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Preface

Thls Is a textbook on electricity and magnetlsm designed for an undergraduate course at

with room to spare for special topics (AC circu1ts, numerical methods, plasma physics,
transmission lines, antenna theory, etc.) A one-semester course could reasonably stop

after Chapter 7. Unlike quantum mechanics or thermal physics (for example), there is a

fairly general consensus with respect to the teaching of electrodynamics; the subjects to
be included, and even their order of presentation, are not particularly controversial, and
textbooks differ mainly in style and tone. My approach is perhaps less formal than most; I
think this makes difficult ideas more interesting and accessible.

For the third edition I have made a large number of small changes, in the interests of
clarity and grace. I have also modified some notation to avoid inconsistencies or ambiguities.
Thus the Cartesian unit vectors 7, 7, and k have been replaced with X, y, and Z, so that all
vectors are bold, and all unit vectors inherit the letter of the corresponding coordinate.
(This also frees up k to be the propagation vector for electromagnetic waves.) It has always
bothered me to use the same letter  for the spherical coordinate (distance from the origin)
and the cylindrical coordinate (distance from the z axis). A common alternative for the
latter is p, but that has more 1mportant business in electrodynamics, and after an exhaustive
search I settled on the underemployed letter s; 1 hope this unorthodox usage will not be
confusing.

Some readers have urged me to abandon the script letter 2 (the vector from a source point
r’ to the field point r) in favor of the more explicit r — r’. But this makes many equations
distractingly cumbersome, especially when the unit vector 2 is involved. I know from my
own teaching experience that unwary students are tempted to read 2 as r—it certainly makes
the integrals easier! I have inserted a section in Chapter 1 explaining this notation, and I
hope that will help. If you are a student, please take note: 2 = r —r’, which is rot the same
as r. If you're a teacher, please warn your students to pay close attention to the meaning of
2. I think it’s good notation, but it does have to be handled with care.

The main structural change is that I have removed the conservation laws and potentials
from Chapter 7, creating two new short chapters (8 and 10). This should more smoothly
accommodate one-semester courses, and it gives a tighter focus to Chapter 7.

I have added some problems and examples (and removed a few that were not effective).
And I have included more references to the accessible literature (particularly the American
Journal of Physics). 1 realize, of course, that most readers will not have the time or incli-

1X



X PREFACE

nation to consult these resources, but I think it is worthwhile anyway, if only to emphasize
that electrodynamics, notwithstanding its venerable age, is very much alive, and intriguing
new discoveries are being made all the time. I hope that occasionally a problem will pique
your curiosity, and you will be inspired to look up the reference—some of them are real
gems.

As in the previous editions, 1 distinguish two kinds of problems. Some have a specific
pedagogical purpose, and should be worked immediately after reading the section to which
they pertain; these I have placed at the pertinent point within the chapter. (In a few cases
the solution to a problem is used later in the text; these are indicated by a bullet (o) in the
left margin.) Longer problems, or those of a more general nature, will be found at the end
of each chapter. When I teach the subject I assign some of these, and work a few of them
in class. Unusually challenging problems are flagged by an exclamation point (1) in the
margin. Many readers have asked that the answers to problems be provided at the back

of the book; untortunately, just as many are strenuously opposed. 1 have compromised,
supplying answers when this seems particularly appropriate. A complete solution manual
is available (to instructors) from the publisher.

I have benefitted from the comments of many colleagues—I cannot list them all here.
But I would like to thank the following people for suggestions that contributed specifically
to the third edition: Burton Brody (Bard), Steven Grimes (Ohio), Mark Heald (Swarth-
more), Jim McTavish (Liverpool), Matthew Moelter (Puget Sound), Paul Nachman (New
Mexico State), Gigi Quartapelle (Milan), Carl A. Rotter (West Virginia), Daniel Schroeder
(Weber State), Juri Silmberg (Ryerson Polytechnic), Walther N. Spjeldvik (Weber State),
Larry Tankersley (Naval Academy), and Dudley Towne (Amberst). Practically everything I
know about electrodynamics—certainly about teaching electrodynamics—I owe to Edward
Purcell.

David J. Griffiths
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9
general scheme of physics?

Four Realms of Mechanics

In the diagram below I have sketched out the four great reaims of mechanics:

Classical Mechanics | Quantum Mechanics
(Newton) (Bohr, Heisenberg,
Schrodinger, et al.)
Special Relativity | Quantum Field Theory
(Einstein) (Dirac, Pauli, Feynman,
Schwinger, et al.)

Newtonian mechanics was found to be inadequate in the early years of this century—it’s
all right in “everyday life,” but for objects moving at high speeds (near the speed of light)
it is incorrect, and must be replaced by special relativity (introduced by Einstein in 1905});
for objects that are extremely small (near the size of atoms) it fails for different reasons,
and is superseded by quantum mechanics (developed by Bohr, Schrodinger, Heisenberg,
and many others, in the twenties, mostly). For objects that are both very fast and very
small (as is common in modern particle physics), a mechanics that combines relativity and
quantum principles 1s in order: this relativistic quantum mechanics is known as quantum
field theory—it was worked out in the thirties and forties, but even today it cannot claim
to be a completely satisfactory system. In this book, save for the last chapter, we shall
work exclusively in the domain of classical mechanics, although electrodynamics extends
with unique simplicity to the other three realms. (In fact, the theory is in most respects
automatically consistent with special relativity, for which it was, historically, the main
stimulus.)

Xi
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Four Kinds of Forces

Mechanics tells us how a system will behave when subjected to a given force. There are
just four basic forces known (presently) to physics: I list them in the order of decreasing
strength:

1. Strong

2. Electromagnetic
3. Weak

4. Gravitational

: ; ¢ is the “normal™ force
that keeps you from falling through the floor? Where are the chemical forces that bind
molecules together? Where is the force of impact between two colliding billiard balls? The
answer Is that all these forces are electromagnetic. Indeed, it is scarcely an exaggeration
to say that we live in an electromagnetic world—for virtually every force we experience in
everyday life, with the exception of gravity, is electromagnetic in origin.

The strong forces, which hold protons and neutrons together in the atomic nucleus,
have extremely short range, so we do not “feel” them, in spite of the fact that they are a
hundred times more powerful than electrical forces. The weak forces, which account for
certain kinds of radioactive decay, are not only of short range; they are far weaker than
electromagnetic ones to begin with. As for gravity, it is so pitifully feeble (compared to all
of the others) that it is only by virtue of huge mass concentrations (like the earth and the sun)
that we ever notice it at all. The electrical repulsion between two electrons is 10*? times
as large as their gravitational attraction, and if atoms were held together by gravitational
(instead of electrical) forces, a single hydrogen atom would be much larger than the known
universe.

Not only are electromagnetic forces overwhelmingly the dominant ones in everyday
life, they are also, at present, the only ones that are completely understood. There is, of
course, a classical theory of gravity (Newton’s law of universal gravitation) and a relativistic
one (Einstein’s general relativity), but no entirely satisfactory quantum mechanical theory
of gravity has been constructed (though many people are working on it). At the present
time there is a very successful (if cumbersome) theory for the weak interactions, and a
strikingly attractive candidate (called chromodynamics) for the strong interactions. All
these theories draw their inspiration from electrodynamics; none can claim conclusive
experimental verification at this stage. So electrodynamics, a beautifully complete and
successful theory, has become a kind of paradigm for physicists: an ideal model that other
theories strive to emulate.

The laws of classical electrodynamics were discovered in bits and pieces by Franklin,
Coulomb, Ampére, Faraday, and others, but the person who completed the job, and packaged
it all in the compact and consistent form it has today, was James Clerk Maxwell. The theory
is now a little over a hundred years old.
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The Unification of Physical Theories

In the beginning, electricity and magnetism were entirely separate subjects. The one dealt
with glass rods and cat’s fur, pith balls, batteries, currents, electrolysis, and lightning; the

other with bar magnets, iron ﬁlings, compass needles, and the North Pole. But in 1820
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Oersted noticed that an electric current could deflect a magnetic compass needle. Soon
afterward, Ampere correctly postulated that a/l magnetic phenomena are due to electric
charges in motion. Then, in 1831, Faraday discovered that a moving magnet generates an
electric current. By the time Maxwell and Lorentz put the finishing touches on the theory,
electricity and magnetism were inextricably intertwined. They could no longer be regarded
as separate subjects, but rather as two aspects of a single subject: electromagnetism.
Faraday had speculated that light, too, is electrical in nature. Maxwell’s theory provided
spectacular justification for this hypothesis, and soon optics—the study of lenses, mirrors,

prisms, interference, and diffraction—was incorporated into electromagnetism. Hertz, who
presented the decisive experimental confirmation for Maxwell’s theory in 1888, put it this
way: “The connection between light and electricity is now established ... In every flame,
in every luminous particle, we see an electrical process ... Thus, the domain of electricity
extends over the whole of nature. It even affects ourselves intimately: we perceive that we
possess ... an electrical organ—the eye.” By 1900, then, three great branches of physics,
electricity, magnetism, and optics, had merged into a single unified theory. (And it was
soon apparent that visible light represents only a tiny “window” in the vast spectrum of
electromagnetic radiation, from radio though microwaves, infrared and ultraviolet, to x-
rays and gamma rays.)

Einstein dreamed of a further unification, which would combine gravity and electrody-
namics, in much the same way as electricity and magnetism had been combined a century
earlier. His unified field theory was not particularly successful, but in recent years the same
impulse has spawned a hierarchy of increasingly ambitious (and speculative) unification
schemes, beginning in the 1960s with the electroweak theory of Glashow, Weinberg, and
Salam (which joins the weak and electromagnetic forces), and culminating in the 1980s with
the superstring theory (which, according to its proponents, incorporates all four forces in a
single “theory of everything”). At each step in this hierarchy the mathematical difficulties
mount, and the gap between inspired conjecture and experimental test widens; nevertheless,
it is clear that the unification of forces initiated by electrodynamics has become a major
theme in the progress of physics.

The Field Formulation of Electrodynamics

The fundamental problem a theory of electromagnetism hopes to solve is this: I hold up
a bunch of electric charges here (and maybe shake them around)—what happens to some
other charge, over there? The classical solution takes the form of a field theory: We say
that the space around an electric charge is permeated by electric and magnetic fields (the
electromagnetic “odor,” as it were, of the charge). A second charge, in the presence of these
fields, experiences a force; the fields, then, transmit the influence from one charge to the
other—they mediate the interaction.
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When a charge undergoes acceleration, a portion of the field “detaches” itself, in a
sense, and travels off at the speed of light, carrying with it energy, momentum, and angular
momentum. We call this electromagnetic radiation. Its existence invites (if not compels)
us to regard the fields as independent dynamical entities in their own right, every bit as
“real” as atoms or baseballs. Our interest accordingly shifts from the study of forces
between charges to the theory of the fields themselves. But it takes a charge to produce an
electromagnetic field, and it takes another charge to detect one, so we had best begin by
reviewing the essential properties of electric charge.

Electric Charge

1. Charge comes in two varieties, which we call “plus” and “minus,” because their effects
tend to cancel (if you have +q and —gq at the same pomt electncal]y 1t 1s the same as havmg

to contemplate other p0551b111tles what if there were 8 or 10 different species of charge?
(In chromodynamics there are, in fact, three quantities analogous to electric charge, each
of which may be positive or negative.) Or what if the two kinds did not tend to cancel?
The extraordinary fact is that plus and minus charges occur in exactly equal amounts, to
fantastic precision, in bulk matter, so that their effects are almost completely neutralized.
Were it not for this, we would be subjected to enormous forces: a potato would explode
violently if the cancellation were imperfect by as little as one part in 109,

2. Charge is conserved: it cannot be created or destroyed—what there is now has always
been. (A plus charge can “annihilate” an equal minus charge, but a plus charge cannot simply
disappear by itself-—something must account for that electric charge.) So the total charge of
the universe is fixed for all time. This is called global conservation of charge. Actually, Ican
say something much stronger: Global conservation would allow for a charge to disappear
in New York and instantly reappear in San Francisco (that wouldn’t affect the fofal), and yet
we know this doesn’t happen. If the charge was in New York and it wenr to San Francisco,

then it must have passed along some continuous path from one to the other. This is called
local conservation of charge. Later on we’ll see how to formulate a precise mathematical
law expressing local conservation of charge—it’s called the continuity equation.

3. Charge is quantized. Although nothing in classical electrodynamics requires that it be
s0, the fact is that electric charge comes only in discrete lumps—integer multiples of the
basic unit of charge. If we call the charge on the proton e, then the electron carries charge
—e, the neutron charge zero, the pi mesons +e¢, 0, and —e, the carbon nucleus +6e, and
so on (never 7.392¢, or even 1/2¢).! This fundamental unit of charge is extremely small,
so for practical purposes it is usually appropriate to ignore quantization altogether, Water,
too, “really” consists of discrete lumps (molecules); yet, if we are dealing with reasonably
large large quantities of it we can treat it as a continuous fluid. This is in fact much closer
to Maxwell’s own view; he knew nothing of electrons and protons—he must have pictured

! Actually, protons and neutrons are composed of three quarks, which carry fractional charges (:i: eand 1 3e).
However, free quarks do not appear to exist in nature, and in any event this does not aiter the fact that chdrge s
quantized; it merely reduces the size of the basic unit.
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charge as a kind of “jelly” that could be divided up into portions of any size and smeared
out at will.

These, then, are the basic properties of charge. Before we discuss the forces between
charges, some mathematical tools are necessary; their introduction will occupy us in Chap-
ter |.

Units

The subject of electrodynamics is plagued by competing systems of units, which sometimes
render it difficult for physicists to communicate with one another. The problem is far worse
than in mechanics, where Neanderthals still speak of pounds and feet; for in mechanics
at least all equations look the same, regardless of the units used to measure quantities.
Newton’s second law remains F = ma, whether it is feet-pounds-seconds, kilograms-

meters-seconds, or whatever. But this is not so in electromagnetism, where Coulomb’s law
may appear variously as

. . 1 .
qlqza (Gaussian), or - G142 (S,

1 q142 .
— 12z
22 ey 22

2 (HL).
Of the systems in common use, the two most popular are Gaussian (cgs) and SI (mks). Ele-
mentary particle theorists favor yet a third system: Heaviside-Lorentz. Although Gaussian
units offer distinct theoretical advantages, most undergraduate instructors seem to prefer
SI, I suppose because they incorporate the familiar household units (volts, amperes, and
watts). In this book, therefore, I have used SI units. Appendix C provides a “dictionary”
for converting the main results irito Gaussian units.






Chapter 1

Vector Analysis

1.1 Vector Algebra

1.1.1 Vector Operations

If you walk 4 miles due north and then 3 miles due east (Fig. 1.1), you will have gone a
total of 7 miles, but you're not 7 miles from where you set out-—you’re only 5. We need an
arithmetic to describe quantities like this, which evidently do not add in the ordinary way.
The reason they don’t, of course, is that displacements (straight line segments going from
one point to another) have direction as well as magnitude (length), and it is essential to
take both into account when you combine them. Such objects are called vectors: velocity,
acceleration, force and momentum are other examples. By contrast, quantities that have
magnitude but no direction are called scalars: examples include mass, charge, density,
and temperature. 1 shall use boldface (A, B, and so on) for vectors and ordinary type
for scalars. The magnitude of a vector A is written |A| or, more simply, A. In diagrams,
vectors are denoted by arrows: the length of the arrow is proportional to the magnitude of
the vector, and the arrowhead indicates its direction. Minus A (—A) is a vector with the

3 mi
————
A
A /
4. Smi -A
mi /

Figure 1.1 Figure 1.2
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same magnitude as A but of opposite direction (Fig. 1.2). Note that vectors have magnitude
and direction but not location: a displacement of 4 miles due north from Washington is
represented by the same vector as a displacement 4 miles north from Baltimore (neglecting,
of course, the curvaturé of the earth). On a tiagram, therefore, you can slide the arrow
around at will, as long as you don’t changé its length or direction.

We define four vector operations: addition and three kinds of multiplication.

(i) Addition of two vectors. Place the tail of B at the head of A the sum, A 4+ B, is
the vector from the tail of A to the head of B (Fig. 1.3). (This rule generalizes the obvious
procedure for combining two displacements.) Addition is commutative:

A4+B=B+A;

3 miles east followed by 4 miles north géts you to the same place as 4 miles north followed
by 3 mil ition i jati

A+B)+C=A+ B+ C).
To subtract a vector (Fig. 1.4), add its opposite:

A—-B=A4(-B).

—
-B
A (B+A)
(A+B)
A (A-B) A
B
Figure 1.3 Figure 1.4

(ii) Multiplication by a scalar. Multiplication of a vector by a positive scalar ¢ mul-
tiplies the magnitude but leaves the direction unchanged (Fig. 1.5). (If a is negative, the
direction is reversed.) Scaldr multiplication is distributive:

a(A + B) = aA + aB.
(iii) Dot product of two vectors. The dot product of two vectors is defined by
A-B= ABcosé, (1.1)

where 6 is the angle they form when placed tail-to-tail (Fig. 1.6). Note that A - B is itself a
scalar (hence the alternative name scalar product). The dot product is commutative,

A -B=B-A,
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4 A/
2A
A 0

Figure 1.5 Figure 1.6

Y

B

and distributive,
A-B4+C)=A-B+A-C. (1.2)

Geometrically, A - B is the product of A times the projection of B along A (or the product
of B times the projection of A along B). If the two vectors are parallel, then A - B = AB.
In particular, for any vector A,

A-A= A% (1.3)

If A and B are perpendicular, then A - B = 0,

Example 1.1

Let C = A — B (Fig. 1.7), and calculate the dot product of C with itself.

Solution:
C-C=(A-B)-A—-B=A-A-A-B-B-A+B-B,

or
C? =A%+ B2 - 2ABcosd.

This is the law of cosines.

(iv) Cross product of two vectors. The cross product of two vectors is defined by
A xB=ABsinén, (1.4)

where h is a unit vector (vector of length 1) pointing perpendicular to the plane of A and
B. (I shall use a hat (") to designate unit vectors.) Of course, there are two directions
perpendicular to any plane: “in” and “out.” The ambiguity is resolved by the right-hand
rule: let your fingers point in the direction of the first vector-and curl around (via the smaller
angle) toward the second; then your thumb indicates the direction of . (InFig. .8 A x B
points into the page; B x A points out of the page.)} Note that A x B is itself a vector (hence
the alternative name vector product). The cross product is distributive,

Ax (B+C)=(AxXB)+ A xC), (1.5)
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Figure 1.7 Figure 1.8

but not commutative. In fact,
(B xA)=—(A xB). (1.6)

Geometrically, |A x B is the area of the parallelogram generated by A and B (Fig. 1.8). If
two vectors are parallel, their cross product is zero. In particular,

AxA=0

for any vector A.

Problem 1.1 Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams, show that
the dot product and cross product are distributive,

a) when the three vectors are coplanar;

b) in the general case.
Problem 1.2 [s the cross product associative?
(AxB)x C=A x (B x C).

If so, prove it; if not, provide a counterexample.

1.1.2 Vector Algebra: Component Form

In the previous section I defined the four vector operations (addition, scalar multiplication,
dot product, and cross product) in “abstract” form—that is, without reference to any partic-
ular coordinate system. In practice, it is often easier to set up Cartesian coordinates x, y, z
and work with vector “components.” Let X, ¥, and Z be unit vectors parallel to the x, y, and
z axes, respectively (Fig. 1.9(a)). An arbitrary vector A can be expanded in terms of these
basis vectors (Fig. 1.9(b)):

A=AX+A¥+ AL
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Y

e b /AP

Figure 1.9

Ax )/ Sy
Y

The numbers Ay, Ay, and A_, are called components of A; geometrically, they are the

rojections of A along the three coordinate ax
vector operations as a rule for manipulating components:
n
p

A+B=(AX+ A,y + A;Z) + (BsX+ B,y + B;Z)

tt>
or
ety

= (Ax + Bx)ﬁ + (Ay + By)y + (Az + Bz)i-
(i) Rule: To add vectors, add like components.

aA = @AOX+ (@A) + (@A)2.

(ii) Rule: 7o multiply by a scalar, multiply each component.

Because X, ¥, and z are mutually perpendicular unit vectors,

X-X=y.y=z2-2=1, X-y=X-Z=y.2=0.
Accordingly,

A-B = (Axi + Ayy + Azi) ) (Bxf‘ + Byy + Bzi)
= A«Bi+ A By + A;B,.

(iit) Rule: To calculate the dot product, multiply like components, and add.

In particular,
A-A=A+ A+ 4

w
<

A= A2y A2 yal

(1.7)

(1.8)

(1.9)

(1.10)

(1.11)

(This is, if you like, the three-dimensional generalization of the Pythagorean theorem.) Note
that the dot product of A with any unir vector is the component of A along that direction

(thus A-R = A, A-§=A, andA 7= A4A,).
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Similarly,!
XXX= ¥yx¥ = Zxz=0,
XXy=-V¥xX = 1%,
YyxZ=-Zxy = X,
IXX=—-XX1Z y. (1.12)
Therefore,
AxB = (AX+ A+ AZ) x (BX+ By§+ B.7) (1.13)
= (AyB; — A;By)X + (A;By — A, B))Y + (A By, — Ay By)i.
This cumbersome expression can be written more neatly as a determinant:
(x5 ]
AxB=| Ay A, A |. (1.14)
‘ B, B, B,

(iv) Rule: 7o calculate the cross product, form the determinant whose first row is X, ¥, Z
whose second row is A (in component form), and whose third row is B.

El

Example 1.2

Find the angle between the face diagonals of a cube.

Solution: We might as well use a cube of side 1, and place it as shown in Fig. 1.10, with one
corner at the origin. The face diagonals A and B are

A:lﬁ-i—()ff—l—li; B:Of(-!—lff-!-]i.

Z

0,0,1),

B
0
A 0,1,0)
v
X1, 0,0)
Figure 1.10

I These signs pertain to a right-handed coordinate system (x-axis out of the page, v-axis to the right, z-axis up,
or any rotated version thereof). In a lefi-handed system (z-axis down) the signs are reversed: X x ¥ = —z, and so
on. We shall use right-handed systems exclusively.
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So, in component form,
A-B=1-0+4+0-1+1-1=1.

On the other hand, in “abstract” form,
A-B=ABcosf =+2v2cosf = 2cosh.

Therefore,

cos® =1/2, or 8§ =60°.
Of course, you can get the answer more easily by drawing in a diagonal across the top of the
cube, completing the equilateral triangle. But in cases where the geometry is not so simple,
this device of comparing the abstract and component forms of the dot product can be a very
efficient means of finding angles.

Problem 1.3 Find the angle between the body didgonals of a cube.

i
" - - A nAanto o A it vantae 12 svaseaae A e la
Problem 1.4 Use the cross pr oduct to find the cds iponents of the unit vector i perpenaicuiar
to the plane shown in Fig. 1.11.

1.1.3 Triple Products

Since the cross product of two vectors is itself a vector, it can be dotted or crossed with a

third vector to form a triple product.

(i) Scalar triple product: A - (B x C). Geometrically, |A - (B x C)| is the volume
of the parallelepiped generated by A, B, and C, since |B x C| is the area of the base, and

|A cos @] is the altitude (Fig. 1.12). Evidently,

A BxC)=B-(CxA)=C-(A xB), (1.15)

for they all correspond to the same figure. Note that “alphabetical” order is preserved—in
view of Eq. 1.6, the “nonalphabetical” triple products,

A-CxB)=B-(AxC)=C-(BxA),

—_———— e — —

.7 -/
// / _// /
N S A
A // / //
g // /’ //
H 7
¢ 2
B
Figure 1.11 Figure 1.12
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have the opposite sign. In component form,

Ac Ay A,
A-BxC)=| B, B, B, |. (1.16)
C. C, C,

Note that the dot and cross can be interchanged:
A-BxC)=(AxB)-C

(this follows immediately from Eq. 1.15); however, the placement of the parentheses is
critical: (A - B) x C is a meaningless expression—you can’t make a cross product from a

scalar and a vector,
(ii) Vector triple product: A x (B x C). The vector triple preduct can be simplified

Ax(BxC)=B(A-C)-C(A-B). (1.17)
Notice that
(AxB)xC=-Cx (AxB)=-AB -C)+B@A-C)

is an entirely different vector. Incidentally, all higher vector products can be similarly
reduced, often by repeated application of Eq. 1.17, so it is never necessary for an expression
to contain more than one cross product in any term. For instance,

(AxB). (CxD) = (A-C)(B-D)— (A -D)B-C):
Ax(Bx(CxD)) = BA - (CxD))— (A -B)(CxD). (1.18)

Problem 1.5 Prove the BAC-CAB rule by writing out both sides in component form.
Problem 1.6 Prove that
[AXBxC]+[Bx(CxA)]+[Cx(AxB)]=0.

Under what conditions does A x (B x C) = (A x B) x C?

1

The location of a point in three dimensions can be described by listing its Cartesian coor-
dinates (x, y, z). The vector to that point from the origin (Fig. 1.13) is called the position
vector:

=xX+yy+z12 (1.19)
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source point

\
field point

Figure 1.13 Figure 1.14

I'will reserve the letter r for this purpose, throughout the book. Its magnitude,

_—
[an—y
[\
o

S’

is the distance from the origin, and

. T X y z
g T _XXtyyvzz (1.21)

rooyxi4y24 22

is a unit vector pointing radially outward. The infinitesimal displacement vector, from
(x,y,0)to(x +dx,y+dy, z+dz),is

dl=dxx+dyy+dz1. (1.22)

(We could call this dr, since that’s what it is, but it is useful to reserve a special letter for
infinitesimal displacements.)

In electrodynamics one frequently encounters problems involving fwo points—typically,
a source point, r’, where an electric charge is located, and a field point, r, at which you
are calculating the electric or magnetic field (Fig. 1.14). It pays to adopt right from the start
some short-hand notation for the separation vector from the source point to the field point,
I shall use for this purpose the script letter 2:

a=r—-r. (1.23)
Its magnitude is

2=|r—r|, (1.24)
and a unit vector in the direction from r’ to r is

. A r—r
A= - =

r r—v|

(1.25)
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In Cartesian coordinates,

2= —xX)X+ - Y)¥+ (- 7)2, (1.26)
2= \/(x —xX2+ -y +—7)? (1.27)

5o XX+ =Y+ (-2 (1.28)
VE =52+ =)+~ 2)?

(from which you can begjn to appreciate the advantage of the script-z notation).

Problem 1.7 Find the separation vector 2 from the source point (2,8,7) to the field point (4,6,8).
Determine its magnitude (2), and construct the unit vector 2.

i.1.5 How Vectors Transform

The definition of a vector as “a quantity with a magnitude and direction” is not altogether
satisfactory: What precisely does “directjon” mean?? This may seem a pedantic question,
but we shall shortly encounter a species of derivative that looks rather like a vector, and
we’ll want to know for sure whether it is one. You might be inclined to say that a vector
is anything that has three components that combine properly under addition. Well, how
about this: We have a barrel of fruit that contains Ny pears, Ny apples, and N, bananas.
IsN = N.x + Ny§ + N.7 a vector? It has three components, and when you add another
barrel with M, pears, M, apples, and M, bananas the result is (N, + M x) pears, (Ny+ M)
apples, (N; + M) bananas. So it does add like a vector. Yet it’s obviously rnot a vector, in
the physicist’s sense of the word, because it doesn’t really have a direction. What exactly
is wrong with it?

The answer is that N does not transform properly when you change coordinates, The
coordinate frame we use to describe positions in space is of course entirely arbitrary, but
there is a specific geometrical transformation law for converting vector components from
one frame to another. Suppose, for instance, the X, ¥, Z system is rotated by angle ¢, relative
to x, y, z, about the common x = X axes. From Fig. 1.15,

Ay, = Acosé, A, = Asing,

while
_A_y = Acosf = Acos(@ — @) = A(cos @ cos ¢ + sin & sin ¢)
= COS¢A, +singA,,
A; = Asin® = Asin(f — ¢) = A(sin cos ¢ — cos 6 sin ¢)

—singA, +cospA,.

2This section can be skipped without loss of continuity.
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&~

[l

A
e I
el
y
Figure 1.15
We might express this conclusion in matrix notation:
(A _ [ cos¢ sing /AN

\A } \—sm¢> coq¢}\ } (1.29)

More generally, for rotation about an arbitrary axis in three dimensions, the transfor-
mation law takes the form

Ex Rxx ny RXZ AX
Ay | =1 Ryx Ry Ry, Ay |, (1.30)
A, Ry R;yy Ry A;

or, more compactly,

PN
[E—
aa
[a—

S’

=) RijA;,

Jrge
=1

L

where the index 1 stands for x, 2 for y, and 3 for z. The elements of the matrix R can be
ascertained, for a given rotation, by the same sort of geometrical arguments as we used for
a rotation about the x axis.

Now: Do the components of N transform in this way? Of course not—it doesn’t matter
what coordinates you use to represent positions in space, there is still the same number of
apples in the barrel. You can’t convert a pear into a banana by choosing a different set of
axes, but you can turn A, into Zy. Formally, then, a vector is any set of three components
that transforms in the same manner as a displacement when you change coordinates. As
always, displacement is the model for the behavior of all vectors.

By the way, a (second-rank) tensor is a quantity with nine components, Ty, Tyy, Ty:,
Ty, ..., T;,, which transforms with rwo factors of R:

ufxx = Rxx(RxxTxx + ny Txy + sz Trz)
+ny (Rxx Tyx + Rx_v Tyy + sz Tyz)
+ Rz (Rx Ty + Rx_szy + Ry Tz, ...
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or, more compactly,
3 3
Ty=)Y Y RuaRjTu. (1.32)
k=1 I=1

In general, an nth-rank tensor has n indices and 3” components, and transforms with »
factors of R. In this hierarchy, a vector is a tensor of rank 1, and a scalar is a tensor of rank
zero.,

Problem 1.8

(a) Prove that the t\ﬁoiﬁmensional rotation matrix {1.29) preserves dot products. (That is,
show that Ay By + A;B; = AyBy + A;B;.)

(b) What constraints must the elements (R; ;) of the three-dimensional rotation matrix (1.30)

satisfy in order to preserve the length of A (for all vectors A)?

Problem 1.9 Find the transformation matrix R that describes a rotation by 120° about an axis
from the origin through the point (1, 1, 1). The rotation is clockwise as you look down the
axis toward the origin.

Problem 1.10

(a) How do the components of a vector transform under a translation of coordinates (x = x,
y=y—a,z =z Fig. 1.16a)?

(b) How do the components of a vector transform under an inversion of coordinates (¥ = —x,
y=-y,7= -z Fg. 1.16b)?

(¢) How does the cross product (1.13) of two vectors transform under inversion? [The cross-
product of two vectors is properly called a pseudovector because of this “anomalous” be-
havior.] Is the cross product of two pseudovectors a vector, or a pseudovector? Name two
pseudovector quantities in classical mechanics.

(d) How does the scalar triple product of three vectors transform under inversions? (Such an
object is called a pseudoscalar.)

=i

'~

/ (a) v \Z (b)

Figure 1.16
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1.2 Differential Calculus

1.2.1 “Ordinary” Derivatives

Question: Suppose we have a function of one variable: f(x). What does the derivative,
df/dx, do forus? Answer: It tells us how rapidly the function f (x) varies when we change
the argument x by a tiny amount, dx:

d
df = (di) (1.33)

In words: If we change x by an amount dx, then f changes by an amount df’; the derivative
is the proportionality factor. For example, in Fig. 1.17(a), the function varies slowly with

x, and the derivative is correspondingly small. In Fig. 1.17(b), f increases rapidly with x,
and the derivative is large, as you move away from x = 0.
Geomerrical Interpretation: The derivative d f/dx is the slope of the graph of f versus x.

f f

(a) (b)

Figure 1,17

1.2.2 Gradient

Suppose, now, that we have a function of three variables—say, the temperature T (x, y, 7)
1n a room. (Start out in one corner, and set up a system of axes; then for each point (x, v, z)
in the room, T gives the temperature at that spot.) We want to generalize the notion of
“derivative” to functions like T, which depend not on o#ne but on three variables.

Now a derivative is supposed to tell us how fast the function varies, if we move a little
distance. But this time the situation is more complicated, because it depends on what
direction we move: If we go straight up, then the temperature will probably increase fairly
rapidly, but if we move horizontally, it may not change much at all. In fact, the question
“How fast does T vary?” has an infinite number of answers, one for each direction we
might choose to explore.

Fortunately, the problem is not as bad as it looks. A theorem on partial derivatives states

that
T aT
dT = (aT)dx-}—(a )dy+(——)dz. (1.34)
0x ay 0z
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This tells us how T changes when we alter all three variables by the infinitesimal amounts
dx,dy,dz. Notice that we do not require an infinite number of derivatives—rhree will
suffice: the partial derivatives along each of the three coordinate directions.

Equation 1.34 is reminiscent of a dot product:;

aT oT aT
dT = (—i+—i+—i)-(dxi+dy9+dzi)
0x oy a9z
= (VT) -, (1.35)

where
JTr . 9T, 9T,
VIi= —x+ —y+ —1Z (1.36)
ox oy a9z

is the gradient of T. VT is a vector quantity, with three components; it is the generalized

derivative we have been looking for. Equation 1.35 is the three-dimensional version of
Eq. 1.33.

Geometrical Interpretation of the Gradient: Like any vector, the gradient has magnitude
and direction. To determine its geometrical meaning, let’s rewrite the dot product (1.35) in

abstract form:
dT =VT .dl = |VT||dl|cos8, (1.37)

where 8 is the angle between VT and dl. Now, if we fix the magnitude |d1| and search
around in various directions (that is, vary ), the maximum change in T evidentally occurs
when 6 = 0 (for then cos# = 1). That is, for a fixed distance |dl], dT is greatest when |
move in the same direction as VT . Thus:

The gradient VT points in the direction of maximum increase of the function
T.

Moreover:

The magnitude |NT| gives the slope (rate of increase) along this maximal
direction.

Imagine you are standing on a hillside. Look all around you, and find the direction
of steepest ascent. That is the direction of the gradient. Now measure the slope in that
direction (rise over run). That is the magnitude of the gradient. (Here the function we’re
talking about is the height of the hill, and the coordinates it depends on are positions—
latitude and longitude, say. This function depends on only twe variables, not three, but the
geometrical meaning of the gradient is easier to grasp in two dimensions.) Notice from
Eq. 1.37 that the direction of maximum descent is opposite to the direction of maximum
ascent, while at right angles (¢ = 90°) the slope is zero (the gradient is perpendicular to
the contour lines). You can conceive of surfaces that do not have these properties, but they
always have “kinks” in them and correspond to nondifferentiable functions.

What would it mean for the gradient to vanish? If VT = 0 at (x, v, ), then dT = 0
for small displacements about the point (x, y, z). This is, then, a stationary point of the
function T'(x, y, z). It could be a maximum (a summit), a minimum (a valley), a saddle
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point (a pass), or a “shoulder” This is analogous to the situation for functions of one
variable, where a vanishing derivative signals a maximum, a minimum, or an inflection. In
particular, if you want to locate the extrema of a function of three variables, set its gradient

equal to zero.

Example 1.3

Find the gradient of r = /x2 + y2 + z2 (the magnitude of the position vector).

Solution;
v ar . dr N ar
= — — —Z
’ ox > "oy T3
1 2x 1 2y 2z N

22432422 2 /24,2422

xX+vV+z2

AR

~ | -
1
-5

Does this make sense? Well, it says that the distance from the origin increases most rapidly in
the radial direction, and that its rate of increase in that direction is 1. . . just what you’d expect.

Problem 1.11 Find the gradients of the following functions:
@ f,y, ) =x2+y3 424
(®) f(x.y,2) =22y 74

(©) f(x, ¥, 2) = " sin(y) In(z).

Problem 1.12 The height of a certain hill (in feet) is given by

hix,y) = 10Q2xy — 3x2 —4y? — 18x + 28y + 12),

where y is the distance (in miles) north, x the distance east of South Hadley.

(a) Where is the top of the hill located?
(b) How high is the hill?

(c) How steep is the slope (in feet per mile) at a point 1 mile north and one mile east of South

Hadley? In what direction is the slope steepest, at that point?

Problem 1.13 Let % be the separation vector from a fixed point (x’, ¥/, z') to the point (x, y, 7),

and let 2 be its length. Show that
(a) Y (2%) = 2a.
by V(1/2) = —4/22,

(c) What is the general formula for V (2)?
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Problem 1.14 Suppose that f is a function of two variables (y and z) only. Show that the
gradient V f = (3f/dv)§ + (8f/02)Z transforms as a vector under rotations, Eq. 1.29. [Hin:
@f/8Y) = (8f/3y)(dy/3Y) + (8f/32)(3z/87¥), and the analogous formula for af/0z. We
know that y = y cos¢ +zsin¢ and 7 = —y sin ¢ + z cos ¢; “solve” these equations for y and
z (as functions of ¥ and 7), and compute the needed derivatives dy /3y, dz/9Y, etc.]

1.2.3 The Operator V

The gradient has the formal appearance of a vector, V, “multiplying” a scalar T

] ) )
VT = (% y— +2— | T. 1.38
(xax +y8y +zaz) (1.38)

(For once 1 write the unit vectors to the left, just so no one will think this means 3X/dx, and
so on—which would be zero, since X is constant.) The term in parentheses is called “del’”:

d a )
V=%X—+V—+72—. 1.39
dox +y8y + 0z ( )

Of course, del is nor a vector, in the usuval sense. Indeed. it is without specific meaning until
we provide it with a function to act upon. Furthermore, it does not “multiply” T'; rather, it
is an instruction to differentiare what follows. To be precise, then, we should say that V is
a vector operator that acts upon T', not a vector that multiplies 7.

With this qualification, though, V mimics the behavior of an ordinary vector in virtually
every way; almost anything that can be done with other vectors can also be done with V., if
we merely translate “multiply” by “act upon.” So by all means take the vector appearance
of V seriously: it is a marvelous piece of notational simplification, as you will appreciate if
you ever consult Maxwell’s original work on electromagnetism, written without the benefit
of V.

Now an ordinary vector A can multiply in three ways:

1. Multiply a scalar a : Aa;

2. Multiply another vector B, via the dot product: A - B;

3. Multiply another vector via the cross product: A x B.
Correspondingly, there are three ways the operator V can act:

o T
\ i

_—

1. On a scalar function T : the gradient);
2. On a vector function v, via the dot product: V - v (the divergence),

3. On a vector function v, via the cross product: V x v (the curl).
We have already discussed the gradient. In the following sections we examine the other
two vector derivatives: divergence and curl.
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1.2.4 The Divergence

From the definition of V we construct the divergence:

v /ia+A’a+ia\( X + vy § + v,%)
v = o P — - (X +v v
Y dx yBy Bz} * yY T v
dvy dvy  dug
= . 1.40

Observe that the divergence of a vector function v is itself a scalar V - v. (You can’t have
the divergence of a scalar: that’s meaningless.)

Geometrical Interpretation:  The name divergence is well chosen, for Vv is ameasure
of how much the vector v spreads out (diverges) from the point in question. For example,

the vector function in Fig. 1.18a has a large (positive) divergence (if the arrows pointed in,
it would be a large negative divergence), the function in Fig. 1.18b has zero divergence, and
the function in Fig. 1.18c again has a positive divergence. (Please understand that v here is
a function—there’s a different vector associated with every point in space. In the diagrams,

(a) (b)

(c)

Figure 1.18
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of course, I can only draw the arrows at a few representative locations.) Imagine standing
at the edge of a pond. Sprinkle some sawdust or pine needles on the surface. If the material
spreads out, then you dropped it at a point of positive divergence; if it collects together,
you dropped it at a point of negative divergence. (The vector function v in this model is the
velocity of the water—this is a two-dimensional example, but it helps give one a “feel” for

what the divergence means. A point of positive divergence is a source, or “faucet’”; a point
of negative divergence is a sink, or “drain.”)

Example 1.4

Suppose the functions in Fig. 1.18 are v, = r = xX+ y¥ +zZ, vy = Z, and vo = zZ
Calcuiate their divergences.

Solution:

a ad a
Vivi=—@O+ -+ -@=1+1+1=3
ax ay az

As anticipated, this function has a positive divergence.

] 3 B
Vvpi=—0)+—0+—(1)=0+0+0=0,
ax ay az

as expected.

d 0

d
Vive=—O0)+ =0+ —@=0+0+1=1
dx dy 9z

Problem 1.15 Calculate the divergence of the following vector functions:
(a) Vg = 22 % + 3x2° § — 2xz .

(byvy, =xyx+2yzy +3zx 2.

(©) Ve =y2 &+ 2xy+ 22§+ 2vzi.

Problem 1.16 Sketch the vector function

r
V= —,
v
and compute its divergence. The answer may surprise you. . .can you explain it?

Problem 1.17 In two dimensions, show that the divergence transforms as a scalar under rota-
tions. [Hint: Use Eq. 1.29 to determine vy and ¥, and the method of Prob. 1.14 to calculate
the derivatives. Your aim is to show that vy /9y + 0v0;/9z = dvy /0y + v /8z.]
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1.2.5 The Curl

From the definition of V we construct the curl:

A ~ A

L x 3z |
Vxyvy = a/dx d/ay d/dz
Uy vy v,

L {0V, vy . 0uy Oy . 0vy  Ouy
= X|— - — _— — 2y ———}. 1.41
(8y 82)+y(8z 0x + dx dy (1.41)
Notice that the curl of a vector function v is, like any cross product, a vector, (You cannot

have the curl of a scalar; that’s meaningless.)
Geometrical Interpretation: The name curl is also well chosen, for V x v is a measure

ol how much the vector v “curls around” the point in question. Thus the three functions in
Fig. 1.18 all have zero curl (as you can easily check for yourself), whereas the functions
in Fig. 1.19 have a substantial curl, pointing in the z-direction, as the natural right-hand
rule would suggest. Imagine (again) you are standing at the edge of a pond. Float a small
paddlewheel (a cork with toothpicks pointing out radially would do); if it starts to rotate,
then you placed it at a point of nonzero curl. A whirlpool would be a region of large curl.

Z
Z
‘,:/ E \\\ -— - - - - o a— - -
s/ /
\ -—
Y @ / ®)
X
Figure 1.19
Example 1.5
Suppose the function sketched in Fig. 1.19a is v, = —yX + x¥, and that in Fig. 1.19b is
v;, = x¥. Calcuiate their curls.
Solution:
X ¥y z
VxXvg=| 8/0x 3/0y @8/dz | = 2%,
—y X 0
and
X ¥ zZ
Vxv,=|9/dx d/dy d/9z |=1.
0 X 0
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Asexpected, these curls pointin the 4z direction. (Incidentally, they both have zero divergence,
as you might guess from the pictures: nothing is “spreading out”. .. it just “curls around.”)

Problem 1.18 Calculate the curls of the vector functions in Prob. 1.15.

Problem 1.19 Construct a vector function that has zero divergence and zero curl everywhere. .
(A constant will do the job, of course, but make it something a little more interesting than
that!)

1.2.6 Product Rules

The calculation of ordinary derivatives is facilitated by a number of general rules, such as
the sum rule:

if £ L oYy = %_f 1 d_g
dx? T T dx T dx’
the rule for multiplying by a constant:
d df
L) = k=L
dx( D dx’

the product rule:
d _dg df
d—x(fg) = fg; te o
and the quotient rule: af y
. g
d (N _Eax T
dx\g/ &

Similar relations hold for the vector derivatives. Thus,
Vif+8)=Vf+Vg, V- A+B)=(V-A)+(V-B),
Vx(A+B) =(VxA)+(V xB),

and
Vkf)=kV, V - (kA) = k(V - A), V x (kA) = k(V x A),

as you can check for yourself. The product rules are not quite so simple. There are two
ways to construct a scalar as the product of two functions:

fg  (product of two scalar functions),
A -B  (dot product of two vector functions),

and two ways to make a vector:

fA  (scalar times vector),
A x B {cross product of two vectors),
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Accordingly, there are six product rules, two for gradients:

(®) V(fe)=fVg+gV/

(ii) VA-B)=Ax (VxB)+B x (VXA +(A-V)B+ (B V)A,
two for divergences:

(iii) V-(fA)=f(V-A) +A-(Vf),

{iv) V.- AxB)=B-(VxA)—A. (VxB),
and two for curls:

W) VX (fA)=f(VxA) —Ax(Vf),

i) VXx(AxB) =B -V)A—(A-V)BLA(V-B)—B(V-A).

You will be using these product rules so frequently that I have put them on the inside front
cover for easy reference. The proofs come straight from the product rule for ordinary
derivatives. For instance,

- d d d

V-(fA) = a(fo)-i-g;(fAy)‘l'a—z(fAz)
(Mg A (U AN (W, A
_(8xAx+f8x)+(8yAy+f8y)+(8zAZ+f8Z)

= (Vf)-A+ f(V-A).
It is also possible to formulate three quotient rules:

V(f_) _ 8Vf—fVg

= ——

8 8
o (A _ 8V-A-A (Vg
“\g) g |
Vx(é) _ g(VxA)+Ax(Vg)_
g g

However, since these can be obtained quickly from the corresponding product rules, I
haven’t bothered to put them on the inside front cover.
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Problem 1.20 Prove product rules (i), (iv), and (v).

Problem 1.21

(a) If A and B are two vector functions, what does the expression (A - V)B mean? (That is,
what are its x, y, and z components in terms of the Cartesian components of A, B, and V?)

(b) Compute (r - V)F, where T is the unit vector defined in Eq. 1.21.
{c) For the functions in Prob. 1.15, evaluate (v - V)v,,.

Problem 1.22 (For masochists only.) Prove product rules (ii) and (vi). Refer to Prob. 1.21 for
the definition of (A - V)B.

Problem 1.23 Derive the three quotient rules.

Problem 1.24
(a) Check product rule (iv) (by calculating each term separately) for the functions

A=xx+2vy+3z2; B=3yx—2x¥.

(b) Do the same for product rule (i1).

(c) The same for rule (vi).

1.2.7 Second Derivatives

The gradient, the divergence, and the curl are the only first derivatives we can make with
V. by applying V twice we can construct five species of second derivatives. The gradient
VT is a vector, so we can take the divergence and curl of it:

(1) Divergence of gradient: V - (VT).
(2) Curl of gradient: V x (VT).

The divergence V - v is a scalar—all we can do is take its gradient:
(3) Gradient of divergence: V(V - v).

The curl V x v is a vector, so we can take its divergence and curl:

(4) Divergence of curl: V - (V x v).
(5) Curl of curl: V x (V x V),

This exhausts the possibilities, and in fact not all of them give anything new. Let’s
consider them one at a time:

. 0 L0 .0 or, odaT, 9T,
(H V-V = (x—+y—+z-——)-(—x+ y+——z)

= o+ (1.42)
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This object, which we write V2T for short, is called the Laplacian of T; we shall be
studying it in great detail later on. Notice that the Laplacian of a scalar T is a scalar.
Occasionally, we shall speak of the Laplacian of a vector, V>v. By this we mean a vector
quantity whose x-component is the Laplacian of v,, and so on:>

V3V = (Vo)X + (V20,)¥ + (V20.)E. (1.43)

This is nothing more than a convenient extension of the meaning of V2,
(2) The curl of a gradient is always zero:

V x (VT) =0. (1.44)

This is an important fact, which we shall use repeatedly; you can easily prove it from the

\/ & [

QCH Sjims Vo, LA 1O Dewdre: Ou I11g A T 44 ODVIOU Yy 0C—1
just (V x V)T, and isn’t the cross product of any vector (in this case, V) with itself always
zero? This reasoning is suggestive but not quite conclusive, since V is an operator and does

not “multiply” in the usual way. The proof of Eq. 1.44, in fact, hinges on the equality of

cross derivatives:
9 [oT a (0T
—(=)=={(=). (1.45)
dx \ dy dy \ dx

If you think I'm being fussy, test your intuition on this one:
(VT) x (VS).

Is that always zero? (It would be, of course, if you replaced the V’s by an ordinary vector.)
(3) V(V -v) for some reason seldom occurs in physical applications, and it has not been
given any special name of its own—it’s just the gradient of the divergence. Notice that
V(V . v) is not the same as the Laplacian of a vector: Viy = (V- V)y #V(V .v)
(4) The divergence of a curl, like the curl of a gradient, is always zero:

V. (Vxv) =0 (1.46)

You can prove this for yourself. (Again, there is a fraudulent short-cut proof, using the
vector identity A - (B x C) = (A x B) - C))
(5) As you can check from the definition of V:

V x (VXV)=V(V.v)— V3. (1.47)

So curl-of-curl gives nothing new; the first term is just number (3) and the second is the
Laplacian (of a vector). (In fact, Eq. 1.47 is often used to define the Laplacian of a vector,
in preference to Eq. 1.43, which makes specific reference to Cartesian coordinates. )

Really, then, there are just two kinds of second derivatives: the Laplacian (which is
of fundamental importance) and the gradient-of-divergence (which we seldom encounter).

3In curvilinear coordinates, where the unit vectors themselves depend on position, they too must be differentiated
(see Sect. 1.4.1).
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We could go through a similar ritual to work out third derivatives, but fortunately second
derivatives suffice for practically all physical applications.

A final word on vector differential calculus: It a// flows from the operator V, and from
taking seriously its vector character. Even if you remembered only the definition of V, you

JEVRNERSR. § ]

should be able, in principle, to reconsiruct all the rest.

Problem 1.25 Calculate the Laplacian of the following functions:
(@) Ty = x% +2xy + 3744

(b) T, = sin x sin y sin 2.

T, = e™5% sin4y cos 3z.

(d)v=x2%+3xz?§—2xz%

Problem 1.26 Prove that the divergence of a curl is always zero. Check it for function v, in
Prob. 1.15.

Problem 1.27 Prove that the curl of a gradient is always zero. Check it for function (b) in
Prob. 1.11.

[.3 Integral Calculus

1.3.1 Line, Surface, and Volume Integrals

In electrodynamics we encounter several different kinds of integrals, among which the most
important are line (or path) integrals, surface integrals (or flux), and volume integrals.
(a) Line Integrals. A line integral is an expression of the form

b
f v-dl, (1.48)
aP

where v is a vector function, d1 is the infinitesimal displacement vector (Eq. 1.22), and the
integral is to be carried out along a prescribed path P from point a to point b (Fig. 1.20). If
the path in question forms a closed loop (that is, if b = a), I shall put a circle on the integral
sign:

fv -dl. (1.49)

At each point on the path we take the dot product of v (evaluated at that point) with the
displacement dl to the next point on the path. To a physicist, the most familiar example of
a line integral is the work done by a force F: W = [ F - dl.

Ordinarily, the value of a line integral depends critically on the particular path taken
from a to b, but there is an important special class of vector functions for which the line
integral is independent of the path, and is determined entirely by the end points. It will be
our business in due course to characterize this special class of vectors. (A force that has
this property is called conservative.)



1.3. INTEGRAL CALCULUS

dl

-

Figure 1.20

y

2 /Ib
(2/)// (i)

)
1 2
Figure 1.21
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Example 1.6

Calculate the line integral of the function v = y2 X +2x(y + 1) ¥ from the pointa = (1, 1, 0)
to the pointb = (2, 2, 0), along the paths (1) and (2) in Fig. 1.21. What is § v - d1 for the loop
that goes from a to b along (1) and returns to a along (2)?

Selution: As always, dl = dxX + dyy + dzz. Path (1) consists of two parts. Along the

“horizontal” segment dy = dz = 0, so

)dl=dx%k y=1,v-di=y dx =dx,so [v-dl = [Fdx =1

On the “vertical” stretch dx = dz =0, so

(i)dl=dyy, x =2, v-dl =2x(y + 1)dy = 4(y + 1) dy, so

Jv-di=4 3+ )ydy=10.
By path (1), then,

b
f v.dl=1+10=11
a

Meanwhile, on path (2) x = y, dx =dy, anddz =0, so

dl=dxX+dx¥, v-dl=x2dx +2x(x + dx = (3x2 + 2x) dx,

SO

b 2 2
f v-a’l=f (3x2+2x)dx:(x3+x2)]:]0,
a 1

(The strategy here is to get everything in terms of one variable; 1 could just as well have

eliminated x in favor of y.)

For the loop that goes out (1) and back (2), then,

jﬁv-dl:]l—~10=l.
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(b) Surface Integrals. A surface integral is an expression of the form

/V-da, (1.50)
S

where v is again some vector function, and da is an infinitesimai patch of area, with direction
perpendicular to the surface (Fig. 1.22). There are, of course, two directions perpendicular
to any surface, so the sign of a surface integral is intrinsically ambiguous. If the surface is
closed (forming a “balloon®), in which case I shall again put a circle on the integral sign

fv-da,

then tradition dictates that “outward” is posmve but for open surfaces it’s arbltrary Ifv

total mass per unit time passing through the surface—hence the alternatlve name, “ﬂux
Ordmarlly, the value of a surface 1ntegra1 depends on the pamcular surface chosen, but

T nen A grmaninl Alaco AF crantar Ainatinng far whirh 1 VT wt f tha quiefara an

U]CIC lb a DPCL«IGI clado O1 yvouiul lull\.«l.iUllD 10Ul Wllibll ll. lb Lllu }}CI CIH« vl Lllb SUr Las, aud
is determined entirely by the boundary line. We shall soon be in a position to characterize
this special class.

z (v) ..
o 4 i

~— —T
@ il (i)

Figure 1.22 Figure 1.23

Example 1.7

Calculate the surface integral of v = 2xz X+ (x +2) § + y(z® — 3) Z over five sides (excluding
the bottom) of the cubical box (side 2) in Fig. 1.23. Let “upward and outward” be the positive
direction, as indicated by the arrows.

Solution: Taking the sides one at a time:

(Yx =2, da=dydzx, v-da=2xzdydz =4zdydz, so

2 2
fv-da:4f dyf zdz = 16.
0 0

(i)x =0, da = —dydzX, v-da= —-2xzdydz =0, so

- /v-da:O,
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(ili)y=2, da=dxdzy, v-da=(x+2)dxdz, so
2 2
fv'da= (x—|—2)dx[ dz =12,
0 0
(iv)y =0, da=—dxdzy, v-da= —(x +2)dxdz, so

2 2
fv-da:—f(x+2)dxf dz =—12
0 0

WM z=2,da=dxdvz, v-alazy(z2 ~3)dxdy =ydxdy. so

2 2
fv-da:f dx[ ydy =4
0 0
—Bvidently the total liis—— — — 40— 2 — — — — — 00—

f v-da=164+04+12—-12+4=20.
surface

(c) Volume Integrals. A volume integral is an expression of the form

f T dr, (1.51)
)%
where T is a scalar function and dt is an infinitesimal volume element. In Cartesian
coordinates,

dt =dxdydz. (1.52)

For example, if T is the density of a substance (which might vary from point to point), then
the volume integral would give the total mass. Occasionally we shall encounter volume
integrals of vector functions:

fvdr :[(vxﬁ+v},y+vzi)dt =ﬁfvxdr+$f/vydr +ifvzdr; (1.53)

because the unit vectors are constants, they come outside the integral.

Example 1.8

Calculate the volume integral of T = xyzZ over the prism in Fig. 1.24.

Solution: You can do the three integrals in any order. Let’s do x first: it runs from O to (1 — y);
then y (it goes from 0 to 1); and finally z (O to 3):

3 s 1 r _l_y - Y
der=[ zz{f y[f xdedy}dz=
0 0 0

/ z dZ[ 1=y )161')’—2(‘9)(%)—§
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p—

Figure 1.24

Problem 1.28 Calculate the line integral of the function v = x2% + 2yz § + y* 2 from the
origin to the point (1,1,1) by three different routes:

(@) (0,0,0) > (1,0,0) —» (1, 1,0) — (1, 1, 1);
() ©0,0,00 - (0,0,1) = (0,1, 1) » (1, 1, I);
(c) The direct straight line.

(d) What is the line integral around the closed loop that goes out along path (a) and back along
path (b)?

Problem 1.29 Calculate the surface integral of the function in Ex. 1.7, over the bortom of the
box. For consistency, let “upward” be the positive direction. Does the surface integral depend
only on the boundary line for this function? What is the total flux over the closed surface of the
box (including the bottom)? [Note: For the closed surface the positive direction is “outward,”
and hence “down,” for the bottom face.]

2

Problem 1.30 Calculate the volume integral of the function T = z~ over the tetrahedron with

corners at (0,0,0), (1,0,0), (0,1,0), and (0,0,1).

1.3.2 The Fundamental Theorem of Calculus

Suppose f(x) is a function of one variable. The fundamental theorem of calculus states:

b df
Ydx = £b) = f(a). (1.54)
q dx
Tn raga thig Anagn’t lanl famailias lat’e wwrita 1t annthar 1wax
11 €asC Ulls QOCSI 1 100K 1dITHiidr, 160 5 WIILE 1L ditOuill wdy

b
f Fyds = fb) — f(@),

where df/dx = F(x). The fundamental theorem tells you how to integrate F(x): you
think up a function f(x) whose dérivative is equal to F.
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Geometrical Interpretation: According to Eq. 1.33, df = (df/dx)dx is the infinitesi-
mal change in f when you go from (x) to (x + dx). The fundamental theorem (1.54) says
that if you chop the interval from « to b (Fig. 1.25) into many tiny pieces, dx, and add up
the increments df from each little piece, the result is (not surprisingly) equal to the total
changein f: f(b)— f(a). In other words, there are two ways to determine the total change
in the function: either subtract the values at the ends or go step-by-step, adding up all the
tiny increments as you go. You’ll get the same answer either way.

Notice the basic format of the fundamental theorem: the integral of a derivative over
an interval is given by the value of the function at the end points (boundaries). In vector
calculus there are three species of derivative (gradient, divergence, and curl), and each has
its own “fundamental theorem,” with essentially the same format. I don’t plan to prove
these theorems here; rather, I shall explain what they mean, and try to make them plausible.

~ Proofs are given in Appendix A.

f(b)
fa)

Figure 1.25 Figure 1.26

1.3.3 The Fundamental Theorem for Gradients

Suppose we have a scalar function of three variables 7' (x, y, 7). Starting at point a, we
move a small distance dl; (Fig. 1.26). According to Eq. 1.37, the function T will change
by an amount

dT = (VT) - d,.

Now we move a little further, by an additional small displacement dly; the incremental
change in T will be (VT) - dl;. In this manner, proceeding by infinitesimal steps, we make
the journey to point b. At each step we compute the gradient of 7' (at that point) and dot it
into the displacement dL. . . this gives us the change in 7. Evidently the fotal change in T
in going from a to b along the path selected is

b
f (VT)-dl = T(b) — T(a).
P (1.55)
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This is called the fundamental theorem for gradients; like the “ordinary” fundamental
theorem, it says that the integral (here a line integral) of a derivative (here the gradient) is
given by the value of the function at the boundaries (a and b).

Geometrical Interpretation: Suppose you wanted to determine the height of the Eiffel
Tower. You could climb the stairs, using a ruler to measure the rise at each step, and adding
them all up (that’s the left side of Eq. 1.55), or you could place altimeters at the top and
the bottom, and subtract the two readings (that’s the right side); you should get the same
answer either way (that’s the fundamental theorem).

Incidentally, as we found in Ex. 1.6, line integrals ordinarily depend on the path taken
from a to b. But the right side of Eq. 1.55 makes no reference to the path—only to the
end points. Evidently, gradients have the special property that their line integrals are path

independent:

Corollary 1: fa}”'( VT) - dlis independent of path taken from a to b.

Corollary 2:  {(VT) - dl = 0, since the beginning and end points
are identical, and hence T (b) — 7'(a) = 0.

Example 1.9
Let T = xy?, and take point a to be the origin (0, 0. 0) and b the point (2, 1, 0). Check the
fundamental theorem for gradients.

Solution: Although the integral is independent of path, we must pick a specific path in order
to evaluate it. Let’s go out along the x axis (step 1) and then up (step 1i) (Fig. 1.27). As always,
dt=dxX+dy§+dzz; VT = y2% + 2xv§.

O y=0;, dl=dx%, VT dl=y2dx =0,s0
[VT-dl:O.
1

(i)x =2; dl=dyy, VT -dl =2xydy =4ydy, so

1
[VT-dlzf 4ydy:2y2
i 0

1

1
=2

0

Ay

1 T san b
%}(ii)
M |
2

1

.
-

X

’ Figure 1.27
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Evidently the total line integral is 2. Is this consistent with the fundamental theorem? Yes:
Th) —T@=2-0=2.

Now, just to convince you that the answer is independent of path, let me calculate the same
integral along path iii (the straight line from a to b):

(iil) y = %x, dy = %dx. VT -dl = y?2dx + 2xydy = %xz dx, so

2
fi“VT'dl:fo %xzdx=%x3

11

2
=2.

0

pointsa = (0, 0, 0), b = (1, 1, 1), and the three paths in Fig. 1.28:
() (0,0.0) - (1,0,0) = (1. 1,0y —> (1, 1. 1);
(b) (0,0.0) > (0,0,1) - (0, 1, 1) = (1, 1, 1);

(c) the parabolic path z = x2; y=x.

[
| ot ]

Figure 1.28

1.3.4 The Fundamental Theorem for Divergences

The fundamental theorem for divergences states that:

[(V.v\rf—r:&v.r’a
\' '}WD J ¥ L% 3 2
)

‘{z (1.56)

In honor, I suppose of its great importance, this theorem has at least three special names:
Gauss’s theorem, Green’s theorem, or, simply, the divergence theorem. Like the other
“fundamental theorems,” it says that the integral of a derivative (in this case the divergence)
over a region (in this case a volume) is equal to the value of the function at the boundary
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(in this case the surface that bounds the volume). Notice that the boundary term is itself
an integral (specifically, a surface integral). This is reasonable: the “boundary” of a line is
just two end points, but the boundary of a volume is a (closed) surface.

Geometrical Interpretation: 1f v represents the flow of an incompressible fluid, then
the flux of v (the right side of Eq. 1.56) is the total amount of fluid passing out through the
surface, per unit time. Now, the divergence measures the “spreading out” of the vectors
from a point—a place of high divergence is like a “faucet,” pouring out liquid. If we have
lots of faucets in a region filled with incompressible fluid, an equal amount of liquid will
be forced out through the boundaries of the region. In fact, there are two ways we could
determine how much is being produced: (a) we could count up all the faucets, recording
how much each puts out, or (b) we could go around the boundary, measuring the flow at
each point, and add it all up. You get the same answer either way:

j (faucets within the volume) = ¢ (flow out through the surface).

This, in essence, is what the divergence theorem says.

Example 1.10
Check the divergence theorem using the function
V=3 R+ Quy + D) F+ 202

and the unit cube situated at the origin (Fig. 1.29).

Solution: In this case
Vv =72x+y),

" 1 p1 pi
j2(x+y)dr:2f f f (x +v)dxdydz,
0o Jo JO

)%

and

1 | 1
[(X+y)dx:%+y, /(%+y)dy=1, f ldz =1.
0 0 0

z Tl(v) /(11)

-~ T
Ve

v
(vi)

Figure 1.29
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Evidently,

fV-vdt:Z.
)%

So much for the left side of the divergence theorem. To evaluate the surface integral we must
consider separately the six sides of the cube:

1 1
(1) fv-dazf f yzdydz=%.
0 Jo .

1 1
(i) fv-da:—f f yzdydz=—%.
0 Jo
1 1
(1i1) fV-da:f / (2x—|—z2)dxdzz%_
0 JO .
1 1
@iv) fv-daz—f f zzdxdzz—%.
0 J0 )

~~~
~—’

1 1
(vi) fv'daz—f f 0dxdy =0.
0 Jo

So the total flux is:

|—

+14+0=2,

8/

S,
-
o9
%)
I
Wl—
|
1=
+
Wl

as expected.

Problem 1.32 Test the divergence theorem for the function v = (xy) X + (2vz) ¥ + 3zx) Z.
Take as your volume the cube shown in Fig. 1.30, with sides of length 2.
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[\

\?

Figure 1.30

1.3.5 The Fundamental Theorem for Curls

The fundamental theorem for curls, which goes by the special name of Stokes’ theorem,
states that

"

j (va)-da:ﬁv-dl.

S P (1.57)

As always, the integral of a derivative (here, the curl) over a region (here, a patch of surface)
is equal to the value of the function at the boundary (here, the perimeter of the patch). As
in the case of the divergence theorem, the boundary term is itself an integral—specifically,
a closed line integral.

Geometrical Interpretation: Recall that the curl measures the “twist” of the vectors v: a
region of high curl is a whirlpool—if you put a tiny paddle wheel there, it will rotate. Now,
the integral of the curl over some strface (or, more precisely, the flux of the curl through
that surface) represents the “total amount of swirl.” and we can determine that swirl just as
well by going around the edge and finding how much the flow is following the boundary
(Fig. 1.31). You may find this a rather forced interpretation of Stokes’ theorem, but it’s a
helpful mnemonic, if nothing else.

You might have noticed an apparent ambiguity in Stokes’ theoremi: concerning the
boundary line integral, which way are we supposed to go around (clockwise or counter-
clockwise)? If we go the “wrong” way we’ll pick up an overall sign error. The answer is
that it doesn’t matfter which way you go as long as you are consistent, for there is a com-
pensating sign ambiguity in the surface integtal: Which way does da point? For a closed
surface (as in the divergence theorem) da points in the direction of the outward normal: but
for an open surface, which way is “out?” Consistency in Stokes’ theorem (as in all such
matters) is given by the right-Hand rule: If your fingers point in the direction of the line
integral, then your thumb fixes the direction of da (Fig. 1.32). :

Now, there are plenty of surfaces (infinitely many) that share any given boundary line.
Twist a paper clip into a loop and dip it in soapy water. The soap film constitutes a surface,
with the wire loop as its boundary. If you blow on it, the soap film will expand, making
a larger surface, with the same boundary. Ordinarily, a flux integral depends critically on
what surface you integrate over, but evidently this is not the case with curls. For Stokes’

»
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da

~ dl

Figure 1.31 Figure 1.32

theorem says that [(V x v) - da is equal to the line integral of v around the boundary, and

Corollary 1:  [(V x v) - da depends only on the boundary line, not
on the particular surface used.

Corollary 2:  {(V x v) - da = 0 for any closed surface, since the
boundary line, like the mouth of a balloon, shrinks
down to a point, and hence the right side of Eq. 1.57
vanishes.

These corollaries are analogous to those for the gradient theorem. We shall develop the
parallel further in due course.

Example 1.11

Suppose v = (2xz + 3 yz)jf + (4yz2)i. Check Stokes’ theorem for the square surface shown
in Fig. 1.33.

Solution: Here

VX v=(@4zZ -20)%+2z2 and da=dydzx.

WY Adi)

x a Loy

Figure 1.33
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(In saying that 4a points in the x direction, we are committing ourselves to a counterclockwise
Iine integral. We could as well write da = —dy dz %, but then we would be obliged to go
clockwise.) Since x = O for this surface,

Jf(VXV)-da:J()IJ{)14zzdydz= 3

Now, what about the line integral? We must break this up into four segments:
(i) x=0, z=0, v-dl=3ydy, [v-dl=[)3¥dy=1,
(i) x=0, y=1 v-di=42dz, [v-dl=[fl42dz=1%

(i) x=0, z=1, v.-dl=3y*dy, [v-dl=[03y2dy=—1,

(v) x=0. y=0, v-dl=0, Jv-ar=fl0dz=0.

n
@]

It checks.

A point of strategy: notice how I handled step (iii). There is a temptation to write dl = —dy §
here, since the path goes to the left. You can get away with this, if you insist, by running the
integral from 0 — 1. Personally, I prefer to say dl = dx X + dy§ + dz 7 always (never any
minus signs) and let the limits of the integral take care of the direction.

Problem 1.33 Test Stokes’ theorem for the function v = (xy) € + (2yz) ¥ + (3zx) Z, using the
triangular shaded area of Fig. 1.34.

Problem 1.34 Check Corollary | by using the same function and boundary line as in Ex. 1.11,
but integrating over the five sides of the cube in Fig. 1.35. The back of the cube is open.

oy 4
1
| V| T
(i) 1 | 1 ’
X/ 4
Vb

Figure 1.34 Figure 1.35
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1.3.6 Integration by Parts

The technique known (awkwardly) as integration by parts exploits the product rule for

dertvatives:
o (98 4 o ()
dtg I\d)"'g\dx}

Integrating both sides, and invoking the fundamental theorem:

j —(fg)dx—fg‘zZfabf(;i—i)dwr/abg(z—i)dx,

or

b dg B b df b
J{; f (E)dx__,li g(a)dx-f—fg!a (1.58)

That’s integration by parts. It pertains to the situation in which you are called upon to
integrate the product of one function ( f) and the derivative of another (g); it says you can

Yt R AL DAL [SEVLU LT § Lol &2

rransfer the derivative from g to f, at the cost of a minus sign and a boundary term.

Example 1.12
Evaluate the integral

x0
f xe Ydx.
0

Solution: The exponential can be expressed as a derivative:

et = % (—e™%};

in this case, then, f(x) = x, g(x) = —e ¥, and df/dx = 1, so
o0 X0 »
f xe tdx = f e Ydx —xe ¥
0 0

We can exploit the product rules of vector calculus, together with the appropriate fun-
damental theorems, in exactly the same way. For example, integrating

o0
= —¢€

0

V-(fA=f(V-A+A(V])
over a volume, and invoking the divergence theorem, yields
]V-(fA)a’r =[f(V-A)dr+fA- (Vfdr :%fA-a’a,

or

ff(V-A)dt:—fA-(Vf)dr-f—%fA-a'a. (1.59)
1% 1% S
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Here again the integrand is the product of one function ( f) and the derivative (in this case
the divergence) of another (A), and integration by parts licenses us to transfer the derivative
from A to f (where it becomes a gradient), at the cost of a minus sign and a boundary term
(in this case a surface integral).

You might wonder how often one is likely counter an integ

of one function and the derivative of another; the answer is surprisingly often, and integration
by parts turns out to be one of the most powerful tools in vector calculus.

Problem 1.35
(a) Show that
ff(VxA)-da:f[Ax(Vf)]-daJrffA.dl. (1.60)
S S P
(b) Show that
r r r
j B-(VxA)dr:/A-(VxB)dr+jb(AxB)-da. (1.61)
4% 4% S

1.4 Cuarvilinear Coordinates

1.4.1 Spherical Polar Coordinates

The spherical polar coordinates (r, 6, ¢) of a point P are defined in Fig. 1.36; r is the
distance from the origin (the magnitude of the position vector), # (the angle down from the
z axis) is called the polar angle, and ¢ (the angle around from the x axis) is the azimuthal
angle. Their relation to Cartesian coordinates (x, y, z) can be read from the figure:

X = rsin6 cos ¢, y=rsinfsing, z=rcosé. (1.62)

Figure 1.36

-
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Figure 1.36 also shows three unit vectors, £, 8, d; pointing in the ditection of increase
of the corresponding coordinates. They constitute an orthogonal (mutually perpendicular)
basis set (just like X, ¥, z), and any vector A can be expressed in terms of them in the usual
way:

A=A+ A6+ A, (1.63)

A;, Ag, and Ay are the radial, polar, and azimuthal components of A. In terms of the
Cartesian unit vectors,

I = sinfcos¢pX+sinfdsingy+ coso z,
@ = cos@cospX+cosfsingy — sind z, (1.64)
cf: = —singX-+cosey,

as you can easily check for yourself (Prob. 1.37). I have put these formulas inside the back
cover, for easy reference.

But there is a poisonous snake lurking here that I'd bétter warn you about: ¥, 6, and ¢
are associated with a particular point P, and they thange direction as P moves around. For
example, I always points radially outward, but “radially outward” can be the x direction,
the y direction, or any other direction, depending on where you are. In Fig. 1.37, A = § and
B = —¥, and yet both of them would be written as t in spherical cootdinates. One could
take account of this by explicitly indicating the point of reference: £(0, ¢), 8(8, ¢), $(9, P),
but this would be cumbersome, and as long as you are alert to the problem I don’t think it
will cause difficulties.* In particular, do not naively combihe the spherical components of
vectors associated with different points (in Fig. 1.37, A+~B =0, not 2r,and A - B = —1,
not +1). Beware of differentiating a vector that is expressed in spherical coordinates, since
the unit vectors themselves are functions of position (Br / 30 = 6, for example). And do
not take 1, @, and ¢ outside an integral, as we did with X, y, and Z in Eq. 1.53. In general,
if you’re uncertain about the validity of an operation, reexpress the problem in Cartesian
coordinates, where this difficulty dees not arise.

Figure 1.37

41 claimed on the very first page that vectors have no location, and I'll stand by that. The vectors themselves
iive “out there,” completely independent of our choice of coordinates. But the notation we use to represent them
does depend on the point in question, in curvilinear coordinates.
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An infinitesimal displacement in the r direction is simply dr (Fig. 1.38a), just as an
infinitesimal element of length in the x direction is dx:

dl, = dr. (1.65)

On the other hand, an infinitesimal element of length in the 8 direction (Fig. 1.38b) is not
just d@ (that’s an angle—it doesn’t even have the right units for a length), but rather r dé:

dly = rdo. (1.66)
Similarly, an infinitesimal element of length in the d; direction (Fig. 1.38c¢) is r sin 0 d¢:

dly = rsingde. (1.67)

dl=drt+rdo@+rsindde. (1.68)

This plays the role (in line integrals, for example) that dl = dx X + dy § + dz z played in
Cartesian coordinates.

ar rsinQ do
r r de 3 r
, a0 0
rsin®
(a)

(b) (c)

Figure 1.38

The infinitesimal volume element dt, in spherical coordinates, is the product of the
three infinitesimal displacements:

dt =dl, dlgdly =r*sin0drdodg. (1.69)

I cannot give you a general expression for surface elements da, since these depend on the
orientation of the surface. You simply have to analyze the geometry for any given case (this
goes for Cartesian and curvilinear coordinates alike). If you are integrating over the surface

of a thprp for Instanpp then r is constant, whereas 8 and ¢ change (E‘ig 1. 39) o

day = dlgdiy® = r’sin0do det.

On the other hand, if the surface lies in the xy plane, say, so that ¢ is constant (to wit: 7 /2)
while r and ¢ vary, then . .
day =dl, dly§ =rdrd¢é.

»
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Figure 1.39

Notice, finally, that r ranges from 0 to oo, ¢ from 0 to 27, and 9 from O to 7 (not
2m—that would count every point twice).s

Example 1.13

Find the volume of a sphere of radius R.

R kit 2
V = fdr:/ f f 2 sin0 dr dé dg
r=0Jo=0Jp=0
R o 2
(/ 2 a’r) (f sing dt?) (/ dd))
0 0 0

— (R;) @)2m) = 37 R,

Solution:

(Not a big surprise.)

So far we have talked only about the geometry of spherical coordinates. Now I would
like to “translate” the vector derivatives (gradient, divergence, curl, and Laplacian) into r,
&, ¢ notation. In principle this is entirely straightforward: in the case of the gradient,

T, 9T, AT,

VT = — — —1Z,
ax Ty T 5

for instance, we would first use the chain rule to reexpress the partials:

T 3T [or LT (98 LT (99
dx  dr \9x 06 \ dx dp \ox /]
5 Alternatively, you could run ¢ from 0 to 7 (the “eastern hemisphere”) and cover the “western hemisphere” by
extending ¢ from s up to 27. But this is very bad notation, since, among other things, sin # will then run negative,

and you’ll have to put absolute value signs around that term in volume and surface elements {area and volume
being intrinsically positive quantities).
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The terms in parentheses could he worked out from Eq. 1.62—or rather, the inverse of
those equations (Prob. 1.36). Then we’d do the same for 7 /9y and 87 /dz. Finally, we'd
substitute in the formulas for X, §, and z in terms of r, 8, and 43 (Prob. 1.37). It would take
an hour to ﬁgure out the gradient in spherica] coordinates by this brute-force method. I

O J— [ PR PR B g A & Y Alen At ot

Suppose this is how it was first uuuc Uut there is a much more efficient indirect appu)auh
explained in Appendix A, which has the extra advantage of treating all coordinate systems
at once. I described the “straightforward” method only to show you that there is nothing
subtle or mysterious about transforming to spherical coordinates: you're expressing the
same quantity (gradient, divergence, or whatever) in different notation, that’s all.

Here, then, are the vector derivatives in spherical coordinates:

Gradient: 9T . 18T 1 a7
vr=2"p - Zgy " g (1.70)
or r 06 rsiné d¢
Divergence:
vy ld 2 9 b e 1.71
"Ean T e S T Soine ae D
Curl:
1 a 81)9 N l 1 avr a
v = o (80 0Vp) — ——- rlsing 8¢  or f
*v rsin g I:BQ (sin Ovy) 3¢:|r r [sm@ d¢ 0 ( %)]
1] 9 v, | A
1 _ % a 1.72
+ [a (rvg) 30 ]41 (1.72)
Laplacian:
19 (0T 19 oT )
vir o 20 (20T 2 {sinp’l - - 1.73
r2 or (r Br) * r2sin @ 00 (Sm 89) - r2sin? @ 3¢? (173

For reference, these formulas are listed inside the front cover.

Prgblem 1.36 Find formulas for r, 8, ¢ in terms of x, y, z (the inverse, in other words, of

Eq. 1.62).

Problem 1.37 Express the unit vectors T, 6, ¢ in terms of %, §, & (that is, derive Eq. 1.64).
? A A 7 A7 oA

Check your answers several ways (T-t=1,8-¢=01rx0=4¢,...). Alsowork out the

inverse formulas, giving X, ¥, Z in terms of £, &, ¢ (and 8, d)).

Problem 1.38

a) Check the divergence theorem for the function vi = r2F, using as your volume the sphere
Jid 1 gasy p

of radius R, centered at the origin.

b) Do the same for vo = (1/ rz)f'. (If the answer surprises you, look back at Prob. 1.16.)

h ]
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z
b4
X ™
- ™~ ) 7
Y
R
x X
Figure 1.40 Figure 1.41
g of the function

v={(rcost 4+ (r sinG)é + (rsinf cos ) §.

Check the divergence theorem for this function, using as your volume the inverted hemispher-
ical bowl of radius R, resting on the xy plane and centered at the origin (Fig. 1.40).

Problem 1.40 Compute the gradient and Laplacian of the function T = r(cos 6 + sin 8 cos ¢).
Check the Laplacian by converting T to Cartesian coordinates and using Eq. 1.42. Test the
gradient theorem for this function, using the path shown in Fig. .41, from (0, 0, 0) to (0, 0, 2).

1.4.2 Cylindrical Coordinates

The cylindrical coordinates (s, ¢, z) of a point P are defined in Fig. 1.42. Notice that ¢
has the same meaning as in spherical coordinates, and z is the same as Cartesian; s is the
distance to P from the z axis, whereas the spherical coordinate r is the distance from the
origin. The relation to Cartesian coordinates is

X =s5cC08¢, y=ssin¢, z=2z. (1.74)

The unit vectors (Prob. 1.41) are

§ = cos¢pX+sing¥y,
¢ = —singX+cosey, i (1.75)
i = i

The infinitesimal displacements are

dly =ds, dly=sd¢, dl,=dz, (1.76)
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™ - i <
hl// )’
X

SO

dl=ds§+sdop +dz i,

and the voiume eiement is

dt = sds de dz.

The range of s is 0 — oo, ¢ goes from 0 — 27, and z from —o0 to oc.
The vector derivatives in cylindrical coordinates are:

Gradient:

oT , 19T ~ 9T ,

VI =—§+-——o¢+ —

as s d¢p a9z
Divergence:

19 1dv ov

Vove= o)+ -2 + .

sd s 0¢ 0z

Curl:

These formulas are also listed inside the front cover,

(1.77)

(1.78)

(1.79)

(1.80)

(1.81)

(1.82)

Problem 1.41 Express the cylindrical unit vectors §, (f), Z in terms of X, ¥, Z (that is, derive

Eq. 1.75). “Invert” your formulas to get X, ¥, Z in terms of §, ¢, Z (and ¢).

.
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2
, y e l .
r'q N
x Y
Figure 1.43 Figure 1.44
Problem 1.42
(a) Find the divergence of the function
v = .s(2+sin2¢):+ssin¢cos¢) 43+3z zZ.

(b) Test the divergence theorem for this function, using the quarter-cylinder (radius 2, height
5) shown in Fig. 1.43.

(c) Find the curl of v.

1.5 The Dirac Delta Function

1.5.1 The Divergence of /12

Consider the vector function .
r
Atevery location, v is directed radially outward (Fig. 1.44); if ever there was a function that

ought to have a large positive divergence, this is it. And yet, when you actually calculate
the divergence (using Eq. 1.71), you get precisely zero:

1 d 1 1 a
Viv=—=—[rPS)==—(=0. 1.84
VT 2y (r r2) r23r( ) (1.84)
(You will have encountered this paradox already, if you worked Prob. 1.16.) The plot
thickens if you apply the divergence theorem to this function. Suppose we integrate over a
sphere of radius R, centered at the origin (Prob. 1.38b): the surface integral is

fv.da = f(%f)-(stinedﬂdq’)f')
7 2
= ([ sinede) ([ d¢)=4n. (1.85)
0 0
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But the volume integral, f V - vdr, is zero, if we are really to believe Eq. 1.84. Does this
mean that the divergence theorem is false? What’s going on here?

The source of the problem is the point r = 0, where v blows up (and where, in Eq. 1.84,
we have unwittingly divided by zero). It 1s quite true that V - v = 0 everywhere except
the origin, but right at the origin the situation is more complicated. Notice that the surface
integral (1.85) is independent of R; if the divergence theorem is right (and it is), we should
get [(V -v)dt = 4 for any sphere centered at the origin, no matter how small. Evidently
the entire contribution must be coming from the point r = 0! Thus, V - v has the bizarre
property that it vanishes everywhere except at one point, and yet its infegral (over any
volume containing that point) is 4. No ordinary function behaves like that. (On the other
hand, a physical example does come to mind: the density (mass per unit volume) of a point
particle. It’s zero except at the exact location of the particle, and yet its infegral 1s finite—
namely, the mass of the particle.) What we have stumbled on is a mathematical object

known to physicists as the Dirac delta function. It arises in many branches of theoretical
phys1cs Moreover, the spemﬁc problem at hand (the divergence of the function #/r2)is not

QLG Lol 3 1dut, vl

So it is worthwhlle to pause here and study the Dlrac delta functlon w1th some care.

1.5.2 The One-Dimensional Dirac Delta Function

The one dimensional Dirac delta function, §(x), can be pictured as an infinitely high,
infinitesimally narrow “spike,” with area 1 (Fig. 1.45). That is to say:

] o, itx #0
5(x)—l o, ifx—0 } (1.86)
and oo

j s(x)dx = 1. (1.87)

Technically, §(x) is not a function at all, since its value is not finite at x = 0. In the
mathematical literature it is known as a generalized function, or distribution. It is, if you

Figure 1.45
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2 ’//—RZ(X) 2 TZ(X)
rRi(x) 1
! / - T
—-1/2-1/4 /4 172 x -1 -1/2 172 1 x
(a) (b)
Figure 1.46

1/n, or 1sosceles trlangles Ta(x), of helght n and base 2/n (F1g ] 46)
If f(x) is some “ordinary” function (that is, not another delta function—in fact, just
S

to be on the safe side let’s say that f(x) is continuous), then the product f(x)8(x) is zero

(S T L4 AV L6 L why L

everywhere except at x = 0. It follows that

F(x)(x) = f0)8(x). (1.88)

(This is the most important fact about the delta function, so make sure you understand why
itis true: since the product is zero anyway except at x = 0, we may as well replace f(x)
by the value it assumes at the origin.) In particular

oo o0
f FO)8(x)dx = f(O)/ §(x)dx = £(0). (1.89)
Under an integral, then, the delta function “picks out” the value of f(x) at x = 0. (Here
and below, the integral need not run from —oo to 4-00; it is sufficient that the d main extend

across the delta function, and —e¢ to 4+-¢ would do as well.)
Of course, we can shift the spike from x = 0 to some other point, x = a (Fig. 1.47):
00, ifx=a ©

5(x—a)={ 0. ifx#£a }with foo S(x —a)dx = 1. (1.90)

Equation 1.88 becomes
Jx)(x —a) = f(a)d(x —a), (1.91)
and Eq. 1.89 generalizes to

[oo f(x)8(x —a)dx = f(a). (1.92)

Example 1.14

Evaluate the integral

3
f A8 (x — Ddx.
0
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o(x —a)

~—Areal

a X

Figure 1.47

Solution: The delta function picks out the value of x> at the point x = 2, so the integral is
23 = 8. Notice, however, that if the upper limit had been 1 (instead of 3) the answer would be
0, because the spike would then be outside the domain of integration.

Although § itself is not a legitimate function, infegrals over § are perfectly acceptable.
In fact, it’s best to think of the delta function as something that is always intended for use
under an integral sign. In particular, two expressions involving delta functions (say, D (x)
and D, (x)) are considered equal if 6

[ f(x)D1(X)dX=/ f(x)D2(x)dx, (1.93)

for all (“ordinary”) functions f(x).

Example 1.15
Show that

dkx) = “i—la(x), (1.94)

where k is any (nonzero) constant. (In particular, §(—x) = §(x).)
Solution:  For an arbitrary test function f(x), consider the integral
oS
f f(x)kx)ydx.
—00

Changing variables, we let y = kx, so that x = y/k, and dx = 1/kdy. If k is positive, the
integration still runs from —co to 400, but if k is negative, then x = oo implies y = —oo, and

OThis is not as arbitrary as it may sound. The crucial point is that the integrals must be equal for any f(x).
Suppose D (x) and D7 (x) actually differed, say, in the neighborhood of the point x = 17. Then we could pick a
function f(x) that was sharply peaked about x = 17, and the integrals would not be equal.
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vice versa, so the order of the limits is reversed. Restoring the “proper” order costs a minus
sign. Thus

o0 & dy 1 1
f Jo)dkxydx = i[ JO/y) = =27 f0) = —f(0).
e C Kk k|

(The lower signs apply when k is negative, and we account for this neatly by putting absolute
value bars around the final k, as indicated.) Under the integral sign, then, §(kx) serves the
same purpose as (1/|k)d(x):

f_oo fx)kx)ydx = f_oo f(x) [mcS(x)] dx.

According to criterion 1.93, therefore, 8 (kx) and (1/]k|)8(x) are equal.

Problem 1.43 Evaluate the following integrals:

6
(@) f3(3x% —2x — 1)8(x — 3)dx.

(b) fi) cosx 8(x —m)dx.

(©) f03 x38(x + 1) dx.

(d) f70, In(x +3)8(x + 2) dx.

Problem 1.44 Evaluate the following integrals:
@) [2,(2x +3)8(3x) dx.

(0) (x> +3x +2) (1 — x) dx.

© f1, 9x28(3x + 1) dx.

(d) filoo d(x —b)dx.
Problem 1.45
(a) Show that
d
X e (8(x)) = —b(x).
X
[Hint: Use integration by parts.]
(b) Let #(x) be the step function:

1, ifx >0
8(x) = . (1.95)
0, ifx <0

Show that d6/dx = §(x).
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1.5.3 The Three-Dimensional Delta Function
It is an easy matter to generalize the delta function to three dimensions:

83(r) = 8(x)8(y)8(2). (1.96)
(As always, r = x X+ y ¥ + z Z is the position vector, extending from the origin to the point

(x,v,2)). This three-dimensional delta function is zero everywhere except at (0, 0, 0),
where it blows up. Its volume integral is 1:

f 83(r)dr:[ [ f 8(x)8(y)8(z)dxdydz=1. (1.97)
all space —o0 J—o0 J—00

And, generalizing Eq. 1.92,

f(m&(r—a)dr = f(a). (1.98)

j all space

As in the one-dimensional case, integration with § picks out the value of the function f at
the location of the spike.

We are now in a position to resolve the paradox introduced in Sect. 1.5.1. As you will
recall, we found that the divergence of +/r? is zero everywhere except at the origin, and
yet its integral over any volume containing the origin is a constant (to wit: 4 ). These are
precisely the defining conditions for the Dirac delta function; evidently

v (5 2 ansdm). (1.99)
\r=/
More generally,
% 3
V|5 ) =478, (1.100)
"2

where, as always, 2 is the separation vector: 2 = r — r’. Note that differentiation here is
with respect to r, while r’ is held constant. Incidentally, since

v(l)- —i (1.101)
\z/ 2°

(Prob. 1.13), it follows that

213
V2o = 478 (a). (1.102)
2
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Example 1.16

Evaluate the integral

sonN

.2 r
J_jv(r +2)V-(r—2) dr,

where V is a sphere of radius R centered at the origin.

Solution 1: Use Eq. 1.99 to rewrite the divergence, and Eq. 1.98 to do the integral:

J = / (r? +2)4n83(rydr = 47 (0 +2) = 8.
%

This one-line solution demonstrates something of the power and beauty of the delta function,
but I would like to show you a second method, which is much more cumbersome but serves to
illustrate the method of integration by parts, Sect. 1.3.6.

Solution 2: Using Eq. 1.59, we transfer the derivative from £/r? to (r2 4 2):

A

J:—f%-[V(r2+2)]dt+¢(r2+2)%-da‘
r r

The gradient is
V{r? +2) =i,

s0 the volume integral becomes
2 2 5 . R >
—dr:f—r sinf@drdf d¢p = 8n rdr =47 R”.
r r 0
Meanwhile, on the boundary of the sphere (where r = R),
da = R?sin0dé do T,
so the surface integral becomes
f(R2 +2)sinfd0d¢ = dn (R +2).
Putting it all together, then,

J = —4n R? + 47T(R2 1+ 2) = 8=,

as before.
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Problem 1.46

(a) Write an expression for the electric charge density p(r) of a point charge g at r’. Make

4 2l

sure ihat the volume mLegrdL of [ Cqulb q.

(b) What is the charge density of an electric dipole, consisting of a point charge —g at the
origin and a point charge +¢ at a?

{c) What is the charge density of a uniform, infinitesimally thin spherical shell of radius R and
total charge Q, centered at the origin? [Beware: the integral over all space must equal Q.]

Problem 1.47 Evaluate the following integrals:

(ay f all space (FrFr-af 02)5?(1. —aydrt, where a is a fixed vector and a is its magnitude.
(b fy, Ir —b|*83(51r) dt, where V is a cube of side 2, centered on the origin, and b = 4§ + 3 z.

(¢) fv(r4 + r2(r ey + c4)53(r — ¢)drt, where V is a sphere of radius 6 about the origin,
¢ =5X+3¥ + 2%, and c is its magnitude.

(d) fr-(d - )8 (e —r)dr, whered = (1.2,3),e = (3.2, 1), and V is a sphere of radius
1.5 centered at (2, 2, 2).

Problem 1.48 Evaluate the integral

J:fe_r(v%)dt
% r

(where V is a sphere of radius R, centered at the origin) by two different methods, as in Ex. 1.16.

1.6 The Theory of Vector Fields

1.6.1 The Helmholtz Theorem

Ever since Faraday, the laws of electricity and magnetism have been expressed in terms of
electric and magnetic fields, E and B. Like many physical laws, these are most compactly
exor rocond A'FF' renti 1ol arvintiang Qinman B anAd B nven vantnme tha AsfFnenntinl amiiatinnge
CXPressea as airic LCLILEclL C\.lu.allUllD DILIVE Ly dllud P alc Veoiury, ic UlllClCllLlal C\.luallUllD
naturally involve vector derivatives: dlvergence and curl. Indeed, Maxwell reduced the
entire theory to four equations, specifying respectively the divergence and the curl of E and

B

7Strictly speaking, this is only true in the static case; in general, the divergence and curl are given in terms of
time derivatives of the fields themselves.
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Maxwell’s formulation raises an important mathematical question: To what extent is a
vector function determined by its divergence and curl? In other words, if I tell you that the
divergence of F (which stands for E or B, as the case may be) is a specified (scalar) function
D,

V.-F=D,

and the curl of F is a specified (vector) function C,
VxF=C,
(for consistency, C must be divergenceless,

V.C=0,

because the divergence of a curl is always zero), can you then determine the function F?

Well. ... not quite. For example, as you may have discovered in Prob. 1.19, there are
many functions whose divergence and curl are both zero everywhere—the trivial case F = 0,
of course, butalsoF = yzX+zx §+xy 2, F = sin x cosh y X—cos x sinh y §, etc. To solve
a differential equation you must also be supplied with appropriate boundary conditions.
In electrodynamlcs we typically require that the fields go to zero “at infinity” (far away
from all charges).® With that extra information the Helmholtz theorem guarantees that the
field is uniquely determined by its divergence and curl. (A proof of the Helmholtz theorem
is given in Appendix B.)

1.6.2 Potentials

If the curl of a vector field (F) vanishes (everywhere), then F can be written as the gradient
of a scalar potential (V):
VxF=0«<—=F=-VV, (1.103)

(The minus sign is purely conventional.) That’s the essential burden of the following
theorem:

Theorem 1:  Curl-less (or “irrotational”) fields. The following con-
ditions are equivalent (that is, F satisfies one if and only
if it satisfies all the others):

(a) V x F = 0 everywhere.

(b) fab F . dl is independent of path, for any given end
points.

(¢) § F - dl = 0 for any closed loop.

(d) F is the gradient of some scalar, F = -V V.

81n some textbook problems the charge itself extends to infinity (we speak, for instance, of the electric field of
an infinite plane, or the magnetic field of an infinite wire). In such cases the normal boundary conditions do not
apply, and one must invoke symmetry arguments to determine the fields uniquely.
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The scalar potential is not unique-—any constant can be added to V with impunity, since
this will not affect its gradient.

If the divergence of a vector field (F) vanishes (everywhere), then F can be expressed
as the curl of a vector potential (A):

V- F=0<<=F=V xA. (1.104)

That’s the main conclusion of the following theorem:

Theorem 2: Divergence-less (or “solenoidal”) fields. The following
conditions are equivalent:
(a) V - F = O everywhere.

(b) [ F-daisindependent of surface, for any given bound-
ary line.

(c) ¢ F - da = 0 for any closed surface.

(d) F is the curl of some vector, F =V x A,

The vector potential is not unique—the gradient of any scalar function can be added to A
without affecting the curl, since the curl of a gradient is zero.

You should by now be able to prove all the connections in these theorems, save for
the ones that say (a), (b), or (c) implies (d). Those are more subtle, and will come later.
Incidentally, in all cases (whatever its curl and divergence may be) a vector field F can be
written as the gradient of a scalar plus the curl of a vector:

F=-VV +V xA (always). (1.105)

Problem 1.49

(a) Let F{ = x2Z and F> = xX + y § + z 2. Calculate the divergence and curl of F; and F.
Which one can be written as the gradient of a scalar? Find a scalar potential that does the job.
Which one can be written as the curl of a vector? Find a suitable vector potential.

(b) Show that F3 = yzX + zx ¥ + xy Z can be written both as the gradient of a scalar and as
the curl of a vector. Find scalar and vector potentials for this function.

Problem 1.50 For Theorem 1 show that (d) = (a), (a) = {(c), (¢} = (b), (b) = (c), and
(€)= (a).

Problem 1.51 For Theorem 2 show that (d) = (a), (a) = (c¢), (¢} = (b), (b) = (c), and
(¢} = (a).
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Problem 1.52

(a) Which of the vectors in Problem 1.15 can be expressed as the gradient of a scalar? Find a
scalar function that does the job.

(b) Which can be expressed as the curl of a vector? Fi

1

More Problems on Chapter 1

Problem 1.53 Check the divergence theorem for the function

v=r2cosd i+ r’ cospd — r? cosd sinc,bé;,

surface. [Answer: 4 /4]

the entire

Problem 1.54 Check Stokes’ theorem using the function v = ay £4-bx ¥ (@ and b are constants)
and the circular path of radius R, centered at the origin in the xy plane. [Answer: 7 Rz(b —a)]

Problem 1.55 Compute the line integral of
V=6%+y29+ By +2)2

along the triangular path shown in Fig. 1.49. Check your answer using Stokes’ theorem.
[Answer: 8/3]

Problem 1.56 Compute the line integral of
v= (rcos2 Hr — (rcosf sin@)é + 3r43
around the path shown in Fig. 1.50 (the points are labeled by their Cartesian coordinates). Do

it either in cylindrical or in spherical coordinates. Check your answer, using Stokes’ theorem.
[Answer: 37 /2]

Figure 1.48 Figure 1.49 Figure 1.50
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L/ ——"02a,0) ¥
X,/(a,0,0)

Figure 1.51 Figure 1.52

Problem 1.57 Check Stokes’ theorem for the function v = y Z, using the triangular surface
shown in Fig. 1.51. [Answer: a?]

Problem 1.58 Check the divergence theorem for the function
2 ~ 2 a 2., ry
v=r-sinfr+4r-cosf0 +r-tanb ¢,

using the volume of the “ice-cream cone” shown in Fig. 1.52 (the top surface is spherical, with
radius R and centered at the origin). [Answer: (7w R*/12)(27 + 3+/3)]
Problem 1.59 Here are two cute checks of the fundamental theorems:

(a) Combine Corollary 2 to the gradient theorem with Stokes’ theorem (v = VT, in this case).
Show that the result is consistent with what you already knew about second derivatives.

(b) Combine Corollary 2 to Stokes’ theorem with the divergence theorem. Show that the result
is consistent with what you already knew.

Problem 1.60 Although the gradient, divergence, and curl theorems are the fundamental in-

tegral theorems of vector calculus, it is possible to derive a number of corollaries from them.
Show that:

(a)fV(VT)dt = 555 T da. [Hint: Let v = ¢T, where ¢ is a constant, in the divergence
theorem; use the product rules.]

(b) fV(V X V)dtr = — 955 v x da. [Hini: Replace v by (v x ¢) in the divergence theorem.]

() fv[TVZU +(VT)-(VU)ldr = 995(TVU)- da. [Hint: Letv = TVU in the divergence
theorem. |

d) fV(TVZU - UVZT) dr = fS(TVU —UVT). da. [Comment: Thisisknown as Green’s
theorem:; it follows from (c), which is sometimes called Green’s identity.]

(e) fS VT xda=— 5573 T dl. [Hint: Let v = ¢T in Stokes’ theorem.]
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. Problem 1.61 The integral
a= f da (1.106)
S
is sometimes called the vector area of the surface S. If S happens to be flat, then |a| is the
ordinary (scalar) area, obviously.
(a) Find the vector area of a hemispherical bow] of radius R.
(b) Show that a = 0 for any closed surface. [Hint: Use Prob. 1.60a.]
(c) Show that a is the same for all surfaces sharing the same boundary.
(d) Show that

a= %jﬁrxdl, (1.107)

A e o > o o
g1d ) Ard 1 One

where integ . he boundas > e W4 do S drav e
subtended by the loop at the origin. Divide the conical surface up into infinitesimal triangu-
lar wedges, each with vertex at the origin and opposite side dl, and exploit the geometrical
interpretation of the cross product (Fig. 1.8).]

(e) Show that

j£(c-r)dl:axc, (1.108)
for any constant vector ¢. [Hint: let T = ¢ - r in Prob. 1.60e.]
. Problem 1.62
(a) Find the divergence of the function
r
vV=-.
¥

First compute it directly, as in Eq. 1.84. Test your result using the divergence theorem, as in
Eq. 1.85. TIs there a delta function at the origin, as there was for /72?7 What is the general
formula for the divergence of 77 [Answer: V - (r"F) = (n + 2)r" ! unless n = —2, in
which case it is 47763 (n)]

(b) Find the curl of r"¢. Test your conclusion using Prob. 1.60b. [Answer: V x (r"$) = 0]




Chapter 2

Electrostatics
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2.1.1 Introduction

The fundamental problem electromagnetic theory hopes to solve is this (Fig. 2.1): We have
some electric charges, g1, g2, g3, . . . (call them source charges); what force do they exert
on another charge, Q (call it the test charge)? The positions of the source charges are given
(as functions of time); the trajectory of the test particle is to be calculated. In general, both
the source charges and the test charge are in motion.

The solution to this problem is facilitated by the principle of superposition, which states
that the interaction between any two charges is completely unaffected by the presence of
others. This means that to determine the force on Q, we can first compute the force F;, due
to g; alone (ignoring all the others); then we compute the force F,, due to g2 alone; and so
on. Finally, we take thé vector sum of all these individual forces: F = F; + Fo +F3 4. ..
Thus, if we can find the force on Q due to a single source charge g, we are, In principle,
done (the rest is just a question of repeating the same operation over and over, and adding
it all up).!

Well, at first sight this sounds very easy: Why don’t I just write down the formula for
the force on Q due to ¢, and be done with it? I could, and in Chapter 10 I shall, but you
would be shocked to see it at this stage, for not only does the force on () depend on the
separation distance » between the charges (Fig. 2.2), it also depends on both their velocities
and on the acceleration of g. Moreover, it is not the position, velocity, and acceleration
of g right now that matter: Electromagnetic “news” travels at the speed of light, so what
concerns ( is the position, velocity, and acceleration g had at some earlier time, when the
message left.

"The principle of superposition may seem “obvious” to you, but it did not Aave to be so simple: if the electromag-
netic force were proportional to the square of the total source charge, for instance, the principle of superposition
would not hold, since (g; + q2)2 # ql2 + q% (there would be “cross terms” to consider). Superposition is not a
logical necessity, but an experimental fact.

58
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. *Q
q,*
q1® * . /' Q
. *4; %
"Source" charges "Test" charge q
Figure 2.1 Figure 2.2

q7’) is easy to state, it does not pay to confront it head on; rather, we shall go at it by
stages. In the meantime, the theory we develop will perm1t the solution of more subtle
alartramaonoatios nrahlame that A o m_
CICCUOHIagniuc prooicins tnat ao not PIesein LllClllelVCb lll Lil.ult: this blIIllJlt: 1ormat. 10
begin with, we shall consider the special case of electrostatics in which all the source

charges are stationary (though the test charge may be moving).

R I o T =V - upapry RSy S 4 ¢l PO,

2.1.2 Coulomb’s Law

What is the force on a test charge Q due to a single point charge ¢ which is at resr a distance
2 away? The answer (based on experiments) is given by Coulomb’s law:

1 qQA

F =
4meq 42

(2.1)

The constant € is called the permitivity of free space. In SI units, where force is in
Newtons (N), distance in meters (m), and charge in coulombs (C),

C2
€ =8.85x 10772 ——.
N-m
In words, the force is proportional to the product of the charges and inversely proportional

to the square of the separation distance. As always (Sect. 1.1.4), 2 is the separation vector
from r’ (the location of ¢) to r (the location of Q):

!
—r — - 9 7
A=r-—1r; (2.2)

2 is its magnitude, and 2 is its direction. The force points along the line from ¢ to Q; it is
repulsive if g and Q have the same sign, and attractive if their signs are opposite.

Coulomb’s law and the principle of superposition constitute the physical input for
electrostatics—the rest, except for some special properties of matter, is mathematical elab-
oration of these fundamental rules.
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Problem 2.1

(a) Twelve equal charges, ¢, are situated at the corners of a regular 12-sided polygon (for
instance, one on ecach numeral of a clock face). What is the net force on a test charge  at the
center?

(b) Suppose one of the 12 g’s is removed (the one at “6 o’clock™). What is the force on Q7
Explain your reasoning carefully.

(c) Now 13 equal charges, g, are placed at the corners of a regular 13-sided polygon. What is
the force on a test charge Q at the center?

(d) If one of the 13 ¢’s is removed, what is the force on Q7 Explain your reasoning.

2.1.3 The Electric Field

If we have several point charges g,

- e a

force on Q is evidently

1 N .
F = Fi+F,+...= %414—%424—...
dmeg \ 21 25
Y (61141 N I EL% )
- 2 2 2 ’
drey 2 2y 23
or
F = QE, (2.3)
where
1 4i.
Emr = —X;. 2.4
()= =3 T (24)

E is called the electric field of the source charges. Notice that it is a function of position (r),
because the separation vectors 4; depend on the location of the field point P (Fig. 2.3). But
it makes no reference to the test charge Q. The electric field is a vector quantity that varies

Source point

Figure 2.3
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from point to point and is determined by the configuration of source charges; physically,
E(r) is the force per unit charge that would be exerted on a test charge, if you were to place
one at P.

What exactly is an electric field? I have deliberately begun with what you might call
the “minimal” interpretation of E, as an intermediate step in the calculation of electric
forces. But T encourage you to think of the field as a “real” physical entity, filling the
space in the neighborhood of any electric charge. Maxwell himself came to believe that
electric and magnetic fields represented actual stresses and strains in an invisible primordial
jellylike “ether.” Special relativity has forced us to abandon the notion of ether, and with it
Maxwell’s mechanical interpretation of electromagnetic fields. (It is even possible, though
cumbersome, to formulate classical electrodynamics as an “action-at-a-distance” theory,
and dispense with the field concept altogether.) I can’t tell you, then, what a field is—only

»

Problem 2.2

(a) Find the electric field (magnitude and direction) a distance z above the midpoint between
two equal charges, g, a distance d apart (Fig. 2.4). Check that your result is consistent with
what you’d expect when z > d.

(b) Repeat part (a), only this time make the right-hand charge —g instead of +¢.

P (a) Continuous
distribution
7 da’ 2 o P
g d2 | dn q (c) Surface charge, G (d) Volume charge, p
Figure 2.4 Figure 2.5

2.1.4 Continuous Charge Distributions

Our definition of the electric field (Eq. 2.4), assumes that the source of the field is a collection
of discrete point charges ¢;. If, instead, the charge is distributed continuously over some
region, the sum becomes an integral (Fig. 2.5a):

1 1.
Ery= — f —%dq. (2.5)
4meg 2
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If the charge is spread out along a line (Fig. 2.5b), with charge-per-unit-length X, then
dg = X’ dl' (where dl’ is an element of length along the line); if the charge is smeared
out over a surface (Fig. 2.5¢), with charge-per-unit-area o, then dg = o da’ (where da’
is an element of area on the surface); and if the charge fills a volume (Fig. 2.5d), with

[ PSR Alat aerd ~F o

fex A 1.
\W“CIC o L lb an CICmeiit 01 voiu

ALA..A.A PR A -—

Clial ge-pred= ulllL'VUlulHC p, LllCll uq‘ — p L

cama ).
lilC}.

dq — rdl' ~oda ~ pdt’.

Thus the electric field of a line charge is

1 A(T') .
E(r) = [ (2) dl’; (2.6)
dreq 2
P
for a surface charge,
o 1 [o( r’) 5 dd ;
E(r) = ada’: (2.7)
47(60
and for a volume charge,
E(r) = / (2.8)
4men

1%

Equation 2.8 itself is often referred to as “Coulomb’s law,” because it is such a short
step from the original (2.1), and because a volume charge is in a sense the most general
and realistic case. Please note carefully the meaning of 4 in these formulas. Originally, in
Eq. 2.4, 2; stood for the vector from the source charge ¢; to the field pointr. Correspondingly,
in Egs. 2.5-2.8, 2 is the vector from dg (therefore from dl’, da’, or dt’) to the field point

r’

Example 2.1
Find the electric field a distance z above the midpoint of a straight line segment of length 2L,
which carries a uniform line charge A (Fig. 2.6).

Solution: It is advantageous to chop the line up into symmetrically placed pairs (at £x), for
then the horizontal components of the two fields cancel, and the net field of the pair is

JE — 2 1 /adx\ 05
= —— | COSU Z,
" 4dmen k 22 ) ©

z Warning: The unit vector 2 is not constant; its direction depends on the source point r’, and hence it cannot be
taken outside the integrals 2.5-2.8. 1n practice, you must work with Cartesian components (X, ¥, Z are constant,
and do come out), even if you use curvilinear coordinates to perform the integration.
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2
dx
-L —x +L x
Figure 2.6

Here cos6 = z/2,2 = v/'z2 + x2, and x runs from O to L:

e 1 fL 25z J

— X
dmeg Jo (22 +x2)3/2

L

2 x
T dmey | 2/2 4 42
1 21L

47[60 Z‘/22+L2’

0

and it aims in the z-direction.
For points far from the line (z 3> L), this result simplifies:
. 1 2xL
= e 2
which makes sense: From far away the line “looks™ like a point charge g = 2) L, so the field

reduces to that of point charge g /(4egz?). In the limit L — oo, on the other hand, we obtain
the field of an infinite straight wire:

I 2x
E= —
471’6() Z
or, more generally,
I 2x
E= —, (2.9)
dmeq s

where s is the distance from the wire.

Problem 2.3 Find the electric field a distance z above one end of a straight line segment of
length L (Fig. 2.7), which carries a uniform line charge A. Check that your formula is consistent
with what you would expect for the case z > L.
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Figure 2.7 Figure 2.8 Figure 2.9

Problem 2.4 Find the electric field a distance z above the center of a square loop (side a)
carrying uniform line charge 2 (Fig. 2.8). [Hint: Use the result of Ex. 2.1.]

Problem 2.5 Find the electric field a distance z above the center of a circular loop of radius r
(Fig. 2.9), which carries a uniform line charge .

Problem 2.6 Find the electric field a distance z above the center of a flat circular disk of radius
R (Fig. 2.10), which carries a uniform surface charge . What does your formula give in the
limit R — o0? Also check the case z 3> R.

Problem 2.7 Find the electric field a distance z from the center of a spherical surface of radius
R (Fig. 2.11), which carries a uniform charge density o. Treat the case z < R (inside) as well
as z > R (outside). Express your answers in terms of the total charge ¢ on the sphere. [Hinz:
Use the law of cosines to write 2 in terms of R and 6. Be sure to take the positive square root:

VR4 72 _2R;=(R—7)if R >z, butit’s(z — R)if R < z.]

m 2.8 Use your result in Prob. 2.7 to find the field inside and outside a sphere of radius
R, which carries a uniform volume charge density p. Express your answers in terms of the
total charge of the sphere, ¢. Draw a graph of |E| as a function of the distance from the center.

Figure2.10 Figure 2.11
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2.2 Divergence and Curl of Electrostatic Fields

2.2.1 Field Lines, Flux, and Gauss’s Law

In principle, we are done with the subject of electrostatics. Equation 2.8 tells us how to
compute the field of a charge distribution, and Eq. 2.3 tells us what the force on a charge Q
placed in this field will be. Unfortunately, as you may have discovered in working Prob. 2.7,
the integrals involved in computing E can be formidable, even for reasonably simple charge
distributions. Much of the rest of electrostatics is devoted to assembling a bag of tools and
tricks for avoiding these integrals. It all begins with the divergence and curl of E. 1 shall
calculate the divergence of E directly from Eq. 2.8, in Sect. 2.2.2, but first [ want to show
you a more qualitative, and perhaps more illuminating, intuitive approach.

origin:

1 .
Er = —L¢. (2.10)

To get a “feel” for this field, I might sketch a few representative vectors, as in Fig. 2.12a.
Because the field falls off like 1/72, the vectors get shorter as you go farther away from the
origin; they always point radially outward. But there is a nicer way to represent this field,
and that’s to connect up the arrows, to form field lines (Fig. 2.12b). You might think that I
have thereby thrown away information about the strength of the field, which was contained
in the length of the arrows. But actually I have not. The magnitude of the field is indicated
by the density of the field lines: it’s strong near the center where the field lines are close
together, and weak farther out, where they are relatively far apart.

In truth, the field-line diagram is deceptive, when I draw it on a two-dimensional surface,
for the density of lines passing through a circle of radius r is the total number divided by the
circumference (n/27r), which goes like (1/7), not (1/r%). But if you imagine the model in
three dimensions (a pincushion with needles sticking out in all directions), then the density
of lines is the total number divided by the area of the sphere (n/477?), which does go like

(1/r%).

v @ (b)

Figure 2.12
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NN

Equal but opposite charges

Figure 2,13

Such diagrams are also convenient for representing more complicated fields. Of course,
the number of lines you draw depends on how energetic you are (and how sharp your pencil
is), though you ought to inciude enough to get an accurate sense of the field, and you must
be consistent: If charge g gets 8 lines, then 2g deserves 16. And you must space them
fairly—they emanate from a point charge symmetrically in all directions. Field lines begin
on positive charges and end on negative ones; they cannot simply terminate in midair, though
they may extend out to infinity. Moreover, field lines can never cross—at the intersection,
the field would have two different ditections at once! With all this in mind, it is easy to
sketch the field of any simple configuration of point charges: Begin by drawing the lines
in the neighborhood of each charge, and then connect them up or extend them to infinity
(Figs. 2.13 and 2.14).

NN

Equal charges

Figure 2,14



2.2. DIVERGENCE AND CURL OF ELECTROSTATIC FIELDS 67

Figure 2.15

In this model the flux of E through a surface S,
dp = [ E.da. 2.11)
Js

ts a measure of the “number of field lines” passing through S. I put this in quotes because of
course we can only draw a representative sample of the field lines—the roral number would
be infinite. But for a given sampling rate the flux is proportional to the number of lines
drawn, because the field strength, remember, is proportional to the density of field lines
(the number per unit area), and hence E - da is proportional to the number of lines passing
through the infinitesimal area da. (The dot product picks out the component of da along
the direction of E, as indicated in Fig. 2.15. It is only the area in the plane perpendicular
to E that we have in mind when we say that the density of field lines is the number per unit
area.)

This suggests that the flux through any closed surface is a measure of the total charge
inside. For the field lines that originate on a positive charge must either pass out through
the surface or else terminate on a negative charge inside (Fig. 2.16a). On the other hand, a
charge outside the surface will contribute nothing to the total flux, since its field lines pass
1n one side and out the other (Fig. 2.16b). This is the essence of Gauss’s law. Now let’s

make it quantitative.

(b)

Figure 2.16
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In the case of a point charge ¢ at the origin, the flux of E through a sphere of radius r is

%E-da:[ : (if)-(rzsinededcpf): L, (2.12)
dmey \r2 )
Notice that the radius of the sphere cancels out, for while the surface area goes up as r2, the
field goes down as 1/r?, and so the product is constant. In terms of the field-line picture, this
makes good sense, since the same number of field lines passes through any sphere centered
at the origin, regardless of its size. In fact, it didn’t have to be a sphere—any closed surface,
whatever its shape, would trap the same number of field lines. Evidently the flux through
any surface enclosing the charge is g /€.

Now suppose that instead of a single charge at the origin, we have a bunch of charges
scattered about. According to the principle of superposition, the total field is the (vector)

- sumof all the individual fietds:
E= ZE,‘.
i=1

The flux through a surface that encloses them all, then, is

%E@:é(%ﬁzf.da)zg(%q;).

For any closed surface, then,

|

3£E-da: ~ Oene, (2.13)
€0

S

where Qenc is the total charge enclosed within the surface. This is the quantitative state-
ment of Gauss’s law. Although it contains no information that was not already present in
Coulomb’s law and the principle of superposition, it is of almost magical power, as you will
see in Sect. 2.2.3. Notice that it all hinges on the 1/r2 character of Coulomb’s law; without
that the crucial canceliation of the #’s in Eq. 2.12 would not take place, and the total flux
of E would depend on the surface chosen, not merely on the total charge enclosed. Other
1/r? forces (I am thinking particularly of Newton’s law of universal gravitation) will obey
“Gauss’s laws” of their own, and the applications we develop here carry over directly.

As it stands, Gauss’s law is an integral equation, but we can readily turn it into a
differential one, by applying the divergence theorem:

<£E-da= /(V-E)dr.

J

S Vv

Rewriting Qenc in terms of the charge density p, we have

Qen(::fpdf-
VvV
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f(VE)dr:f(ﬁ) dr.
€0
V V

And since this hoids for any volume, the integrands must be equai:

So Gauss's law becomes

1
V.E= —p. (2.14)
€0

Equation 2.14 carries the same message as Eq. 2.13; it is Gauss’s law in differential
form. The differential version is tidier, but the integral form has the advantage in that it
accommodates point, line, and surface charges more naturally.

Problem 2.9 Suppose the electric field in some region is found to be E = kr>f, in spherical
coordinates (k is some constant),

{(a) Find the charge density p.

(b) Find the total charge contained in a sphere of radius R, centered at the origin. (Do it two
different ways.)

Problem 2.10 A charge g sits at the back corner of a cube, as shown in Fig. 2.17. What is the
flux of E through the shaded side?

Figure 2.17

2.2.2 The Divergence of E

Let’s go back, now, and calculate the divergence of E directly from Eq. 2.8:

A

1 )
E(r):% [ ;fp(r/)dr'. (2.15)

all space

(Originally the integration was over the volume occupied by the charge, but I may as
well extend it to all space, since p = 0 in the exterior region anyway.) Noting that the
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r-dependence is contained in2 = r — r’, we have

: .
V.E= ]v- 2oy ar
dmeg 22

This is precisely the divergence we calculated in Eq. 1.100:

V. (%) = dn 83 ().

Thus

= f4n83(r —1prhydr = i,o(r), (2.16)
47‘[60 €0

vhich is Gauss’s law in differential form (214 To recoverthe intests

run the previous argument in reverse—integrate over a volume and apply
theorem:

the divergence

€0

{ { I r 1

jV-EdT:‘?E'da:_ pdr:_Qenc.
€0

1% S v

2.2.3 Applications of Gauss’s Law

I must interrupt the theoretical development at this point to show you the extraordinary
power of Gauss’s law, in integral form. When symmetry permits, it affords by far the
quickest and easiest way of computing electric fields. I'1l illustrate the method with a series
of examples.

Example 2.2
Find the field outside a uniformly charged solid sphere of radius R and total charge q.

Solution: Draw a spherical surface at radius » > R (Fig. 2.18); this is called a “Gaussian
surface” in the trade. Gauss’s law says that for this surface (as for any other)

1
%Eda = — Qenc.
€0
S
and Qene = g. At first glance this doesn’t seem to get us very far, because the quantity we
want (E) is buried inside the surface integral. Luckily, symmetry allows us to extract E from

under the integral sign: E certainly points radially outward,® as does da, so we can drop the
dot product,

fE d f E|d
-da = a,
S S

31f you doubt that E is radial, consider the alternative. Suppose, say, that it points due east, at the “equator.”” But
the orientation of the equator is perfectly arbitrary—nothing is spinning here, so there is no natural “north-south”
axis—any argument purporting to show that E points east could just as well be used to show it points west, or
north, or any other direction. The only urigue direction on a sphere is radial.
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Gaussian .
surface @0 T

Figure 2.18

[|E|da= |E| [da= |E| 472,
o S

S S
Thus
2 1
|El47r® = —q,
€0
or
1 g¢q.
E = —=Tr.
drreg r2

Notice a remarkable feature of this result: The field outside the sphere is exactly the same as
it would have been if all the charge had been concentrated at the center.

Gauss’s law is always true, but it is not always useful. If p had not been uniform (or, at
any rate, not spherically symmetrical), or if T had chosen some other shdpe for my Gaussian
surface, it would still have been ttue that the flux of E is (1/€p)g, but I would not have
been certain that E was in the same direction as da and constant in magnitude over the
surface, and without thdt I could not pull |E| out of the integral. Symmerry is crucial to this
application of Gauss’s law. As far as I know, there are only three kinds of symmetry that
work:

1. Spherical symmetry. Make your Gaussian surface a concentric sphere.
Cylindrical symmetry. Make your Gaussian surface a coaxial cylinder
(Fig. 2.19).

3. Plane symmerry. Use a Gaussian “pillbox,” which straddles the surface

(Fig. 2.20).

Although (2) and (3) technically require infinitely long cylinders, and planes extending to
infinity in all directions, we shall often use them to get approximate answers for “long”
cylinders or “large” plane surfaces, at points far from the edges.
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Gaussian
pillbox

Gaussian surface

Figure 2.19 Figure 2.20

Example 2.3

A long cylinder (Fig. 2.21) carries a charge density that is proportional to the distance from
the axis: p = ks, for some constant k. Find the electric field inside this cylinder.

Solution: Draw a Gaussian cylinder of length / and radius s. For this surface, Gauss’s law
states:
1
E.da= —Qenc.
€0
S

The enclosed charge is

5
/

- . (o A ) .
Oenc :fpa’r :f (ks"y(s"ds" dp dz) = 2nkl j{) s?ds' = 2mkis®.

Wb

(I used the volume element appropriate to cylindrical coordinates, Eq. 1.78, and integrated ¢
from 0 to 27, dz from O to /. I put a prime on the integration variable s”, to distinguish it from
the radius s of the Gaussian surface.)

Pe

Gaussian
E surface

Figure 2.21
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Now, symmetry dictates that E must point radially outward, so for the curved portion of the
Gaussian cylinder we have:

/E-da: [|E|da: |E| [da: |E|2m s,
J J J
while the two ends contribute nothing (here E is perpendicular to da). Thus,
12
IE| 278l = — Zkis®
€0 3

or, finally,

Example 2.4

An infinite plane carries a uniform surface charge o. Find its electric field.

Selution: Draw a “Gaussian pilibox,” extending equal distances above and below the plane
(Fig. 2.22). Apply Gauss’s law to this surface:

1
%E‘da: — Qenc.
€0

In this case, Qenc = 0 A, where A is the area of the lid of the pillbox. By symmetry, E points

away from the plane (upward for points above, downward for points below). Thus, the top and

bottom surfaces yield

[E -da =2A|E|,

Figure 2.22
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whereas the sides contribute nothing. Thus

1
2AIE| = —0A,
€0
or
o .
2¢€n

where i is a unit vector pointing away from the surface. In Prob. 2.6, you obtained this same
result by a much more laborious method.

It seems surprising, at first, that the field of an infinite plane is independent of how far away
you are. What about the 1/ r? in Coulomb’s law? Well, the point is that as you move farther
and farther away from the plane, more and more charge comes into your “field of view” (a
cone shape extending out from your eye), and this compensates for thze diminishing influence

infinite line falls off like 1/r; and the electric field of an infinite plane does not fall off at all.

though the direct use of Gauss’s law to compute electric fields is limited to cases of
spherical, cylindrical, and planar symmetry, we can put together combinations of objects
possessing such symmetry, even though the arrangement as a whole is not symmetrical.
For example, invoking the principle of superposition, we could find the field in the vicinity

of two uniformly charged parallel cylinders, or a sphere near an infinite charged plane.

Example 2.5

Two infinite parallel planes carry equal but opposite uniform charge densities +o (Fig. 2.23).
Find the field in each of the three regions: (i} to the left of both, (ii) between them, (iii) to the
right of both.

Solution: The left plate produces a field (1/2eg)o which points away from it (Fig. 2.24)—to
the left in region (i) and to the right in regions (ii) and (iii). The right plate, being negatively
charged, produces a field (1/2¢p)g, which points foward it—to the right in regions (i) and
(i) and to the left in region (iii). The two fields cancel in regions (i) and (iii); they conspire
in region (i1). Conclusion: The field is (1/eg)o, and points to the right, between the planes;
elsewhere it is zero.

i) (i) (1ii)

+C —0

Figure 2.23 Figure 2.24
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Problem 2.11 Use Gauss’s law to find the electric field inside and outside a spherical shell of
radius R, which carries a uniform surface charge density o. Compare your answer to Prob. 2.7.

Problem 2.12 Use Gauss’s law to find the electric field inside a uniformly charged sphere
(charge density p). Compare your answer to Prob. 2.8.

Problem 2.13 Find the electric field a distance s from an infinitely long straight wire, which
carries a uniform line charge A. Compare Eq. 2.9.

Problem 2.14 Find the electric field inside a sphere which carries a charge density proportional
to the distance from the origin, p = kr, for some constant k. [Hint: This charge density is not
uniform, and you must infegrate to get the enclosed charge.]

Problem 2.15 A hollow spherical shell carries charge density

p:

wml =

in the region a < r < b (Fig. 2.25). Find the electric field in the three regions: (i) r < a, (ii)
a <r <b, (i) r > b. Plot |E| as a function of r.

Problem 2.16 A long coaxial cable (Fig. 2.26) carries a uniform volume charge density p on
the inner cylinder (radius a), and a uniform surface charge density on the outer cylindrical
shell (radius b). This surface charge is negative and of just the right magnitude so that the
cable as a whole is electrically neutral. Find the electric field in each of the three regions: (i)
inside the inner cylinder (s < a), (ii) between the cylinders (a < s < b), (iii) outside the cable
(s = b). Plot [E| as a function of s.

Problem 2.17 An infinite plane slab, of thickness 24, carries a uniform volume charge density
0 (FIE 2. 27) Find the electric fl@ld as a function of v, where y = = 0 at the center. Plot E

versus v, calling E positive when it points in the +v direction and negative when it points in
the —y direction.

Problem 2.18 Two spheres, each of radius R and carrying uniform charge densities +p and
—p, respectively, are placed so that they partially overlap (Fig. 2.28). Call the vector from the
positive center to the negative center d. Show that the field in the region of overlap is constant,
and find its value. [Hinr: Use the answer to Prob. 2.12.]

Figure 2.25 Figure 2.26



76 CHAPTER 2. ELECTROSTATICS

|
0 -
-__5_‘\\ | //
T7~~
/// : *\\\
/ : ’
|
vd !
|
\ |
2d
Figure 2.27 Figure 2.28

2.2.4 The Curl of E

I’ll calculate the curl of E, as I did the divergence in Sect. 2.2.1, by studying first the simplest
possible configuration: a point charge at the origin. In this case

1 q.

4regr?

E =

Now, a glance at Fig. 2.12 should convince you that the curl of this field has to be zero, but
I suppose we ought to come up with something a little more rigorous than that. What if we
calculate the line integral of this field from some point a to some other point b (Fig. 2.29):

b
/ E.dl
a

In spherical coordinates, dl = dr t + r d# 6 + rsinf8dg¢ tf), SO

q
dmegr?
Therefore,
" b 9, g 1 (q ¢
— - = — - =, (2.18)
va ATTFI\ va r2 AJTFG v 1rg AEEG \'ra rb/

where r, is the distance from the origin to the point a and r is the distance to b. The
integral around a closed path is evidently zero (for then r; = rp):

}igE -dl =0, (2.19)
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Figure 2.29

220

Now, I proved Egs. 2.19 and 2.20 only for the field of a single point charge at the origin,
but these results make no reference to what is, after all, a perfectly arbitrary choice of
coordinates; they also hold no matter where the charge is located. Moreover, if we have
many charges, the principle of superposition states that the total field is a vector sum of
their individual fields:

E=E +E+...,

80
VXE=VX(E +E+..)=(VXE)+(VxE)+...=0.

Thus, Eqs. 2.19 and 2.20 hold for any static charge distribution whatever;

Problem 2.19 Calculate V x E directly from Eq. 2.8, by the method of Sect. 2.2.2. Refer to
Prob. 1.62 if you get stuck.

2.3 Electric Potential

2.3.1 Introduction to Potential

The electric field E is not just any old vector function; it is a very special kind of vector
function, one whose curl is always ze