
C ′′ on S2 that meets C at right angles. Then, since stereographic projection is
angle-preserving, it follows that C∗ meets C at right angles.

But C∗ is any circle through P and Q, so any circle through P and Q meets
C at right angles. It follows that P and Q are inverse points with respect to C , Here we are using

Theorem 4 of
Subsection 5.5.2.

as required. �

Notice that, if C
′
1 and C

′
2 are a great circle and a little circle on S2, and

C1 and C2 are their images in the extended plane under π , then there exists a
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Möbius transformation that maps C1 onto C2, but there cannot be a rotation
of S2 that maps C

′
1 onto C

′
2. Hence there are Möbius transformations of the

extended plane that do not correspond to rotations of the sphere.
Now, inversion in a generalized circle in the extended plane is necessarily By Theorem 10,

Subsection 5.3.7a Möbius transformation composed with a complex conjugation. It follows
from Theorem 2 that any spherical transformation corresponds to a Möbius
transformation, composed (if need be) with a complex conjugation.

So each rotation R of S2 corresponds to some Möbius transformation of the For both are
orientation-preserving
mappings.

extended plane by means of stereographic projection π . If P is a point in the
extended plane, it follows that π−1(P) is a point on S2; Rπ−1(P) is the image
of that point after the rotation, and π Rπ−1(P) is the projection of that image
onto the extended plane.

So, π Rπ−1 is a mapping of the extended plane to itself. We therefore make
the following definition.

Definition Let R denote a rotation of S2, and π stereographic projec-
tion. Then the transformation π Rπ−1 of the extended plane is called the
conjugate transformation of the rotation R.

It follows from the above discussion that the image of the group of rotations
of S2 under π is a group of Möbius transformations.

Lemma The conjugate transformation of a rotation of S2 is a Möbius This was proved in the
earlier discussion.transformation of the extended plane.

Indeed it can be proved that the mapping R �→ π Rπ−1 maps the group of We omit a proof of
this fact.rotations of S2 isomorphically onto a group of Möbius transformations of the

extended plane, but that it is not the whole group of Möbius transformations. We saw this in the
discussion above.We now characterize the Möbius transformations that are conjugate to rotations

of S2.

Theorem 3 A Möbius transformation M that is conjugate to a rotation of
S2 is of the form M(z) = az+b

−b̄z+ā
, where a, b ∈ C.

plane of reflection

N

P

r

Q

S

Proof There is one family of rotations of S2 that we can easily relate to
Möbius transformations, namely rotations around the Z -axis. Their conjugate
transformations are simply rotations about the origin through the same angle.
Our strategy will be to use reflections of S2 to reduce a given rotation of S2 to
one about the Z -axis.

Let R denote a rotation of S2 about the (diametrically opposite) points P and
Q of S2, through an angle θ , and let r denote the reflection in a suitable great
circle of S2 that maps P to the North Pole N ; so that r(P) = N . Then since r

So we shall often use r
and r−1 interchangeably
below.

is a reflection, it is its own inverse, so that r(N ) = P . Similarly r(Q) = S, the
South Pole, and r(S) = Q.
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The spherical transformation r−1 Rr is a direct isometry of S2, and so is a
rotation of S2. Since(

r−1 Rr
)

(N ) =
(

r−1 R
)

(r(N ))

=
(

r−1 R
)

(P)

= r−1 R(P) = r−1(P) = N ,

the point N is a fixed point of the rotation; similarly S is also a fixed point. So
r−1 Rr is a rotation of S2 about the Z -axis.

S2
r S2

C C

p –1
pRp –1 p

It follows that the transformation π(r−1 Rr)π−1 is a rotation of the
(x , y)-plane about the origin. Denoting this by M , it follows that M(z) = eiθ z,
for some real number θ .

Now

For π−1π is the identity
map of S2 to itself.

M = π
(

r−1 Rr
)

π−1

= πr−1
(
π−1π

)
R
(
π−1π

)
rπ−1

=
(
πrπ−1

) (
π Rπ−1

) (
πrπ−1

)
;

so that, since we know M , in order to know π Rπ−1 it is now sufficient to find
πrπ−1 .

Since N and P map to each other under the reflection r in a suitable great
By Theorem 2 and
r−1 = r .

circle of S2, the mapping πrπ−1 must be inversion in a circle in the plane.
Now the great circle of S2 is the intersection of the sphere X2+Y 2+ Z2 = 1

with some plane aX + bY + cZ = 0; we may assume that a2 + b2 + c2 = 1. This assumption will
simplify our calculations.Since the plane cannot be vertical, c �= 0.

By applying the formula for π−1 to the equation of the plane, we see that
the image of the great circle is a circle C in the (x , y)-plane with equation

2ax + 2by + c
(

x2 + y2 − 1
)

= 0,
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or

x2 + y2 + 2
a

c
x + 2

b

c
y − 1 = 0.

The circle C has centre
(− a

c , − b
c

)
, and the square of its radius is For, a2 + b2 + c2 = 1

1 +
(a

c

)2 +
(

b

c

)2

= 1

c2
·

α is the centre of the circle
in the plane.

Next we express things in terms of complex numbers. Let α = − a
c − i b

c , so

that αᾱ = |α|2 = a2+b2

c2 . Now inversion in C is a mapping of the form

You met this formula in
Theorem 3, Subsection
5.2.1.

z �→ (1/c)2

z − α
+ α

= αz̄ − |α|2 + (1/c)2

z̄ − ᾱ

= αz̄ + 1

z̄ − ᾱ
,

For, −|α|2 + (1/c)2 = 1so that

πrπ−1(z) = αz̄ + 1

z̄ − ᾱ
·

Then

M(πrπ−1)(z) = eiθ · αz̄ + 1

z̄ − ᾱ
,

so that

π Rπ−1(z) =
α
(

e−iθ · ᾱz+1
z−α

)
+ 1

e−iθ · ᾱz+1
z−α

− ᾱ

= αe−iθ (ᾱz + 1) + (z − α)

e−iθ (ᾱz + 1) − ᾱ(z − α)

= z
(|α|2e−iθ + 1

)+ (αe−iθ − α)

z(ᾱe−iθ − ᾱ) + (e−iθ + |α|2)

= z
(|α|2e−iθ/2 + eiθ/2

)+ (
αe−iθ/2 − αeiθ/2

)
z
(
ᾱe−iθ/2 − ᾱeiθ/2

)+ (
e−iθ/2 + |α|2eiθ/2

) ;

thus π Rπ−1(z) = az+b
−bz+a

, where a = |α|2e−iθ/2 + eiθ/2 and b = αe−iθ/2 −
αeiθ/2, as required. �

Remark

Notice that the Möbius transformations M(z) = az+b
bz+a

conjugate to a rotation You met these Möbius
transformations in
Theorem 2, Subsection
6.2.1.

of S2 are rather like the Möbius transformations representing direct hyperbolic
transformations M(z) = az+b

b̄z+ā
, with |b| < |a|.
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Problem 3 The two fixed points of a rotation of S2 are distinct from
N and S. Show that they map under stereographic projection to points in
C of the form s and −1/s̄.

Example 3 Prove that a Möbius transformation M that is conjugate to a
rotation R(Y , β) of S2 is of the form M(z) = az−b

bz+a where a, b are real.

Solution A rotation R(Y , β) of S2 fixes the points (0, 1, 0) and (0, −1, 0),
which map under stereographic projection to the points i and −i , respectively.

By Theorem 3, a conjugate Möbius transformation must be of the form

We use c and d to avoid
using the letters a and b
for several different
things.

M(z) = cz + d

−d̄z + c̄
;

this fixes i and −i if

i = ci + d

−d̄i + c̄
and − i = −ci + d

d̄i + c̄
,

which we can rewrite in the form

d̄ + c̄i = ci + d and d̄ − c̄i = −ci + d.

Adding these equations gives 2d̄ = 2d, so that d is real, and subtracting the
equations gives 2c̄i = 2ci , so that c is real.

It follows that M has the desired form M(z) = az−b
bz+a , with a in place of c

and −b in place of d.

Problem 4 Prove that a Möbius transformation M that is conjugate to
a rotation R(X , α) of S2 is of the form M(z) = az+ib

ibz+a , where a, b are
real.

We end with some interesting observations concerning Möbius transforma-
tions. A fixed point of a Möbius transformation M(z) = az+b

cz+d , ad − bc �= 0, is

a point z for which M(z) = z, that is, az+b
cz+d = z or cz2 + (d − a)z − b = 0.

Since a quadratic equation can have at most two roots, it follows that a Möbius
transformation can have at most two fixed points.

Problem 5 Determine the fixed points in C and in Ĉ of the following
Möbius transformations:

z �→ z + 1; z �→ − 4

z + 4
; z �→ − 4

z + 5
.

Example 4 Prove that a Möbius transformation M with distinct fixed points
a and b in C maps the family A of Apollonian circles defined by the point
circles a and b to itself.
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Solution Let B be the family of generalized circles through a and b.
Since M has fixed points a and b, it maps the family B onto itself. Also, A Möbius transformation

maps generalized circles
onto generalized circles.

since a Möbius transformation preserves angles, M thus maps the family of
generalized circles that is orthogonal to those in B to itself. This family is the
family A of Apollonian circles defined by the point circles a and b. By Theorem 3,

Subsection 5.5.1

Example 5 Prove that a Möbius transformation M with distinct fixed points
a and b in C either maps each circle in the family A of Apollonian circles
defined by the point circles a and b to itself or it maps no circle in A to itself.

Solution By a suitable Möbius transformation f , we can map the point a to
0 and b to ∞. Then f maps the family A of Apollonian circles defined by the
point circles a and b to the family B of concentric circles with centre 0.

Then f ◦ M ◦ f −1 is a Möbius transformation, and it maps 0 to 0 and ∞
to ∞. It follows that f ◦ M ◦ f −1 is of the form z �→ K z, for some non-zero It is easy to verify that a

Möbius transformation of
Ĉ that has 0 and ∞ as its
fixed points is necessarily
of the form z �→ K z.

complex number K .
If |K | = 1, then f ◦ M ◦ f −1 maps each concentric circle in B to itself; but

if |K | �= 1 then f ◦ M ◦ f −1 maps no circle in B to itself.
If we then apply the mapping f −1 to return to the original situation, the

required result follows at once.

7.4.3 Coaxal Circles
Stereographic projection enables us to interpret the theory of coaxal circles, You met coaxal circles in

Subsection 5.5.2.including all its special cases, very elegantly on the sphere S2.
Earlier you saw that, if C is the circle cut out on S2 by the plane with In the proof of Theorem 7

of Subsection 5.2.4equation aX + bY + cZ + d = 0, then stereographic projection maps C to:

(a) the circle with equation

x2 + y2 + 2
a

c + d
x + 2

b

c + d
y − c − d

c + d
= 0, if c �= −d;

(b) the straight line with equation If c = −d , the circle C
passes through N .

ax + by − c − d

2
= 0, if c = −d.

Problem 6 Prove that a circle in R
2 with equation

x2 + y2 + 2αx + 2β y + γ = 0

corresponds under stereographic projection to the circle cut out on S2 by
the plane with equation

2αX + 2βY + (1 − γ )Z + (1 + γ ) = 0.
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Definition The circle in R
2 with equation

x2 + y2 + 2αx + 2β y + γ = 0

and the plane with equation

2αX + 2βY + (1 − γ )Z + (1 + γ ) = 0

are said to be associated. That is, they correspond to
each other under
stereographic mapping.We now use the idea of associated planes and circles to revisit the theory of

coaxal circles.
Let C1 and C2 be distinct circles in R

2 with equations We allow C1 and C2 to be
point circles.

x2 + y2 + 2α1x + 2β1 y + γ1 = 0

and
x2 + y2 + 2α2x + 2β2 y + γ2 = 0,

respectively; then their corresponding associated planes π1 and π2 have equa-
tions

2α1 X + 2β1Y + (1 − γ1)Z + (1 + γ1) = 0

and
2α2 X + 2β2Y + (1 − γ2)Z + (1 + γ2) = 0.

Now, either π1 and π2 are parallel or they are not parallel; they cannot be
the same plane, since the associated circles are distinct.

First, suppose that π1 and π2 are not parallel, so that they have a common
line, � say.

For arbitrary p and q, p �= −q, let C pq be the generalized circle with
equation

p

p + q

(
x2 + y2 + 2α1x + 2β1 y + γ1

)

+ q

p + q

(
x2 + y2 + 2α2x + 2β2 y + γ2

)
= 0,

and let πpq be its associated plane, with equation

p

p + q
(2α1 X + 2β1Y + (1 − γ1) Z + (1 + γ1))

+ q

p + q
(2α2 X + 2β2Y + (1 − γ2) Z + (1 + γ2)) = 0.

The associated plane πpq passes through the line �; so, as p and q vary, πpq

gives a family of planes through �. There are three cases to consider.
P

Q

S 2Case 1: The line � does not meet S2.
Here the family of planes cuts out a family of circles in S2 consisting of two
point circles P and Q and a set of disjoint circles in between these.

Under stereographic projection from N , the associated circles in the plane
form an Apollonian family: a family of coaxal circles with two point circles.
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Case 2: The line � touches S2 (at the point P , say).

S 2

S 2

P

Q

P

Here, every plane of the family meets S2. The plane tangent to the sphere at
the point P meets it in a single point, P . All the other planes cut S2 in a circle.
All these circles have a common tangent at P , which is the line �.

Under stereographic projection from N , the associated circles in the plane
form a family of coaxal circles having a common tangent. If N and P are
distinct, the image circles are ‘true’ circles except for one straight line; if N
coincides with P , the images are parallel lines.

Case 3: The line � cuts S2 in two points, say P and Q.
Here, every plane of the family meets S2. Each plane cuts the sphere in a circle
passing through the points P and Q.

Under stereographic projection from N , the associated circles in the plane
form a family of coaxal circles with two common points. If N , P and Q are
distinct, the image circles are ‘true’ circles except for one straight line; if N
coincides with either P or Q, say P , the images are straight lines passing
through the image of Q.

On the other hand, if the associated planes π1 and π2 are parallel then the
family of planes πpq consists of the planes parallel to π1 and π2, and the circles This is similar to the

situation in Case 1 above.they cut out on the sphere consist of two point circles and a set of disjoint
circles in between these.

7.5 Planar Maps

We use maps of the Earth on a daily basis: for example. street maps of towns,
road maps of countries, geological maps of continents, and for land, sea and
air travel. Most of our maps are on flat sheets of paper, rather than globes; and
we have to reduce the actual dimensions by a convenient scale factor, such as
1:12,000,000 for a continent, 1:100,000 for a map of a large city, or 1:25,000

Here, scale factor =
length on map divided by
length on Earth’s surface.for a detailed neighbourhood map.

We will assume in this section that the Earth is a sphere. In fact, the shape
of the Earth is closer to that of an oblate spheroid, a sphere flattened near each
pole and with a bulge around the equator. This bulge results from the rotation
of the Earth, and causes its equatorial diameter to be over 26 miles (43 km)
greater than its pole-to-pole diameter

Now an ideal planar map would represent shapes on the Earth’s surface
in such a way that relative distances, relative areas, shape, and angles are
preserved under the operation of mapping. Unfortunately, no ideal map is
possible!

For example, let �ABC be a triangle on S2, and let P, Q, R be the points
on the planar map that correspond to A, B, C, respectively. Then the sides of Subsection 7.3.1,

Theorem 2�ABC are line segments on S2, that is, parts of great circles; and the sum of
its angles exceeds π . The sides of �PQR are line segments in the plane, and
the sum of its angles is π . So we cannot simultaneously have geodesics on S2
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mapping onto geodesics in the plane AND preserve angles. This shows that an
ideal planar map cannot exist.

Recall that ‘geodesics’ are
curves of shortest length
between two points.
Leonhard Euler
(1707–1783) was a
prolific Swiss analyst,
who worked for Frederick
the Great (Prussia) and
Catherine the Great
(Russia) even after
becoming blind.

Furthermore, Euler showed in 1775 that it is not possible to map a portion
of the Earth’s surface onto a planar map in such a way that relative distances
(that is, distances up to a scaling factor) are preserved.

O C
R

P

p

r

r

E

C¢

Q¢

N¢P¢

To see this, let E denote the surface of the Earth, a sphere with centre O and
radius R; and let P ′ ∈ E be the centre of a circle C ′ on E of radius r (we will
suppose that r < 1

2π R, so that C ′ lies in a hemisphere on E with P ′ as pole).
Suppose that some ideal mapping represents the hemisphere onto a flat sheet,
π say, and let P, C on π represent P ′, C ′ on E .

Here r is a distance
measured along the
surface.

Since the mapping scales all distances by the same scale factor, c say, all
points on E at a distance r from P ′ map to points at a distance cr from P;
hence C ′ is represented on π by a circle C of radius cr – so that the length of
C is 2πcr.

Next, let Q′ be any point on C ′, and N ′ the foot of the perpendicular
from Q′ to OP′. Then ∠P ′OQ′ = r

R , so that Q′N ′ = R sin(∠P ′OQ′) =
R sin

( r
R

)
. But the circle C ′ is a circle in R

3 with radius Q′N ′, so that its
length is 2π R sin

( r
R

)
. Hence its representation C on π must have length

c × 2π R sin
( r

R

)
.

We deduce from the last two paragraphs that

2πcr = 2πcR sin
( r

R

)
,

so that

r

R
= sin

( r

R

)
.

This equality is impossible, since sin x
x < 1 for all x with 0 < x < π

2 . This is a standard result in
Calculus.So we have proved that it is not possible to represent a portion of the Earth’s

surface on a planar map in such a way that relative distances are preserved. It
follows from this, too, that no (precisely accurate) planar map of a portion of
E can have a fixed scale factor for the whole map.

In addition there are
various purely
mathematical approaches,
for special purposes.

In fact, there are three principal types of map projections for representing
the spherical Earth, E , on a flat sheet of paper, π . In their work, cartographers
often use the term meridians to denote lines of latitude, and parallels to denote
lines of longitude: we will follow this convention here.
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Azimuthal Projections
Azimuthal projections of E onto π are ones where we project E onto a sheet
π that is tangent to E at some point, often the South Pole S. We can think of the
projection mapping in the following way: a light source placed at some point
(the centre of the projection) on the perpendicular to π at the point of contact
projects each point P ′ on E onto a corresponding point P on π . Wherever we
place the source, meridians map to radial lines from the point of contact S,
parallels to concentric circles with centre S, and directions from the point of
contact are preserved.

N

E

N

E E

N

O O
O

P′

P′

P′

P S p P S p P S p

If the source is placed at the centre of E , the projection is called the gnomic
projection, and we obtain a map of the lower hemisphere of E . Since any plane By making the tangent

point N , we could obtain
a map of the upper
hemisphere.

through O meets E in a great circle and π in a line, each line in π comes from
a great circle on E . Hence geodesics on E are mapped onto straight lines on π .

If the light source is placed at the North Pole N of E , we obtain a map of the
whole of E−{N } on π . This projection is called the stereographic projection of
E onto π , and is the stereographic projection that you met earlier. It preserves

Subsection 5.2.4

angles, and so is called a conformal projection.
If the light source is placed ‘at infinity’ along the direction SON, and we

consider only the upper hemisphere or the lower hemisphere of E , then we
obtain a map of one hemisphere of E onto π that is actually circular. This
projection is called the orthogonal or orthographic projection. It preserves
distances along parallels.

Cylindrical projections
Cylindrical projections of E onto π are ones where we project E onto a sheet
π that is rolled in the form of a cylinder round E , touching it at its Equator;
then we slit the sheet and flatten it.

E

O
P ′

S
p p

P

P

N E

O

P ′

S

N
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In one cylindrical projection, a light source placed at the centre O of E , the
centre of the projection, projects each point P ′ on E onto a corresponding point
P on π . Parallels map to horizontal circles that become horizontal lines when
we unwrap the sheet, and meridians to vertical lines. The equator is mapped to
itself, and areas near the North and South Poles become greatly enlarged.

Another cylindrical projection projects each point P ′ on E horizontally
onto the nearest point P on π . Again, parallels map to horizontal circles that
become horizontal lines when we unwrap the sheet, and meridians to vertical
lines. This projection preserves the relative sizes of areas, so it is called an
equal area projection.

The well-known Mercator projection is a cylindrical map where the paral- Gerardus Mercator
(Latinized form of Gerard
Kremer) (1512–1594) was
a Flemish map maker who
devised this projection in
1569, and introduced the
term ‘atlas’.

lels are horizontal and the meridians vertical, but the spacing of the parallels is
chose cunningly so that paths of constant compass bearing (that is, paths mak-
ing the same angle with every meridian they cross) are shown as straight lines.
This projection is invaluable in navigation, since sailors and aircrew using it do
not need to constantly change the compass bearing of the course they follow.

Conical projections
Conical projections of E onto π are ones where we project E onto a sheet π

that is rolled in the form of a cone round E , touching it at some parallel; then
we slit the sheet along a meridian and flatten it, taking on the shape of a sector
of a circle.

E Ep p

O O

S S

P

P ′
P ′

P
N N

We may, for example, project each point P ′ on E to the corresponding point
P on π radially out from the centre of E , or horizontally out from the axis
of the cone to the nearest point on π . Parallels map to arcs of circles whose
centres are at the vertex V of the flattened cone, and meridians to straight lines
radially out from V . Conic projections are particularly useful for mapping large
areas in the mid-latitudes that are wide from east to west (such as Canada).

You should look at a good
Atlas now to see the
various types of
projections that it uses.

There are many variations of these fundamental types, all designed for
special purposes; but a full discussion is beyond the scope of this book.
Map-making is a fascinating subject!
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7.6 Exercises

Section 7.1
1. (a) Determine the equation of the great circle on S2 that passes through the

points
(

1√
6
, − 1√

6
, 2√

6

)
and

(
− 1√

6
, 2√

6
, 1√

6

)
.

(b) Determine the equation of the little circle on S2 that passes through the

points
(

1√
6
, −1√

6
, 2√

6

)
, (0, 0, 1) and

(−1√
6
, 2√

6
, 1√

6

)
.

2. Determine the spherical polar representation of the point
( √

3
2
√

2
, −

√
3

2
√

2
, − 1

2

)
on S2. Hence state the latitude, colatitude, and longitude of this point.

3. Determine the coordinates on S2 of San Francisco (38◦ N, 123◦ W) and
Brisbane (27◦ S, 153◦ E).

Section 7.2
1. Determine the images of the point

(
3

5
√

2
, 4

5
√

2
, − 1√

2

)
under the mappings

R(X , π
3 ), R(Y , 3π

4 ) and R(Z , 5π
4 ).

2. Determine the matrix A of a rotation x �→ Ax of S2 that maps(
3

5
√

2
, 4

5
√

2
, − 1√

2

)
to
(
− 4

5
√

2
, − 3

5
√

2
, 1√

2

)
. Verify your answer by direct

calculation.
3. (a) Determine the matrix A such that the mapping r : x �→ Ax represents

reflection of S2 in the plane π with equation x − 2y + z = 0.

(b) Hence determine the image under r of the point P
(

1√
14

, − 2√
14

, 3√
14

)
.

(c) Prove that the midpoint of P and r(P) lies in the plane π .
4. Let a triangle �PQR on S2 have sides PQ of length r , Q R of length p, This is the converse of

Theorem 6 of Subsection
7.2.2.

and RP of length q, and angles α, β and γ at the vertices P , Q and R,
respectively; let α = β. Prove that p = q.

5. Express the rotation R(X , π
4 ) of S2 as the composition of two reflections

of S2 in great circles.

Section 7.3
1. Construct the following figures on S2:

(a) a spherical triangle of area (2π − 0.1);
(b) a lune of area π/3.

2. An equilateral strict spherical triangle has area π
12 . Determine:

(a) the magnitudes of its angles;
(b) the lengths of its sides;
(c) the area of a dual triangle.

3. Estimate the distance between Beijing (40◦ N, 117◦ E) and Lima (12◦ S,
77◦ W), taking the radius of the Earth as 4000 miles.

4. Let �ABC be a triangle on S2 in which the angle at C is a right angle. If
a, b and c denote the lengths of BC, CA and AB, and α and β denote the
angles ∠CAB and ∠CBA, prove that:
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(a) cos c = cot α × cot β;
(b) cos β = tan a × cot c = cos b × sin α;
(c) sin a = tan b × cot β = sin α × sin c.

5. Let the spherical triangle �ABC have sides AB, BC and C A of lengths 1,
0.6 and 1.3, respectively. Estimate the length of the perpendicular from B
to C A.

6. Let the figure ABCD on S2 be a strict spherical ‘square’ − that is, have A ‘strict’ spherical square
is one whose whole can be
seen at one time after a
suitable rotation of S2.

four sides of the same length r and four angles of the same magnitude α.
Determine r in terms of α.

7. Prove that the distance d on S2 between the points with spherical polar coor-
dinates (cos φ1 sin θ1, sin φ1 sin θ1, cos θ1) and (cos φ2 sin θ2, sin φ2 sin θ2,
cos θ2) is given by. Sometimes this formula

can save you a bit of
arithmetic.cos d = sin θ1 sin θ2 cos(φ1 − φ2) + cos θ1 cos θ2.

Section 7.4
1. Let P and Q be the points

(
1
2 , 1

2

)
and

(
− 1

4 , − 1
4

)
in R

2, and P ′ and Q′ be

the corresponding points on S2 under the mapping π−1. Use Theorem 1 of
Subsection 7.4.1 to determine the spherical distance P ′Q′.

2. Determine the Möbius transformation that is conjugate to the rotation
R
(
Y , π

4

)
of S2.

3. (a) Prove that a Möbius transformation that maps 0 to ∞ and ∞ to 0 is of
the form z �→ K

z , for some non-zero complex number K .
(b) Prove that a Möbius transformation M that maps a to b and b to a

(where a �= b) maps the family A of Apollonian circles defined by the
point circles a and b to itself, and maps exactly one circle in A to itself.

Summary of Chapter 7

Introduction
The (Elliptic) Parallel Postulate Given any line � and a point P not on �, all
lines through P meet �. (That is, there are no lines through P that are parallel
to �.)

Section 7.1: Spherical Space
1. The unit sphere in R

3 is S2 = {
(x , y, z) : x2 + y2 + z2 = 1

}
. Each point

(x , y, z) on S2 has an antipodal point (−x , −y, −z). The North Pole of
S2 is N (0, 0, 1), and the South Pole is S (0, 0, −1). The equator is the
intersection of S2 with the horizontal plane through the origin.

2. A great circle is the circle cut out on S2 by a plane through the centre
of S2.
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A circle of longitude is a great circle through N . The Greenwich
Meridian is the part of the circle of longitude through A (1, 0, 0) which
has positive x-coordinates.

A circle of latitude is the curve of intersection of S2 with a plane par-
allel to the equator. A little circle is the curve of intersection of S2 with a
plane that is not a great circle.

3. A line on S2 joining two points P and Q, or a line PQ, is either arc with
endpoints P and Q of a great circle through P and Q.

4. The length of a line on S2 is the Euclidean length of the corresponding
circular arc; the distance (or spherical distance) between two points P
and Q on S2 is the length of the shorter of the two lines PQ, and is often
denoted simply as PQ.

For any three points P , Q and R on S2 that do not lie on a single great
circle, the lines PQ, QR and RP form a triangle �PQR.

5. Great circles are geodesics on S2; that is, curves of shortest distance
between points.

6. The distance between any two points P and Q on S2 is equal to the angle
that they subtend at the centre of S2. There is always a great circle joining
any two points on S2.

Spherical distance possesses all the natural properties that a distance
function should possess.

7. Any two lines on S2 meet in two points.
8. Corresponding to each point P on S2 the great circle associated with P

is the great circle of points π
/

2 distant from P . Conversely, for each great
circle there are two points of S2 which play the role of its ‘poles’.

9. For any two points P and Q on S2, there is a rotation of S2 that maps P
to Q.

10. Each point P on S2 has spherical polar coordinates (cos φ sin θ , sin φ

sin θ , cos θ), where 0 ≤ φ < 2π and 0 ≤ θ ≤ π .
The colatitude of P is the angle θ ; the latitude of P is θ ′ = π

2 −θ . The
longitude of P is the angle φ.

The distance of P from the North Pole is its colatitude θ .
11. A circle on S2 is the set of points on S2 that are equidistant from a given

point of S2; it is either a little circle or a great circle.

Section 7.2: Sperical transformations
1. An isometry of S2 is a mapping of S2 to itself that preserves distances

between points. The isometries of S2 form a group, the group of spherical
isometries, denoted by the symbol S (2).

A direct isometry of S2 preserves the orientation of angles on S2; an
indirect isometry of S2 reverses them. Reflection of S2 in a plane through
the centre of S2 is an indirect isometry of S2.

2. The three elementary rotations of S2 are its rotations about the coordinate
axes.
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The transformation
R (Z , γ ) : S2 → S2

x �→ Ax

where x =
⎛
⎝ x

y
z

⎞
⎠ and A =

⎛
⎝ cos γ − sin γ 0

sin γ cos γ 0
0 0 1

⎞
⎠ is a rotation of S2

about the positive z-axis through an angle γ .
The transformation

R (X , α) : S2 → S2

x �→ Ax

where x =
⎛
⎝ x

y
z

⎞
⎠ and A =

⎛
⎝ 1 0 0

0 cos α − sin α
0 sin α cos α

⎞
⎠ is a rotation of S2

about the positive x-axis through an angle α.
The transformation

R (Y , β) : S2 → S2

x �→ Ax

where x =
⎛
⎝ x

y
z

⎞
⎠ and A =

⎛
⎝ cos β 0 sin β

0 1 0
− sin β 0 cos β

⎞
⎠ is a rotation of S2

about the positive y-axis through an angle β.
3. The inverse of an elementary rotation through a given angle is an ele-

mentary rotation through the same angle but in the opposite direction. Its
matrix is the transpose of the matrix of the original elementary rotation.

4. A rotation of S2 that maps A (1, 0, 0) to P (cos φ sin θ , sin φ sin θ , cos θ) is
given by the composition R (Z , φ) R

(
Y , −θ ′), where θ ′ = π

2 − θ .
5. The equatorial plane of S2 is the plane z = 0 that contains the equator

of S2. Reflection in the equatorial plane of S2 is the mapping x �→ Ax
that sends the point x = (x , y, z) to the point (x , y, −z); it has matrix

A =
⎛
⎝ 1 0 0

0 1 0
0 0 −1

⎞
⎠.

6. Reflection of S2 in the plane with equation ax + by + cz = 0, where
a2 + b2 + c2 = 1, is given by the mapping x �→ Ax where

A =
⎛
⎝ 1 − 2a2 −2ab −2ac

−2ab 1 − 2b2 −2bc
−2ac −2bc 1 − 2c2

⎞
⎠.

7. The product of any two reflections of R
3 in planes through O that meet in

a common line is a rotation about that common line.
8. Every rotation is a product of two reflections; these reflections are in

planes that have the axis of rotation as their common line, and are
separated by half the angle of the rotation.

9. The image of a circle on S2 under an isometry of S2 to itself is a circle.
10. The Product Theorem Every isometry of S2 is a product of at most three

reflections in great circles.
An isometry of S2 is known completely when its effect on three points

(which do not lie on a common great circle) is known.
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11. Isosceles Triangle Theorem Let a triangle �PQR on S2 have sides PQ
of length r , QR of length p, and RP of length q, and let p = q. Also, let
the angles at the vertices P , Q and R be α, β and γ , respectively. Then
α = β.

12. Every isometry of S2 is a reflection, a rotation, or the composite of a
reflection and a rotation.

Every direct isometry of S2 is a rotation, and vice versa.

Section 7.3: Spherical Trigonometry
1. Given any three angles α, β and γ with (5π >) α + β + γ > π , there

exists a spherical triangle with those angles.
2. The sum of the angles of any spherical triangle is greater than π . The

angular excess of a spherical triangle is the difference between the sum
of the angles of the triangle and π .

3. The strict line segment PQ is the shorter of the two line segments PQ.
(If both are of length π , we choose either in some explicit way.)

The strict triangle �PQR is that triangle �PQR whose sides are strict
line segments, and its inside is the region of S2 that they bound; we can
rotate S2 so that the whole of the strict triangle can be seen at one time.

4. A lune is a 2-sided polygon bounded by two great circles
5. The area of a spherical triangle is equal to its angular excess.
6. Dual Triangles Theorem With every strict spherical triangle � there is

associated another triangle �′, called its dual, whose angles are the com-
plements of the sides of � and whose sides are the complements of the
angles of �. (The ‘complement’ of a quantity x is the quantity π − x .)

7. The distance d on S2 between the points (p1, p2, p3) and (q1, q2, q3) is
given by cos d = p1q1+p2q2+p3q3. The distance between corresponding
points on the surface of the Earth is then given (in miles) by the scaling
map x �→ 4000x.

8. Pythagoras’ Theorem Let �ABC be a triangle on S2 in which the angle
at C is a right angle. If a, b and c are the lengths of BC, CA and AB, then
cos c = cos a × cos b.

Also sin α = sin a
/

sin c and tan α = tan a
/

sin b.
9. We can always drop a perpendicular from a point on S2 to a line on S2.

10. Let �ABC be a strict triangle on S2, in which the sides AB, BC and CA
have lengths c, a and b, respectively, and the angles at A, B and C are
α, β and γ , respectively. Then
Sine Rule sin α

sin a = sin β
sin b = sin γ

sin c ;
Cosine Rule for Sides cos c = cos a cos b + sin a sin b cos γ ;
Cosine Rule for Angles cos γ = sin α sin β cos c − cos α cos β .

Section 7.4: Spherical Geometry and the Extended Complex
Plane
1. The image of the point P (cos φ sin θ , sin φ sin θ , cos θ) under stereographic

projection π has coordinates
(

cos φ
/

tan
(

1
2θ
)

, sin φ
/

tan
(

1
2θ
))

.
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2. Let a point P ′ on S2 map under stereographic projection to a point P in R
2

with coordinates (r cos θ , r sin θ). Then the spherical distance of P ′ from
the South Pole S is 2 tan−1 (r).

3. Let P ′ and Q′ be points on S2 that are mirror images under reflection in
a great circle C ′, and let the images of P ′, Q′ and C ′ under stereographic
projection π be P , Q and C , respectively. Then P and Q are inverse points
with respect to C .

4. Let R denote a rotation of S2, and π stereographic projection. Then the
transformation π Rπ−1 of the extended plane is the conjugate transfor-
mation of the rotation R.

The conjugate transformation of a rotation of S2 is a Möbius transforma-
tion of the extended plane.

5. A Möbius transformation M that is conjugate to a rotation of S2 is of the
form M (z) = (az+b)

/(−bz + a
)

, where a, b ∈ C.
A Möbius transformation can have at most two fixed points.

6. The circle in R
2 with equation x2 + y2 + 2αx + 2β y + γ = 0 and the

plane with equation 2αX + 2βY + (1 − γ )Z + (1 + γ ) = 0 are said to be
associated.

Section 7.5: Planar Maps
1. It is not possible to map a portion of the Earth’s surface onto a planar map

in such a way that relative distances are preserved. There is no ideal planar
map.

2. Azimuthal projections of the Earth E onto a flat sheet of paper π are ones
where we project E onto π placed tangent to E at some point, often the
South Pole S.

The gnomic projection uses the centre of E as the centre of projection,
stereographic projection uses the North Pole of E as the centre of pro-
jection, and orthogonal or orthographic projection uses rays from infinity
parallel to the polar axis.

3. Cylindrical projections of E onto π are ones where we project E onto a
sheet π that is rolled in the form of a cylinder round E , touching it at its
Equator; then we slit the sheet along a meridian and flatten it.

4. Conical projections of E onto π are ones where we project E onto a sheet
π that is rolled in the form of a cone round E , touching it at some parallel;
then we slit the sheet along a meridian and flatten it, taking on the shape of
a sector of a circle.



8 The Kleinian View of Geometry

We now describe in detail what we have called the Kleinian view of geometry.
As we said earlier, this is a powerful way in which the geometries we have Chapter 0

presented can be unified and seen as different aspects of the same idea.

8.1 Affine Geometry

Klein argued that in any geometry there are properties of figures that one dis-
cusses, but these properties vary from one geometry to another. In Euclidean
geometry, segments have lengths, lines cross at angles one can measure; it
makes sense to ask if a given triangle is equilateral, and so on. But none of
these properties makes sense in affine geometry. There one may speak only of
ratios of lengths along parallel lines, and all triangles are (affine) congruent.
Klein interpreted this as follows: in each geometry we are studying the same
space of points, the familiar plane R

2. In Euclidean geometry we admit only
the transformations that preserve length. These are transformations of the form

t(x) = Ux + a,

where U is an orthogonal 2 × 2 matrix and a ∈ R
2.

Because every transformation in Euclidean geometry preserves lengths, and
therefore angles, it makes sense to speak of distance in this geometry.

In affine geometry, however, we admit all transformations of the form

t(x) = Ax + b,

where A is an invertible 2×2 matrix and b ∈ R
2. Because every transformation

in affine geometry preserves ratios of lengths along parallel lines, it makes
sense to speak of such ratios in this geometry. But because there are affine
transformations that do not preserve length, it does not make sense to speak of
distance in this geometry.

Klein observed that rather more is true. In both geometries, the allowable
transformations form a group. This was a novel observation at the time, for
Group Theory as such was only just being discovered. Moreover, the group of
Euclidean transformations is a subgroup of the group of affine transformations.

470
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This observation enabled Klein to unify the two geometries. He said that both
geometries concern the same space R

2, that each geometry involves a group of

Euclidean

Affine

Projective

transformations which act on this space, and that the Euclidean group is a sub-
group of the affine group. In this sense Euclidean geometry is a subgeometry
of affine geometry.

The hard work comes with the remaining geometries. How can affine geom-
etry and projective geometry be unified? Projective geometry is not about the
plane R

2 but about projective space RP
2. Its transformations are written as

3 × 3 homogeneous matrices, not as 2 × 2 matrices. To accomplish the uni- Here, homogeneous
means that the matrix can
be multiplied by any
non-zero real number
without affecting the
transformation.

fication, we must first establish that the space R
2 can be regarded as a subset

of RP
2.

To do this, we consider the subset of Points in RP
2 that pierce the standard

embedding plane z = 1. We shall temporarily denote this subset by RP
2
0,

so that

RP
2
0 = {[x , y, z] : z �= 0}.

Now each point (x , y) in R
2 can be identified with the Point [x , y, 1] in RP

2
0;

z [x, y,z]

z = 1 (x /z,y /z,1)

x

y

and, conversely, each Point [x , y, z] = [x/z, y/z, 1] in RP
2
0 can be identified

with the point (x/z, y/z) in R
2. This provides us with a one–one corre-

spondence between R
2 and RP

2
0 which enables us to regard R

2 as a subset
of RP

2.
Next (following Klein) we prove a result which shows that the affine group

can be considered as a subgroup of the projective group.

Theorem 1 The group of affine transformations can be identified with the
subgroup of projective transformations that map RP

2
0 onto itself.

Proof A projective transformation which maps RP
2
0 onto itself is also

one that maps the ideal Line z = 0 onto itself. It is therefore sufficient to
characterize the projective transformations which map ideal Points to ideal
Points.

It is clear that the set of projective transformations which map the Line z = 0
onto itself is a group. For, if t is a transformation which maps ideal Points to
ideal Points, then so is its inverse t−1; and, if t and s are projective transfor-
mations which map ideal Points to ideal Points, then so is t ◦ s. We denote this Recall that the group of all

projective transformations
is denoted by P(2).

group by P0(2).

Let A =
⎛
⎝ a b c

d e f
g h k

⎞
⎠ be a matrix associated with a projective transforma-

tion t . Then t maps ideal Points to ideal Points if and only if⎛
⎝a b c

d e f
g h k

⎞
⎠
⎛
⎝x

y
0

⎞
⎠ =

⎛
⎝?

?
0

⎞
⎠,
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where we do not care what numbers the ?’s stand for, so long as they are not
both zero. It follows that t maps ideal Points to ideal Points if and only if

gx + hy + 0 = 0.

This must hold for all x �= 0 and all y �= 0, so g = h = 0. Since A is invertible,
it follows that det A = k(ae−db) �= 0, so k �= 0 and (ae−db) �= 0. Moreover,
since the matrices associated with a projective transformation are determined
only up to a non-zero real multiple, we can divide A by k. If we then rewrite
a/k as a, b/k as b, and so on, we see that the transformations in P0(2) are
precisely those projective transformations which have an associated matrix of
the form ⎛

⎝a b c
d e f
0 0 1

⎞
⎠, where ae − db �= 0.

Let us now consider the effect that such a transformation has on Points in RP
2
0.

If
[
x ′, y′, 1

]
is the image of [x , y, 1] under the transformation, then⎛
⎝x ′

y′
1

⎞
⎠ =

⎛
⎝a b c

d e f
0 0 1

⎞
⎠
⎛
⎝x

y
1

⎞
⎠ =

⎛
⎝ax + by + c

dx + ey + f
1

⎞
⎠.

This equation provides us with a relationship between x , y and x ′, y′ which we
can rewrite in the form(

x ′
y′
)

=
(

a b
d e

)(
x
y

)
+
(

c
f

)
.

Since ae−db �= 0 it follows that we can map the point (x , y) associated with
the Point [x , y, 1] to the point (x ′, y′) associated with the Point [x ′, y′, 1] by an
affine transformation. We conclude that the group P0(2) may be identified with
the affine group A(2). �

It follows that the space R
2 of affine geometry can be considered as a subset Affine

Projective
of projective space RP

2, and that the group A(2) of affine geometry can be
considered as a subgroup of the projective group P(2). In other words, affine
geometry is a subgeometry of projective geometry.

It is important to realize that in the process of extracting affine space from
projective space we lose all the ideal Points on the ideal Line, and that this
omission can have a significant effect on figures. For example, in projective
geometry any two Lines meet at a Point. But if the Point of intersection is an
ideal Point, then the corresponding affine figure consists of two lines that do
not meet. This gives rise to the affine concept of parallel lines, which is mean-
ingless in projective geometry. The fact that ‘parallelism’ is an affine property
can be checked easily by recalling that an affine transformation corresponds
to a projective transformation which maps ideal Points to ideal Points. Under
such a transformation, Lines which intersect at an ideal Point map to Lines
which intersect at an ideal Point. This is an alternative proof of the following
theorem that we first proved in Chapter 2.
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Theorem 2 An affine transformation maps parallel straight lines to paral-
lel straight lines.

Subsection 2.3.3,
Theorem 3

Parallelism is not the only new property to arise from the omission of ideal
Points. In affine geometry, three distinct types of (non-degenerate) conic arise
because there are three ways in which a projective conic can meet the ideal
Line. In the first figure below, the projective conic and the Line cross at two
Points; the corresponding picture in R

2 is that of a hyperbola. In the second
figure, the projective conic and the Line touch at one Point; the corresponding
picture in R

2 is that of a parabola. In the third figure, the projective conic and
the Line do not meet at any Point; the corresponding picture in R

2 is that of an
ellipse.

two
ideal

Points

one
ideal
Point

x x x

y y

z = 1

y

z z z

O O
O

So hyperbolas, parabolas and ellipses are plane conics which correspond
to projective conics with two, one and no ideal Points missing, respectively.
Since affine transformations correspond to projective transformations which
map ideal Points to ideal Points, they cannot change the number of ideal Points
on a projective conic, and hence cannot change the type of the plane conic. This
is an alternative proof of the following theorem first proved in Chapter 2. Subsection 2.5.1,

Theorem 4

Theorem 3 Affine transformations map ellipses to ellipses, parabolas to
parabolas, and hyperbolas to hyperbolas.

So far, we have discussed some affine properties that do not make sense in
projective geometry. By contrast, any property in projective geometry must
also be a property in affine geometry. Indeed, any property that is preserved
by the group of all projective transformations must also be preserved by the
subgroup of all affine transformations.

For example, tangency is a property of projective conics, so every pro-
jective transformation maps tangents to tangents. In particular, a projective
transformation which corresponds to an affine transformation must map a tan-
gent whose Point of contact is not an ideal Point to a tangent whose Point of
contact is not an ideal Point. Interpreting this observation as an affine result,
we obtain the following theorem which we first met in Chapter 2.
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Theorem 4 Let t be an affine transformation, and let � be a tangent to a
conic C . Then t(�) is a tangent to the conic t(C).

Subsection 2.5.1,
Theorem 7

Notice that in this proof of the theorem we did not have to consider tangents
whose Point of contact is an ideal Point. But to what does such a tangent
correspond in R

2? The answer depends on how many ideal Points lie on the
projective conic.

A projective conic which passes through one ideal Point corresponds to a
parabola in R

2. Since such a projective conic meets the ideal Line at precisely
one Point, the tangent at that Point must be the ideal Line z = 0. This tangent Recall that a Line is a

tangent to a projective
conic if it meets the conic
at precisely one Point.

does not correspond to anything in R
2!

More interesting are those projective conics which pass through two ideal
Points. Such a projective conic corresponds to a hyperbola in R

2. The tangents
which touch the projective conic at its two ideal Points correspond to lines in
R

2, and these lines are defined to be the asymptotes of the hyperbola.

standard
embedding
plane z = 1

asymptotes

tangents at the 
ideal Points of the
projective conic 

x

y

z

Since affine transformations correspond to those projective transformations
which map ideal Points to ideal Points, it follows that tangents at ideal Points
map to tangents at ideal Points, and hence that asymptotes map to asymptotes.
This proves the following theorem which you met in Chapter 2. Subsection 2.5.1,

Theorem 6

Theorem 5 Let t be an affine transformation, and let H be a hyperbola
with asymptotes �1 and �2. Then t(H) has asymptotes t(�1) and t(�2).

We now summarize what we have done so far.
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Geometry Space Transformations Invariants

Projective RP
2 = R

2

+ ideal Line
t : [x] �→ [Ax],
where A is a 3 × 3
invertible matrix

incidence,
collinearity,
cross-ratio

Affine R
2 t : x �→ Ax + b,

where A is a 2 × 2
invertible matrix

ratios along parallel
lines

Euclidean R
2 t : x �→ Ux + a,

where U is a 2 × 2
orthogonal matrix

length, angle

We can think of the geometries in this table as forming a hierarchy of geome-

Euclidean

Affine

Projective

tries with projective geometry at the top. Any property of a geometry in the
hierarchy is also a property of the geometries further down the hierarchy. Also,
theorems that are valid in one geometry in the hierarchy also hold in geometries
further down.

fewer congruence classes

more transformations

fewer properties

projective geometry

affine geometry

Euclidean geometry

As we move up the hierarchy, the group of transformations becomes larger
and so the congruence classes of figures merge together as more and more
figures become congruent to each other. In Euclidean geometry, two triangles
are congruent if and only if they have the same side lengths, and two conics
are congruent if and only if they are of the same type (hyperbola, parabola or
ellipse) and have the same shape and size. In affine geometry, any two triangles
are congruent, and conics are congruent if and only if they are of the same type.
In projective geometry, any two triangles are congruent and any two projective
conics are congruent.

8.2 Projective Reflections

The cross-ratio enables us to introduce a type of projective transformation that
generalizes reflection in Euclidean geometry.

Definitions Let F be a Point that does not lie on a Line �. Then a
projective reflection in � with centre F and non-zero parameter k is a
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mapping

r : RP
2 → RP

2

P �→ Q

where
R

l

Q = r (P)

P
F

(a) Q = P , if P lies on �;
(b) the cross-ratio (FRPQ) = k, where R is the Point of intersection of F P

and �.

Remark

Provided that P does not lie on �, then by varying the parameter k we can
arrange that the Point Q is any Point on the Line FP other than the Points F , R
and P .

We now indicate why this map is called a projective reflection.
Let �′ be the representation of a Line � in an embedding plane π , and con-

sider all the lines in π that are perpendicular to �′. Since these lines are parallel,
they must correspond to Lines in RP

2 which meet at an ideal Point, F say. Let
r denote the projective reflection in � with centre F and parameter k = −1.
Then, in the embedding plane π the effect of r is to map each (non-ideal) point
P ′ to its Euclidean reflection in �′.

r fixes the Points of � so that its effect in π is to fix the points of �′.

P ¢

F

R ¢

p

Q ¢l¢Next consider a Point P that does not lie on �, and let Q = r(P). Then PQ
passes through F and meets � at the Point R, where (FRPQ) = −1. For the
embedding plane π , F is an ideal Point, so that

(FRPQ) = Q′ R′

P ′ R′ = −1

(where R′, P ′ and Q′ are the representations of R, P and Q in π ). The point R′
is therefore the midpoint of P ′Q′. Moreover, since PQ passes through F , P ′Q′
must be perpendicular to �′, so Q′ is the Euclidean reflection of P ′ in �′, as
suggested.

We now relate projective reflections to projective transformations.

Theorem 1 A projective reflection is a projective transformation.

R

l

Q = r (P )

P
F

Proof Consider the projective reflection r in the Line � with centre F and
parameter k, and let Q = r(P) where P is a Point of RP

2 that does not belong
to � ∪ {F}. Then (FRPQ) = k, where R is the Point of intersection of PQ
and �.

By the Fundamental Theorem of Projective Geometry there is a projective
transformation t which maps F to F ′ = [0, 0, 1] and which maps the Line � to
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the Line �′ with equation z = 0. (This can be achieved by mapping a pair of
Points on � to [1, 0, 0] and [0, 1, 0].) If P ′ = t(P), Q′ = t(Q) and R′ = t(R),
then, since t preserves cross-ratio, it follows that (F ′R′P ′Q′) = (FRPQ) = k.

Now, if P ′ = [a, b, c], then the Line through P ′ and F ′ has equation
bx = ay, and so it meets the Line z = 0 at R′ = [a, b, 0]. As Q′ also lies
on the Line bx = ay, we can write Q′ = [a, b, d], for some d; here d �= 0,
since Q′ does not lie on �.

R¢
Q¢

P¢ 
F ¢

Since
(a, b, c) = 1 · (a, b, 0) + c · (0, 0, 1)

and
(a, b, d) = 1 · (a, b, 0) + d · (0, 0, 1),

if follows that k = (F ′R′P ′Q′) = c/d, so that d = c/k. Hence the mapping
s : RP

2 �→ RP
2 which sends P ′ to Q′ is the projective transformation defined

by
s([a, b, c]) = [a, b, c/k].

Also, s fixes the Points of �′ ∪ {F ′}. Thus the transformation r which maps
P to Q must be equal to the composite t−1 ◦ s ◦ t and so must be a projective
transformation, as required. �

Remarks

1. If the parameter k = 1, then s and hence r = t ◦ s ◦ t−1 are the identity
map.

2. If k �= 1, then the only Points fixed by r are F and the Points of �; for, if

s([a, b, c]) = [a, b, c/k] = [a, b, c],
then either c = 0 (in which case [a, b, c] lies on �′) or a = b = 0 (in which
case [a, b, c] = F ′).

3. If k = 0, then s, and hence r , is not a projective transformation.

We showed earlier that every projective transformation can be expressed as Theorem 4,
Subsection 3.3.4a composite of perspectivity transformations. In fact, a similar result holds for

projective reflections.

Theorem 2 Every projective transformation can be expressed as a com- We omit a proof, since we
shall not use this result.posite of a finite number of projective reflections.

8.3 Hyperbolic Geometry and Projective Geometry

First we introduce a new way of representing lines in hyperbolic geometry
that will be useful in explaining how hyperbolic geometry is related to pro-
jective geometry. In this representation lines appear straight, but angles are no
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longer represented accurately. The realization that this could be done was one
of the crucial discoveries made by Klein around the time he was preparing his
Erlangen Program.

To obtain the new representation we use two mappings, stereographic pro-
jection and orthogonal projection. Stereographic projection from the North
Pole of S2 maps the Southern hemisphere onto the interior of the unit disc D ,

N

N

S 2

S 2

S 2

(x,y)-plane

and the equator to the boundary of D . Its inverse therefore maps D onto the
Southern hemisphere. It is an angle-preserving map, so it sends an arc of a gen-
eralized circle in D , which is perpendicular to the equator, to an arc of a circle
on the sphere perpendicular to the equator – such an image may be thought of
as a circular arc ‘hanging vertically downwards’.

Orthogonal projection maps each point (x , y, z) in R
3 along a line parallel

to the z-axis to the point (x , y, 0) in the (x , y)-plane. It maps the Southern
hemisphere and the equator back onto D . It maps a circular arc on the sphere
perpendicular to the equator onto a segment of a straight line.

Definition The linearization map L of the unit disc D onto itself con-
sists of the inverse of the stereographic projection map followed by the
orthogonal projection map.

Then L fixes every point of the boundary of the unit disc D , and maps arcs of
generalized circles perpendicular to the boundary of D to segments of straight
lines.

Three hyperbolic lines
in the Poincaré model

Their images under L

L

The linearization map transforms the Poincaré model of hyperbolic geome-
try into a new model of hyperbolic geometry in which d-lines are represented It is important to realize

that although d-lines look
straight in this model,
angles are not represented
accurately.

by straight line segments. We call this new model of hyperbolic geometry
the Beltrami–Klein model, after the Italian mathematician Eugenio Beltrami
(1833–1900) who discovered it, and the German mathematician Felix Klein,
who connected it to projective geometry.

By considering the definition of L as the composite of the inverse of stereo-
graphic projection followed by orthogonal projection, it is clear that the image
of the d-line joining two points on the boundary of D is the straight line seg-
ment joining the points. To find the image of a point P of D under L , consider
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a d-line

image of d -line
under L  

L(P )  
P

two d-lines through P and locate their end-points on the boundary of D . Then
L(P) is the point where the corresponding chords intersect. Notice that, if it
helps, we can always assume that one of the d-lines is a diameter of D .

P

y

C

x
L(P)

Example 1 Find the image under L of the point P(r , 0) in D .

Solution Notice first that it is sufficient to consider the image under L of the
x-axis and the d-line through P at right angles to the x-axis.

The transformation L maps the x-axis to itself (as a line, not pointwise).
The d-line through P perpendicular to the x-axis is part of the circle C with
equation

The centre of C is on the
x-axis, so there is no
y-term in equation (l).

x2 + y2 − 2ax + 1 = 0. (1)

Since P(r , 0) lies on C , it follows from equation (1) that r2 − 2ar + 1 = 0, so

that a = r2+1
2r .

The circle C with equation (1) meets the boundary of D where

x2 + y2 − 2ax + 1 = 0 and x2 + y2 = 1.

The chord of D through the two points of intersection of C and the boundary
of D is found by subtracting these two equations, and so it has equation

2 − 2ax = 0, or ax = 1.

It follows that the image L(P) of P is the point
(

1
a , 0
)

=
(

2r
1+r2 , 0

)
.

According to the Kleinian view of geometry, to define a geometry we must
specify a space of points and a group of transformations acting on that space.
Our new Beltrami–Klein model of hyperbolic geometry agrees with the (ear-
lier) Poincaré model as far as the space of points is concerned: the space is the
unit disc D . The group of transformations is different, although isomorphic
to the original group; the new group consists of all transformations of D to
itself of the form Lt L−1, where t is a hyperbolic transformation. Clearly, if t
is a hyperbolic transformation mapping D to itself and d-lines to d-lines, then
Lt L−1 is a transformation mapping D to itself and chords to chords.

To connect transformations of the form Lt L−1 with projective geometry, we
shall show that every such transformation Lt L−1 is a projective transformation
which maps C to itself and D to itself. It is sufficient to prove this in the case C ={(x , y): x2+y2=1

}
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that t is a hyperbolic reflection; for, if t = t1 ◦ t2 ◦ . . . ◦ tn is a decomposition
of t into hyperbolic reflections then it follows that

Lt L−1 =
(

L ◦ t1 ◦ L−1
)

◦
(

L ◦ t2 ◦ L−1
)

◦ . . . ◦
(

L ◦ tn ◦ L−1
)

is a decomposition of Lt L−1 into projective transformations with the required
properties; then it follows that Lt L−1 is a projective transformation with the
required properties.

Theorem 1 Let t be the hyperbolic reflection in the d-line d joining the
l

D

d

E

A

C

B
F

boundary points A and B of D , and let F be the pole of the (Euclidean)
line � through A and B. Then Lt L−1 is the projective reflection r in � with
centre F and parameter −1.

Proof First we show that Lt L−1 agrees with r on C . To do this, observe that
lines through F are perpendicular to d, so the hyperbolic reflection r maps a
given point C of C to the other point D of C that lies on FC. Since L maps C

to itself, it follows that Lt L−1(C) = D.
Now let E be the point of intersection of FC with �. Then, since F is the

polar of � with respect to C , it follows that the cross-ratio (FECD) = −1. By the result of Exercise 7
on Subsection 4.3, in
Subsection 4.6.

Hence
r(C) = D = Lt L−1(C),

as required.
Next we show that Lt L−1 agrees with r on D . To do this, let P be an

arbitrary point of D . Then let AP meet C at D, and let AC meet FP at Q. We
will verify that r(P) = Q.

We know that r(A) = A and that r(D) = C , so that r must map AD to D

P

E

A Q

C

B
F

AC. We also know that r maps the line FP to itself, so that it must map P (the
point of intersection of AD and FP) to the point of intersection of AC and FP),
namely the point Q. Thus r(P) = Q.

Now we consider the transformation Lt L−1. It certainly maps chords of D

to chords; so, to find Lt L−1(P) we may take AD and FP as two Lines through
P , and find their images. The images of AD and FP are AC and FP, so that the
image of P is Q. That is, Lt L−1(P) = Q.

Thus Lt L−1 and r agree on both C and D . �

We have thus shown that every hyperbolic transformation t corresponds to Here we think of C as
being embedded in a
suitable embedding plane.

a projective transformation Lt L−1 which fixes C and maps its interior D to
itself. In a similar way we can verify that every projective transformation that
fixes C and maps D to itself corresponds to a hyperbolic transformation. We omit the details of this.

This shows that hyperbolic geometry can be considered as the sub-geometry
of projective geometry in which the space of points is the set of points inside
the fixed projective conic C , and its group of transformations corresponds to We defined the inside of a

projective conic in
Subsection 4.1.2.

those projective transformations mapping C to itself and the inside D of C to
itself.
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In fact, since all non-degenerate conics are projectively equivalent, we can
replace C in the above discussion by any non-degenerate conic E . This may be
achieved by replacing the linearization map L by the composite map s◦L◦s−1, We omit the details.

where s is a projective transformation that maps C onto E .

Defining Hyperbolic Distance in the Projective Setting
The fact that hyperbolic geometry may be considered a sub-geometry of pro-
jective geometry enables us to give a new method for defining distance in Historically, it was this

discovery that excited
Klein.

hyperbolic geometry. Projective transformations preserve cross-ratio, which
involves four Points; distance involves only two points. So we shall have a

P
Q

B

A E

ready-made sense of distance in the Beltrami–Klein model of projective geom-
etry as soon as we can connect two interior Points of a projective conic (for
simplicity, we shall take C as our projective conic) with a set of four collinear
Points. This is easy – we join the two given Points P and Q by a Line that
meets the projective conic in the Points A and B.

We know that the cross-ratio (ABPQ) is unaltered by any projective trans-
formation, and so in particular by the projective transformations that map the

A

P

QR

B

interior of the projective conic E to itself.
We now investigate whether we can sensibly define the hyperbolic distance

d from P to Q by the formula d(P , Q) = (ABPQ). The first thing we should
want is that distance along a line is additive: that is, if R also lies on the d-line
through P and Q, and R lies between P and Q, then is it true that

d(P , Q) = d(P , R) + d(R, Q)?

It follows from the definition of cross-ratio that

In this discussion we shall
not bother to distinguish
between Points and the
corresponding points in a
suitable embedding plane,
for simplicity.

d(P , Q) = (ABPQ) = AP

PB

/
AQ

QB
,

d(P , R) = (ABPR) = AP

PB

/
AR

RB
,

and

d(R, Q) = (ABRQ) = AR

RB

/
AQ

QB
.

Hence, if we use the definition d(P , Q) = (ABPQ), then d(P , Q) �=
d(P , R) + d(R, Q) but instead d(P , Q) = d(P , R) · d(R, Q). This suggests
that in the Beltrami–Klein model we should instead define distance between
arbitrary points P and Q of D by the formula

Recall that loge(xy) =
loge x + loge y, for any
positive numbers x and y.

d(P , Q) = k loge(ABPQ), for some number k,

since then distance d is additive. (In fact, the arbitrariness in the choice of
the constant k is analogous to the freedom we have to choose the radius of
the sphere in spherical geometry. However, we choose the sign of k so that
distances are non-negative.)

To define a distance function d for the Poincaré model, let the conic E be the
unit circle C and define the distance d between two points P and Q in D to be
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the distance d ′ between the corresponding points P ′ = L(P) and Q′ = L(Q) Notice that we use d ′here,
temporarily, to avoid
confusion.

in the Beltrami–Klein model. That is, we define

d(P , Q) = d ′(P ′, Q′).
To verify that this definition agrees with that given when we introduced hyper-
bolic geometry earlier, let P be the origin and let Q be an arbitrary point (r , 0)

on the positive x-axis. Then, by Example 1, P ′ = L(P) is also at the origin Subsection 6.3.1

and Q′ = L(Q) = (s, 0), where s = 2r
1+r2 . Since the x-axis meets C at the

points A(−1, 0) and B(1, 0), it follows that

A P’ Q’

–1
B
10 s

d(P , Q) = d ′(P ′, Q′)

= k loge(ABP′Q′)

= k loge

(
1

1

/
1 + s

1 − s

)

= k loge

(
1 − 2r

1+r2

1 + 2r
1+r2

)

= k loge

(
1 − 2r + r2

1 + 2r + r2

)

= −k loge

((
1 + r

1 − r

)2
)

= −2k loge

(
1 + r

1 − r

)
.

By choosing k = − 1
4 and representing P and Q by the complex numbers 0

Here we use that

loge

(
1

x

)
= − loge(x)

and

loge

(
x2
)

= 2 loge(x).

and z = r + 0i , respectively, we obtain

d(0, z) = 1

2
loge

(
1 + |z|
1 − |z|

)
.

This is the logarithm formula for hyperbolic distance in D that you met earlier. Subsection 6.3.1

8.4 Elliptic Geometry: the Spherical Model

To bring (the spherical model of) elliptic geometry into the Kleinian fold, we
need to connect its space S2 to the space RP

2 of projective points and its group
to the group of projective transformations.

With each point of S2 we can associate a line through the origin, the line that
joins the given point to the origin; this map assigns the same line to a pair of

O

S2

antipodal points. Conversely, given a projective point we can associate it with
the pair of diametrically opposite points that it cuts out on S2. In this way, we
see that there is a 2–1 map of S2 to RP

2 that sends each pair of antipodal points
on S2 to the line through the origin (the projective point) that they define.

Since a spherical transformation sends antipodal points to antipodal points,
it maps projective points to projective points. Also, every spherical transfor-
mation maps great circles to great circles, and so maps projective lines to
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projective lines. So it is clear that spherical transformations are projective
transformations, and the group of spherical transformations is a subgroup of
the projective group.

Projective Geometry and Spherical Geometry
Spherical geometry is a subgeometry of projective geometry which preserves
the Euclidean angle between two lines through the origin in R

3; the exact The description lies
beyond the scope of this
book.

description of the subgroup is quite subtle, however, because the map from
points of S2 to Points in RP

2 is 2–1.
One method of representing a projective point by a single point on S2 is Here we give an informal

description of the
representation.

to keep exactly half of S2, in some sensible way. For example, let E2 be the
subset of S2 defined by

E2 = northern hemisphere, {(x , y, z) : z > 0}
∪ half the equator, {(x , y, z) : z = 0, x > 0} ∪ {B(0, 1, 0)}.

Then every line through the origin meets E2 in exactly one point, and every
N

E2

S2

P+

P–

projective line meets E2 in half a great circle.
The 2–1 map from S2 to RP

2 therefore gives a 1–1 map from S2 to E2:
every point of RP

2 corresponds to a unique point of E2, and every point of
E2 defines a unique Point of RP

2. So E2 provides ‘a complete picture’ of
projective space RP

2.
To see what’s odd about E2, consider the Points corresponding to the points

(sin θ , 0, cos θ) on S2 as they trace out the Line y = 0 in RP
2. Each such Point

gives rise to two points on S2:

P+ = (sin θ , 0, cos θ) and P− = (− sin θ , 0, − cos θ).

As θ goes from 0 to π/2, the point P+ lies in E2. But when θ > π/2, the Here we discuss the points
of S2 that correspond to
the complete Line y = 0.

point P− lies in E2, rather than the point P+, and this continues as θ goes
from π/2 to 3π/2 (including θ = 3π/2). Then as θ goes from 3π/2 to 2π , it
is again the point P+ that lies in E2.

So in E2 the image of the Line is one-half of a great circle, described twice. N

E2

image of Line

There is an awkward switch in E2 from the Euclidean point corresponding to
the projective point being P+ to being P−. We cope with this by imagining the
pairs of antipodal points to be ‘joined up’; that is, we agree to regard antipodal
points in the equator of S2 as ‘being the same point’.

Conics appear equally odd. For example, let E denote a projective conic
made up of Euclidean lines through the origin of R

3 that form a right circular
(Euclidean) cone in R

3. This cone meets S2 in two little circles.
Suppose first that the points P+ all lie in E2, so that the cone does not meet

the equatorial plane in S2. Then the points in E2 that correspond to E form a
little circle on S2.

Suppose next that the cone cuts the equatorial plane of S2. Then we must
switch from P+ to P− as the Point describes the Line, and the points in E2

that correspond to E form two curves (parts of little circles) on S2.
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image of projective conic image of projective conic

projective conic projective conic

O O

S2 S2

To see what’s really odd about this, ‘thicken up’ the Line until it is a strip
bounded by two little circles in S2. The boundaries of the strip can be taken
to be two projective conics, one on either side of the Line. Since the image of
the Line meets the equator in S2, we know that the images of the (associated)
projective conics also meet the equator of S2.

P N Q

E2

S2

P ¢¢ Q ¢¢N ¢¢

N ¢ Q ¢P ¢

Now trace the image of the Line on S2. As you trace the Line from N to N ′,
the curve PP′ (which is part of a projective conic PP′ P ′′) is to your right, and
the curve QQ′ (which is part of a projective conic QQ′Q′′) is to your left.

When you reach the equator, the equatorial points N ′ and N ′′ are identified,
and you can complete your journey round S2 to return to N . But the point P ′
is identified with Q′′, so that the moving point that started from P returns to
Q; similarly, the point Q′ is identified with P ′′, so that the moving point that
started from Q returns to P .

The curve P ′′ P P ′ that was on your right is now on your left, and the curve
Q′′QQ′ that was on your left is now on your right. The image of the strip is
a strip in which the ends have been joined after receiving a half-twist. The
image is a Möbius band, which illustrates a significant mathematical point: Möbius bands are beloved

of conjurers!2-dimensional real projective space RP
2 is not orientable – that is, it cannot

be given an everywhere-consistent sense of left and right. That is, of orientation.

Inversive Geometry and Spherical Geometry
In inversive geometry, we study transformations which map generalized cir-
cles to generalized circles and preserve the magnitude of angles. Every
transformation in inversive geometry is composed of a sequence of inversions.

In spherical geometry, we study transformations which map great circles to
great circles and preserve the magnitude of angles. Every transformation in
spherical geometry is composed of a sequence of reflections in great circles,
which are therefore inversions. It follows that spherical geometry is a subge- We omit the full details.

ometry of inversive geometry, in exact analogy with the way that Euclidean
geometry is a subgeometry of affine geometry.

8.5 Euclidean Geometry

Spherical geometry appears easier to understand than hyperbolic geometry
because we can produce spheres S2 as a model of the geometry, but there
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seems to be no surface in Euclidean 3-dimensional space which is a good David Hilbert
(1862–1943), a professor
at Göttingen University,
was a mathematical
universalist, influential in
the foundations of
mathematics; he is best
known for his 1900 ‘23
Problems’ collection that
profoundly influenced the
course of 20th-century
mathematics.

model of hyperbolic geometry. One may exhibit ‘pieces’ of hyperbolic geom-
etry, but it was shown by David Hilbert around 1900 that no surface embedded
in 3-dimensional space is a complete model of hyperbolic 2-dimensional space.

But it can be argued that space might be hyperbolic (indeed, some would
say that, according to Einstein’s theory of General Relativity, it is more nearly
hyperbolic than Euclidean). This raises the question: Is Euclidean geometry a
subgeometry of hyperbolic geometry? We sketch a discussion of the answer to
this interesting question.

Remarkably, the answer to the question is YES: Euclidean geometry is a
subgeometry of hyperbolic geometry

To see that this is so, we need first to ‘go up a dimension’. Hyperbolic
3-dimensional space can be modelled on the interior of the unit ball: a hyper- It lies beyond our scope to

deal with the matter fully.bolic point is a point (x , y, z) such that x2 + y2 + z2 < 1, and a d-line is an arc
of a generalized circle perpendicular to S2. All the other definitions in hyper-
bolic geometry generalize in the obvious way, including that of inversion and S2 = {

(x , y, z):

x2 + y2 + z2 = 1
}
.hyperbolic reflection. In particular, the transformations of hyperbolic geometry

correspond to composites of inversions in spheres perpendicular to S2.
In the unit ball horospheres are spheres that touch S2 at a single point. For

N

S2

simplicity, we now fix our attention on the horosphere HN that touches S2 at
N , and restrict our attention to the subgroup G N , say, of hyperbolic trans-
formations that map HN to itself. Then we have the following remarkable
result.

Theorem 1 The geometry on HN is Euclidean geometry, and the group
G N acts on HN as Euclidean isometries.

Proof Invert the whole figure in a sphere with centre N . The point N is
mapped to ‘infinity’; S2 maps to a plane π : z = a, say, and HN maps to
a plane parallel to π , the plane π ′ : z = b, say. An element of G N is an inver-
sion in a generalized sphere through N and perpendicular to HN ; following
composition with the first inversion, the element of G N becomes an inver-
sion in an unbounded generalized sphere perpendicular to the plane π ′. These
generalized spheres must in fact be planes perpendicular to the plane π ′.

Now, inversion in a plane is Euclidean reflection in that plane. So the
subgroup mapping the image of HN to itself is the group generated by all
Euclidean reflections, which is the group of Euclidean isometries. It follows
that the geometry on the plane π ′ is Euclidean geometry. The desired result
then follows by applying the inverse of the original inversion. �

If indeed we had grown up believing that we lived in a hyperbolic
3-dimensional space, we should therefore be very familiar with spheres and
horospheres!
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Summary of Chapter 8

Section 8.1: Affine Geometry
1. The group of affine transformations can be identified with the subgroup of

projective transformations that map RP
2
0 onto itself.

2. Euclidean geometry is a subgeometry of affine geometry, which is itself
a subgeometry of projective geometry; the three form a hierarchy. The
higher up the geometry in the hierarchy, it has more transformations, fewer
properties and fewer congruence classes.

Section 8.2: Projective Reflections
1. Let F be a Point that does not lie on a Line �. Then a projective reflection

r in � with centre F and non-zero parameter k is a mapping of RP
2 to itself,

with P mapping to Q, where (i) Q = P if P lies on � and (ii) the cross-ratio
(FRPQ) = k, where R is the Point of intersection of FP and �.

2. A projective reflection is a projective transformation. Every projective
transformation can be expressed as a composite of a finite number of
projective reflections.

Section 8.3: Hyperbolic Geometry and Projective Geometry
1. Orthogonal projection maps (x , y, z) ∈ R

3 to (x , y, 0) ∈ R
3 or equiva-

lently, to (x , y) ∈ R
2.

2. The linearization map L of the unit disc D onto itself consists of the
inverse of the stereographic projection map followed by the orthogonal
projection map.

3. In the Beltrami–Klein model of hyperbolic geometry the space is D and
the d-lines are straight-line segments.

4. Let t be the hyperbolic reflection in the d-line d joining the boundary points
A and B of D , and let F be the pole of the (Euclidean) line � through A
and B. Then Lt L−1 is the projective reflection r in � with centre F and
parameter −1.

5. Every projective transformation that fixes C and maps D to itself corre-
sponds to a hyperbolic transformation.

Hyperbolic geometry can be considered as a subgeometry of pro-
jective geometry, where the points are points inside a fixed projective
conic C and the group of transformations corresponds to those projective
transformations mapping C onto itself and the inside of C to itself.

6. In the Beltrami–Klein model, we can define the distance between two
points P and Q of D (where PQ meets C at A and B) by d(P , Q) =
k loge (ABPQ), where k is chosen so that distances are non-negative. This
is equivalent to the definition of distance in the Poincaré model.
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Section 8.4: Elliptic Geometry: the Spherical Model
1. There is a 2–1 map of S2 to RP

2 that sends each pair of antipodal points
on S2 to the line through the origin that they define. There is a 1-1 map of
E2 = {(x , y, z) : z > 0} ∪ {(x , y, z) : z = 0, x > 0} ∪ {(0, 1, 0)} to RP

2.
2. Spherical transformations are projective transformations; the group of

spherical transformations is a subgroup of the projective group.
3. Spherical geometry is a subgeometry of inversive geometry.

Section 8.4: Euclidean Geometry
1. Euclidean geometry is a subgeometry of hyperbolic geometry
2. A point in 3-dimensional hyperbolic space is a point (x , y, z) with x2+ y2+

z2 < 1, and a d-line is an arc of a generalized circle perpendicular to S2.
3. A horosphere is a sphere in R

3 that touches S2 at a single point.
Let HN be the horosphere that touches S2 at N , and G N the subgroup

of hyperbolic transformations that map HN to itself. Then the geometry on
HN is Euclidean geometry, and the group G N acts on HN as Euclidean
isometries.



Special Symbols

{a, b, ..., t} set consisting of the elements a, b, . . . , t
{x : x satisfies some condition} set consisting of the elements x that satisfy

some condition
(a, b) {x : a < x < b }
[a, b] {x : a ≤ x ≤ b }
[a, b) {x : a ≤ x < b }
(a, b] {x : a < x ≤ b }
◦ composition of functions (from right to left)
∈ belongs to
/∈ does not belong to
⊂ is a subset of
�⊂ is not a subset of
⊆ equals or is a subset of
∪ set-theoretic union
∩ set-theoretic intersection
∅ empty set
≡ is equivalent to, is congruent to
�→ maps to
f : A → B the function f maps the set A to the set B,

x �→ y with the element x mapping to the element y
det A determinant of a matrix A
adj A adjoint of a matrix A
AT transpose of a matrix A
A−1 inverse of a matrix A
x · y dot or scalar product of vectors x and y
‖v‖ length of a vector v
t−1 inverse of the transformation t
R set of real numbers
R

+ set of positive real numbers
R

n n-dimensional Euclidean space
C set of complex numbers
N set of natural numbers

488
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� triangle
� sum
∠ angle
A(2) set of all affine transformations of R

2

RP
2 real projective space of dimension 2

P(2) group of projective transformations of RP
2

[x] homogeneous coordinates of a Point in RP
2

(ABCD) cross-ratio of the ordered set of points A, B, C , D
s, si , si j Joachimsthal’s notation for conics
D unit disc, {z : z ∈ C : |z| < 1} or{

(x , y) : (x , y) ∈ R
2, x2 + y2 < 1

}
C unit circle, {z : z ∈ C : |z| = 1} or{

(x , y) : (x , y) ∈ R
2, x2 + y2 = 1

}
Re z real part of a complex number z
Im z imaginary part of a complex number z
z conjugate of a complex number z
|z| modulus of a real or complex number z
∧
C extended complex plane C ∪ {∞}
A − B set of points in A that are not in B
S Riemann sphere
GD group of hyperbolic transformations
d(z1, z2) hyperbolic distance between z1 and z2

H upper half-plane, {z : z ∈ C, Im z > 0}
S2 unit sphere in R

3,
{
(x , y, z) : (x , y, z) ∈ R

3, x2 + y2 + z2 = 1
}

S(2) group of spherical isometries
R(X , α) rotation about the x-axis in R

3, through an angle α

R(Y , β) rotation about the y-axis in R
3, through an angle β

R(Z , γ ) rotation about the z-axis in R
3, through an angle γ

π(X , Y , Z) stereographic projection of (X , Y , Z)

A family of Apollonian circles
RP

2
0 Points in RP

2 that pierce the standard embedding plane
z = 1,

{[
x , y, z

] ∈ RP
2 : z �= 0

}
P0(2) group of projective transformations mapping the Line z = 0

to itself
L linearization map of unit disc D onto itself
E2 union of {(x , y, z) : z > 0} and {(x , y, z) : z = 0, x > 0} ∪

{(0, 1, 0)}
HN horosphere that touches S2 at N
G N group of hyperbolic transformations that map HN to itself
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Appendix 1: A Primer of Group Theory

A binary operation ◦ defined on a set G is a map from G × G to G; that is, if
g1 and g2 are elements of G then g1 ◦ g2 ∈ G. We call the binary operation ◦
composition and g1 ◦ g2 the product of g1 and g2, and we say that the binary
operation is closed. An isometry of a figure F in R

2 or R
3 is a mapping of F

to R
2 or R

3 that preserves distances; it is a direct isometry if it can be carried
out by a ‘continuous’ transformation within the space concerned, and indirect
otherwise.

Definition Let G be a set and ◦ a binary operation defined on G. Then
(G, ◦), or G for short, is a group if the following four axioms hold.

G1 CLOSURE For all g1, g2 ∈ G, g1 ◦ g2 ∈ G.
G2 IDENTITY There exists an identity element e ∈ G such that for

all g ∈ G,

g ◦ e = g = e ◦ g.

G3 INVERSES For each g ∈ G, there exists an inverse element
g−1 ∈ G such that

g ◦ g−1 = e = g−1 ◦ g.

G4 ASSOCIATIVITY For all g1, g2, g3 ∈ G,

g1 ◦ (g2 ◦ g3) = (gl ◦ g2) ◦ g3.

In any group, the identity element is unique and each element has a unique
inverse. If g belongs to a group, then (g−1)−1 = g.

Examples of groups include:

• The integers Z with the binary operation of addition, +;
• The real numbers R with the binary operation of addition, +;
• The positive real numbers R

+ with the binary operation of multiplication, ×;
• The set of all translations of the plane R

2;
• The set of all rotations and translations of the plane and their composites;
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• The set of all composites of all reflections of the plane (this is the isometry
group of the plane);

• The set of all 2 × 2 matrices with non-zero determinant.

If the binary operation ◦ of a group G is commutative (that is, g1 ◦ g2 =
g2 ◦ g1 for all g1, g2 ∈ G), we say that the group is commutative or Abelian.

A subset H of a group G is a subgroup of G if it is a group with respect to
the same binary operation. This can be reformulated as follows:

Definition Let (G, ◦) be a group with identity e, and let H be a subset of
G. Then (H , o) is a subgroup of (G, ◦) if the following axioms hold:

SG1 CLOSURE For all h1 and h2 ∈ H , the composite h1 ◦ h2 ∈ H .
SG2 IDENTITY The identity element e ∈ H .
SG3 INVERSES For each h ∈ H , the inverse element h−1 ∈ H .

The order of an element g of a group G is the least positive integer n
such that gn = e. If there is no such integer, we say that g has infinite order.
A cyclic group G is one in which every element is of the form gn for some
fixed element g ∈ G; g is called a generator of G.

The order of a group is the number of elements in it. If this number is infi-
nite, we say that the group is of infinite order. For a group G of finite order,
Lagrange’s Theorem asserts that the order of any subgroup of G divides the
order of G.

Two groups that have the same algebraic structure are called isomorphic.

Definition Two groups (G, ◦) and (H , �) are isomorphic if there exists a
mapping φ : G → H such that the following properties hold:

1. φ is one-one and onto;
2. for all g1, g2 ∈ G, φ(g1 ◦ g2) = φ(g1) � φ(g2).

Such a mapping φ is called an isomorphism.

Two elements x , y of a group (G, ◦) are conjugates of each other in G if
there exists an element g ∈ G such that y = g ◦ x ◦ g−1 (which we often write
simply as y = gxg−1). We say that g conjugates x to y, and that g is a
conjugating element.

Let H be a subgroup of a group (G, ◦), and let g ∈ G; then the set gH =
{g ◦ h : h ∈ H} is a left coset of H in G. It is a subset of G, but in general not
a subgroup of G. Two left cosets g1 H and g2 H are either equal or have no
elements in common. A right coset is defined similarly as a set of the form
Hg = {h ◦ g : h ∈ H}.

For any given group G and subgroup H and any two elements g1 and g2 of
G, there is usually no particular relation between a left coset g1 H and a right
coset Hg2; a right coset need not be a left coset, nor a left coset a right coset.
If however every right coset is a left coset, and every left coset a right coset,
then the subgroup H of G is called a normal subgroup of G.
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Definition A subgroup H is a normal subgroup of a group G if, for each Note that this does not
require that gh = hg for
each h.

element g ∈ G, gH = Hg.

For example, the group of all translations of the plane is a normal subgroup
of the group � of all isometries of the plane; but the group of all rotations
about a fixed point P in the plane, although a subgroup of �, is not a normal
subgroup of �.

If H is a normal subgroup of G, we can talk about the cosets of H in G
rather than the left cosets and the right cosets. In this case, the cosets them-
selves form a group under the binary operation ·, called set composition,
defined for subsets A, B of G as follows:

A · B = {a ◦ b : a ∈ A, b ∈ B}.
(In particular, g1 H · g2 H = (g1 ◦ g2)H , for all g1, g2 in G.) This group is
called the quotient group of G by H , and is denoted by G/H. The identity
element of G/H is the coset eH = H , and the inverse of gH is g−l H .

Every subgroup of an Abelian group G is a normal subgroup of G.



Appendix 2: A Primer of Vectors
and Vector Spaces

Vectors

A vector is a quantity that is determined by its magnitude and direction.
A scalar is a quantity that is determined by its magnitude. A vector in R

2

or in R
3 can be represented by a line whose length is a measure of the

magnitude (or length) of the vector and whose direction is the same as that
of the vector. A vector represented by a line segment from A to B is often
written as

−→
AB.

The vector space R
2 is the set of ordered pairs of real numbers with the

operations of addition and scalar multiplication defined as follows:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2);
α(x , y) = (αx , αy), for any real number α.

In R
2 the vectors i and j are unit vectors in the positive direction of the

x- and y-axes, respectively. Any vector v in R
2 can be expressed as a sum of

the form

v = x i + yj, for some real numbers x and y;

often we simply write v = (x , y), for brevity. The numbers x , y are the com-
ponents of v in the x- and y-directions. Similarly, in R

3 the vectors i, j and k
are unit vectors in the positive direction of the x-, y- and z-axes, respectively.
Any vector v in R

3 can be expressed as a sum of the form v = x i + yj + zk,
for some real numbers x , y and z.

The vector space R
3 is defined similarly.

The dot (or scalar) product of two vectors u and v is

u · v = ||u|| × ||v|| × cos θ ,

where ||u|| and ||v|| denote the lengths of the vectors u and v and θ is the
angle between them. It follows that the angle θ between two vectors u and v
is given by

cos θ = u · v
||u|| × ||v|| .

If u = x1i + y1j and v = x2i + y2j, then u · v = x1x2 + y1 y2.
Two non-zero vectors u and v are orthogonal if they are at right angles; then

u · v = 0.

495
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The length of a vector v is given in terms of the dot product as ||v|| =√
v · v.

P

P

R

RQ

PR

Q

Q

R

q
P

ratio negative

ratio positive

r

1 – λ
λ

Position Vectors

The position vector v = x i + yj is the vector in R
2 whose starting point is the

origin and whose finishing point is the point with Cartesian coordinates (x , y).
A position vector in R

3 is defined similarly.
Let R be a point on the line which passes through two points P and Q in R

2,
and suppose that p, q and r are the position vectors of P, Q and R, respectively.
Then there is a real number λ such that

r = λp + (1 − λ)q.

The coefficients of p and q in this expression can be used to calculate the
ratio in which the point R divides the line segment PQ; namely,

P R

RQ
= 1 − λ

λ
.

This ratio is actually a ‘signed’ ratio. If 0 < λ < 1, then the ratio is positive
and R lies between P and Q. But if λ > 1 or if λ < 0, then the ratio is negative
and R lies beyond P or beyond Q, respectively.

This negative ratio can be interpreted as meaning that the vectors
−→
PR and−→

RQ point in opposite directions.
Another way in which we can calculate ratios is to use the Cartesian coordi-

R

Q

P

xp

yp

yR

yQ

y

xQ xR x

nates of the points concerned. Indeed, provided that the line through P, Q and
R is not parallel to the y-axis, then it is clear from the figure in the margin that

P R

RQ
= xR − xP

xQ − xR
,

where xP , xQ and xR are the x-coordinates of the points P , Q and R,
respectively.

Similarly, if the line through P, Q and R is not parallel to the x-axis, then

P R

RQ
= yR − yP

yQ − yR
,

where yP , yQ and yR are the y-coordinates of the points P , Q and R,
respectively.

Often the line through P , Q and R will be parallel to neither of the axes, in
which case both formulas will work. In such cases we can pick the formula that
makes the calculations simplest. One advantage of the coordinate approach is
that we do not have to worry about whether the ratio is positive or negative, for
the coordinates take care of the sign automatically.

Section Formula The position vector r of the point R that divides the line Q

R

P

λ

1 – λ

segment � joining the points P and Q with position vectors p and q in the
ratio (1 − λ) : λ is

r = λp + (1 − λ)q.
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It follows that the vector form of the equation of a line through the points
with position vectors p and q is

r = λp + (1 − λ)q, where λ varies over all real numbers.

Vector Spaces

Definitions A real vector space consists of a set V of elements (called
vectors) and a binary operation + defined on V such that (V , +) is an
Abelian group, and such that for each v ∈ V and each real number
α, αv ∈ V . Moreover,

1v = v,

α(βv) = (αβ)v,

and the two distributive laws hold:

α(v + w) = αv + αw,

(α + β)v = αv + βv.

Examples of real vector spaces include:

• the set of real numbers with the operations of (ordinary) addition and of
multiplication by real numbers;

• the set of ordered pairs of real numbers, R
2 = {(x , y) : x , y ∈ R}, where

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) and α(x , y) = (αx , αy);
• the set of ordered triples of real numbers, R

3 = {(x , y, z) : x , y, z ∈ R},
where (x1, y1, z1)+(x2, y2, z2) = (x1 +x2, y1 + y2, z1 +z2) and α(x , y, z) =
(αx , αy, αz).

A set E = {e1, e2, . . . , en , . . .} of vectors is linearly independent if the
only solution of the equation α1e1 + α2e2 + . . . + αnen + . . . = 0 is α1 =
α2 = . . . = 0; if it has another solution, then E is said to be linearly
dependent.

Given any set E = {e1, e2, . . . , en , . . .} of vectors in a vector space V, the
set of all possible vectors of the form {α1e1 + α2e2 + . . . + αnen + . . . :
α1, α2, . . . , αn , . . . real} is called the span of E, denoted by 〈E〉. If E is any
subset of V , then 〈E〉 is a vector space too, called a vector subspace of V .

A basis of a vector space V is a subset E of V such that E is a linearly
independent set and E spans V . Then each vector v in V can be expressed
uniquely in the form

v = α1e1 + α2e2 + . . . + αnen + . . . , where α1, α2, . . . , αn , . . . are real.

All bases of a given vector space V have the same number of elements. If
this number is finite, n say, then V is said to be finite-dimensional or to
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have dimension n; if this number is infinite, then V is said to be infinite-
dimensional.

The standard basis of R
n is the set of n vectors

{(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 1)}.
A basis E of a vector space V is an orthogonal basis if each pair of vectors

in E are at right angles to each other; it is an orthonormal basis if, in addition,
the length of each vector in E is 1.

Linear Transformations

Definition A linear transformation t is a mapping of one vector space V
into another vector space W such that

(a) t(u + v) = t(u) + t(v), for all u, v∈V ; and
(b) t(αv) = αt(v), for all v∈V , and all real α.

Let t : V → W be a linear transformation of a (domain) vector space V of
dimension n and with a basis E = {e1, e2, . . . , en} into a (codomain) vector
space W of dimension m and with a basis F = {f1, f2, . . . , fm}. Then, if

t(e1) = a11f1 + a21f2 + . . . + am1fm ,

t(e2) = a12f1 + a22f2 + . . . + am2fm ,
. . .

t(en) = a1nf1 + a2nf2 + . . . + amnfm ,

the rectangular array or matrix denoted by

A = (ai j ) =

⎛
⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

:
am1 am2 . . . amn

⎞
⎟⎟⎠

with m rows and n columns represents the linear transformation t ; we also say
that t has matrix A. The matrix A is said to be of size or dimension m × n. A
1-row matrix is called a row matrix, and a 1-column matrix is called a column
matrix. An m × n matrix is square if m = n; that is, if it has the same number
of rows as columns. A square matrix A = (ai j ) is diagonal if the entries not
on the principal diagonal from top left to bottom right of the array are zero;
that is, ai j = 0 for i �= j . The identity matrix In (or I, for short) is the n × n
diagonal matrix whose entries on the principal diagonal are all 1s.

An anticlockwise rotation of R
2 through an angle θ is represented by the

matrix (
cos θ − sin θ

sin θ cos θ

)
,
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a dilatation of R
2 by a factor k by(

k 0
0 k

)
,

and a reflection of R
2 in the line y = kx by⎛

⎜⎜⎜⎝
1 − k2

1 + k2

2k

1 + k2

2k

1 + k2

1 − k2

1 + k2

⎞
⎟⎟⎟⎠ .

Two matrices A and B are equal if they are of the same size, and corre-
sponding entries are equal. The sum, A + B, of matrices A and B is defined
only if A and B are of the same size; the entries of A + B are obtained by
adding corresponding entries of A and B. For any real number α and matrix A,
the matrix αA is a matrix of the same size as A but whose entries are α times
the corresponding entries of A. The difference A − B of matrices A and B is
simply A + (−1)B.

The transpose AT of a matrix A of size m × n is the matrix of size n × m
obtained by interchanging the i th row for the i th column; that is, if A = (ai j )

then AT = (a ji ).
The product AB of matrices A and B of sizes m×n and k×l is only defined

if n = k; in this case, AB is the m × l matrix whose entry in the i th row and
j th column is the dot product of the i th row of A and the j th column of B.

If E = {e1, e2, . . . , en} is a basis for V and F = {f1, f2, . . . , fm} is a basis
for W , and if v = α1e1 + α2e2 + . . . + αnen ∈ V , then we can express v (in
terms of its components with respect to E) in the matrix form

v =

⎛
⎜⎜⎝

α1

α2

:
αn

⎞
⎟⎟⎠ ,

and the image of v under t (in terms of its components with respect to F) in
the matrix form

t(v) = Av =

⎛
⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

:
am1 am2 . . . amn

⎞
⎟⎟⎠

⎛
⎜⎜⎝

α1

α2

:
αn

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

a11α1 + a12α2 + . . . + a1nαn

a21α1 + a22α2 + . . . + a2nαn

:
am1α1 + am2α2 + . . . + amnαn

⎞
⎟⎟⎠ ,

so that

t(v) = (a11α1 + a12α2 + . . . + a1nαn)f1 + (a21α1 + a22α2 + . . .

+ a2nαn)f2 + . . . + (am1α1 + am2α2 + . . . + amnαn)fm .
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Let s be a linear transformation mapping a vector space V (of dimension n
and with a basis E) into a vector space W (of dimension m and with a basis F)
with matrix A; let t be a linear transformation mapping the vector space W
(with the same basis F) into a vector space K (of dimension k and with a
basis G) with matrix B. Then the composite mapping t ◦ s is a linear trans-
formation with matrix BA. In general, AB �= BA even when both products are
defined. If the product AB is defined, then (AB)T = BT AT .

A linear transformation s of a vector space V into a vector space W is
invertible if there is a linear transformation t of W into V such that

s ◦ t = t ◦ s = the identity mapping of V to itself.

If V and W are of dimensions n and m, then s is invertible only if m = n;
if s is invertible and has matrix A, then the matrix of t is denoted by A−1, the
(matrix) inverse of A. If A is invertible, then AA−1 = A−1A = ln .

If A and B are invertible n×n matrices, then AB is invertible and (AB)−1 =
B−1A−1. A square matrix A is orthogonal if A−1 = AT , or, equivalently, if
AAT = I or AT A = I.

Determinants

Associated with any square matrix A is a number called the determinant of A,
denoted by det A, det(A) or |A|.

If A is a 1 × 1 matrix (a), then det A = a . If A is a 2 × 2 matrix

(
a b
c d

)
,

then

det A =
∣∣∣∣a b
c d

∣∣∣∣ = ad − bc.

If A is a 3 × 3 matrix ⎛
⎝a b c

d e f
g h i

⎞
⎠ ,

then

det A =
∣∣∣∣∣∣

a b c
d e f
g h i

∣∣∣∣∣∣
= a

∣∣∣∣ e f
h i

∣∣∣∣− b

∣∣∣∣ d f
g i

∣∣∣∣+ c

∣∣∣∣ d e
g h

∣∣∣∣
= aei − a f h − bdi + b f g + cdh − ceg.

In each term of the second last line above, the coefficient is an entry in the
top row of the determinant, with alternate + and − signs inserted, and the
associated 2 × 2 determinant is obtained by deleting the row and column of A
that contain that entry. (n × n determinants may be defined analogously.)
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The determinant has the following properties:

det I = 1; det AT = detA;

det(AB) = detA · detB; det A−1 = 1/(detA).

A square matrix A is invertible if and only if det A �= 0. If A is a 2 × 2

matrix

(
a b
c d

)
, then

A−1 = 1

det A

(
d −b

−c a

)
.

There are several ways of finding the inverse of a 3× 3 matrix; we give only
one here! The adjoint matrix, adj A, associated with the 3 × 3 matrix

A =
⎛
⎝a b c

d e f
g h i

⎞
⎠ ,

is the 3 × 3 matrix

adj A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∣∣∣∣ e f
h i

∣∣∣∣ −
∣∣∣∣ d f

g i

∣∣∣∣
∣∣∣∣ d e

g h

∣∣∣∣
−
∣∣∣∣ b c

h i

∣∣∣∣
∣∣∣∣ a c

g i

∣∣∣∣ −
∣∣∣∣ a b

g h

∣∣∣∣∣∣∣∣ b c
e f

∣∣∣∣ −
∣∣∣∣ a c

d f

∣∣∣∣
∣∣∣∣ a b

d e

∣∣∣∣

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

T

obtained by replacing each entry in A by the 2 × 2 determinant (called the
cofactor of that entry) obtained by deleting the row and column of A that
contain that entry, together with alternate + and − signs as indicated, and then
taking the transpose. Then

A−1 = 1

det A
(adj A).

The equation of the line through two points A = (a1, a2), B = (b1, b2) in
the plane R

2 is ∣∣∣∣∣∣
a1 b1 x
a2 b2 y
1 1 1

∣∣∣∣∣∣ = 0 or

∣∣∣∣∣∣
a1 a2 1
b1 b2 1
x y 1

∣∣∣∣∣∣ = 0;

and three points A = (a1, a2), B = (b1, b2) and C = (c1, c2) in the plane are
collinear if and only if∣∣∣∣∣∣

a1 b1 c1

a2 b2 c2

1 1 1

∣∣∣∣∣∣ = 0 or

∣∣∣∣∣∣
a1 a2 1
b1 b2 1
c1 c2 1

∣∣∣∣∣∣ = 0.
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Eigenvectors and Eigenvalues

An eigenvector of a linear transformation t of R
2 (or R

3) to itself is a non-zero
vector v such that t(v) = λv for some real number λ called the corresponding
eigenvalue. The eigenspace S(λ) is the vector subspace of R

2 (or R
3) spanned

by all eigenvectors of t with λ as the corresponding eigenvalue; an eigenspace
may have dimension greater than 1.

If a linear transformation of R
2(or R

3) to itself has matrix A, then a non-zero
vector v such that Av = λv for some real number λ is called an eigenvector of
A; λ is called the corresponding eigenvalue.

The eigenvalues λ of an n × n matrix A satisfy the equation det (A − λI) =
0, called the characteristic equation of A. A 3 × 3 matrix necessarily has
at least one real eigenvalue. The trace of A, denoted by tr A, is the sum of
the elements along the principal diagonal of A, and equals the sum of the
eigenvalues of A.

To find the eigenvalues and eigenvectors of a matrix A, first solve the char-
acteristic equation to determine the eigenvalues λ; then solve the simultaneous
eigenvector equations (A − λI)v = 0 to find the corresponding eigenvectors
and eigenspaces.

An n × n matrix A is diagonalizable if there is an n × n diagonal matrix
D such that D = P−1AP for some invertible n × n matrix P; the entries on
the principal diagonal of D are the eigenvalues of A. An n × n matrix A is
diagonalizable if and only if it possesses n linearly independent eigenvectors.

A (square) matrix A is symmetric if AT = A; an n × n symmetric matrix
has n real eigenvalues. A symmetric n × n matrix A is orthogonally diago-
nalizable; that is, there is an n × n diagonal matrix D such that D = P−1AP
for some orthogonal n × n matrix P. The columns of P are eigenvectors of A
of length 1, and are mutually orthogonal.
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Chapter 1
Section 1.1
1. Here we use the standard formula for the equa-

tion of a circle of given centre and radius given
in Theorem 1.

(a) This circle has equation

(x − 0)2 + (y − 0)2 = 12,

which can be rewritten in the form

x2 + y2 = 1.

(b) This circle has equation

(x − 0)2 + (y − 0)2 = 42,

which can be rewritten in the form

x2 + y2 = 16.

(c) This circle has equation

(x − 3)2 + (y − 4)2 = 22,

which can be rewritten in the form

x2 + y2 − 6x − 8y + 21 = 0.

(d) This circle has equation

(x − 3)2 + (y − 4)2 = 32,

which can be rewritten in the form

x2 + y2 − 6x − 8y + 16 = 0.

2. Since the origin lies on the circle, its coordinates
(0, 0) must satisfy the equation of the circle.
Thus

02 + 02 + f · 0 + g · 0 + h = 0,

which reduces to the condition that h = 0.

3. (a) We can use the general formula of Theorem
2 for centre and radius, with f = −2, g =
−6 and h = 1. It follows that the circle has
centre (1, 3) and radius

√
9 = 3.

(b) Here the coefficients of x2 and y2 are both 3,
so we divide the equation by 3 to get it into
standard form (that is, with the coefficients
of x2 and y2 both 1); the equation becomes

x2 + y2 − 4x − 16y = 0.

We can use the general formula of Theorem
2 for centre and radius, with f = −4, g =
−16 and h = 0. It follows that the circle has
centre (2, 8) and radius

√
68 = 2

√
17.

4. (a) If we complete the square in the equation

x2 + y2 + x + y + 1 = 0, (1)

we obtain the equation(
x + 1

2

)2 +
(

y + 1
2

)2 = − 1
2 .

This equation represents the empty set,
since its left-hand side is always non-
negative whereas its right-hand side is neg-
ative.

(Alternatively, we can apply the Remark
following Theorem 2 of Subsection 1.1.2 to
the quantity 1

4 f 2 + 1
4 g2 −h. In equation (1),

we have f = 1, g = 1 and h = 1. Thus

1
4 f 2 + 1

4 g2 − h = 1
4 + 1

4 − 1 < 0,

so that the set must be the empty set.)
(b) If we complete the square in the equation

x2 + y2 − 2x + 4y + 5 = 0, (2)

503
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we obtain the equation

(x − 1)2 − 1 + (y + 2)2 − 4 + 5 = 0,

or
(x − 1)2 + (y + 2)2 = 0.

Thus the set in the plane represented by
equation (2) is the single point (1, −2).

(Alternatively, we can apply the Remark
following Theorem 2 of Subsection 1.1.2 to
the quantity 1

4 f 2 + 1
4 g2 −h. In equation (2),

we have f = −2, g = 4 and h = 5. Thus

1
4 f 2 + 1

4 g2 − h = 1 + 4 − 5 = 0,

so that the set must be a single point(
− 1

2 f , − 1
2 g
)

= (1, −2).)

(c) Here the coefficients of x2 and y2 are both
2; so we divide the equation by 2 to get it
into standard form as

x2 + y2 + 1
2 x − 3

2 y − 5
2 = 0. (3)

Then, if we complete the square in equation
(3) we obtain the equation(

x + 1
4

)2 − 1
16 +

(
y − 3

4

)2 − 9
16 − 5

2 = 0,

or (
x + 1

4

)2 +
(

y − 3
4

)2 = 25
8 .

Thus the set in the plane represented by

equation (3) is a circle with centre
(
− 1

4 , 3
4

)
and radius

√
25
8 = 5

4

√
2.

(Alternatively, we can apply Theorem 2
to the quantity 1

4 f 2 + 1
4 g2 − h. In equation

(3), we have f = 1
2 , g = − 3

2 and h = − 5
2 .

Thus

1
4 f 2 + 1

4 g2 − h = 1
16 + 9

16 + 5
2 = 25

8 ,

so that the set is the circle with centre(
− 1

4 , 3
4

)
and radius

√
25
8 = 5

4

√
2.)

5. Here we use the result of Theorem 3.

(a) The condition that the intersecting circles

C1 : x2 + y2 − 4x − 4y + 7 = 0

C2 : x2 + y2 + 2x − 8y + 5 = 0

are orthogonal is that

(−4)2 + (−4)(−8) = 2(7 + 5);

that is, that 24 = 24. This is the case; hence
C1 and C2 are orthogonal.

(b) Here we must divide the given equation
of C2 by 3 in order to get it in the form
x2 + y2 + · · · = 0, before using Theorem 3.
The condition that the intersecting circles

C1 : x2 + y2 + 3x − 6y + 5 = 0

C2 : x2 + y2 + 4
3 x + 1

3 y − 5 = 0

are orthogonal is that

(3)
(

4
3

)
+ (−6)

(
1
3

)
= 2(5 − 5);

that is, that 4 − 2 = 0. This is not the case;
hence, C1 and C2 are not orthogonal.

6. First we write the equation of the second circle
in the (normalized) form

x2 + y2 + 5
2 x − 3y + 3

2 = 0,

in which the cofficients of x2 and y2 are 1.
Then, by Theorem 4 (with k = −1) it follows

that the equation of the line through the points
of intersection of the two given circles is

x2 + y2 − 3x + 4y − 1

− 1
(

x2 + y2 + 5
2 x − 3y + 3

2

)
= 0,

or
− 11

2 x + 7y − 5
2 = 0;

we can write this in the simpler form

11x − 14y + 5 = 0.

7. (a) The parabola E is the parabola in standard
form where 4a = 1, or a = 1

4 . It follows

that the focus of E is
(

1
4 , 0
)

, the vertex

is (0, 0), the axis is the x-axis, and the
equation of the directrix is x = − 1

4 .
(b) The coordinates of P and Q are

(
t2
1 , t1

)
and(

t2
2 , t2

)
, respectively. So, if t2

1 �= t2
2 , the

slope of PQ is given by

m = t1 − t2
t2
1 − t2

2

= 1

t1 + t2
.
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Since
(
t2
1 , t1

)
lies on the line PQ, it follows

that the equation of PQ is

y − t1 = 1

t1 + t2

(
x − t2

1

)
.

Multiplying both sides by t1 + t2, we get

(t1 + t2)(y − t1) = x − t2
1 ,

so that

(t1 + t2)y − t2
1 − t1t2 = x − t2

1 ,

or

(t1 + t2)y = x + t1t2. (4)

If, however, t2
1 = t2

2 , then since t1 �= t2
we have t1 = −t2. Thus PQ is parallel to
the y-axis, and so has equation x = t2

1 ; so
in this case too, PQ has equation (4).

(c) The midpoint of PQ is the point(
1
2

(
t2
1 + t2

2

)
, 1

2 (t1 + t2)
)

.

This is the focus
(

1
4 , 0
)

if

(
1
2

(
t2
1 + t2

2

)
, 1

2 (t1 + t2)
)

=
(

1
4 , 0
)

.

Comparing the second coordinates, we
deduce that t2 = −t1. Comparing the first
coordinates, we deduce that

1
2

(
t2
1 + t2

2

)
= 1

4

so that t2
1 = 1

4 . It follows that t1 = ± 1
2 , and

so that t2 = ∓ 1
2 , respectively.

When t = 1
2 , the point

(
t2, t

) =
(

1
4 , 1

2

)
;

and when t = − 1
2 , the point

(
t2, t

) =(
1
4 , − 1

2

)
. It follows that the points P and

Q must be
(

1
4 , 1

2

)
and

(
1
4 , − 1

2

)
.

Remark

It follows that the chord PQ must be the vertical
chord through the focus.

8.
y

x2 y2

a2 b2

x

M

F (ae, 0)

P (a cos t, b sin t)

+ = 1

Let P have coordinates (a cos t , b sin t). Since
the coordinates of F are (ae, 0), the coordinates
of M , the midpoint of FṖ, are(

1
2 (a cos t + ae), 1

2 (a sin t + 0)
)

.

Thus M lies on the curve in R
2 with parametric

equations

x = 1
2 (a cos t + ae), y = 1

2 b sin t .

We can rearrange these equations in the form

cos t = 2x − ae

a
, sin t = 2y

b
;

squaring and adding these, we get(
2x − ae

a

)2

+
(

2y

b

)2

= 1.

We can rearrange this equation in the form(
x − 1

2 ae
)2

(a/2)2
+ y2

(b/2)2
= 1;

thus M lies on an ellipse with centre
(

1
2 ae, 0

)
,

the point midway between the origin and F .
9.

x2 – 2y2 = 1
y

FF′ x

P

(a) This hyperbola is of the form x2

a2 − y2

b2 = 1

with a = 1 and b2 = 1
2 , so that b = 1/

√
2.
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If e denotes the eccentricity of the hyperbola
E , so that b2 = a2

(
e2 − 1

)
, we have

1
2 = e2 − 1;

it follows that e2 = 3
2 and so e =

√
3
2 .

In general the foci are (±ae, 0); it follows

that here the foci are

(
±
√

3
2 , 0

)
.

(b) Let F and F ′ be

(√
3
2 , 0

)
and

(
−
√

3
2 , 0

)
,

respectively. (It does not really matter which
way round these are chosen.)

Then the slope of FP is
1√
2

tan t − 0

sec t −
√

3
2

= tan t√
2 sec t − √

3
,

where we may assume that sec t �=
√

3
2 ,

since FP is not parallel to the y-axis; and
the slope of F ′ P is

1√
2

tan t − 0

sec t +
√

3
2

= tan t√
2 sec t + √

3
,

where we may assume that sec t �= −
√

3
2 ,

since F ′ P is not parallel to the y-axis.
(c) When FP is perpendicular to F ′ P , we have

that
tan t√

2 sec t − √
3

· tan t√
2 sec t + √

3
= −1.

We may rewrite this in the form

tan2 t

2 sec2 t − 3
= −1,

so that 2 sec2 t − 3 + tan2 t = 0; since
sec2 t = 1 + tan2 t , it follows that we must
have 3 tan2 t = 1. Since we are looking for
a point P in the first quadrant, we choose
tan t = 1/

√
3.

When tan t = 1/
√

3, we have sec2 t =
1 + 1

3 = 4
3 . Since we are looking for a

point P in the first quadrant, we choose
sec t = 2/

√
3.

It follows that the required point P has
coordinates(

2√
3
, 1√

2
· 1√

3

)
=
(

2√
3
, 1√

6

)
.

Section 1.2
1. We use the formula of Theorem 1 to find the

slope of the tangent to the curve at the point with
parameter t , where t is not a multiple of π .

Since

x(t) = 2 cos t + cos 2t + 1 and

y(t) = 2 sin t + sin 2t ,

we have

x ′(t) = −2 sin t − 2 sin 2t and

y′(t) = 2 cos t + 2 cos 2t .

Hence the slope of the curve at this point is

y′(t)
x ′(t)

= 2 cos t + 2 cos 2t

−2 sin t − 2 sin 2t

= −cos t + cos 2t

sin t + sin 2t
.

In particular, at the point with parameter
t = π/3, this slope is

−cos π/3 + cos 2π/3

sin π/3 + sin 2π/3
= −

1
2 − 1

2√
3/2 + √

3/2
= 0.

Thus the tangent at this point is horizontal. Also,

y(π/3) = 2 sin(π/3) + sin(2π/3)

= 2 ·
√

3

2
+

√
3

2
= 3

2

√
3.

It follows that the equation of the tangent at the
point with parameter t = π/3 is y = 3

2

√
3.

Next, at the point with parameter t = π/2,
the slope of the curve is

−cos π/2 + cos π

sin π/2 + sin π
= −0 − 1

1 + 0
= 1.

Also,

x(π/2) = 2 cos(π/2)+cos(π)+1 = −1+1 = 0

and

y(π/2) = 2 sin(π/2) + sin(π) = 2 + 0 = 2.

It follows that the equation of the tangent at
the point with parameter t = π/2 is

y − 2 = 1(x − 0), or y = x + 2.
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2.

y

xy = 1

x
(1, –1)

P r
1(    )t, 

(a) Here x ′(t) = 1 and y′(t) = −1/t2; it fol-
lows that the slope of the tangent at the point
with parameter t is

y′(t)
x ′(t)

= −1/t2

1

= − 1

t2
.

It follows that the equation of the tangent at
the point P is

y − 1

t
= − 1

t2
(x − t),

or

y = − x

t2
+ 2

t
.

(b) The line with equation y = − x
t2 + 2

t passes
through the point (1, −1) if

−1 = − 1

t2
+ 2

t
.

We can rewrite this equation in the form

t2 + 2t − 1 = 0,

or
(t + 1)2 = 2;

it follows that the values of t at the two
points on the hyperbola for which the tan-
gents pass through (1, −1) are

t = −1 ± √
2.

When t = −1 + √
2, the equation of the

tangent is

y = − x(√
2 − 1

)2
+ 2√

2 − 1

= − x

3 − 2
√

2
+ 2√

2 − 1
.

When t = −1 − √
2, the equation of the

tangent is

y = − x(
−1 − √

2
)2

+ 2

−1 − √
2

= − x

3 + 2
√

2
− 2

1 + √
2

.

3. The rectangular hyperbola xy = 1 has paramet-
ric equations x = t , y = 1/t (where t �= 0).
You found in Problem 2(a) that the slope of the
tangent at the point with parameter t is

y′(t)
x ′(t)

= − 1

t2
.

Since − 1
t2 = − y1

x1
, the slope of the tangent at

the point (x1, y1) may be written in a convenient
form as − y1

x1
. (The slope may be expressed in

many other forms involving x1 and y1, but this
particular form saves some algebra later in the
calculation.)

Then the equation of the tangent to the hyper-
bola xy = 1 at the point (x1, y1) is

y − y1 = − y1

x1
(x − x1).

Multiplying both sides by x1 , we may express
this as

x1 y − x1 y1 = −xy1 + x1 y1,

so that

x1 y + xy1 = 2x1 y1

= 2;

dividing this by 2, we obtain the required
equation.

4. The required equations may be obtained by sim-
ply substituting numbers into the appropriate
equation in Theorem 2 or Problem 3.

(a) The equation of the tangent to the unit circle

x2 + y2 = 1 at
(
− 1

2 , 1
2

√
3
)

is

x
(
− 1

2

)
+ y

(
1
2

√
3
)

= 1,

which may be written in the form
√

3y = x + 2.
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(b) The equation of the tangent to the rectangu-

lar hyperbola xy = 1 at
(
−4, − 1

4

)
is

1
2

(
x
(
− 1

4

)
− 4y

)
= 1,

which may be written in the form

x + 16y = −8.

(c) The equation of the tangent to the parabola
y2 = x at (1, −1) is

y(−1) = 1
2 (x + 1),

which may be written in the form

x + 2y = −1.

5. Since 22 + 32 > 1, the point (2, 3) lies outside
the unit circle. Hence, by Theorem 3, the polar
of the point (2, 3) with respect to the unit circle
has the equation

2x + 3y = 1.

6.
y

Q (T2, 2T )

P (t2, 2t)

x

(a) We saw in Example 2(a) that the slope of
the tangent at the point P with parameter
t (where t �= 0) is 1/t . Since the normal
and the tangent at P are perpendicular to
each other, it follows that the slope m of
the normal at P must satisfy the equation
m · (1/t) = −1. Hence m = −t .

(b) The normal at P is thus the line through
the point

(
t2, 2t

)
with slope −t , and so has

equation

y − 2t = −t
(

x − t2
)

,

or
y = −t x + 2t + t3. (1)

(c) Let Q be the point on the parabola with
parameter T , say; thus its coordinates are(
T 2, 2T

)
. Since Q lies on the line with

equation (1), it follows that

2T = −tT 2 + 2t + t3;

we can rearrange this equation in the form

2(T − t) = −t
(

T 2 − t2
)

.

Since T �= t , we may divide through by
T − t , to get

2 = −t(T + t)

= −tT − t2,

so that tT = −2 − t2; it follows that T =
− 2

t − t .

7.

–a

P2

P1

y
Q

F(a,0)
x

directrix

(a) P1 has coordinates
(
at2

1 , 2at1
)

and P2 has
coordinates

(
at2

2 , 2at2
)
. So, if t2

1 �= t2
2 the

slope of the chord P1 P2 is

2at2 − 2at1
at2

2 − at2
1

= 2
t2 − t1
t2
2 − t2

1

= 2

t2 + t1
.

It follows that the equation of P1 P2 is

y − 2at1 = 2

t1 + t2

(
x − at2

1

)
or

(t1 + t2)(y − 2at1) = 2
(

x − at2
1

)
. (2)

If, however, t2
1 = t2

2 we must have
t1 = −t2 since P1 and P2 are distinct. The
chord P1 P2 is then parallel to the y-axis, so
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that we can write its equation as x = at2
1 .

Thus the equation of the chord is given by
equation (2) in this case too.

(b) If the chord P1 P2 passes through the focus
(a, 0), the coordinates of (a, 0) must satisfy
equation (2); hence

(t1 + t2)(−2at1) = 2
(

a − at2
1

)
,

so that

−t2
1 − t1t2 = 1 − t2

1 .

It follows that t1t2 = −1.
(c) It follows from Example 2(a) that the equa-

tions of the tangents at P1 and P2 are

t1 y = x + at2
1

and

t2 y = x + at2
2 ,

respectively.
Now it follows also from part (a) of

Example 2 that the slopes of the tangents at
P1 and P2 are 1/t1 and 1/t2, respectively.
These tangents are perpendicular if(

1

t1

)
·
(

1

t2

)
= −1,

and we can rewrite this condition in the
form t1t2 = −1.

We have already seen in part (b) that
t1t2 = −1, and so we deduce that the tan-
gents at P1 and P2 are indeed perpendicular.

(d) The equations of the tangents at P1 and P2

are

t1 y = x + at2
1 and t2 y = x + at2

2 ,

respectively. By subtracting these, we see
that at the point (x , y) of intersection,

(t1 − t2)y = a
(

t2
1 − t2

2

)
,

so that

y = a(t1 + t2).

It then follows from the equation t1 y =
x + at2

1 that

t1a(t1 + t2) = x + at2
1 ,

so that

x = at1t2

= −a (since t1t2 = −1).

The point of intersection is therefore
(−a, a(t1 + t2)).

Since the first coordinate of the point of
intersection is −a, it follows that the point
of intersection lies on the directrix of the
parabola.

(e) Since (by the result of Example 2(a)) the
tangent at Q has slope 1/t , when t �= 0,
it follows that in this case the normal at Q
has slope −t . When t = 0, the point Q is
the origin, the vertex of the parabola; so in
this case too the slope of the normal is −t .

Hence in general the equation of the nor-
mal at Q is

y − 2at = −t(x − at2). (3)

If this normal passes through F(a, 0),
then the coordinates of F must satisfy equa-
tion (3); that is,

−2at = −t(a − at2).

We can divide through by a and then
rearrange the terms in this equation to get

0 = t(1 + t2).

It follows that t = 0, and so Q must be the
vertex of the parabola.

8.

E

F

F

F

F

P

H

P

β2β4

β1
β3

α1

α3

α2

α4

Let α1, α2, α3, α4, β1, β2, β3, β4 be the angles
indicated in the above diagram.

Then

α1 = α2 (vertically opposite angles)

= α3 (by the Reflection Property
for the ellipse)

= α4 (vertically opposite angles),
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and

β1 = β2 (vertically opposite angles)

= β3 (by the Reflection Property
for the hyperbola)

= β4 (vertically opposite angles).

Since α1 +α2 +α3 +α4 +β1 +β2 +β3 +β4 =
2π , it follows that

αi + β j = 1
2π for any i and any j .

In particular, α3 + β3 = 1
2π , so that the tan-

gents to E and H are perpendicular. In other
words, E and H intersect at right angles.

9. Let the point P(a cos t , b sin t) lie on the ellipse

in standard form with equation x2

a2 + y2

b2 = 1, a ≥
b > 0, and let the perpendicular from the focus
F(ae, 0) to the tangent at P meet that tangent
at T .

y

P

T

F x(ae, 0)

By Theorem 2 of Subsection 1.2.1, the tan-
gent at P has equation

x · a cos t

a2
+ y · b sin t

b2
= 1,

which we may rewrite in the form

bx cos t + ay sin t = ab. (∗)

From this we see that, if t /∈ {−π/2, 0, π/2, π},
the slope of the tangent PT is −(b/a) cot t , so
that the slope of the perpendicular FT must
be (a/b) tan t . Since FT also passes through
F(ae, 0), FT has equation

y − a

b
tan t · x = −a

b
tan t · ae

= −a2e

b
tan t ,

which we may rewrite in the form

ax sin t − by cos t = a2e sin t . (∗∗)

Then the coordinates of the point T (x , y) of
intersection of PT and FT must satisfy both
equations (∗) and (∗∗). So, squaring each of (∗)
and (∗∗) and adding, we find that the coordinates
of T must satisfy the equation(

x2 + y2
)(

b2 cos2 t + a2 sin2 t
)

=

a2
(

b2 + a2e2 sin2 t
)

.

We then rewrite this equation in the form

x2 + y2 = a2 b2 + a2e2 sin2 t

b2 cos2 t + a2 sin2 t

= a2

(
a2 − a2e2

)+ a2e2 sin2 t(
a2 − a2e2

)(
1− sin2 t

)+ a2 sin2 t

= a2 1 − e2 + e2 sin2 t

1− sin2 t − e2 + e2 sin2 t + sin2 t

= a2.

It follows that the point T must lie on the
auxiliary circle x2 + y2 = a2, as required.

If t = 0 or π , the tangent to the ellipse at P
is a vertical line perpendicular to FP; so the tan-
gent at P meets the perpendicular to it from F
at P – which lies on the auxiliary circle.

Finally, if t = ±π
/

2, the tangent to the
ellipse at P is a horizontal line with equation
y = ±b. The point T where PT is perpendicular
to FT must thus satisfy the equations x = ae and
y = ±b; this lies on the auxiliary circle, since

x2 + y2 = a2e2 + (±b)2

= a2e2 + a2
(

1 − e2
)

= a2.

Section 1.3
1. (a) The equation of the conic

11x2 + 4xy + 14y2 − 4x − 28y − 16 = 0

can be written in matrix form xT Ax+JT x+
H = 0, where

A =
(

11 2
2 14

)
, J =

( −4
−28

)
,

H = −16 and x =
(

x
y

)
.
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(b) The equation of the conic

x2 − 4xy + 4y2 − 6x − 8y + 5 = 0

can be written in matrix form xT Ax+JT x+
H = 0, where

A =
(

1 −2
−2 4

)
, J =

(−6
−8

)
,

H = 5 and x =
(

x
y

)
.

2. (a) We saw in Problem 1(a) that the matrix form
of the equation of this conic is xT Ax+JT x+
H = 0, where

A =
(

11 2
2 14

)
, J =

( −4
−28

)
,

H = −16 and x =
(

x
y

)
;

that is

(x y)

(
11 2
2 14

)(
x
y

)
+ (−4 − 28)

(
x
y

)
−

16 = 0.
First we diagonalize A. Its characteristic

equation is

0 = det(A − λI) =
∣∣∣∣11 − λ 2

2 14 − λ

∣∣∣∣
= λ2 − 25λ + 150

= (λ − 15)(λ − 10),

so that the eigenvalues of A are λ = 15 and
λ = 10. The eigenvector equations of A are

(11 − λ)x + 2y = 0,

2x + (14 − λ)y = 0.

When λ = 15, these equations become

−4x + 2y = 0,

2x − y = 0,

so that we may take as a corresponding

eigenvector

(
1
2

)
, which we normalize to

have unit length as

(
1/

√
5

2/
√

5

)
.

When λ = 10, the eigenvector equations
of A become

x + 2y = 0,

2x + 4y = 0,

so that we may take as a corresponding

eigenvector

(
2

−1

)
which we normalize to

have unit length as

(
2/

√
5

−1/
√

5

)
.

Now

∣∣∣∣1/
√

5 2/
√

5
2/

√
5 −1/

√
5

∣∣∣∣ = − 1
5 − 4

5 = −1,

so interchanging the order of the eigen-
vectors as columns of P – in order that
det P = +1, so that then P represents a rota-
tion rather than a rotation composed with a
reflection – we take as our rotation of the
plane the transformation x = Px′, where

P =
(

2/
√

5 1/
√

5
−1/

√
5 2/

√
5

)
.

This transformation changes the equation
of the conic to the form

(Px′)T A(Px′) + JT (Px′) + H = 0

or

(x′)T (PT AP)x′ + (JT P)x′ + H = 0.

Since PT AP =
(

10 0
0 15

)
, this is the

equation

(x ′ y′)
(

10 0
0 15

)(
x ′
y′
)

+(−4 −28)

⎛
⎝ 2√

5
1√
5

− 1√
5

2√
5

⎞
⎠ .

(
x ′
y′
)

−16 = 0.

We may rewrite this equation in the form

10x ′2 +15y′2 +4
√

5x ′ −12
√

5y′ −16 = 0,

or

10
(

x ′2 + 2√
5

x ′)+15
(

y′2 − 4√
5

y′)−16 = 0;

so that, on completing the square, we have

10
(

x ′ + 1√
5

)2 − 2 + 15
(

y′ − 2√
5

)2

− 12 − 16 = 0,
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or

10
(

x ′ + 1√
5

)2 + 15
(

y′ − 2√
5

)2 − 30 = 0

or (
x ′ + 1√

5

)2

3
+
(

y′ − 2√
5

)2

2
= 1. (2)

This is the equation of an ellipse.
From equation (2) it follows that the cen-

tre of the ellipse is the point where x ′ +
1√
5

= 0 and y′ − 2√
5

= 0, that is, where

x ′ = − 1√
5

and y′ = 2√
5

. From the equa-

tion x = Px′, it follows that in terms of the
original coordinate system this is the point

(
x
y

)
=
⎛
⎝ 2√

5
1√
5

− 1√
5

2√
5

⎞
⎠(− 1√

5
2√
5

)

=
(

0
1

)
,

that is, the point (0, 1).
Since 3 > 2, it also follows from equa-

tion (2) that the major axis of the ellipse has
equation y′ − 2√

5
= 0, or y′ = 2√

5
; and the

minor axis has equation x ′ + 1√
5

= 0, or

x ′ = − 1√
5

.

Finally, since the matrix P is orthogonal
we can rewrite the equation x = Px′ in the
form x′ = P−1x = PT x, so that

(
x ′
y′
)

=
⎛
⎝ 2√

5
− 1√

5
1√
5

2√
5

⎞
⎠(x

y

)

or as a pair of equations

x ′ = 2√
5

x − 1√
5

y,

y′ = 1√
5

x + 2√
5

y.

It follows that the equation, y′ = 2√
5

,
of the major axis of the ellipse can be
expressed in terms of the original coordinate
system as

1√
5

x + 2√
5

y = 2√
5

or x + 2y = 2.

Similarly, the equation, x ′ = − 1√
5

, of the
minor axis of the ellipse can be expressed in
terms of the original coordinate system as

2√
5

x − 1√
5

y = − 1√
5

or 2x − y = −1.

x

x ′
x ′′

y

y ′

y ′′

(b) We saw in Problem 1(b) that the matrix form
of the equation of this conic is xT Ax +
JT x + H = 0, where

A =
(

1 −2
−2 4

)
J =

(−6
−8

)
,

H = 5 and x =
(

x
y

)
;

that is

(x y)

(
1 −2

−2 4

)(
x
y

)
+

(−6 − 8)

(
x
y

)
+ 5 = 0.

First we diagonalize A. Its characteristic
equation is

0 = det(A − λI) =
∣∣∣∣1 − λ −2

−2 4 − λ

∣∣∣∣
= λ2 − 5λ

= λ(λ − 5),

so that the eigenvalues of A are λ = 0 and
λ = 5. The eigenvector equations of A are

(1 − λ)x − 2y = 0,

−2x + (4 − λ)y = 0.

When λ = 0, these equations become

x − 2y = 0,

−2x + 4y = 0,
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so that we may take as a corresponding

eigenvector

(
2
1

)
, which we normalize to

have unit length as

(
2/

√
5

1/
√

5

)
.

When λ = 5, the eigenvector equations
of A become

−4x − 2y = 0,

−2x − y = 0,

so that we may take as a corresponding

eigenvector

(
1

−2

)
, which we normalize to

have unit length as

(
1/

√
5

−2/
√

5

)
.

Now

∣∣∣∣2/
√

5 1/
√

5
1/

√
5 −2/

√
5

∣∣∣∣ = − 4
5 − 1

5 = −1,

so interchanging the order of the eigen-
vectors as columns of P – in order that
det P = +1, so that then P represents a rota-
tion rather than a rotation composed with a
reflection – we take as our rotation of the
plane the transformation x = Px′, where

P =
(

1/
√

5 2/
√

5
−2/

√
5 1/

√
5

)
. This transforma-

tion changes the equation of the conic to the
form

(Px′)T A(Px′) + JT (Px′) + H = 0

or

(x′)T (PT AP)x′ + (JT P)x′ + H = 0.

Since PT AP =
(

5 0
0 0

)
, this is the equation

(x ′ y′)
(

5 0
0 0

)(
x ′
y′
)

+(−6 −8)

⎛
⎝ 1√

5
2√
5

− 2√
5

1√
5

⎞
⎠(x ′

y′
)

+5 = 0,

which we can rewrite in the form

5x ′2 + 2
√

5x ′ − 4
√

5y′ + 5 = 0.

We may rewrite this equation in the form

5
(

x ′2 + 2√
5

x ′)− 4
√

5y′ + 5 = 0

so that, on completing the square, we have

5
(

x ′ + 1√
5

)2 − 4
√

5y′ + 4 = 0,

or

5
(

x ′ + 1√
5

)2 − 4
√

5
(

y′ − 1√
5

)
= 0,

or (
x ′ + 1√

5

)2 = 4√
5

(
y′ − 1√

5

)
. (3)

This is the equation of a parabola. (It is
not quite in standard form (y′′)2 = 4ax ′′,
but in the similar form (x ′′)2 = 4ay′′; the
argument will be similar.)

From equation (3) it follows that the ver-
tex of the parabola is the point where x ′ +

1√
5

= 0 and y′ − 1√
5

= 0, that is, where

x ′ = − 1√
5

and y′ = 1√
5

. From the equa-

tion x = Px′, it follows that in terms of the
original coordinate system this is the point(

x
y

)
=
⎛
⎝ 1√

5
2√
5

− 2√
5

1√
5

⎞
⎠
⎛
⎝− 1√

5
1√
5

⎞
⎠

=
(

1
5
3
5

)
,

that is, the point
(

1
5 , 3

5

)
.

It also follows from equation (3) that the
axis of the parabola has equation x ′ + 1√

5
=

0, or x ′ = − 1√
5

.

Then, since the matrix P is orthogonal we
can rewrite the equation x = Px′ in the form
x′ = P−1x = PT x, so that(

x ′
y′
)

=
⎛
⎝ 1√

5
− 2√

5
2√
5

1√
5

⎞
⎠(x

y

)

or as a pair of equations

x ′ = 1√
5

x − 2√
5

y,

y′ = 2√
5

x + 1√
5

y.

It follows that the equation, x ′ = − 1√
5
,

of the axis of the parabola can be expressed
in terms of the original coordinate system as

1√
5

x − 2√
5

y = − 1√
5

or x − 2y = −1.
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y

y

y

x

x

x

3. Here we use Theorem 3.

(a) The matrix of the non-degenerate conic is

A =
(

3 −4
−4 2

)
, so that

det A = 6 − 16 = −10 < 0,

so that the conic is a hyperbola.
(b) The matrix of the non-degenerate conic is

A =
(

1 4
4 16

)
, so that

det A = 16 − 16 = 0,

so that the conic is a parabola.
(c) The matrix of the non-degenerate conic is

A =
(

52 −36
−36 73

)
, so that

det A = 52 · 73 − 362 = 3796 − 1296

= 2500 > 0,

so that the conic is an ellipse.

Section 1.4
1. The equation of the quadric surface given by

2x2 + 5y2 − z2 + xy − 3yz

− 2xz − 2x − 6y + 10z − 12 = 0

may be written in matrix form xT Ax + JT x +
M = 0 where

A =
⎛
⎜⎝

2 1
2 −1

1
2 5 − 3

2

−1 − 3
2 −1

⎞
⎟⎠ , J =

⎛
⎝−2

−6
10

⎞
⎠ ,

x =
⎛
⎝x

y
z

⎞
⎠ and M = −12.

Similarly, the equation of the quadric surface
given by

y − yz = xz

may be rewritten as

yz + xz − y = 0,

and so in matrix form xT Ax + JT x + M = 0
where

A =
⎛
⎜⎝

0 0 1
2

0 0 1
2

1
2

1
2 0

⎞
⎟⎠ , J =

⎛
⎝ 0

−1
0

⎞
⎠ ,

x =
⎛
⎝x

y
z

⎞
⎠ and M = 0.

2. We saw in Problem 1 that the equation of this
quadric E can be written in matrix form as
xT Ax + JT x + M = 0, where

A =
⎛
⎜⎝

0 0 1
2

0 0 1
2

1
2

1
2 0

⎞
⎟⎠ , J =

⎛
⎝ 0

−1
0

⎞
⎠ ,

x =
⎛
⎝x

y
z

⎞
⎠ and M = 0,

that is, as

(
x y z

)⎛⎜⎝
0 0 1

2

0 0 1
2

1
2

1
2 0

⎞
⎟⎠
⎛
⎝x

y
z

⎞
⎠

+ (0 −1 0)

⎛
⎝x

y
z

⎞
⎠ = 0.

We start by diagonalizing the matrix A. Its
characteristic equation is

0 = det(A − λI) =

∣∣∣∣∣∣∣
−λ 0 1

2

0 −λ 1
2

1
2

1
2 −λ

∣∣∣∣∣∣∣
= −λ

(
λ2 − 1

4

)
+ 1

2

(
1
2λ
)

= −λ3 + 1
2λ

= −λ
(
λ2 − 1

2

)
,
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so that the eigenvalues of A are λ = 0, 1√
2

and

− 1√
2

. The eigenvector equations of A are

−λx + 1
2 z = 0,

−λy + 1
2 z = 0,

1
2 x + 1

2 y − λz = 0.

When λ = 0, these equations become

1
2 z = 0,

1
2 z = 0,

1
2 x + 1

2 y = 0.

From the first two equations we get z = 0; it
then follows from the third equation that x +
y = 0. So we may take as a corresponding eigen-

vector

⎛
⎝ 1

−1
0

⎞
⎠, which we normalize to have

unit length as

⎛
⎜⎜⎝

1√
2

−1√
2

0

⎞
⎟⎟⎠.

Similarly, when λ = 1√
2
, we may take as a

corresponding eigenvector

⎛
⎝ 1

1√
2

⎞
⎠, which we

normalize to have unit length as

⎛
⎜⎜⎜⎝

1
2

1
2

1√
2

⎞
⎟⎟⎟⎠; and

when λ = −1√
2

, we may take as a correspond-

ing eigenvector

⎛
⎝ 1

1
−√

2

⎞
⎠, which we normalize

to have unit length as

⎛
⎝ 1/2

1/2
−1/

√
2

⎞
⎠.

Now∣∣∣∣∣∣∣∣∣

1√
2

1
2

1
2

− 1√
2

1
2

1
2

0 1√
2

− 1√
2

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1√
2

1
2

1
2

0 1 1

0 1√
2

− 1√
2

∣∣∣∣∣∣∣∣

= 1√
2

∣∣∣∣∣ 1 1
1√
2

− 1√
2

∣∣∣∣∣
= 1√

2

(
− 2√

2

)
= −1;

Since interchanging the first and second
eigenvectors interchanges the first two columns
of the determinant, in order to have det P = 1
we choose to take as a convenient rota-
tion of R

3 the transformation x = Px′, where

P =
⎛
⎝ 1/2 1/

√
2 1/2

1/2 −1/
√

2 1/2
1/

√
2 0 −1/

√
2

⎞
⎠. This trans-

formation changes the equation of the quadric
to the form

(Px′)T A(Px′) + JT (Px′) + M = 0

or

(x′)T (PT AP)x′ + (JT P)x′ + M = 0.

Then since PT AP =

⎛
⎜⎜⎝

1√
2

0 0

0 0 0

0 0 − 1√
2

⎞
⎟⎟⎠, the

equation of the quadric becomes

(x ′ y′ z′)

⎛
⎜⎝

1√
2

0 0

0 0 0
0 0 − 1√

2

⎞
⎟⎠
⎛
⎝x ′

y′
z′

⎞
⎠

+ (0 −1 0)

⎛
⎜⎜⎜⎝

1
2

1√
2

1
2

1
2 − 1√

2
1
2

1√
2

0 − 1√
2

⎞
⎟⎟⎟⎠
⎛
⎝x ′

y′
z′

⎞
⎠ = 0,

which we can rewrite in the form
1√
2
(x ′)2 − 1√

2
(z′)2 − 1

2 x ′ + 1√
2

y′ − 1
2 z′ = 0

or

(x ′)2 − (z′)2 − 1√
2

x ′ + y′ − 1√
2

z′ = 0.

Completing the square in this equation, we
get(

x ′ − 1
2
√

2

)2 − 1
8 −

(
z′ + 1

2
√

2

)2 + 1
8 + y′ = 0

or (
x ′ − 1

2
√

2

)2 −
(

z′ + 1
2
√

2

)2 + y′ = 0.
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We now make the transformation

x′′ = x′ +
⎛
⎜⎝

− 1
2
√

2

0
1

2
√

2

⎞
⎟⎠ , (1)

so that we can rewrite the equation of E in the
form

(x ′′)2 − (z′′)2 + y′′ = 0. (2)

It follows from equation (2) that E must be a
hyperbolic paraboloid.

From equation (2) it follows that the centre of
E is the point where x ′′ = 0, y′′ = 0 and z′′ = 0;
that is, the point where x ′ = 1/(2

√
2), y′ =

0 and z′ = −1/(2
√

2). From the equation
x = Px′, it follows that in terms of the original
coordinate system this is the point

⎛
⎝x

y
z

⎞
⎠ =

⎛
⎜⎜⎜⎝

1
2

1√
2

1
2

1
2 − 1√

2
1
2

1√
2

0 − 1√
2

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝

1
2
√

2

0

− 1
2
√

2

⎞
⎟⎟⎠

=
⎛
⎝0

0
1
2

⎞
⎠ ,

that is, the point
(

0, 0, 1
2

)
.

3. The line m through the points (
√

2, 0, 1) and
(0, −√

2, −1) can be parametrized as

μ(
√

2, 0, 1) + (1 − μ)(0, −√
2, −1)

= (μ
√

2, (μ − 1)
√

2, 2μ − 1),

where μ ∈ R. Points on the line lie in E since

(μ
√

2)2 + (
(μ − 1)

√
2
)2 − (2μ − 1)2

= 2μ2+2(μ2−2μ+1)−(4μ2−4μ+1) = 1.

4. (a) Let the point (x0, y0, z0) ∈ A, so that x0 +
y0 = 0 and z0 = 0. Then

x2
0 − y2

0 + z0 = (x0 + y0)(x0 − y0)

+ z0 = 0,

so that (x0, y0, z0) lies in E .
Similarly, the point (x0, y0, z0) ∈ B lies

in E .

(b) The point (λ−μ, λ+μ, 4λμ) lies in E , since

(λ − μ)2 − (λ + μ)2 + (4λμ)

=
(
λ2 − 2λμ + μ2

)
− (λ2 + 2λμ + μ2) + 4λμ = 0.

(c) Let λ be a fixed number. Then

�λ = {(λ − μ, λ + μ, 4λμ) : μ ∈ R}
= {(λ, λ, 0) + μ(−1, 1, 4λ) : μ ∈ R} ,

so that �λ is a line through the point (λ, λ, 0)

parallel to the vector (−1, 1, 4λ). Clearly the
point (λ, λ, 0) lies on B.

This line passes through the point (λ −
1, λ+1, 4λ) since it is the point on �λ where
μ = 1.

When λ = 0,

�0 = {(−μ, μ, 0) : μ ∈ R}
= {μ(−1, 1, 0) : μ ∈ R} ;

so that this line is the line through the ori-
gin parallel to the vector (−1, 1, 0). Thus,
�0 = A.

(d) Let μ be a fixed number. Then

mμ = {(λ − μ, λ + μ, 4λμ) : λ ∈ R}
= {(−μ, μ, 0) + λ(1, 1, 4μ) : λ ∈ R} ,

so that mμ is a line through the point
(−μ, μ, 0) parallel to the vector (1, 1, 4μ).
Clearly the point (−μ, μ, 0) lies on A.

This line passes through the point (1 −
μ, 1 + μ, 4μ) since it is the point on mμ

where λ = 1.
When μ = 0,

m0 = {(λ, λ, 0) : λ ∈ R}
= {λ(1, 1, 0) : λ ∈ R} ,

so that this line is the line through the origin
parallel to the vector (1, 1, 0). Thus m0 = B.

(e) Consider L first. Two distinct lines in L

may be expressed in parametric form as

{(λ1 − μ, λ1 + μ, 4λ1μ) : μ ∈ R}
and{

(λ2 − μ′, λ2 + μ′, 4λ2μ
′) : μ′ ∈ R

}
,

for some real numbers μ and μ′.
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These lines meet where

λ1 − μ = λ2 − μ′,

λ1 + μ = λ2 + μ′,
and

4λ1μ = 4λ2μ
′.

Adding the first two equations gives
2λ1 = 2λ2, so that λ1 = λ2. Thus the two
lines can only meet if λ1 = λ2, so that all
lines in the family L are disjoint.

A similar argument shows that all lines in
the family M are disjoint.

Finally, if a line in L intersects a line
in M they can have at most one point in
common since the lines are non-parallel –
for, one is parallel to (−1, 1, 0) and one is
parallel to (1, 1, 0).

So, let the line

�λ1 = {(λ1 − μ1, λ1 + μ1, 4λ1μ1) : μ1

varies over R} (3)

in L and the line

mμ2 = {(λ2 − μ2, λ2 + μ2, 4λ2μ2) : λ2

varies over R} (4)

in M meet at a point (a, b, c).
For this to happen we must have

(λ1 − μ1, λ1 + μ1, 4λ1μ1)

= (λ2 − μ2, λ2 + μ2, 4λ2μ2),

for some real numbers λ1, μ1, λ2 and μ2.
We deduce from this equation that

λ1 − μ1 = λ2 − μ2,

λ1 + μ1 = λ2 + μ2,

4λ1μ1 = 4λ2μ2.

⎫⎪⎪⎬
⎪⎪⎭ (5)

By adding the first two equations in (5) we
find that 2λ1 = 2λ2, so that λ1 = λ2; and
by subtracting the first two equations in (5)
we find that 2μ1 = 2μ2, so that μ1 = μ2.

For simplicity, we now assign the values
λ and μ to the common values of λ1, λ2 and
μ1, μ2, respectively.

It follows that the line in L

�λ = {(λ − μ, λ + μ, 4λμ) : μ

is a specific real number}
and the line in M

mμ = {(λ − μ, λ + μ, 4λμ) : λ

is a specific real number}
meet at one point (a, b, c) so long as (a, b, c)
is that common value

(λ1 − μ1, λ1 + μ1, 4λ1μ1)

= (λ2 − μ2, λ2 + μ2, 4λ2μ2)

= (λ − μ, λ + μ, 4λμ).

This happens when

a = λ − μ,

b = λ + μ,

c = 4λμ;

⎫⎪⎬
⎪⎭

so that

λ = 1
2 (a + b) and μ = 1

2 (b − a).

Chapter 2
Section 2.1
1. First, reflect the figure in the line through O , the

centre of the circle, and P . Under this reflection,
P remains fixed, and the circle maps onto itself.
In particular, the point A maps to a point A′ on
the circle, and so the tangent PA maps onto the
line PA′.

A

A

B

P
O

Now the tangent PA meets the circle at a sin-
gle point A, so the image of the tangent must
meet the circle at a single point. But the only
way in which that can happen is if A′ coincides
with B.
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Hence the line segment PA is reflected onto
the line segment PB. Since reflection preserves
lengths, it follows that PA = PB.

2. It is sufficient to show that there is an isometry
which maps �ABC onto �DE F . To construct
this isometry, we start with the translation which
maps A to D. This translation maps �ABC
onto �DB ′C ′, where B ′ and C ′ are the images
of B and C , respectively.

E

F

A
B

B

C

C

D
translate rotate

Since DC ′ = AC = DF , we can now rotate
the point C ′ about D until it coincides with the
point F . This rotation maps �DB ′C ′ onto the
triangle �DB ′′F shown below, where B ′′ is the
image of B ′ under the rotation.

E

D

B

F

Now notice that

∠E DF = ∠B AC (given)

= ∠B ′ DC ′ (translation)

= ∠B ′′ DF (rotation),

so either B ′′ lies on DE or the reflection of B ′′
in the line DF lies on DE. Also

∠DF E = ∠AC B (given)

= ∠DC ′ B ′ (translation)

= ∠DF B ′′ (rotation),

so either B ′′ lies on FE or the reflection of B ′′ in
the line DF lies on FE. It follows that either B ′′

coincides with E or the reflection of B ′′ in the
line DF coincides with E .

So, composing the translation, the rotation
and (if necessary) a reflection, we obtain the
required isometry which maps �ABC onto
�DE F . Since isometries preserve length and
angle, it follows that BC = E F , AB = DE
and ∠ABC = ∠DE F .

3. Here we use the fact that a matrix U is orthogo-
nal if UT U = I. We have(

cos θ sin θ

− sin θ cos θ

)(
cos θ − sin θ

sin θ cos θ

)
=
(

1 0
0 1

)
and(

cos θ sin θ

sin θ − cos θ

)(
cos θ sin θ

sin θ − cos θ

)
=
(

1 0
0 1

)
.

So both matrices are orthogonal for all real θ .
4. First, t1 ◦ t2(x) is equal to

t1

((− 4
5

3
5

3
5

4
5

)
x +

(−2
1

))

=
(

3
5 − 4

5
4
5

3
5

)((− 4
5

3
5

3
5

4
5

)
x+
(−2

1

))
+
(

1
−2

)

=
(

3
5 − 4

5
4
5

3
5

)(− 4
5

3
5

3
5

4
5

)
x +

(−2
−1

)
+
(

1
−2

)

=
(− 24

25 − 7
25

− 7
25

24
25

)
x +

(−1
−3

)
.

Next, t2 ◦ t1(x) is equal to

t2

((
3
5 − 4

5
4
5

3
5

)
x +

(
1

−2

))

=
(− 4

5
3
5

3
5

4
5

)((
3
5 − 4

5
4
5

3
5

)
x+
(

1
−2

))
+
(−2

1

)

=
(− 4

5
3
5

3
5

4
5

)(
3
5 − 4

5
4
5

3
5

)
x +

(−2
−1

)
+
(−2

1

)

=
(

0 1
1 0

)
x +

(−4
0

)
.

5. (a) Since U is an orthogonal matrix, it follows
that U−1 = UT. Taking the transpose of
both sides, we have(

U−1
)T =

(
UT
)T = U =

(
U−1

)−1
.
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Thus U−1 is an orthogonal matrix, and so t2
is a Euclidean transformation.

(b) We have

t1 ◦ t2(x) = t1
(

U−1x − U−1a
)

= U
(

U−1x − U−1a
)

+ a

= (x − a) + a

= x

and

t2 ◦ t1(x) = t2(Ux + a)

= U−1 (Ux + a) − U−1a

=
(

x + U−1a
)

− U−1a

= x,

so t2 is the inverse of t1.
6. We have (

3
5 − 4

5
4
5

3
5

)−1

=
(

3
5

4
5

− 4
5

3
5

)

and (
3
5

4
5

− 4
5

3
5

)(
1

−2

)
=
(−1

−2

)
,

so that

t−1(x) =
(

3
5

4
5

− 4
5

3
5

)
x +

(
1
2

)
.

7. (a) Not congruent
(b) Congruent
(c) Not congruent
(d) Congruent

8. Suppose that we are given three plane figures
F1, F2 and F3 such that

F1 is congruent to F3 (1)

and
F2 is congruent to F3. (2)

It follows from (2) and the symmetric property
of congruence that

F3 is congruent to F2. (3)

Hence from (1) and (3) and the transitive prop-
erty of congruence, F1 is congruent to F2, as
required.

Section 2.2
1. We use the fact that a 2 x 2 matrix is invertible

if and only if its determinant is non-zero.
Each transformation is of the form

x �→ Ax + b,

where A is a 2 x 2 matrix, and so it is an affine
transformation if and only if the determinant of
the matrix A is non-zero.

(a) Here, ∣∣∣∣1 3
1 2

∣∣∣∣ = 2 − 3 = −1,

which is non-zero; hence t1 is an affine
transformation.

(b) Here, ∣∣∣∣−6 5
3 2

∣∣∣∣ = −12 − 15 = −27,

which is non-zero; hence t2 is an affine
transformation.

(c) Here, ∣∣∣∣−2 −1
8 4

∣∣∣∣ = −8 + 8 = 0;

hence t3 is not an affine transformation.
(d) Here, b = 0 and∣∣∣∣ 5 −3

−2 2

∣∣∣∣ = 10 − 6 = 4,

which is non-zero; hence t4 is an affine
transformation.

2. (a) Here, t1 ◦ t2(x) is equal to

t1

((−6 5
3 2

)
x +

(
2
1

))

=
(

1 3
1 2

)((−6 5
3 2

)
x +

(
2
1

))

+
(

4
−2

)

=
(

1 3
1 2

)(−6 5
3 2

)
x +

(
5
4

)
+
(

4
−2

)

=
(

3 11
0 9

)
x +

(
9
2

)
.
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Since∣∣∣∣3 11
0 9

∣∣∣∣ = 27 − 0 = 27 �= 0,

it follows that t1 ◦ t2 is an affine transforma-
tion.

(b) Here, t2 ◦ t4(x) is equal to

t2

((
5 −3

−2 2

)
x
)

=
(−6 5

3 2

)((
5 −3

−2 2

)
x
)

+
(

2
1

)

=
(−40 28

11 −5

)
x +

(
2
1

)
.

Since∣∣∣∣−40 28
11 −5

∣∣∣∣ = 200 − 308 = −108 �= 0,

it follows that t2 ◦ t4 is an affine transforma-
tion.

3. As described in Appendix 2, the inverse of

a 2 × 2 matrix A =
(

a b
c d

)
is A−1 =

1
ad−bc

(
d −b

−c a

)
. Hence

(
1 3
1 2

)−1

=
(−2 3

1 −1

)

and (−2 3
1 −1

)(
4

−2

)
=
(−14

6

)
,

so that

t−1(x) =
(−2 3

1 −1

)
x +

(
14
−6

)
.

Section 2.3
1. Let (x , y) be an arbitrary point on the line 3x −

y + 1 = 0, and let (x ′, y′) be the image of (x , y)

under t .Then(
x ′
y′
)

=
( 1

2 − 1
2

−1 2

)(
x
y

)
+
(− 3

2
4

)
.

Since the inverse of the inverse of any invertible
transformation is the original transformation, it
follows from Example 1 that under t−1, we have(

x
y

)
=
(

4 1
2 1

)(
x ′
y′
)

+
(

2
−1

)
.

Thus

x = 4x ′ + y′ + 2 and y = 2x ′ + y′ − 1.

Hence the image under t of the line 3x − y +
1 = 0 has equation

3(4x ′ + y′ + 2) − (2x ′ + y′ − 1) + 1 = 0.

Dropping the dashes and simplifying, we obtain

5x + y + 4 = 0.

2. The argument here is similar to that of Prob-
lem 1. For, if (x , y) is an arbitrary point on the
circle x2 + y2 = 1 and (x ′, y′) is the image of
(x , y) under t , then under t−1 we have(

x
y

)
=
(

4 1
2 1

)(
x ′
y′
)

+
(

2
−1

)
.

Thus

x = 4x ′ + y′ + 2 and y = 2x ′ + y′ − 1.

Hence the image under t of the circle x2 + y2 =
1 has equation

(4x ′ + y′ + 2)2 + (2x ′ + y′ − 1)2 = 1.

Dropping the dashes and simplifying. we obtain

10x2 + 6xy + y2 + 6x + y + 2 = 0.

3. First, we take b =
(

2
3

)
.

Next, we construct the matrix A whose first
column is (

1
6

)
−
(

2
3

)
=
(−1

3

)
,

and whose second column is(
3

−1

)
−
(

2
3

)
=
(

1
−4

)
;

thus

A =
(−1 1

3 −4

)
.

The required affine transformation t is therefore

t(x) =
(−1 1

3 −4

)
x +

(
2
3

)
(x ∈ R

2).
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4. First, we take b =
(

1
−2

)
. Next, we construct

the matrix A whose first column is(
2
1

)
−
(

1
−2

)
=
(

1
3

)
,

and whose second column is(−3
5

)
−
(

1
−2

)
=
(−4

7

)
;

thus

A =
(

1 −4
3 7

)
.

The required affine transformation t is therefore

t(x) =
(

1 −4
3 7

)
x +

(
1

−2

)
(x ∈ R

2).

5. First, we find the affine transformation t1 which
maps (0, 0), (1, 0) and (0, 1) to (1, −1), (2, −2)

and (3, −4), respectively. This transformation

has the form t1(x) = Ax + b, where b =
(

1
−1

)
and

A =
(

2 − 1 3 − 1
−2 + 1 −4 + 1

)
=
(

1 2
−1 −3

)
;

that is,

t1(x) =
(

1 2
−1 −3

)
x +

(
1

−1

)
.

Next, we find the affine transformation t2
which maps (0, 0), (1, 0) and (0, 1) to (8, 13),
(3, 4) and (0, −1), respectively. This transfor-
mation has the form t2(x) = Ax + b, where

b =
(

8
13

)
and

A =
(

3 − 8 0 − 8
4 − 13 −1 − 13

)
=
(−5 −8

−9 −14

)
;

that is,

t2(x) =
(−5 −8

−9 −14

)
x +

(
8

13

)
.

We now require the formula for the inverse
transformation t−1

1 . Since(
1 2

−1 −3

)−1

= −
(−3 −2

1 1

)
=
(

3 2
−1 −1

)

and (
3 2

−1 −1

)(
1

−1

)
=
(

1
0

)
,

it follows that

t−1
1 (x) =

(
3 2

−1 −1

)
x −

(
1
0

)
The required affine transformation t is therefore
t(x) = t2 o t−1

1 (x), where t2 o t−1
1 (x) is equal

to

t2

((
3 2

−1 −1

)
x −

(
1
0

))

=
(−5 −8

−9 −14

)((
3 2

−1 −1

)
x −

(
1
0

))

+
(

8
13

)

=
( −7 −2

−13 −4

)
x −

(−5
−9

)
+
(

8
13

)

=
( −7 −2

−13 −4

)
x +

(
13
22

)
.

Section 2.4
1. (a)

A

QX

C
P

R

B

By Ceva’s Theorem, we have

AR

RB
· B P

PC
· C Q

Q A
= 1.

First, AR
R B = 3

2 . Next, AQ
QC = 3

2 and so C Q
Q A =

2
3 .
It follows that

3

2
· B P

PC
· 2

3
= 1,

so B P
PC = 1.

Remark

This means that P is the midpoint of BC.
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(b)

A

Q

X

R

P B C

By Ceva’s Theorem, we have

AR

RB
· B P

PC
· C Q

Q A
= 1.

Since AR
R B = 1

2 and B P
PC = − 2

7 , it follows that

1

2
.

(
−2

7

)
· C Q

Q A
= 1,

so C Q
Q A = −7.

Remark

This means that Q lies on CA beyond A, and
the length of CQ is seven times the length of
AQ.

(c)

X

R

A

Q

P CB

By Ceva’s Theorem, we have

AR

RB
· B P

PC
· C Q

Q A
= 1.

We are given that B P
PC = 5

7 and C Q
Q A = −7, so

AR

RB
· 5

7
. (−7) = 1.

Hence AR
R B = − 1

5 .

Remark

This means that R lies on BA beyond A, and the
length of AR is one fifth of the length of RB.

2.
Q 7

4
(        )2,

P(        )8
3

R

A(–1,1) 

B (2, –1) 

C(3, 2) 

1
5(    –    )  ,4

5

, 1

(a) Here we use the formula for calculating
ratios given at the beginning of Appendix 2,
just above the Section Formula. This gives

B P

PC
= xP − xB

xC − xP
=

8
3 − 2

3 − 8
3

= 2,

C Q

Q A
= xQ − xC

xA − xQ
= 2 − 3

−1 − 2
= 1

3
,

AR

RB
= xR − xA

xB − xR
=

4
5 + 1

2 − 4
5

= 3

2
.

Thus

P divides BC in the ratio 2 : 1,

Q divides CA in the ratio 1 : 3,

R divides AB in the ratio 3 : 2.

(b) It follows from part (a) that

AR

RB
· B P

PC
· C Q

Q A
= 3

2
· 2 · 1

3
= 1.

Thus by the converse to Ceva’s Theorem,
the lines AP , B Q and CR are concurrent.

3. (a)
A

R

B
C

Q

P

l

By Menelaus’ Theorem, we have

AR

RB
· B P

PC
· C Q

Q A
= −1.

We are given that AR
R B = 2 and B P

PC = −2,
so

2. (−2).
C Q

Q A
= −1.

Hence C Q
Q A = 1

4 .
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Remark

This means that Q lies on CA between C
and A, and the length of C Q is one quarter
of the length of Q A.

(b)
Q

R

l

P
CB

A

By Menelaus’ Theorem, we have

AR

RB
· B P

PC
· C Q

Q A
= −1.

We are given that AR
R B = − 1

4 and B P
PC = −2,

so

(
−1

4

)
· (−2) · C Q

Q A
= −1.

Hence C Q
Q A = −2.

Remark

This means that Q lies on CA beyond A, and
the length of CQ is twice the length of QA.

4.
A(2, 4)

R(1, 3)

C(1, 0)

Q

B(–2, 0)

, 2
2
3

P , 0
2
5

(a) Here we have

B P

PC
= xP − xB

xC − xP
=

5
2 + 2

1 − 5
2

= −3,

C Q

Q A
= xQ − xC

xA − xQ
=

3
2 − 1

2 − 3
2

= 1,

AR

RB
= xR − xA

xB − xR
= 1 − 2

−2 − 1
= 1

3
.

Thus

P divides BC in the ratio − 3 : 1,

Q divides C A in the ratio 1 : 1,

R divides AB in the ratio 1 : 3.

(b) It follows from part (a) that

AR

RB
· B P

PC
· C Q

Q A
= 1

3
· (−3) · 1 = −1.

Thus by the converse to Menelaus’ The-
orem, the points P , Q and R are collinear.

5.
A

R

B P C T

Q

X

By Ceva’s Theorem, we have

AR

RB
· B P

PC
· C Q

Q A
= 1. (1)

Also, by Menelaus’ Theorem, we have

AR

RB
· BT

T C
· C Q

Q A
= −1. (2)

Comparing (1) and (2), we deduce that

BT

T C
= − B P

PC
= −k.

6.

A

R
R

P' B'

Q'

C'

A'

D'

P

B Q C

D
t

By the Fundamental Theorem of Affine
Geometry (Theorem 1, Subsection 2.3.2), there
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exists a unique affine transformation t which
maps A, D and C to A′(0, 1), D′(0, 0) and
C ′(1, 0), respectively.

(a) Since t maps AD onto the vertical line A′D′,
and BC is parallel to AD, it follows that the
image of BC under t must be a vertical line.
Also, since t maps DC onto the horizontal
line D′C ′, and AB is parallel to DC , the
image of AB under t must be a horizontal
line. It follows that B ′, the image of B under
t , must be the point with coordinates (1, 1).

(b) Since P is the midpoint of AB, its image
P ′ = t(P) must be the midpoint of A′ B ′
since ratios along a line are preserved by t .

Hence P ′ =
(

1
2 , 1
)

.

Since the slope of D′ P ′ is 2 and the line
passes through the origin, the equation of
the line D′ P ′ must be

y = 2x . (3)

Next, since Q is the midpoint of BC, its
image Q′ = t(Q) must be the midpoint of

B ′C ′. Hence Q′ =
(

1, 1
2

)
.

Then the slope of the line A′Q′ must be

1 − 1
2

0 − 1
= −1

2
.

Since the line passes through the point
A′(0, 1), the equation of the line A′Q′ must
be

y − 1 = −1

2
(x − 0);

that is,

y = −1

2
x + 1. (4)

Now, R′, the image of R under t , must
lie on the lines D′ P ′ and A′Q′, so that its
coordinates must satisfy both (3) and (4).
Substituting for y from (3) into (4), we
obtain

2x = −1

2
x + 1,

so that x = 2
5 . It follows from (3) that

y = 4
5 . Thus R′ is the point

(
2
5 , 4

5

)
.

Comparing the y-coordinates 1, 4
5 and 0

of P ′, R′ and D′, we obtain P ′ R′ : R′ D′ =
1 : 4.

Since ratios along a line are preserved by
the affine transformation t−1, it follows that

P R : RD = 1 : 4.

Finally, comparing the x-coordinates 0, 2
5

and 1 of A′, R′ and Q′, we obtain A′ R′ :
R′Q′ = 2 : 3. Since ratios along a line are
preserved under the affine transformation
t−1, it follows that

AR : RQ = 2 : 3.

7. The matrix M for the triangle of reference
�ABC is

M =
⎛
⎝ 1 2 1

1 2 2
1 1 1

⎞
⎠ ,

whose inverse is

⎛
⎝ 0 −1 2

1 0 −1
−1 1 0

⎞
⎠ .

It follows from the representation (7) that the
point (−1, 1) has barycentric coordinates with
respect to the triangle of reference �ABC
given by

⎛
⎝ 0 −1 2

1 0 −1
−1 1 0

⎞
⎠
⎛
⎝ −1

1
1

⎞
⎠ =

⎛
⎝ 1

−2
2

⎞
⎠ ;

namely, barycentric coordinates (1, −2, 2).
8. (a) By Theorem 6, the points with barycen-

tric coordinates (1, 1, −1), (4, −2, −1) and(
1
2 , 2, − 3

2

)
are collinear if and only if

∣∣∣∣∣∣
1 4 1

2
1 −2 2

−1 −1 − 3
2

∣∣∣∣∣∣ = 0.
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Now,

∣∣∣∣∣∣
1 4 1

2
1 −2 2

−1 −1 − 3
2

∣∣∣∣∣∣ =
∣∣∣∣ −2 2

−1 − 3
2

∣∣∣∣
− 4

∣∣∣∣ 1 2
−1 − 3

2

∣∣∣∣+ 1
2

∣∣∣∣ 1 −2
−1 −1

∣∣∣∣
= (3 + 2) − 4

(
− 3

2 + 2
)

+ 1
2 (−1 − 2)

= 5 − 4
(

1
2

)
+ 1

2 (−3)

= 3
2

�= 0.

It follows that the points are not collinear.
(b) By Theorem 6, the points with barycentric

coordinates (1, 1, −1), (2, −2, 1), (−1, 7, −5)

are collinear if and only if

∣∣∣∣∣∣
1 2 −1
1 −2 7

−1 1 −5

∣∣∣∣∣∣ = 0.

Now,

∣∣∣∣∣∣
1 2 −1
1 −2 7

−1 1 −5

∣∣∣∣∣∣ =
∣∣∣∣ −2 7

1 −5

∣∣∣∣
− 2

∣∣∣∣ 1 7
−1 −5

∣∣∣∣−
∣∣∣∣ 1 −2

−1 1

∣∣∣∣
= (10 − 7) − 2(−5 + 7) − (1 − 2)

= 3 − 2(2) − (−1)

= 3 − 4 + 1

= 0.

It follows that the points are collinear.
By the Corollary to Theorem 6, the equa-

tion of the line through the points (1, 1, −1)

and (2, −2, 1) is

∣∣∣∣∣∣
1 2 ξ

1 −2 η

−1 1 ζ

∣∣∣∣∣∣ = 0.

Now,∣∣∣∣∣∣
1 2 ξ

1 −2 η

−1 1 ζ

∣∣∣∣∣∣ =
∣∣∣∣ −2 η

1 ζ

∣∣∣∣
− 2

∣∣∣∣ 1 η

−1 ζ

∣∣∣∣+ ξ

∣∣∣∣ 1 −2
−1 1

∣∣∣∣
= (−2ζ − η) − 2(ζ + η) + ξ(1 − 2)

= −ξ − 3η − 4ζ .

It follows that the equation of the desired
line is

ξ + 3η + 4ζ = 0.

Section 2.5
l.

A t

Q
R

B P C B
P

R

Q

A

C

First, map the ellipse onto the unit circle, by
some affine transformation t . Since tangency is
preserved by affine transformations, the image
under t of the triangle �ABC is another triangle
�A′B ′C ′, whose sides are tangential to the unit
circle.

These sides touch the unit circle at P ′ =
t(P), Q′ = t(Q) and R′ = t(R).

By Problem 1 of Section 2.1, the two tangents
from a point to a circle are of equal length, and
so (ignoring the directions of line segments)

A′Q′ = A′ R′, B ′ P ′ = B ′ R′ and

C ′ P ′ = C ′Q′.

In terms of signed distances, it follows that

A′ R′

R′ B ′ · B ′ P ′

P ′C ′ · C ′Q′

Q′ A′ = ±1;

in fact the product must equal 1 since P, Q and
R are internal points of the sides of the triangle
and therefore each of the above three fractions
is positive.
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Since ratios of lengths along a line are not
changed by the inverse affine transformation
t−1, we deduce that

AR

RB
· B P

PC
· C Q

Q A
= 1.

It follows from the converse to Ceva’s Theorem
that the lines AP , B Q and CR are concurrent.

2.
T

A P

O

B

t

A′

O ′
P ′

B ′
T ′

First, map the ellipse onto the unit circle, by
some affine transformation t . Since tangency is
preserved by affine transformations, the images
under t of the tangents TA and TB are tangents
T ′ A′ and T ′ B ′ to the unit circle.

Let P ′ be the point of intersection of the
chord A′B ′ with the line joining T ′ to O ′, the
centre of the unit circle. By symmetry, the tri-
angles � T ′ A′ P ′ and � T ′ B ′ P ′ are Euclidean-
congruent and so A′ P ′ = B ′ P ′; in other words,
P ′ is the midpoint of A′ B ′.

Let the line joining T to the centre O of the
ellipse meet AB at P . Then, since P ′ is the
midpoint of A′ B ′ and since midpoints of line
segments and centres of ellipses are preserved
by the inverse transformation t−1, P = t−1(P ′)
is the midpoint of AB = t−1(A′ B ′). Hence OP
bisects all chords of H that are parallel to �.

3.
t

P

H

H ′
m ′

l′

(1, 1)
m

O

l

First, map the hyperbola H onto the rectangular
hyperbola H ′ = {(x , y) : xy = 1} by some
affine transformation t , in such a way that t
maps P to the point (1, 1). Since the property
of being the centre of the hyperbola is preserved

under affine transformations, t maps the centre,
O , of H to the centre of H ′, namely the origin.

Let m′ be the image of OP under t . Then m′
passes through the origin and the point (1, 1),
so its equation is y = x . Clearly, H ′ is sym-
metric with respect to m′. Now let �′ be the line
with equation y = −x ; this is perpendicular to
m′. By symmetry, m′ bisects all chords of the
rectangular hyperbola which are parallel to �′.

But the properties of parallelism and of ratios
along a line are preserved by affine transforma-
tions, so if � is the line t−1(�′), then O P bisects
all chords of H which are parallel to �.

Chapter 3
Section 3.2
1. (a) This represents the same Point as [1, 2, 3],

for if λ = 2, then

[2, 4, 6] = [λ, 2λ, 3λ] = [1, 2, 3].
(b) This does not represent the same Point as

[1, 2, 3], for there is no λ that satisfies

1 = λ, 2 = 2λ, −3 = 3λ.

(c) This represents the same Point as [1, 2, 3],
for if λ = −1, then

[−1, −2, −3] = [λ, 2λ, 3λ] = [1, 2, 3].
(d) This does not represent the same Point as

[1, 2, 3], for there is no λ that satisfies

11 = λ, 12 = 2λ, 13 = 3λ.

2. In each case we multiply by the least com-
mon multiple of the denominators (or any inte-
ger multiple of the least common multiple) to
obtain:

(a)
[

3
4 , 1

2 , − 1
8

]
= [6, 4, −1] (multiply by 8);

(b)
[
0, 4, 2

3

]
= [0, 12, 2] (multiply by 3)

=[0, 6, 1];

(c)
[

1
6 , − 1

3 , − 1
2

]
= [1, −2, −3] (multiply

by 6).
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3. Dividing by the first coordinate in each, we
obtain:

[2, 3, −5] =
[
1, 3

2 , − 5
2

]
;

[−8, −12, 20] =
[
1, 3

2 , − 5
2

]
;

[√
2,

√
3, −√

5
]

=
[

1,
√

3
2 , −

√
5
2

]
;

[4, −6, 10] =
[
1, − 3

2 , 5
2

]
;

[−20, −30, 50] =
[
1, 3

2 , − 5
2

]
;

[74, 148, 0] = [1, 2, 0] .

Hence the homogeneous coordinates

[2, 3, −5] , [−8, −12, 20] , [−20, −30, 50]

all represent the same Point. The other homo-
geneous coordinates represent different Points.

4. In each case we seek an equation of the form
ax + by + cz = 0 which is satisfied by the
homogeneous coordinates of the given pair of
Points.

(a) An equation for the Line through [0, 1, 0]
and [0, 0, 1] is x = 0.

(b) An equation for the Line through [2, 2, 3]
and [3, 3, 7] is x = y.

5. We use the strategy for determining an equa-
tion for the Line through two given Points
given in Subsection 3.2.2.

(a) An equation for the Line through the
Points [2, 5, 4] and [3, 1, 7] is∣∣∣∣∣∣

x y z
2 5 4
3 1 7

∣∣∣∣∣∣ = 0.

Now∣∣∣∣∣∣
x y z
2 5 4
3 1 7

∣∣∣∣∣∣ = x

∣∣∣∣5 4
1 7

∣∣∣∣− y

∣∣∣∣2 4
3 7

∣∣∣∣+ z

∣∣∣∣2 5
3 1

∣∣∣∣
= 31x − 2y − 13z,

so an equation for the Line is

31x − 2y − 13z = 0.

(b) An equation for the Line through the
Points [−2, −4, 5] and [3, −2, −4] is∣∣∣∣∣∣

x y z
−2 −4 5

3 −2 −4

∣∣∣∣∣∣ = 0.

Now∣∣∣∣∣∣
x y z

−2 −4 5
3 −2 −4

∣∣∣∣∣∣ = x

∣∣∣∣−4 5
−2 −4

∣∣∣∣
− y

∣∣∣∣−2 5
3 −4

∣∣∣∣+ z

∣∣∣∣−2 −4
3 −2

∣∣∣∣
= 26x + 7y + 16z,

so an equation for the Line is

26x + 7y + 16z = 0.

6. We use the strategy for deciding whether
three Points are collinear given in Subsection
3.2.2.

(a) The Points [1, 2, 3], [1, 1, −2] and
[2, 1, −9] are collinear if and only if∣∣∣∣∣∣

1 2 3
1 1 −2
2 1 −9

∣∣∣∣∣∣ = 0.

Now∣∣∣∣∣∣
1 2 3
1 1 −2
2 1 −9

∣∣∣∣∣∣ = 1

∣∣∣∣1 −2
1 −9

∣∣∣∣
− 2

∣∣∣∣1 −2
2 −9

∣∣∣∣+ 3

∣∣∣∣1 1
2 1

∣∣∣∣
= 1(−9 + 2) − 2(−9 + 4) + 3(1 − 2)

= −7 + 10 − 3

= 0.

It follows that the three given Points are
collinear.

(b) The Points [1, 2, −1], [2, 1, 0] and
[0, −1, 3] are collinear if and only if∣∣∣∣∣∣

1 2 −1
2 1 0
0 −1 3

∣∣∣∣∣∣ = 0.
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Now∣∣∣∣∣∣
1 2 −1
2 1 0
0 −1 3

∣∣∣∣∣∣ = 1

∣∣∣∣ 1 0
−1 3

∣∣∣∣
− 2

∣∣∣∣2 0
0 3

∣∣∣∣− 1

∣∣∣∣2 1
0 −1

∣∣∣∣
= 1(3 − 0) − 2(6 − 0) − 1(−2 − 0)

= 3 − 12 + 2

= −7 �= 0.

It follows that the three given Points are
not collinear.

7. We have already shown that [1, 0, 0], [0, 1, 0],
[1, 1, 1] are not collinear, so this leaves three
other cases to consider.

First we check that [1, 0, 0], [0, 0, 1], [1, 1, 1]
are not collinear. This follows because [1, 0, 0]
and [0, 0, 1] lie on the Line y = 0, whereas
[1, 1, 1] does not.

Next we check that [0, 1, 0], [0, 0, 1], [1, 1, 1]
are not collinear. This follows because [0, 1, 0]
and [0, 0, 1] lie on the Line x = 0, whereas
[1, 1, 1] does not.

Finally we check that [1, 0, 0], [0, 1, 0],
[0, 0, 1] are not collinear. This follows because
[1, 0, 0], [0, 1, 0] lie on the Line z = 0, whereas
[0, 0, 1] does not.

8. (a) At the Point of intersection [x , y, z] of the
two Lines, we have

x − y − z = 0, and (1)

x + 5y + 2z = 0. (2)

Subtracting equation (1) from equation (2),
we obtain 6y + 3z = 0, so z = −2y.

Next, substituting −2y in place of z in
equation (1), we obtain x − y +2y = 0, so
x = −y.

It follows that the homogeneous coor-
dinates of the Point of intersection are
[−y, y, −2y] (where y �= 0), which we
may rewrite equivalently as [−1, 1, −2].

(b) At the Point of intersection [x , y, z] of the
two Lines, we have

x + 2y − z = 0, and (3)

2x + y − 4z = 0. (4)

Subtracting twice equation (3) from equa-
tion (4), we obtain −3y − 2z = 0, so
y = − 2

3 z.
Next, substituting − 2

3 z in place of y in
equation (3), we obtain x − 4

3 z − z = 0, so
x = 7

3 z.
It follows that the homogeneous coor-

dinates of the Point of intersection are[
7
3 z, − 2

3 z, z
]

(where z �= 0), which we

may rewrite equivalently as [7, −2, 3].
9. First, we find equations for the two Lines,

using the determinant formula.
An equation for the Line through the Points

[1, 2, −3] and [2, −1, 0] is∣∣∣∣∣∣
x y z
1 2 −3
2 −1 0

∣∣∣∣∣∣ = 0.

Now∣∣∣∣∣∣
x y z
1 2 −3
2 −1 0

∣∣∣∣∣∣ = x

∣∣∣∣ 2 −3
−1 0

∣∣∣∣
− y

∣∣∣∣1 −3
2 0

∣∣∣∣+ z

∣∣∣∣1 2
2 −1

∣∣∣∣
= x(0 − 3) − y(0 + 6) + z(−1 − 4)

= −3x − 6y − 5z.

Hence an equation for the Line may be writ-
ten as

3x + 6y + 5z = 0. (5)

Next, an equation for the Line through the
Points [1, 0, −1] and [1, 1, 1] is∣∣∣∣∣∣

x y z
1 0 −1
1 1 1

∣∣∣∣∣∣ = 0.
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Now∣∣∣∣∣∣
x y z
1 0 −1
1 1 1

∣∣∣∣∣∣ = x

∣∣∣∣0 −1
1 1

∣∣∣∣− y

∣∣∣∣1 −1
1 1

∣∣∣∣
+ z

∣∣∣∣1 0
1 1

∣∣∣∣
= x(0 + 1) − y(1 + 1) + z(1 − 0)

= x − 2y + z.

Hence an equation for the Line may be writ-
ten as

x − 2y + z = 0. (6)

At the Point of intersection [x , y, z] of the two
Lines, both equations (5) and (6) hold.

Adding three times equation (6) to equation
(5), we obtain 6x + 8z = 0, so z = − 3

4 x .
Next, substituting z = − 3

4 x into equation
(6), we obtain

x − 2y − 3

4
x = 0, so y = 1

8
x .

Hence the homogeneous coordinates for the
Point of intersection of the two Lines are[
x , 1

8 x , − 3
4 x
]

(where x �= 0), or, equivalently,

[8, 1, −6].
10. In this particular case, the homogeneous coor-

dinates of the Points are particularly simple, so
we can write down equations for the two Lines
without using determinants.

An equation for the Line through the Points
[1, 0, 0] and [0, 1, 0] is z = 0 (since this is
of the right form, and passes through the two
Points).

An equation for the Line through the Points
[0, 0, 1] and [1, 1, 1] is x = y (since this is
of the right form, and passes through the two
Points).

The two Lines meet where z = 0 and x = y,
so the homogeneous coordinates for their Point
of intersection are [x , x , 0] (where x �= 0), or,
equivalently, [1, 1, 0].

11. In Problem 10 we found that the Point of
intersection of z = 0 and x = y is [1, 1, 0].
Similarly, the Point of intersection of y = 0

and z = x is [x , 0, x] or [1, 0, 1], and the Point
of intersection of x = 0 and y = z is [0, z, z]
or [0, 1, 1].

[1, 0, 0]

[1, 1, 0] [1, 0, 1]

[0, 1, 1] [0, 0,1][0, 1, 0]

[1, 1, 1]

y = 0

x = y z = x

z = 0

x = 0

y = z

12. The ideal Points for π consist of lines through
the origin of R

3 that are parallel to π . These
are the Points that lie on the ideal Line y = 0.

embedding ideal Line
y = 0

y

z

x

O

(                      )

[2, 4, 6]

π

Plane y = –1

– 11
2

–, , – 3
2

The Euclidean point of π which corresponds
to the Point [2, 4, 6] is that multiple of (2, 4, 6)

which lies on the plane y = −1. That is,

− 1
4 (2, 4, 6) =

(
− 1

2 , −1, − 3
2

)
.

Section 3.3
1. (a) The mapping

t : [x , y, z] �→ [−2y+3z, −x+5y−z, −3x]

can be expressed in the form [x] �→ [Ax],
where

A =
⎛
⎝ 0 −2 3

−1 5 −1
−3 0 0

⎞
⎠ .
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Now

det A =
∣∣∣∣∣∣

0 −2 3
−1 5 −1
−3 0 0

∣∣∣∣∣∣
= 0

∣∣∣∣5 −1
0 0

∣∣∣∣− (−2)

∣∣∣∣−1 −1
−3 0

∣∣∣∣
+ 3

∣∣∣∣−1 5
−3 0

∣∣∣∣
= 0 + 2 × (−3) + 3 × 15

= 39 �= 0,

so A is invertible. It follows that t is a
projective transformation, and that A is a
matrix associated with t .

(b) The mapping

t : [x , y, z] �→ [x − 7y + 4z, −x + 5y − z,

x − 9y + 7z]
can be expressed in the form [x] �→ [Ax],
where

A =
⎛
⎝ 1 −7 4

−1 5 −1
1 −9 7

⎞
⎠ .

Now

det A =
∣∣∣∣∣∣

1 −7 4
−1 5 −1

1 −9 7

∣∣∣∣∣∣
= 1

∣∣∣∣ 5 −1
−9 7

∣∣∣∣+ 7

∣∣∣∣−1 −1
1 7

∣∣∣∣
+ 4

∣∣∣∣−1 5
1 −9

∣∣∣∣
= 1 × 26 + 7 × (−6) + 4 × 4

= 0,

so A is not invertible. It follows that t is not
a projective transformation.

(c) The mapping

t : [x , y, z] �→ [x − 1 + z, 2y − 4z + 5, 2x]
cannot be expressed in the form [x] �→
[Ax], where A is a 3 × 3 matrix whose

entries are real numbers. Hence t cannot be
a projective transformation.

2. (a) The image of the Point [1, 2, −1] under t is
given by⎡
⎣
⎛
⎝ 1 1 −1

−1 −2 1
4 −3 4

⎞
⎠
⎛
⎝ 1

2
−1

⎞
⎠
⎤
⎦=

⎡
⎣
⎛
⎝ 4

−6
−6

⎞
⎠
⎤
⎦ ,

that is, the Point [4, −6, −6] = [−2, 3, 3].
(b) The image of the Point [1, 0, 0] under t is

given by⎡
⎣
⎛
⎝ 1 1 −1

−1 −2 1
4 −3 4

⎞
⎠
⎛
⎝1

0
0

⎞
⎠
⎤
⎦=

⎡
⎣
⎛
⎝ 1

−1
4

⎞
⎠
⎤
⎦ ,

that is, the Point [1, −1, 4].
(c) The image of the Point [0, 1, 0] under t is

given by⎡
⎣
⎛
⎝ 1 1 −1

−1 −2 1
4 −3 4

⎞
⎠
⎛
⎝0

1
0

⎞
⎠
⎤
⎦=

⎡
⎣
⎛
⎝ 1

−2
−3

⎞
⎠
⎤
⎦ ,

that is, the Point [1, −2, −3].
(d) The image of the Point [0, 0, 1] under t is

given by⎡
⎣
⎛
⎝ 1 1 −1

−1 −2 1
4 −3 4

⎞
⎠
⎛
⎝0

0
1

⎞
⎠
⎤
⎦=

⎡
⎣
⎛
⎝−1

1
4

⎞
⎠
⎤
⎦ ,

that is, the Point [−1, 1, 4].
(e) The image of the Point [1, 1, 1] under t is

given by⎡
⎣
⎛
⎝ 1 1 −1

−1 −2 1
4 −3 4

⎞
⎠
⎛
⎝1

1
1

⎞
⎠
⎤
⎦=

⎡
⎣
⎛
⎝ 1

−2
5

⎞
⎠
⎤
⎦ ,

that is the Point [1, −2, 5].
3. Since the matrix A which represents the trans-

formation in Example 1 in Subsection 3.3.1
has 2 as its top left-hand entry, we obtain the
required matrix by dividing each entry of A by
4. This gives the matrix⎛

⎜⎜⎝
1
2 0 1

4

− 1
4

1
2 − 3

4

1
4 − 1

4
5
4

⎞
⎟⎟⎠ .
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4. Matrices associated with t1 and t2 are

A1 =
⎛
⎝ 2 1 0
−1 0 1

0 1 1

⎞
⎠ and A2 =

⎛
⎝5 8 0

3 5 0
0 0 2

⎞
⎠ ,

respectively. It follows that a matrix associ-
ated with the projective transformation t1 ◦ t2 is
A1 A2. Now

A1A2 =
⎛
⎝ 2 1 0

−1 0 1
0 1 1

⎞
⎠
⎛
⎝5 8 0

3 5 0
0 0 2

⎞
⎠

=
⎛
⎝ 13 21 0

−5 −8 2
3 5 2

⎞
⎠ ,

so we conclude that t1 ◦ t2 is the transformation

[x , y, z] �→ [13x + 21y, −5x − 8y + 2z, 3x

+ 5y + 2z].
Next, t−1

1 has an associated matrix A−1
1 given

by

A−1
1 =

⎛
⎝ 1 1 −1

−1 −2 2
1 2 −1

⎞
⎠ .

The projective transformation t−1
1 is therefore

[x , y, z] �−→ [x+y−z, −x−2y+2z, x+2y−z].
5. The equation of the Line can be written in the

form Lx = 0, where

L = (1 2 − 1).

From Problem 4 we know that t−1
1 has an

associated matrix

A−1
1 =

⎛
⎝ 1 1 −1

−1 −2 2
1 2 −1

⎞
⎠ ,

so

LA−1
1 = (

1 2 −1
)⎛⎝ 1 1 −1

−1 −2 2
1 2 −1

⎞
⎠

= (−2 −5 4
)

.

The required image is therefore the Line

−2x − 5y + 4z = 0.

6. First we consider the images under t1. The
image of the Point [1, −1, 1] under t1 is⎡
⎣
⎛
⎝−4 −1 1

−3 −2 1
4 2 −1

⎞
⎠
⎛
⎝ 1

−1
1

⎞
⎠
⎤
⎦ =

⎡
⎣
⎛
⎝−2

0
1

⎞
⎠
⎤
⎦ ,

that is, the Point [−2, 0, 1].
Similarly, the image of the Point [1, −2, 2]

under t1 is⎡
⎣
⎛
⎝−4 −1 1

−3 −2 1
4 2 −1

⎞
⎠
⎛
⎝ 1

−2
2

⎞
⎠
⎤
⎦ =

⎡
⎣
⎛
⎝ 0

3
−2

⎞
⎠
⎤
⎦ ,

that is, the Point [0, 3, −2].
Finally, the image of the Point [−1, 2, −1]

under t1 is⎡
⎣
⎛
⎝−4 −1 1

−3 −2 1
4 2 −1

⎞
⎠
⎛
⎝−1

2
−1

⎞
⎠
⎤
⎦ =

⎡
⎣
⎛
⎝ 1

−2
1

⎞
⎠
⎤
⎦ ,

that is, the Point [1, −2, 1].
Next, we consider the images under t2. The

image of the Point [1, −1, 1] under t2 is⎡
⎣
⎛
⎝−8 −6 −2

−3 4 7
6 0 −4

⎞
⎠
⎛
⎝ 1

−1
1

⎞
⎠
⎤
⎦ =

⎡
⎣
⎛
⎝−4

0
2

⎞
⎠
⎤
⎦ ,

that is, the Point with homogeneous coordinates
[−4, 0, 2] or (equivalently) [−2, 0, 1].

Similarly, the image of the Point [1, −2, 2]
under t2 is⎡
⎣
⎛
⎝−8 −6 −2

−3 4 7
6 0 −4

⎞
⎠
⎛
⎝ 1

−2
2

⎞
⎠
⎤
⎦ =

⎡
⎣
⎛
⎝ 0

3
−2

⎞
⎠
⎤
⎦ ,

that is, the Point [0, 3, −2].
Finally, the image of the Point [−1, 2, −1]

under t2 is⎡
⎣
⎛
⎝−8 −6 −2

−3 4 7
6 0 −4

⎞
⎠
⎛
⎝−1

2
−1

⎞
⎠
⎤
⎦ =

⎡
⎣
⎛
⎝−2

4
−2

⎞
⎠
⎤
⎦ ,

that is, the Point with homogeneous coordinates
[−2, 4, −2] or (equivalently) [1, −2, 1].

7. We use the strategy preceding the problem.
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(a) Let A be the matrix⎛
⎝−u −3υ 2w

0 2υ 0
0 0 4w

⎞
⎠ .

We wish to choose u, υ, w such that⎛
⎝−u −3υ 2w

0 2υ 0
0 0 4w

⎞
⎠
⎛
⎝1

1
1

⎞
⎠ =

⎛
⎝ 1

2
−5

⎞
⎠ ,

that is,⎛
⎝−u − 3υ + 2w

2υ

4w

⎞
⎠ =

⎛
⎝ 1

2
−5

⎞
⎠ .

It follows that w = − 5
4 and υ = 1. Also,

−u − 3υ + 2w = 1, so u = − 13
2 .

Thus

A =
⎛
⎝ 13

2 −3 − 5
2

0 2 0
0 0 −5

⎞
⎠ .

A simpler matrix for the projective trans-
formation is the matrix

2A =
⎛
⎝13 −6 −5

0 4 0
0 0 −10

⎞
⎠ .

(b) Let A be the matrix⎛
⎝u 0 0

0 0 w

0 υ 0

⎞
⎠ .

We wish to choose u, υ, w such that⎛
⎝u 0 0

0 0 w

0 υ 0

⎞
⎠
⎛
⎝1

1
1

⎞
⎠ =

⎛
⎝3

4
5

⎞
⎠ ,

that is, ⎛
⎝ u

w

υ

⎞
⎠ =

⎛
⎝3

4
5

⎞
⎠ .

It follows that u = 3, υ = 5 and w = 4.
Thus

A =
⎛
⎝3 0 0

0 0 4
0 5 0

⎞
⎠ .

(c) Let A be the matrix⎛
⎝2u υ 0

u 0 3w

0 −υ −w

⎞
⎠ .

We wish to choose u, υ, w such that⎛
⎝2u υ 0

u 0 3w

0 −υ −w

⎞
⎠
⎛
⎝1

1
1

⎞
⎠ =

⎛
⎝ 3

−1
2

⎞
⎠ ,

that is, ⎛
⎝ 2u + υ

u + 3w

−υ − w

⎞
⎠ =

⎛
⎝ 3

−1
2

⎞
⎠ .

It follows that

2u + υ = 3, (1)

u + 3w = −1, (2)

−υ − w = 2. (3)

Adding equations (1) and (3) in order to
eliminate υ, we obtain

2u − w = 5. (4)

Subtracting equation (4) from twice
equation (2) in order to eliminate u, we
obtain 7w = −7 or w = −1.

It follows from equation (4) that u = 2,
and from equation (1) that υ = −1.
Thus

A =
⎛
⎝4 −1 0

2 0 −3
0 1 1

⎞
⎠ .

8. We use the strategy preceding Example 6.

(a) By Problem 7(a), a matrix associated
with the projective transformation t1 that
maps [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1] to
the Points [−1, 0, 0], [−3, 2, 0], [2, 0, 4],
[1, 2, −5], respectively, is

A1 =
⎛
⎝13 −6 −5

0 4 0
0 0 −10

⎞
⎠ .

(b) By Problem 7(c), a matrix associated
with the projective transformation t2 that
maps [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1] to
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the Points [2, 1, 0], [1, 0, −1], [0, 3, −1],
[3, −1, 2], respectively, is

A2 =
⎛
⎝4 −1 0

2 0 −3
0 1 1

⎞
⎠ .

(c) A matrix associated with t−1
1 is A−1

1 , which
we can calculate to be

A−1
1 =

⎛
⎝ 1

13
3

26 − 1
26

0 1
4 0

0 0 − 1
10

⎞
⎠ .

However, a simpler matrix associated
with t−1

1 is

260A−1
1 =

⎛
⎝20 30 −10

0 65 0
0 0 −26

⎞
⎠ .

Hence a matrix for the projective trans-
formation which maps [−1, 0, 0], [−3, 2, 0],
[2, 0, 4], [1, 2, −5] to [2, 1, 0], [1, 0, −1],
[0, 3, −1], [3, −1, 2], respectively, is given
by ⎛
⎝4 −1 0

2 0 −3
0 1 1

⎞
⎠
⎛
⎝20 30 −10

0 65 0
0 0 −26

⎞
⎠ ,

which equals⎛
⎝80 55 −40

40 60 58
0 65 −26

⎞
⎠ .

9. We use the strategies in Subsection 3.3.3. First,
it follows from the first strategy that a matrix
for the projective transformation t1 that maps
[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1] to the Points
[1, 0, −3], [1, 1, −2], [3, 3, −5], [6, 4, −13],
respectively, is⎛

⎝ u υ 3w

0 υ 3w

−3u −2υ −5w

⎞
⎠ ,

where u, υ, w satisfy⎛
⎝ u υ 3w

0 υ 3w

−3u −2υ −5w

⎞
⎠
⎛
⎝1

1
1

⎞
⎠ =

⎛
⎝ 6

4
−13

⎞
⎠ ,

that is,⎛
⎝ u + υ + 3w

υ + 3w

−3u − 2υ − 5w

⎞
⎠ =

⎛
⎝ 6

4
−13

⎞
⎠ .

By comparing the first two rows of these
matrices, it is clear that we must have u = 2.
It then follows from the last two rows that

υ + 3w = 4, (5)

−2υ − 5w = −7. (6)

If we add twice equation (5) to equation (6),
we obtain w = 1. Equation (5) then gives υ = 1.
A matrix for the projective transformation t1 is
therefore

A1 =
⎛
⎝ 2 1 3

0 1 3
−6 −2 −5

⎞
⎠ .

Next, it follows from the first strategy that
a matrix for the projective transformation t2
that maps [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1]
to the Points [3, −5, 3], [ 1

2 , −1, 0], [3, −5, 6],
[8, −13, 12], respectively, is⎛

⎝ 3u 1
2υ 3w

−5u −υ −5w

3u 0 6w

⎞
⎠ ,

where u, υ, w satisfy⎛
⎝ 3u 1

2υ 3w

−5u −υ −5w

3u 0 6w

⎞
⎠
⎛
⎝1

1
1

⎞
⎠ =

⎛
⎝ 8

−13
12

⎞
⎠ ,

that is,⎛
⎝3u + 1

2υ + 3w

−5u − υ − 5w

3u + 6w

⎞
⎠ =

⎛
⎝ 8

−13
12

⎞
⎠ .

Equating corresponding entries in these
matrices and multiplying them by 2,1 and 1

3 ,
respectively, we deduce that

6u + υ + 6w = 16, (7)

−5u − υ − 5w = −13, (8)

u + 2w = 4. (9)
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Adding equations (7) and (8), we obtain

u + w = 3. (10)

It follows from equations (9) and (10) that
w = 1 and u = 2. Equation (8) then gives
υ = −2.

Hence a matrix for the projective transforma-
tion t2 is

A2 =
⎛
⎝ 6 −1 3

−10 2 −5
6 0 6

⎞
⎠ .

Finally, we follow the second strategy.
A matrix associated with t−1

1 is

A−1
1 =

⎛
⎝ 1

2 − 1
2 0

−9 4 −3
3 −1 1

⎞
⎠ ,

so a simple matrix associated with t−1
1 is

2A−1
1 =

⎛
⎝ 1 −1 0

−18 8 −6
6 −2 2

⎞
⎠ .

Hence a matrix for the projective transforma-
tion that maps [1, 0, −3], [1, 1, −2], [3, 3, −5],
[6, 4, −13] to [3, −5, 3],

[
1
2 , −1, 0

]
, [3, −5, 6],

[8, −13, 12], respectively, is given by⎛
⎝ 6 −1 3

−10 2 −5
6 0 6

⎞
⎠
⎛
⎝ 1 −1 0

−18 8 −6
6 −2 2

⎞
⎠ ,

which equals⎛
⎝ 42 −20 12

−76 36 −22
42 −18 12

⎞
⎠ ,

So we may take as a simple matrix associated
with the transformation⎛

⎝ 21 −10 6
−38 18 −11

21 −9 6

⎞
⎠ .

Section 3.4
1. Since the problem is concerned exclusively with

projective properties, we shall prove the corre-
sponding projective result. By the Fundamental

Theorem of Projective Geometry, we may take
A, B, C and U to be the Points [1, 0, 0], [0, 1, 0],
[0, 0, 1] and [1, 1, 1], respectively.

First, we find the homogeneous coordinates
of the Points A′, B ′ and C ′.

to Q

to P

to R

A

C´

B´

A [1, 0, 0]

B [0, 1, 0] C [0, 0, 1]

U [1, 1, 1]

z = 0
y = z

y = 0

x = 0

x = y

z = x

Since the Line AU passes through [1, 0, 0] and
[1, 1, 1] it must have equation y = z. Also, BC
passes through [0, 1, 0] and [0, 0, 1] and there-
fore has equation x = 0. It follows that AU and
BC intersect at the Point A′ with homogeneous
coordinates [0, y, y], that is, at [0, 1, 1].

Since the Line BU passes through [0, 1, 0] and
[1, 1, 1] it must have equation z = x . Also, AC
passes through [1, 0, 0] and [0, 0, 1] and there-
fore has equation y = 0. It follows that BU and
AC intersect at the Point B ′ with homogeneous
coordinates [x , 0, x], that is, at [1, 0, 1].

Since the Line CU passes through [0, 0, 1] and
[1, 1, 1] it must have equation x = y. Also, AB
passes through [1, 0, 0] and [0, 1, 0] and there-
fore has equation z = 0. It follows that CU and
AB intersect at the Point C ′ with homogeneous
coordinates [x , x , 0], that is, at [1, 1, 0].

Next, we determine the homogeneous coordi-
nates of the Points P , Q and R.

The Line B ′C ′ has equation

∣∣∣∣∣∣
x y z
1 0 1
1 1 0

∣∣∣∣∣∣ = 0,
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that is, x = y + z. Thus the Lines B ′C ′(with
equation x = y + z) and BC (with equation
x = 0) meet at the Point P with homogeneous
coordinates [0, y, −y], that is, at P = [0, 1, −1].

The Line A′C ′ has equation∣∣∣∣∣∣
x y z
0 1 1
1 1 0

∣∣∣∣∣∣ = 0,

that is, y = x + z. Thus the Lines A′C ′ (with
equation y = x + z) and AC (with equation
y = 0) meet at the Point Q with homogeneous
coordinates [x , 0, −x], that is, at Q = [1, 0, −1].

The Line A′B ′ has equation∣∣∣∣∣∣
x y z
0 1 1
1 0 1

∣∣∣∣∣∣ = 0,

that is, z = x + y. Thus the Lines A′ B ′ (with
equation z = x + y) and AB (with equation
z = 0) meet at the Point R with homogeneous
coordinates [x , −x , 0], that is, at R = [1, −1, 0].

Finally, the Points P , Q and R are collinear if∣∣∣∣∣∣
0 1 −1
1 0 −1
1 −1 0

∣∣∣∣∣∣ = 0.

Since∣∣∣∣∣∣
0 1 −1
1 0 −1
1 −1 0

∣∣∣∣∣∣ = 0

∣∣∣∣ 0 −1
−1 0

∣∣∣∣− 1

∣∣∣∣1 −1
1 0

∣∣∣∣
+ (−1)

∣∣∣∣1 0
1 −1

∣∣∣∣
= 0 − 1(0 + 1) − 1(−1 − 0)

= 0,

it follows that the Points P , Q and R are
collinear, as required.

2. The following figure illustrates Desargues’ The-
orem on an embedding plane π for which Q
(the Point of intersection of AC and A′C ′) is an
ideal Point. Since P and R are collinear with
the ideal Point Q where AC and A′C ′ meet, it
follows that PR is parallel to AC and A′C ′.

to Q

C´

B´

R

C

B

P
A

A´

U

3.
Q [0, 0, 1]

x = 0

y = z

z = qy

B [p, 1, 1]

C [1, 1, 1]

C [0, 1, 0]

B [0, 1, q ]
A [1, 1, q ]

A [p, 1,0 ]

P [1, 0, 0]

Let P , C , Q, C ′ be the Points [1, 0, 0],
[0, 1, 0], [0, 0, 1], [1, 1, 1], respectively. Then the
Line PC′ passes through the Points [1, 0, 0] and
[1, 1, 1], and therefore has equation y = z.

Since B is a Point on PC ′, it must have homo-
geneous coordinates of the form [a, b, b], for
some real numbers a and b. Now, b �= 0, since if
b = 0 we must have B = P . It follows that we
may write the homogeneous coordinates of the
Point B in the form [p, 1, 1] (where p = a/b).

Similarly, the line QC′ has equation x = y, so
that the homogeneous coordinates of the Point A
are [1, 1, q].

We now find the Point B ′ where PA meets
QC . The Line QC has equation x = 0. Since
the Line P A passes through the Points P =
[1, 0, 0] and A = [1, 1, q] it must have equation∣∣∣∣∣∣

x y z
1 0 0
1 1 q

∣∣∣∣∣∣ ,
which we may rewrite as −qy + z = 0.

It follows that at the Point B ′ of intersec-
tion of the Lines PA and QC we must have
z = qy and x = 0, so that the Point B ′ has
homogeneous coordinates [0, 1, q].

Similarly, the Point A′ is the Point of intersec-
tion of the Lines PC and QB. Since P = [1, 0, 0]
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and C = [0, 1, 0], the Line PC has equation
z = 0; and since Q = [0, 0, 1] and B = [p, 1, 1],
the Line QB has equation x = py. Hence the
Point A′ has homogeneous coordinates [p, 1, 0].

Since the Line AA′ passes through A =
[1, 1, q] and A′ = [p, 1, 0] it must have equation∣∣∣∣∣∣

x y z
1 1 q
p 1 0

∣∣∣∣∣∣ = 0,

which we may rewrite as

−qx + pqy + (1 − p)z = 0.

Since the Line B B ′ passes through B =
[p, 1, 1] and B ′ = [0, 1, q] it must have equation∣∣∣∣∣∣

x y z
p 1 1
0 1 q

∣∣∣∣∣∣ = 0,

which we may rewrite as

(q − 1)x − pqy + pz = 0.

The Line CC ′ has equation x = z, so AA′,
B B ′ and CC ′ will be concurrent if the equations

−qx + pqy + (1 − p)z = 0,
(q − 1)x − pqy + pz = 0,

x − z = 0,

have a non-zero solution. This happens if∣∣∣∣∣∣
−q pq 1 − p

q − 1 −pq p
1 0 −1

∣∣∣∣∣∣ = 0.

But the determinant on the left is equal to

− qpq − pq(1 − q − p) + (1 − p)(pq)

= −pq2 − pq + pq2 + p2q + pq − p2q

= 0,

so AA′, B B ′ and CC ′ are concurrent.
4. The statement of the collinearity strategy (Sub-

section 3.2.2) is follows:

Three Points [a, b, c], [d, e, f ], [g, h, k]

are collinear if and only if

∣∣∣∣∣∣
a b c
d e f
g h k

∣∣∣∣∣∣ = 0.

To make it easier to dualize this result, by break-
ing the sentence up into shorter portions, we first
rephrase it in the following way:

Three Points

[a, b, c], [d, e, f ], [g, h, k]
are collinear

if and only if

∣∣∣∣∣∣
a b c
d e f
g h k

∣∣∣∣∣∣ = 0.

We first interchange ‘Point’ and ‘Line’, and
‘collinear’ and ‘concurrent’; this gives the state-
ment:

Three Lines

[a, b, c], [d, e, f ], [g, h, k]
are concurrent

if and only if

∣∣∣∣∣∣
a b c
d e f
g h k

∣∣∣∣∣∣ = 0.

Next, we make the changes necessary for this
statement to make sense; it becomes:

Three Lines

ax + by + cz = 0, dx + ey + fz = 0,

gx + hy + kz = 0

are concurrent

if and only if

∣∣∣∣∣∣
a b c
d e f
g h k

∣∣∣∣∣∣ = 0.

This is the result dual to the collinearity strategy.

Section 3.5
1. (a) First, we find real numbers α and β such

that the following vector equation holds:

(3, 5, −5) = α(1, −1, −1) + β(1, 3, −2).

Comparing corresponding coordinates on
both sides of this vector equation, we
deduce that

3 = α + β,

5 = −α + 3β,

−5 = −α − 2β.
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By adding the first two equations, we obtain
8 = 4β, so β = 2. The first equation then
gives α = 1. (As a check, notice that these
values of α and β satisfy the third equation
too.)

Next we find real numbers γ and δ such
that the vector equation

(1, −5, 0) = γ (1, −1, −1) + δ(1, 3, −2)

holds. Comparing corresponding coordi-
nates on both sides, we deduce that

1 = γ + δ,

−5 = −γ + 3δ,

0 = −γ − 2δ.

By adding the first two equations, we obtain
−4 = 4δ, so δ = −1. The first equa-
tion then gives γ = 2. (As a check, notice
that these values of γ and δ satisfy the third
equation too.)

It then follows from the definition of
cross-ratio that

(ABC D) = β

α

/
δ

γ
= 2

1

/ −1

2
= −4.

(b) First, we find real numbers α and β such
that the following vector equation holds:

(−3, −5, −8) = α(1, 2, 3) + β(2, 2, 4).

Comparing corresponding coordinates on
both sides of this vector equation, we
deduce that

−3 = α + 2β,

−5 = 2α + 2β,

−8 = 3α + 4β.

By subtracting the first equation from the
second, we obtain α = −2. The first equa-
tion then gives 2β = −1, or β = − 1

2 . (As
a check, notice that these values of α and β

satisfy the third equation too.)
Next, we find real numbers γ and δ such

that the vector equation

(3, −3, 0) = γ (1, 2, 3) + δ(2, 2, 4)

holds. Comparing corresponding coordi-
nates on both sides, we deduce that

3 = γ + 2δ,

−3 = 2γ + 2δ,

0 = 3γ + 4δ.

By subtracting the first equation from the
second, we obtain γ = −6. The first equa-
tion then gives 2δ = 9, or δ = 9

2 . (As a
check, notice that these values of γ and δ

satisfy the third equation too.)
It then follows from the definition of

cross-ratio that

(ABC D) = β

α

/
δ

γ
= − 1

2

−2

/
9
2

−6
= −1

3
.

2. We have

A = [1, −1, −1], B = [1, 3, −2],
C = [3, 5, −5], D = [1, −5, 0].

To determine (B AC D), we first find real num-
bers α and β such that the following vector
equation holds:

(3, 5, −5) = α(1, 3, −2) + β(1, −1, −1).

It follows from the result of Problem 1(a) that
α = 2 and β = 1 (essentially, the letters α and
β in that Problem have been interchanged).

Next, we find real numbers γ and δ such that
the vector equation

(1, −5, 0) = γ (1, 3, −2) + δ(1, −1, −1)

holds. It follows from the result of Problem 1(a)
that γ = −1 and δ = 2 (in this case, the letters γ

and δ in that Problem have been interchanged.)
Hence from the definition of cross-ratio,

(B AC D) = β

α

/
δ

γ
= 1

2

/
2

−1
= −1

4
.

To determine (AC B D), we first find real num-
bers α and β such that the following vector
equation holds:

(1, 3, −2) = α(1, −1, −1) + β(3, 5, −5).
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Comparing corresponding coordinates on
both sides of this vector equation, we deduce
that

1 = α + 3β,

3 = −α + 5β,

−2 = −α − 5β.

By adding the first two equations, we obtain
4 = 8β, so β = 1

2 . The first equation then gives
α = − 1

2 . (As a check, notice that these values
of α and β satisfy the third equation too.)

Next, we find real numbers γ and δ such that
the vector equation

(1, −5, 0) = γ (1, −1, −1) + δ(3, 5, −5)

holds. Comparing corresponding coordinates on
both sides, we deduce that

1 = γ + 3δ,

−5 = −γ + 5δ,

0 = −γ − 5δ.

By adding the first two equations, we obtain
−4 = 8δ, so δ = − 1

2 . The first equation then
gives γ = 5

2 . (As a check, notice that these
values of γ and δ satisfy the third equation too.)

It follows from the definition of cross-ratio
that

(AC B D) = β

α

/
δ

γ
=

1
2

− 1
2

/
− 1

2
5
2

= 5.

3. From the solution to Problem 1(a) we know that
(ABC D) = −4, so by Theorem 2,

(AB DC) = 1/(−4) = − 1
4 ,

(DBC A) = 1 − (−4) = 5,

(AC B D) = 1 − (−4) = 5.

4.
A

B
C

D3

1
2

Using the sign convention for ratios of lengths
along a line, we obtain

(ABC D) = AC

C B

/
AD

DB

=
(

−3

1

)/(
−6

4

)
= 2

and

(DBC A) = DC

C B

/
D A

AB

=
(

3

1

)/(
−6

2

)
= −1.

5. In each case we use Theorem 2 to bring the ideal
Point to the front of the cross-ratio, and then
apply equation (11).

(a) If D is an ideal Point then

(ABC D) = 1 − (DBC A) (swap outer
two Points)

= (DC B A) (swap middle
two Points)

= AC

BC
(from equation

(11)).

(b) If C is an ideal Point then

(ABC D) = 1 − (AC B D) (swap middle
two Points)

= (DC B A) (swap outer
two Points)

= 1/(C DB A) (swap first
two Points)

= 1

/(
AD

B D

)
(from
equation (11))

= B D

AD
.

6. Since B is an ideal Point,

(ABC D) = C A

D A

= 5

2
.
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7.

6 cm 4 cm
1 cm

3 km 2 km n km

D

C

B

A

D′

C′

B′

A′

Let A and B denote the signs, C denote the
car, D denote the junction, and let A′, B ′, C ′, D′
be their images on the film. Then

(A′B ′C ′ D′) = A′C ′

C ′ B ′

/
A′ D′

D′ B ′

=
(

−5

3

)/(
−6

4

)
= 10

9
.

Now let the car be n km from the junction.
Then

(ABC D) = AC

C B

/
AD

DB

=
(

−3 − n

2 − n

)/(
−3

2

)

= 2(3 − n)

3(2 − n)
.

Since (ABC D) and (A′ B ′C ′D′) must be
equal, it follows that

2(3 − n)

3(2 − n)
= 10

9
.

Hence

54 − 18n = 60 − 30n,

and so 12n = 6, or n = 1
2 . The car is therefore

1
2 km from the junction.

8.

4 cm

2 cm

2 cm

50 km n km

D

C

B

A

A′

B′

C′

D′

Let A and C denote the stations, B denote the
train, and D denote the ideal Point where the
railway lines ‘meet’, and let A′, B ′, C ′, D′ be
their images on the film. Then

(A′B ′C ′ D′) = A′C ′

C ′ B ′

/
A′ D′

D′ B ′

=
(

−4

2

)/(
−8

6

)

= 3

2
.

Now let the train be n km from C . Since D is
an ideal Point,

(ABC D) = AC

BC

= 50

n
.

But (ABC D) and (A′B ′C ′ D′) must be equal, so
50

n
= 3

2
.

Hence n = 100
3 . The train is therefore 33 1

3 km
from the next station.

Chapter 4
Section 4.1
1. z

x

p

y

F

ideal Point

[x′, y′, z′]

(x′ / z′ ,  y′/ z′ ,1 )

Let F be the projective figure which corre-
sponds to the parabola {(x , y, z) : y = x2, z =
1} in the standard embedding plane π . Any
Point [x ′, y′, z′] on F must pierce π at a point
(x ′/z′, y′/z′, 1) on the parabola, and so

y′

z′ =
(

x ′

z′

)2

.

Since z′ is non-zero, we can multiply by (z′)2

and drop the dashes to obtain the equivalent
equation
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yz = x2, z �= 0.

By dropping the constraint that z �= 0, we
can include additional ideal Points of the form
[x , y, 0]; for these points we must have x2 = 0.
In fact, there is just one such Point, namely
[0, 1, 0].

2. (a) This does not define a projective conic
because it includes linear terms in x and y.

(b) This defines a projective conic because it
has the form of equation (2) with A = B =
C = G = 1 and F = H = 0.

(c) This defines a projective conic because it
has the form of equation (2) with A = B =
G = H = 0, C = 1 and F = −1.

(d) This does not define a projective conic
because it includes a constant term.

3. (a) This is true since

(1 · 0) + (1 · 0) + (0 · 0) = 0.

(b) This is true since

2 · (1)2 − (2)2 + (1 · 2) + (1 · 0) + (0)2

= 2 − 4 + 2 = 0.

(c) This is false since

3 · 12 + 2 · 22 − 32 = 3 + 8 − 9 = 2 �= 0.

4. First, we rewrite the equation of the hyperbola
2u2 − 6v2 + 5v − 1 = 0 in the form

u2 − 3v2 + 5

2
v − 1

2
= 0,

so that we can apply the Eccentricity Formula.
Then, if we apply the Eccentricity Formula

with C = −3, G = 5
2 and H = − 1

2 , it follows
that the eccentricity e of the hyperbola is given
by the formula

e2 = 1 − (−3) = 4,

so that e = 2.

Section 4.2
1. Here we use Joachimsthal’s notation, with

(x1, y1) = (1, 0), (x2, y2) = (2, 1) and

s = 2x2 + 3xy − y2 + x + 2y + 1.

Thus

s11 = 2x2
1 + 3x1 y1 − y2

1 + x1 + 2y1 + 1

= 2 + 0 − 0 + 1 + 0 + 1

= 4,

s22 = 2x2
2 + 3x2 y2 − y2

2 + x2 + 2y2 + 1

= 8 + 6 − 1 + 2 + 2 + 1

= 18,

s12 = 2x1x2 + 3

(
x1 y2 + x2 y1

2

)
− y1 y2

+
(

x1 + x2

2

)
+ 2

(
y1 + y2

2

)
+ 1

= 4 + 3

(
1 + 0

2

)
− 0 +

(
1 + 2

2

)

+ 2

(
0 + 1

2

)
+ 1

= 4 + 3
2 + 3

2 + 1 + 1

= 9,

and

s1 = 2x1x + 3

(
x1 y + xy1

2

)
− y1 y

+
(

x1 + x

2

)
+ 2

(
y1 + y

2

)
+ 1

= 2x + 3

(
y + 0

2

)
− 0 +

(
1 + x

2

)

+ 2

(
0 + y

2

)
+ 1

= 5
2 x + 5

2 y + 3
2 .

2. Here we use the results of Problem 1 and
Joachimsthal’s Section Equation s22k2+2s12k+
s11 = 0.

It follows that the ratio in which the hyperbola
divides the segment is k : 1, where

18k2 + 18k + 4 = 0;

it follows that

9k2 + 9k + 2 = 0,

or

(3k + 2)(3k + 1) = 0,

so that k = − 2
3 or k = − 1

3 .
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Hence the hyperbola divides the line segment
at two points, in the ratios − 2

3 : 1 and − 1
3 : 1,

that is, in the ratios −2:3 and −1:3. The minus
signs indicate that the intersection points lie
outside the actual segment.

The minus signs indicate that the intersection
points lie outside the actual segment.

3. Here we use the formula s1 = 0.

(a) In this case,

s = x2 − xy + 2y − 7,

so that at the point (x1, y1) = (−1, 2),

s1 = (−1)x −
(

2x − y

2

)
+ 2

(
y + 2

2

)
− 7

= −2x + 3
2 y − 5.

The equation of the tangent at (−1, 2) is
therefore

−2x + 3
2 y − 5 = 0,

or

4x − 3y + 10 = 0.

(b) In this case,

s = 3x2 + 2xy − y2 + x − 2y − 3,

so that at the point (x1, y1) = (1, 1),

s1 = 3 · 1 · x + 2

(
y + x

2

)
− 1 · y

+
(

1 + x

2

)
− 2

(
1 + y

2

)
− 3

= 9
2 x − y − 7

2 .

It follows that the equation of the tangent
at (1, 1) is

9
2 x − y − 7

2 = 0,

or
9x − 2y − 7 = 0.

4. We use the formula s2
1 = s · s11 for pairs of

tangents.
Here,

s = 4xy + 1,

so that at the point (x1, y1) = (2, 1),

s11 = 4 · 2 · 1 + 1 = 9

and

s1 = 4

(
2y + x

2

)
+ 1

= 2x + 4y + 1.

It follows that the equation of the tangent pair
is

(2x + 4y + 1)2 = (4xy + 1) · 9.

Multiplying this out, we obtain

4x2 +16y2 +1+2(8xy +2x +4y) = 36xy +9,

so that

x2 − 5xy + 4y2 + x + 2y − 2 = 0. (1)

Since one of the tangents has equation y =
x − 1, it follows that (x − y − 1) must be
a factor of equation (1). Using this fact, it is
straightforward to check that equation (1) may
be factorized as

(x − y − 1)(x − 4y + 2) = 0.

Hence the equation of the other tangent from
(2, 1) is

x − 4y + 2 = 0.

5. Here we use the formula s1 = 0 for the polar.
The equation of the hyperbola is s = 0, where

s = 2x2 + xy − 3y2 + x − 6,

so that at the point (x1, y1) = (1, −1),

s1 = 2 · 1 · x +
(

y − x

2

)
− 3 · (−1)y

+
(

1 + x

2

)
− 6

= 2x + 7
2 y − 11

2 .

It follows that the equation of the polar of
(1, −1) is

4x + 7y − 11 = 0.

6. Let s = y2 + z2 + 2xy − 4yz + zx , so that the
equation of the projective conic is s = 0.

(a) At a general Point [x1, y1, z1],
s1 = yy1 + zz1 + (x1 y + xy1)

− 2(y1z + yz1) + 1
2 (z1x + zx1).
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So at the Point [1, 0, 0], which lies on E ,
we have

s1 = 0 + 0 + (y + 0) − 2(0 + 0) + 1
2 (0 + z)

= y + 1
2 z.

Hence the equation of the tangent to E at
[1, 0, 0] is

y + 1
2 z = 0,

or

2y + z = 0.

The Point [0, 1, −2] lies on this tangent,
since

2 · 1 + (−2) = 0.

(b) At a general Point [x1, y1, z1],
s1 = yy1 + zz1 + (x1 y + xy1)

− 2(y1z + yz1) + 1
2 (z1x + zx1)

and

s11 = y2
1 + z2

1 + 2x1 y1 − 4y1z1 + z1x1.

Thus at the Point [0, 1, −2],
s1 = y − 2z + (0 + x) − 2(z − 2y)

+ 1
2 (−2x + 0)

= 5y − 4z

and

s11 = 1 + 4 + 0 − 4 · (−2) + 0 = 13.

Now, the pair of tangents from the Point
[0, 1, −2] to E is given by the equation
s2

1 = s · s11, that is,

(5y−4z)2 = (y2+z2+2xy−4yz+zx)·13.

Multiplying this out, we obtain

25y2 − 40yz + 16z2 = 13y2 + 13z2 + 26xy

− 52yz + 13zx ,

so that

12y2+3z2−26xy+12yz−13zx = 0. (2)

But we know that the Point [0, 1, −2] lies
on the tangent in part (a), so 2y + z must
be a factor of the left-hand side of equation
(2). (This fact serves as a useful check on
the working so far.) Hence equation (2) can
be expressed in the form

(2y + z)(6y + 3z − 13x) = 0.

It follows that the equations of the two
tangents to the projective conic are

2y + z = 0 and 6y + 3z − 13x = 0.

(c) The polar of the Point [0, 1, −2] is given by
the equation s1 = 0, and we know from the
results of part (b) that at this Point

s1 = 5y − 4z.

Thus the equation of the polar of [0, 1, −2]
with respect to E is

5y − 4z = 0.

Section 4.3
1. Let the projective conic have equation

Ax2 + Bxy + Cy2 + Fxz + Gyz + H z2 = 0.

Since [1, 0, 0] lies on the projective conic,
we must have A = 0. Similarly, since [0, 1, 0]
and [0, 0, 1] lie on the projective conic, we
must also have C = 0 and H = 0. Thus the
equation of the projective conic reduces to the
form

Bxy + Fxz + Gyz = 0.

Since [1, 1, 1] and [−2, 3, 1] also lie on the
projective conic, we deduce that

B + F + G = 0 (1)

and
−6B − 2F + 3G = 0. (2)

Adding 6 times equation (1) to equation (2), we
obtain 4F + 9G = 0, or F = − 9

4 G. Substi-
tuting for F into equation (1), we deduce that
B = 5

4 G.
It follows that the equation of the projective

conic must be of the form

5
4 Gxy − 9

4 Gxz + Gyz = 0,
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or
5xy − 9xz + 4yz = 0.

2. Let any such projective conic have equation

Ax2 + Bxy + Cy2 + Fxz + Gyz + H z2 = 0.

Then, as in Problem 1, it follows from the fact
that [1, 0, 0], [0, 1, 0] and [0, 0, 1] lie on the pro-
jective conic, that its equation must reduce to
the form

Bxy + Fxz + Gyz = 0.

Since [1, 2, 3] also lies on the projective
conic, we deduce that

2B + 3F + 6G = 0.

Any projective conic satisfying this condition
contains the given four Points.

There are many such possibilities. For exam-
ple, taking B = 3, F = 2 and G = −2 gives
the projective conic

3xy + 2xz − 2yz = 0;

while the choice B = 6, F = −2, G = −1
gives the projective conic

6xy − 2xz − yz = 0.

3. (a) Let x′ = Ax, so that⎛
⎝x ′

y′
z′

⎞
⎠ =

⎛
⎝1 2 3

2 3 4
3 4 6

⎞
⎠
⎛
⎝x

y
z

⎞
⎠ .

Since⎛
⎝1 2 3

2 3 4
3 4 6

⎞
⎠
⎛
⎝−2

0
1

⎞
⎠ =

⎛
⎝ 1

0
0

⎞
⎠ ,

⎛
⎝1 2 3

2 3 4
3 4 6

⎞
⎠
⎛
⎝ 0

−3
2

⎞
⎠ =

⎛
⎝ 0

−1
0

⎞
⎠ ,

and ⎛
⎝1 2 3

2 3 4
3 4 6

⎞
⎠
⎛
⎝ 1

−2
1

⎞
⎠ =

⎛
⎝ 0

0
1

⎞
⎠ ,

it follows that the images under t
of [−2, 0, 1], [0, −3, 2], [1, −2, 1] are

[1, 0, 0], [0, −1, 0] = [0, 1, 0] (since the
coordinates are homogeneous coordi-
nates), [0, 0, 1], respectively.

(b) Since⎛
⎝1 2 3

2 3 4
3 4 6

⎞
⎠
⎛
⎝−2 0 1

0 3 −2
1 −2 1

⎞
⎠

=
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ ,

it follows that

⎛
⎝−2 0 1

0 3 −2
1 −2 1

⎞
⎠ is the

inverse of

⎛
⎝1 2 3

2 3 4
3 4 6

⎞
⎠.

(c) Next, x = A−1x′ so that⎛
⎝x

y
z

⎞
⎠ =

⎛
⎝−2 0 1

0 3 −2
1 −2 1

⎞
⎠
⎛
⎝x ′

y′
z′

⎞
⎠ ;

thus,

x = −2x ′ + z′,

y = 3y′ − 2z′,

and
z = x ′ − 2y′ + z′.

It follows that t maps the given projec-
tive conic onto the projective conic with
equation

17(−2x ′ + z′)2 + 47(−2x ′ + z′)

× (3y′ − 2z′) + 32(3y′ − 2z′)2

+ 67(−2x ′ + z′)(x ′ − 2y′ + z′)

+ 92(3y′ − 2z′)(x ′ − 2y′ + z′)

+ 66(x ′ − 2y′ + z′)2 = 0.

After simplifying this equation (with
much cancellation), we find that it can be
written in the form

2x ′y′ − 3y′z′ − z′x ′ = 0.
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(d) Finally, let B =
⎛
⎝−1/3 0 0

0 −1 0
0 0 1/2

⎞
⎠;

then a matrix for a suitable projective
transformation is

BA =
⎛
⎝− 1

3 0 0
0 −1 0
0 0 1

2

⎞
⎠
⎛
⎝1 2 3

2 3 4
3 4 6

⎞
⎠

=
⎛
⎝− 1

3 − 2
3 −1

−2 −3 −4
3
2 2 3

⎞
⎠ .

Since the projective transformation is
unaltered if we multiply this matrix by −6,
then another matrix associated with this
projective transformation is⎛

⎝ 2 4 6
12 18 24
−9 −12 −18

⎞
⎠ .

The projective transformation t with which
this matrix is associated maps the given
projective conic E onto the standard pro-
jective conic xy + yz + zx = 0.

4. This case corresponds to a representation of
Pascal’s Theorem in an embedding plane for
which R is an ideal Point. Since P and Q are
collinear with the ideal Point R where AB ′ and
A′B meet, it follows that PQ is parallel to AB ′
and A′B.

The statement of Pascal’s Theorem becomes
the following.

Let A, B, C , A′, B ′ and C ′ be six distinct
points on a plane conic, with BC ′ and B ′C
intersecting at P , C A′ and C ′ A intersecting at
Q, and AB ′ parallel to A′B. Then PQ is paral-
lel to AB ′ and A′ B.

B ′ A ′

C ′

Q

P

C
B

A

5. (a) If the Line with equation 91x − 60y −
109z = 0 touches the projective conic

with equation x2 + y2 − z2 = 0 at some
Point P = [a, b, c], say, then its equa-
tion must be ax + by − cz = 0 (or some
multiple of this). Comparing the equations
91x−60y−109z = 0 and ax+by−cz = 0,
we see that P must have homogeneous
coordinates [91, −60, 109]. Since

912 + 602 − 1092

= 8281 + 3600 − 11881

= 0,

it follows that [91, −60, 109] does lie on
the projective conic. Thus the given Line
is a tangent to the projective conic, and the
Point of tangency is [91, −60, 109].

(b) If the Line with equation 4x +5y +3z = 0
touches the projective conic with equation
x2 + y2 − z2 = 0 at some Point P =
[a, b, c], say, then its equation must be
ax+by−cz = 0 (or some multiple of this).
Comparing the equations 4x + 5y + 3z =
0 and ax + by − cz = 0, we see that
P must have homogeneous coordinates
[4, 5, −3].

However, since

42 + 52 − (−3)2 = 16 + 25 − 9

= 32 �= 0,

it follows that [4, 5, −3] does not lie on the
projective conic. Thus the given Line is not
a tangent to the projective conic.

6. (a) As in Problem 1, the Points [1, 0, 0],
[0, 1, 0] and [0, 0, 1] lie on E1. The Points
[2, 2, −1] and [2, −1, 2] also lie on E1

since

(2)(2) + (2)(−1) + (−1)(2) = 0

and

(2)(−1) + (−1)(2) + (2)(2) = 0.
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(b) Since

⎛
⎝1 −1 0

0 0 2
1 1 2

⎞
⎠
⎛
⎝1

0
0

⎞
⎠ =

⎛
⎝1

0
1

⎞
⎠ ,

⎛
⎝1 −1 0

0 0 2
1 1 2

⎞
⎠
⎛
⎝0

1
0

⎞
⎠ =

⎛
⎝−1

0
1

⎞
⎠ ,

⎛
⎝1 −1 0

0 0 2
1 1 2

⎞
⎠
⎛
⎝0

0
1

⎞
⎠ =

⎛
⎝0

2
2

⎞
⎠ ,

⎛
⎝1 −1 0

0 0 2
1 1 2

⎞
⎠
⎛
⎝ 2

2
−1

⎞
⎠ =

⎛
⎝ 0

−2
2

⎞
⎠ ,

and

⎛
⎝1 −1 0

0 0 2
1 1 2

⎞
⎠
⎛
⎝ 2

−1
2

⎞
⎠ =

⎛
⎝3

4
5

⎞
⎠ ,

the images under t1 of the five Points
in part (a) are [1, 0, 1], [−1, 0, 1],
[0, 2, 2] = [0, 1, 1], [0, −2, 2] = [0, −1, 1]
and [3, 4, 5], respectively.

(c) It is easy to verify that the five Points
[1, 0, 1], [−1, 0, 1], [0, 1, 1], [0, −1, 1] and
[3, 4, 5] all lie on the projective conic E2

since their coordinates satisfy its equation
x2 + y2 − z2 = 0.

By the Five Points Theorem (Subsec-
tion 4.3.1, Theorem 1) five distinct Points
uniquely determine a non-degenerate pro-
jective conic. It follows from the results of
parts (a) and (b) that the projective trans-
formation t1 with associated matrix A =⎛
⎝1 −1 0

0 0 2
1 1 2

⎞
⎠ maps E1 onto E2.

(d) Since

BA =
⎛
⎝−1 1 −1

1 1 −1
0 −1 0

⎞
⎠
⎛
⎝1 −1 0

0 0 2
1 1 2

⎞
⎠

=
⎛
⎝−2 0 0

0 −2 0
0 0 −2

⎞
⎠

= (−2)

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ ,

a matrix associated with the projective
transformation t2 ◦ t1 is −2I. Hence
another matrix associated with the projec-
tive transformation t2 ◦ t1 is the identity
matrix I; it follows that t2 ◦ t1 must be the
identity projective transformation, and so
t2 is the inverse of t1.

Hence since B is a matrix associated
with t2, it is a matrix associated with
the projective transformation that maps E2

onto E1.
7. We saw in Problem 3, part (d), that a matrix

associated with a projective transformation that
maps the projective conic E with equation

17x2 +47xy+32y2 +67xz+92yz+66z2 = 0

onto the projective conic E ′ with equation xy+
yz + zx = 0 is

A1 =
⎛
⎝ 2 4 6

12 18 24
−9 −12 −18

⎞
⎠ ,

and in Problem 6, part (c), that a matrix associ-
ated with a projective transformation that maps
E ′ onto the projective conic E ′′ with equation
x2 + y2 − z2 = 0 is

A2 =
⎛
⎝1 −1 0

0 0 2
1 1 2

⎞
⎠ .

It follows that a matrix associated with a pro-
jective transformation that maps the projective
conic E onto the projective conic E ′′ is

A2A1 =
⎛
⎝1 −1 0

0 0 2
1 1 2

⎞
⎠
⎛
⎝ 2 4 6

12 18 24
−9 −12 −18

⎞
⎠

=
⎛
⎝−10 −14 −18

−18 −24 −36
−4 −2 −6

⎞
⎠ .
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Since the projective transformation is unal-
tered if we multiply the matrix by the non-zero
factor − 1

2 , we conclude that a matrix associ-
ated with this projective transformation is

−1

2
A2A1 =

⎛
⎝5 7 9

9 12 18
2 1 3

⎞
⎠ .

8. The Point
[
1, 2

√
2, 3
]

lies on the projective

conic with equation x2 + y2 = z2; first, we
express its homogeneous coordinates in the

form [x , y, 1] =
[

1−t2

1+t2 , 2t
1+t2 , 1

]
as described

before Theorem 9 in Subsection 4.3.4. Since[
1, 2

√
2, 3
]

=
[

1
3 , 2

√
2

3 , 1
]
, we have

1 − t2

1 + t2
= 1

3
and

2t

1 + t2
= 2

√
2

3
.

From the first equation we have 3 − 3t2 =
1 + t2, so that 2 = 4t2 or t = ±(1/

√
2). Since,

from the second equation above, 2t/(1 + t2)

is positive, it follows that we must have t
positive. Hence, at the Point P , t = 1/

√
2.

Remark It is important not to simply assert
that

1 = 1 − t2, 2
√

2 = 2t and 3 = 1 + t2.

(No such t exists!) The coordinates are homo-
geneous coordinates, so that it is their relative
ratio that matters not the value of any particular
coordinate.

9.

E

C [0, 1, –1]
A [0, 1, 1]

D [1, 0, 1]
B [1, 0, –1]

P [1–t 2, 2t , 1 + t 2]
A¢ B¢ D¢ C¢

(a) By Joachimsthal’s theory, the equation of
the tangent at a Point [x1, y1, z1] on E is

xx1 + yy1 − zz1 = 0.

Hence the equations of the tangents
at A[0, 1, 1], B[1, 0, −1], C[0, 1, −1],
D[1, 0, 1] and P[1 − t2, 2t , 1 + t2] are

y − z = 0,

x + z = 0,

y + z = 0,

x − z = 0

and

(1 − t2)x + 2t y − (1 + t2)z = 0,

respectively.
(b) At the Point A′ we have that y − z = 0

and
(
1 − t2

)
x + 2t y − (

1 + t2
)

z = 0.
It follows that y = z and

(
1 − t2

)
x −(

1 − 2t + t2
)

z = 0. So either t = 1 (so
that P = [0, 2, 2] = [0, 1, 1] = A, which
we can ignore) or (1 + t)x − (1 − t)z = 0.
Hence the homogeneous coordinates of A′
are [1 − t , 1 + t , 1 + t].

At the Point B ′ we have that x + z = 0
and

(
1 − t2

)
x + 2t y − (

1 + t2
)

z = 0. It
follows that x = −z and 2t y − 2z = 0.
Hence the homogeneous coordinates of B ′
are [t , −1, −t].

At the Point C ′ we have that y + z = 0
and

(
1 − t2

)
x + 2t y − (

1 + t2
)

z = 0.
It follows that y = −z and

(
1 − t2

)
x −(

1 + 2t + t2
)

z = 0. So either t = −1
(so that P = [0, −2, 2] = [0, −1, 1] =
C , which we can ignore) or (1 − t)x −
(1 + t)z = 0. Hence the homogeneous
coordinates of C ′ are [1 + t , −1 + t , 1 − t].

At the Point D′ we have that x − z = 0
and

(
1 − t2

)
x + 2t y − (

1 + t2
)

z = 0;
thus, x = z and 2t y − 2t2z = 0. So
either t = 0 (so that P = [1, 0, 1] = D,
which we can ignore) or y − t z = 0.
Hence the homogeneous coordinates of D′
are [1, t , 1].

(c) We now find the cross-ratio (A′ B ′C D′),
using the definition of cross-ratio in Sub-
section 3.5.1.
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Firstly, we have to find real numbers
α and β such that the following vector
equation holds:

(1 + t , −1 + t , 1 − t)

= α(1 − t , 1 + t , 1 + t) + β(t , −1, −t).

Comparing corresponding coordinates on
both sides, we deduce that we must have

1 + t = α(1 − t) + βt , (3)

−1 + t = α(1 + t) − β, (4)

and

1 − t = α(1 + t) − βt . (5)

Adding equation (3) and equation (5) we
get that 2 = 2α, so that α = 1; substi-
tuting for α into equation (4) we get that
β = 1 + t + 1 − t = 2.

Next, we have to find real numbers γ

and δ such that the following vector equa-
tion holds:

(1, t , 1) = γ (1−t , 1+t , 1+t)+δ(t , −1, −t).

Comparing corresponding coordinates on
both sides, we deduce that we must have

1 = γ (1 − t) + δt , (6)

t = γ (1 + t) − δ (7)

and

1 = γ (1 + t) − δt . (8)

Adding equation (6) and equation (8) we
get that 2 = 2γ , so that γ = 1; substi-
tuting for γ into equation (7) we get that
δ = −t + 1 + t = 1.

It then follows from the definition of
cross-ratio that

(A′B ′C ′ D′) = βγ

αδ

= 2 · 1

1 · 1
= 2.

Section 4.4
1. In each case we use the definition of associated

matrix given before the problem.

(a) Here a suitable matrix is⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1

2
−1

−1

2
3

3

2

−1
3

2
−1

2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(b) Here a suitable matrix is⎛
⎜⎜⎜⎜⎜⎜⎝

2 −1

2
−3

2

−1

2
−1

1

2

−3

2

1

2
4

⎞
⎟⎟⎟⎟⎟⎟⎠

.

2. We follow the method in the proof of Theorem 2
of Section 4.4.

(a) A matrix associated with the projective
conic with equation x2 − 4xy + 2y2 − 4yz +
3z2 = 0 is

A =
⎛
⎝ 1 −2 0

−2 2 −2
0 −2 3

⎞
⎠ .

(b) We start by diagonalizing the matrix A. Its
characteristic equation is

0 = det (A − λI)

=
∣∣∣∣∣∣

1 − λ −2 0
−2 2 − λ −2
0 −2 3 − λ

∣∣∣∣∣∣
= (1 − λ)

∣∣∣∣ 2 − λ −2
−2 3 − λ

∣∣∣∣
+ 2

∣∣∣∣ −2 −2
0 3 − λ

∣∣∣∣+ 0

= (1 − λ)
(
λ2 − 5λ + 2

)
+ 2 (−6 + 2λ)

= −λ3 + 6λ2 − 3λ − 10

= −(λ − 5)(λ − 2)(λ + 1),

so that the eigenvalues of A are 5, 2 and −1.
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The eigenvector equations of A are

(1 − λ)x − 2y = 0,

−2x + (2 − λ)y − 2z = 0,

−2y + (3 − λ)z = 0.

When λ = 5, these equations become

−4x − 2y = 0,

−2x − 3y − 2z = 0,

−2y − 2z = 0.

From the first equation, we have y =
−2x ; and from the third equation, we have
z =−y. So we may take as a corresponding

eigenvector

⎛
⎝ 1

−2
2

⎞
⎠, which we normalise

to have unit length as

⎛
⎝ 1/3

−2/3
2/3

⎞
⎠.

When λ = 2, these equations become

−x − 2y = 0,

−2x − 2z = 0,

−2y + z = 0.

From the first equation, we have x = −2y;
and from the third equation, we have z =
2y. So we may take as a corresponding

eigenvector

⎛
⎝ −2

1
2

⎞
⎠, which we normalise

to have unit length as

⎛
⎝ −2/3

1/3
2/3

⎞
⎠.

When λ = −1, these equations become

2x − 2y = 0,

−2x + 3y − 2z = 0,

−2y + 4z = 0.

From the first equation, we have y = x ; and
from the third equation, we have y = 2z.

So we may take as a corresponding eigen-

vector

⎛
⎝ 2

2
1

⎞
⎠, which we normalise to have

unit length as

⎛
⎝ 2/3

2/3
1/3

⎞
⎠.

If we then take P =
⎛
⎝ 1/3 −2/3 2/3

−2/3 1/3 2/3
2/3 2/3 1/3

⎞
⎠,

we have

PT AP =
⎛
⎝ 5 0 0

0 2 0
0 0 −1

⎞
⎠ ,

where P is an orthogonal matrix.
(c) Thus the transformation of coordinates

given by x = Px′ or x′ = PT x trans-
forms the projective conic with equation
x2 − 4xy + 2y2 − 4yz + 3z2 = 0 (that is,
xT Ax = 0) onto the projective conic with
equation

5(x ′)2 + 2(y′)2 − (z′)2 = 0

(that is, (Px′)T A(Px′)= 0 or (x′)T (PT AP)

x′ = 0).
Next, the transformation of coordinates

x′ �→ x′′ given by x′′ = Bx′, where

B =
⎛
⎝

√
5 0 0

0
√

2 0
0 0 1

⎞
⎠ ,

transforms the equation of the projective
conic into the equation (x ′′)2 + (y′′)2 −
(z′′)2 = 0.

Thus, after dropping the dashes, it fol-
lows that we can map E onto the projec-
tive conic with equation x2 + y2 = z2
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by the projective transformation [x] �→
[BPT x], where

BPT =
⎛
⎝

√
5 0 0

0
√

2 0
0 0 1

⎞
⎠

×
⎛
⎝ 1/3 −2/3 2/3

−2/3 1/3 2/3
2/3 2/3 1/3

⎞
⎠

=
⎛
⎝

√
5/3 −2

√
5/3 2

√
5/3

−2
√

2/3
√

2/3 2
√

2/3
2/3 2/3 1/3

⎞
⎠ .

This is a matrix associated with the desired
projective transformation.

Section 4.5
1. The statement of the Five Points Theorem (Sub-

section 4.3.1, Theorem 1) is follows:
There is a unique non-degenerate projective

conic through any given set of five Points, no
three of which are collinear.

To make it easier to dualize this result, by
breaking the sentence up into shorter portions,
we first rephrase it in the following way:

Given any five Points,
no three of which are collinear,

there is a unique non-degenerate projective
conic through the five Points.

We first interchange ‘Point’ and ‘Line’, and
‘collinear’ and ‘concurrent’; this gives the state-
ment:

Given any five Lines,
no three of which are concurrent,

there is a unique non-degenerate projective
conic through the five Lines.

Next, we make the changes necessary for this
statement to make sense; it becomes:

Given any five Lines,
no three of which are concurrent,

there is a unique non-degenerate projective
conic that is tangential to the five Lines.

This is the result dual to the Five Points
Theorem.

Chapter 5
Section 5.1
1. The centre of inversion is the origin (0, 0) and

the radius of the circle of inversion is 1. In each
case, the point and its inverse lie on the same
half-line from O to infinity.

(a) Since 4 × 1
4 = 1, and since (4, 0) and(

1
4 , 0
)

both lie on the positive x-axis, it

follows that
(

1
4 , 0
)

is the inverse of (4, 0).

(b) Since 1 × 1 = 1, it follows that (0, 1) is its
own inverse.

(c) Since
∣∣∣− 1

3

∣∣∣×|−3| = 1, and since
(

0, − 1
3

)
and (0, −3) both lie on the negative y-
axis, it follows that (0, −3) is the inverse

of
(

0, − 1
3

)
.

(d) Since 1
4 × 4 = 1, and since

(
1
4 , 0
)

and

(4, 0) both lie on the positive x-axis, it

follows that (4, 0) is the inverse of
(

1
4 , 0
)

.

2. We may use the formula for inversion in C

given in Theorem 2.

(a) The image under inversion in C of the
point (4, 1) is(

4

42 + 12
,

1

42 + 12

)
=
(

4
17 , 1

17

)
.

(b) Similarly, the image of
(

1
2 , − 1

4

)
is⎛

⎜⎝ 1
2(

1
2

)2 +
(
− 1

4

)2
,

− 1
4(

1
2

)2 +
(
− 1

4

)2

⎞
⎟⎠

=
(

1
2
5
16

,
− 1

4
5

16

)

=
(

8
5 , − 4

5

)
.

3. Let � be the line with equation y = 2x
punctured at the origin. By the strategy above
Example 2, the image of � under inversion in
C is the curve whose equation is

y

x2 + y2
= 2x

x2 + y2
.

We may rewrite this equation as y = 2x . Just
as the origin had to be excluded from the line
before we could find its image, so the origin
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has to be excluded from the image. It follows
that the image of � under the inversion is �

itself (punctured at the origin in each case).
4. (a) It follows from the strategy above Exam-

ple 2 that the image under inversion in C

of the line � with equation x + y = 1 is the
curve whose equation is

x

x2 + y2
+ y

x2 + y2
= 1.

We may rewrite this equation in the form

x + y = x2 + y2.

By completing the square, we may write
this as(

x − 1

2

)2

+
(

y − 1

2

)2

= 1

2
. (1)

This is the equation of a circle that passes
through the origin, so the required image

is the circle with centre
(

1
2 , 1

2

)
and radius

1√
2

, punctured at the origin.

(b) The points (1, 0) and (0, 1) lie on �, since
their coordinates satisfy the equation of �.

Since the two points lie on C , they are
unchanged under inversion with respect to
C . Hence they both also lie on the image
of � under the inversion.

(c) The image of � is the circle with equa-
tion (1), punctured at the origin. From part
(b) this image passes through the points
with coordinates (1, 0) and (0, 1). It fol-
lows that the image is uniquely determined
by the three points (0, 0), (1, 0) and (0, 1),
as shown below.

(0,1)

(0,0)

(1,0)

image of

l

5. The circle with centre (2, 2) and radius 1 has
equation (x − 2)2 + (y − 2)2 = 12, which we

may rewrite in the form

x2 + y2 − 4x − 4y + 7 = 0.

Using the strategy above Example 2, we
deduce that the image of this circle under
inversion in C has equation

(
x

x2 + y2

)2

+
(

y

x2 + y2

)2

− 4x

x2 + y2

− 4y

x2 + y2
+ 7 = 0.

We may add together the first pair of terms and
the second pair of terms to obtain the equation

1

x2 + y2
− 4x + 4y

x2 + y2
+ 7 = 0.

We may rearrange this in the form

1 − 4x − 4y + 7
(

x2 + y2
)

= 0,

or

x2 + y2 − 4

7
x − 4

7
y + 1

7
= 0.

By completing the squares, we obtain

(
x − 2

7

)2

+
(

y − 2

7

)2

= 1

49
.

This is the equation of a circle with centre(
2
7 , 2

7

)
and radius 1

7 .
y

x

image

(2,2)

1
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6. The circle with centre
(

0, − 1
4

)
and radius 1

4

has equation x2 +
(

y + 1
4

)2 =
(

1
4

)2
, which

we may rewrite in the form

x2 + y2 + 1

2
y = 0.

Using the strategy above Example 2, we
deduce that the image of this circle under
inversion in C has equation

(
x

x2 + y2

)2

+
(

y

x2 + y2

)2

+
1
2 y

x2 + y2
= 0.

We may add together the first pair of terms to
obtain the equation

1

x2 + y2
+

1
2 y

x2 + y2
= 0,

which we may rewrite as

y = −2.

This is the equation of a horizontal line with
y-intercept −2.

C

y = – 2
(0, –2 )

(0, –    )

image
  of C

1
2

It is clear from the figure that each point of
this line is the image of some point on the
punctured circle C − {O}.

7. (a) From the summary box before Example 5,
we know that � maps to a circle punctured
at the origin. This circle passes through the
point (0, 1) since this point is fixed by the
inversion. Since � is symmetrical about the

y-axis, it follows that the image circle must
also be symmetrical about the y-axis. The
only circle that fulfils all these criteria is

the circle with radius 1
2 and centre

(
0, 1

2

)
.

(0,1)

(0,0)

l

(b) From the summary box before Example 5,
since the circle C passes through the origin
we know that the image of C is a line that
does not pass through the origin. It must
be symmetrical about the y-axis (because
C is), and it must pass through the point(

0, 1
2

)
(the image of (0, 2)). The only line

that fulfils all these criteria is the line y =
1
2 .

y

x

C

(0, 2)

(0,0)

(0,    )
y = 1

2

1
2

8. We follow the proof of Theorem 5 as far as
possible, making the necessary modifications
to the line that passes through the centre of
inversion O .

Let �1 be the line that passes through O , and
let the second line �2 meet �1 at A.

Under the inversion, �1 −{O} maps to itself,
and �2 maps to some circle C2, punctured at O .
Then C2 meets �1 at O and at the point A′, the
image of A under the inversion.
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y

C2

n2

l2

l1m2

O

A
A

x

By the Symmetry Lemma, �2 is parallel to
the tangent m2 to C2 at O . It follows that the
angle from �1 to �2 must be equal in magnitude
and direction to the angle we have shown from
�1 to m2 at O .

Next observe that the reflection in the per-
pendicular bisector of O A′ maps �1 to itself
and C2 to itself, and sends the tangent m2 at O
to the tangent n2 at A′. Since the reflection pre-
serves the magnitude of an angle but changes
its orientation, we conclude that the angle from
�1 to n2 at A′ must be equal in magnitude but
opposite in orientation to the angle from �1 to
m2 at O .

Overall, we have shown that the angle from
�1 to C2 at A′ must be equal in magnitude but
opposite in orientation to the angle from �1 to
�2 at A. This completes the proof.

9. By the conclusion to Example 6, the image
under inversion of each punctured circle touch-
ing the x-axis is a line parallel to the x-axis
(that is, a horizontal line).

Similarly, the punctured circles that touch
the y-axis map to lines parallel to the y-axis.

It follows that, under the inversion, the
circles map to horizontal and vertical lines.
Indeed, the only horizontal and vertical lines
that are not images of circles are the x- and
y-axes.

y
y

x x

10. Let � be the line through O and A. Under inver-
sion in the unit circle, � − {0} maps to itself. In
particular, the point A on � maps to some point
A′ on �. Since all the circles pass through A
and are punctured at O , their images under the
inversion must be straight lines that intersect
at A′.
l

l

A

O

A

In fact, apart from �, every straight line
through A′ must be the image of one of the cir-
cles in the family. For, as shown below, if a line
�1 is at an angle θ from �, then, by the Angle
Theorem, it must be the image of the (punc-
tured) circle C1 that is at an angle −θ from �.

l

l

l1

O

A

A
C1

q q

11. Since the circles C1 and C2 pass through the
origin, it follows from Theorem 4, part (b), that
their images under inversion are two lines, �1

and �2. Next observe that the common tangent
to C1 and C2 at the origin maps to itself. Since
this tangent and the circles C1 and C2 meet
only at the origin, it follows that their images
do not meet in C. In other words, �1 and �2 are
both parallel to the tangent.

C1

O

A
A

B

B

C2

C3

C 3́

1l

2l
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Let A and B have images A′ and B ′, respec-
tively, under the inversion. Then it follows
from Theorem 4, part (a), that the image of C3

under inversion is a circle C ′
3. Since A and B

lie on C3, A′ and B ′ must lie on C ′
3.

Since angles are preserved (in magnitude)
under inversion, the images of tangential
curves (which may be considered as curves
intersecting at a zero angle) are also tangential
curves. Hence C ′

3 must be tangential to �1 at
A′ and to �2 at B ′.

Section 5.2
1. (a) With z1 = 2 − 3i and z2 = −3 + 4i , we

have the following.

(i) z1 + z2 = −1 + i .
(ii) z1 − z2 = 5 − 7i .

(iii) z1z2 = (2 − 3i)(−3 + 4i).
= −6 + 8i + 9i + 12
= 6 + 17i .

(iv) Here z1
z2

= 2−3i
−3+4i .

Multiplying the numerator and
denominator by the complex conju-
gate of −3 + 4i , we obtain

z1

z2
= (2 − 3i)(−3 − 4i)

(−3 + 4i)(−3 − 4i)

= −6 − 8i + 9i − 12

32 + 42

= 1
25 (−18 + i).

(v) z1 = 2 + 3i .
(vi) z2 = −3 − 4i .

(b) Here

|z1| =
√

22 + (−3)2 = √
13

and

|z2| =
√

(−3)2 + 42 = √
25 = 5.

2. We can write z1 = r(cos θ + i sin θ) where

r = |z1| =
√

12 + (−1)2 = √
2

and

cos θ = 1√
2

and sin θ = − 1√
2

,

so that the principal argument is θ = −π/4.
Hence the required polar form of z1 = 1 − i is√

2(cos(−π/4) + i sin(−π/4)).

Similarly, we can write z2 = r(cos θ + i sin θ)

where

r = |z2| =
√(

−√
3
)2 + 12 = √

4 = 2

and

cos θ = −
√

3
2 and sin θ = 1

2 ,

so that the principal argument is θ = 5π/6.
Hence the required polar form of z2 = −√

3 +
i is

2(cos(5π/6) + i sin(5π/6)).

3. From Problem 2 we know that

z1 = √
2
(

cos
(
−π

4

)
+ i sin

(
−π

4

))
and

z2 = 2

(
cos

(
5π

6

)
+ i sin

(
5π

6

))
.

(a) Using the strategy of multiplying moduli
and adding arguments, we obtain

z1z2 = 2
√

2

(
cos

(
−π

4
+ 5π

6

)

+ i sin

(
−π

4
+ 5π

6

))

= 2
√

2

(
cos

(
7π

12

)
+ i sin

(
7π

12

))
.

(b) Using the strategy of dividing moduli and
subtracting arguments, we obtain

z1

z2
=

√
2

2

(
cos

(
−π

4
− 5π

6

)

+ i sin

(
−π

4
− 5π

6

))

= 1√
2

(
cos

(
−13π

12

)
+i sin

(
−13π

12

))

= 1√
2

(
cos

(
11π

12

)
+ i sin

(
11π

12

))
,
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where in the last line we have added 2π to
the argument to obtain its principal value.

4. (a) The coefficient of z has modulus | − i | =
1. By Theorem 1, it follows that t is an
isometry.

(b) In the formula that defines t , the multi-
plication by −i corresponds to a rotation
about the origin through the angle −π/2,
and the addition of 6 − 4i corresponds to a
translation through the vector (6, −4).

p/2
4

6

(c) The rotation through −π/2 corresponds to
the composite r2 ◦ r1 where

r1 is the reflection in the x-axis,
r2 is the reflection in the line y = −x .

(Here y = −x is the line through the origin
that makes an angle −π/4 with the x-axis.)

r2

r1

y = –x

π / 4

The translation through the vector
(6, −4) corresponds to the composite r4◦r3

where

r3 is the reflection in the line
6x − 4y = 0,

r4 is the reflection in the line
6x − 4y = 26.

(Here 6x − 4y = 0 is the equation of the
line through the origin that is perpendicu-
lar to the vector (6, −4), and 6x − 4y = 26

is the equation of the parallel line that
passes through the midpoint (3, −2) of the
position vector of (6, −4).)

6x – 4y = 0

6x – 4y = 26

(3, –2)

(6, –4)

r4

r3

Overall, t = r4 ◦ r3 ◦ r2 ◦ r1.
5. Here we use the formula for inversion of points

in C given by Theorem 3.

(a) The image of −√
3 + i under inversion in

C is

1

−√
3 + i

= 1

−√
3 − i

= −√
3 + i

(−√
3 − i)(−√

3 + i)

= 1
4 (−√

3 + i).

(b) The image of −3 − 4i under inversion in
C is

1

−3 − 4i
= 1

−3 + 4i

= −3 − 4i

(−3 + 4i)(−3 − 4i)

= − 1
25 (3 + 4i).

6. By Theorem 3, with r = 2 and c = 0, the
inversion is given by

t(z) = 4

z
(z ∈ C − {O}).

7. (a) Here we use part (a) of the definition of
inversion. By Problem 6, the inversion can
be written in the form

t(z) =

⎧⎪⎨
⎪⎩

4
z̄ , if z ∈ C − {O},
∞, if z = 0,

0, if z = ∞.
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(b) In this case we use part (b) of the def-
inition of inversion. Under reflection in
the real axis, a point z ∈ C maps to z.
The inversion can therefore be written in
the form

t(z) =
{

z, if z ∈ C,

∞, if z = ∞.

8. Here

t1(z) =

⎧⎪⎨
⎪⎩

1
z̄ , if z ∈ C − {O},
∞, if z = 0,

0, if z = ∞,

and

t2(z) =

⎧⎪⎨
⎪⎩

4
z̄ , if z ∈ C − {O},
0, if z = ∞,

∞, if z = 0.

Hence

t(∞) = t2 ◦ t1(∞) = t2(0) = ∞,

t(0) = t2 ◦ t1(0) = t2(∞) = 0.

For the remaining values of z ∈ C − {O}, we
have

t(z) = t2 ◦ t1(z) = t2

(
1

z̄

)
= 4

(1/z̄)
= 4z.

It follows that t = t2 ◦ t1 is the function

t(z) =
{

4z, if z ∈ C,

∞, if z = ∞.

This fixes the point at infinity, and scales
elements of C by the factor 4.

If the circle of radius 2 were replaced by
a circle of radius

√
k, then t would fix the

point at infinity and scale elements of C by the
factor k.

9. In addition to mapping ∞ to ∞, the trans-
formation t scales the complex plane by the
factor | − 9| = 9, rotates it through the angle
Arg(−9) = π , and then translates it through
the vector (6, −10).

By the last part of Problem 8, the scaling
by the factor 9 can be decomposed into the
composite t2 ◦ t1 where

t1 is the inversion in the unit circle C ,
t2 is the inversion in the circle of radius 3

centred at the origin.

1 3

t2

t1

The rotation through the angle π can be
decomposed into the composite t4 ◦ t3 where

t3 is the inversion in the extended x-axis,
t4 is the inversion in the extended y-axis.

(The y-axis makes an angle π/2 with the
x-axis.)

t3 p/2

t4

The translation through the vector (6, −10)

can be decomposed into the composite t6 ◦ t5
where

t5 is the inversion in the extended line �5 ∪
{∞}, where �5 is the line 6x − 10y = 0,

t6 is the inversion in the extended line �6 ∪
{∞}, where �6 is the line 6x − 10y = 68.

(Note that �5 is the line through the origin
that is perpendicular to the vector (6, −10),
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and �6 is the parallel line that passes through
(3, −5).)

t 5

t6

(3, –5)

6x  –10y = 68

6x – 10y = 0

(6, –10)
6

5

Since t6, t5, t4, t3 and t2 ◦ t1 all map ∞ to
itself, it follows that t = t6 ◦ t5 ◦ t4 ◦ t3 ◦ t2 ◦ t1.

10. We use the following formulas from the proof
of Theorem 6 of Subsection 5.2.4:

X = 2x

x2 + y2 + 1
, Y = 2y

x2 + y2 + 1
,

Z = x2 + y2 − 1

x2 + y2 + 1
.

(a) Substituting for X, Y and Z from the above
formulas, we get that the image under
stereographic projection onto Ĉ of the cir-
cle on S with equation X = 1

2 is the set in
the plane for which

2x

x2 + y2 + 1
= 1

2
,

that is,
4x = x2 + y2 + 1

or
(x − 2)2 + y2 = 3.

Thus, the image under the stereographic
projection of the circle on S is the circle in
the plane with centre (2,0) and radius

√
3.

(b) Substituting for X, Y and Z from the above
formulas, we get that the image under
stereographic projection onto Ĉ of the cir-
cle on S with equation 3X + 2Y + Z = 1
is the set in the extended plane for which

6x

x2 + y2 + 1
+ 4y

x2 + y2 + 1

+ x2 + y2 − 1

x2 + y2 + 1
= 1,

that is,

6x + 4y + x2 + y2 − 1 = x2 + y2 + 1

or
3x + 2y − 1 = 0.

Thus, the image under the stereographic
projection of the circle on S is the extended
line in the extended plane through the

points
(

0, 1
2

)
and

(
1
3 , 0
)

. (It is the

extended line in Ĉ since N maps onto ∞.)

Section 5.3
1. In each case we have to determine whether the

formula has the form

M(z) = az + b

cz + d
, (1)

where a, b, c, d ∈ C and ad − bc �= 0.

(a) This is a Möbius transformation. It has the
form (1), with a = 0, b = 5, c = 1 and
d = 0. Also,

ad − bc = −5 �= 0.

By the convention, M(∞) = a/c = 0.
(b) This is a Möbius transformation. It has the

form (1), with a = −1, b = 2i , c = 3 and
d = −4i . Also,

ad − bc = 4i − 6i = −2i �= 0.

By the convention, M(∞) = a/c = − 1
3 .

(c) This is not a Möbius transformation. The
transformation can be expressed in the form

M(z) = −3z2 + i

z + 0
,

and so clearly cannot be expressed in the
required form (1).

(d) This is a Möbius transformation. The trans-
formation can be expressed in the form

M(z) = (z + 2i) + 5

z + 2i
= z + (5 + 2i)

z + 2i
.

This has the form (1), with a = 1, b =
5 + 2i , c = 1 and d = 2i . Also,

ad − bc = 2i − (5 + 2i) = −5 �= 0.

By the convention, M(∞) = a/c = 1.
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2. (a) All matrices associated with M1 are non-
zero multiples of

A =
(

0 2i
i 2

)
.

Comparing the zero entries of A with
those of A1, A2 and A3, it is clear that A2 is
the only matrix of the three that could be a
multiple of A.

In fact, A2 = −iA, so the matrix A2 is
associated with M1.

(b) All matrices associated with M2 are non-
zero multiples of

A =
(

0 2i
1 0

)
.

Comparing the zero entries of A with
those of A1, A2 and A3, it is clear that A1

is the only matrix of the three that could be
a multiple of A.

In fact, A1 = 1
2i A, so the matrix A1 is

associated with M2.
(c) All matrices associated with M3 are non-

zero multiples of

A =
(

i 2
2 −i

)
.

Since each of the matrices A1, A2 and A3

has at least one zero entry, whereas A has no
zero entries, it is clear that none of A1, A2

and A3 is a multiple of A.
It follows that none of the matrices

A1, A2 and A3 is associated with M3.
3. Matrices associated with the M1 and M2 in

Example 2 are

A1 =
(

i 1
2 −2

)
and A2 =

(
1 i
2 −1

)
,

respectively. So

A1A2 =
(

i 1
2 −2

)(
1 i
2 −1

)

=
(

2 + i −2
−2 2 + 2i

)
.

This is a matrix associated with M1 ◦ M2.

4. As in Example 3, matrices associated with the
Möbius transformations M1 and M2 are

A1 =
(

3 1
i −2

)
and A2 =

(
2i 3
1 −2

)
.

(a) It follows that a matrix associated with M2 ◦
M1 is

A2A1 =
(

2i 3
1 −2

)(
3 1
i −2

)

=
(

9i −6 + 2i
3 − 2i 5

)
,

so that

M2 ◦ M1(z) = 9i z − 6 + 2i

(3 − 2i)z + 5
.

(b) A matrix associated with M1 ◦ M1 is

A1A1 =
(

3 1
i −2

)(
3 1
i −2

)

=
(

9 + i 1
i 4 + i

)
,

so that

M1 ◦ M1(z) = (9 + i)z + 1

i z + (4 + i)
.

5. Matrices associated with the Möbius transfor-
mations M1 and M2 are

A1 =
(

1 −i
i 2

)
and A2 =

(
2 i

−i 1

)
.

A matrix associated with M1 ◦ M2 is therefore

A1A2 =
(

1 −i
i 2

)(
2 i

−i 1

)
=
(

1 0
0 1

)
,

so that
M1 ◦ M2(z) = z.

6. Here we use the formula for the inverse of a
Möbius transformation given in Theorem 7.

(a) M−1
1 (z) = −3i z − 2

−z − 3i
= 3i z + 2

z + 3i

(b) M−1
2 (z) = 4i

−z
= −4i

z

(c) M−1
3 (z) = −4i z

−z + 4i
= 4i z

z − 4i
.
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7. (a) To keep the calculations simple, we pick the
points ∞, 2i and 2 on the extended line, as
shown below. Now

t(∞) = 1, t(2i) = 0

and
t(2) = 2−2i

4 = 1
2 − 1

2 i .

So the image of the extended line is the
generalized circle that passes through the
points 1, 0 and 1

2 − 1
2 i . This is the circle of

radius 1
2 with centre 1

2 .

t

2i

2

0

1–
2
  – 1–

2 i

1

¥

(b) In this case, we pick the points −2, 0 and
−1 + i on the circle, as shown below. Now

t(−2) = ∞, t(0) = −i

and

t(−1 + i) = −1 − i

1 + i
= −1.

So the image of the circle is the gener-
alized circle that passes through the points
∞, −i and −1. This is the extended line
with slope −1 through the point −1.

t

–1 + i

–2 0 –1

–i

¥

Section 5.4
1. We use the preceding strategy.

(a) The required Möbius transformation is of
the form

M(z) = K
z − (−1)

z − 0
= K

z + 1

z
,

for some complex number K .
Since M(−3) = 1, we must have

1 = K −3+1
−3 ,

so that K = 3
2 . It follows that the required

Möbius transformation is given by

M(z) = 3(z + 1)

2z
.

(b) The required Möbius transformation is of
the form

M(z) = K
z − 3

2

z − 1
,

for some complex number K .
Since M(2) = 1, we must have

1 = K
2 − 3

2

2 − 1
= 1

2 K ,

so that K = 2. It follows that the required
Möbius transformation is given by

M(z) = 2
z − 3

2

z − 1
= 2z − 3

z − 1
.

(c) The required Möbius transformation is of
the form

M(z) = K

z − 2
,

for some complex number K .
Since M(−3) = 1, we must have

1 = K

−3 − 2
,

so that K = −5. It follows that the required
Möbius transformation is given by

M(z) = −5

z − 2
= 5

2 − z
.

(d) The required Möbius transformation is of
the form

M(z) = K
(

z − 3
2

)
,

for some complex number K .
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Since M(2) = 1, we must have

1 = K
(

2 − 3
2

)
= 1

2 K ,

so that K = 2. It follows that the required
Möbius transformation is given by

M(z) = 2
(

z − 3
2

)
= 2z − 3.

2. We use the strategy preceding Example 2.

(a) The Möbius transformation M1 that maps
−1, i , 1 to 0, 1, ∞, respectively, is of the
form

M1(z) = K
z − (−1)

z − 1
= K

z + 1

z − 1
,

for some complex number K . Since
M1(i) = 1, we must have

1 = K
i + 1

i − 1
,

so that

K = i − 1

i + 1
= (i − 1)(−i + 1)

(i + 1)(−i + 1)
= 2i

2
= i .

It follows that

M1(z) = i
z + 1

z − 1
.

The solution to Problem 1, part (a), shows
that the Möbius transformation that maps
−1, −3, 0 to 0, 1, ∞, respectively, is given
by

M2(z) = 3(z + 1)

2z
.

Now by Theorem 7 of Subsection 5.3.6,

M−1
2 (z) = 3

2z − 3
.

Now matrices associated with M1 and
M−1

2 are

(
i i
1 −1

)
and

(
0 3
2 −3

)
,

so that a matrix associated with M−1
2 o M1 is(

0 3
2 −3

)(
i i
1 −1

)

=
(

3 −3
−3 + 2i 3 + 2i

)
.

Hence the required Möbius transformation
is given by

M(z) = M−1
2 o M1(z)

= 3z − 3

(−3 + 2i)z + (3 + 2i)
.

(b) The Möbius transformation M1 that maps
3, ∞, −2 to 0, 1, ∞, respectively, is of the
form

M1(z) = z − 3

z + 2
.

The Möbius transformation M2 that maps
3, 7

3 , 1 to 0, 1, ∞, respectively, is of the form

M2(z) = K
z − 3

z − 1
,

for some complex number K . Since M2
( 7

3

)
= 1, we must have

1 = K
7
3 − 3
7
3 − 1

= −1

2
K ,

so that K = −2. It follows that

M2(z) = −2
z − 3

z − 1
= −2z + 6

z − 1
.

Using the formula for inverses we have

M−1
2 (z) = −z − 6

−z − 2
= z + 6

z + 2
.

Now matrices associated with M1 and
M−1

2 are(
1 −3
1 2

)
and

(
1 6
1 2

)
,

so that a matrix associated with M−1
2 o M1

is (
1 6
1 2

)(
1 −3
1 2

)
=
(

7 9
3 1

)
.

Hence the required Möbius transformation
is given by

M(z) = M−1
2 o M1(z) = 7z + 9

3z + 1
.
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3. We use the preceding strategy.

(a) First we determine the Möbius transforma-
tion M that maps 0, −4, −2i to 0, 1, ∞,
respectively. Following the usual strategy,
we observe that this transformation must be
of the form

M(z) = K
z − 0

z + 2i
,

for some complex number K . Since
M(−4) = 1, we must have

1 = K
−4

−4 + 2i
,

so that K = 1− 1
2 i . Thus the transformation

M is given by

M(z) =
(

1 − 1
2 i
)

z

z + 2i
.

It follows that

M(−1 − 3i) =
(

1 − 1
2 i
)

(−1 − 3i)

−1 − i

= − 5
2 − 5

2 i

−1 − i
= 5

2
.

Since this is a real number, it follows that
the four points 0, −4, −2i , −1 − 3i lie on
a generalized circle. In fact, they lie on a
circle because M(∞) = 1 − 1

2 i is not real.
(b) First we determine the Möbius transfor-

mation M that maps −1, −i , i to 0, 1, ∞,
respectively.

Following the usual strategy, we observe
that this transformation must be of the form

M(z) = K
z + 1

z − i
,

for some complex number K . Since
M(−i) = 1, we must have

1 = K
−i + 1

−2i
,

so that

K = 2i

i − 1
.

Thus the transformation M is given by

M(z) = 2i(z + 1)

(i − 1)(z − i)
.

It follows that

M(2 − i) = 2i(3 − i)

(i − 1)(2 − 2i)

= 2i(3 − i)

4i
= 1

2
(3 − i).

Since this is not a real number, it follows
that the four points −1, −i , i , 2 − i do not
lie on a generalized circle, and so do not lie
on a circle.

Section 5.5
1. Let P be a point (x , y) in the plane whose

distance from the point (0, −1) is k times its dis-
tance from the point (0, 2). Then, if we use the
Euclidean formula for distance between points
in the plane, it follows that

x2 + (y + 1)2 = k2(x2 + (y − 2)2).

For each value of k, this yields an equation for
the corresponding Apollonian circle. The point
(1, 1) lies on the Apollonian circle for which

12 + (1 + 1)2 = k2(12 + (1 − 2)2),

that is, k =
√

5
2 .

The equation of the Apollonian circle through
the point (1, 1) is therefore

x2 + (y + 1)2 = 5
2

(
x2 + (y − 2)2

)
,

which simplifies to

− 3
2 x2 − 3

2 y2 + 12y − 9 = 0,

or

x2 + y2 − 8y + 6 = 0.
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2.
–18

C1
C2

–2 3 12–a b x

BA

We use the definition of circles in an Apollo-
nian family. Let the family have point circles
A(−a, 0) and B(b, 0); we take these to lie in the
open intervals (−18, −2) and (3, 12), respec-
tively.

Since the points (−18, 0) and (−2, 0) lie on
the same circle in the family, the ratios of their
distances from the points A and B are equal. It
follows that

18 − a

b + 18
= a − 2

b + 2
,

so that

(18 − a)(b + 2) = (a − 2)(b + 18);

after multiplying this out and simplifying, we
get

2ab + 20a − 20b − 72 = 0. (1)

Next, since the points (3, 0) and (12, 0) lie on
the same circle in the family, the ratios of their
distances from the points A and B are equal. It
follows that

3 + a

b − 3
= 12 + a

12 − b
,

so that

(3 + a)(12 − b) = (12 + a)(b − 3);

after multiplying out and simplifying, we get

2ab − 15a + 15b − 72 = 0. (2)

We now solve equations (1) and (2) for a and
b. If we subtract equation (2) from equation (1),
we get

35a − 35b = 0;

in other words, b = a. Substituting for b into
equation (1), we get that 2a2 − 72 = 0; so that
a = ±6.

Since −a ∈ (−18, −2), by assumption, it fol-
lows that a = 6. Finally, since b = a, we have
that b = 6. It follows that the point circles in the
Apollonian family are (−6, 0) and (6, 0).

Then, using the Euclidean formula for dis-
tance between points in the plane and the def-
inition of an Apollonian circle, we deduce that
the general form of equations of circles in this
Apollonian family is

(x + 6)2 + y2 = k2
(
(x − 6)2 + y2

)
.

The point (6, 9) lies on that circle for which

(6 + 6)2 + 92 = k2
(
(6 − 6)2 + 92

)
,

from which we get that k2 = 25/9. The equation
of this particular Apollonian circle is therefore

(x + 6)2 + y2 = 25
9

(
(x − 6)2 + y2

)
,

which after multiplying out and simplifying
becomes

4x2 + 4y2 − 102x + 144 = 0.

Remark
Another method of determining this last equa-
tion is as follows. Let P be the point (6,9). Then
PA2 = (6 + 6)2 + 92 = 225, so that PA = 15,
and PB2 = (6 − 6)2 + 92 = 81, so that PB = 9.

B P2 = (6 − 6)2 + 92 = 81,

so that B P = 9.
Then the ratio P A:P B equals 15:9, or 5

3 :1.
Hence, if we use the Euclidean formula for
distance between points in the plane and the
definition of an Apollonian circle, we deduce
that the equation of the circle in this Apollonian
family through the point (6, 9) is

(x + 6)2 + y2 = 25
9

(
(x − 6)2 + y2

)
.
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3.
y U

V

A x

Cn

Cn,A

First, we verify that there exists a circle, Cn,A

say, with centre A that intersects Cn at right
angles.

Let the two tangents from A to Cn touch Cn

at the points U and V , say. Then the circle Cn,A

with centre A and radius AU intersects Cn at
right angles since AU and AV are tangential to
Cn and are radii of Cn,A.

y yCn
Cn

S2

S1

S3

A AB B′C C′x x

Now invert the figure in Theorem 10 in the
circle Cn,A. This inversion maps Cn to itself, by
Corollary 3 of Subsection 5.5.3, since Cn,A and
Cn intersect at right angles.

Since S1 and S2 are circles tangential to Cn ,
their images under inversion are generalized cir-
cles tangential to the image of Cn - which is just
Cn itself. Further, since S1 and S2 pass through
the centre A of the inversion, their images must
pass through ∞. Hence the images of S1 and S2

must be extended lines tangential to Cn .
Now, the inversion maps the positive x-axis

to itself; and, since S1 and S2 meet the pos-
itive x-axis at right angles, their images must
also meet the positive x-axis at right angles. It
follows that the images of S1 and S2 must be
vertical half-lines that are tangential to Cn .

The other circles in the chain also invert to
circles that are tangential to these two verti-
cal half-lines, and each successive circle in the
image also touches the previous and following
circles in the chain.

Similarly, the image of S3 is the semicircle in
the upper half-plane with diameter C ′ B ′.

Since all the circles in the image of the chain
and the semicircle image of S3 touch both verti-
cal lines, they must all have the same diameter –
namely, the diameter of Cn . It then follows that
the height of the centre of Cn above the x-axis

= radius of image of S3

+ (n − 1) · diameter of Cn + radius of Cn

= n · diameter of Cn ,

as required.
4.

Wy

A(0,0) x

ellipse

B(b,0)

F(1–2 b,0) F (1–2 c,0)

C(c,0)

S1

S2

S
U

V

The points F
(

1
2 b, 0

)
and F ′

(
1
2 c, 0

)
are the

centres of the circles S1 and S2, respectively.
Let S be any circle in the chain constructed

in Theorem 10, and U its centre. Let V be the
point of contact of S1 and S. Since S1 and S have
a common tangent at V and their radii FV and
UV are perpendicular to this tangent, the points
F , V and U are collinear.

Next, let W be the point of contact of S2 and
S. Since S2 and S have a common tangent at
W and their radii F ′W and UW are perpendicu-
lar to this tangent, the points F ′, U and W are
collinear.

It follows that

FU + F ′U = (radius of S1 + radius of S)

+ (radius of S2 − radius of S)

= radius of S1 + radius of S2

= 1
2 (b + c).

Hence (by Theorem 5 of Subsection 1.1.4) U
lies on (the upper half of) an ellipse whose sum
of focal distances is 1

2 (b + c).
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From the figure, it is clear that one end
of the major axis of this ellipse must be the
point A(0, 0). Since (by Theorem 5 of Subsec-
tion 1.1.4) the length of the major axis of the
ellipse is the sum of the focal distances, it fol-
lows that the other end of the major axis must

be the point
(

1
2 (b + c), 0

)
, as required.

Chapter 6
Section 6.1
1.

From the figure, �1 and �3 are d-lines; �2 is not.
(�1 and �3 meet C at angles; �2 does not.)

2.

Intersections (in D) : �1 and �2, �1 and �4.
Parallel: �1 and �3.
Ultra-parallel: �2 and �3, �2 and �4, �3 and �4.

3.
B

O
A

One solution is shown. The d-lines �1 and �2 are
parallel because they (are parts of generalized
circles that) have a common boundary point,
A. The d-lines �2 and �3 are parallel because
they (are parts of generalized circles that) have a
common boundary point, B. But �1 and �3 meet,
at O , and so are not parallel.

4. By the Origin Lemma, there are hyperbolic
transformations r1 and r2, say, that map A1 and
A2, respectively, to the origin O . Since GD is
a group, it follows that the composite mapping
r = r−1

2 or1 is also a hyperbolic transformation;
moreover, r maps A1 to A2, as required.

5. We use the Origin Lemma to obtain a hyperbolic
reflection r that maps the point P to the origin,
O , and the d-line � to some d-line �′. Suppose
that the boundary points of � are A and B, and
the boundary points of �′ are A′ and B ′, where
r(A) = A′ and r(B) = B ′. Then the diameters
from A′ and B ′ are the only two d-lines paral-
lel to �′ through O . The reflection r−1 sends O
to P , and A′ and B ′ to A and B, the boundary
points of �, so it sends the diameters from A′ and
B ′ to d-lines through P that are parallel to �.

A

A ′

B ′

r

O

B

P

′

To see that the images under r−1 of these
diameters are the only such d-lines, suppose that
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�′′ is a d-line through P and A, and so parallel
to �. Then r(�′′) is a d-line parallel to �′ through
O and so must be the unique diameter of D

through A′. It follows that there is a unique d-
line through P and A, as required. (Similarly,
there is a unique d-line through P and B.)

Section 6.2
1. Reflection in the d-line obtained from α is

given by

ρ(z) = αz̄ − 1

z̄ − ᾱ
,

so ρ(z) = 0 if and only if z̄ = 1/α, that is, if
and only if z = 1/ᾱ.

Let a point A ∈ D be represented by the com-
plex number β. Then it follows from the above
result that the reflection in the d-line obtained
from z = 1/β̄ maps A to the origin. (As a check,
we note that this reflection is given by

ρ1(z) = (1/β̄)z̄ − 1

z̄ − (1/β̄)

and that

ρ1(β) = (1/β̄)β̄ − 1

β̄ − (1/β̄)
= 0.)

Thus we have proved the Origin Lemma.
2. Since M(z) = az+b

b̄z+ā
is a Möbius transformation,

we have aā−bb̄ = |a|2−|b|2 �= 0. If M(0) = 0,
then (since a and b cannot both be zero)

a · 0 + b = 0,

which implies that b = 0.
3. Because the direct hyperbolic transformations

we seek map 0 to 0, they must be (Euclidean)
rotations about 0. So they are of the form

M(z) = K z,

where K = cos θ+i sin θ , θ being the anticlock-
wise angle of rotation.

Now the equation y = x/
√

3 can be rewrit-
ten in the form y = x tan π

6 , and the equation
y = √

3x can be rewritten as y = x tan π
3 .

So the two rotations we seek must be through

angles of π/6 and −5π/6. Thus M(z) = K z,
where

K = cos π
6 + i sin π

6 = 1
2

(√
3 + i

)
or

K = cos
(
− 5π

6

)
+ i sin

(
− 5π

6

)
= − 1

2 (
√

3+ i).

4. It follows from Theorem 4 that the direct hyper-
bolic transformations with these properties are
as follows.

(a) M(z) = K z−i/4
1+i z/4 = K 4z−i

4+i z , where|K | = 1.

(b) M(z) = K z−(−1/3+2i/3)
1−(−1/3−2i/3)z = K 3z+1−2i

3+(1+2i)z ,
where |K | = 1.

5. The general direct hyperbolic transformation M
which maps 3

4 to 0 is

M(z) = K
z − 3

4

1 − 3
4 z

(by Theorem 4)

= K z − 3
4 K

− 3
4 z + 1

.

Hence, by equation (2) in Subsection 6.2.2, the
general form of the inverse of M is

M−1(z) = z + 3
4 K

3
4 z + K

,

where |K | = 1.
6. From Theorem 4, the direct hyperbolic transfor-

mation M is necessarily of the form

M(z) = K
z − m

1 − m̄z
, (1)

where |K | = 1 and m ∈ D .
Now, it follows from equation (1) that

M(m) = 0; hence, since M maps (−1, 1) one–
one onto itself, the number m must be real and
in (−1, 1). Thus

M(z) = K
z − m

1 − mz
, (2)

where |K | = 1 and m ∈ (−1, 1).
Next, it follows from equation (2) that

M(0) = −K m. Since M(0) and m are real, it
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follows that K is real; so K = ±1. Thus M
must be of the required form

M(z) = ± z − m

1 − mz
, where m ∈ (−1, 1).

7. (a) We follow the strategy in Subsection 6.2.2.
First, it follows from Theorem 4 that

the general form of the direct hyperbolic
transformation M1 which maps − 1

3 i to 0 is

M1(z) = K
z + 1

3 i

1 − 1
3 i z

,

where |K | = 1; a matrix associated with M1

is

A1 =
(

K 1
3 i K

− 1
3 i 1

)
.

Also, by Theorem 4, the direct hyperbolic
transformation

M2(z) = z − 2
3

1 − 2
3 z

maps 2
3 to 0; a matrix associated with M2 is

A2 =
(

1 − 2
3

− 2
3 1

)
.

Now the inverse of A2 is

A−1
2 = 9

5

(
1 2

3
2
3 1

)
.

Thus a matrix for the required hyperbolic
transformation is

A−1
2 A1 = 9

5

(
1 2

3
2
3 1

)(
K 1

3 i K
− 1

3 i 1

)

= 9
5

(
K − 2

9 i 1
3 i K + 2

3
2
3 K − 1

3 i 2
9 i K + 1

)
.

It follows that the general form of the
required direct hyperbolic transformation is

M(z) =
(

K − 2
9 i
)

z +
(

1
3 i K + 2

3

)
(

2
3 K − 1

3 i
)

z +
(

2
9 i K + 1

) , (1)

where |K | = 1.

(b) Now M(i) = 1 if

1 =
(

K − 2
9 i
)

i +
(

1
3 i K + 2

3

)
(

2
3 K − 1

3 i
)

i +
(

2
9 i K + 1

)

=
4
3 i K + 8

9
8
9 i K + 4

3

.

This holds if we choose K such that K i = 1;
that is, if K = 1/i = − i . lt follows from
equation (1) that the transformation we
require is given by

M(z) =
(
−i − 2

9 i
)

z +
(

1
3 + 2

3

)
(
− 2

3 i − 1
3 i
)

z +
(

2
9 + 1

)
= 9 − 11i z

11 − 9i z
.

8. We follow the strategy in Subsection 6.2.2.
First, it follows from Theorem 4 that the gen-

eral form of the direct hyperbolic transformation
M1 which maps 1

2 to 0 is

M1(z) = K
z − 1

2

1 − 1
2 z

,

where |K | = 1; a matrix associated with M1 is

A1 =
(

K − 1
2 K

− 1
2 1

)
.

Then, it follows from the above discussion that a
particular direct hyperbolic transformation that
maps 1

2 to 0 is

M2(z) = z − 1
2

1 − 1
2 z

,

and a matrix associated with M2 is

A2 =
(

1 − 1
2

− 1
2 1

)
.

Now the inverse of A2 is

A−1
2 = 4

3

(
1 1

2
1
2 1

)
.
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Thus a matrix for the required hyperbolic trans-
formation is

A−1
2 A1 = 4

3

(
1 1

2
1
2 1

)(
K − 1

2 K
− 1

2 1

)

= 4
3

(
K − 1

4 − 1
2 K + 1

2
1
2 K − 1

2 − 1
4 K + 1

)
.

It follows that the general form of the required
direct hyperbolic transformation is

M(z) =
(

K − 1
4

)
z +

(
− 1

2 K + 1
2

)
(

1
2 K − 1

2

)
z +

(
− 1

4 K + 1
)

= (4K − 1)z + 2(−K + 1)

2(K − 1)z + (−K + 4)
,

where |K | = 1.
9. (a) A direct hyperbolic transformation mapping

1
2 i to 0 is of the form

M(z) = K
z − 1

2 i

1 + 1
2 i z

= K
2z − i

2 + i z
,

where |K | = 1.
Now M(0) = − 1

2 K i , so

M(0) = 1
2 ⇔ K = i .

Hence

M(z) = i
2z − i

2 + i z
.

(b) A direct hyperbolic transformation mapping
1
2 to 0 is of the form

M(z) = K
z − 1

2

1 − 1
2 z

= K
2z − 1

2 − z
,

where |K | = 1.

Now M
(

2
3

)
= K

4
3 −1

2− 2
3

= 1
4 K , so

M( 2
3 ) = 1

2 ⇔ K = 2.

But K must have modulus 1, so no such
direct hyperbolic transformation exists.

(c) A direct hyperbolic transformation mapping
1
3 (1 + i) to 0 is of the form

M(z) = K
z − 1

3 (1 + i)

1 − 1
3 (1 − i)z

= K
3z − (1 + i)

3 − (1 − i)z
,

where |K | = 1.
Now

M( 1
3 (1 − i)) = K

1 − i − (1 + i)

3 − 1
3 (1 − i)2

= K
−6i

9 + 2i
,

so

M( 1
3 (1 − i)) = 1

2 ⇔ K
−6i

9 + 2i
= 1

2

⇔ K = 9 + 2i

−12i
.

But |K |2 = 81+4
144 �= 1, so no such direct

hyperbolic transformation exists.

Section 6.3
1. We use the formula for the hyperbolic distance

d(0, z). Thus

d
(
0, i

3

) = tanh−1
(

1
3

)
� 0.3466

and

d(0.8, 0.9) = d(0, 0.9) − d(0, 0.8)

= tanh−1 0.9 − tanh−1 0.8

� 1.4722 − 1.0986

= 0.3736.

2. We use the formula for the hyperbolic distance
d(0, z). Thus, if d(0, a) = 1.6 and a > 0, then

a = tanh 1.6 � 0.9217;

and, if d(0, a) = 3.2 and a > 0, then

a = tanh 3.2 � 0.9967.
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3. Let m be the hyperbolic midpoint of [0.5, 0.8].
Now

d(0, 0.5) = tanh−1 0.5 � 0.5493

and

d(0, 0.8) = tanh−1 0.8 � 1.0986.

–1 0 0.5

m

0.8 1

Since m lies half-way between 0.5 and 0.8,
measured in terms of hyperbolic distances, and
0.5, m and 0.8 all lie on the same side of the
origin, it follows that

d(0, m) = 1
2 (d(0, 0.5) + d(0, 0.8))

� 1
2 (0.5493 + 1.0986)

= 0.823 95,

so

m � tanh 0.823 95

� 0.6772.

Next, let m be the hyperbolic midpoint of
[−0.2, 0.8]. Now,

d(0, −0.2) = tanh−1 0.2 � 0.2027

and

d(0, 0.8) = tanh−1 0.8 � 1.0986.

–1
–0.2 0 m 0.8

1

Clearly m lies between −0.2 and 0.8, on the
same side of the origin as does 0.8. It follows
that

d(0, m) = 1
2 (d(0, 0.8) − d(0, −0.2))

� 1
2 (1.0986 − 0.2027)

= 0.447 95,

so

m � tanh 0.447 95

� 0.4202.

4.

–1 a m b

C

0 1

We use the first strategy in Subsection 6.3.3.

1. The line through 0 and the hyperbolic centre,
− 1

4 , of C meets C at a and b, where a and b
are real numbers with a < b. Now

d

(
0, −1

4

)
= tanh−1

(
1

4

)
� 0.2554.

Since a lies to the left of the origin and

d(0, a) � 0.2554 + 0.5 � 0.7554,

it follows that

a � − tanh 0.7554 � −0.6384.

Next, since the hyperbolic radius of C is
greater than the hyperbolic distance of its
centre from the origin, we have that b > 0.
Thus

d(0, b) � 0.5 − 0.2554 = 0.2446,

so that

b � tanh 0.2446 � 0.2398.

2. The Euclidean centre of C is the Euclidean
midpoint of [a, b], namely the point

1
2 (0.2398 − 0.6384) = −0.1993.
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3. The Euclidean radius of C is

1
2 |a − b| � 1

2 |−0.6384 − 0.2398|
= 0.4391.

5.

K

O
a–1 1

1–
4

b

We use the second strategy in Subsection
6.3.3.

The Euclidean radius p is the point 1
4 , and

the Euclidean radius is 1
2 , so Op meets K at the

points a = − 1
4 and b = 3

4 . Thus

d(0, a) = tanh−1
(∣∣∣∣−1

4

∣∣∣∣
)

= tanh−1(0.25) � 0.255...

and

d(0, b) = tanh−1
(∣∣∣∣−3

4

∣∣∣∣
)

= tanh−1(0.75) � 0.973... .

Since a and b lie on opposite sides of O , the
hyperbolic centre m of K is given by

d(0, m) = 1

2
(d(0, b) − d(0, a)) � 0.359,

so that

hyperbolic centre m � tanh 0.359 � 0.344;

hyperbolic radius = 1
2 |(d(0, a)+d(0, b)| � 0.614.

6. (a) Using the Reflection Lemma with p = 0.8
and q = 0.5, we find that

α = 0.3 + 0.8 · 0.5 · 0.3

0.64 − 0.25
� 1.0769.

So the equation of the d-line � which is
the (hyperbolic) perpendicular bisector of
[0.5, 0.8] is

x2 + y2 − 2ax + 1 = 0, (1)

where a � 1.0769.
(b) We use the fact that angles and hyper-

bolic lengths are unaltered under hyperbolic
transformations; in particular, under reflec-
tions in diameters of the unit disc and under
rotations of the unit disc about the origin.

The segment [−0.8, −0.5] is obtained by
reflecting the segment [0.5, 0.8] in the diam-
eter (−i , i), and so we can obtain its perpen-
dicular bisector by also reflecting the d-line
� in the diameter (−i , i).

It then follows from equation (1) that the
perpendicular bisector of [−0.8, −0.5] has
equation

x2 + y2 + 2ax + 1 = 0,

where a � 1.0769.
Next, the segment [0.5i , 0.8i] is obtained

from the segment [0.5, 0.8] by rotating the
unit disc through an angle π/2 anticlock-
wise about the origin; and so we can obtain
its perpendicular bisector by rotating the d-
line � through an angle of π/2 anticlockwise
about the origin, that is, by applying the
mapping (x , y) �−→ (−y, x).

It then follows from equation (1) that
the perpendicular bisector of [0.5i , 0.8i] has
equation

x2 + y2 − 2by + 1 = 0,

where b � 1.0769.
7. (a)

M

M

O
A

q
q

q
q

M–1

By the Origin Lemma (Subsection 6.1.2,
Lemma 2), we may apply a preliminary
hyperbolic transformation M to map A to
O; this preserves d-lines and angles.
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Then the image of the d-line � under M
is a diameter of D , and it is obvious that
there are exactly two diameters of D that
make an angle θ with the diameter M(�). By
then applying the hyperbolic transformation
M−1 (which preserves d-lines and angles),
we deduce that there are exactly two d-lines
through A = M−1(O) that make an angle θ

with �.
(b)

B

B

C
O

A
C

M

M–1

By the Origin Lemma (Subsection 6.1.2,
Lemma 2), we may apply a preliminary
hyperbolic transformation M to map A to
O; this preserves d-lines and angles. Let
B ′ = M(B) and C ′ = M(C).

The images under M of the d-lines that
contain the d-line segments AB and AC are
diameters of D , and it is obvious that there
is a unique diameter �′ of D that bisects the
angle ∠B ′OC′. By then applying the hyper-
bolic transformation M−1 (which preserves
d-lines and angles), we deduce that there is
a unique d-line � = M−1(�′) that bisects the
angle ∠BAC.

Clearly reflection in �′ of the diameters of
D that contain OB′ and OC′ map these two
diameters onto each other. By then apply-
ing the hyperbolic transformation M−1, we
deduce that reflection in � maps the d-lines
containing BA and CA onto each other.

Section 6.4
1. Let �ABC be any d-triangle. Denote the angles

of the d-triangle by α, β and γ , respectively, as
shown, and let θ denote the external angle of the
d-triangle at A. Thus, since the angle between
two d-lines is equal to the angle between their
tangents (see the definition of the angle between

two curves in D given at the end of Subsection
6.1.1), we have α + θ = π .

C

B

A

q
g

a
b

Now, by Theorem 1 in Subsection 6.4.1 for
the d-triangle �ABC, we must have

α + β + γ < π ,

so that
α + β + γ < α + θ ;

it follows that β + γ < θ , as required.
2. From Problem 1,

γ > β ′ + γ ′.

Hence

α + β + γ > α + β + β ′ + γ ′.

3. Let D be a point on the d-line segment BC such
that the d-line segment AD is part of the d-
line that bisects ∠BAC. (This bisector exists, by
Problem 7 of Subsection 6.3.4.)

C

D

A

B

d (A, B ) = d (A, C )

Reflection in this d-line exchanges the d-lines
BA and C A, so it maps B to a point B ′ some-
where on C A. Since reflection preserves length,
we have

d(A, B) = d(A, B ′).
But

d(A, B) = d(A, C),

so
d(A, B ′) = d(A, C),

and therefore B ′ and C coincide.



570 Appendix 3: Solutions to the Problems

Hence the reflection maps the d-triangle
�ABC onto the d-triangle �ACB and exchanges
the angles at B and C . Since reflection pre-
serves angles, it follows that these angles must
be equal, as required.

4. Let �ABC and �P Q R be any two doubly
asymptotic triangles, with the vertices in D

being at A and P , respectively.
Suppose, first, that the angles at A and P

are equal. Then there is hyperbolic transforma-
tion that maps �ABC onto a triangle �1, say,
with A going to the origin O; since hyperbolic
transformations do not alter the size of angles,
the angle of �1 at O equals the original angle
A. Since there is no hyperbolic transformation
that maps points of C to points of D , or vice-
versa, �1 is also a doubly asymptotic triangle.
The triangle �ABC is therefore d-congruent
to �1.

B

C

A

P

Q
R

OD1

D1

Similarly, the triangle �P Q R is d-congruent
to a doubly asymptotic triangle �2 with one
vertex at O .

Then there is a rotation of D round the ori-
gin (or a reflection in a diameter followed by
a rotation) that maps the radial sides of �1

and �2 onto each other; and, since there is
only one d-line that ends at two given points
of D , this mapping must map the two curved
sides of �1 and �2 onto each other. Finally,
since �1 and �2 are d-congruent, it follows that
the triangles �ABC and �P Q R must also be
d-congruent.

Suppose, next, that the two doubly asymp-
totic triangles �ABC and �P Q R are d-
congruent. By mapping A to O and P to O (as
above), and rotating suitably, it follows from the
d-congruence that the angles at A and P must
be equal.

Remark
There is no hyperbolic transformation that maps
points of C to points of D , or vice-versa; hence
a d-triangle can only be d-congruent to a dou-
bly asymptotic triangle if it itself is a doubly
asymptotic triangle.

5.

O

C ′

D ′

B ′

r

The two d-triangles �O B ′ D′ and �OC ′ D′
have side O D′, which lies along a diameter, in
common. Let r be the hyperbolic reflection in
that diameter.

Since the angles ∠OD′ B ′ and ∠OD′C ′ are
equal (both are π/2), the image under the reflec-
tion r of the d-line segment D′C ′ will lie along
the d-line segment D′B ′. Also, since the angles
∠B ′OD′ and ∠C ′OD′ are equal (O D′ is the
bisector of the angle ∠B ′OC ′), the image under
the reflection r of side OC ′ will lie along side
O B ′. It follows that B ′ must reflect onto C ′.
Hence the d-triangles �O B ′ D′ and �OC ′ D′
are d-congruent.

6.

O B ′′
1

D ′′

C ′′ i

It follows from the argument in the proof of
Theorem 7, with θ = π/2, that the required
upper bound must be the length of the d-line
segment O D′′.

Let m be the d-line that ends at B ′′ = 1 and
C ′′ = i . Now m is part of the Euclidean circle
with centre C at the point 1+i and radius 1. The
Euclidean distance OC is

√
2, so the Euclidean

distance O D′′ is
√

2 − 1.
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i 1 + i

m

C

OD¢¢= OC – CD¢¢
= Ö2 – 1

O
1

D¢¢

It follows that the hyperbolic length of the
altitude O D′′ is

tanh−1
(√

2 − 1
)

� 0.44069.

So the hyperbolic length of altitude AD is less
than 0.4407.

7.

0

c

–1 + i

5Ö2

1 + i

2Ö2

It follows from the Distance Formula for
hyperbolic lengths that the hyperbolic lengths of
the two sides of the triangle which meet at right
angles at the origin are

d
(

0, (1 + i)/2
√

2
)

= d
(

0, |1 + i |/2
√

2
)

= d
(

0, 1
2

)
= tanh−1 0.5

� 0.5493

and

d
(

0, (−1 + i)/5
√

2
)

= d
(

0, | − 1 + i |/5
√

2
)

= d(0, 0.2)

= tanh−1 0.2

� 0.2027.

Then, if c is the hyperbolic length of the
third side (the ‘hypotenuse’), it follows from
Pythagoras’ Theorem that

cosh 2c � cosh (2 × 0.5493)

× cosh (2 × 0.2027)

= cosh (1.0986) × cosh (0.4054)

� 1.6667 × 1.0833

� 1.8055.

Hence the required hyperbolic length is

c � 1
2 cosh−1(1.8055)

� 0.5983.

8. (a)

0 3–4

3–4 i

It follows from the Distance Formula
for hyperbolic lengths that the hyperbolic
lengths of the two sides of the triangle
which meet at right angles at the origin are

d
(

0, 3
4

)
and d

(
0, 3

4 i
)

. These two are equal

to the common value

d
(

0, 3
4

)
= tanh−1(0.75) � 0.9730.

Then, if c is the hyperbolic length of the
third side (the ‘hypotenuse’), it follows
from Pythagoras’ Theorem that

cosh 2c � cosh2(2 × 0.9730)

= cosh2(1.9460)

� 12.755.

Hence the required hyperbolic length is

c � 1
2 cosh−1(12.755)

� 1.6188.

(b)

0 r

ir

It follows from the Distance Formula that
the hyperbolic lengths of the two sides of



572 Appendix 3: Solutions to the Problems

the triangle which meet at right angles at the
origin are equal to the common value

d(0, r) = tanh−1 r .

Then, if c is the hyperbolic length of the
third side (the ‘hypotenuse’), it follows
from Pythagoras’ Theorem that

cosh 2c = cosh2 2d (0, r)

= cosh2
(

2 tanh−1 r
)

.

Hence the required hyperbolic length is

c = 1
2 cosh−1

(
cosh2

(
2 tanh−1 r

))
.

9.

B

A

C
0

5– 4–

i

It follows from Lobachevskii’s Formula that

tan A =
tanh

(
2d
(

0, − 4
5

))
sinh

(
2d
(

0, − 3
5 i
))

= tanh(2 tanh−1 0.8)

sinh(2 tanh−1 0.6)

� tanh(2.1972)

sinh(1.3863)

� 0.9756

1.875
� 0.5203,

so that

A � tan−1(0.5203)

� 0.4798 radians.

10.

x = 0

3–4
O p

j

We use the Angle of Parallelism Formula.
The hyperbolic distance of the point 3

4 from
the d-line � with equation x = 0 is

p = d
(

0, 3
4

)
= tanh−1 0.75

� 0.9730.

It follows from the Formula that the required
angle ϕ is such that

tan ϕ = 1

sinh
(

2d
(

0, 3
4

))
� 1

sinh(2 × 0.9730)

= 0.2917,

so that

ϕ � 0.2838 radians.

11.
C

D

a1–
2
q

1–
2
a

1–
2
a

a

q

q

A

B

Using the hint, we apply the Sine Formula to the
d-triangle �DB A, whose angles are

∠ADB = π

2
, ∠AB D = θ , ∠D AB = 1

2θ ,
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and in which side DB has hyperbolic length 1
2 a

and side AB has hyperbolic length a. Thus

sin
(

1
2θ
)

= sinh a

sinh 2a
= 1

2 cosh a
·

Hence

a = cosh−1

(
1

2 sin 1
2θ

)
,

which is a function of θ , as required.

Remark
This answer is very plausible when a, the length of

the sides, is very small, for then sin
(

1
2θ
)

� 1
2 and

so θ � π/3, which agrees closely with the value of
the angle in a Euclidean equilateral triangle.

It is also very plausible when a is very large, for

then sin
(

1
2θ
)

is very small and so θ � 0, which is

consistent with the fact that a large d-triangle has
small angles.

Section 6.5
1.

Pa

l

Let the triangle be a trebly asymptotic d-
triangle, and let � be one of its sides. Then as
a point P slides along the d-line �, the angle α

varies from π to zero. In particular, there must
be a point on � for which α = π/2, as required.

2. (a)
A

B

D

C

Let �ABC be a doubly asymptotic d-
triangle in D . First, we construct a tre-
bly asymptotic d-triangle �ABD as follows:
extend the segment AC beyond C to meet
C at D. Then draw the trebly asymptotic
d-triangle �ABD.

Now, the d-line containing the points A,
C, D cuts off a minor arc of C that con-
tains B. The d-line joining B and D lies
on the opposite side of the segment BC
from A.

Hence �ABC is contained in the trebly
asymptotic d-triangle �ABD.

(b)

B

C

A

O
M

B ′

C ′

a a

Let �ABC be a doubly asymptotic d-triangle in
D , with A being the vertex of the d-triangle that
does not lie on C ; and let α = ∠BAC.

Then there is a Möbius transformation M that
maps D to itself, with C mapping to C , that
maps A to the origin O . Let M map B, C onto
B ′, C ′, respectively. Then M maps the dou-
bly asymptotic d-triangle �ABC onto another
doubly asymptotic d-triangle, �OB′C ′; and,
since Möbius transformations preserve angles,
we have that ∠B ′OC′ = α.

Any other doubly asymptotic d-triangle
whose angle at its vertex in D is α can also
be mapped by a suitable Möbius transformation
onto another doubly asymptotic d-triangle that
has its angle at the origin also of magnitude α;
and then onto the previous doubly asymptotic d-
triangle �OB′C ′ by a further rotation – which is
again a Möbius transformation.

So every doubly asymptotic d-triangle whose
angle at its vertex in D is α is d-congruent to
the d-triangle �OB′C ′, and hence has the same
area as �OB′C ′.
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Hence the area of a doubly asymptotic d-
triangle depends only on the angle at its vertex
in D .

Chapter 7
Section 7.1
1. (a) Such a rotation of S2 exists, by the result of

Example 2.
(b)

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

O

S2

Ö3
1

2π

Ö3
1

Ö3
1

( ),,

3

Rotation about the axis through the points(
1√
3

, 1√
3
, 1√

3

)
and

(
− 1√

3
, − 1√

3
, − 1√

3

)
through an angle of 2π

3 , as shown, maps
(1, 0, 0) to (0, 1, 0) and (0, 1, 0) to (0, 0, 1).

(c)

(0, –1, 0) (0, 1, 0)

(0, 0, 1)

(1, 0, 0)

O

S2

The line joining the points (1, 0, 0) and
(0, 0, 1) is a quarter of a circumference
in length, whereas the line joining the
points (0, −1, 0) and (0, 1, 0) is a half-
circumference in length. Hence there is no
rotation that maps (1, 0, 0) �→ (0, −1, 0)

and (0, 0, 1) �→ (0, 1, 0).

2. First, let (cos φ sin θ , sin φ sin θ , cos θ) =(
0, −

√
3

2 , 1
2

)
; then, we must have

cos φ sin θ = 0, (1)

sin φ sin θ = −
√

3
2 , (2)

and

cos θ = 1
2 . (3)

From equation (3) we have θ = π
3 . It follows

from equation (1) that cos φ = 0, and from

equation (2) that sin φ ·
√

3
2 = −

√
3

2 , so that
sin φ = −1; hence φ = 3π

2 .
Next, let (cos φ sin θ , sin φ sin θ , cos θ) =(
1√
14

, − 2√
14

, 3√
14

)
; then, we must have

cos φ sin θ = 1√
14

, (4)

sin φ sin θ = −2√
14

, (5)

and

cos θ = 3√
14

. (6)

From equation (6) we have θ = cos−1
(

3√
14

)
�

cos−1(0.8018) � 0.64 radians. In particular,
we have that sin θ > 0, so that sin θ =√

1 −
(

3√
14

)2 =
√

5
14 . It follows from equa-

tion (4) that cos φ = 1√
14

·
√

14√
5

= 1√
5

, and from

equation (5) that sin φ = −2√
14

·
√

14√
5

= −2√
5
; hence

φ � 5.18 radians.

3. For the point
(

1
2
√

2
,

√
3

2
√

2
, 1√

2

)
we know that θ =

π
4 and φ = π

3 . It follows that the latitude of this
point is θ ′ = π

2 − π
4 = π

4 , the colatitude is
θ = π

4 , and the longitude is φ = π
3 .

4. For the point 45◦ W of the Greenwich meridian
and 30◦ S, we have that φ = 2π − π

4 = 7π
4 and

θ = π
2 + π

6 = 2π
3 . It follows that the point has

spherical polar coordinates
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(cos φ sin θ , sin φ sin θ , cos θ)

=
(

cos 7π
4 sin 2π

3 , sin 7π
4 sin 2π

3 , cos 2π
3

)
=
((

1√
2

) (√
3

2

)
,
(
− 1√

2

) (√
3

2

)
, − 1

2

)
=
( √

3
2
√

2
, −

√
3

2
√

2
, − 1

2

)
.

5.

tangent

tangent

S2

The tangents to the given two great circles form
two lines in the tangent plane at the point.
The two lines that bisect these angles are both
tangent lines to great circles; these great cir-
cles bisect the angles between the original great
circles.

bisector

bisector

b
–
2

b
–
2

b
–
2

b
–
2

a
–
2

a
–
2

a
–
2

a
–
2

If the angles between the original two tan-
gents are α and β, then clearly 2α + 2β = 2π .
From the above diagram it is obvious that the
angle between the two bisectors is 1

2α+ 1
2β, that

is 1
2π , as required.

Section 7.2
1. The matrix of the transformation R

(
Y , π

4

)
is

⎛
⎝ cos π

4 0 sin π
4

0 1 0
− sin π

4 0 cos π
4

⎞
⎠ =

⎛
⎜⎝

1√
2

0 1√
2

0 1 0
− 1√

2
0 1√

2

⎞
⎟⎠ .

Now,

⎛
⎜⎝

1√
2

0 1√
2

0 1 0
− 1√

2
0 1√

2

⎞
⎟⎠
⎛
⎝1

0
0

⎞
⎠ =

⎛
⎜⎝

1√
2

0
− 1√

2

⎞
⎟⎠ ,

so that the image of (1, 0, 0) under R
(
Y , π

4

)
is(

1√
2

, 0, − 1√
2

)
.

Similarly, the image of (0, 1, 0) is (0, 1, 0) and

the image of (0, 0, 1) is
(

1√
2

, 0, 1√
2

)
.

Finally, since

⎛
⎜⎝

1√
2

0 1√
2

0 1 0
− 1√

2
0 1√

2

⎞
⎟⎠
⎛
⎜⎝

1√
14−2√
14
3√
14

⎞
⎟⎠ =

⎛
⎜⎝

2√
7−2√
14
1√
7

⎞
⎟⎠ ,

the image of
(

1√
14

, − 2√
14

, 3√
14

)
is(

2√
7

, − 2√
14

, 1√
7

)
.

2. Here

R(Z , γ ) =
⎛
⎝cos γ − sin γ 0

sin γ cos γ 0
0 0 1

⎞
⎠

and

R(Y , β) =
⎛
⎝ cos β 0 sin β

0 1 0
− sin β 0 cos β

⎞
⎠ .

Hence,

R(Z , γ ) · R(Y , β) =
⎛
⎝cos γ − sin γ 0

sin γ cos γ 0
0 0 1

⎞
⎠

×
⎛
⎝ cos β 0 sin β

0 1 0
− sin β 0 cos β

⎞
⎠

=
⎛
⎝cos γ cos β − sin γ cos γ sin β

sin γ cos β cos γ sin γ sin β

− sin β 0 cos β

⎞
⎠ ,
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and

R(Y , β) · R(Z , γ ) =
⎛
⎝ cos β 0 sin β

0 1 0
− sin β 0 cos β

⎞
⎠

×
⎛
⎝cos γ − sin γ 0

sin γ cos γ 0
0 0 1

⎞
⎠

=
⎛
⎝ cos β cos γ − cos β sin γ sin β

sin γ cos γ 0
− sin β cos γ sin β sin γ cos β

⎞
⎠ .

3. The matrix of R(X , α) is

A =
⎛
⎝1 0 0

0 cos α − sin α

0 sin α cos α

⎞
⎠. Then

AT =
⎛
⎝1 0 0

0 cos α sin α

0 − sin α cos α

⎞
⎠

=
⎛
⎝1 0 0

0 cos(−α) − sin(−α)

0 sin(−α) cos(−α)

⎞
⎠ ,

which is the matrix of R(X , −α).
The matrix of R(Y , β) is A =⎛
⎝ cos β 0 sin β

0 1 0
− sin β 0 cos β

⎞
⎠ . Then

AT =
⎛
⎝cos β 0 − sin β

0 1 0
sin β 0 cos β

⎞
⎠

=
⎛
⎝ cos(−β) 0 sin(−β)

0 1 0
− sin(−β) 0 cos(−β)

⎞
⎠ ,

which is the matrix of R(Y , −β).
The matrix of R(Z , γ ) is A =⎛
⎝cos γ − sin γ 0

sin γ cos γ 0
0 0 1

⎞
⎠ . Then

AT =
⎛
⎝ cos γ sin γ 0

− sin γ cos γ 0
0 0 1

⎞
⎠

=
⎛
⎝cos(−γ ) − sin(−γ ) 0

sin(−γ ) cos(−γ ) 0
0 0 1

⎞
⎠

which is the matrix of R(Z , −γ ).
4. As you saw in the solution to Problem 3 of

Subsection 7.1.2, the point P
(

1
2
√

2
,

√
3

2
√

2
, 1√

2

)
has spherical polar coordinates of the form
(cos φ sin θ , sin φ sin θ , cos θ), where φ = π

3
and θ = π

4 ; then also θ ′ = π
2 − θ = π

4 . It fol-
lows from Theorem 2 that the rotation that maps
A(1, 0, 0) to P is

A = R(Z , φ) R(Y , −θ ′)

= R
(

Z ,
π

3

)
R
(

Y , −π

4

)

=
⎛
⎜⎝

cos π
3 − sin π

3 0

sin π
3 cos π

3 0
0 0 1

⎞
⎟⎠

×
⎛
⎝cos π

4 0 − sin π
4

0 1 0
sin π

4 0 cos π
4

⎞
⎠

=
⎛
⎜⎝

cos π
3 cos π

4 − sin π
3 − cos π

3 sin π
4

sin π
3 cos π

4 cos π
3 − sin π

3 sin π
4

sin π
4 0 cos π

4

⎞
⎟⎠

=

⎛
⎜⎜⎜⎝

1
2
√

2
−

√
3

2 − 1
2
√

2√
3

2
√

2
1
2 −

√
3

2
√

2
1√
2

0 1√
2

⎞
⎟⎟⎟⎠ .

This matrix performs the desired rotation,
since

⎛
⎜⎜⎜⎝

1
2
√

2
−

√
3

2 − 1
2
√

2√
3

2
√

2
1
2 −

√
3

2
√

2
1√
2

0 1√
2

⎞
⎟⎟⎟⎠
⎛
⎝1

0
0

⎞
⎠ =

⎛
⎜⎜⎜⎝

1
2
√

2√
3

2
√

2
1√
2

⎞
⎟⎟⎟⎠ ,

as required.
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5. As you saw in Problem 4, the matrix⎛
⎜⎜⎜⎝

1
2
√

2
−

√
3

2 − 1
2
√

2√
3

2
√

2
1
2 −

√
3

2
√

2
1√
2

0 1√
2

⎞
⎟⎟⎟⎠

corresponds to a rotation of S2 that maps

A(1, 0, 0) to
(

1
2
√

2
,

√
3

2
√

2
, 1√

2

)
, so its inverse

(which is also its transpose)⎛
⎜⎜⎜⎜⎝

1
2
√

2

√
3

2
√

2
1√
2

−
√

3
2

1
2 0

− 1
2
√

2
−

√
3

2
√

2
1√
2

⎞
⎟⎟⎟⎟⎠

corresponds to a rotation of S2 that maps(
1

2
√

2
,

√
3

2
√

2
, 1√

2

)
to A(1, 0, 0).

Now the matrix of the rotation that maps
A(1, 0, 0) to N (0, 0, 1) is

R
(
Y , −π

2

) =
⎛
⎝0 0 −1

0 1 0
1 0 0

⎞
⎠ ;

so, by composition, the matrix of the rotation
that maps P to N is

⎛
⎝0 0 −1

0 1 0
1 0 0

⎞
⎠
⎛
⎜⎜⎜⎜⎜⎝

1
2
√

2

√
3

2
√

2
1√
2

−
√

3
2

1
2 0

− 1
2
√

2
−

√
3

2
√

2
1√
2

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

1
2
√

2

√
3

2
√

2
− 1√

2

−
√

3
2

1
2 0

1
2
√

2

√
3

2
√

2
1√
2

⎞
⎟⎟⎟⎟⎟⎠ .

This matrix performs the desired rotation, since⎛
⎜⎜⎜⎜⎜⎝

1
2
√

2

√
3

2
√

2
− 1√

2

−
√

3
2

1
2 0

1
2
√

2

√
3

2
√

2
1√
2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1
2
√

2
√

3
2
√

2

1√
2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎝0

0
1

⎞
⎠ ,

as required.

6. The spherical polar coordinates of the

point Q
(

1
2 , − 1

2 , − 1√
2

)
are of the form

(cos φ sin θ , sin φ sin θ , cos θ), where cos θ =
− 1√

2
; it follows that θ = 3π

4 ; hence sin θ =
1√
2

, θ ′ = π
2 − θ = π

2 − 3π
4 = −π

4 , cos φ = 1√
2
,

and sin φ = − 1√
2

, so that φ = 7π
4 .

It follows, from Theorem 2, that the rota-
tion of S2 that maps A(1, 0, 0) to Q is
R
(
Z , 7π

4

)
R
(
Y , π

4

)
. Hence the rotation of S2

that maps Q to A(1, 0, 0) is

(
R
(
Z , 7π

4

) ◦ R
(
Y , π

4

))−1

= (
R
(
Y , π

4

))−1 ◦ (R (Z , 7π
4

))−1

= R
(
Y , −π

4

) ◦ R
(
Z , − 7π

4

)
;

this has matrix
(matrix of R(Y , π

4 ))T × (matrix of R(Z , 7π
4 ))T

=

⎛
⎜⎜⎜⎝

1√
2

0 − 1√
2

0 1 0

1√
2

0 1√
2

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝

1√
2

− 1√
2

0

1√
2

1√
2

0

0 0 1

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎝

1
2 − 1

2 − 1√
2

1√
2

1√
2

0

1
2 − 1

2
1√
2

⎞
⎟⎟⎟⎠ .

Therefore, by composition (using the result of
Problem 4), the matrix of the rotation of S2 that
maps Q to P is

⎛
⎜⎜⎜⎝

1
2
√

2
−

√
3

2 − 1
2
√

2√
3

2
√

2
1
2 −

√
3

2
√

2
1√
2

0 1√
2

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

1
2 − 1

2 − 1√
2

1√
2

1√
2

0

1
2 − 1

2
1√
2

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

−
√

3
2
√

2
−

√
3

2
√

2
− 1

2

1
2
√

2
1

2
√

2
−

√
3

2

1√
2

− 1√
2

0

⎞
⎟⎟⎟⎠ .
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This matrix performs the desired rotation, since⎛
⎜⎜⎜⎝

−
√

3
2
√

2
−

√
3

2
√

2
− 1

2

1
2
√

2
1

2
√

2
−

√
3

2

1√
2

− 1√
2

0

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

1
2

− 1
2

− 1√
2

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

1
2
√

2√
3

2
√

2
1√
2

⎞
⎟⎟⎟⎠ ,

as required.
7. Here

det A =
∣∣∣∣∣∣
1 0 0
0 1 0
0 0 −1

∣∣∣∣∣∣ = −1.

8. First, since 32 + 42 + (−5)2 = 50 =
(

5
√

2
)2

,

we write the equation of the plane π : 3x +
4y − 5z = 0 in the form ax + by + cz = 0,
where a = 3

5
√

2
, b = 4

5
√

2
and c = −5

5
√

2
= − 1√

2
.

Then, by Theorem 3, the matrix associated with
reflection in the plane π is⎛

⎜⎜⎝
1 − 18

50 − 24
50

30
50

− 24
50 1 − 32

50
40
50

30
50

40
50 1 − 50

50

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

16
25 − 12

25
3
5

− 12
25

9
25

4
5

3
5

4
5 0

⎞
⎟⎟⎠ .

9. A reflection of S2 in a great circle is an isom-
etry, so the composite of an even number of
reflections in great circles is also an isometry of
S2. Each reflection in a great circle reverses the
orientation of S2, so the composite of an even
number of reflections in great circles does not
alter the orientation; hence the composite is a
direct isometry.

It follows from part (b) of Theorem 7 that the
composite of an even number of reflections of
S2 in great circles is a rotation of S2.

Section 7.3
1.

N (0,0,1)

f

A(1, 0, 0)

P (cos f, sin f, 0)

Let A and N be the points (1, 0, 0) and
(0, 0, 1), respectively; and let P be the point
(cos φ, sin φ, 0). Then the spherical triangle
�AP N has angles π

2 , π
2 and φ, so that in

particular it has angular excess φ.
(a) Let φ = 0.01 radians; this gives the required

spherical triangle.
(b) Let φ = 3.14 radians (note that 3.14 < π , so

that the triangle �AP N does not ‘cross back on
itself’); this gives the required spherical triangle.

2.
R

Q

S2

Q ′

R ′

P ′

Pa

b

g

Triangle II Clearly ∠Q′PR = π − α and
∠PRQ′ = π − γ . Also, by the symmetry of
the intersections of the great circles Q′PQ and
QRQ′ R′,

∠RQ′ P = ∠R′QP′ (by symmetry)

= β (vertically opposite).

Triangle III Clearly ∠R′PQ′ = ∠QPR
(vertically opposite) = α and ∠PQ′ R′ = π −
∠PQ′ R = π − β. Finally, by the symmetry of
the intersections of the great circles RPR′ and
QRQ′ R′,

∠Q′ R′ P = ∠QRP′ (by symmetry)

= π − γ .
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Triangle IV Clearly ∠QPR′ = π − α,
∠PQR′ = π−β, and (from the result of Triangle
III) ∠PR′Q = π−∠PR′Q′ = π−(π − γ ) = γ .

3.
N(0, 0, 1)

P (cos f, sin f, 0)

A(1, 0, 0)

Let A and N be the points (1, 0, 0) and
(0, 0, 1), respectively; and let P be the point
(cos φ, sin φ, 0).

Then the spherical triangle �AP N has angles
π
2 , π

2 and φ, so that in particular it has angular
excess φ and so (by Theorem 3 of Subsec-
tion 7.3.1) has area φ.

Let φ = 3π
4 radians; this gives the required

spherical triangle.
4.

N (0, 0, 1)

A(1, 0, 0)
B (0, 1, 0)

The spherical triangle �AB N has angles π
2 , π

2
and π

2 , so that any dual triangle �′ has sides
each of length

(
π − π

2

) = π
2 . The sides of

the spherical triangle �AB N also each have
length π

2 .
Similarly, the spherical triangle �AB N has

sides π
2 , π

2 and π
2 , so that any dual triangle �′

has angles each of magnitude
(
π − π

2

) = π
2 .

The angles of the spherical triangle �AB N also
each have magnitude π

2 .
It follows that �AB N and any dual triangle

�′ each have angles of the same magnitude and
sides of the same magnitude. So clearly �AB N
and the dual triangle �′ are congruent.

5. We use the result of Theorem 5 of Subsec-
tion 7.3.3.

The colatitude of Tokyo is 90◦ − 36◦ = 54◦,
so that the coordinates of the corresponding
point P on S2 are

(cos(140◦) sin(54◦), sin(140◦) sin(54◦),

cos(54◦))

� (−0.7660 · 0.8090, 0.6428 · 0.8090, 0.5878)

� (−0.6197, 0.5200, 0.5878).

The colatitude of Rio de Janeiro is 90◦ +
23◦ = 113◦, so that the coordinates of the
corresponding point Q on S2 are

(cos(−43◦) sin(113◦), sin(−43◦) sin(113◦),

cos(113◦))

� (0.7314 · 0.9205, −0.6820 · 0.9205,

− 0.3907)

� (0.6733, −0.6278, −0.3907).

Hence the distance between Tokyo and Rio de
Janeiro is approximately 4000d miles, where

cos d = −0.6197 · 0.6733 − 0.5200 · 0.6278

− 0.5878 · 0.3907

� −0.4172 − 0.3265 − 0.2297

= −0.9734.

Thus d � cos−1(−0.9734) � 2.9104 radians,
and the required distance is

4000d � 4000 · 2.9104 � 11 642 miles.

Remark
To determine this distance in terms of metric
measurements, we replace the figure of 4000
miles above by 6378 km; thus the required
distance is

6378d � 6378 · 2.9104

� 18 563 km.
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6.

R

P Q

S2
1.7

1.9

Let d be the length of QR. By applying Pythago-
ras’ Theorem to the triangle �P Q R, we obtain

cos 1.7 � cos 1.9 × cos d,

so that

cos d � cos 1.7

cos 1.9

� −0.1288

−0.3233

� 0.3985;

it follows that

d � cos−1 0.3985 � 1.16.

7.

R

P
θ

Q

S2
1.7

1.9 1.6

Let θ denote the angle ∠Q P R. We saw in Prob-
lem 6 that Q R � 1.16. It follows from the
second formula in Theorem 7 that

sin θ � sin 1.16

sin 1.7

� 0.9168

0.9917

� 0.9245;

it follows that

θ � sin−1 0.9245 � 1.18 radians.

8.

A

B C

S2

a

aa a
a a

We use here the identities

cos 2x = 1 − 2 sin2 x

and
sin 2x = 2 sin x cos x .

For x ∈ R, we deduce from the result of part (b)
of Example 3 that

cos α =
tan
(

1
2 a
)

tan a

=
sin
(

1
2 a
)

cos
(

1
2 a
) · cos a

sin a

= cos a

2 cos2
(

1
2 a
) = cos a

1 + cos a
.

Section 7.4
1. (a)

N

P ′

P″

S2

PQO

The inverse of the stereographic projec-
tion applied to the point P(x , y) gives the
coordinates

π−1(x , y) =
(

2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,

x2 + y2 − 1

x2 + y2 + 1

)

for P ′.
Then P ′′ has coordinates(

2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
, − x2 + y2 − 1

x2 + y2 + 1

)
;
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and the formula for stereographic projection
gives the following coordinates for Q:(

2x

(x2 + y2 + 1) + (x2 + y2 − 1)
,

2y

(x2 + y2 + 1) + (x2 + y2 − 1)

)

=
(

x

x2 + y2
,

y

x2 + y2

)
.

(b) The point (x , y) and
(

x
x2+y2 , y

x2+y2

)
are

inverse points with respect to the unit cir-
cle x2 + y2 = 1 (see Theorem 2, Subsection
5.1.2).

2.
N

Q ′

P ′

S

S2

P (2, 2) Q (3, 3)

The coordinates of P(2, 2) are(
2
√

2 cos π
4 , 2

√
2 sin π

4

)
,

and the coordinates of Q(3, 3) are(
3
√

2 cos π
4 , 3

√
2 sin π

4

)
.

Then it follows from Theorem 1 that the spheri-
cal distances S P ′ and SQ′ are

2 tan−1
(

2
√

2
)

and 2 tan−1
(

3
√

2
)

,

respectively. But S, N , P ′ and Q′ all lie in
the same vertical plane, so that the spherical
distance P ′Q′ is

(spherical distance SQ′) – (spherical distance
S P ′)

= 2 tan−1
(

3
√

2
)

− 2 tan−1
(

2
√

2
)

.

It then follows from the identity

tan−1 x − tan−1 y = tan−1 x − y

1 + xy
,

for x , y ∈ R, that the required distance can be
expressed in the form

2 tan−1

⎛
⎝ 3

√
2 − 2

√
2

1 +
(

3
√

2
) (

2
√

2
)
⎞
⎠

= 2 tan−1

(√
2

13

)
� 0.2167.

3. Let one of the fixed points of the rotation of
S2 be P ′(X , Y , Z); then the other must be
Q′(−X , −Y , −Z). Under stereographic projec-

tion these map to the points P
(

X
1−Z , Y

1−Z

)
and Q

( −X
1+Z , −Y

1+Z

)
in R

2, respectively; we can

express these coordinates as complex numbers
s = X

1−Z + i Y
1−Z = X+iY

1−Z and t = −X
1+Z +

i −Y
1+Z = −X−iY

1+Z .
Then

s̄ · t =
(

X + iY

1 − Z

)
· −X − iY

1 + Z

= X − iY

1 − Z
· −X − iY

1 + Z

= −X2 − Y 2

1 − Z2
= −1,

since X2 + Y 2 + Z2 = 1. It follows that t =
−1/s̄.

4. A rotation R(X , α) of S2 fixes the points (1, 0, 0)

and (−1, 0, 0), which map under stereographic
projection to the points 1 and −1, respectively.

By Theorem 3, a conjugate Möbius transfor-
mation must be of the form

M(z) = cz + d

−d̄z + c̄

(where we use c and d to avoid using the letters
a and b for different things).

This mapping fixes 1 and −1 if

1 = c + d

−d̄ + c̄
and − 1 = −c + d

d̄ + c̄
,

which we can rewrite in the form

−d̄ + c̄ = c + d and − d̄ − c̄ = −c + d.

Adding these equations gives −2d̄ = 2d, so that
d is imaginary, and subtracting the equations
gives 2c̄ = 2c, so that c is real.

It follows that M has the desired form
M(z) = az+ib

ibz+a , with a in place of c and ib in
place of d.
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5. There are no fixed points of the Möbius trans-
formation z �→ z + 1 in C, since the equation
z = z + 1 has no solutions in C. However the
Möbius transformation maps ∞ to itself, so ∞
is a fixed point in Ĉ of the transformation.

The fixed points in C of the Möbius trans-
formation z �→ −4

z+4 are the solutions of the

equation z = −4
z+4 . We may rewrite this equation

in the form z2 + 4z + 4 = 0, or (z + 2)2 = 0, so
that −2 is the only fixed point in C of the trans-
formation. Since ∞ �→ 0, −2 is also the only
fixed point in Ĉ of the transformation.

The fixed points in C of the Möbius trans-
formation z �→ −4

z+5 are the solutions of the

equation z = −4
z+5 . We may rewrite this equation

in the form z2+5z+4 = 0, or (z+4)(z+1) = 0,
so that −4 and −1 are the fixed points in C

of the transformation. Since ∞ �→ 0, −4 and
−1 are also the only fixed points in Ĉ of the
transformation.

6. Let C denote the circle in R
2 with equation

x2 + y2 + 2αx + 2β y + γ = 0,

which we may rewrite in the more convenient
form

(x2 + y2 + 1) + 2αx + 2β y + (γ − 1) = 0

or

1 + α
2x

x2 + y2 + 1
+ β

2y

x2 + y2 + 1

+ γ − 1

x2 + y2 + 1
= 0.

Now under the inverse mapping π−1 :
(x , y) �→ (X , Y , Z) of stereographic projection,

X = 2x

x2 + y2 + 1
,

Y = 2y

x2 + y2 + 1
,

and

Z = x2 + y2 − 1

x2 + y2 + 1
;

in particular, Z = 1 − 2
x2+y2+1

so that
1

x2+y2+1
= 1

2 (1 − Z).
It follows that C corresponds under the

inverse mapping π−1 of stereographic projec-
tion to a plane with equation

1 + αX + βY + 1
2 (γ − 1)(1 − Z) = 0,

or

2αX + 2βY + (1 − γ )Z + (1 + γ ) = 0.
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A(2), 71
affine

classification of conics, 108
group, 71, 471
properties, 73
transformation, 71
transformations, basic properties, 73

affine geometry, 73
congruence, 86, 111
Fundamental Theorem, 86
rectangular hyperbola, 116

Alberti, Leone Battistuta, 130
altitude, 391, 447
Altitude Theorem, 391
angle, 273, 351

of lune, 441
of parallelism, 395
sum, 383, 384, 388, 439

Angle Theorem, 274
angular defect, 406
angular excess, 440
antipodal point, 425
Apollonian circles, 261, 317

family of, 318
Apollonian Circles Theorem, 317, 319
Apollonius of Perga, 1
arbelos, 330
Archimedes, xi
area

hyperbolic, 401
spherical, 441

argument, 277
associated circle and plane, 459
asymptote, 17, 474
asymptotic triangle, 388
Aubel’s Theorem, van, 120
auxiliary circle, 32
axes

ellipse, 15
hyperbola, 17
parabola, 13

B2 − 4AC Test, 42, 213
barycentric coordinates, 102

collinearity, 104
equation of line, 104
Section Formula, 105

Bayeux tapestry, 128
Beltrami–Klein model, 478
Bessel, Friedrich Wilhelm, 345
Bolyai, Janos, 3, 344
boundary point, 346
Brannan, Michael, xiv
Brianchon, Charles J., 177
Brianchon’s Theorem, 177, 252
Brisbane Exhibition and Conference

Centre, 52
Brunelleschi, 129

camera, aerial, 189
canonical form, 363, 365
Cassegrain focus, 32
centre

of inversion, 263
of projective reflection, 475

Ceva, Giovanni, 93
Ceva’s Theorem, 94, 107

converse, 97, 108
circle, 6

auxiliary, 32
equation, 7
generalized, 285
great, 426
hyperbolic, 373
little, 426
of Apollonius, 317
of inversion, 263

circles
intersecting, 9, 321
kissing, 335
orthogonal, 9
Soddy, 335

coaxal circles, 317, 322, 458
Coaxal Circles Theorem, 322
colatitude, 428
collinearity in RP

2, 141, 142, 145
common perpendicular, 388
Common Perpendiculars Theorem, 388
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compass bearing, constant, 463
complex number, 276
computer graphics, xii, 127
Concentricity Theorem, 326
congruence, 69, 163, 215, 316, 385

affine, 111
Euclidean, 69
G-congruence, 70

conic, 6
classification, 41, 42
focus–directrix definition, 11
general equation, 36
matrix representation, 37
polar equation, 18
projective, 202, 205
section, 6, 22, 210
section, degenerate, 6
section, non-degenerate, 6
tangent, 23, 25

conjugate diameters, 78
Conjugate Diameters Theorem, 78, 116
conjugate transformation, 454
cooling tower, 48
Cosine Rule, 449
Coxeter, H. S. M., 409
cross-ratio, 179, 180, 187, 188, 475

on embedding plane, 187

Dandelin, Germinal Pierre, 22
spheres, 22, 53

d-congruent, 385
Desargues, Girard, 1, 2
Desargues’ Theorem, 135, 173
Descartes, René, 1
diagonal vanishing point, 134
Difference of Focal Distances Property, 20
directed distances, 52
direct transformation, 362, 365, 429
directrix, 12
discriminant, 111
distance, 7, 367

function, 367, 368
hyperbolic, 368, 369, 380, 481
in R

2, 7
spherical, 426, 444

d-line, 346, 347
boundary point, 346

doubling map, 81, 297
doubly asymptotic triangle, 388, 401
d-point, 345
d-quadrilateral, 384
d-triangle, 383
Dual Triangles Theorem, 443
duality, 176, 250
Duality, Principle of, 178, 250
Duccio, 129
Dürer, Albrecht, 130

eccentricity, 12
Eccentricity Formula, 209

École Polytechnique, 2
electrostatics, 2
Elements of Euclid, 1
ellipse, 14

parametric representation, 15
Reflection Property, 29
standard form, 15

embedding plane, 147, 148
standard, 148

envelope, 32
equatorial plane, 428, 433
equidistant curves, 399
equivalence relation, 69
Erlangen Programme, 4, 478
Escher, Maurits Cornelis, 409
Euclid, xi
Euclidean, 62

congruence, 68
geometry, 62
properties, 64
transformation, 66

extended
complex plane, 283
conjugation function, 286
line, 285
linear function, 287
plane, 284
reciprocal function, 287

External Reflection Property, 31

families of circles, 321
coaxal, 317, 322, 458

Fermat, Pierre de, 1
Five Points Theorem, 230
focal chord, 13
focal distances

ellipse, 19
hyperbola, 20

focus, 12, 32
foreshortening, 134
function

extended conjugation, 286
extended linear, 287
extended reciprocal, 287
linear, 282
notation, xiii
reciprocal, 283

Fundamental Theorem
Affine Geometry, 88, 93
Inversive Geometry, 310, 312
Projective Geometry, 162, 172

GD , 350
Gauss, Carl Friedrich, 344, 345, 405
generalized circle, 285
generating lines, 49
generator of cone, 210
geodesic, 377, 409, 412, 426
geometry, 61

affine, 73
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elliptic, 343, 424
Euclidean, 62
hyperbolic, 345, 412
model, 4
non-Euclidean, 344

Giotto, 129
Goethe, Johann Wolfgang, xi
gradient, 13
great circle, 426
Greenwich meridian, 426

half-plane model, 412
hemisphere, 483
hexagon, 177
hierarchy, 475
Hilbert, David, 485
homogeneous coordinates, 138
homogeneous matrix, 471
horizon, 135
horosphere, 485
hyperbola, 16

asymptotes, 17
parametric representation, 18
rectangular, 18
Reflection Property, 30
standard form, 18

hyperbolic
area, 401
centre, 373
circle, 373
distance, 368, 369, 380, 481
geometry, 345, 412
group GD , 350
limit rotation, 363
midpoint, 371
paraboloid, 43, 51
parallel postulate, 344
radius, 373
reflection, 350, 379
rotation, 362
transformation, 350
translation, 363
triangle, 383

hyperboloid of one sheet, 43, 48

ideal Line, 148
ideal Point, 148, 188
Incidence Property of RP

2, 146
indirect transformation, 362, 429
infinity, point at, 284
inside of triangle on S2, 440
Internal Reflection Property, 31
inverse, 263
inversion, 262, 265
inversive

geometry, 295
group, 296
transformation, 295

Inversive Geometry, Fundamental
Theorem, 310, 312

isometry, 63, 278, 429
Isosceles Triangle Theorem, 437

Joachimsthal, 216
notation, 218, 227
Section Equation, 219

kaleidoscope, 409
kiss precise, 335
kissing circles, 335
Klein, Christian Felix, 4
Kleinian view, 61

La Hire’s Theorem, 225, 244
Lady’s and Gentleman’s Diary, xi
latitude, 428
length on S2, 426
limit rotation, 363
line on S2, 426
Line, 141

Conic, 251
equation of, 141, 144
ideal, 148

linear function, 282
linearization map, 478
Little Chef, restaurant, 52
little circle, 426
Lobachevskii, Nikolai Ivanovich, 3, 344
Lobachevskii’s Formula, 394, 398
longitude, 428
Lovell radio-telescope, 29
lune, 441

map, planar, 460
Martini, Simone, 129
matrix of rotation, 38, 429
Median Theorem, 93
Menelaus of Alexandria, 93
Menelaus’ Theorem, 98, 106

Converse, 101, 106
Mercator, 463
meridian, 426, 461
midpoint, 78

hyperbolic, 371
Midpoint Theorem, 78
Möbius, August Ferdinand, 3

band, 3
transformation, 298, 454

model (of a geometry), 4
disc, 345
elliptic, 424
half-plane, 412
hyperbolic, 345
spherical, 425

modulus, 276
Monge, Gaspard, 2, 177

Newton, Isaac, 1
non-Euclidean, 344
normal, 26
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oblate spheroid, 460
Origin Lemma, 351
orthogonal, 9, 65, 322, 432
outside of triangle on S2, 440, 448

P(2), 152
Pappus’ Theorem, 175, 177, 186
parabola, 12

parametric representation, 13
Reflection Property, 31
standard form, 13
vertex, 13

parallel, definition, 349
parallel postulate

elliptic, 344
Euclidean, 343
Hyperbolic, 344

parallel projection, 74
basic properties, 75
composition, 82

parallels, 461
parameter of projective reflection, 475
Parametrization Theorem, 237, 246
Pascal, Blaise, 2
Pascal’s Theorem, 238

converse, 240
perpendicular, 388

common, 388
on S2, 448

perspective, 128
focused, 129
terraced, 128
transformation, 166, 167
vertical, 129

perspectivity, 131
Perspectivity Theorem, 172
Plato, xi
Poincaré, Jules Henri, 4
point

at infinity, 284
circle, 318

Point, 137
conic, 251
ideal, 148, 188
unit, 146

polar, 26, 223, 224, 226
equation of conic, 18
form, 277

pole, 224
Pole, 425
Poncelet, Jean Victor, 2
Poncelet’s porism, 329
porism, 328
power of a point, 52
principal

argument, 277
vanishing point, 134

Principle of Duality, 178, 250
Product Theorem, 436
projection, 461

azimuthal, 462

conformal, 462
conical, 463
cylindrical, 462
equal area, 463
gnomic, 462
Mercator, 463
orthogonal, 462
orthographic, 462
parallel, 74
stereographic, 290, 450, 462

projective
congruence, 163
figure, 140
geometry, 156
hierarchy, 475
line, 141
plane, 137
point, 137
properties, 156
reflection, 475
transformation, 151

projective conic, 202, 205
degenerate, 205
inside, 207
non-degenerate, 205
outside, 207
standard form, 237, 242
tangent, 207

Projective Geometry, Fundamental
Theorem, 162, 172

Ptolemy’s Theorem, 330
punctured, definition, 268
Pythagoras’ Theorem, 392, 396, 445

quadric, 42
classification, 45
degenerate, 42
matrix representation, 44
surface, 42, 43

quadrilateral, 162, 384

radical axis, 321
railroad lines, 134
real projective plane, 137
reciprocal function, 283
rectangular hyperbola, 18
reflection, 28

hyperbolic, 361, 379, 411, 480
Law, 28
Lemma, 379

Reflection Property
ellipse, 29
hyperbola, 30
parabola, 31

Riemann sphere, 290, 450
Roque de los Muchachos Observatory, 31
rotation, 38, 278

elementary, 429
hyperbolic, 362
matrix, 429
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RP
2, 137

RP
2
0, 471

ruled surface, 48
generators, 49

scaling, 280, 461
Scorer, Sam, 51
Section Equation, Joachimsthal’s,

219
Section Formula, 105, 496
self-dual, definition, 176
self-inverse, 264
shoemaker’s knife, 330
simply asymptotic, 388
Sine Formula, 29, 396
Sine Rule, 448
slope, 13
Soddy, Frederick, 335
sphere, Riemann, 290, 450
spherical

distance, 426, 444
geometry, 425
isometry, 429
polar coordinates, 428
triangle, 437, 438
trigonometry, 438

Sputnik, xi
standard

embedding plane, 148
projective conic, 237, 242

Steiner, Jakob, 328
Steiner’s porism, 328
stereographic projection, 290, 450,

462
strict line segment, 440
strict triangle, 440
subgeometry, 472

Sum of Focal Distances Property, 19
Symmetry Lemma, 273

tangent, 23, 207, 216, 225, 474
pair, 222, 226
to conic in standard form, 114

tapestry, Bayeux, 128
telescope, 31
tessellation, 408

hyperbolic, 409
Three Points Theorem, 233
Three Tangents and Three Chords

Theorem, 244
Three Tangents Theorem, 216
translation, 277
trebly asymptotic, 388, 401, 402
triangle

dual, 442
spherical, 438

triangle of reference, 146
Triangle Inequality, 367
Two Apollonian Circles Theorem, 327

ultra-parallel, definition, 349
Unique Fourth Point Theorem, 185
unit Point, 146

van Aubel’s Theorem, 120
vanishing line, 135
vanishing point

diagonal, 134
principal, 134

vertex of parabola, 13
Vinci, Leonardo da, 130

wallpaper patterns, 408
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