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e Page 4, Prob. 1.15 (b): last expression should read y + 2z + 3.

e Page 4, Prob.1.16: at the beginning, insert the following figure

Page 8, Prob. 1.26: last line should read
From Prob. 1.18: V x v, = —622%X + 22y + 3222 =
V- (V xv,) =2 (—6zz) + 8%(22) +2(32%) =—62+62=0.v

Page 8, Prob. 1.27, in the determinant for V x (V f), 3rd row, 2nd column:
change 12 to y2.

Page 8, Prob. 1.29, line 2: the number in the box should be -12 (insert
minus sign).

Page 9, Prob. 1.31, line 2: change 223 to 223; first line of part (c): insert
comma between dx and dz.

Page 12, Probl 1.39, line 5: remove comma after cos 6.

Page 13, Prob. 1.42(c), last line: insert Z after ).

e Page 14, Prob. 1.46(b): change r’ to a.

Page 14, Prob. 1.48, second line of J: change the upper limit on the r
integral from oo to R. Fix the last line to read:

= ar (=)

+dme B =4rn (—e_R + e_o) +d4re R =dx. v

Page 15, Prob. 1.49(a), line 3: in the box, change z? to x3.



e Page 15, Prob. 1.49(b), last integration “constant” should be I(z, z), not
I(z,y).

e Page 17, Prob. 1.53, first expression in (4): insert 8, so da = rsin 6 dr dgbé.

e Page 17, Prob. 1.55: Solution should read as follows:
Problem 1.55
Nz=2=0,dr=dz=0;y:0—>1. v-dl=(yz*)dy=0; [v-dl=0.
(2)x=0; 2=2—-2y; dz=—-2dy; y:1— 0.
v-dl = (yz2)dy + 3y + 2) dz = y(2 — 2y)? dy — (3y + 2 — 2y)2 dy;

0
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1
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B)e=y=0;dz=dy=0; 2:2—-0. v-dl=By+2)dz=zdz.

0
2
z
cdl= [ zdz= 2
2
. _ 14 _ |8
Total: §v-dl=0+4 -2 =[3.]

Meanwhile, Stokes’ thereom says § v - dl = [(V XVv) - da. Here da =
dydz X, so alrl we need is )
(VXv), = a%(Sy +2) — Z(y2*) =3 —2yz.  Therefore

J(Vxv)-da = [ [(3—2yz) dydz-fo{ > 2“(3—2yz)dz} dy

= ['[3 2—2y —2y2(2—2y)]dy: i (—4y? + 8y> — 10y + 6) dy
= [ 8P 52 6y =1+ 8 -5+6=5v

e Page 18, Prob. 1.56: change (3) and (4) to read as follows:

(B)p=75; rsinf=y=1,s0r= ﬁ7 dr = —Si;219 cosfdb, 0: 35 — by =
tan—!(3).
2 .
v-dl = (rcos®6)(dr)— (rcos@sin6)(rdf) = Csiz; <—%> d —%d@
3 2 .2
_ <C?839 C?SQ) d0:7c'ost9 (cos G.A;sm 0> d0:7c'osé€ 28,
sin®f  sinf sin 0 sin” 0 sin” 6
Therefore
® cost 1% 1 1 5 1
/v~d1:—/(’ioz o= —— - - —2_ 2 _9
sin® 0 2sin* 0| /5 (1/5) 2-(1) 2 2
/2



D=0y, d=2;7r:v5—0. v-dl=(rcos?6) (dr) = 2rdr.
2 5

0
4 472
cdl= = -
/vd 5/rdr £ 3
V5

0

NG

Total:

3
%v-dl:0+7ﬂ+2—2: an |

Page 21, Probl 1.61(e), line 2: change = 2% to +2z 2.
Page 25, Prob. 2.12: last line should read

Since Quot = 37R%p, B = £l (as in Prob. 2.8).

Page 26, Prob. 2.15: last expression in first line of (ii) should be d¢, not
d phi.

Page 28, Prob. 2.21, at the end, insert the following figure

v(r)
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In the figure, r is in units of R, and V(r) is in units of ;L4.

Page 30, Prob. 2.28: remove right angle sign in the figure.

Page 42, Prob. 3.5: subscript on V in last integral should be 3, not 2.
Page 45, Prob. 3.10: after the first box, add:

q -
ZX +(

2 1 1 1
F — - -
dreq { (2q) @02 " oV 1 1)
where cosf = a/va? +b%, sinf =b/+/a? + b2.

[cosefc—i—sinﬁy]},

F ¢ a 1] . n b 17 .
= — | X S — .
167eg (a2 +b2)3/2 a2 (a2 +b2)3/2 b2 y




11 A q° ]_ q° { 1 1 1

W= tine (o) T @) T ovar 1) | B2mee |Vars? a b

Page 45, Prob. 3.10: in the second box, change “and” to “an”.

Page 46, Probl 3.13, at the end, insert the following: “[Comment: Tech-
nically, the series solution for o is defective, since term-by-term differen-
tiation has produced a (naively) non-convergent sum. More sophisticated
definitions of convergence permit one to work with series of this form,

but it is better to sum the series first and then differentiate (the second
method).]”

Page 51, Prob. 3.18, midpage: the reference to Eq. 3.71 should be 3.72.

Page 53, Prob. 3.21(b), line 5: As should be 1o next line, insert r? after
1

ﬁ.

Page 55, Prob. 3.23, third displayed equation: remove the first ®.
Page 58, Prob. 3.28(a), second line, first integral: R® should read R2.
Page 59, Prob. 3.31(c): change first V' to W.

Page 64, Prob. 3.41(a), lines 2 and 3: remove ¢ in the first factor in the

[A9%)) [1P%)

expressions for E,; in the second expression change “p” to “q”.

Page 69, Prob. 3.47, at the end add the following:

Alternatively, start with the separable solution
V(z,y) = (Csinka + D cos kzx) (Aeky + Be_ky) .

Note that the configuration is symmetric in x, so C' = 0, and V(z,0) =
0 = B = —A, so (combining the constants)

V(z,y) = Acoskxsinh ky.

But V(b,y) = 0, so cos kb = 0, which means that kb = +7/2, +37/2,-- -,
ork=(2n—-1)7/2b=ay,, withn=1,2,3,... (negative k does not yield
a different solution—the sign can be absorbed into A). The general linear
combination is -
V(z,y) = Z A, cos a, sinh a,y,
n=1

and it remains to fit the final boundary condition:

oo
Viz,a)=Vy = Z A,, cos apx sinh o a.

n=1



Use Fourier’s trick, multiplying by cos a,,»x and integrating:

b oo b
Vo / COoS (i X dx = E A,, sinh ana/ COS (pyr X COS vy T dx
—b

n=1 -
2sinan b e _ .
Voﬂ = Z Ay, sinh apa (b0, ) = bA, sinh oy a;
Qs n=1
So A,, = _0811.1—04. But sin a,,b = sin " ) =—(-1)",s0
b «a,sinha,a

sinh o,y
COS i, X

Vo) = |- 20 37 -1y Sohony_
= b —~ oy, sinh ana

Page 74, Prob. 4.4: exponent on r in boxed equation should be 5, not 3.

Page 75, Prob. 4.7: replace the (defective) solution with the following;:

If the potential is zero at infinity, the energy of a point charge @Q is
(Eq. 2.39) W = QV(r). For a physical dipole, with —¢g at r and +g¢
at r+d,

r+d
U=qV(r—|—d)—qV(r):q[V(r+d)—V(r)]:q[—/ E-dl

For an ideal dipole the integral reduces to E - d, and
U=—-—qE-d=—p-E, since p = ¢d.

If you do not (or cannot) use infinity as the reference point, the result still
holds, as long as you bring the two charges in from the same point, ro (or
two points at the same potential). In that case W = Q [V (r) — V (ro)],
and

U=q[V(r+d)—V(rg)]—q[V(r) = V(rg)] =¢q[V(r+d)—V(r)],
as before.
Page 75, Prob. 4.10(a): = should be -%.

Page 79, Prob. 4.19: in the upper right box of the Table (o for air) there
is a missing factor of €.

Page 91, Problem 5.10(b): in the first line 11012 /27 should read pgl?a/27s;
in the final boxed equation the first “1” should be ¢.

Page 92, Prob. 5.15: the signs are all wrong. The end of line 1 should
read “right (Z),” the middle of the next line should read “left (—2).” In
the first box it should be “(ny — ny)”, and in the second box the minus
sign does not belong.



Page 114, Prob. 6.4: last term in second expression for F should be +2 BB -

(plus, not minus).

Page 119, Prob. 6.21(a): replace with the following:

The magnetic force on the dipole is given by Eq. 6.3; to move the dipole
in from infinity we must exert an opposite force, so the work done is

U:—/O:F-dl:—/O:V(m-B)-dl:—m-B(r)+m~B(oo)

(T used the gradient theorem, Eq. 1.55). As long as the magnetic field goes
to zero at infinity, then, U = —m - B. If the magnetic field does not go
to zero at infinity, one must stipulate that the dipole starts out oriented
perpendicular to the field.

Page 125, Prob. 7.2(b): in the box, ¢ should be C.

Page 129, Prob. 7.18: change first two lines to read:

I Ia (***ds' I
/Bd B_ Mo 7¢:Moa/ ds’ _ pola, s—i—a;
2 J, s 2m s

dd a dI
€= loop R ‘d—?R“E—‘&”““/SW
_ _ poal
dQ = o Rln(l—i—a/s)dl = Q= or R In(1+a/s).

Page 131, Prob. 7.27: in the second integral, r should be s.

Page 132, Prob. 7.32(c), last line: in the final two equations, insert an I
immediately after ug.

Page 140, Prob. 7.47: in the box, the top equation should have a minus
sign in front, and in the bottom equation the plus sign should be minus.

Page 141, Prob. 7.50, final answer: R? should read Rs.
Page 143, Prob. 7.55, penultimate displayed equation: tp should be -.

Page 147, Prob. 8.2, top line, penultimate expression: change a? to a?; in
(¢), in the first box, change 16 to 8.

Page 149, Prob. 8.5(c): there should be a minus sign in front of o2 in the
box.

Page 149, Prob. 8.7: almost all the r’s here should be s’s. In line 1 change
“a < r < R’ to “s < R”; in the same line change dr to ds; in the next
line change dr to ds (twice), and change ¥ to §; in the last line change r
to s, dr to ds, and T to § (but leave r as is).



Page 153, Prob. 8.11, last line of equations: in the numerator of the ex-
pression for R change 2.01 to 2.10.

Page 175, Prob. 9.34, penultimate line: o = n3/ng (not nz/ns).

Page 177, Prob. 9.38: half-way down, remove minus sign in k2 + k; +k2=
—(w/c)%

Page 181, Prob. 10.8: first line: remove 4.

Page 184, Prob. 10.14: in the first line, change (9.98) to (10.42).

Page 203, Prob. 11.14: at beginning of second paragraph, remove ;.
Page 222, Prob. 12.15, end of first sentence: change comma to period.

Page 225, Prob. 12.23. The figure contains two errors: the slopes are for
v/c=1/2 (not 3/2), and the intervals are incorrect. The correct solution
is as follows:

Problem 12.23.

(a)

ct 095
[ —_ 1)
(b) £ = slope = g2
35
__ 875 . _
=S U= §ppC = 37(’
4 3
;I _ Fetzce
c) v =zc, 500
() E 1+%%

& 75—

e Page 227, Prob. 12.33: first expression in third line, change ¢? to c.
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Chapter 1

Vector Analysis

Problem 1.1

(a) From the diagram, |B + C|cosf3 = |B|cosf; + |C|cosf,. Multiply by |A|.
|A||B + C|cosf3 = |A||B| cos 8, + |A||C|cosbs.
So: A-(B+ C) = A-B + A-C. (Dot product is distributive.)

Similarly: |B + C|sinf3 = |B|sin#; + |C|sinf,. Mulitply by |A|f.
|A||B + C|sinf3 i = |A||B|siné, fi + |A||C|sin 8, fi.

If & is the unit vector pointing out of the page, it follows that -
AX(B+C)=(AxB)+ (AxC). (Cross product is distributive.) IBlcosé:  |C]cosfa

(b) For the general case, see G. E. Hay’s Vector and Tensor Analysis, Chapter 1, Section 7 (dot product) and
Section 8 (cross product).

Problem 1.2

The triple cross-product is not in general associative. For example,
suppose A = B and C is perpendicular to A, as in the diagram.
Then (BxC) points out-of-the-page, and A x(BxC) points down,
and has magnitude ABC. But (AXB) = 0, so (AXxB)xC =0 #

Ax(BxC). BxC jAx(BxC)

A=B

Problem 1.3 z
A=+1§c+lj‘r—12;A=\/§;B=1i+1)‘(+li;B=\/§. : \ 4
A-B=+1+1—lzleBcosﬁ“—“\/g\/gcos@:)cosﬁzé. A

-y
f = cos™! (}) ~ 70.5288° \
A
x
Problem 1.4

The cross-product of any two vectors in the plane will give a vector perpendicular to the plane. For example,
we might pick the base (A) and the left side (B):

A=-1%+29+0%,B=-1%x+0§y+32.
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Xy

AxB=| -1 2
-1 0 3

This has the right direction, but the wrong magnitude. To make a unit vector out of it, simply divide by its

length:

[an iy 1

[AXB|=v36+9+4="7. ﬁ:‘iigl;— S+ 3y + 23|
Problem 1.5
X y Z
Ax(BxC) = A, A, A,
(ByC. — B.Cy) (B.Cs-B:C;) (B:Cy- ByC:)

= X[Ay(B:Cy — ByC;) — A;(B.C; — B;C)] + ¥() + ()
(I'll just check the x-component; the others go the same way.)
=%x(AyB,Cy — A,B,C, — A,B.C, + A,B,C.) + () + ().
B(A-C) = C(A:B) = [B;(A:C: + AyCy + A,C;) — C;(A;B, + AyBy, + A,B)|x+ )y + (2
= %(AyB.:Cy + A, B,C, — AyB,Cy — A.B.C.) + §() + (). They agree.

Problem 1.6

Ax(BxC)+Bx(CxA)+Cx(AxB) =B(A-C)-C(A-B)+C(A-B)-A(C-B)+A(B-C)-B(C-A) = 0.
So: AX(BXC) — (AXxB)XC = -Bx(CxA) = A(B-C) — C(A:B).
If this is zero, then either A is parallel to C (including the case in which they point in opposite directions, or
one is zero), or else B-C = B-A = 0, in which case B is perpendicular to A and C (including the case B = 0).

Conclusion: |A><(BXC) = (AXB)XxC <= either A is parallel to C, or B is perpendicular to A and C.l
Problem 1.7

2=(4X+6y+82) - (2% +89y+T72)=|2x-2y+ Z

r=VE+4+1=

. 2
¥=F T ER

Z

L]

v+

o

Problem 1.8

(a) A, B, +A B, = (cos¢Ay + sin pA,)(cos ¢ B, +51n¢B )+ (- 51n¢A + cos A )(—sin B, + cos ¢B.)
= cos? ¢A, B, + sinpcos$(Ay B, + A, B,) + sin® A, B, + sin® ¢4, B, —singcosd(Ay B, + A.By) +
cos? qu B,
= (cos? ¢ + sin® ¢) Ay By + (sin® ¢ + cos? )4, B, = AyBy + A.B,. ¥

(b) (Az)? + (4y)? + (4.)? = BL, AiA; = T, (B3, Rij4;) (T} R Ax) = ;. (SiRijRir) A; Ax.

. : L= ifo sk
2 2 2 3 99 -
This equals AZ + Ay + A; provided | X;_, Rij Ry = { D if Gtk }
Moreover, if R is to preserve lengths for all vectors A, then this condition is not only sufficient but also
necessary. For suppose A = (1,0,0). Then X, (X; RijRix) Aj Ax = X; Riy Ri1, and this must equal 1 (since we
want Xi+fc[§+]f = 1), Likewise, £3_, RisRis = E}_; RisRi3 = 1. To check the case j # k, choose A = (1,1,0).
Then we want 2 = X; i (X; RijRix) AjAx = I; Ra Rt + Z; RioRi2 + Z; Ri Ria + Z; RiaRi1. But we already
know that the first two sums are bot.h 1; the third and fourth are eq'ual so &; R R,g =3¥; RisR;; =0, and so
on for other unequal combinations of 7, k v In matrix notation: RR = 1, where R is the transpose of R.




Problem 1.9
L , Looking down the axis: /L

A 120° rotation carries the z axis into the y (= Z) axis, y into z (= ¥), and z into z (= ). So A=l
A=Ay Ag= Ay

0 01
R="1T"0""0
J: 1. 0

Problem 1.10

(a') (Z’: = Az, z.'-r = A‘y! _’Ei.z = 4:)
(b) in the sense (Zz = —A;, Zy = -4, A, =-A4,)

(c) (AxB) — (—A)Xx(—B) = (AxB). That is, if C = AXB, . No minus sign, in contrast to
behavior of an “ordinary” vector, as given by (b). If A and B are pseudovectors, then (AxB) — (A)x(B) =
(AXB). So the cross-product of two pseudovectors is again a pseudovector. In the cross-product of a vector
and a pseudovector, one changes sign, the other doesn’t, and therefore the cross-product is itself a vector.
Angular momentum (L = rXp) and torque (N = rxF) are pseudovectors.

(d) A-(BXC) — (=A):((~B)x(~C)) = —A«(BxC). So, if a = A-(BXC), then a pseudoscalar

changes sign under inversion of coordinates.
Problem 1.11

(Q)Vf=2z%+3y*y +42%2

(b)V f = 2zy®24 % + 32%y%21 § + 42?323 3

(c)Vf =esinylnzk +e®cosylnzy + e*siny(1/z) 2

Problem 1.12

(a) Vh = 10[(2y — 6z — 18) %X + (2z — 8y + 28) §]. Vh = 0 at summit, so
2y —6z—18=0 = -
2z — 8y + 28 = 0 = 6z — 24y +84 =0 }29‘18 gR L,
Wy=66—y=3=2z-24+28=0=z=-2.

Top is | 3 miles north, 2 miles west, of South Hadley. |

(b) Putting in ¢ = =2,y = 3:
h=10(~12 — 12 — 36 + 36 + 84 + 12) = [720 f.
(c) Puttinginz =1,y = 1: VA =10[(2—6 — 18) X + (2 — 8 + 28) §] = 10( (—22%+229) =220(— %+ §).

|Vh| = 220v/2 ~ [ 311 ft/mile ; direction:
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Problem 1.13
2= (z-2)X+(@y-y)y+(=-2)% 2=(e-2)P+@y-y)+(-2)
(a) V(2?) = £z -2+ (y -y + (2 - 2")*] % + %()Sf‘k Z0z=2-2)%+20y—-y)F+2(z—2"2 =24

b) V(L) =LZlz-2)P+@-v)?+ (-2 x+ 0 tg+ &0tz
=-10" 20 -2)x- 102y - v) ¥y - 203202 - )2
=0 Hz-2)Vk+@-y)F+ (2 =22 = —(1/2®m = —(1/22)4.

() Z2(") =na"1 & =nam1(1124;) = na" 4, soIV(a“) = nfz"'lai.i

Problem 1.14 _
= +y cos ¢ + z sin ¢; multiply by sin ¢: Fsin ¢ = +y sin ¢ cos ¢ + z sin’ ¢.

y
Z = —y sin ¢ + z cos ¢; multiply by cos ¢: Zcos¢ = —y sin ¢ cos ¢ + z cos? ¢.
Add: Fsiné + Zcos ¢ = z(sin® ¢ + cos? ¢) = 2. Likewise, Fcos¢ — Zsing = y.
So gg = cos¢; & = —sing; 82 =sing; §Z = cos¢. Therefore
(VH, =8t =5L 5 + 5L & = +cosg(V ), +sing(Vf).
. = %_z{ ay az & %fa—; SV Feek coa d(0 1), So V f transforms as a vector. qed

Problem 1.15

(@)V-ve = Z(2%) + 36;(3.7:2,2) + & (-2z2) =22+0-2z=0.

(L)V-vy, = é—%(my) (2yz) +3 (3:.r:z) =y + 2z + 3z.

(©V-ve = 55(y%) + 35 (2zy + 2%) + §>(2y2) = 0+ (22) + (2y) = 2(z +7).

Problem 1.16
Vv = EE@+EEEE) = & o0 +9 + )44 1 +07 + ) 4 [ 407+ 20
=o—- +2(=3/2)0)" 2x+() 34 y(-3/2)0 2y + 03 + 2(-3/2)0F2z
=3 2=t + i+ =2 =0
This conclusion is surprising, because, from the diagram, this vector field is obviously diverging away from the
origin. How, then, can V.v = 0?7 The answer is that V.v = 0 everywhere ezcept at the origin, but at the

origin our calculation is no good, since r = 0, and the expression for v blows up. In fact, V-v is infinite at
that one point, and zero elsewhere, as we shall see in Sect. 1.5.

Problem 1.17

Uy = cos¢vy +sinPv,; U, = —sind vy, + cos pv,.
o7, Buy Hv vy 8y Bvy, 9z dv; 8y 8u; 8z ' . :
?y”- ¥id cos¢ + 5 ¥ smq& (%‘Lay + 555 ) cos ¢ + (Er‘ai + 57 5% sin ¢. Use result in Prob. 1.14:
- (% cos¢+ 3 —’- smri;) cos¢ + (Q‘—" cos¢+ ——‘- sin ) sin ¢.
8, _ _Gv dv _ [ vy By 9z dv du; Oz
52 = -2 sing+ GF cosgp = (By 3= + az 8‘) smtfa—i—(gy‘— +Ff35) cos ¢
:_(“% 51n¢+?j‘-cos¢') sm¢+(—a—”‘sm¢+—‘cos¢ cos¢@. So-

%y 4 8 = % o5 ¢+a—vl51n¢cos¢+%'ilsm¢cos¢+ﬂ'-sm ¢+ sin? ¢ — —’Lsmgbcosqﬁ



—Q‘—!': 51n¢cos¢+§‘i‘ cos? ¢
= 52 (cos® ¢ + sin® ¢) + = (sin” ¢ + cos? ¢) = %+%. v

Problem 1.18

5 ¥ 2
() Maxve= Z% 3% % = %(0 — 6zz) + (0 + 22) + (32 —0)—|—E32::;:x+2z3r’+3z2 |
z? 3z2? -2z2
o A Z
B Vxve=|& & & |=%(0-2y)+9(0-32)+30-2) [-2y%-3z9 - z2.|
: ry 2yz 3zz
X y Z
() Vxve=| & = £ (22 — 22) + §(0 - 0) + 2(2y — 2y)
v (2zy+2%) 2yz

- Problem 1.19

v=yk+tz§iorv=yzRk+22§ +aYs orv= (3222 - 2°) X+ 3y + (¢° — 3z2?) 3
or v = (sinz)(cosh y) X — (cosz)(sinhy) ¥; etc.

Problem 1.20
(i) V(fg) = iﬁﬂx+ﬂfﬂ?+mﬁ=(fi’“g%;f:)ﬂ(fg“g%é)5'+(f93+9%£)ﬁ
:f(g-gx+ +—-‘lz)+g(5£i y+-51) f(Vg)+9(Vf). qed

(iv) V-(AXB) = 81(14 B,-A By)+3-(A B, — A;B;) + & (A:By — AyB;)
A, %8

= +B-51 A% - B % + A% + B, % — A, - B, %
Ay
+Aﬁg+s 94, _ 5, 9B:. _p %

232(85;— )+B (Tz“‘é“)‘*‘B(az "F‘) Ax(ay %&)

—Ay(ﬁ—%n—%ﬂ;)—Az(i’a% 28:) = B-(VxA) - A-(VXB). qed

(V)Vx(fA):(Ml*QM)- (9_(&1 J&l) ( ﬂ%“‘_l)
= (1% + 4% - 1% - Am{-)n(f%ngi 12 - A8y
(9‘1‘1+Ay5£ — fofs -sz,t)
=f[(%a “”’)x+( %“*)y+( - e %]
[(A,,_L Azgg)x+(A Axg-ﬂ)ir+( 3 A,,gg)a]
=f(VXA)-AXx(Vf). qed

Problem 1.21
(a) (A-V)B = (4,98 + 4,98 + 4. %) % (A,";i + AP+ 4,52y
+ (A% + A% + A )2

T 8z

x %ﬂﬂ Let’s just do the  component.
: 2+y2+z2

T

V)8, = = (od +vh +28) Tmirm

—_—
=
o
Lo 1]
]
L]
I
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Same goes for the other components. Hence:

(c) (vo-V) vy = (3: = + 3z2?

=y (yx+0y+3zz] +3z22 (z X+ 229 +02) —
) % + (622 — 4ay2) § + (3222 — 6222) 2

= (a2y + 32222

= |22 (y + 32%) X + 222 (322 — 2y) § — 32222

-— - 2xzaz) (zyXx + 2yzy + 3z2 2)

22 (0X +2yy + 3z 2)

Problem 1.22

(i) [V(A-B)], = Z(A;B; + AyBy + A.B, )=%“;BI+A,,%%1 2B, + A, +2%4B, 4 4,9
[Ax(VxB)]zsz(VxB)z--A( xB), = A, (%2 85a) — As (2= - 92)
[Bx(VxA)], = By (%t — %) - B, (%= - %)

[(A-V)B], = (Ae & + Aygs + A 5)Ba = A 52 + A, %02 + A, %0
[(B-V)A], = B,%= + B,%=+ B, %=
So [AX(VxB)+Bx(VxA) + (A-V)B + (B-V)A],
= Aﬁ;i ~ Ay %= — 4,98 1 4,%8: 1 B, % B 24 _p 04 p oA
+A; 8= + y%&+Az%§a+Bﬁaﬁ +B %4-3—5&
= By%s + 4,98 + B, (%9 )+ Ay (T — 2+ )
+B, (=% +% + 22 ) + A, %+%+%
= [V(A:B)], (same for y and z)
(v) [Vx(AxB). = (AxB)z— (AxB)y a(Jzu'.a'—,qws’) Z(A:B; — A;B.)
= 3—""18 +A%€m % B, — y%—%B A,%+%B + A %8
[(B-V)A — (A-V)B + A(V- B) B(v A)]x
=B %x + B, % + B. % - A % - A+ Ap (B + T+ 80) — B (% + T2 + %)
=B, % + A, ( %+~£l+—l+—l +B(%ﬂ3x -G - o)

+A(—Q-BJ)+A( 98:) + B, (%)
= [VX(AXB)] (same for y and z)

Problem 1.23
V(fle) = Z(fla)x+LE(fl9)y+£&(fl9)2

% 8f 8 of _c0
e —f f(-l-gyfigfyl“j‘!-f-gﬁgfﬁﬁ
= % rg(ggﬁ+g§y+g§z)—f(§§ﬁ+%gy+g§a)] = 9VI=IY
V-(Alg) = £(Az/9)+ 5(Ay/9)+ 5:(A:/9)
L Q%L_Avgﬂ +98A —A. g
2

¥
8A, . BAN 89 89\] _ gV-A-A-V
o T Bz) Azaz‘*‘Avay"‘Azaz)]—‘q_!_‘q-



[Vx(A/g9)l, = %( 2/9) = &(Ay/9)
= 15 i Ag’f QEBA'}_:Ang'

b Jo(5 - )~ (.3~ 2)
g(V X A),;;(AX Va)= (

same for y and 2). qed

Problem 1.24

X v Z
(a) AXxB=| z 2y 3z |=%(6zz)+ 3(92y)+ z(—2z% — 6y?)
Jy -2z 0

V.(AxB) = £(6z2) + £(92y) + £(—22 - 6y%) =62+ 92 + 0 = 152
VXA =% (3%(33) - ;%(21;)) ¥ (&(z) - £(32) +2 (8%(23;) g1 i(x)) =0; B-(VxA) =0
VxB =% (%(0) e %(-2:}) +3 (23 - 20) + ( (-2z) — (3y)) = 5% A-(VxB)=—152

V.(AXxB) £ B-(VXA) — A-(VXB) =0 - (-152) = 152. v
(b) A-B = 3zy —4zy = —zy ; V(A-B) = V(-ay) = * & (-zy) + § & (-zy) = ~yX — 2§
z
3

Ax(VxB) = z
-5

= X(-10y) + y(5z); BX(VXA) =

o

o8 W

(A-V)B = (x% +2y g +322) Byx - 20§) = %(6y) + §(~22)
(B-V)A = (3;;;5% " 2%%) (z% + 2y 9 + 322) = X(3y) + §(—4z)
AX(VxB) + BX(VXA) + (A-V)B + (B-V)A
=-10yx+5zy+6yx—2zy+3yx—4dzy=-yx—zy=V-(A-B). v
(c) VX(AXB) = x( (=222 — 6y?) — 3—(923;)) 9 (& (622) — & (~22% — 6y?)) +2 (%(sz) - g’;(ﬁzz))
=%x(-12y — Qy) + y(6z + 4z) + 2(0) = —21lyx + 10z ¥y
VA=2@)+Z2)+£0B2)=1+2+3=6; V.B= Z(3y) + Z(-22) =0

(B.V)A-(A-V)B+A(V:B)-B(V:A)=3yx—4zy —6yx+2zy — 18yx + 122y = —21lyx + 10z §
=Vx(AxB). v

Problem 1.25
) % =2 5% = 5% =0 » 73]

(b) 3% = £ = &% = T, = |V’T, = —3T, = —3sinzsinysinz.|

¢) &% = 25T, ; &% = —16T. ; 5% = -9T. = |V?T. =0.
8z Ay 8z

@ % =2;%%=5%%=0= V=2
#=ﬁ=0;%=ﬁz=> Vv, =6z |V2V=2i+635f—|
Ou=0%=0%=0= V=0
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Problem 1.26
8 (?31 _ dv )

_.0 (8v _ 9w\, & (8vg _Bu), 8

V{(VXv) = (By g 8 b )
8%v, 3%v g 82%v, 8%y, 8v, \ _ 3 it "t

= (Sz 8y — By 33) + \ g6z — azay) = (Bz 55 — 3za: ) = 0, by equality of cross-derivatives.

From Prob. 1.18: VXvy = —2yX — 329 —z2 = V«(Vxvy) = Z(-2) + &(-32)+ &(-2)=0. v

@)
L]
=

Problem 1.27

%o TN g
T T g g (e g 8%t o 8%t 8%t 5(_ 8%t 8%t
VX(V”— %f gxil gi _x(mwaz_ﬂ;r)—l_y(&z&r"89:8:)—'_2(89:89-_81;3:)
dz By 08z

= 0, by equality of cross-derivatives.
In Prob. 1.11(b), V f = 2zy%2* % + 3z%y%2% y + 4224323 %, so
% 4

SR

2 2

bz v Oz
2zy®2t 3z2ydzt 4x?y33
= %(3-42%y%2% — 4-32%y%2%) + §(4 - 22%2% — 2. 47y%23) + 2(2 - 3zy?2? - 3. 22%2%) = 0. v
Problem 1.28
(a) (0,0,0) — (1,0,0). z:0 = 1,y = 2 = 0;dl = dz %; v - dl = 22 dz; [ v - dl = [ 2% dz = (z3/3)|} = 1/3.
(1,0,0) — (1,1,0).z=1,9y:0 = 1,2 =0;dl =dy¥;v-dl =2yzdy = 0; [ v-dl = 0.
(1,1,0)—-—»(1,1,1).2:=y=1,z:0—)l;dlzdzﬁ;v-dl:yzdzzdz;fv-dlzfuldz-——zm=1.

Totaf.-fv-dl=(1/3)+0+1=

(b) (0,0,0) — (0,0,1). 2=y =0,2:0- L;dl=dz%v-dl=y*’dz2=0; [v-dl=0.
(0,0,1) — (0,1,1). z=0,y: 0 = 1,7::1;al1=r:i;:,;rjr;\.r-(ﬂ:SZ;,v::(i;.r=23,u3iyr;f1.r-c€1=_[c,1 2ydy = y*| = 1.
0,1,1) — (1,1,1). 2:0 5 Ly =z = L;dl = de &; v -dl = 22 dz; [ v - dl = [) 2 dz = (z3/3)|} = 1/3.

Total: fv-dl=0+1+(1/3)=

()z=y=12:0- 1;dz =dy =dz;v-dl = % dr + 2yzdy + y* dz = 2 dz + 22% dz + 2 dz = 42? dz;

Jv-dl= fﬂl 4% dz = (423 /3)[} =

(d) §v-dl=(4/3) - (4/3) =
. Problem 1.29

z,y : 0 = 1,z = 0;da = dzdy%;v-da = y(2? — 3)dzdy = —3ydzdy; [v-da = —3f02dzf02ydy =
—3(a:|§)(*’2i|§) = -3(2)(2) = In Ex. 1.7 we got 20, for the same boundary line (the square in the zy-
plane), so the answer is the surface integral does not depend only on the boundary line. The total flux

for the cube is 20 + 12 =

Problem 1.30
J T dr = [ 22 dz dydz. You can do the integrals in any order—here it is simplest to save z for last:

Sl e e

The sloping surface is 4y + 2z = 1, so the z integral is fa{l_y”) dz = 1—y—z. For a given z, y ranges from 0 to

1—z, 50 the y integralis [ 9 (1—y—z)dy = [(1-2)y— @/ ™ = (1-2)2 - [(1-2)%/2] = (1-2)?/2 =

Vx(Vf)=

|




L=]

-]

(1/2) — z + (2%/2). Finally, the z integral is fnl 23 -2+ %) dz = fnl(‘g—2 -23+ 52:) dz = (

5= &+ i =[1/60.

Problem 1.31

o,
|
A,
+
ol
S
=™
Il

T(b)=1+4+2=7; T(a)=0. = [T(b) - T(a) =7.|

= (27 + 4y)% + (42 + 22%)§ + (6y2?)2; VT-dl = (2z + 4y)dz + (4z + 22°)dy + (6y2?)dz

(a) Segment 1: z:0— 1, y=2z=dy=dz=0. [VTdl= fo (2z dx_a:|; &
Segment 2: y:0—1,z=1,2=0, dz=dz=0. [VT:dl = f0{4)dy_4y|0_4. RVTdl=1v
Segment 3: z:0—> 1, z=y=1,dz=dy=0. [VT.dl= f0(6z2)dz_2z3| &g

o

(b) Segment 1: 2:0— 1, z=y=dz=dy=0.[VT.dl= fo(O}dz—
Segment 2: y:0—1,z=0,2=1,dr=dz=0.[VTdl= f0(2)dy-2yjov2. fbVT-dI—T v
Segment 3: z:0— 1, y*z#1 dy = dz=0. [VT-dl = [, (2z +4)dz - S

(x2+4:c)] =1+4=5.
(©z:021, y=2, z=122, dy =drdz =2zdz.
VT-dl = (2z + 4z)dz + (42 + 22%)dz + (6z2*)2z dz = (10z + 14z%)dz.

[P VT-dl = [} (10z + 142%)dz = (522 +227)|; =5+2="7.
Problem 1.32

Vwv=y+22+3z

[(V)dr = [(y+2z+3z)dzdydz = [[{[;(y +22 +3z) dz } dy dz
— [(y+22)z + %xz]ﬁ =2(y+22)+6

I

f{fj(zy +dz+ G)dy} dz
> [1* + (2 +6)y]; =4+2(42+6) =82+ 16

= [J(8z+16)dz = (42 +162)[, =16+ 32 =
Numbering the surfaces as in Fig. 1.29:

(i) da =dydz %,z = 2. v.da = 2ydydz. [v.da = [[2ydydz = 2'y2|§ =8.
(i) da = —dydz %,z = 0. v-da = 0. [v.da = 0.

(iii) da = dzdz ¥,y = 2. v-da = 4zdz dz. [v-da = [[4zdzdz = 16.

(iv) da = —dzdzy,y =0. v-da=0. [v-da = 0.

(v) da=dzdy%,z = 2. v-da = 6z dz dy. fvda-24

(vi) da = —dzdy 2,2 =0. v.da=0. [v-da =0.

= [vida=8+16+24=48 v

Problem 1.33

Vxv=%0-2y)+§9(0-32)+20-2)=-2yx - 32y — zi.
da = dy dz X, if we agree that the path integral shall run counterclockwise. So
(Vxv)-da = —2ydyd:z.
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J(Vxv)da = f{ 02*2(—*2y)dy} dz 21
—> y2|§_z =—(2 - 2)?
2 28 2 A
- --fo(4—4z+zz)dz=—(4z-222+~3-)‘0 <
.e.
= -5+ =[1 :
Meanwhile, v-dl = (zy)dz + (2yz)dy + (3zz)dz. There are three segments. v

2z
(3)[ »

@, 5"
(1)z=2z=0;dr=dz=0.y:0- 2. [v.dl=0.
2)z=0; 2=2-y; dz =0, dz = —dy, y:2 = 0. v.dl = 2yzdy.

Jvdl = f;’ 2y(2 - y)dy = - _]'02(43; - 2y%)dy = - (2y% - §y3)|§ =-(8-2.8)=-
B)z=y=0,dz=dy=0; 2:2-0.v-dl=0. [v.dl=0. So §v-dl=-3. v

Problem 1.34
By Corollary 1, [(V xv)-da should equal 3. Vxv = (422 — 22)% + 22 2.

wiloo
wloo

(i) da =dydz%, z=1; y,2:0 > 1. (Vxv)-da = (42% — 2)dydz; [(Vxv)-da= f01(422 - 2)dz
= (32 -2, =3-2=-%
(ii) da = —dzrdy 2, z=0; z,y:0 - 1. (Vxv).da=0; [(VXv)-da=0.
(iii) da = dzdzy, y=1; 2,z2: 0> 1. (Vxv)-da=0; [(VXxv)da=0.
(iv) da = —dzdzy, y=0; z,2: 0= 1. (VXv):da=0; [(VXv)da=0.
(v)da=dzdyz, z=1; z,y:0 = 1. (Vxv)-da = 2dzdy; [(VXvV)-da=2.
= [(Vxv)da=-}+2=3% v
Problem 1.35

(a) Use the product rule VX (fA) = f(VXA)— A x (Vf):

|

[sf(VxA)jda=[ng(fA)‘da+[s[Ax(Vf)]-dazj{pfA-dht/S[Ax(Vf)]-da. qed.

(T used Stokes’ theorem in the last step.)

(b) Use the product rule V-(A xB) =B - (VxA)—-A-(VxB):
/B-(VxA)d-:—:/V-(AxB)dr«}-/A-(VXB)dr=)£(AxB)-da-+/A-(VxB)dT. qed.
v v v S Y

(T used the divergence theorem in the last step.)



11

i e il : oo ]
Problem 1.36 |7 = \/z? +y? + 2% 6 =cos (vfﬁ), ¢ =tan~! (¥).

Problem 1.37

There are many ways to do this one—probably the most illuminating way is to work it out by trigonometry
from Fig. 1.36. The most systematic approach is to study the expression:

r=zX+yy+zZ=rsinfcos¢X +rsinfsingy + rcosfz.

If I only vary r slightly, then dr = %(r)dr is a short vector pointing in the direction of increase in . To make
it a unit vector, I must divide by its length. Thus:

el T sl 0T T

B 8¢

Br = sinfcos¢p X + sinBsin ¢y + cosf 2; |%|2=sin29cos2¢>+sin2651n2¢3+cos29:1.

2t =rcosfcospX +rcosfsingy — rsinfz; gﬁ2=r200526c052¢+r2coszﬁsin2¢+r"’sin29=rg.
g = —rsin@singX +rsinfcospy; | &5 ® = r2sin®@sin® ¢ + r2sin® P cos® ¢ = 12 sin® 4.

f;zsin9cos¢i+sin95in¢)“f+cos€2.
= 61=cosl9cos¢5(+cos€sin¢j"—sinﬁi.
¢ =—singX+cosgpy.

Check: &% = sin® 8(cos? ¢ + sin® ¢) + cos? @ = sin’ @ + cos?§ = 1, v
0.¢ = —cos@singpcos¢ + cosfsingcos¢p =0, v etc.

sinff = sin® @ cos ¢ X + sin® sin ¢ § + sin 6 cos 6 2.
cosf 0 = cos? § cos px + cos® §sinp§ — sin f cosf 2.

Add these: 5
(1) sinft +cosff = +cosgX+singy;
(2) ¢ =-—singX+cosoy.

Multiply (1) by cos ¢, (2) by sin ¢, and subtract:

% =sinfcosdt + cosﬂcosqﬁé -sinmﬁ.

Multiply (1) by sin ¢, (2) by cos ¢, and add:

y= sinfsin ¢ + cos B sin @6 + cos ¢ .

cosf ¢ = sinf cosf cos @ X + sinf cos@sin ¢ § + cos? 6 Z.
sinf @ = sinf cosf cos g X + sinf cosfsinpy — sin® 6 2.
Subtract these:

% = cosff —sind 6. \
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Problem 1.38

(a) Vovi = 52 (r%r%) = H4rd = 4r
[(V-vy)dr = [(4r)(r? sin6dr d6 dg) = (4) [ r¥dr [ sin6.d6 [27dg = (4) (%) (2)(27) = 4nRY]
Jvi-da= [(r’t)-(r?sinfdf dp ) = r* [ sinf df J" dg = 4mR* v (Note: at surface of sphere r = R.)

(b) Veovo = 52 (r24) =0 = | [(V-v)dr =0
[vo-da = [(L%) (r2sin0d0déF) = [sin6dfdo = [4r.]

They don't :a.greeIr The point is that this divergence is zero ezcept at the origin, where it blows up, so our
calculation of [(V-v;) is incorrect. The right answer is 4.

Problem 1.39
Vv

Il

L2 (r2rcosf) + ] O (sin@rsin 9) + rs:lneaaqb (rsin 6 cos @)
;1531-2 cosf + —— r2sinfcosd + —— rsin6(— sin @)
3cosf + 2cosf — sing = 5cosf — sing

J(V-v)dr = [(5cosf — sin ¢) r? sin 6 dr df d¢ = fUR r2dr f(}% [ 02"(5 cosf — sin @) dq’)} df sin 6
“—>2r(5cosh)
= (&) (10m) Jf sincos ,d8
| -

1
0 2

_ |57 p3
=|FR.

Two surfaces—one the hemisphere: da = R*sinfdfd¢#; r=R; ¢:0—- 27, 6:0— %
[v-da = [(rcos8)R*sinfdfd¢ = R® [ sinfcosfdb [ dp = R3 (1) (2) = = R®.
other the flat bottom: da = (dr)(r sin 8 d¢)(+8) = r drd¢ @ (here 8 = 2).r:0->R, ¢:0—2r.

[v-da = [(rsinf)(rdrdg) = fUR vl T dp = 21rRT3.
Total: [v-da= 7R+ 27R® = 3xR3. v

Problem 1.40 | Vt = (cos @ + sin f cos )i + (— sin @ + cos 8 cos ¢)0 + ﬁ?(_ siff @sin ¢)p

R = AT
- ?-},%( r?(cos@ + sinf cos ) + —— 2 (sinf(— smﬂ+cos€cos¢))+rsmea¢( sin ¢)
= 2 2r(cosf + sinf cos ¢) + r—5(—2sinf cos§ + cos® 6 cos ¢ — sin® f cos §) — —L— cos ¢

= 1_sm5,[25m|5¢0319+:!sm f cos ¢ — 251n9f.(039+c0329cos¢—sm 0 cos ¢ — cos ¢
= —L— [(sin® 6@ + cos? @) cos ¢ — cos ¢] = 0.
3

Check: rcosf = z, rsinfcos¢ = z = in Cartesian coordinates t = z + z. Cbviously, Laplacian is zero.
Gradient Theorem: f: Vt.dl = t(b) — t(a)
Segment 1: 0 =%, $ =0, r:0— 2. dl =dr#; Vit-dl = (cos@ + sinf cos p)dr = (0 + 1)dr = dr.
[Vitdl = [?dr=2
Segment 2: 0 =%, r=2, ¢:0 L. dl=rsin0dp =2dé .
Vt-dl = (- sin ¢)(2 d¢) ~2singdg. [Vi-dl=— [ 2sinpdp = 2cosp|§ =
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Segment 3: 1 =2, ¢=72;0:F = 0.
dl=rdff =2d80; Vt-dl = (—sinb + cosfcos$)(2df) = —2sinb db.
JVtdl = - [7 2sinfdf = 2cosfy =2.

Total: f: Vtdl=2-2+42= . Meanwhile, ¢(b) — t(a) = [2(1 +0)] - [0( )] =

-~

Problem 1.41 From Fig. 1.42,|8 = cos¢X +sing§; ¢ = —singX +cos¢py; 2 =2

Multiply first . by cos ¢, second by sin ¢, and subtract.
Scos¢ — d)smq& = cos? % + cos¢sinpy +sin’ px —singcospy = x(sm ¢ + cos? ¢) = %.

So|% = cos¢§ —sin¢ .

Multiply first by sin ¢, second by cos qb, and add:
8sin¢ + P cosp =sinpcospX + sin® ¢y — sin pcos gk + cos? ¢ § = (sin® ¢ + cos? @) =

So|§ =sin$3s + cos ¢ @.
Problem 1.42
(@) Vv = %g (33(2+sin cb)) + ;E’—(ssinq&cosé) 5@;(32)
= 1 23(2+ sin® ) + L s(cos® ¢ —sin® ¢) + 3
= 4+251n ¢ + cos? gb—sm o+3
= 4+sin’¢+cos’p+3=[8]
(b) f(V-v)dr = [(8)sdsdddz =8 [ sds [\F d¢ [} dz = 8(2) (%) (5) =
Meanwhile, the surface integral has five parts:
top: 2 =5, da = sdsd¢z; v-da=3zsdsdp = 15sdsd¢. [v-da= 151'0286‘:8 J,? dé = 157.
bottom: z =0, da = —sdsd¢Z; v-da = —32sdsdp =0. [v-da=0.
back: ¢ = 3, da = dsdzc,f); v.da = ssin¢cosgpdsdz = 0. fv-da = {)
left: ¢ =0, da = —dsdz ¢; v-da = —ssinpcospdsdz = 0. Jv-da=0.
front: s = 2, da = sdpdz8; v-da = (2 + sin’ ¢)sdp dz = 4(2 + sin® ¢)dp dz.
[veda=4[F(2+sin? ¢)d¢ [ dz = (4)(m + Z)(5) = 25.
So §v-da = 157 + 257 = 407. v
el Vixy = (sa¢(3z) (ssmq&cosqb))s+(az (s(2 +sin’ 9)) — £(32)) ¢
+;( (s?sin g cos¢) — ( (2 + sin? qb]))

1
= $(2ssingcos¢ - 3251nq5c03¢) =
Problem 1.43

(a) 3(32)—2(3)4:27—6—1;
(b) cosm =|[-1.]
(c) [zero.]

(d)In(-2+3)=Inl=
Problem 1.44

(2) [2,(2z + 3)16(z) dz = (0 + 8) =[1.]
(b) By Eq. 1.94,6(1 —2) = 6(z — 1), 501 + 3 + 2 =[6.]
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(c) 19zt oz + Yde=9(-1) 4 =[]
[1 1fa>b),0(1fa<b).‘

Problem 1.45

(@) [7, f(z) [z £6(2)] dz = = f(2)6(2)|Z, — [To, £ (z f(2)) 6(2) dz.
The first term is zero, since §(z) = 0 at +oo; % (z f(z)) = :cgé + j—i = a:dz + f.
So the integral is — [ (1‘% + f) é(z)dz =0 - f(0) = —f(0) = — [, f(z)(z)dz
So, xf;é(x] = —é(z). qed

(b) [o f(z)Ldz = f(2)8(x)|% — [Tog Lb(x)dz = f(00) — [5° Ldx = f(c0) — (f(o0) — £(0))
= f(0) = f_ f(z)d(z) dz. So % = §(z). qed

Problem 1.46

(a) |p(r) =qé3(r —1r'). I Check: [p(r)dr =q [&3(xr—r)dr=q. V

(b) [p(r) = ¢8%(r — ') — ¢8°(r). |
(c) Evidently p(r) = Aé(r — R). To determine the constant A, we require
Q= [pdr = [AS(r — R)4nr®dr = A4nR?. So A= 2. |p(r) = :3%20(r — R).

Problem 1.47

(a) a® +a-a+a? =

(b) Jir = b)?558%(r) dr = p5b” = 7547 +3%) = EI

(c) ® =25+9+4=38> 36 =62 so cis outside V), so the integral is [zero. |

d) (e— (2% +29+22) > =(1%+09+(-1)2)> =1+1=2< (1.5)2 = 2.25, s0 e is inside V,
and hence the integral is e-(d — e) = (3,2,1)-(-2,0,2) = —-6+0+2 =

Problem 1.48
First method: use Eq. 1.99 to write J = [ e (476%r)) dr = 4710 =

Second method: integrating by parts (use Eq. 1.59).

# 3 o o edepg iy i v
_[,E'V(e ")d'r+fe 5 ~da. But V (e ]=(5e )r=~e T,
s

v

.
Il

-

o0
/%e_"4wr2dr+/e_"r%-rzsinﬂdﬂd(ﬁf=47rfe_"dr+e_R/sin9d3d¢
0

4 (—e7")|g +4me R =dm (e +€7°) =4n.v (Here R=o00, soe " =0.)

Problem 1.49 (a) V-F; = Z(0) + 5‘9~(0)+82( 2) =0} VFgmg:+_¥+32-—1+1+1_

=35 @) =25} Vxma- -

8 Flo M
< Qo
L] ﬁ’lm Ny

ofleww
8,8~

o 8”[0: o

VXF1 =l
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F, is a gradient; Fy isacurl| |Us =1 (22 +y? +2%)| would do (F2 = VUy).
2

A 8A,\ _ (8A [iF O TS T | AT e L = i ;
ForAl,wewant(#51——5;‘)-—(—3;-—#)—0, - il B Ay =%, Ay = A; = 0 would do it.

A, =12?y| (F1=VXA;). (But these are not unique.)

2§ i
(b)V—F3=%(yz)+a%(zz)+§—z(xy)=0; VxF3=| & a% 2 l=%@z-2)+yy-y)+2(z—2)=0
yz TZ TY

So F3 can be written as the gradient of a scalar (Fz = VU3) and as the curl of a vector (F3 = VXAg). In

fact, does the job. For the vector potential, we have

%}; o %& =yz, which suggests A, = iy?z+ f(z,2); Ay = —1y2° +g(2,y)
%fl — %84: = 3z, suggesting Ay = 2%z + h(z,y); A: = —322° +j(y,2)
%‘f = QE%! =zy, SO Ay =52y + k(y,2); Az = —§2y* +1(z,y)

Putting this all together: |Ag = {z (22 — ) & +y (2? - 22) § + 2 (y* - z?) 2} | (again, not unique).

Problem 1.50
(d) = (a): VXF=Vx(-VU) =0 (Eq. 1.44 - curl of gradient is always zero).
(a) = (c): §F-dl = [(VXF)-da=0 (Eq. 1.57-Stokes’ theorem).
b b a
() = (b): [P, F-dl— [P, F-dl= [’ F-dl+[5, F-dl=§F-dl=0,s0

b b
/ F‘dl=/ F-dL
a | a JI

(b) = (c): same as (c) = (b), only in reverse; (c) = (a): same as (a)= (c).
Problem 1.51

(d) = (a): V-F=V.(VxW)=0 (Eq 1.46—divergence of curl is always zero).
(a) = (c): § F-da= [(V-F)dr =0 (Eq. 1.56—divergence theorem).

(c)= (b): [;F-da— [, F-da=§F-da=0,s0

/F-da:/ F -da.
I 11

(Note: sign change because for § F - da, da is outward, whereas for surface II it is inward.)
(b) = (c): same as (c) = (b), in reverse; (c)=> (a): same as (a)=> (c) .

Problem 1.52

In Prob. 1.15 we found that V-v, = 0; in Prob. 1.18 we found that Vxv, = 0. So

v, can be written as the gradient of a scalar; v, can be written as the curl of a vector.]

(a) To find ¢:
1) £ =y’=>t=yz+ f(y,2)
(2) 8 = (20y +2?)
(3) & =2yz
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From (1) & (3) we get %1—2yz=>f—yz +g(y) =t =y?z +y2%2 + g(v), so —23:y+z gﬁz
2zy + 22 (from (2))::»51—0. We may as well pick g = 0; then |t = zy? + y22.
(b) To find W: %V‘ ——1~x2 e — s = 352, %—%‘:—2:2.

Pick W, = 0; then

6Wz 2 3 7

— —_— W =
o 3zz2 = W, 5% 2 + f(y,2)
W,

36:: = =272 W, = -2z + g(y, 2).
%ﬂ—%‘=%ﬁ+zg—9§=xz=>%é—§§={]. May as well pick f =g =0.
W = —z2zy — 322223

x ¥ 2
Check: VxW=|£ £ £ | =% (2?) +§ (3z22) + 2 (~222).v
0 - %z —322;2
2

You can add any gradient (Vt) to W without changing its curl, so this answer is far from unique. Some
other solutions:

W =z22% -222¥;
W = (2zyz + 228) % + 2%y 2;
W =azyz& — j222§ + §2° (v — 322) .

Probelm 1.53

L 2 1
rsinf 86 rsinf d¢

1
2
cosfr cosqﬁ_+rsin8( 7% cos @ cos @)

10
Vv = 1_—25(1'21-2(:039)+

sin@r% cos¢) = (—r cos fsin ¢)

1 1
= -—4r3 cosf +
rsinf

= rcos& [48in@ + cos ¢ — cos @] = 4r cos 8.
sin@

/(V-v) dr

R n/2 w/2
/(4rcos€)rzsin9drdﬁd¢=4[r3dr/cosﬂsinl?dﬂ/dtjv
0 0

0
4 1 ™ iy “.R‘l
(&) (5 (3) =%
Surface consists of four parts:

(1) Curved: da = R?sin6dfd¢®; r = R. v-da = (R%cosf) (R?sinfdf dg).

w/2 /2 R4

o i ol A W e T

/v da=R /cos&smﬂdﬂ/dqﬁ—R (2) (2)—- T
0 0




(2) Left: da = —rdrddd; ¢ =0. v-da= (r’cosfsing)(rdrdf) =0. [v-da=0.
(3) Back: da =rdrddd; ¢ =n/2. v-da= (—r2cosfsin@) (rdrdf) = —r3cosfdrdf.

R w2
/v-da: fr3dr / cosfdf = — (iR“) (+1) = —ER“.
0 0

(4) Bottom: da = rsin drd¢@; § = /2. v-da= (r’cos¢) (rdrdg).

17

R w/2 :
/v-daz/radr[cosqﬁdqb:z}%“_
0 0
Toml:f"'da:ﬂR4/4+0—i—R4+%R4:”44, o
Problem 1.54
X"V _ 2
VXV = ‘,% ‘% 3@; =ﬁ(b—a). So I(V}(v).daz(b_,a)sz.

ay bz O
v-dl=(ay% +bx¥) - (dzcXx +dy¥ +dz2) = aydzr + brdy; z° +y*> = R?> = 2zds + 2ydy = 0,
sody = —(z/y)dz. So v -dl = ayds +bz(—z/y)dz = | (ay® — ba?) dz.
- W " S kil m a(R?-2?)~bz?
For the “upper” semicircle, y = vVR? — 22, s0 v-dl = — gty — dz.

-R

20 = 2 2 -R
fv-dl = / %dﬁ: {a,R“sin_1 (%) —(a+b) [—% R? ——Iz—kl%-sin_l (%)]} =
R
-R
= %Rz(a —b)sin"!(z/R) E el %Rz(a —b) (sin™!(=1) —sin~1(+1)) = %Rg(a —-b) (—g - g)
= —;-WR2((J—G).

And the same for the lower semicircle (y changes sign, but the limits on the integral are reversed) so
§v-dl=nR%(b-a). v

Problem 1.55
Nz=2=0dr=dz=0; y:0—>1. v-.dl=(y+3z)dy=ydy.

1 1 3
'/v‘dlz/ydyzi.
0 0

2z=0; 2=2-2y; dze=-2dy; y:1>0. v-dl=(y+3z)dy+6dz=ydy~12dy = (y — 12) dy.

0
1
fv-d1=f(y~12)dy=—(§—12) =S +12
1

(3)x=y=0,dz=d'y=0, z:2=20. v-dl=6dz

0
/v-dlz/ﬁdz:—l?.
2
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Total: §v-dl=1-1+12-12=[0]
Meanwhile, Stokes’ thereom says § v -dl = [(V xv) - da. Here da = dy dz X, so all we need is
(Vxv)y = 8%(6) - %(y +3z) =0. Therefore [(Vxv)-da=0.v

Problem 1.56
Start at the origin.

(1) =%, ¢=07:021. v-dl=(rcos?d)(dr)=0. [v-dl=0.

w/2

(2)r=1,60=3%; ¢:07/2. v-d (3r)(rsm9d¢)—3d¢ Jv-dl= 3qub=-2’5

3) 6=3; rsinf=y=1,50r = gy, dr = =5 cos6df, 0: F - .
cos? @ cos@ cosfsin @
-dl = cos® 8) (dr) — (r cos8sin 8)(r do - d theta — ————— df
v (r ) (dr) = (r in@)(r df) = —— ( - 29) 7
B _(00336 cosﬂ) __cosf (c0529+51n 6) n cosﬂds
7 sin®f  sin@ ~  sinf sin? @ T sin34@
Therefore
e g 1 1 R |
cos
dl=— df = = o =]l ===
/v f/;sins'ﬁ 2sin’ @ -2 2:(1/2) 2-(1) 2 2
(4 6=2,¢=%;7:v/2-0. v-dl= (rcos?f) (dr) = irdr.
0
210
[V-dl:l/rdrzli =—1 2=——.
2 37|y "4 2
V2
Total:
om 1 1. .ra:
%V(ﬂ. 0+2+_2—_§_T'
Stokes’ theorem says this should equal [(Vxv)-da
1 é] i} 1[ 1 8 0 =
o ) _— ps il 3.0 2oy =
VXv s [89(Sm 3r) — 3¢( -rsm9c036)] B [sinﬁaqs (r cos® 6) 3r(r3r) [
1[8 : gt d
e [5(—rrcos6‘sm9)— @(rcos 9)] )
1 e TN | : i i
= W[Brcosﬂ]r+ ;[—~6r]6+;[—21'(:05951119+2rcos€sm9]¢
= 3cotfi—60.

(1) Back face: da = —rdrdf ¢; (Vxv)-da=0. [(Vxv)-da=0.
(2) Bottom: da = —rsin@drd¢@; (Vxv)-da = 6rsinfdrde. 0 = 5,50 (VXv)-da = 6rdrdg

w/2

f(va) da—-/ﬁrdr/dqﬁ= -%-g=—"”. v
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Problem 1.57
v.dl=ydz.

(1) Left side: z =a—x; dz = —dz; y =0. Therefore [v-dl=0.
(2) Bottom: dz=0. Therefore [v-dl =0.

210
¥
2

- =[]
e

Meanwhile, VXv = %, so [(V xv) -da is the projection of this surface on the zy plane =1 .a-2a = a®. v
Problem 1.58

0
(3) Back: z=a~3y; dz=-1/2dy; y:2a »0. [v-di= [y(-idy)=-1
2a

2a

Vv = ;.-12-5% (r*r?sin) + rsilnﬁ?% (sin 6 4r2 cos 6) + rsian% (r tahé’]
- %41-3 sinf + rsiln 941'2 (cos® 6 —sin?§) = ggj—g (sin? @ + cos® § — sin? 6)
2
5 R /6 o : i
/(V-v)dr - /(4,,2;9) (r2 sin 0 dr df dg) =/4r3 a8 / cosi’edefd¢= (RY) (27) [g- + S“fa] i
0 0 0

4 6 2

T sin60° TR* V3 R
27rR4(E+ )=W(ﬂ+3_)= =R (97 + 3v3).

Surface consists of two parts:

(1) Theice cream: r = R; ¢ : 0 — 2m; 6: 0 = 7/6; da = R?sin0df d¢ ; v-da = (R?sin6) (R?sin0df dg) =

R*sin® 6 df d¢.
/6 2w
. /6 4
fv-da =R /sin29d6fd¢5 = (R*) (2m) i -lvsinQS] =0 Rt (3 - lsins{}f’) S i rr-—3£
3 4 " 12 4 6
0 0

(2) The cone: 0 =%; ¢:0—=2m; r:0— R; da =rsinfdodrf = lzﬁrdrdqﬁé; v -da = 3r3drdé
R 27
: 4
/v-da=x/§/r3drfd¢=\/§-%-2n= -2‘/_51-:34.
0 0

Thereforefv-da:%(%—-lé—5+\/§) =“1—}§4(2?T+3\/§). v

Problem 1.59
(a) Corollary 2 says §(VT')-dl = 0. Stokes’ theorem says §(VT)-dl = [[V X (VT)]-da.So [[Vx(VT)]-da =0,
and since this is true for any surface, the integrand must vanish: V x(VT) = 0, confirming Eq. 1.44.
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(b) Corollary 2 says §(V xv)-da = 0. Divergence theorem says §(V xv)-da = [ V-(Vxv)dr.So [ V:(VXxv)dr
= 0, and since this is true for any volume, the integrand must vanish: V(V xv) = 0, confirming Eq. 1.46.
Problem 1.60

(a) Divergence theorem: §v -da = [(V-v)dr. Let v = cT, where c is a constant vector. Using product
rule #5 in front cover: V-v = V:(cT) = T(V-c) +c¢-(VT). But c is constant so V-c = 0. Therefore we have:
J¢-(VT)dr = [Tc-da. Since c is constant, take it outside the integrals: ¢- [ VT dr = ¢- [Tda. But ¢
is any constant vector—in particular, it could be be X, or ¥, or Z—so each component of the integral on left
equals corresponding component on the right, and hence

[VTd'r: /Tda. qed

(b) Let v — (v x c) in divergence theorem. Then [V.(v x ¢)dr = [(v x ¢) - da. Product rule #6 =
V(vxec)=c-(Vxv)—v:-(Vxc)=c-(Vxv). (Note: Vxec =0, since c is constant.) Meanwhile vector
identity (1) saysda-(vxc) =c-(daxv) = —c-(v xda). Thus [¢-(VXVv)dr = — [¢- (v x da). Take ¢
outside, and again let ¢ be X, ¥, Z then:

f(va)dT=-/vxda. qed

(c) Let v = TVU in divergence theorem: [ V-(TVU)dr = [ TVU -da. Product rule #(5) = V.(TVU) =
TV(VU) + (VU) - (VT) = TV?U + (VU) - (VT). Therefore

/(TV2U+(VU}-(VT)] drzf(TVU)-da. qed

(d) Rewrite (c) with T & U : [ (UV2T + (VT)-(VU)) dr = [(UVT)-da. Subtract this from (c), noting
that the (VU) - (VT) terms cancel:

/ (TV?U - UV?T) dr = / (TVU —UVT) -da. qed

(e) Stoke’s theorem: [(V Xv)-da= §v-dl. Let v=cT. By Product Rule #(7): Vx(cT) = T(V xc) -
¢ x (VT) = —c x (VT) (since c is constant). Therefore, — [(c x (VT))-da = § T'c- dl. Use vector indentity
#1 to rewrite the first term (c x (V7)) -da = c¢- (VT x da). So — [¢-(VT xda) = § c-Tdl. Pull c outside,
and let ¢ — X, ¥, and Z to prove:

[VTxdaz—thﬂ. qed

Problem 1.61
(a) da = R?sin 8 df do ¥. Let the surface be the northern hemisphere. The % and § components clearly integrate
to zero, and the Z component of T is cos#é, so

sin? 8

8
0

w/f2
a= /Ri’sinecosededw = 21rR2i] sinfcosfdf = 27nR% %
0
(b) Let T =1 in Prob. 1.60(a). Then VT =0, so § da = 0. qed.
(c) This follows from (b). For suppose a; # ap; then if you put them together to make a closed surface,
§da=a; —ap #0.

(d) For one such triangle, da = §(r x dl) (since r x dl is the area of the parallelogram, and the direction is
perpendicular to the surface), so for the entire conical surface, a = 1 § r x dl.
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(e) Let T =c-r, and use product rule #4: VI = V(c-r) = ¢ x (VXxr) + (¢ V)r. But Vxr = 0, and
(¢-V)r= (czaz +cyﬂy +c,az)(zx+yy =2z%Z)=c, X+ ¢, ¥+ c;Z=c. So Prob. 1.60(e) says

del'—*f{c-r)dl:—/(VT)xda=—/cxda:—cxfda=—~cxa=axc. qed

Problem 1.62
(1)

19
vv=im (7)) =A<

For a sphere of radius R:
Jv-da = [(§F)-(R*sin0dfdeé+) =R [sinfdfd¢ = 4nR.
So divergence

J(V-v)dr J (%) (r?sin@drdfdg) = (j?dr) (fsinfdfdg) =4rR. ( theorem checks.
0

Il

Evidently there is no delta function at the origin.

i 18 1 :’
V x (1“ ) 2 ar ( 21"“) = 135; ( ﬂ+2) 72 (ﬂ +2)rﬂ+1 (n+ 2)7'“_1

(except for n = —2, for which we already know (Eq. 1.99) that the divergence is 478%(r)).

(2) Geometrically, it should be zero. Likewise, the curl in the spherical coordinates obviously gives
To be certain there is no lurking delta function here, we integrate over a sphere of radius R, using
Prob. 1.60(b): If Vx(r"f) = 0, then [(VXv)dr = 0 < ~§vxda. But v = r*f and da =
R%sinfdf d¢t are both in the § directions, so v x da = 0. v




Chapter 2

Electrostatics

Problem 2.1

(a)
_ 1 qQ
(b) " 4meg 72’

Ezplanation: by superposition, this is equivalent to (a), with an extra —g at 6 o’clock—since the force of all
twelve is zero, the net force is that of —g only.

() [Zero.]
1 qQ
(d) dmeg 12

a cancellation in pairs of opposite charges (1 o’clock against 7 o’clock; 2 against 8, etc.), with one unpaired ¢
doing the job, then you'll need a different explanation for (d).

where r is the distance from center to each numeral. F points toward the missing q.

pointing toward the missing q. Same reason as (b). Note, however, that if you explained (b) as

Problem 2.2 \E
(a) “Horizontal” components cancel. Net vertical field is: E, = ﬁQﬁ; cosf. )‘
1 2qz
Here 2% = 2% + (g)2 ;co80 = %,80|E = Ireo (2 1 é)z)sﬂ 2. \
When z > d you’re so far away it just looks like a single charge 2¢; the field g g g ¢ F
should reduce to E = 4;0 %S 2. And it does (just set d — 0 in the formula).
(b) This time the “vertical” components cancel, leaving s
E= ﬁ25% sin @ %, or /0
Z
E= 41:50 (= + ((Ij)z)sfz x. ?
s q =0
From far away, (z > d), the field goes like E ~ ulm g z, which, as we shall see, is the field of a-dipole. (If we

set d =+ 0, we get E = 0, as is appropriate; to the extent that this configuration looks like a single point charge
from far away, the net charge is zero, so E — 0.)

22



Problem 2.3

E = o [iA

4dmeg JO

41r€o

= L)z

4#60

2 Jo rimde

[zt -

cos; (#* = 2% + z%; cosf = £)

- Ad
E, = 4,”0 Jo 3% sinf =

SRR T
dmeg

2 el -

(=)

B s % +
" dmeg 2 w/z2+L2
term — 0, and the % term — g-2L3,

TeEg z 2

1 A L
T dmweg z :?25_}_1,5 .
o o zdz
T dneo (x2+z2)3?2
B 1 el
4:1'(0 z ;7z5+L5 2
L

z
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. It checks, for with z > L the %

Problem 2.4

From Ex. 2.1, with L — £ and z — /22 + (%)2 (distance from center of edge to P), field of one edge is:

1

Aa

Elz

47e 2 2 2
0 z2+“T 22+24—+9:1—

There are 4 sides, and we want vertical components only, so multiply by 4 cosf = 47‘— :

2482
2545

1

4)az

:4 z
TEO (22 4 22) \/zi’—i— =

Problem 2.5

Here, 2

2 =2+ 2%, cosh =

1 A(27r)z

" dmeg (r2 + 22)%/?

“Horizontal” components cancel, leaving: E =

4dmen

{J5#

cosf} 2.
% (both constants), while [dl = 27xr. So

Problem 2.6

Break it into rings of radius r, and thickness dr, and use Prob. 2.5 to express the field of each ring. Total
charge of a ring is o - 277 - dr = A - 277, s0 A = odr is the “line charge” of each ring.

Ering =

R
1 (odr)2nrz S 1 g /
dmeo (r2 + +22)%/? 4meg o (r2+
1 1 1
aast mppeles’ b g
B = s 10s | - =]

T
22)3/2 dr
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s o
For R > z the second term — 0, s0 Epjane = Flco-%raz el —7Z.
0

2\ —1/2 2 - g2
Forz)‘)RW (1+R) z%( —%—Ry),so[]kﬂ%—%'i'%%:%g,

and E = 4;(0 2—’%:—— = 4“0 S, where Q =R%.
Problem 2.7

E is clearly in the z direction. From the diagram,

dq = oda = o R?sin 0 df d¢,
22 = R? + 2% — 2Rz cosd,
cosyp = ﬂﬂ.

So

i) oR?sinfdf d¢(z — Rcosf)

[ chnsg (R? + 22 — 2Rz cos 6)3/2
5 T  (z— Rcos#)sinf

4?TF|:| s /0 (R? + 22 — 2Rz cos §)3/2

1

e m(?ﬂ'R%r) ./_1 Y —};t;lzu):’fz u. Integral can be done by partial fractions—or look it up.

vl (2rR%) [ 2 I zu— R sty 27rR2cr{(z—R)_(—z-R)}

~ 4reg 22 /R? + 22 — 2Rzu) _; 4meq 22 |z=R| |z+R| J

[dé = 2.

T
dé. Let u = cosf; du = — sinf db; {

0=0=u=+1
f=rpr=u==1"1]"

4mweg

For z < R (inside), E. = 0, so

Problem 2.8
According to Prob. 2.7, all shells interior to the point (i.e. at smaller r) contribute as though their charge
were concentrated at the center, while all exterior shells contribute nothing. Therefore:

1 th .

4meg 2

1
For z > R (outside the sphere), E, = 2 4—’!;%22 =1 %, s0|E= 4_%

E(r) = —

where Qi is the total charge interior to the point. Qutside the sphere, all the charge is interior, so

1 Q.

4dmeg T2

Inside the sphere, only that fraction of the total which is interior to the point counts:

4 d 3 3
T s W P L oty et e ol
O =ar @ = g 0 b B9 ™

Problem 2.9

(a) p=€0 V-E = eg 5 2 (r? - krd) = o % k(5r%) =
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(b) By Gauss’s law: Qenc = €0 § E - da = €o(kR3)(4wR?) =

By direct integration: Qenc = [pdr = IOR(Segkrg)(47rr2dr) = 20mepk fUR ridr = dwegkR®.v

Problem 2.10
Think of this cube as one of 8 surrounding the charge. Each of the 24 squares which make up the surface
of this larger cube gets the same flux as every other one, so:

1
-da= — E . da.
/ E-.da % / da
s pe
cube /.
The latter is éq, by Gauss’s law. Therefore f E-da= %
i ;

Problem 2.11

Gaussian surface: Inside: § E - da = E(4nr?) = %Qenc =0=|E=0.]
oR? (As in Prob. 2.7.)
— Gaussian surface: Outside: E(47r?) = (04nR?) = |[E= — .

Problem 2.12

€ 3

Gaussian surface §E-da=E-4nr? = %Qenc =L4nmrp. So

i |
E = —prt.

Since Qor = §7R%p, E = -1~ 2% (as in Prob. 2.8).

4meg

Problem 2.13
Gaussian surface

m/ fE-da:E-2ﬂ3-3=%Qenc:%M.So
S
s, A

E = (same as Ex. 2.1).

‘_T—’ T 2meqs

w

Problem 2.14

Gaussian surface §E-.da=FE -47r? = %Qem - -:; Fodr = % J(k7) (72 sin 6 dF d6 d¢)

O, T3 _ Admkrt _ wk 4
—euk47rf0rdr— L Lo = Zhpd,

kr®f.

T dweg
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Problem 2.15

() Qenc =0, s0

(i) § E - da = E(4nr?) = +Qenc = i [pdr = & [#57*sin6 di df d phi

=tk (g tmke_g) - [p= X ("‘“)n‘-. IE|

€0 5 € r2

(iii) E(4mr?) = 42k [° g = 42 (p _g), 50
k fb—a)\ .
E= a ( ',r‘2 ) r.

Problem 2.16

L e

ps .
E=s
2698

(i) (() ) D*— Gaussian surface $§E-da=E-2ns-1= %Qenc = %P‘ﬂ'szii
!

\ = B “+—— Gaussian surface
s

(ii) ()) _) ] §E-da=E-27s-1= :Qenc = ~pmal;
2
\...L,..._.../ — &"
/ + E 26085
ey

\ s \ \-— Gaussian surface

(iii) - & §E-da=FE-2rs-1=LQenc =0;
JESS

1 |E|

|
|
|
|
L
a

Problem 2.17

On the z z plane E = 0 by symmetry. Set up a Gaussian “pillbox” with one face in this plane and the
other at y.

Gaussian pillbox fE cda=FE-A= %Qenc - iAyp;

@ E= gyj'( (for |y| < d).

= 1=
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O — {—10~Adp = |E= éd? (fOI‘ y > d).

Problem 2.18
From Prob. 2.12, the field inside the positive sphere is E, = 5‘%14, where r is the vector from the positive

center to the point in question. Likewise, the field of the negative sphere is — §f—0r_. So the total field is

doalb ol
SRga ) L
ry
But (see di ) —d Bl Z d
ut (see diagram) ry —r_ =d. = g

Problem 2.19

1 2 1 A : X
VXE—MVX/;pdT— m[[VX(E)]pd‘r (since p depends on r', not r)

=0 (since VX (%) =0, from Prob. 1.62).
ps

Problem 2.20 . ¥
% Z

SIURE =k~ 2

zy 2yz 32z

so E is an impossible electrostatic field.

D

= k[%(0 — 2y) + §(0 — 32) + 2(0 — )] # 0,

X v Z
Q) VxE;=k|lE & Z | = k[&(22 — 22) + 9(0 - 0) + 2(2y - 2y)] = 0,
yv: 2xy+22 2yz
so E; is a possible electrostatic field. o

Let’s go by the indicated path:

E-.dl = (y?dz + (2zy + 2%)dy + 2yz dz)k H(:f:g,yo, o)
Step: y=2=0;dy=dz=0. E-dl = ky?dz = 0. I

Stepll: z =29, y: 02y, 2=0.dz =dz=0. 1 Y
E - dl = k(2zy + 22)dy = 2kzoy dy.
J;1 E-dl = 2kzo [[° ydy = kzoyg. =

Step IIl: ¢ = 9, y = Yo, 2: 0 = 2zp; dz = dy = 0. T
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E .dl = 2kyzdz = 2kypz dz.
J;11 E - dl = 2yok [;° zdz = kyo23.

(z0.y0,20)

V(zo,¥0,20) = — [ E-dl = —k(zoy3 + y023), or | V(z,y,2) = —k(zy® + y2?).
0

Check: —wv=k[£ (zy*+yz?) &+ & (av?+y2?) 9+ & (237 +y2?) 8]=k[y? *+(22y+22) 9+2y2 8]=E. V
Problem 2.21

V(r)=- [ E-dl. {

Outside the sphere (r > R): E = 4,350 L.

Inside the sphere (r < R): E = ;- Jsrf.

r q 1
oo dmeg 1’

and for r < R: V(r) = f ( = )df—fnf (4;{0—#’?) d—zﬁ%[%_ﬁls(ﬁ:{fﬁ)]

Soforr>R: V(r) = -, (5 %) dF = 7

4dmeg T

e (3 L )
4mep 2R R2
When r > R, VV = & 2 (L)g= e mf S0 E=-VV = A 4¢ v
Whenr < R, VV = g4 2 (3 - ﬁi) f= gl (-B) =~ mfisoE=-VV =L &riy
Problem 2.22
E = 4”16 225 (Prob. 2.13). In this case we cannot set the reference point at oo, since the charge itself

extends to oco. Let’. s set it at s = a. Then

1
o SRLE T -
Vi =~J (4’"0 B )ds 4“02)&111 (a)
(In this form it is clear why a = oo would be no good—Ilikewise the other “natural” point, a = 0.)
VY = 4#{ 21\? (ln( )) 3 41rc 2’\1A=*E v
Problem 2.23

V() = - [LE-dl = - [ (85 dr - [ (G )dr - [O)dr = £852 — & (In(3) +a (3 - )
—t-g-m(@)-1+8)=|2m(3).

€0

Problem 2.24
Using Eq. 2.22 and the fields from Prob. 2.16:

V) -V(©0) = - ffE-dl=~ [{E-dl- ['E-dl= 5 [}sds— & [* ds

2¢g Ja s
A b
pa® T Nl 2
+2iElJ Ins|, T (1+2ln (a))'

- 3_
2¢ep 2

Problem 2.25

@ |V = = ——

4meg \/z2 B (%)2
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L ,e—
(b)V=4r:éo —LV%=4N£ 1HI+ z2+$2|

zé4zx

i
I
1
'
' 2
1
1}
'
'

0 IR ) z
= A In Lt vzt ok _—_2’\ ]n(ﬂ)
4mep —L+vz2+ L2 meg z
z
R g 2nrdr o
BV =1/ ‘/f:,+—f5 = 4,”02;70 (\/r2+z2)] —26—0(\/R2+22-z).
BV BV s L 8V
In each case, by symmetry B e =0. . E=-%%
@E=-;1-2¢(-1) — 2 opi= . s 2 | (agrees with Prob. 2.2a).
411'&0 (22+(%)2)3 471'60 (22 (2) )3/2
1 | 1 1
BE= - {(L+v'z=+L2} VAT ~ CLa/aiDn 2 T 23}
G0, 2 N Ee A A w4, 2L\ 1 B :
= T Imeo VATL2 { (Z2+L%)—L2 } Hre, W Z | (agrees with Ex. 2.1).

= e a z i .
(€ E=-3% {%7}?’1?—?23 - 1} i 7 [1 - W] % | (agrees with Prob. 2.6).

If the right-hand charge in (a) is —g, then , which, naively, suggests E = —VV = 0, in contradiction
with the answer to Prob. 2.2b. The point is that we only know V on the z azis, and from this we cannot
hope to compute E, = —% or By, = __a':‘ That was OK in part (a), because we knew from symmetry that
E; = E;, = 0. But now E points in the z direction, so knowing V' on the z axis is insufficient to determine E.

Problem 2.26 i V3h e 2 i
o2rr o
= — | dr=
Vi) 4meo Jo ( 2 ) '/_(\/_h)

(where r = 2/V/2)

V2h
V(b) = 1 / (a?;r) d, wheres = g/ k2442 — V2
0

47eq

%0 1 [V2h
4men /2 Jo 18 e —

2ha
o h vV2h
= h? 2 — V2hm + — In(24/ h2 4+ 22 — 2h¢+2¢—\/§h]
W [\/ +122 -2 = n(2y/h? +22 — V2 )

o h h
=m[h+ﬁln(2h+2\/§h—\/§h)—h—TIn(?.h—\/ﬁh)] 2‘/~€0‘/_[ln(2h+\/_h) In(2h— \/_h)]
oh . (2+V2\ _oh  [(2+V2)?
En(z—\/i) 4o ( ) I(H\/_)

V(a) - V(b) = % [1 ~In(1+ \/i)] .
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Problem 2.27

L
Cut the cylinder into slabs, as shown in the figure, and Caz F 2
use result of Prob. 2.25¢, with z =& z and ¢ — pdx: %’ “ \
z+L/2
V =gk (VR +2? —z) da ) \}) }
z—L/2 et pri—
dz

= £} VR T2 + R In(z + VEE £ 29) - 2°] |12
= eo{(HL)W_(‘ \/m+32|“['+&+ ) ]‘zzb}.

=k +yrR24 (- &)
(Note: -(z+§]2+[z*%)gz—zz—zL—%ﬁi-zg—zL-i-LTz = —2zL.)

E= —VV_.—z— - 1/32 z+ z+L) /R2 (z - &)
{ \/R2 +2)’ \/RT—_

+ R?

hz+%+ R+ (z+ L)? z—--+\/R2+ (=)

1

\/R2 (z+ L) \/R2

iR

Problem 2.28

Orient axes so P is on z axis.

_ R Here p is constant, dT = 2 sin 8 dr df d¢,
= Imeo J 24T 2=+22 + 12 — 2rzcosf.

r? sin @ dr df dg 2m
4'-"0 zé4rs—2rzcosd ’ fo d(,‘ﬁ 2.
Jy o=ial ——df = L (VP +22 - 2rzcosh)|; = L (V¥ + 22 + 2rz — V2 + 22 — 2r2)

\.#z!+r!—2rzcns
2lz ifr<z
— L Yy iy o ) 1
7 zl)—«{ 2/r i e e }




V= 27.2

4meg

z R
{f%rgdr+f%r2dr} £
0 P

=

°

3

F
3

+
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Problem 2.29
ViV = 4«1¢n V2 [(§)dr = 4;50 [p(x')(V?})dr (since p is a function of r’, not r)
= 7= [p(r')[-4n83(r — r')] dr = - Lp(r). ¥
Problem 2.30.
(2) Ex. 2.4: Eapove = 511; Ebelow = — 52511 (fi always pointing up); Eabove — Epelow = Sh. v/

Ex. 2.5: At each surface, E = 0 one side and E = fo- other side, so AFE = fa v

Prob.2.11: Egut =

ln)

o R? 4

601"! I'

€0

Outside: fE -da = E(2ws)l = %Qenc =

f—f‘;&,,zO;soAEz%

TV

—— Inside: Qenc =0,50 E=0. . AE = Z8.
o .
l
2 R
(€) Vour = £2 = B2 (at surface); Vin = B2 ; 50 Vour = Vin. v
i R o L BV Sn av, 8Vip — _ o
e =—g=—Z (at surface); i =0 ; so e — Hh = —Z

s

L(2rR)l = E = ZL&;3

&

Z3 (at surface).

Problem 2.31

; - q 1
(ﬁ.)V—‘m ;'q:_41rco{_aq+ + } 4wea(_2+%)’
i 1
B = v =| 1 (—24).
S We=qV 4‘.‘1’60&( +\/§)
2 2 2
(b) W1_0 W?' 417{0 (:tlt);w:s_cl_'::e;(_%; 9&_
2 i 1 2q
Wt.otzw%{ 1+7- 2+7§}_ v
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Problem 2.32

(a) W = L [pVdr. From Prob. 2.21 (or Prob. 2.28): V =

CHAPTER 2. ELECTROSTATICS

1 q s r?
€0 2R (3 ﬁf)

rsd ¢ [ 2) 2 qp r3 1 1'5] o qp ( . R3)
Fom g 2 drrdr = si (= tab o M0 fpt t
Vo P QR/ (3 BT T GR I R S T Ik 5
5eg 560 —wR3 4meg \5 R
b)yw==2 fE2d'r. Outside (r > R) E = 4“0 %t ; Inside r <R)E = 4“‘0 ot

o ppaato. b g bl pg /RL*‘ 2

W 3 (4ﬂ€o)2q {L - (r®dmdr) + A (R3) (4mr=dr)
B P R | R I R D
4mep 2 AR e L 4meg 2 \R  5R) 4me5 R

(c) W =

arbitrary. Let’s use a sphere of radius a > R. Here V =

9 { §VE-da+ [, E?dr}, where V is large enough to enclose all the charge, but otherwise

1. ¢

4meg v °

R a
W= 1.4 2 1 2
{ 4Trfo1" 471_60 2)7‘ 31n9d9d¢+/0 Ed‘r+[ (4?1_607'2) (47redr)
[yl e ()
(4‘.‘1’60)2 (4meg)? 5R T (4mep)? v/l
Coai R s oY S
_4m,2{ * 3R a+R} 5 R’

As a — oo,

1 g2
4meg 2a

the contribution from the surface integral (

4meg

— - 1)) picks up the slack.

Problem 2.33

dW =dqV =dg (ﬁ) g, (g = charge on sphere of radius r).

/dch

3
= gwrsp — q% (g = total charge on sphere).
4mr? 3q
dg = 4nridrp = Wq dr = Erzdr
1 [(qr® 3q , 189 &
e alenfillles e of Sk
dmeo (RS) (R3 w8 Tk vl
LS My LR 1 (s8)
" 4mey RS 4meg R® 5  4meg \G R/’

2
g—) goes to zero, while the volume integral



Problem 2.34
(a) W

=2 [E?dr.

E =

4 (a < r < b), zero elsewhere.

33

41rco
T 2 b ) 5 2 b o qg 1 1

W=9 (k) 2 (h) anrtar = o D= |- (2-3).

(b) Wy = S?I‘Eu :’ Wa= Srrcog;- 4#50;% (r > a), Ez—-“ﬂ,m%}i‘(f)b). So
EI‘EQZ(‘”{CO) —‘i— (r > b), andhencefEl ~Egdr = - (ﬂ) q J‘ 4ﬂr2dr=":f;?e_§b_‘

2
WtOt_W1+W2+EGIE1 Ezdf_ﬁmoq ( +1“_) 8meg (_Al)
Problem 2.35
ERL TP . I ST
® IR= 7R’ 7° " 4ma?’' 7T T2
1 0 S kecgrg e g g
) VO) =~ [SB-di =~ [ (s &)dr — [2(0dr ~ [R(ss &) ~ [30)r = | = (24 £ - 3.
1

(c) (the charge “drains off”); V(0) = — [ (0)dr — ff(

L %)dr — [p(0)dr =

4mreg

Problem 2.36

da ) Ga + @
a = — ; = — ; — :
e e e

1 gatas.

(b) | Equy = — i where r = vector from center of large sphere.

dreg T
(c) |Eq = i I it £y, | where r, (rp) is the vector from center of cavity a (b)

" dmwep 12 *~ 4reo 2 = i i .

(d)

(e) op changes (but not g, or 03); Eoutside changes (but not E, or E;); force on g, and g still zero.

Problem 2.37

Between the plates, E = 0; outside the plates E = o/ep = Q/egA. So
P=22p2_-2 2Q2 = -—---—-Q2 :
2 2 e5A? 2¢9 A2
Problem 2.38
Inside, E D outside, E = f; so

Eave g

2 41rco

Q

= %{j(‘in

41re r

%I‘ fz = U(Eave)za g = ﬁﬁf
F, = [f.da= [(%=) (32 7%) cosf R?sin 6 df dg
)211' "/2 $in 6 cos 6 df =

Q £ 9
327 R%¢’

2 . w/
ar) (3sin”6)]g

WEQD (
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Problem 2.39
Say the charge on the inner cylinder is @, for a length L. The field is given by Gauss’s law:
JE-da=E-2ns-L = %Qenc e %Q = E= ﬁ—b s 8. Potential difference between the cylinders is

b b
) i, TRE ot WA Q b
V(b)—V(a)_#/c‘ E-dl=- Te7 ). 3ds_ Tl In (a)'

As set up here, a is at the higher potential, so V = V(a) — V(b) = ﬁ—L In (%)

2meg
In(2)

O=9= lz:f-g)é, so capacitance per unit length is

Problem 2.40

(a) W = (force) x (distance) = (pressure) x (area) x (distance) = %’EQAE‘

(b) W = (energy per unit volume)x(decrease in volume) = (6{) % ) (Ae). Same as (a), confirming that the
energy lost is equal to the work done.
Problem 2.41

From Prob. 2.4, the field at height z above the center of a square loop (side a) is

L3l 4daz
b (22+ %) \/32 +9

SIS,

\

t

fg

Here A — a ¢ (see figure), and we integrate over a from 0 to a:

RN R
B,

L

e

e /ﬂ'l///////////

\

.E,':-41:—6020@:/{l nada - .Letu=a;,soada=2du.
2+ )2 +5
1 a?/4 & TR ] 2
= —402/ = = [2 tan~! (W2u+z )l
4meg 0 (u+22)V2u+22 Tme |2 2 =

.32 2
= 2—&-{tan“1 (2—-”) - tan’l(l)};

TED Z
20 at: =w| .
E_ﬂ'fo tan™ 1+§5—Z]z
a — oo (infinite plane): £ = =% [tan"l(oo I = mso z (2-3)= BV

z > a (point charge): Let f(z) =tan~'+/1+z — %, and expand as a Taylor series:

f(z)=£0)+zf'(0) + 5 x2f”(0)+
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Here f(0) =tan~'(1) - § = § - § =0 f'(®) = sy 1 e = semrayvirey 0 £1(0) = 4, 50

f@) =gz + ()2 + ()2 + -

] BE -~ 20 1n2 3 1t oat e
Thus (since 7 =2 < 1), E~ 25 (1557) = T 55 = a0 ¥

Problem 2.42

= Rk e e 1 8 (Bsinfcos¢
pJEUV.E_EG{ﬂar(T r)+rsin95g( T )}

i 1 Lo Beind o« o e :
we0[?‘_2‘4-1-‘."3in9 r (—Slnqj)]—;‘g’(A—Bsmqb)_i

Problem 2.43
From Prob. 2.12, the field inside a umformly charged sphere is: E = 4”0 %r. So the force per unit volume

is f=pE= (%%g) (57 dps)r = E(EQR? r, and the force in the 2 direction on dr is:

& _3/ QY 2.
dF, = f.dr = = (47rR3) r cosf(r® sin @ dr df do).

The total force on the “northern” hemisphere is:

k& _?_ . 2
F, —/fzd‘r— fn (41rR3) f dr/ cosBsmGdG/ d¢

_ 3 Q R* sin? 6" 3Q?
‘25(477123) (4 )( 2 |, )(2”) 6dmeoR2’

Problem 2.44

1 o 1 g L - ocR
Veenter = 7e0 / i Lar o s L
/ irly =27R%sinf df
Voole = 4reg 22 = R? + R? — 2R? cosf = 2R?(1 — cos@).

1 o(2nR?) ["/2 sin 6 df oR /2
= 2v1 — ]
B T ool o s8],

oR oR
N~ =——. . Ve Vosuter = 2 - 1).
\/ien( 0) \/-2-60 pole center 260 (\/_-

Problem 2.45
First let’s determine the electric field inside and outside the sphere, using Gauss’s law:

nkr* (r < R),

€ fE-da = €047’ E = Qenc = fp dr = /(mr-)f2 sin @ dr df d¢ = 4:rrk/0 Fdr = {mm‘l > R)
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SoE:_i"TUrzf‘(r<R); E—Wr(r>R)

Method I:
R 2 oo 4\ 2
_ % [ pe w6 LA PR )
W = 5 fE' dr (Eq. 2.45) = A (460) drridr + 2 2 (4501'2) drredr

2 R 0o 2 T oo 2 T
S0k 6 8/ 1 Tk (RT e (1 = T (RLy on
i (450) {/{, e S d} vk bt 8L e | Y e

Method II:

W = —;-fde‘r (Eq. 2.43).
2 e * {kr? g Faef d
Fer <R V== [Bea=- [(@5)a- [ () a=-5 {7 ()
ok . 33)_ k ( s r3)
"_ZEE(_R+3 o e s

: 1" E {5 2 gu ik I8 o Ty
__W_§/O {kr)[s—e—&(R——I)]alﬁrdr_ 350/0 R°r —Zr)dr

7 R3E_1§i SR (fi_ . /
) 4 A TP BB AT) VT ©

R
3

3

J

[=.=]

Problem 2.46

8 e—.\r - T(_A)e—;\r - e—a\r : i £
E——-V'V——Aa( F )r——A{ 2 }r—Ae (1+,\r)r—2.

=6 V-E=eA{e 1+ V.- (&) +%-V (e (1 +Ar))}. But V- (%) = 4n63(r) (Eq. 1.99), and
A1+ Ar)é3(r) = 63(r) (Eq 1.88). Meanwhile,

p
e
V(e 1+ Ar) =& (e (1 + Ar)) = {-Ae™ (1 + Ar) + e 22} = F(—=A?re~").

2
So & -V (e~ (1+Ar)) = =2, and | p = ¢4 [47r63(r) - %e_’\"] :

e— AT oo
Q= /pd‘r = eA {411' /63(1') dr — ,\2/ 41rr2dr} =¢A (47: - ,\241?[ re_”dr) .
0

But [;° re=*"dr = 55, s0 Q = 4meA (1 - %,-) =
Problem 2.47

(a) Potential of +) is V4 = —-2“0 n (%), where s, is distance from Ay (Prob. 2.22).
Potential of —X is V_ = +52—In (%), where s_ is distance from A_.

21reo



A s g (z,y,2)
g Total |V = In{—]). 14
2?TED 84
Now sy = +/(y —a)? + 22, and s_ = /(y + a)? + 22, so / . S+
a
5 L * -
Vie,2) = ghgin (YEETES ) = | o (L2225 5 y
o V(y—a)2+2? g |(y—a)? + 22

(b) Equipotentials are given by %Jr—i%,}f? = e(4meoVo/A) = k = constant. That is:
v +2ay + a® + 22 = k(y? — 2ay + a® + 2%) => y?(k — 1) + 2%(k — 1) + a®(k — 1) — 2ay(k + 1) =0, or
92+ 2% + a? — 2ay (%) = 0. The equation for a circle, with center at (yo,0) and radius R, is
(y—0)* + 2% = R*, or y* + 2% + (y§ — R*) — 2yyo = 0.
Evidently the equipotentials are circles, with yo = a (;:J‘—}) and

2 2 2
) TR ] - R, SR, R | 2(k+2k+1 —k*4+2k—1)
“=yf—-R°=>R°=y;—a“=a (k-l) a &=1)? = a2 & 1),,01‘

R = zfj/fl ; or, in terms of Vp:

4#60‘%/,\ £ e?'n‘eoVo/)\ + 6_217!0%'”’\ 2?T60V0
Yo = = acoth( ) :

a =a =
er-ifreoVo{)\ T e21r€cVo,fA — e—2meoVo /A by

R=2 g e 2 e a % o 2meqVo
= Ge4n€0V0/) T Ex a(e2r(oVo/A s e—ZNCOVg//\) o sinh (233: V;) =|acs 3 5

z

CN R

Q
>~
le
w2
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Problem 2.48

d?v 1
() V2V = —£ (Eq. 2.24), s0 s aay
(b) gV = 3m? — |v = %

¢)dg= Apdz ; ¥ = ap9® =| Apv = I | (constant). (Note: p, hence also I, is negative.)
dt Pat
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d*V -
x5y = | oz =BV /|, where = -L

(Note: I is negative, so (3 is positive; q is positive.)

(e) Multiply by V' = 4% :

Vs e E R
(d) dzs — cgp_ ep Av T €gAd

!
Vf%v? = mf-*/?% = /V' av' = ﬂfV‘W v = %V ? = 2BV*/? + constant.

But V(0) = V'(0) = 0 (cathode is at potential zero, and field at cathode is zero), so the constant is zero, and
V'Z=48v1/2 %‘;— =2/BVY4 = v14qy = 2,/B dz;
/V““ dv = 2\/,5/03::: = %V”“ = 2\/Bz + constant.

But V(0) = 0, so this constant is also zero.

4/3 2/3 2 1/3
V¥4 = 2B, soV(x)=(§v’E) 23, orV(x)=(96) x*‘fs:(g” ”‘) 2413,

4 323 A%q
Interms of Vp (instead of I): |V (z) = Vo (E) (see graph).
Without space-charge, V would increase linearly: V(z) =V, (). ¥
S ﬂ-_f Lfllx—z/a_ __4alo L
G ’ dz? 5 & d4/3 5 9 : (de)2/3 . without

2 2/3 :
v= —fg = \/QQVG/m(E) ; with

1’,3 4 62 2
O V) =Vo= (#F) ¢ =V = Jelr; 1 = G,

42 oA 2 3/2 4e0A [2q
I=—§7_;’fp@%3/ = KV/?, where |K = o V"

Problem 2.49

S el Yo
@)|E= e [ 5 (1+/\)e dr.

(b) The field of a point charge at the origin is radial and symmetric, so VXE = 0, and hence this is also
true (by superposition) for any collection of charges.

(c) Vz—/rE-dlz— - /ri(1+£)e-rﬁdr

41reoq s 2 A

1 o2 ry _ q. 2300 [ 3 By s A
i i i A g, g b Y el T ) ;
4ﬂ60q./.r = (1+ /\)e dr pr {/r € dr + ,\/r‘. oL W dr}
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Now [Le~/*dr = -2 _ L (&< 4« exactly right to kill the last term. Therefore
—r/A | —rfA
V(r) = —— {— } s B
dre £l dreg T

(d) fE'd b }_(HE) ~R/A ( ) ~R/A
P Erda= s 5 P = -
e—T/A R —r/A

= wdil setBgia b be [l .

/deT_‘Wfo./o z —r2 4fdr = re dr - {(1/)‘)2( Y 1)]0
s {—e‘R/" (1+ E) + 1}.
€o X

1 =9 R\ —rix _ R\ R/

}{E da+A2de'r-fo{(1+A)e 1+/\ e +1

(e) Does the result in (d) hold for a nonspherical surface? Suppose we ,
make a “dent” in the sphere—pushing a patch (area R?sin6 df d¢)
from radius R out to radius S (area S?sin 6 df d¢).

qed

sl 1 S\ ss/apen s ' 1 R—R/A 2
AfE da = e {52 (1+ /\) (S*sinfdf d¢) — 72 1+ 5y (R*sin@ df do)

i § -S/x _ _@ =R/X| o
—-4———mo [(1+A)e (1+ \ e sin 6 df d¢.

—r/A 5
Alder - i_‘L[G vl aind bl e sinededqs/ re="/Adr
1\2 A2 471'6(] R

A2 4dmeq r
s
= _4_:.5 sin 8 df do (e_'/" (1+ g)) |R
0
—. g SN i R\ _rpl| .
o [(1+ ,\)e (1+ \ e sin 6 df d¢.

So the change in —5 f V dr exactly compensates for the change in §E da, and we get ——q for the total using
the dented sphere just as we did with the perfect sphere. Any closed surface can be bu1lt up by successive
distortions of the sphere, so the result holds for all shapes. By superposition, if there are many charges inside,

the total is 1 Qem Charges outside do not contribute (in the argument above we found that ® for this

volume §E - da + 5z [V dr = 0—and, again, the sum is not changed by distortions of the surface, as long as ¢
remains outside). So the new “Gauss’s Law” holds for any charge configuration.

(f) In differential form, “Gauss’s law” reads: | V-E + A—lz‘V = l,o, or, putting it all in terms of E:
)
1

V-E - - [E «dl = i,‘9. Since E = —VV, this also yields “Poisson’s equation”: —V2V + —V = l,(;v
A2 €0 A? €0
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Problem 2.50

p=e V-E=¢eZ(az) = (constant everywhere).

The same charge density would be compatible (as far as Gauss’s law is concerned) with E = ayy, for
instance, or E = (§)r, etc. The point is that Gauss’s law (and VXE = 0) by themselves do not determine
the field—like any differential equations, they must be supplemented by appropriate boundary conditions.
Ordinarily, these are so “obvious” that we impose them almost subconsciously (“E must go to zero far from
the source charges”)—or we appeal to symmetry to resolve the ambiguity (“the field must be the same—in
magnitude—on both sides of an infinite plane of surface charge”). But in this case there are no natural
boundary conditions, and no persuasive symmetry conditions, to fix the answer. The question “What is the
electric field produced by a uniform charge density filling all of space?” is simply ill-posed: it does not give
us sufficient information to determine the answer. (Incidentally, it won’t help to appeal to Coulomb’s law

-

Problem 2.51

4;{0 J p%d‘r) —the integral is hopelessly indefinite, in this case.)

Compare Newton’s law of universal gravitation to Coulomb’s law:

Folgfia, g, i GGy

r2 "~ 4dmeg T2
Evidently 4;50 — G and ¢ — m. The gravitational energy of a sphere (translating Prob. 2.32) is therefore
3o M*
Wgrav = EG_Iz_

Now, G = 6.67 x 10~!' N m?/kg?, and for the sun M = 1.99 x 103° kg, R = 6.96 x 10 m, so the sun’s
gravitational energy is W = 2.28 x 10%1 J. At the current rate, this energy would be dissipated in a time

W 2.28x10%

= = S qow = 090 x 10Ms = [1.87 x 107 years.




Problem 2.52
First eliminate z, using the formula for the ellipsoid:
Q 1
inab /A a) + AW + 1 - (@2/@) - ]%)
Now (for parts (a) and (b)) set ¢ — 0, “squashing” the ellipsoid down to an ellipse in the zy plane:
Q 1
2rab /T (&/a)? — W/DP

o(z,y) =

o(z,y) =

(I multiplied by 2 to count both surfaces.)

(a) For the circular disk, set a = b= R and let r = \/z2 + 32. [o(r) = i I

2rRRZ —r2’
: A 1
(b) For the ribbon, let @/b = A, and then take the limit b = oco: |o(x) = ﬂ_ﬁ
(c) Let b= ¢, r = v/y? + 22, making an ellipsoid of revolution:
z2 r? Q 1
= +—==1 itho = ;
ad am R Vr2fat +r2/ct

The charge on a ring of width dz is

dqg = o2nrds, where ds = v/dz? + dr? = dz+/1 + (dr/dz)?.
2vdx 2rdr dr Az phed -

2
it LU AR i Gl ot & R g
Now 2 + = 0= i 2 5 ds =dzy/1+ s dz - o2fat Fr2fet. Thus
_dg _ Q 1 ¢ e v M B '
Az) = S 2ﬂr41mc2 NI Vet +ré3fct = 50" (Constant!)
; o |
et 1 *.
| | I
| I I
I | I
I I I
I 1 I
[} i I
| -smnicaid = S
(2) (b)
Az)
T
/—17%!:\
T ‘: T T
i - i

(c) (d)




Chapter 3

Special Techniques

Problem 3.1
The argument is exactly the same as in Sect. 3.1.4, except that since z < R, V22 + R? —22R = (R — 2),

1 ¢
dmeg R’

1
inside the sphere, the average potential due to interior charges is dre Q;znc
0

. L N RS B
instead of (z — R). Hence Vayve = Tre R (2+R)-(R-2)] =

If there is more than one charge

, and the average due to exterior

charges is Veenter, 0 Vave = Veenter + 1225 v

Problem 3.2

A stable equilibrium is a point of local minimum in the potential energy. Here the potential energy is qV.
But we know that Laplace’s equation allows no local minima for V. What looks like a minimum, in the figure,
must in fact be a saddle point, and the box “leaks” through the center of each face.

Problem 3.3
Laplace’s equation in spherical coordinates, for V dependent only on r, reads:

1d dV dVv dVv c
2§ it [0 P (R B 2 = s s 2
ViV = e (r dr) O=>r = (constant) = e e 14 . + k.

Ezample: potential of a uniformly charged sphere.

In cylindrical coordinates: V2V = li (sﬂ) =0= 8?/_3 e %‘;L = g = [V =clns+k.
Ezample: potential of a long wire.
Problem 3.4

Same as proof of second uniqueness theorem, up to the equation §¢V3E;3 - da = — [|,(E3)?dr. But on
each surface, either V3 = 0 (if V is specified on the surface), or else E3, = 0 (if %‘;—’ = —E, is specified). So
fv(E3)2 =0, and hence E; = E;. qed
Problem 3.5

Putting U = T = V3 into Green’s identity:

p

/ [VaV2V3 + VV3 - V3] dr = f V3VVs-da. But V?V3 = V2V, - V2V, = e +E£ =0, and VV3 = -E;s.
v S o 0

So / Eldr = - jg V2Es3 - da, and the rest is the same as before.
v s

42



Problem 3.6

Place image charges +2q at z = —d and —q at z = —3d. Total force on +q is

= T | 2d)? T [de * (6d)?

g [-29 , 2 gl g g Lo AN,
T dmepd? \ 2 8 36

1
4?76[]

(

29¢?
72d?

)2
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Problem 3.7

(a) From Fig. 3.13: 2= v/r%2 + a2 — 2racosf; 2 = /r?2 + b2 —2rbcosf. Therefore:

Therefore:

V(r,0

q R q

2 i S Vr2 + b2 — 2rbcos
q q

(8) 2+ B —2rBeoss  \[(%)" + B2 — 2racost.

2
(Eq. 3.15), while b= % (Eq. 3.16).

1

- 1 (q+q')_ q 1
T 4meg \» 2]  |4meo | Vr® + a2 — 2racosf VR? + (ra/R)?

— 2rac039} )

Clearly, whenr = R, V — 0.

(b) ¢ = —¢g gf; (Eq. 2.49). In this case, %—E =

@) =

Qinduced =

OB B8 oo 1) 0. e ~3/2(9p _
€0 (471_60){ 2(r + a® — 2racosf) (2r — 2acos@)

B3

~ (R? + (ra/R)? — 2racosf) i) (RE% - 2a cosﬂ) }

r=R

_% {_(32 +a® — 2Racos)~%/*(R — acos6) + (R* + a® — 2Ra cosh)

2
9/p2, 2 _ -3/2 |p _ e
v (R* + a* — 2Racosf) [R acosf R + acos 9]

—2_(R? - a®)(R? + a® — 2Racosf)~%/2.

4TR

[ada = ﬁ(R2 - a* f(R2 +a? — 2Racos8) %% R?sin 6 df d¢

w

i il o M T 2+ -1/2
41rR(R a”)2nR [ Ra(R +a* — 2Racosf) ]

0

q . 2 2 1 1 ]
2 2 R, 200 U]
5 ) [732 FoY2Ra VR 4@ —2Ra

But a > R (else ¢ would be inside), so /R? + a2 — 2Ra=a — R.
B iyl bo oofe l Lo Gup.. By e
@ - ] = Ll R - @+ R = 2R

2a (a+ R)

_ﬂ = qf‘

a

%—‘: at the point r = R. Therefore,

2
i (Ci- —acosf
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(c) The force on g, due to the sphere, is the same as the force of the image charge ¢', to wit:
1 /L S e gl 5 1 il ¢*Ra
"~ 4mep (@ —b)?2 T 4meg a 7

(a— R?/a)? ~  4mep (a2 — R?)2"
To bring ¢ in from infinity to a, then, we do work

2 - ¢’R
4meg 2(a? — R2)’

a
2 = 2
R a B 1
i dreg (&2-R2}2da_ 4meg [ 2(&2—}22)]

oo

oo

Problem 3.8
Place a second image charge, ¢”, at the center of the sphere;
this will not alter the fact that the sphere is an equipotential,

i a->b
but merely increase that potential from zero to V5 = _}__q_; ] °; .
dreg R q q q
q" = 4megVy R at center of sphere. | a
For a neutral sphere, ¢’ +¢"” = 0.
1 q" q qq’ 1 1
F = _ e — —_— e
4meg i (a2 e (a—b)? dmep \ a2 g (a—b)?
ad b(2a—b) _ q(~Rq/a) (R*/a)(2a ~ R*/a)
4rep a?(a — b)? 4meg a?(a — R?/a)?
A BT B8 )
= dmep \a ) (a? — R?)?’
(Drop the minus sign, because the problem asks for the force of attraction.)
Problem 3.9
(a) Image problem: \ above, —\ below. Potential was found in Prob. 2.47:
-4
1 2X A z
V(y,z) = 1 e = 1 2 /.2
/y . (y z) 47:'50 n(S /3+) 4“60 n(s__/3+) a s (y’z)
B ] & 1 v’ + (z + d)? d 5_
" |dmeo | ¥2 + (2 — d)?

. dJ/ T
i A s ) V]

(b) ¢ = —eoa—v. Here evaluated at z = 0.

on on _ 0z’
A 1 1
oly) = _£04’H‘€0 {y2 reyers d)22(z +d) - m?(a - d)}

_g{{ i }__ d
dr \y2+d? y2+d2f | w2+ d?)

Check: Total charge induced on a strip of width [ parallel to the y axis:

m = el O R G
—o0

—Al.  Therefore Ajg = —A, as it should be.

z=0

I




45

Problem 3.10

The image configuration is as shown. Yy
_q. ......... o ? C]
q 1 1 : :
V(z,y) = 2 s : :
(@) 471'60{\/(z—a)2+(y-b)2+22 V(@ +a)? + (y +b)? + 22 T
1 1 qi __________________ i_“q
Ve+a2+@y-b2+22 Jflz—a?+@y+b2+22]

For this to work, |# must be and integer divisor of 180°.

Thus 180°, 90°, 60°, 45°, etc., are OK, but no

others. It works for 45°, say, with the charges as shown.

45° line

(Note the strategy: to make the z axis an equipotential (V = 0),
you place the image charge (1) in the reflection point. To make the
45° line an equipotential, you place charge (2) at the image point.
But that screws up the z axis, so you must now insert image (3) to
balance (2). Moreover, to make the 45° line V' = 0 you also need (4),
to balance (1). But now, to restore the z axis to V = 0 you need (5)
to balance (4), and so on.

The reason this doesn’t work for arbitrary angles is that you are even-
tually forced to place an image charge within the original region of
interest, and that’s not allowed—all images must go outside the re-
gion, or you’re no longer dealing with the same problem at all.)

135° line

why it works for 6 = 45°

.\‘_ '.'_.

<+
3)

2?N° good
?(3) (0)

e
2) (1)
why it doesn’t work for § = 135°

Problem 3.11

A\ 8
From Prob. 2.47 (with yo — d): In [(f +a) +y ] :

= dreo (z—a)?+y?

and
acoth(2megVo/A) =d e
{ a'CSCh(Z?TE(]VD/A) = = (dlwdlng)

R A

2meg Vi
: = cosh (m) , or

where a? = yo? — R*> = la: Vd? —R2,|

= cosh™*(d/R)’

2w €0 Vo

Problem 3.12

V(z,y) = Z Cne~""*/%sin(nny/a) (Eq.3.30), where C, = %/Vn(y)sin(n?ry/a) dy (Eq. 3.34).
0

n=1

; _ | +V, forO<y<a/2
In this case Vp(y) = { Vo LB Therefore,
ay [ 2V (nny/a)|*"*  cos(nry/a)
Tl ; 3 . _ 2V | _ cos(nmy/a cos(nmy/a
Ch = aVo / sin(nwy/a) dy / sin(nmy/a) dy = { e L GiiTa)
0 af2

2Vo
2

{— cos (%1) + cos(0) + cos(nw) — cos (n_7_r) } = % {1 +(=1)" — 2cos (?) } i

a

a/2

}
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The term in curly brackets is:

n=1 : 1-1-2cos(r/2) =0,
: z g i i } : 33253?)?/2)4’: 0 etc. (Zero if n is odd or divisible by 4, otherwise 4.)
n=4 : 141-2cos(2m)=0,
Therefore
C. = 8V /nm, n = 2,6,10, 14, etc. (in general, 45 + 2, for 7 =0,1,2,...),
1 0; otherwise.
So

8 e~""%/% sin(nmy/a) _8e ~(45+2)nz/a gin[(45 + 2)1ry/a]
Viz,v) ™ Z n Z (45 +2)

a 41/0 1 —nrzfa o : A i B_V
V(z,y) = p n=§5 ‘ne sin(nmy/a) (Eq.3.36); o= —¢€ on (Eq. 2.49).
So
a [4V; 1 ; 4V
oly) = -e 31‘{ 2 de_““/“sm(nﬂy/a)} —€g ——G-Z (— ) '"”’“sm(n?ry/a)
z=0 z=0
= % Z sin(nmry/a).
n=13,5,...

Or, using the closed form 3.37:

_ 2V . _, ( sin(ry/a) e 1 —sin(ry/a) \ 7
Viz,y) = pe tan (—sinh(rx/a))z:'g_ €0— 1+;th [(”ﬂ/f “1) (smhz(ar:c/a)) cosh{w::c/a)

2¢0Vp  sin(my/a) cosh(mwz/a)
a sin®(ry/a) + sinh?(rz/a) sk

2¢0V0 1
a sin(my/a)

Summation of series Eq. 3.36

V(z,y) = ol ] I, where I = le_""”/“‘ sin(nmy/a).
T n
n=1,3,5,...
Now sinw = Zm (e**), so
e, i —nnzfa _inmyfa _ }_ n
I_Imz ne e _Imi ﬂ'2',

where Z = e~"(=-#)/e_ Now

1 o 1 5 i
B ope el IR L £ / WS
138, 0 =0 (25 +1) 0 j=0
7 1 1 1+ 2 1 I
& o L + _1 i o "
= /——lwugdu_zln(l_z) 2ln(Re ) 2(lnR+38),
0
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where Re'? = 1£Z Therefore
1 1 1 z 1 —m(z—iy)/a 1 +e-1|'{x-—iy)/d 1= —w(z+iy)/a
- Rl =ip s oS o et e 8 o o2 e il s
2 1-Z2 1-— e—"‘(x—‘y}/ﬂ (]_ - e—:r(x—'zy)/n) (1 - e—n(z+zy)/n)
T4 e»-rrz/n (ei-rry/a 7 e—-ifry/a) 25 e—?wz/a T 2,iemﬂ'zfﬂ sin(:'ry/a) Th e—2rr:|:/a
|1 - e-n(a=iv)/a|? 9 |1 - e=n(z=iv)/a? ’
$0
2e~"*/sin(my/a) 2sin(ny/a) sin(my/a)
tanf = = = — .
1 —e—2mz/a em@/a _ g—mz/a 51nh(1m:/a)
Therefore

1 _, [ sin(ny/a) _ 2V _, [ sin(my/a)
Lissio e 1 (Sinh(ﬂz/a)) s 3 Vi) = i : (sinh(wm/a)) '

Problem 3.14
v 92V y

@) 57 + 57 B = 0, with boundary conditions
/,I/II/I//////A
?
Z
Z
Z
2

Y PP | L=

ay

(i)  V(z,0)=0
(i) V(z,a) =0,
(i) V(0,y9) =0,
(iv) V(b,y) = Vo(y).

As in Ex. 3.4, separation of variables yields

]

V(z,y) = (Ae*® + Be™**) (Csinky + D cosky).
Here (i)= D = 0, (iii)=> B = —A, (ii)= ka is an integer multiple of =:
V(z,y) = AC (e““/“ - e’“”/“) sin(nny/a) = (2AC) sinh(nrz/a) sin(nmry/a).

But (2AC) is a constant, and the most general linear combination of separable solutions consistent with (i),

(i), (iii) is

V(z,y) = i Cy sinh(nmz/a) sin(nry/a).

n=1

It remains to determine the coefficients C, so as to fit boundary condition (iv):
2 a
Z Chnsinh(nmb/a) sin(nmy/a) = Vo(y). Fourier’s trick = C, sinh(nmwb/a) = : [ Vo(y) sin(nmy/a) dy.

Therefore

Cn = m fVo(y) sin(nmy/a) dy.
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a
— 2 : = 2Vo 0, if nis even,
W) = asinh(mrb/a)%/sm(nwyla) oy = asinh(nwb/a) C { 22 = if n is odd. }
0

Vo Z sinh(nwz/a) sin(nry/a)
nsinh(nwb/a) '

V(z,y) =

Problem 3.15
Same format as Ex. 3.5, only the boundary conditions are:

(i) V = when
(ii) = when
(iii) V =0 when
(iv) V=0 when
(v) V=0 when
(vi) V=V, when

-

-

NN E e Y

AR N Bl

POPOR O

This time we want sinusoidal functions in z and y, exponential in z:
X(z) = Asin(kz) + Bceos(kz), Y (y) = Csin(ly) + Dcos(ly), Z(z)= EeVF T o Ge~VF Tz
(i)= B =0; (ii))=> k = nn/a; (iii))= D = 0; (iv)=> | = mn/a; (v)= E + G = 0. Therefore
Z(z2) = 2Esinh(m/n? + m2z/a).

Putting this all together, and combining the constants, we have:

Viz,y,2) = Z Z Chn.m sin(nmz/a) sin(mry/a) sinh(ry/n? + m2z/a).

n=1m=1

It remains to evaluate the constants Cy, m, by imposing boundary condition (vi):

Vo = Z Z [Cn,m sinh(my/n2 + m2)] sin(nwz/a) sin(mny/a).

According to Eqgs. 3.50 and 3.51:

0, if n or m is even,
2 2 Vi = 5
Chp,m sinh (ﬂ‘ n +m ( ) 0//3111 nwz/a) sin(mmy/a) dz dy = 556;,%’ if both are odd.
00
Therefore
- h 2
V(g2 = o0 L in(rrz/a)sin(my o) STV T2/ )
R SR R sinh (7v/n? + m?)
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Problem 3.16
s 1 d3 2 3 A 1 dﬂ 2 2 5 1 C{z 9 2
Blx) = ﬁd_ig(x -1)" = &*QEB(E -1)" 2z = g@z(z -1)
_ ld o2 42 2.0 LR sy 2 2
=l [(:r 1)" +2z (2% - 1) 2:9] = [(#® - 1) (2% — 1 + 42?)]
pas s L g i oL z $ ..
il [(z* -1) (52* - 1)] = = [2z (522 — 1) + (2% — 1) 10z]
. Thes 8 _gd ta s 9.3.3
= (52° — z + 52° — 5z) = . (102® - 62) = 5% = 3%
We need to show that Ps(cos8) satisfies
i APy i
m@ (Sm(;‘ﬁ) = —I(I + I)P, with [ = 3,
where P;(cos) = 3 cosé (5cos?6 — 3).
dPs 1 3 2 : 1 2 2
0 s [—sin@ (5cos® — 3) + cosf(10cosf(—sinf)] = —5sind (5cos®*6 — 3 + 10cos® §)
- —;sinﬂ (5cos®6—1).
d dP; 3d . 3 rn : .
% (smﬁﬁ) e [sin?8 (5cos®8 —1)] = 5 [2sin 6 cos @ (5cos® § — 1) + sin® § (—10 cosfsin6)]
= —3sinfcosf [5cos’d — 1 — 5sin’6].
I -d o AP > 2 2 i 2
5 (smﬂﬁ) = —3cosf [5cos’ =1 —5 (1 —cos’ )] = —3cosf (10 cos® 6 — 6)
£ —3-4-%(:039(5(:0529—-3)=-I(I+1)P3. ged
1
f ) (z)Ps(z) dz = f(a: (523 — 32) da:—~ (z° -x3)| 1:% 1-1+1-1)=0.v

-1

Problem 3.17 -
(a) Inside: V(r,6) = Y Air'Pj(cos6) (Eq. 3.66) where
=0

(2’2;‘1) f Vo(6)Pi(cosf)sinfd8 (Eq. 3.69).
0

A=

In this case Vp(0) = Vb comes outside the integral, so

(2! + l]Vg

A= fP;(cos 6)sin 6 df.
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But Py(cosf) = 1, so the integral can be written

0, ifl#0
: i“=0} (Eq. 3.68).

o]

/Po(cos 0)Pi(cos §) sinf df = {
0

Therefore

i, fl#0
A"{VO, ift=0}'

Plugging this into the general form:

V(r,8) = Ao r°Py(cosf) =

The potential is constant throughout the sphere.

[==]

Outside: V (r,0) = Z %H(cosﬂ) (Eq. 3.72), where
=0
Glad) 30 | .
B = TR Vo(8)Pi(cos@)sinfdfd (Eq. 3.73).
0
s afley i o s 0 2T
= TR‘ VO/P;(cosﬂ)smﬁdﬂ— RV, #1=0 [
0
7k B e
Therefore | V(r,0) = %; (i.e. equals V, at r = R, then falls off like ;).
(b)

[ o]
EA;r'B(cosH), forr <R (Eq. 3.78)
V(e =4 2 B ;
z T"ng(cosﬂ), forr > R (Eq. 3.79)
=
1=0

where
B = R”'HA; (Eq. 3.81)
and
A = W/ao(ﬁ)ﬂ(cose) sinfdf (Eq. 3.84)
0
Stch f el 0 if 1#0
= Ww]ﬁ(cm@)smﬁd&-{ Reninas S22 }
0
Therefore
— forr <R
€0
Ve ={
Rao -, forr>R
€0
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Note: in terms of the total charge Q = 4w R%0y,

V(r,8) =

LQ, forr > R
4meq T

Problem 3.18

Vo(6) = kcos(30) = k [4cos® § — 3cosb] = k [aPs(cosf) + P (cosb)].

(I know that any 3" order polynomial can be expressed as a linear combination of the first four Legendre
polynomials; in this case, since the polynomial is odd, I only need P, and P;.)

4cos’ 8 — 3cosh = a % (5cos® 6 — 3cosf) | + Bcosh = ?g-cosaﬂ + (;3 - gaf) cosf,
9 5 8 3 3 8 12 12 3
a
iT g Tes puTsatr gt sic e T
Therefore ¢
Vo(8) = 5 [8P3(cos @) — 3P;(cosb)].
Now
o0
ZA;:'IP;(COSG), forr <R (Eq. 3.66)
V(e =¢ ' ;
Z t+1 P(cos®), forr >R (Eq.3.71)
where
TR 2; ;f / Vo(6)Pi(cos8) sin6df (Eq. 3.69)
- %k{ /Ps(COSB)P;(cosG) sin 6 df — 3/P1(c059)ﬂ(c059) sm(y‘dG}
0
_ E(+1) 2 2 Ki
Y| {8(21 0% 3@ ‘s“} Bl
i s
{ Eik3/k5;‘;é, A } (atéio othdrwind).
Therefore

o &

3
V(r,8) = —%rﬂ (cos @) + %raﬁ(cos 0) = [8 (%) P;(cosf) — 3 (%) P (cos 9)] s

or

b
5

(SR

{8 (%)3 -;— [5cos® @ — 3cosf] — 3 (%) cosﬂ} =|V(r,0) =

r r\2
ﬁcosﬁ'{éi(ﬁ) [5c0329—3] -—3}
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(for r < R). Meanwhile, B, = A;R**! (Eq. 3.81—this follows from the continuity of V at R). Therefore

4 ey
- {BkR/S if1=3

3kR2/5, ifl=1 } (zero otherwise).

So

—-3kR? 1 8kR* 1 k| (R\* A
V(r.6) = —Pl(c059)+ z r“P (cosf) = T {8 (?) Pg(COSB)—:S(g) P (cos®)| ,

5
V(r,0) = f; (ij)gcosﬂ {4 (?)2 [5cos?6 — 3] — 3}

(for r > R). Finally, using Eq. 3.83:

or

[ =]
0'(9) = € Z(?J + 1}A1RI_IB(C056) = €p [3A1P1 + 7A3R2P3]
=0

SR 5R3

o T [3 (, ﬁ) P +7 ( s ) R2P3] g peak = [-9Pi(cos 0) + 56Ps (cos 9)]

ek
cosf[—9 + 28 - 5.cos® 6 — 28 - 3

= €[)k 20
= [ 9cosf + 2 (5cos 6— 3cose)] 57

5R

eok
= gﬁcosﬂ [140c05 6 —93].

Problem 3.19

UseEq.3.83: 0(0) =€ ) _(21+1)A,R'~" P(cos6). But Eq. 3.69 says: 4; =
=0

2R‘ / Vo(8) Pi(cos ) sin 6 df.

Putting them together:

o(8) = ;—"RZ@H 1)2C,Py(cosh), with C; = [ Vo(6)Pi(cos ) sinfdf. qed
=0

Problem 3.20
Set V = 0 on the equatorial plane, far from the sphere. Then the potential is the same as Ex. 3.8 plus the
potential of a uniformly charged spherical shell:

R3
V(r,8) = —Ey (r - E) cosf + ——=.
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Problem 3.21

B;

(a) V(r,0 iy
1+1

ot -

Z !+1 Py(cos®) (r > R), so V(r,0) = = ii = — [\/1’2 +R2—r]

Since r > R in this region, V72 + R2 =r\/1+ (R/r)2 =r [1 + %(R/r)z - %(R/r)“ +.. .], $0

© p 2 4 2 4

ZTH=L"[1+1R2 5—@; ...—1] =i(£—R—3+...).

s 2¢p 2 8r 2¢0 \ 2r 8r
Comparing like powers of r, I see that By = % B; =0, By = __%2“, ... . Therefore

0 €0
eR* L "R
% - s
) = G [t - Palcont) +...],
(for r > R).

oR? 1 (R\? 3
- H[l_g(?) (3(:05 9-1)+...},

V(r,8) = Z Air'P(cosf) (r < R). In the northern hemispere, 0 < 8 < 7/2,
=0

(b)

=§A;?l=%[m—?{|.

Since r < R in this region, V72 + R2 = R\/1+ (r/R)> =R [1 + %(r‘/R]2 - é(r/R)“ + ] . Therefore

oo 2 4
fo T b PELECRL LA 5 (=i
;Agr—zm [R+2R 8R3+“' r].
Comparing like powers: Ag = -;-R, A —;TD, 2 2:0R,. , SO

o

Kir.g) = Seq

1
[R —rP;(cosf) + ﬁpg(cosﬂ] + ] =

(for r < R, northern hemisphere).

oR
260

)G

)cosﬂ+%(r

R

)2 (3(;0529— 1) +

In the southern hemisphere we’ll have to go for § = , using F;(-1) =

(-1)".

Virm) = (-1 = L [V TR -],

=0
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g put an overba._r on A to distinguish it from the northern A4;). The only difference is the sign of 4;:
= +(O’/260), Ay = Ap, Az = As. So:

V(r,6)

5—- [R + rP(cosf) + iRr2Pg (cosf) + . ]

(for r < R, southern hemisphere).

< g_g[H(%)ms“g(%)g(amsze_.m...],

Problem 3.22

> Air'Pi(cosh), (r < R) (Eq. 3.78),
V(r,g)=¢ ' B,

?:, i Pi(cos6), (r > R) (Eq. 3.79),

=0

where B, = A;R**! (Eq. 3.81) and

™

1 .
A = W/%W)Pg(msﬂ)smﬁdﬁ (Eq. 3.84)
0
w/2 =
1 ; ) .
= @i /H(cosﬂ) sinf df — /P;(cost?) sin 6 df (let z = cosf)
w/2

= s {/ﬂ(z)dx—/ﬂ(z)dx}

Now P(—z) = (—1)'P(z), since Pj(z) is even, for even [, and odd, for odd I. Therefore

0 0 1
/ P\(z) dz = [ P(-2)d(~a) = (1)} [ P(z)da,
-1 1 0

and hence

0, if [ is even

1
e R‘ r[1- (1] fP‘(“’ _(-T-O—-ufﬁ(m)dm, if { is odd
E[)Rt_l
0
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S0 Ag = Ay = Ay = Ag =0, and all we need are A;, A3, and As.

1

1

2
[Pl(x)dx = /:cd:r:z— =

2 1yt 2
0 0
1 1| Lifaits e 804 2. 3 1
P d = Eg 3-— = - E:--—:B— = - —_——— = o
/3(5’:)3: 2/(5x 3z) dz 2(54 32)0 2(4 2) 3
0 0
p 11 1 6 4 2y |1
Pi(z)dz = = 5 _ 7023 = =B T .0
/5(x):r: 8/(63x 70z° + 15z) dz 8(636 07 +155 :

0
21
= %(——35+E)=i(36—35)=$

g e 16 16
Therefore
0o 1 dp 1 dp 1
P i 8 s = =
i (2) 3= oR? ( 8)’ Sy (16) e

and

B GOR (2)' eoR ( g 8 16/’ o
Thus

0 P(cose)—i(-"-) P(cose)+1(f"-)4p(cose)+ (r <R)

Ber | PRV e gL : 4 ’

Vo) =9 ) 2 L /R
Seqr? P (cosf) — 7 (—) P;(cos®) + 3 (?) Ps(cost) + ...], (r> R)

Problem 3.23

10 ov " _}_821’ L

595 \"0s ) " 2042
Look for solutions of the form V (s, ¢) = S(s)®(¢):

1.4 F d8 1 d*®

Multiply by s% and divide by V = S&:

g bdrir=ds 1d%®
Since the first term involves s only, and the second ¢ only, each is a constant:

sd(dS)zch 1d%®

= 2 e —_—— = ith =)
Sds \°ds Sap 8 Ul
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Now C; must be negative (else we get exponentials for ®, which do not return to their original value—as
geometrically they must— when ¢ is increased by 27).

o
Cy = —k2. Then %’;—5 = —k?® = & = Acosk¢ + Bsinke.
Moreover, since ®(¢ + 27) = ®(¢), k must be an integer: k = 0,1,2,3,... (negative integers are just repeats,
but & = 0 must be included, since ® = A (a constant) is OK).
% (s%f-) = k25 can be solved by S = s", provided n is chosen right:

d d
s (sns™™1) = ns—- (s") = n?ss™ ! = nls® = k2S = n = +k.
Evidently the general solution is S(s) = Cs* + Ds™*, unless k = 0, in which case we have only one solution
to a second-order equation—namely, S = constant. So we must treat k¥ = 0 separately. One solution is a
constant—but what’s the other? Go back to the differential equation for S, and put in k = 0:

si sgﬁ =)= SE = constant = C' = 4d = 2 =dS = C'gE = S = Clns+ D (another constant).
ds \ ds ds ds s s

So the second solution in this case is Ins. [How about ®? That too reduces to a single solution, ® = A, in the

case k = 0. What’s the second solution here? Well, putting k = 0 into the ® equation:

2
%zﬂégzconstmt=3=>@=3¢+A.

But a term of the form B¢ is unacceptable, since it does not return to its initial value when ¢ is augmented
by 2m.] Conclusion: The general solution with cylindrical symmetry is

o0
V(s,¢) =ap+bolns + Z [s* (ax cos ke + by, sin k@) + s~ *(cx cos k¢ + di; sinkg)].
k=1

Yes: the potential of a line charge goes like In s, which is included.
Problem 3.24

Picking V' = 0 on the yz plane, with Eg in the z direction, we have (Eq. 3.74): y
i V=0 when s = R, e
(i) V — —Eoz = —Egscos¢, for s> R. Q_/ ~ 5
Evidently ag = by = by = dy, = 0, and ax = ¢; = 0 except for k = 1: = T

V(s,¢) = (a;s + %‘) cos ¢.

(i)= ¢; = —a; R?; (ii)— a; = —Ep. Therefore

2
Vs, ¢) = (—Egs + EUR?) cos¢, or |[V(s,¢)=—Egys [(R) - 1] cos ¢.

L] 8




a7

ov

T 6

= —eoFp (—j:;: - 1) cos ¢

- [aByend ]

s=R s=R

Problem 3.25
Inside: V(s,¢) = ag + Zs (a cos k¢ + by sin k¢) . (In this region Ins and s~F are no good—they blow
k=1
up at s = 0.)

o0
1
Outside: V (s, @) = @o + Z = (cx cos k¢ + d. sin k¢). (Here Ins and s* are no good at s — o0).

k=1
o (3%ut i a‘};ﬂ
S A ds

(Eq. 2.36).

s=R
Thus

o0
asins¢ = —e€p Z { BT (ck cos ke + di sin k@) — kR*™" (ax cos ke + by, sin kq&)} .
=1

Evidently ar, = ¢ = 0; by = dr. = 0 except k = 5; a = 5¢p ( ds + R4bs) Also, V' is continuous at s = R:

R6
ao+R°bs sin 5¢ = d@p + %ds sin 5¢. So ag = @ (might as well choose both zero); R°bs = R~%ds, or ds = R'%bs.

a aRS

e A 4 = ol g ot S
Combining these results: a = 5eo (R*bs + R*bs) = 100 R*bs; bs = TowRt ds Toe"

Therefore

Viuy= R%/s®, fors>R.

10eo

asm5¢ { 2/ fora< R, }

Problem 3.26
Monopole term:

Q= fpdf = kR] [;15(3— 2r) sine] 2 sin 6 dr d6 d¢.
But the r integral is

R
fR 2r)dr = (Rr—r?)|f =R~ R*=0. SoQ=0.
0

Dipole term:

[rcosfipd'r = kR/(r cosf) [%(R — 2r)sin 9] r2 sin 8 dr df d¢.

But the @ integral is
sin®@|"

3

/sin29c059d8= =%(0—0)=0.

0

0

So the dipole contribution is likewise zero.
Quadrupole term:

/r2 (g cos?§ — %) pdr = %kR/frg (3cos® 6 —1) [;%(R—~2r) sin 9} r? sin @ dr df.



58 CHAPTER 3. SPECIAL TECHNIQUES

r integral: i
R 3 4 4
T g G e | N
/Or(R 2r)dr (3R 2)0 3 e
@ integral:
/ (3cos®’@—1) sin’6df = 2/sm 6do — stm 6de
e’
0 3(1—sin?0)—1=2—3sin2 0
T 3 9 T
=2(3)-3(F)=(:-5) =%
¢ integral:
2
/d¢=2ﬂ'
0

The whole integral is:

a () (§om -5

For point P on the z axis (r — z in Eq. 3.95) the approximate potential is

Y b RP

Py W Y T
viE= 4dmey 4823

(Quadrupole.)

Problem 3.27
= (3ga — qa) Z + (—2qa — 2q(—a)) ¥ = 2ga z. Therefore

1 p-t
V- S—
4meg r2 ’

and p-f = 2qaZ -t = 2qacosf, so

1 2gacos 9
41reg r2

(Dipole.)

Problem 3.28
(a) By symmetry, p is clearly in the z direction: p = p2; p= [ zpdr = [ zoda.

]
Il

r ’ ’

/(30059)(130059)335'1“9!19@ = 2er3k/coszﬂsin9d9 = 27R%k (—mz 9)
V]
0

47rR3k 4T R3k
p= Z.

2
TR - (-1)] = .

1 4wR%kcosf | kR® cosf

T = el om o (Dipole.)
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This is also the ezact potential. Conclusion: all multiple moments of this distribution (except the dipole) are
exactly zero.
Problem 3.29

Using Eq. 3.94 with r' = d/2:

“ila--l

i ( ) - Pp(cos8);

n=0

fora_, we let # — 180° + 6, so cosf — — cos¥@:

—1_— = %i (%)nﬂn(— cosf).

n=0

But P,(—z) = (—1)"P,(z), so

1 J 0T 15 dX" 2q d X"

V= o (; % ;_—) b vy, ZD (5) [Pn(cosf) — P,(—cosf)] = e (ﬁ) Py (cos¥).
Therefore e v
Sl __qdcos y e
Voits = s 21‘P1 (cos8) = e while | Vguaa = 0.
2q d 2 &1 qd®
Vit = I (2?) Ps(cosf) = e (5cos® 6 — 3 cosb) = G (5cos® @ — 3cosh) .

Problem 3.30
3 6
(@) () Q= (i) p = (i) V = 22 [% 4 %‘;1] o o e [2_:; o SAE E0RE ] b

dreg | T r2

i i B o [}
)(1)Q= (n)pz (i) V = m[?tl_’_qa:;}s ]

1051
g0 = (i)p= (iii) V = L [2_(1 - w} (from Eq. 1.64, ¥-f = sinfsin ¢).

dmeg | T r

Problem 3.31

- P Grarall s g Lo B
=a,0=2% e = BT =gls—rgh
(a) This point isat r =a,0 =%, ¢ =0,s0 BE= yPm 0 4“0&3( z); q Aneces
p ~ 2p o 2194' -
= = = = . F=—-3.
(b) Here r = a, § =0,s0 E dmega’ (2f) dmeoa® drega®
. - 3 +A0p . ol T o .
(C) = q [V(O, 0, ﬂ) V(a: 01 0)] L 411'600‘.2 [COS(O) cos ( 2 )] 4?’1’6002 A
Problem 3.32
1 —q - : 1 gacosd

. Therefore

Q = —q, s0 Y iono: —

4dmeg 1T ' 471'6[] r?

1 0 1 - Yo
V(r,0) = ﬁfo (—— 2 ) A | E(r,0) = & {—1_—2f'+ r% (2c039r+sm99)] :
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Problem 3.33 L 78 9 i
p=(p-)F+ (__p +0)0 = pcosft — psinf O (Fig. 3.36). So 3(p-&)f —p = 3pcosff —pcosft + psinf b =

2pcosft + psinf@. So Eq. 3.104 = Eq. 3.103. v

Problem 3.34

At height = above the plane, the force on g is given by Eq. 3.12: F' = —Li = d% 112_9: = —A/z?
g ; P ] q 3 Yy £q. 9.14: T 4?1'60 422 = dt2 ) dt2 — ]
=g : dr - dv - Ade. d {1l ,\ dfA g A
where A = T Multiply by v = 7 Udt S = e 21} ==l= = 21} = —+ constant.
1 7 dz 1-1
But v = 0 when z = d, so constant = —A/d, and hence v> = 24 | — sl e 244/ - — e
%

24 /d—-1z
V d z

0

J e o

This integral can also be integrated directly. Let z = u?; dz = 2udu.

0 0
vz / u? {u d__l(u)}o o B
dr =2 du = ——vd—1u?+ —sin — = —ds 1) = —d—.
d/ Vi-7z Vd - 2 2 va) Sl ==y
Vd
Therefore

2
u2
2de=d 2mw3d?
380 _\/*'r ¥ by L L
2q q
Problem 3.35
R T oy ; +E— g b Uk
x
q

The image configuration is shown in the figure; the positive image charge forces cancel in pairs. The net
force of the negative image charges is:

- e 1 - 1
ireo” |R2a-2)f  [a+2@-2)  [da+2@a-2)

1 1 1
"(22)?  (2a+2z)? (da+2z) }

i 4:50%{[(0—13:}2 +(2|:;r.i:t:)2 +(3aix)2+'”] = [zl2+(a-:x)2+(2aj-$)2 +]}

1 g?

dre; 22 v (same as for only one plane—
0

When a — oo (i.e. a > z) only the % term survives: F' = —
Eq. 3.12). When z = a/2,

g 1 1 1 1 1 B . 3
5 ‘4«eo?{[(a/2)2+(3a/2)2+(5a/2)2+”'] & [(a/2)2*(3a/2}2+(5a/2)2+“'“‘°'“




Problem 3.36

axis, z vertical)

In the solution to Prob. 2.47 substitute

a—2b

z
P
8
/ @ >
—b b
i +A = ——
R i
Yo >
a
a+b a=-b\? [fa+bd\? _,
a— ) , Yo — 5 SO(T)-—( 2)—-R=>b —

Il

4meq

A | {[(y+a)2+z2][{y—b)2+z2l
dreo [y —a) + 2y + b2 + 27

A

2 2 2.2
v L.E [m(s )+1 (3‘)] LA (8133)
4meg 83 s3

(6% +a? -

Problem 3.37

Following Prob. 2.47, we place image line charges —\ at y = b and + ) at y = —b (here y is the horizontal

} , or, using y = scos¢, z = ssin g,
¥ (82 + a® + 2as cos ¢)[(as/R)* + R? — 2as cos ¢)
~ |4me 2ascos ¢)[(as/R)? + R? + 2ascos @] |

Since the configuration is azimuthally symmetric, V (r,8) = Z (A;r' + fn) Pi(cos ).
(a) b A=

0 for all I, since V' — 0 at co. Therefore V (r,6)

D,
a<r<b: V(r,()):Z(C;r + —| P

2 ) Pleos0).

bt 2
We need to determine By, Cy, D;, and V,

To do this, invoke boundary conditions as follows
v
continuous at a, (ii) V' is continuous at b, (iii) A (

81') = —ia(a‘?} at b.

i)=Y H—:fP;(cos 6) = (cfb'

B !
+ P; cos §); sy =Cb + le
D, =5 =0, if1#0,
(i) = Z (Cga + I+1) Pi(cos8) = Vp;
0{1 +‘-'—-V0, if-l=10:
Putting (2) into (1) gives B; = b*+1C, —

2!+IC«'I 1 7‘5 0’

B; = (b'ﬂ+1

ot} ﬂ2l+l) CI, [ # 0_,
b—a)Cy + alp.

=1 =i +1)
C;”J + D 2

I+1 =(l+1
——(HH)B; - (C,tb‘"l ¢ p; 2Ll

= Zmﬁ(msﬂ).

V(r,0) =V

é!B =y 0y +Di—|

D, = —a®+i(,

1, 1 #0,
Doza%—GCQ.

(1)

By = bCy + aVp — aCy. Therefore

W):O, if 1 # 1;

) Pi(cosf) = :—kPl(cosﬁ). So
0

: (1) Vis

()

61
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or
-+ 1)3, -1 + 1+ 1D, =0; (I+1)(B; - D) = =Ip?*'C,.
-2 k 2
Bl_(-l'?) (C] + D, — B2 ) = g, orl=17""C) +b—3(Bl — D)) =k.
Therefore
(1+1)(B; — D;) + b**1C; = 0,for | # 1,
2 k (3)
—(By — D) = —.
Ci1+ 53( 1) s
Plug (2) and (1') into (3):
Forl#0or 1:
(1+1) [(p**! - 2“fl) C + a2‘+1c,] +¥1C = 0; (I+1)p*HC+10?C = 0; (21+1)Ci=0= C; =0.
Therefore (1') and (2) = | Bi=Ci=Di=0forl>1: |

For | = 1: Cl + —[(ba—'ﬂ )C] +ﬂ.301] = k; Ci+2C, =k => Cl=k/3€0; D, = —0301 =

| D1 = —a®k/3e0;| Br= (b ~0a®) C1 = | By = (b° — a®) k/3e0.

Forl =0: Bp—Dg=0= By =Dy = (b—a)C'g+aVo = aVp—aCy, so bCy =U=:"C(} =0; Dy = aVy = By.

b —a®) k
Conclusion: |V (r,0) = QT% + (__.a_).__

3
cosl,|r>b. |V(r8) = GTVU+i(r—a—)cosﬂ, a<r<hb.

3reg 3eo r2
- av an k 3 oE V(] k T €p
(b)ai(8) = —eo T €0 [ 3 & (1 +2— )cosﬂ] = —¢€p ( = + = cosf | = -—kcosﬂ+%;.
= _ Voeo an 2 1 Q 1 4maeVo _ aWp
(c)g; = /o,da 4ra —-’4?’1’@601”0 = Ctit- |At large r: V &~ — il il e - e v

Problem 3.38 0
Use multipole expansion (Eq. 3.95): pdr = Adz = e~ dz,and ' = z:

S Sty e ppe Q
V(r) = 4meg grn+1 /z PR(COSB)Za dz.
= —-a

The integral is

a n+1

2a
= %Pn(cosﬂ) > §

n+1
+1

a
Q / O A 2
2aPn(c056) s = 2aPn(c058) =

—a

for n even, zero for n odd.
-a

Therefore

e 1 (ayn
V= 4reg T n=uZ R [n+1 (r) Pn(COSG)] . qed

Problem 3.39
Use separation of variables in cylindrical coordinates (Prob. 3.23):

V(s,¢) =ao +bolns + Z [s¥ (ax cos k¢ + bi sin k@) + s~ (cx cos k¢ + dy sink)] .
k=1
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s<R: V(s,¢) = 1o, s(arcoske + bysinkg) (Ins and s~* blow up at s = 0);
s>R: V(s,0) =Y ey s *(ckcoske + dsinkg) (Ins and s* blow up as s — 00).

(We may as well pick constants so V — 0 as s — oo, and hence ap = 0.) Continuity at s = R =
Y R*(axcoske + b sinkg) = > R™*(ck cosk + dysinkg), so cx = R?*ay, dp = R*b;. Eq. 2.36 says:
av v

e o 8ot — —lcr. Therefore
0s R+ Os

R- €0

—_k i k—1 p 1
z RF+I (ck cos k¢ + di sin k¢p) — Z kR* " (ar cosk¢ + by sink¢) = — aa!

or:

> 2kR*~(ax cos k¢ + by sin k) = { ioo{;;)eo %?r Z fﬁ i gz’r) } :

Fourier’s trick: multiply by (cosl¢) d¢ and integrate from 0 to 2w, using

2n 27
/sink¢cosl¢d¢=0; /cos kdcoslpdd = { ?r’ zil }
0 0 ,
Then
T sinl¢g

€0 l

T 2r
inl
AR 7y = :—" l/cosld.adqb— /cosz¢d¢] =0 { e
0
0 T

2r
}:0; a; = 0.
0 ! m

2m
Multiply by (sinl¢) d¢ and integrate, using [ sin k¢sinlgdé = { 0, k#1 }:
0

Tok=d
X ) l T I 2w
AR-1xh = 2 [sin!¢d¢—/sin!¢d¢ LT i il L o B
€p €p l 0 l = ffo
0 T
o 0, if [ is even T, 0, if 1 is even
T 400 /leg, if 1 is odd ' =\ 200/7eol®R*Y, iflisodd |-
Conclusion:
- _ 200R Hin (s/R)* (s<R) }
o= Tey k=§5.... e kqb{ (R/s)* (s>R) |~
Problem 3.40 :
B 1 X Pa(cost) _/ &
Use Eq. 3.95, in the form V(r) = MEO; I In= [ MA(@)dz

—a
a

(a) Io=k[cos (;—Z) dz=k [%asin (%)] 2

-a

A(z) V(r,0) = 4?:50 (ﬁi) % (Monopole.)
Lll— z

= ? [sin (g) — sin (—g)] = %. Therefore:
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(b) By Ao

FERe— k/ﬂzsin(rz/a)dzzk {(%)2@1(2—3) - %cos(%)}

a

—a

Az2) = § { (%)2 [sin(7) — sin(—7)] — a;cosor) - gms(—w)} = 2%2;
I~
LY V(r,6) = 417150 (2‘::’“) rizcos(‘). (Dipole.)
(c) b = h=0
= e el et e e M
2k (%)2 [acos(m) + acos(—7)] = _4:2’“_

/ ‘ \ e V(r,0) = ;1-1-— (—:1-;:;&) 2 (3cos?8—1).| (Quadrupole.)

Teg 273

Problem 3.41

(a) The average field due to a point charge g at r is

1 ) el
Eave = ——_—(%MORs) /Edr, where E = — <2

] L)
% : : ) 47‘1’60 A
a8 2
o Bttt B
i g €T (4meoR3) 4mreo i

(Here r is the source point, dr is the field point, so 2 goes from r to dr.) The field at r due to uniform
1 .

4meg

so 2 goes from dr to r, and hence carries the opposite sign. So with p = —q/ (3mR?), the two expressions

agree: E,ve = E,.

A
charge p over the sphere is E; = / Prs dr. This time dr is the source point and r is the field point,

(b) From Prob. 2.12:
Sl g g B
e 360'0 T 4meg R® T 4meoR3’

(c) If there are many charges inside the sphere, E,. is the sum of the individual averages, and pot is the
P

sum of the individual dipole moments. So E,ye = W
0

qed
(d) The same argument, only with ¢ placed at r outside the sphere, gives
—q

(field at r due to uniformly charged sphere) = 23 =1 .
4meg T2
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But this is precisely the field produced by ¢ (at r) at the center of the sphere. So the average field (over
the sphere) due to a point charge outside the sphere is the same as the field that same charge produces
at the center. And by superposition, this holds for any collection of exterior charges.

Problem 3.42
(a)
p = : *
ip = 2
Eadip Sreor® (2cosft +sinf 6)

= a;;po-;g [2cosf(sinfcos@px + sinfsing § + cosb Z)

+ sin #(cos @ cos ¢ X + cosfsinpy — sin6 z))

e 3sinfcosfcospk + 3sinfcosfsingd§ + (2cos’f —sin?6) 2| .
4dmegr3d o 4

e
=3 cos?2 -1

1
Bie = W/Edipdqr

- 1 ( p )/;13. [3Sin90089(803¢i+sjn¢5})+ (3c0329— 1) 2] V2 afi Gdv Dl

(37R3) \4meo
2 2w 2
But fcosqbdd) = [sin ¢d¢p =0, so the X and § terms drop out, and [ d¢ = 2, so
0
0

m

R
st ' 1 I |
Eave = (T ) (417&9) 21rfrdr /(3(:05 6 — 1) sin6 do
0 0

N "]

(= cos® f+cos 0)|f=1—1+1-1=0

R
Evidently which contradicts the result of Prob. 3.41. [Note, however, that the r integral, / % dr,

blows up, since Inr — —oo as r = 0. If, as suggested, we truncate the r integral at r = ¢, then it is ﬁn?te, and
the @ integral gives Eave = 0.]

(b) We want E within the e-sphere to be a delta function: E = A§3(r), with A selected so that the average
field is consistent with the general theorem in Prob. 3.41:

1 A P P P
Eawve = 71— | A&3(r)dr = = - A=——r0, h E = - —63(r).
a (%sz)/ (r)dr (%?rR-") Treg I = 30 and hence 3606 (r)

Problem 3.43
(5) I = /(VV1) -(VVa)dr. But V- (11 VV3) = (VW) - (VIR) + V1(V?1R), so

I:/V(V1VV2)d~r-fV1(V2V2) =fV1(VV2)-da+21—/V1p2d’r.
S 0

But the surface integral is over a huge sphere “at infinity”, where V; and V, =+ 0. So I = el / Vipa dr. By
(0}

the same argument, with 1 and 2 reversed, I = —1— / Vaprdr. So /V1p2 dr'= /Vg,ol dr. qed
€0
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Situation (1): Qo= [, pdr =Q; Qp = [, prdr =0; Vip = Vs
(b
Situation (2) : Qo = [, p2dT =0; Qp = [, p2dr = Q; Vau = Vsa.
{ T Vipadr = Vig [, padr + Vip [, p2 dm = Vas Q. }

[ Veprdr = Vaa [, prdr + Vap [, pr dr = V3aQ.
Green’s reciprocity theorem says QVap = QVia, 50 Vop = Via. qed
Problem 3.44

(a) Situation (1): actual. Situation (2): right plate at Vp, left plate at V = 0, no charge at z.
V=0 V=0

O-i-fa—df——bx /Vlﬂz dr = VhQ!z & Vm sz + Vrt sz'

But Vj, = V;, =0 and Q, =0, s0 [Vipadr =0.

f Vipudr=Vislr + Vo, O 3 Vi Ois

But Wn =0 QZ'; =q, Vf‘g = ‘/01 Qfl = Q?s and Vzg = %(:‘B/d)‘ So0= Vo(:.r:/d)q *+ VUQ?! and hence

Situation (1): actual. Situation (2): left plate at Vp, right plate at V' = 0, no charge at z.
/VIPE dr =0= / Vaprdr = VI:Qh =F szQzl =+ V;'an = %Ql + an +0.

But Va, = Vo (1- 3) 50

|Q1 = —q(1 - z/d). |

(b) Situation (1): actual. Situation (2): inner sphere at Vj, outer sphere at zero, no charge at r.

/le‘z dr = Va,Qay + Ve, Qry + Vi, Qo

But V;, = V3, =0, Qny =0. So [Vipadr=0.

f Vipidr = Vo Qicd Vo Qo - Wailh, = GaVort qVis 0.

But V., is the potential at r in configuration 2: V(r) = A + B/r, with V(a) = V; = A+ B/a = Vp, or
aA+ B = aVp, and V(b)) =0 = A+ B/b =0, or bA+ B = 0. Subtract: (b—a)d = —aVp = A =
—aVo/(b—a); B(X 1) =Vo =B = B=abVy/(b—a). So V(r) = #2; (2 — 1). Therefore

™

Qe () 0 Bl Bt
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Now let Situation (2) be: inner sphere at zero, outer at Vp, no charge at r.
fV1p2 dr=0= f‘ép] dr = Va;Qa; + Vraer = Véiszl =0+ qu'z & QbVD-

This time isplaystyleV(r) = A + g with V(a) =0=> A+ B/a=0; V(b)=Vo = A+ B/b= 1V, so

(bbiba) (1——)+Q5V(']__0 Qb:_(bq_ba) (1—5).

Problem 3.45
138 1 3 3
(a) § z f‘if'jQ"j = 5/ 32?;1{2?}-1‘; = (T!)z Zf'if‘jfsij pd‘-"f
i,j=1 i=1 j=1 i,j
3 3
But Ef',-r: =fa'=r sl = Zf'jf;; Zi‘;i"jé., f;8;=F-F=1. So
=1 i35

=1
| | 1y ,2 2 2 i L |
T COs T par 4_11’6 1’3

mr—a 5 [r’sz(cos 0')pdr' (the n = 2 term in Eq. 3.95).

(b) Because z? = y? = (a/2)? for all four charges, Qs = Qyy = [3(a/2)? — (V2a/2)?] (¢—g—gq+4q) = 0.
Because z = 0 for all four charges, Q.. = —(v2a/2)*(g—g—q+¢) =0and Q;; = Qy: = Q.2 = Q. = 0.
This leaves only

Q= =3[(3) (5) 0+ (3) (-5) o+ (-5) (5) -0+ (-3) (-5) o] =[]

(1 - g) Therefore, ¢ bV

g = b-a)

unad

L
I

f [3(r; — di)(rj — dj) — (r — d)?6;;] pdr  (I'll drop the primes, for simplicity.)
/ [8rirj — r26i;] pdr — 3d.'/rjpd'r - 3djfr.-pd'r + 3d;d; /pdr +2d- /rpdr dij

— d?5;; /pd‘r = Qij — 3(dipj + d;p;) + 3did; Q + 26;;d - p — d?6;;Q.

Soif p=0and Q =0 then Q;; = Qi;. qed
(d) Eq. 3.95 with n = 3:

(r')3Ps(cos@')pdr'; P3(cosf) = (5 cos® — 3cos¥h) .

1 (% ik f’e'f‘jf'stjk)

4reg rd

Voot =

1

Define the “octopole moment” as

Qijk E/(5r' rir — (1) (ridjk + 8k + 73.045) p(r') dr'.
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Problem 3.46

Ve 1 (1 1)+,(1 1
" 4meg 7 2 2 . 23 24

2 = Vr?+a?-2racosé,
25 = /1?2 +a?+ 2racosé,
23 = /12 + b2 —2rbcosb,
2s = /12 +b%+ 2rbcosé. ~ ~- ~ .
a a
1 1 2
Expanding as in Ex. 3.10: (;- - ;-) = a—z cos@ (we want a > r, not r >> a, this time). f
1 2 f
i 2b i i
———] = —cosf (here we want b < r, because b = R”/a, Eq. 3.16) 1
23 7 r |
2 R?
= ——cosé.
ar

But ¢' = —Eq (Eq. 3.15), so
a

1 2r R 142 R3
> — |g— — —q——cosf| = — | — - — 6.
V(r,6) o [an cosf = il } 77 (aQ) (r 2 ) cos

1 2
Set Eg = — —-———g (field in the vicinity of the sphere produced by +q):
4meg a

3
V(r,0) = —Ep (r - %) cosf| (agrees with Eq. 3.76).

Problem 3.47
The boundary conditions are

(i) V=0wheny=0,
(i) V =V, when y = a,
(iii) V =0 when z = b,
(iv) V =0 when z = -b.

Go back to Eq. 3.26 and examine the case k = 0: d>X/dz? = d?Y/dy* = 0,s0 X(z) = Az+ B, Y (y) = Cy+D.
But this configuration is symmetric in z, so A = 0, and hence the k = 0 solution is V(z,y) = Cy + D. Pick
D =0, C = Vp/a, and subtract off this part:

V(Ia y) = %g + V(:r,y].

The remainder (V (z,y)) satisfies boundary conditions similar to Ex. 3.4:

(1) E’=0wheny=0,
(ii) V =0 wheny=a,
(iii) V = -Vo(y/a) when z = b,

(iv) V =-Vy(y/a) when z = —b.
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(The point of peeling off V,(y/a) was to recover (ii), on which the constraint k = nm/a depends.)
The solution (following Ex. 3.4) is

V(z,y) = i Cp cosh(nrz/a) sin(nry/a),

n=1

and it remains to fit condition (iii):

Viby) = ZC,, cosh(nmb/a) sin(nry/a) = —Vo(y/a).

Invoke Fourier’s trick:

a a
Z 6. cosh(mrb/a)[ sin(nmwy/a) sin(n'ry/a) dy = __l:;E / ysin(n'my/a) dy,
0 0

a Ve
—2~C'ﬂ cosh(nrb/a) = —?/ ysin(nmy/a) dy.
0

a

o = oz | () sty (2) ooyt

o e B S8 Y s B, UIET)
~ a?cosh(nwb/a) \ nm hasd gl T cosh(nrb/a)’

0

V(z,y) =|Vo l% + % Z (_?i)ﬂ ZESS}}‘](;::;:)} sin(nny/a)] g

Problem 3.48
(a) Using Prob. 3.14b (with b = a):

V(z,y) = % > sinh(nmz/a) sin(nmy/a)

g 71 n sinh(n)

e 4V nm\ cosh(nrz/a)sin(nry/a)
=W ("i:") nsinh(nr)

n odd z=0
4e0Vo sin(nmy/a)
Z sinh(nm) ~

N s [a (y) d —_MZ;/G.H(H /a)d
= i o\y)ay = & noddSinh("ﬂ) OSI my/a)dy.

e a a a 2a ;- :
But /ﬂ sin(nry/a) dy = —-;Ecos(mry/a.)[o = ;1;[1 — cos(nm)] = E(smce n is odd).

ad T 511

h(nw) g T

[l have not found a way to sum this series analytically. Mathematica gives the numerical value 0.0866434,
which agrees precisely with In2/8.]
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Using Prob. 3.47 (with b = a/2):

= y 2 (—1)" cosh(nmz/a) sin(nmy/a)
V= =% [E o ; n cosh(nm/2) ] :
av nmy (—1)" cosh(nmz/a) cos(nmy/a)
B B_yL— e l - Z( ) n cosh(nw/2) ]| =0
B (=1)"cosh(nmz/a) | eoVn —1)" cosh(nnz/a)
sl . Z cosh(nrr/2) l - [ 22 cosh(nm/2) ] j

ﬂ

af2 af2
X = [ o(z)dz = — GD:(] [ 2ZW/ cosh(nwz/a) da:]

—a/2 —a/f2

a/2 a af2 2a
But / cosh(nmz/a) dz = — sinh(nrz/a) = — sinh(nw/2).
—a/2 nm —aj2 N7
eoVo 4a (—1)" tanh(nm/2) 4 (—1)™ tanh(nr/2)
= —-—— —_— =—eW |1+ —
= —ﬁl 2.
T

[Again, I have not found a way to sum this series analytically. The numerical value is -0.612111, which agrees
with the expected value (In2 — 7)/4.]
(b) From Prob. 3.23:

V(s,¢) =ag+bplns+ Z (aks + by, ——) [ck cos(k@) + di sin(kg)).
k=1

In the interior (s < R) by and by must be zero (Ins and 1/s blow up at the origin). Symmetry = dy = 0. So

Yy
V(s,¢) = ao+Zaks cos(ke).

k=1

At the surface:

V(Rs ¢) = Z akRk COS(kQS) = { gfh

k=0

if —m/4<¢<n/4,
otherwise.

Fourier’s trick: multiply by cos(k'¢) and integrate from —x to m:

w/4
24 Vosin(K$)/K| = (Vo/K)sin(K'n/4), if K 0,

cos(k'¢) do =
Vor/2, if K =0.

ZakRk/ cos(k¢) cos(k'¢) dp = %/

—m/4

But
. 0, ifk#K
/ cos(kg) cos(k'd)dp = 2m, if k=K =0,
- m, ifk=Fk #0.
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So 2mag = Vo /2 = ap = Vo /4; marR* = (2Vp/k) sin(kn/4) = ar = (2Vo/mkR*) sin(kn/4) (k # 0); hence

Vis,¢) =Vo

+ Z sm(kﬂ/4) (E) i k¢)1|

Using Eq. 2.49, and noting that in this case i = —8:

_ oV = 2 — sin(kw/4) ., _ 2eVo iy
o(d) = € Fral M EgV[)ﬂ g N ks* ™" cos(k¢) R gsm(kwﬂ) cos(ko).

We want the net (line) charge on the segment opposite to Vo (-7 < ¢ < —37/4 and 37/4 < ¢ < 7):

460 V[]

Z sin(km/4) cos(k¢) do

3m/4

A = [a(¢)Rd¢=2R/ﬂ o(¢) do =

o 4£gVo in(k¢) N 450‘% sin(km/4) sin(3km /4)
= Z k/4)[ - ‘“4]_- i .

k=1 k

k sin(kn/4) sin(3kw/4) product
1 . 12 1/v2 1/2

2 1 -1 -1

3 1/\/5 1/v2 1/2

4 0 0

5 -1/\/' -1/V2 1/2

6 1 -1

7 -1/J' -1/V2 1/2

8 0 0 0

B | =
Pr'lr—-
Ml"—‘
a-lr—-

4€0V[] 1 1 1 46{)Vu
A=-— — - — —| =
w2 k Z k] [

1,3,5... 2,6,10,... 1,3,5... 1,3,5,.

Ouch! What went wrong? The problem is that the series Y (1/k) is divergent, so the “subtraction” oo — 0o
is suspect. One way to avoid this is to go back to V (s, ¢), calculate ¢o(8V/8s) at s # R, and save the limit
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s — R until the end:

o(,s)

Az)

1l
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OV 26V = sin(km/4) ks*~!
e T Z Rk

cos(k¢)

k=1

2€D Yo Z 2! sin(kn/4) cos(kg) (where z = s/R — 1 at the end).
k=1

4EQVO = 1 g1 Li y
o(¢,s)Rdp = — Z 72 sin(kw /4) sin(3k~ /4)
LN RN O x2+£+£+
m 2z \* " 3 5 T\2 10
2e0Vo +2:3+:c5+ 2+I6+I10+
R L L Fy 3
But (see math tables) :In (i i z) 2 (:s s s + )
1
2

26V lln 12 Yar ™ 1+ 2?2 ___eoV.;.l l1+z 1+ 2?2
Tz |2 1-z 1—22 )|~ 7z 1-z)\1-22

2 =
R (T [(1 “’2 ] O L
T 142z z—1
Problem 3.49
g ap
~\¢ F=¢gE= T (2cosét +sinf @).
) [
T
mg
Now consider the pendulum: F = —mg% — T'¢, where T — mgcos¢ = mv?/l and (by conservation of

energy) mgl cos ¢ =

(1/2)mv? = v? = 2gl cos ¢ (assuming it started from rest at ¢ = 90°, as stipulated). But

cos¢ = —cosf, so T' = mg(— cos ) + (m/l)(—2glcosf) = —3mgcosé, and hence

F = —mg(cos@# — sinf @) + 3mgcosf ¢ = mg(2cosf  +sin 6 §).

This total force is such as to keep the pendulum on a circular arc, and it is identical to the force on ¢ in the
field of a dipole, with mg « gp/4meol3. Evidently g also executes semicircular motion, as though it were on a
tether of fixed length [.




I—————

Chapter 4

Electrostatic Fields in Matter

Problem 4.1

E=V/z =500/10"2 = 5x10°. Table 4.1: a/4me = 0.66 x 1073%, s0 a = 4 7(8.85x 10712)(0.66 x 10~30) =
X107, p=aFE=ed = d=aE/e=(7.34 x10~9)(5 x 10°)/(1.6 x 10~29) = 2.20 x 10~ m.

d/R = (2.29 x 10719)/(0.5 x 1071°) = To ionize, say d = R. Then R = aE/e = aV/ez =V =
Rez/a = (0.5 x 10~19)(1.6 x 10719)(10-3)/(7.34 x 10~*!) =[10° V]

Problem 4.2
First find the field, at radius r, using Gauss’ law: [ E-da = X Qenc, or E = 3= % Qenc.

T

= 5 — 41"1 —2!‘/0—2 q a —Zr/a =2 = a?
Qenc = pd‘r—ﬁa3/(; d_—aa 2 T +GT+2 !

2
—%g [e_wa (rz tar 2 ) ] [ ” R (1 9= +2r_2)] :
a e @

[Note: Qenc(r — 00) = q.] So the field of the electron cloud is E, = 4,“0 % [1 Bl (1 +2£ + 25;)] The
proton will be shifted from r = 0 to the point d where E, = E (the external field):

P [1—e"2“/*‘ (1+2§+2§;)].
a a

dmeg d?

Expanding in powers of (d/a):

2 2 3
e-2d/a _ 1_(?_‘1)+1(2_d) _1(2_6*) +...=1_2§+2(§) _i(é) b
a 2:\-a 3! a a 3 \a

o 2 3
I_E—M/a (1+2§+2d_2) = 1- (1_2_@.}.2(_@) _E(g) +) (1+2g+2£2)
a a a a 3 a a
& AL
= y—y—zg 2315+2g+43;-+4j 23(; 43’5+
4

Bt
=g (E) + higher order terms.

73
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-2 (35) ~ mo () = rmep. [a=3me0e’]
E_47reod2(3&3)_4r50303(qd)_3w60a3p’

[Not so different from the uniform sphere model of Ex. 4.1 (see Eq. 4.2). Note that this result predicts
noa = 3a® = §(05x 10'10)3 = 0.09 x 107**m?®, compared with an experimental value (Table 4.1) of

0.66 x 1073 m®. Ironically the “classical” formula (Eq. 4.2) is slightly closer to the empirical value.]
Problem 4.3

p(r) = Ar. Electric field (by Gauss’s Law): § E-da = E (4nr?) = %Qenc = %f; AF4nF? dr, or E =
o ﬂ = A_r‘". This “internal” field balances the external field E when nucleus is “off-center” an amount
4rr? e 4 4eg
d: ad’/4eo = E = d = \/4eoE/A. So the induced dipole moment is p = ed = 2e\/eg/AVE. Evidently
|p is proportional to E/2, |

For Eq. 4.1 to hold in the weak-field limit, ' must be proportional to r, for small r, which means that p
must go to a constant (not zero) at the origin: (nor infinite).

Problem 4.4
i 5 . Fi;eld (lf ¢ 7o & ©. Induced dipole moment of atom: p = aE =
q' dmegr? X:
A 2\, o : 4 ; O & 2aq 2
1 f 6 - E o pr — — i
Field of this dipole, at location of g ( m, in Eq. 3.103): E i (4neor2) (to the right)
2
1
Force on ¢ due to this field: | F = 2« Wi e LT (attractive).
dreg ) 13
Problem 4.5
Field of p; at p2 (6 = n/2 in Eq. 3.103): E; = o7 (points down).
4mregrs
Torque on ps: Ny = py X Ey = poE;8in90° = po F; = 4:,153.3 (points into the page).
0
Field of p; at p; (f = 7 in Eq. 3.103): E; = = (—27%) (points to the right).
dmegr3
2 o
Torque on p;: Ny =p; x E; = ﬁ (points into the page).
Problem 4.6
(a) 9
& /%4' Use image dipole as shown in Fig. (a). Redraw, placing p; at the origin, Fig. (b).
V4 p = . 5 s A =
Ei=—-——-(2 : = :
z, 471'50{22}3( cosff +sinfB); p=pcosff+ psinhlO
+
Pify - 7
N = pxE;= W [(c059r+sm6‘9) X (2c059r+sm69)]
(b) 52 g >
0 v e [cosﬂsmﬁq’)—i—?smﬂcosﬂ(— qb)]
P e
_ p°sinfcosf -
0 /2 = i (—¢) (out of the page).

Pi



p? sin 26
47e(1623)

For 0 < @ < w/2, N tends to rotate p counterclockwise; for 7/2 < 8 < m, N rotates p clockwise. Thus the
stable orientation is perpendicular to the surface—either 1 or J,.I

Problem 4.7

But sinfcosf = (1/2)sin26, so| N = (out of the page).

Say the field is uniform and points in the y direction. First slide p
in from infinity along the x axis—this takes no work, since F is L dl.
E (If E is not uniform, slide p in along a trajectory L the field.) Now
9 rotate (counterclockwise) into final position. The torque exerted by
A p Eis N = pXE = pEsinfz. The torque we exert is N = pEsiné
p z  clockwise, and df is counterclockwise, so the net work done by us is
negative:
i = ffmpEsinadg = pE (- cosf) Ifr/2 = —pE (cosf — cos §) = —pEcosf = —p-E. qed

Problem 4.8

U= -p1-Ez, but E; = m‘ & [3(p2-f)F —p2). SoU = 4,“0 % [p1+p2 — 3 (p1-F) (p2-F)]. qed
Problem 4.9

o e TR T BN Epy e
(a) F=(p- V)E (Eq. 4.5); E = dreq 12 b= drmeo (2 + y2 + 22)3/2'

i = e ML A =
* = \P=5z "Pvay T P5; ) tneo P + 2 + 22)3/2
ek, 1 ey 2z P 2y
= e |l +r+2202 2 (@4 + 32)5/2 Py |173% 2% 1 42 + 22)5/
3 2z i Pz q p 3r(p . 1,)
e [ 23:(.'52 +y? + 22)5/2] } " dre [r3 (px:.-: + Py +p,,z)] 4mey [Ts 5 .
1
= o Llp-3(p- ).
(b)) E= — {3 [p-(-8)](-F) —p} = [3(p f)# — p]. (This is from Eq. 3.104; the minus signs

4?1'6 r3
are because r pomts toward p, in this problem.)

—eE=|_1_9 £)§ —
Peqb=|oenBn 0t p.

[Note that the forces are equal and opposite, as you would expect from Newton’s third law.]
Problem 4.10

" 1, 2
(a) oo = P-i = kR;| —VP————(r kr) = - =3kr? = -3
(b) Forr< R, E = %pri" (Prob. 2.12), so E = | —(k/eo) .

For r > R, same as if all charge at center; but Qo = (kR)(47R?) + (—3k)(37R3) =0, so
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Problem 4.11

pp = 0; o = P-nn = £ P (plus sign at one end—the one P points toward; minus sign at the other—the one
P points away from).

(i) L >> a. Then the ends look like point charges, and the whole thing is like a physical dipole, of length L and
charge Pma®. See Fig. (a).

(ii) L < a. Then it’s like a circular parallel-plate capacitor. Field is nearly uniform inside; nonuniform “fringing
field” at the edges. See Fig. (b).

(iii) L =~ a. See Fig. (c).

= & €

) Like a dipole (b) Like a parallel-plate capacitor

Problem 4.12

V= 4” f Adr = {ﬁ i a&qd?‘}. But the term in curly brackets is precisely the field of a uniformly
charged sphere, d1v1ded by p. The integral was done explicitly in Prob. 2.7 and 2.8:

3 SP
L (@R (o R_zp.f- 5 R_“’:g, i),
; i 4 4_?1'60 —‘a"2 ’ 36{)7‘ 360?"
— /»1_2 i = So V(r,0) =
0 1 (4/3)nR3p 1 Prcos@
D O T < R). —Par =
47eg R3 ( ) 350P % 3¢ (r <8,

Problem 4.13

Think of it as two cylinders of opposite uniform charge density +p. Inside, the field at a distance s from
the axis of a uniformly charge cylinder is given by Gauss’s law: E2rsl = Lpns?’¢ = E = (p/2¢)s. For
two such cylinders, one plus and one minus, the net field (inside) is E = E4 + E_ = (p/2¢) (s4 —s_). But

sy —s_ = —d, so E =| —pd/(2¢p), | where d is the vector from the negative axis to positive axis. In this case

the total dipole moment of a chunk of length £ is P (ra?¢) = (pra®¢) d. So pd = P, and | E = -P/(2¢), |for

s < a.




i

Outside, Gauss’s law gives E2nsf = L p'.m%’ ) D for one cylinder. For the combination, E =

2503‘
B, +E_ =42 (& - &), where
d
By o= S:F'z-;
=1 -1
g SdN (B Lo a) a L G (MY wl (il sd
82* — (sng)(s +4¢s d) 22 s:|:2 o = 2 g s:F2 14 22

1 d : . ;

o (3 +s 2 F E) (keeping only 1st order terms in d).

Secf) - -1 (s-d)--dX. f- (s-d) - s)] 1=, s(s-d)
(s+ s_) = [(s+s 2 3 Sy +5 S5 2 32 -d].

E()_ii[Q(P §)§-P],| fors>a.

Problem 4.14

Total charge on the dielectric is Qior = fs opda + fv ppdr = §5 P-da - fv V-.Pdr. But the divergence
theorem says §s P - da = [,, V-Pdr, s0 Qenc = 0. qed
Problem 4.15

k0 k k u +P -t =k/b tr==b
(a) pbz—V°P=—r—23—r (7'2;) === Jb=P°n={ =Pt :-—/k/a ((:t::aj }

Gauss’s law = E = 4;£09;‘f£ £, For r< a; Qene=10; 50 - For r > b, Qene = 0 (Prob. 4.14), so

Fora<r <b, Qenc = (‘T") (4ma?) + f ( £) 4nT2dF = —4wka — 4nk(r — a) = —4mkr; so I E = —(k/er) '

(b) §D-da = Qy,,. =0= D =0 everywhere. D = ¢E +P =0= E = (-1/¢)P, so
[E=0(forr <aandr>b);| |[E=—(k/eor)# (fora<r<b).]

Problem 4.16

(a) Same as Eg minus the field at the center of a sphere with uniform polarization P. The latter (Eq. 4.14)

1
is =P /3€p. So E:Eg-{--3-€—P. D=¢E=¢Eo+3P=Do—-P+1iP,s0o|D=D - 2P.
0

(b) Same as Ey minus the field of + charges at the two ends of the “needle”—but these are small, and far

ey, 0[E=Ey.| D=k = By = Do~ P, 0[D =Dy — P

(c) Same as Ey minus the field of a parallel-plate capacitor with upper plate at ¢ = P. The latter is

—(1/€0)P, so |E = Eg + %P. D =¢E = ¢Ey+ P, so
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Problem 4.17

@ @

(uniform) (field of two circular plates) (same as E outside, but lines
continuous, since V-D = 0)

Problem 4.18

(a) Apply [ D -da = Qy,,. to the gaussian surface shown. DA = cA = (Note: D = 0 inside the
metal plate.) This is true in both slabs; D points down.

Ll e k_l"""

(b) D=¢E = E =0/¢; inslab 1, E = g/e3 in slab 2. But € = €p€,, 50 €1 = 2€p; €2 =
E2 :20/360.

(c) P = egxE, s0 P = egxcd/(eoer) = (Xe/€r)O; Xe =€r —1 = P =(1—¢1)o. |P1 = 0/2,”}72 = a/3.|
(d) V = Eja+ Esa = (O'a/ﬁﬁ(])(3 +4) =

= + P, at bottom of slab (1) = ¢/2, op = + P at bottom of slab (2) = ¢/3,
o, = —P; at top of slab (1) = —0/2; oy = —P, at top of slab (2) = —o/3.

(e) pp = 0;

total surface charge above: o — (0/2) = 0 /2,

(f} dnzsiab 1. { total surface charge below: (0/2) — (0/3) + (0/3) —0 = -0 /2,

}:wF%./

[ total surface charge above: ¢ — (0/2) + (0/2) — (¢/3) = 20/3, _ 20
I siab 2: { total surface charge below: (¢/3) — 0 = —20/3, == ey b4

[ ] +o
—a/2

©)
+o')/(§
-

®
+a/3

| | -

Problem 4.19

With no dielectric, Cy = Aeg/d (Eq. 2.54).
In configuration (a), with +o on upper plate, —¢ on lower, D = o between the plates.
E =0o/ep (in air) and E = o/e (in dielectric). So V = %% + %% = 2. (1+<).

2epA
C 2¢
_Q _ A 2 ~a r
St ) e L

In configuration (b), with potential difference V: E = V/d, so 0 = oE = ¢ V/d (in air).




79

P=¢€sx.E = €gxeV/d (in dielectric), so o, = —€gx.V/d (at top surface of dielectric).
gt = €0V/d =05 + 0y = 05 — €0xeV/d, 50 05 = €V (1 + xe)/d = €o€,V/d (on top plate above dielectric).

Y v\ 2 gl oy \Mg i Mgt TR R

R [} o S 1 2¢, _ (14e,)?—de, _ 142 +4c3—de, _ (1—¢,)?
1 l[1\r‘1a’h1(:h is greate:'i? e = T ey T Ty S angey > 0- S0 G > Ca ]
the z axis points dowmn:

=>Cb

i [ E [ D ] P oy (top surface) || of (top plate) |
T V2 T, oV o T, V.
(a) air T | 53 Y2 0 0 (c,-fl-l) d
= =1 Bt = 2(en—1
(a) dielectric Tﬁ % pe T?{mmdi b’ :r+1)) H’dl b's = T?..-Tf}l%y“ s
(b) air T x o’ % 0 0 @’ (left)
(b) dielectric T X €2 % (e =D x| —(er — )97 e- <27 (right)

Problem 4.20

[D-da = Qy,,. = D4nr? = p3nr® = D = ;pr = E = (pr/3¢)f, for r < R; Ddnr? = p37R3 = D =
pR*[3r?2 = E = (pR3/3¢or?) #, for r > R.

v /Edl o 1"
= 360 7|

0 2 2 2
p _ pR p R pR* 1
36/ e Jeg +3e g 36(] (1+2e,

Problem 4.21
Let @ be the charge on a length £ of the inner conductor.

fD-da QT el

Q
2wsl’ e 2megst
v
c Q 2meo
4

Densl=0Q= D=

(a < s<b), E~— (b<r<o).

Il

est
"[E"ﬂ:/:(zﬁof)d?sJ’/:(‘ige?)is 2me[ () e ]

Ve ~ |In(b/a) + (1/e,) In(c/b)’

Problem 4.22

Same method as Ex. 4.7: solve Laplace’s equation for Vin(s, @) (s < a) and Voue(s,¢) (s > a), subject to
the boundary conditions

I

.
{1) Vin = Vout at s =a, ¢
(i) en = eoPfaum at s = a, EOI \
(iii) Vuut — —FEpscosp for s> a. v

y*z _/

Vin(s, ¢) = Zsk(ak coske + b sinke), Vour(s,$) = —Eoscosd + »_ s~ *(ci cos ke + di sin k).
k=1 k=1

From Prob. 3.23 (invoking boundary condition (iii)):
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(I eliminated the constant terms by setting V' = 0 on the y z plane.) Condition (i) says
Z a*(ay cos kg + by sink¢) = —Egscos @ + Z a~*(cx cos k¢ + dy sin kg),
while (ii) says
€y Z ka*~'(ay cos k¢ + by sin k¢) = —Eg cos ¢ — Z ka=*~1(ck cos k¢ + dy sin ko).

Evidently by = d;, = 0 for all k, a; = ¢, = 0 unless k = 1, whereas for k =1,

aa; = —Epa+a~ley, €1 =—-Eg-a"3c.
Solving for a,,
= =y Vel = e =
and hence E;,(s,¢) = — 6(;1" Ri= a +E)?e/2). As in the spherical case (Ex. 4.7), the field inside is uniform.
Problem 4.23
Po = coxBo; Bi = ~5-Po = ~XBy; Py = axcBy = ~ 2By B = 2P = LBy
Evidently B = (—%)" Eo, 50
oo
E=Eo+E +E +-- = [Z (_2_63_)“] Eq-
n=0

The geometric series can be summed explicitly:

- 1 1
LU = —
ﬂz;ﬂ..": =8 0 ® E 0+ xe/3) Eo,

which agrees with Eq. 4.49. [Curiously, this method formally requires that x. < 3 (else the infinite series
diverges), yet the result is subject to no such restriction, since we can also get it by the method of Ex. 4.7.]

Problem 4.24

Potentials:
Vour(r,0) = —Eorcosf+ Y P P(cosb), (r > b);
Vmea(r,0) = ¥ (4 + ;,%T) P(cos8), (a<r <b);
Vin(r,8) == ) (r<a).

Boundary Conditions:
{ (1) Vout - Vmed: (T == b)!

(ii) ea—‘;fﬂ an—r,%& (r=10);
(iii) Vined 0, (r=a).
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(i) = —Epbcosf+ Z %H(cosﬂ) = Z (A;b’ + b%;) P(cosb);

(ii) = erz [lA;b‘ e (H-l)b"r?J Py(cosf) = —Egc059—2(1+1)%ﬂ{0050};

(iii) = Aw.'+ ﬁ_l =0 = B =-a¥t4,.
Forl#1:

20+1
(i) % = (A;b’ - abz—_HA‘) = B = A (b”“ b a2:+1) ;

;. 15§ a? 1 4, By l 241 |, 241
(i) e |[lAVT +(+1)—— T -+ l)bl+2 = B; = —€4 [(m) b +a } = A =B =0.
Forl=1:
3
(1) —Eob+%=Alb— abfl = By — Egb® = 4,2 (® - a?);

< & (A1 +2“1‘:‘) = 2%‘ = —2B; — Bob® = e, 4, (b° + 20%) .
So —3Eob® = A; [2(b° —a®) +¢, (b°+20%)]; A= i (a/b)3]_ji0[1 T3
Vinea(r,6) = 57— (a/b)al_fiou +2(a/b)%] ( fz) e
B0) = ~VVoa = gy o 2] L Q) cos0t ~ (1- “:) Sm"’é}'

Problem 4.25

There are four charges involved: (i) g, (ii) polarization charge surrounding ¢, (iii) surface charge (o3) on
the top surface of the lower dielectric, (iv) surface charge (o;) on the lower surface of the upper dielectric.
In view of Eq. 4.39, the bound charge (ii) is ¢, = —q(x./(1 + x.), so the total (point) charge at (0,0,d) is
@=q+qgp=q/(1+ x.) =gq/e.. Asin Ex. 4.8,

-1 gd/e. o, Oy "
— _— = — h =Po =+Pz= eEz;
(a) op €0Xe [47750 T da)i B 5% (here o3 i €oXeE:)
1 gdfe, oy 0y ;
4 — —_— = — = — Ez =
(b) o3 €0Xe [4?“0 el 20 Zo (here op = —P, = —€oXx.E:)

Solve for o, o first divide by x. and x; (respectively) and subtract:

f‘.;t“ﬁ:l qd/e;;:'UE:X' O’b+1 qd/e..
Xe Xe 2m(r24q2)3 Xe 2m(r24q2)f ]|
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Plug this into (a) and solve for oy, using €. =1+ x.:

-1 qd/e. -1  qd Xe
= ———*—'—'—‘-— Xe 1 + il e e + e Op = — 3 r H
Tp 47T (r2 4 d?) ( Xe) (X X ) b 4?T (1"2 o d2)§ [1 + (XC + xe)/ZJ
A s adict .8 SR | LB G IR W ere/Er! .
A (72 4 @2)% [1+ (xe +X0)/2] * 27 (52 4 2)% 4m (r2 4 q2)% [1+ (Xe + x2)/2]

The total bound surface charge is 0, = 0p + 0}, = 7= : 2+:2)§ [bﬁx +x] 7737 (Which vanishes, as it should, when
r € e

X. = Xe). The total bound charge is (compare Eq. 4.51):

(Xt — x)a & —€\ ¢
= = . dh e
e XN+ O+l |\eFe)e’ | 0

= q/e qt
V(r) = 4reg {\/:ﬂ T2+ (z - d)? + \/a:2+y2+(z+d)2} (for z > 0).

.= 2 1 2q/(€!
Meanwhile, since e q = TR 2 q V) = [29/(er + €r)]
€ € & ten]. efe, dmeo \/22 + y? + (2 — d)?

(for z < 0).

™

Problem 4.26

From Ex. 4.5:
0, (r <a)
0, (r <a) A
5 « . B= ¥, (a<r<b)
{ 4??1_2 £, (r>a) } 4“5
4‘!1'60'."2 (r->0)

5 )
e il —2
a €p T

;A /DEd —;(4622)2 {% b_l__rzd +_[ —dr}:—{% (_Tl)

ws ool {3 1 1}_Q_2(1 X_)
= m{(uh) (E_b)+b T Bl ¥ ) Ka b

{)
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Problem 4.27

Using Eq. 4.55: W = £ [ E?dr. From Ex. 4.2 and Eq. 3.103,

-1
—é—ﬂp ﬁ, (':" - R}
E = ég i< 8D
3 9), (r>R)
2 P2R3
e R =
Pocn = (360) T 9T &
3p
Wysp = ED (};fu) — (4cos® 8 + sin® 0) r* sin 0 dr d6 d¢p
o PO che o e
= 1 2 L T iy Y e
1850 2 / (1+3cos?’8 sm&df?/ 5o (—cos8 — cos® §)|, ( 3T3) -
_ m(BPY [ 4\ _ 4nRP?
i 960 3R3 E 2760 i
2mR3 P?
Wit = Deg.

This is the correct electrostatic energy of the configuration, but it is not the “total work necessary to assemble
the system,” because it leaves out the mechanical energy involved in polarizing the molecules.

Using Eq. 4.58: W = fD Ed‘T For r < R, D = E, so this contribution is the same as before.
Forr < R, D = ¢E + P = P +P = P = —2¢E, so %D-E = —2520-5'2, and this contribution is

now (—2) (3—;’ P:fs) — —42—’7'R€:’ , exactly cancelling the exterior term. Conclusion: This is not
surprising, since the derivation in Sect. 4.4.3 calculates the work done on the free charge, and in this problem

there is no free charge in sight. Since this is a nonlinear dielectric, however, the result cannot be interpreted as
the “work necessary to assemble the configuration” —the latter would depend entirely on how you assemble it.

Problem 4.28

First find the capacitance, as a function of h:

Air part: E = = V=

4meos

In(b/a),
4rrc !}
? }=>i=’\—;,\'=i)\=e,)x.
— V = 2 In(b/a) B9 s 5

41res dme

Oil part: D—4ﬂ=>E“

Q=Nh+ Al —h) =€ h—Ah+ X = A(er — 1)h + €] = AM(xeh + €), where £ is the total height.

Q _ AMxeh+9) (xeh+9)
= = = 2" 4 — e
T Dkt T N )
The net upward force is given by Eq. 4.64: F = 1242 = 1V3rn"—(?z% } i €oxeV?
The gravitational force down is F = mg = ,mr(b2 - az)gh ~ p(b? —a?)gln(b/a)’
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Problem 4.29 ”
a
(a) Eq. 4.5 = F2 = (p2- V) E; =P28—y(E1); plL | P2
Eq. 3103 2 E, = -2 _8=—-"__3 Therefore 4 s
T

4mregrs dmwegy?

d (1
Fg:-plpg [——( )} i:mi or |F —3‘0&2 (upward).

4meo |dy \y3 dregyt 27 dreort
Z
To calculate F,, put p2 at the origin, pointing in the z direction; then p;
] is at —rZ, and it points in the —§ direction. So F; = (p1-V)E; =
P2 Y OE, :
—p1— ; we need E; as a function of z, y, and 2.
T e 3y z=y=0,z2=-r
P1
g LS f . = " X X
From Eq. 3.104: E, = — (pQ‘, i —p|, wherer = zX + y¥ + z%, p = —p2¥, and hence
4meg 3 7=
P2 T = —p2y.
T “Sy(zx+yy+22)+ (22 +y°+22)y] _ p2 [Bzyx+ (2% — 2% +22)§ — 3y28
* T 4ne (22 + 32 + 22)5/2 ~ 4meo (22 + 32 + 22)5/2
3E2 D2 51 & 9 2 24 " 1 £ 2 -
T = yies —5?_—72y[—3:cyx +(z° —2y" +2°)y — 3yzz] + F(—&tx —4yy —3z%) ;;
OE -
IE, _ P "_ifﬁ; F1=*p1(p2§;£)=—3p1p242.
ady (0,0) 4mweg T dTeg T dmepr
These results are consistent with Newton’s third law: F, = —F5.

(b) From page 165, N2 = (p2 X E;) + (r x F3). The first term was calculated in Prob. 4.5; the second we
get from (a), usingr =ry:

[0 R A 3pipe 3ppa 2p1p2
E, = ——(-%&); xFy = X = : — 3
B 4551 41reor3( 2k muka=ind) (fhrcor“ z) dmeor3 st o 4meors *

This is equal and opposite to the torque on p; due to ps, with respect to the center of p; (see Prob. 4.5).

Problem 4.30
Net force is | to the right | (see diagram). Note that the field lines must bulge to the right, as shown, because

E is perpendicular to the surface of each conductor.

| E
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Problem 4.31
P=kr=k(z&k+yy+22)=>p=-V-P=—k(1+1+1)=[-3k]
Total volume bound charge:
= P-i. At top surface, fi = 2, z = a/2; so oy = ka/2. Clearly, on all six surfaces.

Total surface bound charge: |qu,f = 6(ka/2)a® = 3ka® .ITota.l bound charge is zero. v
Problem 4.32

= 1 q f' dXe r
da = D= | epes ) P eSS oSyt o RS S
fD 2= Qe = 411'1'2 3 € dmeg(1+ xe) r 2’ coXeE 4r(l+ x) r?’
qXe % Xeiovre - gXe
Bvpa . X g e N B ] (e L,
4 (1 + xe) ( r2) T 1 o R | i T
Qsurt = 03 (47R?) = qf{—:-(—. The compensating negative charge is at the center:

= & nigeiel
[pb dr = [ (r)dr = o -
Problem 4.33

El is continuous (Eq. 4.29); D, is continuous (Eq. 4.26, with o; = 0). So E,, =-E,,, Dy, = D,, =
6Ey, = e,E,,, and hence

tané; E,,/E,, Ey_l L€
tané, E, /E,, B By a
If 1is air and 2 is dielectric, tanf,/tanf; = €3/€p > 1, and the field lines bend away from the normal. This is

the opposite of light rays, so a convex “lens” would defocus the field lines.
Problem 4.34

ged

In view of Eq. 4.39, the net dipole moment at the center is p’ = p — ren Xe_p = focp = gl:p. We want the

potential produced by p’ (at the center) and o, (at R). Use separation of variables:

o0

: B
Outside: V(r,0) = —rr Pilcost) (Eq. 3.72)
I1=0 5
Insides VI, gLl "09‘29 +Y_ Air'Pi(cosh) (Egs. 3.66,3.102)
4meg €rT =
e Lt By = R¥14, (1#£1)
RH']- =4 3 or i ]
V continuous at R =
B]_ 1 p
J25 o 4meq €, R2 Hedu Ry vor < Biagigith A5
av ov 1 2pcosé 1o 1
AR = - 6 - Y IAR'R =
or|lp, Orlg ZU+1 R“"2 il b dmeg € R3 ZI : HeG0) eo_o-b
1 £ ov 1 2pcosé =4
— e P = —— . = _ b~ aorge—d lA .
=il e " (coxeEH) = xe or |, { Tre @ T 2 AR T Ricost)
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—(l+ 1)% — AR = x JJARY (1#1); or — (21 +1)AR™ = x JIAR™ = A =0(#1).
e _2% 47:50 E% T (_#:;3 Al) ol 4arepoer 2 A12R3 & _47360 x;p "AIQRs;
N 477?06,_ ~AR+ 411'236,. = A12R3 o _4;50 )i_ip eAlzRa g Alst Bt xe) = ﬁxf_p
= 41rleo R3er2()§cf- Xe) = 41:60 R23(::{; 1-)1;); A s 471':05, [1 ¥ 2((;4-_21))] = 47r§ge,~ 6,-322.

V(r,6) = ("’ """’59) ( 3 ) (r > R).

4mweqr? €&+ 2

1 pcosf 1 prcosf 2(e, — 1)
dmeg €,12 dreg R®  e(e, +2)

p cosf & —1\ 7
=|— 142 — | = € :
dmeorie, [ " (ef +2) R3] (r<R)

Meanwhile, for r < R, V(r,0) =

Problem 4.35

Given two solutions, V; (and E; = —VV;, D; = €E;) and V; (E; = —VV;,, D, = €Ey), define V3 = V, -V
(Eg = E2 — El, D3 = D2 e Dl)

fv V-(VzD3)dr = fs VsD3-da=0, (V3 =00nS),so [(VV3) Dadr+ [V3(V-D3)dr =0.
But V:-D3 = V:D; — V'Dl =pr—pr= 0, and VV3 =V, -VV, =-E;+E; = ~—E3, 50 ng D3y dr =0.
But D3 = Dy — D; = €E; — €E; = €¢E3, so fez(E‘g)'3 dr =0. But e > 0, s0 E3 =0, so V5, — V; = constant. But
at surface, Vo = V7, so Vo =V} everywhere. qed
Problem 4.36

R
(a) Proposed potential: |V (r) = Vo?. If so, then |E= -VV = Vo% t,|in which case |P = Gueror—Rg T

Ve
in the region z < 0. (P =0 for z > 0, of course.) Then o} = €pxe Vn%(f"ﬁ) = —EO)fR g (Note: 1 points out
of dielectric = fi = —f.) This o} is on the surface at r = R. The flat surface z = 0 carries no bound charge,

since i = z L . Nor is there any volume bound charge (Eq. 4.39). If V is to have the required spherical

symmetry, the net charge must be uniform:
OtotdTR? = Qo1 = dmeg RV} (since Vo = Qrot/4meo R), S0 010t = €0Vo/R. Therefore

_ | (eoVo/R), on northern hemisphere
BE (€oVo/R)(1 + Xe), on southern hemisphere |

(b) By construction, oot = 0p+05 = €oVo/R is uniform (on the northern hemisphere o = 0, o5 = Vo /R;
on the southern hemisphere o, = —€gx.Vo/R, so oy = €Vp/R). The potential of a uniformly charged sphere is
S Qtot _ Otot (4rR?) _ eV R_2 R

= = — - V —_
4megr 4megr R egr o~ ¥

Vo

(c) Since everything is consistent, and the boundary conditions (V = V5 at r = R, V — 0 at oco) are met,
Prob. 4.35 guarantees that this is the solution.
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(d) Figure (b) works the same way, but Fig. (a) does not: on the flat surface, P is not perpendicular to 1,
so we'd get bound charge on this surface, spoiling the symmetry.

Problem 4.37

§. Since the sphere is tiny, this is essentially constant, and hence P = . S
2mens 1+ xe/3

€0Xe AN XN €0Xe X AVFTN =i
== dr = = i
/(1 +xe/3) (211'503) ds (2#503) il (1 + Xe/3 2meg s 8? S/ il
_XQ /\2 1 4 3a Xe /\2R3 -
1+ x./3 (4‘.’T2€U) 53 3ﬂ-R e 3+ x. ) megs? *

Problem 4.38

Eexi =

Eex: (Ex. 4.7).

=
|

The density of atoms is N = mgl,mg. The macroscopic field E is Egeif + Eeise, where Eg¢ is the average
field over the sphere due to the atom itself.

P= 0Eee = P = NaEejge.

[Actually, it is the field at the center, not the average over the sphere, that belongs here, but the two are in
fact equal, as we found in Prob. 3.41d.] Now
1 p
Eself o “4?r€0 ﬁ
(Eq. 3.105), so
1 a o' Na
E.:———-~-———--—«-]_‘-.‘res E = T = Sy else-
4r€0 R3 1se T Helse (1 4?T60R3) Eelse (1 360 ) E 1
So N
a
Ps——r—E= E
A=No/3a) X
and hence
et Naje
a (1- Na/3e)”
Solving for a:
Na Na Na Xk o
XeT g Xe =T ;(14‘—3*)—)(“

3 3 3 1

€0 Xe €0 Xe €p [ €Er —

= — = — . But y. =€, -1, = — 3 d
NIk /) - NBr e we s St o S N(e,.+2) a8

Problem 4.39

For an ideal gas, N = Avagadro’s number/22.4 liters = (6.02 x 10?3)/(22.4 x 1073) = 2.7 x 10?®>. Na/ey =
(2.7 x 10%%)(4meg x 10739)3/ep = 3.4 x 10~13, where 3 is the number listed in Table 4.1.

B0 —0.667, Najeo=(34x107*)(0.67) =23x10"% x,=25%10""*
BB 0 =0.205 Nafeg=(34x1074(0.21)=71x10"%, x.=6.5x10""
e (—0.396, Nafe=(3.4%107%)(0.40) =1.4%x10~%, x,=13x10"*
B =164, Nafep=(34x107Y)(164)=56x%10"%, x,=52x% 10"

agreement is quite good.




88 CHAPTER 4. ELECTROSTATIC FIELDS IN MATTER

Problem 4.40

(a) il = fffE ue—WkT dy (kT)2 -u/kT[ (u/kT) v 11'1’
fffE e~ v/kT dy —kTe—“/*T|pE

e—PE/RT _ gpE/KT

epE}'kT +B—pE_fkT pE
kT — pE [enE/kT = e—pE/kT] = kT — pE coth (ﬁ) ;

kT{ [e—pE;’kT : - epElkT] 0 [(pE/kT}e_?E/kT ot (‘pE/kT}epE"kT] }

P = N(p); p = (pcos8)E = (P - E)(E/E) = —(u)(E/E); P = Np—=" (;) Np {coth (pE) = E}

Lety = P/Np, z = pE/kT. Theny = cothz—1/z. Asz = 0,y = (“i" S P —j—:; +---)—% = -§———%+--- —
0, so the graph starts at the origin, with an initial slope of 1/3. As  — 00, y — coth(co) = 1, so the graph
goes asymptotically to y = 1 (see Figure).

¥ s
np
| R LT T bbbt
pe/kT :
N
(b) For small z, y =~ %z, so -h—?" ~ %—, or P = ﬁ%E = €9 FE = P is proportional to £, and | x. = ﬁ
0

For water at 20° = 293K, p = 6.1 x 10730 Cm; N = molecules _ molecules , moles , £A=S,

volume - £ 2gram volume
: 0.33x10 0~ :
N = (6.0 x 10%) x (i) x (10°) = 0.33 x 10%%; X = gynsisrosrianeto-ryEss) = [12.] Table 4.2 gives an
experimental value of 79, so it’s pretty far off.
For water vapor at 100° = 373K, treated as an ideal gas, Y3une = (22.4 x 10~%) x (313) =2.85x 1072

mol
6.0 x 1023 95 (211 10% )6 1 T0r)? -
- = . . e = = . 10 3.
N =102 = 21 X107 Xe = G333 85 % 10-12)(1.38 x 10-2)(373)

Table 4.2 gives 5.9 x 1073, so this time the agreement is quite good.




Chapter 5

Magnetostatics

Problem 5.1

Since v x B points upward, and that is also the direction of the force, ¢ must be To find R, in
terms of @ and d, use the pythagorean theorem:

2
(R-d?+a®>=R? = R*-2Rd+d®+a>=R? 3 R="2 ;{‘P.
The cyclotron formula then gives R
(a® + d?)
=g¢BR =|¢B——FF—.
p=¢BR=|q 5d

Problem 5.2
The general solution is (Eq. 5.6):

y(t) = C1 cos(wt) + Cy sin(wt) + %t + C3;  z(t) = Cy cos(wt) — C sin(wt) + Cy.

(a) y(0) = 2(0) = 0; y(0) = E/B; 2(0) = 0. Use these to determine C;, C,, C3, and Cj.
y0)=0=>C1 +C3=0; 9(0) =wC2+ E/B=E/B=Cy=0; 2(00=0=>C+Cs =0=Cy = 0;
#(0) =0 = C; = 0, and hence also C3 = 0. So | y(t) = Et/B; 2(t) = 0.] Does this make sense? The magnetic

force is g(v x B) = —q(E/B)B z = —¢gE, which exactly cancels the electric force; since there is no net force,
the particle moves in a straight line at constant speed. v’

(b) Assuming it starts from the origin, so C3 = —Cy, Cy = —C4, we have 2(0) = 0= C, = 0 = C3 = 0;

3(0) = 5B = Cow + E = ﬁ = Cy = —m =—Cy; y(t) = 5.8 sin(wt) + -B—t,
AL, t)+—£— or |y(t) = = [2wt — sin(wt)]; 2(t) = iuucos(wz)] Let 8 = E/2wB
s e T e S e e OB ' . '

Then y(t) = B [2wt — sin(wt)]; z(t) = B[1 = cos(wt)]; (y — 2Bwt) = —Bsin(wt), (z — B) = —Bcos(wt) =
(y-2Bwt)® + (2 — B)® = B*. This is a circle of radius B whose center moves to the right at constant speed:
o = 20wt; 20 = 0.

E E E~ E

: : E
(C}Z(O)Zy(ﬁ}=§¢—01w=§=>cl=—C3=“;“B—; ng+§=‘§=>02204=0.

89
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E E E E E E
y(t) = g cos(wt) + t+ — B 2(t) = Esin(wt). y(t) = B [1+ wt — cos(wt)]; 2(t) = Esin(wt).

Let 3 = E/wB; then [y - B(1 + wt)] = —Bcos(wt), z = Bsin(wt); [y — B(1 + wt)]® + 2% = B%. This is a circle
of radius 8 whose center is at yo = §(1 + wt), 20 =0.

Y B

(b) g (c)
Problem 5.3
(a) From Eq. 5.2, F=¢[E+ (vxB)|=0=> E=vB=|v= g
(b) From Eq. 5.3, mv = ¢BR = 12 = -£~
m BR | B°R

Problem 5.4

Suppose I flows counterclockwise (if not, change the sign of the answer). The force on the left side (toward
the left) cancels the force on the right side (toward the right); the force on the top is JaB = Iak(a/2) =
Ika?/2, (pointing upward), and the force on the bottom is IaB = —Ika®/2 (also upward). So the net force is
F =
Problem 5.5

a = ——, | because the length-perpendicular-to-flow is the circumference.
(a) | K 2i -, |b he length dicular-to-flow is the circumf
= —= = =0 —8das = LM 8 = ?T(.IG=>O.‘=_; = i
PR P Jda  dadd=9 ds = 2 L .
s 8 2ra 2ras

Problem 5.6

(a) v = wr, so (b) v=wrsinf ¢ = |J = pwrsinf ¢, | where p = Q/(4/3)wR3.
Problem 5.7

dp _d ap o :

dt = / prdr = o rdr = — [ (V - J)rdr (by the continuity equation). Now product rule #5
says V- (¢J) = 2(V -J)+J - (Vz). But Vz=%,50 V: (2J) = 2(V - J) + J,. Thus [,,(V -J)zdr =

/ V. (zJ)dr — / Jo dr. The first term is [4 zJ - da (by the divergence theorem), and since J is entirely
v v

inside V), it is zero on the surface S. Therefore [,,(V -J)zdr = — [, J; dr, or, combining this with the y and
z components, [,,(V - J)rdr = — [, J dr. Or, referring back to the first line, %? = /Jd‘r. qed

Problem 5.8
2
(a) Use Eq. 5.35, with z = R,6; = —68; = 45°, and four sides: B = %
_ _ _ | npol .
(b) z=R, by = -0, = n’ and n sides: B = 5T R sin(m/n).
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(c) For small 4, sinf ~ 8. Soasn — o0, B —

npol (E) = |t (same as Eq. 5.38, with z = 0).

2R 2R
Problem 5.9
(a) The straight segments produce no field at P. The two quarter-circles give B = ,u;f (E - %) (out).
: I ol I ol
(b) The two half-lines are the same as one infinite line: R’ ; the half-circle contributes iR

o b 2Nl e
50 B = iR (14—#) (into the page).

Problem 5.10 ¢ : T
(a) The forces on the two sides cancel. At the bottom, B = gi— = FP= (,uo ) In = 2022 (up). At the

T8 2ms “27s
w el _ pol?a 1 wol?a®
top, B = (£ = F= —u——zﬂ(s o) (down). The net force is Py (up).
I
(b) The force on the bottom is the same as before, uoI?/2m (up). On the left side, B = ;.]'y Z;
J I
dF = I(dl x B) = I(dz % + dy § + dz %) x (% z) ‘;“ (-dz § + dy %). But the  component cancels the
.UUI2 (3/\/_+ﬂ/2) 1
corresponding term from the right side, and F, = — / = dz. Here y = v/3z, so
27 s/V3 y
pol? s/V3+a/2 pol? V3a . sepis
F,=- In = ——1In | 1+ —— | . The force on the right side is the same, so the net
4 231 ( s/f 2\/§ﬂ 2s &
Yy
; Yy 2 V3a
force on the triangle is o [1 \/:.3_ In (1 s % ;

Zz
Problem 5.11
Use Eq. 5.38 for a ring of width dz, with I — nldz:
pond a?
&= dz. But z = acotf,
2 (a2 + z2)3f2 >
1 in® @

SOdz:—_az , and 32=sm3

sin® @ (a2 + 22) / a
So

I
ﬂonf/zsziz : df) = —p[);r/sinﬁdt? = “o;I cosf}]s’: s ””; (cos@y — cosby).

For an infinite solenoid, #; =0, #; = 7, so (cosfy —cosf;) =1—(-1)=2, and B = v
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Problem 5.12
_ o AP

Magnetic attraction per unit length (Eqgs. 5.37 and 5.13): f,, = R
1

A
Electric field of one wire (Eq. 2.9): E = O Electric repulsion per unit length on the other wire:
0

1 X2 1 1
= —-. They bal: h ol =
fe e ey balance when pov = or|v o
g 1
\/(8.85 x 10~12)(47 x 10~7)
never get the wires going fast enough; the electric force always dominates.

Problem 5.13

.| Putting in the numbers,

= ‘ 3.00 x 10® m/s. I This is precisely the speed of light(!), so in fact you could

{2 for s < a;
(a)fB‘dl=BZ7rs=,uoIenc=> B= pif‘, S
2ms
g § 2ka® 31 s :
(b) J =ks; I :/ Jda =/ ks(2ms)ds = 7r3a ik a3 L= / Jda =[ k3(2n3)ds =
0 0 0 0
pols® - _
S & 2w ¢, fors<a;
3 =I—,for s <a; Ienc =1, fors >a. So|B=
g pol - f
*2}—3 ’ or § > a.

Problem 5.14
By the right-hand-rule, the field points in the —§ direction for z > 0, and in the +§ direction for z < 0.
At 2 = 0,B = 0. Use the amperian loop shown:

%B ~dl = Bl = pglene = polzd = (~ra<z<a). Hz>a,lpn = mlal,

st —moJay, for z> +a; 8 r amperian loop
+upJay, for z > —a. >
B -
| —

l

Problem 5.15
The field inside a solenoid is ponl, and outside it is zero. The outer solenoid’s field points to the left (—#),

whereas the inner one points to the right (+2). So: (i) | B = upl(ny — ng) 2, | (ii) | B = —pglns 2,—’ (iii) |B = O.I

Problem 5.16

From Ex. 5.8, the top plate produces a field ugK/2 (aiming out of the page, for points above it, and into
the page, for points below). The bottom plate produces a field poK/2 (aiming into the page, for points above
it, and out of the page, for points below). Above and below both plates the two fields cancel; between the plates
they add up to poK, pointing in.

(a) | B = ppov (in) | betweem the plates, elsewhere.

(b) The Lorentz force law says F = [(K x B)da, so the force per unit area is f = K x B. Here K = ov,
to the right, and B (the field of the lower plate) is uoov/2, into the page. So | fm = poo?v?/2 (up). |
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(c) The electric field of the lower plate is 0/2¢o; the electric force per unit area on the upper plate is
fe=0%/2¢ (down);l They balance if pov? = 1/ep, or i?—- 1/ /oo = ¢ | (the speed of light), as in Prob. 5.12.
Problem 5.17

We might as well orient the axes so the field point r lies on the y axis: r = (0,y,0). Consider a source point
at (z',y',2') on loop #1:

r=—2'k+@y-y)9-2'% d' =d'x+dy'y;
-~ y i
dl xa=| do' dy 0 |=(-2'dy)x+(<da")y+[(y—y)de' + 2 dy']z.

-z (y-v) -z
pol dl x4 _ pol (—2'dy') % + (2'da")§ + [(y — y') de’ + o' dy'] 2

dBl = -
BT e (@) + (v~ ¥)? + ()22

Now consider the symmetrically placed source element on z
loop #2, at (z',y’,—2'). Since 2’ changes sign, while every-
thing else is the same, the X and § components from dB; and
dB, cancel, leaving only a Z component. ged T loop 1

With this, Ampére’s law yields immediately: I

2
B = ponl z, inside the solenoid; c\r L3
0, outside

(the same as for a circular solenoid—Ex. 5.9). g n

For the toroid, N/27s = n (the number of turns per unit
length), so Eq. 5.58 yields B = ponl inside, and zero outside,
consistent with the solenoid. [Note: N/2ws = n applies only Yy
if the toroid is large in circumference, so that s is essentially I
constant over the cross-section.]

Problem 5.18
[It doesn’t matter. ] According to Theorem 2, in Sect. 1.6.2, [ J -da is independent of surface, for any given
boundary line, provided that J is divergenceless, which it is, for steady currents (Eq. 5.31).

Problem 5.19
charge _ charge atoms moles grams

loop 2

I
— — —_ priiiey h
OF volume  atom mole gram volume (e)(N) (M ) )yl
e = charge of electron =\ 1.6% 10-7C,
N = Avogadro's number = 6.0 x 1023 mole,
M = atomic mass of copper = 64gm/mole,
d = density of copper = 9.0gm/ cm®.

p= (1.6 x 1071%)(6.0 x 10%) (%‘—f) =[1.4x 10* C/en?.|

I T 1 et =4 :
(b &= — =M = g ol w1 T EPT, IQ‘l x 107° cm/s, & or about 33 em/hr. This

is astonishingly small—literally slower than a snail’s pace.
LI 47 x 10~
(c)F&omEq.5.37,fm=ﬂ(12)-:(“ )=

£ (= = [2 x 10-7N/em. |
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1.2 L. { Mida 1 .1 (LD A\ pwo (LI c?
OB= gt 1= (M) =5 (1) = (5) 52 (BF) = S wher
o . Fose it AR JION T =
¢ =1/ /eopmo = 3.00 x 10° m/s. Here e T (W) _
fe=(11x10%)(2 x 10~7) =2 x 10'"® N/em. |

Problem 5.20

Ampére’s law says V x B = poJ. Together with the continuity equation (5.29) this gives V - (V x B) =
uoV - J = —podp/0t, which is inconsistent with div(curl)=0 unless p is constant (magnetostatics). The other
Maxwell equations are OK: VX E =0= V- (V xE) =0 (v'), and as for the two divergence equations, there
is no relevant vanishing second derivative (the other one is curl(grad), which doesn’t involve the divergence).
Problem 5.21

At this stage I'd expect no changes in Gauss’s law or Ampére’s law. The divergence of B would take the

form IV -B= agpm,l where p., is the density of magnetic charge, and ag is some constant (analogous to ¢

‘and po). The curl of E becomes l V xE = BoJnm, ’ where J, is the magnetic current density (representing the
flow of magnetic charge), and f, is another constant. Presumably magnetic charge is conserved, so p,, and J,,
satisfy a continuity equation: V -J,;, = —9p,,/0t.

As for the Lorentz force law, one might guess something of the form g¢,,[B + (v x E)] (where g, is the
magnetic charge). But this is dimensionally impossible, since E has the same units as vB. Evidently we
need to divide (v x E) by something with the dimensions of velocity-squared. The natural candidate is

1
2 = 1/eopo: |F =g [E+ (v x B)] +gm [B - c—2(v x E)] .| In this form the magnetic analog to Coulomb’s

(84 3 . . . . A
law reads F' = aﬂ % f, so to determine «p we would first introduce (arbitrarily) a unit of magnetic charge,
m

then measure the force between unit charges at a given separation. [For further details, and an explanation of
the minus sign in the force law, see Prob. 7.35.]

Problem 5.22

e

fgl o= sy
A=— dz = — e =
47 a L% A z./z.l Vz2 + g2 / X
s

='%:£[ln(z+ z?+32)] e »‘i{lnlzzﬁ-\/m}ﬁ

a |47 2 +/(21)? + 82 x
= = _?_ffl_ e __@{ 1 s i3 1 s "
O e %{n+JmP+¥J%P+ﬁ n+¢@ﬁ+ﬁJMF+¥]
_ _Mols 29 — 1/ (22)% + s* 1 cadt TR 1 -
i3 dr | (22)% = [(22)® + %] \/(z2)2 + 52 2} — [(21)? +5%] /(z1)% + &2
22 _.“U_IS(_L) o RN DR S R R q“g,:'uil 22 e 21 é
= T o) [V T Vare s i | Jeree Ve

21
V(21)? + &2

I -
g ’z%{sinﬂg —sin6;) ¢ | (as in Eq. 5.35).

22

or, since sinf, = and sinfy; =
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Problem 5.23
1

5 A Nl b b 0 (Rl = 1 % 2
Aa_k::,B_VXA—;a(Sk)Z_SZ‘J_E(VXB)_E[ ——( )}fp— p-gsz¢'

Problem 5.24 | 1
V- A= —§V-(r x B) = —§[B-(er)—r-(VxB)] = 0, since V x B = 0 (B is uniform) and

B - = 0 (Prob. 1.62). V.x A = —%Vx(pr) =-%[(B-V)r-(r-V)BH(vB)—B(v-r)]. But

(r-V)B =0and V-B = 0 (since B is uniform), and V - r = 8_:c+ ?2-% % =1+4+1+1 = 3. Finally,
ox.. oy 6%
(B-V)r = (BI; + B (,? + B, aa)(z:x+yy+zz) B,x+B,y+B.z=B. SonA=~%(B—SB)=

qed

Problem 5.25
‘(a) A points in the same direction as I, and is a function only of s (the distance from the wire). In cylindrical

coordinates, then, A = A(s)Z,so B=V x A = -% ¢ = ¢ (the field of an infinite wire). Therefore
0A ol - s : ;
i and |A(r) = —Q—Trln(s/a)z (the constant a is arbitrary; you could use 1, but then the units
1ookﬁshy).v-A=6A‘=o.«vXA=— 5 ‘“qua B.v

0z
3 - I 2 ,(1.(3132
(b) Here Ampére’s law gives ¢ B -dl = B21s = pglenc = poJ ms° = pg—=ns’ =

wR? s
o Is - OA _ pol s ol i S : . . —
T 5 o In = A= y (s — b°)Z. Here b is again arbitrary, except that since A

must be continuous at R, — po IH(R/ )= fgz

B

(R? - b%), which means that we must pick a and b such that

—4‘:52 (s — R*)z, for s < R;
2In(R/b) =1~ (b/R)*. Plluse a = b = R. Then |A =
—&I In(s/R) z, for s > R.

Problem 5.26

KzKizb-B:ﬂ:%j'(plusforz<0,minusforz>0)‘ #
A is parallel to K, and depends only on z, so A = A(z) %.
g 0T A K
B=VxA=|08/0z 8/dy a/az =—g=aF"g
Al "0 "y o 2 VAV B8

i — —E%—I-{-M % | will do the job—or this plus any constant. )/)/ //;/ /

Problem 5.27 ¥ X g
(a) V-A = — p /V ( ) dr'. V‘(;) = ;(V-J)+J-V (;) But the first term is zero, because J(r')

1 1
is a function of the source coordinates, not the field coordinates. And sincea=r—r', V (—) = -V (—) So

2 2
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J 1 1
V. (%) =-J.v (i—) But V' (;) = ;{V’-J)A-J-V’ (;), and V'-J = 0 in magnetostatics (Eq. 5.31). So

-(2) (3] ity e, 0.2 (2 -1 L

where the integral 1is now over the surface surrounding all the currents. But J = 0 on this surface, so V-A = 0. ¢

(b) VxA="— /V (%) dT'z%/E(VXJ)—JXV(—};)] dr'. But V xJ = 0 (since J is not

a function of r), and V ( ) = —;2 (Eq. 1.101),s0 V x A = o J B 58

=} =5—a =By

(c) V2A = g—% /V2 (Z) dr'. But V2 (%) = JV?2 (%) (once again, J is a constant, as far as differenti-
; \
ation with respect to r is concerned), and V? = i —476%(2) (Eq. 1.102).
So v2A =42 f I(t') [-4n8® ()] dr' = —pod(x). ¥
m

Problem 5.28 &
pol = fB -dl = ——/ VU -dl = —[U(b) — U(a)] (by the gradient theorem), so U(b) # U(a). qed

e I
For an infinite straight wire, B = #0 ¢ U= _H;ﬂ-(b would do the job, in the sense that
I 110
-VU = ,uo V(g) = ,uig_qé t,b B. But when ¢ advances by 2, this function does not return to its initial

value; it works (say) for 0 < ¢ < 2w, but at 27 it “jumps” back to zero.

Problem 5.29
Use Eq. 5.67, with R — 7 and o — pdF:

A = ;_;Q:psmé'qb/ 7 dF + #03 rsind qﬁf 7 dF
5 2 2
_ ([ Howp r T p2_.2\| g Mowe . P o O
= (3 )19[ (5)+2(R r]}q{) 2r51n9(3 5)4;!).
i Lowp ir g ; L 9 | g ol e
B = VxA= 5 {rbmﬂ@‘ﬂ [mn@rsmS 3 r*sin @ i (7]

R? 2 R2  2p2 Q

( 5 T
= “Gwp_[(?_g) cosff — (—-3"-—5—) sinf ].Butp= OB so
5] 40

Problem 5.30

@ [ -Z2 = F= W0 =~ [ F@y2)d +Cily,2).
3Wy T ! '
oz F, ﬁwy(mrysz):"“"rg Fz(m,y,Z)dﬂI +02(yuz)-

These satisfy (ii) and (iii), for any C; and Cs; it remains to choose these functions so as to satisfy (i):
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F xan fs 3 z z
/ Md + 6y f Mdmr_%:‘{?x(q;,y,z)‘ But BF +.@._}.;‘£+8F :01 SO

% Oy 0z Oz Oz Ay Oz
Boley2) .,  0C1  0G s argleta.z) o,

/ﬂ . o dz’ + 3y B = Fy(z,y,z). Now : --————a$! de' = Fp(z,y,z) — F;(0,y,2), so
%—%_F(O y,z). We may as well pick C; =0, Ci(y, 2 / F»(0,y',2) dy’, and we’re done, with
W, =0; Wy—/ F(@ e s W= [ F ,y,z)dy~/ Fy('y,2) do.

— OV AW 31 R T W ow, W\ .
(b)vxw'—(ay—az) +(6z E)m) +(3:1:ﬁ8y a
IaF T F !
3 {Fx(o,y,z)—[ BE g | wcﬁf]:‘c+[0+'Fy(x.y,z)19+[Fz(z,y,z)—0]2-
0 0

But V- F =0, so the % term is {Fz(o,y, z)+/ %—u——;;:%ﬁdx’] = F:(0,y,2) + Fy(z,y,2) — F;(0,y, 2),
0
soVxW=F.Vv
8W W z y I Y z\\Y, f: % F !! ] !
VW= 3 +3W _0+/ (9Fz(:cyy z)d +f OF;(0,y z)dy’h[ d) y(;zy z)dz £0,
0

Oz 3y 0z 0 0z
in general.
P y?
(c)Wyzf Zdrl= Wz_/ydy / zdz' = ?—zw
0
i o’ X v z
W:—2-§r+(—2——za:) z2.| VxW=|3/0z 8/dy 0/0=z =yX+z¥y+zi=F. v
0 z¥/2 (¥%/2-:z2)

Problem 5.31

(a) At the surface of the solenoid, Bapove = 0, Bpelow = ponlz = poK2z; h = §; so K xn = —K32.
Evidently Eq. 5.74 holds. v/

(b) In Eq. 5467 , both expressions reduce to (uoR?wo/3)sinf ¢ at the surface, so Eq. 5.75 is satisfied.
2 = #ofiuo (_251116) bl = ellfoliig siné ¢; - = e sinf¢. So the left side of
31' R+ 3 7'3 R 3 ar !

Eq. 5.76 is —poRwo sinf ¢. Meanwhile K = ov = o(w x r) = cwRsind @, so the right side of Eq. 5.76 is
~jgowRsin @ ¢, and the equation is satisfied.

Problem 5.32

: A A
Because A,pove = Abelow at every point on the surface, it follows that 2 and % are the same above

and below; any discontinuity is confined to the normal derivative.

Babove — Bhelow = _9Aynene + A ybeton X+ Ohzspove _ OAzvuion $. But Eq. 5.74 says this equals
0z 0z Oz 0z
wK(=9). So OAyapeore = Ybelow ©and OAzgeve _ OAzpeicn = —poK. Thus the normal derivative of the com-
i 0z dz 0z 0z :
i TR : aAa.bove aAbelow o’
ponent of A parallel to K suffers a discontinuity —puo K, or, more compactly: By —uoK.

Problem 5.33 2 2 =
(Same idea as Prob. 3.33.) Write m = (m:£)f + (m-6)6 = mcosff — msinf 0 (Fig. 5.54). Then
3m-f)f —m=3mcosfFf —mcosff +msinfO =2mcosft +msinf O, and Eq. 5.87 & Eq. 5.86. qed
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Problem 5.34

(a) m=Ia=[InR?4]

2
z—gftf (2cosﬂf'+sin96) z

(b) B =~

pol R?
223
is the same, with |z|® in place of 2%). The exact answer (Eq. 5.38) reduces (for z > R) to B = ol R?/2|2|%,

so they agree.

Problem 5.35

; R
For a ring, m = Iwr?. Here I — ovdr = owrdr,som = fn rriowrdr =

Problem 5.36
The total charge on the shaded ring is dg = o(2rRsin§) R d6.

The time for one revolution is dt = 27 /w. So the current

(c¢) On the z axis, § =0, r =2, =% (for 2 > 0),s0| B =~

z|(for 2 < 0,8 =, f = —%, so the field

d
in the ring is I = d_z = owR?sinfdf. The area of the ring

is m(Rsin@)?2, so the magnetic moment of the ring is dm = ' Rsin®
(ocwR? sin 0 d)7R? sin® @, and the total dipole moment of the __ Rd®
shell is

" . 4 .
m = owrR* [ sin®§df = (4/3)ownR*, or |m = ?WawR" Z.

The dipole term in the multipole expansion for A is there-
4 sinf - owR*sinf -

fore Agip = Ho 7 cwR*—— q!: e 0 —r—qb, which is

also the ezact potential (Eq. 5.67}, evidently a spinning sphere

produces a perfect dipole field, with no higher multipole con-

tributions.

Problem 5.37
The field of one side is given by Eq. 5.35, with s —

2
V22 + (w/2)? and sinf, = —sinf; = (w/2)

2% +w2/2;
B = #l e . To pick off the vertical
ar (/22 + (w?/4) /22 + (w?/2) B

ﬂ—-; for all four [}
2+ (w/2)?

I : 2
= ML ud Z. Fol'

b

component, multiply by sin¢ =

sides, multiply by 4:

27 ( w?/4)\/2% + w? /2
polw? / // i \/
z>» w, B 5 Z. The field of a dipole for

:rrz3 SEr Ao
points on the z axis (Eq. 5.86, withr = 2, f 5 2,8 = 0) is 153
_pom
27 28

Problem 5.38

The mobile charges do pull in toward the axis, but the resulting concentration of (negative) charge sets up
an electric field that repels away further accumulation. Equilibrium is reached when the electric repulsion on
a mobile charge ¢ balances the magnetic attraction: F = g[E+ (v x B)] = 0= E = —(v x B). Say the current
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is in the z direction: J = p_vZ (where p_ and v are both negative).

fB-dl=B2ﬂs=qurs2=>B=#q5;

/E -da = E27sl = i—(p+ +p_)1s?l=> E= L(p+ + p_)ss.
€ 2¢q

% SR 7ol Hop-vs 2\] _ Ho 2 = - 2y = ﬁ
260(p++p—)35— [(UZ)X( 2 ¢)]—_2p—vss=>p++p—-p—(fopov)—p— = )

2
Evidently p = —p_ (1 - ?-2— == %%, or p— = —v%p,. In this naive model, the mobile negative charges fill a
c

smaller inner cylinder, leaving a shell of positive (stationary) charge at the outside. But since v < ¢, the effect
is extremely small.
Problem 5.39

(a) If positive charges flow to the right, they are deflected and the bottom plate acquires a positive
charge.

(b)guB=qE = FE=vB=V =FEt= with the bottom at higher potential.

(c) If negative charges flow to the left, they are also deflected down, and the bottom plate acquires a negative
charge. The potential difference is still the same, but this time the top plate is at the higher potential.

Problem 5.40

From Eq. 5.17, F = I [(dl x B). But B is constant, in this case, so it comes outside the integral: F =
I([dl) x B, and [dl = w, the vector displacement from the point at which the wire first enters the field to
the point where it leaves. Since w and B are perpendicular, F' = IBw, and F is perpendicular to w.

Problem 5.41

The angular momentum acquired by the particle as it moves out from the center to the edge is

= %dtz/th=f(er)dt=/rxq(va)dt=q/rx(dle):q[/(r-B)dl—/B(r-dl)].

But r is perpendicular to B,sor-B =0, and r-dl = r -dr = }d(r - r) = }d(r?) = rdr = (1/27)(2nrdr).

R
SoL = —zi/ B2rrdr = *%dea. It follows that L = _iq), where ® = [ Bda is the total flux.
T Jo

27
In particular, if & = 0, then L = 0, and the charge emerges with zero angular momentum, which means it is
going along a radial line. qed

Problem 5.42
From Eq. 5.24, F = [(K x Baye)da. Here K = ov, v =wR sin @, da = R?sin8d6 d¢, and
Bave = 1(Bin + Bout). From Eq. 5.68,
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2 2
B, = %pﬁgaRwi = g,uoon(cosﬂf' —sin§ @). From Eq. 5.67,
poR*wo sin 8 poRwo [ 1 8 ([sin%6 18 (sinf\ .

Bout = A= 0 e N L i

e i Vx( 3 ¢) 3 [rsinB@&(rQ)r r@r(r)e}

= *U'U? (2cos@t +sinf @) = gofig (2cos6 ¢ +sin 6 @) (since r = R).
Bave - 2 }; (4 cosf@f —sinf 9)
K xBae = (owRsinf) (,tm)zwa) [(f) x (4cosffF — sinﬁ'@)] = %g(owR)z(él c0s8 8 + sin 6 t) sin 6.

Picking out the z component of § (namely, —sin#) and of # (namely, cos#), we have
(K % Baye): = -%{awR)2sin2 8 cosb, so

g w/2
F, = —%{gwR)er"/sm fcosfdfdp = — - Ko (swR?)? 21 (%ﬁ)

,or|F = —*‘Z—’T(awm)ze.

0

Problem 5.43

(a) F=ma=g¢.(vxB)= !loqeqm( x#); la= f;iq?( v xr).

(b) Becausea L v, a-v =0. Buta-v:%i(v- v) = flzjt v2) = v d_v Soit 0. qed
(c)%:m(vxv}+m(rxa) #Uz;qm;(r)~_0+“:Sreqm[rx{vxr]—“ufifﬂ(;—%%)
(d)(i)Q- b=Q- ¢ )=m(rxv)-¢ ““gf”‘( -¢). Butz-d=%-¢ =0,50 (rxv)-¢ =0. But

&I%

r=rf,and v=— =7f+4rf0+rsinfp¢ (where dots denote differentiation with respect to time), so

t.0. o e
¥ ave= o 0 g i = (=r%sinf¢) 8 + (r*6) ¢.
7 T 7 sin 8¢

Therefore (r x v) - ¢ = r26 = 0, so § is constant. qed
(i) Q-f=QE -F)=m(rxv) - #Uieqm(“ £). But Z-f =cosf,and (rxv) Lr= (rxv)-£=0, so
_ _ Ho%elm _ _ Ho%elm
Lol = 4 508 L) 47 cos B

(i) Q 0 = Q(z-0) =m(rxv)-0 - mg:rqm(f‘-é). But2-0 = —sinf, #-60 =0, and (rxv)-0 = —r?sin 84

; i TR R SRR RN L R N T
(from (i)), so —@Qsinf = —mr°sinf¢ = ¢ = = 1r.2,w1‘5}1 k= e
& - i ‘ k k2 e 26

(e) v*> = 7% + 126> + r2sin®0¢?, but § =0 and ¢ = 5 80 #2 =92 — 52 gin? b= 2 Ksinn 6

. And since 6 is constant, so too is Q. qed

r2
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dr\® 2  v?—(ksinf/r)® _ A SRR . o e
(33) _E_—Uff/r_rz {(Tc_) —sm29], e (—E) —sin? 4.

1 ur
() / quiv = ¢ —¢p = ——sec ' | ——); sec[(¢ — ¢o)sinb] = , or
III(UT/P‘C)?'—SIH 0 sinf (ksmg) 6
_ P09egm tan 6
Eie) = cos|(¢ — qbg) sinf]’ e drmyv
Problem 5.44
Put the field point on the z axis, so r = (s,0,0). Then -
K xx .
B:i‘—; %da;da:quﬁdz;K:Kgb: C’“LI_\
K(—sing% +cos¢y);2=(s— Rcos¢)X — Rsingpy — zZ. <t R
% y z " |
g = K —sing cos ¢ 0 = s
(s — Rcos¢) (—Rsing) (—z) I "
K[(~zcos@) X + (—zsing) § + (R — scos¢) Z]; ) n ,'
22 = 224+ R*+s*—2Rscos ¢. The z and y components integrate e !
to zero (z integrand is odd, as in Prob. 5.17). .
e e e

=Tl (R — scos¢)
= —KR
B. 4T [ (22 + R? + 52 — 2Rscos ¢)3/2 i

wKR (*" o dz
= 0471_ /0 (R—scosqb){];mm}d@

h dg =i R2 2 9 N o2 dz . 2z oo IS 2
where d” = + s — 2Rscos¢. Now 4 (z2+d2)3/2 b 7
wKR [*" (R — scos )

¥ i e 2 » ol
= . 2 (R2 +- 32 QRSCOS{'fJ) d¢s (R SCOSt.'b R [(R 8 ) (R + 5 2R3COS¢))] _

B #OK i 2 -
7 [(Rz 2)/ (R? + s2 — 2Rs cos ¢) +/0 dqb] ‘

f"L 2 / d  _ 4 . |V -Frang/2)||"
o a+bcos¢ o a+bcosed a? b2 53 a+b

Il

0

T _H2
e WY va? —b tanFﬂ/Q) 2_4__(3):_377_&@”:32”2,
a? — b? a+b e~ - g

=
b=—2Rs, so a® — b> = R* + 2R2s? + s* — 4R%s? = R* - 2R?%s* + s* = (R? — 5%)%; Va2 -2 = |R? - &°|.

_ poK [(R?-s%) _ oK R —a?
B = [_IR2—32I2 w4+ 27 s TR = 32|+1 4

Hc K

K
Inside the solenoid, s < R,so B, = (1+1) = poK. Outside the solenoid, s > R, so B, = ,ug —(-141) =

Here K = nl,so| B = ponl i(inside), and 0(0utside)J (as we found more easily using Ampére’s law, in Ex. 5.9).
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Problem 5.45
Let the source point be r' = Rcos¢x — Rsing§, and

the field point be r = Rcosf%X + Rsinfy; then 2 =
R[(cosf — cos @) % + (sinf + sin¢g) ¥] and dl = Rsindpdp % +

-

Rcosgpdpy = Rdp(sin ¢ X + cos ¢ ¥). % [
i
% v 2 "N
dlxar = R?d¢ sin ¢ cos ¢ 0 /;
(cos@ —cos¢) (sinf +sing) 0 r
R?(sin ¢ sin 6 + sin® ¢ — cos @ cos ¢ + cos® ¢) do Z
= R*(1 +sinfsin¢ — cosfcos¢) dpz = R*[1 — cos(f + ¢)] do 2.
e Al dlﬂ_uﬁm/“ [1 — cos(8 + ¢)] _ IR’ Z] d¢
T 4r i 0 [2R? — 2RZ%cos(f + ¢)]3,¢2 4n(2R?)3/2 " Jo /1 = cos(6 + ¢)

pol 2/” d¢ s Ho
8V2rR Jo /2sin[(0 +¢)/2] 167R

o ol

™

0+ ¢

0

)]}

pol | ltan (%)

enk " | Tan ()

Problem 5.46

2
(a) From Eq. 5.38,| B = M;R {[R2 7 (d/; + 2P % (R? + (d/; — 2P } :
0B _ polR? { (=3/2)2(d/2+2) | (=3/2)2(d/2~ z)(—l)}
0z 2 | [R2+@d/2+2)? [R?+(d)2-2)2"?
3uol R? —(d/2 +2) (d/2 - 2)
fas- 18 {{32 +(d/2+ 27" R + (42 2)" }
9B|  _ 3ulR? { —~d/2 d/2 } 50,4
0z | .= 2 | [R2+ (@27 " [R2 +(d/272

(b) Differentiating again:

2B 3uoIR? { - | —(d/2 + 2)(~5/2)2(d/2 + 2)
822 2 Ry (d/2+2)2 [R2 + (d/2 + 2)2]"/?
. =1 7 (d/2—Z)(—5/2)2(d/2-z)(—1)}'
[R? + (d/2 - 2)?)** [R? + (d/2 — z)2]"/*
8°B 340l R? —2 2(5/2)2(d/2)%2 | _ _ 3uolR’ (_ g &, 5 )
02% 1m0 2 L[R2+ @/ (R + (a2 ) (R + (/27" e
3uol R? : W
m?ﬁ (d®* - R?). Zeroif in which case | .
pol R? 1 1 5 1 | 8pol
Al 2 {[Rz TR R (3/2)213’2} = wl R G ra gy = | 5PR
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Problem 5.47
(a) The total charge on the shaded ring is dg = o(27r) dr. The
time for one revolution is dt = 27 /w. So the current in the ring

di
= Ij = ogwr dr. From Eq. 5.38, the magnetic field of this

2
ring (for points on the axis) is dB = %awrr— drz,

(r2 + 22)3/2
and the total field of the disk is

R 3
_ Moow redr " o <
B-i= 5 ]; EFYOE Z. Letu=1r* sodu=2rdr. Then
poow [ udu Hoow [2 u+222\1F poow [(R?+ 222) oy
_ = = — | - Zz.
4 Jo w+z2)32 4 ve+z22/ll, 2 JVRZ £ 22 z
(b) Slice the sphere into slabs of thickness ¢, and use (a). Here
t = |d(Rcosf)| = Rsin@ db; )
0 = pt = pRsinfdf; R — Rsin#; z - z — Rcosf. First i .
s : Rsin®
rewrite the term in square brackets:
{(R2 + 22%) _9 ] _ 2(R*+2%) = i’ p
VR? + 22 & VR? + 22 VR? + 22 R(‘.osg?/' y
R%/2 ]
= 2(VR?+2? - —— —z|.
[ VR? + 22
But R® + 2% — R%sin® 0 + (22 — 2Rz cos0 + R* cos® §) = R? +
2 —2Rzcos#h. So
popRw /“ , [ (R?/2)sin® @
B, = —/——2 sinfdf |/ R? + 22 — 2Rz cosf — — (2 — Rcosf)]| .
= 2 o 4 VRZ + 22 = 2Rz cos ( )
Let u = cosf, sodu = —sinfdf; 0:0 > 71 =>u:1— —1; sin’0 =1 —u?.

- uapmf_l[m _®/20-w)

VvR? + 22 —2Rzu
R?
— uopRLu‘ |:I]_ — —2'—(.[2 - Ig) g Lj, =k I5:| .

L

Il

Il

—[[R2+z 170 —(R2+z +2Rz)3’2] =

/ VR? + 2?2 — 2Rzudu = — — (R2 + 22 2Rzu)3/2|

—TR; [(Z oy R)3 - (Z + R)3]

z+ Ru] du

-1

il i - A 53 gl Taogie 2l Doyl Lo

= I (z2® — 322R + 3zR* - R®* — 2* - 322R - 3zR R)—3z(32 + R?).
Iy = /1+du——i\/R2+z2—2Rzu‘l ——i[(z*R)—(z+R)]'—g
S -1 VR?*+ 2% — 2Rzu et e e B
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u2

1
Iy = —
¥ f \/R2+22—ZRzu
1

Ra 5 [8(R® +2°)° + 4(R® + 2°)2Rzu + 3(2Rz2)*w’] VR? + 22 — 2Rzu|
1

~ 60R323
~ [8(R® +2%) - 8R2(R® + 2%) + 12R*%] (z + R) }

du

60

{ [8(R? + 2%)% + 8Rz(R? + 2%) + 12R*2*] (z - R)

—W;ﬁ {z [16Rz(R® + 2%)] — R [16(R? + 2%)% + 24R?2?]}

o 1 2,2 S nute azdiala
= ~BR5: 316}2 (R 22+ z*— R 2Rz 2 2R z
A T, A —§R222—R“ i R2+ z I z/ du = 2z; I—R/ludu—[}
— TI5RZB \ 2 ~ 1528 RS REACYF g e
B. = wR 3(322+R2}—R—22+R2 s - B it
B AT | B 2 z ' 2 1528 2
2R2 R‘Z 2R4 R2
- PRl MR -
Haltpus ( i PRI TT R z)
2R5 HoQwR?
Hopui fezs: PO 0= e 2002 T g
Problem 5.48

dl' x 2

2= —Rcos¢p% + (y — Rsing) ¥ + zz. (For simplicity I'll drop the prime on ¢.)

73
22 = R%cos? ¢ + y? — 2Rysin ¢ + R%sin® ¢ + 2% = R? + y% + 2% — 2Rysin ¢. The source coordinates (z',y’, ')
satisfy ' = Rcos¢ = dzr' = —Rsingdg; y' = Rsing = dy’' = Rcos¢dg;z’ =0 = dz’ = 0. Sodl' =
—RsingdpXx + Rcosgpdpy.
X

y Z
dl'xa=| —Rsing¢dp Rcos¢dp 0 |=(Rzcosdpdd)x + (Rzsin¢de)y + (—Rysin¢de + R do) .
—Rcos¢p (y— Rsing) =z
B _ MoIRz /2" cos ¢ d¢ _ moIRz 1 1 i
o4 Jo (R2+y2+z2—2Rysin¢]3/2 4r Ry /R? + y2 + 22 — 2Rysin¢|o ’

since sin ¢ = 0 at both limits. The y and z components are elliptic integrals, and cannot be expressed in terms
of elementary functions.

polRz [2F sin ¢ d¢ s ol T (R —ysin¢) d¢
Be =0 By= 4 g i o9 io i T 4 2%y 2 a2 T
T Jo (R?®+y?+22—-2Rysing) T Jo (R?2+4+y%+ 22 —-2Rysing)

Problem 5.49

I dl; x 4
From the Biot-Savart law, the field of loop #1 is B = E—{Ll» 1%

; the force on loop #2 is

F=12}{d12xB —I1 j{fw. Now dly x (dl; x &) = dly (dl, - &) — 4(dl; - dl,), so
2
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Fz_%hﬁ{j{f%(dll.dlz)~j£dl1j£w1:—2.&)}

The first term is what we want. It remains to show that the second term is zero:

: : : p) ey
r=(z2—21) X+ (Y2 — 1) ¥ + (22 — 21) 2, s0 V(1/2) = o [(z2 = 21)* + (2 — 91)* + (22 — 21)?] et

d =yt s Lo -1/2
E 3_!}2 [(32 —21)* + (Y2 — 1) + (22 — 21]2] w ¥+ Bz [(xz 1)+ (2 —w1)? + (22 - 21)2] gl
pe—1) , (r-n), (a-n), r 2 A 1
e x— 3 ey z=—4—3=-—4—2. So };—g-dlgz—fVQ s -dl; = 0 (by Corollary
2 in Sect. 1.3.3). qed
Problem 5.50 1
Poisson’s equation (Eq. 2.24) says V2V = e For dielectrics (with no free charge), pp = =V - P
0 -~
(Eq. 4.12), and the resulting potential is V(r) = ﬁ [ P(1;2) 2dr'. In general, p = €V - E (Gauss’s law),
0
1 SR
50 the analogy is P — —¢E, and hence V (r) = i f % dr'. qed

[There are many other ways to obtain this result. For example, using Eq. 1.100:

2 2

V. (;) =-V'. (4_2) = 476%(a) = 4783 (r — 1'),

Ve~ /V(r')63(r SR —»ﬁ/V(r’)V'- (52_) i L é/:_z V'V dr' - Z}}{V(r')ﬁ '

E(r') -2
ORI
2

(Eq. 1.59). But V'V(r') = —E(r'), and the surface integral — 0 at oo, so V(r) = —é/
before. You can also check the result, by computing its gradient—but it’s not easy.]
Problem 5.51

2
ok Y~ s I 1 Py
(b)B:;%qb,sofodx:(%s—%s)w: £ (a-g)s;éo.

(¢ A=-rxB[; Adr=|-}(rxB).

pol 5 pol - pol 2 /‘ 1 pol 2 ;

= ——; = — = e = = —— 5. :B th

(d) B e ¢; B(Ar) i ¥ A 2”(1- x @) E A,\ dA e (r x ¢). But r here is the
I -~ -

vector from the origin—in cylindrical coordinates r = s8 + z2. So A = ﬁ% [s(ﬁ X @) + 2z(Z x qb)], and

R R o s Mpds e e
Bx¢) =12, (Zx¢)=-8. So A~2ﬂ(zs $Z.

The examples in (¢) and (d) happen to be divergenceless, but this is not the case in general. For (letting
L = [} AB(Ar)d), for short) V-A = =V (rxL) = =[L - (V xr) =r-(VxL)] =r-(VxL), and
VxL =[] AV x BOr)JdA = fj X[V x B(Ar)]dA = o Jy A2J(Ar) dA, s0 V- A = pior - J3 A2J(xr) dA, and
it vanishes in regions where J = 0 (which is why the examples in (c) and (d) were divergenceless). To construct
an explicit counterexample, we need the field at a point where J # 0—say, inside a wire with uniform current.
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Here Ampére’s law gives B 27s = polenc = poJns’> = B = 2J3 @, so

A = —rx[ﬂ ,\(“;J),\ ¢dA_-_s(rx¢) ;s(zé—si).
_ Mt (10 2 =t Ry e
V-A = - [58( )+ ( 2)]— ; (s2sz)— 3 £ 0

Conclusion: |(ii) does not automatically yield V- A = O.I

Problem 5.52
(a) Exploit the analogy with the electrical case:

3:3 ' W
E = —— BE — Ea. 3. =hs " : :
T S H)F-p] (Eq.3104) =-VV, withV = =5 (Eq.3.102)
1
== f::: [3(m-#)f —m] (Eq.587) =-VU, (Eq. 5.65).

Evidently the prescription is p/eg = pom: |U(r) = e
(b) Comparing Eqs. 5.67 and 5.85, the dipole moment of the shell is m = (47/3)woR*z (which we also got

4
in Prob. 5.36). Using the result of (a), then, |U(r) = @?—26 for r > R.
Inside the shell, the field is uniform (Eq. 5.38): B = %pgawR z,s0U(r) = -%,ugarsz + constant. We may
as well pick the constant to be zero, so |U(r) = —2uoowRr cosf | for r < R.
[Notice that U(r) is not continuous at the surface (r = R): Uin(R) = —%,u,gawR2 cosf # Upw(R) =

%,uoosz cos@. As I warned you on p. 236: if you insist on using magnetic scalar potentials, keep away from
places where there is current!]

(c)

ey Rl el G
B = [(1 cosf T 1 sin@ 6 VU = Brr raﬂg rsinﬂ&;ﬁqﬁ'

4R 5R? 5R?
% = 0= Ulr,0,4) =UGH).
%‘;_g 2t (T:}?) (1 g;;)smGiU(r,ﬁ) (4 )( 5R2)rcosﬁ+f(r)
L - () (- 25) s 00—~ (22) (- ) vt

Equating the two expressions:
HowQ 6r? HowQ r?
_(4171?,) (1 5R2)rcos€+f(r) (4?TR) (1 37 rcosf + g(8),

or
(zn R?) r’ cosf + f(r) = g(8).




107

But there is no way to write 73 cosf as the sum of a function of @ and a function of r, so we’re stuck. The
reason is that you can’t have a scalar magnetic potential in a region where the current is nonzero.

Problem 5.53 J
(a)V-B=0, VxB=pJ,andV-A=0,VxA=B =>A=:—:;-/.;dr',so

V-A=0, VxA=B,and V- W =0 (we'll choose it s0), VX W =A = W—i BdT

4

(b) W will be proportional to B and to two factors of r (since differentiating twice must recover B), so I'll
try something of the form W = ar(r - B) + 8r%B, and see if I can pick the constants a and 3 in such a way
that V.- W =0and V x W = A. : g E
V-W=al(r-B)(V-r)+r-V(r-B)]+8[r?(V-B) +B.V(r?)]. Vr = 3—:” ¥ a_§+ 8—” =1+1+1=3;
Vir-B)=rx(VxB)+Bx(Vxr)+(r-V)B+ (B:V)r; but B is constant, so all derivatives of B vanish,
and V x r = 0 (Prob. 1.62), so

V(r-B)=(B-V)r=(3x%+By%+B a)(ﬂ+yy+z2) B:%+B,y+B:2=B
a a a
S L R - P o 2 2 W2 5 s 3
V(")—(xaz‘f‘yay-i'zaz)(x +y“+2°)=2z%x+2yy+22%Z=2r. So

V.-W=a[3(r-B)+ (r-B)] + [0+ 2(r - B)] = 2(r - B)(2a + ), which is zero if 2a + 8 = 0.
VxW=ar -B)(Vxr)—rx V(- B)]+8[r*(VxB)-Bx V(?)] =a0-(rxB)]+8[0-2(B xr)]
= —(rxB)(a—208) = —%(r x B) (Prob. 5.24). So we want @ — 203 = 1/2. Evidently a — 2(-2a) = 5a = 1/2,

ora=1/10; 8 = —2a = —1/5. Conclusion: | W = 11—0 [r(r - B) — 2r°B]. | (But this is certainly not unique.)

O VxW=A= [(VxW)-da=[A-da. Or § W dl =
[ A -da. Integrate around the amperian loop shown, taking z
W to point parallel to the axis, and choosing W = 0 on the
axis:

_ [? [ ponI = pon}'
WI—/O( 2 )Id =5 . (usngq 5.70 for A). 2,

N\

ponls?
4

2
Fors > R, ~Wl = “0“1 L3 (

W=-— 2|(s<R).

2 2
) R? N ponl R21 i wonlR lln(s/R);

- 2

HQﬂIR

W= [1+2In(s/R)]) 2| (s > R).

Problem 5.54

Apply the divergence theorem to the function [U x (V x V)], noting (from the product rule) that
V. [Ux(VxV)]=(VxV)(VxU)-U:[V x(V xV):

fv-[Ux(vx_V)]dfzf{(vxV)-(v><U)—U-[vx(VxV)]}dfzj([Ux(va)]-da.
As always, suppose we have two solutions, B; (and A,;) and B, (and A;). Define B3 = B, — B; (and

Az3=A;-A;),s0that Vx A3 =B3and VxB3 =V xB; -V xBy =ppJ — o] =0. Set U=V = Aj
in the above identity:
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/{(V X Ag) x (V X Ag) —A;- [V X (V X A3)]} dr = / {(33) ' (Bg) —Aj- [V X B3]} dr = f(B3)2 dr

=S %‘[Ag x (V x Az)]-da= f(Ag x B3) - da. But either A is specified (in which case A3 = 0), or else B is

specified (in which case B3z = 0), at the surface. In either case f{Ag x B3)-da =0. So /(Bg)2 dr = 0, and
hence By = Bs. qed

Problem 5.55

ﬂom;} (2cos @ +sin66). There-
T

302cos|9 = (B(] — ;;:‘T;) cos@.
HoTng

2rR3’

From Eq. 5.86, Byot = Bo Z —
L e 10T
fore BTt = By(z - T) s~

T

This is zero, for all 8, when r = R, given by By = or

/
R= (E(W—O) .| Evidently no field lines cross this sphere.
Q?TBU

Problem 5.56

o) Fa = 8 L Quinolnga Sl = B sage S et L SRty = Mol Ta MR
(2r/w) 27w 2m 2
m _Q wR* Q _(Q cetpes b s W
AT Ty ey m = (-2_}1—4'— L, | and the gyromagnetic ratio is g = M

(b) Because g is independent of R, the same ratio applies to all “donuts”, and hence to the entire sphere

(or any other figure of revolution): [ g = %

) —24
= —_— = = 4. 1 1 A. 2-
im 4(9.11 x 10-91) [461x 107 Am

@)= e h ek _ (1.60x 10719)(1.05 x 10~34
T 2m2

Problem 5.57

1 3
(a) Bave = W/Bdr = m/(VXA)d‘F

3 o 3 Ho J ' a2
4?’I’R3%A W _4?rR347rf{/adT} Bt

_(4;‘);’;.___.29}? /J X {%%da} dr'. Note that J depends on the
source point r’, not on the field point r. To do the surface
integral, choose the (z,y, z) coordinates so that r' lies on the z
axis (see diagram). Then 2 = \/R? + (2')2 — 2Rz’ cosf, while
da = R%?sinf@dfd¢+. By symmetry, the £ and y components
must integrate to zero; since the z component of ¥ is cos 8, we
have




109

}( S = / s R%sinfdfdg = 2rR? 2 s o
2 VR? + (2')2 — 2Rz' cos 0 o +/R?+ (2')? — 2Rz cosf
Let u = cosf, so du = —sinfd#f.
e u
= 2nR*% d
T AR+ (7 - 2Reu
2[2(R2+(z) ) + 2Rz'u] .
. Bgolie 2 DT s !
27R z{ 30R7) VR? + (2')2 — 2Rz'u %
2nR?% 2 o / ) 3 7 2 "2 r 2 n2 /
- _3(Rz’)2{[R +()? + RY| VRE+ (7)2 — 2R7 — [R® + (') - RZ'] VRZ + (7)) +2Rz}
2 & 1
e [m z} {[R*+ (#")* + RZ'] IR- 2'| - [R* + (2')* - RZ'] (R+ 2')}
4
%z'ﬁ: ;r' (e < By
E Am RO Dopsph < oo
WZ—"{{WI‘, (T' >R).
For now we want ' < R, s0 Baye = Ry AN /(Jxr’)df' o el /(Jxr’)dr" Nowm = 1 [(rxJ)dr
v (47)2R® 3 arR? 2
o 2m
(Eq. 5.91), so Baye = T qed : , J
e 3po 4T 5 r e sl X 4
(b) This time r' > R, so Baye = W —R / (J X W) drl = i dr', where 2 now goes

from the source point to the center (2 = —r'). Thus Bave = Been. qed

Problem 5.58 p
(a) Problem 5.51 gives the dipole moment of a shell: m = ~3£owR4 5. Let R — r,0 — pdr, and integrate:

47 Moo dg H* . Q 1 i
m = ?wpz/[) vdrs ?up—5—z. But p = W’ so|m = gQwR Z.
Ko 2m | po 2Qw .
Bive = = —
(5) Bave 47 R® |47 5R
~ Homsinf - _| o QwR? smﬁ
A= dr 1?2 ¢ 4T 5 ¢

(d) Use Eq. 5.67, with R — 7,0 — pdr, and integrate:

A=

; R 5 2 o
u0;951n28¢[ A gr = Pow 3Q_ 3Q sinf R = ko QWR smﬁ(ﬁ‘

3 47R® r2 5 4 5 r2

This is identical to (c); evidently the field is pure dipole, for points outside the sphere.
] 2 2 %
(e) According to Prob. 5.29, the field is B = How) [(1 - -37'—) cosf i — (1 - GL) sinf)ﬂ] . The average

4R 5R2 5R2
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obviously points in the z direction, so take the z component of # (cos#) and 8 (- sin#):

= ﬂowQ___}__- 3 2 14 6_2) - 9. s
Bave = i (4/3)1rR3/[(1 5R2)COS 0+ (1 52 ) Sin 6| r*sinf dr df do
T 3 5 3 5
= M% Kr— 2 5 )cos g+ (R g B )sm 9] sin @ df
0

(4mR?)? 3 55R? 3 " 53R
3uowQ 5 (" (16 (O, (g 3uwQ 1 /ﬂ =

= e ) — =
TR (7 cos®§ + = zz sin” 0 | sin6 df <R 75/, (74 9cos® ) sin do
pow@ 3|7 _ How@ pow@

= =7 8- 7 e i
0o (7080 = 3608°0) || = 3 5(20) = (575 (same a8 (0).

Problem 5.59

The issue (and the integral) is identical to the one in Prob. 3.42. The resolution (as before) is to regard
Eq. 5.87 as correct outside an infinitesimal sphere centered at the dipole. Inside this sphere the field is a
delta-function, A§3(r), with A selected so as to make the average field consistent with Prob. 5.57:

: 3 Ho 2m 2pom . [2m0
Bive =+ | A (D)dr=—ckA=1L1 P : .
s (4/3)?TR3/ (r)dr AT R3 ar 3 = 3 The added term is 3 mé®(r).

Problem 5.60

o0
(a) Idl - Jdr, so |A= z—:_ Z 1%_“ /(r')"Pﬂ(cos 0)J dr.
n=0

(b) Anon = % Jdr = :1%%1;- (Prob. 5.7), where p is the total electric dipole moment. In magne-
m

tostatics, p is constant, so dp/dt = 0, and hence Ao, = 0. ged
(c)m=Tla=3I§(rxdl)»>m=3 [(rxJ)dr. qed

Problem 5.61
For a dipole at the origin and a field point in the z z plane (¢ = 0), we have

Bl 4 (2c059r+sm99) &—3[2(:059(511195‘:-!-(:0562)+sin6‘(cosl9i-sin92)]
= »“_U_ Cain2) 5
F [3sinf cosf % + (2 cos® § — sin® ) z].

Here we have a stack of such dipoles, running from 2 =
—L/2 to z = +L/2. Put the field point at s on the z
axis. The X components cancel (because of symmetrical-
ly placed dipoles above and below z = 0), leaving B =

L/2 29 _
f—;E?Mﬁ/ wdz, where M is the dipole mo-
0 0

o

ment per unit length: m = InR? = (ovh)7R? = owRnR*h =
: s 1 sin®9

M=%=1TO'WR3 Nowsinﬂ:;, so;s-z—lgs——; 7=

—scotd = dz = —— df. Therefore
sin? 9




But sinf,,, =

Om
B (rowR?) z/ (3cos? 9 — 1)
2 /2
poowR® s Oom
P (= cos® 8 + cos6) s

8

V2 + (L)2)%

and cosf,, =

c0s 0, sin® 8, 2.

sin®f s poowR? O 2 .
T i df = 957 2 j;ﬁ (3cos*8 —1)sinfdf
poowR3 9 . poowR?
= oy o8 Om (1 — cos®8,,) 2 = o
—(L/2) poowR3L

T4+ (LR
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Chapter 6

Magnetostatic Fields in Matter

Problem 6.1
1 iva Sl i H i my
N=m; X B;; B; = f:; . [B(my - #)f —my]; £ =y;m; =mZ; my =mey. B; = _f_;r_;z'
_ _Homumy _ _Homuma 3 3 __ bo (abl)? : ot drpecr <48
N=- (¥ x2) = ————%. Herem; = wa*l, my = b*I. So|N = - —~—— Final orientation :
ir 13 4r r3 4 3

[ovmvard] (-2)

Problem 6.2

dF =Idl x B;dN =1 X dF = It X (dl Xx B). Now (Prob. 1.6): r X (dl x B) +dl x (B x r) + B X
(rxdl) =0. Butd[r X (rxB)] =dr X (r x B) +r X (dr x B) (since B is constant), and dr = dl, so
dx (Bxr) =rx(d xB)-d[rx(rxB). Hence 2r x (dl Xx B) = d[r X (r x B)] - B X (r x dl).
dN=1I{d[r X (r x B)]=Bx (rxdl)}. . N=1I{§d[rx (r x B)]—-B X §(r x dl)}. But the first term
is zero (§d(---) = 0), and the second integral is 2a (Eq. 1.107). So N=-I(B X a) =m x B. qed
Problem 6.3

(a) I <

z T

4

According to Eq. 6.2, FF = 2rIRBcosf. But B =
&QM, and Bcosf§ = B -§, so Bcosf =
4"‘_1'[3(11'11 £F)(F-9)—(my-§). But my -y = 0 and
f-§y = sing, while m; - ¥ = mjcosf. .. Bcosf =
40 1:3m, sin ¢ cos ¢.

F = 2rIR L3m, sinpcos¢. Now sing = &, cos¢ = V% — R?/r, so F = 38, [R2YLTLRE,

But IR?>7 = mg, s0 F = Eﬁﬁmlmgﬂ while for a dipole, R < r,s0 | F = 32'? m:'znz.
(b) F=V(mz-B) = (m3z-V)B = (ma ) [2 5(3(my - 2)2 — my)] = £2mymaz & 4 (L),
2m, Al
zZ
or,since z=r: |F = —%Mi.
2r rd

113
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Problem 6.4

dF = I {(dyy) x B(0,y,0) + (dz2) x B(0,¢,2) — (dy¥) x B(0,y,€) — (dz2) x B(0,0,2)}
= 1{~(dy3) x [B(0,5,€) - B(0,4,0)] +(dz2) x [B(0,5,2) ~ B(0,0,2)]}

B oB

%66— %58—!;
= I€? Exa—B—“xa— Note that [dy 92| ~ea—3[ and [dz 42 g 2R
y A Y 32 loy,0 ¥ € 9z l0,0,0 % o0,z 9looe’
® Y Z b'e y Z
F = m{ 0 g 1 =1} 0 3{ 0 } =m’{ya§= _iaaBy _ﬁaéBz _ia;z}
8B, 0B, 9B, 9B, 8B, z z
‘e e R Y .

9z Y oy 9z

But m - B = mB, (since m = mg, here), so V(m-B) =mV(B,) =m (Qgifc + %%‘)7 + B—B"-ﬁ).
Therefore F = V(m-B). qed
Problem 6.5 z

(a) B = poJozy (Prob. 5.14).

m - B = 0, so Eq. 6.3 says ¢ Il
B o

(c) Use product rule #4: V(p - E) v
=px(VXE)+EXx(Vxp)+(p-V)E+ (E-V)p.
But p does not depend on (z,y, z), so the second /
and fourth terms vanish, and V x E = 0, so the T
first term is zero. Hence V(p-E) = (p- V)E. qed

This argument does not apply to the magnetic analog,
since V x B # 0. In fact, V(m-B) = (m - V)B + go(m x J).
(m - V)Bg = mozx (B) = mopoJo¥, (m - V)Bs = mo (1o Jozg) = 0.
Problem 6.6

Aluminum, copper, copper chloride, and sodium all have an odd number of electrons, so we expect them to
be paramagnetic. The rest (having an even number) should be diamagnetic.

Problem 6.7
(£

Jb=VXxM=0; Ky =M x it = M. TM a
The field is that of a surface current K, = M ¢,
but that’s just a solenoid, so the field
outside is zero, | and inside B = puoKjy = poM. Moreover, it points upward (in the drawing), so m

D
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Problem 6.8
19 g 2\ - - 207 L a 25
VxM=J,= gb-g(sks J2 = ;(31:3 )z = 3ksz, K, =M X fi = ks*(¢ X §) = —kR*z.
So the bound current flows up the cylinder, and returns down the surface. [Incidentally, the total current should

be zero ... is it? Yes, for [Jyda = fUR(3ks)(21rs ds) = 2rkR3, while [K,dl = (—kR?)(2nR) = —2wkR3.)
Since these currents have cylindrical symmetry, we can get the field by Ampere’s law:

B 278 = pglene = ,uc./ Jpda = 2:rk,u033 = 'B:= ugkszé = poM.
0

QOutside the cylinder Ione = 0, so

Problem 6.9

Ky, =M X = Mo.

r 4. W 11

I = B (Essentially a long solenoid)
] B (Essentially a physical dipole)
]

k<
t

(Intermediate case)

[The external fields are the same as in the electrical
case; the internal fields (inside the bar) are completely
different—in fact, opposite ih direction.]

Problem 6.10

K, = M, so the field inside a complete ring would be uoM. The field of a square loop, at the center, is
given by Prob. 5.8: Byq = \/i,ugf/:rrR. Here I = Mw, and R = a/2, so

Bsq = W(‘Tﬂ) - ::2 ; netfieldingap: [B=poM|[1- —].
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Problem 6.11

As in Sec. 4.2.3, we want the average of B = By, + Bin, where B, is due to molecules outside a small
sphere around point P, and B;, is due to molecules inside the sphere. The average of B, is same as field at
center (Prob. 5.57b), and for this it is OK to use Eq. 6.10, since the center is “far” from all the molecules in
question:

Ho Mx 2z
Ay = 17_1_ f 22 dr

outside

The average of Biy is £2 (28)—Eq. 5.89—where m = $7R*M. Thus the average B;, is 2110M/3. But what is
left out of the integral A,y is the contribution of a uniformly magnetized sphere, to wit: 2poM/3 (Eq. 6.16),

and this is precisely what B;, puts back in. So we'll get the correct macroscopic field using Eq. 6.10. qed
Problem 6.12

z

: $ : A

(a) M = ksz; J, = VXM = —k¢; K, =M x fi = kR¢.
B is in the z direction (this is essentially a superposition of solenoids). So b :
[B = 0 outside. | Use the amperian loop shown (shaded)—inner side at radius s: }I
$B - dl = Bl = pioJenc = pio [[Joda + Kl] = po [~ki(R — 5) + kRI] = pokls. ~Ko .

lB = pgksz insidtﬂ

(b) By symmetry, H points in the z direction. That same amperian loop gives §H - dl = HI = poly,, =0,

since there is no free current here. So , and hence Outside M = 0, so B = 0; inside

M = ksz, so B = ppksz.
Problem 6.13

(a) The field of a magnetized sphere is %uUM (Eq. 6.16),s0|B = By — ;”OM’ with the sphere removed.

Inthecavity,HzﬁB,soH'——i(B —%ugM)=H0+M—§Mﬁ- H=Ho+%M.

Ko

(b) The field inside a long solenoid is poK. Here K = M, so the field of the bound current on
the inside surface of the cavity is poM, pointing down. Therefore
K,

|B = Bo — uoM;|

1 1
H= —(Bo — poM) = —Bo - M =

c
(c) £ E:_“-—__——___B) K; This time the bound currents are small, and far away from the center, so
while H= -LBo = Ho + M = |H = Ho + M.

[Comment: In the wafer, B is the field in the medium; in the needle, H is the H in the medium; in the
sphere (intermediate case) both B and H are modified.]




Problem 6.14

; B is the same as the field of a short solenoid; H = ﬁB - M.

1

[

N =
D)

=
¢

/LI NS

2

Problem 6.15
“Potentials”:

{Win(r,a) = Y Ar'P(cosh), (r<R);
Wou(r,8) = Y :BxPi(cosb), (r> R).

Boundary Conditions:
(l) Win (RJ 6) — Wout(R; 0)!
(i) —Mouw| + | =ML=M3% #=M cosd.

(The continuity of W follows from the gradient theorem: W (b) — W (a) = f: VW .dl = - f: H-dl;

if the two points are infinitesimally separated, this last integral — 0.)
i) = AR =8 2 By=RW4,
i = X+ l)ﬁ?i_f:-,rf-’;(cosﬂ) + Y IA;R'""?Py(cosf) = M cosé.
Combining these:

Z(zi +1)R""'A;Pi(cos8) = Mcosf, so ;=0 (1 #1), and34; =M = A, =

i=-

Thus Win(r,8) = %r cosf = %z, and hence Hj, = -VW;, = -

w|

&
EM, S0

Il

1 2
B=po(H+M)=,ug(-—-§M+M) g,u.oM. v
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Problem 6.16

T T
fH-dl = Iferm = I! 50 H = 23-‘¢ B P0(1+Xm)H ¥ e “0(1+Xm)§__¢‘ M =me = X q"‘)'
s 2ms
10 [ xml xmls gt s =a;
M=-— s3> K, =M x f=|{ 2me ’
o s 0s ( 2#3) - e o e {—Xz’;—;i, atr =b.

Total enclosed current, for an amperian loop between the cylinders:

po(l+xm)l 5

” )
f+;m%a=(1+xm)f, s0 fB-dI=mIenc=uo(1+xm)I=>B s

Problem 6.17

% o3 "
From Eq. 6.20: §H -dl = H(27s) = Iy, = {I(s g WS

I (s > a).

={§-‘fig, (s<a)} % B = uH = {Ml;%giﬁ (s < a);

a
2_??5’ (s >a) gol, (s > a).

ml sk d
Jp = xmJs (Eq. 6.33), and Jy = %g, so|Jp = ?frE?_ (same direction as I).
Ki=Mxia=xmHxfa=|K,= )éij (opposite direction to I).

Iy = Jy(wa?) + Kp(2ma) = xmI — xmI = @ (as it should be, of course).

Problem 6.18
By the method of Prob. 6.15:
For large r, we want B(r,6) - By = Bo%, so H = ;%B - ;J’;Boi, and hence W — —H—ngz =

—-L Byrcosé.
Ho

“Potentials”:
Win(r, 6) Y Airt Py(cos ), (r < R);
Wous (7, 6) - ;—oBor cosf + 3 ;%rﬁ(cos 9, >R

Boundary Conditions:

{ (i) Wi (R‘i‘e) = Wout(R, ),
(i) —po2es|p +p25l|, =0.

(The latter follows from Eq. 6.26.)

1l

(ii) = po [—Bo cosf + Z(I +1)—=— P;(cos 9)] +;.LZJA1R! 1Pi(cosf) = 0.

R!+2
For | # 1, (i) = B; = R¥*+! Ay, so [uo(l + 1) + pl]A4,R'~* = 0, and hence 4; = 0.
Forl =1, (i) = AR = — L BoR+ B, /R?, and (ii) = Bo +240By /R + iy = 0, 50 Ay = —3Bo /(2410 + b
B
W o) e R 35t - [y Ui, BBs o ° 9B

(2p0 + ) T Cuo+a) Qo+ 1) (Ho+p)

3,&.B0 ( 14 xm )
B=uH= = Bg.
f o) A NI EXuld)
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By the method of Prob. 4.23:
Step 1: Bo magnetizes the sphere: My = xnHo = m%‘;‘)(—mTBg. This magnetization sets up a field within
the sphere given by Eq. 6.16:

G2 2 X Nl
B, = Squo—- 31+XmBU = 3.«:Bg (where k = —X—I_H( )

Step 2: B, magnetizes the sphere an additional amount M; = ;—;B This sets up an additional field in
the sphere:

2 2 2k 2
By = —ygM; = =kB; = | — ;
2 3#0 1 35 1 (3) By, etc

The total field is:

B
B=By+B;+By+---= BU+(2K/3)B0+(2K‘./3)2B0+“' = [1 +(2K./3)+ (25/3)2 + ] By = (T:-;;/—gj
1 3 3+ 3xm 3(1+ xm) L4 ¥m
- = = , 50| B={ ——— ) Bp.
1-26/3 3-=2xm/(1+xm) 34+3xm—2xm 3+ xm 1+ xm/3

Problem 6.192 i

Am = -$ZB; M = §° = £~ vB where V is the volume per electron. M = x,,H (Eq. 6.29)
= mB (Eq. 6.30). So xm = :m‘"v,uu [Note: xm < 1, so I won’t worry about the (1 + xm)
term; for the same reason we need not distinguish B from Bejse, as we did in deriving the Clausius-Mossotti
equation in Prob. 4.38.] Let’s say V = $mr®. Then xm = —4&2 (ﬁ%) I'll use 1 A= 10~1° m for r.

Then xm = ~(10~7) (2SS iy ) = which is not bad—Table 6.1 says xm = —1 x 1075,

However, I used only one electron per atom (copper has 29) and a very crude value for r. Since the orbital
radius is smaller for the inner electrons, they count for less (Am ~ r?). I have also neglected competing
paramagnetic effects. But never mind ... this is in the right ball park.
Problem 6.20

Place the object in a region of zero magnetic field, and heat it above the Curie point—or simply drop it on
a hard surface. If it's delicate (a watch, say), place it between the poles of an electromagnet, and magnetize it
back and forth many times; each time you reverse the direction, reduce the field slightly.

Problem 6.21

(a) Identical to Prob. 4.7, only starting with Egs. 6.1 and 6.3 instead of Eqgs. 4.4 and 4.5.
(b) Identical to Prob. 4.8, but starting with Eq. 5.87 instead of 3.104.

(c) U = —£2 X [3 cos; cosfy — cos(Bz — 6;)]mimy. Or, using cos(fy — 61) = cosb cosz — sin 6, sin 6y,
= i (sin @) sin 65 — 2cosf; cosbs) .
4T
Stable position occurs at minimum energy: g—g = QT?; =0

wr

g—% = KoL (cos §) sin By + 2sin ) cosB) = 0 = 2sinf; cosfz = — cos b sin by;
692 = KO (sin ) cos By + 2 cos b sinfz) = 0 = 2sinb; cosf = —4cosb; sin bs.
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Either sinfl; =sinf; =0 : ——>@—> or ——)®<—~

Thus sin @, cosfs = sinfy cosy = 0. o} ot et 0250 +1 or 14

Which of these is the stable minimum? Certainly not ) or ®—for these mjy is not parallel to B;, whereas we
know my will line up along B;. It remains to compare(® (with §; = 6, = 0) and @ (with 6, = 7/2, 6, = —n/2):
U, = domimz (_9). [J, = B2 (1), U is the lower energy, hence the more stable configuration.

4mr

l Conclusion: They line up parallel, along the line joining them: — --ﬂ

(d) They’d line up the same way: — — — — — —
Problem 6.22

F:ffdlxazf(j{dl) xBﬁfj{dlx[(r-vu)Bo]wr(j{dl) x[(ro-vn)Bo]=rj£d1x[(r-vn)nu]

(because ¢ dl = 0). Now

(dl x Bo); = Z €ijkdlj(Bo)k, and (r-Vo) = ZTI(VU)h S0
ik 1

=1 Z €ijk I:f T d!j} [(Vg)g (Bo)k] {Lemma 1 5{7‘; dfj = Z €1imQm (pI‘OOf below).}

Jikd

Il

1 Z €ijk€1im@m (Vo)1 (Bo)k {Lemma 2 Ze,-jke;jm = 0i10km — 6imOr (proof below).}

jukd,m J

I (6ubkm — dimOit) am(Vo)i(Bo)k = IZ ak(V0)i(Bo)k — ai(Vo)k(Bo)]

k,lm
= I[(Vo)i(a-Bg) —ai(Vo - Bg)].

But Vg :Bg = 0 (Eq. 5.48), and m = Ia (Eq. 5.84), so F = Vo(m- Bo) (the subscript just reminds us to take
the derivatives at the point where m is located). qed

Proof of Lemma 1:
Eq. 1.108 says §(c-r)dl = a x ¢ = —c x a. The jth component is 35, § cprpdlj = — 3, ., €jpmCpam. Pick
¢p = 6 (i.e. 1 for the Ith component, zero for the others). Then §rydl; = =3 €imm = ), €1im@m. qed

Proof of Lemma 2:

€ijk€ljm = 0 unless ijk and ljm are both permutations of 123. In particular, i must either be [ or m, and k
must be the other, so

Z €ijk€ljm = Aditbgm + Bimi.
7
To determine the constant A, pick i =1 = 1, k = m = 3; the only contribution comes from j = 2:
€123€193 = 1 = Ady16833 + Béigdy1 = A=> A=1.
To determine B, picki=m=1,k=1=3:
€103€321 = —1 = Ab13631 + Béy1633 = B = B = —1.
So

> €ijk€tim = 6ubkm — GimOu. qed
j
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Problem 6.23

(a) The electric field inside a uniformly polarized sphere, E = — 3i_gP (Eq. 4.14) translates to H =

—iM. But B = po(H+M). So the magnetic field inside a uniformly magnetized sphere is B = po(—

%#DM (same as Eq. 6.16).

ml
-
—

s qu) =
1 =
gM+M) =

(b) The electric field inside a sphere of linear dielectric in an otherwise uniform electric field is E = ; +x e oo ——FE
(Eq. 4.49). Now X, translates to xm, for then Eq. 4.30 (P = eox.E) goes to poM = poxmH, or M = xmH
(Eq. 6.29). So Eq. 449 = H = mHo. But B = uo(l + xm)H, and By = poHp (Egs. 6.31 and 6.32),
so the magnetic field inside a sphere of linear magnetic material in an otherwise uniform magnetic field is

B - 1 /. TN (M)

or By | (as in Prob. 6.18).

oL+ Xm)  (1+Xm/3) o’ 1+ Xm/3
(c) The average electric field over a sphere, due to charges within, is Eaye = — 3;16—5 —E‘g" Let’s pretend the charges
are all due to the frozen-in polarization of some medium (whatever p might be, we can solve V. P = —p to find
the appropriate P). In this case there are no free charges, and p = [Pdr, so Eaye = 4mo f P dr, which
translates to ;

m m Ho 2m .
But B = po(H + M), 50 Bave = =42 35 + poMave, and Mave = 1713, 50 [ Bave = = agreement

with Eq. 5.89. (We must assume for this argument that all the currents are bound, but again it doesn’t really
matter, since we can model any current configuration by an appropriate frozen-in magnetization. See G. H.
Goedecke, Am. J. Phys. 66, 1010 (1998).)

Problem 6.24

B 245 E "= 9 { 4;“1 fi% —‘—i'-; d'r"} (for uniform charge density);
P49 Y = TP {hm fv o dr’ } (for uniform polarization);
Eq.6.11: A = poegM x {Iﬁ? L d‘r'} (for uniform magnetization).
En = p(r)  (Prob.2.12),
For a uniformly charged sphere (radius R): 1° =3
ot = Pz ;,r) (Ex 2.2).
: : : A Vin =" ‘sev {P r),
So the scalar potential of a uniformly polarized sphere is: 1 R? -
Vour = 3ep 12 {P : )

k . 5 ) Ain = HQ(M X I')
and the vector potential of a uniformly magnetized sphere is: { Tt R Ra B (M x #),
(confirming the results of Ex. 4.2 and of Exs. 6.1 and 5.11).

Problem 6.25
(@) B, = 42222 (Eq. 5.86, with 6 = 0). Som,-B; = —42 2. F = V(m'B) (Eq.6.3) = F= 2 [-tem]2=

%—2. This is the magnetic force upward (on the upper magnet); it balances the gravitational force downward
(-mqg2):

1/4

3uom? 3puom?

FL T LRI, R —— 0 = — .
2mwzd eed ¥ [Qﬁmdg
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(b) The middle magnet is repelled upward by lower magnet and downward by upper magnet:

3uom?  3uem
2mzt 27y

The top magnet is repelled upward by middle magnet, and attracted downward by lower magnet:

3puom®  3uom?
2yt 2n(z +y)!

-mug =0.

E 2
Subtractlng: é%.n_ [-z% - ;1: ;.ll' -- ml-;j-{] —Magg+mgag = 0, or %—f—;-l-m — 0, s0: 2 = W+m'
Let a = z/y; then 2 = i + rz35y7. Mathematica gives the numerical solution a = l z/y = 0.850115... ]

Problem 6.26
At the interface, the perpendicular component of B is continuous (Eq. 6.26), and the parallel component of

H is continuous (Eq 6.25 with Ky = 0). So B = B, H| = HJ. But B = uH (Eq. 6.31), so L B] = 1B},
Now tanf; = B! /B1 , and tan @, = B"/}32 , S0

tan, Bl Bf Bl .
tanf, Bj B'lI 0 Bl‘ T m

(the same form, though for different reasons, as Eq. 4.68).

Problem 6.27
In view of Eq. 6.33, there is a bound dipole at the center: m, = x,,m. So the net dipole moment at the
center iS Meenter = M+ my = (1 + x;)m = -L%m. This produces a field given by Eq. 5.87:

Bignte = 73 -0 - ).
This accounts for the first term in the field. The remainder must be due to the bound surface current (Kj) at
r = R (since there can be no volume bound current, according to Eq. 6.33). Let us make an educated guess
(based either on the answer provided or on the analogous electrical Prob. 4.34) that the field due to the surface

bound current is (for interior points) of the form Bg,rface = Am (i.e. a constant, proportional to m). In that
current

case the magnetization will be:

Xm

¥ [3(m F)f —m]+ mAm

M =l =220 =
I
This will produce bound currents J, = VXM = 0, as it should, for 0 < 7 < R (no need to calculate this
curl—the second term is constant, and the first is essentially the field of a dipole, which we know is curl-less,
except at r = 0), and

= i Xew oo XmA 1 A
_M(R)xr_41rR3( m X f) + Fr (mXxf)= xmm( y i )smﬂq‘)

But this is exactly the surface current produced by a spinning sphere: K = ov = cwRsinf ¢, with (cwR) ¢
Xm M (f - =R ) So the field it produces (for points inside) is (Eq. 5.68):

A 1
Beyty = gpolowl) = Syoxnm (5~ s )
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;_ 3u
s [1 g 2(p
xm-(ﬁ%)—l’ SOA( ‘?T"'%P?) "‘%%9)0“‘1(14? ) pluecy), £ bl and hence
_ b 2(po — p)m
B= 4ﬂ{ 5 [3(m-£)f —m] + TR qed

The ezterior field is that of the central dipole plus that of the surface current, which, according to Prob. 5.36,
is also a perfect dipole field, of dipole moment

fﬂRs( i ol ) _ 2nR® p 2(po — p)m _ ppo — p)m
2p0  current po 4m R3(2po + 1) po(2p0 + 1)

Everything is consistent, therefore, provided A = 2poxm ("’l R ) or A (1 204 xm) = -2k But
A=

4
Mgyrface = EWRS{UWR) =

current current

So the total dipole moment is:

(Bo—p) _ _3pm
(uo+n)  (2mo+mp)’

I
Mipy = —IM + —
0

and hence the field (for » > R) is

#n( 3u

1
e s “) [3(m: £)Ff — m].

Problem 6.28
The problem is that the field inside a cavity is not the same as the field in the material itself.

(a) Ampére type. The field deep inside the magnet is that of a long solenoid, By &~ uoM. From Prob. 6.13:
Sphere: B = Bg — %ng = %ng;
Needle: B = Bg — ugM = 0;
Wafer: B = poM.

(b) Gilbert type. This is analogous to the electric case. The field at the center is approximately that midway
between two distant point charges, Bo &~ 0. From Prob. 4.16 (with E = B, 1/eg = po, P = M):
Sphere: B = Bo + &M = $uM;
Needle: B =By =0;
Wafer: B = Bg + goM = poM.
In the cavities, then, the fields are the same for the two models, and this will be no test at all. Fund it
with §1 M from the Office of Alternative Medicine.




Chapter 7

Electrodynamics

Problem 7.1

(a) Let Q be the charge on the inner shell. Then E =
_fbaE‘dr__-_‘larson dr:i%(%_%)'

i s Q. odneVa=W) - (Vo —Vb)
I—/J da_cr/E da_aea_eo—(l/a—lfb) = 47?0—__(1/0,—-1/!))'

I in the space between them, and (V, — V}) =

4mweg T

(h)3=@= L(l_l).

4o \a b

(c) For large b (b > a), the second term is negligible, and R = 1/4nca. Essentially all of the resistance is in
the region right around the inner sphere. Successive shells, as you go out, contribute less and less because the
cross-sectional area (4mr?) gets larger and larger. For the two submerged spheres, R = (one R as

411' a 217cm
the current leaves the first, one R as it converges on the second). Therefore I = V/R =
Problem 7.2

(a) V = Q/C = IR. Because positive I means the charge on the capacitor is decreasing,

%g =-I= --LQ, 50 Q(t) = Qoe™*/R°. But Qo = Q(0) = CV, 50 | Q(t) = CVpe~t/RC.

Hence I(t) = _% = CVp—— RC' e t/RC _ %e—t/RC'

V2 g
(b) W = %C‘Voz- The energy delivered to the resistor is / Pdt = / I’Rdt = r / e /RCqt —
0

V¢ (_RC ¢~2t/RC e
E( 2 s el
= . s Ll g G o e
(c) Vo = Q/C + IR. This time positive I means Q is increasing: s I= RC —(CVy - Q) = Q oV
RC —dt = In(Q - CV,) = "}%{;?H' constant = Q(t) = CVp + ke™*/FC. But Q(0) = 0 = k = —CVj, so
dQ . Vo _
4 S LR B = t/rc | Yo -t/re
Q) = CVp (1 e ) It) = 3 =CV% (RC ) e

125
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I s S pe - W ot V& v - T
(d) Energy from battery: /n Vol dt = ﬁ‘/o e dt = B (—RC& )|0 = —gRC’ = CVy |

Since I(t) is the same as in (a), the energy delivered to the resistor is again %CVoz. The final energy in

the capacitor is also %CVU'Z, S0 the energy from the battery goes to the capacitor, and the other half

to the resistor.
Problem 7.3

(a) I = [J -da, where the integral is taken over a surface enclosing the positively charged conductor. But
J = oE, and Gauss’s law says [E-da = %Q, sol =0 [E-da= Q. But Q = CV, and V = IR, so

I=£CIR,or([R= J% qed

b)Q=CV=CIR= %2 =-T=-30Q=|Q(t) = Qe "R, or, since V = Q/C, V(t) = Voe~*/FC. The

time constant is T = RC =

Problem 7.4
I=J(s)2rsL = J(s)=1/2xsL. E = J/o=1I/2rsoL =1/2xkL.
R I b—a
V_w—/b E-dl-——zﬂkL(a—b). So R_Qﬂ'kL'
Problem 7.5
£ 5 &R AP 1 2R
= — = = — — = — = =2 =r
r+ R r+R? dR CIEF GaBp VT R=2R=|R=r]

Problem 7.6

E=§E.dl= for all electrostatic fields. It looks as though £ = § E - dl = (0/€p)h, as would indeed
be the case if the field were really just o/e; inside and zero outside. But in fact there is always a “fringing
field” at the edges (Fig. 4.31), and this is evidently just right to kill off the contribution from the left end of

the loop. The current is
Problem 7.7

B
R
direction of flow: (v X B) is upward, in the bar, so downward through the resistor.)

() £ = -9 = -Bl% = —Blv; £ = IR = |I

.| (Never mind the minus sign—it just tells you the

B?%y
(b) F=IIB = to the

R ]
dv o dv B?? B2i2,

= = _ = - = —_— = — = — e mR ",
(c) F = ma m— T Rkdac (Rm)v v =1
(d) The energy goes into heat in the resistor. The power delivered to resistor is I2R, so

B?[%y? g B2 dW
% =I’R= sz = 7 vae 2>, where a = S g amvje 2,
» gitat|® i
The total energy delivered to the resistor is W = amv] / e~ 20tdt = amu? oy amv? e Emvg. v
0 BEG ol )]
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Problem 7.8

st+a
% I 1 I
(a) TheﬁeldoflcmgwireisB:;—;E-r,b,so@:/B-da:% / ;(ads): roh (3+a)‘

2 K}

&

dd pola d s+a ds wola (1 ds 1lds pola®v
b)E=—-—=- —1 d — =wv,5s0— —_— e = | ——.
L dt o dt T T Ty \ ek .ad 2ns(s +a)

The field points out of the page, so the force on a charge in the nearby side of the square is to the right. In
the far side it’s also to the right, but here the field is weaker, so the current flows | counterclockwise. |

(c) This time the flux is constant, so

Problem 7.9
Since V-B = 0, Theorem 2(c) (Sect. 1.6.2) guarantees that [B -da is the same for all surfaces with a given
boundary line.
Problem 7.10
® =B :a= Ba?cosf
Here 8 = wt, so
d® _

€ = — % = —Ba*(—sinwt)w;

|5 = Bwa? sinwt.
Problem 7.11

E=Blv=IR=1I= %v = upward magnetic force = IlB = %v. This opposes the gravitational force
downward:

(view from above)

a

le?ﬂ—m@'@— - wherea‘B21E2 —a'v—0=>'v—£— g
W SR T s R e t=a | B

1
o =dt=>—aln(g—av)=t+const.=>g—av=Ae"“t; att=0,v=0,s0A=g.
g—

av = g(1 - e““); U= %[1 - e“at) =l - e_c‘t)_

At 90% of terminal velocity, v/v; =09 =1—-e % = e * =1-0.9=0.1; In(0.1) = —at; In10 = at;

= %lnl{), or | tgoy = %ln 10.

Now the numbers: m = 4nAl, where 7 is the mass density of aluminum, A is the cross-sectional area, and
lis the length of a side. R = 4l/Ao, where o is the conductivity of aluminum. So

p=28x10"8Qm

_ dnAlgdl _ 16ng _ 16gnp . ) g=98 m/s?
V= AcB22 0B~ B? ' n = 2.7 x 103 kg/m3
BT

8 v = (16)(9.8)(2.?xiu”)(z‘axm—‘) 5 toon = 1.231‘30—2 In(10) = m

If the loop were cut, it would fall freely, with acceleration .ﬂ
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Problem 7.12

CHAPTER 7. ELECTRODYNAMICS

a\2 ma® d®  7a® £ malw :
d=m (-2—) Bi= TBO cos(wt); € = T —Bow sin(wt). I(t) = =18 By sin(wt).
Problem 7.13
‘Pz/Bd:rdy:kF/ da:/ y° dy:lkt2a5. S:——EE(2 = — | 3kta®.
0 0 4 dt

Problem 7.14

pipe —

falling
magnet |

ring —

5

Mstadad

Suppose the current (I) in the magnet flows counterclockwise (viewed from
above), as shown, so its field, near the ends, points upward. A ring of
pipe below the magnet experiences an increasing upward flux, as the magnet
approaches, and hence (by Lenz’s law) a current ([i,4) will be induced in it
such as to produce a downward flux. Thus I;,4 must flow clockwise, which is
opposite to the current in the magnet. Since opposite currents repel, the force
on the magnet is upward. Meanwhile, a ring above the magnet experiences
a decreasing (upward) flux, so its induced current is parallel to I, and it
attracts the magnet upward. And the flux through rings nezt to the magnet
is constant, so no current is induced in them. Conclusion: the delay is due
to forces exerted on the magnet by induced eddy currents in the pipe.

Problem 7.15

In the quasistatic approximation, B = {

,‘.L(]RIE-, (S < G);
0, (s > a).

Inside: for an “amperian loop” of radius s < a,

dd dI dl -
® = Brs? = ponlns?; fE +dl = E2ns = e —,ugmr32d—t; E= —’UU;SE
Outside: for an “amperian loop” of radius s > a:
X
® = Bra? = ponlna®; E27ns = —ponma® poL E= pg;a o
16

Problem 7.

(a) The magnetic field (in the quasistatic approximation) is “circumferential”. This is analogous to the current

in a solenoid, and hence the field is | longitudinal.

(b) Use the “amperian loop” shown. =
Outside, B =0, so here E = 0 (like B outside a solenmd)
= -4 [B-da=~4 [ £51ds'

%§E +dl=El=-49
LE=-ted

(2). But 4

= —Jywsinwt,

_ Holow a
so |E = & sin(wt) In (s)

Zz.

ELNE
S




129
Problem 7.17

(a) The field inside the solenoid is B = ponl. So ® = ma?uonl = £ = —ma?uon(dI/dt).

2
In magnitude, then, £ = ma?uonk. Now £ = IR, 50 | Lresistor = F—a—%ﬁﬁ
B is to the right and increasing, so the field of the loop is to the left, so the current is counterclockwise, or
through the resistor.
dQ &£ 1d® 1 2raponl
b) A® = 2ra® I [=—=—==——=— AQ = =Ad, i i A = —_—
(b) mwa® ponl; s Rdt = AQ A% in magnitude. So |[AQ R
Problem 7.18
pol = pola [**ds polaln? dQ _d® _ poaln2dl
@: B- ‘B:-———-— ’@:— _— :IO = — —] — —_—
/ i O2n8" 2% Ju i Bini! €= loop R dt & T dt 2r dt
_ poaln2 __1Tppaln2
g 2R Sl 2rR

The field of the wire, at the square loop, is out of the page, and decreasing, so the field of the induced
current must point out of page, within the loop, and hence the induced current flows | counterclockwise. |
Problem 7.19

In the quasistatic approximation, B = 2"3 ¢’ (1n31f:ie t0r01_d);
; (outside toroid)

(Eq. 5.58). The flux around the toroid is therefore

poNI /‘”"” 1 uoNIh wy _ poNhw  d¥ _ poNhwdl _ poNhwk
P = —hds = In{l+—) = I.
PSR SRR “( * a) 2ra dt = 2ra dt  2ma

The electric field is the same as the magnetic field of a circular current (Eq. 5.38):
He ol a?
"2 (a? + 22)%/ 7t

with (Eq. 7.18)

-

@+2232° | dn (@@ + 2232 "

1d®  Nhwk _po [ Nhwk a® i o  Nhwka
_}_,u_gE_ 2na SOE_—2( 27:0)

Problem 7.20

(a) From Eq. 5.38, the field (on the axis) is B = m—z, so the flux through the little loop (area ma?)

|3 = pomla®b?
T 2(b% + 22)3/2°
(b) The field (Eq. 5.86) is B = £2 55 (2cosft + sin @ @), where m = Ima?. Integrating over the spherical “cap”

(bounded by the big loop and centered at the little loop):

2 ]
® = fB . da ‘”“I oi'a /(20039 (r*sin6df dg) = “"2‘;“ 2—.-rf cos 6sin 0 df
1]
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~ 8 Ta2b?
where r = /b2 + 22 and sinf = b/r. Evidently & = *"“‘;—”2 @ 5 %, the same as in (a)!!

toma’b?
2(b% + 22)3/2°

Problem 7.21 :

(C) DlVldll'lg OH 3 (‘I’l = Mmfg, ‘I’g = Mglfl): M12 = Mgl =

a
dd drI :
= —_—— = — _ = = i I
€ dt Uy =Ms 9 I“
a

It’s hard to calculate M using a current in the little loop, so, exploiting the equality of the mutual inductances,
I'll find the flux through the little loop when a current I flows in the big loop: & = MI. The field of one long

wire is B = ’:—ﬁg = &; = M. aa Lads = %’%lnz so the total flux is

;.LQIG In2

& =28, = L o toeln2 [ pokain2

,| in magnitude.
™ ™ ™

Direction: The net flux (through the big loop), due to I in the little loop, is into the page. (Why? Field
lines point in, for the inside of the little loop, and out everywhere outside the little loop. The big loop encloses
all of the former, and only part of the latter, so net flux is inward.) This flux is increasing, so the induced

current in the big loop is such that its field points out of the page: it flows I counterclockwise.!

Problem 7.22
B = ponl = ®; = ponInR? (flux through a single turn). In a length [ there are nl such turns, so the
total flux is ® = pgn®mR?Il. The self-inductance is given by ® = LI, so the self-inductance per unit length is

Problem 7.23
The field of one wire is By = %%, so P =2- f “ds E— *'i‘:r—“ In (4?} The € in the numerator is

8

negligible (compared to d), but in the denominator we cannot let € = 0, else the flux is infinite.

L= Hol In(d/e) | . Evidently the size of the wire itself is critical in determining L.
m

Problem 7.24

- polh
(a) In the quasistatic approximation B = ¢ So &, = 0

kol

m

In(b/a).
ln(b/a]fu cos(wt). So

a

Nh
This is the flux through one turn; the total flux is N times ®;: & = = il

o _ poNh (47 x 10-7)(10%)(10~2)

£=—— In(b/a)low sin(wt) = In(2)(0.5)(27 60) sin(wt)
dt: = 2x 2T
. £ 2hLx10mY .
= ‘2.61 % 10~ sm(wt}] (in volts), where w = 2w 60 = 377/s. I, = e R sin(wt)

[5.22 x 107 sin(wt) | (amperes).

(b) & = —L%- where (Eq. 7.27) L = £k n(p/q) = Unx10TA)YA0TF) 11 (9) = 1.39 x 10~3 (henries).

Therefore & = —(1.39 x 1073)(5.22 x 1077 w) cos(wt) —[ 2.74 x 1077 cos(wt) | (volts).
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. : 2.74 x 10~ - ,uoN hw
Ratio of a.mplltudes. W =11.05 x 10 ln(b/ )

Problem 7.25
With I positive clockwise, £ = —L% = @Q/C, where Q is the charge on the capacitor; I = %, S0

%ﬁl = —-76Q = —w?Q, where w = 7%-5 The general solution is Q(t) = Acoswt + Bsinwt. At t = 0,
Q=CV,s0 A=CV; I(t) = %2 = —Awsinwt + Bwsinwt. At t =0, I =0, so B =0, and

I(t) = -CVwsinwt = —V\/gsin (\/;._C') i

If you put in a resistor, the oscillation is “damped”. This time -—L%% = % +IR, so L%@ + R% + éQ =0.
For an analysis of this case, see Purcell’s Electricity and Magnetism (Ch. 8) or any book on oscillations and
waves.

Problem 7.26

() W = LLI2. L = pon®rR2l (Prob. 7.22) |W = %ponanzﬂz .

(b) W =1 $(A-Tdl. A = (uonI/2)R, at the surface (Eq. 5.70 or 5.71). So W; = 1222 R . 21 R, for one
turn. There are nl such turns in length I, so W = fpuon?rR2I?. v

() W = g [B*dr. B = ponl, inside, and zero outside; [dr = 7R%l, so W = s-uin*I*nR*l =
Fuon? R21I2 v

(d) W = 5 [[B?dr — §(A x B) - da]. This time [B?dr = pjn?I*7(R? — a®)l. Meanwhile,
AxB= [} outsnde (at s = b). Inside, A = 39-2'1{&(,5 (at s = a), while B = ponlz.
A x B = zu3n?l?a (q§ X Z) 8
points inward (“out” of the volume) L -
s J q <
$(A -da = [(3p3n®I%as8) - [ad¢ dz(—8)] = —Lugn’I*a®2nl. LJ ot B
W= -231—0 [p0n2127r(R2 - a?)l + pdnI*ma?l] = Lpen?I?Rxl. v @

Problem 7.27

_ ponl 2 4 B /'
s ) Bedr = — —_—
2rs ' W= / T 2ug  4n? fapdess

by |1 5.0
h2 In (E) = g Hon I*hln(b/a).

= ﬂn%ln (b/a)| (same as Eq. 7.27).

Problem 7.28

al o o 2/ p2 _ pols

){B-dl_B(zns)_#gfenc_pgr(s /R) =B =0
E 1 3 L ol fﬁ2 86 5 LT . [
ol 47r2R4 4 (2””‘33*4”3‘1(?)'0 =1 3L

e Bo i !
So L= 81r£' and L= L/l = independent of R!

Problem 7.29

(a) Initial current: Ip = £/R. So de—‘: =IRc> —‘;‘; = —%I::- I=1Ie RYL or|I(t) = ‘9" e
£3 dW
= 2 ,—2Rt/Lp _ %0 ,—2Rt/L _ :
(b) P=I’R = (&/R)’ e R S =

2 oo 2
w=% / g b (L e—““fﬂ) = %00+ L/2R) =| 1L (&o/R)*.
R Jy R 2

R \"2R 5
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(c) Wo = LLIZ = 1 (&/R)*.

Problem 7.30
(a) By = £2 5 1,[3(a; - 4)4 — &), since m; = I a;. The flux through loop 2 is then

po 1 = %
q’g = B] a8y = —511{3(81 '4)(32 '4) — R * az] = MI] M= i:o [3(8.1 4)(32 4) —aj- ag}
(b) & = —Md—;tz, %[1 =-&66hL =Ml %1. (This is the work done per unit time against the mutual emf in

loop 1—hence the minus sign.) So (since I is constant) Wi = M I I, where I is the final current in loop 2:

W =

202 (3(my - #)(ms +4) — my - ma).
Notice that this is opposite in sign to Eq. 6.35. In Prob. 6.21 we assumed that the magnitudes of the dipole

moments were fized, and we did not worry about the energy necessary to sustain the currents themselves—only
the energy required to move them into position and rotate them into their final orientations. But in this
problem we are including it all, and it is a curious fact that this merely changes the sign of the answer. For
commentary on this subtle issue see R. H. Young, Am. J. Phys. 66, 1043 (1998), and the references cited
there.
Problem 7.31

lehe displacement current density (Sect. 7.3.2) is J4 = € %? = J—i- = ;{;; Z. Drawing an “amperian loop” at
radius s,

fB-a’l:B-%rs:pgfdm pg;i—i - s’ ofjiB—;:_;:z; ’;:riz(j;
Problem 7.32
(a) E = c(:) 5 ot) = mz) = ;25; ﬂ:az .
(b) I, = Jyms® = eo%m 3= rz—z. j{B -dl = poly,, = B2ns = m!i—i =B = 2*;";23&.

(c) A surface current flows radially outward over the left plate; let I(s) be the total current crossing a circle
of radius s. The charge density (at time t) is

- 1))t

ms?

o(t) =

Since we are told this is independent of s, it must be that I — I(s) = Bs?, for some constant 3. But I(a) =0,
so Ba? = I, or B = I/a®. Therefore I(s) = I(1 — s%/a?).

2

8 -
B27s = polenc = poll — I(s)] = Hoz =|B= zj:zgstﬁ. v

Problem 7.33 7
(a) Jg = €0 pu;(;w cos(wt) In (a/s) 2. But Ipcos(wt) = 1. So|Jgz = %‘Eﬂwzﬂn(a/s) Z.

2 a a
(b) Iq = /Jd ~da = uoﬁzow 1 f In(a/s)(2rsds) = ,uoeow2I/ (slna — slns)ds
0 0 :

@ eow?Ia®
= poeow?I [(lna)’2—2 - "Tzlns - ‘;—2] |0 = po€ow?I [%a - %a - 9;] = EE—O‘l—.
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(¢) | = ————.| Since moeo = 1/¢?, Ia/I = (wa/2c)>. If a = 10°m, and & = L5, so that ¥& = L,

w= 2% = %&, orw = 0.6x 10" /s = |6 x 10"° /s;| v = & = 10'°Hz, or 10* megahertz. (This is the
microwave region, way above radio frequencies.)
Problem 7.34

Physically, this is the field of a point charge —q at the origin, out to an expanding spherical shell of radius
vt; outside this shell the field is zero. Evidently the shell carries the opposite charge, +q. Mathematically,
using product rule #5 and Eq. 1.99:

e [ L)l 9 i = g8 IR
V-E=0(wt-r)V ( yr r) pom rzr Vvt —r)] = eué (r)f(vt —r)

L v e 0
o (f-F) E—G(Ut —r).

But 6%(r)8(vt — r) = 63(r)6(t), and Z0(vt — r) = —8(vt — r) (Prob. 1.45), so

p=aV-E=|-g8@o() + ;

J(vt -7).

(For t < 0 the field and the charge density are zero everywhere.)
Clearly V-B = 0, and V x E = 0 (since E has only an r component, and it is independent of § and ¢).
There remains only the Ampére/Maxwell law, V x B = 0 = poJ + poegdE/Ot. Evidently

OE g5 { q
ot dmeor? Bt

J_—Eg

0 ot - -r)]} 4;’?2 vé(vt — 1) £

(The stationary charge at the origin does not contribute to J, of course; for the expanding shell we have J = pv,
as expected—Eq. 5.26.)

Problem 7.35
From V-B = pgpy, it follows that the field of a point monopole is B = 43;’? V53 2. The force law has the
form F o gm (B — % v X E) (see Prob. 5.21—the ¢? is needed on dimensional grounds). The proportionality

1
constant must be 1 to reproduce “Coulomb’s law” for point charges at rest. So |F = g, (B - gv X E) :

Problem 7.36

Integrate the “generalized Faraday law” (Eq. 7.43iii), V x E = —poJ,,, — «5:-, over the surface of the loop:

/(VxE)-da=fE-dl=E=—ug/Jm-da—%/B-daz—p,gfmm—‘%.

dI dI 1d® 1
But £ = ALEEE’ 80 == Eﬂfmm + Ia I'= EqzﬁQm + EA‘I’, where AQ),, is the total magnetic charge
passing through the surface, and A® is the change in flux through the surface. If we use the flat surface, then
AQm = ¢m and A® = 0 (when the monopole is far away, ® = 0; the flux builds up to pogm/2 just before
it passes through the loop; then it abruptly drops to —pogm/2, and rises back up to zero as the monopole
disappears into the distance). If we use a huge balloon-shaped surface, so that g, remains inside it on the far

side, then AQ,, = 0, but ® rises monotonically from 0 to ppg,,. In either case,

Hoqm
I = ——.
L
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Problem 7.37

e 4 B N s 4 _ 6D 0 _ 0 [Vocos(2muvt)| _ €Vp =
E—EéJc*aE—pE-pd.Jd— 5 —at(eE)—fat[ 7 Py [-27v sin(27ut)].
The ratio of the amplitudes is therefore:
Je uf Vo d i 1

= [27(4 x 10%)(81)(8.85 x 10712)(0.23)]

PR p_d?ﬂuch ~ 27vep

Problem 7.38
The potential and field in this configuration are identical to those in the upper half of Ex. 3.8. Therefore:

:/Jotiﬂ:ﬂ[E'dﬂ

where the integral is over the hemispherical surface just outside the sphere.——

But I can with impunity close this surface:
(because E = 0 down there
anyway—inside a conductor).

Sol =0 [E-da= éch = % f o. da, where o, is the electric charge density on the surface of the hemisphere—
to wit (Eq. 3.77) g = 3€pEq cosf.

w/2
Ii= ingEg /cosfa‘a2 sinfdfd¢ = 30Ega221r/ sinf cos8 df = 3o Egma’.
€0 0

~ ]

sin® @ =2 o 1
g 3
2
But in this case Fg = Vp/d, so | I = %
Problem 7.39 z
Begin with a different problem: two parallel
wires carrying charges +\ and —\ as shown. /
b b

Yy
. o s X
Field of one wire: E = ‘21r 35, potential: V = S en In(s/a). M_}_/)\
T

Potential of combination: V = 2“50 In(s_/s4),

or V(y,z) = 4mo In {%H%;%;}

Find the locus of points of fixed V (i.e. equipotential surfaces):

84"50V/'\ =p= (y + b)2 -+ 22
SR

. 1
Pa-1)+0Pp-1)+22(u-1)-2ub(p+1)=0=> 3y + 22 + b - 2ybB8 =0 (ﬁ_“tl)

= pu(y? — 2yb + b% + 2%) = y® + 2yb+ b + 2%

y—08)2+22+0? - 0262 =0 = (y - bB?) + 22 = b2(B% - 1).
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This is a circle, with center at yo = b8 = b(%) and radius = b\/pB2 -1 = b\/(*ﬂ"'z*""(i)_'l(;‘:'?““) = SoF

p—1
This suggests an image solution to the problem at hand. We want yp = d, radius = a, and V = V. These
determine the parameters b, u, and A of the image solution:

" RRPTRRNA | o) RIS d
e T . Call =
a6 ra a VI

4122p=(p+12 =2+ 2u+1= 4>+ (2-4a>)pu+1=0;

40® -2+ /4(1 - 2a2)2 — 4
.. 2( ) =2a2—1:|:\/1—402+4a4—1:2a2—1i2a\/a2—1;-

7
4renVp dreoViy : . |
=i ¥ A= . That’s the line charge in the image problem.
A ¥ In (202 — 1+ 2ava? — 1) g image problem

a

r:[J-da=a/E-da=olQm=_M_
€p €0

I A droV
The current per unit length is i = - = 22 = ol

Il €@ In(202-1%+2ava?-1)
the cylinders are far apart, d > a, so that a > 1.

()=20%2-1%2a%/1-1/a% =22 -1+ 20? [hi— )

. Which sign do we want? Suppose

202 8at

| 40> —2—-1/20% +--- ~4a® (+ sign)
=2%(1x1)-(1x1)F—=x---= ;
a’( J~1 }:':4042 {_1/402 [ gign);

The current must surely decrease with increasing a, so evidently the + sign is correct:

4?TJVO

e In (202 -1+2ava? - 1)’

where a = —

Problem 7.40

(a) The resistance of one disk (Ex. 7.1) is dR = %2 = —£; dz, where 7 = (%2) 2 + a is the radius of the
disk. The total resistance is

L

A 1 el L -1 -l [_ 1 i

. ﬂ'fg [("E_“)z.;.a]zdz_ﬂ(b—ﬂ){[(b‘T“)z—ka]}U-"ﬂ(b—a) (b—a+a)+a
o pL b—a\ _| pL
?r(b—a)( ab )_ mab’

(b) In Ex. 7.1 the current was parallel to the axis; here it certainly is not. (Nor is it radial with respect to
the apex of the cone, since the ends are flat. This is not an easy configuration to solve exactly.)

(c) This time the flow is radial, and we can add the resistances of nested spherical shells: dR = % dr, where

0
A:/o r?sinfdf d¢ = 21rr2(—c053)|§ = 2wr2(1 — cos#). /b
‘ﬁ‘

L —
L
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= E o 00 P Ty —Ta LA
e 27 (1 — cos ) ],;, ik 27 (1 — cos @) ( TaTh ) o Ta Tp sind.
pocg)  ER . But sinf = ! i salD = e A
2%0b_«{1 —~s050) L? + (b - a)? L2 + (b— a)?
p(b—a)® 1

mab | /IZ+(-a) -L|

: 1(b—a)? p(b—a)? 1
= VL2 —a)? et D & =
[Note that if b —a <« L, then /L2 + (b—a) L [1+ 5 I2 ] , and R omab  (b—a)?/2L

p .
—op asin (a).]
Problem 7.41

oo
Vin(s,¢) = ) s*bsin(kg), (s <a);
k=1
From Prob. 3.23,

Vout(s,6) = > s *dysin(kg), (s> a).
k=1
(We don’t need the cosine terms, because V is clearly an odd function of ¢.) At s =a, Vi, = Vou4 = Voo/2r.
Let s start with Vj,, and use Fourier‘s trick to determine by:

Za"bk sin(k¢) = ana = Zak&k / sin(k¢) sin(k'@) dp = %’% . ¢sin(k'd) dp. But

/ﬂ sin(k¢) sin(k’'¢) dp = wdgsr, and

= -i—’,’ cos(k'¢) = —i—’,‘(—l)k’. So

[ ssinorao = | o s1n(k'¢)——cos{k’¢)]

k 0o
rakb, = Vﬂ [ 27T } (—%) , and hence Vi, (s,¢) = —%;% (—E) sin(k¢).

Similarly, Vout(s, @) = —KQ -}E (—-%) sin(k¢). Both sums are of the form S = E ( —z)* sin(k¢) (with
3
k=1 k=1

2z = s8fa forr < aandz = a/s for:r >‘a). Thls series can be summed explicitly, using Euler’s formula

(e = cos@® +isinf): S =Im Z (—z)*e'*® = Im Z (—ze“’

s0 S = —Im [In (1 + ze'?)] .

B“IF-‘

But In(1 + w) : +1 i
ut in +w)=w 2w 3w —

Now In (Re”) = In R +i6, so S = —6, where

Im (I +xe*)
Re (1 + zei¢)

tanf =

sl 21

pl(1+ze?) - (1+ze®)]  z(e?-e®) zsing
3 [(1 + ze*®) + (1 + ze—¢)] T i24+z(e® +e%)]  1+4+zcos¢’
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, s E iy ssing :
V;n(s':¢) e T ta’n (G+3COS¢)’ (3(“),
Conclusion:
e Wi i asin ¢
Vour(s,¢) = —-tan (3—+ams¢). (s > a).
8Vut a]/m
(b) From Eq. 2.36, 0(¢) = —eo{ 2 - } )
S VY -~ R
WVour _ Vo 1 (—asin¢) S asin¢
oe = iy asine \2] (s+acosd)?2 [~ 7w |(s+acos¢)? + (asin¢)?
1+ (s2285)’]
> _1_"(1 asin¢ .
N m \s2+2ascos¢+a2/’
Vin _ W 1 [(a + scos @) sin ¢ — ssin ¢ cos ¢) W asin ¢
0 ssing 2 (a + scos¢)? 7 |(a+ scos¢)? + (ssin¢)?
1 e < (a+scos¢)
3. 2o asin ¢
~ 7w \s2+2ascos¢p+a2/’
OVin __ Vour o sin ¢ _ &V sing | eV
g L. O . e (1 + cos r,ﬁ) i B = ma (14+cos¢) | ma wnie

Problem 7.42

(a) Faraday'’s law says VXE = —%?, soE=0= %? = 0 = B(r) is independent of t.

(b) Faraday’s law in integral form (Eq. 7.18) says § E-dl = —d®/dt. In the wire itself E = 0, so ® through
the loop is constant.

(c) Ampere-Maxwell= V xXB = poJ + po€o %, so E=0, B=0=J =0, and hence any current must be
at the surface.

(d) From Eq. 5.68, a rotating shell produces a uniform magnetic field (inside): B = %,uoowai. So to cancel

such a field, we need ocwa = —322. Now K = ov = gwasinf ¢, so | K = a2 sin @ .
2 po 20

Problem 7.43
(a) To make the field parallel to the plane, we need image monopoles of the same sign (compare Figs. 2.13

and 2.14), so the image dipole points m

(b) From Prob. 6.3 (with r — 22):

F =

2 2 2y 1/4
3po _m ’ Spo m” _ Mg=h= 1 (3pom )
2r (22)4 2r (2h)4 2
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(c) Using Eq. 5.87, and referring to the figure: -

i 5 T 5 h

T {B(mz-&,) 1 —mz] + [3(—m Z - £2) F2 + mi]}

~ 47 (ry) \
41‘3’_”)'3 [(2-%1)F1 — (8-%2)F2). But-f; = —2-f; = cos. %é
1
3pom V

=—m6059(f'1 +13). But f; + T2 = 2sinf .
1
3puem . . r h 2 2
= - 351119(:0391'. But sinf = —, cosf@ = —, and r; = /7 +h
2m(ry) 1 T
_3,uomh. r g

2r  (r2 + h2)5/2 e

Now B = uo(K x2) =2 2xB =pozZx (Kx2z)=p[K-2K-2z)] = gK. (I used the BAC-CAB rule,
and noted that K - Z = 0, because the surface current is in the z y plane.)

; [hes _ 3mh . ay_ dmh r -
K= X = Erpa = m e ¢ ™
Problem 7.44 P
Say the angle between the dipole (m,;) and the z axis is 6 (see diagram). Agees
i 4
The field of the image dipole (my) is .
T sy &
B{ )'_ (}1_'_—3[3(1112-2)2-"1112] T
h
for points on the z axis (Eq. 5.87). The torque on m; is (Eq. 6.1) -
\ mso
N=m; xB= ﬁ [3(mg - 2)(my x 2) — (M, x my))]. B,
But m; = m(sin@ X + cosz), my = m(sinfx — cos#z), so my-Z = —mcosf, m; xZ=—msinfy, and

m; x my = 2m?sinf cos6y.

Noag wcpl [3m?sin@cosf§ — 2m?sinfcosf§)] =

4m(2h)3
Evidently the torque is zero for § = 0, n/2, or . But 0 and 7 are clearly unstable, since the nearby
ends of the dipoles (minus, in the figure) dominate, and they repel. The stable configuration is § = 7/2:

parallel to the surface| (contrast Prob. 4.6).
In this orientation, B(z) = _F&%F %, and the force on m; is (Eq. 6.3):

2
o 3l R
r=Y [ 41r{h+z)3]

yie (2h,)3 sinfcosfy.

3ugm?

e 3pom? 3 5
e 3 4fr(2h.)“

s=n Adm(h+ z)“

At equilibrium this force upward balances the weight Mg:

3uom?® |1 [ 3uem? A
S ieh=lg (4n‘Mg :
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Incidentally, this is (1/2)!/* = 0.84 times the height it would adopt in the orientation perpendicular to the
plane (Prob. 7.43b).

Problem 7.45 ¥ 3 A
f=vxB;v=wasinf@; f =waBysinf(¢ x 2). €= [f-dl, and dl = adfé.

So & = wa?Bo [;/*sin6(¢p x 2)-0db. ButO-($x2)=2-(0 x $) =3-F = cos.

sin’ 6’] |’r'(2 = %wazBo (same as the rotating disk in Ex. 7.4).

x/?
E= wazBO/ sin @ cos 8 df = wa®B, [
0

Problem 7.46

mgR
B22
“diamond” orientation (<), the magnetic force upward is F = IBd (Prob. 5.40).

(a) In the “square” orientation (O), it falls at terminal velocity | vsquare = (Prob. 7.11). In the

The flux is & = B [I2 — (d/2)?], and d/2 = 1/V2 - y, | { 5 : '
so®=B[1?-(1/V2-y)?]. \/

£=-92 = _2B(1/V2-y) %. But & = —v. —
So£=2Bv(l/V2-y)=IR=>I1=2Bv(1/\2-y); F=2- % (1/vV2 - y)2 = mg (at terminal velocity).
B nond = ngs .| (This works for negative y as well as positive, if you replace y by |y|.)

4B (V3 -y)’

2
Vaciidie mgR 4B2 (I/\/Q o y) 2 '
Thu qual = J = 2 — 24/l .| At first ] 2 he » 3
5 Udiamond (3212) mgR (‘/_ y/) rst (y /\/_) the “diamond” falls faster;

toward the halfway mark (y ~ 0), the “square” falls twice as fast; then the diamond again takes over. The
total time it takes for the square to fall is:

¢ % l ik 23
o o Usquare mgR

(assuming it always goes at the terminal velocity, which—as we found in Prob. 7.11—is close to the truth, if
the field is strong). For the diamond, t is

. 8B2 1 I3 22 B2[3
V3 ng32v’_ 3 mgR’

Udijrfnnd o _’ri?R (I/\/__ )2 :j [1 (1/\/_ ) ]
vz

B0 Liiare/ tdiamond = 3/2\/§ = 1.06. The “square” falls faster, overall. If free to rotate, it would start out
in the “diamond” orientation, switch to “square” for the middle portion, and then switch back to diamond,
always trying to present the minimum chord at the field’s edge. z

(b} F =1IBl; ® = 2B f" va? —z?dzx (a = radius of circle).
. ke oy S 12
5— -2B 24 = 2Bv+/a? — y% = IR. //
23”\/ -y% 1/2—\/ - y2. SoF——‘lB"(a y?) = mg. /23/ *
38

Ereediglle: -
Vcircle = m,

oty AB? i mrina@Be 50 =1y
tcucle—[m (a y)dy—ng(ay 3y)

16 B2q3

v 4B* 4 ,
ng(—s-a 1= 3 mgR’

v ng

-a
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Problem 7.47
(a) In magnetostatics

J
V.-B=0, VxB=pgJ = B(r)= ﬁ);)zﬂdf’.
For Faraday electric fields (with p = 0), therefore,
0B . 18 [BiEl)xes.,,
V-E=0, VXE= _”E = E(l’, } g -“"—'—4‘-2'—‘—(17’
(with the substitution J — —plo%?.
(b) From Prob. 5.50a,
=1 Bl x4 ;5 pin. Pk
A(r,t) = a/—-—-ﬁ——-—-d-r, soE_———c;}T.

(Check: VX E = —-2(V x A) = m , and we recover Faraday’s law]
_1 _g4rwR?

(c) The Coulomb field is zero inside and z;—2 8= T o E= —, f outside. The Faraday field is — 22
where A is given (in the quasistatic approximation) by Eq 5.67, with w a function of time. Lettingw = dw/dt

poRwo
3

rsinf ¢ {r< R),

E(r}e‘ ¢’ t) =
oR? . poR'wosing .
S B E08 > R).

Problem 7.48 iB d B
gBR = mv (Eq. 5.3). If R is to stay fixed, then qu— = md;: =ma=F =¢FE, or E = R—. But

dt
fE dl-—%, so E27xR = @ so-—L@:R@, or!5’=—1 (%@)-Fconstant. If at time t =0

dt’ 2wR dt dt
1
@) (in magnitude). Evidently the field at R

the field is off, then the constant is zero, and B(R) = Az
must be half the average field over the cross-section of the orbit. qed

Problem 7.49

Initially, ﬂ;‘ﬁ = 4“160 9 = T‘= smv? = ;4 the electron circles in a
new orbit, of radius r; and velocity v;:
2
m? _ 1 qQ P g
= — +quuB =T, = -mv; = v, B.
r, 4reg r2 e VIR ok 1224wk 1y 2q M

Butry =r+dr,so(r) '=r"1(1+ ‘f_—'")_l >l (1- df], while v; = v + dv, B = dB. To first order, then,

AT dr _ qur 1.4 qQ
hi= 52171'_607 (1 ) + q(w) dB, and hencedT' =T, - T = ) dB — 241’(60 1‘2
Now, the induced electric field is E = %% (Ex. 7.7), so m =qE = 9—‘;‘3 , or mdv = 4£-dB. The increase in

kinetic energy is therefore dT' = d( l:ﬁ”ﬂ,vz) =mudv = LdB Comparing the two expressmns I conclude that
dr =0. qed
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Problem 7.50

&= e = —a. Sothe currentin R; and Ry is I = R > T ; by Lenz’s law, it flows counterclockwise. Now

the voltage across R; (which voltmeter #1 measures) is V), = IR; = Rafiﬁ (Vy is the higher potential),
1 2
A2
and Vz = —IRQ = RlaTRRﬁ (Vb is lower).
Problem 7.51
dI dv d?v hBdI hB [ hB d*v hB
= = ] — =JhB=m—: — = — — = ———— | — S ith = ——
£ =vBh Ldt’F h m— I8 —— e (L)v, e wy, | with |w iy % 5

Problem 7.52
A point on the upper loop: r2 = (acos ¢2,asin ¢2, z); a point on the lower loop: ry = (bcos ¢, bsin ¢,,0).

22 = (rg —r1)? = (acos ¢y — beos¢y)? + (asin gy — bsingy)? + 22
= a? cos? ¢y — 2abcos ¢; cos ¢y + b® cos® ¢y + a® sin” ¢, — 2absin ¢, sin ¢o + b?sin? ¢y + 22
= a? + b% + 22 — 2ab(cos ¢, cos ¢ + sin ¢ag sing;) = a? + b% + 2% — 2ab cos(¢dz — ¢1)

= (a® + b° + 2%)[1 — 2B cos(¢2 — ¢1)] = ) [1 —2fcos(¢2 — ¢1)].

dl = bdd, ¢, = bdey[—sin ¢y X + cos 1 §); dlz = adds Py = adps[— sin ¢s X + cos @2 7], so
dl; - dly = abdg, dgs[sin @, sin ¢g + cos ¢y cos p2] = abceos(da — ¢1) dy da.

bo ff Rt o2 cos(¢2 — ¢1)
4?Tf 2 \/Gb/ﬁ//\/l_gﬁcos(cﬁz_él)dezd@l.

Both integrals run from 0 to 2w. Do the ¢- integral first, letting u = ¢2 — ¢1:

27—y 2
COsu Cosu
V1 —2Bcosu V1 - QBcosu
—¢1

(since the integral runs over a complete cycle of cosu, we may as well change the limits to 0 — 2x). Then the
¢, integral is just 2, and

2
Lo cosu _ Mo cosu
M = —+/ab \/ b3
4 i o w1 VI=2Bcosu § / V1 VI-2Bcosu u
(a) If a is small, then 8 « 1, so (using the binomial theorem)
1 2w cosu 2 2
—_— =] cosu, and —_——du & cosud cos?udu =0 :
V1 =2Bcosu +fEoosn /9 VvI—28cosu i /0 i u+ﬁ/g it kax
pnomab?

and hence M = (pom/2)1/abB3. Moreover, 8 = ab/(b* + 2%), so M = (same as in Prob. 7.20).

262 + 22)3/2
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(b) More generally,

1 3.5 5 1 3 5
(l+e) V2 =1~ 2£+-8-e —-136 +- =>W=1+ﬁcosu+562c032u+§,@3cos3u+-~,

S0

27

2 2n 27
3,
M= ’%\/abﬁ{[ cosudu+6/ cos? udu + —2-,63/ cos3udu+353/
0 0 0

cos"udu-lr---}
0

I

OB [0+ 0 + 580)+ 58 Cm 4| = | R V@ (14 207+ 08+ 1) | e

Problem 7.53
Let @ be the flux of B through a single loop of either coil, so that $; = N;® and &, = N»®. Then

d®
%, £y = —N2—, so & = & qed

=N g S

Problem 7.54
(a) Suppose current I; flows in coil 1, and I in coil 2. Then (if ® is the flux through one turn):

L, M Lo M
‘I’1=I1L1+M.{2=N1@; @2:12L2+M11=N2¢, or¢' I],F'l'szl“‘IzN +I1N2
In case I = 0, we have NM = 1‘1' if Iy = 0, we have -j%,f = Nﬁ Dividing: L—”{ = -‘;‘—.}, or LiL, = M?. qed
(b) — =L 4+ Mﬂz Vicos(wt); —&, = 42 = L4 + M4 = —LR. qged

(c) Multlply the first equation by Ly: LiLe 4t + Ly 42 M = LyVj coswt. Plugin L2 = —L,R — M4k

LWy
M4 — MRIL, - M?42 = LV coswt = | I(t) = —==—= coswt. | L1 4x + M (%2%wsinwt) = V; coswt.

MR
dl %
Eti = Zl_ (coswt - %wsinwt) =|L(t) = % (l sinwt + %coswt)
1 1
Vst LR —BRcoswtR _ Ly _ N N,
= ek = —_—— = T —
(d) v Vi A % N1 he ratio of the amplitudes is N, ged
VA 2
(€) Pn=Vinlh =W coswt)(L—l) (% sinwt + %coswt) (12') (w sinwt coswt + %cos wt)
1 1
2 (L2V1)2 2 2 ¥ . %
Pout = Vourlz = (I2)°R = cos” wt. | Average of cos’ wt is 1/2; average of sinwt coswt is zero.
M?2R
L 1 (L2)? 1 (L2)? (V1)%L
2 2 Y. e 2 [8=2 |2 2 | \2)” | 1) Lo
So (P = 504)* ()5 (Boud = 30007 [S20 ] = J0vye [ L2 ); ey = Ry = L2

Problem 7.55

(a) The continuity equation says 6‘: — V-J. Here the right side is independent of ¢, so we can integrate:
p(t) = (— V- J)t+ constant. The “constant” may be a function of r—it’s only constant with respect to t. So,
putting in the r dependence explicitly, and noting that V.J = —j(r,0), p(r,t) = p(r,0)t + p(r,0). qed
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(b) Suppose E = 4,“0 f“—’? drand B = ""‘* =55~ dr. We want to show that V-B = 0, VXB = uoJ +pugeo 2E at ;
V-E = %p, and VXE = m , provided that J is 1ndependent of t.

We know from Ch. 2 that Coulomb’s law (E "c fE; d'r) satisfies V-E = —p and VXE = 0. Since B is

constant (in time), the V-E and V X E equations are satisfied. From Chapter 5 (specifically, Eqs. 5.45-5.48) we
know that the Biot-Savart law satisfies V-B = 0. It remains only to check V x B. The argument in Sect. 5.3.2
carries through until the equation following Eq. 5.52, where I invoked V' -J = 0. In its place we now put
V'.J=-p

B T ;‘—"[ (@-V)2 dr  (Eqs. 5.49-5.51)
% 4 g

Integration by parts yields two terms, one of which becomes a surface integral, and goes to zero. The other is
2 By
)&—SVI J = ;;5‘(—,0). So:

1 pr
dreg 23

= Ho e 9
VXB_“OJ_E/;E( )d‘:" ﬁoJ'{“ﬂgant{

dr} = pod + #ufu?}g

% qged

Problem 7.56 yt

dE
Jag, = L =Nz ;/
(a —4—0 2 sin
mnB-L 2=1+/z% + g2

vt

f zdz S -1
411"6 22 + 32)3/2’ dmeg [ /22 + 52

vt—e

1
% " e { V (vt — 6)2 52 \J(vt)? +s° } '
(b)

A " 1 1 A &
bp = — : {\/( ———~——}2frsds=£; [\/('vt—e)2+s2~\/(‘ut)2+32HD

dmeg vt—e€)2+s2  /(vt)? +s2

= [\/(vt—f)z-!-az V()2 +a? - (e—vt}+(vt)].

. d®e _| A v(vt — €) - v(vt) i
dt Vit —e)?+a2  /(vt)? +a?
Ase— 0, vt < € also = 0, s0 Iy = 3(2v) = Av = I. With an infinitesimal gap we attribute the magnetic field
to displacement current, instead of real current, but we get the same answer. qed
Problem 7.57

8(zf)\ , 8%=f) _zd [ df df RN
(a) V2V = - 83 ( 55 ) + Bt e ( ds) 0= & (335) =0= s A (a constant) =
ds

A— =df = f = Aln(s/so) (so another constant). But (ii) = f(b) = 0, so In(b/so) = 0, so so = b, and
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Ips.ail Ipz In(s/b)
3 2 22 sokfhne ok o =2 P Tl
V(s,z) = AzIn(s/b). But (i) = Azln(a/b) = —(Ipz)/(7a?),s0 A 7a? In(ajb)’ V(s,z) na? m(a/b);
L e VT olpgiae -3 ~dlp ln(s/b) Ip
St i 8s : 9z " ma? sln(a/b) ST ra? ln(a/b} ma? In(a/b) ( B (b) z) y
i Ip z eolpz
— Ary e — el Dibaowimenig [ Sl =| ——
(epmizy = (Aule™) 5:107) ey [TI'G.Q In(a/b) (a) 0] ma®In(a/b)’
Problem 7.58
Ve /7‘3
h/
t
acd =10 LR R
(a) Parallel-plate capacitor: E = i V=FEh= i [h =C= e Ci= -
(b)B=y0K=,u0£; & = Bhl = “”Ihz LI:-L:‘Z‘L—""J::» = Hoh

(c) = (47 x 10~7)(8.85 x 10~12) =

1.112 % 10" 5" fm”.

(Propagation speed 1/v/LC = 1/,/ig€o = 2.999 x 108
(d) D=0, E=D/e=o0/e, so just replace € by ¢;

H =K, B =pH = pK, so just replace ug by p.

m/s = ¢.)

} :CC=€;.¢;_| |u=1/\/€ﬁ.|

Problem 7.59
(a) J

B
Faraday’s law says VXE = e

ot

oB

el s

= o(E + v X B); J finite, o = 00 = E + (v X B) = 0. Take the curl: VXE+ VX(v X B) =
="V x(vix B).

0. But
qed

(b) V:B =0 = § B-da =0 for any closed surface. Apply this at time (¢ + dt) to the surface consisting of

S, S, and R:

B(t + dt) -da+[ B(t + dt)
o R

(the sign change in the third term comes from switching

-da~fB{t+dt)-da=0
s

outward da to inward da).

dd = S,B(t+dt)-da-[sB(t)-da=/8|B(t+dt)—B(t)]-da—/RB(t-fdt)-da

OB
O

d@z{

%dt (for infinitesimal dt)

da} dt — [ B(t +dt) - [(dl X v)dt] (Figure 7.13).

Since the second term is already first order in dt, we can replace B(t + dt) by B(t) (the distinction would be

second order):

OB

d® =dt
ey

(v xB)-.dl

da—dtj{B (dl x v) = dt{/s(

0B
at

).da_

/SVx(v X B)-da}.
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d® JB
-&?_/‘S[E—Vx(va) +da=0. ged

Problem 7.60

(a)

V.-E

V-B

V x E'

F!’

. 1
(V-E)cosa+¢(V-B)sina = —PecOSQ + Cliopm sina
0

1 , 1 o i
— (pe COS @ + cltg€opm Sina) = —(pe cOsa + —pm sina) = —pl. v
.€p €g c €Qg

1 1
(V-B)cosa — =(V -E)sina = popm cosa — — p, sin a

c C€g

1 : : '
Ho(pm cOsa@ — ——pe sin @) = o (pm cosa — cpe sina) = pop),. v

Clip€p
(V xE)cosa+¢(V x B)sina = (“ﬂo.]m - %—?) cosa+c (,ugJe - poeo%—?) sina
oB'!

—po(Jm cosa — el sina) — % (B cosa — %Esina) = —poJ,, — B v

1 . oE 1 0B\ .
(V xB)cosa — E(V x E)sina = (j.LoJe + ﬂoﬁoa) cosa — - (—,ung - 55) sin @

1 E
po(Je cosa + EJm sina) +p060% (Ecosa + cBsina) = polJ, +,u.0€[)?8—t. v

G(E' +v x B) + (B — 5v x E)
1
(qe cosa + s sina) [(Ecosa +cBsina) + v x (Bcosa - %Esina)}

1 1
+ (gm cos @ — cg. sina) [(B cosa — EE sina) — v x (Ecosa+cB Sina)]
e
Qe [(Ec052 a+ cBsinacosa — cBsinacosa + Esin? a)

Lo ] LT .
+v X (Bcos2a— EEsmacosa+EEsmacosawLBsmza)]
Li. . . 2 2 | Sl
+qm[ EEsmacosa%-Bsm a + Bcos a—EEsmacosa
] el 1 e 1 2 ] EAEE
+v x | -Bsinacosa — —Esin“a— <=Ecos*a — -Bsinacosa ]
c c? c? c

qe(E+va)+qm(B-—ci2vxE) =F . -qged
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Conservation Laws

Problem 8.1
Example 7.13.

E= 3 Al -8

TEQ 8 1
S= --(E X B) A 2‘
I1 Ho 4m2eq 52

B= “L_qg,

2T 8
pa fs e fS?rrsds op it fd - i1m(f;/a)

b
B = /M_L/E
2 s

Problem 7.58.

-

E=—%

o
€0

of .

b v
B=uypkKx="—
poK X =3

P= /S da = Sw h_ﬂ

In(b/a), so

1
—(ExB) =
#u( )

-~

¥;
ew "’

g
butV=/E-dl=EEh, so[P=1V.]

€0
Problem 8.2
(a)Ezii;J:Q; Qit)=It = E() = It .
€0 ma? Tegal
o OE , s 3 pols -
B2rns = ,ugega—t?rs = poegmoaz By Blgat) = 2?1'(12 .
1 R B | S ,ugfs _| mol®
(b) tem = 2 (EOE + M_UB ) = [60 (W) 2:-102 = loxiat [(ct)® + (s/2)] .
B Y. ok T § Pt
= ——(E x B) = e (wem‘ﬂ) (“2-.1:12) (-8) = ——2?1_260(;433

146
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T S o Lol G SRR T

B~ 27r2a"2 " m2egat’ ViRa 2#260a4v = m2e0a? Ot L

== = 2 o owf 232 ls
(&) U = /uemw2frs ds = 21rw2 24 / [(ct)? + (s/2)%)sds = —— [(ct) ZT]
2 2, 12
i ol O 2 (ct)? + .| Over a surface at radius b: P, = /S da = [bs (2mbws§)] = =il .
“omat megal
232 2, 112

i povitd, L WL (St §= 6 Br tolal)

dt 2mat megalt
Problem 8.3

F=¢T-d ded
_%T- a pgﬁgdt T

The fields are constant, so the second term is zero. The force is clearly in the z direction, so we need

1
Tzz dax + sz day + Tz; daz z.u‘i (BZB: daz + Bsz dﬂy + BZBZ daz T 532 daz)
0

(¥ * da)z

I

— | B,(B - da) — %32 daz] ;

Now B = %pnoni (inside) and B = ;‘;::
Eq. 5.68, Prob. 5.36, and Eq. 5.86.) We want a surface that encloses the entire upper hemisphere—say a
hemispherical cap just outside r = R plus the equatorial circular disk.

, where m = g-nR?'(auR). (From

Hemisphere:
B, = R3 [2 cosf (). +sinf (). ] 4 R3 [2 cos® § — sin®§] = -1).
da = R?’sinfdfdoi; B-da= e Rs{?cosQ)stmﬂdeqﬁ, da, =stm9d9dqﬁ cosf;
- pom \? g ; _ ( Hom 2
B = (4_1rR3) (4 cos® 8 + sin® ﬁ)w(41rR3) (3cos?8 +1) .
“ 1 Hom : 1 5
(T -da), = (47rR3) [(3c0529~— 1) 2cos9R? sin 6 df dp — - (3cos? 8 + 1) R? smﬂcosﬂdﬂdq&]

= ("’“’R)[ smacosededqs](12cosze—4—3cos?e—1)

2
- ‘;_0 ("“;R ) (9 cos? 6 — 5) sin 6 cos § df dob.
n/2 /2
2y 2 2y 2
Bien ). — flas (oo 2 [ (9 cos® @ — 5cosf) sinfdf = pom s id cos? @ + ~5—c052 ]
# 2 3 o 4 2 A
0

owR?\? g =5 por [owR?\?
= *““’(T) (0+Z'§)“T( 3 )
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Disk:
2 - N
B = Epgch; da=rdrdp¢ =—-rdrdéz;
2 5 [2 ¢
B:.da = —Epgonrdr‘dtﬁ; B* = gpgchu.r i da, = —rdrdp.
(T da) 1(2 Bl e Lo L (2 g ea
+da); = — | Zmo = = Ser— e .
i, 3,ua 2r 7 B 3,ugar rdrdd
owR\? 7 owR?\’®
(Faisk), = —2#0( 3 ) 2?rf'rdr'—"—2?wo( 3 ) :
0
Total:
2y 2 2y 2
F=—-7mu (ngR ) (2 + %) Z=|-Tug (ong ) Z | (agrees with Prob. 5.42).
Problem 8‘._’4 5
(a) (T - da), = Tz dag + Tyyday + Ty, da,.
“+qg9
But for the zy plane da, = day, = 0, and da. = .
—r dr d¢ (I'll calculate the force on the upper charge). 2

(T - da). = € (EZEZ = %E2) (=rdrdg). . >\’( / T

Now E = L2—(:0391“‘, and cosf = t, so F; = y‘/ /
drey 22 2 —q
3 2 g2
0, E? = g <. Therefore
2re0 ) (r? + a?)
Efty o0
1 g\ r3dr 7 1 udu
— 2 — - i = 2
% i (271'60) o (r2 +a2)®  4mep 2 / (u + a?)3 (s s
= q2 l = 1 5 a? q2 1 0 1 a? - q2 1 »
T 4me 2 (u+a?)  2(u+a?)? . 47reo 2 a?  2a*| " |4me (20)27)
. | pkamin 7 ey . a
(b) In this case E = ———2—=-sinf %, and sinf = —, so
4mey 22 2

2
2 ) ( (e Therefore

2
1 o €
B2 ) h -da), = ——= :
E? ( T and hence (T - da), 2 \2reo) (24 a2)°

2meg
? 2 2 o 2 2 2
Fzz——-—( )217/ rdr _—,_qa ...1 L 5 =__g..£.. 0+L =_q_ 1 ol i
2meg (r2 + a?)® dmeo | 4 (r2 + a?) 4 4meg 4a* dmep (2a)?

0
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Problem 8.5
(a) E; = E, =0, E; = —0/€. Therefore

o2

1 €p 0‘2
Loy =T = z ==V Tee =T, ="""""E2=""‘"—; L= 2 _EF?)=— 2=_-
v v 2 . e 20 2 (E‘ 2 ) 1° “ha

2 (-1 0 0
o 7o e e S R
N0 D T 41

(b) F = f ? -da (S = 0, since B = 0); integrate over the zy plane: da = —dz dy % (negative because

HI

outward with respect to a surface enclosing the upper plate). Therefore

v F 2
——A, and the force per unit areais f = — =| —— 2.

F. = / Tasday == = A 260

(c) =T.. = |0?/2€ | is the momentum in the z direction crossing a surface perpendicular to z, per unit
area, per unit time (Eq. 8.31).
(d) The recoil force is the momentum delivered per unit time, so the force per unit area on the top plate is

0.2

;= _%i (same as (b)).

Problem 8.6
(a) Pem = €0(E x B) = gEBY; Pem =|e0EBAdY.

(b)I=/°°th [I(le)dt—[ IBd(3 x %) dt = (de)f ( )dt

0
—(Bdy)[Q(c0) — Q(0)] = BQdy. But the-original field was E = o/¢g = feuA. so Q = ¢gEA, and hence

I=|eEBAdy;| as expected, the momentum originally stored in the fields (a) is delivered as a kick to the
capacitor.

(c) fE -dl = —% = —%Id (for a length ! in the y direction). —IE(d) + [E(0) = —Id% =
E(d) - E(0) = i—f. F = —0AE(d)§ + 0AE(0) ¥ = —cA[E(d) — E(0)]§ = -aAd%? g I= / Fdt =
0

b s o 7
~(cAd¥) / — dt = —(0Ad§)[B(c0) — B(0)] = cAdB§. But E = osol= as before.

Problem 8.7
B = ponl z (for a < r < R; outside the solenoid B = 0). The force on a segment dr of spoke is

dF = I'dl x B = I'pgonl dr(f x 2) = —I'ponl dr .

The torque on the spoke is

R
N = /r x dF = I’pgn}'frdr(ui- X @) = I’,ugnfé (R? - a®) (-2).
a
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Therefore the angular momentum of the cylinders is L = /N dt = — %,umq}(R2 —a?) 2 /I’dt But [ I'dt =@,
S0

1, _%mnIQ(R2 —a?)z| (in agreement with Eq. 8.35).

Problem 8.8
(a)
0, (r<R) 2poM %, (r<R)
E= s B = (Ex. 6.1)
41rle —% (r>R) %%[20059r+sm99] (z > R)

(where m = —‘.’TRaM) p=€c(ExB)= ) —(r x @) sin@, and (f x ) = @, so

(4m)? r
d=rxp= (4’”’0)2 m;QsmB(r X @).
But (& X @) = —0, and only the z component will survive integration, so (since (0), = —sinb):
_ momQ [ sin’ e o0p o el Uiy 8 T8
L= @y Z (1‘ sin 6 dr df d¢) . /dqﬁ— 2m; /sm 6do fr2 = ( r) . TR
0 R
.lu‘UmQ ~ 4 1 2 2 a
= 2 - — ] = | =poM :
Gy 227 (5) () = [gromers
z
(b) Apply Faraday’s law to the ring shown:
fE dl = E(2nrsinf) = ci:f —7(r sin 6)? (%po%) R
o e oo gyg
= |E= 3 (rsinf) ¢.
d
The force on a patch of surface (da) is dF = cEda = —%g(r sinf) da ¢ ( 41rQR'-’)
; poo dM A . 4
The torque on the patch is dN =r x dF = — e (r?sinf) da (f x ¢). But (F x ¢) = —6, and we want
only the z component (8, = —sinb):
N=-_#IM . [ 25020 (- sin0dodg) .
3 dt
m 2m

o Lot g 2#0 il
,fd¢ 2m,so N = = R(3)(21r) QR —

Here r = R; /sin3 0df =
0

3

0 :
=/th= —ZT“"QR%/dM = %MQR% (same as (a)).
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T
(c) Let the charge on the sphere at time ¢ be g(t); the charge density is o = 4(;;5}32. The charge below
(“south of”) the ring in the figure is

g = o (2zR?) /siné" a8 = g (—cosd')|g = g(l + cos ).
0

1d
So the total current crossing the ring (flowing “north”) is I(t) = ____‘2(1 + cos @), and hence

= I s _ 1 dg(l+cosb) -
L= ZﬂRsinS(_B) " 47Rdt sin#

2 anR3M
Bave = [ poM Z + — £hz

3 ir  R?

1 dgqpuoM (1+cosf), .~ . i
TRd 6 sing (26 x2)+2cosf (6 x F)].

-¢

6. The force on a patch of area da is dF = (K x B)da.

oM

(2cos @t + sin 6 6) %: [22 + 2cosft + sin 6 6);

KxB=

iy fodF:“"M( )m[ £ x(@x3) —cosb(Fx )R sinfdode
dt ——— | SR

247 sin @
O -2) —2(7 - 0) -6
oM

= dq 2 j 5 =
e (dt) (14 cos@)R*[cosf 6 + cos 8 0] df dp =

2 dq "
- (1+cos®)cosfdfdepb.

27
The z and y components integrate to zero; (6), = —sin#, so (using /dqﬁ = 27):

0

_ uwoMR? (dq / _ _BoMR? (dq\ (sin®6 cos’8\|"
N, = e (dt (2m) | (1 4+ cos@) cos@sinfdf = 3 5 . 3 4
poMR? (dg\ (2\ _  2po, 2dq 240 pody
— - — - = MR N = M z.
3 (dt 3 9 dt’ 9 il dt
Therefore

L= /th 2’u°MR2“/dq— Q“GMR"‘Q” (same as (a)).

(I used the average field at the discont1nu1ty——-wh1ch is the correct thing to do—but in this case you’d get the
same answer using either the inside field or the outside field.)

Problem 8.9
dd 1 dl,
fa) & = ! ® = 7a’B; B = ponl,; £ =1I,R. So|I, = R (poma®n) FTie
d® dl, Tatsl dI; _ poly b 2
%E dl. = = = E(2ma) = —poma?® ?’LE =E= ~ Hoan—= W é. B= > +z2)3‘;2 z (Eq. 5.38).

i LE Al poan dI,\ [ pol, b? s a1 dly-! ab’n™ "
S_MU(EXB) - Lo ( 9 dt ) ( i (b2+z2)3/2 (QJJXZ) e 4#’0!‘:‘ dt (b2+22)3/2 r.
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Power:
= 3 = o ] 22 o f L T b S
B o= /S da /(S)(Qfm)dz 27r,uga b*nl, Fr (b2+22)3f2

The integral is

DT SN T R (S0 L e
sﬂ\/zubﬂl-oe_b? b2) b2

9 Jre;
= (r;;ga‘ncfi—t) I, = (RI)I, = I,’R. qed

Problem 8.10
According to Eqgs. 3.104, 4.14, 5.87, and 6.16, the fields are

1 2
_%P, (r <R, E#UM; (r < R),
E = B = :
1 1 i 2 : S AT
E?—gﬁ(p -F)f—p], (r>R), = B(m-f)f —m], (r>R),

where p = (4/3)7R*P, and m = (4/3)rR*M. Now p = ¢ [(E x B)dr, and there are two contributions, one
from inside the sphere and one from outside.
Inside:

1 2 2 2 4 8
in = s “poM ) dr = —Zpo(P x M e TR} = — ; .
Pin 60[( 3en ) X (3;1.;. ) T g,uo( X )/d‘?’ g,ug(P X M)37rR 27p01rR (M x P)

Outside:

1 1
Pou = o= 52 [ =5 {B(p-£)F = pl x [3(m - )7 - m} dr.
Now X (pxm) = p(f-m)—m(F-p), so £ x [f x (pxm)] = (F-m)(Ff x p) — (F-p)(f x m), whereas using the BAC-
CAB rule directly gives f x [f x (pxm)] = E[f-(pxm)]— (pxm)(£-F). So {[3(p-F)F — p] x [3(m-£)Ff —m]} =
=3(pt)(fxm)+3(m-f)(fxp)+(pxm) = 3{F[f - (p x m)] — (p X m)}+(pxm) = —2(pxm)+3F[F(pxm)].

Ho

16?/%6{—2(13 x m) + 3#[f - (p x m)]} 2 sin 0 dr df d¢.

Pout =

To evaluate the integral, set the z axis along (p x m); then #- (p x m) = |p x m|cosf. Meanwhile, =
sinf cos ¢ X +sinfsin ¢ § + cos§ z. But sin ¢ and cos ¢ integrate to zero, so the X and § terms drop out, leaving

rd

e (_L)
1672\ 3r3 /|,

= & (énR3P) x (%wRSM) = %ER%M x P).

Pout = 12‘;2 (f idr) {-2(p X m)/sin9d9d¢+3|p x mii/cosﬁesinededqs}
0

o0

4m
|20 x man + 306 x m) | = s x )

T 127R3 \ 3

£ 4 4
Ptot = (E - E) poR}(M x P) = §#UR3(M x P).
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Problem 8.11
(a) From Eq. 5.68 and Prob. 5.36,

2 3 ; €
r<R:E=0,B=§pgasz, w1tha=m;
1 = Ho ™

4
R: E= f, B= —— 66), withm = - i
T > e =f i 5(2cosfF +sin 0 0), with m 3ﬂ'awR

The energy stored in the electric field is (Ex. 2.8):

bcl“’m

1
WE= s,

The energy density of the internal magnetic field is:

2 ;
- LBZ 1 (2 e ) How?e? _ pow?e® 4 RS — ,ugezng‘

Rw L= e =
2o 20 \3P R oz SO WBn = mppa 3™ Bdx
The energy density in the external magnetic field is:

e’w’Rug 1
18(1672) r

1 g m?

0 1672 76 (4cos® 8 +sin® ) = — (3cos’8 +1), so
0

up =

2 4 2 p4 2
o€ w R woe’w?R 1 uoe?w?R
W = —_— R Lo ool U | e Lol |
B (18)(16)772/ dr/(.'}cos 6'+1 sm@dé?/dcj: (18)(16)72 (3R3) (4)(27) = 1080
R

1oe’w?R

2R 1 e? poelw?R
W = Wpg, +W,,, = _J!E_"i_;W=W‘ W = _
B Bin + Whou Togr 2+ 1) 67 Bk Wa sl =

poe’wR F
1871

(b) Same as Prob. 8.8(a), with @ — ¢ and m — %ewR2: L=

2 : —34
e A Conh (9)(m)(1.05x 10-%) =
B S URE S = T el s <0 m/s |

1 ¢ wR e 2 (wR 2 (9.23 x 1010 ? "
= = : 1 = | ——————— — .

sm,R[H (C)J mc’[+9(c) 9(3x103 ) 410%10
{2.01 % 10°)(1.6 % 10 "%)2

E i Leadwenis
~ 8m(8.85 x 10—12)(9.11 x 10-31)(3 x 108)2

=1+

3 ‘ 3.13 x 10%! rad/s. \

_|2.gs x 10~ m: = 295 x 10-1

Since wR, the speed of a point on the equator, is 300 times the speed of light, this “classical” model is clearly
unrealistic.

Problem 8.12 %
s deg r
4dmeg 3’
’ s Gmy
B = Hodm T _ pogm (r—dz) T
47 p3 4 (r? + d? — 2rdcos§)3/2’ d 9

Qe L
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Momentum density (Eq. 8.33):

Kogedm (=d)(r x 2)
(4m)2 3 (r2 4 @2 — 2rdcos6)/?’

p=¢c(ExB)=

Angular momentum density (Eq. 8.34):

P'-Uqg(fmd rx (l‘ X ﬁ)
(47)% 3 (r2 4+ 42 - 2rdcos€)3‘(2'

Butrx (rxz)=r(r-2) —r’z =r?cosff —r’i.

L=(rxpl=—

The = and y components will integrate to zero; using (), = cos#, we have:

_ Ho%emd r%(cos?§ — 1)
(4m)? r3 (r2 + d? — 2rd cos §)*/?

f-‘OQeQm o u?) i
(4m T &( )/f(r2+d2 ordu)®/?

Do the r integral first:

L = r’sinfdrdfde. Let u= cosb :

A u 1 d _u+l 1
Td(1-u?)  d(1-w?)d d(1-u?) dl-u)

f rdr = (ru — d)
(r2 + d? — 2rdu)’/? T d(1 - u?)Vr? + & = 2rdul,

Then

1 1 1

_ poeqmd . 1 [ (1 —u?) HoGelm - / _ HoeGm . u? 10qeGm -

L= 5 T Fam du = o (1+ u)du = i u+ Y
| -1

Problem 8.13
(a) The rotating shell at radius b produces a solenoidal magnetic field:

B = poK z, where K = opwyb, and gy = _i So B = “waQ

— S zZ (a <s<b).

The shell at a also produces a magnetic field (pow,Q/27l) 2, in the region s < a, so the total field inside the
inner shell is

= 1oQ - .
B= By (wa — wp) 2, (s < a).
Meanwhile, the electric field is
E—Lés‘a-— i (a <s<b)
T 2rep s 2mepls
= = Q powsQY o . pows@? o pows @?
=etie R e (2::.5013 ( ol ) @ XD =5ns 6 t=rxp="T5rx @)

Nowr x ¢ = (s§+4 2%) X ¢ = s% — 28, and the 8 term integrates to zero, so

HowsQ? . _mows@® o oy | pows@P(0% —a?) |
=P fd yPTy w(b* —a“)lz = anl Z.
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(b) The extra electric field induced by the changing magnetic field due to the rotating shells is given by

d® 1 do -
s = —— = d th
E2rs 7 = E T QS, and in the regiona < s < b
_ k@, 2 HoQws (o 9y _ M@ g . uani _ 1 poQ [ sdwa  pdwp -
e RS EL S i e i i e e L el Ll i R

In particular,

E(a) = - ) #, and E(b) = —‘L;Q (a

4nlb dt dt

wola (dw dwy,
4l dt dt

zd&_bzdﬂ) %

The torque on a shell is N =r x ¢E = ¢sE Z, s0

e poQa\ (dwa dwp . _ poQ%a® o
N, = Qa(“‘ Al )(dt _TE) z; a—'/ N,dt = Axl (wa — wp) 2.

Sk 1@ gdws\ . __/ HoQ? )
N = Qb( 4?rlb)( dt -b dt)z’ L = ’ N, dt = — (a®w, — bPwy) 2.

poQ?
47l

2
HoQ Wb(ba e az) i

(a’we — bPwy — a®wq + a’wp) 2 =| - - Z.

Ltot - La+Lb—

Thus the reduction in the final mechanical angular momentum (b) is equal to the residual angular momentum
in the fields (a). v

Problem 8.14
B=pnlz (s<R); E=

2
4: 43,Whereis— (z —a,y, 2).
€0

b = (B x B) = eoluond) (7= ) 0 x5) = P2 (e - 0)9)

Linear Momentum.

R - /pd'r péh Notmf f G iﬂ;)‘;_’_ - i):;]sﬂ dzr dy dz. The % term is odd in y; it integrates to zero.
ﬂoqnf / [(x - ﬂ)2x+_;)+ PR dzdydz. Do the z integral first :

SR 2
e B A]

[(x — a)? +;r,1r2]\/_:.t'*a)2 +y? + 22

o “02‘1: ! y [ ((z Exagzal V7] dz dy. Switch to polar coordinates :

z=scosp, y=ssing, dedy = sdsdg; [(z —a)® +y*] = s* + a® — 2sacos ¢.
S _pgan ./ (scos¢ — a) 3 s

2w (s2 + a? — 2sacos ¢)
e /21‘! C03¢d¢ = 2_?7 fic A ) /27!’ d¢ & 21
o (A+Bcos¢) B Aa2_-p2)’ J, (A+Bcos¢) +/A?_B?
Here A% — B? = (s? + a?)? — 4s%a® = s + 25%a® + a* — 4s%a® = (s* - a®)?; VA2 - B2 =a? - §°.

R 2
_ pogqnd . a’+s 2a? _ pognl . / . noqnIR?
aga y/[l (a2—32)+(a2—32) Lot o 0 a2 e
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Angular Momentum.

nl " 3 nl 5
£ = rxp= “;:);3 rxyx—(z-a)y]= “;:: z2(z —a) X + 2yy — [z(z — a) + ¥*] 2} .
The X and ¥ terms are odd in z, and integrate to zero, so
I 2 -
L = #atm / 2 _xa):'f = fiz]s/z dz dydz. The z integral is the same as before.
,ugqnf ¢ +y° —za pognl §—acos¢ 2
dedy = — dsd
_/[(x—a)2+ y?) 5 o - (52+a2—25ac05¢)s §de

Il

82 a? + s? O e
—pognl Z o +{1- s g sds = —poqnl z poppoL ds =
K = A o

Problem 8.15
(a) If we're only interested in the work done on free charges and currents, Eq. 8.6 becomes

fﬂ{:/(E-J;)d‘r. ButJf=VxH~@ (Eq. 7_55)‘5017;.,]_,=E-(V><H)—E‘?-—-. From product
1,,.,19#5_‘V.[E>.<H)—H(V’><E)-—E-(‘§7")<H),whil&V)(]E}_—{j,a—]t3 )
E-(VxH)=-H- %E—V (E x H). Therefore E-J; = — H-%?——E--‘E;—?—V‘(EXH),andhence
dw D oB
E_—A(E'W-FH at)dr—f(ExH)-da.

This is Poynting’s theorem for the fields in matter. Evidently the Poynting vector, representing the power per

unit area transported by the fields, is S = E x H, and the rate of change of the electromagnetic energy density
1 Otem E. oD . B
i P, st
ot ot at’

1
For linear media, D = €E and H = —B, with € and p constant (in time); then
n

i o BB T 198 ) B ie8
B - i ta e sty ey

LN DO

28t

SO Uem = 5(E-D +B-H). ged
(b) If we’re only interested in the force on free charges and currents, Eq. 8.15 becomes f = pfE + Jy x B.

Butp;=V-D andJ;=V><H-—%?~,sof:E(V‘D)+(VXH)xB—(%?)><B.Now
(D B) = 6D x B+ D x (%)ad%—?:—v Eso%—?xB-——(DxB)+Dx(VxE),and

hence f = E(V - D) -Dx(VxE)-Bx(VxH) - %(D x B). As before, we can with impunity add the
term H(V - B), so

f:{[E(V-D)—Dx(VxE)]+[H(V-B)—Bx(VxH)]}—%(DxB).

The term in curly brackets can be written as the divergence of a stress tensor (as in Eq. 8.21), and the last
term is (minus) the rate of change of the momentum density, o = D x B.




Chapter 9

Electromagnetic Waves

Problem 9.1

2
%i; = =2Ab(z - vt)e'b(‘_"‘]z' a—fl = —2A4b [e_b(“””z —2b(z — Ut)ge*b(z'"*)z] .
%ftl- = 2Abu(z — vt)e~H=v0; 3 f‘ = 24bfv[ —pe~t==v0? | 9y (z — vt)2e PG ] 2%:;1. o
2
% = Abcos[b(z — vt)); %:;2 = —Ab’ sin[b(z — vt)];
2 2
% = —Abvcos[b(z — vt)]; %—:;2 = —Ab?v? sin[b(z — vt)] = v* ?9:;2 s
Of 7 Sali(p—=vl) 05 —2Ab L 84V —vt)?
8z  [bz—vt)2+1]2" 822  [b(z—wt)2+1]2  [b(z —vt)? + 1]’
dfs 24bu(z —vt) 0%f3 ~2Abv? 8Ab* % (z — vt)? 9% f3
B e * — = U2 v
ot bz —vt)2 +1]2° 882 [b(z—ot)2 +1)2  [b(z —vt)® + 1] 0z2 "
% g 2 —b(bz’-Hrt) 3 f** 2 [ —b(bz®+vt) _ 932,2 ,—b(bz?+ut)
= 24Kz 248 e 2b?2% I3
0fa ), O f4 2,2 ,—b(b 0 fa
— = —Abye ¥t = APPy2e b0 0t £ 2o
ot ;- 022
ok Ab cos(bz) cos(but)?; Pfs _ = — Ab? sin(bz) cos(but)?; st = —3Ab%%¢? sin(b2) sin(but)?;
0z 022
2
i}% —6Ab°v3t sin(bz) sin(bvt)® — 9Ab*v°¢* sin(bz) cos(bvt)3 #v 68‘25
Problem 9.2
52
%z[ = Ak cos(kz) cos(kuvt); P J; = —Ak? sin(kz) cos(kuvt);
. . : 2)' T _.20%f
7 — Akvsin(kz) sin(kvt); T — Ak*v? sin(kz) cos(kvt) = v 5z v

Use the trig identity sina cos 8 = [sin(a + B) + sin(a — )] to write

fz

g {sinfk(z + v)] + sin[k(z — v8)]}

157
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which is of the form 9.6, with g = (A/2) sin[k(z — vt)] and h = (A/2) sin[k(z + vt)].
Problem 9.3

(A3)2 = (Age"‘i’) (Age_wa) — (Alﬁwl + AQBME) (Ale_“i‘ -+ Age_i52)
(A1)? + (A2) + A14; (e e72 + e71e¥2) = (4;)2 + (43)? + A1 As2c08(8) — b2);
As = [V(A1)? + (A2)? + 24, Ay cos(; — &2).
Aze'® = Ag(cosdz +isinds) = Ai(cosdy +isindy) + Az (cosdy + isindy)

2 : . Ajzsind Aj sind) + Agsindy
A 1) 1) A y da). g = = ;
(A1cosé; + Ay cosdy) +i(A; sind, + Assinds).  tands e ey

P Ajpsind; + A, sin s
I Al Ccos (51 -+ Ag cos (52 s
Problem 9.4 ;
i : &'y B L ;
The wave equation (Eq. 9.2) says 72 = e Look for solutions of the form f(z,t) = Z(2)T(t). Plug
2 1 _d°T 1
this in: TM = — Z——. Divide by ZT : 142 = &°T The left side depends only on z, and the

dz2 — 27 di? Z dz> ~ 0T d?
right side only on ¢, so both must be constant. Call the constant —k?2.

27 g 5
——Zzz = -k2Z = Z(%) = Ae'®* 4. Bg—x
2
—Cjitf = —(kv)T = .T(t)=Ce*"t 4 Deihrt,

(Note that k must be real, else Z and T blow up; with no loss of generality we can assume k is positive.)
f(z,t) fab (Aeikz +Be—ikz) (Ceikv!. +De—ikvt) T Alei(kz-l—kvt) +A26i(kz—kvtj +Aset’(——kz+kvt) +A4ei{—kz—kut}.
The general linear combination of separable solutions is therefore

oo
f(z,t) :/ [Al(k)ei(kz-i-wt) +A2(k)ei(kz—wt) +A3(k)ei(—kz+wt) +A4(k)ei(-—kz—wt)] dk,
0

where w = kv. But we can combine the third term with the first, by allowing k to run negative (w = |k[v
remains positive); likewise the second and the fourth:

fz,t) =/ [Al(k)ei(kz+ut} +A2(k)ei(kz—ut)] i

— 00

Because (in the end) we shall only want the the real part of f, it suffices to keep only one of these terms (since
k goes negative, both terms include waves traveling in both directions); the second is traditional (though either
would do). Specifically,

Re(f) = ]oo [Re(A;) cos(kz + wt) — Im(A;) sin(kz + wt) + Re(Az2) cos(kz — wt) — Im(Ay) sin(kz — wt)] dk.

The first term, cos(kz + wt) = cos(—kz — wt), combines with the third, cos(kz — wt), since the negative k is
picked up in the other half of the range of integration, and the second, sin(kz+wt) = — sin(—kz —wt), combines
with the fourth for the same reason. So the general solution, for our purposes, can be written in the form

f(z,t) = / A(k)e'*=“%) gk qged (the tildes remind us that we want the real part).
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o 00 17, 1 dg;r Oh 1 0hg 0 10
. g1 g1 R 'R ogr qr
2 ST A, — ast). Now: 228 ez mal R, - i Ly
Eation 395 = QIEE 121 ) ) tr(v1t) = gr(=vat) ? ?z vy Ot ' 0Oz vy Ot ' Bz vy Ot
b 1 dgs(—vyt 1 Bhgr(uit) 1 dgr(—wvat) U1
: i s P i LD ol bl —ut) — = 2 — ot
Equation 9.27 = 53 51 + 0 Bt 5 o = gr(—uit) — hg(v1t) - gr(—uvat) + &

(where  is a constant).
21‘..’2

Adding these equations, we get 2g;(—v;t) = (1 -+ :j—l) gr(—vat)+k, or gr(—vst) = ( ) gr(—vit)+k'
p)

v + U2

(where k' = —k= 1_}:” ). Now gr(2,t), gr(z,t), and hg(z,t) are each functions of a single variable u (in the
1+ U2
first case u = z — v1 ¢, in the second u = z — vat, and in the third » = z + v;t). Thus
21}-2 '
= + K.
or() = (722 ) s orufun) +

Multiplying the first equation by v; /vs and subtracting, (1 - —) gr(—uvit) — ( z—l) hr(nit) = &k =
2

hg(vit) = (:j?;:;)g;(wv]t)—n(Ullfw),or hgr(u) = (v s )g,r( —u) + &'

[The notation is tricky, so here’s an example: for a sinusoidal wave,

gr = Ajrcos(kiz — wt) = Ajcos[ki(z — nt)] =  gr(u) = Aycos(kyu).

gr = Arcos(kez—wt) = Arcosfka(z—uvaot)] = gr(u) = Arcos(kau).

hr = Apcos(—kiz—-wt) = Agpcos[—ki(z+uvit)] = hg(u)= Agcos(—ku).

2 A -
Here &' =0, and the boundary conditions say ‘:—": = e :._202 : -;1-? = E? " vz (same as Eq. 9.32), and z—;—kl =ky
(consistent with Eq. 9.24).]
Problem 9.6
; ; af BBl N, 02
(a) T'sinfy — Tsinf_ = ma = T(E0 3z ) —mwn

(b) .r‘if b AR - AT; T[?’k2AT BT ik] (fiI — AR)] = m(_wQAhT), or k]_ (A‘i[ = AR) = (kz s ‘IW;QJ ) AT
- 2 = T A
Multiply first equation by k; and add: 2k; Ay = (kl + k2 — ém; ) Ar, or Ar = ( = ) s

ki + ko — imwQ/T
. i = 2= (b + ko — imw?/T) - ki — k2 + imw?/T +
Ap=Ar — A; - A= -

ky + ko —imw?/T ki + ks —imw?/T

5 2 i
If the second string is massless, so v3 = \/T'/us = oc, then ky/k; = 0, and we have Ap = ( - ) Aj,

1-i8
2 14148 mw? _ m(kiv)® _ mk T C ol (1+£5)_ “Mamer
Ap = (1_ ﬁ) Aj, where g = BT AT T T m,or ,B_mm. Now 1= = Ae*®, with
2_ (148 lwiﬁ)_ _ i o L ) i
A _(1—?35 1735 1=>A=1,ande S T T T L T =

9 _ : : " 2
tang = - _ﬁ,gz'- Thus Aper = e A " = LA (1 —ﬁﬁ2) :
2 2 2 2 4 odus
Ca = Apt A2 = — = A= :
Similarly, (1——2’;9) Ao (1—iﬁ) (1+z‘ﬁ) 1+ 32 i+ 42
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2

_ 2(1+1i0) 2(1+1i08) n , i

9 — = = 3. P L e it L idy
Ae A= A+i8) ~ 1) = tan¢ = B. So Are me Are
| 2
|Ar = ——=——==Ay;||6r =d; +tan"' 8.
| T m“f i T I n J
Problem 9.7

R T R T
BF AT he s ae s ln: gt onil 5 5058 Tl

) s 2k - S g3
(b) Let f(z,t) = F(z)e™™; then Te ™!'—— = u(—w?)Fe ™! + y(—iw)Fe ™" =
dz?

d*F &2 F

—— = —w(uw + y)F, = —k*F, where k> = —(,uw +1i7v). Solution : F(z) = Ae ik 1 Be-ikz,
dz? dz? T
Resolve  into its real and imaginary parts: k = k + ik = k% = k? — k* + 2ikx = T(pw + 7).
S WY S g g T agl L LY 2 i 3t !‘wz 4 2, 2 o 5
2w =T > k=L Kk =k (QT) e =T cor k* — K2 (uw?/T) — (wy/2T)? =0 =

: 1 - ;
k== {(pwz/T) + /(uw?/T)2 + 4(w'y/2T)2] = g—ti- [1 +4/1+ (’y/,uw 2]. But k is real, so k? is positive, so
—1/2
il 3 n a5
we need the plus sign: k =w T \/1 V1+(/pw)?. k= QkT \/—T_ [1 + 14+ (v/pw): ]

Plugging this in, F' = Aelk+ir)z 4 Be—ilk+in)z - ge=rzeikz 4 Ber2e~z Byt the B term gives an expo-
nentially increasing function, which we don’t want (I assume the waves are propagating in the +z direction),

so B = 0, and the solution is | f(z,t) = Ae~**¢!(*=“%) | (The actual displacement of the string is the real part

of this, of course.)
(c) The wave is attenuated by the factor e

i V2T
z2=—= —’Y‘Lf\/l + /1 + (v/pw)?; | this is the characteristic penetration depth.

%% which becomes 1/e when

(d) This is the same as before, except that ks — k + ix. From Eq. 9.29, Ap = m) Ap
k'] +k+in

Ar\® _ kl—k_m) (kl—k+m 6 e R PR IR L5 3 5
Ar) TAE rErinI AR v kE—in) ) Bt TN E TR
(where k; = w/v; = wy/p1/T, while k and & are defined in part b). Meanwhile
ki —k—1ik (kl — k- 35)(1‘;1 + k+ 'l:fﬁ) {k1)2 — k2 — g2 — 2ikk, 2 —2k1k
s : e N e

ki +k+ik ki + k)2 + K2 ik (k1 + k)% + K2 — k2 — K2
Problem 9.8
(a) fu(z,t) = Acos(kz — wt)%X; fa(z,t) = Acos(kz — wt + i at =0
90°)§ = —Asin(kz — wt)§. Since f2 + f2 = A?, the vector at t=Tlhe—, _ - '(
sum f = f, + f lies on a circle of radius A. At time t = _ £ &z
0, f = Acos(kz)% — Asin(kz)y. At time t = 7/2w, f = i 8 )
Acos(kz—90°) X— A sin(kz—90°) § = Asin(kz) X+ Acos(kz) ¥. 0 B
Evidently it circles | counterclockwisej. To make a wave circling
the other way, use 4, = —90°.
(b) &

T2
I/
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(c) Shake it around in a circle, instead of up and down.
Problem 9.9

(a) | k = —

w
[+

¥ A= K= (—%i)-(xi+y)"+z£)=—%x; kxfi=-%x%=7.

E(z,t) = Eycos (

%z: + wt) %, B2, fk= % cos (%z + wt) y.

/% k

B

s

(a) (b)

(b) |k = & (i-{-y_-i-z) s = 25 (Since 1 is parallel to the z z plane, it must have the form a % + (3 Z;

c V3 V2

since i+ k = 0,8 = —a; and since it is a unit vector, a = 1/\/5)

w w - 1 e 1
ker=—(X+9+2) - (zX+y¥+228)=—(@+y+2); kxi=—7|1 1 1 [=—=(-%+2y-2
\/EC \/EC ) \/6 1 sy \/g( )
w X—-1Z
E(zr,y,2,t) = Egcos|—(z+y+2)—wt :
@unt) = Bycos| S=@ry+a)-u| (22)
Eqy [w ](—i+2)‘!—£)
B(z,y,z,t) = —cos|—(z+y+2z) —wt
@ynt) = Peos| lzty+a) v
Problem 9.10
£ M —|4 3 %1075 N/m*® |F0r a perfect reflector the pressure is twice as great:
. 0% L : . P i

IS.B x 1079 N/m?. | Atmospheric pressure is 1.03 x 10> N/m?, so the pressure of light on a reflector is

[EG x 10°)/(1.03 x 10%) = [8.3 ¥ 0 atmospheres.}
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Problem 9.11

(fg)

Il

T
%/ acos(k - r —wt + 6,)bcos(k - r — wt + &) dt
0

e “—b/T[cos(zk-r_zt+a A 5) 4 mstarn B3l oot 5T = Labacath
= 37/, w o+ 6 08(dq — Op —ﬁcos a=0)T = Za cos(dg — 83).

Meanwhile, in the complex notation: f = ge™®*~«t g = peikr-wt)

T s s - : | 1 ; 1. 1
Zfa* = Zgetlkr—wt)px —ilkr—wt) _ " s _ - i(dq —dp) i 31,0 LG 5 =
2fg 5de b*e 2ab zabe = Re (2)'9 ) 2abcos(f5a &) =(fg). qed

, where @ = ae'®s, b = be'®. So

Problem 9.12

2

With the fields in Eq. 9.48, E has only an = component, and B only a y component. So all the “off-diagonal”
(¢ # j) terms are zero. As for the “diagonal” elements:

1 1
Tii=e (E,'Ej = 55;_15'2) + ;1—0- (B,'Bj = 15,;st) :

T:m = €p (EzEm = lEg) + —1" (—182) = l (€0E2 - *1—82) =0.
2 o \ 2 2 Ko
1 1 1 1 1
T = @(-35) + 5 (BB - 38%) = 5 (-4 £57) =0
1 1 1
- --E? — | -zB?| = —u.
T €0 ( 2 ) + 7 ( 2B ) u

So | T;, = —€oEj cos®(kz — wt + &) | (all other elements zero).
The momentum of these fields is in the z direction, and
it is being transported in the z direction, so yes, it does make
sense that T, should be the only nonzero element in Tj;. Ac- a

cording to Sect. 8.2.3, —*' . da is the rate at which momentum

crosses an area da. Here we have no momentum crossing areas

oriented in the x or y direction; the momentum per unit time cAt
per unit area flowing across a surface oriented in the z direc-

tion is =T, = u = gc (Eq. 9.59), so Ap = gpcAAt, and hence

Ap/At = pcA = momentum per unit time crossing area A.

Evidently |m0mentum flux density = energy density. y v

Problem 9.13

Fo, \? (1—5)2 M1 €209 (Eo-,-)2
R=(=-2 Eq. 9.86) = |R=| — Eq. 9.82), where = —. T === Eq. 9.87
(B2) (ea059) 155) |(B 980, where p= 2, - 22 (For)" g )

2 2 €2U2 1 €202 U2 Hi (91)2 U2 P11
S e Eq. 9.82). [Note that —=——"~=-"="—| — | —=—==4.
£ (1 i+ r@) (Ea e | €1V1 M2 €y U1 2 \V2/) U1 paeUs ]

1
=s(1+28+8%) =17

1 1
T+R=—[4ﬁ+(1—ﬁ)2] —ﬂ—‘———(4ﬁ+1“2ﬁ+52)=m

(1+8)? (8
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Problem 9.14

Equation 9.78 is replaced by Eo,% + Eo,figp = EoTnT, and Eq. 9.80 becomes Eo,§ — Eo,(z x fig) =
,GE‘OT (2 x fir). The y component of the first equation is Eoﬂ sinfp = EUT sin fr; the z component of the
second is E@H sinflg = —ﬁEo,. sin 7. Comparing these two, we conclude that sinfr = sinfp = 0, and hence
0p =0y =0. qed
Problem 9.15

Ae'®* 4 Be®*® = Ce'** for all z, so (using z =0), A+ B=C.

Differentiate: iaAde®® + ibBe™® = icCe™*, so (using z = 0), aA + bB = cC.

Differentiate again: —a%A4e'® — b2 Be'®* = —c2Ce'?, so (using z = 0), a2A + b’B = ¢2C.
a’A+b’B = ¢(cC) = c(aA + bB); (A+ B)(a®A+ b’B) = (A + B)c(aA + bB) = cC(aA + bB);

a’A? + b’AB + a’AB + b’B? = (aA + bB)? = a?A? + 2abAB + b’ B2, or (a* + b*> — 2ab)AB = 0, or
(a—b)2AB = 0. But A and B are nonzero, so a = b. Therefore (A + B)e'** = Ce'**.

a(A + B) = ¢C, or aC = ¢C, so (since C # 0) a = ¢. Conclusion: a=b=c.
Problem 9.16

qed

B, = U—Eo,e"(k"""’”{— cosf; X + sin 6, 2); 3
1
ER e E-l(] El'(ka<l‘——wt]y
Br = ;—Eo e kR T=wt) (cos 0, % + sin b, 2);
1 ey
ET P E;‘O'r a(k-j- r—wt]y‘
Br = t-)—En,,e‘(""'" “) (= cos B X + sin b 2);
2

() e B = e2B3, (iii) E} = El,
Boundary conditions:
(i) Bf =B#,  (iv) 2B = 1Bl
:iﬁgj . :—f [Note: kj'r—wt =kp-r—wt =kp-r —wt, at z = 0, so we can drop all
exponential factors in applying the boundary conditions.]

Boundary condition (i): 0 = 0 (trivial). Boundary condition (iii): | By, + Eo, = Eo,.

Law of refraction:

1 - iz 1 - - s 5 =
Boundary condition (ii): ;Eo; sinf; + ;—Egﬂ sin#, = ‘U_EUT sinfy = Ey, + Eg, = (zl :iz 22) Eop.
1 1 2 2 1

But the term in parentheses is 1, by the law of refraction, so this is the same as (ii).

Boundary condition (iv): =) [if}g,(— cosf) + lE‘DR cos BIJ —
H1 [V n

1. =
Eo,.(—cosfs) =
U2

- . ) ~ 7]
By, — Ep, = (Mﬁ) Eg,. Let|a= il 2; - mvl.
Hava cos by cos 6, e

Then | By, — Ey, = aBFEy,.

Solving for E‘OR and E‘g,: QEU, =(1+ a,@)Eg,_ = E’UT =

1 ~ < 2 1+ap 1-af\ -
— —— = E .
EOR EOT Eo, (1+CI€,@ 1 ﬂ) D:iEO (1+0.3) EO:
Since a and [ are positive, it follows that 2/(1 + af3) is positive, and hence the transmitted wave is in phase

|
e ——
—
+‘w
Q
o
b S g
gjz

with the incident wave, and the (real) amplitudes are related by | Ey, = (_EL__) o, - | The reflected wave is

1+ af
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" g g ; 1-
in phase if a8 < 1 and 180° out of phase if a8 < 1; the (real) amplitudes are related by | Eq,, = ‘1 . ag 0)-
«
These are the Fresnel equations for polarization perpendicular to the plane of incidence.
\/1 - sin® /32 32 —sin’ @
To construct the graphs, note that a8 = g = , where @ is the angle of incidence,
cosf cosf
2.25 — sin? @
so, for 3=1.5, a8 = Mo S
cosf

=g

I N R N R |

I I T O |
[JURTEN G N RS s 3

Lk
1 4

0" 10 20 30 40 50 60 70 80 90 8,

Is there a Brewster’s angle? Well, Ey, = 0 would mean that af = 1, and hence that

1— (v2/v;)%sin®?8 1 2 2
a= \/ ' =—-= mvz, or = (U—z) sin @ = (w) cos? 8, so
cos @ B mu vy K10y

2
v ; . 5 : : :
1= (v_z) [sm2 0 + (p2/p1)? cos? §]. Since p1 & o, this means 1 ~ (vy/vy)2, which is only true for optically
1
indistinguishable media, in which case there is of course no reflection—but that would be true at any angle,
not just at a special “Brewster’s angle”. [If o were substantially different from p;, and the relative velocities
were just right, it would be possible to get a Brewster’s angle for this case, at

2 < e z
5 R T 2 2 2, : tfuaf=1 _ (me/mea) -1 _ (e2/e1) — (11 /p2)
( ) Ty “( ) oS g AT U=l O G

(%] J'J'_l
But the media would be very peculiar.]
By the same token, dp is either always 0, or always m, for a given interface—it does not switch over as you

change 6, the way it does for polarization in the plane of incidence. In particular, if 8 = 3/2, then a8 > 1, for

2.25 — sin? :
aff = _.__(i_g_gs__w > 1if 2.25 —sin®6 > cos? @, or 2.25 > sin? 0 + cos®’f = 1. v
In general, for 3 > 1, a8 > 1, and hence dgp = 7. For 8 <1, a8 < 1, and §z = 0.
: 2 1-—
At normal incidence, o = 1, so Fresnel’s equations reduce to Ey, = (1+—ﬁ) Eo,; Egn = i—l—:_—g—l Ey,,

consistent with Eq. 9.82.

2 2 :
2
Reflection and Transmission coefficients: | R = (?: ) = ( 7 Zg) .| Referring to Eq. 9.116,
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2 2
- €Ealog EUT i 2
T_EIUIQ(EOI) = aﬂ(l+aﬁ) )

(1-af)?+4af 1-2af+a?B2+4aB  (1+aB)®

R4 T= = = =1.v
i 1+ ap)? 1+ af)? (1+ap)?
Problem 9.17
Equation 9.106 = § = 2.42; Eq. 9.110 =
— (a1 2
- V/1— (sin6/2.42) ‘ =
CRE. . P TR A iy e M (B T e e e S e e S s S s s iy
R PG Eq.9.109=>(E°“)=ﬂ= e |
1-242 142 Forl. AR 00k Bl 7
1 1 1]
i SR ke S Py Y T
§40.43 342 e
Py . U8R Lagsll sl
(Eo;)—a+ﬁ_3.42_-0'585' Bl b it ol ok o LN
(b) Equation 9.112 = 65 = tan~1(2.42) = [67.5°.| Gal o TR
(c) Bopy =Epp, =2 a—-F=2a=0+2 =442 :
(4.42)% cos? 6 = 1 — sin® 0/(2.42)%; ~0.41 (/5]
(4.42)%(1 — sin? 0) = (4.42)% — (4.42)?sin? 9 0.6} ’

= 1-0.171sin8; 19.5 -1 = (19.5 — 0.17) sin® 0;
18.5 = 19.3sin? §; sin® 4 = 18.5/19.3 = 0.959;

sinf = 0.979; |8 = 78.3°.

Problem 9.18

(a) Equation 9.120 = 7 = ¢/0. Now € = €pe, (Eq. 4.34), €, = n? (Eq. 9.70), and for glass the index of
refraction is typically around 1.5, so € ~ (1.5)2 x8.85 x 10™12 = 2x 10~ C?/Nm?, whileo = 1/p =~ 10712 Qm
Eabile 7.1). Then r = (2 x 10°11) /1012 = (But the resistivity of glass varies enormously from one
type to another, so this answer could be off by a factor of 100 in either direction.)

(b) For silver, p = 1.59 x 108 (Table 7.1), and € = €, 50 we = 27 x 10'° x 8.85 x 10712 = 0.56.
Since o = 1/p = 6.25 x 107 >> we, the skin depth (Eq. 9.128) is

% K1\ \/wa,u o ¢27rx 1010 x 6.25 x 107 x 47 x 10~7 wat L BEla 0TI

I'd plate silver to a depth of about | 0.001 mm; | there’s no point in making it any thicker, since the fields don’t
penetrate much beyond this anyway.
(c) For copper, Table 7.1 gives 0 = 1/(1.68 x 1078) = 6 x 107, weo = (27 x 108) x (8.85 x 10712) = 6 x 1075.

Since o > we, Eq. 9.126 = k =~ 1;%, so (Eq. 9.129)

3 2
=2 =2 =4x10"*m =|0.4mm. |
. ”\/ “\/2« x 106 x 6 x 107 x 47 x 10-7 m = [0.4mm.]

woft

;From Eq. 9.129, the propagation speed is v = % = —2%,\ =Av = (4 x107%) x 10® =|400m/s. | In vacuum,

8
= 5 = % = v=c=|3 x 108 m/s. | (But really, in a good conductor the skin depth is so small,

compared to the wavelength, that the notions of “wavelength” and “propagation speed” lose their meaning.)
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Problem 9.19
(a) Use the binomial expansion for the square root in Eq. 9.126:

> [E 1+1(£)2 i e S e
e 2 2 \ew e 2 V2w 2 -
1 2
So (Eq. 9.128) d = — = -\/E. qed
K o\ pu

€ =¢r6g =80.1¢g (Table 4.2),
For pure water, { 1 = po(1 + xm) = po(1 — 9.0 x 1078) = 14y (Table 6.1),
o =1/(2.5x 10 (Table 7.1).

" 5y, /(80.1)(8.85 x 10-12)
So d = (2)(2.5 x 10°) e =[{1.19 x 10*m

(b) In this case (o/ew)? dommates, so (Eq. 9.126) k = &, and hence (Eqgs. 9.128 and 9.129)
2t 2w A
A= k£—-—27rd ord-——

15 -7Y(107
Meanwhile £ = w 6“ \/w,m:r = \/ (07)(an 3 10~ ) U07) ='§ % 107; o= L JE
2 K 8 x 107

1.3x107% = m So the ﬁelds do not penetrate far into a metal—which is what accounts for their opacity.

(c) Since k = &, as we found in (b), Eq. 9.134 says ¢ = tan—!(1) = 45°. qed

By 7) 7
‘Meanwhile, Eq. 9.137 says e =Y ,ui = J—{:‘- For a typical metal, then, \/(10 (41?{;11: 20 )

(In vacuum, the ratio is 1/c = 1/(3 x 10°) = 3 x 10=s/m, so the magnetic field is comparatively
about 100 times larger in a metal.)
Problem 9.20

(a) u = % (652 +

1 1
iBﬂ) = 56-2'“ [eEg cos?(kz — wt + 0g) + ;Bg cos?(kz — wt + dg + QS)J. Averaging

over a full cycle, using (cos?) = { and Eq. 9.137:

15 e 1 L2 1 / o 2’ 15 o\?
(u) = Ee F [§E3 i *2—!1'33] — Ze E EEg + ;Egep 1+ (a) — EB 2526.83 14+4/14 (:L;)
B o\? g 2 k2 1 —2Kz 2 2 k2 P E2 —2&2 S h . f th
ut Eq. 9.126 = 1+ /1 + (a—) 5yt so (u) = 1€ EEUJF = 2#&-’2 o the ratio of the

magnetic contribution to the electric contribution is

{tine). . Bafp -1 \/ o\2 \/ o \2
i L g - — ] =a/1 - 1:
(elec) ng P’fpe b (ew) e (6(4)) < qed
1 >
(b) S = i(E><B) = iEoBge_Q” cos(kz—wt+dg) cos(kz—wt+dp+¢) 2; (S) = EEUBDe_z’” cos ¢ Z. [The
M
n 1
average of the product of the cosines is (1/27) f02 cos @ cos(6+@) df = (1/2)cos@.] SoI = EEUBUE‘QM cos ¢ =

iEge*z’” (E cos qﬁ), while, from Eqgs. 9.133 and 9.134, K cos¢ =k, so|I = _J,f_Ege“g"z. qed
2n w 2uw
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Problem 9.21 3
EDR L= ,B

—| = 1_’{? l_g ,where@z’uwlfcg
Eg), 1+ 1+53 1+ 0+ How
JUIUI

= (kg +iks) (Egs. 9.125 and 9.146). Since silver is a good conductor (o > ew), Eq. 9.126 reduces to

wy ) —=— 62“2 A } aw,uz 8 #11’1 crw,uz ——(1+1) = pv1y/ Sufed (1+1).
2pw
- gv (6 x 107) (4w x 10°T)
Let v = pyv14/ 2#%} 1’23'-5 = \/ = (3 x 10°) (4 x 107) 29 en

Sl -\ [l=71+w1 1—7)2+7 3
= (1 +’Y+3"Y) (1+'y =5 (1+’Y)2 e m 10.93. | Evidently 93% of the light is reflected.

Problem 9.22
(a) We are told that v = av/A, where a is a constant. But A = 27/k and v = w/k, so

dw 1 1 2r 1 1
w = ak\/2r/k = av2rk. From Eq. 9.150, vy = — = aV2r—= = zay/ 7 = Ea\/_ = Efv, or

According to Eq. 9.147, R =

dk ok 2 k
i(pz — Et) . p E p? hk? w E p hk
b) —07—7 7 — = = i(kr — wt = = =— = —=——=—.Th fi —_—— e — = —— = —
(b) ry i(fkz —wt) =k ST ST o erefore |v = el vt
_dw 2Kk Rk | p ek : = ; . . .
e m So|v= 5V Since p = mv, (where v, is the classical speed of the particle), it
follows that | vy (not v) corresponds to the classical veloctity. ‘
Problem 9.23
1 qd 1 Q‘g 2 q2
= — " = F=—qF=—-|—= = —kspring® = — Eq. 9.151). =4[——".
E - F q (4‘“0 3 T pring® mwiz (Eq. 9.151). So |wp PR

LU'[] 1 (1.6 X 10_19)2 15 P .

= —_—= — = . H & T 3

U \/4#(8.85 < 10-12)(9.11 x 10-31)(0.5 x 10-10)3 |7 16 x 10*° Hz ‘ his is | ultraviolet
jFrom Egs. 9.173 and 9.174,

- ng? _f_‘ N = # of molecules per unit volume = A;ggzdl:fef,s# = 3205:113333 = 2.69 x 1025,
2meowg’ | f = # of electrons per molecule =2 (for Hy).

(2.69 x 10%5)(1.6 x 10719)? =) AT
= = 2 h 'h € )
(01T % 10-91)(8.85 x 10-1%)(45 x 1050)7 4.2 x 107® | (which is about 1/3 the actual value);

2 8 2
1 :
(Qﬁ) = (21;—3;1]%) = (which is about 1/4 the actual value).

Wo

B

So even this extremely crude model is in the right ball park.
Problem 9.24

Equation 9.170 = n=1+

in N¢ [-2w (wi-w?)
E- T 0D2 [2(w? — w?)(~2w) + y*2w] § = 0 = 2wD = (W — w?) [2(w§ —w?) - 7] 2w;

(W2 —w?)? +7%w? = 2w —w?)? =Y (WE —w?), or (Wi —w?)? = V(W +wf —w?) = Yuf = (wg —w’) = Fwor;

N¢? (Wg — w?)
2mep [(w3 — w?)? + y2w?]’

Let the denominator = D. Then
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w? = Wn Fuwey, w=woy1Fv/wo = wp(lFy/2w) =woFv/2. Sows =wp +‘y/2 w) = wp — /2, and the
width of the anomalous region is I Aw =ws —w; = 7. I

2
Ng%w? ¥ ! Ng

5 T 5 SO at the maximum (w = wp), Qmax =
mepe (wi — w?)? + Y2w

3 Ng*w? ¥ w?

At w; and ws, w? = w? Fwgy, soa = > = Qmax | —= |. But
: e IR mege Y2wi + y2w? TN\ w? + W

2

! _ @ Foer _10Fpwe) o1 7)1 T Yali7 LYl
wtwl 2w Fwey 2 F7/2we) 2 wo 2wp 2 2i0) 2
Soa%‘%amax at wy; and wy. qed

Problem 9. 25
) g

From Eq. 9.171, a =

megey

5 “w= 3 = e
meo (w -w2 97 dk ~ (dk/dw)’

dk o} (- 2w) k] (W} +w?)
dw ¢ l chgz (w2 +wzf’(w ] 2 E[ 2meg Zfl(wf—wz)zl'

Zf ) Since th d term i brackets is positive, it follows that
'U 2 mnce e secon erm 1n square brackets 1s positive, 1 oliows al
2mf (W} - w? e e ’ "

)2

=1

whereas v = % =c [ 2m€0 Z = wz)] is greater than c or less than ¢, depending on w.

Problem 9.26

(a) From Egs. 9.176 and 9.177, V X E= *%-? = iwBge!** ), V x B = -ézl—% —El-?} gllkz—wt)
In the terminology of Eq. 9.178:
(VxE), = aa? = 3;;** = (agg: i ik!::,'oy) gltke—wt) gp (i) %‘% - ikE, = iwB,.
= BE aEz P 3ED, ilkz—w i s s 6Ez .
(V xE), = —3735 — g = (zkEg, - 73?) ellka—wt) 8o (iii) ikE, — 5 = wBy.
" 0E, OE 8Ey, OE,, \ ; O0E, OE
V xE), = ¥ T Yo =z t(kz—wt)' So (i ¥ o2 % BT
V.25 oz Oy ( Oz dy ) 4 50} oz dy e,
. 8B, 0B, 8By T - 9B, ", iw
= a0 o : _ikB i(kz wt}_ z g O :
(V x B), 3y 5 ( By 1 e So (v) By > Ex
= 8B, OB . AW : oB iw
== _ 2 = |ikBy. — : Sihaat), i) tkB; - —=2 =——F,.
(V x B), P e (t 0. 55 ) e So (vi) ikB; 9 = E,
=" 9B, bB. [8By, BB, \.isup 8B, 0B, _ iw
LV x B = Oz dy _( oz Oy )e ' O o 6R L
This confirms Eq. 9.179. Now multiply (iii) by k, (v) by w, and subtract: ik*E, —k% —waaf:
iwz 2 |'..|J2 aEz 3Bz 1 aEz aBz
; — ] - = =k— - i = k :
ikwBy, + = E,:»z(k CQ)EJ, ka:c +w6y,0r(l)Ez (w/c)’—kz(-az:c +w8y)2
By ] )
Multiply (ii 68? Eﬁgka,—w%? - zka,#t—:-i;-Ey =i (% & kz) E, =
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OF. 0B, 7 OF, aB,
—k—é';J— +(¢UE, or (11] E W (k ay w Oz )
. ¢ : woE, | wk : 8B, w? wk
Multiply (ii) by w/c?, (vi) by k, and add: = - zEQ—Ey + ik%B, o z-c—é-Bac - sc—zEg =
88 w OF, 1 dB w OF
o _ = R: z )
(k c? ) Be = 63: e oy’ ete Uil (w/c)? — (k 0z ¢ Oy )
wk w OFE, 33 S iwk
Multiply (iii) by w/c?, (v) by k, and subtract: z —=Fa ~ e e ay +1k*B, = ol 2 B, - ?Ex =
w2 g
2 W _woOE;, 0B : % i 0B,  wOE,
1(}; = By = 2 52 +k—— 3y or (iv) By = W/ -2 (k By +r_‘2 )
This completes the confirmation of Eq. 9.180.
S0 s OE, ES‘Ey OE, . dE,, 8]::,'0" ol hEsad 0E, OE, x
(b) V.-E = Bx+6y+8z_ 3z + By + ik Ep, —Oévé;- By =0,
i 0*E 9’B 1 0’E 0’B
ing Eq. 9.1 k——= 2 Z - z kE, =
Using Eq 80, = ( 922 + “’axay) + e ( a7y wé‘xay) +1 0,
9*“E, . 8%FE,
oraz——+ 7y + [(w/c)® - k*| E; = 0.
Tiiowies, VB = 0 C0e OBy
Lok Ay
i 8B, wd*E, 1 8*’B w OF, ) x5
@/~ 12 ("‘ B2 c—?axay) Yoo (k 52 T & oz0y ) bl =l
Bsz 3 B

- + [(w/e)®* - k*] B. =0.
This couﬁrms Egs. 9.181. [You can also do it by putting Eq. 9.180 into Eq. 9.179 (i) and (iv).]

Problem 9.27
Here B, = 0 (TE) and w/e = k (n = m = 0), so Eq. 9.179(ii) = E, = —cB;, Eq. 9.179(iii) = E; = cBy,

Eq. 9.179( 2 =i (kB - 2’—23) =i(k3y- “E’B,,) = =i (kB. + C%E,,) -

0B

o OB OB
; w = 5 z
i (kB. - EBz) = 0. 80 S =

a constant (as Eq. 9.186 also suggests). Now Faraday’s law (in integral form) says }E -dl = —

B,
Oz
= 0, and since B, is a function only of z and y, this says B, is in fact

0B

ot
B

and Eq. 9.176 = %—t —iwB, so § E-dl =iw [ B-da. Applied to a cross-section of the waveguide this gives

. da,

%E - dl = fweikz—wt) /B, da = iwB,e'**~“Y (ab) (since B, is constant, it comes outside the integral). But

if the boundary is just inside the metal, where E = 0, it follows that - So this would be a TEM mode,
which we already know cannot exist for this guide.

Problem 9.28

1
Here a = 2.28cm and b = 1.0lem, so vi0 = 3-wio = 5"— = 0.66 x 10'° Hz; vg = 223 = 1.32 x 10'° Hz;
c ro e A | 1
V3 = 3% = 1.97 x 10'°Hz; vy, = 2b = 1.49 x 10'°Hz; vy = 2_E =297 x 10'°Hz; v; = sVt s

1.62 x 10'° Hz. Evidently just four modes occur: |10, 20, 01, and 11. |
To get only one mode you must drive the waveguide at a frequency between vo and vag:
0.66 x 101 <» <132 x 10'°Hz. | A= —, 50 Aio = 2a; Ao =a. 12.28cm < )\ < 4.56cm. |
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Problem 9.29 "
From Prob. 9.11, (S) = E(E x B*). Here (Eq. 9.176) E = Epeilk>-vt) B* = f’v;e_“k‘_“"), and, for the
0

TEx» mode (Eqgs. 9.180 and 9.186)

B; = (w/;;;k_ = (—Tﬂ) By sin (m;rz) cos (EEE)
B, = (w/;);k_ = (q:ﬂ) By cos (m;r:.c) sin (n_:)ry) :
B = Bgcos (m:x) cos (n—‘gg) :

B = it (T2 s (22 (22):

E, = (u/c_)'ju— w2 _Tﬂ) By sin ( ;rx) cos (%)
E, = D
So
(8) = "L{—W#-———“iﬂng (E) sin (mfrz) cos (m:rrx) cos? (m) %
210 L(w/c)?2 — k% \a a a b

+ B () cos” (P22 ) sin (252 cos (252) 5
22
b B (2 ot (P i (%52 (2) i (2

[(S) +da = S’ioﬁz—‘g—‘;—ﬁ- ab [(H‘E)z + (%)2} .| [In the last step I used

%)t ()] o)

Jy sin®(mnz/a) dx = [} cos?(mnz/a)dz = a/2; f; sin(nwy/b) dy = f(}b cos?(nmwy/b) dy = b/2.)
Similarly,

(u)

Il

i(eoﬁ-ﬂwﬁgﬁ-ﬁ*)
‘[@‘}")—BH (3)" cos® (Z22)sin? (L) + (2)sin® (22) cos® (2]
410 {32 cos® (1”{3) cos® (E;ﬂ)

b B [(5)" e () e () + () (22

2,22 2 k2n2B2 ' 2 2 |
oot [0 ] &+ e g [ ()
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These results can be simplified, using Eq. 9.190 to write [(w/c)? — k%] = (wmn/c)?, €opto = 1/c? to eliminate €,
and Eq. 9.188 to write [(m/a)? + (n/b)?] = (wmn/7c)%:

2 2
/(5) ‘da = o Hee /(u)da s 8w o Be.

2 %
Buows,, HoWin

Evidently

energy per unit time _ [(S)-da k& _¢ 57— _
energy per unit length ~ [(u)da ~w = w e~ Vs kP 0102, _qed

Problem 9.30

Following Sect. 9.5.2, the problem is to solve Eq. 9.181 with E, # 0,B, = 0, subject to the boundary
conditions 9.175. Let E.(z,y) = X(z)Y (y); as before, we obtain X(z) = Asin(k,x) + B cos(k,z). But the
boundary condition requires E. = 0 (and hence X = 0) when ¢ = 0 and ¢ = a, so B = 0 and k, = mn/a.
But this time m = 1,2,3,... , but not zero, since mm = 0 would kill X entirely. The same goes for Y (y). Thus

E, = Epsin (m;rx) sin (n_;ry) within,m =1,2,3;..5}

The rest is the same as for TE waves: |wp, = cmy/(m/a)? + (n/b)? | is the cutoff frequency, the wave

velocity is v = ¢//1 — (Wmn/w)?, and the group velocity is vy = ¢y/1 = (Wmn/w)?. The lowest TM mode is

11, with cutoff frequency wi; = emy/(1/a)? + (1/b)%. So the ratio of the lowest TM frequency to the lowest
/ 2 2
TE frequency is ey liay +J0) =1+ (a/b)2.

(cm/a)
Problem 9.31 s )
(a)V-Ezggg(sEs)-_—ﬂ/;V‘B_l (Bs) = 0v:VxE=2E: &%%@“— E"’“S‘“(:‘z‘“’”.;s;
OB % _ Eowsin(kz — wt) ¢+ (since k= wje); V¥ B _.Q‘E‘E‘+ EE( By)% Eoksm(kz—wt) sl
ot ¢ s 0z c 8

10E _ Epwsin(kz -
2ot 2
(b) To determine A, use Gauss’s law for a cylinder of radius s and length dz:
E.da= EUM{%TS) dz = }Qenc = El)n dz = I A = 2weg Ep cos(kz — wt).'|
0 0

To determine I, use Ampére’s law for a circle of radius s (note that the displacement current through this
Eq cos(kz — wt) 27 E;
c s

t) § v. Boundary conditions: El = E, =0v;BL =B, =0 .

(278) = polene = |1 = . cos(kz — wt).
Hoc

The charge and current on the outer conductor are precisely the of these, since E = B = 0 inside
the metal, and hence the total enclosed charge and current must be zero.

Problem 9.32
(s =] = =]
f(2,0) =] A(k)e™** dk = f(z,0)* =f A(k)*e"**dk. Let ! = —k; then f(z,0)* =

loop is zero, since E is in the § direction): fB-dl =

/_ A(=1)*eit*(~dl) =/ A(-l)e* dl = / A(—k)*e** dk (renaming the dummy variable | — k).
00 oo -0

f(2,0) = Re [ f'(z,ﬁ)] = %["(z,o) % f(z,O)‘] = f_ " % [fi(k) % A(_k)*] ei** dk. Therefore
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LA(k) +£1(—k)'] = 51;/00 f(z,0)e = dz.
Meanwhile, f(z,t) = / a A(k)(—iw)e'*==wt) d = f(z, 0) = / = [—iwA(k)]e™*? dk.

-0

(Note that w = |k|v, here, so it does not come outside the integral.)

17
2

£y

f(Z.O)‘ = foo [?:wzi(k)‘]e_ik: dk = foo [i!k[v.“i(k)*]e_‘.k: dk = /_oo[ﬂ”.v‘;i(_f)*]eﬂz(_dl)
= /m{ilklvﬁ(—k)‘]e"“ dk = /m liwA(=k)*)e™* dk.
f2,0) = Re[f(z,0)] = [}(z»ﬂ) +f(z,00] = /m %[—iwfi(k) + iwA(—k)*]e™* dk.

T [ (k) — A(—k)* ] T / f(2,0)e~** dz, or = {A(k] A(-k)* } 177/_2 [5.]'(2:0)] e—ikz gy

o0
Adding these two results, we get | A(k) = %/ [f(z,O) - —f(z,U)] e dz.| qed
6o w

Problem 9.33
1 0E,

(a) (i) Gauss’s law: V-E = e R 07

(ii) Faraday’s law:

B 1 1.0
= = VxE= 936(51n9E¢)r~~5~(rE¢,)9
3 I, sin @ 1 108 1 -
= — | E — —si F——— i - —si :
—ind 50 { 03 (cosu s smu)] r e [Eg sin @ (cosu 37 smu)] 0
a : g .
But — cosu = —ksinu; — sinu = k cosu.
ar or
= : E251nfai‘|::tas6 cosu—isinu i‘—lEosinB —ksinu + —l—sinu—lcosu 0.
rsinf r kr r kr2 r
; . 3 i il : 1 -
Integrating with respect to t, and noting that /cosudt =——gne and [ sinudt = — cosu, we obtain
W
B.= Bococd ( u+icosu)i‘+Eosm9( kcosu+ — 2 c03u+151nu 0.
T wrz kr wr kr?
(iii) Divergence of B:
YR = 1@(B)+ (51n9B)
T 2o rsinf 90 .
s iﬂ Q—EUCOSS (sinu+-1—cosu) + . i Egsin26 (—kcosu+ i1::05u+ lsinu
T r29r w kr rsinf 96 wr kre r
1 2E,cosf 1 1,
= ————— | kcosu— —cosu— —sinu
r? w kr? r
_1 2Fq 8100 6058 —kcosu+ — 1 cosu + lsmu.
rsinf wr kr? r
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2E, 7 1 1 1 1
= SN EE kCOS‘u——COS’U.-——Slnu—kCOSU-I"—'COSR'l'—SIHU =0EY
wr? kr? kr? r

(iv) Ampére/Mazwell:

119 0B,
- [3?‘ i 39}4’
Eqsin@ 1 .. 0 [2Eqcosf 1 “
- {&_[ = (_kc°5u+mcosu+;81nu)]—%[T 1nu+-§;cosu ¢
= Eosmé‘ (k2 u~~—-——2 cosu — — sinu — ls1r11.;+£cosu-+——2~smm+i(:osu (f)
kr3 r? rd kr3
kE 0 - lE 5
= g (ksmu-i——cosu)qb Oj_mg (ksinu%—%cosu)fﬁ
512—%—?- - lEgsm ( nu+——cosu) ;:Eoime(ksinu+lcosu)tfb
r
1Eubln9

= nu+—cosu)¢ VxB. Vv

(b) Poynting Vector:

Sher —L(E x B) = Sanud (cosu— —1~sinu) [M ( nu+ icosu) 6
Mo HoT kr w

r2 kr

EU sinf 1 E.. "
+ —kcosu+ — cosu + —sinu | (—F)
wr kr? T
2sinf [ 2 0 1 1 -
= Egtin €7 |sinucosu + —(cos? u — sin® u) — —— sinucosu| 0
powr? r kr k2r?
sind —kcos2u+icoszu+ 1sinucosu+lsinucosu . smucosu——l sin®u )
kr? r T k2rd kr?
EZsin6 [ 2cosf 1 3 1 5 . 2 A
T {—Tu [(1 - W) sinucosu + E(COS u—sin“u)| @

2 1 1
+ sind [(—; + m) sinu cosu + k cos® u + m(sin%; — cos? u)] f'}.

Averaging over a full cycle, using (sinucosu) = 0, (sin® u) = (cos? u) = %, we get the intensity:

I=(S)=E§Sin8 (k : )f- E2sin®@ 4

—sinf
g7t 2ugcr?

Howr?

It points in the  direction, and falls off as 1/r?, as we would expect for a spherical wave.

& _ E? 51r192 E} sl _ |47 E§
(c)Pu./I-da_ 2“00/ 3 sin Bdﬁdqb— /0 sin” 6 df = T
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Problem 9.34

of{ ;o d/}@

zieslls :E:;(Z,t) e E:Iei(‘klz_w” X, gf(z,t) = “}_léffi(ki-z-—wt)y
EH(Z.t] = ERE‘(—klz—ut) 5'(, BR[Z, t) — —&EHet(-k]z—w” y-.

O<z<d: E:]r(zut) — ?rgi(kzz—wt) X, Ifjlr(z,t) = J_z_étei(fczz—ut)y
Ei(z,t) = Eeilt-k22=wt) 5 By(z,t) = __Flz_EIea(—k;z—w:) $.

ol { ET(Z. t) o ETei(kaz—w” i, ﬁT(Z,t) — %E‘Tei[icsz-w:) y

Boundary conditions: Elli = Eg, BllJ = Bg, at each boundary (assuming p, = po = 3 = po):
Ei+Epn=E, +E;

&= 3 S T o
—FE——FEp=—E.—-—E =3 E-Eg= ﬁ(E,- = E{), where 8 = ‘U],/‘Uz.
U1 U U2 Ug
Ereiknd + Ete—l'kad i ETeikad;

=

iEreikzd - i@;e'""d = lETe'*’d = E.e*2? — Ee~*24 = qEre'*s?, where a = vy /vs.
U2 V2 U3
We have here four equations; the problem is to eliminate ER, E,, and E, to obtain a single equation for

Ep in terms of Ej. = ’ E -

Add the first two to eliminate Ep : 2Er=(1+pB)E. + (1 - B)Ey;

Add the last two to eliminate E; : 2E,ei*24 = (1 + a)Epeiksd;

Subtract the last two to eliminate E, : 2Eje~*2¢ = (1 — a)ETeksd,
Plug the last two of these into the first:

2Er = {1+ ﬁ)%e_ik’d(l + a)Erpe*s? 4 (1 - ﬁ)%e"‘zd(l — a)BEret*s?

4E; = [(1 +a)(l+ g)e—szd +{l—-a)(l - ﬁ)eikgd] Ereitsd
[(1 i aﬁ) (e—ikzd 5 eikzd) e (a +J@) (e—‘ikzd o eikgd)] ETeﬂaad
2[(1 + aB) cos(kzd) — i(a + B) sin(kqd)] Epeitad,

I

I
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E2 o2 12 2
Now the transmission coefficient is T = il j;“ =58 (,uoea) |€Tl el IEET{ = aﬁ}Erl , SO
neaky poer ) |E;2  vs |Ef|? |E|?
2 1 |Er? 1 (1 ; : iksd]|
T - Ew—é{ N =—alg [(1 + aB) cos(kad) — i(a + B) sin(k2d)] e
T
= ﬁ [(1+ ap)? cos?(kzd) + (a + B)? sm2(k2d)] But cos?(kzd) = 1 — sin?(kyd).
= ﬁ (1 +aB)? + (a? + 208 + A% — 1 - 208 — a? %) sin®(kyd)]
1 ;
& adaf [(1+aB)® - (1 —a®)(1 — B?)sin®(kod)] .
But n; = —, no = ,ng——,soazn—?', 2
1 V2 & ng n
.. s, M3 —n3)(nd-nd) .,
g (n1 +n3)* + il sin®(k2d)

Problem 9.35
T=1=sinkd =0= kd =0,r,2r.... The minimum (nonzero) thickness is d = w/k. But k = w/v =

2rvfv = 2nvnfc, and n = \/ep/eopo (Eq. 9.69), where (presumably) p & po. So n = \/e/eo = /€, and hence

e c 3 x 108
= = - =9.49 x 10~*m, or [9.5mm.
2nv\fer  2v\/&  2(10 x 109)/2.5 +3 R
Problem 9.36
From Eq. 9.199,

. 1 [(16/9) — (9/4)]11 — (9/4)] ..
=i = VR {[(4/3) +1% + /%) sm2(3wd/2c)}
3 [49 . (=17/36)(=5/4) 49 8
= [ 5 I — sin (3wd/2c)] ——-——--(48)(36) sin? (3wd/2c).
48
T = %7@5/%) sin?(3wd/2¢)
Since sin? (3wd/2c) ranges from 0 to 1, Thin = ﬁ = P oan = % Not much

variation, and the transmission is good (over 90%) for all frequencies. Since Eq. 9.199 is unchanged when you
switch 1 and 3, the transmission is the same either direction, and the | fish sees you just as well as you see it. |

Problem 9.37 i g
(a) Equation 9.91 = Ep(r,t) = Eo,e'*T™ %) kr .r = kp(sinfr % + cosfrz) - (zX +yy + 23) =

kr(zsin @1 + z cosOp) = xky sin @7 + izkry/sin® 87 — 1 = kx + ikz, where

G Wwna\ ny wny .
k = krsinfr = (———) —sinfy = —ssin 8y,
c / ng c

kK = kry/sin’6r—1= WTM\/(m/ngP sin?6; — 1= %\/ﬂf sin?@; —n2. So

Er(r,t) = Eoe **e!*z=vt) ged
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E‘ E
(b) R = EGR b Here 8 is real (Eq. 9.106) and a is purely imaginary (Eq. 9.108); write a = ia,
0r | ]
; ia — 3 —ia—J a? + 32
h 2 = - —| — 2
with a real: R (m+ﬁ) (—ia+,@) pe Ry .n
1-af 1-aB> _[1-iaB® (1 -iaB)(1 +iaB)
F Prob. 9.16, Ey,, = |——| Ey,, so R = = - e - =T
o) Bt p Q T+ag| °.% 1+ af | 1+iap (1 +iaB)(1 - iaB)

(d) From the solution to Prob. 9.16, the transmitted wave is
2 Rr 5 IR
E(r,t) = B ef*r %0y B(r,t) = gEOT e kT T=wt) (_ cosOr % + sinfr 2).

; : . : ck . CK
Using the results in (a): k7 :r = kz + ikz — wt, sinfy = —, cosfp = i —:
Wna wina

E(r,t} = EDTe—xzei(kz—ut} ¥, (l’ t} o -I—Eg e % i(kx—wt) ( .‘ﬂx_}_ 4E_k_z) .
()] wne Wi

We may as well choose the phase constant so that E‘(,T is real. Then
E(r,t) = Epe " cos(kz — wt) §;
1 i .
B(r,t) = —Eoe " ——Re{[cos(kz — wt) + isin(kz — wt)] [ix % + k 2]}
Vo2 whne

= :.._]:-EOB_M [ksin(kx — wt) X + kcos(kz — wt) Z]. qed

(T used vz = ¢/n2 to simplfy B.)

(e) (i) V'E = Bﬁy [Eoe™"* cos(kz — wt)] =0. v
i A i EU KZ . o2 15 9 & ]
(ii) V.-B = e {-;—e ksin(kz wt)] + 92 [w e "k cos(kz — wt)
= % [e™"*kk cos(kz — wt) — ke~ **k cos(kz — wt)] =0. v
% v Z
() VXE = |8/6z 8/oy 8/0z |=-Fug, %,
Oz i}
B oty
= KEpe " cos(kr — wt) X — Ege™"*ksin(kz — wt) 2.
- %—? — —%e'“ [—Kw cos(kx — wt) X + kwsin(kz — wt) 2]
= kEpe "% cos(kz — wt) %k — kEge **sin(kz —wt)2 =V x E. v
% § 3
(iviVxB = | 8/6z 8/8y 8/0z | = (8;?3 - 8882) v
e T £ &

E0 —mkﬂ

= [— %nze "% sin(kz — wt) + — sin(kz — wt)] ¥ = (k? - k?) %e"“ sin(kz — wt) §.

2
Eq. 9.202 = k? — k% = (E) [nf sin? 8y — (n; sinf;)? + (n2)?] = (%) = wleapia.
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= epwEoe™ " sin(kz — wt) ¥.

E
ugcgaa—t poeaEge " wsin(kr —wt)y =V xB V.
£ 2 5 y Z
® g i(E x B) = i&6'2“ 0 cos(kz — wt) 0
K2 ki ksin(kz — wt) 0 k cos(kz — wt)
E?
= —0e72%% [k cos®(kz — wt) % — ksin(kz — wt) cos(kz — wt) 2] .
Haw
- - 2 ; B3k o g
Averaging over a complete cycle, using (cos?) = 1/2 and (sin cos) = 0, (S) = me "% %. On average,
2

then, no energy is transmitted in the z direction, only in the z direction (parallel to the interface). qed

Problem 9.38
Look for solutions of the form E = Eqo(z,y, z)e” !, B = By(z,y, z)e”*“*, subject to the boundary condi-
tions Ell = 0, B* = 0 at all surfaces. Maxwell’s equations, in the form of Eq. 9.177, give
V-E=0 =V -Ey=0, VxE=-28 = V xE; =iwBg;
{ V.:B=0 =V -By=0; VxB_—I,-%;E =V xBg= w—,-En
From now on I'll leave off the subscript (0). The problem is to solve the (time independent) equations
V-E=0; V xE=iwB;
V-B=0; VxB:-%‘g’-E.
From V x E = iwB it follows that I can get B once I know E, so I'll concentrate on the latter for the moment.

: 2
V x (V xE)=V(V-E)- V’E = —-V’E = V x (iwB) = iw (—%E) = "';—2E So

2 3 ]
V2E, = — (u—;) E;; VEEL, = - (%) Ey; V2E, = - (%) E.. Solve each of these by separation of variables:

1d2X 142 1d4°Z

d’X d*Y a2z w\?
E.(v,y,2) = X(@)Y (1) Z(z) = de—2+zx +XY=5 =-(2) xvZ, 0ot AT AT
X 3By 5.2 g 2 .
~(w/c)®. Each term must be a constant, so 7 2 -kZX, WE = —k,Y, ar —kZZ, with

k? + k2 + k2 = — (w/c)*. The solution is
E.(z,y,2) = [Asin(k,z) + B cos(k,z)][C sin(kyy) + D cos(k,y)][E sin(k.z) + F cos(k.z)].

But Ell = 0 at the boundaries = E; =0aty=0and z=0,s0 D = F =0,and E, =0aty =band z =d, so
ky, = nm/b and k. = lw/d, where n and [ are integers. A similar argument applies to E, and E.. Conclusion:

E.(z,y,z) = [Asin(kzz)+ B cos(kzz)]sin(kyy)sin(k.z),
Ey(z,y,z) = sin(kzz)[Csin(kyy) + D cos(kyy)]sin(k.z),
E;(z,y,2) = sin(kyz)sin(kyy)[Esin(k.2) + F cos(k.z)],

where k, = mm/a. (Actually, there is no reason at this stage to assume that k., ky, and k. are the same for
all three components, and I should really affix a second subscript (z for E,, y for Ey, and z for E,), but in a
moment we shall see that in fact they do have to be the same, so to avoid cumbersome notation I'll assume
they are from the start.)

Now V-E = 0 = k;[A cos(k,z)—Bsin(k,z)] sin(kyy) sin(k. 2)+ky sin(k.z)[C cos(kyy)— D sin(kyy)] sin(k.2)+
k. sin(k.z) sin(kyy)[E cos(k.z) — Fsin(k.z)] = 0. In particular, putting in z = 0, k. Asin(kyy) sin(k:2) =0,
and hence A = 0. Likewisey = 0 = C = 0and z = 0 = E = 0. (Moreover, if the k’s were not equal for different
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components, then by Fourier analysis this equation could not be satisfied (for all z, y, and z) unless the other
three constants were also zero, and we’d be left with no field at all.) It follows that —(Bk, + Dk, + Fk,) =0
(in order that V - E = 0), and we are left with

E = B cos(k;x) sin(kyy) sin(k,2z) X + D sin(k,x) cos(kyy) sin(k.z) § + F sin(k.z) sin(k,y) cos(k.2) 2,
with k; = (mn/a), ky = (n7/b), k, = (Ir/d) (I, m, n all integers), and Bk, + Dky + Fk, = 0.

The corresponding magnetic field is given by B = —(i/w)V x E:

B; = —i (685;: - %%i) = —5 [Fky sin(k,z) cos(kyy) cos(k.z) — Dk, sin(k. ) cos(kyy) cos(k,2)],
By = —5 (852 - aaE;) = —% [Bk, cos(k.z) sin(kyy) cos(k.z) — Fk, cos(k;z) sin(kyy) cos(k.2)],
i (0E, OE, i . .
B, = el G ey =T [Dk; cos(k,z) cos(kyy) sin(k. z) — Bk, cos(k, ) cos(k,y) sin(k.z)].
Or:
B = —5(Fky — Dk, ) sin(k;x) cos(kyy) cos(k,z) & — 5(Bkz — Fk;) cos(kzz) sin(kyy) cos(k,2) §

i 5(9&1 — Bk,) cos(k,z) cos(kyy) sin(k,z) 2.

These automatically satisfy the boundary condition B+ =0 (B, =0 at z =0 and z = a, B, =0aty=0and
y=b,and B, =0 at 2 =0 and z = d).
As a check, let’s seeif V-B =0

V.B —%(Fky — Dk )kz cos(kzz) cos(kyy) cos(k,z) — i(Bkz — Fkz)ky cos(kzz) cos(kyy) cos(k,z)

- 5(Dk¢ — Bky)k; cos(kzx) cos(kyy) cos(k. z)

—3-(Fk2ky — Dkgk; + Bk.ky — Fkzky + Dk k. — Bkyk.) cos(k, ) cos(k,y) cos(k,z) = 0. v
w
The boxed equations satisfy all of Maxwell’s equations, and they meet the boundary conditions. For TE
modes, we pick E; = 0, so F = 0 (and hence Bk, + Dk, = 0, leaving only the overall amplitude undetermined,
for given I, m, and n); for TM modes we want B, = 0 (so Dk, — Bk, = 0, again leaving only one amplitude
undetermined, since Bk; + Dky + Fk, = 0). In either case (TE;mn or TM;;,), the frequency is given by

w? = Ak + k2 + k2) = ¢ [(mm/a)? + (n7/b)? + (in/d)?], or |w = em/(m/a)? + (n/b)? + (I/d)>.




Chapter 10
Potentials and Fields

Problem 10.1
oL v 8 oV g 1
2 —_— = 2 —_ —_— _— . _— 2 — . = ——
LAV + = VV = wegg + 5 (VoA kmags = VYA (V. Ay= ——p. ¢
9%A ov
_ 24 _ il ’, |
= VA — e otz \% (V A + poeo &) wod. v

(PA~VL

(a) W= ~/ (50E2 - —Bz) dr. At t; =d/e, z > d=ct;,so E=0, B =0, and hence | W(¢;) = 0.

Problem 10.2

At To =(d+h)/c, cta =d + h:
'una(d+h )z, B= 1’uoa(d+h-x)y,

E ==

so B? = —IEEE, and
c
(60E2 - isz) =¢ (52 B -—-lEE) = 2¢0E2.
Ho Ho€o €2
Therefore
GHER) d+h
o pia? / 5 _epda®lw [ (d+h-z)? | eopda®lwhd
W(ts) = 5(260) 4 (d+ h-z)°dz (lw) = 7 3 i T ,
b so)= LB xEB) = L Bl-sx (29)| =l B0n = i“" T
Ho 0oC HoC

(plus sign for > 0, as here). For |z| > ct, S=0
So the energy per unit time entering the box in this time interval is

2
dW =P= /S(d) -da= %(a“dﬁ

Note that no energy flows out the top, since S(d+ h) =0
179
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(d+h) /e (dh) /e

Hoo®lw b _ poa®lw [(ct —d)? | moPlwh?
() W = / Pa =100 / (et — ) de = 2% G i

dfz

Since 1/¢? = po€o, this agrees with the answer to (a).

Problem 10.3

oA | T, - .
i e e B=VxA=[0]
This is a funny set of potentials for a [stationary point chargelq at the origin. (V = e , A = 0 would, of
TED
course, be the customary choice.) Evidently | p = ¢6°(r); J = 0.
Problem 10.4
oA : =
E = -VV- 5 e —Agcos(kz —wt) §(—w) = | Agw cos(kz — wt) y,|
B = VxA=3% % [Ao sin(kz — wt)] = | Aok cos(kz — wt) Z. |
Hence V.:E=0v, V.-B=0 /.
i i) ; " dB ; "
VxE=1% 7 [Aow cos(kz — wt)] = —Agwk sin(kx — wt) 2, L —Apwk sin(kz — wt) Z,
oB
Vil s V.
so VXE = 5t '

E ‘
%t = Agw? sin(kz — wt) §. |

OE .
So VXB = paco " provided or, since ¢ = 1/,

Problem 10.5

o ox 1 ¢q 1§ T gt ( 1 e,
V_V_EE_O (4ﬂegr) _41regr At YA 47reor2r+ 4qregqt 2 #

This gauge function transforms the “funny” potentials of Prob. 10.3 into the “ordinary” potentials of a sta-
tionary point charge.

Problem 10.6

VxB=-¥ 5% [Aok cos(kz — wt)] = Aok? sin(kz — wt) ¥,

Ex. 10.1: V-A = 0; ‘?;: 0. [Both Coulomb and Lorentz. |
t P t
Prob, 10.3: Viki= —-2- v [ = ) = ~Z80); LA
dTeg r2 €0 ot

2
Prob. 10.4: V-A =0; ?91: 0.
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Problem 10.7

Suppose V-A # —pugeg—. (Let V-A + ,qu(]aa—“:’ = &—some known function.) We want to pick A such

3t
that A’ and V' (Eq. 10.7) do obey V-A' = —pneoé;;—.
] 2
V-A'+p.gegav = v-A+v2).+poeuaV N & + 02,

ot o+ H0FE
This will be zero provided we pick for A the solution to 0?A = —&, which by hypothesis (and in fact) we know
how to solve.

We could always find a gauge in which V' = 0, simply by picking A = f(:' V dt'. We cannot in general pick
A = 0—this would make B = 0. [Finding such a gauge function would amount to expressing A as —V ), and

we know that vector functions cannot in general be written as gradients—only if they happen to have curl
zero, which A (ordinarily) does not.)

Problem 10.8
jFrom the product rule:

v. (%) £ %(V-J) 3 (v%) v (%) o %(V"-J) 43 (v*%) :

1 1
But V; = —V';, sincea=r—r'. So

v. (%) = %(V-J) 2 (v'%) = %(V-J] + %(V’-J) — V. (%) .

But
8J. 8J, 8J. 0J.0t, 0J,0t. 8J.0t,
N et e e o T O
and
B a0 . O s 1y B o 15
9z cdz’ Oy  cdy 0z  coz’
S0
aJ, o 81,00 08I, 183
Yl e S B Bz] LA
Similarly,

ap 1487 :

% " cor, (VY

[The first term arises when we differentiate with respect to the ezplicit r’, and use the continuity equation.]
thus

JY _1[ 14 1[ 8p 1483 i (J _ 10p ,(J)
V'()_;_ca )] 4[6t cot, (Va,)] pi7 e Rl e

(the other two terms cancel, since V4 = —V'2). Therefore:

L B g Sy B ﬂ_EI[E L B
i 4ir | atfa-dT fV (4) dT]_ M 5t [4?760 4df dr | 2 aa

14
Th> last term is over the suface at “infinity”, where J = 0, so it’s zero. Therefore V-A = —pgeg ?9—1& v

VI =—
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Problem 10.9
(a) Asin Ex. 10.2,fort <r/c, A=0;fort > rfe,

v/ (ct)2—r2 v/ (ct)2=r? £/ (et)2—r2
Ay (&,)2 j’ t—\/r§+z2/c 5d4 e . P
R Sl A= - [ g .
Sa\E. — o2
= (;120;6 ) ltl (Ct+ (:t) = ) —~ %\/ (ct)? —?2] . Accordingly,
R
e = <28 (45T
ot T T
i r (l) o 1 2% B .-
ct+f(ct)2 =12 ) \r 2. /(ct)? —r2 2¢ /(ct)? —r?
e —&ki In ct + +/(ct)? —r? s ct B ct
% 2n T Vet — 2 (et 3
e
— o . In (Ct Hyld - F ) Z (or zero, for t < r/c).
2T r
_04; .
B(r!t) = 67' ¢
1 —2r AS: =8 P )
5 2m ct + \f —r? e 2¢\/(ct)? —r2

=L Z 3 _ _Hok (= %) o ok r———s
&1 {r\/(ct)z o 2 C‘V/(Ct)z_‘"?}‘;b_ 21 rey/(ct)t —1* O 2nre (ct)? =17 &.

(b) A(r,t) = pﬂ / M dz. But 2 = v/r? + 22, so the integrand is even in 2:

A(rt) = (@ﬁ)zfumuldz

4 2

1 22 2dr
Now z =22 —r? = dz == = ;and z =022 =7, z= 0= 4= po.. S0
2712 Va2 -r?

o0
A(r,t)=%zf ia(t-’i)—ﬁd"—
r

c 4_2_?-2
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Now 6 (t —2/¢c) = cd(2 — ct) (Ex. 1.15); therefore A = Eggﬂ Zc : f/(i:_i:%
A(r,t) = p;tinc \ﬂct)l?—-—r? Z (or zero, if ct < 1);
E{r %) = ——% = —%ﬁ (_1) [(ct)zzizj_g]ﬂ? B 21?[(2()}3053:2]3}2 z| (or zero, for t < r/c);
B(r,t) = ﬁaéAtz 7 _ _#oztfc ( 1) . —2:2]3!2 s Qﬂ[(;?:q—oiz]&’? @| (or zero, for t < r/c).

Problem 10.10
_#_O/I(tr) ﬂ-uk/(t*‘i/c)dl__ﬂok{ ﬁ——-l—/dl}
47 2 4 2 c

pokt [ 1 1 . [tdz -
But for the complete loop, [dl =0, so A = =\ dl + 3 dl+2% — Here [, dl = 2a% (inner
1 2 a

circle), [, dl = —2b% (outer circle), so

pokt
T

"k‘ In(b/a) %,| E = —%‘% “"kln(b/ y&.

A=

[ (2a) + = ( 2b)+2ln(b/a)}x=> A= “

The changing magnetic field induces the electric field. Since we only know A at one point (the center), we
can’'t compute V x A to get B.
Problem 10.11 :

In this case p(r,t) = p(r,0) and J(r,t) =0, so Eq. 10.29 =

1 '] = ! = '} &
E(r,t) = / A0 #0006 BE Db habds b o B TR0
dmeq 22 cr c
' Y s | ) Ly !
= 1 / p(r!0)+p(r)0]t s p(r,O)(’L/c) +p(r!0) f&d‘r": 1 /p(r’t);id‘r’. qed
47eq 22 e Al 173 dmeg 22

Problem 10.12 ) )
In this approximation we’re dropping the higher derivatives of J, so J(t,) = J(¢), and Eq. 10.31 =

B(r,t) = f—;’r [Jr t) + (¢, - )30, t)+ J(, t)} x adr', but t..—t:—)—; (Eq. 10.18), so
_ Ho J(r ) X2,
= 4ﬂ/ 2 dr'. qed

Problem 10.13
At time ¢ the charge is at r(t) = a[cos(wt) X + sin(wt) ¥], so v(t) = wa[— sin(wt) X + cos(wt) §]. Therefore
2= z% — afcos(wt,) X + sin(wt,) §], and hence 22 = 22 + a? (of course), and 2 = V22 + a?.

A-v = %(& V) = % {—wa?[- sin(wt,) cos(wt,) + sin(wt,) cos(wt,)]} = 0, so (1 - é—;) =1
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Therefore
1 q qua : V22 + a?
V(z,t) = | — ——; |A(2,t) = | —————=[—sin(wt,) X + cos(wt,) ¥), | where |t, =t — ————.
) 4dmeg /22 + a2 (2:1) dmegc?V 22 + ag[ ogfe) (wtr)9) v c

Problem 10.14
Term under square root in (Eq. 9.98) is:

I = =22 r-v) +(r-v)2 +cr? — 2 —v?r? + 0222
= (r-v)?+ (2 -v®)r?+c(wt)2 —2c%(r-vt). putinvi=r—-R2
= (r-v)i4+(E-)r?+P@*+R*-2r-R)-2%(r* —r-R) = (r-v)? —r?? + 2R%
but
(xr-v)2=r2? = ((R+vt)-v)? = (R+vt)%?
= (R-v)?2 +0'? 4+ 2(R-v)v’t — R - 2(R - v)tv? — v?t%0?
= (R-v)? - R*? = R%® cos? 8 — R%v? = —R%v? (1 — cos?§)
= —R*?sin?0.
Therefore 5
I = —R%?sin?0 + R? = *R? (1 - U—Esin2 9) :
[ iy
Hence

1 q

Vilri2) = ;
470 Ry /1 - % sin6

qed

Problem 10.15

Once seen, from a given point
x, the particle will forever remain
in view—to disappear it would
have to travel faster than light.

|Light rays in + x direction]

A person at point

x first sees the
particle when this p
ie atx = -ct or

t = -z/c

Region below wavy line represents space-time
points from which the particle is invisible
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Problem 10.16

First calculate t: t, =t — |r — w(t,)|/c =

—c(tr —t) =z — /? + 22 = c(t, — t) + T = /0% + 2t s
el e c e )+ c "
At — 2c%t,t + *t? + 2zct, — 2zct + 22 = b? + 2E3; | wit) P
2t (z — ct) + (z° — 2zct + c*t?) = b%; : T '
b? — (z — ct)?
2 t,- = — . e = 2 ™ R e T
cte(z —ct) =b* — (z — ct)*, ort 2els —cf)
Now V(z,t) = . & and a-v=z2(c—v); 2=c(t—t;)
" 4meg (e —a-v)’ 6 (S i 4
- i 1 Sy .. c2t, i At, e Aty +c(z—ct)—c*t,  clx—ct)
_21/b2+c2t,2, "T ety —t)+z  ctp+(z—ct)’ o cty + (z — ct) T et + (z —ct)’
c(t—t)e(x—ct) At —t)(x —ct) b2 — (z — ct)? b? + (z — ct)?
i y R A o e e Ty (R PR b - B
E Y cty + (z — ct) ctr + (z — ct) Sl e 2(z — ct) B2 =2 2(z — ct)
2ct(z —ct) =+ (z—ct)? (z—ct)(z+ct)—b® (22 -c22-b?)
t— r = = —
4 2¢(z — ct) 2¢(z — ct) 2¢(z — ct) i
1 _ [P+ (z—ct)? 1 2¢(z — ct) = b + (z — ct)?
we—2-v | 2z-—ct) |c(z—ct)2t(x—ct)—b2+(z—ct)?2] clz—ct)[2ct(z —ct) — b2 + (z —ct)?]
The term in square brackets simplifies to (2ct + = — ct)(z — ct) — b®> = (z + ct)(z — ct) — b* = z% — ** - b°.
L i b + (z — ct)?
P Vet = d7eg (z — ct)(z? — 212 — b?)’
Meanwhile
4= ‘V"r 2 ct, L 5. b —(z—ct)?] 2(z—ct) q b + (z — ct)? "
T2 T cetr+(@—ct)eT T | 2c(z—ct) | b+ (z—ct)? dmep (x — ct)(x? — c2t? — b2)
q b? — (z — ct)? 8

dmege (z — ct)(z? — c?t2 — b2) "

Problem 10.17
From Eq. 10.33, ¢(t — t,) = 2 = ¢*(t — t;)® =4? = a-2. Differentiate with respect to t:

2% (t - t,) (1 - %t;) = %, or ¢ (1 - %) =2 % Now 2 =r — w(t,), so

L L L TR

B 0t 8 B

ot ot’ ot
Ot o
and hence i qed

s m(1—%) = iR m=%(m—a-v)= %(4-11} (Eq. 10.64),
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Now Eq. 10.40 says A(r,t) = C%V{r, t), so

0A 1 [dv av ov t, av
5 cz(atv+ Bt) cz(at,.atv““"ﬁ)
M S W 1 —gc &
v [ﬂat 4rcoa—u+v41reo(a )ﬁat(""c & v)]
R o e (c@_ﬁt‘.vha.ﬁ‘:
T c%4meg |#-u Ot (a-u)2 \ Ot Ot ot)]’

i 23 ot, on ot,
But 2 = ¢(t — t;) =>§ —c(l—a), 2=r-w(t) = nT "V (as above), and

dv _ ovot, _ ot
ot Btr Bt Yot

ot ot ot
— 2 P v ot S il o
+ 41regc(4 u)? {a 2 u) [C (1 ot ) e < N ]}

cv+[{4 u)a+ (2 —v? +2- a)v] Bt}

41reoc(& dmepc(a - u)? {

4_”606(‘ u2{ Av+ [(a-ua+ (P -v +2- a}v]—}

Treaay [FEV6- 0 + ol va+ ol ~ o7 +a-a)y]
i 4120 (“‘}"VF [(M—&—v) (“'+Ea)+;(c -v +¢-a)V]- qged

Problem 10.18
E= -1

| a

[(c* =v*)u+2x (uxa)]. Here v

4reg (2-u)?d s > T
vk, a = a¥, and, for points to the right,2 = X. So u = ;—’_?..
(c—v)X, uxa=0, and 2-u =2(c—v). .

£ Al b e (540 1(c+v)c-v)?, g 1 fc+v) _
e dmeo 43(c v)3 (02 v)e-v)k = dmeg2? (¢ —v)3 2 dmeg2? \c—v *
B = lft xE=0. qed
c
For field points to the left, 2= —% and u = — (¢ + v) %, so 2-u = 2(¢c + v), and
S g L PR i L e i N0
= 4775043(c+v)3(c vile vt 4meg 42 (c+v) % B =0.
Problem 10.19 5
@B= - [ 1 Tt
dmeo [1 - (v/c)?sin® 4]
The horizontal components cancel; the vertical com- y
ponent of R is sin 8 (see diagram). Here d = Rsin#, so //‘
1 sind z 2 d R4
B g —E—cot.t?, so dr = —d(— csc €)d€—sin26d9, (] -
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1 d sin?6 df
E’é’dﬂ?-— Slnge—a’,-z—dg—u? Thus
A 5 i ¥ " sin 6 i - 5
E = 1-v*/) (S 3/2d|9. Let 2 = cosf, so sin®f =1 — 2°,
dmeo 0 [1-(v/c)?sin6)
A1 -v?*/)y ! 1
= 372 dz
dmeod o1 (1 (o/c)? + (v]0)2?]

M1-v/ed)y | 1 2

z
= dmepd [(v/c}3 (2 /v? = 1)y/(c/v)2 -1 +zgl 2,
Al=-v?/c?) ¢ 1 2 N S s
4megd ;(1—02/1)2) \/(c/v)2_1+1y_ 4‘.-‘1'60-3_)’

(same as for a line charge at rest).

(b) B = —12-(v x E) for each segment dg = Adz. Since v is constant, it comes outside the integral, and the
same formula holds for the total field:

1 1 1 2x 20, po2)w
B= = — —_— =3
c? R ) c2 47TE ( = ‘uofovtlfreo d - 47 d
2T o
But \w=1,50|B = E—E ¢ | (the same as we got in magnetostatics, Eq. 5.36 and Ex. 5.7).
Problem 10.20
w(t) = R[cos(wt) X + sin(wt) ¥]; Y
v(t) = Rw[- sin(wt) X + cos(wt) §;
a(t) = — Rw?[cos(wt) X + sin(wt) §] = —w?w(t); q
A= _w(tr); L
2= R;
tr=t—R/c;
2 = —[cos(wt,) X + sin(wt,) §);
u = ot—v(t) = —c[cos(wt,) X + sin(wt,) §] — wR[— sin(wt,) X + cos(wt,) J]
= —{[ccos(wt,) — wRsin(wt,)] R + [esin(wt,) + wR cos(wt,)] ¥} ;
ax(uxa) = (2-a)u—(2-u)a; 2-a=-w-(—w?w) = Ww?R%
2-u = R[ccos®(wt,) — wRsin(wt,) cos(wt,) + csin®(wt,) + wRsin(wt,) cos(wt,)] = Re;

v? = (wR)?. So (Eq. 10.65):

St ol _ .2R? 2 _ _ g cu—Ra
E = o (Rc)3 [u(c¢* — w?R?) + u(wR) a(Rc)] = T (R?
G = @
S R {-[¢® cos(wt,) — wResin(wt,)] % — [¢? sin(wt,) + wRecos(wt,)] §

+ R%w® cos(wt,) % + R*w? sin(wt,) ¥}

— ig—eﬁ {[(w’R? - ¢®) cos(wt,) + wResin(wt,)] % + [(w?R? — ¢?) sin(wt,) — wRe cos(wt,)] ¥} -
0
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" laxE:l(aIE —4,E,) 2
[+

@ i4f€ Tge (eos(wte) [(WPR? ~ &) sin(uts) ~ wRecos(wty)]

—sin(wt,) [(w?R? - ¢?) cos(wt,) + wResin(wt,)] } 2
A oo o, 8 RE Uy i bt g 1 ¢ W,
= [~wRccos?(wt,) — wResin®(wt,)] 2 = y ——wRecz = e RO Z.

Notice that B is constant in time.

To obtain the field at the center of a circular ring of charge, let ¢ — A(27R); for this ring to carry current

since 1/¢? = eopo,

I, we need I = Av = \wR, so A = I/wR, and hence ¢ = (//wR)(2rR) = 2n[/w. Thus B = %%ﬁ, or,
0
B = %% Z, | the same as Eq. 5.38, in the case z = 0.

Problem 10.21

A(@,t) = Ao|sin(8/2)|, where § = ¢ — wt. So the (retarded) scalar potential at the center is (Eq. 10.19)

2 . s :
V) = 1 f A dl' = 1 f Ao Jsin[(¢ Wtr)ﬂ]lad(b y
4meg 2 4Teg Jo a
) sl . 2 A
= 41reo/ sin(6/2) df = 471‘60[ 2cos(6/2)] 4 “m‘ :
i |2
&5 47r£ B el = ey

(Note: at fixed t., d¢ = df, and it goes through one full cycle of ¢ or 8.)

Meanwhile I(¢,t) = Av = Aowa |sin[(¢ — wt)/2]| ¢. From Eq. 10.19 (again)

A(t)

2 : & i
& Edlr = ﬁ Aﬂwa151n{(¢ wtr)/2]1 ¢ ﬂd¢
dr | 2 4 Jo a
But t. =t — a/c is again constant, for the ¢ integration, and ¢ =—singpx +cosoy.

HoAowa
4
and integrate from 6 = 0 to # = 27 (so we don't have to worry about the absolute value).

/ sin[(¢ — wt,)/2]| (—sing X + cos@§)d¢p. Again, switch variables to 6 = ¢ — wt,,
0

HoAowa

i /0 sin(6/2) [— sin(f + wt,) X + cos(f + wt,) y] df. Now



/2" sin (6/2) sin(f + wt,.) df
0

/h sin (6/2) cos(f + wt,)dd =
0

So

Alr) = 4ar

_ Molowa

(

4
3

) [sin(wt,) X — cos(wt,) ¥] =

%/:ﬂ [cos (6/2 + wt,) — cos (36/2 + wt,)] df

2x
% [2 sin (8/2 + wt,) — gsin (30/2 + wt,)]

0

1
= sin(wt,)

sin(m + wt,) — sin(wt,) — %sin{&r + wt,) + 3

—2sin(wt,) + gsin(wt,-) — —g sin(wt;).

1 2

3 [—sin (8/2 + wt,) + sin (36/2 + wt,)] df
0

2w

% [2 cos (8/2 + wt;) — %cos (36/2 + wtr}]

0

1 1
cos(m + wt,) — cos(wt,) — 3 cos(3m + wt,) + 3 cos(wt,)

—2cos(wt,) + gcos(wt,.} = —% cos(wt,).

Holowa

{sinfw(t — a/c)] %X — cos[w(t — a/c)] ¥} .
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Problem 10.22

POTENTIALS
V.A

-1 oV

SOURCES
p.J

|
(v3=-32)

[ ] =sevaluate at the retarded

time.#,

FIELDS
E.B

aB

(V'B=0.VXE = )




190 CHAPTER 10. POTENTIALS AND FIELDS

Problem 10.23
Using Product Rule #5, Eq. 10.43 =

V-A = f—;qcv V[Pt —r-v)? + (= v?)(r? - c.ztz)]—llﬁ
= u;gcv - {_% [t —1-v)? + (? —v?)(r® = *t?)] By [(Pt—r-v)?+ (2 —v?)(r* - cztz)]}
= —% (@t —r1-v)>+ ( —v?)(r? - (:2t2)]_3’l2 v {=2(t—r-V)V(r-v) + (¢ —v*)V(r?)}.

Product Rule #4 =

V(r-v) = vx(Vxr)+(v-V)r, but Vxr=0,
d d e} i - G 2 A i
(v-V)r = (uxa +vya—y +vz~é—z-) (zX+yy+z2)=vX+v,§+v:2=v, and
V(r?) = V(r-r)=2rx(Vxr)+2(r-V)r=2r So
V-A = —% [(Pt—r1-v)? + (& —v?)(r® — *t?)] Hiye [—2(c®t —r-V)v + (c® — v?)2r]

= _ﬂ;:ic [(®t—r-v)?+(® —v?)(r® - (:2t2)]_3/2 {(St—r:v)v® = (=v*)(r-v)}.
But the term in curly brackets is : ¢’ tv® — v?(r-v) — ¢*(r - v) + v*(r - vl) =c(v’t —r-v).
pogc? (vit—r-v)

AT (2t —1-v)2 + (e — v?)(r? - c2t2)]3f2‘

Meanwhile, from Eq. 10.42,

_“050%_1/. = —lo€o 4?:60 qc (———;—) [(czt —r- v)2 + (.{:"3 i 1;2)(1-2 s cﬂﬁ)] -3/2 X
% [(Pt—r-v)?+ (S —v?)(r? — 3¢?)]
= -EE[@t-r-v)? +(F - o) - 2] 7 2Pt~ 1 v)e? + (P — v)(—2M)]
?r
_ poge® (2t —r1-v =t +v%t) CV.A Y
4 TR e 2 _ o 2V(p2 — 2421372 '
[(c2t — 1 - V)2 + (c2 — v2)(r? — c212)]
Problem 10.24 i af(t)
q1q2 1 i 3
T T r——— - q q
(a) | F 4meg (b2 + c2t?) s Zl ’

(This is just Coulomb’s law, since ¢; is at rest.)

(b) I = q192 /m ( 1 dt = q1q2 [_1_ b1 {ct/b)] ‘m _ N2 [tan_l(oo) wtan_l(voo)]

drreg b2 4+ c2t?) 4mey |be oo 4meobc
_ Nq2 [7_1“ i (_E)] _|Jg: T
" dmeghe L2 2 dmeg be




(c) From Prob. 10.18, E = —-2 lz (ﬂ) %. Here z
4meg T c+v

and v are to be evaluated at the retarded time t,., which is t »
given by c(t —t,) = z(t,) = /b2 + c2t2 = c*t* — 2ctt, + 2t = /’ .
242 2

t°—b i
bz+cztf SHto= C—2 Note: As we found in Prob. 10.15, )

g2 first “comes into v?ew” (for ¢1) at time t = 0. Before that it ’
can exert no force on g;, and there is no retarded time. From

the graph of ¢, versus t we see that ¢, ranges all the way from

—00 to oo while ¢ > 0.

222 — 22+ 0 b2+t
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)

1
x{t,-) = C(t — tf‘) = 2%t — 2%t {for i 0). ‘U(t) = Em ?, S0
c2t? — b? 2ct 2 — b
v(ty) = ( 2% ) (b2 = c2t2) = (W) (for t > 0). Therefore
5 243 L PY (22— B2 22 2 2,2 2
ey _ler ti)—(c I L R Bttt W

ctv (CER+0)+ (CB-B) 228 2 drey (b2 + 212)2 212

0, E<0;
P = _6102 4b? a

4rep (b2 + c%t2)? By ot

092 4,0 1 : ;
I ——— dt.
d) L= g 4b [o CEYE dt. The integral is

jab i y :
0 +/0 [(6/c)? +12)] }_ 2c2p? (g) -

N e A A [T T

__ g2 T
e = 47eg be’

m

4cb3’

(e) F1 # —F5, so Newton’s third law is not obeyed. On the other hand, I; = —I5 in this instance, which
suggests that the net momentum delivered from (1) to (2) is equal and opposite to the net momentum delivered

from (2) to (1), and hence that the total mechanical momentum is conserved. (In general, the

carry off some momentum, leaving the mechanical momentum altered; but that doesn’t happen in
case.)

fields might
the present

Problem 10.25

1
5= ExB); B=
Pn( ) c*

#ch{Ex(vxE)]—eg[E%—vE]E] Isk it M

The power crossing the plane is P = [ S - da,

SoS =

1 (v x E) (Eq. 10.69). E
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and da = 277 dr X (see diagram). So

P = ¢ /(E% — E%)2nrdr; E, = Ecos#, so E? — E2 = E%sin”6.

& 2 2 bl s R 4 1
= ZTI'EO'U f E~* sin 91"d‘.". FI‘OITI Eq 1068, E = 47{'60 %_2' R2 [1 T (U/C)g Sin2 9] 372 Where Y =E Y .IT,U',Z%Z_‘
2 oo )
1
= 277501;( d ) —2/ Lo = dr. NowrzatanBz)drza%d@; izgﬁﬁ‘
dreo ) v Jo RA [1- (v/c)?sin’§] cos® § R a
u. gk 1 pee sin® @ cos @

= L = df. Let u = sin®#, so du = 2sinf cosf dé.
2yt dmeo a® Jo  [1 - (v/c)?sin® 6]

16meoa®yt Jo [1 - (v/c)2u)® 16mepa?y4 \ 2 32mepa’

Problem 10.26
(a) | Fi2(t) =

1 ae
4meg (vt)2

(b) From Eq. 10.68, with # = 180°, R = vt, and R=-%

1 qug(l—v3/P) .
4meg (vt)?

Fgl (t) = —

)

Newton’s third law does not hold: Fy5 # Fa,

because of the extra factor (1 — v?/c?).

(c) From Eq. 8.29, p = ¢p [(ExB) dr. Here E = E;+E;, whereas B = By, so ExB = (E; XxB3)+(E2 xBy).
But the latter, when integrated over all space, is independent of time. We want only the time-dependent part:

1
p(t) = € f(El x By)dr. Now E; = SR f, while, from Eq. 10.69, B, = — (v x E»), and (Eq. 10.68)
dmeg 12 o2
o (1 -v2/c?) R 5 L ks Al x o le e
E; = are(l —z,!'zsing(?*/c2)3/2ﬁ. But R=r—vt; R° =7r°+v*t* — 2rvtcosf; sinf’ = 7 So
q2 (1 —2%/c%) (r —vt)

= . Finally, noting that v X (r — vt) = v x r = vrsinf ¢, we get
*7 4ne [1 — (vrsin6/Rc)?)*/? R®

1-v?2/c vrsiné . 1 @2(1 =22/ [ 1 rsind (F x ¢
B2=q2( 2/ ) ‘ mqf;.sOp(t):eoq 2(4 {, ) /—2 ( )m'
dmegc [R? — (vrsinf/c)?] 4meo TeoC T [R? — (vrsin@/c)?]
But # x ¢ = —0 = —(cosfcos pX + cos@sin ¢y — sinf %), and the = and y components integrate to zero, so:

qqev(l —v?/c?) 2 / sin? 6
(4mc)?eo r[r? + (vt)? — 2rvt cos@ — (vrsin 9/(:)2]3/2
- 1 212\ 5 |
- 2192( 2” [c°) 2 f rsin® 6 - -
8mcteo [r2 + (vt)2 — 2rvtcosf — (vrsinf/c)?)

p(t) = r?sin @ dr df d¢
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I'll do the r integral first. According to the CRC Tables,

/'°° T o 2(bz + 2a) gl [i__?_t‘mﬂ]
o (a+bz+cx2)3/2 " (4ac-b2)Va+bz +cz?|,  dac—-8 |V a
2 (2y/ac — b)
- b—2 2 b
Vot &~ ) = o~y v~ e BV
In this case = 7, a = (vt)?, b= —2vtcosf, and ¢ = 1 — (v/c)?sin? 6. So the r integral is
2 1

/1= (v/c)?sin® @ [Q‘Ut\f 1 — (v/c)?sin® @ — 2ut cosﬂ] i vt\/l — (v/c)?sin® @ [\/l — (v/c)?sin® @ — cosﬂ]
a _1/1 = (v/e)? sin29+cos€- . 1 5 il
vty/1— (/c)?sin® 8 [1 — (v/c)?sin@ — cos?g]  vEsin’ O(1 —v?/c?)

qqv(l —v?/c?) 2 1 5 re cosf
8mcleg vt(l —v2/c?) J, sin%6 \/1 — (v/c)?sin? 8

= - H&C {f sinfdf + = / gddeny de}.
8&mclept \/ .

(¢/v)? —sin’ @

1— (v/c)?sin? @ :
So

p(t) = j, sin® 0 do

But ["sinfdf = 2. In the second integral let u = cos 6, so du = —sin 6 do:
cosfsin @

b = =
/0 \/(c/v)2 P /_1 V(c/v)2 =1+ u?

du = 0 (the integrand is odd, and the interval is even).

Conclusion: | p(t) = HZQIEQ z | (plus a term constant in time).
(d)
1 qig2 1 qiga(l —v*/c?) q1q2 v? 9192 Hoq1q2
Fi2+Fy = - i= Rt Mg 5=

12+ a1 dmeo v22 © 4meg 02t %= Ireu?t? 8 et o - Sy e

dp Hoq192

s Z=F F ed
q yprs) 12+F21. g

Since ¢; is at rest, and g, is moving at constant velocity, there must be another force (Fpech) acting on
them, to balance Fi2 4+ Fa;; what we have found is that Frech = dpem/dt, which means that the impulse
imparted to the system by the external force ends up as momentum in the fields. [For further discussion of
this problem see J. J. G. Scanio, Am. J. Phys. 43, 258 (1975).]




Chapter 11

Radiation

Problem 11.1

From Eq. 11.17, A = _u(;po %sin[w(t —r/c))(cos@ ¢ —sinf ), so
V-A = “01-’0“-’ {Tz e [ 2%sin[w(t —r/c)] cos 9] + 511?1—9565 [— sin? 91 sinfw(t — r/c)]] }
= uopow { sinfw(t —r/c)] - — cos[w(t - r/c)]) cosf — %‘—5&%—9 infw(t — 'r/c)]}

N Po 3 enlofi= =2 i
= po€o {4?an (13 sinfw(t — r/c)] + = cos|w(t r'/c)]) cos 9} .
Meanwhile, from Eq. 11.12,

8V pocosh [ w? w .
Sy = {——E- coslw(t —r/c)] — = sm[w(t - r/c)]}
pow [ 1 ov
= —— sm[w(t —r/c)] = cos[w(t —rfc)]pcosf. SoV:-A=—peo—. qed
47eq ot
Problem 11.2
: et PoR L opne s . _Eo_& =
Eq. 11.14: |V (r,t) = - sinfw(t — r/c)]. | Eq. 11.17: [ A(r,t) = = sinfw(t — r/c)].

Now po X ¥ = posinf ¢ and # x (po X &) = posinO(F x @) = —posinf b, so

Eq. 11.18: [ E(r,t) =

coslw(t — r/c)]. | Eq. 11.19: | B(r,t) = —

pow? £ x (1:‘0 x 1) cosw(t —r/c)).

4

pow? (po X f)
4me r

2
How* (po X B2

Eq. 11.21: | (8) = o=

Problem 11.3
P = I’R = q}w?sin’(wt)R (Eq. 11.15) = (P) = 1g3w’R. Equate this to Eq. 11.22:

1 2d? d?w? 2me
q2 2R = M =|R= Eo or, since w = —,
g 12me 6me A

pod? 4m3c* 2 d2_2 i ; §2_ 2§2 - .
R=— e N —E?TMC(X) _-jrr(4rr>(10 )(3 x 10°) X = 807 X Q——_?SQ.G(d/,\) .

195
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For the wires in an ordinary radio, with d = 5x 10~2m and (say) A = 103m, R = 790(5 x 107%)2 = 2 x 10760,
which is negligible compared to the Ohmic resistance.

Problem 11.4

By the superposition principle, we can add the potentials of the two dipoles. Let’s first express V (Eq. 11.14)

dmege \ 2 + y? + 22
along the z axis. For one along x or y, we just change z to z or y. In the present case,

in Cartesian coordinates: V(z,y, z,t) = — ik ( : ) sinfw(t—7r/c)]. That’s for an oscillating dipole

P = po[cos(wt) X + cos(wt — m/2) §¥], so the one along y is delayed by a phase angle n/2:

sinfw(t — r/c)] = sin[w(t — r/c) — 7/2] = — cos[w(t — r/c)] (just let wt — wt — w/2). Thus
Vv P a 1 t Yy ¢
T 4meoc {xz +y2 + 22 sinfw(t —r/c)] - i cos[w(t — 'r/c)]}
= |- 22 22 fcos sinfu(t - /)] - sin peoslu(t — 7/} | Similarly,
A = “f” {sin[w(t — r/c)] % — coslw(t — r/c)] ¥} .

We could get the fields by differentiating these potentials, but I prefer to work with Egs. 11.18 and 11.19,

using superposition. Since Z = cosfF — sin# 6, and cosf = z/r, Eq. 11.18 can be written

2
= BUINE cos[w(t — r/c)] (i i ) In the case of the rotating dipole, therefore,
4mr T
_ | popow? & S oA e -
B .= y {cos[w(t r/c)) (x - r) + sinfw(t — r/c)] (y . r) } :
B = [lexE
= :

2
8= —l—(ExB)z L[Ex (f x E)] = L[Ez‘m(E-f)E] L (notice that E - # = 0). Now
Ho Hoc Hoc Hoc

2
B = (E%) {a® cos®[w(t — r/c)] + b? sin®[w(t — r/c)] + 2(a - b) sinfw(t — r/c)] cos[w(t —r/c)]},

where a = % — (z/r)f and b=y — (y/r)f. Noting that X -r =z and § - r = y, we have




197

z2 z? € yr zy Ty Ty

2
a ._1+~—~2-=1-$—2; e S AT ST s R S
T r

E? =

(S)

.. (p"“’ )2{1- (sinl?cos[w(t—-r/c)—~¢])2}i".

™ 2, 4
o M U sinﬂdﬁ—%/ sin 8d9] Hopow! (2—1-5)= el
0 0

rr rr 12 r2

dmr

(E‘lf_’?_“’j) : { (1 - f—j) cos®[w(t —r/c)] + (1 - %;) sin®[w(t — r/c)]

- 2% sin[w(t — r/c)] cos[w(t — r/c)]}

#_G}'i(}_w_? : —l xzcoszw = e zy sinfw(t — r/c)] cos[w(t — r/ec 2Siﬂ2w = re
(o) {1- 5 (0" costo - /)] + 2aysinfutt - r/elcoslt — /)] 47 sin?lote = 1/0) |

(m) {1- 2 woostote = r/0) + ysintute - r/)*

4y
But z = rsmﬂcosqﬁ and y = rsinfsin ¢.

{1 — sin” f (cos ¢ cos[w(t — r/c)] + sin ¢ sin[w(t — r/c)])Q}

1 — (sin 8 coslw(t — r/c) — qs])?} :

¥4

Intensity profile
(1- 4 sin2@)

y

c 4mr

po [ pow?\’ 1
o Y 5 5 B 47 B
c (471'1') [1 251n G]r

oy 2
g YRy
/(S) da = . (4ﬂ) /r2 (1 2sm 6)1‘ sin@ df d¢

1672¢ 8we 243 6me

This is twice the power radiated by either oscillating dipole alone (Eq. 11.22). In general, S = —l-(E xB) =
Ko

1 1
p‘._ [(E1 +E»5) x (Bl + BQ)] = — [(EI x B}) + (Eg X Bg) + (El x Bz) -+ (Eg X Bl)] =S, + So+ cross terms.

0 0
In this particular case, the fields of 1 and 2 are 90° out of phase, so the cross terms go to zero in the time
averaging, and the total power radiated is just the sum of the two individual powers.

Problem 11.5
Go back to Eq. 11.33:

A BN (31119) { cosfw(t —r/c)] — — sm[w(t = ?"/C)]}

47 r
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Since V = 0 here,

CHAPTER 11. RADIATION

e f;? e _ﬂz’-’:ﬂ (i‘;ﬁ) {%.(_w) sinfw(t —r/c)] — ‘f;“w cosfw(t — ?‘/6)]} ¢
s mzr”w (51:8) {F sinfw(t —r/c)] + = cos[w(t - r/C)]} é
B = VxA=- : 9§9(A¢sm8) f- l—('rA(;;) 0
& Si:‘g [_:_2 cos[w(t — r/c)] + E sinfw(t —r/c)] - % (—%) coslw(t — "/C)]] é} 1
| e {2908 [ ol - r/o)) - L sinlute - /o) ¢ }
_iﬂ [_r_ cosfw(t —r/c)] + — sm[w(i —¥/d)] + ( )2 coslu by "/c)]] é}'

These are precisely the fields
the solution to that problem) is

pomow?

we studied in Prob. 9.33, with A —
4dre

. The Poynting vector (quoting

205 o
momaw® (sinf\ r2cosf s c? . e 5 " S
S = ( = )i - 1 ) smucosu+wr (cos®u —sin®u) | @
: 2 G o n L. g 2 A
sin 6 [ = - —2—?3) sinucosu + SeosTut —5 (sin® u — cos® u) r},
3 4D
ol i 3 S _ pomgw” sin® @ |
where u = —w(t — r/c). The intensity is | (S) = Bog2 gz b the same as Eq. 11.39.
Problem 11.6
2t 20t rbtw! 2me
2p _ 2 2 P —I pomiw* e 0T 5D = H0 ; : =
PR =1:Rcos’(wt) = (P) = ~IiR= 19mc e R 68 1| On sincew = —=,
b* 1674t b\*
- i‘%gg_-%c- - gﬁﬁpoc (,\) = g(:ﬁ)(am x 1077)(3 x 10%)(b/A)* ={3.08 x 10°(b/1)* Q.|

Because b < A, and R goes like

the fourth power of this small number, R is typically much smaller than the

electric radiative resistance (Prob. 11.3). For the dimensions we used in Prob. 11.3 (b = 5cm and A = 103 m),
R=3x105(5 x 1075)* = 2 x 10712Q, which is a millionth of the comparable electrical radiative resistance.

Problem 11.7

With a = 90°, Eq. 7.68 = E’

=cB, B' = -E/¢, q,, = —cge = mo = ¢,,d = —cged = —cpo. So

—m 2 i . 2
E = c{_“ﬂ( 4;‘0/‘3)&3 (3 :9) (‘,OS[UJ(t 2 ‘I‘/C)] ¢} et % (Slnﬂ) cos[w(f, - rfc)] ¢
= 8 ¥ % 2
B' = —é {_NU( r:;/c)w (sx:ﬂ) cos[w(t — r/c)]ﬂ} = —HT:CU:) (SH:B) cosfw(t —r/c)] 8.
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These are identical to the fields of an Ampére dipole (Eqgs. 11.36 and 11.37), which is consistent with our
general experience that the two models generate identical fields exzcept right at the dipole (not relevant here,
since we’re in the radiation zone).
Problem 11.8

p(t) = po[cos(wt) & + sin(wt) §] = P(t) = —w?po[cos(wt) % + sin(wt) §] =

popiw! sin Zg
2

[B(t)]? = wipd[cos® (wt) + sin®(wt)] = piw?. So Eq. 11.59 says |S = t. | (This appears to disagree

16m2¢ r
with the answer to Prob. 11.4. The reason is that in Eq. 11.59 the polar axis is along the direction of p(tg);
as the dipole rotates, so do the axes. Thus the angle # here is not the same as in Prob. 11.4.) Meanwhile,
G- Hopdw*
6mc
and the orientation of the polar axis irrelevant.)

Problem 11.9
At t = 0 the dipole moment of the ring is

Eq. 11.60 says .| (This does agree with Prob. 11.4, because we have now integrated over all angles,

2w 2m
/,\rdl = /{,\0 sin@)(bsin @ ¥ + bcos pX)bdp = Aob? (y/ sin2¢d¢+§c/ sin ¢ cos ¢.d¢)
0 0

Po =
= AP(ny+0%) =7wb*A §.
As it rotates (counterclockwise, say) p(t) = po[cos(wt) ¥ — sin(wt) X], so p = —w?p, and hence (p)? = wip}.
Wb Aa)2 7"#0@’454)‘3
Therefore (Eq. 11.60) P = 6 w (b Ag)* = e S
Problem 11.10
p=-—eyy, y=3gt?, sop=—1get’y; p=—gey. Therefore (Eq. 11.60): P = (ge)2 Now, the time

it takes to fall a distance h is given by h = —gt2 =t = 4/2h/g, so the energy radlated in falling a distance h
2
i3lliay = Pt'= %\/ 2h/g. Meanwhile, the potential energy lost is U, = mgh. So the fraction is

7= Uraa _ pog’e® [2h 1 poe® [2g | (4m x 1077)(1.6 x 10719)? [(2)(9.8) m
e g mgh |6rmeV h|T 6m(9.11 x 10-31)(3 x 108) \/ (0.02)

6mre

Evidently almost all the energy goes into kinetic form (as indeed I assumed in saying y = 3gt?).
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Problem 11.11

CHAPTER 11. RADIATION

Ty
(a) Vo = o (cosé?i) sinfw(t —r+/c)]. Viee = Vy +V_. 9,
4mepe it - r
d
ry = 12+ (d/2)? F2r(d/2)cosf = r/1F (d/r)cosh =r (1 = %cosﬁ) : 2{ y
_t{s/
2
i = i (lﬂ: i(:059).
Ty r 2r
d/2
cos 64 wzr cosﬁ?q:E : ld:icose =cosl?:tii—coszﬁizpi
ri 2r:d x 2r 2r 2r

sin[w(t — r4 /c)]

Vi =

Vtot

In the radiation zone (r > w/c) the second term is negligible, so [V = —

Meanwhile

2r
sin{ [t - - (I F gcosﬂ)] } = sin (wtg + gicicosﬂ) , where to =t —r/c.

cosf F %(1 —cos?8) = cosf F isinzﬂ.

sin(wtp) cos (g—q cos 9) + cos(wtp) sin (Z-E cos 9) = sin(wtp) £ b;—d cos 0 cos(wty).
c c c

Pow
41reucr

(1 + — cos 9) (cosﬂ F %sin2 6) [sin(wto) + z—f cosé'cos{wtg)] }

Pow d i : w_d
4‘”60 { (c039 F —sin?0 + 5y €0 9) [sm(utg) =+ % cosﬂcos(wto)] }

Pow
4?TE[)

|
Pow [wd

dmeoer | c cos” f cos(wto) + = (cosr,2 6 — sin® 9) sin(wt.;,)]

5

cos @ sin(wtg) £ 2—3 cos® 0 cos(wtp) £ i (cos? 6 — sin® 6) sm(wto]

8

__4:“002?

pow?d

{cosz 6 cos(wto) + ﬁ (cos® 8 — sin® §) sin(wtu] .

Az -=F

Awe = Ap+A--

pow?d
4dmegcir

cos? § cos[w(t — r/c)].

Tj:; sinfw(t — ry/c)] 2

HoPow d . wd s
F { (1 + 5y 8 9) [sm(wtg) + % cosOcos(wtg)] } Z

d d
= ¥ “ziw [sin(wto) + 32% cos 6 cos(wto) £ 5 COSﬂSiH(wto)} z

HoPow

wd d ; -
oy [ : cos 8 cos(wtg) + = cos951n(?tu)] Z

2
_ | _topowd &L g
= s P ] [cos(uto) + = sm(wto)] Z

|
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2
In the radiation zone, | A = e cos @ cos[w(t — r/c)] Z.
4dmer
2
(b) To simplify the notation, let a = ——(]%::—)—d. Then
20
o= acoi cosfw(t — r/c)];
v. 19y - 2 1 W N
NV = it 5 0 = acos®d {—-;z—cos[w(t —rfe)] + Esm[u(t - r/c)]} P
—2cosfsind a 2
% cosfw(t —r/c)] 0 = a% coi : sinfw(t —r/c)]# (in the radiation zone).
A = E::co:é' cos{w(t — r/c)] (cosﬂi" - sinBé) . %—? = —?CO:G sinfw(t — r/c)] (cosﬂf - sinﬂé) .
0A aw .
P o w _oa o v 2ganN Sl g s
vv T = sinfw(t — r/c)] (cos 0% — cos 9r+51n9c0569)
&= —95— sin @ cos @ sinfw(t — /c)] 6.
1[0 8A.] -
B = VA= ; I:E(T‘Ag)— 90 ]¢
a8 , 0 [cos?8 -
o {5 (cos @ cos[w(t — r/c)](—sinf)) — 20 [ coslw(t — r/c)]] } @
o3 : w o, > g i aw i 7
= z;(- sin @ cos 9)-5 sinfw(t — r/c)] ¢ (in the radiation zone) = ~ a2, Sin 6 cos@sin[w(t — r/c)] @.
Notice that B = -l—(f‘ xE)and E-f=0.
c
1 1 &
§ = LExB)=-LEx(ExE)=L [t (E DE =t
Ho HoC HoC HoC
= L{a—wsinﬂcosﬂsin[ (t—r/c)]}zf‘ = . (gsil‘hﬁ?f_‘osﬁ)2
| poc L re i 3 " 2pgc \ e :
1 faw\2 1 /saw)? )
= . = — | — in? 2 1 PSSRl | et / - 2 2 . .
[(S) da = \3 ) /sm 6 cos” Bsinfdf do e ( - ) 27 i (1 — cos” @) cos” @ sin 8 df
, . cos?@|* cos®gr 2 2 4
The integral is: — 3 0+ LTS ETTE
= 1 w? ug B T Ho 2 6
T 2ugc ? 1672 (pod)"w 2WE ~ | 603 (o) "

Notice that it goes like w®, whereas dipole radiation goes like w?.

Problem 11.12

Here V = 0 (since the ring is neutral), and the current depends only on ¢ (not on position), so the retarded

I(t —2/c)

vector potential (Eq. 11.52) is A(r,t) = :—2 j{ STIoT dl'. But in this case it does not suffice to replace 2 by
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7 in the denominator—that would lead to Eq. 11.54, and hence to A = 0 (since p = 0). Instead, use Eq. 11.30:

% = % (1 -+ g sin @ cos ¢ ) Meanwhile, dl' = bd¢'¢ = = b(—sin¢' X + cos ¢’ ) d¢’, and

It —2fc) =2 I(t —r/c+ (b/c)sinfcos¢') = I(ty + (b/c)sinfcos ') = I(to) + I(tu)b sin f cos ¢’

(carrying all terms to first order in b). As always, to =¢ — r/c. (From now on I'll suppress the argument: I,
I, etc. are all to be evaluated at tp.) Then

1 b b
A(r,t) = :;:.?! (1+—sm8cos¢)(I+IEsin6cos¢')b(—sin¢'i+cos¢'j‘r)d¢>’

= / {I + i sin@cos ¢’ + 7 sinB‘coS(ﬁ'] (—sing' % + cos¢' y) d¢'.
4d7r Jy c r
Ve s 2n 2
But [ sing'd' = [ cosg/dg'= [ sing'coss ag’ =0, while [ cos?¢'dg = 7.
0 0 ¢ ;
b b b #ob i) 9
= 4-.-rr( )[I sinf + I - smfi‘] e 51n9(I+CI)Y

In general (i.e. for points not on the z z plane) y — (j); moreover, in the radiation zone we are not interested

in terms that go like 1/72, so | A(r,t) = pgb [ (t—rfc )} 31n9
_ oA ,uob smﬂ
EwY) = -5 =| - [fe -] =
Bir,t) = 'V xA= rmlnﬂaﬂ (A¢sm9)r—l—*~(rf1¢)9
5 2
= gl i 1251n6’cosf5‘r———1 L sinff| = Hob? 15113—9-9
4c |[rsinfr r c 4c?i Ly
i 1ob? -siné i 27 sin?§ _
S = (ExB) = (TC-I_T_) (-6x6) = 1663 (b ) St

e /s.dazigg(bsz [ snoasas = Lo (#1)" o) (3) = o (1)’

..2 .
= ;;3::3 (Note that m = Imb?, so m = Iwb?.)

Problem 11.13

2,2
a . - i : 2
(a) P = &, and the time it takes to come to rest is ¢t = vg/a, so the energy radiated is Uag = Pt =

6mc
2
MUO The initial kinetic energy was Uyin = 3muZ, so the fraction radiated is f = Urad =09
6rc a kin 3mmugc
R g
(b) d = zat =gag =g 80a= g Then
od®> v§ _ pog’vo _ (4w x 1077)(1.6 x 1071%)*(10°) =Ty
= 3rmuoc2d  6rmed  6m(9.11 x 10-31)(3 x 108)(3 x 10-9)
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So radiative losses due to collisions in an ordinary wire are negligible.
Problem 11.14

PO o WETE N, BN B T AP St (ro = 0.54)
T dwegrd AL L. ~ \ dneg mr’ & O\ PR O

v (1.6 x 10-19)2 3 oro

¢ |4m(8.85 x 10-12)(9.11 x 10-31)(5 x 10-11) At

and when the radius is one hundredth of this v/ec is only 10 times greater (0.075), so for most of the trip the
velocity is safely nonrelativistic.

2 2 2 2 32
;From the Larmor formula, P = Ko (U—) = Eod ( . ) (since a = v?/r), and P = —dU/dt,

6me \ r T 6me \4meg mr?
where U is the (total) energy of the electron:
> i e el Lo e -t o T
U =Usin + Upor = el dmeg r 2 \4meo T dmeg v 8mweg T
dU 1 ¢*dr q> s 4 dr 1 ( q? )2 1
Bl Y, 5 ol P, SN . and hence =< i
o dt 8mep 12 dt g 6regc® \ dmeg mr? s 3¢ \ 2wegme ) 12 =

2regme 2 2reome\? [° 2 2meome’ 2 3
dt=—3c( = ) rédr=>t=-3c o /rdr=c p S
q o

27(8.85 x 10~12)(9.11 x 10~31)(3 x 10%)1? 2 ~
= (3x 10%) [ ( (l.é(x T N )] (5x10711)% = (Not very long!)

Problem 11.15
According to Eq. 11.74, the maximum occurs at % [

(1 - Bcosh)s
2sinfcosf  5sin’@(Bsinf) e e TN & i3
= Boos)5 i (1= Beosh) =0= 2cosf(1 — Bcosf) = 58sin” § = 53(1 — cos” 8);

2cosf — 28 cos?8 = 58 — 58cos® @, or 3Bcos?0+2cosh —58=0. So

g —2EVAT60F _ 1

. 2
sing ] = (. Thus

€os 68 =35 (:I: 141552 — 1). We want the plus sign, since 6,, — 90°(cos 6,, = 0) when
V141562 -1
B - 0 (Fig. 11.12): | Omax = cos™! (_—+3;ﬁﬁ_) ;

For v~ ¢, B = 1; write 8 = 1 — € (where € < 1), and expand to first order in e:

( 1+;;ﬁ2_1) = 5=y [VIF B0 -1 = 50+ [VIF B0 -2 - 1]

1 1 S B g il
— §(1+e)(3——ze)_{1+e)(1 4e)_1+.€ 45—1 7€

Evidently Omax ~ 0, SO COSOmax = 1 — 162, =1—1e = 02, = l¢, or Omax = Ve/2=|/(1-B)/2.
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(dP/dQs,,) sin? Bmax i
Let f = miur N 6 o b
127 P W £ v PO T o g

5
(1-Bcosbmax) =1 —(1-€)(1-2e)=1—(1-€— 1) = 3¢ Sof:e/—2=(§) L But

1 1 1
v = - E L = 1 . Therefore

B i T A% o

AN D bl (BN s
f—(g) '2'(2’)') _Z(g) = 2.629°.

Problem 11.16
2

dP _ ¢® |ax(ux a)|?
E 11.72 .
quation 11.72 says — A Bnle . lata)

uchz—v:c&-—v%::»a-u:c—v(&-ﬁ)*—-c—vcosﬁ:c(l—%cosﬂ) =¢(1 — Bcosb);

Let 8 =v/e.

a-u=ac(X-2) —av(X-z) =acsinfcos¢; u’>=u-u=c? -2 2)+v*=c’+v? — 2cvcosh.
2x(uxa) = (2 -a)u-(2-u)a;
(2-a)*u® —2(u-a)(2-a)(-u) + (2-u)’a’
(c* 4+ v* — 2cv cos §)(asin 8 cos ¢)? — 2(acsin @ cos ¢)(asin B cos ¢)(c — v cosB) + a®c*(1 - Beos
= a®[c*(1 - Bcosb)® + (sin® f cos® ¢)(c® + v — 2cvcos b — 2¢% + 2cv cos b)]
= a’c® [(1 - Bcosh)? — (1 — B%)(sinf cos ¢)?] .
dP pog?a? [(1 — Bcosh)? — (1 — B2)sin® @ cos? (,b]
dQ 1672¢ (1 - PBcosh)s

-

|2 x (u x a)?

I

The total power radiated (in all directions) is

i dP dP poq?a? f[(l—ﬁcos& - (1-B%)sin®Gcos? ¢]
P = /dﬂdn fdnsmn?dt?dr,b 16720 / (1= Acost) sin 8 df d¢.

2m 2w
But d¢ =27 and / cos® ¢d¢ = m.

Hogq’a® / [2(1 — Bcosh)? — (1 — B%)sin 6‘] G

16m2¢ (1 - Bcosh)®

Let w = (1 — B cosf). Then (1 —w)/B8 = cosf; sin’6 = [#2 — (1 — w)?] /B?, and the numerator becomes

22 —

(1_‘62) 2 2 5 1 2 02 242 2 2 2
7 B =-1+2w-w?) = E[2wﬁ +(1-06%2-2(1 - f)w + w?(1 - B%)]

= Bl"z" [(1 -8R -20—FP)w+ 1+ }32}:1)2] ;
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dw = (sinfdf = sinf df = %dw. When 6 =0, w=(1-8); when 8 =m, w=(1+ 3).

pi- MC ] f(lﬂs) 1 (1= 6%)? —2(1— f)w+ (1 + f2)w?] dw. The integral i
el . o w w?] dw. e integral is

Int = (1_’32)2/Edw_m_ﬁ2)fﬁdw+(1+62)fﬁdw
= oJom (k) g o (=) rawe (]|
4wt 3w? 2w? ) ]| g
gl (1A, 1 3 1 _(1—2;9+,82)-(1+2,B+,82)__ 45
wh-5  (1+8)? (Q-8P (1+p8)*(1-p)? o (L AR
i+ 1 e b aio (=B 3p0 = gl (1480 + 801+ ") = 28034 )
Wil oo (B3 o @ =8)% > (1+8)%(1-p)° % 3 =l a8
o ead Eop ibam A docw (1 SHSHGH — 4884 B — (1L B85 4 407 FBY) © 7 - 8801+ B7)
s ~ (1+84 (Q-P9F L+ A1 —0) Ml GERT
. 1\ —-88(1+ 8% . 1\ —28(3 + 6?) ” 1 —4p
= -0 (-5) o 202 (o3) Toge + 0+ ()
2 8 ’
= (1 _%2}2 [(1‘1'»32)'""{34‘»82}"‘(14‘»32)} 301 ﬁﬁ2)2
_ pog’a® 18 B | pog?a?y? s
i e 55(1_62)2_ B where v = 5
Is this consistent with the Liénard formula (Eq. 11.73)? Here v x a = va(z x X) = vay, so
2 6
e’ - (% X a)2 = g2 (1 - vg) = (1-8%a? = T—lzaz, so the Liénard formula says P = #%ir: %‘
Problem 11.17 2
(a) To counteract the radiation reaction (Eq. 11.80), you must exert a force F, = —%a
For circular motion, r(t) = R[cos(wt) X + sin(wt) §], v(t) = = Rw [—sin(wt) X + cos(wt) ¥];
2
a(t) = v = —Rw? [cos(wt) X + sin(wt) §] = —w?r; a = —w’ = —w?v. So |F, = %%r%-w?v.

. =F, .v= %w v? This is the power you must supply.

2,2
a
Meanwhile, the power radiated is (Eq. 11.70) Praqg = “%i_c sind ¢ = o = 'R = v, 8o

i = %w v“, and the two expressions agree.
v
(b) For simple harmonic motion, r(t) = Acos(wt)2; v =1 = —Awsin(wt)2; a = v = —Aw’ cos(wt) Z =
pog® pog® :
—w’r; 4 = —w?F = —w?v. So|F,. = - wiv; P, = mwzvz. But this time a? = wr? = w?A4? cos?(wt),
m
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whereas w?v? = w*A? sin®(wt), so

2
Pog = %w 2 cos?(wt) # P. = ’[é (:ch wt A% sin?(wt);

the power you deliver is not equal to the power radiated. However, since the time averages of sin® (wt) and
cos?(wt) are equal (to wit: 1/2), over a full cycle the energy radiated is the same as the energy input. (In the
mean time energy is evidently being stored temporarily in the nearby fields.)

(c) In free fall, v(t) = 39t?9; v=gty;a=g9; a=0. So the radiation reaction is zero, and

2
hence But there is radiation: | Prag = ;:ifc g”.| Evidently energy is being continuously extracted from

the nearby fields. This paradox persists even in the ezact solution (where we do not assume v < ¢, as in the
Larmor formula and the Abraham-Lorentz formula)—see Prob. 11.31.

Problem 11.18

(a) v = w’r, and T = 6 x 10™**s (for electrons). Is v € w (i.e. is T < 1/w)? If w is in the optical region,
w = 27w = 2m(5 x 101%) = 3 x 10'%; 1/w = (1/3) x 1015 = 3 x 10~18, which is much greater than 7, so the
damping is indeed “small”. v

(b) Problem 9.24 gave Aw = v = wit = [2m(7 x 10'5)]2(6 x 10~2%) = |1 x 10'°rad/s. | Since we’re in the

region of wp ~ 4 x 10% rad/s, the width of the anomalous dispersion zone is very narrow.

Problem 11.19F p d P P d
Y v a v a
(a)a—‘ra+az>dt Ta-i'———-}' adt T dtdt+—/th

2
[v(to +€) —v(to — €)] = T[alto +€) —alto —€)] + iFave, where F,ye is the average force during the inter-

val. But v is continuous, so as long as F' is not a delta function, we are left (in the limit ¢ — 0) with
[a(to + €) — a(to — €)] = 0. Thus a, too, is continuous. qged

(b) ). s =ré= rda ‘i—a = 1ctt /da %/dt = Ing = £+c0nstant = |a(t) = Aet/™,| where A

is a constant.

F da da 1 t F
£y e _:;. _—a_.._:;,—z—dt:ﬂna—Fm:— constant = a — — =
(i) a = Ta + = e e ( /m) — + con a8
Be''T = |a(t) = — + Be!/T | where B is some other constant.

(iii) Same as (i): |a(t) = Ce/™,| where C is a third constant.
(c)Att=0,A=F/m+B;att=T, F/m+ BeT/™ = CeT/™ = C = (F/m)e~T/" + B. So

[(F/m) + B]e"", t < 0;
aty={ [E/m+Be],  0<t<T

(F/m)e~T/" + Bl e, t>T.
[ )

To eliminate the runaway in region (iii), we’d need B = —(F/m)e~/"; to avoid preacceleration in region
(i), we’d need B = —(F/m). Obviously, we cannot do both at once.
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(d) If we choose to eliminate the runaway, then

(F/m) [1 - e'w’] e, t<0;
a(t) ={ (F/m) [1 & e(‘*'”"] i REEST

0, e

(i) v = (F/m) [l - e‘T/T] /e”"dt = (Fr/m) {1 - e‘”’] ¢!/™ + D, where D is a constant determined
by the condition v(-oc) =0= D =0.

(ii) v = (F/m) |t — 7e*"T)/7 |-+ E, where E is a constant determined by the continuity of v at t = 0:
(Fr/m) {1 - e—’”f] = (F/m) [—re—’”f] +E = E = (Fr/m).

(iii) v is a constant determined by the continuity of v at t = T: v = (F/m)[T + 7 — 7] = (F/m)T.

(Fr/m) [1 = e-Tf'] el™,  t<o;

U(t) = (F/m) [t+T_Te(=—T)/r] 8 0 St ST;
ol Wit t>T.
(e)
uncharged particle:
alf) (no radiation reaction) "
charged particle
E
/m
E(‘l e J','Y)'l

T |— charged particle

| (with radiation reaction)

JZ
t

preaceeleration

uncharged particle

B R

0 T
Problem 11.20 (a/2)? 3l 4. 1 2
nd _ Holg . — pint nd _ Hoq” . |2 2] | E2EL
(a) From Eq.11.80, Fiy = e Fraa = Frag + 2F = el [2 +2 (4)] P v
L n
() Fad= 224 f { f 22 dyg} 2Ady;. (Running the ys §
12e 0 0
integral up to y; insures that y; > y2, so we don’t count the '
h

same pair twice. Alternatively, run both integrals from 0 to L—
intentionally double-counting—and divide the result by 2.) }dy
2
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Jigl ooa ,uoa L2 .- po o o
= 4 _———— = —q.
Fraq e (4X )] yidys = { ) 2 Gwc(’\L) a===d F

Problem 11.21
(a) This is an oscillating electric dipole, with amplitude pg = gd and frequency w = y/k/m. The (averaged)

2, ,4 /]
Poynting vector is given by Eq. 11.21: (S) = (?;;:; ) 51:2 f, so the power per unit area of floor is
) popiw* sin? @ cos e Q—R g—h 4l =R24 B2
s T 3 . But sin —.r,cos_r,anr_ + h°.

(p{)qzdzw“) R%h
o 32n2¢ ) (R2 + h?)5/2°

dly _ B d R? " bies 2R i - i
dR dR | (R? + h2)5/2 (R? + h2)5/2 2 (R2 + h2)7/2
(R2+Ah%) - -Z—R =0=h%= gRE = | R = 1/2/3h, | for maximum intensity.

(b)

2R=0=

P

ar e po(gd)*w* /w R = R?.
/I;(R)da—fIf(R)2erR—2w( 3970 h | T dR. Letz=R*:

el R3 o R T o LE@DASR) 2
fo (R? + h2)5/2 dhi=3 [o (z + h2)5/2 =% r'(5/2) ~ 3h’

2d2 4 2 2d‘2 4
P 7Y i W S T
5 gﬂ( 3272c )h:}h 24mc

which should be (and is) half the total radiated power (Eq. 11.22)—the rest hits the ceiling, of course.
(c) The amplitude is zo(t), so U = 1kzf is the energy, at time ¢, and dU/dt = —2P is the power radiated:

1.d ow powq? ne e

2k g (@) = Tzwcqz 2§ = —(w5) = — e (35) = —kag = 75 = d’e™™" or zo(t) = de™™/%.
2 - 1%nkE e 127em?
TR T gt T | ok <

Problem 11.22 :

_ (pomdw*\ sin®4 s
(a) From Eq. 11.39, (S) = ( 397283 ) 2 f. Here siné

R/r, » = +R?+ h?, and the total radiated power (E- h r
11:40) P = B

e 02 T 12n

12P B 2 M3P R

32r ) (R?+ h?)? | 87 (R2 + h2)*
(b) The intensity directly below the antenna (R = 0) would (ideally) have been zero. The engineer should

have measured it at the position of mazimum intensity:

dl 3 2R 2R? 3P 2R 2, .2 2y _
E“_[(R2+h2)2_(R2+h2) QR] 3ﬂ(Rz+h2)3(R +h* - 2R%) 0*”

So the intensity is I(R) =




At this location the intensity is I(h) =

(C) Imax b

3(35 x 10°)
327(200)2

209

Ko
8 (2h2)2

3
32mh?’

=0.026 W/m? ={2.64W/cm?.| [Yes, KRUD is in compliance. |

Problem 11.23

(a) m(t) = M cos¢ Z + M sint[cos(wt) X + sin(wt) §]. As in Prob. 11.4, the power radiated will be twice
that of an oscillating magnetic dipole with dipole moment of amplitude mg = M sin. Therefore (quoting

Eq. 11.40):

B poM2w? sin? ¢

(Alternatively, you can get this from the answer to Prob. 11.12.)

6mc3
(b) From Eq. 5.86, with 7 — R,m — M, and 0 = /2 B= % 20 5o
T
3 613 =5
pr = 4R | 4n(64x 1076 x 107°) _ e
Lo 47 x 10-7

() P=

d) P =

67(3 x 108

_ ho(4rRB/po)*w'sin’yp _ 8m

47 x 10~7)(1.3 x 1023)2 sin?(11° o 4 =
( ) )3) (19 (24x60x60) =4 x 10~ W | (not much).

6mre3

e (w*R?®Bsin w)z. Using the average value (1/2) for sin® ¥,
Ho

2

o 87
~ 3(4m x 10-7)(3 x 108)3

3= @ lot).

(i) aotyqon

Problem 11.24

&) A, t) = %/@da

4

Ho?

—Ifw(-t—’:)———Zﬂr dr
r? + z?

K(t—+r?+z? c)rdr

2

vr? + 22

The maximum 7 is given by t — V72 + 2% /c = 0;

Tmax = V ¢2t?2 — z? (since K (t) = 0 for t < 0).

(i)
Az t) =

E(z,t)

B(z,t) =

%

y

Koz
_ Hofo 1"2+

,U()Koi /r"‘ r 5
2 Jo Vriezd 2

2 Tm =¢( r&-ﬁ—m):“"K"(gt‘I)i_
0 e s

_6_A= —m—mi, for ¢t > z, and 0, for ct < z.
ot 2
VxA:-BSA"yz “”;{“y, for ¢t > z, and 0, for ¢t < z.
b
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5 [T (t— /12 + 22 5 Tm Tm
A(z,t) = ,ugaz/ ( sk /c)rdr=w t/ ;dr—lf rdr
2 0 VT + 22 2 o Vr?+z? cJo

. p02az [t(ct —z)— élg(cztz - .7:2)] = p,gaz(x - 2ctz + c*t?) = _pua(w = Z

4c 4c
A i
E(z,t) = —ff‘i_tz Mi, for ¢t > z, and 0, for ct < z.
04, . Hox -
B(z,t) = VxA=- CR —--gc—(m—ct)y, for ¢t > z, and 0, for ct < z.
i 111 1 1 ¥
= 2 P e S e Sk v
(b) Letumc(\/r +z x),sodu c[gm%dr] cmdr,and
o Forame X 5 [
t—T—”————t—E~u,andasr:0—>oo,u:D—}oo.ThenA(:c,t)z”ocz/ K(t—f—u)du.qed
c c 2--Jo (i
A tocz [ 8 z 3] T 3] T
= ———=- —K([t—=— . But — - —u)=—- - = —u).
Elzit) o T /U 5k (-5 -u) dw But K (6= % —u) = -k (: £ 54

- %2/’&%1{ (t—%—u) du:%ci[K(t—E—u)”:a=—%[K(t—m/c)—K(—oo]]i

= “OCK(t—x/c) z, | [if K(—o0)=0].

Note that (i) and (ii) are consistent with this result. Meanwhile

Bat) = ~5r9=-2%9 [T Dk (t-Z-u)au Bu 2K (1-Z-u) =12k (e-Z ).
= “0*/ _-—u)du_ By [k (t-2-u)][” =LKt -2/c) - K(~o0) 3
= ?K(t—:c/c)j?, [if K(—o0)=0].

4 i(ExB}:i(%g)(2)K(t—x/c)[-z><y] K (¢ - afo) %

This is the power per unit area that reaches z at time ¢; it left the surface at time (¢t — z/c). Moreover, an
equal amount of energy is radiated downward, so the total power leaving the surface at time ¢t is #_20‘_’ [K (t)]z.

Problem 11.25

L & 4 1 0 poc’q? poc’q®
)= 2 t = 2 F e e e — = - P Pe= — 4
p(t) gl pT 202 Mz = 4meg (2::)2 4dmeg 4mz? 16rmz2’ P 8mmaz?
2 3.3,.6 2y 3
, e pop _ po [ woc’q uciq Hocq 1
U Eq. 11.60, th adiatedis P = — = — ( — = - i
sing Eq. 11.60, the power radiated is e ( 87rm22) 6(dn) Pzt e o

Problem 11.26 g
With a = 90°, Eq. 7.68 gives E' = ¢B, B' = _EE’ ¢m = —cge. Use this to “translate” Eqgs. 10.65, 10.66,
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and 11.70:
' 1. - ' - '
E = c(;axE) =2 x (—cB') = —¢(2 x B').
B Al P e [(¢® —v*)u+2x (uxa)]
c cdmey (- u)3
& li—t.fc - » v2 ﬁUQ‘m 2 2 2
el s =R e (> =v*)u+ax(uxa)] = i e [(c® —v*)u+2x (uxa)].
2 2
= o0ty —pina” { 1 ,\" _ pes*, , g
Bz 6mc ¢ = 6me ( c '") ~ 6mc3 (gm)"
Or, dropping the primes,
Hodm 2
B = =
(r,t) o u3 [((¢® = v*)u+2x (uxa).
E(r,t) = -c(2xB).
28
_ Hogpa
G T 6ncd
Problem 11.27
4 F
(a) Wext = /Fdn: 2 Ff u(#) dt. From Prob. 11.19, v(t) = = [t+ r— re(*“’”)/‘r]. So
0
F2 2 T T F2 t2 o g2
Wexe = — / tdt+‘r[ dt — Te_T/T/ et/Tdt| = — [— + Tt —Te*T/T're”’}
m |Jg 0 0 m-}2 o
2
= F—[1T2+TT—726_T/T(TZT-—1)] F—( T2 47T - 12 +72¢~ T/").
m |2 m
2 22
(b) From Prob. 11.19, the final velocity is vy = (F/m)T, so Wyin = 1mv§ = 1?11.F—’_1""2 £ 3
2 2 m? 2m
pog>a?
(¢) Wraq = [ Pdt. According to the Larmor formula, P = ey and (again from Prob. 11.19)

{' (F/m)[1 - e T/r]etlr, (t <0);
a(t) =

(F/m)[1—ett=D/T],  (0<t<T).
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o - ‘;‘::fié{(l—e"'"“f/; s [ o
- T% {(] _e-T/r) (T m/f / gL ge-T{'r/ et/ dt + =T/ [Tezt{r dt}

0
= ﬁ E (1 - e*TfT) R )T i (Te‘ff) : %en”) :}

- (
= ;iz [% (1 wgelit g e'zT/’) +T —27e”T/" (eT*’”r = ) + %e"”ﬁ (62'”7 - 1)]

+ e—2Tf‘r

2 2
o 1k [— - 7e" T 4 D8P 4 T 20 4 2pe " T/ PZ 13‘2'”’] I (T - T+TB_T‘”).
m 2 2 2 m

Energy conservation requires that the work done by the external force equal the final kinetic energy plus
the energy radiated:

F2T2 2 2 /1
Wiin + Wraa = -i-i-£ (T—T-l-'re_wf) = o T2 4T =12 +7%€7 T ) = Wens. ¥
2m m m \ 2

Problem 11.28

(a) a=T1a+ -::5(13) = { a(t)dt =v(e) —v(—€) =7 da dt + —/ &(t) dt = tla(e) — a(—e€)] + -k—

—€

If the velocity is continuous, so v(€) = v(—e¢), then |a(e) — a(—€) = ——

When t <0, a = 7a = a(t) = Ae/™; whent >0, a = 7a = a(t) = Be!/™; Aa:B—A:—%

B k o _ [ Aet7, (t <0);
=>B=A- =y 80 the general solution is | a(t) = { (4 = (k/mr)]et/™, (¢>0).

To eliminate the runaway we’'d need A = k/mr; to eliminate preacceleration we’d need A = 0. Obviously,

e (k/mT)et/™, (t <0);
alt)= { 0, t>0).

you can’t do both. If you choose to eliminate the runaway, then

v(t):[_t (t)dt = —/ el dt = ——(Te )
(k/m)et/™, (t <O0);

for t > 0,v(t) = v(0) +[0 a(t) dt = v(0) = % So |u(t) = { (k/m), (t > 0).

= ——e”"r (for t < 0);

0, (t <0);

k t
For an uncharged particle we would have a(t) = %J(t), u(t) = f a(t) dt = { (k/m), (¢ > 0)

The graphs:
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a(t)
ot

Y

I
charged j charged
l
r t ______
neutral neutral
(b)
k2
e = /Fd:z: - fpvau . k/J(t)v(t)dt = ku(0) = =

1 1 of EXY TR
W i — 2 = — —_ = —_—,
" gapTgn (m) om
2 2 A0 2 0
Hoq 2 k / 2t/ k(T 2r
Wx —] — — —_— o= | =
- /PM at =1L f[a(t)} dt =1m (mr) el (5¢*) _

Clearly, Wext = Wiin + Wrad. v/
Problem 11.29 U
Our task is to solve the equation a = 7a + ﬁ [-d(z) + 6(z — L)], subject to the boundary conditions

(1) z continuous at z =0 and =z = L;
(2) v continuous at z =0 and z = L;
(3) Aa = £Up/m7v (plus at z = 0, minus at z = L).

k2 k2
mr2 _ 2m’

The third of these follows from integrating the equation of motion:

/—dt = d—“d:+—f[ _d(2) + 8(z ~ D) &,
» ma+—f[—a(z)+5(z—L)]—dz=o,
R %/-[ 3@ + 5z = 1)) dx—i%.

In each of the three regions the force is zero (it acts only at z = 0 and = = L), and the general solution is
a(t) = Aet/™; w(t) = Aret/™ + B; z(t) = Ar%e!/™ + Bt + C.

(I'll put subscripts on the constants A, B, and C, to distinguish the three regions.)

Region iii (z > L): To avoid the runaway we pick A3 = 0; then a(t) =0, v(t) = Bs, z(t) = B3t + C3. Let
the final velocity be vy (= Bs), set the clock so that ¢ = 0 when the particle is at z = 0, and let T' be the time
it takes to traverse the barrier, so £(T') = L = v;T + Cs, and hence C3 = L — v;T. Then

la®)=0; v(t)=vs, () =L+v;¢-T), [ e=r)
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Regionii (0 < £ < L): a = Aget!™, v = Ayret’™ + By, = As7%e!’™ + Bst + Cs.

(3) = 0-—Axe™/™ = I — T
mruyg mruf
T/r Uo Uo
2) = v;:Ag're +Bz=m+Bg=>B2='Uf——.
- muvy muy
T
(1) = L=AreT/"+BT+C;= Mo +v;T — ol +Co=vT+ ﬁ(r—T) +Cy =
muvy muy mug
U
02 — L—U;T+ FW(T_T)
alp = =L,
mrTuy 2
o(t) = v+ — e“'T}/"—l]; (0<t<T).
mug 2
= =, =05 (=T /7 L e
z(t) L+v(t—-T)+ vy [‘re t+T 'r] .

[Note: if the barrier is sufficiently wide (or high) the particle may turn around before reaching L, but we're
interested here in the régime where it does tunnel through.)
In particular, for ¢t = 0 (when z = 0):

0=L-—v;T+ﬁ [TE_TIT'FT—T] =:-L=”.'JJT—ﬁ [TB_T/T-}-T—-T]. qed
muy muyg

Regioni (z < 0): a = A1e/™, v= A17e"/™ + By, z = A;7%e!/™ + Byt + C. Let v; be the incident velocity
(at t = —o0); then B; = v;. Condition (3) says

Mot g e T |
mTug mTYg

where v is the speed of the particle as it passes z = 0. From the solution in region (ii) it follows that

vo = vy + grl (e_T/" — 1). But we can also express it in terms of the solution in region (i): vg = A7 + v;.
Vf
Therefore
U, U,
vi = vp+ do (e‘T"' = 1) -AiTt=vr+ — (e_T/T = 1) +— - ﬁe_:’"/’
muy muy mvyg  muy

mvy  mug muvy Vg muy vy + (Uo/muy) [e~T/7 — 1]

Vr = Ug 1- 21 5 qed
muy 1+ (Uo/mv}) [e~T/m — 1]
If %mvf. = 1Uj, then

L=yT -9 [TE_T;T +T—""] =y [T—‘-"e'w" —T+T] = TVf (1 —e_Tf");
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1 T/r T r
Vi =vf — Uy I-W]:ﬁf(l_l+e/)zvfe / :

Putting these together,

& -T/r —-T/T _ L T/r 1 bix . vs
TUp hine o ¥4 TUf FE & 1—(L/7vy) T (Ljvgr)’ ded
R
, vy 4 KE; _ imv] (‘U") 16
— 4 v; = = — = | — = —
In particular, for L = vp1/4, v; =174 31;; KE; 2mv? o 9 =
16 161 8
KE; = —KE Uy = =Up.
g ey ieT gt
Problem 11.30 5
(a) From Eq. 10.65, E; = (‘ffffo) 7S _411)3 (¢ —v®)u+ (2-a)u—(2-u)a]. Hereu = ch—v, 2 =% +d¥,

v=vX,a=aX,s04-v=Iv,2-a=la, 2-u=c2—2-v =c2— lv. We want only the £ component. Noting
that u; = (¢/2)l — v = (cl — v4) /2, we have:

1 ey el o3 papatien
et TP 8meg (o2 — lv)3 5 (= v)(c"—v" +la) —alor— Iv)
: : 2 _y? = 2 B g2 g
= o Ll =3 — wla - Buvat= :
ey = B)® [(ci v2)(c® — v°) + cl“a — wla — acn® + ajm] ut 22 =12+d

= o (= =) - acd?].

2
Fsef = SZIT_EUFIJ‘U)B- [(cl = »2)(c* — v?) — acd®] %. (This generalizes Eq. 11.90.)

Now z(t) — z(t,) =1 = vT + 3aT? + taT? + -, where T = t — t,, and v, a, and a are all evaluated at the
retarded time ¢,.

(T =2*=P+d*=d*+ (vT + %ﬂ;i"’2 + Eli-dT3)2 =d® + v°T? + vaT® + él-véT“ - %azT“;

AT*(1-v?/c?) = cél‘”zf']f2 = d? +vaT? + (%Ud + %(12) T*. Solve for T as a power series in d:

2.2

T:lj(1+Ad+Bd2+---) é%%dj[l+2Ad+ZBd2+A2d2) =d2+va

(1+3Ad)+ (—3~ +* ) %d".

3 : 2
Comparing like powers of d: A = 1 ‘Y 2B + A? = g, A+ (m + 9—) %

e 3 bl
o el Lo Vo | payh G0 RN et 18 P 3v2a246
kTR B M i A R el B Ry R A N e
% P 2.2 2 2 2 00 2 2 2
IS 0 s R T ool SRR LY = -t 0.0 v,
7oA [3 T (1 2 +6c2)] =l 2¢ [3 oy (1+4cg)]'

4 T 2.2 2
T = 1‘%{1+§%d+§5;[%+7a (1+4v—)]d2}+()d4+--- (generalizing Eq. 11.93).
[
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e LT+§aT2+éaT3+
_ vyd va y3 v [va  ~y%a?® v? 1 +%d? 73 A
= —ém{1+?c_3d+@ ?‘f— 1 1+4§ d? +§a g 1+Uﬂc—3d +6a§d
, 1 2,2 4 2 2 2 fTat 3
= (D)a+ 3% (1- 5+ 5) e {RL [+ T (1445 |+ jaTve L+ gL e
4 3 2 4.2 2 2
oy ay I s Py vytar (1 v v 3
= (D)a+(55) e+ 55 [5(107%) + - (G+5+1- %)
o Y ay™% a4 [6 “Burtet] s
= (?)“(“@")“@[5*5 e Rl Vi
e ot ool o aia [ O
2 = (,T_ryd{1+263d+264[3+ T g Y+ ()d +
4 % T 2 2 4 B L 2 2
ol = evd+ % d2+;ﬂ%+ 2z(g%)}ds_%dﬁ;;dugc_;’.[g@”';;]du...
v? v Tl acafl. v va 5viy%a?] 4
= c‘}’d(l*‘?)ﬁ'@[?*"}’ﬂ (‘_1+C_2)_?_Z P }d el =51
5,2
= Ed+18-—:—3'—d3+()d4+
ay o 3 A Suat viay? vy [d_ - 4 fl i
cd—w = v'ydﬂl—%d +§—c—2—(§+z =2 d —v7d——2—-~c§dg—§-a- —3—+'7a Z+§ d
ray? 8Ny AR fh  Bgadat  wEh e 1) gt . 2
e 'éz"(l‘c—a)“@ Ty g wa o i i o

ay? ¥ [ a vy2a® (5 1 o .
(2c)d2+2c3{3’72+ c? 4 4 2 Gl

3 2
B CAPRENCIE S P
6,2 = 3 62
B I e R H LA s _a¥G
(65 =do)~F = [ (1+8044)] (cd) (1 38c4d)+

2 3 6,2 2 3 22
q 24 ya o» ay PLAR a vy'a 3 gl
Ly gelliagf il f g0 = = e &
Fserr Rerer (cd) ( 3 St d ) {[ 5 ) 28 (3 + 2 )d] acd }x
=g oot 3 4%a? ac vy (a vyia? &
= 87reec3d(1 & orle itk ruiak
9 : 2:n
q= P a Uy 9 i
£ Fian Ll I o d+ () +---
8?T£gc3d2[ ac+'y(3+ c? ) g+ ]x
= A - 3i—+14— é+ufy2a2 +()d+---| X (generalizing Eq. 11.95)
= dme, | TaZd s \3 @ & i s
Switching to ¢: v(t.) = v(t) + 0(t)(tr — t) + --- = v(t) — a(t)T = v(t) — ayd/c. (When multiplied by d, it

doesn’t matter—to this order—whether we evaluate at ¢ or at ¢,.)
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1o [v(‘z,‘)]2 e [w(2)? —;va'yd/c] = [1 > v‘(ﬁlz} (1 . 2&‘1‘;’3}’3d)’ £
1/2

y= [1— (M)zl_ = 7(t) (1—”273 ); a(t, )-—a{t}—Ta_a(t)——

¢
Evaluating everything now at time ¢:

— 3 — .
' 3(1 3vay’d/c?) (a a'yd/c)+4ca( +ﬁ?ﬂ2)+()d2 ]i

Fse
2 4dreg 4c2d

8 b 3 3.0 g o 2,2
q iy i ay vaty i D B o
— P — L — —— — —_ d e

4reg | 4c2d+4cz(c+3 ¢ )+4c3(3+ 2 )+() * Jx

% P 4 :
. | __'70. ¥ a ua’y vy2a
| 4c2d ic (a+ +3 + 2 )+()d+ ]

3T 4 2,2
q a e vaty ot i
i o 124 +— 33 (a+3 2 ) + ( )d+--—] % (generalizing Eq. 11.96).

The ﬁrst term is the electromagnetic mass; the radiation reaction itself is the second term:
o242

et = 12 ——* ( 4437 ’T ) (generalizing Eq. 11.99), so the generalization of Eq. 11.100 is

rad =

pog® va’y
Frag = — ‘
A E'nrc‘y ( s e )

2.2 2
(b) Fraq = Av* (('1 + 37; v)’ where A = 't;[:fc . P = Aa®4® (Eq. 11.75). What we must show is that

t2 tz t2 v23272 t2
/ Fraqudt=— | Pdt, or / 7 ((w+3 = ) dt = _/ a*+® dt
t1 t1 ty ¢ t:

(except for boundary terms—see Sect. 11.2.2).

ta t2 da ta ta d
Rewrite the first term: yiavdt = / (+* )— dt =5 va! - —(y%v)adt.
& dt 6 Ji &t

Now ( ) =4 g dy ¥ d_']f_ d 1 o | 1 21}0,) < vay? So
] cl!tU 7' dt ~dt\ \J1-v2j2)  2(1-v2/c2)32 2] &

d ay® v? v? 6 v?

= (v') = P e a—‘ya(l—c—2+4§)=7 a(1+3E§).

dt
ta ta ta 1}2
[ viav dt = ytva —-/ v5a? (1 +3;:-§) dt, and hence
ty t1

ty

ta 4599
[ oyt (c’w + 37:2 X ) dt = v*va
t

Problem 11.31

t2

ta ta 2 a2v?
+/ [—-7“(12 (1 + 3-5) +34° } dt = y*va
t 5 c e t

tz
—/ ~va?dt. qed
th

1

2.2.6
Hog“a®y i
P=EE_"L (g 11. = /b2 + ¢2t? (Eq. 10.45); R —
(a) 6o (EQ- 11.75). w +c?t? (Eq. g
c? . Lo e b%c?

it T 2 2,2 7 i
Py T p— b2 + c242)3/2 T (b2 + c212)3/2 (6% + *Ct)— b2 + c212)3/2°
b? + c?t (0? + c%8?) ( ) ( )
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A 1 P+ 24 1

& = Mt e L= (1B 2;2)

= 1—v2/c2  1-—[c22/(b? + 2t2)] b2+ 2 — 22 b2 i)
ﬂ0q2 bict (b2 + 02t2)3 ey qzc - - _
= ne (% + c2t2)3 b6 = xan. |Y%, it radlatesl (in fact, at a constant rate).
b 2.2 ; 3 62 2 2c2t 3b2C4t ' 3 2 9
(b)Fradzyaq‘Y ‘i+370v 7 a==—= e ) = - 2\5/2" a "Y:‘:’U =
bree e 202+ 2252 T (02 + 22)5 c
33)2641‘ 3 (b2 + c2t2) b4c4 czt ;

T2+ )R Hatrg @+ 207 Vi 1 o0 =0. IFrad =0. I INO, the radiation reaction is zero.J




Chapter 12

Electrodynamics and Relativity

Problem 12.1

Let u be the velocity of a particle in S, 1 its velocity in S, and v the velocity of S with respect to S.
Galileo’s velocity addition rule says that u = @ + v. For a free particle, u is constant (that’s Newton’s first
law in §).

(a) If v is constant, then @ = @ — v is also constant, so Newton’s first law holds in S, and hence S is inertial.

(b) If S is inertial, then # is also constant, so v = u — @ is constant.

Problem 12.2
(a) maug + mpup = meuc +mpup; u; =14; + v.
ma(ig + v) + mp(ip + v) = me(ic + v) + mp(ap + v),
maiig + mpiig + (ma + mp)v = meiic + mpiip + (mg +mp)v.
Assuming mass is conserved, (m4 + mp) = (m¢ + mp), it follows that
maly + mpipg = mguic + mpup, SO momentum is conserved in =

(b) 3mau} + ympuy = Imeoud + jmpul, =
sma(@y + 204 - v + %) + mp(a} + 2ap - v + v?) = jme (@ + 2tc - v+ v?) + ymp(a), + 2ap - v + %)
Imat} + Impu} + 2v - (matlig + mpig) + v (ma + mp)
= Imcul + Impu} + 2v - (meiic + mpup) + 3v*(me + mp).
But the middle terms are equal by conservation of momentum, and the last terms are equal by conservation
of mass, so ima@} + 3mpi} = ymeu + ympip. ged
Problem 12.3

(a) v = vaB + VBC; VE = TPARTIEC, ~ yg (1 — TARJEC) = UGRUE — LARLAC,
In mi/h, ¢ = (186,000 mi/s) x (3600 sec/hr) = 6.7 x 108 mi/hr.

P (6_(753((?58))9 =6.7x 1071 = Iﬁ.? x 1071% error, | (pretty small!)

(b) (%c+ %C) [A+2-3)=(39 /(%) = %c (still less than ¢).

(¢) To simplify the notation, let 8 = vac/c, f1 = vap/c, B2 = vpc/c. Then Eq. 12.3 says: § = %, or:

8 = B2 + 25182 + B3 X 1+28:18: + 8363 (1+ 6163 — BT — B3) g (1-p3)(1-53) g S
(1+2618:+ BiB2) ~ (1+2B.82+BB2)  (1+2B1B: + Bif3) (14 B1B2)? :

219
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where A = (1 — 83)(1 — 82)/(1 + 8182)? is clearly a positive number. So 82 < 1, and hence |vac| < c. qed
Problem 12.4
(a) Velocity of bullet relative to ground: %c + %c = %c = %c.

Velocity of getaway car: %c = %c. Since vp > vy, |bu]let does reach target. ‘

Eajds s 8
(b) Velocity of bullet relative to ground: %f%}‘f =45 =2c=Ze
: 2 3 6

Velocity of getaway car: %c = %c. Since vy > vy, Ibullet does not reach target. |

Problem 12.5
(a) Light from the 90th clock took % = 300 s = 5 min to reach me, so the time I see on the clock is

(b) I observe

Problem 12.6

light signal leaves a at time t}; arrives at earth at time t, =t + d,/c,
light signal leaves b at time t}; arrives at earth at time t, =t} + dp/c.

(db _ da)

—vAt' cosf
'l'At:'tb_tazt;"t;‘i’""T“—‘:At’.’-_( v r )

=y [1 - %cosﬁ] :

(Here d, is the distance from a to earth, and d, is the distance from b to earth.)

vsinf At vsinf

s s S HrUhesth t velocity.
(1—wv/ccosh) e (1 - %cosf) is the the apparent velocity.

As = vAt' sinf =

—u —§i L gi
du _ v[(1 — £ cosB)(cosf) — sinf(% sin )] & Pl -Ecosﬂ) Sl = Esinzg

db (1 - Zcosh)?
= cos6 = >(sin® 6 + cos?§) = -
c c
Bmax = cos™*(v/c). | At this maximal angle, u = ”“1_1;:;0?2 = 7 _';2/02.

Asv = ¢, because the denominator — 0, even though v < c.

Problem 12.7
The student has not taken into account time dilation of the muon’s “internal clock”. In the laboratory, the

muon lasts yr = 71__2':27?, where 7 is the “proper” lifetime, 2 x 1076 5. Thus

d d
V= ——on—u = —+/1 — v2/c2, where d = 800 m.
T/ /1-v?/c2 T / i

TaE g ”2.2f2i_,2__ 1

(d) vpasid z Y [(d) +c2] = A T (1/d)? + (1/c)?’
o 1 . me AANITNBe 101 Beod. wfeo 1 s 16 4
e 1+ (re/d)?’ d 800 T4 @ 1491825 5
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Problem 12.8
1 5

(a) Rocket clock runs slow; so earth clock reads vt = m 1 hr. Here v = 7 92/62 b g =

*. According to earth clocks signal was sent | 1 hr and 15 min [ after take-off.

(b) By earth observer, rocket is now a distance (3c) ( 2) (1 hr) = 3¢ hr (three-quarters of a light hour) away.
Light signal will therefore take hr to return to earth Since it left 1 hr and 15 min after departure, light

signal reaches earth |2 hrs after takeoff. |

(c) Earth clocks run slow: trocket = - (2 hrs) = 2 - (2 hrs) =

Problem 12.9

o e s B B0 o e e
Lo=2Lybe=fysol=L1=1-(3)’=5%=1

<

=

e 3 ... 18, i
s =l =i |v=

i e

ru QM
L L

ﬁn:leu

Problem 12.10

Say length of mast (at rest) is I. To an observer on the boat, height of mast is I sin @, horizontal pr0_|ect10n
is lcosf. To observer on dock, the former is unaffected, but the latter is Lorentz contracted to = IcosQ
Therefore:

tan_————tsmg = vtan#, or 1;anf§~--———~t'an9
> lcost 3 V1-v2/c?

Problem 12.11 {

Naively, circumference/diameter = (2wR) /(2R) = w/y = my/1 — (wR/¢)? — but this is nonsense. Point
is: an accelerating object cannot remain I‘lgld in relativity. To decide what actually happens here, you need a
specific model for the internal forces holding the disk together.

Problem 12.12
(iv) =t = ‘ + 4. Put this into (i), and solve for z:

t vz v? 2 1 o R AR
(L 32) = 0e(1- 5) i e ot = -k AR
v 7(7 ) N o e Y(Z + vi)

Similarly, (i) = = = % + vt. Put this into (iv) and solve for ¢:

I

T

" & t By
i= 'yt—ﬂ( +vt)='yt(1—v—2)—%i=—-—£f; t:“y(t—l—%—:ﬁ). 7
c? \y c c

Problem 12.13
Let brother’s accident occur at origin, time zero, in both frames. In system S (Sophie’s), the coordinates

of Sophie’s cry are z = 5 x 10°m, ¢t = 0. In system S (scientist’s), I = 7y(t — %z) = —~vz/c®. Since
this is negative, [Sophie’s cry occurred before the accidenf;,] 8.y = \/1_{;2,13)2 e \/165133—144 = % So

f=— (%) (#2c) (5x 10%)/c® = —12 x 105/3 x 108 = -4 x 1072 [4 x 1035 earlier. |
Problem 12.14

(a) In S it moves a distance dy in time dt. In S, meanwhile, it moves a distance dj = dy in time df =
y(dt — dz).

4y _ dy B . /.. IR I P R
@ (- 5da) A (1- 5E) y(1-%)" 7 y(1-%)
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_uy/ (=1 A (—uy)

b) tanf = —; = .
(b) Uy (uz —v)/ (1 - %) 7 (uz—v)
In this case u, = —ccosf; uy = csinf = tanf = %f (-_—C_(f:;*—“&%;) :

| sin 0 = -
tanf = = (a%l%—_-;}—/—c) .|[Compare tanf = 'yz'o—";g in Prob. 12.10. The point is that velocities are sensitive

not only to the transformation of distances, but also of times. That’s why there is no universal rule for
translating angles—you have to know whether it’s an angle made by a velocity vector or a position vector.]

Problem 12.15

Sl
Bullet relative to ground: gc, Outlaws relative to police: 146 3 Z e ((15// 48))6 = %c.

1
-3.1
fe—3c . ~(1/28)c . 1L

-2.3 (13/28) 13
of B relative to A, so all entries below the diagonal are trivial. Note that in every case vpullet < Voutlaws, 50 DO

matter how you look at it, the bad guys get away.

Bullet relative to outlaws: ¢ . [Velocity of A relative to B is minus the velocity

speed of —
relative to 4 || Ground | Police | Outlaws | Bullet || Do they escape?
Ground 0 le 3c e Yes
Police —ic 0 2c ic Yes |
Outlaws —3c -2 0 — e Yes
Bullet —Ze —1c Le 0 Yes
Problem 12.16
(a) Moving clock runs slow, by a factor vy = 1_;4/5)2 = 2. Since 18 years elapsed on the moving clock,

—g x 18 = 30 years elapsed on the stationary clock. |51 years old.
(b) By earth clock, it took 15 years to get there, at ¢, so d = $c x 15 years = (12 light years).

(c) |t = 15 years, z = 12¢ years. [

(d) lf =9 years, T = G‘l [She got on at the origin in S, and rode along with S, so she’s still at the origin. If
you doubt these values, use the Lorentz transformations, with  and ¢ from (c).]

(e) Lorentz transformations: { & =1(z+vt) | (note that v is negative, since S is going to the left).
t=7(t+ zz)

s E=3(12cyrs+ §c- 15 yrs) = 3 - 24c yrs =
t 15 yrs+ 25 - 12c yrs) = 2 (15 + 48) yrs = (25 + 16) yrs:

(f) Set her clock ‘ ahead 32 years, I from 9 to 41 (f — £). Return trip takes 9 years (moving time), so her clock

will now read years at her arrival. Note that this is % - 30 years—precisely what she would calculate if the
stay-at-home had been the traveler, for 30 years of his own time.

Il
cajen
—_

(g) () t =9 yrs,z =0. Whatis t? ¢t = Zz + % = g ‘9= % = 5.4 years, and he started at age 21, so he’s

26.4 years old. | (Younger than the traveler (!) because to the traveler it’s the stay-at-home who’s moving.)

(i) # =41 yr3, 7 =0 "What &1l = % = §-41 = 128 = 24.6 years, and he started at 21, so he’s

=D
45.6 years old.
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(h) It will take another of earth time for the return, so when she gets back, she will say her

twin’s age is 45.6 + 5.4 = years—which is what we found in (a). But note that to make it work from
traveler’s point of view you must take into account the jump in perceived age of stay-at-home when she changes
coordinates from S to S.

Problem 12.17

—a%° + '8 + &% + %5 = —%(a® — Bal)(6° — Bb) + 72 (a} — Ba®)(b" — Ba®) + a2b? + a®b?
(a° — BoPb! — B0 + B2a’b! — alb! + BHE° + BePB! — B2a%") + a2b? + a®b?

= —7%a°°(1 - B%) + v*a'b' (1 - B%) + a®b® + a%°

= —a%° 4+ a'd +a%? +a®b®. qed [Note: v*(1-6%) =1

Problem 12.18

ct 1°.-0 040 ct
(a) ; = _Oﬁ (1) (1] g : (using the notation of Eq. 12.24, for best comparison).
z (0 il 0 et | i | z
vy 0 -8 0
[ == g A0
b)|A =
(b) - U5 0
0: . 0sa-0ui i
g NS =D =0 1P =qfosng 0
. oo a1 0010 O)jl—yf o O O0|_||=18 "o 0 0
(c) Multiply the matrices: A = B0 % 0 0 0 1 0|=|l-3F 88 7 o
i e A | 0 0 01 0 0 0 1

the order does matter. In the other order, “bars” and “no-bars” would be switched, and this would give
a different matriz.
Problem 12.19

(a) Since tanh§ = 8288 and cosh® — sinh? 6 = 1, we have:

1 o 1 2 cosh @
V1-v2/c2  \/1—tanh?8 +/cosh®@ — sinh? @

= coshf; v8 = coshftanh f = sinh 6.

’T:

coshf —sinhd 0 0

—sinh® cosh® 0 O cos¢ sing 0)

Compare: R = (— sing cos¢ 0

. A =
: 0 0 10
0 0 01 TR
o e e (u/c)—(u/c) - tanh ¢ — tanh @ = . )
(b) a = q = e B) (2) anh¢ = T tahptannd® where tanh ¢ = u/c, tanh@ = v/c;
tanh ¢ = 4/c. But a “trig” formula for hyperbolic functions (CRC Handbook, 18th Ed., p. 204) says:

tanh¢ —tanh§ » : s« - & A
T tanh tanhg = 20h(# —0). . tanh @ = tanh(¢ - 6), or: [¢=¢ 8.
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Problem 12.20
(@) () I = —AL2 + Az’ + Ay? + A2® = —(5-15)24+ (10— 5)2+ (8 —3)2+ (0—0)2 = ~100+25 +25 = [-50.]

(ii) (In such a system At = 0, so I would have to be positive, which it isn’t.)

S travels in the direction from B toward A,
making the trip in time 10/c.

—3X — 5y c)_c G
V= —— = ——X — -V,
' 10/c 2" "
Note that :—’; =t+i=1suv= Z%Ec’ safely
less than c.

. Lo
) ) I=-B-12+(5-22+0+0=—-4+9=[5]
(ii) By Lorentz transformation: A(cf) = 7[A(ct) — B(Az)]. We want Af = 0, so A(ct) = B(Az); or
% = A,::E‘:) = Eg : ;; = g So|v= gc, in the +z direction.
(iii) (In such a system Az = Ay = Az = 0 so I would be negative, which it isn’t.)
Problem 12.21

Using Eq. 12.18 (iv): Af = y(At - %Az) =0=> At = Az, orv = Ltc? =

tg —ta o
e e
TB —TA

Problem 12.22

(a) ct ; Truth is, you never do communicate with
i the other person right now—you communicate
with the person he/she will be when the mes-
sage gets there; and the response comes back
to and older and wiser you.

world line : !
of player 1 .. world line of

/ player 2

(b) It is true that a moving observ-

er might say she arrived at B before she left
world line of A, but for the round trip everyone must agree
the ball that she arrives back after she set out.
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Problem 12.25

@1

c"aé?; (b) £ = slope = 52
C}:‘\. =>‘v=%c=

. ‘%’tig,\, (c)v'=%c,sov= l_‘:"'_"ﬁ‘

“ :%: :: = Gt = %c =0.95c. v
;;I

Problem 12.24

(@ (1- %) =u% u?(1+ %) = 7% |u

1 - cosh 8

= cosh 6,

]' —
(®) V1-u2/c " \/1—tanh?¢

~ /cosh? 6—sinhZ 6

'q:

712:1?./?“ = coshfctanhf =

Problem 12.25

(8) u: =ty =cosdh® = ﬁg%cz gc.
(b) \/1—12/& 5 \/114/5 o ﬁa; =V5 n= 7‘;‘1'%-.,/7 = lge-=ny=+/Fe.
(c) 1° =ve=|V5e.

g, = 11,%% i 2/5.:_—E 2/5¢ ~[0]
(d) Eq. 12.45= 4 =1 (f{_ﬂ_) o i2_;5c - z:c = :;—,c.
() 7l = v(nz = B1°) = /1~ 2 (VZe~ \[2vBe) =[0] |n, =m = V2e.
®) \/1—1-;2/& e \/1-1(2/3) =V = Vs { g: £ ﬁgz : ?/{; v }

Problem 12.26
P =-0")?+7" =

(1=

(=c* +u?) = —¢

2 (1=u?/c?)
(1-

-[=)

w2/
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Problem 12.27
(a) From Prob. 11.31 we have v = Vb2 + 22, . 7 = [3dt = bfﬁ%g?, = Yin(ct + VB2 + 212) + k; at

=0wewant 7=0: 0= %lnb—l—k, sok=-2Inp; = !—)ln[ (ct + b2+ c2t2)]

(b) V22 — b2 + z = be®™/*; Va2 — b2 = bec/® — z; 1 — b% = b2e2T/b — 22be™/b 4+ x2; 2wbecT/® = b2(1 + €2¢7/Y);
T = b(ﬁﬁ%"ﬂ] = | bcosh(er/b). | Also from Prob. 11.31: v = c%t/v/b? + c2t2.

o i A 2 it cosh?(er/b)—1 _  sinh(er/b) _ cT
= EV 2 — b2 = W¢b2 cosh (CT/b) -2 = C\/ cosh(cr/B) = c::l::sh[(c:'r/b) =|ctanh (?) i

(c) n* = v(¢,v,0,0); v = § = cosh £, so n* = cosh & (c,ctanh 7,0,0) = (cosh —,sinh -6-,0 0)

Problem 12.28

() mpupg = Mou m —__—"-"'_’i :
a) maug + + up; U - .
AU A BUB cuc Dup i 3 (i'U/ 2)
U4 +v uUp + v e +v up +v

B =m +m - —.
U P S e oy Sy e ey o RS R
This time, because the denominators are all different, we cannot conclude that
mattga +mpip = mcic + mpip.

As an explicit counterexample, suppose all the masses are equal, and uy = —up = v; uc = up = 0. This
is a symmetric “completely inelastic” collision in S, and momentum is clearly conserved (0 = 0). But the
Einstein velocity addition rule gives iig = 0, ip = —2u/(1 + v%/c?), ic = ip = —u, so in S the (incorrectly

defined) momentum is not conserved:
—2u
m (—1 s uz/c2) # —2mu.

(b) mana + mpns = mene + mpnp; i = ¥(7i + B7Y). (The inverse Lorentz transformation.)

may(fa + Bi}) + mpy(fs + Big) = mey(fic + Bg) + mpy(fip + B7)). The gamma’s cancel:

mafia + mpip + B(mafy + mpil) = meic + mpilp + B(mend + mpid).
But m;nf = ol = E;/c, so if I energy is conserved | in S (Es + Ep = Ec + Ep), then so too is the momentum
(correctly defined):

mafla + mpiip = mcilc + mpfip. qed
Problem 12.29

2 Dt 2 - - '__ 1
yme* —me* =nme* =>y=n+1= 1u2/c9=>1 = e
W _q_ 1 _ n’fomtlol _ on(nd?). |, _ \/ﬂ(ﬂ+2)c
& o (725 L AR €= < 4L A 73 )L £ R e

Problem 12.30
Er=E +E+--; pr=pr+p2+--; pr=vpr—BEr/c)=0= B =v/c=prc/Er.
v =c’pr/Er =|02(p1 +pr - ) (B ¥ Ba ¥-2:),
Problem(12 .31 2) ( ) L
m3 +m i m2 + m?2 1 v 1
—_— ————————— = 1 —— T —
E, 2my, c? = ymuc® = v = 2mam, \/1 YA 2z 2

2,2 4 953 2 2 2
v? 1 dmim my + 2mim?2 + mf — 4mZm?2 (m = m#) i, (-mir - mu)

—_—=]l-—=1- £ s
g T = T e my (m + 2 =z ma

m2 +m2
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Problem 12.32
Initial momentum: E2? — p?c? = m2c* = p?c® = (2mc?)? — m2¢! = 3m2c* = p = /3me.
Initial energy: 2mc? + mc? = 3mc?.

Each is conserved, so final energy is 3mc?, final momentum is v/3me.

E? — p*c® = (3mc?)? — (V3me)2c? = 6m2ct = M2t = ~ 2.5m.

(In this process some kinetic energy was converted into rest energy, so M > 2m.)

pc2 _ V3mec® [ ¢
T~ E 3m& |3
Problem 12.33
First calculate pion’s energy: E? = p?c? + m%c* = &m?c! + m?¢* = Zm?c* = E = Emc.
Conservation of energy: §m82 =FEs+Ep OF: & Bied
Conservation of momentum: 2mc? =ps+pp=£4 — £ = 3me® = E4 — Ep } T SR

Problem 12.34
Classically, E = %va. In a colliding beam experiment, the relative velocity (classically) is twice the
velocity of either one, so the relative energy is 4E.

1 Let S be the system in which (@) is at rest. Its
E E E i is j
® ® ® ® isrll)ti;d v, relative to S, is just the speed of (@

S S

2° =~(p° - Bp') = 2 E_ v (£ - Bp), where p is the momentum of @ in S.

E=9Mc%, soy= W,p:—’va—*—’yM,Gc, E=~(£ + ByMBc) c = v(E + yMc23?).
72zmr=>1—52=;5¢52=1_¥5337_; EzFﬁfE"‘[("ﬁ%f)g_l]MC?'

= 2 E'Z : ——_2E2 2
E:Micg-FW—MCQ,E«—W—MC.
For E = 30 GeV and Mc? = 1 GeV, we have E = 2% _ 1 = 1800 — 1 = (1799 GeV | = [60E. |

Problem 12.35

Ea
One photon is impossible, because in the “center of mo- 60°
mentum” frame (Prob. 12.30) we’d be left with a photon ?,?1_' :r?a 0
at rest, whereas photons have to travel at speed c. Ep
(before) (after)

Cons. of energy: poc2 +m2ct + me® = E4 + Ep.
horizontal: pg = 54 cos 60° + —5- cosf = Epcosf = poc — EA,
Cons. of mom.:

d add:
vertical: 0= =43gin60° — £E5inf = Egsinf = £EA, } g
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i 3
4—Ei -+ &‘Ei

2
= E} = poc® — pocEa + E} = [\,’P%Cz +m2ct +mc? - EA]

E%(cos? 8 + sin? §) = poc® — pocE4 +

= poc? + m?c* + 24/pgc? + m2ct(mc? — E4) + m?c* — 2Eamc? + E%. Or:

—pocE4 = 2m?c? + 2mc?\/pic® + m2ct — 2E4/pdc? + m2ct — 2E 4mc?;

Ea(mc® + \/pdc? + m2ct — poc/2) = m?c* + mc®/poc? + m3ct;

CHAPTER 12. ELECTRODYNAMICS AND RELATIVITY

B L2 (me? + \/pic® + m3ch) (mc2 Ve + m2ct — poc/2)
s (me? + \/pic® + m2ct — poc/2 (me? — \/p3c? + m2ct — poc/2)

\/p§c2 m%“)

mc? (me+ 2po + /P2 + m cz)

@ﬁé—mm&+ﬁ§—%& et 2 (mc + $po)
Problem 12.36
A e (_l) srg Bun G
dt di T—ul/c2 u?/c? /1= u?/c? 2) (1= u2/c?)3/2
e u(u-a)
T V/1-w?e {a+ (c? —uz)}' gee

Problem 12.37
At constant force you go in “hyperbolic” mo-
tion. Photon A, which left the origin at ¢t < 0,
catches up with you, but photon B, which
passes the origin at ¢t > 0, never does.

ct
Problem 12.38 o _ dmo dﬂo at _[d - J 1
(a) Tdr  atdr |at\Ji-wie)| i-wje
= ¢ (—%)2u-a Shl - el
. m( ) (1 —u2/c2)32 ~ | c(1—u2/c®)?
__d_n__d_td_n_ 1 i u 2 1 a (_1) ~~52ua
Tdr drdt \J1-uw?/@dt\/T-u/2 ) J1-uF[E |1 —u2/02 —~ i fet)id
| BT T
Sl [Pt e-wl
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. o g )R 1 u?) | 1 #
(b) oot __(a0)2+a.a__c_3(l—u2/c2)4 + A=) [a (1—6—2) +c—2u(u-a)}

2\ 2 2
e m{_'cig(u'a)zﬁLaz (1—%) +c%(1—:—2) (u-a)2+~clzu2(u-a)2}

1 2 u?)? (u-a)? e
- o (1-5) +SE e )

:;[auﬂ]_

a-w/ep |* " =)

(c) n*nu = —c?, so %(7?”77;1) = atny, + oy, = 2atn, =0, so
;A
(d) K* = 4 = 4 (mp#) = [ mo”. | |K#m = mat, = 0.

Problem 12.39
K,K* = —(K°? + K - K. From Eq. 12.70, K - K'T_‘T’T From Eq. 12.71:

5o - LdE _ 1 d mc? = me [_1 (—-1/c?) 2u-a] _m_(u-a)
Cedr ey/1—u2/c2dt \ \/1 —u2/c? % VI-u?/2 | 2(1—u?/c?)%? e (1—u2fc?)?’
; c 2 m u?(u - a) _ m(u-a)
But {Eq. 1273) u-F=uFcosf = m [(u * &) + 02(1 —u2/02)] = (1 = uz/cz)"/z’ S0
o uFcosf b1 F? _ u'Fcos’d _ [1-(u?/c?)cos?0] 5
e e/1—u2/2’ e (1-u2/c?) c2(1-u2/c?) (1 —u2/c?) S

Problem 12.40
: [a+ u(u-a)] = q(E+ux B} sat u8) . 4 —V1-u?/c}(E +ux B).

B V1-u2/c? c? —u? (2 —u?)
2 - -
Dot in u: (u-a)+ cz(ul (—uu27)(:2) = i —uu:‘/c?) = %\/1—u2/c2[u-E+u-(u x B)];

=0
V1-u?/c2[E+uxB- —u(u E)]. qed

_ u(u-a) _4q
(2 —-u?)  m

V1 —uz/c"’@. Soa=

Problem 12.41

One way to see it is to look back at the general formula for E (Eq. 10.29). For a uniform infinite plane of
charge, moving at constant velocity in the plane, J=0and p = 0, while p (or rather, o) is independent of ¢
(so retardation does nothing). Therefore the field is exactly the same as it would be for a plane at rest (except
that o itself is altered by Lorentz contraction).

A more elegant argument exploits the fact that E is a vector (whereas B is a pseudovector). This means that
any given component changes sign if the configuration is reflected in a plane perpendicular to that direction.
But in Fig. 12.35(b), if we reflect in the z y plane the configuration is unaltered, so the z component of E would
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have to stay the same. Therefore it must in fact be zero. (By contrast, if you reflect in a plane perpendicular
to the y direction the charges trade places, so it is perfectly appropriate that the y component of E should
reverse its sign.)

Problem 12.42
(a) Field is g¢/€o, and it points perpendicular to the positive plate, so:

ag

P (-x+3).

Ey = ?(cos 45°% + sind5°§) =
0

(b) From Eq. 12.108, E, = E,, = —\/—%ﬂc—u; Ey =4By, = 77295—0. So |E = ﬁeo(—fc+79).

(c) From Prob. 12.10: tanf = +, so y

(d) Let i be a unit vector perpendicular to the plates in S—evidently

n=—sinfx+cosfy; |E| = 7‘%—0\/1 + 72

So the angle ¢ between fi and E is: ‘ /
e

E-i 1 cosd
—— =cos¢ = (sinf + ycosf) = tanf + ) = cosf
IE] Sl o e

Vv1+42

5 2
But 7 = tan0 = g = ST = [y ~ 12 %0 =97 4 12 cost = . Solcosg = (21,

Evidently the field is perpendicular to the plates in S.
Problem 12.43

BN, 2y ] R
(B 1 q(l v /c ) R;
dmeo (1 — %5 sin®9)3/2 R

/E P q(l-vz/cg)/ R%sin6 df d¢
= 4meg R2(1 - %;- sin® §)3/2

_q@ -v2/c2) :rr/ sinf}dﬂ
dmeo o (1-Y%sin?6)3/2

_q@ —v2/02)/ du _q(1—v?%/c?) (6)3/1 du
_ o2 218/2 2 v 2 3/2°
11— % + Zu?] €0 v/ (G -1+ w?)

(Eq. 12.92) =

Let u = cosf, so du = —sinfd#f, sin?6 = 1 — u>.

+1 2

3 2
LT ) T

The integral is:

(G-1y/E-1+w

SO/E—da:qr(I—;::/—cz)(E)a(E)aaﬂ_‘—t%=q-/

149 2(1 —v¥/c?)?ysing ~ -
bo ¢*( /€%) & x 8);
N

-6

Jsi 512 =125 = ExB
(b) Using Eq. 12.111 and Eq. 12.92, S = “0( ) = e by Ri(1_ 2 sin2 BE
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e ¢ (1- v2/c2)2vsin9é
16m2¢o R(1 — % sin® )3
Problem 12.44 v,
. ¥ sk Y = . L 1 qaqgB . _“_L.,._
(a) Fields of A at B: E = ;-%4§; B = 0. So force on ¢gp is |F = s £ a5
g d
-z
qa
(b) (i) From Eq. 12.68: |F = g ¥.| (Note: here the particle is at rest in S.)
4meq d?
i SR D B kT
s (ii) From Eq. 12.92, with 8 = 90°: E = dneg (1 - v2) 2 @ Y= e 2y
v (this also follows from Eq. 12.108).
B # 0, but since vg = 0 in S, there is no magnetic force anyway, and | F = Z}E—q’gsy (as before).
0

Problem 12.45 £

Here § =90°, 4=y, ¢ = %, 2 =r, so (using c¢® = 1/po€p):

N e U TF 1
- B=—-—"—— h =
E y e Y, By o Z, where v e

Note that (E? — B%c?) = (_‘1_)272(1 -%)= (441‘;;)2 is invariant, because it doesn’t depend on v. We can
use this as a check.

: L Rl Bk __in B o e o il
System A: vg =v,s0 E= P ¥ B= TE ot , where ¥ \/m
o 2 e B e Vo e B v?
F =g[E+ (-v%) x B] = 4.“07.2[ Cz(xxz)]_ d7eo 2(1+Cz)y
v+v 2v
System B: wvp = 1+v2/2  (1+v2/)
(1+v3/32)  (Q+v?/3) _ _, v? .
B = = =¥ (1+ =) ; wrs = 207"
402 /o2 o2 ,,4 1 —v2/c? c?
\/ {1+1:; fc ‘/1__2 g o ( / )
£}, B4, 0 ST - ST | o
T 4meg bt i ke deg c2 12
2_ 02 U“ UT! 2 =) 2
[Check: E? — B*c® = (z;%g;) Y+ +5-4%)= (#) 74«%‘ = (41601’) V]
L ; ; =3
F=gBs—g ——5(1 + c—g)y‘ (+q at rest = no magnetic force). [Check: Eq. 12.68 = F4 = +Fp. V]
Teo
Siisteri O s gt S de pogapagpe. L o1y
ystem C: wve =0. = 4?regr2y’ = =40 471_607'2)(.

[The relative velocity of B and C is 2v/(1 + v?/c?), and the corresponding 7 is 7(1 + v?/c?). So Eq. 12.68
= FC - WFB /]



232 CHAPTER 12. ELECTRODYNAMICS AND RELATIVITY

Summary:

(a1 o=l e)e | otaly
(“dm]fﬂi (—zﬁ)%’ﬁi 0 =
(—ree 0+ Ry [ Caba U B Pl

Problem 12.46
(a) From Eq. 12.108:

E.B=EB,+EB,+E.B, =E.B.+7E, —vB:)(B, + —ng;) +7(E: + vB,)(B: - %Ey)
v v? v v?
= E,B, + Y {E,By + C—%Ez - vB{B, - —5E:B: + E.B. - S F,F. +vByB. - < EyB,}
v? v?
= E,B, + 7 [Eysy(1 i 0—2) + E,Bz(1 = c—g)] = E,B, +E,B, +E.B. =E-B. qed

(b) E? —B* = [E2 +7y*(Ey — vB:)> + Y*(E: + vB,)?] - &[B2 + v*(By + é%.a;)2 +7*(B: - z'_;-Ey)"']

= E? +4*(E? - 2E,6B. +v*B? + E? + 2EAB, +v*B} - B2 - ¢*2 BE.

2’”2 2 2 2 368 2“"2 2 2 2
—-c EIEz—ch-i—c? By —c FE;;)_CB:

2 2 2
AT R e e W 2 Lo MONL Sopads VN gmgfs o W
-B2-2B+ 2 |B(1- ) + B(1- ) - Bl (1- ) - @B (1- )|
=(E2+El+E?)-c(B2+B}+B})=E*>-B. qed

(c) For if B = 0 in one system, then (E? — ¢ B?) is positive. Since it is invariant, it must be positive in
any system. Therefore E # 0 in all systems.

Problem 12.47
(a) Making the appropriate modifications in Eq. 9.48 (and picking 6 = 0 for convenience),

E(z,y,2,t) = Egcos(kz —wt)y, B(z,y,z,t) = % cos(kz — wt)Z, where k= %

(b) Using Eq. 12.108 to transform the fields:

E.=E,=0, E,=~(E,-vB,)=1E [cos(k.?: —wt) — %cos(kx - wt)] = aFg cos(kz — wt),

= = v 1 v E
B, =By =0, B,=~(B;- c_QEy) =~vE, [E cos(kz — wt) — = cos(kz — wt)] = af?ﬂ cos(kz — wt),

., vy _ [l-v/c
where a:’y(l—z)— {+0c
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Now the inverse Lorentz transformations (Eq. 12.19) = z =v(Z +vi) andt =1 (f+ :—25), S0
E SERY wuy _ hesm s %
kx-wtz'y[k_(x + vi) —w(t+ C—gx)] —'y[(k— c—z)x—(w—kv)t] = kT — @i,

where (recalling that k = w/c): k=17 (k - %) =vk(1 —v/c) = ak and @ = yw(l — v/c) = aw.

E(z,9,%,1) = Egcos(kz — af)y, B(Z,7,%,1) = % cos(kz — i) 2,

Conclusion: 5 P 1—vje
where Eg = aFy, k=ak, v=aw, anda= J
1+v/e

1-— : . 2 A
()|l w=w i z;z This is the | Doppler shift | for light. A = —g = a—% = = The velocity of the
ool e R O 22 : : "
wave in S is 7 = & A= = this is exactly what I expected (the velocity of a light wave is the
same in any inertial system).
(d) Since intensity goes like E?, the ratio is f B o = Sl
Y 8 , Tl Gt | gy

Dear Al,

The amplitude, frequency, and intensity of the light wave will all |decrease to zero] as you
run faster and faster. It’ll get so faint you won’t be able to see it, and so red-shifted even your
night-vision goggles won’t help. But it’ll still be going 3 x 108 m/s relative to you. Sorry about

that.

Sincerely,
David

Problem 12.48
02 = AQAZEA = AJAZ0? + ADAZH2 = 7192 + (—yB)t12 = »(t%2 — Bt'2).
193 = AQA3 2 = AQAG™ + AQA3!® = 4193 + (—yB)t13 = (373 — Bt13) = (¢ + Bt*!).
23 = AZAZEN = AJAZS = ¢23,
t‘Sl - AiAzlrt)w - A%Ac‘,t:‘c’ o Agi\}tm s (—’)fﬁ)t?'u e ,yt31 - ‘T(tal +,@t03}.
812 = AJA2t27 = AJA3E? + ALAZt'2 = (—qB)t% + t'2 = (212 - Bt2).

Problem 12.49
Suppose t¥# = +t*” (+ for symmetric, — for antisymmetric).

it W gt
AR = A:A:t“" = AﬂAzt"“ [Because p and v are both summed from 0 — 3,
it doesn’t matter which we call u and and which call v.]

= A:Aj(it‘“’) [I used the symmetry of t**, and wrote the A’s in the other order.]

= +{**. qed
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Problem 12.50

F#VFLW s Fﬂo.le o FUIFOI. - F02F\02 o F03Fv03 - 2 F10F10 A F20F20 e F3UF3(]
-+-F”F“ i F12F12 4 F13F13 + F21F‘21 + F22F22 e F23F23 +F31F31 +F32F32 1 F33F33
= —(Ez/)* = (Ey/c)” — (E:/c)” = (Ez/c)® - (Ey/c)® - (E./c)* + B} + B% + B + B} + B2 + B
E?
s 2 2.2 2
=2B% - 2E%/c? = 2(3 "'é?")’

which, apart from the constant factor —f,, is the invariant we found in Prob. 12.46(b).

G" Gy = 2(E?/c* — B?) | (the same invariant).

I

F#yG“p -9 (FOIGOI +F‘O2GU2 i FDSGD:S) + ) (F12gl2 kil F13Gd3 +F23G23)
¥ 1

= -2 (EEEBE +ZEB, + -i—Esz) 2(B.(—E./c) + (-B,)(E,/c) + By(—E./c)]

2 2 4
= ”E(E'B)- E(E'B) = “E(E'B);

which, apart from the factor —4/c, is the invariant of Prob. 12.46(a). [These are, incidentally, the only
fundamental invariants you can construct from E and B]

Problem 12.51

f) 2aeslc i

fediales SR el &
Em‘”fo?x—'%’%%x } Fp.y__m;’\ —c 0 {] —-v
5 A\ve “2rz |0 0 0 O
B=%1Q2Tvy=%or'?y 0 v 0 0

Problem 12.52

O, F* = poJ#.  Differentiate: 8,0, F"" = po0,J".

But 9,0, = 8,0, (the combination is symmetric) while F** = —F#¥ (antisymmetric).

;. 0,0, F* = 0. [Why? Well, these indices are both summed from 0 — 3, so it doesn’t matter which we
call g, which v: 9,0, F*" = 8,0, F"* = 0,0,(—F*") = —0,0,F*¥. But if a quantity is equal to minus itself,
it must be zero.] Conclusion: 9,J" = 0. qed

Problem 12.53

We know that 8,G*” = 0 is equivalent to the two homogeneous Maxwell equations, V-B = 0 and VXE =
—%?-. All we have to show, then, is that OyFy,, + 0, F,x + 8,F», = 0 is also equivalent to them. Now this
equation stands for 64 separate equations (u =0—=3,vr=0—-3,A=0— 3, and 4 x 4 x 4 = 64). But many
of them are redundant, or trivial.

Suppose two indices are the same (say, u = v). Then O\F,, + 8,Fu\ + 8,F», = 0. But F,, = 0 and
F,» = —F),, so this is trivial: 0 = 0. To get anything significant, then, x, v, A must all be different. They
could be all spatial (p,v,A =1,2,3 = z,y,z — or some permutation thereof), or one temporal and two spatial
(k=0,v,A=1,20r 2,3, or 1,3 — or some permutation). Let’s examine these two cases separately.

All spatial: say, p = 1, v = 2, A = 3 (other permutations yield the same equation, or minus it).

a a a
O3 F19 + 01 Fo3 + 02F3 = 0= E(BZ) + a(.Bz) -k 8_y(By) =0=V-B=0,
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One temporal: say, p =0, v = 1, A = 2 (other permutations of these indices yield the same result, or minus
it).

O2Fo1 + 0o F12 + 01 F =0 = L. (—&) + -~(-?-—‘(Bz) + % (%) =0,

dy O(ct)
or —% + (@it - ) = 0, which is the z component of —— =VXE. (If u=0,v=1, A =2, we get the y
component for b= 2 A =3 we get the z component.)
Conclusion: OrFp, + OuF,\ + 0,Fy, = 0 is equivalent to V-B = 0 and % = — Vx E, and hence to

8,G" =0. qed
Problem 12.54
K® = gn,F% = q(m F°' + 2 F%% + 3 F%) = q(n - E)/c = %’yu -E.|Now from Eq. 12.71 we know that

K= %%,- where W is the energy of the particle. Since dr = ;l;dt, we have:

1 dW dW
1 = Iy(u-B) > | == = q(u-B).

This says the power delivered to the particle is force (gE) times velocity (u) — which is as it should be.
Problem 12.55

T = 5ae? = e ai? = ~s(aratt saat * oy ot * e a0
From Eq. 12.19, wehave:%.=‘y, gj Yv, %:%:
S0 3% = — 1932 + v5E) or (since ct = 2° = —an): TG =1(52 - 2 2%) =7 [(0°) - B(29)]
7 o= O B 2ol -2 0100000,

5 _ 6_q5 Opdt 0O¢pdx Opdy 0O¢ 0z 2 9 _ .
PO= oy = dtoy Toxop T Oydy  ozoy By O *
0p 090t 0p0x 090y  0p0z 0¢ e
9z ot Bz+3x8z+3yaz+3zaz 0z 5.
Conclusion: 8¢ transforms in the same way as a* (Eq. 12.27)—and hence is a contravariant 4-vector. qed
Problem 12.56
According to Prob. 12.53, 8{;}: = 0 is equivalent to Eq. 12.129. Using Eq. 12.132, we find (in the notation
of Prob. 12.55):

75=2

8F,, R, 3 OF,
oz Azh oz¥

ol 8AF;w + ang.\ + auF/\.u
= BB A = BA S BB A=A )+ O A TR

8. ... B4
dzNz# — dzHOz

[Note that 8\, A, = = 9,0)A,, by equality of cross-derivatives.)
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Problem 12.57

y
Step 1: rotate from zy to XY, using Eq. 1.29: g
Y =
XN =cos¢pz+singy N X
Y = —sin¢gxr+cosoy
A e R 2
Step 2: Lorentz-transform from XY to XY, using -z
X = (X — vt) =y[cos¢z +sinpy — Bet] 4 Tz
Y=Y =—sin¢gz+cosoy
Z=Z=:

=
I

ct = y(ct — BX) = y[ct — B(cospz + sinqﬁy)]

Step 3: Rotate from XY to Z7, using Eq. 1.29 with negative ¢:

T=cos¢pX —singY = ycos¢[cospz +sinpy — Bct] — sin p[—sinpz + cos p y]
= (ycos? ¢ +sin® ¢)z + (y — 1) sin pcos ¢y — B cos ¢ (ct)

j=sing X +cospY = vsind(cosdz + sinpy — Bet) + cos d(—sindc + cos py)
= (v — 1) sin ¢ cos pz + (7sin® ¢ + cos® ¢)y — yBsin ¢ (ct)

ct 5 —vfB cos ¢ —vyBsin ¢ 0 ct

. [ z] _||-7Bcos¢ (ycos®¢+sin’¢) (y—1)singcosg O z

Tg ket ok g| || —vBsing (y—1)singcosp (ysin®@+cos®’¢) 0 Y
z 0 0 0 1 2

Problem 12.58

In center-of-momentum system, threshold occurs when incident ener-

™ P
e i ; 2 O— =0  before (CM)
gy is just sufficient to cover the rest energy of the resulting particles,

with none “wasted” as kinetic energy. Thus, in lab system, we want (o] after (CM)
the outgoing K and ¥ to have the same velocity, at threshold: KZ

=0 =

™ p KX

Before After

Initial momentum: p,; initial energy of m: E? — p?c? = m2c* = E2 = m2c* + p2ct.
Total initial energy: myc? + /m2c* + p2c2. These are also the final energy and momentum: E? — p%c? =
(mg + mz)204.

2
(m,,f:2 +/m2ct +p§c’) - p2c? = (mk + mg)*c!

2 2
m2g* + T2 /m2 1 g2 o+ mig* + gE — gES = (mi +my)’o*

ct
21“1’ 9 2 2 2 2
vV mgc +pz,,T = (m}{ v g m):) - mp — My
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4m?
(mie +p,,)-—c§-’i = (mk +mg)* — 2(m2 + m2)(mk + mg)® + mj + m§ + 2m2im?

5292 = (mx +mg)* = 2(m2 +m2)(m +mz)? + (m3 — m2)?

c
2m,

Pr = 5—/(mx +mz)t = 2m3 + m2)(mx +mz)? + (m2 —m2)?

= (5,1-;;—‘-_33;\/(m;{c2 +mgc?)t — 2[(mye?)? + (Mmac?)?] (mrc? + msc)? + [(mpc?)? — (mqc?)?]’
= seckooy V(1700 — 2[(900)2 + (150)2](1700)2 + [(900)2 — (150)2]’

= 15h=1/(8.35 x 102) — (4.81 x 10'2) + (0.62 x 10'2) = z2--(2.04 x 10%) = | 1133 MeV /c.

Problem 12.59

Y
. Op P o | (p = magnitude of 3-momentum
g i < in CM, ¢ = CM scattering angle)
Before

Outgoing 4-momenta: r# = (£,pcos¢,psing,0); s* = (£,-pcos¢, —psing,0).
T_J-‘

In Lab: oO— © 8 Problem: calculate 0, in terms of p, ¢.

Before FH
Lorentz transformation: ¥, = y(rz — Br0); 7y = ry; 52 = v(sz — B5%); 5, = s,.

Now E = ymc?; p= —ymv (v here is to the left); E? — p?c® = m?c*, s0 g = —E5.
o7z =7 (peos + B Z) = p(1 + cos ¢); 7y = psing; 5z = yp(1 — cos¢); 5, = —psin¢.
oA o 72p2(1 — cos? @) — p? sin? ¢
i \/['rzp?(l + cos ¢)2 + p? sin® @] [¥2p?(1 — cos ¢)2 + p? sin® ¢]

= _ (-Dsin’¢

$ \/[72(1 + cos ¢)? + sin® ¢] [y2(1 — cos )2 + sin® ¢

(=1 - (*-1)
\/[”!’2(14'&"11)2 + 1] [72(1:~'59-3—Q]2 - 1] 5 \/(’}'2 cot? 2 +1)(y2tan’ £ +1)

sin ¢ sin ¢
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w " 3
% = . = (where w = 4* — 1)
\/(1+cot £ +wcot? £)(1+tan? £ + wtan? )

cosf =

in ¢ [
wsin 7 cos 3

w
\/(csc2 £ +wcot? £) (sec? £ + wtan? ) \/(1 +wcos? §) (1 + wsin® )
- swsin ¢ 3 sin ¢
\/[1 + 3w(1 + cos )] [1 + Fw(1 — cos 9)] \/[(% +1) +cos¢] [(2 +1) — cos ¢
s g = sug = : , where 72 = iz + i
w2 w

A b Vi + S sinrp  VI+(/sngp

sinf = =L .‘r2=h—f5(1+w)=ﬁgi—ﬁ572, SOtaﬂQ:gﬂ_—gﬁsi—w-

sin ¢
. 2c?
Or, since 2—1=2(1—1)=2“2,t e
r, since (v* — 1) = v Cl Sl Lo o

Problem 12.60
1 gt - 1 e
dT = K (a constant) = Efdr K. But & = —lm, p= \/ﬁ

%(m) \/1—u2/02 Multlply by

ii(__u_)_i(_u__)_i___\ﬂ-w Papp et o

dedt\ \/T-w?/2) dz\\/1-u?]2) m u : /1w
d(w

q 2
dy K1. 00 14 5 Kk Lol d(w?) = -2£(dx}.
m m

dr . me Y Y o
L w 2K » 4 constant. But at t = 0,z =0 and u =0 (so w = 0), and hence the constant is 0.
2K u? 2Kz 2Kz 2Kz 2Kz
SRR el S ook ClelBeog 2(1 s ‘
2 m 1—u?/c?’ u m me? -5 +mc2) m
2Kz /m e dz C mc?
2 — -~ £ _—=s——_—_— k== 1 + ( ) d.’]':
2Kz m2) g v / 2K
Vif el b (0| 1+ (22) x

Let‘;‘f(zzaz; ct = [¥ELE dz.  Let z =% dr = 2ydy; vz = ¥.

/ 2_+_ 2
ct = /—yy-_f_ 2y dy = 2/\/3;2 +a?dy = [31,,'\/31;2 + a2 +a’In(y + V2 + ag)} + constant.

Att=0,z=0=y=0,s00=a?lna+ constant = constant = —a?Ina.
2 2
ct =yv/y? + a2 +a’In(y/a+/(y/a)? + 1) = d® [(2) (-y—) +1 —i—ln(g + (y-) + 1)]
a a a a
2Kt
Let:zEy/az\/Ew%: 2Kz Then =2V1+22+In(z + 1+ 22).
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Problem 12.61

l
+q
(a) o(t) = £ [VI+(@t)? — 1], where a = ;. The force of +g on d/2’ -------------- T‘7 ----------------
—q will be the mirror image of the force of —g on +¢ (in the z axis), g i
so the net force is in the z direction (the net magnetic force is zero). V
All we need is the £ component of E. | R
The field at +¢ due to —q is: (Eq. 10.65) B
i o 0P 3 shara B ca) il
E= g [u(c® —=v*) +u(r-a) —a(z-u)].
u=—v=u =cf; —vz,lg(cl—w)'a-uzm—a-v = (o —lv);2-a=1la. So:
| AR, [ [ (cl — va)(c? —v)+1(d—m):a—a(oa—}o}]
4mep ( -UI 2 "

1ea(l? -—4';)r= —cad? /2

i
= ramogpe T V] ]

The force on +q is qE,, and there is an equal force on —gq, so the net force on the dipole is:

o il 1 2 2 % It remains to determine 2, [,
v  dmeg (or — Iv)3 LB e T cad2]x. v, and a, and plug these in.
dr ¢l cat
v(t) = — = — ;v =v(t, , where T' = /1 + (at;)
=% 02\/1+ at)? i (at)? Ultr) = T 4y (
dv 1\ 2a2t, 2 ca
a(t,) = g ? + cat, (—5) 5 =73 [1 + (at,)? = (at,)?] = 75"
Now calculate t,: ¢2(t —t,)2 =2 =12+ d&% 1 = z(t) — z(t,) = £[/1+ (at)? — /1 + (at,)?], s0

B =2t + 2= 51+ (o) + 1+ (gd)? — 2¢/T+ (at)2 /T + (at,.)z] + (d/c)?
(%) V1+ (at)?y/1+ (at;)? =1+ a’tt, + % (‘2—“)2. Square both sides:
2 2, a2 _ 472 , 1(ad\* 2 ady? = 5. rad\?
A+ (at)” + (at;)* + o Ft; ——,l’+a/t4, +4( c) + 2a tt,.+( c) +a tt,-( c)
g ., (ad d\?  o? rdy4 _
£ +42 = 24, tt,.(c) "(E) > (E) =0.

At this point we could solve for ¢, in terms of ¢, but since v and a are already expressed in terms of ¢, it is
simpler to solve for ¢ (in terms of t,), and express everything in terms of ¢,:

2

R IRS
= oo (2] e o+ (D] oo D)
:t,[1+ '% \/[1+ at}Q] )2[ ( )2]
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Which sign? For small & we want t = t, + d/c, so we need the + sign:

t=it [1 - %(%1)2] - léfl"D, where D = 4/1+ (%—g)g.

Sor=c(t—t,)=>2r="5% ("-::—")2 + dT'D. Now go back to Eq. (%) and solve for 1/1 + (at)?:

JI(oe = {1+ %(%i)z+a2t, [t,_ (1 + %(%‘3)2) + STD]}

T
= %{|1 + (at,)?] {1 5 %(%)2] 2 “t‘”dTD} - [1 5 %(%1)2]1% “22"113.
T2
1= £[VI+(@P) - Vit @) = 5{ [x s %(%)2]“ 2y —-;r} = ad( 21 +.D).

Putting all this in, the numerator in square brackets in F becomes:

[ 1= {cat(gr+0) - S [ (%) warn]} (¢ - %) - ome?
—cod[ T+ 40 - DL 6] 2 (14 (o) - o0 - S
ctad? cad®
v 273 °

L ot il - 4 — =

= S [377 - 5t ~1] = S [1+ (at)? ~ (atr)? ~ 2] = -

= ¢’ Ead?
meo [(or - IU)T]3

%. It remains to compute the denominator:

(o — )T = {c[%(%)g e dTD] & ad(»g%T +'t,.D) c’f;f" }T

_fl a/p 1 2/ n cd(at,)? G 2 e T
al [Ea/dd +chD—§a/efd - 22 D|T = cdD[ T* - (at,)? ] = deD.
14+(g#)? —(g#)?

4reg Ad3 D3 dreo cd[1 + (ad/2¢)?] 3/2 me/’

Energy must come from the “reservoir” of energy stored in the electromagnetic fields.

- 1 ¢ a BN S0P o ol
07 =me= 3l U+ BT - s -

2

(force on one end only)
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Problem 12.62
(a) A* = (V/e, Az, Ay, A;) is a 4-vector (like z* = (ct,z,y,2)), so (using Eq. 12.19): V = 4(V + vA;). But

V =0, and
i po (m X T),
Ay = ——F——,
T 4 73
Now (m X T); = myZ — m,§ = myz —m.y. So
v_:"-_“'__(l (myz = mzy)‘

=9 47 73

Now Z = y(z —vt) = YR:, § =y = Ry, Z = z = R, where R is the vector (in §) from the (instantaneous)
location of the dipole to the point of observation. Thus

2
P =vR+R2+R:=+*R2+ R+ R}) + (1 - 7*)(R2 + R?) =+*(R? - 2—2}22 sin” 6)
(where 8 is the angle between R and the z axis, so that RZ + R2 = R?sin’§).

vt vy(myR, — m.R,) ]
4m (3 R3 (1- %; sin? 9)3/2

but v:-(m X R) =v(m X R); = v(myR; — m.R,), so

V:p_ov.(mxn)u-g;)
4m R3(1- —‘é;sin2 9)3/2 :

R-(vx =%
or,using,ug=m—‘p;andv-(me)=R-(VXm): V= : y s ?)

~ 4meo 2R2(1 — 2 sin26)*?

(b) In the nonrelativistic limit (v? < ¢?):

1 R-(vxm) 1 R.p : v Xm
= = th =
4meg  C2R? 4dmey R? ' el cz

which is the potential of an electric dipole.
Problem 12.63

(a) B=-8Ky (Eq. 5.56); N =m x B (Eq. 6.1), so N = —2mK(z X §).
N = %mk’)“c = B9 (\wl2)(ov)% = B A0v212R.
(b) 5 Charge density on the front side: Ag (A = vAo);
v Charge density on the back side: A = §)\g, where & = 1—;%;’7;5 =
c 1 (1+v?%/c?) 1+ v?/c? (1 +v%/c?) v?
: AL G )

4y2 /2 i 2 4 S 22 @ 1 —v2/c2 Tt
- ooy J1+25+4-4% Jf1-2g+y (199

Length of front and back sides in this frame: [/v. So the net charge on the back side is:

w=A=r(1+5) 3 = (14 H)n
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Net charge on front side is:

g- = /\|;|i = === i/\11'.
v

So the dipole moment (note: charges on sides are equal):

2 2 2

i 1 TR s e Rt [t ] e\ 2 v2 w2y | AlZ?
p—(q+)§y—{q-)§y—[(1+c—2)f\f——?/\!—}y—~—(1+c—2—1+c—2)y- ¥

AR @ . Li0c comms
2 %(y M2y = ;—2-—.303 v°R.

Ezg’%%,wherea:vog,soN:pr:

So apart from the relativistic factor of v the torque is the same in both systems—but in S it is the torque
exerted by a magnetic field on a magnetic dipole, whereas in S it is the torque exerted by an electric field on
an electric dipole.

Problem 12.64

Choose axes so that E points in the z direction and B in the yz plane: E = (0,0, E); B = (0, B cos ¢, B sin @).
Go to a frame moving at speed v in the z direction:

E = (0,~yvBsing,y(E + vBcosg)); B = (0,7(Bcos¢+ %E),’yB sin ¢).

—yvBsing  4(E + vBcos¢)
v(Bcosp+ HE) vBsing '’

(I used Eq. 12.108.) Parallel provided

2
—~vB%sin’ ¢ = (Bcos¢ + ;,_,E) (E +vBcos¢) = EBcos¢ + vB? cos® ¢ + C%Ez + EEEB cos ¢,

2
Y Y v __ _EBcos¢
=0k +C2E +EBCOS¢'(1+C2)’ 1+v2/c2~ B2+ E?/c®

- -

o 8 : v E x B
NowHXE =l 0 E |=-EBcos¢x. So 5= 73 7+ qed
0 Bcos¢ Bsing L+vd /et B34 Bt

there can be no frame in which E L B, for (E - B) is invariant, and since it is not zero in S it can’t
be zero in S.
Problem 12.65

Just before:

Field lines emanate
from present position
of particle.

Fq €




Just after: Field lines outside sphere of radius ¢t emanate from
position particle would have reached, had it kept going on its
original “flight plan”. Inside the sphere E = 0. On the sur-
face the lines connect up (since they cannot simply terminate
in empty space), as suggested in the figure.

This produces a dense cluster of tangentially-directed field
lines, which expand with the spherical shell. This is a pic-
torial way of understanding the generation of electromagnetic
radiation.
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Problem 12.66

Equation 12.68 assumes the particle is (instantaneously) at rest in S. Here the particle is at rest in S. So

Tz h 3 -
F, = ;FJ_, F) = Fj|. Using F = gE, then,

F, = Fx — qu,

Invoking Eq. 12.108:

1
F; = qE;, Fy = ;Q'Y(Ey -vB,) = Q(Ey -vB,), F,=

= {ié:.
Fy=_F,=¢B, F.=

L
-

1

= ;q'y(Ez +vBy) = q(E; + vBy).

But vxB=-vB,X+vByz, so F=¢qE+vxB). qed

Problem 12.67

Rewrite Eq. 12.108 with z = y, y = z, 2 = =

Zy z
IE v Ey,=E, E,=+(E,-vB;) E; =v(E; + vB,)
——y y B,E28," B& 'w(Bz + :—QEE) B, = ’r(Bz - :—._,Ez)
T g This gives the fields in system & moving in the y direction at speed v.

Now E = (0,0, Ey); B = (By,0,0), s0 E, =0, E, = y(Ey — vBy), E; = 0.
If we want E = 0, we must pick v so that Eg — vBy = 0; i.e.
(The condition Ey/Bg < c guarantees that there is no problem getting to such a system.)

With this, B, =0, B, =0, B; = y(Bo — %Eo) = vBo(1 - gi) =vBoys = 1Bo; |[B= ~Bo%.

1

e

2

The trajectory in S: Since the particle started out at rest at the origin
in &, it started out with velocity —v§ in S. According to Eq. 12.72
it will move in a circle of radius R, given by

p=¢gBR, or ymv = q(%BU)R =|R=

my?v q .
gBo

I

The actual trajectory is given by ‘9’: =0; §j = —Rsinwt; Z = R(1 — coswt); | where |w =

e
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The trajectory in S: The Lorentz transformations Eqs. 12.18 and 12.19, for the case of relative motion in
the y direction, read:

o= L i
7=y —vt) y =(J + vt)
A Zi=y
f=(t- %) t=~(f+%9)

So the trajectory in S is given by:
z=0; y=v(—Rsinwl+vi) = 'y{szin[w'y(t - %y)] + v'y(t - Ev?—y) }, or

2
4 v
) ) = vt — Rsin[w (t—-— )] i
y( e T i i 2y (y—vt)‘r=—RSi“[“’"’(t_:y)];
1"‘9{1~§§—+§§)=sz

z = R(1 — cos? wi) = R[l - cosw'y(t - Evgy)]

So: |z =0; y=vt — %sin[w'y(t - c%y)]; S — R—Rcos[w'y(t— %y)}

We can get rid of the trigonometric terms by the usual trick:

¥(y — vt) = —Rsin [wy(t - Zy)] TR . 2 _ p2?

z—R=—Rcos [wy(t - %y)] =>|'}'(y o) e i) =R
Absent the 42, this would be the cycloid we found back in Ch. 5 (Eq. 5.9). The 42 makes it, as it were, an
elliptical cycloid — same picture as p. 206, but with the horizontal axis stretched out.

Problem 12.68
(a) D= ¢E+P suggests E— LD
H = 1B — M suggests B — poH

Ho

} but it’s a little cleaner if we divide by uo while we’re at it, so that

E - LD =¢?D, B - H. Then: 0 cD; cDy D,

S pw_J)—¢D: 0 H, -H

e "CDy _Hz 0 Hx
-cD, H, -H, 0

Then (following the derivation on p. 539):

i RS 57 B Ley 10 oD+
— b3 = - = s v — ¥ = ———- T v H — T ; = '“,
aqu eV-D =cps=J;; 3$”D cat( cD;) + (VXH); = (Js)z ; s0 o J
where J}‘ = (epy,Jf). | Meanwhile, the homogeneous Maxwell equations (V-B =0, E = -%%) are unchanged,
%
and hence g =0
dzv
)| Ty O e
Y = —-H,; 0 —cD, cDy

-H, cD, 0 —cDy
-H. —cD, D, 0
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(c) If the material is at rest, 1, = (—¢,0,0,0), and the sum over v collapses to a single term:
E
D*%n = c®eF*%ng = D0 = 2eF* = —cD = —czez = D = ¢E (Eq. 4.32), v
0 1 .0 P 1 1
H"9 = =G*no=> H* = -G*" = -H=--B=>H = -B (Eq. 6.31). v
p p 7 p
(d) In general, 1, = y(—c,u), so, for g = 0:
D%n, = D% m + D%ny + D%n3 = eDy(yus) + cDy(yuy) + eD:(yu:) = v¢(D - u),
§ E, E E,
F%q, = FO'ny + F%ny + F%ny = — (rue) + =2 (ywy) + = (yuz) = %(E ‘u), so
D7, = 2eF%n, = y¢(D - u) = c% (1) (E-u)=D-u=¢E-u). (1]
c

H%n, = H%; + H%npy + H%ns = Ho(yuz) + Hy(yuy) + H(yu:) = y(H - u),
G%n, =G%'m + G%%mp + G = Bz (yuz) + By(vuy) + B:(yu:) = ¥(B - u), so

1 1 1
H%n, = ;G""m =y(H-u) = PREL € L L (2]
Similarly, for g = 1:
DYn, = DYno+ DYy + D3 = (—cDz)(=7v¢) + Ho(yuy) + (—Hy)(yuz) = ¥(* Dy + uyH, — u, Hy)
= y[*D+uxH)]_,
v 10 12 13 —E;
Fn, = FPn+F* np+F = —né--(dyc) + B;(yuy) + (= By)(yu:) = ¥(E:z + uyB, — u,By)
= q[E+ (uxB)],, so D', = c?F'n, =
v [e®D + (u x H)], =c%(y)[E+ (uxB)], =D+ Clz(u x H) = ¢[E + (u x B)]. [3]

HYn, = H'n+ HYn + H%ns = (=H)(—7c) + (—eDs)(vuy) + (cDy)(yuz)
= vyc(Hy —uyD, +u,Dy) =vc[H - (u x D)]=r1

E, E.
G¥n = GOm+ G+ G = (-B(-10)+ (- =) ) + (2) ()
e g 2B E . Y 2 1v P 1 1v
- E(c r — Uy z+u;Ey)-E[cB—(uxE)]z,soH ny~—;G M =
1

i
Use Eq. [4] as an expression for H, plug this into Eq. (3], and solve for D:

‘yc{H—(uxD)}:=i%[c2B—(uxE)]z=>H—(u><D)= [B—clz(uxE)]. [4]

D+Cl2ux{{uxD)+ﬁ[B—ci2(uxE)}}=e[E+(uxB)];

D+  [(u-D)u=uD] = ¢[E+ (ux B)] - —5(u x B) + ~z [ux (u x B)].
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Using Eq. [1] to rewrite u - D:

s 1 1
D(1—2—2) = —C%(E-u)u+e[E+(uxB)]—E(uxBH—L—Lj[(E'u)u—qu]

6{[1_2%]53_0%[1_&‘%] (E-u)u+ (uxB) [l_e,u%}}

Then

Let ’YEW, T

D=725{(1—ﬂ2}2)E+(1—z2—2) [(uxB)—clz(E-u)u}}.

Now use Eq. [3] as an expression for D, plug this into Eq. [4], and solve for H:

H—ux{—(-:IE(UXH)+£[E+[UXB)]}—_—£— [B—EIE(UXE)]E

H+ cl [(u-H)u- u’H] = P [B— —(u x E)] +e(ux E) + efu x (u x B)].
Using Eq. [2] to rewrite u- H:
2
H(l—%,f) = —%(B-u)u+i— [B—gg(uxE)] +é(ux E) + ¢ [(B-u)u— u’B]

= i{[l—peuz]B+(.ﬂ——)E(UXE (Bu)u]}

2 2 1 1
a-2{(-5) e+ (G- 3) texm 3 ).
Problem 12.69

We know that (proper) power transforms as the zeroth component of a 4-vector: K = %ﬁ'f-}f-. The Larmor

formula says that for v = 0, &Y = KoL

reduces to this when the velocity is zero? |
Well, a? smells like (a”a, ), but how do we get a 4-vector in here? How about n*, whose zeroth component
is just ¢, when v = 0? Try, then:

(Eq 11.70). Can we think of a 4-vector whose zeroth component

2
Hodg

K* = —(a”

6mc? e

This has the right transformation properties, but we must check that it does reduce to the Larmor formula

when v — 0:
dw _ 1dW _ 1 1 m.q dW  poq?

—_— = = —cK® = )%, but n° = ¢y, so | — = ——(a”

it  ydr A O G bt =iy, 0| T G

us that the power itself (as opposed to proper power) is a scalar. If this had been obvious from the start, we

could simply have looked for a Lorentz scalar that generalizes the Larmor formula.

a,)nt.

@, ). | [Incidentally, this tells
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In Prob. 12.38(b) we calculated (a”a, ) in terms of the ordinary velocity and acceleration:
y v-a &
aa.,z'y[a +(( 2)]—7[02'}'2+ (v-a)z]

6[ 2 v’ 1 2 6 2
=1*[a?(1-5) + 5(v-a)?] =1*{a* - [v - (v-a)}.
Now v -a = vacosf, where @ is the angle between v and a, so:

v?a? — (v - a)? = v?a®(1 — cos? §) = v2a?sin? 0 = |v X a)’.

a’a, = 76(a2 — ’VT“J )
2
ot el

, | which is Liénard’s formula (Eq. 11.73).

Problem 12.70
(a) It’s inconsistent with the constraint 5, K* = 0 (Prob. 12.38(d)).
(b) We want to find a 4- vector b* with the property that (4= +b#)n, = 0. How about b* = K,( 1y )n*? Then

_ da*

(4= +b#)n, = d2Zn, + K92 n, (7#n,). But g4y, = —c2, so t.hls becomes (9227, ) — c?x (4 n,,) which is zero,

dr
5 ] . 0q® rda* 1 daV
if we pick k = 1/c%. This suggests | K" = 'téﬂ_c (? +i— = g )
components of b* vanish in the nonrelat.lwstlc limit v << ¢, and hence this still reduces to the Abraham-Lorentz
formula. [Incidentally, o ?;f,, =0= 7 (a Nw) =0=> & e/ +a"—"—- =0, so d" “—m = —a”ay, and hence b* can
just as well be written —1(0,' ay)n“ ]

Problem 12.71
Define the electric current 4-vector as before: J¥ = (cpe,J¢), and the magnetic current the same way:
JE = (epm,JIm). The fundamental laws are then

Note that n* = (e, v)7y, so the spatial

O F" = poJ¥, 0,G" = %J,ﬁi, Kt = (qu‘“’ + quG"”) Mo

The first of these reproduces V-E = (1/€g)p. and V xB = p9J +p0€00E/8t, just as before (p. 539); the second
yields V - B = (uo/c)(cpm) = popm and —(1/c)(0B/0t + V x E) = (uo/c)Im, or V x E = —poJ,, — 0B/0t
(generalizing page 540). These are Maxwell’s equations with magnetic charge (Eq. 7.43). The third (following
the argument on p. 540) says

K1 B o e e B

Wiy e | im0+ e (-2) 4 e (%))
1

K = o {alE+@xB)l+em [B- SwxB)|}, o

V1—u?/c?

g [E+ (u x B)] + gm [B—ciz(uxE)],

Il

F

which is the generalized Lorentz force law (Eq. 7.69).






