
PHYSICS TEXTBOOK 

David Griffiths ,vWILEY-YCH 

Introduction to 
Elementary Particles 

Second, Revised Edition 





David Griffiths 

Introduction to Elementary Particles 
Second, Revised Edition 

~ 
WILEY­

VCH 
WllEY-VCH Verlag GmbH & Co. KGaA 



n.. Author 

Ddvld Grlffilh. 
R� CoU�g. 
Portland. OR 
U<A 

For a Solutions Manual. instru<;tors 
should contact the ""itorial d.partm�n! a! 
vch.phys;c.@wiIey.vch.de,$IatingWir affil. 
iaticn and th� cou,se in which they wish to 
use 1M book. 

All bocks publish"" by Wiley-VCH are Gm· 
fully produced. Ne"I'erthcl� .. , authors. editors, 
and publish ... do not wartant W inform.>· 
non contain"" in th.se books. induding this 
book. to bo, fr� cf .. rors. R.ad ... are ad· 
vised to keep in mind th.! statements. data. 
mumalions. proc""u,aI ""tails or otMr it�ms 
may ina<\""rtently bo, in>e<:urate_ 

library of Congress Card No.: 
appli"" fur 

British library Catalotuing'in-Publicalicn tnta 
A otalosue u:cord fer th;, book is •• ail .. ble 
from th� British Library. 

Bibliosrllphic infi><malion publi."-d by th40 
Deutsche Nrtionolbibliolhek 
Die Deutsche NationolbibJiothek lists tIti$ 
publitoation in the Deuische Nationalbibli· 
ogr.ofie: d"'ail"" bibliOS"phic data are avail­
able in the Inlern", at http;/Idnb_d.nb.de. 

02008 WlLEY·VCH v .. bg GmbH & Co. 
KG ..... Weinh�im 

All rights reserved (induding those ofuan.­
blion into other languageo). Ne part of this 
book may bo, reprodU«d in any form - by 
photoprinting. micrcfilm, or any eth ... 
means - nor tnnsmitt"" or , .. nslaled into 
• m.chine l.nguage without written pMItIis. 
sion from the publishers. Regi.tered ""me •. 
trademarks. etc. used in thi. bock. e"l'en 
when not s�ifically m.>rked as such. are not 
10 bo, conside,"" unpr�ted by law. 

Typ .... ttin' Laserword. Private Limited, 
Chen""i. Indi. 
PriJIIlng Strauss GmbH, M6rlenbach 
Bindin, Litgeo & Dopf Buchbinderei 
GmbH, Heppenheim 

Print"" in the Federal Republic of Germany 
Printed on acid·fr� paper 



1.1 
1 2  
1.3 
lA 
1.5 
1.6 
1 7  
1.8 
1.9 

1.10 
1.11 

2 
2.1 
2.2 
2.3 
2.4 
2.4.1 
2.4.2 
2.4.2.1 
2.4.3 
2.4.4 
2.5 
2.6 

Contents 

Preface to the First Edition IX 
Preface to the Second Edition XI 
Formulas and Constants XIII 

Introduction 

Historical Introduction to the Elementary Particles 13 
The Classical ERA (1897-1932) 13 
The Photon (1900-1924) 15 
Mesons (1934-1947) 18 
Antiparticles (1930-1956) 20 
Neutrinos (1930-1962) 23 
Strange Particles (1947-1960) 30 
The Eightfold Way (1%1-1964) 35 
The Quark Model (1964) 37 
The November Revolution and Its Aftermath (1974-1983 and 
1995) 44 
Intermediate Vector Bosons (1983) 47 
The Standard Model (1978-?) 49 

Elementary Particle Dynamics 59 
The Four forces 59 
Quantum Electrodynamics (QED) 60 
Quantum Chromodynamks (QeD) 66 
Weak Interactions 7J 
Neutral 72 
Charged 74 
Leptons 74 
Quarks 75 
Weak and Electromagnetic Couplings of Wand Z 78 
Decays and Conservation Laws 79 
Unification Schemes 84 

Inlmd"<lio� 10 &mtnla'1' PArfirks. Stumd Edilio�. D.vid Griffiths 
Copyright 0 2008 WILEY-VCH Verlag GmbH & Co. KGaA. Weinheim 
1 SON, 978-)·527-4060H 

I' 



VII COlllenll 

1 Relativistic Kinematics 89 
3.1 Lorentz Transformations 89 
3.2 Four-vectors 92 
3.3 Energy and Momentum 96 
3.4 Collisions 100 
3.4.1 Classical Collisions 100 
3.4.2 Relativistic Collisions 101 
3.5 Examples and Applications 102 

• 
'.1 
4.2 
4.2.1 
4.2.2 
'.3 
4.4 
4.4.1 
4.4.2 
4.4.3 
4.4.3.1 

Symmetries 115 
Symmetries. Groups. and Conservation Laws 115 
Angular Momentum 120 
Addition of Angular Momenta 122 
Spin t 125 
Flavor Symmetries 129 
Discrete Symmetries 136 
Parity 136 
Charge Conjugation 142 
CP 144 
Neutral Kaons 145 

4.4.3.2 CP Violation 147 
4.4.4 Time Reversal and the TCP Theorem 149 

S Bound States 159 
5.1 The Schrodinger Equation 159 
5.2 Hydrogen 162 
5.2.1 Fine Structure 165 
5.2.2 The Lamb Shift 166 
5.2.3 Hyperfine Splitting 167 
5.3 Positronium 169 
5.4 Quarkonium 171 
5.4.1 Charmonium 174 
5.4.2 Bottomonium 175 
5.5 Light Quark Mesons 176 
5.6 Baryons 180 
5.6.1 Baryon Wave Functions 181 
5.6.2 Magnetic Moments 189 
5.6.3 Masses 191 

6 The Feynman Calculus 197 
6.1 Decays and Scattering 197 
6.1.1 Decay Rates 197 
6.1.2 Cross Sections 199 
6.2 Tbe Golden Rule 203 
6.2.1 Golden Rule for Decays 204 



6.2.1.1 
6.2.2 
6.2.2.1 
6.3 
6.3.1 
6.3.2 
6.3.3 

Two-particle Decays 206 

Golden Rule for Scattering 208 

Two-body Scattering in the CM Frame 209 

FeynmanRules for aToyTheory 211 

Lifetime of theA 214 
A + A -+ B + B Scattering 215 

Higher-order Diagrams 217 

7 Quantum Electrodynamics 225 
7.1 The Dirac Equation 225 

7.2 Solutions to the Dirac Equation 229 
7.3 Bilinear Covariants 235 
7.4 The Photon 238 

7.S The Feynman Rules for QED 241 

7.6 Examples 245 

7.7 Casimir's Trick 249 
7.8 Cross Sections and Lifetimes 254 

7.9 Renormalization 262 

8 Electrodynamics and Chromodynamics of Quarks 275 
8.1 Hadron Production in e+e- Collisions 275 

8.2 Elastic Electron-Proton Scattering 279 

8.3 Feynman Rules For Chromodynamics 283 
8.4 Color Factors 289 
8.4.1 Quark and Antiquark 289 

8.4.2 Quark and Quark 292 
8.S Pair Annihilation in QCD 294 

8.6 Asymptotic Freedom 298 

9 Weak Interactions 307 
9.1 Charged leptonic Weak Interactions 307 

9.2 Decay of the Muon 310 

9.3 Decay of the Neutron 315 

9.4 Decay of the Pion 321 

9.S Charged Weak Interactions of Quarks 324 
9.6 Neutral Weak Interactions 329 

9.7 Electroweak Unification 338 

9.7.1 Chiral Fermion States 338 

9.7.2 Weak Isospin and Hypercharge 342 

9.7.3 Electroweak Mixing 345 

10 Gauge Theories 353 

10.1 Lagrangian Formulation of Classical Particle Mechanics 353 

10.2 Lagrangians in Relativistic Field Theory 354 

10.3 Local Gauge Invariance 358 

Contents I VII 



VillI COlllell!! 

IDA Yang-Mills Theory 361 
10.5 Chromodynamics 366 
10.6 Feynman Rules 369 
10.7 The Mass Term 372 
10.8 Spontaneous Symmetry·breaking 375 
10.9 The Higgs Mechanism 378 

, 1 Neutrino Oscillations 387 
11.1 The Solar Neutrino Problem 387 
11.2 Oscillations 390 
11.3 Confirmation 392 
11 A Neutrino Masses 395 
11.5 The Mixing Matrix 397 

12 Afterword: What's Next? 401 

12.1 The Higgs Boson 401 
12.2 Grand Unification 405 
12.3 Matter/Antimatter Asymmetry 409 
12A Supersymmetry, Strings, Extra Dimensions 411 

12.4.1 Supersymmetry 411 
12.4.2 Strings 413 
12.5 Dark Matter/Dark Energy 414 
12.5.1 Dark Matter 414 
12.5.2 Dark Energy 416 
12.6 Conclusion 417 

A The Dirac Delta Function 423 

B Decay Rates and Cross Sections 429 
B.l Decays 429 

B.1.1 Two-body Decays 429 
B.2 Cross Sections 430 
B.2.1 Two-body Scattering 430 

C Pauli and Dirac Matrices 433 
C.l Pauli Matrices 433 
C.2 Dirac Matrices 434 

D Feynman Rules (Tree Level) 437 
0.1 External Lines 437 
0.2 Propagators 437 
0.3 Vertex Factors 438 

Index 441 



Preface to the First Edition 

This introduction to the theory of elementary particles is intended primarily for 
advanced undergraduates who are majoring in physics. Most of my colleagues 
consider this subject inappropriate for such an audience - mathematically too 

sophisticated. phenomenologically too cluttered, insecure in its foundations. and 

uncertain in its future. Ten years ago I would have agreed. But in the last decade the 
dust has settled to an astonishing degree. and it is fair to say that elementary particle 
physics has come of age. Although we obviously have much more to learn, there 

now exists a coherent and unified theoretical structure that is simply too exciting 
and important to save for graduate school or to serve up in diluted qualitative form 

as a subunit of modern physics. I believe the time has come to integrate elementary 
particle physics into the standard undergraduate curriculum. 

Unfortunately, the research literature in this field is clearly inaccessible to 
undergraduates, and although there are now several excellent graduate texts, these 
call for a strong preparation in advanced quantum me<:hanics, if not quantum 
field theory. At the other extreme, there are many fine popular books and a 

number of outstanding SCientifo; Amtrican articles. But very little has been written 
specifically for the undergraduate. This book is an effort to fill that need. It grew 
out of a one-semester elementary particles course I have taught from time to 
time at Reed College. The students typically had under their belts a semester of 

electromagnetism (at the level of lorrain and Corson), a semester of quantum 
mechanics (at the level of Park), and a fairly strong background in spe<:ial relativity. 

In addition to its principal audience, I hope this book will be of use to beginning 
graduate students, either as a primary text, or as preparation for a more sophisticated 
treatment. With this in mind, and in the interest of greater completeness and 

flexibility, I have included more material here than one can comfortably cover in a 
single semester. (In my own courses I ask the students to read Chapters 1 and 2 
on their own, and begin the le<:tures with Chapter 3. I skip Chapter 5 altogether, 

concentrate on Chapters 6 and 7, discuss the first two Sl'(tions of Chapter S, and 

then jump to Chapter 10.) To assist the reader (and the teacher) I begin each 
chapter with a brief indication of its purpose and content, its prerequisites, and its 

role in what follows. 

)"m./ucIiOll '" & ..... "''1' P�..w... S«<md Edil;"'" D.vid Griffith. 
CopyrightCl2008 WILEY·VCH Ve-r48 GmbH & Co. KGaA. W";nh,,;m 
ISBN: 97!-J·Sli·.06OH 
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This book was written while I was on sabbatical at the Stanford linear Accelerator 
Center, and I would like to thank Professor Sidney Drell and the other members of 
the Theory Group for their hospitality. 

DAVID GRIFFITHS 
1986 



Preface to the Second Edition 

It is 20 years since the first edition of this book was published, and it is both 
gratifying and distressing to reflect that it remains, for the most part, reasonably 
up-to-date. There are, to be sure, some gross lacunae - the existence of the top 
quark had not been confirmed back then, and neutrinos were generally assumed 
(for no very good reason) to be massless. But the Standard Model, which is, in 
essence, the subject of the book, has proved to be astonishingly robust. This is 
a tribute to the theory, and at the same time an indictment of our collective 
imagination. ! don't think there has been a comparable period in the history of 
elementary particle physics in which so little of a truly revolutionary nature has 
occurred. What about neutrino oscillations? Indeed: a fantastic story (I have added a 
chapter on the subje<I); and yet, this extraordinary phenomenon fits so comfortably 
into the Standard Model that one might almost say, in retrospect (of course), that it 
would have been more surprising if it had not been so. How about supersymmetry 
and string theory? Yes, but these must for the moment be regarded as speculations 
(I have added a chapter on contemporary theoretical developments). As far as solid 
experimental confirmation goes, the Standard Model (with neutrino masses and 
mixing) still rules. 

In addition to the two new chapters already mentioned, I have brought the 
history up·to-date in Chapter 1. shortened Chapter S, provided (I hope) a more 
compelling introduction to the Golden Rule in Chapter 6, and eliminated most of 
the old Chapter 8 on electromagnetic form factors and scaling (this was crucially 
important in interpreting the deep inelastic scattering experiments that put the 
quark model on a secure footing, but no one today doubts the existence of quarks, 
and the technical details are no longer so essential). What remains of Chapter 8 
is now combined with the old Chapter 9 to make a new chapter on hadrons_ 
Finally, I have prepared a complete solution manual (available free from the 
publisher, though only - 1 regret - to course instructors). Beyond this the changes 
are relatively minor. 

Many people have sent me suggestions and corrections, or patiently answered my 
questions. 1 cannot thank everyone, but I would like to acknowledge some of  those 
who were especially helpful: Guy Blaylock (UMass), John Boersma (Rochester), 
Carola Chinellato (Brazil), Eugene Commins (Berkeley), Mimi Gerstell (Cal Tech), 

/ntr(ldUCIi"" I<J Elemenl<Jry Parlicl<$, S«<>nd &/ili()IL o...;d Griffiths 
CopyrightC> 2008 WILEY.vCH V�ria8 GmbH & Co. KGaA, W�inMim 
ISBN: 978·J.52H0601·2 

I" 



xu I Prtfau 10 Ihe �cOMd EdiljOM 

Nahmin HOIwitz (Syracuse). Richard Kass (Ohio State). Janis McKenna (UBC). 
Jim Napolitano (RPI). Nic Nigro (Seattle). John Norbury (UW.Milwaukee). Jason 

Quinn (Notre Dame). Aaron Roodman (SLAC). Natthi Shanna (Eastern Michigan). 
Steve Wasserbeach (Haverford). and above all Pat Burchat (Stanford). 

Part of this work was carried out while I was on sabbatical. at Stanford and 

SLAe. and I especially thank Patricia Burchat and Michael Peskin for making this 
possible. 

DAVID GRIFFITHS 
ZOO, 



I XIII 

Formulas and Constants 

Particle Data 

Mass in MeV/c?lifetime in seconds. charge in units of the proton charge. 

Leptons (spin 1/2) 

Generation Fbw, Charge Mass' Ufetime Principal Deays 
fin! t (electron) I 0.510999 00 -

v, (e neutrino) 0 0 00 -
second jl (muon) I 105.659 2.19703 x 10- ,��ii, 

�� (p. neutrino) 0 0 00 -
third r (tlU) I In6.99 2.91 x 10- 'v,v,.jl�,ii�.1f " 

�, (T neutrino) 0 0 00 -

'Neutrino masses are extremely small. and for most purposes an be taken to be zeTO; for details see Chapter 11. 

Quarks (spin 1/2) 

Generation Flavor ChaT� Mass' 
fi�, d (down) III 7 

u (up) 'I' , 
second s (strange) II' 120 

, (warm) 'I' 1200 
third b (bottom) II' 4]00 

I (top) 'I' 174000 

'Ught quark masses are imprecise and specul.tive; for effective ma.sses in mesons and baryons. see Chapter S. 

Mediators (spin 1) 

Force Mediator Charge Mass' Lifetime Princip.ol Decays 
Strong g (8 gluons) 0 0 00 -
Electromagnetic r (photon) 0 0 00 -
Weak W± (charged) ±I 80,420 1.11 x lO-l) ,''v •• jl .. �f'. T+V,. eX .... hadrons 

zfJ (neutral) 0 91.l90 2.64 x 10-15 ,te-. jlt jl-. rtr-. qq .... hadrons 



Baryons (spin 1/2) 

Baryon Quark Content Charge Mass Ufetime Princip;il DeclYs 

N I� """ 1 938.272 "" -
"'" 0 939.565 885.7 peu, 

A "'" 0 1115.68 2.G3 x 10-10 P1l"-, 1"\11"9 

E' ""' 1 1189.37 8.02 x IO-ll P1f9, 1"\11"+ 

E' "� 0 1192.64 7.4 x 10-20 Ay 
E- dd, -I 1197.45 lA8 x 10-10 M -
a' "" 0 1314.8 2.90 x 10-10 A.' 
S- k -I 1321.3 1M x 10-10 A.-
A' , "" 1 2286.S 2.00 x 1O-11 pKIf, Alflf, Elflf 

Baryons (spin 3/2) 

Baryon Qll;;rk Content Charge Mass Ufetime Prind� DecilYS 
• uuu, uud, auld, dad 2.1,0, 1 1232 5.6 x to- N. 
E' UllS, lids, ads 1,0,-1 1385 1.8 x 10-2) AIf,I:1f 
S' uss, ass 0,-1 1533 6.9 x 10-2J 3lf 
0- m -I 1672 8.2 x 1O-11 AK-, 311" 

Pseudoscalar Mesons (spin 0) 

Meson Quark Content Charge Mass lifetime Princip;il Decays 
.' JUI, au I, 1 139.570 2.60 x 104 "', 
.' (UU - a4-,;,(i 0 134.9n 8.4 x 10-11 yy 
K' ui, jU 1,-1 493.68 1.24 x 1O-� jtv,., Iflf, Iflflf 

K',K' ds, sd 0 497.65 {�: 8.95 x 10-11 •• 

, K1: 5.11 x 1O-� Ifeu" IfjtV,., 1I"lflf 

I , juli + ad - 2sr,j./6 0 547.51 5.1 x 10-19 yy, Iflflf 
! , (uli+ ad +5S);JJ 0 957.78 3.2 x 10-/1 qlflf, PY 
I I>' cd,& 1,-1 1869.3 1.04 x 10-11 Klflf, Kjtv,., }(ev, , cP, ""& 4.1 x 10-]) ; cu, uC 0 1864.5 Klflf, }(ev" Kjtv,. 
I 0; cS,� 1,-1 1%8.2 5.0 x lO-u IJP, �lflf, ¢p 
i B' lib, "Ii 1.-1 sm.o 1.6 x 10-11 D'tv/, Dtv" D'lflflf I If, "I db, bd 0 5279.4 I.S x 10-12 D'lVt, Dlvt, D'lflf 

Vector Mesons (spin 1) 

Meson Quark Content Chilfge Mass lifetime Prind� Decays 
p lUI, (1111 MJ/J_2, au 1,0,.1 775.5 4 x 1O-2� "" 
K' uS, as. sci, sii 1,0,·1 89' 1 x 10-11 K. 
W (uu + ddJ;,;1 0 782.G 8 x 10-23 1I"lflf,lfy 
" " 0 3097 7 x 10-21 e+e-, jt+jt-, 5lf, 7lf 
D' ed, CU, lIZ, & 1,0 .. 1 2008 3 x 10-/1 Dlf, Dr 
T bi 0 9460 1 X 10-20 ete-, 1(+1(-, r+r-



Spin 1/2 
Pauli Matrices: 

aiOj = �y + �ij�O'\,. (<I' O')(b· u) "" a· b + itT . (a x b) 

ol =0;=(1;-1, ei8·Q = cos{J+i(�·O")sin{J 

Dirac Matrices: 

" (1 0 ) Y .. 0 -1 ' 
. ( 0 cr' !! 

-(1j 

0;) o ' 
o o 

-1 
o 

(For product rules and trace theorems see Appendix C.) 

Dirac Equation: 

fJI-mc)u=O, f/+ mc)v =0, ull-mc) =0. v(f+mc)=O 

;j"",,,,tyO, r""yOrtyO, I-a"y" 

Feynman Rules 
External Lines Propagators 

SpinO: Nothi ng 

Incoming particle: " 

Incoming antiparticle: " ill + me) 
Spin 1/2: 

Outgoing particle: " " (mc)2 

Outgoing antiparticle: " 

I'" 



"'" I 
Spin 1: 

I Incoming: � .. 1 Outgoing; �; -i{&,v - q",qv/(mc)z] 
q2 (me)2 

(For vertex factors see Appendix D.) 

Fundamental Constants 
Planck's constant: • = 1.05457 X 10-34 J s 

6.58212 X 10-22 MeV s 

Speed oflighl: , 2.99792 x 108 mls 

Mass of electron: rn, 9.10938 x IO-llkg = 0.510999 MeV/c2 

Mass of proton: m, = 1.67262 x IO-27kg = 938.272 MeV/c! 

Electron charge (magnitude): , 1.60218 x 10-19 C 

4.80320 X 10-10 esu 

Fine structure constant: a illhc = 1/137.036 

Bohr radius: " hZ/mer = 5.29177 x lO-ll m 

Bohr energies: E. -m,e luh,2 = -13.6057/"2 eV 

Classical electron radius: '. = c-/m,;Cl = 2.81794)( 10-15 m 

QED coupling constant: � = e../4ii7'& = 0.302822 

Weak coupling constants: g. = go/ sin Ow = 0.6295; 

g, = g",1 cosO", = 0.7180 

Weak mixing angle: O. = 28.760 (sin20 ... = 0.2314) 

Strong coupling constant: � = 1.214 

Conversion Factors 
IA 0.1 nm = 10-10 m 

Ifm 10-15 m 

I barn 10-28 m2 

I,V 1.60218 X 10-19 , 

I MeVjCl 1.78266 x 10-l0 kg 
1 Coulomb = 2.99792 x 10-9 esu 



Introduction 

Elementary Particle Physics 

Elementary particle physics addresses the question, 'What is matter made of?' at 
the most fundamental level - which is to say, on the smallest scale of size. It's 
a remarkable fact that matter at the subatomic level consists of tiny chunks, with 
vast empty spaces in between. Even more remarkable, these tiny chunks come 
in a small number of different types (electrons. protons. neutrons, pi mesons, 
neutrinos. and so on), which are then replicated in astronomical quantities to make 
all the 'stuff' around us. And these replicas are absolutely perfe<:t copies - not 
just 'pretty similar', like two Fords coming off the same assembly line, but utterly 
indistirlg\'ishabk You can't stamp an identification number on an electron, or paint 
a spot on it - if you've seen one, you've seen them all. This quality of absolute 
identicalness has no analog in the macroscopic world. (In quantum mechanics it 
is reflected in the Pauli exclusion principle.) It enormously simplifies the task of 
elementary particle physics: we don't have to worry about big electrons and little 
ones, or new electrons and old ones - an electron is an electron is an electron. It 
didn't have to be so easy. 

My first job, then, is to introduce you to the various kinds of elementary particles­
the actors, if you will, in the drama. I could simply list them, and tell you their 
properties (mass, electric charge, spin, etc.), but I think it is better in this case 
to adopt a historical perspective, and explain how each particle first came on the 
scene. This will serve to endow them with character and personality, making them 
easier to remember and more interesting to watch. Moreover, some of the stories 
are delightful in their own right. 

Once the particles have been introduced, in Chapter 1, the issue becomes, 'How 
do they interact with one another?' This question, directly or indirectly, will occupy 
us for the rest of the book. If you were dealing with two macroscopic objects, and 
you wanted to know how they interact, you would probably begin by holding them 
at various separation distances and measuring the force between them. That's how 
Coulomb determined the law of electrical repulsion between two charged pith balls, 
and how Cavendish measured the gravitational attraction of two lead weights. But 
you can't pick up a proton with tweezers or tie an electron onto the end of a piece of 
string: they're just too small. For practical reasons, therefore, we have to resort to 

In''''''''''''''" to El,m<>Wuy Pgrt;a..l. S<C<>nd Edj,jon. David Griffiths 
CopyrightC 2008 W1LEY.vCH V�rl.1g GmbH &. Co. KG". Weinh�im 
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2!,ntroduaion 

less direct means to probe the interactions of elementary particles. As it turns out, 
almost all of our experimental information comes from three sources: (I) scattering 
events. in which we fire one particle at another and record (for instance) the angle 
of deflection; (2) decays. in which a particle spontaneously disintegrates and we 
examine the debris; and (3) bound states. in which two or more particles stick 
together. and we study the properties of the composite object. Needless to say, 
determining the interaction law from such indirect evidence is not a trivial task 
Ordinarily. the procedure is to guess a form for the interaction and compare the 
resulting theoretical predictions with the experimental data, 

The formulation of such a guess ('model' is a more respectable term for it) is 
guided by certain general principles. in particular. special relativity and quantum 
mechanics. In the diagram below I have sketched out four realms of mechanics: 

Small_ 
Classical Quantum 
mechanics mechanics 

Fast J. 
Relativistic Quantum 
mechanics field theory 

The world of everyday life, of course, is governed by classical mechanics. But for 
objects that travel very fast (at speeds comparable to c). the classical rules are 
modified by special relativity. and for objects that are very small (comparable to the 
size of atoms. roughly speaking), classical mechanics is superseded by quantum 
mechanics. Finally, for things that are both fast and small, we require a theory 
that incorporates relativity and quantum principles: quantum field theory. Now, 
elementary particles are extremely small, of course. and typically they are also very 
fast. So. elementary particle physics naturally falls under the dominion of quantum 
field theory. 

Please observe the distinction here between a typt: of mechanics and a particumr 
force mw. Newton's law of universal gravitation. for example. describes a specific 
interaction (gravity), whereas Newton's three laws of motion define a mechanical 
system (classical mechanics). which (within its jurisdiction) governs all interactions. 
The force law tells you what F is, in the case at hand; the me<:hanics tells you how 
to use F to determine the motion, The goal of elementary particle dynamics. then, 
is to guess a set of force laws which. within the context of quantum field theory, 
corre<:tiy describe particle behavior. 

However. some general features of this behavior have nothing to do with the 
detailed form of the interactions. Instead they follow directly from relativity, from 
quantum mechanics. or from the combination of the two. For example. in relativity. 
energy and momentum are always conserved, but (rest) mass is not. Thus the decay 
6 _ P + If is perfe<:t1y acceptable, even though the 6 weighs more than the sum 
of p plus If. Such a process would not be possible in classical mechanics, where 
mass is strictly conserved. Moreover, relativity allows for particles of zero (rest) 
mass - the very idea of a massless particle is nonsense in classical mechanics -
and as we shall see. photons and gluons are massless, 



fl�mt"Ul'l' Parode Physics 1 1  

In quantum mechanics a physical system is described by its state, s (represented 
by the wave function ..;, in SchrOdinger's fonnulation, or by the kit Is) in Dirac's 
theory). A physical process, such as scattering or decay, consists of a transition 
from one state to another. But in quantum mechanics the outcome is not uniquely 
determined by the initial conditions; all we can hope to calculate, in general, is 
the probability for a given transition to occur. This indeterminacy is reflected in 
the observed behavior of particles. For example, the charged pi meson ordinarily 
disintegrates into a muon plus a neutrino, but occasionally one will decay into an 
electron plus a neutrino. There's no difference in the original pi mesons; they're all 
identical. It is simply a fact of nature that a given particle can go either way. 

Finally, the union of relativity and quantum mechanics brings certain extra 
dividends that neither one can offer by itself: the existence of antiparticles (with 
the same mass and lifetime as the particle itself, but opposite ele<:tric charge), a 
proof of the Pauli exclusion principle (which in nonrelativistic quantum mechanics 
is simply an ad hoc hypothesis), and the so·called TCP thton:m. I'll tell you more 
about these later on; my purpose in mentioning them here is to emphasize that 
these are features of the mechanical system itself, not of the particular model. 
Short of a catastrophic revolution, they are untouchable. By the way, quantum field 
theory in aU its glory is difficult and deep, but don't be alanned: Feynman invented 
a beautiful and intuitively satisfying formulation that is not hard to learn; we'll 
come to that in Chapter 6. (The urivation of Feynman's rules from the underlying 
quantum field theory is a different matter, which can easily consume the better 
part of an advanced graduate course, but this need not concern us here.) 

In the 1960s and 1970s a theory emerged that described all of the known 
elementary particle interactions, except gravity. (As far as we can tell, gravity is 
much too weak to play any significant role in ordinary particle processes.) This 
theory - or, more accurately, this collection of related theories, based on two 
families of elementary particles (quarks and leptons), and incorporating quantum 
electrodynamics, the Glashow-Weinberg-Salam theory of electroweak processes, 
and quantum chromodynamics - has come to be called the Standard MOOd. No 
one pretends that it is the final word on the subject, but at least we are now playing 
with a full deck of cards. Since 1978, when the Standard Model achieved the status 
of 'orthodoxy', it has met every experimental test. Moreover. it has an attractive 
aesthetic feature: all of the fundamental interactions derive from one general 
principle, the requirement of local gaug& invarianc�. It seems certain that future 
developments will involve extensions of the Standard Model, not its repudiation. 
This book might be called an 'Introduction to the Standard Model'. 

As that alternative title suggests, it is a book about elementary particle thtory, 
with very little on experimental methods or instrumentation. These are important 
matters, and an argument can be made for integrating them into a text such as this, 
but they can also be distracting, and interfere with the clarity and elegance of the 
theory itself. I encourage you to read about the experimental aspects of the subject, 
and from time to time I will refer you to particularly accessible accounts. But for 
now, I'll confine myself to scandalously brief answers to the two most obvious 
experimental questions. 
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How Do You Produce Elemental)' Partides? 

Electrons and protons are no problem; these are the stable constituents of ordinary 
matter. To produce electrons one simply heats up a piece of metal, and they come 
boiling off. If you want a beam of electrons, you just set up a positively charged plate 
nearby, to attract them over, and poke a small hole in it; the electrons that make it 
through the hole constitute the beam. Such an t/ectron gun is the starting element 
in a television tube or an oscilloscope or an electron accelerator (Figure 1.1). 

To obtain protons you ionize hydrogen (in other words, strip off the electron). In 
fact, if you're using the protons as a targel, you don't even need to bother about the 
electrons; they're so light that an energetic incident particle will knock them out of 
the way. Thus, a tank of hydrogen is essentially a tank of protons. For more exotic 
particles there are three main sources: cosmic rays, nuclear reactors, and particle 
accelerators . 

• Cosmic rays: The earth is constantly bombarded with 
high-energy particles (principally protons) coming from 
outer space. What the source of these particles might be 
remains something of a mystery; at any rate, when they hit 
atoms in the upper atmosphere they produce showers of 
secondary particles (mostly muons and neutrinos, by the 

Fig. 1.1 SLAC; tht straight lint is tht acctltrator itstlf. 

(Courttsy Stanford Untar Acctltratof Ctnttr.) 
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time they reach ground level), which rain down on us all the 
time. As a source of elementary particles, cosmic rays have 
two virtues: they are free, and their energies can be 
enormous - far greater than we could possibly produce in 
the laboratory. But they have two major disadvantages: the 
rate at which they strike any detector of reasonable size is 
very low, and they are completely uncontrollable. So cosmic 
ray experiments call for patience and luck . 

• Nuclear reactors: When a radioactive nucleus disintegrates, it 
may emit a variety of particles - neutrons, neutrinos, and 
what use<! to be called alpha rays (actually, alpha particles, 
which are bound states of two neutrons plus two protons), 
beta rays (actually, electrons or positrons), and gamma rays 
(actually, photons) . 

• Particle accelerarors: You start with electrons or protons, 
accelerate them to high energy, and smash them into a target 
(Figure 1.1). By skillful arrangements of absorbers and 
magnets, you can separate the particle species that you wish 
to study from the resulting debris. Nowadays it is possible in 
this way to generate intense secondary beams of positrons, 
muons, pions, kaons, B·mesons, antiprotons, and neutrinos, 
which in tum can be fire<! at another target. The stable 
particles - electrons, protons, positrons, and antiprotons -
can even be fed into giant norage rings in which, guided by 
powerful magnets, they circulate at high speed for hours at a 
time, to be extracted and used at the require<! moment [1 J. 

In general. the heavier the particle you want to produce, the higher must be 
the energy of the collision. That's why, historically, lightweight particles tend to 
be discovere<! first, and as time goes on, and accelerators become more powerful, 
heavier and heavier particles are found. It turns out that you gain enormously in 
rdativt energy if you collide two high-speed particles head-on, as oppose<! to firing 
one particle at a stationary target. (Of course, this calls for much better aim!) Forthis 
reason many contemporary experiments involve colliding beams from intersecting 
storage rings; If the particles miss on the first pass, they can try again the next time 
around. Indeed. with electrons and positrons (or protons and antiprotons) the samt 
ring can be use<!, with the plus charges circulating in one direction and minus 
charges the other. Unfortunately, when a charge<! particle accelerates it radiates. 
thereby losing energy. In the case of circular motion (which, of course, involves 
acceleration) this is calle<! synchrotron radiatwn, and it severely limits the efficiency 
of storage rings for energetic electrons (heavier particles with the same energy 
accelerate less, so synchrotron radiation is not such a problem for them). For this 
reason electron scattering experiments will increasingly tum to linwr colliders, 
while storage rings will continue to be used for protons and heavier particles. 
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There is another reason why particle physicists are always pushing fOf higher en· 
ergies: in general, the higher the energy of the collision, the closer the two particles 
come to one another. So if you want to study an interaction at very short range, you 
nee<! very energetic particles. In quantum.mechanical terms, a particle of momen· 
tum p has an associated wavelength A given by the de Broglie formula A "'" hlp, 
where h is Planck's constant. At large wavelengths (low momenta) you can only 
hope to resolve relatively large structures; in order to examine something extremely 
small, you nee<! comparably short wavelengths, and hence high momenta. If you 
like, consider this a manifestation of the uncertainty principle (.6.:>:.6.p � hI4Jr)­

to make .6.:>: small, 6p must be large. However you look at it, the conclusion is the 
same: to probe small distances you need high energits. 

At present the most powerful accelerator in the world is the Twutro71 at Fermilab 
(Figure 1.2), with a maximum beam energy of almost 1 TeV. The tevatron (a 
proton-antiproton collide!) began operation in 1983; its successor, the Supercon. 
ducting Supercollider (SSC) was under construction in 1993 when the project was 
terminated by Congress. As a result, there has been a long period in which no 
fundamental progress was possible. This dry spell should end in 2008, when the 
Large Hadron Collider (LHC) at CERN starts taking data (Figure 1.3). The LHC is 
designed to reach beam energies in excess of 7 TeV, and the hope is that this new 
terrain will include the Higgs particle, possibly supersymmetric particles, and -
best of all - something completely unexpected [2J. It's not dear what comes after 
the LHC - most likely the proposed International Unear Collider (ILC). But, accel· 
erators have become so huge (the sse would have been 87 km in circumference) 
that there is not much room for expansion. Perhaps we are approaching the end 

Fig. 1.2 Fermilab; the large circle in the background is the 

Tevatron. (Courtesy Fermilab Visual Media Services.) 
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FIg. 1.3 CERN; the c;,de indiates the pith of the LHC t�n· 
nel (follllerly LEP) - Geneva and Mt Blanc are in the back· 
ground. (Co�rtesy CERN.) 

of the accelerator era, and particle physicists will have to tum to astrophysics and 
cosmology for infonnation about higher energies. Or perhaps someone will have a 
clever new idea for squeezing energy onto an elementary particle: 

How Do You Deka Elementary Particles? 

There are many kinds of particle dete<tors - Geiger counters, cloud chambers. bub· 
ble chambers, spark chambers. drift chambers, photographic emulsions. Cerenkov 
counters, scintillators, photomultipliers, and so on. Actually, a typical modem 

• In nw:roscopk terms the 3m<)unt of energy involved is not that ��t _ after �II. t TeV 
(lOll .,V) is only 10-1 Jo�les; the problem is how 10 deli"", that energy tl> a p;irticle. NI> law 
or physics prevents you from doing so, but nobody has yet figured out a way to do it without 
gigantic (and �nslve) machinery. 
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fig. 1.<4 Thf: COF df:tKtor at Ff:rmil;b, whf:rf: the top qua"" 
was diSCOVf:rW. (Courtesy Fermifab Visual MWia Services.) 

dete<:tor has whole arrays of these devices, wire<! up to a computer that tracks 
the particles and displays their traje<:tories on a television screen (Figure 1.4). lbe 

details do not concern us, but there is one thing you should be aware of: most 
dete<:tion mechanisms rely on the fact that when high-energy charge<! particles pass 

through matter they ionize atoms along their path. The ions then act as 'see<ls' in 

the formation of droplets (cloud chamber) or bubbles (bubble chamber) or sparks 
(spark chamber), as the case may be. But electrically neutral particles do not cause 
ionization, and they leave no tracks. For instance, if you look at the bubble chamber 
photograph in Figure 1.9, you will see that the five neutral particles are 'invisible'; 
their paths have been re<:onstructe<! by analyzing the tracks of the charged particles 

in the picture and invoking conservation of energy and momentum at each vertex. 
Notice also that most of the tracks in the picture are cU"'td (actually, aU of them 
are, to some extent; try holding a ruler up to one you think is straight). The bubble 
chamber was place<! between the poles of a giant magnet; in a magnetic field B, a 
particle of charge q and momentum p will move in a circle of radius R given by the 
famous cyclotron formula: R = pc/qB, where c is the speed of light. The curvature 
of the track in a known magnetic field thus affords a very simple measure of the 
particle's momentum. Moreover, we can immediately tell the sign of the charge 
from the direction of the curve. 



Units 19 

Units 

Elementary particles are small, so for our purposes the normal me<hanical units -
grams, ergs, joules, and so on - are inconveniently large. Atomic physicists 
introduce<! the electron 1I0lt - the energy acquire<! by an ele<tron when accelerate<! 
through a potential difference of 1 volt: 1 eV = 1.6 x 10-19 joules. For us the eV is 
inconveniently small, but we're stuck with it. Nuclear physicists use keY (10l eV); 
typical energies in particle physics are MeV (loG eV), GeV (109 eV), or even TeV 
(1012 eV). Momenta are measure<! in MeV!c (or GeV!c, or whatever), and masses 
in MeV 1c2. Thus the proton weighs 938 MeV/c2 = 1.67 x 10-2-4 g. 

Actually, particle theorists are lazy (or clever, depending on your point of view) -
they seldom include the c's and Ii's (Ii 5: h/2Jr) in their formulas. You're just 
supposed to fit them in for yourself at the end, to make the dimensions come out 
right. As they say in the business, 'set c = Ii = 1'. This amounts to working in 
units such that time is measure<! in centimeters and mass and energy in inverse 
centimeters; the unit of time is the time it takes light to travel 1 em, and the 
unit of energy is the energy of a photon whose wavelength is 211" em. Only at the 
end of the problem do we revert to conventional units. This makes everything 
look very elegant, but I thought it would be wiser in this book to keep al! the c's 
and Ii's where they belong, so that you can che<k for dimensional consistency as 
you go along. (If this offends you, remember that it is easier for you to ignore 
an Ii you don't like than for someone else to conjure one up in just the right 
place.) 

Finally, there is the question of what units to use for ele<tric charge. In 
introductory physics courses most instructors favor the 51 system, in which charge 
is measure<! in coulombs, and Coulomb's law reads 

F - _1_ ql q2 
- 41UO r2 

(51) 

Most advanced work is done in the Gaussian system. in which charge is measure<! 
in ekctrostatic units (esu), and Coulomb's law is written 

F = q�2 (G) 

But elementary particle physicists prefer the Hwvisilk - Lorentz system, in which 
Coulomb's law takes the form 

(HL) 

The three units of charge are related as follows: 
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In this book I shall use Gaussian units exclusively, in order to avoid unnecessary 
confusion in an already difficult subject. Whenever possible I wi!! express results 
in terms of the ftnl structure "'TlStant 

� 1 ct = - = ---
tIC 137.036 

where t is the charge of the electron in Gaussian units. Most elementary particle 
texts write this as ;' /411". because they are measuring charge in Heaviside-Lorentz 
units and setting c = Ii = 1; but everyone agrees that the number is 1/137. 

Further reading 

Since the early 1%05. the Particle Data Group at Berkeley has periodically issued a 
listing of the established particles and their properties. These are published every 
other year in Reviews of Modern Physics or Jourmil of Physics G, and summarized 
in a (free) booklet that can be ordered on the web at http:\\pdg.lbl.gov. In the early 
days this summary took the fonn of 'wallet cards', but by 2(H)6 it had grown to a 
densely packed 315 pages. ! shall refer to it as the Particle Physics Booklet (PPS). 
Every student of elementary particle physics must have a copy - don't leave home 
without it! The longer version, called the Review oJPartick Physics (RPP) is the bible 
for professionals - the 2006 edition runs to 1231 pages, and it includes authoritative 
articles on every relevant subject, written by the world's leading experts (3J. If you 
want the definitive, up-to--clate word on any particular topic, this is the place to go 
(it is also available on·line, at the Particle Data Group web site). 

Particle phySiCS is an enormous and rapidly changing subject. My aim in this 
book is to introduce you to some important ideas and methods, to give you a 
sense of what's out there to be learned, and perhaps to stimulate your appetite 
for more, If you want to read further in quantum field theory, I particularly 
recommend: 

Bjorken, J. D. and Drell, S. D. (1964) Relativistic Ql«lntum Mechanics and 
Relativistic Quantum Fields, McGraw-Hill, New York. 

Itzykson, C. and Zuber, ).·B. (1980) Quantum Field Theory, McGraw-Hi!!, New 
York. 

Peskin. M. E. and Schroeder, O. y, (1995) An Introduction to Quantum Field 
Theory, Perseus, Cambridge, M.A. 

Ryder, L. H. (1985) Quantum Field Theory, Cambridge University Press, 
Cambridge, UK. 

Sakurai, J. J. (1967) Advanud Quantum Mechanics, Addison-Wesley, Reading, 
M.A. 

! warn you, however, that these are all difficult and advanced books. 
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For elementary particle physics itself, the following books nisted in order of 

increasing difficulty) are especially useful: 

Close, F., M arten, M. and Sutton, C. (1987) Tht Particle Explosion, Oxford 
University Press, Oxford, UK. 

Frauenfelder, H. and Henley, E. M. (1991) Subatomic Physics, 2nd edn, 
Prentice·Hall. Englewood Cliffs, N.J. 

Gottfried, K. and Weisskopf, V. F. (1984) Concepts of Particle Physics, Oxford 
University Press. Oxford. 

Perkins, D. H. (2000) Introduction 10 High.Energy Physics. 4th Ed, Cambridge 
University Press, Cambridge, UK. 

Halzen, F. and Martin, A. D. (1984) Quarks and Leptons, John Wiley & Sons, 
ltd, New York. 

Roe, B. P. (1996) Particle Physics at the New Millennium, Springer, New York. 
Aitchison, !. J. R. and Hey, A. J. G. (2003) Gauge Thrones in Particle Physics, 

3rd edn, Institute of PhySiCS, Bristol, UK. 
Seiden, A. (2005) Particle Physics: A Comprehensive Introduction, Addison­

Wesley, San Francisco, c.A. 
Quigg, C. (1997) Gauge Throrits of the Strong. Weak, and Eltclromagnetic 

inJemctions, Addison-Wesley, Reilding. M.A. 
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Historical Introduction to the Elementary Particles 

This chaptu is a kind of yolk history' of dtmentary particle physic.s, Its purpQSe is 
to provide a sense of how the various particie5 were first discovered, and how thty fit 
into the overall scheme oj things. Along the way some oj the fundamental ideas that 
dominau elementary particle thtcry art txplaintd. This mattrial should be read quickly, 
as background to the rt5! oflhe book. (As hiswry, the picture preunted here is cutai,lly 
misleading,Jor it sticks clostly to the main track, ignoring 1m fo1se starts and blind alleys 
that accompany the devdopment of any seiena. That's why I caU it Jolk' history - it's 
the way particle physicists like to remember the subject - a sucussion a/brilliant insights 
and heroic triumphs unmarred by foolish mistakes, conjUsion, and frustration. It wasn't 
rtaUy quitt so easy.) 

, .  , 
The Classical Era (1897-1932) 

It is a little artificial to pinpoint such things, but I'd say that elementary particle 
physics was born in 1897, with J. J. Thomson's discovery of the electron [1[. (It 
is fashionable to carry the story all the way back to Democritus and the Greek 
atomists, but apart from a few suggestive words their metaphysical speculations 
have nothing in common with modern science, and although they may be of 
modest antiquarian interest, their genuine relevance is negligible.) Thomson knew 
that catholk rays emitted by a hot filament could be deflected by a magnet. This 
suggested that they carried electric charge; in fact, the direc tion of the curvature 
required that the charge be negative. It seemed, therefore, that these were not rays 
at all, but rather streams of particles. By passing the beam through crossed electric 
and magnetic fields, and adjusting the field strength until the net deflection was 
zero, Thomson was able to detennine the velOCity of the particles (about a tenth the 
speed oflight) as well as their charge-to-mass ratio (Problem 1.1). This ratio turned 
out to be enonnously greater than for any known ion, indicating either that the 
charge was extremely large or the mass was very small. Indirect evidence pointed 
to the second conclusion. Thomson called the particles corpU5cks. Back in 1891. 
George Johnstone Stoney had introduced the term 'electron' for the fundamental 
unit of charge; later, that name was taken over for the particles themselves. 

In,rcd"",km 10 s."",tIl/Zry Parlicks. StwnJ Edi'km. Oa,,;d Griffiths 
Copyright C 2008 W!lEY·VCH V�rllg GmbH &Co. KGaA. W.inh.im 
!SBN: 978·)·527·40601·2 
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Thomson correctly surmised that these electrons were essential constituents 
of atoms; however, since atoms as a whole are electrically neutral and very 
much heavier than electrons, there immediately arose the problem of how the 
compensating plus charge � and the bulk of the mass � is distributed within an 
atom. Thomson himself imagined that the electrons were suspended in a heavy, 
positively charged paste, like (as he put it) the plums in a pudding. But Thomson's 
model was decisively repudiated by Rutherford's famous scattering experiment, 
which showed that the positive charge, and most of the mass, was concentrated in 
a tiny core, or nuc/tus, at the center of the atom. Rutherford demonstrated this by 
firing a beam of a particles (ionized helium atoms) into a thin sheet of gold foil 
(Figure 1.1). Had the gold atoms consisted of rather diffuse spheres, as Thomson 
supposed, then all of the a particles should have been deflected a bit, but none 
would have been deflected much � any more than a bullet is deflected much when 
it passes, say, through a bag of sawdust. What infacl occurred was that mOSI of 
the a particles passed through the gold completely undisturbed, but a few of them 
bounced off at wild angles. Rutherford's conclusion was that the a particles had 

Zinc sulfide screen Gold foil Collimated beam 
of a--particles 

fig. 1.1 SchematiC diagram of the ilPPilratus used in the 
Rutherford scanering experiment. Alpha pilrtides scattered 
by the gold foil strike a fluorescent screen, giving off a flilsh 
of light, which ;5 observed visually through a microscope. 

Source of 
a·particles 

Vacuum 
pump 
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encountered something very small, very hard, and very heavy. Evidently the positive 
charge, and virtually all of the mass, was concentrated at the center, occupying only 
a tiny fraction of the volume of the atom (the electrons are too light to play any role in 
the scattering; they are knocked right outofthe way by the much heavier [t particles). 

The nucleus of the lightest atom (hydrogen) was given the name protol1 by 
Rutherford. In 1914 Niels Bohr proposed a model for hydrogen consisting of a 
single electron circling the proton, rather like a planet going around the sun, held 
in orbit by the mutual attraction of opposite charges. Using a primitive version of 
the quantum theory, Bohr was able to calculate the spectrum of hydrogen, and the 
agreement with experiment was nothing short of spectacular. It was natural then 
to suppose that the nuclei of heavier atoms were composed of two or more protons 
bound together, supporting a like number of orbiting electrons. Unfortunately, the 
next heavier atom (helium), although it does indeed cany two electrons, weighsfour 
times as much as hydrogen, and lithium (three electrons) is stvel1 times the weight of 
hydrogen, and so it goes. This dilemma was finally resolved in 1932 with Chadwick's 
discovery of the neutron - an electrically neutral twin to the proton. The helium 
nucleus, it turns out, contains two neutrons in addition to the two protons; lithium 
evidently includes four; and, in general, the heavier nuclei carry very roughly the 
same number of neutrons as protons. (The number of neutrons is in fact somewhat 
flexible - the same atom, chemically speaking, may come in several different iso­

topes, all with the same number of protons, but with varying numbers of neutrons.) 
The discovery of the neutron put the final touch on what we might call the classical 

�riod in elementary particle physics. Never before (and I'm sorry to say never since) 
has physics offered so simple and satisfying an answer to the question, 'What is 
matter made of?' In 1932, it was all just protons, neutrons, and electrons. But 
already the seeds were planted for the three great ideas that were to dominate the 
middle �riod (1930-1960) in particle physics: Yukawa's meson, Dirac's positron, 
and Pauli's neutrino. Before we come to that, however, I must back up for a 
moment to introduce the photon. 

1.2 
The Photon (1900-1924) 

In some respects, the photon is a very 'modem' particle, having more in common 
with the W and Z (which were not discovered until 1983) than with the classical 
trio. Moreover, it's hard to say exactly when or by whom the photon was really 
'discovered', although the essential stages in the process are clear enough. The 
first contribution was made by Planck in 1900. Planck was attempting to explain 
the so-called blackbody sp«trum for the electromagnetic radiation emitted by 
a hot object. Statistical mechanics, which had proved brilliantly successful in 
explaining other thermal processes, yielded nonsensical results when applied to 
electromagnetic fields. In particular, it led to the famous 'ultraviolet catastrophe', 
pre<licting that the total power radiated should be Il1fil1itt. Planck found that he could 
escape the ultraviolet catastrophe - and fit the eKpt'rimental curve - ifhe assumed 
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that electromagnetic radiation is quantized, coming in little 'packages' of energy 

E "" hv (1.1) 

where v is the frequency of the radiation and h is a constant. which Planck adjusted 
to fit the data. The modern value of Planck's constant is 

h ""  6.626 )( 10-17 erg s (1.2) 

Planck did not profess to know why the radiation was quantized; he assumed that 
it was due to a peculiarity in the emission process: for some reason a hot surface 

only gives off light" in little squirts. 
Einstein, in 1905, put fOIWard a far more radical view. Heargued that quantization 

was a feature of the electromagnetic field itself, having nothing to do with the 
emission mechanism. With this new twist, Einstein adapted Planck's idea, and his 
fonnula, to elCpiain the phcl«.lulric effect: when electromagnetic radiation strikes a 
metal surface, electrons come popping out. Einstein suggested that an incoming 
light quantum hits an electron in the metal. giving up its energy (hv); the excited 
electron then breaks through the metal sunace. losing in the process an energy w 
(the so·called work functwn of the material - an empirical constant that depends 
on the particular metal involved). The electron thus emerges with an energy 

E ::; hv - w  (1.3) 

(It may lose some energy before reaching the surface; that's the reason for the 
inequality.) Einstein's formula (Equation 1.3) is trivial to derive, but it carries an 
extraordinary implication: The maximum electron energy is indeptndent of the 
intensity of the light and depends only on its color (frequency). To be sure, a more 
intense beam will knock out mort electrons, but their enagies will be the same. 

Unlike Planck's theory, Einstein's met a hostile reception, and over the next 
20 years he was to wage a lonely battle for the light quantum [2). In saying that 
electromagnetic radiation is by its nature quantized, regardless of the emission 
mechanism, Einstein came dangerously dose to resurrecting the discredited parti. 
de theory oflight. Newton, of course, had introduced such a corpuscular model, but 

a major achievement of nineteenth-century physics was the decisive repudiation 
of Newton's idea in favor of the rival wave theory. No one was prepared to see 
that accomplishment called into question, even when the experiments came down 
on Einstein's side. In 1916 Millikan completed an exhaustive study of the photo· 
electric effect and was obliged to report that 'Einstein's photoeleo:tric equation . 
appears in every case to predict exactly the observed results . . . .  Yet the semicor· 
puscular theory by which Einstein arrived at his equation seems at present wholly 
untenable' [lJ . 

• In this book the W(lrd lighl sunds for declroml>gPltlic ",di�lion. whether or not it happens to fall 
in the visible "'gion. 
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Fig. 1.2 Compton scattering. A photon of wavelength ).. scat· 
ters off a �rticle, initi311� 3t ,est, of mass m. The scattertd 
photon carries wavelength ).' given b� Equation 1.4. 

What finally settled the issue was an experiment conducted by A. H. Compton 
in 1923. Compton found that the light scattered from a particle at rest is shifted in 
wavelength. according to the equation 

},' = ).. + ,1,.« I - cosO) (1.4) 

where ).. is the inddent wavelength, ).,' is the scattered wavelength. B is the scattering 
angle, and 

A, = h/mc (1.5) 

is the so-called Compto" wavekngth of the target particle (mass mI. Now, this is 
pruisely the formula you get (Problem 3.27) if you Ireat light as a particle of zero 
rest mass with energy given by Planck's equation, and appJy the laws of conser· 
vation of (relativistic) energy and momentum - just as you would for an ordinary 
elastic collision (Figure 1.2). That clinched it; here was direct and incontrovertible 
experimental evidence that light behaves as a particle, on the subatomic scale. We 
call this particle the photon (a name suggested by the chemist Gilbert Lewis, in 
1926); the symbol for a photon is y (from gamma ray). How the particle nature of 
light on this level is to be reconciled with its well·established wave behavior on the 
macroscopic scale (exhibited in the phenomena of interference and diffraction) is 
a story I'll leave for books on quantum mechanics. 

Although the photon initially forud itself on an unreceptive community of physi· 
cists, it eventually found a natural place in quantum field theory, and was to offer a 
whole new perspective on electromagnetic interactions. In classical electrodynam. 
ics, we attribute the electrical repulsion of two electrons, say, to the electric field 
surrounding them; each electron contributes to the field, and each one responds to 

the field. But in quantum field theory, the electric field is quanlized (in the form of 
photons), and we may picture the interaction as consisting of a stream of photons 

passing back and forth between the two charges, each electron continually emitting 
photons and continually absorbing them. And the same goes for any noncontact 



18 I 1 Historicol lnlrodllccion 10 the Element",..,. Pr1t1icles 

force: Where classically we interpret 'action at a distance' as 'mediated' by afield, 
we now say that it is mediated by an txchangt of panicles (the quanta of the field). In 
the case of electrodynamics, the mediator is the photon; for gravity, it is called the 
graviton (though a fully successful quantum theory of gravity has yet to be developed 
and it may well be centuries before anyone detects a graviton experimentally), 

You will see later on how these ideas are implemented in practice, but for now 
I want to dispel one common misapprehension. When I say that every force is 
mediated by the exchange of particles, I am /Wt speaking of a merely killtmatic 
phenomenon. Two ice skaters throwing snowballs back and forth wil l  of course 
move apart with the succession of recoils; they 'repel one another by exchange of 
snowballs', if you like. But that's not what is involved here. For one thing, this 
mechanism would have a hard time accounting for an attractivt force. You might 
think of the mediating particles, rather, as 'messengers', and the message can just 
as well be 'come a little closer' as 'go away'. 

I said earlier that in the 'classical' picture ordinary matter is made of atoms, 

in which electrons are held in orbit around a nucleus of protons and neutrons 
by the electrical attraction of opposite charges. We can now give this model a 
more sophisticated formulation by attributing the binding force to the exchange 
of photons between the electrons and the protons in the nucleus. However, for 
the purposes of atomic physics this is overkill, for in this context quantization of the 
electromagnetic field produces only minute effects (notably the Lamb shift and the 
anomalous magnetic moment of the electron). To excellent approximation we can 
pretend that the forces are given by Coulomb's law (together with various magnetic 
dipole couplings). The point is that in a bound state enormous numbers of photons 
are continually streaming back and forth, so that the 'lumpiness' of the field is 
effectively smoothed out, and classical electrodynamics is a suitable approximation 
to the truth, But in most elementary particle processes, such as the photoelectric 
effect or Compton scattering, individual photons are involved, and quantization can 
no longer be ignored. 

1.3 
Mesons (1934-19-i7) 

Now there is one conspicuous problem to which the 'classical' model does not 
address itself at all: what holds the nuckus together? After all, the positively charged 
protons should repel one another violently, packed together as they are in such close 
proximity, Evidently there must be some other force, more powerful than the force 
of electrical repulsion, that binds the protons (and neutrons) together; physicists of 
that less imaginative age called it, simply, the strongforu. But if there exists such 
a potent force in nature, why don't we notice it in everyday life? The fact is that 
virtually every force we experience directly, from the contraction of a muscle to the 

explosion of dynamite, is electromagnetic in origin; the only exception, outside a 
nuclear reactor or an atomic bomb, is gravity. The answer must be that, powerful 
though it is, the strong force is of very short ra"&t. (The range of a force is like the 
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arm's reach of a boxer - beyond that distance its influence falls off rapidly to zero. 
Gravitational and electromagnetic forces have in.fini� range, but the range of the 
strong force is about the size of the nucleus itself.)" 

The first significant theory of the strong force was proposed by Yukawa in 1934 
[4]. Yukawa assumed that the proton and neutron are attracted to one another by 
some sort of jitld, just as the electron is attrilcted to the nucleus by an electric 
field and the moon to the earth by a gravitational field. This field should properly 
be quantized, and Yukawa asked the question: what must be the properties of its 
quantum - the particle (analogous to the photon) whose exchange would account 
for the known features of the strong force? For example, the short rilnge of the force 
indicated that the mediator would be rather heavy; YUkawil calculated thilt its mass 
should be nearly 300 times that of the electron, or ilbout iI sixth the mass of a proton 
(see Problem 1.2). Because it fell between the electron and the proton, Yukawa's 
particle came to be known as the mtSon (meaning 'middle·weigh!'). In the same 
spirit, the electron is called a lepton ('light-weight'), whereas the proton and neutron 
are baryons (,heavy-weight'). Now, Yukawa knew that no such particle had ever 
been observed in the laboratory, and he therefore assumed his theory was wrong. 
But at that time a number of systematic studies of cosmic rays were in progress, 
and by 1937 two separate groups (Anderson and Ne.::!denneyer on the West Coast, 
and Street and Stevenson on the East) had identified p<lrticles matching Yukawa's 
description.t Indeed, the cosmic rays with which you are being bombarded every 
few seconds as you read this consist primarily of just such middle-weight particles. 

For a while everything seemed to be in order. But as more detailed studies 
of the cosmic ray particles were undertaken, disturbing discrepancies began to 
appear. They had the wrong lifetime and they seemed to be significantly lighter 
than Yukawa had pre.::!icted: worse still, different ma.ss measurements were not 
consistent with one another. In 1946 (after a period in which physicists were 
engaged in a less savory business) decisive experiments were carried out in Rome 
demonstrating that the (osmic ray particles interacted very weakly with atomic 
nuclei [5]. If this was really Yukawa's meson, the transmitter of the strong force, 
the interaction should have been dramatic. The puzzle WilS finally resolved in 1947, 
when Powell and his coworkers ilt Bristol [6} discovered thilt there are actually 
two middle-weight particles in (osmic rays, which they called If (or 'pion') and It 
(or 'muon'). (Marshak reached the same conclusion Simultaneously, on theoretical 
grounds [7].) The true Yukawa meson is the n; it is produced copiously in the upper 
atmosphere, but ordinarily disintegrates long before reaching the ground (see 
Problem 3.4). Powell's group expose.::! their photographiC emulsions on mountlin 
tops (see Figure 1.3). One of the decay products is the lighter (and longer lived) It, 
and it is primarily muons that one ohselVes at sea level. In the search for Yukawa·s 
meson, then, the muon was simply an impostor, having nothing whatever to do 

• This is a bit of an oversimplification. Typically. the fora-s go like ,-<'IOI/rl. where � is the 
·rang.-' For Coulomb's law and N.-wton·s law ofunive=! gravitation. a '" 00: for the strong 
fOICe a is about iO-ll em (I fml. 

t Actwlly. it was Rob:.rt Op""nheimer who d� the connection betwttn these cosmic ray p,nti· 
des and Yukawa·s me<an. 
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Fig. 1.) One of Powell"s earliest pictures 
showing the track of iI pion in a photo· 
graphic emulsion exposed to cosmic rays at 
high altitude. The pion (entering from the 
left) decays into a muon ind a neutrino (the 
latter ;s electrically neutral, and leaves no 

trad). (50Il"'�: Powell. C. F •. Fowler, P. H. 
and Perkins. D. H. (1959) The Study of fie· 
men"',), Particles by 1m Phol(}grop/lic Merhod 
Pergamon, New York. First published in 
(19-47) NaMe 159, 69-4.) 

wi th the strong in terac tion s. In fa ct , it beha ves in every wa y lik e a hea vi er version 
o f  the el ectron an d pro perl y belon gs in the Itpkm famil y (though som e peopl e  to 
this da y call it the 'mu-meson ' by fo rc e o f  habit) . 

1.4 
Antiparticles (1930-1956) 

Nonr e!ativistic quantum m echan ics was compl eted in the as tonishin gl y  bri efp e­
riod 1923-1926, but the r ela ti vis tic version p ro ved to be a much tho rn ier p robl em . 
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The first major achievement was Dirac's discovery, in 1927, of the equation that 
bears his name. The Dirac equation was supposed to describe free electrons with 
energy given by the relativistic formula E! - pZcz = mZ,4. But it had a very trou· 
bling feature: for every positive-energy solution (E = +Jp2c2 + m2c"') it admitted 
a corresponding solution with negative energy (E = _Jp2ci + mZc"). This meant 
that, given the natural tendency of every system to evolve in the direction oflower 
energy, the electron should 'runaway' to increasingly negative states, radiating 
off an infinite amount of energy in the process. To rescue his equation, Dirac 
proposed a resolution that made up in brilliance for what it lacked in plausibility: 
he postulated that the negative-energy states are all filled by an infinite 'sea' of 
electrons. Because this sea is always there, and perfectly unifonn, it exerts no net 
force on anything, and we are not normally aware of it. Dirac then invoked the Pauli 
eJ((lusion principle (which says that no two electrons can occupy the same state), to 
'explain' why the electrons we do observe are confined to the positive-energy states. 
But if this is true, then what happens when we impart to one of the electrons in 
the 'sea' an energy sufficient to knock it into a positive-energy state? The absence 
of the 'expected' electron in the sea would be interpreted as a net positive charge 
in that location, and the absence of its expected negative energy would be seen as a 
net positive energy. Thus a 'hole in the sea' would function as an ordinary particle 
with positive energy and positive charge. Dirac at first hoped that these holes might 
be protons, but it was soon apparent that they had to carry the same mass as the 
ele<:tron itself - 2000 times too light to be a proton. No such particle was known 
at the time, and Dirac's theory appeared to be in trouble. What may have seemed a 
fatal defe<:t in 1930, however, turned into a spectacular triumph in late 1931, with 
Anderson's discovery of the positron (Figure 1.4), a positively charged twin for the 
electron, with pre<:isely the attributes Dirac required [8J. 

Sti!!, many physicists were uncomfortable with the notion that we are awash in 
an infinite sea of invisible electrons, and in the 194()s Stuckelberg and Feynman 
provided a much simpler and more compelling interpretation of the negative-energy 
states. In the Feynman-Stuckelberg formulation, the negative·energy solutions 
are re-expressed as positive-energy states of a dilfrrent particle (the positron); the 
electron and positron appear on an equal footing, and there is no need for Dirac's 
'ele<:tron sea' or for its mysterious 'holes'. We'll see in Chapter 7 how this - the 
modern interpretation - works. Meantime, it turned out that the dualism in Dirac's 
equati on is a profound and universal feature of quantum field theory: for every 
kind of particle there must exist a corresponding antiparticle, with the same mass 
but opposite electric charge. The positron, then, is the antieltetron. (Actually, it is 
in principle completely arbitrary which one you call the 'particle' and which the 
'antiparticle' - I could just as well have said that the electron is the antipositron. 
But since there are a lot of electrons around. and not so many positrons, we tend to 
think of electrons as 'matter' and positrons as 'antimatter'). The (negatively charged) 
antiproton was first observed experimentally at the Berkeley Bevatron in 1955, and 
the (neutral) antineutron was discovered at the same facility the following year [9J. 
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Fi,. 1.4 The positron. In 1932. Ande�on 
took this photograph of th", track l...ft in 
a cloud chamb...r by a cosmic ray particle. 
Th", ci1amb",r WiS plac...d in a magnetic field 
(pointing into th", page), which caus",d th", 
particle to travel in a <curve. But was it a 
negatiye charge trilv...ling dOWl1ward or a 
positi"", charg'" trayeling upward? In order 
to distinguish. Anderson had placed a lead 
pla.te across the center of the chimber (the 
thid hori�ontal 1ine in ft.e photograph). A 

/.< 

particle passing through the plate slows 
down, and subsequently moyes in it tighter 
circle. By inspection of the curves. it is clear 
that this particle tra"",l...d upward, and hence 
must hive been positively charg...d. From the 
curvature of the track and from its texture. 
Andenoon WiS able to show that th'" mass 
of the particle was close to that of the ele<:­
tron. (Photo courtesy California Institute of 
Technology.) 

The standard notation for antiparticles is an overbar. For example, p denotes the 
proton and p the antiproton; n the neutron and ii the antineutron. However, in 
some cases it is customary simply to spedfy the charge. Thus most people write e+ 

for the positron (not t) and p..+ for the antimuon (not jl).' Some neutral particles are 
their own antiparticles. For example, the photon: V iii y. In fact, you may have been 
wondering how the antineutron differs physically from the neutron, since both are 
uncharged. The answer is that neutrons carry other 'quantum numbers' besides 
charge (in particular, baryon number), which change sign for the antiparticle. 
Moreover, although its ntt charge is zero, the neutron does have a charge structure 
(positive at the center and neaT the surface, negative in between) and a magnetic 
dipole moment. These, too, have the opposite sign for ii. 

There is a general principle in particle physics that goes under the name of 
crossing symmttry. Suppose that a reaction of the fonn 

is known to occur. Any of these particles can be 'crossed' over to the other side of 
the equation, provided it is turned into its antiparticle, and the resulting interaction 

, But you must not mix conventions: � is ambiguous. like a double negative - the reader d�n'l 
know if you mean the positron or the .. nlipositron, (which is to say, the ekctron). 



will also be allowed. For example. 

A --+ B + C + D  

A+C--+ B + D  

C + D  ..... A + B  

1.5 Neufrinos (1930-1962) [ 23 

In addition, the rtvtrst reaction occurs: C + D --+ A + B, but technically this 
derives from the principle of dttaikd balanct, rather than from crossing symmetry. 
Indee<l, as we shall see, the calculations involved in these various reactions are 
practically identicaL We might almost regard them as different manifestations 
of the same fundamental process. However, there is one important cavwl in all 
this: conselVation of energy may veto a reaction that is otherwise permissible. 
For example, if A weighs less than the sum of B, C, and D, then the decay 
A --+ B + C + D cannot occur; similarly, if A and C are light, whereas B and D 
are heavy, then the reaction A + C ..... B + D will not take place unless the initial 
kinetic energy exceeds a certain 'threshold' value. So perhaps I should say that the 
crossed (or reversed) reaction is dynamically permissible, but it may or may not be 
kinematically allowed. The power and beauty of crossing symmetry can scarcely be 
exaggerated. It tells us, for instance, that Compton scattering 

is 'really' the same process as pair annihilation 

although in the laboratory they are completely different phenomena. 
The union of spe<ial relativity and quantum mechanics, then, leads to a pleasing 

matter/antimatter symmetry. But this raises a disturbing question: how come our 
world is populated with protons, neutrons, and ele<trons. instead of antiprotons, 
antineutrons, and positrons? Matter and antimatter cannot coexist for long - if a 
particle meets its antiparticle, they annihilate. So maybe it's just a historical accident 
that in our corner of the universe there happened to be more matter than antimatter, 
and pair annihilation has vacuumed up all but a leftover residue of matter. If this 
is so, then presumably there are other regions of space in which antimatter 
predominates. Unfortunately, the astronomical evidence is pretty compelling that 
all of the obselVable universe is made of ordinary matter. In Chapter 12 we will 
explore some contemporary ideas about the 'matter-antimatter asymmetry'. 

1.5 
Neutrinos (1930-1962) 

For the third strand in the story we return again to the year 1930 [10J. A problem 
had arisen in the study of nuclear beta de<ay. In beta decay, a radioactive nucleus A 
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is transfonned into a slightly lighter nucleus B, with the emission of an electron: 

(1.6) 

Conservation of charge requires that B carry one more unit of positive charge than 
A. (We now realize that the underlying process here is the conversion of a neutron, 
in A, into a proton, in B; but remember that in 1930 the neutron had not yet 
been discovered.) Thus the 'daughter' nucleus (B) lies one position farther along 
on the periodic table. There are many examples of beta decay: potassium goes to 
calcium (�K -+;:: Ca), copper goes to zinc (�Cu -+� Zn), tritium goes to helium ttH -+� He), and so on.' 

Now, it is a characteristic of two· body decays (A -+ B + q that the outgoing 
energies are kinematically detennined, in the center-of·mass frame. Specifically, 
if the 'parent' nucleus (A) is at rest, so that B and e come out back·to-back with 
equal and opposite momenta, then conservation of energy dictates that the electron 
energy is (Problem 3.19) 

(1.7) 

The point to notice is that E is fixtd once the three masses are specified. But when 
the experiments are done, it is found that the emitted electrons vary considerably in 
energy; Equation 1.7 only determines the maximum electron energy for a particular 
beta decay process (see Figure 1.5). 

This was a most disturbing result. Niels Bohr (not for the first time) was ready to 
abandon the law of conservation of energy.t Fortunately, Pauli took a more sober 
view, suggesting that another particle was emitted along with the electron, a silent 
accomplice that carries off the 'missing' energy. It had to be electrically neutral, to 
conserve charge (and also, of course, to explain why it left no track); Pauli proposed 
to call it the �utron. The whole idea was greeted with some skepticism, and in 
1932 Chadwick preempted the name. But in the follOwing year Fermi presented 
a theory of bela decay that incorporated Pauli's particle and proved so brilliantly 
successful that Pauli's suggestion had to be taken seriously. From the fact that the 
observed electron energies range up to the value given in Equation 1.7 it follows 
that the new particle must be extremely light; Fenni called it the neutrino ('little 
neutral one'). For reasons you'll see in a moment, we now call it the antineutrino. 

• The upper !lumber is the alOm;'; .... iglll (the 
number of n�trons plus protons) �nd the 
lower number is the atom;'; n .. mber (the num· 
ber of protons). 

t [\ is interesting to note that Bohr was an 
outspoR!I critic of Ensl6n's Ught qu�n. 
I:Ilm (prior to 1924), that he mercilessly 
denounced Schrodinger'1 eq�tion, dis· 
(ouraged Dir�c's work on the rel�tivistic 

e\e<tton th�ry (telling him, incorr«dy, that 
](Je;n �nd Gordon hld llreldy SUC(eeded). 
opposed Pauli's imroduction of th� n�utrino, 
ridiculed Yukaw�'s th�ry of the meson, and 
disparaged Feynman's approach 10 q�ntum 
electrodynlmics. Great scientists do not al· 
ways h:ove good judgment - especiaUy when 
it concerns other people's work - but Bohr 
mu.r hold the alJ·tim� r«ord. 
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Fig. 1.5 The beta decay �pectrum of tritium (/H -+ �H�). 
(Soune: lewis, G. M. (1970) NeUln'ncs. Wykehim, London. 
p. 30.) 
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In modern tenninology, then, the fundamental bela decay process is 

(l.S) 

(neutron goes to proton plus electron plus antineutrino). 
Now, you may have notice<! something peculiar about Powell's picture of the 

disintegrating pion (Figure 1.3): the muon emerges at about 90Q with respe<:t to 
the original pion direction. (1bat's not the result of a collision, by the way; collisions 
with atoms in the emulsion account for the dither in the tracks, but they cannot 
produce an abrupt left turn.) What this kink indicates is that some other particle 
was produced in the de.::ay of the pion, a particle that left no footprints in the 
emulsion, and hence must have been electrically neutral. It was natural (or at any 
rate tccnQmica� to suppose that this was again Pauli's neutrino: 

(1.9) 

A few months after their first paper, Powell's group published an even more striking 
picture, in which the subsequent decay of the muon is also visible (Figure 1.6). By 
then muon decays had been studied for many years, and it was well established 
that the charged secondary is an electron. From the figure there is dearly a neutral 
product as well, and you might guess that it is another neutrino. However, this 
time it is actually two neutrinos: 

p. _ e + 2" (1.10) 
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Fig. 1.6 Here. a pion deays into a muOn (plus . neutrino); 
the muon subSe<:luently decays into an electron (and two 
neutrinos). (Souru: Powell, C. F., Fowler, P. H. and Perkins, 
o. H. (1959) � Study of Elementary Particle. by the Pho­
tographi, Method Pergamon, New York. First published in 
(1949) NOlun 163, 82.) 

How do we know there are two of them? Same way as before: we repeat the 
experiment over and over, each time measuring the energy of the electron. If it 
always comes out the same, we know there are just two particles in the final state. 
But if it varies, then there must be (at least) three: By 1949 it was clear that the 

• Here, and in the original beta decay prob­
lem. conservation of angular momentum 
also requires a third outgoing partide, quite 
indeptndently of energy conservation. But 
the spin assignments were not so dear i n  

the early days. and for most people ener8)' 
con,",rvation Wi!; the compelling argument. 
In the interest of simplicity. I will keep 
angular momenUlm out of the story until 
Chapter •. 
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electron energy in muon decay is not fixed, and the emission of two neutrinos was 
the accepted explanation, (By contrast, the muon energy in pion decay is perf"ecdy 
constant, within experimental uncertainties. confirming that this is a genuine 
two-bo£Iydecay.) 

By 1950, then, there was compeUing theoretical evidence for the existence 
of neutrinos, but there was still no direct expenmeJ1tal verification. A skeptic 
might have argued that the neutrino was nothing but a bookkeeping device - a 
purely hypothetical particle whose only function was to rescue the conservation 
laws. It len no tracks. and it didn't decay; in fact, no one had ever seen a 
neutrino do anything. The reason for this is that neutrinos interact extraordinarily 

weakly with matter; a neutrino of moderate energy could easily penetrate a 
thousand light years(!) of lead.' To have a chance of detecting one you need 
an extremely intense source. The decisive experiments were conducted at the 
Savannah River nuclear reactor in South Carolina, in the mid-1950s. Here Cowan 
and Reines set up a large tank of water and watched for the 'inverse' beta decay 
reaction 

(1.11) 

At their detector the antineutrino Aux was calculated to be 5 X lOll particles per 
square centimeter per second. but even at this fantastic intensity they could only 
hope for two or three events every hour- On the other hand, they developed an 
ingenious method for identifying the outgoing positron. Their results provided 
unambiguous confirmation of the neutrino's existence [11 J. 

As I mentioned earlier, the particle produced in ordinary beta decay is actually 
an antineutrino, not a neutrino. Of course, since they're electrically neutral, 
you might ask - and many people did - whether there is any d!fference between 
a neutrino and an antineutrino. The neutral pion, as we shall see, is its own 
antiparticle; so too is the photon. On the other hand, the antineutron is definitely 
not the same as a neutron. So we're len in a bit of a quandary: is the neutrino 
the same as the antineutrino, and if nol. what property distinguishes them? 
In the late 1950s, Davis and Harmer put this question to an experimental test 
[12J. From the positive results of Cowan and Reines, we know that the crosse<! 
reaction 

(1.12) 

must also occur, and at about the same rate. Davis looke<! for the analogous reaction 
using antineutrinos: 

(1.13) 

• That's a comfortins ruliz.>tion wh�n you l�am thai hundrNs of billions of MUlrinos ptr =­
ond pass throujJh t:Y�ry squue inch of your body. nishl and day, cominS from the sun (they hit 
you from below, at niSht, haYinS pas.=i right through the urth). 



28 1 I HistQrir;o! !nlroduction 10 Ih. Elem.ntQry Parti"", 

He found that this reaction does not occur. and concluded that the neutrino and 
antineutrino are distinct particles.' 

Davis's result was not unexpected. In fact, back in 1953 Konopinski and 
Mahmoud [13J had introduced a beautifully simple rule for determining which 
reactions - such as Equation 1.12 - will work, and which - like Equation 1.13 -
will not. In effect,t they assigned a !tpton number L "" + 1 to the electron, the muon, 
and the neutrino, and L "" - 1  to the positron, the positive muon, and the antineu­
trino (all other particles are given a lepton number of zero). They then proposed 
the law of canst/wlion of !tplon number (analogous to the law of conservation of 
charge): in any physical process, the sum of the lepton numbers before must equal 
the sum of the lepton numbers after. Thus the Cowan-Reines reaction (1.11) is 
allowed (L = - 1  before and after), but the Davis reaction (1.13) is forbidden (on 
the left L = -1, on the right L "" + 1). It was in anticipation of this rule that I called 
the beta decay particle (Equation 1.8) an antineutrino; likewise, the charged pion 
decays (Equation 1.9) should really be written 

(1.l4) 

and the muon decays (Equation 1.10) are actually 

J.L- _ e- + v + lI  

J.L+ _ e+ + v +lI (1.15) 

You might be wondering what property distinguishes the neutrino from the 
antineutrino. The cleanest answer is: !tpkm numbu - iI's + 1 for the neutrino and 
- 1  for the antineutrino. These numbers are experimentally determinable, just as 
electric charge is, by watching how the particle in question interacts with others. (As 
we shall see, they also differ in their hdicity: the neutrino is 'left·handed' whereas 
the antineutrino is 'right·handed'. But this is a technical matter best saved for later.) 

There soon followed another curious twist to the neutrino story. Experimentally, 
the decay of a muon into an electron plus a photon is never observed: 

(1.16) 

and yet this process is consistent with conservation of charge and conservation of 
the lepton number. Now, a famous rule of thumb in particle physics (generally 

• Actu.aUy, this condusion is nO! as fir�proof 
as it once seemed. It could be the spin state 
of the ii, r�th"r than th� fact Wt it is distinct 
from v. WI forbids relction 1.13. Today. in 
fact, there are two vi<lble rnodrb: Di= lie"' 
lri...n, which are distinct from their antiparti· 
cles. and Majora .... I"tt"'rinos. for which v and 
ii are two state. of tllt.l<l"'" particlt. For most 

of this book. [ shall assume we ar� dealing 
with Dirac neutrinos. but wr'll return to the 
question in Ch�pter 11. 

t Konopinski �nd Mahmoud 113) did not use 
this terminology, �nd they got the muon as· 
signments wrong. But never mind. th� essen· 
tial ide� was there. 
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attributed to Richard Feynman) dedares that whatever is not expressly forbidden is 
mandatory. The absence of /l. -Jo e + y suggests a law of conservation of 'mu-ness', 
but then how are we to explain the observed decays /.I. -Jo e + v + v? The answer 
occurred to a number of people in the late 1950s and early 19605 [14J: suppose there 
are two different kinds of neutrino - one associated with the electron (v.) and one 
with the muon (v,,). Ifwe assign a muon number L" = +1 to /.1.- and v". and 
L" = -1 to /.1.+ and vi<' and at the same time an elecfron number -4 = +1 to e- and 
v .. and r.. = -1 to e+ and v., and refine the conservation of lepton number into 
two separate laws - conservation of electron number and conservation of muon 
number - we can then account for aU allowed and forbidden processes. Neutron 
beta decay becomes 

(1.17) 

the pion decays are 

(1.18) 

and the muon decays take the form 

(1.19) 

I said earlier that when pion decay was first analyzed it was 'natural' and 'economi· 
cal' to assume that the outgoing neutral particle was the same as in beta decay, and 
that's quite troe: it was natural and it was economical, but it was wrong. 

The first experimental test of the two· neutrino hypothesis (and the separate con­
servation of electron and muon number) was conducted at Brookhaven in 1962 [15J. 
Using about 10l• antineutrinos from rr- decay, Lederman, Schwartz, Steinberger, 
and their collaborators identified 29 instances of the expected reaction 

(1.20) 

and no cases of the forbidden process 

(UI) 

With only one kind of neutrino, the second reaction would be just as common 
as the first. (Incidentally, this experiment presented truly monumental shielding 
problems. Steel from a dismantled battleship was stacked up 44-feet thick, to make 
sure that nothing except neutrinos got through to the target.) 

I mentioned earlier that neutrinos are extremely light - in fact, until fairly 
recently it was widely assumed (for no particularly good reason) that they are 
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Table 1.1 The lepton filmily, 1%2�1976 

Lepton Electron Muon 

number number number 

Leptons 
,- 0 
". 0 
• 0 

"" 0 
Antileptons 
,< -, -, 0 
'. -, -, 0 
.< -, 0 -, 
'" -, 0 -, 

massless. This simplifies a lot of calculations, but we now know that it is not strictly 
true: neutrinos haw: mass, though we do not yet know what those masses are, 
except to reiterate that they are very small, even when compared to the electron's. 
What is more, over long distances neutrinos of one type can convert into neutrinos 
of another type (for example, electron neutrinos into muon neutrinos) - and back 
again. in a phenomenon known as lUulnllO osciUation. But this story belongs much 
later, and deserves a detailed treatment, so I'U save it for Chapter 11. 

By 1 %2, then, the lepton family had grown to eight: the electron, the muon, their 
respective neutrinos, and the corresponding antiparticles (Table 1.1). The leptons 
are characterized by the fact that they do not participate in strong interactions. For 
the next 14 years things were pretty quiet, as far as the leptons go, so this is a good 
place to pause and catch up on the strongly interacting particles - the mesons and 
baryons, known collectively as the Wrons. 

1.' 
Strange Particles (1947-1960) 

For a brief period in 1947, it was possible to believe that the major problems of 
elementary particle physics were solved. After a lengthy detour in pursuit of the 
muon, Yukawa's meson (the 11") had finally been apprehended. Dirac's positron 
had been found, and Pauli's neutrino, although still at large (and, as we have 
seen, still capable of making mischief), was widely accepted. The role of the muon 
was something of a puzzle (,Who ordered t/ult?' Rabi asked) - it seemed quite 
unnecessary in the overall scheme of things. On the whole, however, it looke<! in 
1947 as though the job of elementary particle physics was essentially done. 

But this comfortable state did not last long [16]. In December of that year, 
Rochester and Butler [17] published the cloud chamber photograph shown in 
Figure 1.8 Cosmic ray particles enter from the upper left and strike a lead plate, 
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, =  
01 lead 

Debri, 

Fig. 1.7 The first strange putide. Cosmic rays strike i leid 
�ate, producing a 1(0, which subsequently decays into a piir 
of charged pions. {Photo cOtlrtesy of Prof. Roches�r, G. O. 
(CI 1947). Nature, 160. 855. Copyright Macmillin Journals 
limited.) 

producing a neutral particle, whose presence is revealed when it deays into two 
charged secondaries, forming the upside·down 'Y' in the lower right. Detailed analy· 
sis indicated that these charged particles are in fact a ]f+ and a]f-. Here, then, was a 
new neutral particle withal least twice the mass ofthe pion: we call itthe JCl ('bon'): 

(U2) 

In 1949 Brown and her collaborators published the photograph reproduced in 
Figure 1.8, showing the decay of a charged hon: 

(1.23) 

(The JCl was first known as the 01 and later as the 9°; the K+ was originally called 
the r + .  Their identification as neutral and charged versions of the same basic 
particle was not completely settled until 1956 - but that's another story, to which 
we shall return in Chapter 4.) The hons behave in some respects like heavy pions, 
so the meson family was extended to include them. In due course, many more 
mesons were discovered - the "fl, the .p, the (01, the p's, and so on. 

Meanwhile, in 1950 another neutral 'Y' particle was found by Anderson's group 
at Cal Tech. The photographs were similar to Rochester's (Figure 1.7), but this time 
the products were a p+ and a ]f-. Evidently, this particle is substantially heavier 
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Fig. 1.8 WI-. entering from �bove. de<:�ys �t AK+ .... ".+ 
+ ".+ + "'- . (The ".- subsequently ClIuses a nudeir dis­
integr"tion it B.) (Source: Powell. C. F. Fowler. p, H. ind 
Perkins, D. H. (1959) The Study of flemenlory Porticles by the 
Photogrophi( Melhod. Pergamon. New York. First published 
in Notu",. Hi3. 82 (1949).) 

than the proton; we call it the A: 

A _ p+ + :rr-

. /  
.,,: , 

,.' 

(U4) 

The lambda belongs with the proton and the neutron in the baryon family. To 
appredate this, we must go back for a moment to 1938. The question had arisen, 
'Why is the proton stable?' Why. for example, doesn't it decay into a positron and a 

photon: 

(US) 
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Needless to say, it would be unpleasant for us if this reaction were common (all 
atoms would disintegrate), and yet it does not violate any law known in 1938. (It does 
violate conservation of Itpton number, but that law was not re.::ognized, remember, 
until 1953.) Stiickelberg [18J proposed to account for the stability of the proton by 
asserting a law of conservation of baryon number: assign to all baryons (which in 
1938 meant the proton and the neutron) a 'baryon number' A = +1, and to the 
antibaryons @andil) A= -I; thenthetotalbaryon nwnber is conserve<!in any phys-
ical process. Thus, neutron beta decay (n -jo p+ + �- + ii.) is allowed (A = 1 before 
and after), and so too is the reaction in which the antiproton was first observed: 

(1.26) 

(A = 2 on both sides). But the proton, as the lightest baryon, has nowhere to go; 
conservation of baryon number guarantees its absolute stability.' If we are to retain 
the conservation of baryon number in the light of reaction (1.24), the lambda must 
be assigned to the baryon family. Over the next few years, many more heavy baryons 
were discovered - the :E's, the 3's, the .6.'s, and so on. By the way, unlike leptons 
and baryons, there is no conservation of mesons. In pion de.::ay (n- -jo p. - + v).') a 
meson disappears, and in lambda decay (A _ p+ + 11"-) a meson is created. 

It is some measure of the surprise with which these new heavy baryons and 
mesons were greeted that they came to be known collectively as 'strange' particles. 
In 1952, the first of the modern particle accelerators (the Brookhaven Cosmolron) 
began operating, and soon it was possible to produce strange particles in the 
laboratory (before this the only source had been cosmic rays) . . .  and with this 
the rate of proliferation increased. Willis Lamb began his Nobel Prize acceptance 
speech in 1955 with the following words [19J: 

Wlu:n the Nobd Prize;s wu�flr5t awarded in 1901, physicists 
kn�w sonuthing of jus I two objects which ar� nOlll caUtd "elt· 
mentary particlts": the dectron and /he proton. A deluge of olh­
u "tltnuntary" particlts appeared after 1930; neutron, neu· 
trino, p. meson (sic}, n meson, hmviu mesons, and various hy­
perons. 1 have hmrd it said that "!he finder of a ntlll eltnun· 
tary paniclt used to be rewarded by a Nohtl Prize, but such a 
disC<lvtry n(}\II ought to be punished by a $10,000 fine". 

Not only were the new particles unexpected; there is a more technical sense 
in which they seemed 'strange': they are produad copiously (on a time s<:ale of 
about 10-23 seconds), but they decay relatively slowly (typically about 10-10 sec· 
onds). This suggeste<! to Pais and others [20J that the mechanism involved in 

• 'Gr�nd unified theories' (GUTs) aUow fur a 
minute violation of baryon num�r co,.....,r· 
vation. and in these theories the proton is 
1\01 ab$olutdy stable (see S�tions 2.6 and 
12.2). As of 2007, no proton d��y hu been 

observed. and its lifetime is known to exceed 
101' ye�I1I-whidt is pretty stable, wh= you 
consider that the age of the unh'er5e is about 
1010 �ars. 
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their production is entirely different from that which governs their disintegration. 
In modern language, the strange particles are prodwctd by the strong force (the 
same one that holds the nucleus together), but they dteay by the wtak force (the 
one that accounts for beta decay and all other neutrino processes). The details of 
Pais's scheme required that the strange particles be produced in pairs (so.called 
associatro production). The experimental evidence for this was far from clear at 
that time, but in 1953 Cell-Mann [211 and Nishiiima [22] found a beautifully 
simple and, as it developed, stunningly successful way to implement and improve 
Pais's idea. They assigned to each particle a new property (Cell. Mann called it 
'strangeness') that (like charge, lepton number, and baryon nwnber) is conserved 
in any strong interaction, but (unlike those others) is not conserved in a weak 
interaction. In a pion-proton collision, for example, we might produce two strange 
particles: 

]f- +P+ _ K+ + E­

_ Ko + tO 

_ JCl + A  (1.27) 

Here, the K's carry strangeness S = +1, the t's and the A have S = -1, and 
the 'ordinary' particles - ]f, p, and n - have S = O. But we never produce just om: 
strange particle: 

]f- + p+ f. ]f+ + E­

fo ]f° + A  

fo JCl + n  

On the other hand, when these particles dteay, strangeness is not conserved: 

A _ P+ +]f­

E+ _ p+ + :n: o  

_ 1I + :n:+ 

these are wtak processes, which do not respe<:t conservation of strangeness. 

(1.28) 

(1.29) 

There is some arbitrariness in the assignment of strangeness numbers, obviously. 
We could just as well have given S = +1 to the t's and the A, and S = -1 to K+ 
and [(0; in fact, in retrospe<:t it would have been a little nicer that way. (In exactly 
the same sense, Benjamin Franklin's original convention for plus and minus 
charge was perfectly arbitrary at the time, and unfortunate in retrospe<:t, since 
it made the cwrent<arrying particle - the electron - negative.) The significant 
point is that there exists a consistent assignment of strangeness numbers to 
all the hadrons (baryons and mesons) that accounts for the observed strong 
processes and 'explains' why the others do not occur. (The leptons and the 
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photon don't experience strong forces at all, so strangeness does not apply to 
them.) 

The garden that seemed so tidy in 1947 had grown into a jungle by 1960, and 
hadron physics could only be described as chaos. The plethora of strongly interacting 
particles was divided into two great families - the baryons and the mesons - and 
the members of each family were distinguished by charge, strangeness, and mass; 
but beyond that there was no rhyme or reason to it all. This predicament reminded 
many physicists of the situation in chemistry a century earlier, in the days before 
the periodic table, when scores of elements had been identified, but there was no 
underlying order or system. In 1960, the elementary particles awaited their own 
'periodic table·. 

1.7 
The Eightfold Way (1961 -1%4) 

The Mendeleev of elementary particle physics was Murray Gell·Mann, who intro­
duced the so-called Eightfold Way in 1961 [23J. (Essentially the same scheme was 
proposed independently by Ne'eman.) The Eightfold Way arranged the baryons and 
mesons into weird geometrical patterns, according to their charge and strangeness. 
The eight lightest baryons fit into a hexagonal array, with two particles at the center:' 

" p 
S : O  - - - . .  - - - - __ �---___ 

S z -I - _ _  ...... �-
," 
• 
• 
A 

s--' -. - -- - - -�":---____ 
, \ , 

0 ,, -1 

, , 
, 

a - o  

, .  
, 

, 
, 

, 
, 

, 
, , 

0 "' +' 

The baryon octet 

This group is known as the baryon octet. Notice that particles oflike charge lie along 
the downward-sloping diagonal lines: Q = + 1 (in units of the proton charge) for 
the proton and the 1:+; Q = 0 for the neutron, the A, the 1;0, and the ;:;0; Q = -1 
for the r:- and the ;:;-. Horizontal lines associate particles oflike strangtntss: 5 = 0 
for the proton and neutron, S"", -1 for the middle line, and 5 = -2 for the two ;:;'s. 

The eight lightest mesons fill a similar hexagonal pattern, forming the (pseudo­
scalar) nu:son octet: 

• Th� �bti� pbc�=nt of the p.arlicles in the cen�r is arbitrary. but in this book I shall �lways 
put the neutr�l member of the triplet (here the r:o) above th� singlet (her� the A). 
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The meson octe1 

, 
5 - - 1 - - - - - - - - - \, 

, 
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, , , 
0 .. -1 
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0 - 0  

, , 
a - , 

Once again, diagonal lines determine charge and horizontal lines determine 
strangeness, but this time the top line has S = 1, the middle line S = 0, and the 
bottom line S = -1. (This discrepancy is again a historical accident; Gell-Mann 
could just as well have assigned S = I to the proton and neutron, S = 0 to the 
1:'s and the A, and S "" -1 to the 3's. In 1953 he had no reason to prefer that 
choice, and it seemed most natural to give the familiar particles - proton, neutron, 
and pion - a strangeness of zero. After 1961, a new tenn - hypercharxe - was 
introduce<!, which was equal to S for the mesons and to S + 1 for the baryons. But 
tater developments revealed that strangeness was the better quantity after all, and 
the word 'hypercharge' has now been taken over for a quite different purpose.) 

Hexagons were not the only figures allowed by the Eightfold Way; there was 
also, for example, a triangular array, incorporating 10 heavier baryons - the baryon 
dtcuplet:* 

a- lIO lI' lI++ 
5 - 0 - -- - -- <;-----"�--�---_" 

5 - - 1 - - - - ..... 

, , 
r; "  \ , 

, ' 
\ 0 - 2  , , , 

, 
0 - '  

\ 0 "  0 , , , 
0 .. -1 

• In this book, for simplicity, ! �dhere to the old.f�shioned no�!ion in which the decuplel \»<1i· 
c� �� design�ted E* �nd S*: modem US<.ge drops the s�r �nd pUIS the mUS in parentheses: 
E(138S) �nd 8(1530). 
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Now. as Gell-Mann was fitting these particles into the decuplet. an absolutely 
lovely thing happened. Nine of the particles were known experimentally. but 
at that time the tenth particle (the one at the very bottom. with a charge of 
-1 and strangeness -3) was missing; no particle with these properties had 
ever been detected in the laboratory [24J. Gell-Mann boldly predicted that such 
a particle would be found. and told the experimentalists exactly how to pm· 
duce it. Moreover. he calculated its mass (as you can for yowself. in Problem 
1.6) and its lifetime (Problem 1.8) - and sure enough. in 1964 the famous 
omega-minus particle was discovered [251. precisely as Gell-Mann had predicted 
(see Figure 1.9).' 

Since the discovery of the omega-minus (n-). no one has seriously doubted 
that the Eightfold Way is correct. Over the next 10 years. every new hadron 
found a place in one of the Eightfold Way supentlultipkts. Some of these are 
shown in Figure 1.10t. In addition to the baryon octet. decuplet, and so on. 
there exist of course an antlbaryon octet. decuplet. etc. with opposite charge 
and opposite strangeness. However. in the case of the mesons. the antiparticles 
lie in the same surxntluhip/et as the corresponding partides. in the diametri­
cally opposite positions. Thus the antiparticle of the pi-plus is the pi-minus. the 
anti·K·minus is the K-plus. and so on (the pi·zero and the eta are their own 

antiparticles). 
Classification is the first stage in the development of any science. The Eightfold 

Way did more than merely classify the hadrons. but its real importance lies in the 
organizational structure it provided. I think it's fair to say that the Eightfold Way 
initiated the modern era in particle physics. 

1.8 
The Quark Model (1964) 

But the very success of the Eightfold Way begs the question: why do the hadrons 
fit into these bizarre patterns? The periodic table had to wait many years for 
quantum mechanics and the Pauli exclusion principle to provide its explanation. 
An understanding of the Eightfold Way. however. came already in 1%4. when 
Gell-Mann and Zweig independently proposed that all hadrons are in fact composed 
of even more elementary constituents. which Gell-Mann called quarks 126]. The 

• A simil�r thing happened in the case of the periodic table. There were three famous 'holes' 
(missing dements) on Mendd�s ch<irt. and he predicted that new elements would � discov· 
ered to fill in the gaps. Like Gell·Mann. he confidently described their properties. and within 20 
Y"ars all three - gallium. scandium. and germanium - wer� found. 

t To � sure. there were occasional false alarms _ particles that did not seem 10 fi! Gell.Mann·s 
sch�m� - but they always turned out to � experimental errors. Elementary paredes haye a w�y 
of appearing and then dw.ppeanng. Of the 26 mesons listed on a standard table in 1%3. 19 
were la�r found to � spurious! 
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Fig. 1.10 Some meson nonets, labeled in 
s�ctroscopic notation (see Chapter 5). 
There are now at least 15 established nonels 
(though in some cases not all members 
hve been diKovered). For the baryons there 

are Ihr� complete octets (with spins 1/2, 
3/2, and 5/2) and 10 others partly �lled; 
Ihere is only one complete decuplel, but 6 
mOre are partly filled, and there art thr� 
known singlets. 

quarks come in three types (or 'flavors'). forming a triangular 'Eightfold.Way' 
pattern: 

\ , , 
, 

, , 

- . , - ----- -'57d " 

, 
Q . '  .--1 ------__ ..; ., 

\ , 

\0- --} 

The quarks 

The II (for 'up') quark carries a charge of � and a strangeness ohero; the d ('down') 
quark carries a charge of -� and S = 0; the s (originally 'sideways', but now more 
commonly 'strange') quark carries a charge of -! and S = -1. To each quark (q) 
there corresponds an antiquark @, with the opposite charge and strangeness: - . ' ----�--- -

Ii if 
$ - 0 ------__ 

\ \ 
, , , , 

, , , , 
, , , , , , 
a --t o- t 

The antiquarl<.s 
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And there are two compositioll rules: 
1. Every baryon is composed of three quarks (and every 

alllibaryon is compose<! of three allliquarks). 
2. Every meson is compose<! of a quark and an antiquark. 

With this, it is a matter of elementary arithmetic to construct the baryon decuplet 
and the meson octet. All we need to do is list the combinations of three quarks (or 
quark-antiquark pairs) and add up their charge and strangeness: 

The baryon decuplet 

'" Q s Baryon 

'" 2 0 6" 
""" 1 0 6+ 
,dd 0 0 6" 
ddd -1 0 6-
'''' 1 -1 E'+ 

"", 0 -1 E-
dd> -1 -1 E'-
= 0 -2 8-
d» -1 -2 S·-
m -1 -3 W 

Notice that there are 10 combinations of three quarks. Three u's, for instance, 
at Q = � each, yield a total charge of +2 and a strangeness of zero. This is the 
t:. ++ particle. Continuing down the table, we find all the members of the decuplet 
ending with the Q-, which is evidently made of three s quarks. 

A similar enumeration of the quark-antiquark combinations yields the meson 
table: 

The meson nonet 

qij Q s Meson 

'" 0 0 rr' 
od 1 0 rr+ 
'" -1 0 rr 
dd 0 0 , 
'" 1 K+ 
dl 0 K' 
'" -1 -1 K-
,;; 0 -1 K" 
� 0 0 ?? 



1.8 The Quark Model (1964) 1 .1 

But wait! There are nine combinations here, and only eight particles in the meson 
octet. The quark model requires that there be a third meson (in addition to the HI) 
and the '7) with Q = 0 and S = O. As it turns out, just such a particle had already 
been found experimentally - the '7'. In the Eightfold Way, the 1]' had been classified 
as a singlet, all by itself. According to the quark model, it properly belongs with the 
other eight mesons to form the meson nonel. (Actually, since uli, dd, and ss all have Q 
= 0 and S = 0, it is not possible to say, on the basis of anything we have done so far, 
which is the HO, which the 1], and which the 1/. But never mind, the point is that there 
are three mesons with Q = S = 0.) By the way, the antimesons automatically fall in 
the same supennultiplet as the mesons: ud is the antiparticle of dU, and vice versa. 

You may have noticed that I avoided talking about the baryon octet - and it is 
far from obvious how we are going to get eight baryons by putting together three 
quarks. In truth, the procedure is perfectly straightforward, but it does call for some 
facility in handling spins, and I would rather save the details for Chapter 5. For now, 
I'll just tantalize you with the mysterious observation that if you take the decuplet 
and knock off the three corners (where the quarks are identical - uuu, ddd, and sss) 
and double the center (where aU three are different - uds), you obtain precisely the 
eight states in the baryon octet. $0 the same set of quarks can account for the octet; 
it's just that some combinations do not appear at all, and one appears twice. 

Indeed, aU the Eightfold Way supetmultiplets emerge naturally in quark model. 
Of course, the same combination of quarks can go to make a number of different 
particles: the delta·plus and the proton are both composed of two u's and a d; the 

pi-plus and the rho.plus are both ud. and so on. Just as the hydrogen atom (electron 
plus proton) has many different energy levels, a given collection of quarks can 
bind together in many different ways. But whereas the various energy levels in 
the electron/proton system are relatively close together (the spacings are typically 
several electron volts, in an atom whose rest energy is nearly 109 eV), so that we 
naturally think of them all as 'hydrogen', the energy spacings for different states 
of a bound quark system are very large, and we normally regard them as distinct 
particles. Thus we can, in principle, construct an infinite number ofhadrons out of 
only three quarks. Notice, however, that som� things are absolutely excluded in the 
quark model: for example, a baryon with S = 1 or Q = -2; no combination of the 
three quarks can produce these numbers (though they do occur for antibaryons). 
Nor can there be a meson with a charge of +2 (like the L'r. ++ baryon) or a strangeness 
of -3 (like the frIo For a long time. there were major experimental searches for 
these so-called 'exotic' particles; their discovery would be devastating for the quark 
model, but none has ever been found (see Problem 1.11). 

The quark model does, however, suffer from one profound embarrassment: 
in spite of the most diligent search, no one has ever seen an individual quark. 
Now, if a proton is really made out of three quarks, you'd think that if you hit 
one hard enough, the quarks ought to come popping out. Nor would they be 
hard to recognize, carrying as they do the unmistakable fingerprint of fractional 
charge - an ordinary Millikan oil drop experiment would clinch the identification. 
Moreover, at least one of the quarks should be absolutely stable; what could it decay 
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Fig. 1.11 (�) In Rutherford suttering, the 
number of particles defle<:ted through large 
angles indicates that the �tom has internal 
structure (i nucleus). (b) In deep inelastic 
scatttring. the number of particles defle<:ted 
through large angles indicates that the pro· 
ton has internal structure (quarks). The 
dashed lines show what )'QU would expect 

if the positive ch�rge were uniformly dis· 
tributed over Ihe volume Qf (a) lhe atom, 
(b) the proton. (Soma: Halzen, F. and Mar· 
lin. A. O. (1984) Quarks ond Lep1Ol15. John 
Wiley & Sons, N_ York, p. 17. Copyright e 
John Wiley & Sons. Inc. Reprinled by permis· 
sion.) 

into, since there is no lighter particle with fractional charge? So quarks ought to be 
easy to produce, easy to identify, and wsy to store, and yet, no one has ever foundone. 

The failure of experiments to produce isolated quarks occasioned widespread 

skepticism about the quark model in the late 1960s and early 1970s. Those who 
dung 10 the model tried to conceal their disappointment by introducing the notion 
of quark con,fintmmt: perhaps, for reasons not yet understood, quarks are absolutely 
wnftntd within baryons and mesons, so that no matter how hard you try, you 
cannot get them out. Of course, this doesn't explain anything, it just gives a 
name to our frustration. But it does pose sharply a critical theoretical question 

that is still not completely answered: what is the mechanism responsible for quark 
confinement? [27] 

Even if all quarks are stuck inside hadrons, this does not mean they are 
inaccessible to experimental study. One can explore the interior of a proton in 
much the same way as Rutherford probed the inside of an atom - by firing things 
into it. Such experiments were carried out in the late 1960s using high-energy 
electrons at the Stanford Linear Accelerator Center (SLAC). They were repealed in 
the early 1970s using neutrino beams at CERN, and later still using protons. The 
results of these so·called 'deep inelastic scattering' experiments [28] were strikingly 
reminiscent of Rutherford's (Figure 1.11): most of the inddent particles pass right 
through, whereas a small number bounce back sharply. This means that the charge 
of the proton is concentrated in smaU lumps, just as Rutherford's results indicated 
that the positive charge in an atom is concentrated at the nucleus [29]. However, 
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in the case of the proton the evidence suggests three lumps, instead of on�. This is 
strong support for the quark model, obviously, but still not conclusive, 

Finally, there was a theoretical obi«:tion to the quark model: it appears to vi­
olate the Pauli exclusion principle. In Pauli's original formulation, the exclusion 
principle states that no two electrons can occupy the same state. However, it was 
later realized that the same rule applies to all particles of half· integer spin (the 
proof of this is one of the most important achievements of quantum field theory). 
In particular, the exclusion principle should apply to quarks, which, as we shall 
see, must carry spin i Now the 1:1. ++, for instance, is supposed to consist of three 
identical u quarks in the same state; it (and also the 1:1.- and the n-) appear to be 
inconsistent with the Pauli principle, In 1964, O. W. Greenberg proposed a way 
out of this dilemma ]30]. He suggested that quarks not only come in three jlavo� 
(u, d, and 5) but each of these also comes in three colo� ('re<l', 'green', and 'blue', 
say). To make a baryon, we simply take one quark of each color; then the three u's 
in 1:1.++ are no longer identical (one's red, one's green, and one's blue). Since the 
exclusion principle only applies to idmtical particles, the problem evaporates. 

The color hypothesis sounds like sleight of hand, and many people initially 
considered it the last gasp of the quark model. As it turned out, the introduction of 
color was extraordinarily fruitful [31]. I need hardly say that the term 'color' here 
has absolutely no connection with the ordinary meaning of the word. Redness, 
blueness, and greenness are Simply labels used to denote three new properties that, 
in addition to charge and strangeness, the quarks possess. A red quark carries 
one unit of redness, zero blueness, and zero greenness; its antiparticle carries 
minus one unit of redness, and so on. We could just as well call these quantities 
X·ness, Y-ness, and Z'ness, for instance, However, the color terminology has one 
especially nice feature: it suggests a delightfully simple characterization of the 
particular quark combinations that are found in nature. 

All naturally occurring particles are colorless. 

By 'colorless' I mean that eillKr the total amount of each color is zero or all 
three colors are present in equal amounts. (!be latter case mimics the optical 
fact that light beams of three primary colors combine to make white.) This clever 
rule 'explains' (if that's the word for it) why you can't make a particle out of two 
quarks, or four quarks, and for that matter why individual quarks do not occur in 
nature. The only colorless combinations you can make are qij (the mesons), qqq 
(the baryons), and ij ijij (the antibaryons).' 

• Of cou�. you Gin p.ack.a� tog�th�r combi. 
""Iio .... of th�� - th� d�ut�ron. for a:l.mpl�, 
is a six qu.ark sute (three ,,'s and three d·s). 
In 2003, th� was a Hurry of excitement 
OYer the app.arent observation of four·quark 
'm�soll5' (acrnally, 9qij1j} and I"'ntaquark 
'bolT)'<lns' (qqqqij). The latter nOW appe<lr to 

have been statistic<ll artifacts 1321, but in at 
l�aS! one m�son ca� (th� so-callffi X(3872) 
discovered <It KEK in lapan). th� four-qUllrk 
int�rpr�tation �ms to t... holding up, though 
it is still not c1�ar wh�ther it is best thought 
of as a DD> 'mol�ul�' or as a m�n in its 
own right 1331_ 
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1.' 
The November Revolution and Its Aftermath (1974-1983 and 1995) 

The de<ade from 1964 to 1974 was a barren time for elementary particle physics. 
The quark model, which had seemed so promising at the beginning, was in 
an uncomfortable state of limbo by the end. It had some striking successes: it 
neatly explained the Eightfold Way, and correctly predicted the lumpy structure 
of the proton. But it had two conspicuous defects: the experimental absence 
of free quarks and inconsistency with the Pauli principle. Those who liked the 
model papered over these failures with what seemed at the time to be rather 
transparent rationalizations: the idea of quark confinement and the color hy· 
pothesis. But I think it is safe to say that by 1974 most elementary particle 
physicists felt queasy, at best. about the quark model. The lumps inside the pro· 
ton were called partons. and it was unfashionable to identitY them explicitly with 
quarks. 

Curiously enough, what rescued the quark model was not the discovery of 
free quarks, or an explanation of quark confinement. or confirmation of the 
color hypothesis. but something entirely different and (almost) [34] completely 
unexpected: the discovery of the psi meson. The t/I was first observed at Brookhaven 
by a group under C. C. Ting, in the summer of 1974. But Ting wanted to check 
his results before announcing them publicly. and the discovery remained an 
astonishingly well.kept set:ret until the weekend of November 10-11. when the 
new particle was discovered independently by Burton Richter's group at SLAC. 
The two teams then published simultaneously [35]. Ting naming the particle l, 
and Richter calling it t/I. The IN was an elet:trically neutral. extremely heavy 
meson - more than three times the weight of a proton (the original notion that 
mesons are 'middle·weight' and baryons ·heavy·weight' had long since gone by the 
boards). But what made this particle so unusual was its extraordinarily long lifetime. 
for the t/I lasted fully lO-Ul seconds before disintegrating. Now, 10-l() set:onds may 
not impress you as a particularly long time. but you must understand that the 
typical lifetimes for hadrons in this mass range are on the order of 10-2) seconds. 
So the t/I has a lifetime about a 1000 times longer than any comparable particle. It's 
as though someone came upon an isolated vil lage in Peru or the Caucasus where 
people live to be 70 000 years old. That wouldn't just be some actuarial anomaly. it 
would be a sign offundamentally new biology at work. And so it was with the 1/t: its 
long lifetime, to those who understood. spoke of fundamentally new physics. For 
good reason, the events pret:ipitated by the discovery of the t/I came to be known as 
the November Rtvolution [36]. 

In the months that followed, the true nature of the t/I meson was the subjet:t of 
lively debate, but the explanation that won was provided by the quark model: the 

t/I is a bound state of a new (fourth) quark, the c (for charm) and its antiquark, 
t/I = (cC). Actually, the idea of a fourth flavor, and even the whimsical name, had 
been introduced many years earlier by Bjorken and Glashow (37). There was an 
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intriguing parallel between the leptons and the quarks: 

uptons : e, v" /-I., vI' 

Quarks : d, U,S 

If all mesons and baryons are made out of quarks, these two families are left as the 
tmly fundamental particles. But why four leptons and only three quarks? Wouldn·t 
it be nicer if there were four of each? Later, Glashow, !liopoulos, and Maiani [38] 
offered more compelling technical reasons for wanting a fourth quark, but the 
simple idea of a parallel between quarks and leptons is another of those far-fetched 
spe<ulations that turned out to have more substance than their authors could have 

imagined. 
So when the 1/1 was discovered, the quark model was ready and waiting with an 

explanation. Moreover, it was an explanation pregnant with implications. For if a 
fourth quark exists, there should be all kinds of new baryons and mesons, carrying 
various amounts of charm. Some of these are shown in Figure 1.12; you can work 
out the possibilities for yourself (Problems 1.14 and 1.IS). Notice that the ", itself 
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carries no nd charm, for if the c is assigned a charm of + I, then c will have a charm 
of-I; the charm of the '" is, if you will, 'hidden', Toconnrm the charm hypothesis, 
it was important to produce a particle with 'naked' (or 'bare') charm [39J. The nrst 
evidence for charmed baryons (At = udc and Ei+ = ULU) appeared already in 
1975 (Figure 1.13) [40J, followed later by S, = usc and Q, = 5:;(, (In 2002 there were 
hints of the nrst doubly charmed baryon at Fermilab.) The nrst charmed mesons 
(00 = cu and 0+ = cd) were discovered in 1976 (411, followed by the charmed 
strange meson (OJ = d) in 1977 [42J. With these discoveries, the interpretation of 
the ", as c, was established beyond reasonable doubt. More important, the quark 
model itself was put back on its feel. 

However, the story does not end there, for in 1975 a new lepton was discovered 
(43J, spoiling Glashow's symmetry. This new partide (the tau) has its own neutrino, 
so we are up to six leptons, and only four quarks, But don't despair, because 2 years 
later a new heavy meson (the upsilon) was discovered [44J, and quickly recognized 
as the carrier of a nfth quark, b (for uauty, or bottom, depending on your taste): 
""( = bb. Immediately the search began for hadrons exhibiting 'naked beauty', or 
'bare bottom.' (I'm sorry. I didn't invent this terminology. In a way, its silliness is 

a reminder of how wary people were of taking the quark model seriously, in the 
early days.) The first bottom baryon, A� = udb, was observed in the 1980's, and the 
second (Et = uub) in 2006; in 2007 the first baryon with a quark from all three 

generations was discovered (Sh" = dsb), The nrst bottom mesons (SO = bd and 
B- = bU) were found in 1983 [45J. The Ef!{Tf! system has proven to be especially 
rich, and so...::alled 'B factories' are now operating at SUC ('BaBar') and KEK 
('Belle'). The Particle Physics Bookkt also lists d1 = sb and Bt = cb. 

At this point, it didn't take a genius to predict that a sixth quark (t, for lruth, 
of course, or top) would soon be found, restoring Glashow's symmetry with six 
quarks and six leptons. But the top quark turned out to be extraordinarily heavy 
and frustratingly elusive (at 174 GeV {e2, it is over 40 times the weight of the 
bottom quark). Early searches for 'toponium' (a Ii meson analogous to the ", and 
T) were unsuccessful, both because the electron-positron colliders did not reach 
high enough energy and because, as we now realize, the top quark is simply too 
short·lived to form bound states - apparently there ar, no top baryons and mesons. 
The top quark's existence was not definitively established until 1995, when the 
Tevatron finally accumulated enough data to sustain strong indications from the 
previous year [46]. (The basic reaction is u + u (or d + d) ...... t + i; the top and 
anti.top immediately decay, and it is by analyzing the decay products that one is 
able to infer their fleeting appearance.) Until the LHC begins operation, Fermilab 
will be the only accelerator in the world capable of producing top quarks. 

1,10 
Intermediate Vector Bosons (1983) 

In his original theory of beta decay (1933), Fermi treated the process as a contact 
interaction, occurring at a single point, and therefore requiring no mediating 
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particle. As it happens, the weak force (which is responsible for beta decay) is of 
extremely short range, so that Fermi's model was not far from the truth, and yields 
excellent approximate results at low energies. However, it was widely recognized 
that this approach was bound to fail at high energies and would eventuaUy have 
to be supplanted with a theory in which the interaction is mediated by the 
exchange of some particle. The mediator came to be known by the prosaic name 
inlermediale veclor boson, The challenge for theorists was to predict the properties 
of the intermediate vector boson, and for experimentalists, to produce one in the 
laboratory. You may recall that Yukawa, faced with the analogous problem for the 
strong force, was able to estimate the mass of the pion in terms of the range of 
the force, which he took to be roughly the same as the size of a nucleus. But we 
have no corresponding way to measure the range of the weak force; there are no 
'weak bound states' whose size would inform us - the weak force is simply too 
feeble to bind particles together. For many years, predictions of the intennediate 
vector boson mass were little more than educated guesses (the 'education' coming 
largely from the failure of experiments at progressively higher energies to detect 
the particle). By 1 %2, it was known that the mass had to be at least half the 
proton mass; 10 years later the experimental lower limit had grown to 2.5 proton 
masses. 

But it was not until the emergence of the electroweak theory of Glashow, 
Weinberg, and Salam that a really firm prediction of the mass became pos· 
sible. In this theory, there are in fact thru intermediate vector bosons, two 
of them charged (W*) and one neutral (2). Their masses were calculated to 
be [47J 

Mw = 82 ± 2GeV/C-, Mz = 92 ± 2 GeV/c2 (predicted) (1.30) 

[n the late 1970s, CERN began construction of a proton-antiproton collider de· 
signed specifically to produce these extremely heavy particles (bear in mind that 
the mass of the proton is 0.94 GeVlc2, so we're talking about something nearly 
100 times as heavy). In January 1983, the discovery of the W was reported by Carlo 
Rubbia's group [48J, and 5 months later the same team announced discovery of the 
Z [49]. Their measured masses are 

Mw = 80.403 ± 0.029 GeV;C-, Mz = 91.188 ± 0.002 GeV;c- (measured) 
(1.31) 

These experiments represent an extraordinary technical triumph [50J, and they 
were of fundamental importance in confirming a crucial aspect of the Standard 
Model. to which the physics community was by that time heavily committed (and 
for which a Nobel Prize had already been awarded). Unlike the strange particles 
or the "" however, (but like the top quark a decade later) the intennediate vector 
bosons were long awaited and universally expected, so the general reaction was a 
sigh of relief, not shock or surprise. 
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1.11 
The Standard Model (1978-?) 

In the current view, then, all matter is made out of three kinds of elementary 
particles: leptons, quarks, and mediators. There are six leptons, classified according 
to their charge (Q), electron number (4), muon number (L,,), and tau number 
(Lt). They faU naturally into three gwerations: 

Lepton classification 
I Q � L, 4 

First generation 
, I I 0 0 

'. 0 I 0 0 

" I 0 I 0 
" 0 0 I 0 

Second generation 

, I 0 0 I 

'. 0 0 0 I 
Third generation 

There are also six antileptons, with all the signs reversed. The positron, for example, 
carries a charge of +1 and an electron number -I.  So there are really 12 leptons, 
all told. 

Similarly, there are six 'flavors' of quarks, classified by charge, strangeness (S), 
charm (q, beauty (B), and truth (T). (For consistency, I suppose we should include 
'upness', U, and 'downness', D, although these terms are seldom used. They are 
redundant, inasmuch as the only quark with 5 = C = B = T = 0 and Q = �, for 
instance. is the up quark, so it is not necessary to specifY U = 1 and D = 0 as well.) 
The quarks, too. faU into three generations: 

Quark classification 

q Q D U S C B T 

First generation 
d '13 I 0 0 0 0 0 
" 213 0 I 0 0 0 0 
, 113 0 0 I 0 0 0 
, 213 0 0 0 I 0 0 Second generation 

b '13 0 0 0 0 I 0 
, 213 0 0 0 0 0 I Third generation 

Again. all signs would be reversed on the table of antiquarks. Meanwhile, each 
quark and antiquark comes in three colors, so there are 36 of them in all. 

Finally, every interaction has its mediator - the photon for the electromagnetic 
force, two W's and a Z for the weak force, the graviton (presumably) for gravity 
. . .  but what about the strong force? In Yukawa's original theory the mediator of 
strong forces was the pion. but with the di scovery of heavy mesons this simple 

picture could not stand; protons and neutrons could now exchange p's and I)'S 
and K's and </J's and all the rest of them. The quark model brought an even more 
radical revision: for if protons, neutrons, and mesons are complicated composite 
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Fig. 1.14 Th� tilr� g�ntr�tion§ of quarks and leptons, in order of increasing mass. 

structures, there is no reason to believe their interaction should be simple. To study 
the strong force at the fundamental level. one should look, rather, at the interaction 
between individual quarks. So the question becomes: what particle is exchanged 
between two quarks, in a strong process? This mediator is called the gluon, and in 
the Standard Model there are eight of them. As we shall see, the gluons themselves 
carry color, and therefore (like the quarks) should not exist as isolated particles. We 
can hope to detect gluons only within hadrons or in colorless combinations with 
other gluons (ghuoolls). Nevertheless, there is substantial indirect experimental 
evidence for the existence of gluons: the deep inelastic scattering experiments 
showed that roughly half the momentum of a proton is carried by electrically 
neutral constituents, presumably gluons; the jet structure characteristic of inelastic 
scattering at high energies can be explained in terms of the disintegration of quarks 
and gluons in flight IS 1 J and glueballs may conceivably have been observed [52]. 

This is all adding up to an embarrassingly large number of supposedly 'elemen· 
tary' particles: 12 leptons, 36 quarks, 12 mediators (I won't count the graviton, 
since gravity is not included in the Standard Model). And, as we shall see later, the 
Glashow-weinberg-Salam theory calls for at least one Higgs particle, so we have 
a minimum of 61 particles to contend with. Informed by our experience first with 
atoms and later with hadrons, many people have suggested that some, at least, of 
these 61 must be composites of more elementary subparticles (see Problem 1.18) 
[53[. Such speculations lie beyond the Standard Model and outside the scope of 
this book. Personally, [ do not think the large number of 'elementary' particles in 
the Standard Model is by itself alarming, for they are tightly interrelated. The eight 
gluons, for example, are identical except for their colors, and the second and third 
generations mimic the first (Figure 1.14). 

Still, it does seem odd that there should be three generations of quarks and 
leptons - after all, ordinal'}' matter is made of up and down quarks (in the form of 
protons and neutrons) and electrons, all drawn from the first generation. Why are 
there two 'extra' generations; who needs 'em? It's a peculiar question, presuming 
a kind of purpose and efficiency on the part of the creator for which there is 
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lit tle evid en ce . .  , but on e can ', help won d ering . Actual ly, ther e is a surpr ising 

ans wer: as we shall s ee, the pr edo minan ce of mat ter o ver anti matter ad mits a 
plausible accoun ting within the Standard Mod el ,  but onl y if there are (at least) 

three gen era tion s. 
Of cours e, this begs the r evers e qu est ion: why ar e th er e  only three generations? 

Indeed, could there be more of th em, which have not yet been dis co vered (presum. 
ably becau se they a re too heavy to be mad e  with existing ma chin es )? As r ecently as 
1988 (54), there wer e good r easons to anti cipat e a fourth g en eration ,  and p er haps 
even a fifth. But wit hin a year that possibility was foreclosed by expe ri ments at 
SLAC and CE RN (55J. The z!! is (as Sadda m would s a y) th e 'mother of all parti cl es' , 

in the s ens e that it can d eca y (with a pr ec is el y  calculable probability) into any 
qua rk /antiquark o r  lepton /an til epton pa ir (e- + e+, U + ii, vp + "ii", et c.), pro vi d ed 
only that the particle's mass is less than half that of the z!! ( e ls e ther e wouldn't be 
enough en erg y to mak e the pair). So by measuring the l if etime of the z!! you can 

a ctuall y count the nu mber of quarks and l eptons with mass l ess than 45 GeV/c2. 
Th e mo r e  ther e are,  the sho rt er the lifetime of the z!!, just as the more fatal diseases 
we are susceptible to the shorter o ur average lifespan becomes. The exp eri ments 
show that the lifetime of the z!! is exa ctly what you would exp ect on the basis of 

the established three g en er a tions . Of cours e, the quarks (an d conceivably even the 
charged lepton) in a p utat ive fourth generation might be too heavy to a ffect the ZO 
lifetime, but it is ha rdl y  to be ima gined that the fou r th n eut rino would sudden ly 
jump to o ver 45 GeVlc1. At an y rate, what the exp eri ments do un equ i vo call y  show 

is that the number of light neutrinos is 2.99 ± 0.06. 
Although the Standard Mod el has s urvived uns cathed for 30 years , it is certain ly 

not the end of the stor y. Th er e a r e  man y  impo rtant iss ues that it s impl y  does not 
add ress - it d oes not , for exa mpl e, tell us ho w to calculate the quark and lepton 
masses." 

Quark and l epton mass es ( i n MeV je2) 
lepton =" quark mass 
" <2 x 10- " 2 
'. <0.2 d 5 
" <18 , 100 
, 0,511 , 1200 
" 106 b 4200 
, 1777 , 174000 

In the Standard Model, these are simply empi ri cal nu mbers , taken from exp eri· 
ment , but a mature theory. presuma bly, wo uld explain them, just as we can for 

the ato ms on th e p er iodic tabl e.t As we shall s ee, th e Standard Model also tak es as 
emp irical inp ut three angles and a phas e in the Koba yashi-Maskawa matrix, and 
analogous nu mbe rs fo r the leptons, and the Weinberg an gle d escribin g electroweak 

• There is substantial uncertainty in th� light quark masses; I haw. rounded them off for th� sake 
of darity. 

t Note. how�r. that the quark/lepton mass formw.. is going to look very strang<:, since it hu to 
rover a range of at least 11 powes of 10. from the electron neutrino to th� top quark. 
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mixing, and . . .  all told, there are over 20 arbitrary parameters in the Standard 
Model, and this is simply unacceptable in any 'final' theory [56[. 

On the experimental side, there remains much to be learned about neutrino 
oscillations (see Chapter 11), and CP violation (Chapter 12), but the most conspic­
uous missing link is the Higgs particle, which is n«essary in the Standard Model 
to account for the masses of the W and Z (and perhaps all other particles as well). 
Like the top quark. the predicted mass of the Higgs has increased with time, as 
each new experiment failed to discover it. At this point. it is presumably beyond the 
range of any existing accelerator, and, since the cancellation of the SSC, the LHC 
is ow best hope for finding this elusive particle. 

Meanwhile, there are a number of theoretical speculations (supported as yet by 
no dir«t experimental evidence) that go beyond the Standard Model. There are the 
Grand Unified Theories (GUTs) that link the strong, electromagnetic, and weak 
interactions (Chapter 2): these are so widely accepted, at least in some fonn, as to be 

practically orthodox. Also very attractive to theorists is the idea of 'supersymmetry' 
(SUSY), which (among other things) would double the number of particles, 

associating with every fennion a boson, and vice versa. Thus the leptons would 
be joined by 'sleptons' (,selectrons', 'sneutrinos', etc.) and quarks by 'squarks'; 
the mediators would acquire twins (the 'photino', 'gluino', 'wino', and 'zino'). 

If subquarks or supersymmetric particles are discovered, this will be huge news, 
resetting the whole agenda for the next era in elementary particle physics. But except 
for several tantalizing false alarms [57], no evidence for either has yet appeared. 

And then there is superstring theory. which since 1984 has captured the 
imagination of an entire generation of particle theorists. Superstrings promise 
not only to reconcile quantum m«hanics and general relativity, and to eliminate 
the infinities that plague quantum field theory, but also to provide a unified 'theory 

of everything', from which all of elementary particle physics (including gravity) 
would emerge as an inescapable consequence. String theory has certainly enjoyed 
a brilliant and adventurous youth; it remains to be seen whether it can deliver on 
its extravagant ambition [58J. 
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Problems 

\.I If � cru.rged p;trticle is undeflected in p;tssing through uniform crossed electric �nd 
magn�tic fields E and B {murually perpendicular and both perpendicular to th� direction 
of motion). what is its velocity� If w� now rum off the electric fi�ld. and the particle 
moves in an arc of radius R. wru.t is its cru.rge-to-mass r;ltio� 

1.2 The mass of yuk;!wa's meson can be estimated as follows, When two protons in a 
nucleus achang� a meson {mass m), they must tempor.lrily violate the conservation of 
energy by an amount "",2 {the rest energy of w meson), The Heis�nberg uncenainty 
principle s�ys that you may 'borrow' �n energy 6£. provided you 'pay it back' in a time 
6t given by fl.E 6t: fl/2 {wh�� fI .. hI21f), In this�, w� need to borrow fl.E: "",2 
long enough for the meson to mak� it from one proton to the other, [t ru.s to cross the 
nucleus (siz� '0), and it travels, presumably, at some substantial f!1lction of the speed of 
light, so, roughly speaking, fl.t: role, Putting all this together, we have 

h 
m � --

2roc 

Using fO _ 10-11 cm {the size of a typical nucleus), c;Ucul�te the mass of yuk;!Wi.'S 

m�son, Express your answer in MeV le2, and compare w observed mass of the pion, 
(Commellt: If you find that argument compelling, I can only say th;ot you're pretty 
gullible, Try it for an alOm, and you'll conclude that w mass of the photon is about 
7 x IO-JOg, which is nonsense, Nevertheless, it is a useful device for 'back..,f-the· 
envelope' cakulations, and it does very well for th� pi meson. Unfortunately, many 
books present it as though it were a rigorous derivation, which it certainly is Mol. Th� 
unceminty principle does Mol license violation of conserv�tion of energy (nor does 
any such violation occur in this process; we shall see later on how this comes about). 
Moreover, it's an illtljuality, fl.E fl.1 ::: /1(2, which at most could give you a k>wtr bound 
on m. [t il typically troe that the rangt of a force is inversely proportional to the mass of 
the mediator, but the size of a bound sbte is not always a good measur� of the range. 
(lbat's why the argument fails for the photon: th� rang� ofw electromagMtic force is 
infinite, but the size of an atom is not.) In general. when you hear a physicist invoke the 
uncertainty principle, keep a hand on your wallet.! 

1.3 In the period before the discovery of the neutron, many people thought th;ot the nucleus 
consisted of protons and dulroMI, with the atomic number equal to w excess number 
of protons. Beb deay seemed to suppon this idea - after all, �lectrons come popping 
out; doesn't that imply th;ot there were electrons inside? Use th� position-momentum 
uncertainty relation, fl." 6p 2! fi/2, to estimate the minimum momenNm of an electron 
confined to a nucleus (radius 1O-llcm). From the �Jativistic energy-momenrum 
rel�tion, E2 _ p2el = m2c', determine the corresponding energy and comp;tr� it with 
that of an electron emitted in, say, the beta deay of tritium (Figure 1.5). (Ibis result 
convinced some people th;ot w beta deay electron could MOl have been rattling around 
insid� th� nucleus, but must be produced in the disintegration itself.) 

L4 The GeIl·Ma,.IIjOkubo mossformula relates the masses of members of the baryon octet 
(ignoring small differences between p and M; 1: +, 1:°, and 1: -; and SO and S -): 

Using this formula, together with the known masses ofw ",.atOll N (use w average 
of p and II). 1: (again, use the average). and S (ditto), 'predict' th� mass of the A. How 
close do you come to 1M obs�rved value? 
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1.5 The s�me formul� �ppJies to the mesons (with t ..... ", " ..... �, etc.), except that in this 

Cilse, for reasons th;o.t rermtin something of a mystery, you must use the squares of the 
masses. Use this to 'predict' the mass of the 1/. How close do you come? 

1.{; The mass formula for dewplets is much simpler - equal sp..ong between the rows' 

mll - mp = m:\:, - m:;:, = m:;:, - mn 

Use this formul� (�s GeU·Mmn did) to predict the m�ss of the 0-. (Use the �verage of 
the first two SP_lCings toestimate the third.) Howdose is your prediction to theobserved 
VlIlue? 

1.7 (a) Members of the b;oryon decuplet typically decay after lO-llseconds into a lighter 
b;oryon (from the baryon octet) and a meson (from the pseudo-scalar meson octet). 
Thus. for ex�mple. ;l. H ..... p+ + ,,+. List all decay modes of this fonn for the ;l. -, 
to+, and 3'-. Remember that these decays must conserve charge and strangeness 
(they are strong interactions). 

{hI In �ny decay, there must be sufficient m�ss in the original p,article to COlIer the 
masses of the decay products. (There may be more than enough; the enra will be 
'soaked up' in the form of kinetic energy in the final state.) Check each of the 
decays you proposed in p�rt (�) to see which ones meet this criterion. The others are 
kinematically forbidden. 

1.& (a) Anal)'"le the possible decay modes of the 0-, just as you did in Problem 1.7 for the 6, 
t .. , �nd S*. See the problem? Gell·Mann predicted that the 0- would be 'metastable' 
(i.e. much longer lived than the other members of the decuplet), for precisely this 
re�son. (The 0- MeS in fact decay. but by the much slower weak interaction. which 
does not conserve strangeness.) 

{h) From the bubble chamber photograph (Figure 1.9), measure the length of the 0-
track, and use this to estimate the lifetime of the 0-. (Of course. you don't know 
how fast it was going, hut it's � safe bet that the speed was less than the velocity 
of light; let's say it was going about O.k Also, you don't know if the reproduction 
has en!�rged or shrunk the scale. but never mind: this is quibbling over factors of 2. 
or 5, or maybe even 10. The important point is that the lifetime is m�ny orders of 
magnitude longer than the lO-IJ seconds characteristic of all other members of the 
deruplet). 

1.� check. the CoIema,,-Glashow relation [Ph)'$. Rtv. 8134. 671 (1964)): 

(the p;ortide Ill\mes stand for their rmtsses). 
1.10 look up the table of 'known' mesons compiled by Roos. M. (1963) Rtviews of MOIkrn 

Phl"ics, 35, 314, �nd comp,are the cunent Panicle Physics Booklet to determine which of 
the 1%3 mesons have stood the test of time. (Some of the ruomes h�ve been changed. 
so you will have to work from other properties. such �s mass. charge. str�ngeness, 
etc.) 

1.11 Of the spurious p,articles you identified in Problem 1.10, which �re 'exotic' (I.e., 
inconsistent with the quark model)? How many of the surviving mesons are exotic? 

1.12 How many different nuso" combinations can you make with 1. 2. 3. 4. 5, or (, different 
q\Urk lbvors? What's the general formula for "  flavors) 

l.U How many different ""'i"''' combiIll\tions can you make with I. 2, 3. 4, 5, or (, different 
quark flavors? What's the gener�1 formula for " flavors? 

1.1 .. Using four quarks (II, d, I, and c), construct � table of �ll the possible baryon species. 
How many combinations carry a charm of +P How many carry charm +2, and 
+3) 

1.1S Same as Problem 1.14. but this time for mesons. 
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1.16 Assuming the top qu�rk is too short·lived to form bound states (,truthful' mesons and 
baryons), list the IS distinct meson combinations qij {not counting �ntipartides) and 
the 35 distinct haryon combinations 9q9. From the Panicle Ph)'$ics Booklet and/or other 
sources, determine which of these haw: been found experimentally. Give their name, 
mass, and year of discow:ry {just the lightest one, in each case)_ Thus, for instance, one 
baryon entry would be 

sss : Q-, 1672 MeV(rf, 1964. 

All hl.drons are {presumably) various excitations of th� SO quark combinations. 
1.17 A. De Rujub, H. Georgi, and S. L. Glashow [PhysiCtJi Review, 012, 147 {1975l1 estimated 

1M so·called conslitutnlqUllrk ma=" to be: mu = m� = 336 MeV/r, "" = 540 MeV/cI, 
and In.: = 1500 MeV/�I {the bottom quark is about 4500 MeV/�I)_ Tfthey are right, the 
average binding energy for members of the baryon octet is -62 MeV. If they all had 
eXllGlly this binding energy, wh;tt would their masses be? Compare 1M ad",,) values 
and giw: the percent error. {Don't try this on the other supennultiplets, however. There 
really is no reason to suppose that the binding energy is the same for aU members of 
the group. The problem of hadron masses is a thorny issue, to which we shall return in 
Chapter 5.) 

1.18 Shupe, M. (1979) [Ph)'$icr utlm, 86B, 87) proposed tmt all qu;orks and leptons are 
composed of two even more elementary constituents: c {with (mrge -1/3) and II {with 
charge zero) - and their respective antiparticles, ;; and n. You're allowed to combine 
them in groups of three particles or three antiparticles {CCII, for example, or ;;/iii}. 
Constructall of the eight qu;orks and leptons in 1M first generation in this Jrulnner. (The 
other generations are supposed to be excited states.) Notice that each of the q""rl: states 
admits three possible pennutations {UII, '""" nee, for example) - these correspond to the 
three colors. Mediators un be constructed from three particles plus three antiparticles. 
W±, zO, and r involve three Wee particles and three like antiparticles {W- = cccii ii ii, 
for instance). Construct W .. , zO, and y in this way. Gluons involve mixed combinations 
{""" ", for instance). How many possibilities �re there in �11� Can you think of any 
way to reduce this down to eight? 

1.19 Your roommate is a chemistry major. She knows all about protons, neutrons, and 
elertrons, and she sees them in �ction every day in the laboratory. But she is skeptical 
when you tell her about positrons, muons, neutrinos, pions, quarks. and intermediate 
vector bosons. Explain to her why none of these plays any direct role in chemistry. (For 
instance, in the use of the muon a reasonable answer might be They are unstable, and 
last only a millionth of a second before disintegrating.') 

• Foe reaSons _ wiD COme to in due course, the dfective mass of a quark bound inside � h..t.on 
is not 1M �me �s the 'In.e' mass of the 'free' <lUlf\(. 
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Elementary Particle Dynamics 

This chap�r introduces the fundalmnwl forces by which elementary particles interact, 
and 1M Feynman diagroms WI: use to represent these interactions. 'The treatment is 
entirely qualitative and can be read qlJicHy to gel a sense of the 'lay of 1M land'. Tht: 
quantitative details will come in Chapters 6 through 9. 

2.1 
The Four Forces 

As rar as we know, there are just four fundamental forces in nature: strong. 
electromagnetic, wt:ak, and gravitatioll(ll. They are listed in the following table in 

order of decreasing strength:' 

Force Strength Th�'Y Mediator 

Strong 10 Chromodynamics Gluon 
Electromagnetic 10-2 Electrodynamics photon 
Weak lO-IJ Flavordynamics WandZ 
Gravitational 10-.2 Geometrodynamics Craviton 

To each of these forces there belongs a physical theory. The classical theory of gravity 
is, of course, Newton's law of universal gravitation. Its relativistic generalization 
is Einstein's general theory of relativity (,geometrodynamics' would be a better 

term). A completely satisfactory quantum theory of gravity has yet to be worked 

out; for the moment, most people assume thaI gravity is simply too weak to play 

a significant role in elementary particle physics. The physical theory that describes 
electromagnetic forces is called electrodynamics. It was given its classical formulation 

• The 'strength' of � force is �n intrinsk�11y ambiguous notion - aftM aU, i� dep"nds on the 
n�ture of the source and on how far away you aI<:. So the numbers in this table should not 
be taken too literally, and (especi"Uy in the Qse of the weak force) you will see quite different 
figures quoted elsewhere. 

Inlrod"u;"" 10 fltmtnl4ry P�rI;dts. Second Edition. D.vid Griffith. 
Copyright C> 2008 W1LEY·VCH VulaS GmbH & Co. KGaA, Weinheim ISBN, 978-H27-40601·1 
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by Maxwell over one hundred years ago. Maxwell's theory was already consistent 
with special relativity (for which it was, in fact, the main inspiration). The quantum 
theory of electrodynamics was perfected by Tomonaga, Feynman, and Schwinger 
in the 19405. The weak forces, which account for nuclear beta decay (and also, as we 
have seen, the decay of the pion, the muon, and many of the strange particles), were 
unknown to classical physics; their theoretical description was given a relativistic 
quantum formulation right from the start. The first theory of the weak forces 
was presented by Fenni in 1933; it was refined by Lee and Yang, Feynman and 
Gell-Mann, and many others, in the 19505, and put into its present form by Glashow, 
Weinberg, and Salam, in the 19605. For reasons that will appear in due course, 
the theory of weak interactions is sometimes called jlavcrdynamics {1 J; in this book, 
I refer to it simply as the Glashow-Weinberg-Salam (GWS) theory. (The GWS 
model treats weak and electromagnetic interactions as different manifestations of 
a single electroweak force, and in this sense the four forces reduce to three.) As for 
the strong forces, beyond the pioneering work ofYukawa in 1934 there really was 
no theory until the emergence of chromodynamics in the 1970s. 

Each of these forces is mediate<! by the exchange of a particle. The gravitational 
forces are mediated by the graviton, electromagnetic forces are mediated by the 
photon, strong forces by the gluon, and weak forces by the intermediate vector bosons, 
W and Z. These mediators transmit the force between one quark or lepton and 
another. In principle, the force of impact between a bat and a baseball is nothing 
but the combined interaction of the quarks and leptons in one with the quarks 
and leptons in the other. More to the point, the strong force between two protons, 
say, which Yukawa took to be a fundamental and irreducible process, must be 
regarded as a complicated interaction of six quarks. This is clearly not the place 
to look for simplicity. Rather, we must begin by analyzing the force between one 
truly elementary particle and another. In this chapter, I will show you qualitatively 
how each of the relevant forces acts on individual quarks and leptons. Subsequent 
chapters develop the machinery needed to make the theory quantitative. 

2.2 
Quantum Electrodynamics (QED) 

Quantum electrodynamics (QED) is the oldest, the simplest, and the most sue· 
cessful of the dynamical theories; the others are self-consciously modele<! on it. So 
I'll begin with a description of QED. AI! electromagnetic phenomena are ultimately 
rtducibk to the following ekmentary process: 

y 

• • 
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In these figures time flows horizontally, to the right, so this diagram reads: a 
charged particle, e, enters, emits (or absorbs) a photon, y, and exits. For the sake of 
argument, I'll assume that the charged particle is an electron; it could just as well 
be a quark, or any lepton except a neutrino (the latter is neutral, of course, and does 
not experience an electromagnetic force). 

To describe more complicated processes, we simply combine two or more repli· 
cas of this primitive vertex. Imagine that you have a bag full of 'tinker toy' models 
of the primitive vertex. made out of flexible plastic. You can snap them together, 
photon-to-photon or electron-to-electron (but in the latter case you must preserve 
the direction of the arrows). Consider, for example, the following: 

, , 

y 

, , 

Here, two electrons enter, a photon passes between them (I need not say which 
one emits the photon and which one absorbs it; the diagram represents both 
orderings), and the two exit.' This diagram, then, describes the interaction between 
two electrons; in the classical theory, we would call it the Coulomb repulsion oflike 
charges. In QED, this process is called Moller scall-tring; we say that the interaction 
is 'mediated by the exchange of a photon', for reasons that should now be apparent. 

You're allowed to twist these 'Feynman diagrams' around into any topological 
configuration you like - for example, we could stand the previous picture on its side: 

, , 

y 

, , 

A particle line running 'backward in time' (an arrow pointing toward the left) is 
interpreted as the corresponding antiparticle going forward (the photon is its own 
antiparticle, that's why I didn't nee<! an arrow on the photon line). In this process 

• In ""ading a Feynman diagram it sometimes helps to picture • •  ertical line that s""� alonS 
to the right, ""presenting the passage of time. In the beginning (far left) it intersects two dec­
tron lines, in the middle it encounters the exchan� photon, and at the end (far right] there 
are again just tw<J dectrons. 
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an electron and a positron' annihilate to form a photon, which in turn produces 
a new electron-positron pair. An electron and a positron went ill, an electron and 
a positron came out (not the same ones, but then, since all electrons are identical, 
it hardly matters). lbis represents the interaction of two opposite charges: their 
Coulomb attraction. In QED, this process is called Bhabha scattering. Actually, there 
is a quite different diagram which also describes Bhabha scattering: 

• • 

• • 

As we shall see, both diagrams must be included in the analysis. 
Using just two vertices we can also construct the following diagrams, describing, 

respectively, pair annihilation, e- + e+ _ y + y; pair production, y + Y _ 

e- + e+; and Compton scattering, e- + y -+ e- + y: 

x 
Notice that Bhabha and M0ller scattering are related by crossing symmetry 
(Section 1.4), as are the three processes shown here. In tenns of Feynman di· 
agrams, crossing symmetry corresponds to twisting or rotating the figure. Ifwe 
allow more vertices (just reach in the bag and pull out a few mOre tinker toys), the 
possibilities rapidly proliferate; for example, with four vertices we obtain, among 
others, the follOwing diagrams: 

, Some authoa W<)uld 1:o�1 the UP!"" left and 
lower right lines in this diasnm with to 10 rr· 
mind you Wol iI's an anti�rtic1e. I think Ihis 
is dangerous notation. The arrow already tdls 
you iI'S the anti�rtic1e. and a Uter� rrading 

would suggeSI Wot il is an antipnlic1e going 
backwards in time . . . which would � a par· 
tid/:. ! prd"e' 10 la�l aU lines with Ihe parl;m 
symbol. and let the arrow �ll you whether it 
is in fact the anti�"icle. 
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In each of these figures two electrons went in and two electrons came out. They 

too describe the repulsion of like charges (Moller scattering). The 'innards' of the 
diagram are irrelevant as far as the obselVed process is concerned, Internal lines 
(those which begin and end within the diagram) represent particles that are not 

obselVed - indeed, that cannot be obselVed without entirely changing the process. 
We call them virtl«il p�rticles. Only the i'-Xkm�l lines (those that enter or leave 
the diagram) represent 'real' (obselVable) particles. The external lines, then, tell 
you what physical process is occurring: the internal lines describe the mtCh�nism 
involved. 

At the purely qualitative level this is such a childishly simple game that there's 
a serious danger you will inadvertently embel!ish the rules. If you find yourself 
drawing a Feynman diagram that contains the vertex 

for example, or 

x 
or you snap a photon line onto an eie<:tron line 

you have made � mistake - the bag contains no such tinker toys, and the snaps just 

don't work when you try to hook a photon to an el«tron. Your diagram might 

conceivably describe some otka interaction, but it's not ele<:trodynamics. 
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Feynman diagrams are purely symbolic; they do notrepresent particle trajectories 
(as you might see them in, say, a bubble chamber photograph). The horizontal 
dimension is time, but vertical spacing does llet correspond to physical separation. 
For instance, in Bhabha scattering the electron and positron are attmcl-td, not 
repelled (as the diverging lines might seem to suggest). All that the diagram says 
is: 'Once there was an electron and a positron: they exchanged a photon: then there 
was an electron and a positron again'. 

Quantitatively, each Feynman diagram stands for a particular lIumba, which 
can be calculated using the so-called F�ynmall ntks (you'U learn how to do this 
in Chapter 6). Suppose you want to analY.le a certain physical process (say, 
M011er scattering). First you draw all the diagrams that have the appropriate 
external lines (the one with two vertices. all the ones with four vertices, and 
so on), then you evaluate the contribution of each diagram. using the Feyn­
man rules, and add it all up. The sum total of all Feynman diagrams with the 
given external lines represents the actual physical process. of course, there's a 
wee problem here: there are infinitely many Feynman diagrams for any partie· 
ular reaction! Fortunately, each vertex within a diagram introduces a factor of 
Q = �21fu; = 1/137, theJiIl� stl1lcture COl1Stallt. Because this is such a small num· 
ber, diagrams with more and more vertices contribute less and less to the final 
result, and. depending on the accuracy you need, may be ignored. In fact, in 
QED it is rare to see a calculation that includes diagrams with more than four 
vertices. The answers are only approximate, to be sure, but when the approx­
imation is valid to six significant digits, only the most fastidious are likely to 
complain. 

The Feynman rules enforce conservation of energy and momentum at each 
vertex, and hence for the diagram as a whole. It follows that the primitive QED 
vertex by itself does not represent a possible physical process. We can draw 
the diagram. but calculation would assign to it the number z�ro. The reason is 
purely kinematical: �- -+ e- + y would violate conservation of energy. (In the 
center-of-mass frame the electron is initially at rest, so its energy is mel. It cannot 
decay into a photon plus a recoiling electron because the latter alone would require 
an energy greater than me2.) Nor, for instance, is e- + e+ -+ y kinematically 
possible, although it is easy enough to draw the diagram: 

, 

y 
, 

In the center-of·mass system the electron and positron enter symmetrically with 
equal and opposite velocities, so the total momentum before the collision is 
obviously zero. But the Jinal momentum call not be zero, since photons always 
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trave! at the speed of light; an electron-positron pair can annihilate to make two 
photons, but not one. Within a larger diagram, however, these figures are perfectly 
acceptable, because, although energy and momentum must be (Onserved at each 
vertex, a virtllal parfick � not wIT)' the salm mass as the corresponding free 
particle. In fact, a virtual particle can have any mass." In the business, we say that 
virtual particles do not lie on their mass sht:U. External lines, by contrast, represent 
rtal particles, and these do carry the 'correct' mass.t 

I have been assuming that the charged particle in question is an electron,t but it 
(ould just as well be a muon, say, or a quark. What would you make of the following 
diagram? 

u 

u 

u 

Here a Il(ii pair annihilates, producing two photons (one photon, remember, is 
kinematically forbidden). Because of quark confinement you're not going to wit­
ness this as a scattering experiment, but what If the quarks were bound together 
in the form of a meson - a ]1"0, for example? This diagram would represent the 
'decay' of the ]1"0: ]1"0 -+ y + y.  I put the word in quotes, because in a deeper sense 
this is not a decay at all - it's lust ordinary old pair annihilation, in which the 
original pair happen to be bound together as a meson. This explains why the ]1"0 

has a lifetime 9 orders of magnitude smaller than its charged siblings (]I"±) - it 
decays by an electromagnetic process, whereas the others have to await the weak 
interactions, which are much slower. 

I cannot resist telling you an amusing fable, but you must promise not to take 
it too seriously. Feynman claimed that his advisor (/. A. Wheeler) once offered the 

• [n 5�1 rdati...;!)'. th� '''''''1P' E, mom�n· 
tum. p. and mass m of a fr� p<.rticle are �. 
latN by the �uation E' _ p1cl .. m'c'. BUI 
for a virtual p<.rtide E' - p'c' an take on any 
valu�. Many authors inlerp�t this to mean 
tlul virtual proceues viola.le (onservation of 
�n�rgy (� Problem 1.1). Pnsonally, [ Con· 
sider this miduding, at besl. Energy is ,,1 ..... 1" 
conserved. 

t Actually. the physiul distinction between �al 
and virtual p<.rtides is not quite as shup as 
I hive impliN. 1{ a photon is emitted on AI· 
pha Centauri, and absorbed in )'<lur eye. it is 
tecbnially a virtu./.l pholon. t suppose. How. 
ever, in g�neral, the futher a virtual puticle 
is from its mus shell the shorter it lives. sO 

a photon from a distant star would have to 
be ext�mely close to its 'correct' mass - it 
would have to be allll<>lr ·rea\". As a alcula.· 
tional man..", you would get �ssentially the 
.... me answ.." if)'<lu treat� the process as two 
$epUat� events (emission of a real photon by 
star, followed by ibsorption of a �al photon 
by t�). You might .... y that a real p<.rtide is a 
virtual partic� that la.sts long tnough that we 
don't ca� to inquire how it was produced. or 
how it is eventuaUy absorbed. 

t In practice, the term 'quantum electrodynam· 
ics' is usually taken to mean the interaction 
of electrons. positrons, and photons, unl= 
otheIWise sp«ified. 
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following explanation for why all electrons are identical: there's only o� of 'em! 
It's riding along on a diagram of the form 

At a given instant (the vertical line) the electron is present (on this segment) four 
times as a particle and three times as an antiparticle - but it's all the same electron, 
Of course, this does imply that the number of positrons in the universe should 
equal the number of electrons (give or take one), but apart from that it's kind of cute. 

2.3 
Quantum Chromodynamics (QCD) 

In chromodynamics, cclor plays the role of charge, and the fundamental process 
(analogous to e --+ e + y) is quark --+ quark plus gluon (q --+ q + g):* 

, 

q q 

As before, we combine two or more such 'primitive vertices' to represent more 
complicated processes. For example, the force between two quarks (which is 
responsible in the first instance for binding quarks together to make hadrons, 
and indirectly for holding the neutrons and protons together to form a nucleus) is 
described in lowest order by the diagram: 

q q 

, 

q q 

* Sin� leptons do not u.rry color. they do not �rticipo.te in the strons interactions. 
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We say that the force between two quarks is 'mediated' by the exchange of 
gluons. 

At this level chromodynamics is very similar to electrodynamics. However, there 
are also important differences, most conspicuously the fact that whereas there is 
only one kind of electric charge (it can be positive or negative. to be sure, but a single 
number suffices to characterize the charge of a particle), there are three kinds of 
color (red, green, and blue). In the fundamental process q � q + g, the color of the 
quark (but not its flavor) may change. For example, a blue up-quark may convert 
into a red up.quark. Since color (like charge) is always conserved, this means that 
the gluon must carry away the difference - in this instance, one unit of blueness 
and minus one unit of redness: 

g(b,'" 

u(b) u(r) 

Gluons. then, are 'bicolored', carrying one positive unit of color and one nega­
tive unit. There are evidently 3 x 3 = 9 possibilities here, and you might expect 
there to be nine kinds of gluons. For technical reasons, which we'll come to in 
Chapter 8, there are actually only eight. 

Since the gluons themselves carry color (unlike the photon, which is electrically 
neutral), they couple directly to other gluons, and hence in addition to the 
fundamental quark-gluon vertex, we also have primitive gluon-gluon vertices; in 
fact, two kinds: three·gluon vertices and four-gluon vertices: 

r X  
This direct gluon-gluon coupling makes chromodynamics a lot more complicated 
than electrodynamics, but also far richer, allowing, for instance, the possibility of 
glueballs (bound states ofinteracting gluons, with no quarks in Sight). 

Another difference between chromodynamics and electrodynamics is the size 
of the coupling constant. Remember that each vertex in QED introduces a factor 
of ct = 1/137, and the smallness of this number means that we need only 
consider Feynman diagrams with a small number of vertices. Experimentally, the 
corresponding coupling constant for the strong forces, ct, - as determine<!, say, 
from the force between two protons - is greater than 1, and the bigness of this 
number has plagued particle physics for decades. Instead of contributing less 
and less, the more complex diagrams contribute more and more, and Feynman's 
procedure, which worked so well in QED, is apparently doomed. One of the great 
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Fig, 2,1 Scrt<!fling of a charge q by a ditlectr;c medium, 

triumphs of quantum chromodynamics (QCD) was the discovery that in this theory 
the number that plays the role of coupling 'constant' is in fact not constant at 
all, but depends on the separation distance between the interacting particles (we 
call it a 'running' coupling constant), Although at the relatively large distances 
characteristic of nuclear physics it is big, at very short distances (less than the size 
of a proton) it becomes quite small, This phenomenon is known as �symptOlic 
freedom [2]; it means that within a proton or a pion, say, the quarks rattle around 
without interacting much, Just such behavior was found experimentally in the deep 
inelastic scattering experiments. From a theoretical point of view, the discovery of 
asymptotic freedom rescued the Feynman calculus as a legitimate tool for QCD, in 
the high·energy regime. 

Even in electrodynamics, the effective coupling depends somewhat on how far 
you are from the source. This can be understood qualitatively as follows. Pictwe first 
a positive point charge q embedded in a dielectric medium (i.e. a substance whose 
molecules become polarized in the presence of an electric field). The negative end 
of each molecular dipole will be attracted toward q, and the positive end repelled 
away, as shown in Figure 2.1 As a result, the particle acquires a 'halo' of negative 
charge that partially cancels its field. In the presence of the dielectric, then, the 
effective charge of any particle is somewhat reduced: 

qeff = q/f (2.1) 

(The factor E by which the field is reduced is called the ditltctric constant of the 
material; it is a measure of the ease with which the substance can be polarized 
[3].) Of course, if you are closer than the nearest molecule, then there is no such 
screening, and you 'see' the full charge q. Thus if you were to make a graph of the 
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Fig. 2.2 Effective ch;rge ;s ; function of disunce. 
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, 

effective charge, as a function of distance, it would look something like Figure 2.2 
The effective charge increases at very small distances. 

Now, it so happens that in quantum electrodynamics the vacuum itself behaves 
like a dielectric; it sprouts positron-electron pairs, as shown in Feynman diagrams 
such as these: 

... etc. 

The virtual electron in each 'bubble' is attracted toward q. and the virtual positron 
is repelled away; the resulting vacuum polarization partially screens the charge 
and reduces its field. Once again, however, if you get too close to q, the screening 
disappears. What plays the role of the 'intennolecular spacing' in this case is the 
Compton wavelength of the electron, .l.., = hjrnc = 2.43 x 10-10 cm. For distances 
smaller than this the effective charge increases, just as it did in Figure 2,2. 
Notice that the unscretmd (,dose.up·) charge, which you might regard as the 
'true' charge of the particle, is not what we measure in any ordinary experiment, 
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since we are seldom working at such minute separation distances.' What we have 
always called 'the charge of the electron' is actually the fully screened effective 
charge. 

So much for electrodynamics. The same thing happens in QeD, but with an 
important added ingredient. Not only do we have the quark-quark-gluon vertex 
(which, by itself, would again lead to an increasing coupling strength at short 
distances), but now there are also the direct gluon-gluon vertices. So in addition to 
the diagrams analogous to vacuum polarization in QED, we must now also include 
gluon loops, such as these: 

It is not clear a priori what influence these diagrams will have on the story (4J; as 
it turns out, their effe<t is the opposi�: There occurs a kind of competition between 
the quark polarization diagrams (which drive as up at short distances) and gluon 
polarization (which drives it down). Since the fonner depends on the number of 
quarks in the theory (hence on the number of jkIVO�,f), whereas the latter depends 
on the number of gluons (hence on the number of colo�, II), the winner in the 
competition depends on the relative number of flavors and colors. The critical 
parameter turns out to be 

a := 2f - lln (2.2) 

!fthis number is positive, then, as in QED, the effective coupling increast:S at short 
distances; if it is lIegative, the coup ling dureaus. In the Standard Model,f = 6 and 
II :::: 3, so a = -21, and the QeD coupling decreases at short distances. This is the 
origin of asymptotic freedom. 

The final distinction between QED and QeD is that whereas many particles carry 
electric charge. no naturally occurring particles carry color. Quarks are confined 
in colorless packages of two (mesons) and three (baryons). As a consequence, 
the processes we actually observe in the laboratory are necessarily indirect and 
complicated manifestations of chromodynamics. It is as though our only access to 
electrodynamics came from the van der Waals forces between neutral molecules. 
For example, the (strong) force between two protons involves (among many others) 

• An exception ;s the umb shifl - a tiny �rl>ation in the spe<trum of hydrogen - in which 
the influence of vacuum polarization (or rather, il5 "b"'Mct at shon distances) is dearly dis_ 
cernible. 
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the following diagram: 

(P) d d (p) 
" " 

" " 

" (I (Jt") 

" " 

" 
" 

(P) d d (p) 

You will recognize here the remnants ofYukawa's pion-exchange model. but the 
entire process is enormously more complex than Yukawa ever imagined. 

If QeD is correct, it must contain the explanation for quark confinement; that 
is, it must be possible to provt, as a consequence of this theory, that quarks can 
only exist in the form of colorless combinations. Presumably this proof will take 
the fonn of a demonstration that the potential energy increases without limit as 
the quarks are pulled farther and farther apart, so that it would require an infinite 
energy (or at any rate, enough to create new quark-antiquark pairs) to separate 
them completely (see Figure 2.3). So far, no one has provided a conclusive proof 
that QeD implies confinement (see, however, Reference 27 in Chapter 1). The 
difficulty is that confinement involves the Iong-mnge behavior of the quark-quark 
interaction, but this is precisely the regime in which the Feynman calculus fails: 

2.' 
Weak Interactions 

There is no particular name for the 'stuff that produces weak forces, in the sense 
that electric charge produces electromagnetic forces and color produces strong 

• There are streng indic.lIiens Wt � 'phase 
Ir.I.nsition' cccurs at extremdy high densi· 
ties _ th� er feur times that of an a!emie 
nucleus - leading Ie deconfinement �nd 
the so·c.olled q""rt_g/uclI pl<uma. Thus, f� 

quarks may have aisted in the first mements 
after the Big Bang. and elfe"" are underway 
to recrule similar conditions (en a SJrnUer 
sc.o]el) in the laboratery, using the Relativistic 
Heavy len CoUider (RH1C) at Brookh�ven (5). 
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Fig. 2.3 A possible seen�r;o for qu�rk confinement: �s we 
puff � u qu�rk out of the proton. � p,air of qu�rks is ereated. 
and instud of a fr� qu�rk. we ue left with � pion �nd � 
neutron. 

forces. Some people call it 'weak charge'. Whatever word you use, all quarks and all 
leptons carry it (6J. (Leptons have no color, so they do not participate in the strong 
interactions; neutrinos have no charge, so they experience no electromagnetic 
forces; but aU of them join in the weak interactions.) There are two kinds of weak 
interactions: charged (mediated by the Ws) and �utral (mediated by the 2). The 
neutral weak interactions are much simpler, so I'll start with them: 

2.4.1 
Neutral 

The fundamental neutral vertex is:t 

z 

where f can be any lepton or any quark. The Z mediates such processes as 
neutrino-ele.::tron scattering (v" + e- -+ v" + e-): 

• Although charg�d w�ak im�ra(tions w�r� 
known risht from the stan (beta deca� is the 
classic uampl�). th� theoretical possibility of 
neutral we�k processes was not �ppreciated 
until 1958. The GWS model indudes neutr�l 
_ak inteucrions as essenml ingredients. 
and th�ir uL.tenc� waS fint (onfirmtd in 
neutrino scattering exptrimtnts �t CERN. in 
1973 (7). 

t Itis traditional to use a wavy lint for the photon, 
and a springy line for the gluon. but there is 
no consistency in the literaturt f<lr the weak 
medial",s. rm SrunS 1<1 use a jagged line, but 
this is n<lt standard n<>tati<ln. {I'll use .. solid 
lin� for spin·1/2 particles, which is standard. 
and a dashed line for spin O. which is n<lq 



z 

" " 

and neutrino-proton scattering (v" + p --+ v" + p) 

z 

d d 

(P)::::::=.-tfr--=::.:::::: (p) 
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(in the latter case, two 'spectator' quarks go along for the ride, bound to the d by 
strong forces - gluon exchange - that, for simplicity, we do not draw)_' 

Notice that any process mediated by the photon could also be mediated by the 
Z - for example, ele<:lron-electron scattering: 

e e e 

, z 

" 

Presumably there is a minute correction to Coulomb's law attributable to the 
se<:ond diagram, but the photon-mediated process overwhelmingly dominates. 
Experiments at DESY (in Hamburg) studied the reaction e- + e+ --+ 1-'- + 1-'+ at 
very high energy and found unmistakable evidence of a contribution from the Z 
(S]. In atomic physics, neutral weak contamination of electromagnetic processes 
can sometimes be teased out by exploiting the fact that weak interactions carry 
a unique fingerprint: they violate conservation of parity (mirror symmetry) (9). 



7<1 I 2 fI�m�"lQry Particle Dynllmics 

Still. to observe a pure neutral weak interaction one has to resort to neutrino 
scattering. in which there is no competing electromagnetic mechanism - and 
neutrino experiments are notoriously difficult. 

2.4.2 

Charged 

The primitive vertices for strong. electromagnetic. and neutral weak interactions 
all share the feature that the same quark or lepton comes out as went in - accompa· 
nie<!. of course. by a gluon. photon. or Z. as the case may be. Well . . .  OK: in QeD 
the color of the quark may change. but the flavor never does. The charged weak 
interactions are the only ones that change flavor. and in this sense they are the only 
ones capable of causing a 'true' decay (as opposed to a mere repackaging of the 
quarks. or a hidden pair production or annihilation). I'll begin with the charged 
weak interactions ofleptons.' 

2.4.2.1 Leptons 
The fundamental charged vertex looks like this: 

A negative lepton (it could be e-. /1--. or f-) converts into the corresponding 
neutrino. with emission of a W- (or absorption of a W+): [- --+ VI + W-.t As 
always. we combine the primitive vertices to generate more complicated reactions. 
For example. the process /1-- + v. --+ e- + vI' would be represented by the 
diagram: 

W' 

Such a neutrino-muon scattering event would be hard to set up in the laboratory. 
but with a slight twist essentially the same diagram describes the decay of the 

• The disco� of neutrino oscillation. will force some modification. in this pkrure. but we do 
not know yd e><Icdy what form they will t.ake (perhaps they will bring the theory into line with 
the quarks). SO for the moment I will stick to the simple (pre-<>scillation) story. 

t This implies. of course. th.at the nOMed reaction 1+ .... ;;1 + w+ is also allowed. 
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muon, �- _ e- + V" + Ii,: 

, 
". 

w-

This is the cleanest of all charged weak interactions; we'll study it in detail in 
Chapter 10: 

2.4.3 
Quarks 

Notice that the leptonic weak vertices connect members of the same gentration: e 
converts to V, (with emission of W-). or �- _ �- (emitting a 2), bute- never goes 
to �- nor �- to Vt. In this way, the theory enforces the conselVation of electron 
number, muon number, and tau number. It is tempting to suppose that the same 
rule applies to the quarks, so that the fundamental charged vertex is: 

W' 

A quark with charge -� (which is to say: d, s, or b) converts into the corresponding 
quark with charge +� (u, c, or t, respectively), with the emission of a W-. The 
outgoing quark carries the same color as the ingoing one, but a different flavor.' 

The far end of the W line can couple to leptons (a 'semileptonic' process), or to 
other quarks (a purely hadronic process). The most important semileptonic process 
is a + v. _  u + e: 

". . 

W' 

d " 

• Technically, it is only th� lowrst-order contribution to muon decay. but in weak interaction the­
ory one almost ne .... r �s to ,omider hisher.()r<kr corr�tiom. 

t It's not that the W- carries off the 'minins· Haver _ the WOs h""" no flam,; flavor is simply ""I 
,on .. rv«I in the chargN weak interactions. 
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Because of quark confinement, this process would never occur in nature as it 
stands. However, turned on its side, and with the ii and d bound together (by the 
strong force), this diagram represents a possible decay of the pion, rr- -+ �- + Ii,: 

" , 
• 

d 

(For reasons to be discussed tater, the more common decay is actually rr- -+ 
1-1-- + iiI" but the diagram is the same, with t replaced by 1-1-.) Moreover, essentially 
the same diagram accounts for the beta decay of the neutron (n � p+ + e- + 

iie): 

• 

W· 

d 

Thus, apart from strong interaction contamination (in the form of the spectator 
quarks). the decay of the neutron is identical in structure to the decay of the muon. 
and closely related to the decay of the pion. In the days before the quark mode\, 
these appeared to be three very different processes. 

Eliminating the electron-neutrino vertex in favor of a second quark vertex we 
obtain a purely hadronic weak interaction, /::,.0 -+ p+ + rr-:' 

d 

w 

d 

d 

• Th� lJ.O ha5 the ume quark «mlent as the neutron. but this deay is not possible for neutron5 
because they are not heavy enough to makr • proton and a pion. 
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Actually, this particular decay also proceeds by the strong interaction: 

d (., 

g " 

d 
" 

d 

W)�E-�(p) 

the weak met:hanism is an immeasurably small contribution. We'll see more 
realistic examples of nonleptonic weak interactions in a moment, 

So far, it's all pretty simple: the quarks mimic the leptons - the only difference 
is that the strong force (to which, remember, the leptons are immune) complicates 
the picture with sp«tators and what-not that have nothing to do with the basic weak 
process. Sad to say, this story is a little too simple. For as long as the fundamental 
quark vertex is allowed to operate only within roch generation, we can never hope 
to account for strangeness-.changing weak interactions, such as the decay of the 
lambda (A -+ p+ + ]1"-) or the omega.minus (Q- -+ A + K-), which involves the 
conversion of a strange quark into an up quark: 

(K') 
d 
" 

w 

, " 

(A) :::::=-kIP) 
lbe solution to this dilemma was suggeste<l by Cabibbo in 1963, perf«ted 

by Glashow, lIliopoulos, and Maiani (GIM) in 1970, and extended to three 
generations by Kobayashi and Maskawa (KM) in 1973.' The essential idea is 
that the quark generations are 'skewed.' for the purposes of weak interactions.t 

• The Cabibbo/GIM/KM m@�nism wiU tit 
discUS5W mo� fully in Chapt�r 9. 

t T@nicall�, this applies 10 the neutral as 
�ll as th� charged w�ak int�ractions. But in 
the fonner case it doesn't nuner. and I ha� 
tr� to k�p th� story as dear as possible by 
avoiding the issue at that s�ge. Historically. 
when thae wa� only thr� quarks known 
it WaS a puzzle why (experimen�lly) thae 

wae no strangeness·chansing neutral weak 
in�ractions. The GIM m...:hani$m introduced 
a fourth quark (fout �ar5 IItfort the Novern· 
btor Revolution), and a 2 x 2 'KM matrill', to 
provide for a miraculous canceUation. the net 
df...:t of which (in th� n�utraJ cas�) wu the 
same as if we had never 'skewed' the quarks 
in the first place, 
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Instead of 

the weak force couples the pairs 

where d', s, and b' are linear combinations of the physical quarks d, s, and b: 

(�) = (�� �: �:) (:) 
b' VoJ v" v,. b 

(2.3) 

(2.4) 

(2.5) 

If this 3 x 3 Kobayashi-MaskaJrn matrix were the unit matrix, then d', S, and b' 
would be the same as d, s, and b, and no 'cross·generational' transitions could 
occur. 'Upness-plus..aownness' would be absolutely conserved (just as the electron 
number is); 'strangeness-plus-charm' would be conserved (like muon number); 
and so would 'topness-plus-bottomness' (like tau number). But it's nol the unit 
matrix (although it's pretty dose); experimentally, the magnitudes of the matrix 
elements are [lOJ 

(�:��; �:!�� �::) 
0.008 0.042 0.999 

(2.6) 

V ud measures the coup ling of u to d, V�, the coupling of u to s, and so on. The fact 
that the latter is nonzero is what permits strangeness-changing processes, such as 
the decay of the A and the n-, to occur.' 

2.4.4 
Weak and Electromagnetic Couplings of W and Z 

There are also direct couplings of W and Z to one another, in GWS theory (just as 
there are direct gluon-gluon couplings in QeD): 

�z � Vz � � � 
• Neutrino oscil!.1otion5 invol"., cross·�nerati0lt.11 couplings in the kp!on SKlor, so it ma� be WI 

we will h�ve a 'KM Imtrix' for the leplons as well. See C1upter 11. 
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Moreover, because the W is charged, it couples to the photon: 

I , � X  � � :  , 
Although these interactions are critical for the internal consistency of the theory, 
they are oflimited practical importance at this stage (see Problem 2.6). 

2.' 
Decays and Conservation Laws 

One of the most striking general properties of elementary particles is their 
tendency to disintegrate; we might almost call it a universal principle that �v�ty 
particle duays into lighter particles, unless prevtnted from dcing so by some const1V(.llion 
law. The photon is stable (having zero mass, there is nothing lighter for it to 
decay into); the electron is stable (it's the lightest charged particle, so conservation 
of charge prevents its decay); the proton is presumably stable (it's the lightest 
baryon, and the conservation of baryon number saves it - likewise conservation 
of lepton number protects the lightest of the neutrinos). By the same token, the 
positron, the antiproton, and the lightest antineutrino are stable. But most particles 
spontaneously disintegrate - even the neutron, although it becomes stable in the 
protective environment of many atomic nuclei. In practice, our world is populated 
mainly by protons, neutrons, electrons, photons, and neutrinos; more exotic things 
are created now and then (by collisions) but they don't last long. Each unstable 
species has a characteristic mean lifetime,' r :  for the muon it's 2.2 x 10-� se<:; for 
the ]1"+ it's 2.6 X 10-8 sec; for the ]1"0 it's 8.3 x 10-17 sec. In fact, most particles 
exhibit several different decay modes; 64% of all K+'s, for example, de<:ay into 
�+ + III" but 21% go to]l"+ + ".0, 6%to".+ + ]1"+ +]1"-, 5% to (e+ + v, + ]1"0), and 
so on. One of the goals of elementary particle theory is to calculate these lifetimes 
and branching ratios. 

A given decay is governed by one of the three fundamental forces: t::.. ++ -+ 
p+ + "'+, for example, is a strong decay; ./to -+ y + y is electromagnetic; and 
L- -+ n + e- + ii, is weak. How can you tell? Well, if a photon comes out, the pro­
cess is certainly ele<:tromagnetic, and if a neutrino emerges, the process is certainly 
weak. But if neither a photon nor a neutrino is present, it's a little harder to say. 
For example, L- -+ n + ]I" - is weak. but t::.. - -+ n + ]I" - is strong. I'll show you 
in a moment how to figure that out, but first I want to mention the most dramatic 
experimental difference between strong, electromagnetic, and weak decays: a typical 

• TIw: lifotime � is related to the hrUf�ift '1/1 by the formula '1/1 "" �n2)T '"' 0.693T. The half·life 
is the time il tokes for half Ihe �l1icles in a I.arSe S<lmple 10 disint.-grale (s� Section 6.1). 
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strong decay involves a lifetime around 10-23 sec, a typical electromagnetic decay 
takes about 10-16 sec, and weak decay times range from around 1O-il sec (for 
the r) up to 15 min (for the neutron). For a given type of interaction, the decay 
generally proceeds more rapidly the larger the mass difference between the original 
particle and the decay products, just as a ball rolls faster down a steeper hill.' It 
is this kinematic effect that accounts for the enormous range in weak interaction 
lifetimes. In particular, the proton and electron together are so close to the neutron's 
mass that the decay n -+ p+ + e- + ii, b(lrdy makes it at all. and the lifetime of the 
neutron is greater by far than that of any other unstable particle. Experimentally, 
though, there is a vast separation in lifetime between strong and electromagnetic 
decays (a factor of about 10 million), and again between electromagnetic and weak 
decays (a factor of at least a thousand). Indeed, particle physicists are so used to 
thinking in tenns of 10-23 sec as the 'normal' unit of time that the handbooks 
generally classify anything with a lifetime greater than 10-17 sec or so as a 'stable' 
particle!t 

Now, what about the conservation laws which, as I say, permit certain reactions 
and forbid others? To begin with there are the purely kinematic conservation 
laws - conservation of energy and momentum (which we shall study in Chapter 3) 
and conservation of angular momentum (which comes in Chapter 4). The fact that 
a particle cannot spontaneously decay into particles heavier than itself is actually 
a consequence of conservation of energy (although it may seem so 'obvious' as 
to require no explanation at all). The kinematic conservation laws apply to all 
interactions - strong, electromagnetic, weak, and for that matter anything else 
that may come along in the future - since they derive from special relativity itself. 
However, our concern right now is with the dynamiwlconservation laws that follow 
from the structure of the fundamental vertices: 

9 

q q 
, 

• There are exceptions: If+ .... 1'+ + "�, for 
example. is shorter by a factor of 10' than If+ 
..... e+ + " •. but such cases cry oUI for some 
sped>.! explanation. 

t incidentally, 1O-1J se.: is about the time it 
takes light to cross a proton (diameter -
10->5 mI. You obviously annot detennine 
the lifetime of such a particle with a stop· 
watch, or even by measurins the Iensth of 
its track (as you did for the 0- in Problem 
1.8{b)) - it doesn't move far enousJ! to leQlIt a 
Iud. T"-'lead, you make a hislosram of II"I4S$ 

y z , w  

, r 

me""u�ments, and invoke the uncertainty 
principle: t>.Etll � /i/2. Here l>.E = (l>.",)2, 
and t>.1 = T, so 

• p ---
- 2(6.m)c2 

Thus the lprtad in I>IIm is a meaSUre of the 
particle's lifetime. rredmia.!ly it's only a 
I"""" bound on r. but for such short·lived 
plrticles we are presumably risht up against 
the uncertainty limit (II]). 
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Since all physical processes are obtained by sticking these together in elaborate 
combinations, anything that is conserved at each vertex must be conserved for the 
reactions as a whole. So, what do we have? 

1. Cha'Ke: All three interactions, of course, conserve electric 
charge. In the case orthe weak interactions, the lepton (or 

quark) that comes out may not have the same charge as the one 
that went in, but if so, the difference is carried away by the W. 

2. Color: The electromagnetic and weak interactions do not 

affect color. At a strong vertex the quark color does change, 
but the difference is carried offby the gluon. (The direct 
gluon-gluon couplings also conserve color.) However. since 
naturally occurring particles are always colorless, the 
observable manifestation of color conservation is pretty 
trivial: zero in, zero out. 

3. Baryon m.mbu: In all the primitive vertices, if a quark goes in, 
a quark comes out, so the total number of quarks present is 
a constant. In this arithmetic we count antiquarks as negative, 
so that, for example, at the vertex q + q -j. g the quark 
number is zero before and zero after. Of course, we never 
see individual quarks, only baryons (with quark number 

3), antibaryons (quark number -3), and mesons (quark 
number zero). So, in practice, it is more convenient 10 speak 
of the conservation of baryon number (1 for baryons, -1 for 
antibaryons, and 0 for everything else). The baryon number 
is just t the quark number. Notice that there is no analogous 
conservation of meson number; since mesons carry zero quark 
number, a given collision or decay can produce as many 
mesons as it likes, consistent with conservation of energy. 

4. upton number: The strong forces do not touch leptons 
at all; in an electromagnetic interaction the same particle 
comes out (accompanied by a photon) as went in; and in 
the weak interactions if a lepton goes in, a lepton comes out 
(not necessarily the same one, this time). So, lepton number 
is absolutely conserved. Until recently there appeared 
to be no cross.generation mixing among the leptons, 
so electron number, muon number, and tau number were 
all separately conserved. This remains true in most cases, 
but neutrino oscillations indicate that it is not absolute: 

• Th�r� would br a similar 
conservalion of generation type 
for quarks (up�s·plus-downness, 
stnngeness·plus..;:harm. and 
b�au!)'·plus,'ruth), but h�r� th� inl�rg�n· 
�rational mixing has been obvious for 

decades. Still. brcau"" the off..:liagonal el· 
em=!S in the KM matrix a", r�lati""ly small, 
oO$s-generatiolllll decays lend to br sup­
press...!. and pro«s""s thaI require IWO such 
crossings a", m",meiy ra", - hence an old 
rule """ 'forbids' decays with 6S = 2. 
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5. Flavor: What about quark flavor? Flavor is conselVed at a 
strong or electromagnetic vertex, but not at a weak vertex, 
where an up.quark may turn into a down quark or a strange 
quark, with nothing at aU picking up the lost upness or 
supplying the 'gained' downness or strangeness, Because the 
weak forces are so weak, we say that the various flavors are 
approximately conselVed. in fact, as you may remember, it 
was precisely this approximate conselVation that led 
Gell-Mann to introduce the notion of strangeness in the first 
place. He 'explained' the fact that strange particles are always 
produced in pairs: 

(2.7) 

for instance, but 

(2.8) 

by arguing that the latter violates conselVation of strange­
ness. (Actually, this is a possible weak interaction, but it will 
never be seen in the laboratory, because it must compete 
against enormously more probable strong processes that do 
conselVe strangeness.) In dtcays, however, the 
nonconselVation of strangeness is very conspicuous, because 
for many particles this is the only way they can decay; there is 
no competition from strong or electromagnetic processes. 
The A, for instance, is the lightest strange baryon; if it is to 
decay, it must go to n (or p) plus something. But the lightest 
strange meson is the K, and n (or p) plus Kweighs 
substantially more than the A. If the A decays at all (and it 
does as we know: A _ p+ + ]f- 64% of the time, and A --+ n 

+ ]fo 36% of the time), then strangeness cannot be 
conselVed, and the reaction must proceed by the weak 
interaction. By contrast, the l::. 0 (with a strangeness of zero) 
can go to p+ + 7f - or n + ]fo by the strong interaction, and its 
lifetime is accordingly much shorter. 

6. The 021 rule: Finally, I must tell you about 
one very peculiar case that has been on my conscience since 
Chapter L I have in mind the decay of the 1/1 meson, which, 
you will recall, is a bound state of the charmed quark and its 
antiquark: 1/1 = 'c. The 1/1 has an anomalously long lifetime 
(�10-�O sec); the question is, why? It has nothing to do with 
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conservation of charm; the net chann of the 1/1 is zero. The 

. {: 

1/1 lifetime is short enough so that the decay is clearly due to 
the strong interactions. But why is it a thousand times slower 
than a strong deuy 'ought' to be? The explanation (if you can 
call it that) goes back to an old observation by Okubo. Zweig. 
and Iizuka. known as the 'OZI rule'. These authors [12) were 
puzzled by the fact that the q, meson (whose quark content, 
is, makes it the strange analog to the 1/1) decays much more 
often into two K's than into three H'S (the two pion decay is 
forbidden for other reasons. which we will come to in Chapter 
4). in spite of the fact that the three-pion decay is energetically 
favored (the mass of two K's is 990 MeV/,2; three H'S weigh 
only 415 MeV/,l). In Figure 2.4, we see that the three-pion 
diagram can be cut in two by snipping only gluon lines. 
The OZI rule states that such processes are 'suppressed'. Not 
absolutely forbidden. mind you. for the decay q, ...... 3H does 
in fact occur, but far less likely than one would otherwise have 
supposed. The OZI rule is related to asymptotic freedom. in 
the following sense: in an OZI.suppressed diagram the gluons 
must be 'hard' (high energy), since they carry the energy 
necessary to make the hadrons into which they fragment. 
But asymptotic freedom says that gluons couple weakly 
at high energies (short ranges). By contrast. in OZI-allowed 
processes the gluons are typically 'soft' (low energy). 
and in this regime the coupling is strong. Qualitatively. at 

'J, K- * 
• • 

• . {: • 

• 

.J K-

Fig. 2 .• The OZI rule: if the diagram can be cut in two by 
�Iking only gluon lines (and not cutting any extern,,1 lines), 
the process is suppressed. 

:} .-
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2.' 

least. this accounts for the OZI rule. (The quantitative details 
will have to await a more complete understanding of QCD.) 
But what does all this have to do with the ",? Well. 
presumably the same rule applies. suppressing '" ...... 31f. and 
leaving the decay into two charmed D mesons (analogs to the 
K, but with the charmed quarks in place of the strange 
quarks) as the favored route. Only there's a new twist in the 
'" system, for the D's turn out to be too heavy: a pair of D's 
weighs more than the "'. So the decay ", _ D+ + D- (or 

rfJ + 15°) is kilUmatically forbidden, while", ...... 31f is 021 
suppressed, and it is to this happy combination that the '" 
owes its unusual longevity. 

Unification Schemes 

At one time. electricity and magnetism were two distinct subjects. the one dealing 
with pith balls. batteries. and lightning; the other with lodestones. bar magnets, 
and the North Pole. But in 1820 Oersted noticed that an electric current could 
deflect a magnetic compass needle. and 10 years later Faraday discovered that 
a moving magnet could generate an electric current in a nearby loop of wire. 
By the time Maxwell put the whole theory together in its final form, electric· 
ity and magnetism were properly regarded as two aspects of a single subject: 
electromagnetism. 

Einstein dreamed of going a step further, combining gravity with electrodynamics 
in a single unified jidd I�Ory. Although this program was not successful. a similar 
vision inspired Glashow. Weinberg, and Salam to join the weak and electromagnetic 
forces. Their theory starts out with four massless mediators, but. as it develops. 
three of them acquire mass (by the so-called Higgs mechanism). becoming the W's 
and the 2, while one remains massless: the photon. Although experimentally a 
reaction mediated by W or 2 is quite different from one mediated by the y. they are 
ooth manifestations of a single elearoweak interaction. The relative weakness of the 
weak force is attributable to the enormous mass of the intermediate vector bosons; 
its intrinsic strength is in fact somewhat greater than that of the electromagnetic 
force. as we shall see in Chapter 9. 

Beginning in the early 1970s, many people have worked on the obvious next step: 
combining the strong force (chromodynamics) with the electroweak force (GWS). 
Several different schemes for implementing this grand unification are now on the 
table, and although it is too soon to draw any definitive conclusions, the basic idea 
is widely accepted. You will recall that the strong coupling constant a, dureases at 
short distances (which is to say, for very high-energy collisions). So too does the 
weak coupling a .... but at a slower rate. Meanwhile, the electromagnetic coupling 
constant, ae. which is the smallest of the three. increasts. Could it be that they all 
converge to a common limiting value, at extremely high energy (Figure 2.5)? Such 
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is the promise of the grand unified theories (GUTs). Indeed, from the functional 
form of the running coupling constants it is possible to estimate the energy at which 
this unification occurs: around lOiS GeV. This is, of course, astronomically higher 
than any currently accessible energy (remember, the mass of the Z is 90 GeV tel). 
Nevertheless, it is an exciting idea, for it means that the observed difference in 
strength among the three interactions is an 'accident' resulting from the fact that 
we are obliged to work at low energies, where the unity of the forces is obscured. 
If we could just get in close enough to see the 'true' strong, electric, and weak 
charges, without any of the screening effects of vacuum polarization, we would 
find that they are all equal. How nice! 

Another prediction of the GUTs is that the proton is unstable, although its half-life 
is fantastically long (at least 1019 times the age of the universe). It has often been 
remarked that conservation of charge and color are in a sense more 'fundamental' 
than the conservation of baryon number and lepton number, because charge is the 
'source' for electrodynamics, and color for chromodynamics. If these quantities 
were not conserved, QED and QeD would have to be completely reformulated. But 
baryon number and lepton number do not function as sources for any interaction, 
and their conservation has no deep dynamical significance. In the grand unified 
theories new interactions are contemplated, permitting decays such as 

(2.9) 

in which baryon number and lepton number change. Several major experiments 
have searched for these rare proton decays, but so far the results are negative [131. 

If grand unification works, all of elementary particle physics will be reduced 
to the action of a single force. The final step, then, will be to bring in gravity, 
vindicating at last Einstein's dream, with the ultimate unification. At this point 
superstring theory is the most promising approach.· Stay tuned! 

• See Section 12.2 for more on grand unifiOltion, �nd Section 12.� for $Upwlymmetry and super· 
strings. 
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B73. 1. See ;uso (a) Cline, D. B., 
Mann. A. K. and Rubbia, C. (Decem­
�r 1974) Sciel'll!fie Americal'l, 108. 

S Wu, S. L (19M) Physics Reports, 
107. 59), Section 5.6, See also 
(a) Bouchiat, M. -A. and Pottier, L 
(June 1984) Sciel'llifjc American. 100. 

9 See Levi. B. C. (April 199'7) Pkysics 
Today, 17. 

10 The numbers are from the Par­
ticle Physics Bookld. (2006). 

11 See Gillespie, D. T. (1973) A 
Quallium Mtdlanics Primer. In· 
!emalio""l Textbook Co., lon­
don, p. 78, for a careful justi­
fication of this procedure. 

12 Olmbo, S. (1963) Pkysi<:s ut-
lers, S, 16S; (a)Zweig. G. (1964) 
CERN Preprints TH 401 �nd TH 
411; (b)!izuka. J. (1%6) Progm! 
il'l Physics S .. ppI., 37, 21. 

n Weinberg, S. (June 1981) Scien.t!fie 
Atm:rical'l, 64; (a) LoSecco. J. M .. 
Reines, F. and Sinclair, O. (June 
1985) Scientific American. S4. The 
best current limits on the proton life· 
time come from Su�r-K2miok.ande; 
see (b)Shiozawa, M. tt al (1998) 
Physicoll Rtview ul�", 81. 3319. 

2.1 Calculate the ratio of the gravitational attraction to the electrical repulsion between two 
stationary electrons. (Do ! need to tell you how far apart they arel) 

2.2 Sketch the lowest-order Feynman diagram representing Dtlbruck scalrall'lg: y + 
y ..... y + y. ("This process, the scattering of light by light, has no arulog io classical 
electrodynamics.) 

2.l Draw aU the fourth-order (folU Yl!rtex) diagr�ms for Compton scattering. ("There are 17 
of them; disconnected diagrams doo't count.) 

H Determine the mass of the virtual photon in each of the lowest-order diagrams for 
Bhabha scattering (assume the electron and positron are at rest). What is its velocity) 
(Note tlut these answers would be impossible for real photons.) 

2.5 (0) Which decay do you think would be more likely, 

S- -> A + )"f- or S- -> n + rr-

Explain your answer, and coofirm it by looking up the ex�rimental data. 



(b) Which deay ofUu, oO(cii) meson is most likely, 

Which is leasl likely? Draw Uu, Feynman diagrams, 6plain your answer and check 
the 6perimental data. (One of the successful predictions of the ubibboJGIMJKM 
modd was that charmed mesons should decay preferentially into str.lnge mesons, 
even though e"l''8''''tically the 2n mode is favored.) 

Ie) How about the ·beautiful' (B) mesons? Should they go to Uu, D's. K's. or n·s? 
2.6 Draw all the lowest-order diagrams contributing to the process e+ + e- ..... W+ + W-. 

(One ofUu,m involves the direct coupling of Z to W's and another the coupling of y to 
W·s. so when LEP (the electron-positron collider at CERN) achie\led sufficient energy 
to make two W's, in 1996. these exotic processes could be studied experimentally. See 
B. Schwarzsdlild, Physic$ Today (September 1996). p. 21.) 

2.7 Examine the following processes, and state for each one whether it is possible Or 
impa,sible, according to the Standard Modd (which does not include GUTs. with Uu,ir 
potential violation of the conservation of lepton number and baryon number). In the 
former case, state which interaction is responsible - strong, electromagnetic, or weak; 
in the latter case, cite a conservation law that prevents it from occurring: (Following 
the usual custom. I will nol indicate the charge when it is unambiguous, thus y. A. and 
n are neutral; p is positive. e is negative; etc.) 

(a)P +P _ JT+ +/T' 
(e) 1;0 _ A +JTo 
(e) e+ + t- _ �+ + �­
(g) t.+ _ P + /To 
(i) e + p _  u,+JTo 
(k) p _ e+ + y  
(m) It + ii _ JT+ + JT- + /To 
(0) K- _ /T- + JTo 
(q) EO _ A + y  
(5) So _ P +JT-
(u) /To _ y + y  

(b) ,, _ y + y  
(d) E- _ n + JT­
(f)/J.- _ e- + v. 
(h) v. + p _ n + e+ 
(j) p + p _  E+ + It + � + JT++/To 
(I) p+p _ p+p+p+p 
(n) /T+ + n _ JT- + P 
(p) "E+ + n _  E- +p 
(r) g- _ A + JT-
(I) JT- + P _ A + J<!l 
(v) E- _ n + t +v. 

2.8 Some decays involve two (or even all three) different forces. Draw possible Feynman 
diagrams for the following processes: 

(I) Ji ..... t + e+e+ +u,,+D", 
(h) l:+ ..... p + y  

What interactions ue involved> (Both these decays have bel:n observed. by the 
way.) 

• Note: A wIIl,wn is never "inQnaticaliy forbid· 
den. If)'Qu claim, for enmpk. that reaction 
Ie) is forbidden by conservation of energy 
(because the elKtron weighs less th .. n Ihe 
muon). )'Qu .. re at least half WTOI"Ig - it can 
(and does) occur. as long as the electrons 
t.av., enough kinetk energy to m.;oke up the 

difference. But don·t try to pby this game for 
duays _ a single particle cannal drca.y into 
heavier secondaries no m.;oner ",hal its kinetic 
energy is, as you em easily see by examining 
the process in the rest fra"", of the decaying 
particle. 



as I 2 flcmentQ'Y Porticle Ofoomin 

2.9 The T meson, bb, is the bonom-quark analog to the 'It, d. Its mass is 9460 MeV/cl. and 
its lifetime is 1.5 x 10-20 sec. From this information, what can you say about the mass 
of the B meson. ub� (The observed mass is 5180 MeVfcl.) 

l.IO The 'It' meson. at 3686 MeV/,l, h.as the same quark content as the t (viz. d). Its 
principal decay mode is 'It' ..... 'It + If+ + If-. Is this a strong interaction? Is it 
OZI suppressed� What lifetime would you expect for the t? [Ibe observed v;llue is 
3 x lO-zl sec.) 

2.11 Figure 1.9 shows the first confirmed production of an n-. in a hydrogen bubble 
chamber. The incident K- evidently hit a station.try particle X. producing a �. a K+. 
and the n-. (a) What was the charge of the Xl Wlut was its strangeness? Wh..t particle do 
you suppose itwas? (b) Follow each line in the right·hand di .. gram. listing every reaction 
as you go along; ;lisa specify what kind of interaction - {strong. electromagnetic. or 
weak - WaS responsible. {In case the diagr.lm is undear. the two photons are supposed 
to come from the same point. lncident;llly, while y ..... e- + c+ is impossible in vacuum 
(it doesn't conserve momentum), it does occur in the vicinity of a nucleus - the nucleus 
SO<lks up the 'missing' momentum. The reaction is really y + p ..... e- + c+ + p, but the 
p leaves nO track, because it is so heavy that it scarcely moves; the electron and positron 
carry off the photon's energy. and the proton simply acts as a passive momentum 
·sink'.) 

2.12 The W- was discovered in 1983 at CERN, using proton/antiproton scattering: 

p+p ...... W-+X 

where X represents one or more particles. Wh..t is the most likely X. for this process� 
Dr.lwa Feynman diagram for your reaction. and explain why your X is more proJnble 
than the various alternatives. 
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Relativistic Kinematics 

In this ckapur, I summarize the basic principks, notation, and knmnology of rdativisti<: 
kinematics. This is material you must know cold in orlkr to understand Chapttrs 6 
through 10 (it is not nudtd for Chapters 4 and 5, howel.'tr, and if you prefer you can read 
tkmfirst). Although the treatment is reasonably sdj-wntaiJUd, I do assume that you 
kave encountered sptcial relativity before - if not, you should paust hut and read the 
appropriate chapter in any introductory physics text before proceeding. If you are already 
quitt familiar with relativity, this chapter will Ix an easy review - but read through it 
anyway buause some of the notation may be new to you. 

3.1 

Lorent:t Transformations 

According to the spet:ial theory of relativity [IJ, the laws of physics apply just as 

well in a reference system moving at constant velocity as they do in one at rest. An 
embarrassing implication of this is that there's no way of telling which system (if 

any) is at rest, and hence there is no way of knowing what 'the' velocity of any other 
system might be. So perhaps [ had better start over. Ahem. 

According to the spedal theory of relativity [l], the laws of physics are equally valid 
in all inutial reference systems. An inertial system is onein which Newton's first law 
(the law of inertia) is obeyed: objet:ts keep moving in straight lines at constant speeds 

unless acted upon by some force: It's easy to see that any two inertial systems must 
be moving at constant velocity with respet:t to one another, and conversely, that any 

system moving at constant velOCity with respect to an inertial system is itselfinertial. 

Imagine, then, that we have two inertial frames, S and 5', with 5' moving at 
uniform velocity v (magnitude v) with respect to S (S, then, is moving at velocity 
-v with respect to 5'). We may as well lay out our coordinates in such a way that 

the motion is along the common xIx! axis (Figure 3.1), and set the master docks at 
the origin in each system so that both read zero at the instant the two coincide (that 

is, t = t' = 0 when x = x! = 0). Suppose, now, that some event occurs at position 

• [f you are wondering whether � freely f�lling system in � uniform gr�vitational field is ·inertial'. 
you know m� than i. good for you. �'. iuS! �p gravity out of it. 

IllIrod"",iorI.lO S.tlltnlolry P,,,,;deJ. Swottd Edil;"'" David Griffiths 
Copyright 0 2008 WILEY·VCH Verbg GmbH & Co. KG>A. W�inJ>..im 
ISBN, 97&.3·527·-40601·1 

I" 
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, 

S S' 
Y Y 

Fig. 3.1 The inerti�1 systems 5 and 5' 

(x, y, z) and time I in S. Q�lion: What are the space-time coordinates (x', y', z') and 

( of this SQrnl event in S'? The answer is provided by the Lorentz transformations: 

where 

1. x' = y(x- tit) 

i1. y' = y 

ii1. z = z  

iv. t' = y (t - �x) 

(3.1) 

(3.2) 

The inverse transformations, which take us back from S' to 5, are obtained by 

simply changing the sign of tI (see Problem 3.1): 

, , . x = y(x' + tit') 

ii'. , � y 
...  , lll . z = z (J.J) 
iv'. I = y  (I' + �x') 

The Lorentz transformations have a number of immediate consequences, of 

which I mention briefly the most important: 

1. Tht relativity of simultaruity: If two events occur at the same 

time in S, but at different locations, then they do nol occur at 

the same time in S. Specifically, if IA = ts, then 

(3.4) 
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(see Problem 3.2). Events that are simultaneous in one 
inertial system, then, are not simultaneous in others. 

2. Lorentz contraction: Suppose a stick lies on the x' axis, at rest 
in S'. Say one end is at the origin (x' "" 0) and the other is at 
L' (so its length in S' is L'). What is its length as measured in 

5? Since the stick is moving with respect to 5, we must be 
careful to record the positions of its two ends at the same 
instant, say t "" O. At that moment, the left end is at x = 0 and 
the right end, according to Equation (i), is at x = L' /y. Thus 
the length of the stick is L ""  L' /y, in 5. Notice that y is 
always greater than or equal to 1. It follows that a moving 
object is shortenm by a factor of y, as compared with its length 
in the system in which it is at rest. Notice that Lorentz 
contraction only applies to lengths along the direction of 
motion; perpendicular dimensions are not affected. 

3. Time dilation; Suppose the clock at the origin in S' ticks off 

an interval 1"; for Simplicity, say it runs from t' "" 0 to t = 1". 
How long is this period as measured in S? Well, it begins 
when t "" 0, and it ends when t "" 1"' at x' = 0, so (according 

to Equation (iv')) t = y1". Evidently the docks in 5 tick off a 
longer interval, T = y 1", by that same factor of y; or, put it 
the other way around; moving c/IXks run slow. 

Unlike Lorentz contraction, which is only indirectly 
relevant to elementary particle physics, time dilation is a 
commonplace in the laboratory. For, in a sense, every 
unstable particle has a built·in clock: whatever it is that tells 
the particle when its time is up. And these internal clocks do 
indeed run slow when the particle is moving. That is to say, a 
moving particle lasts longer (by a factor of y) than it would at 
rest." (The tabulated lifetimes are, of course, for particles at 
rest.) In fact, the cosmic ray muons produced in the upper 
atmosphere would never make it to ground level were it not 
for time dilation (see Problem 3.4). 

4. Velocity addition: Suppose a particle is moving in the x 
dire<tion at speed u', with respect to S. What is its speed, u, 
with respect to Sf Well, it travels a distance ax = y(ax' + v 
at) in a time at = y[at + (v/el)ax'], so 

ax ax' + v at (ax'/t.f) + v  
- �  

l\t at + (v/c2)l\x' I + (v/c2)(l\x' / 61')' 

• Actu�ll�. the disintegration of an individu�l �rticle il � r .. ndom process: when we spe�k of a 
'lif�i�' we r�ally mean th� a ... ,"V lifetime of that partid� type. Wh�n I ny that a moving par· 
ticle !;>.t. longer. I really mean th�t tile avt"'gt lifetime of � group of mavins �Tticles is lonser. 
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But 6x/6t = 1.1, and 6x /6t' = uf, so 

uf +v  
" � ;lc+�(c"""C/C";;1 (3.5) 

Notice that if 1.1' = C, then u = C also: tht spud of light is the same in all inertia! 
systems. 

It can sometimes be confusing to figure out in a particular context, which 
numbers should be primed and what signs attach to the velocities, so I personally 
remember three rules: moving sticks are short (by a factor of y), moving docks 
are slow (by a factor of y) - so put the y (which, remember, is greater than 1) on 
whichever side of the equation you need to achieve these results, - and 

(3.6) 

where VAS (for instance) means the velocity of A with respect to B. The numerator is 
the classical result (the So<alled 'Galilean velocity addition rule'); the denominator 
is Einstein's correction - it is very close to 1 unless the velocities are close to c. 

'.2 
Four·vectors 

[t is convenient at this point to introduce some simplifying notation. We define the 
position.time four.vector x". ;I. = 0, 1. 2, 3, as follows: 

,f = ct, xl- = y, (3.7) 

In terms of x", the Lorentz transformations take on a more symmetrical appear· 
ance: 

where 

xO' = y(xo - pxl) 
Xlf = Y(XI _ pxo) 

x2' = xl-

More compactly: 

(3.8) 

(3.9) 

(;I. = 0,},2,3)  (3.10) 
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The coefficients A� may be regarded as the elements ofa matrix A: 

-yp 
y 
o 
o 

o 
o 
1 
o 

(3.11) 

(i.e. Ag = Al = y, A� = A? = -yfJ; Ai = A� = 1; and all the rest are zero). To 
avoid writing lots ofI:'s, we shall follow Einstein's 'summation convention', which 
says that repeated Greek indices (one as subscript, one as superscript) are to be 
summed from 0 to 3. Thus Equation 3.10 becomes, finally: 

(3.12) 

A special virtue of this tidy notation is that the same form describes Lorentz 
transformations that are not along the x direction; in fact, the Sand !1 axes need not 
even be parallel; the A matrix is more complicated, naturally, but Equation 3.12 still 
holds. (On the other hand, there is no real loss of generality in using Equation 3.11, 
since we are always free to choose parallel axes, and to align the x axis along the 
direction of v.) 

Although the individual coordinates of an event change, in accordance with 
Equation 3.12, when we go from S to $', there is a particular combination of them 
that remains the same (Problem 3.8): 

(3.13) 

Such a quantity, which has the same value in any inertial system, is called an 
invariant. (In the same sense, the quantity ,2 = xl + r + z2 is invariant under 
rotations.) Now, I would like to write this invariant in the form of a sum: I:!.oxl-<xl-<, 
but unfortunately there are those three irritating minus signs. To keep track of 
them, we introduce the mt:tnc, gl-'.' whose components can be displayed as a 
matrix g: 

o 
-1 
o 
o 

o 
o 

-1 
o : ] -1 

• In an expression such as this th� Greek 
letl�r used for th� summation indrx, �. is 
of course compl�tely arbitrary. Th� Soi� 
goes for th� 'hanging· indrx /l. although 
it must match on the two sides of th� 
equation. Thus Equation (3.12) could just 
as wdl bo WIitt�n x" "" A�xI-. Either expres· 
sion stands for th� ... , of four ..quation.: 

./ = A�,!I + A:X' + Aixl + AJx' 
xi = A�xo + A;x' + A�x2 + A�xl 

Xl' = A�XO + A:X' + ,,�.? + "lx) 

(3.14) 
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(i.e. goo = 1; gl1 = gll = gll = -1; all the rest are zero).' With the help of gIl'"� the 
invariant I can be written as a double sum: 

, , 
1 =  L L&<.x"x· = 81" x"x" (3.1S) 

Carrying things a step further. we define the covariant four-vector X!, (index down) 
as follows: 

(3.16) 

(i.e. Xo = ,,0, XI = -xl , Xl = -xl, Xl = _xl). To emphasize the distinction we call 
the 'original' four-vector x" (index up) a contmvariant four-vector. The invariant I 
can then be written in its cleanest form: 

(3.17) 

(or, equivalently, x"x,,). All this wil l no doubt seem like monstrous notational 
overkill, just to keep track of three pesky minus signs, but it's actually very simple, 
once you get used to it. (What's more, it generalizes nicely to non-Cartesian 
coordinate systems and to the curved spaces encountered in general relativity, 
though neither of these is relevant to us here.) 

The position.time four·vector x" is the archetype for allfour·vectors. We define 
a four·vector, a", as a four·component object that transforms in the same way xl' 
does when we go from one inertial system to another, to wit: 

aI" = A�a· (3.18) 

with the same coefficients A�. To each such (contravariant) four·vector we associate 
a covariant four·vector aI" obtained by simply changing the signs of the spatial 
components, or, more formally 

(3.19) 

Of course. we can go back from covariant to contravariant by reversing the signs 
again: 

(3.20) 

where g"V are technically the elements in the matrix g-I (however, since our metric 
is its own inverse, g". is the same as gl'.)' Given any two four·vectors, a" and hI', 
the quantity 

(3.21) 

• I should warn you that some physicists define the metric with the opposite signs (_I. I. I. 1). It 
�n't maIler much - if 1 is an invlriant. so too is -1. But it �s mean Ih<It you must br On 
the lookout for unfamiliar signs. Fortunately, most particle physicists nowadays use the con ..... n· 
lion in Equation 3.1 •. 



3.2 Four-ll.ao" 1 95 

is invariant (the same number in any inertial system). We shall refer to it as the 
scalar prodl<Ct of a and b; it is the four-dimensional analog to the dot product of two 

three-vectors (there is no four-vector analog to the cross product).' 

If you get tired of writing indices, feel free to use the dot notation: 

a , b  ... a,,/T' (3.22) 

However, you will then need a way to distinguish this four-dimensional scalar 
product from the ordinary dot product of two three-vectors. The best way is to 

be scrupulously careful to put an arrow over all three-vectors (except perhaps the 
velocity, v, which, since it is not part of a four,vector, is not subject to ambiguity). 
In this book, I use boldface for three-vectors. Thus 

(3.23) 

We also use the notation a2 for the scalar product of al' with itselU 

Notice, however, that a2 need not be positive. Indeed, we can classifY all four-vectors 

according to the sign of a2: 

Ifa2 > 0, 
Ifa2 <: 0, 
If02

=
o, 

al' is called timdike 
al' is called spacdike 
a" is called lightlike 

(3.25) 

From Ve!:tors it is a short step to tensors: a second-rank tensOr, sI'", carries two 
indices, has 42 = 16 components, and transforms with two factors of A :  

(3.26) 

a third-rank tensor, tp";', has three indices, 4l = 64 components, and transforms 

with thru factors of A: 

• Th� closest thing is (a"b' - 0'''''), but this is 
a =ond-rank Itnsor, not a four·vrctor (S<'e � 
low). 

t On its face, this is dangerously ambiguous 
notation, sinc� "I could also bto the second 
s,,",tial component of "-. But in practice we 
so St"ldom ref.." to individual components 
that this causes no problems (if you really 
moan the compon�nt, btot"'r say SO explic· 
itly). More serious is the potential confusion 

(3.27) 

btotwffn "I and � square of the magnitude 
of the thrtt-vrctor pan of af'. [ p.."sonaUy 
WI;'" the laruer in bold face, to aV(lid any po$' 
sible misunderstanding: al _ a . a. This is 
not standard notation, however, and if you 
pr�fer some other device, that's fine. But ! 
do urge you to find a deu way to distinguish 
"I from aI, or you are asking for real trouble 
down the road. 
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and so on. In this hierarchy, a vector is a tensor of rank one, and a scalar (invariant) 
is a tensor of rank zero. We construct covariant and 'mixed' tensors by lowering 
indices (at the cost of a minus sign for each spatial index), for example 

(3.28) 

and so on. Notice that the product of two tensors is itself a tensor: (a" b") is a tensor 
of second rank; (a"t").,,) is a tensor of fourth rank; and so on. Finally, we can obtain 
from any tensor of rank 11 + 2 a 'contracted' tensor of rank n, by summing like upper 
and lower indices. Thus �" is a scalar; t,,"" is a vector; a"tf'"l is a second·rank tensor, 

3.3 
Energy and Momentum 

Suppose you're driving down the highway, and pretend for the sake of argument 

that you're going at close to the speed of light. You might want to keep an eye 
on two different 'times': if you're worried about making an appointment in San 
Francisco, you should check the stationary clocks posted now and then along the 
side of the road. But if you're wondering when would be an appropriate time to 
stop for a bite to eat, it would be more sensible to look at the watch on your wrist. 

For, according to relativity, the moving clock (in this case, your watch) is running 
slow (relative to the 'stationary' docks on the ground), and so too is your heart 
rate, your metabolism, your speech and thought, evtrything. Specifically, whil e the 
'ground' time advances by an infinitesimal amount dr, your own (or proper) time 
advances by the smaller amount dr: 

d, 
dr = ­y (3.29) 

At normal driving speeds, of course, y is so close to 1 that dt and dr are essentially 
identical, but in elementary particle physics the distinction between laboratory 
time (read off the clock on the waUl and particle time (as it would appear on the 
particle's watch) is crucial. Although we can always get from one to the other, using 
Equation 3.29, in practice it is usually most convenient to work with proper time, 
because r is invariant - aU observers can read the particle's watch, and at any given 

moment they must all agree on what it says, even though their own clocks may 
differ from it and from one another. 

When we speak of the 'velocity' of a particle (with respect to the laboratory), we 

mean, of course, the distance it travels (measured in the lab frame) divided by the 
time it takes (measured on the lab clock): 

'" 
v = -

d, 
(3.30) 

But in view of what has just been said, it is also useful to introduce the proper 
vtlocity, I), which is the distance traveled (again, measured in the lab frame) divided 
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by the proper time:' 

(3.31) 

According to Equation 3.29, the two velocities are related by a factor of y: 

TJ = yv (3.32) 

However, TJ is much easier to work with, for if we want to go from the lab system, S, 
to a moving system, S, both the numerator and t� dmominator in Equation 3.30 must 
be transformed - leading to the cumbersome velocity addition rule Equation 3.5 -
whereas in Equation 3.31 only tht numemtor transforms; dr, as we have seen, is 
invariant. In fact, proper velocity is part of a four·vector: 

whose zeroth component is 

o d,f! dIet) 
1) '" dr = 

(lly) dt 
= ye 

(3.33) 

(3.34) 

(3.35) 

Incidentally, 1),,1)" should be invariant, and it is: 

(3.36) 

They don't make 'em more invariant than that! 
Classically, momentum is mass times velocity. We would like to carry this over in 

relativity, but the question arises: which velocity should we use - ordinary velocity 
or proper velocity? dassical considerations offer no clue, for the two are equal in the 
nonrelativistic limit. In a sense, it's just a matter of definition, but there is a subtle 
and compelling reason why ordinary velocity would be a bad choice, whereas proper 
velocity is a good choice. The point is this; if we defined momentum as mv, then 
the law of conservation of momentum would be inconsistent with the principle 
of relativity (if it held in one inertial system, it would not hold in other inertia! 

• Pro!",I vdocity is � hybrid quantity, in the 
sense that distionte is measu� in the lDb 
frame, whereas time is measur� in the par· 
rick frame. Some people object to the adj�­
tive ·proper· in this oontext. holding that this 
should � reserved for quantities measured 
enti",ly in the p,ntide frame. Of tourse. in its 
OW" frame the particle never moves at .11 -

its velocity is zero. If my te,minology disrurbs 
you. caU '1 the ·four·vdocity·. I .hould add 
th.t .. !though proper velocity is the more con· 
venient quantity II"> ca!c..z.,t< with. ordinary ve· 
locity is still the mo", "",ural qU.1ntity from 
the point of view of an observer watching a 
particle fly past. 
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systems). But, if we define momentum as mTj, then conservation of momentum 
is consistent with the principle of relativity (if it holds in one inertial system, it 
automatically holds in all inertial systems). I'll let you prove this for yourself in 
Problem 3.12. Mind you, this doesn't guarantee that momentum is conserved ­
that's a matter for txptrilmnts to decide. But it does say that if we're hoping to 
extend momentum conservation to the relativistic domain, we had better not define 
momentum as mv, whereas mTj is perfectly acceptable. 

That's a tricky argument, and if you didn't follow it, try reading that last paragraph 
again. The upshot is that in relativity, momentum is defined as mass times proptr 
velocity: 

p ::  mTJ (3.37) 

Since proper velocity is part of a four-vector, the same goes for momentum: 

(3.38) 

The spatial components of pi' constitute the (relativistic) momentum three·vector: 

(3.39) 

Meanwhile, the 'temporal' component is 

(3.40) 

For reasons that will appear in a moment, we define the relativisl«: energy, E, as 

(3.41) 

The zeroth component of PP, then, is Ejc. Thus, energy and momentum together 
make up a four·vector - the energy-momentum four.vector (Of four·molmntum) 

(3.42) 

Incidentally, from Equations 3.36 and 3.38 we have 

(3.43) 

which, again, is manifestly invariant. 
The relativistic momentum (Equation 3.37) reduces to the classical expression 

in the nonrelativistic regime (v « c), but the same cannot be said for relativistic 
energy (Equation 3.41). To see how this quantity comes to be called 'energy: we 



J.J EMrgy Dna Momel1lum 199 
expand the radical in a Taylor series; 

(3.44) 

Notice that the second term here corresponds to the classical kinetic energy, 
while the leading term (me2) is a constant. Now you may recall that in classical 
mechanics only changes in energy are physically significant - you can add a 
constant with impunity. In this sense, the relativistic formula is consistent with 

the classical one, in the limit II « c where the higher terms in the expansion are 
negligible. The constant term, which survives even when II = 0, is called the rest 
energy; 

(3.45) 

the remainder, which is energy attributable to the motion of the particle, is the 
relativistic kinetic energy;' 

1 3 v· 
T =  m?(y - 1) = _mv2 + -m - + .  

2 8 (;2 
(JAG) 

In classical mechanics, there is no such thing as a massless particle; its momen­
tum (mv) would be zero, its kinetic energy (imv1) would be zero, it could sustain 
no force, since F = rna, and hence (by Newton's third law) it could not exert a 
force on anything else - it would be a dynamical ghost. At first glance you might 
suppose that the same would be true in relativity, but a careful inspection of the 

formulas 

(3.47) 

reveals a loophole; when m = 0, the numerators are zero, but if II = c, the de· 
nominators alse vanish, and these equations are indeterminate (0/0). So it is just 
possible that we could allow m = 0, provilkd the panicle always travels at tm spud 
of light. In this case, Equation 3.47 will not serve to define E and p; nevertheless, 
Equation 3.43 still holds: 

v = c, E = Iplc (for massless particles) (3.48) 

Personally, I would regard this 'argument' as a joke, were it not for the fact that 
massless particles (photons) are known to exist in nature, they do travel at the speed 
oflight, and their energy and momentum are related by Equation 3.48. So we have 

, Notice t�t [ h�ve never menlioned ',eLotivis· 
lie m ..... ' in �ll this. It i. a superfluous qwm· 
Hty thaI .erve. no u.tful function. In CUt you 
encounter it. the definition is "'"j _ Y"'; il 
has died out because il differ.; from £ only 

by a faclOr of ,2. Whatevtr can be uid about 
"'"j could jusl as wdl be uid about £. For in· 
stance, the '(on.erv�tion of reLttivistic mass' 
is nothing but cons-ervation of tIIerg», with a 
brIO. of cl divided out. 
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to take the loophole seriously. You may well ask: if Equation 3.47 doesn't define 
p and E, what does determine the momentum and energy of a massless particle? 
Not the mass (that's zero by assumption); not the speed (that's always c). How, 
then, does a photon with an energy of 2 eV differ from a photon with an energy of 
3 eV? Relativity offers no answer to this question, but curiously enough quantum 
mechanics does, in the form of Planck's formula: 

E =  /Iv (3.49) 

It is thefrtquency of the photon that determines its energy and momentum: the 
2-eV photon is red, and the 3-eV photon is pUIJ!k ! 

3.4 
Collisions 

So far, relativistic energy and momentum are nothing but tkfinitions; the physics 
resides in the empirical fact that these quantities are conserved. In relativity, as in 
classical mechanics, the cleanest application of the conservation laws is to collisions. 
Imagine first a classical collision, in which object A hits object B (perhaps they are 
both carts on an air table), producing objects C and D (Figure 3.2). Of COurse, C 
and D might be the same as A and B; but we may as well allow that some paint 
(or whatever) rubs off A onto B, so that the final masses are not the same as the 
original ones. (We do assume, however, that A, B, C, and D are the only actors 
in the drama; if some wreckage, W, is left at the scene, then we would be talking 
about a more complicated process: A + B -"" C + D +  W.) By its nature, a collision 
is something that happens so fast that no emmal force, such as gravity, or friction 
with the track, has an appreciable influence. Classically, mass and momentum are 
always conserved in such a process; kinetic energy mayor may not be conserved. 

3.4.1 
Classical Collisions 

1. Mass is conserved: mil. + mB = me + mD. 
2. Momentum is conserved: p" + Ps = Pc + Po. 
3. Kinetic energy may or may not be conserved. 

Before After 

Fig. 3.2 A collision in which A + B ...... C + D. 
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I like to distinguish three types of collisions: 'sticky' ones, in which the kinetic 

energy decreases (typically, it is converted into heat); 'explosive' ones, in which the 
kinetic energy ilUreases (for e1Qmple, suppose A has a compressed spring on its 
front bumper, and the catch is released in the course of the collision so that spring 
energy is converted into kinetic energy); and elastic ones, in which the kinetic 
energy is conserved, 

(a) Sticky (kinetic energy decreases): T ... + Ts > T c + TD, 
(b) Expl�ivt; (kinetic energy increases): T ... + T s < T c + To, 
(c) Elastic (kinetic energy conserved): T ... + T s = T c + T D, 

In the extreme case of type (a), the two particles stick together, and there is really 
only one final object: A + B -+ C. In the extreme case of type (b), a single object 
breaks in two: A -+ C + D (in the language of particle physics, A dtcays into 
C +  D), 

3.4.2 
Relativistic Collisions 

In a relativistic collision, energy and momentum are always conserved, In other words, 
all four components of the energy-momentum four-vector are conserved. As in 
the classical case, kinetic energy may or may not be conserved. 

1. Energy is conserved: E ... + EB = Ec + ED. 
2. Momentum is conserved: p ... + ps = pc + PD. 
3. Kinetic energy may or may not be conserved. 

(The first two can be combined into a single expression: � + p'; = 1? + h..) 
Again, we can classify collisions as sticky, explosive, or elastic, depending on 

whether the kinetic energy decreases, increases, or remains the same. Since the 
t.:ltal energy (rest plus kinetic) is always conserved, it follows that rest energy (and 
hence also mass) increases in a sticky collision, decreases in an explosive collision, 
and is unchanged in an elastic collision. 

(a) Sticky (kinetic energy decreases); rest energy and mass 
increase. 

(b) Explosive (kinetic energy increases): rest energy and mass 
decrease. 

(e) Elastic (kinetic energy is conserved): rest energy and mass 
are conserved. 

Please note: exapl in elastic collisions, mass is not conserved.' For example, in the 
decay lTD -+ Y + Y the initial mass was 135 MeV/,2, but the final mass is zero . 

• In the old terminology. _ would �y that nlali';',,;, !!U.ss is con�rwd, but r<sl mass is not 
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Here rest energy was converted into kimtic energy (or. in the absurd language of 
the popular press, infuriating to anyone with the slightest respet:t for dimensional 
consistency, 'mass was converted into energy'). Conversely, if mass is conserved. 
then the collision was elastic. In elementary particle physics, there is only one 
way this ever happens: the same particles come out as went in'- electron-proton 
scattering (e + p ..... e + pI, for example. 

In spite of a certain structural similarity between the classical and relativistic 
analyses. there is a striking difference in the interpretation of inelastic collisions. 
In the classical case, we say that energy is converted from kinetic form to some 
'internal' fonn (thermal energy. spring energy, etc.), or vice versa. In the relativistic 
analysis, we say that it goes from kinetic energy to rest energy or vice versa. How 
can these possibly be consistent? After all, relativistic mechanics is supposed to 
reduce to classical mechanics in the limit v « c. The answer is that aU 'internal' 
forms of energy are reRected in the rest energy of an object. A hot potato weighs 
more than a cold potato; a compressed spring weighs more than a relaxed spring. 
On the macroscopic scale, rest energies are enormously greater than internal 
energies, so these mass differences are utterly negligible in everyday life, and very 
small even at the atomic level. Only in nuclear and particle physics are typical 
internal energies comparable to typical rest energies. Nevertheless, in principle, 
whenever you weigh an object, you are measuring not only the rest energies 
(masses) of its constituent parts, but all of their kinetic and interaction energies 
as well. 

3.S 
Examples and Applications 

Solving problems in relativistic kinematics is as much an art as a science. Although 
the physics involved is minimal - nothing but conservation of energy and conser· 
vation of momentum - the algebm can be formidable. Whether a given problem 
takes two lines or seven pages depends a lot on how skillful and experienced you 
are at manipulating the tools and the tricks of the trade. I now propose to work a 
few examples, pointing out as I go along some of the labor-saving devices that are 
available to you {2J. 

Example 3. J Two lumps of day, each of mass m, collide head-on at �c (Figure 3.3). 
They stick together. QlUstion: What is the mass M of the final composite lump? 

Solution: Conservation of energy says El + E2 = EM. Conservation of momentum 
says PI + P2 = PM. In this case, conservation of momentum is trivial: PI = -Pl, so 
the final lump is at rest (which was obvious from the start). The initial energies are 

• In principle, iftMr� 61sted IW¢ distinct j»irs of j»rticles (A, B and C. D) that happen..d to add 
up to th� sam� total mass, then I $UpPO� th� r�action A + B _ C + D might be considered 
'elastic'. but in reality there "", no such coincidences, $0 to a j»rticle physicist the word 'dastic' 
has (orne to IrUaIl th.t the same j»rtides come OUI a$ went in. 
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Fig. 3.3 Slicky collision of two equ�1 m�s'e� (Example 3.1). 

equal. so conservation of energy yields 

2..0 5 
Mel = 2E", = = -(2mc2) 

J1 (3/5)2 4 
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Conclusion: M "" �m. Notice that this is grtallr than the sum of the initial masses; 
in sticky collisions kinetic energy is converted into rest energy. so the mass 
increases. W-, 

Exomple 3.2 A particle of mass M. initially at rest. decays into two pieces. each of 
mass m (Figure 3.4). QlUStion: What is the speed of each pie<:e as it Aies 0fI? 

Solution: This is. of course. the reverse of the process in Example 3.1 Conservation 
of momentum just says that the two lumps Ay off in opposite directions at equal 
speeds. Conservation of energy requires that 

so v = CJ1 - (2m/M)2 

This answer makes no sense unless M exceeds 2m: there has to be at least enough 
rest energy available to cover the rest energies in the final state (any extra is fine; 
it can be soaked up in the form of kinetic energy). We say that M "" 1m is the 
threshold for the process M -+ 2m to occur. The deuteron. for example. is below 
the threshold for decay into proton plus neutron (md = 1875.6 Mev/e2; mp + mK = 

1877.9 MeV le2). and therefore is stable. A deuteron can be pulled apart. but only by 
pumping enough energy into the system to make up the difference. (If it puzzles 
you that a bound state of p and n should weigh k5s than the sum of its parts. the 
point is that the binding energy of the deuteron - which. like all internal energy. 
is reflected in its rest mass - is negative. Indeed. for any stable bound state the 
binding energy must be negative; if the composite particle weighs more than the 
sum of its constituents. it will spontaneously disintegrate.) _ 

Exomple 3.3 A pion at rest decays into a muon plus a neutrino (Figure 3.S). 
QutStion: What is the speed of the muon? 

o , 
-----0 

, 
0----

M m m 

Before After 

fig. 3.4 A p�r1icle decays into two equal pieces. (Example 3.2). 
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• 
o 

Before 

Fig. 3.5 Df:cay of the charged pion (hample 3.1). 

SoJutu,n: Conservation of energy requires E� = EI' + E • .  Conservation of mo­
mentum gives p" = PI' + Po; but p" = 0, so PI' = -P •. Thus the muon and the 
neutrino fly off back-to-back, with equal and opposite momenta. To proceed. we 
nee<! a formula relating the energy of a particle to its momentum; Equation 3.43 
does the job: 

Suggestion 1. To get tlK energy of a particle, wlKn YOIl know its 
momentum (or via versa), use the invariant 

In the present case, then; 

E,.. = m,,? 
EI' = cJrmC,c,c,-+-,"�, 
Eo = Ip.I' = Ip"I' 

Putting these into the equation for conservation of energy, we have 

Solving for Ipl' I. 

Meanwhile. the energy of the muon (from Equation 3.50) is 

(3.50) 

• You might be indin� to sol"" Equation 3.39 for the ""locity. and plu8 the result into 
Equation 3.·41. but that would be a very poor strategy. Tn �neral. ",,]ocity is a bold parameter 
to work with. in rdativity. Better to usc Equation 3.43, which tak� you dimily bold< and forth 
between E and p. 



3.5 Examples and Appljca/jans 1 105 
Once we know the energy and momentum of a particle, it is easy to find its 

velocity. If E = ymcl and p = ymv, dividing gives 

pIE = vIc? 

Suggestion 2. If you know the energy and momentum of a JXir­
tick and you want to determine i/.5 velocity, use 

So the answer to our problem is 

Putting in the actual masses, I get til' = 0.271c. DIll 

(3.51) 

There is nothing wrong with that calculation; it was a straightforward and 
systematic exploitation of the conservation laws. But I want to show you now a 
faster way to get the energy and momentum of the muon, by using four.vector 
notation. (I should put a superscript /.I. on all the four-vectors, but I don't 
want you to confuse the space-time index /.I. with the particle identifier /.I., so 
here, and often in the future, I will suppress the space-time indices, and use 
a dot to indicate the scalar product) Conservation of energy and momentum 
requires 

Taking the scalar product of each side with itself, we obtain 

Bu' 

Therefore 

from which EI' follows immediately. 
By the same token 

Squaring yields 
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which gives us IpI'l. In this case, the problem was simple enough that the savings 
afforded by four-veclor notation are meager, but in more complicated problems the 
benefits can be enormous. 

Suggestion 3. Use four-vuror nOlatien, and exp/Cjl the invari­
ant dot product. Remtmber that p� = m2c1 (Equation 3.43) 

for any (nal) par1ide. 

One reason why the use of invariants is so powerful in this business is thai we 
are free 10 evaluate them in any inertial system we like. Frequently, the laboratory 
frame is not the simplest one to work with. In a typical scattering experiment. for 
instance, a beam of particles is fired at a stationary target. The reaction under study 
might be, say, p + p-+ whatever, but in the laboratory the situation is asymmetrical. 
since one proton is moving and the other is at rest. Kinematically, the process is 
much simpler when viewed from a system in which the two protons approach 
one another with equal speeds. We call this the ctnter-ofmomentum (eM) frame, 
because in this system the total (three-vector) momentum is uro. 

Example 3.4 The Bevatron at Berkeley was built with the idea of producing 

antiprotons, by the reaction p + P --l> P + P + P + p. That is, a high-energy proton 
strikes a proton at rest, creating (in addition to the original particles) a proton­
antiproton pair. Question: What is the threshold energy for this reaction (i.e. the 

minimum energy of the incident proton)� 

Solution: In the laboratory the process looks like Figure 3.&1; in the eM frame, 
it looks like Figure J.6b. Now, what is the condition for threshold� Answer: Just 
barely enough incident energy to create the two extra particles. In the lab frame, it 
is hard to see how we would formulate this condition, but in the eM it is easy: all 
four .final particles must be at rest, with nothing 'wasted' in the form of kinetic energy. 
(We can't have that in the lab frame, of course, since conservation of momentum 
requires that there be some residual motion.) 

Let hOT be the total energy-momentum four-vector in the lab; it is conserved, 
so it doesn't matter whether we evaluate it before or after the collision. We'll do it 
before: ( E +  me' ) �T = -,- , I P i , Q, Q 

where E and p are the energy and momentum of the incident proton, and m is 
the proton mass. Let pt;.OT' be the total energy-momentum four·vector in the eM. 
Again, we can evaluate it before or after the collision; this time we'll do it aftu: 

�' = (4mc, 0, 0, 0) 
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per' PO--­_Po....... P � 
After 

'-0 j 
/' '\  

After 

Fig. 3.6 P + P ..... P + P + P + p. (al In the lab frame: (b) in the eM frame. 

since (at threshold) all four particles are at rest. Now Jl.;.OT :F P!;m', obviously, but 
the invariant products PI'TOTJi;OT and P"ToTpft-OT' are equal: 

Using the standard invariant (Equation 3.50) to eliminate pl, and solving for E, we 
find 

Evidently, the incident proton must carry a kinetic energy at least six limes its rest 
energy. for this process to occur. (And in fact the first antiprotons were discovered 
when the machine reached about 6000 MeV.) � 

This is perhaps a good place to emphasize the distinction between a conserved 
quantity and an invariant quantity. Energy is conserved - the same value aftu the 
collision as before - but it is not invariant. Mass is invariant - the same in all 
inertial systems - but it is not conserved. Some quantities are both invariant and 
conserved (e.g. electric charge); many are neither (speed. for instance). As Example 
3.4 indicates. the clever exploitation of conserved and invariant quantities can save 
you a lot of messy algebra. It also demonstrates that some problems are easier to 
analyze in the eM system. whereas others may be simpler in the lab frame. 

Suggestion 4. If a probkm sums cumbusoml in tht lab fmml. 
try analyzing it in the eM system. 

Even if you're dealing with something more complicated than a collision of two 
identical particles. the eM (in which PTOT = 0) is still a useful reference frame. for 
in this system conservation of momentum is trivial: zero before. zero after. But you 
might wonder whether there is always a eM frame. In other words. given a swarm 
of particles with masses mI. ml. mj • . . . •  and velocities VI. V2. Vl • . • does there 
necessarily exist an inertial system in which their total (three-vector) momentum 
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is zero? The answer is yes; I wil l prove it by finding the velocity of that frame and 
demonstrating that this velocity is less than c. The total energy and momentum in 
the lab frame (S) are 

ErOT = LYim;?; proT = L YjmiVi (3.52) 

Since hOT is a {our-veclor, we can use the Lorentz transformations to get the 
momentum in system S'. moving in the direction of PrOT with speed tI 

In particular, this momentum is uro if v is chosen such that 

t> IPTOTlc I L Yimov;l 
C = EroT = L Y,miC 

Now, the length of the sum of three· vectors cannot exceed the sumoftheir lengths 
(this geometrically evident fact is known as the trial1glt inequality). so 

and since Vi < C, we can be sure that v < c: Thus the eM system always exists. 
and its velocity relative to the lab frame is given by 

(3.S3) 

It seems odd, looking back at the answer to Example 3.4, that it takes an incident 
kinetic energy six times the proton rest energy to produce a pip pair. After all, we're 
only creating 2mc2 of new rest energy. This example illustrates the inefficiency of 
scattering off a stationary target; conservation of momentum forces you to waste a 
lot of energy as kinetic energy in the final state. Suppose we could have fired the 
two protons at one another, making the laboratory itself the eM system. Then it 
would suffice to give each proton a kinetic energy of only mc2, one·sixth of what 
the stationary·target experiment requires. This realization led, in the early 19705, 
to the development of colliding-beam machines (see Figure 3.7). Today. virtually 
every new machine in high.energy physics is a collider. 

Example 3.5 Suppose two identical particles, each with mass In and kinetic energy 
T, collide head-on. QutStion: What is their relative kinetic energy, r (I.e. the kinetic 
energy of one in the rest system of the other)? 

• I am tacitly assumins that at \east on� of the p.;orticks is massive. If aU of them an: =�s, 
we may obtain v : c. in which cas� th�r� is no CM system. For example, th�r� is no CM f .... me 
for a single photorL 
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0 8  A 0>----

(b) 
Fig. 3.7 Two e1<perimerltal arrangements: (a) Colliding �am5: (b) lixed target 

Solutwn: 111ere are many ways to do this one. A quick method is to write down the 
total four-momentum in the eM and in the lab 

use Equation 3.50 to eliminate pi 

and express the answer in terms of T = E - me2 and 1" = E' _ me2 

(354) 

lbe c/as5ical answer would have been 1" = 4T, to which this reduces when T «  mel. 
(In the fE'st system of B, A has, classically, twice the velocity, and hence four times as 
much kinetic energy. as in the eM.) Now, a factor of 4 is some benefit, to be sure, but 
the rdativistic gain can be greater by far. Colliding electrons with a laboratory kinetic 
energyofl GeV, for example. would have a rtlativtkinetic energyof4000 GeV! D 
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(h) According to clocks on the ground (sySlem 5), SllHtlighlS A and B (situated 4 km  
apart) �re both turned on al precisely g:oo P.M. Which one went on first according 
to an observer on a train (syslem 5'). which moves from A loward B at � the speed 
of Ught? How much later (in seconds) did the other light go on? Noll: As always in 
relativity. we are \;lIking here about what 5' observed. after correcting for the lime it 
took the light to reach her. not what she actually SI1'" (which would depend on where 
she was located on the train). 

,., (_j How do volumes transform? (lh container hn volume V' in its own rest frame. S. 
whal is its volume as measured by an observer in S. with respect to which it is moving 
at speed v?) 

(hj How do dmsities transform? (If a con\;liner holds p' molecules per unit volume in its 
own reSI frame. 5'. how many molecules per W1it volume does it orty in 5?) 

H Cosmic ray muons are produced high in the atmosphere (al SOOOm. say) and travel 
toward the earth at very nearly the speed of light (0.998 '. say). 

I-I Given the lifetime of the muon (2.2 x 10-6 sec ). how rar would it go before 
disintegrating, a«ording to prerelativistic physics? Would the muons make it to 
ground level) 

(bl Now answer the same question using rekltivisti, physics. (Because of time dilation. 
the muons last longer. $0 they travel farther.) 

(e) Pions are also produced in the upper atmosphere. In fact. the sequence is proton 
(from outer space) hilS prolon (in atmosphere) -> p + p + pions. The pions then 
decay into muons: 1f- -10 jJ.- + vu: 1f+ -> 1'-+ + �"" BUI. the lifetime of the pion is 
much shorter (2.6 x 10-1 5). Assuming the pions have the same speed (0.998 f). will 
they reach ground leveP 

1.5 Half the muons in a monoenergelic beam decay in lhe first 600 m, How bst are they 
going? 

1.6 As the outlaws esope in their getaway or. which goes Ie. the cop fires a bullet from 
the pursuit car. which only goes Ie. The muzzle velocity (speed relative to goo) of the 
bullet is ie. Does lhe bullet reach its target 

1-) According to prerelativistic physics? 
(h) According to relativity? 

3.7 Find the matrix M that inverts Equation 3.12: xl' _ M�x"' (use Equation l.3). Show 
that M is the matrix inverse of A: AM '" I. 

l.3 Show thaI the quantity I (in Equation 3.13) is invariant under Lorentz transformations 
(Equation 3.8). 

3.9 Given two fouT·vectors, a" = (3. 4. 1. 2) and /II' _ (5, O. 3. 4], find: a". P". al• t>l. a b. 
al• pl. and a .  b. Characterize al' and /II' as timdike. spacdike. or lightlike. 

3.10 A second-rank lensor is c.alled symmtlric ifit is uO(:hanged when you switch the indices 
(.'" -= 1'"); it is anlisymmelric ifit changes sign (a'" = -"""). 
la) How many independent elements are there in a symmetric tensor? (Since ,II "'" sl'. 

these would count as only On� independent dement.) 
(h) How many independent elements are there in an antisymmetric tensor? 
(e) Show thaI symmetry is presenred by Lorentt transformations - thaI is. if 1" is 

symmetric. so too is s""'. What about anlisymmetry? 



3.5 &omp/e5 0l1dApplicl1tioll5 1 111 
(dllf f'" is symmetric, show that $". is also symmetric. If a'" is antisymmetric, show 

that a". is antisymmetTic. 
(�l If 0'" is symmetric and a'" is antisymmt'tJic, show that s1'"a". '" o. 
(I) Show t1utany second-rank tensor (t"') can bewritten as the sum of an antisymmetnc 

part (a"') and a symmetric p,art (s""): I'" = a'" + s"'. Construct 1'" and a'" explicitly, 
given t'''. 

3.!! A p;o.rticle is tr.Iveling at �' in the x direction. Detennine its proper velocity, rf (all four 
components). 

3.!2 Consider a collision in which p;utide A (with 4-momentum �) hits p<lrtide B (4_ 
momentum 1f.). producing p<lrticles C !i?) and D �). Assume the (relativistic) energy 
and momentum are conserved in systems S (I,:. + p� = 1:: + to). Using the lorentz 
transformations (Eq. 3.12), show that energy and momentum are also conserved in 
S. 

3.13 Is t' timelike, sp<lcelike, or lightlike for a (real) p;trtide of mass III? How about a 
massless particle? How about a virtual particle? 

3.U How much more does a hot potato weigh than a cold one (in kg)? 
].15 A pion traveling at speed � decays into a muon and a neutrino, 11"- ->- /l- + iiI'. If the 

neutrino emerges at 90° to the original pion direction, at what angle does the '"' come 
off? IAllswer: tane .. (1 - III!/III! )/(2tlyl).] 

3.16 Particle A (energy E) hits particle B (at rest). producing particles C\. Cl . . . .  :A + B ->- C) 
+ Cl + . . .  + C •. Calculate the threshold (i.e. minimum E) for this reaction, in terms 
of the various particle masses. 

[Allswer : 

3.17 Use the result of Problem 3.1610 find the threshold energies for the following reactions, 
assuming the target proton is stationary:' 

(a)p + p  ..... p + p + lfo 
(b)p + p _  P + P + If+ + If-

(cl lf- + p _  p + p + n 
(d)lf- + p _ K'l +  1:0 

(eIP + p _ p + 1:+ + KO 

].18 The first man-made n- (Fig. \.9) was created by firing a high�nergy proton at a 
stationary hydrogen atom to produce a K+/K- p;o.ir: p + P _ P + P + K+ + K-; 
the K- in tum hit another stationary proton, K- + P ..... n- + K'l + 1(+. What 
minimum kinetic energy is required (for the incident proton), to make an n- in this 
way? (GeU-Mann must have done this calculation to see whether the experiment would 
be feasible.) 

BewQ"': The Panick Ph)"ic5 Book/tl land 
most other sources) list particle 'masses' in 
MeV. For example, the mass of the muon 
is quoted as 105.658 MeV. What they 1IItIlII, 
of COUrsl'!. is the 1"<$1 <""'111' of the muon: 
m"� = 105.658 MeV - or. what is the same 

thing. m. = 105.658 MeVf�· !t is safest to 
conven formulas from mass to rest mergy 
bqOn plugging in any numbers. In this 
case, for ex:omple, multiply top and bottom 
by�, to get f .... '" UMel)l � (mAcl)1 � 

Im1el)11I2Imlcl). 
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,.1, Particl� A. at r�t. decays into particl�s Band C (A ---> B + q. 
(0) Find the energy ofth� outgoing particles. in terms of the various masses. 

(h) Find w magnitudes ofth� outgoing momenta. 

where .l.. is the so�alled triangle foncticln : 

.l..(:.:.)',z) ;;;; xl + r +r - 2xy- 2:>.7- 2)'2'. 

Ie) Note that A factors: .I.(al. Y. el) = (a + b + c)(a + II - ')la - b + c)(a - h - c). Thus 
IPDI goes to zero when m ... = mD + me. and runs imaginary if m" <: (mD + me). 
Explain. 

l.l0 U� the result of Problem 3.19 to find th� eM �nergy of each decay product in the 
following reactions (see footnote to Problem 3.17): 

I·I "- ...... /.I- +vp 
(bIITQ ...... y + y  
Ie) x:+ ...... IT'" + ,,0 
IdIA ...... p+"'-
leI Q- ...... A + K-

1.21 A pion at rest decays into a muon and a neutrino (IT- ...... /.1- + vp). On th� average. 
how far will the muon travel (in vacuum) befor� disintegratingJ IAnswer: d = [(m.! -
m!I/(2m.mu))cr = 1S6 m.1 

1.22 Particle A. at rest. decays into three or more particles: A ...... B + C + D + . 
('1 Determine the maximum and minimum energies that B can h�ve in such a decay. in 

terms ofth� various mas�s. 
(blfind th� maximum and minimum �k<:tron en�rgi� in muon decay. /.1- ...... e- + 

v< + vU' 
l.B (01 A p;ortide traveling at speed " approaches an identical particle at rest. What is 

w speed (v) of each p<lrtide in w CM frame) (G:lssi<:llUy. of course. it would 
just be "/2,) 

(Answer: (2'/11) (1 -;r=-urycr)1 
(h) find )' . 1/� in terms of 1" • 1/-11 _ "l/el, 

(Answer: -III" + 1)/2J 
Ie] Use your result in p<lrl (b) to expr�s th� kinetic energy of �ach partid� in th� CM 

frame. and thus re-derive Equation 3.54 
l.U In reactions of th� typt A + B ...... A + C, + C2 + .  (in which p;orticl� A scatters off 

particle B. producing Ct. Cl . . .  -J. there is another inerti;tl frame, in addition to the lab 
(B at rest) and the CM (PTOT = 0). which is sometimes u�ful. It is called the Brtit. or 
'brick w;tll' frame. and it is the system in which A recoils with its momentum reversed 
(pop.- _ -p�). as though it had bounced off a brid:: wall. Take the ca� of elastic 
scattering (A + B ...... A + 8); if p;ortide A carri� energy E. and scatters at an angl� e, 
in th� CM. what is its energy in th� Br�it frame? Find th� velocity of the Breit frame 
(magnitude and direction) relative to the CM. 
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US In a two-body sc;ottenng �nt. A + B ..... C + D. it is con�nient to introd� the 

MandelslDm variables 

5 l!! {pJ, + PB)2 /,2 
;;;;; {pJ, -pc)2/,2 

U = (PA - PDI2/C2 

(a) Showtlut s +  1 + .. = m� + mi + m� + m�. 
The Ik'QI"d;c,,1 virtue of the Mandelstom variables is that they are Lorentz invariants. 
with the same value in any inertial system. uP<"rimtl1IDUy. though. the more accessible 
par:lmeters are energies and $(altering angles. 

(b) Find the eM energy of A. in terms of s. I, u and the masses. {AI1nw:r: �M = 
(s + m� -m�)2 /2.fi.( 

Ie) Find the Lab (B at rest) energy of A. (Answer: �b _ (s - m� - m�)cl /2m�_) 
(d) Find the total CM energy (ETOT = EA + E� = Ee + ED). (Answer: EftA = .,rscl.) 

3.U For elastic scattering of identic a.! particles, A + A -> A + A, show that the Manddstom 
variables (Problem 3.25) become 

s = 4(p2 + m1(2)/2 

= _2p2(1 - cosO)/2 

u = _2p2(1 + cos 0)/2 

where p is the eM momentum of the incident particle. and e is the scattering angle. 
3.27 Work out the kinematics of Compton SGlttering: a photon of wa�length ), collides 

elastiGillly with a charged panicle of mass m. If the photon scatters at angle e. find its 
outgoing wavelength. ),'. (Answer: ),' "' ),  + (k{mc){l -cos 0).) 
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Symmetries 

Symmdries play an important role in elementary particle physics, in part btcaust of their 
relation kI conservation laws and in part because they permit Ont to make $Ome progress 
when a complete dynamical theory is not yet available. The first section of this chapter 
contains some general remarks about the mathematical description of �m1nttry (group 
theory) and the rdation bttwten symmetry and conservation laws (Notther's theorem). 
We then take up the case of rotational �mmetry and its relation to angular momentum 
and spin. This leads in turn to the 'internal' �mmetries - isospin, S U( J), and }lavor 
SU(6). Finally, we consider 'discrete' symmetries - parity, charge conjugation, and 
time reversal. Exctpt for the theory ofspin (Stclion 4.2) - which will be used txttnsilltly 
in later chapters - and the material on parity in Section 4.1 - which is usefol 
background for Chapttr 9 - this chapttr can be studied as supeljicially (or as deeply) 
as the reader wishes. I recommend a quid: pass at this stage and a return to specific 
sections later, if warranted. Some knowledge of matrix theory is presupposed; readers 
fomiliar with quantum mechanie;s will find Iht sections on angular momentum an easy 
review (those unacquainltd with quantum mechanie;s may find them hoptltssly obscure, 
in which case they should study the relevant chapttr of an introductory quantum text). 
Group theory is touched on here in a scandalously cursory fashion (my main purpose is 
to introduct some standard terminology); a serious student of elementary particle physics 
should plan eventually to study this subject in for greater detail. 

4.1 
Symmetries, Groups, and Conservation Laws 

Take a look at the graph in Figure 4.1. I won't tell you what the functional form of 

f(x) is, but this much is dear: It's an odd function, f(-x) = -f(x). (If you don't 
believe me, trace the curve, rotate the tracing by 180°, and check that it perfectly 
fits the originaL) From this it follows, for instance, that 

ifl-xlr � iflxll'. 

� !I . -, 

j+> �l f(x) dx = 0, 

j., r+> 
_7 

[{(x)j2 dx = 2 io [{(x)f dx, 

Inlroduaion I� &""'''lary POrlidu, StGotld EdiliolL O .. id Griffiths 
Copyright C 2008 WILEY·VCH Vedas GmbH & Co. KGaA. Weinheim 
ISBN, 97S-l·527-4060H 

(4.1) 

I ln 
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Fig. 4.1 An odd function. 

that no cosines appear in the Fourier expansion of f(x), and that its Taylor series 
contains only odd powers of x. In fact, you can deduce quite a lot aboutf(x), even 
though you don't know its functional form, just from the observation that it has 
a particular symmttry - oddness, in this case. In physics, intuition or a general 
principle often suggests symmetries in a problem, and their systematic exploitation 
can be an extremely powerful tool.' 

The most striking examples of symmetry in physics are, [ suppose, crystals. But 
we're not so much interested here in static symmetries of slw�as in dynamical sym· 
metries of motion. The Greeks apparently believed that the symmetries of nature 
should be directly reflected in the motion of objects: stars must move in circles be· 
cause those are the most symmetrical trajectories. Of course, planets do not, and that 
was embarrassing (it was not the last time that naive intuitions about symmetry ran 
into trouble with experiment). Newton recognized that fundamental symmetries 
are revealed not in the motions of individual objects, but in the set of (Ill possible mo· 
tions - symmetries are manifest in the equations of motion rather than in particular 
solutions to those equations. Newton's law of universal gravitation, for instance, ex· 
hibits spherical symmetry (the force is the same in all directions), and yet planetary 
orbits are elliptical. Thus the underlying symmetry of the system is only indirectly 
revealed to us; indeed, you might wonder how we would ever have discovered it 
from the observed planetary trajectories, if we didn't have a pretty strong hunch 
that the gravitational field of the sun 'ought' to be spherically symmetrical. 

It was not until 1917 that the dynamical implications of symmetry were com· 
pletely understood. In that year, Emmy Noether published her famous theorem 

• In som., r'"S�!$. th., ap!",al to symm�try 
is ch .. r .. cteristic of an iJtcomplt� theory. for 
example, if we som�how disc�red th� rx· 
plicit form of j(><). say.fl") = e-"> sinl")), 
m.,n the theorems in Equ .. tion U would lose 
their lus!eT. Why bother with poo1* informa. 
tion when we can have it QU? But even in a 

m.1R1re theory. symmetry coIl5iderations of· 
ten leod to dee!",! understanding and alcu· 
lational simplification. For instance. if you·re 
called upon to integrate fl") from -3 to +3. 
il �ys to notice thatj(,,) is odd. even if you 
do know its functional form. 
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Table •. 1 Symmetries �nd conservation laws. 

Symmetry Con5<!rvation law 

Translation in time � Energy 
Transbtion in sp,ace � Momentum 
Roution � Angular momentum 
Gauge transformation � Charge 

relating symmetries and conservation laws: 

Noether's Theorem: Symmetries +l' Conservation laws 

Every symmetry of nature yields a conservation law; conversely. every conservation 
law reflects an underlying symmetry. For example. the laws of physics are sym­
metrical with respect to tnms/ations in time (they work the same today as they did 
yesterday). Noether's theorem relates this invariance to conservation of energy. If 
a system is invariant under translations in space, then momentum is conserved; if 
it is symmetrical under rotations about a point, then angular momentum is con­
served. Similarly. the invariance of electrodynamics under gauge transformations 
leads to conservation of charge (we call this an intt:mai symmetry. in contrast to 
the space-time symmetries). I'm not going to provt Noether's theorem; the details 
are not terribly en lightening [1]. The important thing is the profound and beautiful 
idw that symmetries are associated with conservation laws (see Table 4.1). 

I have been speaking rather casually about symmetries, and I cited some 
examples; but what precisely is a symmetry? It is an operation you can perform 
(at least conceptually) on a system that leaves it invariant - that carries it into a 
configuration indistinguishable from the original one. In the case of the function in 
Figure 4,1, changing the sign of the argument, x -0. -x, and multiplying the whole 
thing by -1. f(x) -0. -f{-x), is a symmetry operation. For a meatier example. 
consider the equilateral triangle (Figure 4.2). [t is carried into itself by a clockwise 
rotation through 120Q (R+). and by a counterclockwise rotation through 120Q (R_). 
by flipping it about the vertical axis a (R.). or around the axis through b (Rt.), or c 
(Re). [s that all? Well, doing nothing (I) obviously leaves it invariant. so this too is a 
symmetry operation, albeit a pretty trivial one. And then we could combine opera­
tions - for example, rotate clockwise through 2400_ But that's the same as rotating 
countt:r clockwise by 1200 (I.e. R� = R_). As it turns out. we have already identified 
all the distinct symmetry operations on the equilateral triangle (see Problem 4.1). 

The set of all symmetry operations (on a particular system) has the following 
properties: 

1. Closurt: If Ri and Rj are in the set. then the product. RiRj ­
meaning: first perform Rj. then perfonn R;' - is also in the 
set; that is, there exists some 14 such that R;Rj = 14 . 

• Note the 'backwards' ordering. Think of the r;ymmetty o�rations as acting on a system to thdr 
right: RoRj[.o.) = R;iRj(.o.)j: Rj acts first. �nd then R; �cts on the result. 
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' A  

B "-'-----!----'-" c 

• 
Fig. 4.2 Symmetries of the e<:luil�ter�1 tri�ngle. 

2. Identity: There is an element I such that lR; = R;I = R; for 
all elements R;. 

3. Inwrse; For every element R; there is an inwm, R;-I , such 
that R;R;-I = R;-I R; = I. 

4. Associativity: Rj(RjRk) = (R,Rj)Rt. 

These are the defining properties of a mathematical group. Indeed, group theory 
may be regarded as the systematic study of symmetries. Note that group elements 
need not commuU: R,Rj oF RjRi, in general. If all the elements do commute, the 
group is called Abelian. Translations in space and time form Abelian groups; 
rotations (in three dimensions) do no! [2J. Groups can be finite (like the triangle 

group, which has just six elements) or infinite (for example, the set of integers, with 
addition playing the role of group 'multiplication'). We shall encounter continucus 
groups (such as the group of all rotations in a plane), in which the elements depend 
on one or more continuous parameters' (the angle of rotation, in this case), and 
discrete groups, in which the elements may be labeled by an index that takes on 

only integer values (aU finite groups are, of course, discrete). 
As it turns out, most of the groups of interest in physics can be formulated as 

groups of matrius. The Lorentz group, for instance, consists of the set of 4 x 
4 A matrices introduced in Chapter 3. [n elementary particle physics, the most 
common groups are of the type mathematicians call U(n): the collection of all 
unitary n x n matrices (see Table 4.2). (A unitary matrix is one whose inverse 

is equal to its transpose conjugate: U-I = [I'.) [fwe restrict ourselves further to 
unitary matrices with determinant 1, the group is called SU(n). (The 5 stands for 
'special', which just means 'determinant 1 '.) If we limit ourselves to real unitary 
matrices, the group is O(n). (0 stands for 'orthogonal'; an orthogonal matrix is 
one whose inverse is equal to its transpose: 0-1 = 0.) Finally. the group of rea!. 
orthogonal, n x n matrices of determinant 1 is SO(n); 50(n) may be thought of 
as the group of all rotations in a space of n dimensions. Thus, SO(3) describes the 

• If this dependen� ukes the form of an Qnalytic function. it is called a Lit. group. AU of the con· 
tinuous groups one encounters in physics are Ue groups 13]. 



Table 4_2 important symmetry groups. 

Group name Dimension Matrices in group 

V(n) " " unitary ( fl· V '" I) 
SU(n) " ' "  unitary,determinant! 

O(n) " ' "  orthogonal {DO", I} 
SO(n) " ' "  orthogonal, determinant 1 

rotational symmetry of our world, a symmetry that is related by Noether's theorem 
to the conservation of angular momentum. Indeed, the entire quantum theory of 
angular momentum is really closet group theory. It so happens that SO(3) is almost 
identical in mathematical structure to S U(l), which is the most important internal 
symmetry in elementary particle physics. $0 the theory of angular momentum, to 
which we turn next, will actually serve us twice. 

One final thing. Every group G can be represented by a group of matrices: for 
every group element a there is a corresponding matrix M�, and the correspon­
dence respa:ts group multiplication, in the sense that if ab = c, then M"Mb = Me. 
A representation need not be 'faithful': there may be many distinct group ele· 
ments represented by the same matrix. (Mathematically, the group of matrices is 
homomorphic. but not na:essarily isomorphic, to G.) Indeed, there is a trivial case, 
in which we represent every element by the 1 x 1 unit matrix (which is to say, the 
number 1). If G is a group of matrices, such as SU(6) or 0(18), then it is (obviously) 
a representation of ilstlf -we call it thefondamental representation. But there will, 
in general, be many other representations, by matrices of various dimensions. FOr 
example, 5U(l) has representations of dimension 1 (the trivial one), 1 (the matrices 
themselves), 3, 4, S, and in fact every positive integer. A major problem in group 
theory is the characterization of all the representations of a given group. 

Of course, you can always construct a new representation by combining two old 
ones, thus 

I Mil) I 
(zeros) 

But we don't count this separately; when we list the representations of a group, 
we are talking about the so-called irreducible representations. which cannot be 
da:omposed into block-diagonal form. Actually, you have already encountered 
several examples of group representations, proha bly without realizing it: an ordinary 
scalar belongs to the one-dimensional representation of the rotation group, 50(3), 
and a va:tor belongs to the three-dimensional representation; four-va:tors belong 
to the four..dimensional representation of the Lorentz group; and the curious 
geometrical arrangements of Gell-Mann's Eightfold Way correspond to irreducible 
representations of the group 5 UP). 
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4.2 
Angular Momentum 

The earth, in its motion, carries two kinds of angular momentum: orbital angular 
momentum, nnv, associated with its annual revolution around the sun, and spin 
angular momentum, lw, associated with its daily rotation about the north-south 
axis. The same goes for the electron in a hydrogen atom: it too carries both orbital 
and spin angular momentum. In the macroscopic case, the distinction is not terribly 
profound: after all, the spin angular momentum of the earth is nothing but the sum 
total of the 'orbital' angular momenta of all the rocks and dirt dods that make it up, 
in their daily 'orbit' around the axis. In the case of the electron this interpretation 
is not open to us: the electron, as far as we know, is a true point particle; its spin 
angular momentum is not attributable to constituent parts revolving about an axis, 
but is simply an intrinsic property of the particle itself (see Problem 4.8). 

Classically, we are free to measure all three components of the orbital angular 
momentum vector, L = r x mv, to any desired precision, and these components 
can assume any values whatever. In quantum mechanics, however, it is impossible 
in principle to measure all three components simultaneously; a measurement of 
Lx, say, inevitably alters the value of 4, by an unpredictable amount. The best 
we can do is to measure the magnitude of L, (or rather, its square: L2 = L L) 
together with one component (which we customarily take to be the z component, 
L,,). Furthermore, these measurements can only return certain 'allowed' values" 
Specifically, a (competent) measurement of L2 always yields a number of the form 

(4.2) 

where 1 is a nonnegative integer: 

1 = 0, 1,2 ,3 , .  (4.3) 

For a given value of I, a measurement of L,; always gives a result of the form 

(4.4) 

where m, is an integer in the range -I to +1: 

Inj = -1, -1+ 1. . . . , -l , O,H, . . .  , 1 - 1, l  (4.5) 

(21 + 1) possibilities. Figure 4.3 may help you to visualize the situation. Here I = 2, 
so the magnitude of L is .J6f1. = 2.45 fl.; Lz can assume the values 2f1., Ii, 0, - Ii, or 

• J �m not going to p""" the quanti�tion lUles for �nguln momentum. �nd irtllis m.1IteriaI is 
new to you. t suggest that y<lU consult a textbook on quantum mecJu,nics. All J propose to do 
here is summarize the essenti�l results _ will need in wh�t rollows. 
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Fig. 4.3 Possible orientations of the �ngul'lr momentum vector for I _ 2. 

-21i,. Notice that the angular momentum vector cannot be oriented purely in the z 
direction. 

1111' same goes for spin angular momentum: a measurement of S2 = S . S can 
only return values of the form 

(4.6) 

In the case of spin, however. the quantum number s can be a half-integer as well 
as an integer: 

(4.7) 

For a given value of 5, a measurement of Sz must yield an answer of the form 

(4.8) 

where m, is an integer or half· integer (whichever 5 is) in the range -s to s: 

m, = -s. -s + I  . . . . , s - l,s  (4.9) 

(25 + 1) possibilities. 
Now, a given particle can be given any orbital angular momentum I you like, but 

for each type of particle, the value of s is fix�d. Every pion or kaon, for example. 
has 5 = 0; every electron, proton, neutron. and quark carries 5 = !; for the p, the 
"', the photon, and the gluon, s = 1; for the t:. 's and the n-, s = �; and so on. We 
call s the 'spin' of the particle. Particles with half.integer spin are jmnwns - all 
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Table 4 3 Classification of particles by spin 

Bo:rons (integer $pin) Fermions (half·integer spin) 

Spin 0 Spin 1 Spin ! Spin � 
- Mediators Quarks/Leptons - +- Elementary 

+- Composite Pseudoscalar mesoIl$ V�tor mesons Baryon octet Baryon d�uplet 

baryons, leptons, and quarks are fermions; particles with integer spin are bosoMs ­
all mesons and mediators are bosons (see Table 4.3).' 

4.2.1 
Addition of Angular Momenta 

Angular momentum states are represented by 'kets': II ml ) or Is m,).  lbus, if I 
say the electron in a hydrogen atom occupies the orbital state 13 -1) and the spin 
state I i 1), I am telling you that I = 3, ml = -1, S = l (which is unnecessary, of 
course; ifit is an electron, s must be !), and m. = t. Now, it may happen that we 
are not interested in the spin and orbital angular momenta separately, but rather in 
the total angular momentum, L + 5. (In the presence of coupling between L and 5 

- tidal. if it's the earth-sun system; magnetic, for the electron-proton system - it 
is the sum, and not Land 5 individually, that wil l be conserved.) Or perhaps we are 
studying the two quarks that go to make a 1/1 meson; in this case, as we shall see, 
the orbital angular momentum is zero, but we are confronted with the problem of 
combining the two quark spins to get the total spin of the 1/1: 5 = 51 + 52. In either 
case, the question arises: how do we add two angular monuntat 

J = 11 + /2 (4.10) 

Classically, of course, we just add the components. But in quantum mechanics 
we do not have access to all three components; we are obliged to work with one 
component and the magnitlUfe. So the question becomes: if we combine states 

Ulml) and li2m2), what total angular momentum state(s) Um) do we get? The z 
components still add, naturally, so 

(4.11) 

but the magnitudes do not; it all depends on the relative orientation of II and h 
(Figure 4.4). If they are parallel the magnitudes add, but if they are anti parallel the 

• The terms 'fermion' and 'boson' refer to 
the ru�s for constructing composite ....... ,e· 
functions for identical p.ortides: boson 
....... "" functions must "" symmelric un""r 
intercmmge of any two particles, fermion 
wl,,<,funClions "'" arni.ymmetric. This kads 
to the Pauli exclusion principk for fermions, 
and to pr<!found differences in the statis· 
tiul mechanics of the two particle types. 

The 'connection between spin and stati.tiu;' 
(all fermions have �lf·;nteger spin and al! 
bosons ha"" integer spin) is a deep theorem 
in quantum field theory . 

t t'U use the letter I for generic ansubr rno­
menrum _ it could "" orbital 1L), spin (S), or 
some cornbine<l quantity. 
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Fig. 4.4 Addition of �ngul�r moment�. 

magnitudes subtract; in general, the magnitude of the ye.::tor sum is somewhere 
between these extremes. As it turns out. we get evayjfrom (h + ill down to Ul -ill. 
in integer steps [41: 

(4.12) 

For instance, a particle of spin 1 in an orbital state I = 3 could have total angular 
momentumj = 4 (i.e. J2 = 20/i.2). orj = 3 U2 = 12112), orj = 2 U2 = 6Iiz). 

Example 4. 1 A quark and an antiquark are bound together, in a state of zero orbital 
angular momentum, to form a meson. QlUstion: What are the possible values of 
the meson's spin? 

Solution: Quarks (and therefore also antiquarks) carry spin !, so we can get ! + ! = 1 or ! - ! = O. The spin·O combination gives us the 'pseudoscalar' 
mesons (n's, K's, I), I)') - 'scalar' means spin 0, 'pseudo-' will be explained shortly. 
The spin-l combination gives the 'Ye.::tor' mesons (p's, K*'s, IP, w) - 'vector' means 
spin 1. 1m 

To add three angular momenta, we combine two of them first, using Equation 
4.12, and then add on the third. Thus, if we allow the quarks in Example 4.1 an 
orbital angular momentum I > 0, we get mesons with spin I + 1, I, and I - L 
Because the orbital quantum number has to be an integer, all mesons carry integer 
spin (they are bosons). By the same token, all baryons (made up of three quarks) 
must have half-integer spin (they are fermions). 

Example 4.2 Suppose you combine Ihree quarks in a stale of zero orbital angular 
momentum. QUt:$tion: What are the possible spins of the resulting baryon? 

Solution; From two quarks, each spin i I we get a total angular momentum of 
� + � = 1 or i - i = O. Adding in the third quark yields 1 + i = � or l - i = ! 
(when the first two add to I), and 0 + i = i (when the first two add 10 zero). Thus 
Ihe baryon can have a spin of � or l (and the latter can be achieved in two different 
ways). In practice, s = � is the decuplet, s = t is the octet, and evidently, the 
quark model would allow for another family with s = i. (If we permit the quarks 
to revolve around one another, throwing in some orbital angular momentum, 
the number of possibilities increases accordingly - but the total will always be a 
half-integer). � 

Well, Equation 4,12 tells us what total angular momenta j we can obtain by 
combining jl and j2, but occasionally we require the explicit decomposition of 
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�,ml ) �2mZ) into specific states of total angular momentum, �m): 

VI+h) 
�lm'}�lm2) = L d.,l;(;''''l�m), with m = m, + ml 

j-vl-hl 

'I' 

-'12 
, 

(4.13) 

The numbers d�l"'l are known as Cltbsch-Goraatl roejficienis. A bookon advance<! 
quantum mechanics will explain how to calculate them. In practice, we normally 
look them up in a table. (Ibere is one in the P(lrticlt Physics Booklet, and the case 
j, := 2, jz = ! is reproduced in Figure 4.5) The Clebsch-Gordan coefficients tell 
you the probability of gettingjU + 11fiz. for any particular allowedj, if we measure 
p on a system consisting of two angular momentum states �,ml) and �2m2): the 
probability is the sqmirf of the corresponding Clebsch-Gordan coefficient. 

Example 4.3 The electron in a hydrogen atom occupies the orbital state 12 -1) 
and the spin state 1 � �). Question: If we measure p, what values might we get, and 
what is the probability of each? 

Solution: The possible values of j are 1 +  s = 2 + � = ! and I - s = 2 - � = � ,  
The z components add: m = -1 + � = -to We go to the Clebsch-Gordan table 
(Figure4.5) labele<!2 x !, which indicates that we are combiningjl = 2 with j2 = �, 
and look for the horizontal row, labeled -1 ,  �; these are the values of m, and m2. 

Reading off the two entries, we find 12 - 1) 1 �  �) = .fl l� - �) -Ii I �  - t)· 
So the probability of getting j = � is j ,  and the probability of getting j = � is �_ 
Notice that the probabilities add to 1, as, of course, they must. W 

Example 4.4 We know from Example 4.1 that two spin.! states combine to give 
spin 1 and spin O. Probltm: Find the explicit Clebsch-Gordan de<:omposition for 
these states. 



Solution: Consulting the 1 x � table, we find 

1 1  l) ll l) = 111) 
IH)I! - 1) = (-jz)II0) + (72)100) 
I �  - i) l� 1) = (-31)110) - (-31)100) 

It - !lI! - � ) = 11 - 1) 
Thus the three spin 1 states are 

1 11) = 1 1  �) 11 �) 

whereas the spin 0 state is 
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(4.14) 

(4.15) 

(4.16) 

By the way. Equations (4.15) and (4.16) (an be read directly off the Clebs(h-Gordan 
table; the (Oeffidents work both directions: 

Um) = I:di,.,;;!,llmzUlmdUzmz) 
li.i2 

(4.17) 

This time we read down the (olumns, instead of along the rows. The spin-l 
(Ombination is (ailed the 'triplet', fOf obvious reasons, and spin 0 is called the 
'singlet'. For future referen(e. notke that the triplet is sym�tric under inter(hange 
of the partides, 1 ..... 2, whereas the singlet is antisyrnmetrk (that is, it (hanges 
sign). Incidentally, in a singlet state the spins are oppositely aligned (antiparallel); 
however, it is not the (ase that in a triplet state the spins are ne(essarily parallel; 
they are for m = 1 and m = -1, but not for m = O. '!D 

4.2.2 
Spin � 

The most important spin system is s = 1; the proton, neutron, electron, all quarks, 
and all leptons carry spin � .  Furthermore, once you understand the formalism for 
5 = 1, any other case is a relatively simple matter to work out. So I will pause here 
to develop the theory of spin 1 in some detail. 

A partide with spin 1 can have m. = � ('spin up'), or m, = -1 ('spin down'). 
Informally, we represent these two states by arrows: t and -1-. But a better notation 
is afforded by two<omponent column vectors, or spinors: 

" (I) 
In) = 0 ' (4.18) 
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It is often said that a particle of spin ! can only exist in one or the other of these 
two states. but that is quite false. The most general state ofa spin·t particle is the 
linwr combination 

(4.19) 

where a and 13 are two complex numbers. It is true that a mea,5urtrrn:nl of Sz 
can only return the value +!Ii or -!Ii, but the first outcome, say, does not prove 
that the particle was in the state t prior to the measurement. In the general case 
(Equation 4.19), lal2 is the probability that a measurement of Sz would yield the 
value +tfi. and 11312 is the probability of getting - �Ii. Since these are the only 
allowed results. it follows that 

(4.20) 

Apart from this 'normalization' condition, there is no a priori constraint on the 
numbers a and 13. 

Suppose now that we are to measure S" or Sy on a particle in the generic state 
given by Equation 4.19 What results might we get. and what is the probability of 
each? Symmetry dictates that the allowed values be ±lfi - after all. it's perfectly 
arbitrary which direction we choose to call z in the first place. But determining 
the probabilities is not so simple. To each component of S we associate a 2 x 2 
matrix:' 

(4.21) 

The eigenvalues of .I)" are ±�, and corresponding normalized eigenve<:tors 
aret 

_ 7> ( , ) X± - ±:h 
• Again, the ,uri ... u;"" of these matrices will be 

found in any quantum-medunics lex!.. My 
purpose here is to show you Mil' angular mo· 
mentum is bandied in �rtide pbysics, not to 
elCplain wily it is done this way. 

t A nonzero column matrix 

x = (:J 

(4.22) 

is called an eige"vtCtor of a giVl'n " x " lIllI­
nix M if 

for some number ). (the eige"va/",,). Notice 
that any multiple of X is still an eigenvector. 
with the s.ame eigenvalue. 
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(see Problem 4.15). An arbitrary spinor �) can be written as a linear combination 

of these eigenvectors: 

(4.23) 

where 

(4.24) 

The probability that a measurement of 5" will yield the value iii is lal2; the 
probability of getting -tli is Ib12. Evidently, lal1 + Ibl1 = 1 (see Problem 4.16). 

The general procedure, of which this was a particular instance, is as follows: 
1. Construct the matrix, A. representing the obselVable A in 

question. 
2. The allowed values of A are the eigenvalues of A. 
3. Write the state of the system as a linear combination of 

eigenve<:tors of A: the absolute square of the coefficient of 
the ith eigenvector is the probability that a measurement of 
A would yield the ith eigenvalue. 

Exomple 4.5 Suppose we measure (5,,)2 on a particle in the state �) Question: 

What values might we get, and what is the probability of each? 
Solution. The matrix representing (5,,)2 is thesquareorthe matrix representing S,,: 

Since 

S' � 
.' (' 0) " 4 0 1 

(4.25) 

evtry spinor is an eigenve<:tor of S!, with eigenvalue ¥. Thus we would be certain to 

get ¥ (probability 1). The same goes for S� and S�, so every spinor is an eigenstate 

of $2 = $; + $; + S�, with eigenvalue J�' . This should come as no surprise _ in 
general, for spin s we must have 52 

"" * + l)lil. U 
For mathematical purposes, the factor of � in Equation 4.21 is ugly, and it is 

customary to introduce the Pauli spiFl matrices: 

(4.26) 



128 I 4 Symmtlrits 

SO that S = (�)17 _ The Pauli matrices have many interesting properties, some of 
which are explored in Problems 4.19 and 4.20. We shall encounter them repeatedly 
in the course of this book. 

In a sense, spinors (two-component objects) occupy an intermediate position 
between scalars (one component) and vectors (three components). Now, when you 
rotate your coordinate axes, the components of a vector change, in a prescribed 
manner (see Problem 4.6), and we might inquire how the components of a spinor 
transform, under the same circumstances. The answer [SI is provided by the 
following rule: 

where U(8) is the 2 x 2 matrix 

U(8) = e-i("�)/2 

(4.27) 

(4.28) 

The vector 8 points along the axis of rotation, and its magnitude is the angle of 
rotation, in the right. hand sense, about that axis. Notice that the exponent here is 
itself a matrix! An expression of this form is to be interpreted as shorthand for the 
power series: 

(4.29) 

(see Problem 4.21): As you can check for yourself (Problem 4.22), U(9) is a unitary 
matrix of determinant 1; in fact, the set of all such rotation matrices constitutes 
the group SU(2). Thus spin·t particles transform under rotations according to the 
two-dimensional representation of S U(2). Similarly, particles of spin I, described by 
vtctcrs, belong to the three-dimensional representation of SU(2); spin.� particles, 
described by a four-component object, transform under the four·dimensional 
representation of SU(2); and so on. (The construction of these higher-dimensional 
representations is explored in Problem 4.23.) You're probably wondering what 
SU(2) has to do with rotations; well. as I mentioned earlier, SU(2) is essentiallyt 
the same group as SO(3), the group of rotations in three dimensions. Particles of 
different spin, then. belong to different representations of the rotation group. 

• &W<11T For nutrices it is not th� case that 
�A�a '" �u, in Ir'n�raL You might wan! to 
meck this by using th� mltrices in Prob!�m 
•. 21. H�, tM usu.J rule dots lpply if A 
lnd B commute (i.�. if AB '" BA). 

t Ther� is ldually l subtl� distinction �!W�n 
SU(2) lnd S0(3). According to Problem •. 21. 
th� matrix U for rotation through In angle 
of 21I is -1: a spinor <hang<:< sign under su�h 
l rOlltion. And �. gco"",trical/y. l rOlltion 
through br is «Juiv.J�nt to no rotation at lll. 

SU(2) is a kind of 'doublt<!' ""rsion of sam, 
in which you don '! com� b.ack !o th� begin· 
ning until you hl"" turnt<! through 720'. In 
this sense, spinor r�pr�s�nlltions of SU(2) 
lrt not 'trut' r�pr�ntation5 of tht rotation 
group, and that's why !h�y do not lppeU in 
classical physic.s. In quantum mfihanics only 
th� squa" of th� wa"" fun�tion carries phys· 
ical si8nifi�anc�, and in the squaring th� mi­
nus sign goes away. 
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4.3 
Flavor Symmetries 

There's an extraordinary thing about the neutron, which Heisenberg observed 
shortly after its discovery in 1932: apart from the obvious fact that it carries 
no charge, it is almost identical to the proton. In particular, their masses are 
astonishingly dose, mp "" 938.28 MeV /c2, m" "" 939.57 MeV /c2• Heisenberg [6] 
proposed that we regard them as two 'stales' of a singlt particle, the nucleon. 
Even the small difference in mass might be attributed to the fact that the proton 
is charged, since the energy stored in its electric field contributes, according to 
Einstein's formula E = mel, to its inertia. (Unfortunately. this argument suggests 
thallhe proton should be the heavier of the two, which is not only untrue, but would 
be disastrous for the stability of matter. More on this in a moment.) If we could 
somehow 'turn off' all electric charge, the proton and neutron would, according to 
Heisenberg, be indistinguishable. Or, to put it more prosaically, the strong forces 
experienced by protons and neutrons are identical. 

To implement Heisenberg's idea, we write the nucleon as a two-(omponent 
column matrix 

(4.30) 

with 

(4.31) 

This is nothing but notation, of course, but it is notation seductively reminiscent 
of the spinors we encountered in the theory of angular momentum. By direct 
analogy with spin, S, we are led to introduce isospin, I.o However, I is not a vector 
in ordinary space, with components along the coordinate directions x, y, and z, but 
rather in an abstract 'isospin space', with components we will call 1 l, 12, and Il. On 
this understanding, we may borrow the entire apparatus of angular momentum, 
as developed earlier in the chapter. The nucleon carries isospin !, and the third 
component, fl' has the eigenvaluest + l (the proton) and -l (the neutron): 

(4.32) 

The proton is 'isospin up'; the neutron is 'isospin down'. 
This is still just notation; the physics comes in Heisenberg's proposition that the 

slrong interactions are invariant under rotations in isospin space, just as, for example, 
electrical forces are invariant under rotations in ordinary configuration space. We 

• The word derives from th� misle�ding older term i.otopic .pin (introduced by Wigner in 1937). 
Nuclear physicists use the (beller) word Iscb<>ric spin. 

t Th� is no factor of Ii in this case; isospin is dimensionkss. 
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call this an inttmal symmetry, because it has nothing to do with space and time, 
but rather with the relations between different particles. A rotation through 180¢ 
about axis number 1 in isospin space converts protons into neutrons, and vice 
versa. If the strong force is invariant under rotations in isospin space, it follows, by 
Noether's theorem, that isospin is CQnstrvtd in aU strong inttnution$, just as angular 
momentum is conserved in processes with rotational invariance in ordinary space.' 

In the language of group theory, Heisenberg asserted that the strong interactions 
are invariant under an internal symmetry group SU(2), and the nucleons belong to 
the two-dimensional representation (isospin �). In 1932, this was a bold suggestion; 
today the evidence is all around us, most conspicuously in the 'multiplet' structure 
of the hadrons. Recall the Eightfold Way diagrams in Chapter 1: the horizontal 
rows all display exactly the feature that caught Heisenberg's eye in the case of the 
nucleons; they have very similar masses but different charges. To each of these 
multiplets, we assign a particular isospin I, and to each member of the multiplet, 
we assign a particular f). For the pions. I = 1: 

(4.33) 

for the A, 1 ",, 0: 

A = 100) (4.34) 

for the 6's, 1 =  t: 

and so on. To determine the i50spin of a multiplet, just count the number of 
particles it contains; since I) ranges from -T to +1, in integer steps, the number of 
particles in the multiplet is 21 + 1: 

multiplicity = 21 + 1 (4.36) 

The third component ofisospin, 1), is related to the charge, Q, of the particle. We 
assign the maximum value, Il = I, to the member of the multiplet with the highest 
charge, and fill in the rest in order of decreasing Q. For the 'pre·1974' hadrons -
those composed of u, d, and s quarks only - the exp licit relation between Q and /J 
is the Gdl.Mlll1n-NishijimaformulCi: 

• It is tempting to overstat� th� so-alled 
'<:har� indepoi'ndence' of the strong forc�s 
(th� flct that they ar� the same for protons 
"" for neutrons). It dCl"s MI S2Y t .... t you 
will get the same result if you substitute an 
i"dil'idual proton for a neutron. only if you 
inmchan� all protons and neutrons. (For 
�nmple. there exists a bound state of th� 

(4.37) 

proton and th� neutron - the deuteron - but 
th�r� is "0 bound state of two protons or two 
neutrollS.) Indeoed. any such assertion would 
b.. illComl"'tibl� with th� Pauli exclusion 
prindpl�. sinc� l proton and a n�Uf{on Cln hoe 
in th� sam� qlJ2ntum state. but two neutrollS 
(or two protons) annot. 
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where A is the baryon number and S is the strangeness.' Originally, this equation 
was a purely empirical observation, but in the context of the quark model it follows 
simply from the isospin assignments for quarks: u and d form a 'doublet' (like the 
proton and the neutron): 

(4.38) 

and all the other flavors carry isospin zerot (see Problems 4.25 and 4.26). 
But classification is not all that isospin does for us. It also has important dy. 

lIamical implications. For example, suppose we have two nucleons. From the rules 
for addition of angular momenta we know that the combination gives a total 
isospin of 1 or O. Specifically (using Example 4.4), we obtain a symmetric isotriplet: 

[11) :. pp 

110) = (:7i) (Pll+ lip) (4.39) 

1 1  - 1) = 1111 

and an antisymmetric isosinglet: 

100) = (7i) (P1l - lIp) (4.40) 

Experimentally, the neutron and proton form a single bound state, the deuteron (d); 
there is no boundstate of two protons or of two neutrons. Thus the deuteron must be 
an isosinglet. Ifit were a triplet, all three states would have to occur, since they differ 
only by a rotation in isospin space. Evidently, there is a strong attraction in the / = 0 
channel, but not in the / = 1 channel. Presumably, the potential describing the 
interaction between two nucleons contains a term of the form I(l) . 1(2), which takes 
the value t in the triplet configuration and -� in the singlet (see Problem 4.27). 

Isospin invariance has implications, too, for nucleon-nucleon scattering. Con­
sider the processes 

(a) p + p -->  d+JT-t­

(b) P + II -->  d+ JTo 

(c) 11 + 11 -->  d + JT-

(4.41) 

Since the deuteron carries / = 0, the isospin states on the right are [1 1), 
[I 0), and 11-1), respectively, whereas those on the left are pp = I l l } ,  1111 = 11 - I}, 

• Since Q, A. md S �te all conserved by the 
dfi:tromagnetic forces. it follows thlOt I, is 
also conserved. H�er, the other two com· 
ponents (I, and Il). and lienee also I itself. 
�re 1101 conserved in electromagnetic interac. 
tions. For example. in the decay".o ..... Y + 
y. I goes from I to O. As for the ",""ak intM. 
actions. th� don't �n conse� S, so I, is 

not conserved in �k processes (for aample, 
A ..... P+1I- takes I, = O to IJ '" -!). 

t Since isospin pertains only to the strong 
forc<:s, it is not a rdevant quantity for leptons. 
For consis�ncy. aU leptons and mediators are 
assigned isospin zero. 
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and pn = (*)(1 1 0) + 10 0»).' Only the T = 1 combination contributes (since the 

final stilte in each case is pure 1 =  1, and isospin is conserved), so the scattering 
amplitudes are in the ratio 

(4.42) 

As we shall see,t the cross $lClwn, u, goes like the absolute square of the amplitude; 
thus 

O"a : U. : U, = 2 :  1 :  2 (4.43) 

Process (c) would be hard to set up in the laboratory. but (a) and (b) have been 
measured, and (when corrections are made for electromagnetic effects) they are 
found to be in the predicted Tiltio {7J. 

As a final example, let's consider pion-nucleon scattering, Tr N --+ Tr N. There are 
six elastic processes: 

(a) Tr+ +p .... Tr++P 
(e) Tr-+p .... Jt- +p 
(e) 1f 0  + n .... Tr° + n  

and four charge-exchange processes: 

(g) Tr+ + n .... Tr° +p 
(� lfo + n  .... Jt- +p 

(b) Tr° + P --+ Tr° + P 
(d) Tr+ + n  .... Jt+ + n  
if) 1f- + n  .... Jt- + n  

(h) Tr° +p .... Tr+ +n 
(!) 1f- +p .... Tr° +n 

(4.44) 

(4.45) 

Since the pion carries / = 1, and the nucleon / = 1, the t01il1 isospin can be l or � .  
So there are just two distinct amplitudes here: Jli1, for / = �, and Afl' for / = i. 
From the Clebsch-Gorda.n tables we find the following decompositions: 

Tr+ + p: Il l)]! l) = I� J) 

Tr° + p: 11 O)I� 1) = ftl� l) - (*) Ii 1) 

Tr- + p: 11 - IJlH) = (*) I� - 1) -fi ll - i) 
(4.46) 

Tr+ + n: Ill) ]l - �) = (73) I �  l) +/fl! !) 
Tr° + n: 11 OJll - l) = /fl� - l) + (*) I � - l) 
Tr- + n: II - IJI! - !J = I �  - �) 

• Add Eq�tions •. 3� and 4 .• 0 
t The theory of sallerins amplitudes md cross sections will be devr\o� in Chapter 6. In this 

and the followins po,ragraph, I anlio!",'" !.oter r ... ults, hut I ho� it � clear from the conl6! 
how the Q.ku\ation proceeds. If you wish. skip these !wo paragraphs for now. 
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Reactions (a) and (f) are pure f = � :  

(4.47) 

The others are all mixtures; for example, 

(4.48) 

(I'll let you work out the rest, see Problem 4.28). The (fOSS sections, then, stand in 
the ratio 

(4.49) 

At a eM energy of 1232 MeV, there occurs a famous and dramatic bump in 
pion-nucleon scattering, first discovered by Fermi tt Ill. in 1951 l81; here the pion 
and nucleon join to form a short·lived 'resonance' state - the d. We know the d 
carries 1 = �, so we expect that at this energy .A l » .A I, and hence 

U. : uc : Uj = 9 : 1 : 2  (4.50) 

Experimentally, it is easier to measure the total CfOSS sections, so (c) and (j) are 
combined: 

U,OI(IT+ + p) = 3 
utoI(lT- + p) 

As you can see in Figure 4.6, this prediction is well satisfied by the data. 

(4.51) 

In the late 1950s history repeated itself. Just as in 1932 the proton and neutron 
were seen to form a pair, it was now increasingly clear that the nucleons, the A, 
the r;'s, and the 8's together, constitute<! a natural grouping within the baryon 
family. They all carry spin �, and their masses are similar. It is true that the latter 
range from 940 MeV/cz, for Ihe nucleons, up 10 1320 MeV/c2, for the 8's, so it 
would be stretching things a bit to argue thai they are all different states of one 
particle, as Heisenberg had suggested for the proton and neutron. Nevertheless, it 
was tempting to regard these eight baryons as a suptnnultiplet, and this presumably 
meant that they belonged in the same representation of some enlarged symmetry 
group, in which the SU(2) of isospin would be incorporated as a subgroup. The 
critical question became: what is the larger group? (The 'Eight Baryon Problem', 
as il was called, was not always phrased this way; at the lime. most physicists 
were surprisingly ignorant of group theQry. Gell-Mann worked out most of the 
formalism he needed from scratch, and only later learned that il was well known to 
mathematicians.) The Eightfold Way was Gell-Mann's solution to the Eight Baryon 
Problem. The symmetry group is SU(3); the octets constitute eight-dimensional 
representations of SU(3), the decuplet a lO·dimensional representation, and so on. 
One thing that made this case more difficult than Heisenberg's was that no naturally 
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occurring particles fall into the fundamental (three-dimensional) representation of 
SU(3), as the nucleons, and later the K's, the 3's, and so on, do for SU(2). This 
role was reserved for the quarks: u, d, and s together fonn a three-dimensional 
representation of SUP), which breaks down into an isodoublet (u, dJ and an 
isosinglet (5) under S U(2). 

Of course, when the charmed quark came along, the flavor symmetry group of 
the strong interactions expanded once again - this time to SU(4) (some SU(4) 
supermultiplets are shown in Figure L13}. But things barely paused there before 
the arrival of the bottom quark, taking us to SU(S), and finally the top quark, SU(6). 



Table U Quark masses (MeV/el) 

Quar1<fbvor Bare man Eff�iWl mass 

" 2 336 
d 5 3<0 

9S <86 
, noo 1550 
b "00 4730 

174000 t77 000 

W"ming:These numbers ne somewhat 
s!"",ul..live and modd dependent [12). 
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However, there is an important caveat in this neat hierarchy: isospin, SU(2), is a 
very 'good' symmetry; the members of an isospin multiplet differ in mass by at 
most 2 or 3%, which is about the level at which ele<:tromagnetic corre<:tions would 
be expected: But the Eightfold Way, SU(3), is a badly 'broken' symmetry; mass 
splittings within the baryon octet are around 40%. The symmetry breaking is even 
worse when we include charm; the At(udc) weighs more than twice the A(ud5), 
although they are in the same SU(4) supermultiplet. It is worse still with bottom, 
and absolutely terrible with top, which doesn't form bound states at all. 

Why is isospin such a good symmetry, the Eightfold Way fair, and flavor SU(6) 
so poor? The Standard Model blames it all on the quark masses. Now, the theory 
of quark masses is a slippery business, given the fact that they are not accessible to 
dire<:t experimental measurement. Various arguments [9] suggest that the u and d 
quarks are intrinsically very light. about 10 times the mass ofthe ele<:tron. However, 
within the confines of a hadron, their effective mass is much greater. The pre<:ise 
value, in fact, depends on the context; it tends to be a little higher in baryons than 
in mesons (more on this in Chapter 5). In somewhat the same way, the effe<:tive 
inertia of a spoon is greater when you're stirring honey than when you're stirring 
tea, and in either case it exceeds the true mass of the spoon. Generally speaking, the 
effective mass of a quark in a hadron is about 350 MeV 1,2 greater than its bare mass 
(10) (see Table 4.4). Compared to this, the quite different bart masses of up and 
down quarks are practically irrelevant: they JUnction as though they had identical 
masses. But the s quark is distinctly heavier, and the c, b. and t quarks are widely 
separated. Apart from the differences in quark masses, the strong interactions treat 
all flavors equally. Thus isospin is a good symmetry be<:ause the effe<:live u and d 
masses are so nearly equal (which is to say, on a more fundamental level, be<:ause 
their bart masses are so small); the Eightfold Way is a fair symmetry be<:ause the 
effe<:tive mass of the strange quark is not too far from that of the u and d. But 

• Indeed. it used to be thought WI isospin 
was an .:wet symmetry ef the streng interac· 
liens. and oill of the symmetry breaking was 
atlribut>ble to elenromagnelic contamination. 
The fact that the "-p mass splittins is in the 

wrong dirt'Ctien to be purely electromagnetic 
WaS troubling. however, and we now ["'li""e 
that SU(2) is only an �pprw;ima.1t symmetry 
ef the mons interactions. 
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the heavy quarks are so far apart that their flavor symmetry is severely broken. Of 
course, this 'explanation' raises two further questions: (i) Why does the binding 
of quarks into hadrons increase their effe<tive mass by about 350 MeV/c2? The 
answer presumably lies within QCD. but the details are not fully understood [11]. 
(ii) Why do the bare quarks have the particular masses they do? Is there some 
pattern here? To this question, the Standard Model offers no answer; the six bare 
quark masses, and also the six lepton masses, are simply input parameters, for 
now, and it is the business of theories beycnd the Standard Model to say where they 
come from. 

4.4 
Discrete Symmetries 

4.4.1 
Parity 

Prior to 1956, it was taken for granted that the laws of physics are ambidextrous; that 
is, the mirror image of any physical process also represents a perfectly possible phys­
ical process (13]. To be sure, we drive on the right (at least, Americans do) and our 
hearts are on the left, but these are obviously historical or evolutionary accidents; it 
could just as well have been the other way around. Indeed, most physicists held the 
mirror symmetry (or 'parity invariance') of the laws of nature to be self-evident. But 
in 1956, Leeand Yang [14] were led to wonder (for reasons we will come hack toat the 
end of this section) whether there had been any txptriJ1UnmI test of this assumption. 
Searching the literature, they were surprised to discover that although there was am­
ple evidence for parity invariance in strong and ele<tromagnetic processes, there was 
no confirmation in the case of weak interactions. They proposed a test, which was 
carried out later that year by Wu (15]. to settle the issue. In this famous experiment, 
radioactivecohalt 60 nuclei were carefully aligned, so that their spins pointed in. say, 
the z dire<tion (Figure 4.7). Cobalt 60 undergoes beta decay C-Oeo --+ 60Ni +t + v.), 
and Wu re<orded the direction of the emitted electrons. What she found was that 
most of them came out in the 'southerly' direction, opposiU to the nuclear spin. 

That's all there was to it. But that simple obselVation had astonishing implica· 
tions. For suppose we examine the mirror image of that same process (Figure 4.8). 
The image nucleus rotates in the opposite direction; its spin points downward. And 
yet, the ele<trons (in the mirror) still came off downward. In the mirror, then, the 
electrons are emitted preferentially in the same direction as the nuclear spin. Here, 
then, is a physical process whose mirror image does net occur in nature; evidently 
parity is not an invariance of the weak interactions. If it wtre, the electrons in Wu's 
experiment would have to come out in equal numbers. 'north' and 'south', butthey 
don't. 

The overthrow of parity had a profound effect on physicists - devastating to 
some, exhilarating to others \16]. The violation is not a small effect; as we shall 
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Fig. 4.7 In th� bet.;o dec�y of cob<llt 60. most Fig. 4.8 Mirror image of Figure 4.7: Most 
electrons ire emitted in the direction oppo· ele<:lrons ire emitted parallel to the nucleu 
site to the nuclear spin. spin. 

seE' in Chapter 9, it is in fact 'maximal'. Nor is it limited to beta decay in cohalt; 
once you look for it, parity violation is practically the signature of the weak force. 
It is most dramatically revealed in the behavior of the neutrino. In the theory 
of angular momentum, the axis of quantization is. by convention, the z axis. or 
course, the orientation of the z axis is completely up to us, but if we are dealing with 
a particle traveling through the laboratory at velocity v. a natural choice suggests 
itself: why not pick the direction of mctum as the z axis? The value of m,/s for 
this axis is called the htJicity of the particle. Thus a particle of spin � can have a 
helicity of +l(m, = �) or -lim, = -�); we call the former 'right-handed' and the 
latter 'left-handed:- The difference is not terribly profound, however, because it is 
not Lorentz·invariant. Suppose [ have a right.handed electron going to the right 
(Figure 4.9a), and someone else looks at it from an inertial system traveling to the 
right at a speed grtatu than v. From his perspe<tive, the electron is going to the left 
(Figure 4.9b); but it is still spinning the same way, so this observer will say it's a 
left-handed electron. In other words, you can convert a right.handed elet:tron into a 
left-handed one simply by changing your frame of reference. 1bat's what I mean, 
when [ say the distinction is not Lorentz-invariant. 

Butwhat if we applied that same reasoning to a neutrino - taken, for the moment, 
to be massless, so it travels at the speed of light, and hence there is no observer 
traveling faster? It is impossible to 'reverse the direction of motion' of a (massless) 
neutrino by getting into a faster-moving reference system, and therefore the helicity 

• In Chapter 9. I $I1all introduce a technic.al distinction between 'handedness' and MUdry, bllt for 
th� moment [ will U� the t�rms interchangeably. 
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Fig. ".9 Helicity. III (�) the spill �Ild velocity �,e p�r�llel (he· 
!icity +1); til (b) they �'e antip�raHel (helitity -I). 

of a neutrino (or any other massless particle)' is Lorentz·invariant - a fixed and 
fundamental property, which is not an artifact of the observer's reference frame. 
II becomes an important e"IKrilmntal matter to determine the helicity of a given 
neutrino. Until the mid·fifties, everyone assumed that half of all neutrinos would 
be left·handed, and half right·handed, just like photons. What they in fact discovered 
was that 

NEUTRINOS ARE LEFT·HANDED; 
ANTINEUTRINOS ARE RIGHT·HANDED. 

Of course, it's tough to measure the helicity of a neutrino directly; they're hard 
enough to dete<:1 at all. There is, however, a relatively easy indire<:t method, using 
the decay of the pion: n- -+ /-L - + vp. If the pion is at rest, the muon and the 
antineutrino (ome out back to hack (Figure 4.10). Moreover, since the pion has spin 
0, the muon and the antineutrino spins must be oppositely aligned.t Therefore, if 
the antineutrino is right·handed, the muon must be right.handed too (in the pion 
rest frame) - and this is pre<:isely what is found experimentally [17). Measurement 
of the muon helicity, then, enables us to determine the antineutrino helicity. By the 
same token, in n+ de<:ay, the antimuon is always left·handed, and this indicates 
that the neutrino is left·handed. By contrast, consider the decay of the neutral pion, 
nO -+ )' + y. Once again, in any given decay the two photons must have the same 
helicity. But this is an electromagnetic process. which respe<ts parity, and thus, on 
the average, we get just as many right·handed photon pairs as left·handed pairs. 
Not so for neutrinos; they only interact weakly, and every one is left·handed; the 

• 9 " - • ;� . 8 • 
• 

• 

Fig . ".10 Deuy of rr- it rest. 

• For massless particles. ollly the maximal value of 1",,1 occurs. For example, the photon (all ha"" 
"" = +1 or ... , :  -I, but not m, '" O. So the heliciry of a massless I"'rticle ;s always ±L In the 
case of the photon. these represent St40tes of left· and risht<ircular polari ... tion. The a!Js<,nce of 
m, = 0 corresponds to the absence oflongirudinal polarizatioll in classical optics. 

t The orbital angular momentum (if there is any) points perpendkulu to the outgoing �locities, 
50 il does not affttt this argument 
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mirror image of a neutrino does not exist: That is about the starkest viola tion of 
mirror symmetry you could ask for} 

In spite of its violation in weak processes, parity invariance remains a valid 
symmetry of the strong and ele<tromagnetic interactions. It is useful, therefore, to 
develop some formalism and terminology. First, a minor te<:hnical point: Instead 
of rtjltetions, which oblige us to choose arbitrarily the plane of the 'mirror', we 
will talk about inversions, in which every point is carrie<! through the origin to the 
diametrically opposite location (Figure 4.11). Both transformations turn a right 
hand into a left hand; in fact, an inversion is nothing but a refie<tion followed by 
a rotation (1800 about the y axis, in the figure). Thus in the cases of interest (which 
also possess rotational symmetry) it is a matter of indifference which one is used. 
Let P denote inversion; we call it the 'parity operator'. If the system in question is 
a right hand, P turns it into an upside-down and backward left hand (Figure 4.11 b). 
When applied to a ve<tor, a, P produces a ve<tor pointing in the opposite dire<tion: 
Pta) = -a. How about the cross product of two vectors: c = a x b? Well, if P 
changes the sign of a and of b, then c itself does net change sign: P(c) = Co Very 
strange! Evidently, there are two kinds of vectors - 'ordinary' ones, which change 
sign under the parity transfonnation, and this other type, of which the cross 
product is the classic example, which do not. We call the former 'polar' Ve<:tors, 
when the distinction must be drawn, and the latter 'pseudo' (or 'axial') ve<tors. 
Notice that the cross product of a polar ve<tor with a pSlUM vector would be a polar 
ve<tor. 

You have encountered pseudovectors before, though probably without using this 
language; angular momentum is one, and so is the magnetic field. In a theory 
with parity invariance, you must never add a vector to a pseudovector. Consider, 
for example, in the Lorentz force law: F = q[E + (v x B)/e]; v is a vector, and B is a 
pseudove<tor, so v x B is a vector, and it is legal to add it to E. But B itself could never 

• This is too strong a statement. Th�.., (ould, T 
supposr, I>r right·handed nrutrinos around, 
but thry do not interact with ordin�ry mat· 
ter by any mtchanism prrsrntly known. In 
fact since we now know th�t neutrinos h�ve 
a small bul nonuro mass. righl·handed nW' 
trinos must Mist. Nonr of this, howrvrr, alters 
the fact that when a ,,- decays, the emrrging 
jJ- is right·handed in the eM frame and that 
by itsrlf deslroys mirror symmetry. 
By the way. �ck in 1929. shortly aftrr the 
publication of Dirac's equation. Weyl pre· 
srnte<! � ooutifully simple theory of mass· 
less p;irtides of spin t. which had thr fearure 
that they carried a fixed 'handedness'. At the 
time, Wey!'s thoeory aroused limited interest. 
since ther� wrre no massless particlrs known, 
except for th� photon. which curies spin \. 

When Pauli introduced the nwtrino. in 1931, 
you might supposr thlt h� would dust off 
Wey!'s theory �nd put it to use. He did not. 
Pauli rejtcted Wey!'s thoeory out of hand, On 
thr ground that it violated mirror symmetry. 
He lived to regret this mistake. and in 1957. 
Weyj's theory was triumphantly vindicated. 

t [I may occur to you, lS it did to many physi· 
cists at the time, that if we simuhanoeously 
convert �ll �rticles into their lntip;irti· 
des. then a kind of mirror symmrtry is 
restor..,]: the iml� of R - __ jJ - + v" 
(with a right·handed antineutrinof becomes 
R· ..... jJ+ + v� [with a Ieft·handed neutrino). 
which is prrfectly oby. This rrlh�tion w�s 
some comfort. until 1�. when it, too, was 
shown to f�il. More on this in the following 
se<:tions. 
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Fig. 4.11 R�fI�t;ons and ;nv�rs;on$. 

be added to E. As we shall see, it is preciseiythe addition of a vector to a pseudovector 
in the theory of weak interactions that leads to the breakdown of parity. 

Finally, the det product of two polar vectors does not change sign under P, but 
the dot product of a polar vector ilnd a pseudovector (or the triple product of three 
vectors: a . (b x c)) dots change sign. So there are two kinds of scalars, too: the 
'ordinary' kind, which don't change sign, and 'pseudoscalars,' which do. All this is 
summarized in Tilble 4.S.' 

If you apply the parity operator twice, of course, you're right back where you 
started: 

(4.52) 

(The parity group, then, consists of just two elements: / and P.) [t follows that the 
eigenvalues of P are ±1 (Problem 4.34). For example, scalars and pseudovectors 
have eigenvalue + 1. whereas vectors and pseudoscalars have eigenvalue - l .  The 
hadrons ilre eigenstates of P and can be classified according to their eigenvalue • 

• � tuminology eru,nds very simply to spe.:ial relativity: "" = (�o. a) is called a pseudoV«tor if 
its 5p<1lial components constitute � pseudovector PI�) "'�: p is a pseudO)SC>.iar if;1 g .... into mi· 
nus itself under s!",WlI inversions P(P) = -po 



Table 4.5 S.:alars �nd vectors under parity 

s<:atar 
PseudosaJar 
Vector (or potu \l«tor) 
Pseudovector (or ami \l«tor) 

P(s) = ,  

P(p) = -P 
P(v) = -v 
P(a) = a  
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justas they are classified by spin, charge, isospin, strangeness, and so on. According 
to quantum field theory, the parity of a fermion (half-integer spin) must be opposite 
to that of the corresponding antiparticle, while the parity of a boson (integer 
spin) is the same as its antiparticle. We take the qutlrks to have positivt intrinsic 
parity, so the antiquarks are negative: The parity of a composite system in its 
ground state is the product of the parities of its constituents (we say that parity 
is a 'multiplicative' quantum number, in contrast to charge, strangeness, and so 
on. which are 'additive').t Thus the baryon octet and decuplet have positive parity, 
(+ l)l, whereas the pseudoscalar and vector meson nonelS have negative parity, 
(-1)(+1). (The prefix 'pseudo' tells you the parity of the particles.) For an excited 
state (of two particles) there is an extra factor of (_1)1, where J is the orbital 
angular momentum [181. Thus, in general, the mesons carry a parity of (_1)1+1 
(see Table 4.6). Meanwhile, the phoum is a IItc/or particle (it is represented by the 
vector potential AJ.!): its spin is 1 and its intrinsic parity is -1. 

The mirror symmetry of strong and electromagnetic interactions means that 
parity is conserved in aU such processes. Originally, everyone took it for granted 
that the same goes for the weak interactions as well. But a disturbing paradox arose 
in the early fifties, known as the 'tau-theta puzzle'. Two strange mesons, called at 
the time r and e, appeared to be identical in every respect - same mass, same spin 
(zero), same charge, and so on - except that one of them decayed into two pions 
and the other into three pions, states of opposite parity: 

(p = (_1)2 
== +1) 

(p = (_1)1 =: -1) (4.53) 

• This choice is completely arbitrary; we could 
just as weU do it the other w�y around. In· 
d�, in principle we could aS$ign positi� 
parity to some quark fla"ors and negati� to 
others. This would lead to a different set of 
hadronic pMitiu, hut the """"lVOtion of p<lr· 
ity would still hold. The rule stated here is ob· 
viously the s;"'p/e3r. and it leads to the con· 
ventioml assignments. 

t There is less to this distinction than 
mttts the eye; in a sense. it results from 
a notational anomaly. Scrupulous consistency 
would require that we write the parity oper· 
ator in uponential fonn. P = �x. with the 
oper�tor K playing a Tole �n�logous to. say. 
spin (Equation 4.28). The rigenv:l.lues of K 
would be I) and 1. corresponding to +1 and 
-1 for P. �nd multiplication of parities would 
correspond to addition of K. 
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Table •. 6 Qu�ntum numb�rs of �om� meson nonels 

Observed Non�1 
Orbital N. Average 
angubr momentum spin JK 1 : =1  1 = I 1 = 0 man (MeV/ell 

1 = 0  s = o  0-' " K �, �' .00 
, - ,  ,-- , K' ., W 900 

1 ", 1 s = o  ,.- b, K,. "I. "I >200 
1 =  1 0" ., II; hio BOO 
5 = 1  , .. " K,. hil 1300 
1 =  1 , .. " K' , 1'1./1 ,<00 

It seemed peculiar that two othelWise identical particles should carry different 

parity. The alternative, suggested by Lee and Yang in 1956 was that r and B are 

really the same particll (now known as the J<:+), and parity is simply notconselVed in 
one of the decays. This idea prompted their search for evidence of parity invariance 

in the weak interactions and. when they found none. to their proposal for an 
experimental test. 

4.4.2 
Charge Conjugation 

Classical electrodynamics is invariant under a change in the sign of all electric 

charges: the potentials and fields reverse their signs. but there is a compensating 

charge factor in the lorentz law, so the forces still come out the same. In elementary 

particle physics, we introduce an operation that generalizes this notion of'changing 
the sign of the charge'. It is called charge conjugation, C, and it converts each particle 

into its antiparticle: 

Clp) = IP) (4.54) 

'Charge conjugation' is something of a misnomer, for C can be applied to a neutral 

particle, such as the neutron (yielding an antineutron), and it changes the sign 

of all the 'internal' quantum numbers - charge, baryon number, lepton number, 

strangeness, charm, beauty, truth - while leaving mass, energy, momentum. and 

spin untouched. 

As with P, application of C twice brings us back to the original state: 

(4.55) 

and hence the eigenvalues of C are ±1. Unlike P, however, most of the particles 

in nature are dearly not eigenstates of C. For if Ip) is an eigenstate of C, it follows 

do" 

Clp) = ±Ip) = Ip) (4.56) 
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so Ip) and 11') differ at most by a sign, which means that they represent the 
same physical state. Thus, only thcst particlts that art tJuir own antipartidts can be 
eigtnstatts ofe. This leaves us the photon, as well as all those mesons that lie at the 
center of their Eightfold.Waydiagrams: lfO, rJ, rJ', pO, 41. w, t, and so on. Because 
the photon is the quantum of the electromagnetic field, which changes sign under 
C, it makes sense that the photon's 'charge conjugation number' is -1. It can be 
shown [19J that a system consisting of a spin.� particle and its antiparticle, in a 
configuration with orbital angular momentum I and total spin s, constitutes an 
eigenstate of C with eigenvalue (_1)1+1. According to the quark model, the mesons 
in question are of precisely this form: for the pseudoscalars, ! = 0 and s = 0, so 
C = +1; for the vectors, I = 0 and s = 1, so C = -1. (Often, as in Table 4.6, C is 
listed as though it were a valid quantum number for the entire supermultiplet; in 
fact it pertains only to the central members.) 

Charge conjugation is a multiplicative quantum number, and, like parity, it is 
conserved in the strong and electromagnetic interactions. Thus, for example, the 
lfO decays into two photons: 

(4.57) 

(for n photons C = (-I)", so in this case C =  +1 before and after), but it cannot 
decay into three photons. Similarly, the w goes to lfO + y, but never to lfO + 2y. In 
the strong interactions, charge conjugation invariance requires, for example, that 
the energy distributions of the charged pions in the reaction 

(4.58) 

should (on average) be identical ]201. On the other hand, charge conjugation is 
not a symmetry of the weak interactions: when applied to a neutrino (left·handed, 
remember), C gives a left·handed antineutrino, which does not occur. So the 
charge·conjugated version of any process involving neutrinos is not a possible 
physical process. And purely hadronic weak interactions also show violations of C 
as well as P. 

Because so few particles are eigenstates of C, its dire<t application in elementary 
particle physics is rather limited. Its power can be somewhat extended, if we confine 
our attention to the strong interactions, by combining it with an appropriate 
isospin transformation. Rotation by 1800 about the number 2 axis in isospin 
space" will carry I) into -I), converting, for instance, a rr+ into a n-. If we 
then apply the charge conjugation operator. we come back to If+. Thus the 
charged pions are eigenstates of this combined operator, even though they are 
not eigenstates of C alone. For some reason the product transformation is called 
'G·parity': 

(4.59) 

• Some �uthors use the num�r 1 axis. Obviously. any axis in the 1-2 pbne wi!! do the job 
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All mesons that carry no strangeness (or charm, beauty, or truth) are eigenstates of 
G;· for a multiplet of isospin I the eigenvalue is given (Problem 4.36) by 

where C is the charge conjugation number of the neutral member. For a single 
pion, G = -1, and for a state with n pions 

G = (-W (4.61) 

This is a very handy result, for it tells you how many pions can be emitted in 
a particular decay. For example, the p mesons, with I = 1, C = -1, and hence 
G == + 1, can go to twe pions, but not to three, whereas the 1/>, the w, and the '" (all 
I = 0) can go to three, but not to two. 

4.4.3 
CP 

As we have seen, the weak interactions are not invariant under the parity transfor· 
mation P; the cleanest evidence for this is the fact that the antimuon emitted in 
pion de<:ay 

(4.62) 

always comes out left· handed. Nor are the weak interactions invariant under C, for 
the charge·conjugated version of this reaction WQuld be 

(4.63) 

with a left-handed muon, whereas in fact the muon always comes out right-handed. 
However, if we combine the two operations we're back in business: CP turns the 
left-handed antimuon into a right-handed muon, which is exactly what we observe 
in nature. Many people who had been shocked by the fall of parity were consoled 
by this realization; perhaps, it was the combined operation that our intuition had 
been talking about all along - maybe what we should have meant by the 'mirror 
image' of a right. handed electron was a left· handed positron.t If we had defined 
parity from the start to be what we now call CP, the trauma of parity violation might 
have been avoided (or at least postponed). It is too late to change the terminology 

• K+. for elQrtlple. is ...." �n eigenst<lte of G. for � taus it to 1(1'. and C tak .. that to K!'. The 
idu could lJ,:>, 6tendN to the K's, by using an appropr;"te SU(J) transfOrmation in pla� of Rl. 
but since SU(3) is not .. very good symmetry of tlJ,:>, strong forces, there is tittle per�ntage in 
doing 1'0. 

f Incidentally. we could perfectly wen take electric charge to he a p�oscalar in classical dectro­
dynamics; E becom .. a pseudo�10r and B a »ector. but the results are ill the Same. It is rully 
a matter of taste whether you say the mirror image of a plus charge is positive Or negative. But 
i' seems simp! .. , to say the charge does not change, md this is the stan<brd convention. 
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now, but at least this helps to appease our visceral sense that the world 'ought' to 
be left-right symmetric. 

4.4.3.1 Neutral Kaons 
CP invariance has bizarre implications for the neutral K mesons, as was first 
pointed out in a classic paper by Gell-Mann and Pais (21]. They noted that the �, 
with strangeness +1, can turn into its antiparticle 7(!, strangeness -1 

(4.64) 

through a se.::ond-<lrder weak interaction we now represent by the 'box' diagrams 
in Figure 4.12." As a result, the particles we normally obselVe in the laboratory are 
not � and 7(!, but rather some linear combination of the two. I n  particular, we can 
form eigenstates of CP, as follows. Because the K's are pseudoscalars 

(4.65) 

On the other hand, from Equation 4.54 

(4.66) 

d u , 
• T • T • 

K'{ I I }., I ! w-t W
-

I 
I I 

• • • • • , u d 

d w- , 
- - - -

K' { u u }., 
- - -- -

, w- d 
Fig. 4.12 Feynman diagrams contributing to �;=�. (There 
are others, including those with one or both u quarks re· 
placed by c or I.) 

• The possibility of such an inlerconversion i. almost unique to the neutral bon system; among 

the ·stable' hadroru; the only other candida�. are rJl ifll, Ifl(ff', and B'!1t: (problem 4.38). 
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Accordingly, 

and hence the (normalized) eigenstates of CP are 

with 

CPIKJl = IKJl and CPIKl) = -IKl) 

(4.67) 

(4.68) 

(4.69) 

Assuming CP is conservtd in the weak interactions, K, can only de<:ay into a 
state with CP= +1, whereas K2 must go to a state with CP = -1. Typically, 
neutral kaons de<:ay into two or three pions. But we have already seen that the 
two.pion configuration carries a parity of +1, and the three-pion system has P = -1 
(Equation 4.53); both have C = + 1 Conclusion: Kl de<:ays into two pions; K2 de<:ays 
into three pions (never two):' 

(4.70) 

Now, the 2:rr decay is much faster, be<:ause the energy released is greater. So if we 
start with a beam of J<O's 

the Kl component will quickly de<:ay away, and down the line we shall have a beam 
of pure K2'S. Near the source, we should see a lot of21f events, but farther along 
we expect only 3:rr decays. 

Well . . .  that's a lot to swallow. As Cronin put it, in a delightful memoir (22J: 

SO these gentkmen, GeU-Mann and Pais, predicted that in ad· 
ditlen to tM short·lived K mesons, tMre should be Iong.lived K 
mesons. "T"hty did it �autijitlly, ekgantly and simply. 1 think 
theirs is a papu orn: should read sometime jus/. for its pure 
beauty of reasoning. It was published in 1M Physical Review in 
1955. A very lovely thing! You get shivers up and down your 
spine, tspecially when you find you understand it. AI the time, 
many of tM most distinguished tMortticians thought this prt­
diction was reaUy baloney . 

• Actu�lly. witlltlle rigllt combination of orbital �ngular momenta. it is possible to construct a 
CP = +1 state of tile ,.' ,._,.0 system, but wllile this might allow K, t(> �y (rarelyl into ],., 
it �s not alter tile critical fact tIl�t Kl cannot go to br. 
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But it wasn't baloney, and in 1956, Lederman and his collaborators discovered 
the K2 meson at Brookhaven (23). Experimentally, the two lifetimes are 

II = 0.895 X lO-IO sec 

I2 "" 5.11 x lO-8 sec (4.72) 

so the K,'s are mostly gone after a few centimeters, whereas the K2'S can travel 
many meters. Notice that K, and K2 are not antiparticles of one another, like � 
and /(0; rather, each is its own antiparticle (C"" -1 for Kl and C ""  +1 for K2). 
They differ ever·so·slightly in mass; experiments give [24) 

(4.73) 

The neutral kaon system adds a subtle twist to the old question, ·What is a 
particle?' Kaons are typically produced by the strong interactions, in eigenstates of 
strangeness (10' and /(0), but they duay by the wt'ak interactions, as eigenstates 
of CP (K\ and K2). Which, then, is the 'real' particle? If we hold that a 'particle' 
must have a unique lifetime, then the 'true' particles are Kl and K2: But we 
need not be so dogmatic. In practice, it is sometimes more convenient to use 
one set, and sometimes. the other. The situation is in many ways analogous 
to polarized light. Unear polarization can be regarded as a superposition of 
left·drcular polarization and right-circular polarization. If you imagine a medium 
that preferentially absorbs right.circularly polarized light, and shine on it a linearly 
polarized beam, it will become progressively more left-circularly polarized as it 
passes through the material. just as a � beam turns into a K2 beam. But whether 
you choose to analyze the process in terms of states oflinear or circular polarization 
is largely a matter of taste. 

4.4.3.2 CP Violation 
The neutral kaons provide a perfect experimental system for testing CP invariance. 
By using a long enough beam, we can produce an arbitrarily pure sample of the 
long· lived species. If at this point, we observe a 2;r decay, we shall know that CP has 
been violated. Such an experiment was reported by Cronin and Fitch in 1964.[25] 
At the end of a beam 57  feet long, they counted 45 two pion events in a total of 
22,700 decays. That's a tiny fraction (roughly 1 in 500), but unmistakable evidence 
of CP violation. Evidently, the long-lived neutral kaon is not a perfect eigenstate of 
CP after all, but contains a small admixture of K\; 

(4.74) 

• This. incident�lly. w�s the position �dYOC�ted by GeIl·M�nn and his. 
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The coefficient " is a measure of nature's departure from perfect CP invariance;' 
experimentally, its magnitude is about 2.24 x 10-3. 

Although the effect is smail, CP violation poses a far deeper problem than parity 
ever did. The nonconservation of parity was quickly incorporated into the theory 
of weak interactions (in fact, part of the 'new' theory - Weyl's equation for the 
neutrino - had been waiting in the wings for many years). Parity violation was 
easier to handle precisely because it was such a large effect: aU neutrinos are 
left·handed, not just 50.01% of them. Parity is, in this sense, maximally violated, in 
the weak interactions. By contrast, CP violation is a small effect by any measure. 
Within the Standard Model, it can be accommodate..1 by including an empirical 
phase factor IS) in the Cabibbo-Kobayashi-Maskawa (CKM) matrix, provided that 
there are (at least) three generations of quarks. Indeed, it was this realization that 
led Kobayashi and Maskawa to propose a third generation of quarks in 1973, before 
even charm was discovered. [27] 

The Fitch-Cronin experiment destroyed the last hope for any form of exact 
mirror symmetry in nature. And subsequent study of the semileptonic decays of 
KL revealed even more drama tic evidence of CP violation. Although 32% of all KL'S 
decay by the 3]1" mode we have discussed, 41% go to 

(4.75) 

Notice that CP takes (a) into (b), so if CP were conserved, and KL were a pure 
eigenstate, (a) and (b) would be equally probable. But experiments show [28] that 
KL decays more often into a positron than into an electron, by a fractional amount 
3.3 x 10-3. Here, for the first time, is a process that makes an absolute distinction 
between matter and antimatter, and provides an unambiguous, convention·free 
definition of positive charge: it is the charge carried by the kpton prt:ferentiaUy produad 
in the decay of the long.lived �utral K meson. The fact that CP violation permits 
unequal treatment of particles and antiparticles suggests that it may be responsible 
for the dominance of matter over antimatter in the universe. [29] We will explore 
this further in Chapter 12. 

For almost 40years, the decay of KL was the only context in which CPviolation was 
observed in the laboratory. In 1981, Carter and Sanda pointed out that the violation 
should also occur with the neutral B mesons. [30] To explore this possibility, 
'B·factories' were constructed at SLAC and KEK (in Japan), designe..1 specifically to 
produce enormous numbers of FfJ ITfJ pairs [31 J. By 2001, their detectors ('BaBar' 
and 'Belle', respectively) had recorded incontrovertible evidence of CP violation 
in neutral B decays. [32Jt Unlike the kaon system, where CP violation is a tiny 
effect in relatively common decays (such as Equation 4.75), for the B's it tends 
to be a large effect in extremely rare decays. For example, the branching ratio 

• This i. not tb� only rout� by which KL an decay to 21f; in the Standard Model. there is also � 
snull 'direct' CP viol�tion th�t docs not inV'Ol� J:O ... 1(0 mixing. but i5 associated ins�ad with 
th� so-calkd 'pntguin' diagram5 (Problem 4.4il). Dir«t CP viol�tion in KL .... 2>r W�5 confirmed 
in 1999 [261. 

t 'Dir«t' CP vioLotion in neulTlol B decays w�s confirmed by both l�hs in 2004 133). 
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for If> -+ K+ + rr- is only 1.82 x 10-s, but this decay is 13% more common than 
its CP 'mirror image' If _ K- + 1f+. So far, this is the only other system in which 
CP violation has been detected.' 

4.4.4 
Time Reversal and the TCPTheorem 

Suppose we made a movie of some physical process, say, an elastic collision of 
two billiard balls. If we ran the movie backward, would it depict a possible physical 
process, or would the viewer be able to say with certainty 'No, no, that's impossible; 
the film must be running in reverse'? In the case of classical elastic collisions, the 
'time· reversed' process is perfectly possible. (To be sure, if we put a lot of billiard 
balls in the picture, the backward version might be highly improb"bk: we would be 
surpristd to see the balls gather themselves together into a perfect triangle, with a 
single cue ball rolling away, and we would strongly suspect that the film had been 
reversed. But that's just be<:ause we know it would be extraordinarily difficult to 
set up the necessary starting conditions, such that all the balls would roll together 
at just the right speeds and in just the right directions. Thus the initial conditions 
may give us a clue to the 'arrow of time', but the laws governing the collisions 
themselves work just as well forward as backward.) Until fairly recently, it was 
taken for granted that all elementary particle interactions share this time-reversal 
invariance. But with the downfall of parity, it was natural to wonder whether time 
reversal was really so sacred.[36] 

As it turns out, time reversal is a lot harder to test than P or C. In the first place, 
whereas many particles are eigenstates of P, and some are eigenstates of C. none is 
an eigenstate of T (the 'time-reversal operator', which runs the movie backward).t 
So we cannot check the 'conservation of T' simply by multiplying numbers, the 
way we can for P and C. The most direct test would be to take a particular reaction 
(say. It + P _ d + y), and run it in reverse (d + Y _ It + pl. For corresponding 
conditions of momentum, energy, and spin, the reaction rate should be the same 
in either direction. (This is called the 'principle of detailed balance', and it follows 
directly from time-reversal invariance.) Such tests work fine for the strong and elec­
tromagnetic interactions, and a variety of processes have been checked. The results 
have always been negative (no evidence of T violation), but this is hardly surprising. 

• 1he� is some evidence for a?/a:' mixing (341. 
and mor� w::ently r/'ff/l mixing PSI. but 
as yet no evidence of CP violation in dth .. 
case. Bec.1Iuse the b quark - like the $ quark 
- annot dec.1lY ,vithout crossing a genera· 
tion boundary. the B mesons - liu the Ks -
tend to be �latively long·lived (10-11 s). The 
, quark.. by contrast. ""n 80 to an J without 
crossing a boundary. and that mak� the D 

mesons short·lived (10-" s). This is one re..· 
son the B system is a mOre promising place 
to look for CP violation, ev.:n though LYs.", 
e""i� to prodlKe. 

t A particle an be identical to its mirror im· 
age. and, if it's neutral. to its own antipar· 
tide. but it ""n·t be identical to itself· going· 
m.ckward·in·time (at least, not if anything 
eYer happens to itl. 
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On the basis of our experience with P and C. we expect to see a failure of time 
reversal in the weak interactions, if anywhere. Unfortunately, inverse-reaction 
experiments are tough to do in the weak interactions. Take, for instance, the 
typical weak decay A -0- p+ +JT-, The inverse reaction would be p+ + JT- -0- A, 
but we are never going to see such a process, because the strong interaction of the 
proton and the pion will totally swamp the feeble weak interaction. To avoid strong 
and electromagnetic contamination, we might go to a neutrino process. But it is 
notoriously difficult to do accurate measurements on neutrinos, and here we are 
presumably looking for a very small effect. In practice, therefore, the critical tests of 
Y invariance involve careful measurements of quantities that should be precisely 
zero if Y is a perfect symmetry. The classic example is a static electric dipole 
moment of an elementary particle.' Probably, the most sensitive experimental tests 
are the upper limits on the electric dipole moments of the neutron (37] and the 
electron:(38] 

d" < (6 X 10-26 cm) e, d. < (1.6 x 10-27 cm) e (4,76) 

where t is the charge of the proton; no experiment has shown direct evidence of Y 
violation. 

Nevertheless, there is a compelling reason to believe that time reversal cannot 
be a perfect symmetry of nature. It comes from the so-called YCP theorem, 
one of the deepest results of quantum field theory (39]. Based only on the most 
general assumptions - Lorentz invariance, quantum mechanics, and the idea that 
interactions are represented by fields - the YCP theorem states that the combined 
operation of time reversal, charge conjugation, and parity (in any order) is an 
exact symmetry of any interaction. It is simply impossible to construct a quantum 
field theory in which the product YCP is not conserved, If, as the Fitch-Cronin 
experiment demonstrated. CP is violated. there must be a compensating violation 
of Y. Of course, like any assertion of impossibility, the YCP theorem may just be 
a measure of our lack of imagination; it must be tested in the laboratory, and that 
is one reason it is so important to look for independent evidence of Y violation. 
But the YCP theorem has other implications that are also subject to experimental 
verification: if the theorem is correct, every particle must have precisely the same 
mass and lifetime as its antiparticle.t Measurements have been made on a number 
of particle-antiparticle pairs; the most sensitive test to date is the K? - � mass 

• For an eI�m�n\.l.ry particle, the dipole m0-
ment d, would hav� to point along th� axis 
ofth� spin, s; there is no other direction 
available. But d is a vector, where,... s is a 
f'S"udov«.ror, so a nonzero dipol� moment 
would imply vio�tion of P. Similarly, s 
changes sign unokr time reversal, but d dots 
not, 50 a nonzero d would also (and more 
int�=tingly) mean viobtion of T. For further 
details, � Ramsey, ref. (32). 

t This would alw fullow from C invarian�. 
Ho�r, sin� we know that the lat-
ter is violatN, it is significant that the 
eq�liry of nusses and lifetimes (also 
magnetic moments, incidentally, �l­
though th� have opposite signs) follows 
from the far weaker assumption of TCP 
symmdry. 
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difference, which, as a fraction of the K? mass, is known to be less than 10-18, 
So the TCP theorem is on extremely firm ground theoretically, and it is relatively 
secure experimentally. Indeed, as one prominent theorist has put it, if a departure 
is ever found, 'all hell breaks loose'. 
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York. At first no one p .. id much ;o.t· 
tention to the TCP theorem, because 
at that time everyone thought T. C. 
and P we� all perfe.::t symmetlYs 
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individually. [t was only with the fan 
of parity, .. nd especially with the fail· 
ure of CPo that the importance of 
this theorem was fully .. ppreciated. 

Problems 

4.1 Prove that I, R ... R_. R." R�, and R.: a� cUI the symmetries of the equibteral triangle. 
IHil1t: One way to do this is to label the three (orners, is in Figure 4.2 A given symmetry 
operation carries A into the position formerly occupied by A. B, or C. If A ..... A. then 
either B ..... B and C ..... C. or else B ..... C and C ..... B. Take it from there.] 

4.2 Construct a ·multiplication t;o.ble· for the triangle group, filling in the blanks on the 
following diagram: 

[ R. R_ .. R. .. 
[ 
R. 
R_ 

.. 

.. 
R, 

[n row i. column j. put the product IqRj. Is this an Abelian group? How can you tell, 
just by looking at the multiplication table? 

u [aJ Construct .. 3 X 3 representation of the triangle group as follows: let D(R) be the 

matrix representing operation R. lt acts on the column matrix (�) to produce .. 

new column matrix (�) = D(R) (�) , where A' is the vertex now occupying the 

location origin;illy held by A. Thus, for eltilmple. 

o 
o 

Find the oth"'r five matrices. (You might want to chttk that multiplication or your 
matrices fits the table you constructed in Problem (4.2).) 

[bJ The triangle group, lik", any other group, has a trivial one·dim",nsional repr",s",ntation. 
It alro has a l1ol1trivial, one-dimension.al representation, in which the elements are 
net all represented by 1. Work out this second one-dimensional representation. That 
is. figure out what nwnber (1 x I matrix) each group ..,tem",nt is r"'presffited by. Is 
this represffitation faithful? 

u Work out the symmetry group of .. squ;o.�. How many elem",nts does it havt:? Construct 
the multiplication table, and detennine whether Or not the group is Abelian. 

4.5 [-I Show thaI the set orall unitary 11 x 11 matrices constitutes a group. (To proy", dosure, 
for instance, you must show that th", product of two unitary matrices is itself unitary.) 

(bl Show that the setof all n X 11 unitary matric",! with detenninant 1 constitutes a group. 
Ie) Show that 0(11) is a group. 
Idl Show that SO(I1) is a group. 



15� I .( Symmetries 

•. 6 Consider a vector A in two dimensions. Suppose its components with respect to 
Cartesian axes x, y, ue (a., <lr). What are its components (a�, a:) in a system X, y which 
is rotated, counterclockwise, by an angle e, with respect to x, y? Express your answer in 
the form of a 2 x 2 matrix R(e): 

Show that R is an orthogonal matrix. What is its detenninant? The �t of rill such 
rotations constitutes a group; what is the name of this group? By multiplying the 
matrices, show that R{8L)R(1I1) = R{8L + Ill): is this an Abelian group? 

.., Consider the matrix (� 
_ 

i). [s it in the group 0(2)? How about SO(2)? What is its 

effect on the vector A of Problem (4.6)? Does it describe a possible rotation of the plane? 
u Suppose weinterprct the electron literlLUy as a classical solid sphere of radius r. mass m, 

spinning with angular momentum tfi. What is the speed, u, of a point on its 'equator'? 
Experimentally, it is known that r is less than 10-Lucm. What is the corresponding 
eql.Ll.torial speed? What do you conclude from this? 

u When you are adding angular momenta, using Eql.Ll.tion 4.12, it is useful to check your 
results by counting the number of states before and after the addition. For instance. in 
Example 4.1 we had twoql.Ll.rks to begin with, each could have m, = +t or m, = -�. so 
there were four possibilities in all. Afiu adding the spins, we had one combination with 
spin 1 (hence m, = 1, O. or -1) and one with spin 0 (m, = 0) - again, four states in all. 

(a) Apply this check to Example 4.2 
(b) Add angular momenta 2, 1, and i. list the possible values of the total angulu 

momentum, and check your answer by counting states . 
•. 10 Show that the 'original' beta-decay reaction 11 .... P + t would violate conservation of 

angular momentwn (all tlm�e particles have spin i). If you were Pauli, proposing that 
the reaction is really n ..... p + t + ii,. what spin would you assign to the neutrino? 

4.11 In the decay t; ++ .... P + Jf+, what are the possible values of the (CM) orbital angular 
momentum quantum number, [, in the final state? 

•. 12 An electron in a hydrogen atom is in a state with orbital angular momentum quantum 
number [ =  1. If the I<ll<l[ angulu momentwn quantwn number j is �, and the z 
component of total anguln momentwn is tfi, what is the probability of finding the 
electron with m, _ + � ? 

4.\3 Suppose you had two particles of spin 2, each in a state with 5, = O. [f you measured 
the Ioial angular momentwn of this system. given that the orbital angular momentum 
is zero, what values might you get, and what is the probability of each? Check that they 
add up to 1. 

u( Suppose you had a particle of spin f, and another of spin 2. If you knew that their 
orbital angular momentum was zero, and that the totlll spin of the composite system 
was �. and its z component was -f.  what values might you get for a measurement of 
S� on the spin·2 particle? What is the probability of each? Check that they add up to \. 

4.15 Check that x±. Equation 4.22, are nonnalized eigenvectors of �x, Equation •. 21, and 
find the associated eigenvalues. 

4.16 Show that (,,(1 + Ih(l = 1 (Equation 4.24). provided the spinor in question is nonnalized 
(Equation 4.20). 

-4.17 (a) Find the eigenvalues and normalized eigenspinoTS of �r (Equation �.21). 

(b) If you measured Sr on all electron in the state (;) . what values might you ge� and 

what is the probability of each? 

(.IS Suppose an el�ron is in the state (�). 
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lal [fyou measured S., wh�t v�lues might you get, �nd wm.t is the prob.ability of each? 
[hI [fyou measured Sr' what values might you get. and what is the probability of each? 
Ie) If you menured S., what values might you get, and what is the prohability of each? 

4.19 lal Show that o} _ 0: .. o} _ 1. ('1' here really means the Z x 2 unit matrix; if no 
matrix is specified, the unit matrix is understood.) 

(bl Show that 17.0, = -uru. '" w.,of'"z - -17.0, = ia.,ozox = -0,0. = W,. These reo 
sults are neatly summarized in the formula 

(summation over k implied), where dij is the Kronecker deltil: 

$� = I " 0, 
if ; :j ) 
othelWise 

and t(il is the Levi-Civita symbol: 

! 1. "ijk = -I, 
0, 

ifijk. = 123,231,or312 
ifijk. = 132,213,or 321 
otherwise 

4.2D Use the results of Problem 4.19 to show that 

(al The commutilt()I, [A, 8] • AB - BA, of two Pauli m�trices is [u;.O"jl ,., 2��j"'�. 
[h)The IIl'1ticcmmuUllOr. (A, BI _ AB + BA. is (0;, ujl .. 28q. 
(() For any two vectors a and b, (a . a)(a . b)=a b + itT . (a x b). 

4.21 (a) Show that d'<�,!l = ia,. 

[hI Find the matrix U representing � rotation by 180" about the y axis, and show that it 
conY<':rI$ 'spin up' into 'spin down', as we would expect. 

(e) More generally, show that 

U B  (I , A • (I ( ) = cos- - 1(tt·cr)sln -
2 2 

where U(II) is given by Equatioo 4.28, e is the m�gnitude of ,I, and � .  lI/e. IHinl: 
Use Problem 4.20. part (e).1 

4.ll (a) Show that U, in Equation 4.28, is ul'liUlry. 

(b) Show that det U = 1. (Hint: You can either do this directly (however, see footnote 
after Equation 4.29). or else use the results of Problem 4.21.1 

4,l] The utension of everything in Section 4.2.2 to higher spin is relatively straightforward. 
For spin 1 we have three states (m, = +1.0, -I), which we may represent by column 
vectors: 

respectively. The only problem is \0 eonstroct the 3 x 3 matrices S •. S, and S •. The 
latter is easy: 
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lal Construct S, for spin L To obtain S", and Sr it is easiest to start with the 'raising' and 
'lowering' operators, Sot lIIS", ± i�, which han the property 

S"lsm) '= Ii..,!s(s+ 1) m(m ± l)1s(m ± 1)) 

(1)1 Construct the matrices S+ and S_, for spin l. 
(el Using (b). determine the spin· I matrices S� and Sr' 
(dl Carry out the s;lme construction for spin t. 

(4.77) 

4.2-4 Determine the isospin assignments IIIJ) for each of the following pilrtides (refer to the 
Eightfold Way diagrams in Chapter 1): rr, E+, ::;0, p+, �. K!'. 

4.25 (a) Che<.k that the Gell·Mann-Nishijima formub works for the quarks ", d, and •. 
(b) What are the appropriate isaspin assignments, Iii]), for the allliquarks, ii, d, and i? 

Ched;: that your assignment is consistent with the Gell·Mann-Nishijima formub. 
(Since Q, h, A. and S aU add. when we combine qUllrks. it follows that the 
Gell·Mann-Nishijima formula holds for all hadrons made out of ". d, s. ii. d. and i) 

4.2ti (al The <;ell·Mann-Nishijima fonnub, Equation 4.37, was proposed in the early fifties. 
which is to say long before the disconry of charm. beauty. or truth. Vsing the table 
of quark properties (in Section 1.11), and the quark isospin assignments, Equation 
4.38. deduce the gtMral formula expressing Q in terms of A, I], S, C, B, and T. 

(bl Beause .. and d are the only quarks with nonzero isospin. it should be possible 
to express I) in terms of U rupness') and D rdownness'). What's the formub) 
Likewise, express A in terms of the Havor numbers V, D, S. C, B, and r. 

(el Putting it all together, obtain the formula for Q in terms of the Havor numbers (that 
is, eliminate A and I] from your formula in pilrt (a)). Ibis final version represents 
the cleanest statement of the Gell-Mann-Nishijima formula. in the three-generation 
quark model. 

4.27 For two isospin-i pilrtides. show that IILI.,III _ ! in the triplet state and -� in the 
singlet. (Hilll: I ... == ,(II + ,(2); square both sides.) 

us (al Referring to Equations 4.47 and 4.48. work out all the fI N scattering amplitudes. -Ii. 
through -lij. in terms of -Ii, and -Ii l. 

(bl Generalize Equation 4.49 to include all 10 cross sections. 
(el 'n the same way, generaJize Equation 4.50 

4.29 Find the ratio of the cross sections for the following reactions, assuming the eM energy 
is such that the I = t channel dominates: (i) "'- + P -+ J<'l + EO; (b) fI- + p ..... K+ 
+ E-; (c) fI+ + P -+ K+ + E+. Whit if the energy is such that the I = i channel 
dominates? 

•. 30 What are the possible total isospins for the following reactions: (i) K- + p -+ EO + flO; 
(b) K- + p ...... E+ + It-; (c) K!' + p ...... E+ + ito; (d) "fl!! + p -+ 1:0 + ".+. Find the ratio 
of the cross sections. assuming one or the other isospin channel dominates. 

4.31 On the graph in Figure4.6, we � 'resoninces' as 1525, 1688, 1920, and 2190 (is well as 
the on� at 1232). By comparing the twocutves, determine th� isospin or each resonanc�. 
The nomenclature is N (followed by the m�ss) for any state with 1 ==  i. and I!>. for any 
state with I = t. Thus the nucleon is N(939). ind the 'original' I!>. is 1!>.(1232)_ Name the 
other resonances, and confirm your answers by looking in the Parikh Physics Bockla. 

4.32 The 1:.0 can deciY into E+ + "'-, 1:0 + flO, or E- + fI+ (aJso A + flO, but we're not 
concerned with that here). Suppose you observed 100 sllch disintegrations. how many 
would you expe.::t to � of eich type? 

•. 33 (al The or particle is a bound state of two protons and two neutrons. that is. a �He 
nucleus_ There is no isotope of hydrogen with in atomic weight of four ('H), nor of 
lithium 'Li. What do you conclude about the isaspin of an or pilrtide? 

(bl The reaction d + d ...... or + flO has never been obse!"\·ed. Explain why. 
(el Would you expect 'Be 10 exist? How about a bound state offour neutrons? 
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4.34 (a) Using Equation 4.52. prove that the eigenvilues of P ar� ±1. 
(b) Show Wt any scalar function fIx. y, z) can be expressed as the sum ohn eigenfunction 

f +(x. y. z) with eigenvalue +1 and an �igenfunction f _(x, y, z) with eigenvalue -1. 
Construct the functionsf + andf _ ,  in terms of f. IHilll: P fix. y. z) = f(-x. - y, -
z).) 

us (a) Is the neutrino an eigensl<lte of P? If so. what is its intrinsic parity? 
("') Now Wt � know f+ and ()+ are actually both the K+, which of the decays in 

Equation 4.53 actually violates p,arity conS�IVation? 
4.16 (a) Using the information in Table 4.6, determine the C p,arity of the following mesons: 

".,p.w,'I, '1',¢,fI· 
(b) Show that RIIIO) _(_1)1110), and use this result to justify Equation 4.60 

4.37 The dominant decays of the 'I meson are 

'1 _ 2y(39%), '1 - 3:11"(55%), '1 - :1I":1I"y(5%) (4.78) 

and it is classified as a 'sl<lble' p,article. so evidently none of these is a purely strong 
interaction. Oflband, this s�ms odd, since at 54<) MeV/c!. the '1 has plenty of mass to 
deoy strongly into 2". or 3".. 
[a) Explain why the 211" mode is forbidden, for both strong and electromagnetic interac· 

tions. 
1"'1 Explain why the 311" mode is forbidden as a strong interaction, but allowed as an 

elearomOlsmfic decay. 
4.38 For two hadrons to int�rconvert, A"",B, it is necessary that they have the same mass 

(which in practice means that they must be antiparticles of one another), the sam� 
chuge, and the same 1».ryon nwnber. In the Standard Model. with the usual three 
generations, show that A and B would have to be neutral mesons. and identifY their 
possible quark contents. What, then, are the candidate mesons? Why dOC'sn't the neutron 
mix with the antineutron. in the same way as the � and f<'l miJc to produce Kl and Kl? 
Why don't we see mixing of the n�utral strange l'tdor mesons Jo:<" and J(O-? 

09 Suppose you wanted to inform someone in a distant galaxy that humans have their 
hearts on the left side. How could you communicate this unambiguously, without 
sending an actual ·handed' object (such as a corkscrew, a circularly polarized light beam. 
or a neutrino). For all you know their galaxy may be made of antimaner. You cannot 
afford to wait for .. ny replies, but you are allowed to use English. 

4.010 The charged weak interactions couple a d. 5, or b to a u. ,. or t. but a d (for example) 
unnot go directly to an 5 or a b. However. such a coupling can occur indirectly, vii a 
so-called "penguin·' diagram, in which a quark �mits a virtual W that it subsequently 
reabsorbs. having in the mean time interacted with a gluon:' 

A ' , 

b W d 

A ·tree· diagram is one with noclosed loops. Construct a penguin diagram representing 
80 -+ 11"'" + ".-. and a tr� diagram for the same process (the ia"er should have no 
gluons). In ooth cases, let th� d quark � a spectator. ['Direct' CP violation comes from 
the interference of these two diagrams.] 

Don·tlook for anything resembling the bird here - the IUIm is a joke. The SI(l'1' is told bnt by 
Woit. P. (20(6) NOl E_ Wrong. Buk Books, New York, pp. 5-4-55. 
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Bound States 

The first part of this chapter is devoted to the nonrtlativistic theory oftwo-partick bound 
states - hydrogen (t-p+), positronium (e-c+), tharmonium (cC), alia bott{)monium 
(b'b). This material is not ustd in subsequent chapters and call be skimrm:d, sallcd for 
later, or slo:ipptd entirely. Some �tlaintanu with quantum muhanics is essential. TItt: 
final two sections (5.5 and 5.6) conam relativistic light.quark systems - the familiar 
mesons and baryons - about which far Itss can be said with conjidena. I conctntrate on 
the spin/flavor/color structure of tJu wave fonctums and devtlop a model for tstimating 
masses and magntti<.: moments, 

5.1 
The SchrMinger Equation 

The analysis of a bound state is Simplest when the constituents travel at speeds sub· 
stantially less than c, for then the apparatus of nonrelativistic quantum mechanics 
can be brought to bear. Such is the case for hydrogen and for hadrons made out of 
heavy quarks (e and b). The more familiar light-quark states (made out of u, d, and 
s) are much more difficult to handle, because they are intrinSically relativistic, and 
quantum field theory (as currently practiced) is not well suited to the description of 
bound states. Most of the techniques available assume that the particles are initially 
free, and become free again after some briefinteraction, whereas ina boundstate the 
particles interact continuously over an extended period. Thus there exists a very rich 
theory of , charm onium' (ee, the 'It meson system), and 'bottomonium' (bb, the "] 
system), but comparatively little can be said about the excited states of uii (say) or ad. 

How can you tell whether a given bound state is relativistic or not? The sim· 
plest criterion is as follows: if the binding energy is small compared to the rest 
energies of the constituents, then the system is nonrelativistic." For example, 

• In gene",l. the total energy of a composite 
sys�m is the sum ofthr« terms: (i) the 
rest �nergy of the constituents, (ii) the ki· 
netic energy oflhe constituents, and (iii) the 
potential energy of the configuration. The 
J..tter two are typically compo.rable in si"" 
(the precise relation is given by the virial 
theorem). If the binding energy is much less 

than the constituent res! energies. so too is 
their kinetic energy. and hence the system is 
nonrelativistic. On the other hand. if the mass 
of the composite structure is substantially 
different from the sum of the rest mas!Oe$ of 
the constituents, then the kinetic energy is 
large and the system is reJ..tivislic. 

IntrodllClion I<l Eltm.:nl<ll)' P�01;dts, St",,,,d Editi.".. David Griffith. 
Copyright (I 2008 WILEY·VCH Verlag GmbH & Co. KGaA. Wei.nheim 
ISBN: 978-J.S27--40601·2 
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the binding energy of hydrogen is 13.6eV, whereas the rest energy of an elec· 
tron is 511000 eV - this is dearly a nonrelativistic system. On the other hand, 
quark-quark binding energies are on the order of a few hundre<! MeV, which is 
about the same as the effective rest energy of u, d, or s quarks, but substantially 
less than c, b, and t (see Table 4.4). So the light-quark hadrons are relativistic, but 
heavy-quark systems are not. 

The foundation for nonrelativistic quantum theory is Schrodinger's equation [1 J. 

( h' ,  ) .h ' --v + V  <11 = 1  -<II 
2m iH (5 .1) 

[t governs the time evolution of the wavefonction \jI(r, I), describing a particle of 
mass m in the presence of a specified potential energy Vir, I). Specifically, ll./I(r, t)12 
dlr is the probability of finding the particle in the infinitesimal volume dJr, at time 
t. Since the particle must be somewlurt, the integral ofll./l12 over all space has to be 1: 

j l>l'12 dJr = 1  (5.2) 

We say that the wave function is 'nonnalized'.' 
If V does not depend explicitly on t, the SchrOdinger equation can be solved by 

separalion of variables; 

(5.3) 

where 1/r satisfies the lime-indtptndtnt Schrodinger equation 

(5.4) 

and the separation constant E is the energy of the particle. The operator on the left 
is the Hamiltonian; 

(5.5) 

and the (time-independent) SchrOdinger equation has the form of an eigenvalue 
equation: 

(5.6) 

'it is an eigenfunction of H, and E is the eigenvalue.t 

• A S(llution !O th� Schrodin�r equation Gin j,. multipli.-d by any constant and remain a solu· 
tion. In pnctiCl', � fuc this cow;�nt by d�manding that Equation 5.2 j,. :<atisfi.-d; this proc� 
is GllIrd ·nonnalizing· thr wa..e function. 

t Notic� tru.t 1"'11 = It II. For most purpose; it is only th� absolut� squa� of th� wa"" function 
that matters. and � smoll work almost �"'lusi�ly with t. Casually. we often refer to ¥r as 'the 
w.� function·, but �m�m� that the aawa! wave function carries the aponential ti� �n· 
dence. 



Table 5.' Spherical h�rmonics for I = O. 1. 2. ilnd 3 

1 yg = r= ' 
," 

'11 = {3 cosO, y "; 

Y: = _ [T sin{)r!I. y s,; Y: = _ (fS sin{)c05{)� ys,; 

' [w;0S . l  ' 
Yl = - Sin {)cosO� ". 

5. 1 Th� Xhrllding�r Eql'otion 1 '6' 

[n the case of a spherically symmetrical (or 'central') potential, V is a func tion 
only of the distance from the origin, and the (time-independent) Schrodinger 
equation separates in spherical coordinates: 

(5.7) 

Here Y is a sphuical hanncnic; these functions are tabulated in many places 
(including the Panick Physics BooHrl): a few of the more useful ones are given in 
Table 5.1. The constants I and IfIj correspond to the orbital angular momentum 
quantum numbers introduced in Chapter 4. Meanwhile u(r) satisfies the radial 
Schrlidingu equation, 

",2 d2u [ ",2 1(1 + 1)] 
- - - + V(r) + - -- u = Eu 

2m dr2 2m r2 
(5.8) 

Curiously, this has exactly the same form as Equation 5.4 for one dimension, except 
that the potential is augmented by the untrifogal ba""ur, (",2 /2m)I(1 + 1)/r2. 

That is about as far as we can pursue the matter in general terms; at this point we 
have to put in the particular potential VIr) forthe problem at hand. The strategy is to 
solve the radial equation for u(r), combine the result with the appropriate spherical 
harmonic, and multiply by the exponential factor exp(-iEt/Ii), to get the full wave 
function "'. In the course of solving the radial equation, however, we discover that 
only certain special values of E lead to acceptable results. For most values of E the 

solution to Equation 5.8 blows up at large r, and yields a non-normalizable wave 
function. Such a solution does not represent a possible physical state. This rather 
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technical detail is the source of the most striking and important feature of quantum 
mechanics: a bound state cannot have just any old energy (as it could classically); 
instead, the energy can take on only certain specific values, the (lUowed tne� of 
the system. Indeed, our real concern is not with the wave function itself, but with 
the spectrum of allowed energies, 

5.2 
Hydrogen 

The hydrogen atom (electron plus proton) is not an elementary particle, of course, 
but it serves as the model for nonrelativistic bound systems. The proton is so heavy 
(relatively) that it just sits at the origin; the wave function in question is that of the 
eketron, Its potential energy, due to the electrical attraction of the nucleus, is (in 
Gaussian units) 

� 
VIr) = -­

, 
(5.9) 

When this potential is put into the radial equation, it is found that normalizable 
solutions occur only when E assumes one of the special values 

me4 Z .l ( l )  , E� = --'-2 = -a rrn;- -2 "" -13.6 eV/n 
21i. n 2n 

where n = I, 2, 3, . . .  , and 

� 1 
Q' E he "" 137.036 

(5.10) 

(5.11) 

is the fine structure constant. The corresponding (normalized) wave function, 
� ... I ..... (r, (i,I/!,�, is 

where 

[ '  ' ) '" , 
(-,-) (n - 1 - 1). ,_rl"" ( ,,) L21+1 (,,) ym'I' ¢),_iE.'/A 

na 2n((n + I)!jl na �-I-l na ! ' 

.' 
a ",  

mel "" 0.529 x 10-8 em 

(5,12) 

(5.13) 

is the Bohr rudius (roughly speaking, the size of the atom), and L is an associated 
Laguerre polynomial. 

Obviously, the wave function itself is a mess. but that's not really what concerns 
us. The crucial thing is the formula of the allowed energies, Equation 5.10. It 
was first obtained by Bohr in 1913 (more than a decade before the Schrodinger 

equation was introduced) by a serendipitous amalgam of inapplicable classical 
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ideas and primitive quantum theory - an inspired blend, as Rabi put it, of'artistry 
and effrontery'. 

Notice that the wave function is labeled by three numbers: n (the principal 
quantum number), which can be any positive integer - it determines the energy of 
the state (Equation 5.10); I, an integer ranging from 0 to n - 1 that specifies the 
total orbital angular momentum (Equation 4.2); and �, an integer that can assume 
any value between -I and +1, giving the z component of the angular momentum 
(Equation 4.4). Evidently, there are 21 + 1 different m/'s, for each I, and n different 
I's, for each n. The total number of distinct states that share the same principal 
quantum number n (and hence the same energy) is, therefore 

(5. 14) 

This is called the dtgtneracy of the nth energy level. Hydrogen is a surprisingly 
degenerate system: spherical symmetry alone dictates that the 21 + 1 states with a 
given value of the total angular momentum should be degenerate, since they differ 
only in the orientation of l, but this suggests a sequence 1, 3, S, 7, . . .  , whereas 
the energy levels of hydrogen have much higher degeneracies: 1, 4, 9, 16, . . . .  This 
is because states with different I share the same n; it is an unusual feature of the 
Coulomb potential. 

In practice, we do not measure the energies themselves, but rather the wave­
length of the light emitted when the electron makes a transition from a higher level 
to a lower one (or the light absorbed when it goes the other way) 12). The photon 
carries the difftrtna in energy between the initial and final states. According to the 
Planck formula (Equation 1.1), 

The emitted wavelength is therefore given by 

where 

� . 
. .  --,- = 1.09737 x lOs Icm 

4JT ti C 

(5.15) 

(5.16) 

(5.17) 

Equation 5.16 is the famous Rydberg formula for the spectrum of hydrogen. It 
was discovered experimentally by nineteenth-century spectroscopists, for whom 
R was simply an empirical constant. The greatest triumph of Bohr's theory was 
its derivation of the Rydberg formula, and the expression for R in terms of the 
fundamental constants m, t, c, and Ii (Figure 5.1). 
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5.2.1 
Fine Structure 

As the precision of experimental spectroscopy improved, small departures from the 
Rydberg formula were detected. Spectral lines were resolved into doublets, triplets, 

and even larger families of closely spaced peaks. This fim structure is actually 
attributable to two distinct mechanisms: 

1. Rtlativi5tic correction: The first term in the Hamiltonian 
(Equation 5 .5) comes from the classical expression for kinetic 
energy (p2/2m), with the quantum replacement p --j. -ih'il. 
The lowest-order relativistic correction (Problem 5.4) is 
_p4/8m1c2. 

2. Spin-orbit coupling: The spinning electron constitutes a tiny 
magnet, with a dipole moment' , �' = -ItICS (5.18) 

From the electron's perspective the 'orbiting' proton sets up 
a magnetic field B, and the spin-orbit term is the associated 
magnetic energy -�.·B. 

The net result is a perturbation of the nth energy level by the amount [1 J 

6Ef: = -(J tncl- -- - -, 1 ( '. 1) 
• 4n4 U + !) 2 

(5.19) 

where j = I ± l is the total angular momentum (spin plus orbital) of the electron 
(Equation 4.12). Recall that the Bohr energies go like (J2mc2 (Equation 5.10); fine 
structure carries two more powers of (J, and hence is smaller by a factor of about 
10-·. So we're talking about a tiny correction.t Since I can take on any integer value 

, In W SI syst..m th� =gn�ti( dipol� momffit 
is defined u current times �re� ('/I), but in 
Caussian units it is //llc. The proportionality 
factor �n the =gnnic dipole mom�nt 
�nd the anguLu momentum is known u the 
gyromo.gneli< rWio. Classically. it should h;we 
the (Gaussian) valu� (3) -'l2wot;, and this is 
correct for orbillll angular momentum. But it 
turns out that spin is "twice as effective as it 
ought to be' in producing a magnetic dipole 
(on� of the maior successes of Dirac's original 
theory of the electron was its explanation of 
this extra 2). As it happens. however. even !his 
is not quile right: ther� are minUI� COlIt<:­
tions introduc�d by quantum dNtrodyn;tmiCS 
(QED) that were first calculated by Schwinger 

in the late 1940s. By now. both experimental 
and theoretical determinations ofth� aIWma­
lollS m<IgIItti<: mome,,1 of the electron have 
been carried to fantastic precision, and stun­
ning agr�ment {4]. 

t Thejin. SltIlClUrt "'''1111'''. (I!. o�s its name 
to the f�t that it {or rather. (l!l) sets the rel­
ative scale of th� fin� strllCtur� in hydrogen. 
Howev�r. one might equally well say that (11 
sets the scale of the Bohr levels themselves. 
Actually, th� best w.y to characterit� th� 
fine structure constant is to uy that it is the 
dimensionless meuure (in units of Ii<) of 
the {square of the) fundamental charge: (I! '" 
,}fllr_ 
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Fig. 5.2 Fine structure in hydrogen. The 
rrth Bohr level (nne line) splits into n sub· 
levels (dashed lines). characterized by j = 

1. ! . . . . . (n - !l. hcept for the last of 
these, two different values of I contribute to 

,. , 
'" 

��cn lev�l: I ""  j - I and ! '" j + t. Spectra­
scopis�' nomMdalure - S for I = 0, P for I 
= 1, 0 for I = 2, F for I = 3 _ is indiClited. 
All I�els are shifted downward, as shown 
(the diilsram is not to sule, however). 

from 0 to n - 1.) can be any half·integer from l to n - i ;  thus the nth Bohr level. 
EK• splits into n sublevels (see Figure S.2). 

5.2.2 
The Lamb Shift 

A striking feature of the fine structure formula (Equation 5.19) is that it depends 
only on j. not on I; in general. two different values of I share the same energy. For 
example, the 2SI!l (n = 2, I = O,j = !l and 2PI/1 (n = 2, I = l.j = lJ states remain 
perfectly degenerate. In 1947, Lamb and Retherford performed a classic experiment 
[5] which demonstrated that this is not, in fact, the case; the S state is slightly 
higher in energy than the P state. The explanation of the Lamb shift was provided 
by Bethe, Feynman, Schwinger, Tomonaga, and others; it is due to the quantization 
of the declromagneticjidd itslif. Everywhere else in the analysis - the Bohr levels, 
fine structure fonnula, and even hyperfine splitting (in the next section) - the 
electromagnetic field is treated entirely classically. The Lamb shift, by contrast, is 
an example of a radiativt correction in QED, to which the semiclassical' theory is 
insensitive. In the Feynman formalism, it results from loop diagrams, such as those 
in Figure 5.3, which we shall discuss quantitatively later on . 

• I call it St"'�ssical l>eause !be eltaro� is �lled <1�nlUm medumially. wherels the eltt!r(). 
rruogneticfitld is trealed elissiaUy. 
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Fig. S.l Some loop diagrams contributing to the Lamb shift. 

Qualitatively, the first diagram in Figure 5.3 describes spontaneous production 
of electron-positron pairs in the neighborhood of the nucleus (misnamed \It1cuum 
polarization), leading to a partial screening of the proton's charge (Figure 2.1). 
The se.::ond diagram reflects the fact that the ground state of the ele.::tromagnetic 
field is not zero (6J; as the electron moves through the 'vacuum fluctuations' in 
the field, it jiggles slightly, and this alters its energy. The third diagram leads 
to a tiny modification of the electron's magnetic dipole moment (see footnote to 
Equation 5.18). We are not in a position to calculate these effects now, but here are 
the results {7J: For I "" 0, 

, " Ll.Er...mb "" ex  me -)k(n,O) 
." (5.20) 

where kIn, 0) is a numerical factor that varies slightly with n, from 12.7 (for n = 1) 
to 13.2 (for n ...... 00). For 1 =1= 0, 

" ' I ' ) Ll.Et...mb "" a me -) k(n, � ±  . l I '  4n 1!{j + 1)(1 + I) 
forj = I ± ! (5.21) 

where kIn. � is a very small number (less than 0.05) that varies slightly with n and I. 
Evidently the Lamb shift is miniscule, except for states with I "" 0, where it is about 
one·tenth the size of the fine structure. However, because it depends on I, it lifts 
the degeneracy of the pairs of states with common n and j, in Figure 5.2, and in 
particular it splits the 251/2 and 2Pl/2 levels (Problem 5.6). 

5.2.3 
Hyperfine Splitting 

Fine structure and the Lamb shift are minute corrections to the Bohr energy levels, 
but they are not the end of the story; there is a refinement that is smaller still 
(by a factor of 1000), due to the spin of the nucleus. The proton, like the electron, 
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Fig. 5.4 Hyperfine splitting for I .. 0. 

constitutes a tiny magnet, but because it is so much heavier, its dipole moment is 
much smaller: 

(5.22) 

(The proton is a composite object, and its magnetic moment is not simply th./2mpc, 
as it would be for a truly elementary particle of spin !. Hence the factor Yp' 
whose experimental value is 2.7928. Later on we shall see how to calculate this 
quantity in the quark model.) The nuclear spin interacts with the electron's orbital 
motion by the same mechanism as the spin-orbit contribution to fine structure; in 
addition, it interacts directlywith the electron spin. Together, the nuclear spin-orbit 
interaction and the proton-electron spin-spin coupling are responsible for the 
hyptrjine splitting [8]: 

6£ f - - a�mc2- "-�;=;'--T 
( m ) ¥, ±! 

h - mp 2nJ if + })(I + l)' for ! =j ± t  (5.23) 

where! is the kJlll! angular momentum quantum number (orbital plus both spins). 
Comparing the fine structure formula (Equation 5.19), we see that the difference 

in scale is due to the mass ratio (mlmp) out front; it follows that hyperfine effects 
in hydrogen are about 1000 times smaller. If the orbital angular momentum is 
zero (I = 0), then! can take on two possible values: zero, in the singlet state (when 
the spins are oppositely aligned) and one, in the triplet state (when the spins are 
parallel). Thus, each I = 0 level splits into two, with the singlet pushed down and 
the triplet lifted up (Figure 5.4). In the ground state [9] n = 1 the energy gap is 

corresponding to a photon of wavelength 

2.", , = -- = 21.1cm , 

(5.24) 

(5.25) 

This is the transition that gives rise to the famous '21-centimeter line' in microwave 
astronomy PO]. 
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The theory of hydrogen carries over, with some modifications, to the so-called 
'exotic' atoms, in which either the proton or the electron is replaced by some other 
particle. For instance, one can make muonic hydrogen (P+M-), pionic hydrogen 
(p+]f-), positronium (e+ e-), muonium (M + e-), and so on. Of course, these exotic 
states are unstable, but many of them last long enough to exhibit a well·defined 
spectrwn. In particular, positronium provides a rich testing ground for QED. It was 
analyzed theoretically by Pirenne in 1944, and first produced in the laboratory by 
Deutsch in 1951 [llJ. In particle physics, positronium assumes special importance 
as the model for quarkonium. 

The most conspicuous difference between positronium and hydrogen is that we 
are no longer dealing with a heavy, essentially stationary nucleus, around which 
the electron orbits, but rather with two particles of equtll mass, both orbiting the 
common center. As in classical mechanics, this two-body problem can be converted 
into an equivalent one-body problem with the reduced mass [1 J 

In the case of positronium ml = m2 = m, so Innd = m/2, and we get the 
unperturbed energy levels by the simple substitution m ..... m/2 in the Bohr 
formula (Equation 5.10):' 

(S.2?) 

For example, the ground-state binding energy is 13.6eV/2 = 6.8eV. The wave 
functions are the same as hydrogen's (Equation 5.12), except that the Bohr radius, 
which goes like 11m (Equation 5.13), is doubled: 

aPO' = 211 = 1.06 x 10-8 cm (5.28) 

The perturbations run much as before, apart from pesky numerical factors, with 
one dramatic exception: in positronium, the hyperfine splitting is of the same order 
as the fine structure (a4mc2), since the mass ratio (m/mp) that suppresses proton 
spin effects in hydrogen is one for positronium.t Meanwhile, since the 'nucleus' 
(t+) is no longer stationary, there is a new correction due to the finite propagation 

• In the c.ose of hydrogen, the reduced tnlSS differs from the dtclron tnl5S by only a very srnill 
amount. about O.OS%. Nevertheless. ttchnically the lit in the Bonr formula is the reduced nuss, 
and this leads 10 oo�",.ble differencn lJ,:,lwttn the spectra of hydrogen and deuterium_ 

t This leads 10 some termin<>logic.ol confusion in the literature. I'D use the words 'fine structure' 
for aU perturbations of order a'""l. except the pair annihilation term (�below). including the 
spin-spin and positron spin-orbit couplings, wh� aruo.logs in hydrogen would be called 'hy-
p ... fi",,·. 
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Fig. 5.5 Pair �nnihilation diagram, wflich affe<ts the spec· 
trum of positronium but d�s not OCCur in hydrogen. 

time for the electromagnetic field; its contribution is also of order (a4mcl). When all 
this is put together, the fine structure formula for positronium is found to be [11] 

Ef"" - a4 mc2 _'_ [� _ (1 + H] 
f. -

2nl 32n (21 + 1) 
(5.29) 

where E = 0 for the singlet spin combination, whereas for the triplet' 

-(3/ + 4) 
forj = l + l 

( 1+ 1)(21 + 3) '  
, 

forj = 1 , = 
1(/ + 1) '  (5.30) 

(31- 1) 
forj = I - I 

/(21 - I) ' 

The lamb shift, of order aSmc2, makes a smaUish correction to this; however, 
since the 'accidental' degeneracy is already broken at the fine structure level in 
positronium, this contribution loses much of its interest. There is, however, an 
entirely new perturbation, with no analog in hydrogen, resulting from the fact 
that e+ and e- can annihilate temporarily to produce a virtual photon. In the 
Feynman picture, this process is represented by the diagram in Figure 5.5. Because 
it requires that the electron and positron coincide, this perturbation is proportional 
to IIJI (0)12, and hence occurs only when I = 0 (<l> goes like ,.l near the origin - see 
Equation 5.12). Moreover, since the photon carries spin 1, it takes place only in 
the triplet configuration. This process raises the energy of the triplet 5 states by an 
amount 

. " D.E�n = a  me 4nJ (1 = 0, 5 = 1) 

• In hydrogen, where the prolOn spin IS,) COn_ 
tributes only �t the hyperfine level. we used 
J for the sum of the electron's spin and or· 
bital angular momentum a = l + S,); for the 
IOta] angular momentum we needN a new 

(5.31) 

letter. F = l + S, + S,. In pos;tlonium the two spins contribute on an equal footing. and 
it is custoJt»ry to combine them first (S = 

S, + S,) and use , for the total: J = L + S, + 
" 
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- the same order as fine structure. The complete splitting of the n = 1 and n = 2 
Bohr levels in positronium is indicated on Figure (5.6)' 

As in the case of hydrogen, positronium can make transitions from one state 
to another with the emission or absorption of a photon, whose wavelength is 
determined by the difference in energy between the two levels. UnUk.t hydrogen, 
positronium can also disintegrate completely, the positron annihilating the elec­
tron to produce two or more real photons. The charge conjugation number for 
positronium is (_I)I+>, while for n photons C = (_I)K (see Section 4.4.2). Thus, 
charge conjugation invariance prescribes the selection rule 

(5.32) 

for the decay of positronium from the state I, s to n photons. Since the positron and 
electron overlap only when 1 = 0, such decays occur only from S states.t Evidently, 
the singlet (s = 0) must go to an even number of photons (typically two), whereas 
the triplet (s = 1) must go to an odd number (typically three). In Chapter 7 we will 
be in a position to calculate the lifetime of the ground state: 

,. , = -'--2 = 1.25 )( to-tO seconds " = 

,.4 
Quariconium 

(5.33) 

In the quark model all mesons are two· particle bound states, qt q2. and it is natural 
to ask if the methods developed for hydrogen and positronium can be applied 
to mesons as well. Ught-quark (u, d, 5) states are intrinsically relativistic. so any 
analysis based on the Schrodinger equation is out of the question, but heavy-quark 
mesons (cc, be, and bb) should be suitable candidates. Even here, however, the 
interaction energy (E) is such a substantial fraction of the total that we are disposed 
to regard the various energy levels as representing different parlidts, with masses 
given by 

(5.34) 

Unlike hydrogen and positronium, in which the forces at work are entirely 
electromagnetic, and the energy levels can be calculated to great precision, quarks 
are bound by the strong force; we don't know what potential to use, in place of 
Coulomb's law, or what the strong analog to magnetism might be, to obtain the 
spin couplings. In principle, these are derivable from chromodynamics, but no one 

• Positronium states a� convnllionally labd..-d n("+'I�. with I given in spectr()$(opisfs notltion (S 
for I '" O. P for I "" 1. D for I "" 2. etc.). md I the IOtll spin (0 for the singlet, 1 for the triplet). 

t ACluilly, positronium can in principle dec."iy directly from a Stile with I > 0 by <I higher-<lrner 
process. but it is much more likely to cascade down to:an S st:ate first, :and decay from the�. 
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Table 5.2 'Bohr' Energy levels for linear-plus-Coulomb poten­
tial (Equation 5.83) with various V.IUM of Fo. They are for 
S-states (I = 0) and assume a, = 0.2. m = 1500 MeV/c2 (re­
duced mass, 750 MeV/C:-). 

Fo (MeVfm-t) 5\ (MeV) 5� (MeV) 5J (MeV) 5. (MeV) 

500 )07 677 %1 1210 
tOOO 533 1100 1550 1940 
1500 727 1480 2040 2550 

Nunu.rkal results from unpublished tables p"'pared by Richard E. 
Crandall. 
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yet knows how to do the calculation. Still, we can make some educated guesses, 
for chromodynamics is very similar in structure to electrodynamics, except for 
some nonlinear terms which, in the light of asymptotic freedom, probably don't 
contribute much at short distances_ 

In quantum chromodynamics (QeD), the short-distance behavior is domi· 
nated by one-gluon exchange, just as in QED it is dominated by one-photon 
exchange. Since the gluon and the photon are both massless spin-I particles, 
the interactions are, in this approximation, identical, apart from the overall cou­
pling strength and various so-called 'color factors', which result from counting 
the number of different gluons that contribute to a given process. At short 
range, therefore, we exPe(t a Coulomb-like potential, V � I/r, and a fine 
structure that is qualitatively similar to that of positronium (121. On the other 
hand, at large distances we have to account for quark confinement: the po­
tential must increase without limit. The precise functional form of V(r) at 
large r is rather speculative: some authors favor a harmonic oscillator po­
tential, V ....., r2, others a logarithmic dependence, V ...... In (r), still others a 
linear potential. V � r, corresponding to a constant force, The fact is, any of 
these can match the data reasonably well, because they do not differ substan­
tially over the rather narrow range of distances for which we have sensitive 
probes. 

For our purposes, we may as well choose 

4 a,fic 
V(r) = - - - + For J , (5.35) 

where a. is the chromodynamic analog to the fine structure constant, and j is the 
appropriate color factor, which we'll cakulate in Chapter 8. Unfortunately, exact 
solutions to the Schrodinger equation with linear-pius-Coulomb potential are not 
known, and I cannot give you a simple formula for the 'Bohr' energies. However, it 
can, of course, be done numerically (see Table 5.2), and Fo can then be chosen so as 
to fit the data (131 (Problem 5.11). The result is about 16 tons(!), or, in more sensible 
units, 900 MeV fm-I, which is to say that a quark and an antiquark attract one 
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another with a force of at least 16 tons, regardless of how far apart they are.' This 
perhaps makes it easier to understand why no one has ever managed to pull a free 
quark out of a meson. 

SA.1 
Channonium 

Shortly before the discovery of the "" Appelquist and Politzer [141 suggested that 
if a heavy 'charm' quark existed (as Glashow and others had proposed) it should 
form a nonrelativistic bound state, ce, with a spectrum of energy levels similar to 
positronium. Theycalled the system 'charmonium' (which does more to emphasize 
the parallel than to beautify the language) . When the '" was found, in 1974, it was 
quickly identified as the l' 5l state of charmonium.t (In the SLAC experiments 
the 1/1 was produced from t+t- annihilation through a virtual photon: t+ e- ...... y 
-+ 1/1, so it has to carry the same quantum numbers as y - in particular, spin 1. 
Thus it could not be the ground state of charmonium, but presumably it was the 
lowest-lying state with total angular momentum 1.) Consulting the positronium 
energy-level diagram (Figure 5.6), we immediately anticipate a spin·O state at lower 
mass (the 11 So) and six n = 2 configurations. Within two weeks the 1/1' (2351) was 
found. This was easy, because it again carries the same spin - and parity - as the 
photon; it was produced in the same way as the 1/1, simply by cranking up the beam 
energy. 

In due course all the n = 1 and n = 2 states were discovered [151, save for the 21 PI 
at a predicted mass of about ]500 MeV/c?-, which presents special experimental 
problems. The following nomenclature has been adopted: singlet 5 states (spin 0) 
are called 'I<,s. triplet 5 states (spin 1) are 1/I's, and triplet P states (spin 0, 1. or 2) 
are designated XcO, X,b Xa. For a while the value of n was indicated by primes, 
but this quickly got out of hand, and the current practice is simply to list the mass 
parenthetically; thus for n = 1 we have ", = 1/1 (3097); for n = 2, 1/1' = 1/1 (3686); for n 
= ], 1/1" = >It (4040); for n = 4, 1/1'" = '" (4160); and soon.* The correlation between 
states of charmonium and those of positronium is almost perfect (Figure 5.6). Bear 
in mind that the gap between the two n = 1 levels (which would be called hyperfine 
splitting in the case of hydrogen) is greater by a factor of lOll in charmonium than 
in positronium. Yet even over so huge a change of scale, the ordering of the energy 
levels and, for a given value of n, their relative spacing, are strikingly similar. 

All the charmonium states with n = 1 and n = 2 are relatively long·lived, 
because the OZI rule (Section 2.5) suppresses their strong decays. For n ::-: 3 the 
charmonium masses lie above the threshold for (OZI.allowed) production of two 

, At �xtr�mdy .hon distanc�. Fo and a, th�m�lves decr� .. se. I�ading to .. symptotic freedom. but 
for now we shall !reat them u constants. 

t The nomenclature is borrowed from that of positronium - � foomo� after Equation 5.31. 
* Some authors. including th� of the Panicle PII}'<ics Bookkl, number sta!�S conse<:utively. st .. J1· 

ing with 1 for tad. combination of I. J . ..  00 j. so that what J Cilll a 2P state (Figure 5.6) is listed 
as lP. Sorry a"bout that. Incidentally, the 11'(3770) i. a displaced 3) V, .b.t�, and oo,.s not ruDy 
�Iong in this hierarchy. 
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Fig. 5.7 (i) OZI·suppressed deciY for charmonium �Iow 
the DO thrtshold, (b) OZI·allowed decay for chirmonium 
above the DO threshold. 
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charmed D mesons (0<>, DO at a mass of 1865 MeV/e2, or D± . at 1869 MeV/e2). 
Their lifetimes are therefore much shorter, and we call them 'quasi· bound states' 
(see Figure 5.7). Quasi·bound states of (harmonium have been observed going up 
at least as high as n = 5. 

5.4.2 
Bottomonium 

In the aftermath of the November Revolution there was widespread speculation 
about the possible existence of a third.quark generation (b and t), and in 1976 
Eichten and Gottfried [16] predicted that 'bottomonium' (bb) would exhibit a 
hierarchy of bound states even richer than (harmonium (Figure 5.8). The bottom 
analog to the D meson (to wit, the B) had an estimated mass large enough that not 
only the n = 1 and n = 2, but also the n = 3 levels should be bound. In 1977 the 
upsilon meson was discovered, and immediately interpreted as the 1151 state of 
bottomonium. At present, the 151 states have been found for n up to 6, as well as 
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the six J P states for n = 2 and n = 3. The level spacings in the '" and T systems' 
are remarkably similar (Figure 5.9), in spite of the fact that the bottom quark is 
more than three times as heavy as the charm quark [17J. 

,., 
Light Quark Mesons 

Consider now the mesons made entirely out of light quarks (I', d, s). These are 
relativistic systems, remember, so we cannot use the Schr6dinger equation, and 
the theory is rather limited [lS). In particular, we shall not concern ourselves with 
the spet:lrum of excited slates (Table 4.6), as we did in the case of the heavy 

• In prindpl� th�r� should be a simiLor system for the B: mesonS (cb and bel, but SO far only one 
of th.-se, at 6286 MeV, has bttn producN in the Lohomory. 
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Fig. 5.9 Level spacings in the ", and Y systMls. (Source: Particle Physics Boo/del (2006).) 

quarks, but will confine our attention to the ground state, with 1 = O. The quark 
spins can be antiparallel (singlet state, S = 0) or parallel (triplet state, S = 1); the 
former configuration yields the pseudoscalar nonet, the latter gives the vector nonet 
(Figure S.10). 

To begin with, ! want toclearupa problem that was not resolved in Chapter 1. We 
obtained nine mesons simply by combining a quark and an antiquark in all possible 
combinations (Section 1.8), but this left three neutral states with strangeness 0 (uii, 
dd, and sSj, and it was not clear which of these was the 11"0, which the 1/, and which 
the I)' (or, in the vector case, the pO, w, and ¢). We are now in a position to resolve 

K' 

• 
.' 
• 

. t �, 

K' 

.' 

Fig. 5.10 light·quart; mesons with 1 = 0. 

K" 

,-
" 

• 
• • • w 

Ve(:tOt none\ 

" 
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the ambiguity. The up and down quarks constitute an isospin doublet: 

(5.36) 

So too do the antiquarks: 

(5.37) 

(Notice that d carries 13 = +! ,  and u has /) = -!: within a multiplet, the particle 
with the higher charge is assigned the greater fJ. The minus sign is a te<hnical 
detail [19], which does not affe<t the argument here in any essential way.) When 
we combine two particles with 1 = � , we obtain an isotriplet (Equation 4.15) ( 11 1) = -ud 

11 0) = (uli - dCf)/..J2 
11 - 1) = au 

and an isosinglet (Equation 4.16) 

100) = (uli + iJJ/..fi 

(5.38) 

(5.39) 

In the case of the pseudoscalar mesons the triplet is the pion: for the vector mesons 
it is the p. Evidently, the 1["0 (or the pO) is neither uli nor dd, but rather the linear 
combination 

(5.40) 

If you could pull a 1["0 apart, half the time you'd get a 10 in one hand and a Ii in the 
other, and half the time you'd get a d and a d .  

This leaves two r = 0 states (the isosinglet combination, Equation 5.39, and sS) 
which must represent I) and I)' (or w and cPl. Here the situation is not so dean, for 
these particles carry identical quantum numbers, and they tend in practice to 'mix.' 
In the case of the pseudoscalars the physical states appear to be 

I) = (IOU + tid - 2sS)j./6 

I)' = (uli + dd + sS}/./3 

whereas for the vector mesons 

w = (IOU + dCf)j..fi 

cP = sS  

(5.41) 

(5.42) 

(5.43) 

(5.44) 

To the extent that the Eightfold Way is a good symmetry, the pseudoscalar 
combinations are more 'natural', since the I)', which treats 14, d. and s symmetrically, 
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d 

, ;; d 
Fig. 5.11 Quark� and antiquarks. 

is unaffected by SU(3) transformations; it is a 'singlet' under SU(3), in exactly the 
same sense that the 11"0 is a singlet under SU(l) (isospin). The 'I, meanwhile, 
transforms as part of an SU(3) 'octet', whose other members are the three pions 
and the four K's. (This is, in fact, the original pseudoscalar octet.) By contrast, 
neither the � nor the w is an SU(3) singlet. They are, you might say, 'maximally' 
mixe<!, since the strange quark is isolate<! from the other two. Incidentally, the 
other meson nonets seem to follow the 4> - w mixing pattern [20[. 

Meanwhile, the strange mesons are constrocted by combining an 5 quark with II 
"d 

� -
K = -sd. (5.45) 

In the language of group theory, the three light quarks belong to the fundamen­
tal representation (denoted 3) of SU(3j, whereas the antiquarks belong to the 
conjugate representation (3) (Figure 5.11). What we have done is combine these 
representations, obtaining an octet and a singlet: 

(5.46) 

just as in Chapter 4 we combined two two·dimensional (spin·l) representations of 
SU(lJ to obtain a triplet and a singlet:' 

(5.47) 

If SU(3) were a perfect symmetry, aU the particles in a given supermultiplet 
would have the same mass. But they obviously do not; the K weighs more than 
three times the 11", for example. As I indicated in Chapter 4, the breaking of flavor 
symmetry is due to the fact that the quarks themselves have unequal masses; the 
II and d quarks weigh about the same, but the s quark is substantially heavier. 
Roughly speaking, the K's weigh more than the /l'S because they contain an 5 

• Unfortun .. tely (from the point of view of 
notational consistency) represenutions of 
SU(3) .. re custormrily bkled by their di· 
�nsion. wherus representations of SU(2) 
are more often identified by their spin. so 
Equation 5.45 would usual!y be written as 
1 0  \ '" 1 QI O. By the w .. y. it ho.ppens th .. t 

the fund .. mental repreRnb.tion of SU(2) is 
equivalent to its conjulPte: there's only one 
kind of spin t. That's why we were ahle to 
repr�nt ii and d in Eql1iltion 5.79 in terms 
of ordinary isospin·t states. For SU(3) this is 
no lon� the orR. 



180 I 5 BOllmJ Slatu 

Table 5.1 Pseudo scalar �nd vedor meson mass�s, {MeV/el} 

Muon CaJ.cubtd Observed , Il9 138 
K '" <96 

, 561 "g 

, 775 7" 
w 775 783 
K' 892 go. 
• 1031 1020 

in place of a u or d, But, that cannot be the whole story, for if it were, the p's would 
weigh the same as the H'S; after all, they have the same quark content and are both in 

the spatial ground state (1'1 = 1 , 1  = 0). Since the pseudoscalar and vector mesons dif· 
fer only in the relative orientation of the quark spins, the difference in their masses 
must be attributed to a spin-spin interaction, the QeD analog to hyperfine splitting 
in the ground state of hydrogen. This suggests the following meson mass formula:' 

(SI . S2) 
M(meson) = ml + 1'112 + A--­mlm2 

(S.48) 

where A is a constant 121]. By squaring S = SI + S2. we obtain 

for s = 1 (vector mesons) ) 
for s = 0 (pseudoscalars) 

(S.49) 

For constituent masses I'II� = md = 308 MeVle2, m, = 483 MeVlel, the best-fit 
value of A is (2m�/Ii)21S9 MeV /e2, and we obtain the results in Table 5.3. 

5.' 
Baryons 

Some day. presumably, we shall be able to make nonrelativistic heavy-quark 
baryons - "e, "b, ebb, and bbb. These are the baryonic relatives of quarkonium -
'quarkelium', you might call it, since the nearest atomic analog would be helium. 
At present, though. it is hard enough to make a baryon with o� heavy quark, never 

• In I = 0 states the hypetfine correction is pro­
portion to the dot product of the magnetic 
moments, J'I J'l: dipole momffits. in turn. 
are proportional to spin anguln momffitum 
and inversely proportioml to maSS. Th .. !'. the 
inspiration behind Equation 5.46 Of course. 
this is for QED, not QCD. What's worse, it 

ignores the mass dependence of the Wa� 
function (contained in the 'constant' A), and 
il is based on nonrelativistic quantum me­
chanics. But nothing succeeds like success, 
and Equation 5-'16 works surprisingly well. 
(Notice, howe""r, that the �' is not included 
in the table - see Problem 5_12). 
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T�ble S." Light-quark baryons U "  spin, P = p,arity, S = 
strangeness, I = isospin. This is not a complete list; baryons 
with spins as high as 11/2 have be-en observed) 

s _  
SU(3) Representa.tion Je S = O  1 . 0  1 _  1 S= -2 S= -3 

, ,. N('.J39) A (1l16) 1: (11'.13) S (1318) , 

10 r 6 1l2J2) 1: (138S) S (1530) Q (1672) 

,- 1\ (1405) , 

r A (l520) , 

, ,- N(153S) 1\ (1670) 1: (1610) , 

!- N(IS20) A (1690) 1: (1670) S (1820) 

, - N(1675) A (1830) 1: (177S) , 

10 !- t.. (1620) 

, - t.. (1700) , 

, r N(I720) A (1890) 

, . N(1680J A (1820) 1: (1'.JlS) S (2030) , 

10 , . t.. (1905) , 
, . 6 (1950) 1: (2030) , 

, r N(1440) 1\(1600) 1: (1660) 

So","o: Ro""", of Porlick Pkysics (2(06). S�n 14.4. 

mind thru, and I won't speculate here about the heavy-quark baryon spectrum. 
On the other hand, the array of observed light quark baryons is immense (see 
Table S.4). 

5.6.1 
Baryon Wave Functions 

Baryons are harder to analyze than mesons, for several reasons. In the first place. 
a baryon is a three-body system. "iliere's not just OIU orbital angular momentum 
to consider, but two (see Figure 5.12). We'U concentrate on the ground state, for 
which I = I' = O. In that case, the angular momentum of the baryon comes entirely 
from the combined spins of the three quarks. Now. the quarks carry spin � ,  so 
each can occupy either of two states: 'spin up' (t) or 'spin down' 0.). "ilius, we have 
eight possible states for the three quarks: (t t t), (t t �), (t ./. t), (t � �), (� t t), 
a t ./.), a � t), and (l � l). But these are not the most convenient configurations 
to work with, because they are not eigenstates of the total angular momentum. As 
we found in Example 4.2, the quark spins can combine to give a total of f or !, and 
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L 
8 

A 
3 

L' 
2 

Fig. 5.12 OIt:>it�1 �ngular momenta for � three·body system. 
L is the angular momentum of 1 and 2 .. bout their center of 
m�ss (A); L' is the angular momentum of this combination 
and 3 about the center of m .. ss of all three (B). 

the latter can be achieved in two distinct ways. Specifically, 

IH) = (ttt) 

IH) = (tt.!- + t H + Htl/./3 

1 1 - i) = (Ht + 1.tJ. + tHl/./3 

I �  - �) = (Hl) 

IH)n = (t.!- - HI t /../2 

11 ihl =t (t 1. - 1. t)l../2 

I! - �)H =J. (t.!- - H)/../2 

spin � (,#",) (5.50) 

I spin 1 ('#"12) (5.51) 

I spin � (,#"H) (552) 

The spin-� combinations are completely symmetric. in the sense that interchanging 
any two particles leaves the state untouched. The spino! combinations are partially 
antisymmetric - interchange of two particles switches the sign. The first set is anti­
symmetric in particles I and 2 - hence the subscript; the semnd is antisymmetric 
in 2 and 3. We could also. of course. construct a pair of states antisymmetric in 1 
and3: 

I !  lIn = Itt J. - J. tt)/../2 

11 - 1)1l = (tH - Htl/../2 I spin ! ("vtJ) (553) 
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However, these are not independent of the other two; as you can check for yourself, 

I }1l = I )12 + I b (5.54) 

In the language of group theory, the direct product of three fundamental 
(two-dimensional) representations of S U(2) decomposes into the direct sum of a 
four-dimensional representation and two two-dimensional representations;' 

2 0 2 0 2 = 4 Gl 2 G1 2  (5.55) 

A second respect in which baryons are more complicated than mesons has to do 
with the Pauli exclusion principle. In its original formulation the Pauli principle 
stated that no two electrons can occupy the same quantum state. It was designed to 
explain why all the electrons in an atom don't simply cascade down to the ground 
state, 1/1 100 (there wouldn't be much left of chemistry if they did): they cannot, 
because the ground state can only accommodate two of them - one spin up, one 
spin down. Once those positions are occupied, the next electrons are stuck in the 
first excited state, n = 2, . . .  , and so on. In this fonn, the Pauli principle seems 
a little ad hoc, but it is actually based on something far deeper: if two particles 
are absolutely identical, then the wave function should treat them on an equal 
footing. If someone secretly interchanges them, the physical state should not be 
altered. You might conclude from this that 1/1(1, 2) = 1/1(2, 1), but that's a little 
too strong. Physical quantities are determined by the square of the wave function, 
so all we can say for sure is that 1/1(1, 2) = ± 1/1(2, 1): the wave function must 
either be even - symmetric - or odd - antisymmetric - under the interchange of 
two identical particles.t But which is it, even or odd? Nonrelativistic quantum 
mechanics offers no answer; there are simply two classes of particles - bOOMS, for 
which the wave function is even, and flrmions, for which it is odd. It is an empirical 
fact that aU particles of integer spin are bosons, whereas those of t·integer spin are 
fermions. One of the major achievements of quantum field theory was the rigorous 
proof of this connection between 'spin and statistics'. 

Boson (integer spin) => symmetric wave function : 1/1(1,2) = 1/1(2, 1) 

Fermion H-integer spin) => antisymmetric wave function : 1/1(1,2) 

= -1/1(2, 1) 

Suppose we have two particles, one in state 1/1", and the other in state 1/1�. If the 
particles are distinct (one a muon and one an electron, say) then it makes sense to 

• If the representations �re l�heled by spin. inste�d of dimensio�lity. Equ�lion s.ss re�ds ! ® 
t ® l = i Qj j e l· Incidentally. it is a{jo possible to construct � spin.! combination that is 
.ymmtlri< in »>rticles 1 �nd 2: I ) _ I )ll + I )lJ. Somr �uthors prefer to use 1 h, �nd I ), in· 
stead of I )tl �nd I hl. 

t From It(l, 2)1' : It(2, 1)1' it follows only that �(I. 2) = �t,2. I). However. �pplyin8 the in· 
terchange twiu brings us back to where we started. so ;;. 

= I . .. nd hen� � = ± I. 
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ask which is in state 1/1" and which is in state 1/1 Ii. Thewave function forthe system is 

if particle 1 is in 1/1� and 2 is in 1/IfJ' or 

if it's the other way around. But if the two particles are indistinguishable, we cannot 
say which one is in which state. If the particles are identical bosons, the wave 
function is the symmetric combination 

';(1,2) = (1/../2) [.;� (1)';fJ(2) + ';fJ(l)v" (2)] (5.56) 

and if they are identical fermions, the wave function is the antisymmetric combi­
nation 

(5.57) 

In particular, if you try to put two fermions (electrons, say) into the same state (V" = 
V Il) you get zero; ilean't be done. That's the original Pauli exclusion principle; but we 
see now that it is not an ad hoc assumption, but rather a consequence of a stroctural 
requirement on the wave functions of identical particles. Notice, by the way, that the 
Pauli principle does not apply to bosons; you can put as many pions into the same 
state as you like. Nor is there any symmetry requirement for distinguishab/t: particles; 
that's why we didn't have to worry about it when we were constructing meson wave 
functions (since one constituent is a quark and the other an antiql«lrk, they're alW(lYS 
distinguishable). But in the case of the baryons we're putting three quarks together, 
and this time we must take the antisymmetrization requirement into account. 

Now, the wave function of a baryon consists of several pieces; there is the spatial 
part, describing the locations of the three quarks; there is the spin part, representing 
their spins; there is a flavor component, indicating what combination of u. d, and s 
is involved; and there is a color term, specifying the colors of the quarks: 

1/1 = 1/I(space)1/I(spin)1/I(fiavor)v{color) (5.58) 

It is the whok W<lrks that must be antisymmetric under the interchange of any 
two quarks: We do not know the functional form of the spatial ground-state 
wave function, but it is surely symmetric; since I = I' = 0, there is no angular 
dependence at all. The spin state can either be completely symmetric U = !) or of 
mixed symmetry U = l). As for flavor, there are 31 = 27 possibilities: uuu, uud, 
udu, udd, . . .  , SS$, which we reshuffle into symmetric, antisymmetric, and mixed 
combinations; they form irre<lucible representations of SU(3), just as the analogous 

• Notice t1ut • subtl� exknsion of the notion of 'id�ntiGl.l p.a.rtick· has implicitly � maok h�re, 
for we a� tee.tins all quarks. regardless of color Or evm flavor. as different Slain of. single 
I"'-rtid� 122]. 
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spin combinations form representations of SU(2). These are conYenientlydispiayed 
in Eightfold-Way patterns: 

"'" (ddu + dud + utid 1/.,fJ (uud ... udu + OOu 1/.,fJ 

(dds + dsd +stidl/../3 
(uds -t usd + dus + dsu + sud + soo 11.J6 

• luus + usu + suulf..jJ 

hiss + sds + ssdl/,j'J (USI + suS + 55ul/../3 

.".: Completely tymrr>etric ltat ... 

• 
Iuds -UId + <lsu -dU$ + sud -sdu 1/.J6 

(ud-dulul..;2 

[(UI -IU I d + (dl -wlu J 12 

• 
• 

[2(ud-duls + (us -wld- (m -Jdlu]/./i2 

(us -$1.115/.;2 

.J-, 2: Antlsymmetri(: in 1 �nd 2 

(us-suluA,/2 
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d(ds -sd)l.J2 

u (ud -du lIP 

(dlus-wl  +u(ds-.dll!2 
• 
• 

(2.(ud -du) + d{us -w )  -u (d. -sdl j/y'l"1 

S(dS -sd)A/f .(u.-w)/� 

11-13' Amisvmmetrlc in 2 and 3 

u(us-w)/y'2" 

Thus the combination of three light-quark flavors yields a de(Uplet, a singlet, and 
two octets;' in the language of group theory, the direo;:t product of three fundamental 
representations of SU(3) deo;:omposes according to the rule 

3 081 3 081 3 =  10 $ 8 $ 8 $ 1  (5.59) 

Incidentally, we can also construct an octet that is antisymmetric in 1 and 3, but 
this is not independent (Vru = 0/12 + 0/23); we have already used up the 27 states 
avail able in making the four representations to, 8, 8, and 1. 

(dds-Wd)/V'I 

(uud -duu )/,;2 

(ulh-sdu +dus-wdI/2 
• 
• 

[2(usd -dw) + ud. -sdu -dus + wd! 1y'l"1 

(du -ud)/.j2 

"'I J ;  Amisvmmetric in 1 and 3 

(uus-wu)/../2 

• As always in oclci (and nonet) diagrams. ! put rhe isotriplet ('I:o,) abow:, and the iso.inglet(s) 
(" A·) bene�th it. in the center. 
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Finally, there is the question of color. In Chapter 1. I stated a general rule that 
all naturally occurring particles are colorless; if a meson contains a red quark, it 
must also contain an I2nlired quark, and every baryon must harbor one quark of 
each color. Actually, this is a naive formulation of a deeper law: 

Every naturally occurring particle is a color singlet. 

The three coum generate a color SUP) symmetry, just as the three light--quark 
flavors generate flavor SU(3). (The former is, however, an exact symmetry - quarks 
of different colors all weigh the same - whereas the latter is only approximate.) By 
putting together three colors, we obtain a color decuplet, two color octets, and a 
color singlet (simply make the flavor --+ color transcription, u --+ red, d --+ green. ! 
--+ blue, in the diagrams above). But nature chooses the Singlet, and so for baryons 
the color state is always 

t(color) = (rgb -rbg + gbr -gtb + brg -bgr)/.../6 (5.60) 

Because the color wave function is the same for aU baryons, we generally do not 
bother to include it. However, it is absolutely crucial to remember that "1/r(color) is 
antisymmetric, for this means the rest of the wave function must be symmetric. In 
particular. in the ground state, with "1/r(space) symmetric, the product of t(spin) 
and "1/r(flavor) has to be completely symmetric. Suppose we start with the symmetric 
spin configuration; this must go with the symmetric flavor state, and we obtain the 
spin-� baryon decuplet: 

t(baryon decuplet) = "1/r,(spin)t,(fiavor) (5.61) 

Example 5. 1 Write down the wave function for the 6.+, in the spin state mj "" -! 
(never mind the space and color parts). 

Solution: 

1.6.+ : � - i) = {(uud+udu+duu)/JJ}[HH + H� + tH)/..J3] 

= [uU)u(J.)d(t) + u(J.)u(tld(J.) + u(t)uU)d(l) 

+ u(J.)d(J.)u(t) + u(�)d(t)u(�) + u(t)d(�)u(�) 

+ d(�)u(J.)u(t) + d(�)u(t)u(�) + d(t)u(�)uu)}f3 

For instance, if you could pull such a particle apart, the probability is � that the first 
quark would be a d with spin up, and * that it would be a u with spin down. _ 

The baryon octet is a little trickier, for here we must put together states of 
mixed symmetry to make a completely symmetric combination. Notice first that 
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the product of two antisymmetric functions is itself symmetric. Thus "'i2(spin) x 

'" l2(flavor) is symmetric in 1 and 2. for we pick up two minus signs when 1 ..... 2. 
Likewise. "'n(spin) x "'2l(flavor) is symmetric in 2 and 3, and "'ll(Spin) )( 
\l'o(flavor) is symmetric in 1 and 3. Ifwe now add these, the result will clearly be 
symmetric in all three (for the normalization factor, see Problem 5.16): 

\I'(baryon octet) == (../2f3H"'12(spin)"'ll(llavOr) 

+ \l'z)(spin)\I'zl(flavor) + \l'l)(spin)\I'u(ilavor)] (5.62) 

Exomple 5.2 Write down the spin/flavor wave function for a proton with spin up. 

Soluticn: 

Ip ; ! !> :::0 Ilft � t - � ftHudu - duu) + t(ft i - t � tJ(uud - udu) 
J2 

+t(tU - l ft){uud - duujf ""3 == /uud(2 tU - U t - Ht) 
I 

+ udu(2 t H - Ht - tt l) + duu(2 Ht - t H - tU11 '" lv2 
2 I 

== 3v'2(u(t)u(t)dW) - 3../2(u(t)ujl)d(t)) 

- l",(u(i)u(t)d(t)) + permutations. _ 3,2 
If nothing else, I hope you will have gathered from this exercise that the 

construction of baryon wave functions is a nontrivial business, in the quark model. 
Apart altogether from the spatial wave function, there are three spins to juggle, as 
well as three flavors and three colors, and it all has to be put together in a way that is 
consistent with the Pauli principle. Perhaps, also you will forgive me for deferring 
the explanation of how three quarks can generate the baryon octet (the decuplet, 
remember, we got by naive quark counting back in Chapter 1). The essential point 
is that the corners of the de<:uplet contain three identical quarks (1'1'1', ddd, and 
sss); they necessarily form a symmetric flavor state, and hence must go with the 
symmetric spin state U == �l. With two identical quarks (uud. say) there are three 
arrangements (uud, udu, duu): you can make a symmetric linear combination, 
which goes into the decuplet, and two of mixed symmetry, which belong to 
SU(3) octets. Finally, with all three different, uds, there are six possibilities - the 
completely symmetric linear combination completes the dewplet, the completely 
antisymmetric combination makes an SU(3) singlet, and the remaining four go 
into the two octets. Notice again the essential (if hidden) role of color in all this. 
Without it we would be looking for antisymmetric spin/flavor wave functions; 
spin � (symmetric) would have to go with the flavor singlet (antisymmetric). It is 
possible to make a spino! octet without color (see Problem 5.18), but in place of 
the decuplet we would have just one spin-� baryon. It was to avoid that disaster, 
without sacrificing the Pauli principle, that color was introduced in the first place. 
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5.6.2 
Magnetic Moments 

As an application of the baryon spin/flavor wave functions, we now calculate the 
magnetic dipole moments of the particles in the octet. In the absence of orbital 
motion, the net magnetic moment of a baryon is simply the v«tor sum of the 
moments of the three constituent quarks: 

(5.63) 

It depends on the quark flavors (because the three flavors carry different magnetic 
moments) and on the spin configuration (because that detennines the relative 
orientations of the three dipoles). Apart from minute radiative corrections, the 
magnetic dipole moment of a spin.� point particle of charge q and mass m is 
(Equation 5.18): 

(5.64) 

Its magnitude is 

(5.65) 

More precisely, this is the value of /-Lz in the spin·up state, for which Sz = hj2. It 
is customary to refer to J.I., rather than p. itself, as 'the magnetic moment' of the 
particle. For the quarks, ' ''' J.I.. = ----3 2m,c 

Tbe magnetic moment of baryon B. then, is 

2 ' 
J.l.B = (B t 1(J.l.1 + J.l.2 + MI.IB t) = � L(B t l(J.l.iSi.IIB t) 

�, 

Example 5.3 Calculate the magnetic moment of the proton. 

Solutian: The wave function was found in Example 5.2. The first term is 

2 

3../2
[U(t)u(t)dH)) 

Now (/-LISt, + J.l.2S2. + J.l.JSJ,)lu(t)u(t)dU)) 

(5.66) 

(5.67) 

= [J.I.�� + J.I.�� + J.l.d (-n] lu(t)u(t)d(�)) 
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Table 5.S M�gntlic dipolt momtnts of octtl baryons 

B�ryon Momtnt Prediction Experimtnt 

P , 
A 

"' 

", 
"-
SO 

S-

(illt" - (tljt� 2.79 2.793 

(tlltd - (tIlt. -1 .86 -1.913 

., -0.58 -0.613 

(!II-'" - W", 2.68 2.458 

(�)(It" + I-'d) - (III-', 0.82 

(jll-'d - Wit, -LOS -1.160 

(jIlt, - (tIlt. -1.40 -1.2S0 

(jllt, -(}I"� -0.47 -0.651 

Th� num�rical valu� ar� given as multiples of the nuclear 
magneton. '''/2..." . S<>ura: Panicle Phyncs Bookl.t (2006). 

so this term contributes an amount 

( 2 )' . ' 
r:; 1: �)U(t)u(t)d(�)I(It;S;,JIU(t)u(t)d(�)) = �(2J.tu - /-td) 

3",2 ;..! 

Similarly, the se<ond term (u(t)u(j.)d(t)) gives fAltd, as does the third: We could 
continue in this way to evaluate all nine terms, but the rest are simply permutations, 
in which d occupies position 2 or position 1. The result, then, is 

In this way we can calculate all the octet magnetic moments in terms of 

/-tu, /-td, and /-t, (Problem 5.19). The results are listed in the second column of 
Table 5.5. To get the actual numbtrs, we need to know the quark magnetic moments 
(Equation 5.66). Using the constituent quark masses m� = md = 336 MeVjc2, 
m, = 538 MeVjc1, we obtain the figures in the third column of Table 5.5. The 
comparison with experiment is reasonably good. considering the uncertainties in 
the quark masses. Somewhat better predictions are obtaine<! if we take ratios. In 
particular, to the extent that m. = md, we have 

., 2 - = --

., 3 
(5.68) 

which compares well with the experimental value, -0.68497945 ± 0.00000058 . 

• Note that everything is normalized. so that for instance (w{f)lu(fll _ 1, and the $\at� .. � or· 
thogonal (u(f)lu(l) .. n. 
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Finally, we turn to the problem of baryon masses. The situation is the same as for 
the mesons: if flavor 5U(3) were a perfect symmetry, all the octet baryons would 
weigh the same. But they don't. We attribute this in the first instance to the fact 
that the 5 quark is more massive than u and d. But that can't be the whole story, 
or the /I. would have the same mass as the "E's, and the 6.'s would match the 
proton. Evidently, there is a significant spin-spin ('hyperfine') contribution, which, 
as before, we take to be proportional to the dot product of the spins and inversely 
proportional to the product of the masses. The only difference is that this time 
there are thru pairs of spins to contend with: 

, [51 . 51 51 . 51 52 . 51 ] M{baryon) =m1 +m2 +m1+A --+ --+--mjm2 mjm1 mlml (5.69) 

Here, A' (like A in Equation 5.46) is a constant, which we adjust to obtain the 
optimal fit to the data. 

The spin products are easiest when the three quark masses are equal, for 

and hence 

" = -UU + I) - �I 2 

for j = � (decuplet) ) 
for j = ! (octet) 

Thus the nucleon (neutron or proton) mass is 

] h' 
M/"/ = 3m - --A' " 4 m; 

the !J. is 
] h' 

Mt, = 3m.. + --A' 4 m� 

and the n- is 

I n' 
Mo = 3m, + --A' 4m: 

(5.71) 

(5.72) 

(S'?3) 

(5.74) 

In the case of the decuplet the spins are all 'parallel' (every pair combines to make 
spin 1) so 

(5.75) 
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(and the same for 1 and 3, or 2 and 3). Hence for the decuplet 

(which is consistent, notice, with Equation 5.71), and therefore 

while 

" ( 2 I )  
Me.' = Inw + 2m, + -A' -- + -, 

4 Inwln, In, 

(5.76) 

(s.n) 

(5.78) 

The 1: and A can be done by noting that the up and down quarks combine to 
make isospin 1 and 0, respectively. and in order for the spin/flavor wave function to 
be symmetric, under the interchange of u and d. the spins must therefore combine 
to a total oft and 0, respectively. For the 1:'s, then 

whereas for the /I. 

Using these results together with Equation 5.71, we find 

" C 4 ) = 2m... + m, +  -A' z - --
4 m. m.m, 

T�bIe 5.6 B�ryon octet �nd decuplet m�sses. (MeV/ell 

B�ryon COlkul.ued Observed 

N 939 939 
A 1114 1116 
E 1179 1193 
S 1327 1318 
• 1239 1232 
E' 1381 1385 
::;:* 1529 1533 
" >6" 1672 

(5.79) 

(5.80) 

(5.81) 
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,nd 

(5.82) 

['U letyou figure out the milSS of the 8's (Problem 5.22): 

" ( 1 ' ) ME = 2m, + m. + -A' 2 - --
4 m, mum, 

(5.83) 

Using the constituent quark masses m. = md = 363 MeVj,Z, m. = 538 MeVjc},and 
picking A' = (2m./fif SO MeV/,l, we obtain an excellent fit to the experimental 
data (fable 5.6).' 
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5.1 (I) Thedeuteron's mass is 1875.6 MeV/c1. What is its binding energy? Is this a relativistic 
system? 

(b) If you take the lip- �nd down-quark m�sses 10 be those given in T�ble 4.4. wh�t is w 
binding energy of a pion? Is this a relativistic system? 

5.2 Use Equation 5.12 to obtain the ground·stat'" wave function '/1100. Show tlu.t it satisfies 
the SdtrMinger eqUlltion (EqUlltion 5.1). with the appropriate energy. and ched: thitt it 
is properly nonnalized. IAnswer: "'100 '" (lj.J'if,il)e-'/'e-IEl'lhl 

5.1 Work out all of the hydrogen w;o.ve fu�tions for n = 2. using Equation S.12. (How many 
are th",re?) 

5.4 Using Equation 3,43 to express the kinetic energy (T = E - mc'l) in terms of p (and mI. 
show tlu.t the lowest-order relativistic co,.,...,.;tion to T = pI/2m is _p'/8m3cl. 

S.S Find the energy splitting between the) = ! andj = j levels for n = 2 (Figure 5.2). in 
electron volts. How does this compare with the spacing belW�n the " = 2 and n "" I 
Bohr ",nergi"'S? 

5.6 Estimate the Lamb shift energy gap between the 2SI/l and 2PI/l levels in hydrogen, 
using Equations 5.20 and 5.21. What is the frequency of the photon emitted in such � 
transition? (The experimental Villue is 1057 MHz.) 
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5.1 If you indudethe hnestrocture, Loomb shift, and hyperhne splitting, how m�nydifferent 
n = 2 energy l�ls are there altogether in hydrogen? Find the hyperfine splitting betwef:n 
the lSLll and 2PLp levels, and compare the Loomb shift (Problem 5.6). 

5.8 Analyze the splitting of the 11 = 3 Bohr !-eve! in positronium. How many different levt:ls 
are there, and what are their relativt: energies? Construct the level diagr.lm, analogous 
to Figure 5.6 

5.9 Would you consider the ,pIsS} meson bound or qUl1S;·bound? 
5.10 On dimensional grounds, show th,u the energy levels of a purely linear potential. VIr) 

= For. must be of the form 

E" = ((F�)2) I/l tl" (5.84) 

where a" is a dimensionless numerical factor. 
5.11 Use the numerical results in Table 5.2 10 'predict' the masses of the four lighiesl <It's 

and T"s; compare the experimental results (Figure 5.9). What value ofFo givt:s the besl 
fil to the l�l spacings? Why aren'l the Q]culated masses in better agreement with the 
experiments? 

5.12 Using Equation 5.46, with the values of m., md, m" and A given in the text, Q]culate 
the meson masses in T�b1e 5.3. [Hint: For the 'I, first find the mass for pure uii, pure 
ad, and pure ';, and think of the 'I as being �uii, �dd. and }';.J Also apply the formula 
to the I)'. �nd note the dis;lstrous result. [For commentary on the II' mass problem, see 
Quigg. C. (1983) Gauge TheorUs oftlu Strong, Weak, and Elearomognaic Inleraaion" 
Benjamin, New York, p. 252.J 

5.13 In the text, we ustd Equation 5.46 to Q]culate the masses of light·quark pseudoscalar 
and vector mesons, BUI the s;lme formula can be applied to heavy-quark systems 
involving ch.arm and beauty quarks. 
(a) Calculate the masses of the pseudoscaln mesons 'l,{cC), I)il(eiij, Dt(cS'), and the 

corresponding ve.::tor mesons '" (cC). !),"o (eii), and D'+ (ei). Compare theexperimental 
values, from the Partide Data Booklet. 

(b) Do the same for the 'bottom' mesons ub, sb, cb, and bb. At present only the 
pseudoscalars B+(ub). if,'(sb). Bi(cb) and the ve<:tor l' (bb) h.avt: been detected 
experimentally. 

5.14 Construct the eight states >JI'l in Section S.6.1. [Hint; The six outer ones are e�sy - the 
qu�rk content is determined by Q and S, and all you h.ave to do is antisymmetrize 
in 1 and 2, To get the two states in the center, remember that the one in the 'Eo, 
position forms �n isotriplet with the 'E+' �nd '1::-'; the 'A' Gin then be constructed by 
orthogonali1.ing with respect to ':1:0' and t .1.1 

�.15 Construct the (singlet) color wave function for mesons, analogous to Equation S.W, 
5.16 Check that the baryon octet spin/flavor wave function (Equation 5.(0) is correctly 

normalized. Remember that <ltLl is not independent of t'l �nd >/tn. 
U7 Construct the spin-flavor w�ve functions. as in Example S.2, for E+ with spin up and 

A with spin down. 
5.18 Construct a totally anlisymmetric spin/flavor h;.ryon octet. (!n this configuration we 

do not need color to antisymmetrize the wave function. However, an antisymmetric 
decuplet �annot be constructed. See Halzen and Martin, Reference 1!9), Exercise 2.18.) 

5.19 (a) Derive the expressions in the second column of Table 5.5. 
(h) From these results, calculate the numbers in the third column of Table 5.5, using the 

quark masses given in the text. 
5.20 Calculate the r�tio /-1."//-1., in the configuration you found for Problem 5.18 Notice that 

1-<, is ntgalive in this ase! Is your result consistent with experiment? (Here, then, is a 
second strike against the quark model without color, the first strike being its failure to 
account for the dKuplet.) 
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s.u Showth;..tjJ.p+ '" -I-'p- = 1-',. (Se.:o H�lun and Martin. R�f�I�nc", 119), ERlci� 2.19). As 
far u J know, th", magn�tk dipol� moments of�tor m",sons ha� not �n m",�sured. 

5.22 US'" Equation 5.69 to d"'teTmin", th", m�ss ofth'" 8. 
5.2.3 Using Equations S.12. S.B. and S.28, calcuL:u", th", ",lectron d",nsity �t th", location ofth", 

positron, in th", ground state of positronium, 11/1100(0)11. 
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The Feynman Calculus 

In this chapter, wt: begin the quantitative formulation oj dtmtnUiry particle dynamics, 
which amounts, in practiu, to tlit w!culation of decay ralts (f) and scattering cross 
sections (u). 'Tht procedure invclvt:s two distinct paris: (1) t:Va/U(Jtion of the rekvant 
Ftynman dwgnllns to determine llit 'amplitude' (.4) for the process in question and 
(2) insa/ion of.4t into Fermi's 'Colden Ruk' to computt r oru, as the cast may be. To 
avoid distracting algebraic complications, r introduce hert a simplifid model Realistic 
Ihtorns - QED. QeD, and cwS - art developed in succuding chapters. [fyou lilu, 
Chapter 6 can be rt(.Id immediately after Chapter 3. Study it with scrupulous can, or 
what foUows will be unintelligibk. 

6.1 
De<:ays and Scattering 

As I mentioned in the Introduction, we have three experimental probes of 
elementary particle interactions: bound states, decays, and scattering. Nonrela­
tivistic quantum mechanics (in Schrodinger's formulation) is particularly well 
adapted to handle bound states, which is why we used it, as far as possible, 

in Chapter S. By contrast, the relativistic theory (in Feynman's formulation) is 
especially well suited to describe decays and scattering. In this chapter I'll in­
troduce the basic ideas and strategies of the Feynman 'calculus'; in subsequent 
chapters we wil l use it to develop the theories of strong. electromagnetic, and weak 
interactions. 

6.1.1 
Decay Rates 

To begin with. we must decide what physical quantities we would like to calculate. 
In the case of decays, the item of greatest interest is the lifetime of the particle 
in question. What precisely do we mean by the lifetime of, say, the muon? We 
have in mind, of course, a muon at rest; a moving muon lasts longer (from our 
perspective) because of time dilation. But even stationary muons don't all last the 
same amount of time, for there is an intrinsically random element in the decay 

Inlrod..aion. 10 /:1e",,,"WI}' l'articks. SecotuI &lilio�. D�vid Griffiths 
Copyrighl e 2008 W[LEY·VCH VefL>g GmbH & Co. KG.A, Weinheim 
ISBN: 978+527-40601-2 
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process. We cannot hope to calculate the lifetime of any particular muon; rather. 
what we are after is the average (or 'mean') lifetime, f, of the muons in any large 
sample. 

Now, elementary particles have no memories, so the probability of a given muon 
decaying in the next microsecond is independent of how long ago that muon was 
created. (It's quite different in biological systems: an 80-year-<lld man is much more 
likely to die in the next year than is a 20.year-old, and his body shows the signs 
of eight decades of wear and tear. But all muons are identical, regardless of when 
they were produced; from an actuarial point of view they're all on an equal fooling.) 
The critical parameter. then, is the duay rate, r, the probability per unit time that 
any given muon will disintegrate. If we had a large collection of muons, say, N(t), 
at time t, then Nrdt of them would decay in the next instant dt. This would, of 
course, durtase the number remaining: 

dN = -rN dt (6.1) 

It follows that 

N(t) = N(O)e-n (6.2) 

Evidently, the number of particles left decreases exponentially with time. As you 
can check for yourself (Problem 6.1), the mean lifetime is simply the reciprocal of 
the decay rate: 

I 
T = -

r 
(6.3) 

Actually, most particles can decay by several different routes. The;rr+, for instance, 
usually decays to �+ + vU. but sometimes one goes to t+ + II,; occasionally, a ;rr+ 
decays to �+ + lIu + y, and they have even been known to go to t+ + II, + ;rro. In 
such circumstances, the tetal decay rate is the sum of the individual decay rates: 

• 

(6.4) 

and the lifetime of the particle is the redprocal of r to,: 

(6.5) 

In addition to T, we want to calculate the various branching ratios, that is, the 
fraction of all particles of the given type that decay by each mode. Branching ratios 
are determined by the decay rates: 

Branching ratio for ith decay mode = r;/ r,ot (6.6) 

For decays, then, the essential problem is to calculate the decay rate ri for each 
mode; from there it is an easy matter to obtain the lifetime and branching ratios. 



6.1.2 
Cross Sections 

How about scattering? What quantity should the experimentalist measure and 
the theorist calculate? If we were talking about an archu aiming at a 'bull's·eye', 
the parameter of interest would be the size of the targtt or, more precisely, the 
cross·sectional area it presents to a stream of incoming arrows. In a crude sense, 
the same goes for elementary particle scattering: if you fire a stream of electrons 
into a tank of hydrogen (which is essentially a collection of protons), the parameter 
of interest is the size of the proton - the cross·sectional area I]' it presents to the 
incident beam. The situation is more complicated than in archery, however, for 
several reasons. First of all the target is 'soft'; it's not a simple case of'hit·or·miss', 
but rather 'the closer you come the greater the deflection'. Nevertheless, it is still 
possible to define an 'effective' cross section: I'll show you how in a moment. Sec· 
ondly, the cross section depends on the nature of the 'arrow' as well as the structure 
of the 'target'. Electrons scatter off hydrogen more sharply than neutrinos and less 
so than pions, because different interactions are involved. !t depends, too, on the 
outgoing particles; If the energy is high enough we can have not only dastic scattering 
(t + p -4 t + pI, but also a variety of inelastic processes, such as t + p _ t + p + y, 
or ( +  p + ;rro. or even, in principle, II, + A. Each oneofthese has its own ('exclusive') 
scattering cross section, q i (for process i). In some experiments, however, the final 
products are not examine<!, and we are interested only in the /-otal ('inclusive') cross 
section: 

(6.7) 

Finally, each cross section typically depends on the vtlocity of the incident particle. 
At the most naive level we might expect the cross section to be proportional to the 
amount of time the incident particle spends in the vicinity of the target, which is to 
say that I]' should be inversely proportional to v. But this behavior is dramatically 
altere<! in the neighborhood of a 'resonance' - a spedal energy at which the 
particles involved 'like' to interact. forming a short·Jived semioound state before 
breaking apart. Such 'bumps' in the graphofq versus v (or, as it is more commonly 
plotted, I]' versus E) are in fact the principal means by which short·lived particles 
are discovered (see Figure 4.6). So, unlike the archer's target, there's a lot of physics 
in an elementary particle cross section. 

Let's go back, now, to the question of what we mean by a 'cross section' when 
the target is soft. Suppose a particle (maybe an electron) comes along. encounters 
some kind of potential (perhaps the Coulomb potential of a stationary proton), and 
scatters off at an angle O. This scatttringan&it' is a function of the impact paranuter b, 
the distance by which the incident particle would have missed the scattering center, 
had it continued on its original trajectory (Figure 6.1). Ordinarily, the smaller the 
impact parameter, the larger the deflection, but the actual functional fonn of O(b) 
depends on the particular potentia! involved. 
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Fig. 6.1 Suttering from � fu<!d potential: () is the sattering 
angle ,lnd b is the ;m�ct parilmeter. 

Example 6. 1 HQrd·sphere SCQltering Suppose the particle bounces elastically off a 
sphere ofradius R. From Figure 6.2, we have 

b = Rsina, 

Thus, 

sinO' = sin(1T/2 - B/2) = cos(0/2) 

and hence 

b = Rcos(B/2) or (} = 2cos-1(bIR) 

This is the relation between (; and b for classical hard-sphere scattering. r::t! 

b R 

Fig. 6.2 Hard-sphere scattering. 
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Fig. 6.3 Particle incident in area dO" scatters into solid angle dn. 

If the particle comes in with an impact parameter between b and b + db, it will 
emerge with a scattering angle between /:I and /:I + d8. More generally, if it passes 
through an infinitesimal ana dO", it will scatter into a corresponding solid angle 
dO (Figure 6.3). Naturally, the larger we make do-, the larger dO will be. The 
proportionality factor is called the diffirtntial (Scattfring) cross stetkm, D:* 

do- = D(@) dQ (6.8) 

The name is poorly chosen; it's not a differential. or even a derivative, in the 
mathematical sense. The words would apply more naturally to do than to do jdn . 
but I'm afraid we're stuck with it. 

Now, from Figure 6.3 we see that 

dO" = lbdbd¢I, dQ = l sin8d8d¢1 (6.9) 

(Areas and solid angles are intrinsically positive, hence the absolute value signs.) 
Accordingly, 

do 1 b (db)1 
0(9) = dn = sin8 de 

Exampl� 6.2 In the case of hard-sphere scattering, Example 6.1, we find 

(6.10) 

• In principle D an depend on the azimuwt angle r/>; however, most potoo:nti.11s of interest are 
spherically symmetrical, in  which ase the differential cross section depends only on 9 (or. if 
you prefer. on b). By the way, the notation (0) is my own; 1nO$! �ple just write do Idn, and in 
the rest of the bool: I"ll do the same. 
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and hence 

"R�b '�in�I�'�/2") W- COs(On) sin(O/2) R2 
D(O) = -

2sinO 
= "'2 sinO = 4 

"'" 

Finally, the /{)tal cross se<:tion is the integral of do- over all solid angles: 

17 = f dl7 = f D(O) dQ 

Example 6.3 For hard.sphere scattering, 

(6.11) 

which is, of course, the total cross se<:tion the sphere presents to an incoming 
beam: any particles within this area will scatter, and any outside will pass by 
unaffe<:ted. i.E 

As Example 6.3 indicates, the formalism developed here is consistent with our 
naive sense of the term ·cross section', in the case of a 'hard' target; its virtue is 
that it applies as well to 'soft' targets, which do not have sharp eclges. 

Example 6.4 Rutherford Scattering A particle of charge ql scatters off a stationary 
particle of charge qz. In classical me<:hanics, the formula relating the impact 
parameter to the scattering angle is [1] 

b = q��2 cot(O/2) 

where E is the initial kinetic energy of the incident charge. The differential cross 
section is therefore 

[n this case, the total cross section is actually infinite:' 

(Q,Q')'1" 1 . . 17 = 2n -- • smOdO = oo  "�� 
4E 0 sin (0/2) 

Suppose we have a beam of incoming particles, with uniform luminosity C (C is 
the number of particles passing down the line per unit time, per unit area). Then 

• This is re4ted to the bct th�t the Coulomb �mi�1 has infinite .. n8" 1see footnote in 
Stction 1.3). 
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£ ------t.� . 
/Ko 

Incident beam Target 

Fig. 6.4 Sc�tte'ing of � beam with lumino�ity C. 

dN = £ da is the number of particles per unit time passing through area dO", and 
hence also the number per unit time scattered into solid angle dO: 

dN = C dO" = £D(9) dO (6.12) 

Suppose I set up a detector that subtends a solid angle dO with respect to 
the collision point (Figure 6.4). I count the number of particles per unit time 
(dN) reaching my detector - what an experimentalist would call the tvtnl rate. 
Equation 6.12 says that the event rate is equal to the luminosity times the differential 
cross section times the solid angle. Whoever is operating the accelerator controls 
the luminosity; whoever set up the detector determined the solid angle. With these 
parameters established, the differential cross section can be measured by simply 
counting the number of particles entering the detector: 

da dN 
dQ C dr.! 

(6.13) 

If the detector completely surrounds the target, then N = (f C; as accelerator 
physicists like to say, 'the event rate is the cross section times the luminosity'.' 

6.2 
The Golden Rule 

In Section 6.1 I introduced the physical quantities we need to calculate: decay rates 
and cross sections. In both cases there are two ingredients in the recipe: (i) the 
ampliludt (...Ii) for the process and (ii) the phase space available.t The amplitude 
contains all the dynamical information; we calculate it by evaluating the relevant 
Feynman diagrams, using the Ftynrnan rults appropriate to the interaction in 

, In this discussion, I have assum� thlt the 
tUg<'t itself is $lalio .... 1")' �nd th�t the incident 
particle is simpl� Ikfluud as it passes through 
the scattering potrnti�l My purpose was to 
introduce the essential ideas in the simplest 
possible context. But in Se.:tion 6.2 the for· 
tmIism is completely general; it includes the 
re.:oil of the torget, and �lIows for a ch<lnge 

in the identity of the p<.rticip<.nts during the 
scattering process lin the rcaction ,.- + p .. ..... 
K+ + I:-. for eumple. dQ might represent 
the solid angt.: into which the K+ scatters). 

t The .. ",plih.1k is also called the ",,,,rix tk· 
.... 111; the p"= '»<IU is sometimes called the 
Iknsity of final $lam. 
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question. The phase space factor is purely kirumlltic; it depends on the masses, 
energies, and momenta of the participants, and reflects the fact that a given process 
is more likely to occur the more 'room to maneuver' there is in the final state. For 
example, the decay of a heavy particle into light secondaries involves a large phase 
space factor, for there are many different ways to apportion the available energy. 
By contrast, the decay of the neutron (II ...... P + t + ii.), in which there is almost 
no extra mass to spare, is tightly constrained and the phase space factor is very 
small: 

The ritual for calculating reaction rates was dubbed the Go/dm Rule by Enrico 
Fermi. In essence, Fermi's Golden Rule says that a transition rate is given by 
the product of the phase space and the (absolute) square of the amplitude. You 
may have encountered the nonrelativistic version, in the conteJrt of time-dependent 
perturbation theory [2J. We need the relativistic version, which comes from quantum 
field theory [3]. I can't dtriJlf! it here; what I will do is stllit the Golden Rule and try 
to make it plausible. Actually, I'll do it twice: once in a form appropriate to decays 
and again in a form suitable for scattering. 

6.2.1 
Golden Rule (or Decays 

Suppose particle 1 (at rest)t decays into several other particles 2, 3, 4, . . .  , II: 

1 ...... 2 + 3 + 4 + · · · + n  (6.14) 

The decay rate is given by the formula 

(6.15) 

where m, is the mass of the ith particle and Pi is its four·momentum. S is a 
statistical factor that corrects for double·counting when there are identical particles 
in the final state: for each such group of 5 particles, S gets a factor of (I/s!). For 
instance, if Il ...... b + b + c + c + c, then S = (1/2!)(1/3!) = 1/12. If there are 110 
identical particles in the final state (the most common Circumstance), then S = 1. 

Remember: The dynamics of the process is contained in the Ilmplitudt, ...t'(p" 
P2, . .  ,pn), which is a function of the various momenta: we'll calculate it (later) 

• For l morr �trrmr c;,s.,. consid�r lhr (kinrrmtially forbiddrn) dNay Q- """* ::;- + X'. Sincr 
thr final products w,,;gh more than th� n, lh�r� is no phase s�ce avai!abl� at all .. nd lh� decay 
rate is zero. 

t There is no loss of generality in assuming plrtidr 1 is al r ... l: this is simply an aslUlr choice of 
""ferrnce fra,"". 
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by evaluating the appropriate Feynman diagrams. lbe rest is phase space; it tells us 
to integrate over aU outgoingfour-momenta, subject to wee kinematical constraints: 

1, Each outgoing particle lies on its mass shell: pJ = mJcl 
(which is to say, E1 - pJc2 = mJc�), lbis is enforced by the 

delta function ;S (pJ - mJc2), which is zero unless its 
argument vanishes: 

2. Each outgoing energy is positive: pJ = Ej/c > 0, Hence the I) 
function.t 

3. Energy and momentum must be conserved: PI = PI + PJ . 

+ Pn. lbis is ensured by the factor ;S4(p1 - P2 -Pl . , . -p�). 

lbe Golden Rule (Equation 6.15) may look forbidding, but what it actually says 
could hardly be simpler: all outcomes consistent with the three natural kinematic 
constraints are a priori equally likely. To be sure, the dynamics (contained in Al) 
may favor some combinations of momenta over others, but with that modulation 
you just add up aU Iht possibilities. How about all those factors of21l ? These are easy 
to keep track of if you adhere scrupulously to the following rule:* 

Every ;S gets (21l); every d gets 1/(21l). (6.16) 

Four-dimensional 'volume' elements can be split into spatial and temporal parts: 

(6.17) 

(I'll drop the subscript j, for simplicity - this argument applies to each of the 
outgoing momenta). The po integra IsS can be performed immediately, by exploiting 
the delta function 

(6.18) 

Now 

(6.19) 

• If you ar� unfamili�r with th� Dir.lc ddta function. you m .... t study Appendix A orefully before 
proceeding. 

t 9�x) is the jH� .. yjside) $� function: 0 if " < 0 and 1 if " > 0 jseo: Ap�dix A). 
t Some of these factors eventu .. lly onc�l out. and you might wonder if there i$ "  mor� efficient 

way to ma .... � them. I don'l think SQ. F�man is suppo� to h.ov� shout� in ex:isl"'ration 
(at a gradwote student who 'couldn't be boIher� with such trivial m .. tters') 'If you on'l �t th� 
br's right, you don't know nolhin.g!' 

I The integral sign in Eqwo!ion 6.15 actually stands for 4(n - 1) int.:grations - on� for �a,h com­
ponent of the � - 1 outgoing momenta. 
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(see Problem A.7), so 

(the theta function kills the spike at pO = _Jpl + m2cl, and it's 1 at pO = 
Jpl + m1c2). Thus Equation 6.15 reduces to 

(6.21) 

with 

(6.22) 

wherever il appears (in ..$( and in the remaining delta function). This is a 
more useful way to express the Golden Rule, though it obscures the physical 
content: 

6.2.1.1 Two-particle Decays 
In particular, iflhere are only two particles in the final stale 

(6.23) 

The four-dimensional delta function is a product of temporal and spatial parts: 

(6.24) 

But particle I is at rest, so PI - 0 and p� = mlc. Meanwhile, p� and p� have been 
replaced (Equation 6.22), sot 

(6.25) 

• You might �ognizr tht quantity JP] + mJe1 as Ej/e, �nd tmny books write it this wa�. It's 

dangerous notation: Pj is an integration variable. so Ej is not so"", (On.tan! you can take oU!· 
side thr integral. Usr i! as shorth.o.nd, if you like, but �membrr that Ej is a function of Pi' not 
an indep<"ndent variable. 

t We un drop the minus sign in the fimol dtlta function, siner 5(-x) '" 6(x). 
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The Pl integral is now trivial: in view of the final delta function it simply makes the 
replacement 

Pl --I- -P2 (6.26) 
leaving 

For the remaining integral we adopt spherical coordinates, P2 --I- (r. e, 4'), 
dJp2 -jo r2 sin OdrdO d4' (this is momentum space, of course: r = IPll). 

S ' (mlc- Jr2 + �c2 - Jr2 + �c2) 
r � �'=- / I"'I' --'--r==�=c?e=='''7'--'-3211"2/iml J,z + m�clJr2 + mfc2 

x ,1 sinO drdO dip (6.28) 
Now, Ai was originally a function of the four·momenta Pl , Pl' and Pl, but PI = 
(mlc, 0) is aconstant (as far as the integration is concerned), and the inte rats already 

performed have made the replacements p� -jo jp� + m�c2. p� -jo P� + m�c2, and 

pJ -jo -Pl, so by now Ai depends only on P2. As we shall see, however, amplitudes 
must be SC(l/ars, and the only scalar you can make out of a vector is the dot product 
with itself:' P2 . P2 = ,2. At this stage, then, ..A is a function only of r (not of 0 or 
4'). That being the case we can do the angular integrals 

1" sinO de = 2, ll� d¢ = 21T (6.29) 
and there remains only the r integral: 

To simplify the argument of the delta function, let 

(6.31) 

• If the p.a.rtidrs carry spin, thrn .At might drp�nd also on (PrSj\ and (Si·Sj). Ho�. sjn<e 0;. 
periments rarely measure the spin orienution. we almost alw .. ys work with t� spin· .. veragw 
amp�tudr. In that OISO'. and of Course in the case of spin O. the only vrctor in sight is PI and 
the only scabr v .. riab1e is (p,)l. 
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'0 

Th,n 

du ur 
dr = Jr2 + miC1Jrl + m�c2 

The last integral sends' u to ml', and hence r to 

(6.32) 

(6.33) 

(6.14) 

(Problem 6.5). Remember that r was short for the variable IP21; ro is the particulur 
value of Ip21 that is consistent with conservation of energy, and Equation 6.25 
simply reproduces the result we obtained back in Chapter 3 (Problem 3.19). In 
more comprehensible notation, then, 

r = �IAfll 
8nhmrc 

(6.35) 

where Ipi is the magnitude of either outgoing momentum, given in terms of the 
three masses by Equation 6.34, and Af is evaluated at the momenta dictated by 
the conservation laws. The various substitutions (Equations 6.22, 6.26, and 6.34) 
have systematically enforced these conservation laws - hardly a surprise, since they 
were built into the Golden Rule. 

The two-body decay formula (Equation 6.35) is surprisingly simple; we were 
able to carry out all the integrals without ever knowing the jUnctional form of Af! 
Mathematically, there were just enough delta functions to cover all the variables; 
physically, two-body decays are kinematically cktumined: the particles have to come 
out back-to· back with opposite three-momenta - the direction of this axis is not 
fixed, but since the initial state was symmetric, it doesn't matter. We wil l  use 
Equation 6.35 frequently. Unfortunately, when there are three or more particles in 
the final state, the integrals cannot be done W11i1 we know the specific functional 
form of Af. In such cases (of which we shall encounter mercifully few), you have 
to go back to the Golden Rule and work it out from scratch. 

6.2.2 
Golden Rule for Scattering 

Suppose particles 1 and 2 collide, producing particles 3, 4, . . . , n: 

1 + 2 -1- 3 + 4 + · · · + n  (6.36) 

• This �ssumes m, "" (ml + m)); otherwise the dell<! function spike is outside the domain of 
integution �nd we goet r '" Q. recording the f�ct tb�t � p.>rticie c;onnot deu.� into huvier 
=nd�ries. 



The scattering cross section is given by the formula 

• ( , ' ) ( 0) d'Pi ,n2d p' - m. 2  e p. --
• J J J (211")4 

,-, 
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(6.37) 

where Pi is the four·momentum of particle i (mass mil and the statistical factor 
(S) is the same as before (Equation 6.15). The phase space is essentially the same 
as before: integrate over all outgoing momenta, subject to the three kinematical 
constraints (every outgoing particle is on its mass shell, every outgoing energy is 
positive, and energy and momentum are conserved), which are enforced by the 
delta and theta functions. Once again, we can simplify matters by performing the 
P'l integrals: 

with 

wherever it occurs in .41 and the delta function. 

6.2.2.1 Two-body Scattering in the eM Frame 
Consider the process 

1 + 2 -+  3 + 4  

in the CM frame, pz = -PI (Figure 6.5). where 

(Problem 6.7). In this case, Equation 6.38 reduces to 

(6.38) 

(6.39) 

(6.40) 

(6.41) 

(6.42) 
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p, '" 
_ . -.-- .'-�-- . 

P4 " 

/ After 

Fig. 6.5 Two·body scattering in the eM frame. 

Before 

As before, we begin by rewriting the delta function:' 

(6.43) 

Next we insert Equation 6.39 and carry out the P. integral (which sends P. -+ 
-p}): 

x 
oS [(EI + E2)/e - jp� + mte2 - jp� + m!c1] 

(6.44) 

This time, however, IAI2 depends on the directiol1 of p} as well as its magnitude,t 
so we cannot carry out the angular integration. But that's all right - we didn't 
really want (F in the first place; what we're after is dCF Idn, Adopting spherical 
coordinates, as before, 

dlpJ = r2 dr dn (6.45) 

(where r is shorthand for Ip}1 and dn = sine de d4'), we obtain 

do 
dO ( • )' s, roo "'I' = 

8rr (El + E1)lpd Jo I· 

, Ob..,� thai p, and p, are fi".d =Ior. (rt. 
lated by our choice of reference frame: p, '" 
-PI)' but at tbis stage p, and p, art integra· 
lion variables. It i. only apr the P. integra· 
tion tbat they art restricted (P. '" -p,). and 
after the IpII imegratiOln that they art deter· 
mined by the scatterittg angle {J. 

t In general, 1.At1' depend. on all 
four·momenta. How",""r, in tbis case 

p, "" -p, and P. '" -P" so it remains 
a function only of p, and PI (assuming 
a�in that spin does not come into it). 

(6.46) 

From these =tors we Can construct thrcc 

scalars: p,'p, - Ipll', PI'PI = Ip,I', and 
P, 'PI = Ip,lIp,lcos{J. But PI i. fixed, so the 
only i'Uq;r<11io� variables on which 1.AtI' <:an 
depend are Ip,1 and @. 
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The integral over r is the same as in Equation 6.30, with m2 _ m. and m] _ 
(E] + £1)1,2. Quoting our previous result (Equation 6.35), I conclude that 

(6,47) 

where IPfl is the magnitude of either outgoing momentum and Ip;l is the magnitude 
of either incoming momentum. 

As in the case of decays, the two-body final state is peculiarly simple, in the sense 
that we are able to carry the calculation through to the end without knowing the 
explicit junetwnal form of .-If. We will be using Equation 6.47 frequently in later 
chapters. 

By the way, lifetimes obviously carry the dimensions of tilm (seconds); decay 
rates If = I/f), therefore, are measured in inverse seconds. Cross sections have 
dimensions of area - cm2, or, more conveniently, 'barns': 

(6.48) 

Differential cross sections, dO" IdQ, are given in barns per steradian or simply barns 
(steradians, like radians, being dimensionless). The amplitude, .-It, has units that 
depend on the number of particles involved: if there are n external lines (incoming 
plus outgoing), the dimensions of 04'( are those of momentum raised to the power 

4 - 11; 

Dimensions of.,f( = (mc)·-� (6.49) 

For example, in a three-body process (A _ B + q, .-It has dimensions of 
momentum; in a four·body process (A _ B + C + D or A + B _ C + D), .-It is 
dimensionless. You can check for yourself that the two Golden Rules then yield the 
corre<:t units for r and 0". 

6.3 
Feynman Rules for a Toy Theory 

In Section 6.2, we learned how to calculate decay rates and scattering cross sections, 
in terms of the amplitude .-lt for the process in question. Now I'll show you how to 
determine .-lt itself, using the 'Feynman rules' to evaluate the relevant diagrams. 
We could go straight to a 'real·life' system, such as quantum electrodynamics, with 
electrons and photons interacting via the primitive vertex: 
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This is the original, the most important, and the best understood application 
of Feynman's technique. Unfortunately, it involves diverting complications (the 
electron has spin t, the photon is massless and carries spin 1), which have nothing 
to do with the Feynman calculus as such. In Chapter 7, I'll show you how to handle 
particles with spin. but for the moment! don't want to confuse the issue, so I'm 
going to introduce a 'toy' theory, which does not pretend to represent the real world, 
but will serve to illustrate the melhod. with a minimum of extraneous baggage [4]. 

Imagine a world in which there are just three kinds of particles - call them A, 
B, and C - with masses rnA, ms, and me. They all have spin 0 and each is its own 
antiparticle (so we don't need arrows on the lines). There is one primitive vertex, 
by which the three particles interact: 

I shall assume that A is the heaviest of the three and in fact weighs more than Band 
C combined, so that it can decay into B + c. The lowest-order diagram describing 
this disintegration is the primitive vertex itself; to this there are (small) third-(lrder 
corrections: 

and even smaller ones of higher order. Our first project will be to calculate the 
lifetime of the A, to lowest order. After that. we'll look at various scattering 
processes, such as A + A --+ B + B: 

XC B 

A B 

A +  B --+  A+ B: 

Xc A � 
A 8 :/ � 

and so on. 
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Fig. 6.6 A generic Feynman diagram. with external lines labeled (internal lines not shown). 

Our problem is to find the amplitude Aft associated with a given Feynman 
diagram. The ritual is as follows 151: 

1. Notation: Label the incoming and outgoing four-momenta 
Pl. Pl . . . . , p� (Figure 6.6). Label the internal momenta ql. 
q2 • . . Put an arrow beside each line. to keep track of the 
'positive' dir«tion (folWard in time for external lines, 
arbitrary for internal lines). 

2. Vertex factors: For each vertex. write down a factor 

-� 

g is called the coupling constant; it sp«ifies the strength of the 
interaction between A. B, and C. In this toy theory. g has the 
dimensions of momentum; in the 'real·world' theories, we 
shall encounter later on, the coupling constant is always 
dimensionless. 

3. Propagators: For each internal line, write a factor 

where � is the four·momentum of the line and mj is the 
mass of the particle the line describes. (Note that qj "" mjc2, 
because a virtual particle does not lie on its mass shell.) 

4. ConselWtion of energy and m(lI7�ntum: For each vertex, write a 
delta function of the fonn 

where the k's are the three four-momenta coming into the 
vertex (if the arrow leads outward, then k is minus the 
four-momentum of that line). This factor imposes 
conservation of energy and momentum at each vertex, since 
the delta function is zero unless the sum of the incoming 
momenta equals the sum of the outgoing momenta. 
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P, 

A 

Fig. 6.7 Lo_st.." de, contribution to A ..... B + c. 

6.3.1 

5. Integration over internal momtnta: For each internal line, 
write down a factor· 

and integrate over all internal momenta. 
6. Cmcd the delta jUnction: The result will include a delta 

function 

reflecting overall conservation of energy and momentum. 
Erase this factort and multiply by i. The result is 11. 

Lifetime of the A 

The simplest possible diagram, representing the lowest·order contribution to 
A --+ B + C, has no internal lines at all (Figure 6.7). There is one vertex, at which 
we pick up a factor of -ig (Rule 2) and a delta function 

(Rule 4), which we promptly discard (Rule 6). Multiplying by i, we get 

(6.50) 

This is the amplitude (to lowest order); the decay rale is found by plugging 11 into 
Equation 6.35: 

(6.51) 

• Notice (aglin) that every � g<'ts a factor of (llr) and every d gt"I. a factor of 1/(2",). 
t Of coune. th� Gold�n Rul� imm�iatdy puts this ractor mock in Equation. 6.1S and 6.37, .. nd 

you might wond�r why w� don't jusl keep it in .Ai. Th� prob!�m is that 1..K11. not ..K. comes 
into the Gold�n Rule and th� "juan of a delta function is unddin�. So you ha"., to ...,mo,"" it 
here, even though you'l! ];'<' putting it mock at the nat stage. 
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where Ipl (the magnitude of either outgoing momentum) is 

The lifetime of the A. then, is 

1 Sir fim�c T = - = ---
r g21pl 

You should check for yourself that T comes out with the correct units. 

6.3.2 
A + A _  B + B Scattering 

(6.52) 

(6.53) 

The lowest-ordercontribution to the process A + A --> B + B is shown in Figure 6.S 
In this case, there are two vertices (hence two factors of -ig), one internal line. 
with the propagator 

two delta functions: 

and one integration: 

I • 
(211f

d q 
Rules 1-5, then. yield 

Doing the integraL the second delta function sends q --> P. - P2, and we have 

Fig. 6.8 Lowest·order contribution to A + A ..... B + B. 
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A� ')fa  
"1 c 

A Y,i, � B  
Fig. 6.9 S�ond diagram contributing in lo_st order to A + A ...... B + B. 

As promised, there is one remaining delta function. reflecting overall conservation 
of energy and momentum. Erasing it and multiplying by i (Rule 6). we are left with 

(6.54) 

But that's not the whole story. for there is another diagram of order g2. obtained 
by 'twisting' the B lines (Figure 6.9).* Since this differs from Figure 6.8 only by 
the interchange Pl .... P4, there is no need to compute it from scratch; quoting 
Equation 6.54, we can write down immediately the total amplitude (to order g2) for 
the process A + A ---Jo B + B; 

(6.55) 

Notice, incidentally, that A is a Lorentz-invariant (scalar) quantity. This is always 
the case; it is built into the Feynman rules. 

Suppose we are interested in the differential cross section (dO" jdQ) fOr this 
process, in the eM system (Figure 6.10). Say, for simplicity, that /tIA - /tIg - /tI and 
mc-O. Then 

(p. -pd - m�,2 = P! + pi - 21'2 . P4 = _2p2(1 - cosO) 

(Pl -PI)2 - m�c2 = � + p� - 2Pl . 1'2 = _2p2(1 +cosO) 

(where p is the incident momentum of particle I), and hence 

g' 
A = ---

pI sin2 0 

According to Equation 6.47, then, 

do 1 ( "'<' )' 

dQ =
i 16nEp2sin20 

(6.56) 

(6.57) 

(6.58) 

(6.59) 

(there are two identical particles in the final state, so 5 = Ij2). As in the case of 
Rutherford scattering (Example 6.4), the total cross section is infinite . 

• You don'l get � another n..w di.agram by twisting the A lines; the only choice here i$ whether 
Pl 'onn�ts 10 PI or to 1'1-. 
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B 

.�7{( _ _  . 

B
/� � 

After 

Fig. 6.10 A + A _  8 + 8  in the eM fr�me. 

6.3.3 
Higher-order Diagrams 

So far we have looked only at lowest-·Qrder ('tree level·) Feynman diagrams; in the 
case of A + A ...". B + B, for instance, we considered the graph: 

XC 
B 

A B 

This diagram has two vertices, so .,(( is proportional to g1. But there are eight 
diagrams with four vertices (and eight more with the elCternal B lines 'twisted'): 

• five 'self.energy' diagrams, in which one of the lines sprouts 
a loop: 

A 
B 

A B c c 
A B 

• two 'vertex corrections', in which a vertex becomes a triangle: 

• and one 'box' diagram: 

Mc B 

B A 

A C B 
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don't count.) 
I am certainly not going to evaluate all these 'one·loop· diagrams (or even think 

about two-loop diagrams), but I would like to take a closer look at Ont of them - the 
one with a bubble on the virtual Cline: 

A-?;:" p, 
Applying Feynman roles 1-5, we obtain 

Integration overql' using the first delta function, replaces ql by (PI -PI); integration 
over q., using the last delta function, replaces q. by (p. - 1'2): 

g' 
[(PI PI)l m2cl)[(P. P2JZ m2cZ] 

J �·(Pl -PI - q2 - ql) �·(q2 + ql - p. + 1'2) d4 d4 (6.61) x (� m�cl)(q� m�c2) q2 ql 

Here. the first delta function sends q2 -+ PI -PI - qJ, and the second delta function 
becomes 

�4(P1 + Pz - PI - P4) 
which, by Rule 6, we erase, leaving 

(I drop the subscript on qJ at this point.) 

p, 

1 
d' 

q)2 m�c2](ql _ mic2) 
q 

(6.62) 
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You can try calculating this integral, if you've got the energy, but I'll tell you 
right now you're going to hit a snag. The four-dimensional volume element 
could be written as d"q = ql dq dQ' (where dQ' stands for the angular part), just 
as in two-dimensional polar coordinates the element of area is r dr de and in 
three-dimensional spherical coordinates the volume element is ,; dr sin 8 d8 d¢'. 
At large q the integrand is essentially just Ijq·, so the q integral has the form 

fOO l q-oql dq = InqlOO = 00 (6.63) 

The integral is logarithmically divergent at large q. This disaster, in one form 
or another, held up the development of quantum ele<:trodynamics for nearly two 
decades, until, wough the combined efforts of many great physicists - from 
Dirac, Pauli, Kramers, Weisskopf, and Bethe through Tomonaga, Schwinger, and 
Feynman - systematic methods were developed for 'sweeping the infinities under 
the rug'. The first step is to regularize the integral, using a suitable cutoff procedure 
that renders it finite without spOiling other desirable features (such as Lorentz 
invariance). In the case of Equation 6.62, this can be accomplished by introducing 
a factor 

(6.64) 

under the integral sign. The cul<Jff mass M is assumed to be very large, and will be 
taken to infinity at the end of the calculation (note that the 'fudge factor', Equation 
6.64, goes to 1 as M -+ (0).* The integral can now be calculated [6J and separated 
into two parts: a finite term, independent of M, and a term involving (in this case) 
the logarithm of M, which blows up as M -+ 00. 

At this point, a miraculous thing happens: all the divergent, M-dependent terms 
appear in the final answer in the form of additwns I<J the masses and the coupling 
constant. If we lake this seriously, it means that the physical masses and couplings 

• No one would deny that this procedure is artificilll. Still, it can k argu� that the inclusion of 
Equation 6.6-4 merely confesses our ignorance of the high .. mergy (short distance) khavior of 
quantum field theory. Perhaps the Feynmm propagators are oot quite right in this r.-gime, and 
M is simply a cnlde way of accounting for the unknown modification (Ibis would bf, the cal>'", 
for """-mple, if the '�rtides' have substructure that becomes relevant at extremely dose range.) 
Di ... c said, of renormalization, 

It's just a stop-gap proudure. There must be some fundamental 
change in our ideas, probably a change just as fundamental as flu 
passage from Bohr's orbit thtory I<J quantum mechanics. When 
you get a number turning out to be infini� which ought I<J be 
finik, you should admit that there is somelhing wrong with your 
equatioltS, and not hope thaI you can gel a good theory just by 
doctoring up that number. 

P. Buddey and F. D. Peat. A �tion of P"�iaI (Toronto: University of Toronto Press, 1979), 
page 39. 



220 1 6 Th' Ff)'nman Col,ulus 

are not the m's and g's that appeared in the original Feynman rules, but rather the 
'renormalized' ones, containing these extra factors: 

(6,65) 

The fact that lim and .5g are infinite (in the limit M ___ (0) is disturbing, but not 
catastrophic, for we never measure them anyway; all we ever see in the laboratory 
are the physical values, and these are (obviously) finite (evidently the unmeasurable 
'bare' masses and couplings, m and g, contain compensating infinities): As a 
practical matter, we take account of the infinities by using the physical values of 
m and g in the Feynman rules, and then systematically ignoring the divergent 
contributions from higher·order diagrams. 

Meanwhil e, there remain thefinik (M,independent) contributions from the loop 
diagrams. They, too, lead to modifications in m and g (perfectly calculable ones, in 
this case) - which, however, are functions of the four·momentum of the line in 
which the loop is inserted (Pl - Pl in the example). This means that the effictive 
masses and coupling constants actually depend on the elUrgles of the particles 
involved; we call them 'running' masses and 'running' coupling constants. The 
dependence is typically rather slight, at low energies, and can ordinarily be ignored, 
but it does have observable consequences, in the form of the Lamb shift (in QED) 
and asymptotic freedom (in QCD).t 

• In case it is some comfort. essentiaUy the same thing occurs in dassicnl eJe.:trodynamics: the 
dectrostatic �n�rgy of a point charS'" is infinl!�, and makes an infinil� contribution (via E =' 

"...2) to 1M �rtide's mass. Per�ps this means that there are no true point charges, in classi. 
cal electrodyn.a.mics; perhaps thafs what it means in quantum field theory. too. In neither case. 
�, do _ know how to avoid th� point particle :os a theoretical construct. 

t A physical interpretation of the running ooupling constant in QED and QCD w:os suggested in 
Chapter 2, Section 2.3. A nice explanation of mass renormalization is given by P. Nelson in 
Amerialll Scim!isI, 73, 66 (l98S): 

According to renormalization Iheory, not only the strengths 
of the variow inkrae/ions but the massts of the participating 
particles appear to vary on differing length scales. To get a 
Jed for this sumingly parado:dcal swl<:ment, inwgine firing a 
cannon underwater. Even neglecting .friction, the trajectory will 
be very diffortnt from the ccrresponding one on land, since the 
cannonball must now drag with it a considerable amount of 
wakr, modiJYing its apparent, or "eJfective," mass. We can ex· 
perimenwlly measure the cannonball's eJfectiVil mass by shaking 
it to and fro at a fak w, computing the mass from F = mao 
(This is how astronauts ''weigh'' themselves in space.) Hav· 
ingfound the effective mass, we can now rtplace the difficult 
problem of underwakr ballistics by a simplified approximation: 
wt: ignore the wakr altogether, but in Newton's equations wt: 
simply replace the trut cannonball mass by the effective mass. 
The complicaud details of the inkraction with the medium are 
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The procedure I have sketched in the last three paragraphs is called renor· 
ma/izatiolt [71. If all the infinities arising from higher·order diagrams can be 
accommodated in this way, we say that the theory is renormalizable. ABC the­
ory and quantum electrodynamics are renormalizable. In the early 19705, 't Hooft 
showed that all gauge theories, including chromodynamics and the electroweak the­
ory of Glashow, Weinberg, and Salam, are renormalizable. This was a profoundly 
important discovery, because, beyond lowest-order calculations, a nonrenormaliz· 
able theory yields answers that are cutoff-dependent and. therefore, really, quite 
meaningless. 
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thus reduced to cktumining one eff(£tive paramell:r. 
A key feature of this approach is Ihat /he effictive mass so cem­
puttd ckpends on tv, sinu as w approaches zuo, for example, 
the water has no effect whatevtr. In other words, the pres-
ence of a medium can introduce a scak-depencknt eff(£tive 
mass. We say that lhe ejftctive mass is "renormalized" by the 
medium. In quantum physics, every partick moves through 
a "medium" consisling of tk quantum fluctuations of all 
particles prestnt in the theory. We again tau into aCCOWlt 
/his medium by ignoring il but changing the valllM of our 
parameters UJ sca!e.ckpendent "ejftclive" values. 
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1949, wh�n h� fiTSt published the 
rules for QED Feynm�n, R. P. (19�9) 
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New York. W� shaJ.l return to the 
question of how Feynman·s rules 
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, The method is expbin�d in Sakurai. 
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U Derive Equation 6.3. (Hin!: What fraction of th� origin�l sample deca)'!i between t and 
t + dt? What, then, is the (initial) probability, PIt) dt, of any given particle deaying 
be�n t and t + dt? The avoage lif�time is fo"" tp{t) dt.) 

'.2 Nuclear ph)'!iicists tradition�lIy wor!< with 'half·life' (t,o) instead of mean life (r); I,n is 
the time it takes for halrth� members of a large sample to decay. For exponential decay 
(Equation 6.2). derive the fonnula for " ll {as a multiple of rl· 

6.3 (a) Suppose you staned out with a million muons (at rest): how many would still be 
around 2.2 x IO-s seconds later? 

(b)Wmot is the probability of a ",- lasting mOr� th.m 1 second (express your answ�r as a 
poweroflO)? 

U A nonrelativistic panicle of mass m and (kinetic) energy E scatters from a fixed repulsive 
potential, VIr) = klrl, where k is a constant. 
(a) Find the scattering angle. 8. as a function of the impact panmeter. b. 
(b)De\ermine the differential cross section dO" {dO, as a function of8 (not b). 
(e) Find the total crou section. 

(References: Goldstein. H.. Poole. C. �nd Safko, ). (2002) CkrniroJ Mecha"ic" 3rd Mn, 
Addison·Wesley. San Francisco, CA. Sect. 3·10., Equation 3·97; Becker, R.A. (19)�) 
1,,'rodWCI;OII to Thwrdirol Mu;ha"iCl, McGraw·Hill, New York, Example 10-3.) 

6.5 Derive Equation 6.34. starting (rom Equation 6.31 with u= mJc. 
6.6 As an application of the Golden Rule. consider the decay of]f° ...... Y + y. Of course. 

the ]f° is a composite object, so Equation 6.35 does not really apply, but l�t's pretend 
tlut ifs a true �lem�ntary particle, and see how dos� _ com�. Unfortunately, we don't 
know the ampiitude..R'; however, it must move the dimensions of mass times velocity 
(Equation 6.�91. and there is only one mass and one ve!ocil)' available. Moreover. the 
emission of each photon introduces a factor of";;; (the fine structure constant) into 
A. as we shall sec in Chapter 7, so the amplitude must be proportional to "'. On this 
basis. estimate the lifetime of the 11°. Compare the experimental value. (Evidently. the 
decay of the ",0 is a much more complicated process tnan this crude model suggests. 
See Quigg, C. (1997) Caugr Thwries oJthe Strong. Weak, a.w Elutrom'W'Ctic Inkract;ons. 
Addison·Wesley. Reading, M.A. Equation 1.2.2S - but beware of the misprintf � should 
be squared.] 

6.7 (a) �rive Equation 6.�1 for scattering of particles I and 2 in the CM. 
(b) Obtain the corresponding formula for the lab frame (particl� 2 at rest). 
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6.8 Consider �l�stic sc.atkring, a + b -+ ,, +  b, in the l�b fr�me (b initially �t rest), assuming 
the target is so h�avy (m�cl » Eo) th�t its recoil is n�gligibl�. Determin� the differ�ntial 
SGlnering cross section. [Hint: In this limit the lab fr�me and the CM fr�m� �n: the 
same.) 

6.� Consid�r the collision 1 + 2 ..... 3 + 4 in the lab frame (2 at r�st), with particles 3 and 4 
m<lSsl�ss. Obt�in the formula for th� diff�r�ntial cross section. 

6.10 (.)Analyz� the problem of elastic SGln�ring (m3 = m"m, = ml) in th� bb fr.lm� 
(p;lrtid� 2 at rest). Derive the formub for th� diff�r�ntial cross section. 

(h)lfth� incident p;lrtide is massless (ml = 0), show that th� result in p;lrt (a) simplifies 
" 

6.11 (0) Is A ..... B + B � possibl� process in the ABC theory;> 
(b)Suppos� � diagram has "'" external A lines, II! ext�rnal B lines, and lie external C 

lines. Devdop � simple criterion for determining whether it is an allowed re�ction. 
(e) Assuming A is heavy enough. what are the next most likely dec�y modes, �fter 

A -+ B + Q Draw � Feynm�n di:lgr�m for each d<'C�y. 
6.12 (.) Draw �1I the lowest·order diagrams for A + A ..... A + A. (There are six of them.) 

(h) Find the amplitude for this process. in lowest order. assuming m, ., me _ o. leave 
yOUl answer in the form of an integral over one rem�ining four·momentum, 'I. 

6.U Calculate da IdQ for A + A ..... B + B. in the CM fr�me, assuming ma = me = O. Find 
the total cross section. q. 

6.1' Find do-/dQ and (1 for A + A -+ B + B in the lab frame. (let E be the energy. and p the 
momentum. of the incident A. Assum� mB = me = 0.) Determine the nonrelativistic 
�nd ultrarelativistic limits of yOU! formula. 

6.1� 1'1 Determine the lowest·order �mplitude for A + B -+ A + B. (Then: are IW<>diagr�ms.) 
[b)Find the differential cross section for this process in the CM fr;o.me. assuming 

m ... = m, = m, me = o. Express your answer in terms of the incident energy (of AI. 
E, �nd the scattering �ngIe (for p�rtide A). 8. 

Ie) Find da IdQ for this process in the lab frame. assuming B is much heavier than A and 
remains stationary. A is incident with energy E. [Hi,,!: See Problem (6.8). Assume 
mB » m ... , me, �nd fle1.] 

(d)ln case (e). find the total cross section. q. 
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Quantum Electrodynamics 

[11 this chap'u I introduce the Dirac equation, statt the Ftynman rules fer quantum 
tkctrodynamics. develop ust:fu! calculational tools, and dtrivt SOIm of the classic QED 
results. 11u: treatment !tans hwvily on makrial from Chapters 2, 3, and 6, as weU as the 
5pln-1 formalism in Chapter 4, In turn, Chapter 7 is the irniispmsab!e foundation for 
everything that follows (however, you may want to skip Example 7.8 and SUlion 7.9, 
togellur with the rdattd passages in Chapttrs 8 and 9). 

1.1 
The Dira.;: Equation 

Although the 'ABC' model in Chapter 6 is a perfectly legitimate quantum field 
theory. it does not describe the real world, because the particles A. B. and 

C have spin 0, whereas quarks and leptons carry spin � and mediators carry 
spin L The inclusion of spin can be algebraically cumbersome; thaI's why [ 
introduced the Feynman calculus in the context of a 'toy' theory free of such 
distractions. 

In TWnrelafivinic quantum mechanics, particles are described by Schrodinger's 
equation; in relativistic quantum mechanics, particles of spin 0 are described by 
the Klein-Gordon equation, particles of spin � by the Dirru equation, and particles 
of spin 1 by the Proca equation. Once the Feynman rules have been established, 

however, the underlying field equation fades into the background - that's how we 
got through Chapter 6 without ever mentioning the Klein-Gordon equation. But 
for spin ! the very notation of the Feynman rules presupposes some familiarity 
with the Dirac equation. So for the next three sections we'll study the Dirac theory 
in its own right. 

One way to 'derive' the 5chrodinger equation is to start with the classical 
energy-momentum relation: 

In<rod�,lion I<> E!e .... �"''Y P�ni.ck>. S«onJ Editi",," o..vid Griflitlu 
Copyrisht 0 2008 WILEY·YCH V'TbS GmbH & Co. KGaA. W�inMim 
ISBN: 973-}·S27·.0601·2 

(7.1) 
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apply the quantum prescription 

p ...... -ifiV, . , E ...... lfi-" 

and let the resulting operators act on the 'wave function', W: 

(Schrooinger equation) 

(7.2) 

(7.3) 

The Klein-Gordon equation can be obtained in exactly the same way, beginning 
with the relativistic energy-momentum relation. E2 - p2C1 = m2C, or (better) 

(I'll leave out the potential energy. from now on; we'll stick to fru particles). 
Surprisingly, the quantum substitution (Equation 7.2) requires no relativistic 
modification: in four-vector notation, it reads 

plJ. ...... ifi illJ. (7.5) 

Here' 

, , � ­IJ. - ilx!' 

which is to say 

, 
ill = 

ax' 

(7.6) 

(7.7) 

Putting Equation 7.5 into Equation 7.4, and letting the derivatives act on a wave 
function ", ,t we obtain 

(7.S) 

(Klein-Gordon equation) (7.9) 

Schrodinger actual!y discovered this equation even before the nonrelativistic one 
that bears his name; he abandoned it when (with the Coulomb potential included) 

• The grldienl with respect to a wnt",,,,,rianl position·time four·vrdor "" is itself a covariant 
four·v�tor; hen<:e the placement of the index. Writlen out in full, Equation (7.5) $.1)'$ 
(Elc. -p) ..... ih(��. V). Of course. ,,�_ a/h�. � Problem 7.1. 

t In nonrelativistic quantum m�anics we customarily use the capital ktll':r ("-') for the wave 
function, and rese� t for its spo.tial �rt (Equation 5.3). In the relativistic theory it is more 
common to use 'II for the wa� function itself. 
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it failed to reproduce the Bohr energy levels for hydrogen. The problem is that the 
electron has spin l , and the Klein-Gordon equation applies to particles with spin O. 
Moreover, the Klein-Gordon equation is incompatible with Born's statistical inter· 
pretation, which says that 11fr(r)12 gives the probability of finding the particle at the 
point r. The source of this difficulty was traced to the fact that the Klein-Gordon 
equation is second order in t.' So Dirac set out to find an equation consistent with 
the relativistic energy-momentum formula, and yet first order in time. Ironically, 
in 1934, Pauli and Weisskopf showed that the statistical interpretation itself must 
be refonnulated in relativistic quantum theory,t and restored the Klein-Gordon 
equation to its rightful place. while keeping the Dirac equation for particles of spin � . 

Dirac's strategy was to ·factor' the energy-momentum relation (Equation 7.4). 
This would be easy if we had only pO (that is, if p were zero): 

(7.10) 

We obtain two first·order equations: 

(p° - mc) = O  or (p° + me) = O  (7.11) 

either one of which guarantees that 1'" PI' - ml,2 = O. But it's a different matter 
when the spatial components afe included; in that case we are looking for something 
of the form 

(7.12) 

where fj� and yA are eight coefficients yet to be determined.f Multiplying out the 
right-hand side, we have 

We don't want any terms linear in p�, so we must choose W = y"; to finish the 
job, we need to find coefficients y" such that 

• Notice that the SchrOdinger equation is first order in t. 
t A rdotivisti( thMry has to account for pair production and annihil<otion. md hence the number 

of particles is not a conse",...! qU.1ntity. 
t In case the noution confuses you, let me write Equation (7.U) 'Iong·hand·: 

(p0)2 _ (p1)2 _ <i)2 _ (pl)l _ mlcl = (fjOpO _ plpl _ fjlpl _ fjlpl + me) 

x (yOl - yip! _ yl}f _ ylpl - me) 
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which is to say 

(l)2 _ (i)2 _ (p2)2 _ (p1)2 = (yO)2(p0)2 + (yl)2(pl)2 + (y2)2(p2)1 

+ (yl)2(pl)1 + (yOy! + y! yO)PoPI 

+ (yOyl + y2yO)PoPl + (yOyl + ylyO)PoPJ 

+ (yly2 + y2yl)P1Pl + (ylyl + ylyi)P1Pl 
(7.13) 

You see the problem: we could pick yO = 1 and yl = y2 = yl = i, but there doesn't 
seem to be any way to get rid of the cross terms. 

At this point Dirac had a briUiant inspiration: what if the y's are matrices, instead 
of numbers? Since matrices don't commute, we might be able to find a set such that 

y"y' + y.y" = 0, for iJ. oF u  (7.14) 

Or, more succinctly, 

ly",y'J = 2g'" (7.15) 

where g"" is the Minkowski metric (Equation 3.13), and curly brackets denote the 
anlicommutator: 

IA. Bl =: AB + BA (7.16) 

You might try fiddling with this problem for yourself. It turns out that it can be 
done, although the smallest matrices that work are 4 x 4. There are a number of 
essentiaUy equivalent sets of 'gamma matrices'; we'll use the standard 'Bjorken 
and Drell' convention [1): 

(7.17) 

where ui(i = 1,2, 3) is the indicated Pauli matrix (Equation 4.26). 1 denotes the 
2 x 2 unit matrix, and 0 is the 2 x 2 matrix of zeroes.' 

• When the context allows no Toom for ambiguity. 1"11 uSC 1 and 0 this way for 2 x 2 QT 4 x 4 rna· 
trices; also, a unit m.1lrix of the appropriate di""'nsion is ;mplkd, when necessary. as on the 
right.hand side of Equation 7.1S Incidentally. since (1 is nO( the sp;itial part of a {QUT·vector. we 
do not distinguish up� and lower indices: ,, ' .  "i. 
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As a 4 x 4 matrix equation, then, the relativistic energy-momentum relation 
d«s factor: 

(7.18) 

We obtain the Dirac equation, now, by peeling off one term (it doesn't really matter 
which one, but this is the conventional choice - see Problem 7.10): 

yl'pl' - ltIl: = 0 (7.19) 

Finally, we make the quantum substitution PI' _ iii. 01' (Equation 7,5), and let the 
result act on the wave function 1/r: 

(Dirac equation) (7.20) 

Note that 1/r is now a four..element column matrix: 

(7.21) 

We call it a 'bi-spinor', or 'Dirac spinor'. (Although it has four components, this ob­
ject is 110t a four-vector. In Section 7.3 I'll show you how it does transform when you 
change inertial systems; ii's not going to be an ordinary Lorentz transformation.) 

7.2 
Solutions to the Dirac Equation 

Suppose that 1/r is independent of position: 

o1/r = a1/r = a1/r = 0 
ax ay oz (7.22) 

In view of Equation 7.5, this describes a state with zero momentum (p = 0), which 
is to say, a particle at rest. The Dirac Equation (7.20) reduces to 

where 

iii. oo1/r 
-y - - mc 1/r = O  
, a, 

(� 
(7.23) 

(7.24) 

(7.25) 
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consists of the upper two components, and 

(7.26) 

comprises the lower two. Thus 

(7.27) 

and the solutions are 

(7.28) 

Referring to Equation 5.10, we recognize the factor 

(7.29) 

as the characteristic time dependence of a quantum state with energy E. For a 
particle at rest, E = mc1, so 1/1 A is exactly what we should have expected, in the 
case p = O. But what about 1/Is? It ostensibly represents a state with negativt: energy 
(E:= -mel). This is the famous disaster I mentioned back in Chapter 1, which 
Dirac at first tried to avoid by postulating an unseen infinite 'sea' of negative.energy 
particles, which fill upall those unwanted states: Instead, we now take the solutions 
with 'anomalous' time dependence to represent antiparticles with p�itivt energy.t 
Thus 1/1 A describes electrons (for example), whereas 1/18 describes positrons; each is 

a two·component spinor, just right for a system of spin j .  Conclusion: The Dirac 
equation with p = 0 admits four independent solutions (ignoring normalization 
factors, for the moment): 

(7.30) 

• You might ask why we don't simply stipulate that t.{O) '" 0 - call thr 'negati�""rgy' solu· 
lions 'physically unacceptable', and forget about them. Unfortunately, this can't be done. In a 
qu .. ntum system we need a compiete set of states, and the positivr rnrrgy statrs by themselves 
arc not complete. 

t In the Schr(ldinll"'" equation the sign of i is purely conventional. Had S<:hrOdinger made the op­
posite choice. tEl'" would be the 'normal' time drpendrncr for a slalionary state of energy E. In 
the relativistic thCQry bark signs arise, and this. when properly interpreted, implies the existence 
of antiparticlrs. 
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They describe, respectively, an eltttron with spin up, an eltttron with spin down, 
a positron with spin down: and a positron with spin up. 

We look next for plant-WQ\Ie solutions;t 

(7.31) 

We're hoping to find a four-vector kl' and an associated bispinor u(k) such that 
1,/f(x) satisfies the Dirac equation (a is a normalization factor, irrelevant to our 
present purpose but necessary later to keep the units consistent), Because the x 
dependence is confined to the exponentt 

(7,32) 

Putting this into the Dirac Equation (7.20), we get 

(/iyl'k" - mc)u = 
0 (7.33) 

Notice that this equation is purely algebraic - no derivatives. If u satisfies 
Equation 7.33, then oJ! (Equation 7.31) satisfies the Dirac equation. 

Now 

0 )  _ k .  ( 0 u) _ ( If -1 -0" 0 - k · O"  
-k U) 

-If 

(7.34) 

-iii< U ) ("') (_tik° - me) UB 

• Notice the 'backward' antiparticle spin ori�ntation" In Dirac'. in!erpr�tl.tion (which rem.1im a 
hmdy mnemonic de>ice) >I'(ll is a �li"'·energy tlutron sme with spin up, whose "OStota (a 
'hol�' in th� 'sea') brhavr. as a I""iti ... �nergy po>itron with spin down (21. 

t H�r� k x = k�x" = �<"I- k· r, so the !Nlpart of the exponenti.J.I is COS(�CI -k ·  r). which 
represents a sinusoidal pl.;one wavr of (angular) frequency w = ck" and wa�lffigth � .. 2"'/lkl, 
propagating in 1m, direction k. 

:i This looks right. but if it makes you nervous you (an easily check it: 

iloe-ib = (l/c)�e-j�<I+ik-r 
= _ikOe-i.l:-x 

" 
(and � = 1:0). Similarly 

(but k' '"' -0,1. 
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where, as before, the subscript A denotes the upper two components, and B stands 
for the lower two, [n order to satisfY Equation 7.33, then, we must have 

Substituting the second of these into the first gives 

But 

(7.35) 

(7.36) 

Ik. - '''I) 
-k, 

(7.37) 

.l:r(.l:x - iky) - .l:z(.l:x - jky)) = k2l 
(k,. + i.l:1)(kx - iky) + ki 

where 1 is the 2 x 2 unit matrix (written in explicitly, just this once). 1bus 
k' 

and hence' 

(7.38) 

(7.39) 

(7.40) 

In order for 1/1 = exp(-ik . x)u(.I:) to satisfY the Dirac equation, then, fikI' must be 
a four-vector, associated with the particle, whose 'square' is m2,2. Of course, we 
know such a quantity: the energy-momentum four-vector. Evidently 

k" = ±p" In (7.41) 

The positive sign (time dependence t-iE" ,,) is associated with particle states, and 
the negative sign (time dependence t+iE" �) with antiparticle states. 

Returning to Equa tion 7.35 (and using Equation 7.37). it is a simple matter to 
construct four independent solutions to the Dirac equation: . (t) p o  (1) ' ( p, ) (1) PICk UA = 0 : UB = :0-- 0 � --.-, . 

y + m' E + m�- P",+ !PY 

• Equation 7.19 would also allow u ... ., 0 as a solution. H��r. th� .. m� argument, starting 
with Equation 7.35 but inserting the first into the se.::ond. yields Equation 7.39 with "I in place 
of " .... So. unless u ... and '" are both zero (in which Ca ... we IoIve no solution at all) Equation 
7.40 must hold. 
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(2) Pick ", • (0) , " • .  � (0) . _' , (P. - iP') 
1 y + mc 1 E + mc -pz 

. (1) p . • (1) ' ( p. ) (3) PICk Us := : U,o. = 
-.-- • ---, . o p + mc 0 E + mc P% + lpy 

For (1) and {2} we were obliged to use the plus sign in Equation 7.41 - otherwise 
Us blows up as p --l> 0; these are particle solutions. For (3) and (4) we must use the 
minus sign; these are antiparticle states. 

A convenient nonnalization for these spinors is· 

{7A3} 

Here the dagger signifies the transpose conjugate (or Hennitian conjugate): 

'0 
(7.44) 

With the resulting normalization factor (Problem 7.3) 

the four canonical solutions become: 

"" ' . N [ ,J.! ) . 
E + mc1 

c(p� + iFy) 

E+ mc1 

• Noticr that any multiple of u i. still a solu· 
tion to Equation 7.33; norm.1Hzation merrly 
fixes the overall constant. Actually. there are 
at least three different con�ntions in the 
literature: "t,,:o 2EI' (Halzen and Martin). 

(7.45) 

(7.46) 

"tu '" Elm<l (Biorken and Drell). "T" .. 1 
(Bogoliul.>ov and Shirkov)_ In this one in­
stance I dq>art from Bjorken and DreU. 
whose choice introduces spurious diffiOllties 
whrn m -+ O. 
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E + me2 E +  mel 
['�' - ''''I ) 

II) = N e(-P%) v 
E + mel ' 

o 

[ '�.I ) 
vll) = -N 

e(p", + ipy) 
E + me2 

1 

(7.47) 

1 o 

(7.48) 

It is customary, from here on, to use the letter v for antiparticles (and to include 
a minus sign in vm), as indicate<!. Notice that whereas particle states satisfY the 
momentum space Dirac equation (see Equation 7.33) in the form 

(y"p" - me)u = 0 

antiparticles (v's) satisfy: 

(y"p" + me)v = 0 

(7.49) 

(7.50) 

You might guess that ull) describes an electron with spin up, I'll) an electron 
with spin down, Vii) a positron with spin up, and v12) a positron with spin down.' 
but this is not quite the case. For Dirac particles the spin matrices (generalizing 
Equation 4.21) are 

(7.51) 

and it's easy to check that I'll), for instance, is not an eigenstate of 1:%. However. if 

we orient the 2 axis so that it points along the direction of motion (in which case 

p� = py = 0) then 1'11), 1'121, vii), and vll) �re eigenspinors of Sz; I'll) and Vii) are spin 

up, uPI and tlill are spin down! (Problem 7.6). 
Incidentally, plane waves are, of course, rather special solutions to the Dirac 

equation. They are the ones of interest to us, however, because they describe 
particles with specified energies and momenta, and in a typical experiment these 
are the parameters we control and measure. 

• Stt th� fOOb1.01� 10 EqlL1.tion 7.30 for positron 
spin orientations. 

t As � man�r of facl, il is j"'pouibk 10 con· 
StruCt plane·wave solutions to th� Dirac 
equation and ue. at the pme time. eigen· 
states of S, (except in the special case 
p = p,t). The reason is that S by itself is not 
a conserved quantity: only the 101<>1 angular 
momentum. L + S. is conserved here (s� 

Problem 7.81. It is possible to construct 
ei�nstat ... of kdicily, 1: .  1> (there's no orbil<ll 
angular momentum about th� direction of 
motion). but theu- are rather cumbersom� 
(� Problem 7.7), and in practice il is easier 
to work with the spinars in Equations 7.46 
and 7.47. even though their physical interpre· 
tation is not so clean. AU that rwlIy matters is 
thai � !rave a c.ompl& set of solutions. 
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7.3 
Bilinear (ovariants 

! mentioned in Section 7.1 that the components of a Dirac spinor do not transform 
as a four·vector, when you go from one inertial system to another. How, then, do 
they transform? ! shall not work it out here (you get to do it, in Problem 7.11), but 
merely quote the result: if you goto a system moving with speed v in the x direction 

1/1 - 1/1' = 51/1 

where 5 is the following 4 )( 4 matrix: 

5 = a+ + a_yOyl = ( a+ 
"_O'l 

with 

r ,_.,) � 
0 

'+ 0 
,-

(7.52) 

0 0 '

: ) '+ ,-

,- '+ 
0 0 '+ 

(7.S3) 

a± = ±J!(Y ± I) (7.54) 

and y = l/Jl v1/c2, as usual. 
Suppose we want to construct a scalar quantity out of a spinor 1/1.  It would be 

reasonable to try the expression 

Unfortunately, this is not invariant, as you can check by applying the transformation 
rule:" 

(7.56) 

, No� wt the tran.post of. product is the product of the transposes ;n "'","'" orlkr: 

The ume goes for tile Hermitian conjugate, 
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In fact (Problem 7.13): 

StS = S2 = y  
( 1 

-(v/c)UJ 
(7.57) 

Of course, the sum of the squares of the elements of a four·vector is not invariant 
either; we need minus signs for the spatial components (Equation 3.12). With 
a little trial and error you will discover that in the case of spinors we need 
minus signs for the third and fourth components. Just as we introduce<! covariant 
four-vectors to keep track of the signs in Chapter 3, we now introduce the adJoint 
spinor: 

(7.58) 

I claim that the quantity 

(7.59) 

is a relativistic invariant. For styOS = yO (Problem 7.13). and hence 

(7.60) 

In Chapter 4 we learned to distinguish scalars and pseudoscalars, according 
to their behavior under the parity transformation, P; (x, y, z) -+ (-x, -y, -z). 
Pseudoscalars change sign; scalars do not. It is natural to ask whether ifi1/1 is the 
former type. or the latter. First, we need to know how Dirac spinors transform 
under P. Again, I won't derive it, but simply quote the result (problem 7.12):' 

(7.61) 

It follows that 

(7.62) 

so (ifi1/f) is invariant under P - it's a 'true' scalar. But we can also make a pseudoscalar 
out of 1/1: 

where 

• n.., Jig>! in Equ:Uion 7.61 is pure con'<ention; -rOt would do just u weU. 

(7.63) 

(7.64) 
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['11 let you check that it is Lorentz invariant (problem 7.14). As for its behavior 
under parity 

(7.65) 

(I used the fact that (yO)2 = 1 in the last step.) Now, the yO is on the 'wrong side' of 
the yS, but we can 'pull it through' by noting that it anticommutes with y I, y2, and 
yl (Equation 7.15) and commuto" (of course) with itself (ylyO = _yOyl, y2yO = 
_yOyl,yl yO = _yOyl, yO yO = yOyo), so 

By the same token, y5 anticommutes with all the other y matrices: 

(7.66) 

At any rate 

(7.67) 

so it's a pstudoscalar. 
All told, there are 16 products of the form "''''''j (taking one component from "'" 

and one from "'), since i and j run from 1 to 4. These 16 products can be assembled 
in various linear combinations to construct quantities with distinct transfonnation 
behavior, as follows: 

where 

(1) �'" = scalar 
(21 liiys", = pseudoscalar 
(3) �y"'" = vector 
(4) li/y"yS", = pseudovector 
(5) Vier"·"' :: antisymmetric tensor 

i 
o:r". !!!! -(y"y" - y.y") 

2 

(one component) 
(one component) 
(four components) 
(four components) 
(six components) 

(7.68) 

(7.69) 

This gives 16 terms, so it's all we can hope to make. You cannot, for example, 
construct a symmetric tensor bilinear in "'. and "" and if you're looking for a vector, 
Viy" '" is the only candidate." (Another way to think of it is this: 1, y5, y", y" y5, 
and o:r"" constitute a 'basis' for the space of all 4 x 4 matrices; an}/ 4 x 4 matrix can 
be written as a linear combination of these 16. In particular, if you ever encounter a 

• Notice thlt jy0.;- "" .;-t yOyOt "" tt oj, 50 .;-t oj is lctu.ally the zeroth component of a 
four·veaor. "Th.at's why th nornulization con".,ntion (Equation 7.41), which no doubt IooW 
peculiu It the time, is actually very sensible. By normalizing "1,, to the =oth component of 
the four·vector pI', we obtain a rdativistically 'natural' convention (Stt Problem 7.16). 
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product of five y matrices, say. you may be sure that it can be reduced to a product 
of no more than two.) 

Pause a moment to admire the ingenious notation in Equation 7.68. The tensorial 
character of the bili�arrovariants, and even their behavior under parity. is indicated 
at a glance: Vlyl'1/I looks like a four-vector, and it is a four-v«tor. But yl' by itself is 
certainly nota four-v«tor; it's a co!l«tion offour fixed matrices (Equation 7.17); they 
don't change when you go to a different inertial system - it's 1/1 that changes, and in 
just such a way as to give the whole 'sandwich' the tensorial taste of the jam inside. 

7.' 

The Photon 

In classical el«trodynamics, the el«tric and magnetic fields (E and B) produced by 
a charge density p and a current density J are determined by Maxwell's equations:' 

I (i) V · E = 4np 

(il) V x E + � aB = 0  c a, 

(iii) V · B = O  I I aE 4n 
(iv) V x B - -- = -J c at c 

(7.70) 

In relativistic notation, E and B together form an antisymmetric s«ond-rank tensor, 
the 'field strength tensor'. P'": 

-E, -E, -E') 
0 -B, B, 
B, 0 -B, 

-B, B, 0 
(7.71) 

(that is, pOl = -E", Fll = -B%. etc.). while p and , constitute a four-v«tor: 

]I' = (cp,1l (7.72) 

The inhomogeneous Maxwell equations. (i) and (iv) in Equation 7.70. can be written 
more neatly in tensor notation (Problem 7.20) 

(7.73) 

From the antisymmetry of P" (P''' = -P'") it follows (Problem 7.20) that 1" is 
divergenceless: 

a,.]1' = 0 (7.74) 

Or, in three-vector notation. 'if .  J = -aplat; this is the 'continuity equation', 
expressing local conselVation of charge (Problem 7.21). 

, This section presupposes some familiarity with dassi<;al tlectrodynamics: it is designed 10 make 
the description of photoM in quantum electrodynamics more pLousible. As always. I use GlUS­
sian cgs units. 
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As for the homogeneous Maxwell equations. (iii) in Equation 7.70 is equivalent 
to the statement that B can be written as the curl of a ve<tor potential. A: 

(7.7S) 

With this. (ii) becomes 

V x  E + - - = 0  
( I aA) 

, " 
(7.76) 

which is equivalent to the statement that E + (ljc)(aAjat) can be written as the 
gradient of a scalar potential. V: 

I 'A 
E = -VV- - -

, " 

In relativistic notation. Equations 7.75 and 7.77 become 

where 

AI' = (V.A) 

(7.77) 

(7.78) 

(7.79) 

In terms of this four·vector potentia!. the inhomogeneous Maxwell Equations (7.73) 
read: 

(7.80) 

In classical electrodynamics the jitlds are the phYSical entities; the potentials 
are simply useful mathematical constructs. The virtue of the potential formulation 
is that it automaticaUy takes care of the homogeneous Maxwell equations: given 
Equations 7.75 and 7.77. (H) and (iii) in Equation 7.70 follow immediately. no 
matter what V and A might be. This leaves us only the inhomogeneous Equation 
(7.80) to worry about. The deftct of the potential formulation is that V and A 
are not uniquely determined. Indeed. it is clear from Equation 7.78 that new 
potentials 

(7.81) 

(where ). is any function of position and time) would do just as well. since 
a" A"' - a" AI" = al'A" - a" AI'. Such a change of potentials. which has no effect 
on the fields. is called a gauge transformation. We can exploit this gauge freedom to 
impose an extra constraint on the potential ]3]: 

al'AI' = 0  (7.82) 
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This is called the Lorentz condition; with it Maxwell's equations (7.80) simplify still 
further: 

Here 

DAI' = 411" J" , (7.83) 

(7.84) 

is the relativistic extension of the Laplacian (Vz); it is called the d'Altmbertian. 
Even the Lorentz condition, however, does not uniquely spedf)r AI'. Further 

gauge transformations are possible, without disturbing Equation 7.82, provided 
that the gauge function'\' satisfies the wave equation: 

0,\. = 0 (7.85) 

Unfortunately, there is no clean way to eliminate the residual ambiguity in AI', 
and one must choose either to live with the indeterminacy, which means carrying 
along spurious degrees of freedom, or to impose an additional constraint, which 
spoil s the manifest Lorentz covariance of the theory. Both approaches have been 
used in formulating QED; we shall follow the latter CourSE'. In empty space, where 
l" = 0, we pick (see Problem 7.22) 

AO = 0  (7.86) 

The Lorentz condition then reads 

V · A = O  (7.87) 

This choice (the Cou!.omb gauge) is attractively simple, but by sele<:ting one com· 
ponent (Ao) for special treatment, it ties us down to a particular inertial system 
(or rather, it obliges us to perform a gauge transformation in conjunction with 
every Lorentz transformation, in order to restore the Coulomb gauge condition). 
In practice, this is very seldom a problem, but it is aesthetically displeasing. 

In QED, AI' becomes the wave function of the photon. Thefru photon satisfies 
Equation 7.83 withl" = 0, 

DAI' = O  (7.88) 

which we recognize in this context as the K1ein�Gordon Equation (7.9) for a 
massless particle. As in the case of the Dirac equation, we look for plane-wave 
solutions with four-momentum p = (Ele, p): 

A"(x) := at-(i/�)l'""�I'(P) (7.89) 

Here �I' is the polarization vutor � it characterizes the spin of the photon - and a 
is a normalization factor. Substituting Equation 7.89 into Equation 7.88, we obtain 



a constraint on pI'; 

P"PII> e::o 0, or E e::o Iplc 
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(7.90) 

which is as it should be for a massless particle. 
Meanwhile, f" has four components, but they are not all independent. lbe 

Lorentz condition IEquation 7.82) requires that 

(7.91) 

In the Coulomb gauge, moreover, 

(7.92) 

which is to say that the polarization three· vector (f) is perpendicular to the direction 
of propagation; we say that a free photon is lransverstly polarized.' Now, there are 
two linearly independent three-vectors perpendicular to p; for example, if p points 
in the z direction, we might choose 

f(ll = (1.0,0), f(ZI = (0, 1.0) (7.93) 

Instead of fo�r independent solutions for a given momentum (too many, for a 
particle of spin I), we are left with only two.lbat sounds like too few - shouldn't the 
photon have three spin states? The answer is no: a massive particle of spin 5 admits 
25 + I different spin orientations, but a massllss particle has only two, regardless of 
its spin (except for 5 = 0, which has only one). Along its direction of motion it can 
only have m, e::o +50r m, = -5; its helicity, in other words, can only be +1 or _l.t 

7'> 
The Feynman Rules for QED 

In Section 7.2 we found thatfreeelectronsandpositronsofmomentump = (Ele,p), 
with E = Jm1c4 + picl, are represented by the wave functionsf 

• This corresponds to me facl WI electromag. 
ndie waves are transverse. 

t Photon states with m, = ±! correspond 
to right· and left·drcu�r polarization; 
1M: respective polariuolion "«lOTS are 
f ", .,  'f(fll! ± itl2ll/J2. Notice that it was 
by specifying a �rticular go,uge that we elim· 
ilUtw the nonphysical (m, = 0) solution. If 
we �re to follow a 'covariant" approach. in 
which we avoid imposing the Coulomb gauge 
condition. longitudinal free photons would 

be pre ... ni in the th�ry. But the ... 'ghosts' 
decouple from everything el .... .. nd they do 
not affect the lilUl results. 

� For ref�fKe, I begin with a sllmmary of the 
es ... nti .. l results from earlier $e<:tions. I speak 
of'doxtrons' and 'positrons'. but they cOllld 
as �n be 1<- .. nd 1<+. or r - and r+, or (with 
the appropriate deemc charges) quarks and 
antiquarks _ in ShOTt, an� poinl charges of 
spin t, 
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Electrons Positrons 

(7.94) 

where s = 1 , 2  for the two spin states. The spinors ul') and vl') satisfY the momentum 
space Dirac equation(s): 

They are orthogonal, 

normalized, 

uu = 2me 

and complete, in the sense that 

L ulslul<l "" (y"p" + me) 
... 1.2 

(yl'pl' + melv = 0 (7.95) 

(7.%) 

(7.97) 

liv = -2me (7.98) 

L vl<lijl<l "" (y" PI' - me) (7.99) 
... 1.2 

(see Problem 7.24). A convenient explicit set (Ulll, IPI , vlll, (121) is given in Equations 
7.46 and 7.47. Ordinarily, we'll be averaging over electron and positron spins, and 
in that case it doesn't matter that these are not pure spin up and spin down - all 
we really need is completeness. For the occasional problem in which the spins 
are specified, we must, of course, use the spinors appropriate to the case at 
hand. 

Meanwhile, a free photon of momentum P = (E/e, p), with E = Iple, is repre­
sented by the wave function 

Photons 

A,,(x) = ae-I;lhIP'�t't) (7.100) 

where s = 1, 2 for the two spin states (polarizations). The polarization vectors t'�<l 
satisfy the momentum space Lorentz condition: 

They are orthogonal, in the sense that 

(7.102) 
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Fig. 7.1 A generic QED di�gram, with exlern�1 lines I�beled. (Intern�1 lines nal shawn.) 

and normali:zed 

(7.103) 

In the Coulomb gauge 

�o = o, ( ' p = O (7.104) 

and the polarization three-vectors obey the compltkness rtlation (Problem 7.25) 

L f)')f},j* = $ij - P;Pj 
... 1.2 

A convenient explicit pair (�(I), �Ilj) is given in Equation 7.93. 

(7.105) 

To calculate the amplitude, ./Ii, associated with a particular Feynman diagram, 
proceed as follows: 

Feynman Rules 

1. Notation: To each txtl:malline associate a momentum 
PI, P2, . • .  ,pn, and draw an arrow next to the line, indicating 
the positive direction (forward in time).' To each imanalline 
associate a momentum ql, qz, . . .  ; again draw an arrow next 
to the line indicating the positive direction (arbitraril y 
assigned). See Figure 7.1. 

2. Extemallines: Extemallines contribute factors as follows: 

Positrons : 

Photon>: . 

Incoming( _) , II 
Outgoing(_) , il 
h>C(lming( _) : ;:; 

OUlgoing(_) : t' 
Incoming( """') : .� 

Oulgoing(-) : ,� • 

• For � fermion. of course, there will al",ady be an arrow on the line. telling uS whether it is an 
electron or a pc»itron. The two arroWS have nothing to do with one another: they may or may 
not point in the pme direction. 
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3. Vertex factors: Each vertex contributes a factor 

The dimensionless coupling constant g. is related to the 
charge of the el&tron: g. ::  e..,l47Cl1fi :: ../4Jta..' 

4. Propagf.ltors: Each internal line contributes a factor as 
follows: 

EleClrons and positrons: 

Pholons: 

S. Conservation of e"-",rgy and momenJum: For each vertex, write 
a delta function of the form 

where the I:'s are the three four-momenta coming into the 
vertex (if an arrow leads outward, then I: is minus the 
four·momentum of that line). 

6. Inlegra� over jn�mal momenta: For each internal 
momentum q, write a factor 

and integrate. 
7. Caned Ihe delta fonction: The result will include a factor 

corresponding to overall energy-momentum conservation. 
Cancel this factor, and multiply by i; what remains is A. 

[t is critically important that the pieces be assembled in the correct order ­
otherwise the matrix multiplications will be gibberish. The safest procedure is 

• In HeaYisidr-L<>rrntz units. with Ii and , $tl 
eqUll 10 1. g. is Ihe 'ha� of the poSitron, 
and hrn(e e. written 'e' in mosl �ts. In 
the. book I u$t G�ussian units, and k�p all 
factors of Ii and c. Thr rasirs! way 10 avoid 
trouble o�r Unils i5 10 express all results in 
lerms of thr dimensionless numbrr a. In 

writing the Feynman ru\rs for QED I assume 
we are dealing witlt elec!rons and positrons. 
In grn<ral, tlte QED coupling constanl is 
-q�, wllere q is the charge of tlte 
P"n� (a5 oppo:s...! to tlte �ntipartide). For 
elec.trons, q = -�, bUI for 'up' quuh, »y, 
q = l� 
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to track tach fermion lint backward through tht diagram. Start (for example) with 
an outgoing electron line, and follow the arrow (the one on the line) back until 
it emerges, either as an incoming electron or as an outgoing positron, writing 
down the various line factors, vertex factors, and propagators, left to right, as you 
encounter them. Each fermion line produces a 'sandwich', of the form adjoint 
spinor, 4 x 4 matrix, spinor (row · matrix · column � number). Meanwhile, each 
vertex carries a contravariant ve<:tor index (IL, IJ, A, . . .  ), which contracts with the 
covariant index of the associated photon line or propagator. (Don't worry: all of 
this will make much better sense when we work some examples, but I wanted to 
prescribe the ritual, for future reference.) 

As before, the idea is to draw all the diagrams contributing to the process in 
question (up to the desired order), calculate the amplitude (A) for each one, and 
add them up 10 get the total amplitude, which is then inserted into the appropriate 
Golden Rule for the decay rate or the scattering cross section, as the case may be. 
There's one new twist that occasionally arises: the antisymmetrization of fermion 
wave functions requires that we insert a minus sign in combining amplitudes 
that differ only in the interchange of two identical external fermions. It doesn't 
mailer which diagram you associate the minus sign with, since the total will 
be squared eventually anyway; but there must be a rtIative minus sign between 
them: 

8. Anlisymmtlrization: Include a minus sign between diagrams 
that differ only in the interchange of two incoming (or 
outgoing) electrons (or positrons), or of an incoming electron 
with an outgoing positron (or vice versa). 

We are now in a position to reproduce many of the classic calculations in quantum 
electrodynamics. Just so you don't get lost in the details, let me begin by giving 
you a catalog of the most important processes (fable 7.1). The simplest case 
is electron-muon scattering, for here only one diagram contributes in second 
order.' 

, It �sn't havr to br an eand a 1'. ofcou�. 
Any spin.! point charg<:$ would do (. and 
T. for instance. Or p. and T. or eleetron and 
quark, etc.). as long as you put in the cor· 
reet mu�s and charges. As a matto:r of fact 
most books u� electron-proton scattering as 
the canonical ...ample, but that is acrually a 
rother inappropriate choice. since tbe proton 
is a composite strocrure. not a point particle. 
Still, to the extent that the internal structure 

of tbe proton can be ignored. it is not a wd 
approximation (rather like lIeating the sun as 
a point mns in the the<>ry of the oola, sys· 
tem). If the 'muon' is much beavier than the 
'electron', we have MOl: ""ll<ring: if, more­
over, the 'electron' is non'elativistk, we get 
R .. Wiford ""tiering, for which QED repro. 
duces precisdy the classical formula (Example 
6.4). 
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Tai)le 7.1 (at./og of b.sic quantum dectrodynamic processes. 

Second--order processes 

EIo.stic x 
X X  
X >-<  
X X  

I Ele.:tron-muon scattering(e + IJ. ---> e + IJ.I 
(Mott scattering(M » m) � Rutherford sottering(1I « c)) 

/"daslic 

x x  
X X  

I Ele.:tron-ele.:tron scattering(.- +.- ...... . - + e-) 
(Meller scattering} 

I Electron-positron scattering(r + .+ ..... e- + .+) 
(Bhabha scattering) 

{pairannihllarion(.- + e+ ---> )' + 1'1 

{pair production(1' + I' ...... r + e+) 

Most imporbnt third>order process 

{ � Anomalous magnetic moment of electron 

Example 7. 1 Electron-Muon Scotten"ng Walking 'backward' along each fermion 
line (Figure 7.2), and applying the Feynman rules as we go: 

(21r)4 f ru'>l){Pl)(ig,y")�I'll(pl)J -�. rul"I(P4)(ig,y")ul>21<P2)J 

x ,s4{P1 -pJ - q),s4(f2 + q - P4) d4q 

Notice how the space· lime indices on the photon propagator contract with those 
of the vertex factors at either end of the photon line, carrying out the (trivial) q 
integration. and dropping the overall delta function, we find 

(7.106) 

In spite of its complicated appearance. with four spinors and eight y matrices. 
this is just a numbu, which you can work out once the spins are spedfied (see 
Problem 7 .26). r�.: 



Fig. 7.1. Electron-muon scattering. 

, � "» , 

ql 
, � � , 

Fig. 7.3 'Twisted· diagram for 
electron-electron scattering. 

7.6 Examples 1 20 

Example 7.Z Electron-Electron Scattering In this case there is a second diagram. 
in which the electron that emerges with momentum P1 and spin Sl comes from 
the P1,51 electron. instead of the Pl.Sl electron (Figure 7.3). We can obtain 
this amplitude from Equation 7.106 simply by the replacement P1.S1 ...... p •• 54. 
According to Rule 8. the two diagrams are to be subtracted, so the total ampli. 
tude is 

A = ­�, , 
� z (1i(3)y"u(1)J!u(4)y"u(2)] p,) 

, 
+ 

(PI � z [U(4)Y"u(1)J[u(3)y"u(2)J p.) 
(7.107) 

(Note the transparent shorthand I have adopted to label the spinors.) IIltl 

Example 7.3 Electron-Positron Scattering Again. there are two diagrams.' The first 
is similar to the electron-muon diagram (Figure 7.4): 

(211")4 f [ii(3)(ig.y")u(l)] -�" [v(2)(ig.yV)v(4)] 

x <'J·(P1 -Pl - q)<'J·(Pz + q -p4)d4q 

Notice that 'proceeding backwards' along an antiparticle line means workingfoTWl1rd 
in time; the order is always adjoint/matrix/spinor. The amplitude for this diagram 

• The fact that there are IwO diagrams for 
ekctron-dectron and electron-positron 
scattering. but only �"" for electron-muon 
scattering. would appear offhand to be in· 
consistent with the classical limit. After .U. 
Coulomb's law says that the force of attraction 
or repulsion ]",tween two particles depends 
only on their charges. nOI on whether they 
hap!",n 10 ]", identical (or antiparticks of 
one another): in the nonrelalivistic limit. 
then. we should get the same answer whether 

we u� the electron-muon formula or the 
ekclron-ekctron formula. The <>mplitudts. il 
is true. are no: the same. but the cross section 
formula (Equation 6.3-4-) carries a ractor of 
S. which is t for electron-electron scat· 
�ring and I for electron-muon scattering. 
For electron_positron scattering. S = I. but 
the second amp�tude (Equ�tion 7.109) is 
sm�ner th�n th� first (Equation 7.}08) by a 
factor (\I/e)l. SO only..l, contributes. in the 
nonrelativistic limit. 
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, 

Fig. 7.4 Electron-positron sc�nering. Fig. 7.S Second diagram contributing to 
electron-positron sc�nering. 

is thus 

, 
Ai = - go 2[ii(3)Y"u(1)J[V(2)Yl'u(4)j 

(PI P3) 
(7.tOS) 

The other diagram represents virtual annihilation of the electron and positron. 
followed by pair production (Figure 7.5): 

(2JT)· f [ii(3}(ig,yl')V(4)] -�" [v(2)(ig.yV}u(I)] 

x 8�(q - Pl - p,)6'(Pt + P2 - q}d'q 

The amplitude for this diagram is therefore 

(7.109) 

Now. should we add these amplitudes. or subtract them? Interchanging the incom· 
ing positron and the outgoing electron in the second diagram (Figure 7.S). and 
then redrawing it in a more customary configuration 

we recover the first diagram (Figure 7.4). According to Rule 8, then. we need a 
minus sign: 

.; 
..it = 

- (PI p))2 
[ii(3)Y"u(1)][u(2)y" v(4)] 

, 
+ go 2[ii(3)y"v(4)1[V(2)y"u(I)) 

(PI + Pi) 
(7.110) 

m 
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Fig. 7.6 Compton sCinering. Fig. 7.7 S<!(ond diagram for Compton seaner· 
mg. 

Example 7.4 Campton Scattering For an example involving the electron propagator 
and photon polarization, consider Compton scattering, y + e _ y + t. Again there 
are two diagrams, but they do "at differ by the interchange of fermions, and the 
amplitudes add. The first diagram (Figure 7.5) yields 

(211")4/ (,,(2) [U(4)(ig.y") (�f$ + m�) (ig.yV)U(l)] E.(3)' 

x �4(P1 _ pJ _ q)�.(pJ. + q _ P
4
) d4q 

Notice that the space.time index on each photon polarization vector is contracted 
with the index of the y matrix at the vertex where the photon wascreatedorabsorbed. 
Notice also how the electron propagator fits in as we work our way backward along 
the electron line. I have introduced here the very convenient 'slash' notation: 

Evidently, the amplitude associated with Figure 7.6 is· 

Meanwhile, the second diagram (Figure 7.7) yields 

.; 
.,1{2 = "(pC", -'+-:p�,)\-' ---c:m",,,:;- [ii(4)/(3)' i.ll + 12 + me)/(2)u{l)] 

and the total amplitude is.At = -"'\ + -"'1' R 

7.7 
Casimir's Trick 

(7.111) 

(7.112) 

(7.113) 

In some experiments the incoming and outgoing electron (or positron) spins are 
specified, and the photon polarizations are given. If so, the next thing to do is to 
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insert the appropriate spinors and polarization vectors into the expression for 4, 
and compute 1411 - the quantity we actually need, to determine cross sections 
and lifetimes. More often, however, we are not interested in the spins. A typiCilI 
experiment starts out with a beam of particles whose orientations are random. and 
simply counts the numbu of particles scattered in a given dire<:tion. In this case the 
relevant cross section is the av(rage over all initial spin configurations, Sj, and the sum 
over all final spin configurations, sf. In principle, we could compute 14(5; -+ sf)ll 

for every possible combination, and then do the summing and averaging: 

041l) ;:: average over initial spins, sum over final spins, 

ofl4(5; -+ sfl ll (7.114) 

In practice, it is much easier to compute {[41l1 directly, without ever evaluating 
the individual amplitudes. 

Consider, for instance, the electron-muon scatteringamplirude (Equation 7.106). 
Squaring, we have 

1412 = t 4 [U(J)y" u(I)][U(4)y" u(1)][U(3)y"u(I))"[U(4)You(2))" (7.115) (PI - PJ) 

(I use v for the second contraction, since /l has been preempted.) A glance at the 
first and third 'sandwiches' (or the second and fourth) reveals that we must handle 
quantities of the generic form 

(7.116) 

where a and b stand for the appropriate spins and momenta. and r\, and 
rl are 4 x 4 matrices. All the other processes described in Section 7.6 - Moller, 
Bhabha, and Compton scattering, as well as pair production and annihilation - lead 
to expressions with similar structure. To begin with, we evaluate the complex 
conjugate (which is the same as the Hennitian conjugate, since the quantity in 
square brackets is a 1 x 1 'matrix'): 

(7.117) 

(7.118) 

where' 

(7.119) 

• O�"'" that the overb>.r nQW strve$ two different functions. On a spinor it denotes th� adjoillt: 
t _ tt yO (Equation 75S); on a 4 x 4 ""',m it ddines a new matrix: f _ yOrt yO. 
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G = [ii(ujrJu(b)J[Ulb)f\u(u)J (7.110) 

We are now ready to sum over the spin orientations of particle b. Using the 
completeness relation (Equation 7.99), we have 

L G :::: ii(ujrJ I L U('.J{P�)uI'.J{P�) ) r2U(U) 
b.pin. .._1.2 

:::: u(U)rJ(,Iib + mbe)r2u(U) :::: u(u)Qu(a) (7.121) 

where Q is a temporary shorthand for the 4 x 4 matrix 

Next, we do the same for particle a: 

L L G = L ij:I .. J{P4)QU( .. J{p.) 
4 .pin. b .pi... .._1.2 

Or, writing out the matrix multiplication explicitly;· 

z;;, It "'·I�.110J"'·'�.IJ = It 0J I.E "" '�'I''''�'I )
, 

• • 
= L QJj(,li4 + m�e)p :::: L[Q(,Ii4 + rnA];, = Tr[Q(,Ii� + m.e)) 

(7.112) 

(7.113) 

where 'Tr' denotes the trace of the matrix (the sum of its diagonal elements): 

Tr(A) .. LA� (7.114) 

Conclusion: 

L [ii(ajrJ u(b))[ii(Ujr2U(b))" :::: Tr[r 1 (,Ii� + m�c)r21!. + m4c)] (7.115) 
.11 .pin. 

This may not look like much ofa simplification, but it is actually huge. Notice that 
there are no spinoTS left - once we do the summation over spins, all that remains is 

to multiply matrices and take the trace. This is sometimes called 'Casimir's trick', 
since Casimir was apparently the first one to use it [4). Incidentally, if either u (in 

• This is r�ncy footwork, so w�tch closely. You Cln't me" with the ordering or two spinors, but 
their c.omp"".lIIs �re just num"'rs 'MY Cln be written either WlY' Ui"j = ":lUI· In the second 
step we recognize this product as theji element or the m<llrix .. u (note the unusulirmotrix mul­
tiplication �re, column time. row: 4 x 1 limes 1 x 4 produces 4 x 4). 
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Equation 7.115) is replaced by a t/, the corresponding mass on the right. hand side 
switches sign (see Problem 7.28). 

E.rcomple 7.5 In the case of electron-muon scattering (Equation 7.115), r2 = y", 
and hence J\ = yOy"tyO = y. (Problem 7.29). Applying Casimir's trick twice, we 
find 

• 
0.£12) = & 4 Tr[Y"V'l + mc)Y·V'l + me)! 

4(PJ Pl) 
X TrjY" V'2 + Me)Y.V'4 + Me)! (7.126) 

where m is the mass of the electron and M is the mass of the muon. The factor 
of � is included be.::ause we want the average over the initial spins; since there are 
two particles, each with two possible orientations, the average is a quarter of the 
sum. _ 

Casimir's trick reduces everything to an exercise in calculating the trace of 
some complicated product of Y matrices. This algebra is facilitated by a number 
of theorems, which I shall now list (I'll leave the proofs to you - see Problems 
7.31-7.34). First of all, I should mention three facts about traces in general: if A 
and B are any two matrices, and a is any number 

1. Tr(A + B) = Tr(A) + Tr(B) 

2. Tr(aA) = a Tr(A) 

3. Tr(AB) = Tr(BA) 

It follows from number 3 that Tr{ABq = Tr(CAB) = Tr{BCA), but this is not 

equal, in general, to the trace of the matrices taken in the other order: Tr(ACB) = 
Tr(BAC) = Tr{CBA). You can 'peel' matrices ofT the back end of a product and 
move them around to the front, but you must preserve the ordering. It is useful to 
note that 

4. g,..g"" = 4 

and to recal! the fundamental anticommutation relation for the Y matrices (together 
with an associated rule for 'slash' products): 

5'. # + � = 2a . b 

From these there follows a sequence of'contraction theorems': 

6. y"y" = 4 
7. y"y"y" - 2y· 7'. y"ly" - 2; 
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8. y"y"yly" 4g"l 8'. y,,#y" = 4{a· b) 

9. YI,y"yly"y" _ 2y" yl,y" •• y,,#{y" = - 21#1 

and a collection of 'trace theorems': 

10. The trace of the product of an odd number of gamma matrices is zero. 

II. Tr{l) 4 

12. Tr(y"y") = "'"' 12'. Tr(i.b') 4(a · b) 

lJ Tr(y"y"yl,y,,) 13'. T,,,JlIA 
= 4(g"VgM _ g"l,g"" + g""g"l,) = 4(a · b c  d - a  . cb . d + a . db · c) 

Finally, since yS = iyOyly2yl is the product of an even number of y matrices, it 
follows from Rule 10 that Tr (ySy") = Tr (ysY"yVyl,) = O. When yS is multiplied 
by an even number of y '5, we find 

14. Tr(ys) = 0 
15. Tr(ySy"YV) 0 15'. Tr(yS,J)'l = 0 
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16. Tr(ySy" y"yl, y�) 4if"""" 16'. Tr(ysJiN�} 4i€"""" a"b"cl,d" 

where' ! -1 if /-iVAU is an even permutation of 0123, 
€"""" '=' +1, if/-iVAU is an odd permutation. 

0, if any two indices are the same. 

(7.117) 

Example 7.6 Evaluate the traces in electron-muon scattering (Equation 7,126): 

Tr[Y"{f1 + mc)Y"{fJ + me)] 

= Tr(yl'"lIY· "11) + me [Tr{Y""l1 y") + Tr(y"y" "Ill] + (mc)lTr(y"y V) 

• By '"""n prrmutation' I mean an e�n num· 
00 of int"",h.:Ing'" nf two indic., •. Thu. 
f"''"'' "" -f'�"" = f'''''� = _(.lc�. and so 
on - in nther words, ��."" is antisymm�· 
ric in e.-ery �jt of supe=ripts. It might 
� stranW' that �Olll is mill'" 1; why nn! 
"",k., it pJ", l� It's purely enn"""tinn.I, 
of cou .. e - rndently. wh""""r establish."J 
the definition want."J (om to be plus l. 

and from th.t it follows that �oUJ = -I, 
.ince thrtt spatial indices are raised. By th., 
way, if you are UsM to worlcing with the 
three·dimeosioMl Levi-Civit. symbol f;;t 
(Probl.,m 4.19), b., warn."J that although 
an even permutation on wu indices (Or· 
respond. to preservation of cyclic order 
((\11 = fJU = flij). this is not the case for fo,,' 
indices: �"."" = -� .... � '" � .... �" = -(g�.,. 
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Solution: According to Rule 10, the terms in square brackets are zero. The last term 
can be evaluated using Rule 12, and the first by Rule 13: 

Tr(Y",IY·,l) = (Plll(Pl)" Tr(y"yly"y" ) 
= (PJ)l(Pl).,.4(g"lg"<' - g""g'" +g"",,") 

= 4(pfpj' -g""(PI . Pl) + p)'plJ 

Tr [y"(fl + mc)Y"(fl + me)] 
= 4 lpfpj' + PlPi + "" [(mc)2 - (PI . PJ)]I (7.128) 

The second trace in Equation 7.126 is the same, with m -+ M, 1 -+ 2, 3 -+ 4, and 
the Greek indices lowered. So 

X Ip2"p." + P4"P2" + g". [(MC)2 - !P2 . P4)]J 

s.: = (P )4 [(PI ' P2)(PJ . p.) + (PI . P.)!P2 · PJ) 
• p. 

- (PI . pJ)(Mc)l - (Pl . P4)(mc)l + 2(mMIf)1] (7.129) 

7.' 
Cross Sections and lifetimes 

We are now back on familiar turf. Having calculated IAll (or, where appropriate, 
(IAll)), we simply plug it into the relevant cross section formula from Chapter 6: 
Equation 6.38 in the general case, Equation 6.47 for two-body scattering in the CM, 
or one of the equations from Problems 6.8, 6.9, or 6.10 in the lab frame. 

E:.omple 7.7 Motl and Rutheiford Scattering An electron (mass m) scatters off 
a much heavier 'muon' (mass M »  mI. Assuming that the recoil of M can be 
neglected, find the differential scattering cross section in the lab frame (M at 
rest). 

Solution: According to Problem 6.8, the cross section is given by 
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• 

Before After 

Fig. 7.3 Ele�tron snttering from a heavy target 

Because the target is stationary, we have (Figure 7.8): 

where E is the incident (and scattered) electron energy, PI is the incident 
momentum, and Pl is the scattered momentum (their magnitudes are equal, 

(PI) = Ip,l ;;;; Ipl, and the angle between them is B so PI . P, = p2 cosO). Thus 

(PI - PI)2 = -(PI - p))2 = -Pt -pi + 2PI . Pl 

= _2pl(1 - cosO) = -4pl sin
2
W/2) 

(P1 ' P,) = (E/e)
2 

- PI ' P, =pl+m
2
c
2 

_ pi cosO = m
2
2 + 2plsin

2
(0/2) 

(PI . Pl)(Pl . P4) = (PI . P4)(P2 ' Pl) = {ME)2 

(F2 .  P4) = (Me)2 

Putting this into Equation 7.129, we have 

(7.130) 

and therefore (recalling thatg.. = 
J41Ta) 

(7.131) 

This is the Mott formula. [t gives, to good approximation, the differential cross 
section for electron-proton scattering. If the incident electron is nonrelativis· 
tic, so p2 « (me)l, Equation 7.Bl reduces to the Rutherford formula (compare 
Example 6.4): 

(7.132) 

... 
What about decays? Actually, there is no such thing, in pure QED, for if a single 

fermion goes in, that same fermion must eventually come out; a fennion line 
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Fig. 7.9 Two ,ontributions to pair annihilation. 

cannot simply terminate within a diagram, nor is there any mechanism in QED for 
converting one fermion (say, a muon) into another (such as an electron). To be sure, 
there exist electromagnetic decays of wmpositt particles, for example, 11"0 --+ )' + y; 
but the electromagnetic component in this process is nothing but quark-antiquark 
pair annihilation, q + q --+ )' + y. It is really a scatttring event, in which the two 
colliding particles happen to be in a bound state. 

The cleanest example of such a process is the decay of positronium: e+ + e- --+ 
y + y, which we consider in the following example. We'll do the analysis in the 
positronium rest frame (which is to say, in the CM frame of the electron-positron 
pair). The electron and positron are moving rather slowly - indeed, for purposes 
of calculating the amplitude we shall assume they are at rest. On the other hand, 
this is one of those cases in which we cannot average over initial spins, because the 
composite system is either in the singlet configuration - spins antiparallel - or in 
the triplet configuration - spins parallel - and the formula for the cross section 
(and hence the lifetime) is quite different in the two cases.' 

Example 1.8 PairAnnihiialiant Computetheamplitude, .A.fore+ + e- -+ y + y, 
assuming that the electron and positron are at rest, and in the singlet spin 
configuration. 

Solution: Two diagrams contribute (Figure 7.9). The amplitudes are (for simplicity 
I'll suppress the complex conjugate signs on the �'s): 

...Hi = .: 
2 2 ii(2)/.ljIl -,1 + mc)/lu(l) (7.133) (p, pJ)2 m ,  

.A2 = .: 
(p, P.)Z z z V(2)/lljll -,. + mc)/.u(l) 

m ,  (7.134) 

• As a Jt»t!er of faCl. y<>u ca" do tllis p,articu· 
lar problem by Casimir's trid::, btnu.., of a 
rather speci.11 drcumstano:e: the singlet sta� 
can only decay to an Mil numoo of plio· 
\(Ins (predominantly 11>'0) and the triplet to 
an odd number (usually IIuu). So in caicul,u. 
ing the matrix dement for .... + e- .... y + y. 
we are ooaomalicaJl)' ..,leeting out the singlet 
configuration �n if the triplet was included 

in the sum over spins. S� Problem 7.J,Q . 
t Worning: This is not an easy calcuJ..tion. 

though �ry step is reasonably straightfor. 
ward. You may prefer to skim it (or skip it 
altogether). The final rf;Sult will be usW onc� 
Or twice later on, but it is not necessary \(I 
Jt»ster the de�ils at this stag�. (Howe�r, ! 
do think it is an illuminating application of 
the Feynman rules.) 
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and they add 

(7.135) 

With the initial particles at rest, the photons come out back-to-back, and we may as 
well choose the z axis to coincide with the direction of the first photon; then 

PI = me(I,O,O,O), 

p) = me(I,O,O, I}, 

and hence 

P2 = me(l,O,O,O}, 

p. = me(1,0,0,-I) 

The amplitudes simplify somewhat if we exploit Rule 5' from Section 7.7: 

(7.136) 

(7.137) 

But fJ has only spatial components (in the Coulomb gauge), whereas PI is purely 
temporal, so p! . €J = 0, and hence 

(7.138) 

Similarly 

but (pJ . fJ) = ° by virtue of the Lorenn condition (Equation 7.91), so 

(7.139) 

Therefore 

But IJ'I - me)u(l) = ° (Equation 7.33), so 

(7.140) 

By the same token 

(7.141) 
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Putting all this together, we find 

Now 

so the expression in square brackets (Equation 7.142) can be written as 

But 

and therefore 

• . ,,) ( 0 • . • ,) 
o -if · f:. 0 

In Chapter 4 (problem 4.20) we encountered the useful theorem 

(if · a)(if -b) = a · b + io" · (a x b) 

It follows that 

(which we could also have obtained from Rule 5'). and 

where 1: '" (� �). as before. Accordingly 

(7.142) 

(7.143) 

(7.144) 

(7.145) 

(7.146) 

(7.147) 

(7.148) 

(7.149) 

So far I have said nothing about the spins of the electron and positron. Remember 
that we are interested in the sil1glet state: 

It! - HI/'" 
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Symbolically 

Alingl .. == (AtH - Atd/../2 (7.150) 

AH is obtained from Equation 7.149 with 'spin up' for the ele<tron (u(l) in 
Equation 7.46) 

and 'spin down' for the positron (\J(2) in Equation 7.47) 

v(2) = J2ifiC(0 0 1 0) 

Using these spinors, we find 

ii(2)yOu(1) == 0 

ii(2)I:yJu(l) == -2rmi 

So 

Meanwhile, for A. i we have 

from which it follows that 

(7.151) 

(7.152) 

(7.153) 

(7.154) 

(7.155) 

(7.156) 

(7.157) 

Thus the amplitude for annihilation of a stationary e+e- pair into two photons, 
which emerge in the dire<tions ±z, is 

..k"';ngl« == -2../2 ii(�J x f:4h (7.158) 

(I note in passing that since Ai. = -..k". t, the triplet configuration (t J. + J. t)/../2 
gives zero, confirming our earlier observation that the two.photon decay is forbidden 
in that case.) 

Finally, we must put in the appropriate photon polarization ve<tors. Recall that 
for 'spin up' (m, = +1) we have (see footnote to Equation 7.94) 

f:+ == -(l/../2)(U,O) (7.159) 

whereas for 'spin down' (m, == -I) 

�_ = (1/../2)(I,-i,O) (7.160) 
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If the photon is traveling in the +z direction, these correspond to right and 
left.{:ircular polarization, respectively. Since the z component of the total angular 
momentum must be zero, the photon spins must be oppositely aligned: t! or ! t. 
In the first case we have 

In the second case 3 and 4 are interchanged: 

f] x f� ",, -i� 

(7.161) 

(7.162) 

Evidently we need the antisymmetric combination, (t.j. - H)/../2. which should 
come as no surprise: this corresponds to a total spin of zero, just as it did when we 
combined two particles of spin 1. Again, the amplitude is (At'l - Atl f)/ h, only 
Ihis time the arrows refer 10 photon polarization. Finally, then: 

(7.163) 

(I have restored the complex conjugation of the polarization vectors, suppressed 
until now; this simply reverses the signs in Equation 7.161 and 7.162.) ruJl 

That was a lot of work, for a modest.looking answer.' What can we do with it) 
In the first place, we can calculate the lotal cross section for electron-positron 
annihilation. In the eM frame, the differential cross section is (Equation 6.47) 

Here 

and, since the collision is nonrelativistic 

lpd "" mv 

(7.164) 

(7.165) 

(7.166) 

where v is the incident electron (or positron) speed.t Putting all this together, we 
find 

(7.167) 

• Once you get used to it the eY�IUiltion of Feynman diagrams b«omes a ttdious and m�hankaJ 
process, ar>d. there aist a number of computer prognms that will do the hard W(lrk for you. In 
p;ortkular. Mathem.tica and Maple both support useful p;ockages [5). 

t We used � = 0 in calculating At. but obviously we cannot do so h�. Is there an inconsistency 
in this� Not really. Think of it tllliI way: .A (and also £" El.lp,I, and Ipd) could be exp;onded in 
powers of vlt. What we have done is to ca1cu!a� the leading term in each exp;onsion. 
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Since there is no angular dependence, the total cross section is 4.rr times this (6]: 

a � " ('")' 
" m 

(7.168) 

Does it make sense that the cross section is inversely proportional to the incoming 
velocity� Yes: the more slowly the electron and positron approach one another, 
the more time there is for them to interact, and the greater is the likelihood of 
annihilation. 

Finally, we can calculate the lifetime of positronium, in the singlet state. This is 
clearly related to the cross section for pair annihilation (Equation 7.168), but what 
is the precise connection? Well, going back to Equation 6.13, 

do- 1 dN 
dn = Z dn 

we see that the total number of scattering events per unit time is equal to the 
luminosity times the total cross section: 

N = .sea (7.169) 

If p is the number of incident particles per unit volume, and if they are traveling at 
speed v, then the luminosity (Figure 7.10) is 

Z : pv (7.170) 

For a single 'atom', the electron density is 11/'(0)12, and N represents the probability 
of a disintegration, per unit time - which is to say, the de<:ay rate. Thus 

Now, in the ground state 

I (a�)' 11/'(0)12 = -; Zit 

(Problem 5.23), so the lifetime of positronium is 
1 21i iO r = - = -- = 1.25 x lO- s 
r Cfsmc2 

which is the result I quoted back in Chapter 5 (Equation 5.33) . 

A 
. . . . .. . . . 

. . .  " . .  . . . .  . . . . . . .  . . " . . .. . . : . 
• 

. " 
Fig. 7.10 The number of particles in the cylinder is pAvdl. 
so the luminositjl (number per unit �rea Pf'r unit time) is pll. 

(7.171) 

(7.I72) 

(7.173) 
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7.' 
Renormalization 

In Section 7.6 we considered 'electron-muon' scattering, described in lowest order 
by the diagram 

and by the corresponding amplitude 

(7.174) 

with 

(7.17S) 

There are a number of fourth·order corrections, of which perhaps the most 
interesting is 'vacuum polarization': 

Here the virtual photon momentarily splits into an electron-positron pair, leading 
(as we saw qualitatively in Chapter 2) to a modification in the effe<tive charge of 
the electron. My purpose now is to indicate how this works out quantitatively. 

The amplitude for this diagram is (Problem 7.42) 

(7.176) 
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Its inclusion amounts to a modification of the photon propagator: 

(7.177) 

where (comparing Equations 7.174 and 7.176): 

(7.178) 

Unfortunately, this integral is divergent. Naively, it should go like 

J Ikl} dlkl :�:: = f Ikl dk = Ikll, as Ikl --+ 00 (7.179) 

{that is, it should be 'quadratically divergent'}. In actual fact, because of cancellations 
in the algebra, it only goes like In Ikl (it is 'logarithmically divergent'). But never 
mind - either way, it blows up. We encountered a similar problem in Chapter 6; it 
seems to be characteris tic of closed-loop diagrams in the Feynman calculus. Once 
again, the strategy will be to absorb the infinities into 'renormalized' masses and 
coupling constants. 

The integra! in Equation 7.178 carries two space-time indices; once we have 
integrated over k, the only four-vector left is if", so 11'" must have the generic form 
g".( ) + ql'q.{ ), where the parentheses contain some functions of ql. We WIite it 
thus [71: 

(7.180) 

The second term contributes nothing to .4(, since the ql' contracts with yl' in 
Equation 7.176, giving 

while, from Equations 7.95 and 7.96, 

and hence 

(7.181) 

So we can forget about the second term in Equation 7.180 As for the first term, 
appropriate massaging of the integral (7.174) reduces it to the form (Problem 
7.43) 

I(q2) = JL 1f.<X> dz - 6!.1 
z(I - z) In [1 - LZ(I - Z)] "'I (7.182) 

12rr1 .. 1 Z 0 mlcl 
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The first integral cleanly isolates the logarithmic divergence. To handle it, we 
temporarily impose a cutoff M (not to be confused with the mass of the muon), 
which we wil l send to infinity at the end of the calculation: 

The second integral 

f(,,) = 6 [ z(1 - z) In{l + 1'<:(1 - zlldz 

= _ � + � + 2(" - 2)jX + 4 tanh-!j " 
3 "  " "  x + 4  

(7.183) 

(7.184) 

is cumbersome but perfectly finite (Figure 7.11); the limiting expressions for large 
and small x are 

Thu, 

f(x) ;;: {l�� (x « I)) 
(x» 1) 

l(q'l � 1�' H�:) -f(;;,�)l 

(7.185) 

(7.186) 

Notice that ql is negative, here: if the incident electron's three-momentum in the 
eM is p, and the scattering angle is 9, then (Problem 7.44) 

..2 2 . 1 B 'l = -4p sm -
2 

(7.187) 

Thus _qllmlcl _ !.Illcl, and the limiting cases in Equation 7.185 correspond to 
nonrelativistic and ultrarelativistic scattering, respectively. 

fix) / 
/ 

, x 
I 

Fig. 7.11 Graph off(K) (Equ�tion 7.184). The solid line i� 
the numeric�1 rt�utt; tht d�shed lint below it i� InK (which 
approximates [(x) at large x); the straight line above it is 
tIS (which approximates f(t) at small xl. 
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The amplitude for electron-muon scattering, including vacuum polarization, is 

therefore 

J( = -g}[ii{Pl)Y�U(Pl)i� { I - 1�2 [In (�:) -f (�[2)]} 
x [ii(P.)y·u!P2)] (7.188) 

Now comes the critical step, in which we 'sop up' the infinity (contained for the 
moment in the cutoff M) by introducing the 'renormalized' coupling constant 

\ - - In -g) (M' ) 
121T2 m2 

Rewriting Equation 7.188 in terms of gR, we have 

(7.189) 

(7.190) 

(Equation 7.188 is only valid to order s: anyway, so it doesn't matter whether we 
use g. or gR inside the curly brackets.) 

There are two important things to notice about this result: 
1. The infinities are gone. There is no M in Equation 7.190. All 

reference to the cutoff has been absorbed into the coupling 
constant. To be sure, everything is now written in terms of 
gR, instead of g.. But that's all to the good: gR, not g., is what 
we actually measure in the laboratory (in Heaviside-Lorentz 
units it is the charge of the electron - or muon - and we 
determine it experimentally as the coefficient of attraction or 
repulsion between two such particles). If, in our theoretical 
analysis, we look only at 'tree level' (lowest-order) diagrams, 
we are led to suppose that the physical charge is the same as 
the 'bare· coupling constant, g.. But as soon as we include 
higher-{)rder effects we find that it is really gR, not g., that 
corresponds to the measured electric charge. Does this mean 
that our earlier results are all wrong? No. What it means is 
that by naively interpreting g. as the physical electric charge 
we were unwittingly taking into account the divergent part of 
the higher-order diagrams. 

2. There remains the finite correction term, and here the 
important thing to notice is that it deFl1ds on q2. We can 
absorb this, too, into the coupling constant, but the 'constant' 
is now a function of q2; we call it a 'running' coupling 
constant: 

(7.191) 
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or, in terms of the fine structure 'constant' (g. = .J4Jra): 

(7.191) 

The effective charge of the electron (and the muon), then, 
depends on the momentum transferred in the collision. 
Higher momentum transfer means closer approach, so 
another way of saying it is that the effective charge of each 
particle depends on how far apart they are. This is a 
consequence of vacuum polarization. which 'screens' each 
charge. We now have an explicit formula for what was, in 
Chapter 2, a purely qualitative description. How come 
Millikan and Rutherford, or even Coulomb, never noticed 
this effect? If the electron's charge is not a constant. why 
doesn't this foul up everything from electronics to chemistry? 
The answer is that the variation is extremely slight, in 
nonrelativistic situations. Even in a head-on collision at foe, 
the correction term in Equation 7.192 is only about 6 x 10-6 
(Problem 7.45). For most purposes, therefore, a(O) "'" 1:7 wil l 
do just fine. Nevertheless, the second term in Equation 7.192 
makes a detectable contribution to the lamb shift (8). and it 
has been measured directly in inelastic (+ e- scattering (9). 
Moreover, we shall encounter the same problem in quantum 
chromodynamics, where (because of quark confinement) the 
short·distance, relativistic regime is the case of interest. 

I have concentrated on one particular fourth-order process (vacuum polarization), 
but there are, of course. several others. There are the 'ladder.diagrams': 

These are finite and present no particular problems. But there are also three 
divergent graphs: 

x x x  
(and of course three more in which the extra virtual photon couples to the 
muon). The first two renormalize the electron's mass; the third modifies its 
magnetic moment. In addition, all three, considered separately, contribute to the 
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renormalization of the electron's charge. Luckily, the latter contributions cancel 
one another, so Equation 7.189 remains valid. {I say 'luckily', for these corrections 
depend on the mass of the particle to which the virtual photon line attaches, and if 
they did not cancel we would have a different renormalization for the muon than for 
the electron. The Ward identity (the official name for this cancellation) guarantees 
that renormalization preserves the equality of electric charges, irrespective of the 
mass of the carrier).' And then. there are even higher·order diagrams, such as 

, , . . .  

These introduce further tenns in Equation 7.192, of order (1'2, (l'l, and so on, but I 
won't pursue the matter here; the essential ideas are all on the table. 
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Problems 

7.1 Show that a4>/ax" is a covariont four·vector (ot> is a salar function of ", y, z, and I). 
[Hint: First determine (from Equation 3.8) how conriant four-vectors transform; then 
use (}4>/ax'" = (a4>I(}"")(}""I(}x"

'
) to find out how a4>I(}x" trmsforms.) 

7.2 Show that Equation 7.17 satisfies Equation 7.a 
7.1 Derive Equation 7.45, using Equations 7.43, 7.46, and 7.47 
7.4 Show tha.t Il111 and ul�1 (Equation 7.46) ne orthogonal, in the sense that uilit ull) = O. 

�,show that VIL) and ull) are orthogonal. Are "II) and u11) orthogonal? 
7.S Show that for ulll and ull) (Equation 7.46) the lower components (ua) are smaller 

than the upper ones (uA), in the nonrelativistic limit. by a factor \lj�. [This simplifies 
matters, when we are doing nomelativistic approximations; we think of u" as the 'big' 
components and UI as the 1ittJe' components. (For Vii) and ulll the roles are reversed.) 
In the relativistic limit, by contrast, u" and us are compa!1lble in size.) 

7.6 If the zaxis points along the direction of motion,showtha.tll(1) (Equation 7.46) reduces to 

ull) = 

and construct II(/), u(l), and v(/). Confirm that they aTe all eigenspinors of S" and find 
the eigenvalues. 

7.7 ConslTuct the normalized spinors ul+) and "H representing an electron of mom en rum 
p with helicil:)' ± 1. That is, find the u's that satisfy Equation 7.49 and are eigenspinors 
of the hdicil:)' operator lP' I: with eigenvalues ± 1. [SoIUlion : UI±I = A (�U) ' 

(E + "'" I 

where u = (PO ± [PI) and A2 = ""IE",,+:;,:=�'�I" l 
Px + iPy 2[p [c( l p l ± p�) 

7.S The puryose oflhis problem is 10 dem<)nllralt lhat particles desaibaI by lhe Dirac tqlllltion 
carry 'intrin,;e' angular momenlum (S) in a<!dition to their orbital angular momenlum (L), 
",,;Iher of whieh is separatdy umstlVtd, although lheir Slim is. II should be attempted only if 
)'Ou are reasonably familiar with qlllllllllm muhWlies. 

(al Construct the Hamiltonian, H, for the Dirac equation. (Hint: Solve Equation 7.19 for 
pOe. Solutio/!: H '" eyo(y . p + me), where p _ (riji)V is the momentum ope!1ltor.J 

(hI Find the commutator of H with the orbitll angular momenrum L .  r x p. (Solulio/!: 
(H, L) = -i/iL-yo(y x p)J Since (H, L) is not zero, L by itseJfis notconserved. Evidently 
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there is some olher form of �ngular momentum lurking here. Introduce the 'spin 
angubr momentum', S. defined by Equation 751 

(e) Find the commutator of H with the spin angular momentum, S .. (/i12)!:. [Solutio .. : 
[H,S[ = ili<:yo(y x pJl [t follows tlut the Iota! angular momentum, , = L+ S, is 
conseIVed. 

[d)Show that every bispinor is an eigenstate OfSl. with eigetlv;r.lue 1I1s(s+ I). and find 
So What, then, is the spin of a particle described by the Dintc equation, 

7.9 The charge conjugation operator (q takes a Dirac spinor 'It into the 'charge<onjugate' 
spinor 'II,. given by 

where y1 is the third Dirac 8"mma matrix. ISee Hal1.en and Martin 17). Sect 5.4.) Find 
the charge<onjugates of ull) and "ll), and compare them with vll) and vl1l. 

7.10 In going from Equation 7.18 10 Equation 7.19. we (arbi/r.l.rily) chose to worlc with the 
factor conta

i
ning the minus sign. How would Section 7.2 be changed if we were to 

replace Equation 7.19 by y"p" + me = O? 
7,11 Confirm the transformation role (Equation 7.52, with 753 and 7.54) for spinors. [Hittl: 

we want it to carry solutions to the Dirac equation in the original fntme to solutions in 
the primed frame: 

il\y"a,,'It -mcy, = o  _ iIIy"a�y,' - mey,' = O  

where y,' .. Sy, and 

[t follows that 

a ax" a ax" 
a' - -- - --- - --, " - ax!" - ax!" ax" - ax'" • 

The (inverse) Lorentz transformations tell us ax"lax"'. T:.>ke it from there.] 
7.12 Derive the transformation role for parity, Equation 7.61, using the method in Prob­

lem 7,11. 
7.Il [>1 Staning with Equation 7.53. calculate st $, and confino Equation 7.57. 

[hI Show tlut Sf yO$ = yO. 

7.14 Show that ty�1ft is invariant under the transfonoation 7.52. 
7.IS Show tlut the adjoint spinors iil,ll �nd 1)11.1:) satisfy the equations 

u(y"p" - me) = 0, �(y"p" + me) = 0 

IHim: Talce the transpose conju8"te of Equ�tions 7.49 and 7.50; multiply from the right 
by yO. ;md show that (y")t yO = yOy".) 

7.16 Show that the normaliution condition (Equation 7.43), expressed in tenos of the adjoint 
spinors, becomes 

uu = -�v = 2me 

7.17 Show that ty" 1ft is a four-vector, by confinoing that its components obey the Lorentz 
transfonoations (Equation 3.g). Check that it transfonns as a (polar) vector under parity 
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(that is, the 'time' component is invariant, whereas the 'spatial' components switch 
sign). 

7.\8 Show that the spinor representing an electron at rest (Equation 7.30) is an eigenstate of 
the parity operator. P. What is its intrinsic parity� How about the positron? What if you 
changed the sign convention in Equation 7.61 � Notice that whereas the al>soIut.: parity 
of a spin0! p.uticle is in a sense arbitrary. the fact that patticles and antiparticles carry 
opposiu parity is nol ubitnry. 

7.19 lat Express y�y' as a linear combination of I, 1'1, y�. y� yS, and o�". 
(btConstruct the matrices a lI,oll, and all (Equation 7.69), and relate them to 1:1, 1:1, 

and 1:] (Equation 7.SI). 
7.20 la) Derive Equations 7.70 (i and iv) from Equation 7.73. 

(bl Prove Equation 7.74. from Equation 7.73. 
7.21 Show that the continuity equation (Equation 7.74) enforces conservation of charge. pf 

you don't see how to do this, look in any electrodynamics textbook.) 
7.22 Show that we are ;r.Iways free to pick AO = O. in free space. That is. given a potential A� 

which does nol satisfy this constraint, find a gauge function A, consistent with Equation 
7.8S. such that AO (in Equation 7.81) is zero. 

7.23 Suppose we apply a gauge transfonnation (Equation 7.81) to the plane·wave potenti;r.l 
(Equation 7.89). using as the gauge function 

where I( is an arbitrary constant and p is the photon four·momentum. 

lat Show that this A »tisfies Equation 7.8S. 
fb) Show that this gauge transformation has the effect of modifying l� . l� ... l� + KP". 

(In particular, if we choose K = -lO IrfJ we obtain the Coulomb gauge polarization 
vector, Equation 7.92) Uris observation leads to a beautifully simple test for the 
gauge invariance of QED results: the answer must be unchanged if you replace l� by 
f� + KP". 

7.204 Using u(l), "Il) (Equation 7.46) and ViI), vll) (Equation 7.-47). prove the completeness 
relations for spinors (7.99). [Not.:; UII is the 4 x 4 matrix defined by (uil)� • Uillj.) 

7.25 Using til> and f(l) (Equation 7.93), confirm the complete�ss relation for photons 
(Equation 7.10S). 

7,2(; Ev;r.luate the amplitude for electron-muon scattering (Equation 7.1(6) in the eM 
system, assuming the t and /J. approach one another along the z axis. repel. and return 
back ;r.Iong the z axis. Assume the initial and final particles aU have helidty +1. (AMni'I!r: 
..A" = -lgJ) 

7.27 Derive the amplitudes (Equations 7.133 and 7.134) for pair annihiliotion, e+ + e- ... 
y + y .  

7.28 Work out the an;r.log to Casimir's trick (Equation 7.12S) for aMlip<lrliae! 

L [ii(a)rlv(b))[V(a)r2v[b)]" 
.n .pin. 

and for the ·mixed· cases 

L [ii(a)r\v(b))[ii(a)r2V(b))' and L [ii(a)rlu(b))[ii(a)r2u(b))* 
.u .pin. an spin< 

7.2' (a) Show that yOy-1"yO = y", for v = 0, I, 2, and 3. 
(b) Ifr is any product of y matrices (r = y.YJ. . . .  I'd show that f (Equation 7.119) is the 

same product in reverse order, f = y • . .  YJ.y •. 
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7.lO Use Cuimir's trick to obtain �n �xpression analogous to Equation 7.\16 for Compton 
suttering. Note that th�r� ar� four tenns her�: 

7.31 (at Prov� trace theorems 1, 2, and 3. in Section 7.7. 
[hI Prov� Equation 4. 
(el Using the anticommut;otion relation S, prove 5'. 

7.n (al Use th� anticommut;otion relation 5 to prove the contraction theorems 6. 7. 8, and 9. 
(bt From 7, prove 7'; from 8, prove 8'; from 9, prove 9'. 

7.B (at Confinn the trace theorems 10. 11. 12, and \3. 
M From 12, prove 12'; from \3, prove 13'. 

7.3� (aJ Prove theorems 14, 15, and 16. 
(bJFrom 15. prove IS'; from 16, prove 16'. 

7.35 (aJ Show that (� .... �� ... _ -6 6� (summation over !J.. v,;\. implied). 
[bJ Show that �� .... ��"'t = -2(8� 6� -�; �n. 
leI Find th� analogous fonnula for �� .... f�H" 
(dJ Find the analogous formula for f�·I." f.." . 
[Here �� is the Kronecker delta: 1 if!J. = v, 0 otherwise. It an also be written in tenns 
of the mixed (co/contravariant) metric tensor: 8� = g", = g,�.J 

7.36 Evaluate the following traces: 
('JTr[y�y' (1 - yl) y' (I + yl) Yl.J 

(b) Tr [(I + me) (I + Me) (j + me) (I + Me)], where P is the four·momenrum of a (real) 
particle ofmass m and qis the four·momenrum of a (real) particle ofma!s M. Express 
your �nswer in terms of m, M. c. and (P' q). 

7.37 Starting with Equation 7.107, determine the spin·averaged amplirude. (analogous to 
Equation 7.129) for eI�stk electron-electron scattering. Assume we're working �t high 
�nergies, so that the mass ofth� electron an be ignored (i.e., set m .. 0). [Hinl: You 
an read (lAIII) and (IAl(l) from Equation 7.119 For (AlAi) use the S<lme strategy 
as Casimir's trick to get 

Then exploit the contraction theorems to evaluate the trace. Notice that for massless 
pilrticles til<: conservation of momentum (PI + PI .. PI + po) implies that PI . P2 = 
PJ · P,.Pl ·PI-PI p •. andpl P, = Pl · PJ.] 

7.38 (.) Starting with Equation 7.119, find the spin·averaged �mplitude for electron-muon 
scattering in the eM frame, in the high·energy regime (m, M ..... 0). 

(b) Find the CM differential cross section for eleo::tron-muon sanering at high energy. 
Let E be the ele.::tron energy and 0 the sc.anering angle. [A"'�" du = (lie)' £ ( ' + c"" I')] 

dQ SIT 2£2 sln� I} /2 

7.39 (.) Using the result of Problem 7.37, determint the spin...averaged amplitude for 
eleo::tron-electron sattering in the eM in the high·energy regime 1m ..... 0). 
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Fig. 7.11 Oeuy of the photon. y ..... ly - � prOC�$ forbid· 
den by Furry's theorem (Problem 7.46). 

(bl Find the eM differenti�1 cross section for electron -electron suttering �t high energy. 

Compare your �nswer to Problem 7.38 (� footnote to Ex�mple 7.3). 
1.40 Starting with Equation 7.1S8. calcul�te 1.4'12• �nd use Equation 7.105 losum over photon 

polarizations. Check that the �nswer is consistent with Equation 7.1&3, and elIpiain why 
this method gives the correct answer (nole th�t _ are now summing over aU photon 
polarizations, whereas injaa the photons must be in the singlet configuration). 

7.41 Starting with Equation 7.149, akul�te (I.A'12) for .+ + e- ..... y + y, �nd use it to get 
the differential cross section for pair annihilation. Compare Equation 7.1&7 (� footnote 
before Example 7.8). 

7.42 o,.,rive Equation 7.176 You'll need one last Feynman rule; for a closed fermion loop 
include a factor -1 and take the tnce. 

7.43 o,.,rive Equation 7.182 1Hinl: use the integral theorems in Appendix E of Sakurai 161.1 
7.44 Derive Equation 7.187. 
7.45 Evaluate the correction tenn in Equation 7.192 for the ase of � he;od·on collision in the 

CM; �ssume the electron is traveling at �,. In the experiment 19J, the beam energies 
were 57.8 GeV; what should the measured fine structure 'constant' have been? Look up 
the �ctual result, �nd compare it with your prediction. 

7."Ii Why an't the photon 'decay'. by the process y ..... y + Y (Figure 7.12)? Cakulate the 
amplitude for this diagram. (This is an example of Furry·s Ihwn:m, which says that 
any diagram containing a closd electron loop with �n odd number of vertices has an 
amplitude ofzero.J 

7.47 Surting with your answer to Problem 7.30, derive the Klein-Nishi"" fonnulo for 
Compton scattering (in the rest frame of the target): 

"" '0' (W')' [W' w ,  1 - . - - - + - - sm 9  do m1 «! «! «!' 

where «! and «!' are the frequeocies of the incident and scattered photons (Problem 
3.27). 

?robl.m, 48-50 pertQin tc Ih. following model: /mugine fhal th. pMtcn, inslmd ift>eing " masslffl 
vector (spin I) partitk. WU<ll M1IISSiVtS(;allir {spin OJ. SpuijimUy, SlIppost. 1M QEDvtrtexfiu:tcrW<'rt 



(where 1 is !he 4 x 4 unil main>:), and Ike 'photon' propagalor w..r< 

-i 
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There is rnl phOlOn polarwnion vtClOr now. and kenu rnl faclor for alema/ pkolOn lines, Apar1 from 
/hal, Ike Ftynman rulesfor QED ar< unckangw. 

7.48 Assuming it is he..vy enough. this 'photon' c�n deay. 
(.f e�lculat� th� dec�y rate for r __ e+ + e-. 
[h) If my = 300 M�V leI, find the lifetime of the 'photon', in seconds. 

7,49 (of Find the amplitude, .A, for electron-muon scattering, in this th�ory. 
(b) ealculat� the spin-averaged quantity, (1.,1111). 
(el Det�nnin� th� differenti.;ol cross section for electron-muon sc�ttering in th� eM 

frame. Assum� th� energy is high �nough so that the electron and muon masses 
can be neglected: m,. m� ...... O. Express your answer in tenns of the incident �Iectron 
energy. E and the sutt�ring angle. B. 

[d) From your result in {cf, calcub.t� the total cross section. assuming the 'photon' is 
extrem�ly heavy, myel » E, 

(e) Going back to (bf. consider now the case of /o ..... �nergy scattering from an �xtremely 
heavy 'muon', Ip.I/' « .... « my « m�. Find th� difT�rential cross section in the lab 
frame (muon at restf, assuming the muon does not recoil appreciably. eompar� th� 
Rutherford fonnub (Exampl� 7.7), and c�lculate th� total cross section. [Actually, if 
you set "i- -+ 0 and th�n take Ipl « I'I'IC, you get prt:Cisdy the Rutherford formula.) 

7.5(1 (.) Find the amplitude . •  4, for pair annihilation (t+ + e- -+ r + rl, in this theory. 
]b) Det�nnin� HAllf, assuming the en�rgy is high enough that we can ignore both the 

electron and the 'photon' mass (m,. my __ 0). 
[e) Evaluat� your result, in (b). in th� CM syst�m. Expr�s your answer in tenns of the 

incident electron energy. E. and the scattering angle. B. 
(df Find the difTerenttil cross section for pair annihilation, in the CM system, still 

assuming m, = my = O. Is the total cross section finite? 
7S! Spin'f particles that are electrically neutr.,] could conceivably be their own antiparticles 

(if so. they are called "Major-ma" fermions - in the Standard Modd the only possible 
candidat� art tho! nNtrinos) 
(�f According to Problem 7,9. the charge conjugate spinor is >JI, '" irl>JI' Evidently, if 

a particle is the s�me as its antip�rticl�, then >JI = t,. Show that this condition is 
Lorenl2 invariant (if true in one inertial frame, it is true in any inertial fnmef. (Hinl: 
Use Equations 7.52 and 7.53.J 

(bf Show that if t = t,. the "lower" two elements of t are related to the "upper" two by 
ts = -ia,oi'A' For Majorana particles, then, _ only need a two-<:omponent spinor. 
X .. tAo This makes sense: A Dirac spinor takes four elements to represent the two 
spin states (each) of the particl� �nd th� antiparticle, but in this case tht latter two 
are redundant. Show that the Dine equation for a Majonna particle can be written 
in l<omponent fonn as 

ill [ilox + i(u . V)u,X') - mcx = 0 

Check that the equation you get for the "lower" elements is consistent with this. 
(e) Construct spinors X representing plane wave Majorana states. (Hint: Form the 

general linear combination t = alt(l) + alt(l) + �Jt(J) + a.t(·) (Equations 7.46 
and 7.47f. impose the constraint in part (h), �nd solve for a) and a. (in terms of a, 
and all; then pkk (sayf �l = 1, al = 0 for X(I). and �l '" O. al '" 1 for X121.J 
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Electrodynamics and Chromodynamics of Quarks 

Because flu dtctromagn.etic inttractions of electrons art well undersl<!od, they scrvt: 
as usejiJ probes of the structure of hadron!. Evu}'thing I said in Chap�r 7 about 
leptons appJ� just as weU to quarks (using, of course, the appropriate charge: jt or 
-it). However, flu txptrimtntal situation is complicated by tht fact that tlK quarks 
thtm.sdve5 rn:ver su the light of day, and we art obliged to inftr from the observed 
behavior of mesons and baryons what their ronstiJuents art up to. In this chapUT we 
shall consida" two important txampks: the production ofhadrons in tiutron-positron 
collisions (Sulion 8.1), and elastic dutTon-prown scattering (Stdion 8.2). We then 
turn to chromod),namics: the Feynman rults (Section 8.3 J, color factors (Suticn 8.4), 
pair annihilation in QeD (SWion 8.5), and asymptotic frurkm (Sectiol1 8.6), 

8.1 
Hadron Production in e+e- Collisions 

When electrons and positrons collide, they can (of course) scatter elastically, e+ + 
e- __ e+ + e- (Bhabha scattering), or they could produce two photons, e+ + e- __ 
y + y (pair annihilation), or - if the energy is sufficiently high - they could make 
a pair of muons (or taus), e+ + e- __ p.,+ + p.,-. But they can also produce a pair 
of quarks: e+ + e- __ q + q, and it is this process that I want to consider next. The 
lowest-order QED diagram is 

, Q 

, 

, q 

For a brief moment the quarks fly apart as free particles, but when they reach a 
separation distance of around lO-IS m (the diameter of a hadron), their (strong) in­
teraction is so great that new quark-anriquark pairs are produced - this time mainly 
from gluons (Figure S.l). These quarks and antiquarks (litera!ly dozens of 

Inlroduction 10 EltmtnUlry Parlidts. Second Edilio". David Griffiths 
Copyright C 2008 WllEY·VCH Verlag GmbH & Co. KG�A, Weillheim 
ISBN: <)78-J-S27-40601·2 
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q 

Fig. 8.1 H�dronil�tion �nd jet form�tion. 

them, in a typical modern experiment) join together in myriad combinations to 
make the mesons and baryons that are actually recorded in the detector - a process 
known as 'hadronization'. What we observe in the laboratory, then, is �+ + �- -+ 
hadrons. 

In all the debris there is often an unmistakable footprint left behind by the original 
quark-antiquark pair: the hadrons emerge in two back·to·back 'jets', one along the 
direction of the primordial quark: the other along the direction of the antiquark 
(Figure 8.2). Sometimes one sees a three-jet event (Figure 8.3), indicating that a 
gluon carrying a substantial fraction of the total energy was emitted in conjunction 
with the original qq production: 

• 

Fig. 8.2 A typiul two·jet event. (SOIJrct: J. 
Dorfan, SLAC) 

q 

Fig. 8.1 A three·jet event. (SoIJ'ct: J. Dorfan, 
SLAC) 

• Noti<� that the quark lsay) has to 'ruel! had:· and pick up an antiqlark from the other brancb. 
to make eacb jet colorien. but as lon8 ;;oS tbe energy transferred is relatively small tbis does not 
disrupt the jet strucnue. 
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Indeed, the observation of three-jet events is generally regarded as our most direct 
evidence for the existence of gluons. 

Now, the first stage in all this (t+ + t- -+ Y ..... q + q) is ordinary QED; the 
calculation is exactly the same as for t+ + e- -+ p,+ + p,-: 

The amplitude is 

(S.I) 

where Q is the quark charge, in units of e (�, for u, e, and t; -� for d, s, and b). 
Exploiting Casimir's trick, we obtain 

(lAI2) "" � [(PI �
2)2 r Tr[Y!'!!,1 + me)Y"!!'2 - me)] 

xTr[y!'!!'4 - Me)y"!!,] + Me)) (S.2) 

where m is the mass of the electron and M is that of the quark (Problem SJ). 
Invoking the trace theorems of Chapter 7, we can reduce this to 

(IAll) = 8 [(PI �P2)2 r ((PI . pJ)!P2 . P4) + (PI P4)!P2 ' PJ) 

+(me)2(pJ . P4) + (Mc)2(p\ . PI) + 2(me)l(Mc)l] (S.3) 

or, in terms of the incident (CM) electron energy E and the angle (} between the 
incoming electron and the outgoing quark: 

(S.4) 

The differential scattering cross section is given by Equation 6.47; integrating over 
(} and 1/), we obtain the total cross section (Problem S.2): 

" = rrQ
)

' ('
E
�)' ' - IM<'/EI' [, " (Mc')'] [, " (�' )'] 

1 (mel/E)2 + 
2 E 

+ 
2 E 

(S.5) 
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Notice the threshold at E _ Me2; for energies less than this the square root is 
imaginary, reflecting the fact that the process is kinematically forbidden when there 
is not enough energy to create the qq pair. If we are substantially above threshold 
(E > Me2 » me2), Equation 8.5 simplifies considerably;' 

(8.6) 

As we crank up the beam energy, we encounter a succession of such thresholds -
first the muon and the light quarks, later (at about 1300 MeV) the charm quark, 
the tau (at 1777 MeV), the bottom quark (4500 MeV), and eventual1y the top quark. 
There is a beautiful way to display this structure: suppose we examine the ratio of 
the rate of hadron production to that for muon pairs: 

R == o"-,I'�':i'-
-=-

-_hc',,"oO�"?'1 
a(e+e ..... /l +/l ) 

(8.7) 

Since the numerator includes all the quark-antiquark events.t Equation 8.6 gives 

RIE) � 3L:Qf (8.8) 

in which the sum is over all quark flavors with thresholds below E. Notice the 3 in 
front - it records the fact that there are three colors for each flavor. We anticipate 
a 'staircase' graph for R(E), then, ascending one step at each new quark threshold, 
with the height of the rise determined by the quark's charge. At low energy where 
only the u, d, and s quarks contribute, we expect 

(8.9) 

Between the c threshold and the b threshold we should have 

(')' 10 R = 2+ 3 "3  = '3 = 3.33 

at the b threshold it goes up slightly, 

R = 1
3
0 + 3 (_�)2 = 131 = 3.67 

(8.10) 

(8.11) 

and the top quark should produce a jump to R .. 5. 
, This apprOximl!ion is actuaUy be!t�I 

!han il looks, beaoUM of a Juclcy aJ. 
gebr�i' 'lnc�il.tion: 6p,mdins th� 
radical. )1 (Me!; £)2[1 + t(Mel! Elll 

= 
1 - i(Mcl!E)' . . .  , so the �rrOI is of ord� 
{Me' IEI\ nOI (Mel/Ell. As for the dutton 
mass terms, th� are snu\ler 10 begin With. 
though there is a second-<lrder correction; 

hown�r, th� ... t�rm.< cancel e""ctly in the 
ca!culltion of R (Equation 8.7). 

t Th� r l�plon deca)'!; predominantly into 
hadrons. and this add. a bit to II. abo..., 1777 
M�V; thaI'. why the exptrimenul numbers are 
somewhat lbove the ' .. + d + I + c· lin� in 
Figu'" 8.� 



8.2 Elostic Electron-ProIO" Smllering 1 279 
The experimental results are shown in Figure 8.4. The agreement between theory 

and experiment is pretty good, especially at high energy. But you may well ask why it 
is not perfut. Apart from the approximation in going from Equation 8.5 to Equation 
8.6 (which artificially sharpens the corners at each threshold), and the neglect of 
the tau, we have made a fundamental oversimplification in asswning that we could 
treat the process as a sequence of two independent operations: �+�- -jo qq (QED) 
followed by qq -jo hadrons (QeD). In point of fact, the quarks produced in the 
first step are not free particles, obeying the Dirac equation; rather, they are virtual 
particles, on their way to a second interaction. This is particularly critical when the 
energy is right for formation of a bound state (¢ - $S, >Jt - cc, Y - bb); in the vicinity of 
such a 'resonance', the interaction of the two quarks can scarcely be ignored. Hence 
the sharp spikes in the graph, which typically occur just below each threshold. 
Finally, above about SO GeV, the graph starts to rise toward the z? peak, at 91 GeV. 

But, really, all this is quibbling anyway, for the importance of Figure (8.4) lies 
not in what the small discrepancies whisper, but in what the overall agreement 
shouts: the factor of 3 in Equation 8.8 clearly belongs there. Without it the theory 
would be wildly off (look at the dashed line in Figure 8.4) - and not just at 
isolated resonances, but across-the·board. That 3, remember, counts the number 
of colors. Here, then, is compelling experilmnlal evidence for the color hypothesis 
- a hypothesis that was introduced originally for esoteric theoretical reasons but is 
now an indispensable ingredient in the recipe for strong interactions. 

8.2 
Elawc Electron-Proton Scattering 

We now turn to electron-proton scattering, our best probe of the internal structure 
of the proton. If the proton were a simple point charge, obeying the Dirac equation, 
we could just copy our analysis of ele<tron-muon scattering, with M now the mass 
of the proton. The lowest-order Feynman diagram would be 

proton� ')7 
ql 

Electron 0: � 

and the (spin·averaged) amplitude would be (Equation 7.126) 

• 
(1.412) = � L�:"lr<InLI'. proron (8.12) 
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where q ::: PI - PJ and (Equation 7.128) 

(8.13) 

(and a similar expression for �:olOn' only with m _ M and 1, 3 _ 2, 4). We used 
these results in Example 7 .7 to derive the Mott and Rutherford scattering formulas. 

But the proton is not a simple point charge. and so, long before the advent 
of the quark model, a more flexible formalism was introduced for describing 
electron-proton scattering. We might represent the process, in lowest-order QED, 
by a diagram like this: 

where the blob serves to remind us that we don't really know how the (virtual) 
photon interacts with the proton. (However. we do assume, that the scattering is 
elastic: e + P _ e + p; inelastic electron-proton scattering, e + P _ e + X, is much 
more complicated, and we will not consider it in this book.) Now, the essential 
point is that the electron vertex and the photon propagator are unchanged, and 
therefore, since (IAtI2) neatly factors (Equation 8.12), 

• 
OAtil) ::: �L:�rOJlK"," proton (8.14) 

where K"," is an unknown quantity describing the photon-proton vertex. 
Well . not completely unknown, for this much we can say: it is certainly a 

second-rank tensor, and the only variables that it can possibly depend on are Pl, p., 
and q. Since q - p. - P2, these three are not independent, and we are free to use 
any two of them; the customary choice is q and P2 (I'll drop the subscript from here 
on: P "" P2 is the initial proton momentum)_ Now, there aren't many tensors that 
can be constructed out of just two four-vectors; the most general possible form is 

K"'" - -K "/<" �p" v �rJ'. . � ,,,,,, . · "" 1 - 16 + (MC)2 P + (Mc)2 'l q + (Mc)l \y q + P 'l (8.1S) 

where the Kj are (unknown) functions of the only scalar variable in the problem: 
q2.* The factors (MCj-l have been pulled out, in defining K2, K., and K" just 
so all the K's will have the same dimensions.t In principle, we could add an 

• Noti« that p' '" (MC]l is a constant. and p! = Iq + p)l = i + 2q p + ';  _ {MC]l =- q p '"  _ql/2. 
t Th� subscript 3 is tnditionaUy rese� for a term that �nters in th� corr�sporuliMg analysis of 

"" .. Irina-proton scatt�ring. but dots not OCCUr he..,. 
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antisymmetric combination (pI'q" - p"q"'), but since L"v is symmetric (Equation 
8.13), such a term would contribute nothing to (IAlll) . Now, these four functions 
are not independent; it can be shown (Problem 8.4) that 

q"K"" = 0 (8.16) 

from which it follows (Problem 8.5) that 

(8.17) 

Thus K"V can be expressed in terms of just lwo (unknown) functions, Kdq2) and 
K2{q2): 

K"" = KI (-g"" + 
q"'q") + � (t' + �q"') (p" + �q") q2 {Me)2 2 2 (8.18) 

The 'form factors' KI and K2 are directly related to the electron-proton elastic 
scattering cross section. According to Equations 8.13 and (8.1S) (Problem S.7) 

(lAlI2) = (�r {Kd(P1 . PI) - 2(mc)2) + K2 [(PI .(��:. p) + �]} 
(S.19) 

We shall work in the laboratory frame, with the target proton at rest, p .  (Me, 0, 0, 
0). An electron with incident energy E scatters at an angle (J, emerging with energy 
E'. Let us assume it's a moderately energetic collision (E, E') >> mel, so that we 
can safely ignore the mass of the electron (set In - 0);" then PI = (E/c)(l,pi) and 
PI = (E'/c){I,PJ), with Pi . PI = cos(J, and we find (Problem 8.8) 

(8.20) 

The outgoing electron energy, E'. is not an independent variable; it is kinematically 
determined by E and (J (Problem 8.9): 

(S.21) 

For a massless incident particle we have (Problem 6.10) 

(S.22) 

• The Matt formula (Equation 7.1ll) noegJ�ts proton stmeNn. and proton I"&oil; it applies to th .. 
n.gimr E « Mel, but it does not aSSumr E »  mil. Wr now work in thr regim� E »  md. but 
do nOi ignore proton stmcNr� and =oil (i.�. we do MOt USum� E « Mel). In the intermediate 
rangr, md «  E «  Mol, tbe two r .. :m11S agree (Problem 8.10). 



and so, for elastic electron-proton scattering 

(8.23) 

where E' is given by Equation S.21 This is known as the Rosenbluth formula; it was 
first derived in 1950 [1[. By counting the number of electrons scattered in a given 
direction, for a range of incident energies, we can determine Kl(q2) and K2(q2) 
experimentally. Actually, it is traditional to work instead with the 'electric' and 
'magnetic' form factors, Gr(q2) and GM(q2); 

(8.24) 

GE and GM are related to the charge and magnetic moment distributions of the 
proton, respectively [2]. 

There is precious little physics in all of this; what we have done is to set tlu agenda 
for a model of the proton. A successful theory must enable us to calculate the form 
factors. which at this stage are completely arbitrary. The most naive model treats 
the proton as a simple point charge; in this case (Problem S.6) 

(S.2S) 

It's not a bad approximation at low energies, where the electron never gets dose 
enough to 'see' inside the proton. But it is grossly inadequate at high energies 
(Figure S.5). Evidently the proton has a rich internal strocture. That's no surprise 
in light of the quark model, but it would shock anyone who still thinks the proton 
is a truly elementary particle. 

'.3 
Feynman Rules For Chromodynamics 

Quantum electrodynamics (QED) describes the interactions of charged particles; 
quantum chromodynamics (QeD) describes the interactions of colored particles. 
Electromagnetic interactions are mediated by photons. chromodynamic interac­
tions by g1UOI1S. The strength of the electromagnetic force is set by the coupling 
constant 

(S.26) 

In appropriate units g. is the fundamental charge (the charge of the positron). 
The strength of the chromodynamic force is set by the 'strong' coupling con­
stant 

(S.27) 
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FiB. B.S Proton elastic form factors. Apart 
from an overall constant. the electric and 
magnetic form factors Gc and GM are 
practiully identic.I, .nd - at lust, up to 
about 10 (GeV/cf - are well fit by the 
phenomenological ·dipole' function G4 

(solid nne). Circles are experimental values 
of GM/(1 + K}(<>:G(j. [Sou""" Fr.uenfelder, 

H. and Henley. E. M. (1991) Subolomic 
Physics, 2nd edn, Prentice·Hall, Englewood 
Cliffs, NJ. p. 141. Based On data of Kirk, 
P. N. el 01 .. (1973) PIIysicol Re�ie"'. OS, 63.] 

which may be thought of as the fundamental unit of color. Quarks come in three 
colors,' 'red' (r), 'blue' (b), and 'green' (8). Thus the specification of a quark state 
in QeD requires not only the Dirac spinor ul'l(p), giving its momentum and spin, 
but also a three-element column vector c, giving its color: 

(8.28) 

l'U label the elements of c by a Roman subscript near the middle of the alphabet -
Ci, for example - so that i,j,Io:, . .  run from 1 to 3 over quark colors.r 

Typically, quark color changes at a quark-gluon vertex, and the difference is 
carried off by the gluon. For example: 

, 

• Quarks also come in different JI< ... ors, of course, but thi. i. irrdevant in QCD, except imofar as 
the different quark flavor< carry different III4S$tS. Just as QED only looks at the c!u>>'ge of a p"rti· 
cle, QCD cares only about its color. 

t I should perhaps warn )'Ou that most book. do not specify quark color states explicitly; they are 
'imp��', or 'understood to be contained in w{P)'. I think it is wiser at this stage to write them 
out explicidy, even al the cost of some extra notational b,aggage. 
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In this diagram, a red quark turned into a blue quark emitting a red-antiblue gluon. 
Each gluon carries one unit of color and one unit of anticolor. It would appear, 
then, that there should be nine species of gluons - rr, rb. rg, br. bb, !?g, gr, gb, gg. 
Such a nine.gluon theory is perfectly possible in principle, but it would describe a 
world very different from our own. In terms of color SU(3) symmetl)' (on which, 
as we shaH see, QeD is based), these nine states constitute a 'color octet': 

11) = (rb + br)/...ti 15) = -i(rg -gr)/./2 
12) = -i(rb - br)/...ti 16) = (bg + gb)/...ti (8.29) 
13) = (rr - bb)/...ti 17) = -4bg -gb)/./2 
14) = (rg+gF)/./2 18) = (rF + bb - 199}/.J6 

and a 'color singlet': 

19) = (r:;: + bb + gg}/.J3 (8.30) 

(See Section 5.5; there we were concerned with flavor, not color, but the math· 
ematics is identical - just let u, d, S __ r, b, g. We're not dealing with isotopic 
spin, here, and I have used different linear combinations of states within the 
octet. This simplifies the notation later on.) If the singlet gluon existed, it would 
be as common and conspicuous as the photon.· Confinement requires that all 
naturally occurring particles be color singlets, and this 'explains' why the octet 
gluons never appear as free particles.t But )9) is a color singlet, and if it exists as 
a mediator it should also occur as a free particle. Moreover, it could be exchanged 
between two color singlets (a proton and a neutron, say), giving rise to a long·range 
force with strong coupling,* whereas in fact we know that the strong force is 

• M�ybe the 'ninth gloon' is the photon! That 
would m�ke for a beautiful unification of 
the strong and d�<:tromagnetic interactions. 
Of course. the coupling strength isn't quite 
right, but thars a problem with all unification 
schemes. and could p�umably be mana�. 
There's a much more serious difficulty with 
this io:ka. which I"ll l� you figure out (� 
Problem 8.10). 

t Notice the distinction betw«n 'colorless' and 
'color sin81er. Gluons 13) and 18) are color· 
less, in the sense that th� n� amount of each 
color is zero. but they �re not color singlets. 
This situation has an analog in the themy 
of spin: we can ha� a state with S, w 0, but 
this does not pro"e it has spin 0 (although 
spin 0 certainly implies S, .0, and by the 
samt token a color singl� is necessarily col· 
orless). Many authors use the word 'color· 
less' to "...,,� 'color singler, but this an l�d 
to misund .... standing. (I was sloppy myself, 

back in Chapters 1 and 2, b«ause at that 
stage it was oot possibJ� to aplain th� idu 
of a color singlet.) You might prefer the word 
'color·invariant' (instead of 'color singl�') or 
e\ltn 'color scalar'; the essential point is th�t 
such a slale i. unaffec� by the transforma· 
tions of color SU(l) (see Probl�m 8.12). 

t Because gluons �re massless, they mediate a 
force of infinite range (the S<lmt as tlectro· 
dynamic.). In this ""nse the forc� betwttn 
two quarks is actually long range. Howe�r, 
confinement. and the absence of a singlet 
gluon, conceab this from us. A .inglo:t stat� 
(such as the proton) can only emit and absorb 
a sin81� (such as the pion). so indi";dual glu· 
ons cannot be achanged betwttn a proton 
and a neutron. Thars why the force we ob· 
!trw is of !I.on range. If the singlet gluon a· 
i.�, it could be achanged betw�n singlets. 
and the strong force �uJd ha� a compon�nt 
of infinite rani/". 
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of very short range. In our world. then, there are evidently only eight kinds of 
gluons: 

like the photon. gluons are massless particles of spin 1; they are represented by 
a polarization vector. �j.t, which is orthogonal to the gluon momentum. p: 

�j.tpj.t = 0 (Lorentz condition) 

As before, we adopt the Coulomb gauge:t 

�o = O. so that � · p = O 

(8.31) 

(8.32) 

This spoils manifest Lorentz covariance, but it cannot be helped (see Section 7.4). In 
order to describe the color state of the giuon, we need in addition an eight-element 
column vector, a: 

1 0 
0 0 
0 0 
0 

for 11). 
0 

for 17). and so on (S.33) , =  
0 0 
0 0 
0 
0 0 

Elements of a will be labeled by a Greek superscript near the front of the alphabet 
(aa): a. {3. Y • . . ron from 1 to 8 over gluon color states. Be<:ause the gluons them­
selves carry color (in contrast to the photon. which is electrically neutral), they couple 
directly to one another. In fact. there is a three-gluon vertex and a four-gluon vertex: 

r X  
Before I can state the Feynman roles for QCD. I need to introduce two pieces of 

notation. First, the Gell-Mann ''\-matrices'. which are to SU(3) what the Pauli spin 

• In group·thmr�ic:al t."ms. � i$Sue he� is 
wh�her the symmetry of QCD is UP) (which 
would require all nine gluons) or SU(3) 
(which ulls for only eight). The experimental 
situation rnolYr' the qU6tion decisi",ly in 
fa""r of the latter. 

t There is a subtle problem h."e. becauu 
gau� transformations in chromodynamics 
are more compUuted than EqUition 7.81. 

and in f.cl the Coulomb gau� ""�1lO/. be 
consistendy imposed. H�r. the GOrJUIK>n 
to EqU.ltion 7.81 contains a factor of g,. and 
hence, in the Feynman calculus, the 'error' 
introduced by using the Coulomb gauge can 
be compensated for by appropriate modifica· 
tion of the rules for compuling higher-crder 
(loop) diagrams_ 
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matrices are to 5 U(Z): 

(! 1 :) ,'
= (1 -, :) ,'

= (l 0 :) Al = 0 0 -I 0 0 0 
(1 0 l) (: 0 :') (: 0 !) .1..4 "" 0 AS = 0 .1..(, =  0 (8.34) 0 0 
(: 0 �) 1 (I 0 �2) ).,7 = 0 .l..8 = ..13 � 1 0 

Second, the commutators of the A matrices define the 'structure constants' (f"IlY) of 
the group 5 UP): 

(A"',AIl) = 2if"IlY.l..Y (8.35) 

(summation over y - from 1 to 8 - implied by the repeated index). The structure 
constants are completely antisymmetric,fllay _ farll _ _ fallr. You can work them 
out for yourself (Problem 8.15). Since each index runs from I to 8, there are 8 x 8 
x 8 _ 512 structure constants in all, but most of them are zero. and the rest can be 
obtained by antisymmetry from the following set: 

pu = I, p47 = f2<6 = pS7 = f)05 = fl� = f'17 = �, 
rS8 = f'78 = .;3/2 (8.36) 

I can now state the Feynman rules for evaluating tree-level diagrams in QeD: 
1. Exlu7I111 Lin�. For an external quark with momentum p, spin 

s, and color c: jIncoming {--.) : ul'l(p)c 1 
Quark : 

Outgoing ( ......... ) .  uI')(p)ct 

(note that ct = c' will be a row matrix). For an external 
anliquark: jIncoming ( __ ) : v!>I(p)Ct 1 

Antiquark : 
Outgoing ( ......... ) : v('l (p)c 

(8.37) 

(8.38) 

where c represents the color of the corresponding quark. For 
an external gluon of momentum p, polarization 1:, and color 
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a, include a factor 

(To avoid confusion it is helpful to indicate on the diagram 
the indices - space·time and color - you are using for each 
gluon.) 

2. Propagators. Each intemal line contributes a factor 

(8.4Q) 

, 
""""" 

_. /j"'/l ) . ,"" . <f (8.4l) 
CIe, p. i3, • 

3, Vertices. Each vertex introduces a factor 

Quark.gluon: (*) : -�8< ). '" y" (8.42) 

Thra. gluolI: (
. , �

., ,' Y.:. } : � 
_gJ"/lY[&...(kl - k2)A + go,,(k2 - k))" + 8>.,,(/,:) - k1).] 

(8.43) 

Here the gluon momenta (/,:1. k2, kJ) are assumed to point 
into the vertex; if any point outward in your diagram, change 
their signs. 

FourgIUQII: ('�') : 

.. �. 
-ig?fJ"/l�fyS�f.&,;.g.P - gl'Pg.,,) + rS�fJJY�(g.,.g;..., - g,,;.g.p) 

(8.44) 

(summation over T/ implied). 

Everything else is the same as for QED'; impose conservation of energy and mo· 
mentum at each vertex to determine the internal four momenta; follow each fermion 
line 'backward' along the arrow, erase the overall delta function, and multiply by i to 
get A. In the next two sections I'll workout some examples to show you how it goes . 

• Loop di.agums in QeD require special rules. including the introduction of so<alled 
'Fadd�v-Popov ghost.'. The� art d�p water •. into which _ shall not venture [3J. 
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'A 
Color Factors 

In this section, we consider the interaction between two quarks (also a quark and 
an antiquark) in lowest-order QCD. Of course, we cannot observe quark-quark 
scattering directly in the laboratory (although hadron-hadron scattering is an 
indirect manifestation), so we won't be looking for cross sections here. Instead, 
we concentrate on the effective po�ntials between quarks - the QCD analog of the 
Coulomb potential in electrodynamics. We used such potentials, with a promise to 
derive them later, back in Chapter 5, in the analysis of quarkonium. Bear in mind 
that this is a perturbation theory calculation, valid only insofar as the coupling a, 

is smalL We cannot hope to get the confining term in the potential by this route 
- we are implicitly relying on asymptotic freedom, and all we're going to find 
is the short-range behavior. Nevertheless, we wil l obtain a very suggestive result: 
Quarks attract one another most strongly when they are in the color singltt configuration 
(indeed, in other arrangements they generally repel). At very short range, then, the 
color singlet is the 'maximally attractive channel' - an indication that binding is 
more likely, at least, for singlet states.' 

8.4.1 
Quark and Antiquark 

Consider first the interaction of a quark and an antiquark. in QCD. We shall 
assume that they have different flavors, so the only diagram (in lowest order) is the 
one in Figure (S.6),t representing, for instance, U + d ...... u + d. The amplitude is 
given by 

(S.4S) 

{'A6) 

(summation over ct implied). This is exactly what we had for electron-positron 
scattering (Equation 7.108), except that g. is replaced by g, (of course), and we have 

• This is � very ple.sing conclusion, bu� it d�. I"IO� pro,"" th�t binding musl occur in the color 
singlet, Or that it CDnnol occur in other configurations. For this we would have to know the 
Iong·range beh .. vior of the po�nlial, aboUI which, a� present, we can only Sl""ula�e. 

t In principle, for the S4"'" fbvor (e.g. u + ;; -> u + U) we should include a second di .. gram, as 
in e\ectron-JIO$ilrOn scattering (Figure 7.5). How�. in the nonrelativistic �mit of inte�st here 
this second diagr.om does I"IOt contribute anyw�y (see foo�no�e to Example 7.3), so in practice 
wha� we're doing applies just as wdl whala'U the quark flavors. (See also Problem 8.17) 
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Fig. a.6 The quarlc-antiquarlc int�raction. 

in addition the 'color factor' 

(S.47) 

Therefore, the pou:ntial describing the qq interaction is the same as that acting 
in electrodynamics between two opposite charges (to wit: the Coulomb potential), 
only with a replaced by fa,: 

f"'''' 
Vqq(r) = - -

, 
(8.48) 

Now, the color factor depends on the color state of the interacting quarks. From 
a quark and an antiquark we can make a color singlet, Equation 8.30, and a color 
octet, Equation 8.29 (all members of which yield the samef). I'll calculate the octet 
color factor first, because it's a little easier [4]. 

Exomple 8.! Color Fo�or for the Octet Configurotion A typical octet state (Equation 
S.29) is rb (any of the others would do just as well; see Problem 8.16). Here 
the incoming quark is red, and the incoming antiquark is antiblue. Because color 
is conserved: the outgoing quark must also be red and the antiquark antiblue. 
Thu, 

and hence 

• y�s. quuk color can chang� at a QeD vertex, but in this ca.o;o, the outgoing antiquark cannot 
carry ofT the positive unit of redness. so the outgoing quark is forced to do that job. 
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A glance at the .\ matrices reveals that the only ones with entries in the 11  and 22 
positions are .\1 and .\8. So 

Exampl� 8.2 Color Factor for the Singlet Configuration The color singlet state 
(Equation 8.30) is 

(1/../3)(r' + bb + g8) 

[f the incoming quarks are in the singlet state (as they would be for a meson, say), 
the color factor is a sum of three terms: 

The outgoing quarks are necessarily also in the singlet state, and we get ninc terms 
in all, which can be written compactly as follows: 

f I I I ,, �  1 <It "  

= - - -(.l. .. .\ .. ) = -Tr(.\ .\ ) 
4 .. /L,/3 � J' 12 

(8.50) 

(summation over j and j, from 1 to 3, implied in the second expression). Now 

(8.51) 

(Problem 8.23), so, with the summation over a (from 1 to 8), 

Trp,�.\") = 16 (8.52) 

Evidently, then, for the color singlet 

f = �  3 

Putting Equations 8.49 and 
quark-antiquark potentials are 

(8.53) 

.. 
8.53 into Equation 8.48, we conclude that the 

4 ex,tic 
. gJ VoN(r) = --- (colorsm etl 

3 , 

1 ex,tic 
VoN!r) = - - (color octet) 

6 , 

(8.54) 

(8.55) 
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Fig. $.7 The qu�rk-quark interaction. 

From the signs it appears that the force is atlractivt: in the color singlet but rt:pulsivt 
for the octet. This helps to explain why quark-antiquark binding (to form mesons) 
occurs in the singlet configuration but not in the (color) octet (which would have 
produced colored mesons). 

8.4.2 
Quark and Quark 

We tum now to the interaction of two quarks. Again, we shall assume that they 
have different flavors, so the only diagram (in lowest order) is the one indicated in 
Figure (8.7),' representing, say, u + d --., u + d. The amplitude is 

-
g� I 

..II "" -t ;p[ii(3)yl' u(I)][ii(4)yl' u(2)](cI).. "cl)(c1 ).."C2) (8.56) 

This is the same as for electron-muon scattering (Equation 7.1(6), except that g. 
is replaced by g" and there is a color factor 

f = �(cI)""cd(c!}'''C�) (8.57) 

The potential, therefore. takes the same form as that for like charges in electrody· 
namics: 

.,," V'I'I(r) =/-
, 

(8.58) 

Again, the color factor depends on the configuration of the quarks. However, from 
two quarks you can't make a singlet and an octet (as for qq) - rather, we obtain a 
triplet (the antisymmetric combinationS): I I'" - b'l/fi I (bg -gb)j./2 

IE' - '1<i1fi 
(triplet) (8.59) 

• For id�ntical <JuarKs th�r� is also a 'cros�' diagram. H()W�""r. inclusion of this diagram. to­
gether with the statistic.ol factor S in the cross s«tion formula. leads to the same non�b.tivi •. 
tic limit (Stt footnote to wmple 7.3). so in fact our potentials are COrr«t even for same-flavor 
quarks. 



and a sextet (the symmetric combinations);' 

I rr,bb,gg, I (rb + br)/.J2, (bg + gb)/.J2, (gr + rg)/.J2 (sextet) 
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(8.60) 

Exampl� 8.3 Color FaClor for the Senel Configuraljon A typical sextet state is rr (use 
any of the others if you prefer - you'll get the same result for 1). In this case 

O! 1 O! O! (I) ] o Op.. � = 4"P.uA!l) 

I ( l l 8 8 ) I [ Jj Jj ] 1 = 4" A11Al1 + A11A11 = 4" (1)(1) + (1/ 3)(1/ 3) = "3  (8.61) 
.., 

Exampl� 8.4 Color Factor for th� Triplet Configuralion A typical triplet state is 
(rb - br)/.J2, sot 

f � l;,;, l [(1 0 O)'" m] [IO 1 0)'" (:) ] 
+ 1 0jA" (:)] [11 0 0jA" m] 
+ 0 0)'" m ] [10 0)'" m] 
+ 1 0jA" (!)] [II 0 0)'" m]1 

• III graup-thtordical langwlge, 3 ®  3 = I ffi8. but 1®3 = JIB 6. 
t H�.., (rb _ br) .... (rb - br), so thert ar� fOUT tefIIls. S'h�m.ati,any. rb ..... rh. rb ..... -br. -br ..... 

rb. and -br ..... -br (in Ih� lasl lerm the f"ClOT< or -\ cancel). 
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= �P'I\),i2 -),12),iJl 
= �(),�1.l..1l + ),�l),�l - )'ll.l..ll - ),�l),�l) 

= � (-1 + � - 1 - 1) = -� (8.62) 

... 
Putting Equations 8.61 and 8,62 into Equation 8.58, we conclude that the 

quark-quark potentials are 

2 a,fu: 
V'i'!(r) = - 3 -,- (color triplet) 

1 a,fu: 
I V'I'I(r) = 3 -,- (co or sextet) 

(8.63) 

(8.64) 

[n particular, the signs indicate that the force is attractive for the triplet and reo 
pulsive for the sextet. Of course, that's not too helpful as it stands, beause �ither 
combination occurs in nature: However, it does have interesting implications for 
the binding of three quarks. This time we can make a singlet (completely antisym· 
metric), a decuplet (completely symmetric), and two octets (of mixed symmetry), 
as we found in Section S.6.1.t Since the singlet is completely antisymmetric, every 
pair of quarks is in the (antisymmelric) triplet state -the attractive channeL In the 
decuplet, every pair is in the (symmetric) sextet state - they repel. As for the two 
octets, some pairs are triplet and some are sextet; we expect some attraction, then, 
and some repulsion. Only in the singkt CQnfigumtion, though, do we get complete 
mutual attraction of the three quarks. Again, this is a comforting result: as in the 
case of mesons, the potential is most favorable for binding when the quarks are in 
the color singlet configuration . 

•• S 

Pair Annihilation in QeD 

In this section we consider the process quark plus antiquark ...... two gluons - the 
QeD analog of pair annihilation. The calculation is quite similar to Example 7.8; 

• If �ou don't heed the mrning in footnote 
(*} to the fim paragraph of S«lion 8.4, you 
may b.. abrffiM to find that two quarks in 
the triplet state attract one another. There is 
some comfort in the obiOet\'alion that tlw: sin· 
glet qij coupling is Iwiu as ,frong: but slill, if 
this were the whole story we might very well 

expect tripld '1'1 binding to occur. leading to 
free 'diquark' states. There has. in fact. been 
some speculation about the possible existence 
of diquarks within nuclei (S). 

t In Chapter S we were dealing withjlaVOT. not 
,%t. but the mMht"",liu is the same. Group 
theoretic:olly. 3 0  3 0  3 R I (fl 8 $  8 (fl lO. 
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however, in QeD there are thru contributing diagrams, in lowest order: 

(2) (2) (') 

, j� , " , y, , 

;/ q � '. , 

OJ (3) (I) (3) 0) (3) 

The amplitude for the first diagram is 

� = iii{',,' (-i�,l..IlY'l 'f· fl', [ i(ff + 1m) 1 
I 2 2 4" . q2 m2c1 

x [-i�,l.."yl'] [fjl'arlu(1)cl (S.65) 

(fo simplify the already overburdened notation I'll leave the * off the gluon 
polarization vectors and color states until the end.) Here q - PI - Pl, so 

(S.66) 

and hence 

Similarly, for the second diagram: 

_g,1 1 II I  .41 = - -- {ii(l)!ll(fl -"14 + me)/.]u(I)) aja4(Ci,l..0",l..lleL) (8.68) 
S PI ' p. 

Notice that the A's appear this time in the opposite order. Finally, for the third 
diagram: 

At} = iii(2)ci [-i�A�Ya ] u(l)el [_it'�&Y ] (_gJ"""Y[&'.(-PJ + p.h 

+g"�(-P. - q}l' + g..,,(q + Pl)"lHfra)"][l:�] (8.69) 

In this case q -Pl + p., so tT = 2Pl . p.; simplifying (and using f) . p) = f. ' P4 = 0), 
we find (Problem S,20): 

.: 1 
At) = i- --v(l)[(fJ . f.)(f. -"11) + l(Pl . f.)/J - 2(p. ' fl)I.)u(l) 

4 p} .p. 

xr"r,,)",,!(c1Arcd (S.70) 
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So far, this is all completely general (and rather messy). To make things more 
manageable, let's assume (as we did in our study of e+ e- annihilation) that the 
initial particles are at rest: 

PI = P2 = (me,O), PJ "" (me,p), P. = (me, -pI 

Meanwhile, in the Coulomb gauge (Equation 8.32) 

PJ · f4 = -p · t_ = -p4 ·f4 = 0 

(8.71) 

(8.72) 

(8.73) 

(likewise P4 . fJ = 0), so two tenns in AJ drop out. Using Equations 7.140 and 7.141 
to simplify Al and A1, we find that the total amplitude (A = Al + A1 + Al) 
can be written 

, 
A = -�a)a:ii(2)cIlfd4"_AaAti + 141l IlAtlAa 8(mel 

-i(fl · E'4)jf_ -I,)j'tlYAYJelU(l) 

We may as weI! orient our coordinates so that the z axis lies along p; then 

From Equations 7.145 and 7.146 we have 

(8.74) 

(8.75) 

Putting this into Equation 8.74, and exploiting the commutation relation (Equation 
8.35) for the A'S, we obtain 

, 
A = �aJa!ii(2)Cr[(tl . f.){Aa ,AtI}yO 8m, 

+i(fl x f.j . l:(W, AtlJyO + {A a, AtI}yl}]el utI} (8.77) 

where curly brackets denote the anticommutator: (A, B) '" AB + BA You might 
compare this result with the corresponding expression in QED (Equation 7.146), 
to which it reduces if you set aU the A'S equal to 1, drop the color states a and c, and 
let g,/2 -+ g •. 

Suppose now we put the quarks into a spin-O (singlet) state (the triplet state 
cannot go to two gluons anyway; it needs at least three); 

(8.78) 



For A, J. we have (Equations 7.153 and 7.154) 

(8.79) 

As before, AH "" -An, and we are left with' 

, 
A "" -i.J2� (f:J x f()'aJ" a� (cj (,\", ,\Illed (spin singlet) (8.80) 

Once again, we have obtained a result that is identical to the one in QED (Equation 
7.158), except thatg, _ g" and there is a color factor 

(8.81) 
In particular, ifthe quarks occupy the color singlet state, (l/.J3)(rr + bb + 88). then 

But 

f � �,;,� ;, 1(1 0 0)1>- '" m + 10 1 011'- '" m 
+100 111'-" " (:) I � 

8
':"';<!.T'I'-" " 

(Problem 8.13), so 

(color singlet) 

Now, the singlet state for two gluons (see Problem 8.22) is 

1 • 
(singlet) = .....rs L In)dn12 

"-, 

Evidently 

(8.82) 

(8.83) 

(8.84) 

(8.85) 

, At this St:l� aU t." ms in f, f. drop out. The fact that At, is proportional !Q 'J ., (Equation 
8.74) meanS that the diagram containing a thI_gluon verta makes no contribution. when the 
quarks are at rest in the spin singlet configuration. Most books 'imply ignore it from the start, 
but in principle il should he included (see Problffil 8.21). 
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and hence 

(8.86) 

Conclusi<m; For q + ij -+ g + g in the spin singlet, color singlet configuration, 
with the quarks at rest, the amplitude is 

.A = -4j2jj� 

(compare Equation 7.163). and the cross s«tion is 

(1 = � 41r (,a,)' 
3 cv m 

(8.87) 

(8.88) 

(see Equation 7.168). Just as the cross section for e+ + e- -+ y + y determines the 
positronium de<:ay rate 

(8,89) 

(Equation 7.171), sowe can now give a formula for the decay of a spin·Oquarkonium 
state, such as 'Ie (note that 1fr and Y themselves carry spin 1, and go to thru gluons): 

(8.90) 

As it stands, this is not terribly useful, since we don't know 1fr(O}. However, the 
electromagnetic decay '1< -+ 2y involves the same factor, and we can derive a clean 
expression for the branching ratio (see problem 8.23) . 

••• 
Asymptotic Freedom 

In the last section of Chapter 7 we found that the loop diagram 
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in QED makes the effective charge of the electron a function of the momentum 
transfer q:' 

The coupling strength increases as the charges get closer together (larger Iq�II, a fact 
that we interpret physically as a consequence of'vacuum polariZiltion': the vacuum 
functions as a kind of dielectric medium, partially screening the charge. The closer 
we approach, the less complete is the screening, and the greater is the effective 
charge. of course, Equation 8.91 is valid only to order a (0)2. There are higher·order 
corrections, of which the dominant ones come from chains of bubbles: 

q 

, , • • •  

q 

As it happens, these can be summed explicitly, and the result ist 

2 a(O) 
a(lq II = CI---'[.-'(MOI-'/J".'7(I"n"lIq"'''I/''(�=I'( (8.92) 

Ostensibly, the coupling blows up at In!lq21/{mc)2] _ 3.1l"ja(0). However, this is not 
to be taken too seriously, since it occurs at an energy of about 10280 MeV, which (to 
put it mildly) is not an accessible region (see Problem 8.24). 

• It also introduces a div<rgtm te<m. which 
we so,aK up in th� 'r�nornuliud' char� 
(Equation 7.189). But Ihars an �ntir�ly differ· 
�nt probkm, on� thaI (how��r lroublesom� 
)'<Iu may find it in prindpl�) has no obs�rv· 
abl� consequ�nces. and OnCe the appropriate 
incantation has �n mad�, is of no further 
significance. The perfectly fin;� dependence 
of 0 on r/ is Ih� rigrlijico.m matter. for it 
carries direcl and m�asur:l.bl� implications. 

t This is not 10 surprising. What we have, in 
�lfecl, is th� gwmetric series 

1 + x + x2 + xJ + ... = __ 
I - x 

where x is for one bubble. ,,' is for two. and 
so On. Although Equation 8.92 is correcl to all 

orders in 0(0). it is nat txaet. since we are ig· 
noring diagram. such as 

q 

q 

These can be shown to make a much smaller 
contribution in the limit Ir/I » (me)l. 
Equation 8.92 is known as the 'leading log' 
approximation. 
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Much the same thing happens in QCD: quark-antiquark bubbles 

lead to a screening of the quark color, which (modulo appropriate color factors) is 
the same as Equation 8.91. However. there is a new twist to the story, for in QCD 
we also have virtual gluon bubbles 

as well as diagrams of the form 

It turns out [6] that the gluon contribution works in the other direction, producing 
'antiscreening· or 'camouflage'. I do not knowof a persuasivequalilative explanation 
of this effect [7] -suffice it to say that the formula for the running coupling constant 
in QeD (analogous to Equation 8.92) is 

(8.93) 
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where II is the number of colors (3, in the Standard Model), andf is the number of 
fl.avors (6, in the Standard Model). In any theory for which 1111 > 2f. antiscreening 
will dominate, and the coupling constant will decrease with increasing Iii; at short 
distances the 'strong' force becomes relatively weak. This is the source of asymptotic 
freedom. on which so much of what we can say quantitatively about the hadrons is 
predicated. Asymptotic freedom is what licenses the use of the Feynman calculus 
in QCD to calculate interquark potentials; it is a basic ingredient in the theory of 
quarkonium; and it is presumably responsible for the OZI rule. Chromodynamics 
would have gone out of business if it had not been for the timely discovery of 
asymptotic freedom {8]. 

You may have noticed the appearance of a new parameter, p., in Equation 8.93 
In ele<:trodynamics it is natural to define 'the charge' of a particle as the long-range 
(fully screened) value - that's what Coulomb and Millikan measured, and it's what 
an engineer or a chemist or even an atomic physicist (unless he's measuring the 
Lamb shift) is concerned with. Thus a(O) is the 'good old' fine structure constant, 
1/137, and it is the sensible parameter in terms of which to do perturbation 
expansions. But we don't have to do it this way; we could work from any other 
value of q2 (provided only that we stay well below the singularity in Equation 8.92, 
where a(lil) runs larger than 1, and perturbation theory breaks down). In QCD, 
however, we alllno! work from q2 

_ 0, because that's where a, is large. We must 
use as a reference some place where as is small enough to justify a perturbation 
expansion. That's why Equation 8.93 is expressed in tenns of O'.(p.2). instead of 
0',(0). Provided that it's large enough so that O',(p.2) < 1, it doesn't matter what 
value of Jl. you use (see Problem 8.25). Indeed. if we introduce a new variable A, 
defined by 

(8.94) 

the running coupling constant can be expressed in terms of a sillg!e parameter: 

(8.95) 

(see Problem 8.26). This compact result tells us explicitly the value of the strong 

coupling at any Iii. in terms of the constant A. Unfortunately, it is hard to 
determine A precisely from experimental data, but Ac appears to lie somewhere 

in the range 

100 MeV < Ac < 500 MeV. (8.%) 

Notice that whereas the QED coupling varies only minutely over the accessi· 

ble energy range (Problem 8.24). variation in the QCD coupling is substantial 
(Problem 8.27). 
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(IJ Derive Equation 8.1, from the Feynman rules for QED. 
(h) Obtain Equation 8.2 from Equation 8.1 
(cJ Derive Equation 8.1 from Equation 8.2 
(dl Derive Equation 8.4 from Equation 8.3 

8.2 Derive Equation 8.5, starting with Equation 8A 
S.l Why don't we use (T (o+e- ..... e+e-) in the denominator, to define R (Equation 8.7)? 
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U Prove Equation 8.16 [Hin/: First show u...t q .. O"=O. Then argue that we may as wdl 
take K'" such that q"K"'=O, in the sense that any term in K'" u...t does "01 obey 
q .. K"',.,O will contribute nothing to L'" K .... ] Comme .. " Equation 8.16 actually follows 
more simply and generally from charge conservation at the proton �rtex. but I ha� 
not de�loped the formalism here to make this argument (see Halun and Martin (21, 
Sections 8.2 and 8.3). 
(One way to proceed is as follows. Take If' = (0. O. O. q); then q"L'" = 0 => L'" = 

UD So L"'�. � un PD ,od ili" , m;gh< " �Il 
be zero.] 

8.5 Prove Equation 8.17. from Equation 8.16 [Hi .. ,: First contract K'" with q .. , then with 
p •. ] 

U Find KL and K2. and also GE and GM. for a 'Dirac' proton (Equation 8.2S). 
8.? Derive Equation 8.19 
U Deri� Equation 8.20 
U Derive Equation 8.21 

S.lO Ched: that the Rosenbluth formula (Equation 8.23) agrees with the Mott formula 
(Equation 7.131) in the intermedi;ote-energy regime (mel « £ « Mol). Use the 
expressions for Kl and Kl appropriate to a 'Dirac' proton (Problem 8.6). 

S.H Why can't the 'ninth gluon' be the photon? [A .. swu: The gluon would couple to all 
baryons with the Sime strength, not (n the photon does) in proportion to their charge. 
Since mass and baryon number are approximately proportional in bulk matter, such a 
force would, in fact, look very much like an extra contribution to gravity. There was a 
Rurry of interest in this possibility in early 1986. (fischbach, E. d aL, (1986) PhyW.<ll 
Rwiew Wltrs, 56, 3. See, however, the comments in /'kysical Review !.elltrs, (1986) 56, 
2423.] 

8.12 Color SU(3) transforrmotions rebbel 'red', 'blue', and 'green' according to the transfor­
mation rule 

c -+ r! = Uc 

where U is any unitary (Uut =1) 3 x 3 malTix of determinant 1, and , is a three-element 
column vector. For �mple 

would take r -> g, g ..... b, b ..... r. The ninth gluon (19)) is obviously invariant under U, 
bUI the octet gluons are /tOt. Show u...t 13) and 18) go into lineu combinations of one 
another: 

13') = 0:13) + .BIS}, IS'} = Yl3} + JIS) 
Find the numbers ... , fJ, y, and 8. 

8.U Show that 

(Notice that all the ).. rmotrices are tracelells,) 
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3.14 What ar� th� smlCtur� constants for SU(l)? nut is, wn.t ar� ttu, numbersJ;;' in 

5.15 (a) Giv�n tn.t r�r is compl�U'ly antisymm�tric (so that PII=O automatically, and 
having calculatNJlll, w� don't need to both�r with.fll.f2ll, �tc.) how many disll...:! 
nontrivial structure constants r�main? 

Answer : --- = 56 [ 8 · ' · '  1 3 · 2 · 1  

Of theR, it turns out that only nin� are nonzero (those listed in Equation 8.36), and 
among tMs� th�� ar� only thr� diffe�nt "umbers. 

(b) Work out (I .. L, J.l), and confirm thatplr=o for all y except 3, whil�pll=l. 
lc) Similarly, compute (J.I• J.l) and IJ. 4. J. �), and d�tennine the resulting structure 

constants. 
1.16 Cakulat� th� octet qq color bctor using the state 

(.) bg 
(bJ(r' - bb}/Ji. 
(c) (r' + bb - 2gg)/../6 

1.17 Find th� amplitude.K for the diagram 

What is th� color factor (analogous to Equation 8.47) in this u�? EvaluateJ in th� color 
singlet configuration. Can you explain this result? IAnswrr: It's ura; a singlet unnot 
coupl� to an octet (g1uon).1 

5.18 Calculat� the sextet qq color factor using the stat� (rb + br)/Ji.. 
I.U Color factors always involve expressions of the form J.;J..� (summN over "'). There is a 

simple formula for this quantity. which shortens the uithmetic: 

(s� Kan� (4)). Ched: this theorem for 

(a) ;=j=l=I=l (see Equation 8.61) 
(b) ;=J".l, k�I .. 2 (s� Equation 8.49) 
(e) ;=I=l.j",k",2 (s� Equation 8.62) 

'"' 
(<I) Use it to confirm Equation 8.52 

5.20 Derive Equation 8.70, starting from Equation 8.69 
HI There is a simple test for the gauge invariance of an amplitude (.4') in QeD (or 

QED): Replace any g1uon (or photon) p;>Iarization vector by its mom�ntum (€J .... PJ, 
say). and you must get zero (see Probl�m 7.23). Show using this criterion that .K ,.. 
..Ifl + ..If) + ..If) is gauge·invariant, but.At'1 + ..Ifl alone is not. [Thus the thr�·g!uon 
verte� is essential in QCD to pr.-s�!Ve gaug� invariance. Notice, by contrast, that 
..Ifl +.ltl alone is gauge-invariant in QED (ElLample 7.8)_ The fact that J. matric.-s do 
not commute mak.-s tht diff�rence.) 
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8.22 Construct the color singlet combinatinn of two gluons (Equ�tion 8.84). One method is 
as follows: Let 

Under SU(3), G ..... c'""Uc. where U is a unit.;ory matro: of determinant 1. Similarly, let 
dI" =(i', b, g), transforming by the rule dI" ..... rft =dI" ut. Form the matrix 

I 
N � M - jrrr(M)], so that Tr(N) = 0 

[fr(M')=Tr(M)=(rr + bb + g8). so this combination is SU(3)·invariant: it is the singlel 
combination in 3 @ 3"  = 1 GIS. N is the octet.] Note that 

N' = M' - �(Tr(M')] :: UMUt - �rrr(M))uut = UNUt 

nus tells us how the giuons them�lv� (which are in the octet repr�ntatioo) transform 
under color SU(3). The question is how to put together Iwo octel$ to make a singlet: 
that is. how to make somethins bilinear in Nt and N2 which is invariant under U."I"IW' 
solution is 

It remains to figure out what 5 is in tenns of the elements of M) and M2: 

I I 
Tr(NJN1I = Tr((MJ - "3[Tr(M1)])(M1 - jrrr(Ml)])] 

I = Tr(M1Ml) - "3(Tr(Md]fTr(M1)1 

2 - -
= j [(rrh(rrh + (bb)t(bb)z + (gg}t(Uhl 

1 - - -
-j[(rr]t{bbh + (rrh(ggh + (bbh (rrh + (bbh(gg)z 

+(ggh(rrh + (ggh(bbhl + [(rb)J(br)l + (rgh(grh 

+(br]l(rbh + (bg)l(gbh + (gr]l(r;gh + (gbh(bghl 
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= Ilhllh + 12)112h + 13)d3h + 14)d4h 
• 

+IShISh + 16hl6h + 17)d7h + 181J 18)z = L In)dnh 
�=1 

(To normaliz� � state, divide by ./8.) lllis - w invui�nt product of two octtts - is 
the SU(3) �rnolog to the dot product of two 3·v«tors in SU(2). 

8.23 Dttermine the branching utio r (�< ...... 2g)fr (11< ...... 2)'). IHint, Use Equation 8.90 
for the numer�tor, and a suitable modific.ation of Equations 7.168 �nd 7.171 for the 
denomirnotor. There are two modifiutions: (i) w qUilrk charge is QI: and (ii) there is a 
color f�ctor of 3, for quarks in the singkt state (Equation 8.30). A1>SIVo:r : I{a,/ai.) 

8.24 'a) Calculate the energy (Jjq!jCI) at which the QED coupling constlnt (Equation 8.86) 
blows up. (Remember, a(O)=lf137, th� fin� structure constant.) 

(b) At what energy do we get a 1% dep.;orture from a(O)? Is this an accessibl� �nergy? 
8.25 Pro� that the value of I' in Equation 9.69 is arbitrary. [That is, suppose physicist A uses 

th� valu� 1'., �nd physicist B uses a diff�r�nt value, Il •. A ... ,,_ A's �rsion of Equation 
9.69 is corred, and prove that B·s is also correct.] 

8.26 Dtrive Equation 9.71 from Equations 8.93 and 8.94 
8.27 Calculate ", at 10 and 100 GeV. Assume A=0.3 GeV. \Vbat if Ac=l GeV- How about 

Ac=O.l GeV? 
8.28 (Gluon-g[uon scattering) 

[a) Draw the )owest-order diagrams (�r� are fOUT of them) representing W interaction 
of two gluons. 

[b) Write down the corresponding amp[irudes. 
(e) Put the incoming gluons into the color singlet state: do the same for the outgoing 

g!uons. Compute the resulting amplitudes. 
(dlGo to the CM fume. in which each gluon has energy E; express all the kin�matic 

factors in terms of E and the scattering angle lI. Add the amplitudes to get the 
total. A. 

(e) Find the differential scattering cross section. 
If) Determine whewr the force is attractive or repulsive (ifit is the former. this may be 

i likely glueNll configuration). 
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Weak Interactions 

This cho.pler survqs the �MOry of weak interactions. It relies heavily on Chapter 7, 
but not on Chaptu 8; Stelio" 4.4.1 would be useful background. 1 begin by staling 

lhe Ftynman Rul� for the coupling of leptons to w±, and treat lhru classic problems 
in some detail: bela decays of lhe muon, Ike neutron, and the charged pion. Next, 
\tit: consider the coupling of quarks to W±. which brings in the Cabibbo angle, the 
GIM muhanism, and IfIt Kobayashi-Maskawa matrix. In Suticll 9.6, I state the 
Feymn('111 roles for coupling quarks and leptons to the z!J, and the final stetion sutcks 
the G/ashow-Weinbtrg-Sa/am dectroweak thtory. Throughout this chapur I tau the 
neutrinos to be massltss; nont oflhe rtsults an" measurably affictld if (minute) neutrino 
masstS are inciudtd. 

'.1 
Charged leptonic: Weak Interactions 

The mediators or weak interactions (analogous to photons in QED and gluons 
in QeD) are the W's (w+ and W-) and the z!l. Unlike the photon and glu. 
ons, which are massless, these 'intermediate vector hosons' are extremely heavy; 
experimentally, 

Mw = 80.40 ± .03 GeV/,2, Mz '" 91.188 ± JJ02 GeV/,2 (9.1) 

Now, a massive particle of spin 1 has three allowed polarization states (m, .. I, 0, 
-I), whereas a free massless particle has only two (if z is the direction of motion, the 
'longitudinal' polarization m, .. 0 does not occur). Thus, for photons and gluons, 
we imposed both the Lorentz condition 

(9.2) 

(reducing the number of independent components in ,," from 4 to 3) and also the 
Coulomb gauge ( 0 .. 0, so that (.p = 0, which reduces it further from 3 to 2). 
For the W's and the Z we do not impose the latter constraint. As a result, the 
completeness relation is quite different (see Problem 9.1) and the propagator is 

In''''''''''''''' t<) Ekm<nlary Partida. St<:ond Edilion. D.vid Griffiths 
Copyright e 2008 WllEY·VCH V�rI.g GmbH &Co. KG.A. Weinheim 
[SBN: 978·]·527-40601·2 
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no longer simply -ig ... / q2, but rather,' 

-t(&.. - q .. q./Mlcl) 
q2 M1cl 

(propagator for W and Z) (9.3) 

where M is Mw or Mz, as the case may be. In practice, ql is ordinarily so much 
smaller than (Me)l that we may safely use 

ig". 1 1 (propagator for q « (Me) ) 
(Mcf 

(9.4) 

However, when a process involves energies that are comparable to Me2 we must, 
of course, revert to the exact expression. 

The theory of 'charged' weak interactions (mediated by the W's) is simpler than 
that for 'neutral' ones (mediated by the 2), so for the moment I shall concentrate 
on the former. In this section we consider the coupling of W's to leptons; in the 
next section we'll discuss their coupling to quarks and hadrons. The fundamental 
leptonic vertex is 

w- 1 � 
Here an electron, muon, or tau is converted into the associated neutrino, with 
emission of a W- (or absorption of W+). The reverse process (v/ .... J- + W+) 
is also possible, of course, as well as the 'crossed' reactions involving antileptons. 
The Feynman rules are the same as for QED (apart from the modifications already 
mentioned to accommodate the massive mediator), except for the vertex factor, 
which is 

-ig ... y"(l - yS) (weak vertex factor) 
2J2 

(9.S) 

The various 2's are purely conventional, and g ... = J4:rra ... is the ·weak coupling 
constant' (analogous to g. in QED and g. in QCD). The term (I - yS), however, is 
of profound importance, for y" alone would represent a vutor coupling (like QED 
or QCD), whereas y"yS would be an (lxi(livector (see Equation 7.68). A theory that 

• It might bother you that this dOts not fMuce 
to the photon prol"'gator as M ..... O. For par. 
ticles of spin 1 (or hightr). the massless limit 
is notoriously Irrachtrous. bK.ause in one 
critical respect H is not a continuous proce· 
dure. The numhM of degrtts of f�om (that 

is. the number of allowed spin orientations) 
drops abruptly from 2, + 1 (for M ¢ 0) 102 
(for M _ 0). There ue w.lys of formulating 
the thr.,ry that allow a smooth Ir.I.nsilion to M 
_ O. but only at the cost of introducing spuri· 
ous nonphysical states. 
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adds a vt:ctor to an axial vector is bound to violate the conservation of parity, and 
this is precisely what happens in the weak interactions: 

Example 9.1 Inverse Mvon De,a� Consider the process 

represented (in lowest order) by the diagram 

� ;':? ". " 

ql w 

• ". � � 
Here q_ Pl - Pl, and we'll assumeq2 « M�'z, so we can safely use the simplified 
propagator (Equation 9.4); the amplitude is 

(9.6) 

Applying Casimir's trick (Equation 7.125), and assuming the neutrino masses are 
negligible, we find 

� I .. Al = (8(�:c)2) 2 Tr[y'"'(l - YSHil + m.c)Y"(l - YS);ll 
.put. 

The theorems ofS«tion 7.7 yield 

for the first trace, and 

• In f�CI. the viol�tion is 'maximal'. in th� 

s�nse th�t tile two terms �� eq�lly large. 
�n parity violation was first consid�r�. 
a factor of the form (1 + €y') was uSN!, but 
�xperi�nts soon dictitN that . _ -1 (� 
Problem 9.3). We can it a ·V-A.· ("vector 
minus axial �or') coupling. Fermi's original 

(9.7) 

(9.81 

(9.9) 

theory ofbrta dea.y waS a pu� "",,0' theory 
{lih QED). and although others propos� 
scabr. pseudoscalor. tensor. or pure �l 
couplings, it was not until 1956 that any· 
one seriously 'ontempbt� mixing terms of 
different parity. 
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for the Se<:ond. II follows that' 

'" 1..&'12 = 4 (-",--)4 (PI . P2)(Pl . p.) � Mwc <1""0 
(9.10) 

Actually, we want the sum over final spins but the average over initial spins. The 
electron has two spin states, but (massless) neutrinos (as we learned in Section 4.6) 
have only one (if you like, the incident neutrinos are alWQ}'S polarized. since they 
only come '[eft.handed'). SO 

(lAI2) = 2 (-",--)4 (PI . P2){Pl . p.) 
Mw< 

If we now go to the eM frame, and negle.::t the mass of the electron 

(9.11) 

(9.12) 

where E is the incident electron (or neutrino) energy. The differential scattering 
cross section (Equation 6.47) is isotropic (all scattering angles equally likely) 

(9.13) 

and the total cross section is 

[ ' ]' I ' ') ' u = 8� (
M�C2) neE l l - ( m;;) (9.14) 

'.2 
Decay of the Muon 

Electron-neutrino scattering is not the easiest thing in the world to study exper· 
imentally. but the closely related process, muon decay (J.l. -> t + v., + ii.), is the 
cleanest of all weak interaction phenomena, theoretically and experimentally. The 
Feynman diagram 

� 
ql � W p,  

" � � 
• Note th�t '�'''''�''' ,. -2(6;5',' - &;&:) (Probl.m 7.35). The I�ces in Equ�tion 9.7 �re speci�l 

ases of � structure th�t wilt OCCUr repe�tedly in this ch�pter, it might k � good idea to pau,,", 
hne and wor\:: oul the g�ric result (Problem 9.2). 
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leads to the amplitude 

(9.15) 

from which we obtain, as before, 

(9.16) 

In the muon rest frame, PI _ (m"c, 0), we have 

(9.17) 

and since PI -P2 + Pl + p. 

(P1 +p.)2 = pi+p! + 2pl . p. = m�cl + 2P1 . p. 
= (PI _1'2)2 = p� + p�  - 2pI . 1'2  = m!? - 2pI . 1'2  (9.18) 

from which it follows that 

(m� _ m:)cl 
Pl · P. "'"  2 

- m"E2 (9.19) 

The algebra will be simpler later on, at no significant cost in accuracy, if we set 
m, _ 0, so that 

(9.20) 

The decay rate is given by Equation 6.21:* 

dr _ OAfll) ( d1p2 ) ( d1p1 ) ( dJp. ) 
- 2!im" (2rr)J2Ipzl (lrr)J2IPJI (lrr)J2Ip.1 

x (2rr}"�·(pl -1'2 -P1 - p.) (9.21) 

To begin with, we peel apart the delta function: 

and perform the Pl integral: 

(9.23) 

• Note !h�1 !his is � 110m body deuy, so w.. haW! 10 go all the way Inck \(I 1M Golden Rule. 



Next we'll do the P2 integraL Setting the polar axis along P� (which is fixed, for the 
purposes of the P2 integration), we have 

(9.24) 

,nd 

(9.25) 

The � integral is trivial (fd¢ = 2n-); to carry out the 9 integration we change 
variables (8 -+ II): 

2 1ldu = -21P2l lp�1 sin9 d9 (9.26) 

(9.27) 

where 

(9.28) 

The u integral is 1 if 

(9.29) 

(and o otherwise) - which is to say (Problem 9.4). 

1 1,,1 < 1m"

1 
Ip�1 < !rn"c 

(lPlI + Ip41) > !m"c 

(9.30) 

These constraints make good sense kinematically: particle 2. for example. gets the 
maximum possible momentum when 3 and 4 emerge diametrically opposite to it: 

2 •• ---- ---1'-� 4 

In this case 2 picks up half the available energy (�rn!,c2), while 3 and 4 share 
the rest. If there is a nonzero angle between 3 and 4, 2 gets less. and 3 plus 4 
correspondingly more. Thus 1 m"c is the maximum momentum for any individllal 
outgoing particle. and the minimum total for any pair. 

The 9 and ¢ integrals have left us with 

(9.31) 
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The inequalities in Equation 9.30 specify the limits on the IPzl and Ip41 integrals: 
Ipzl runs from �ml'c - lp41 up to �ml'c, and Ip41 will then go from 0 to !ml'c. 
Putting in Equation 9.20' and carrying out the IP21 integral, we have 

(9.31) 

Finally, writing 

and expressing the answer in terms of the electron energy. E - Ip.lc, we concludet 

dr ( g. )' m;E' ( 4E ) 
dE = Mwc 2h(4JT)J 1 - 3m,,'! 

(9.33) 

This tells us the energy distribution of the electrons emitted in muon decay; it 
nicely matches the experimental spectrum (Figure 9.1). The total decay rate is 

(9.34) 

and hence the lifetime of the muon is 

(9.35) 

Notice that g ... and Mw do not appear separatdy, either in the muon lifetime 
formula or in the electron-neutrino scattering cross section; only their ratio occurs. 
It is traditional, in fact, to express weak interaction formulas in terms of the 'Fermi 
coupling constant' 

(9.36) 

• Notice that ( I...NII ) depends only on the m.>grIilli/k of PI. not on it. <Wtaicn: that·s why I waS 
frtt 10 ignore it in the {} and 4> integrations. 

t Remember Ibat Equation 9.33 applies only up to E "" i"'�? (Equation 9.30). at which point it 
drops abruptly to zero (lbe comers are softened a bit by Ibe indusion of p;irtide masses and 
tadiati� corrections). 
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Fig. 9.1 Experimental spectrum of po$itron� 
in 14+ -+ e+ + v, + �� . The solid line is 
the theoretic:.lly predicted spectrum based 
on Equation (9.33), corrected for electro· 
magnetk effects. (Soll",e; Bardon. M. el 01. 

Thus the muon lifetime is written 

(1965) Physicol R£�iew Lm�". 14, 449. For 
the latest high.pre.:ision data on milon de· 
cay go to the TWIST collaboration web site 
at TRIUMF, Vancouver, Be.) 

(9.37) 

in Fermi's original theory of beta decay (1933) there was no W; the interaction 
was supposed to be a direct four.particle coupling, represented in the Feynman 
language by a diagram of the form 

� � 
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From the modern perspective, Fermi's theory combined the W propagator with 
the two vertex factors, in the diagram 

w 

, '. 

to make an effective four-particle coupling (Onstant Gf. It worked, but only because 
the W is so heavy that Equation 9.4 is a good approximation to the true propagator 
(Equation 9.3)," and in fact it was re.-:ognized already in the 1950s that Fermi's 
theory could not be valid at high energies. The idea of a weak mediator (analogous 
to the photon) was suggested by Klein as far back as 1938. 

If we put in the observed muon lifetime and mass, we find that 

GF/(/ic}l :: .;; (Mg;,2 r = 1.166 x iO-}/GeV1 

The corresponding value of gw is 

8w = 0.653 

and hence the 'weak fine structure constant' is 

.: 1 a .. :: 
411" = 29.5 

(9.38) 

(9.39) 

(9.40) 

This number should come as something of a shock: it is larger than the ele.-:tromag. 
netic fine structure constant (a = rt,). by a factor of nearly 51 Weak interactions 
are feeble not because the intrinsic coupling is small (it isn't), but because the 
mediators are so massive - or, more precisely, because we typically work at energies 
so far below the W mass that the denominator in the propagator Iq2 - M�,ll is 
extremely large. 

'.3 
Decay of the Neutron 

The success of the muon decay formula (Equation 9.33) encourages us to apply 
the same methods to the decay of the neutron. n -+ p + e + 'ii,. Of course, the 
neutron and proton are composite particles, but just as the Mott and Rutherford 
cross sections (whiCh treat the proton as an elementary 'Dirac' particle) give a 

• F�rmi �lso thought th� coupling w�s pure 
1I«tor, �s [ m�ntionN earU�r. �pjle thrse 
defects (for which Fermi could scarcely be 
blamN; after aU, he invented the theory 
at a time when th� neutrino was a wild 

speculation and the Dil7rC equation itself waS 
br.lnd new), Fermi's theory was .. tonWtingly 
prescient. and all subsequent developments 
have been relatively small adjmtments to it. 
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good account oflow.energy electron-proton scattering, so we might hope that the 
diagram 

»e 
,1 wi$o 

n� � 
(the same as for muon decay, only with n -0. P + W- in place of j.t -0. ul' + W-) will 
afford a reasonable approximation to neutron beta decay. From a calculational point 
of view the only new feature is that 3 is now a massive particle (a proton, instead of 
a neutrino). As it happens (Problem 9.8) this does not change the amplitude: 

(IAI2) = 2 (!J. (PI . J12}(Pl . p.) (9.41) 

- same as Equation 9.16. In the rest frame of the neutron, we find 

(JAI2) ::  m.. (�)"IP2J (m2 _ m2 _ m2 _ 

2m.. IP21) 
c Mill � P , C 

(9.42) 

But because the electron rest energy is a substantial fraction of the total energy 
released, (mn - mp - m,)c2, we ClUlIlOJ afford to ignore the electron mass, this time. 

lbe decay rate calculation proceeds as before (with the masses now included): 

where 

dr � (;:2:1 C2"�:�;P'I) C"I'2J�' + m;<' ) C"I'2J�'+ m�" ) 
x (2Jr)\5"(PJ - P2 - Pl - p") (9.43) 

(9.44) 

(9.45) 

To carry out the P2 integral, we again set 

(9.46) 
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and orient the coordinates so that the z axis lies along P. (which is fixed, for 
purposes of the P2 integral); then 

,nd 

udu = -IPzllp.) sin9 d9 

The ¢ and 9 (or rather, u) integrals yield 

where 

dr � (IAtll) d'p+ dlp2l l 
� 

(4JT)4Iim
� Ip.ljPi + m�c2 

1 "" 1:+ � (m�c - IP21 - jIP4Il + m�cl - u) du � 1 1' ifu_ « m"c - IP11 - .,IIP412+ m]c2) < I4 ) 
o. othelWise 

and the limits are 

(9.47) 

(9.48) 

(9.491 

(9.50) 

(9.51) 

As before, Equation 9.50 defines the range of the Ip21 integral; I'll let you work out 
the algebra (Problem 9.9): 

tIm! - m; + m:)c2 - m"Jlp.11 + m�cl 
p± = 

m�c Jlp412 + m:Cl =F Ip.1 

With ( IAtI! ) from Equation 9.42, the 1)):21 integral becomes 

and since 

we conclude that 

dr 1 ( g. )' 
dE = Iic2(4JT)J Mwc j(E) 

where E = C.,llP41l + m!Cl is the electron energy. 

(9.52) 

(9.53) 

(9.54) 

(9.55) 
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E(MeV) 

Fig. 9.2 Eleoron en�'gy di�1ribu!ion (,om neutron bet� de· 
u�. (Solid line is the theoretic�1 curve: dots ire experimen· 
ul diU.) (Sou.u: Christensen, C. J. tf al. (1972) Ph)'S;wl 
Rt�jtw. 05, 1628. Figure (9.4).) 

Equation 9.55 is =t (use it, if you like, to rederive Equation 9.33, by setting mn 
-+ m" and m" m, -+ 0). butJ(E) is a rather cumbersome function: 

(9.56) 

It pays to approximate, at this stage. recognizing that there are four small numbers 
here: 

mn - my 
f == --- = 0.0014. m. 

E 
, - -- (� < I) < f). -

m"c2 

Ii E "" = 0.0005. m. 

<$> == l.&!  (0 < <$> < 1) m., (9.57) 

(The last of these is not independent. of course: <$>2 _ 1)2 - �2.) Expanding to lowest 
order (Problem 9.9), we obtain 

So the distribution of electron energies is given by 

dr 1 ( .. )' ./ ' 
- � - -- £ £2 

_ m2c' [(m - I'np)cl- E) 
dE ]flti. 2Mw,1 . "  

(9.58) 

(9.59) 

The experimental results are shown in Figure 9.2. The electron energies range 
from m,,2 up to about (m" - mp),2 (Problem 9.10). Integrating over E, we get the 
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total decay rate (Problem 9.11): 

' ( "" )' " r = 4JTl,'i 2Mw,1 (m,' ) 
x [ 1

1s(2a. - 9a2 - 8)�+aln(a+�] (9.60) 

where 

a .. m,, -mp 
m. 

(9.61) 

Putting in the numbers, I find (Problem 9,12) 
, 

T = r = 1318 s (9.62) 

This is in the ball park, as they say: the experimental neutron lifetime' is 885.7 
± 0.8 seconds. and given that weak decays range from IS minutes down to 10�lJ 
seconds we should perhaps be satisfied to get the right order of magnitude. But 
why isn't the agreement better? 

The main problem is that we have treated the proton and neutron as though they 
were simple point particles, interacting with the W in  exacdy the same way leptons 
do. To be honest about it, we should go back to the beginning, admit that we do 
not really know how the W couples to composite structures, draw in a blob on the 
Feynman diagram (to symbolize our ignorance) 

, 

". 

" p 
and express the amplitude in terms of various unknown 'form factors', whose 
structure is limited only by Lorentz covariance - just as we did in Chapter 8 for 
the proton-phatcn vertex. Not until a mature QCD can provide us with the detailed 
structure of the nucleons will we be in a position to perfect the neutron lifetime 
calculation. 

• This numhrr is from tht 2006 Particle Physics 
S""Jdtl IPPB). Fr� ntulron. art hard 10 work 
with, and th� 'official' ntulrOn lifetim� has 
changM substanliaUy over th� years (th� firsl 
PPB listed it as 10«1 ::I: BO s«onds). Note 
also that nucl�ar physicisl$ tend 10 quote tht 

""lf�ifo (I" l � r 1n2), and hrta..J=oy sp«ial· 
isl$ often quote th� 'comparative half·lif�' -

thr .... calkd 'ft' valur - which has ",nain 
kin�matic and Coulombic contributions r�· 
moved (for th� n�utron th� corre.:tion fac-
lor is about 1.7). This is jw;t to warn you that 
th� numhrrs giv�n in tilt lit=tur� for th� 
nrutron 'lifttimr' art aU over tht map, and it 
pays to r�ad thr fine print and <bed th� date. 
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And yet, the Mott formula works well for low·energy electron-proton scattering: 
why does essentially the same procedure give us the right answer in electrodynam­
ics, but not in the weak interactions? In both cases the wavelength of the 'probe' 
(y or W, as the case may be) is much larger than the diameter of the 'target' 
(p or n) (see Problem 9.13); the nucleon's internal structure is not 'resolved', and it 
behaves as a point particle. The crucial question, though, is: what is the net coupling 
stnngth of this object? Of course, the net charge of the proton is still e - it doesn't 
matter what complicated processes are going on inside - valence quarks emitting 
virtual gluons, gluons producing quark-antiquark pairs, 'sea' quarks recombining, 
and so on - because aU /his frenzied activity conserves charge. From the perspective 
of a long wavelength photon it just looks like a point, and the net charge of the 
composite nucleon is just the sum of the charges of the valence quarks. But there 
is no a priori reason to suppose that the same applies to the weak coupling; when 
a gluon splits into a quark-antiquark pair, the net contribution of this pair to the 
weak coupling may not be zero - who knows? To account for this, we make the 
following replacement in the n """"" p + W vertex factor: 

(9.63) 

where Cy is the correction to the vector 'weak charge', and 'A is the correction 
to the axial vector 'weak charge', Luckily, the same basic process, n """"" p + e + V" 
occurs not only for the fra neutron, but also within radioactive nuclei, so we 
have, in principle, many independent opportunities to measure Cy and cA." The 
experimental results are as follows: 

Cv == 1.000, CA = 1.270 ± 0.003 (9.64) 

Surprisingly, the vector weak charge is not modified by the strong interactions within 
the nucleon. Presumably, like electric charge, it is 'prote<ted' by a conservation law; 
we call this the 'Conserved Vector Current' (CVC) hypothesis.t Even the axial term 
is not altered much; evidently it is 'almost' conserved. We call this the 'Partially 
Conserved Axial Current' (PCAC) hypothesis. 

The effect of this substitution (Equation 9.63) on the neutron lifetime is some· 
thing you can calculate for yourself, if you have the stamina; to good approximation, 
the de<ay rate is increased by a factor of 

and the lifetime is decreased in the same ratio: 

1316 s 
, � -- = 901 s 

lA6 

(9.65) 

(9.66) 

• A �rticular favorite is 1'0 -> "N, which is known 1from the obsel"'led spin and parity of the 
initial and final st-.tes) to involve only ""tor coupling. 

t eve is built into the Standard Model, and nowldays 'V is taken to � 1 exacdy: the experiments 
are interpreted as melSurements of the Cabibbo angle (see below) - or, more predsely, of V ... 
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This is now within striking distance of the experimental value. Unfortunately, 
the agreement is deceptive, for there is yet "noiliu correction to be made. The 
underlying quark process here is d ...... u + W (with two spectators): 

• 

w ". 

and this quark vertex carries a factor of cos 8e, where 8e _ 13.150 is the 'Cabibbo 
angle'. I'll have more to say about this in Section 9.5, but the essential point for now 
is that our theoretical value for the neutron lifetime, corrected for nonconservation 
of the axial charge and modified by the Cabibbo angle, is 

90" 
, =  -,- = 950s 

cos 8e 
Two steps forward, one step back!' 

, .. 
Decay of the Pion 

(9.67) 

According to the quark model, the decay of a charged pion (tr- ...... 1- + VI, where 
I is a muon or an electron) is really a seaturing event in which the incident quarks 
happen to be bound together: 

w 

In this sense, it is a weak interaction analog to positronium decay (t+ + �- ...... y + 
y) or "Ie decay (e + c ...... g + g) - electromagnetic and strong processes, respectively. 
We could analyze it this way, following the methods of Example 7.8 and Section 8.5 
(see Problem 9.14), but in the end we would be stuck with a factor ofl1/t(0)11, andat 
this stage we have no idea what the wave function (1/t) of the quarks within a pion 

• "This isn't th� �nd of th� story; th�re is, for enmple. a snull Coulomb correction, (due to the at· 
traction of the electron and proton in the final sb.�), But _ are within 7% of th� aperimenb.l 
result. and it is time to move on. 
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looks like. Given that such a calculation will carry this undetermined multiplicative 
factor anyway, it is simpler to proceed as follows. 

Redraw the Feynman diagram, with a blob to represent the coupling of lr- to w-: 

p w /'I, 

We may not know how the W couples to the pion, but we do know how it couples 
to the leptons, so the amplitude must have the general form 

, 
.At = �[ii(3)y,,(l - yS)u(2W" 8(Mwc) 

(9.68) 

where F" is a 'form factor' describing the 11" -+ W blob. It has to bea four·vector, to 
contract with the y" in the lepton term. But the pion has spin zero; the only vector 
associated with it, out of which we might construct F", is its momentum, pI' .• (I 
won't bother with a subscript on the pion's momentum: P ""! Pl') So F" must be 
some scalar quantity times pI':t 

(9.69) 

In principle.j" is a function of f - the only available scalar - but since the pion 
is on its mass shell cr = m!c1).jw is, for our purposes, a fixed number, the 'pion 
decay constant'.: 

Summing over the outgoing spins, we get 

(I.AtI') = [4 (�c) ']' P"P> Tr[y"(l - YS)f2y"(l - YS)flJ + ffljC)] 

= � �� (�:J2r [2(p . PI)(P ' pJ) -I!P2 PJ)) (9.70) 

• Notice that _ inuoduce the (�al<) pion 
form factor at thr lr""l of .A, whereas for 
the (electromagnetic) proton form factou � 
waited until the ( I..kll) stage. Thr rrason 
is that thr proton hu a spin. and we would 
ha"" to include thai in the ros,",r of availabk 
vectors: it is only aflM wr have """'age4 over 
the spins that the list reduces to two. md 
the problem beeo""'s numgeable. Thr pion. 
ho�, has no spin, so we can afford to in­
troduce the form faclor directly in ..k, where 
it is only a l'tctor quantity. instead of a len· 
w< 

t For reasons that will appear in the next 
section. it is customary nowadays 10 factor out 
the appropria,", Cabibbo-Kob,ayashi-Maskawa 
(CKM) matrix ekment in the drfinition of 
the "",son decay <Qnstants:.r. -. Vo• J.- TQ 
a""id cluttered MlatiQn 1"11 use the Qlder 
(on""ntiQn. 

t lbe CQrresp<>nding faclor fQr Qther pseu. 
ooscalar mesons will involve a different value 
Qf r. and a different element in the CKM 
matrix (S« foomQtetl· 
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(the trace was already calculated in Equation 9.8). But P - P2 + Pl, so 

p .  P2 = P2 .  P3, (9.71) 

(9.72) 

Thus 

(9.73) 

(a constallt). 
The decay rate is given by the standard formula (Equation 9.35): 

(9.74) 

and the outgoing momentum is (see Equation 9.34 or Problem 3.19) 

(9.75) 

So 

(9.76) 

Of course, without knowing the decay constant,!", we cannot calculate the pion 
lifetime: But we are able to determine the ratio of the electron and muon decay 
rates: 

(9.77) 

(The experimental number is 1.230 ± 0.004 x 10-4.) At first glance, this is a very 
surprising result, for it predicts (correctly) that the pion prefers the muoll mode, 
in spite of the fact that the electron is much lighter. phase space considerations 
favor decays for which the mass decrease is as large as possible, and unless some 
conservation law intervenes, we ordinaril y  find that the lightest final state is the 
most common one. Pion decay is the notorious exception, and it calls for some 
special dynamical explanation. A due is suggeste<l by Equation 9.76: notice that if 
the electron were massless, the ]f- -+ e- + ii, mode would be forbidden altogethtr . 

• It is � r�ther strilcins f�ct th�t if you put in!. _ m.� (or, b,mer�, m.e cos /Ie) you 'Orne out 
very close to the ,..- .... ",- + Ii� lifetime. but I know of no persWisive theoretial justification 
for this ansalZ. and it doesn·t II/(Irk for the heav;"r mesons. 
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Can we understand this limiting case? Yes: the pion has spin 0, so the electron and 
the antineutrino must emerge with opposite spins, and hence equal helicities: 

The antineutrino is always right-handed, so the electron must be right.handed as 
well. But if the electron were truly massless, then (like the neutrino) it would only 
exist as a left·handed particle. More precisely, the 1 - yS in the weak vertex factor 
would couple only to left-handed electrons, just as it couples only to left·handed 
neutrinos (see Problem 9.15). That's why, if the electron were massless, the decay 
rr- -jo e- + v, could not occur at aU, and why (the physical electron being very clo� 
to massless) the decay is so heavily suppressed . 

•. , 
Charged Weak Interactions of Quarks 

In the case of leptons, the coupling to W±takes place strictly within a particular 
generation: 

(lepton generations) 

That is, e- -jo v. + W-, J.L- -+ v" + W-, r- -jo II, + W-, but there is no 
cross·generational coupling, of the form e- -jo v" + W-, for example. The wup!ing 
of W to quarks is not quite so simple, for although the generation structure is 
similar 

(�) . (:) . (:) (quark generations) 

the weak interactions do not strictly respect their separate identities. There are, to 
be sure, interactions of the form d -jo u + W- (the process that underlies neutron 
decay, n -jo p + e + v,), but there exist as well cross·generational couplings, such as 
s -jo u + w- (seen, for example, in the decay A -jo P + e +  vt). Indeed, if this were 
not the case, we would have three absolute 'flavor-(onservation' laws: conservation 
of 'upness·plus·downness', 'charm.plus·strangeness', and 'truth·plus·beauty' -
analogous to the three lepton number conservation laws. The lightest strange 
particle (K-) would be absolutely stable, and so would the B meson (the lightest 
beautiful particle); our world would be a quite different place. 

In 1963 (when u, d, and s were the only quarks known), Cabibbo (lJ suggested 
that the d -jo It + W- vertex carries a factor of cos {Jc, whereas s -jo It + W-
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carries a factor of sin {Je; apart from that they are identical to the leptonic couplings 
(Equation 9.5): 

w-1 w-1 � � 
(9.78) 

The strangeness-changing process (s -.. u + W-) is conspicuously weaker than the 
strangeness-conserving one (d -.. u + W-), so evidently the 'Cabibbo angle' Be is 
rather small. Experimentally, 

(Je = 13.15" (9.79) 

The weak interactions almost respect quark generations . . .  but not quite. 

Example 9.2 Leptonic �coys Consider the decay K- -.. 1- + ii), where I is an 
electron or a muon. This is the analog to ]f- decay (Section 9.4), but now the quark 
vertex is s + U -.. W-, instead of d + u -.. W-. From Equation 9.76 we have 

The coupling strength is presumably about the same, except that 
contained a factor of cos Be.J K carries a factor of sin {Je. Accordingly, 

where J" 

(9.80) 

Putting in the numbers, I get 0.96 for the muon mode (I - �) and 0.19 for the 
electron mode (I _ e). The absented ratios are 1.34 and 0.26, respectively; these 
decays are pure axial vector, and, as we discovered earlier (Section 9.3), perfect 
agreement is not to be expected. _ 

Processes of the kind considered in Example 9.2 are called Itptonic decays. There 
� also exist semiltptonic decays, such as ]f- -.. ]fo + e- + ii., K -" ]f  + + �- + iiI' 

(Figure 9.3a), or for that matter the beta decay of the neutron: n -.. p+ + e- + ii •. 
Finally, there are nonltptonic weak interactions, such as K- -.. ]f0 + ]f- or A -.. 
p+ + ]f- (Figure 9.3b). Generally speaking, the latter are the hardest to analyze, 
be<ause there is strong interaction contamination at both ends of the W line [2). 
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Fig. 9.3 (�) A typic�1 semileplonic dec�y (it ..... If+ + /.1- + 
i!�). (b) A typical nonleplonic wuk dtcay (A ..... p. + .!I'-). 

Example 9.3 Semileptanic Decays In the case of neutron decay (n --;. p + e + ii,j. 
the basic quark process is d ---+ u + W- (with two spectators). However, there 
are two d quarks in the neutron. and eilMr OIU could couple to the W; the 
net amplitude for the process is the sum. The simplest way to keep track of 
the numbers is to use the quark wave functions in Section 5.6.1; the Aavor 
states '/1n. for instance, give n = (ud - dujdj.;2, from which (with d --+ 1.1) we 
get ((1.11.1 - uu)d + (ud - du)ul/...!2 = (ud - du)u/v'2 = p. The overall coefficient is 
then simply (as Be (as [ claimed at the end of Section 9.3). By contrast, in the decay 
1:0 --+ 1:+ + e + ii,. the quark process is still d -+ 1.1, but here EO .::::: [(us - su)d + 
(ds - sd)uJf2 ...... [(us - su)u + {us - su)uJf2 = (us - su)u = J2:E+, and hence the 
amplitude carries a factor of J2 cos 00'- The decay rate is given by Equation 9.60, 
which reduces (in the case,, » 1) to the fonn 

where lI.m is the baryon mass decrease and X is the Cabibbo factor (cosOc, for 
neutron decay; J2 cosBc, for :Eo ...... r:+ + e + ii.; etc.). I'll let you work out the 
numbers for yourself (Problem 9.17).t U 

Cabibbo's theory was very successful in correlating dozens of decay rates, but 
there remained a disturbing problem: this picture allowed the J('J to decay into a 
p.+p.- pair (see Figure 9.4). The amplitude should be proportional to sin Oc cos 
Be, but the calculated rate was far greater than the experimental limit. A solution 

• Acrually. tMr� is a technical diff�r�nc� h�r�: tM acti� quark is bound 10 th� spectator in a .pi" 
sirtgla state. Fortunately. this does not affect the Hfetim�. 

t This procedur� includes only th� Ya\enc� quarks. and h�nc� is insensitive 10 th� nonconser· 
vation of th� axial coupling. As we found in Equation 9.65, PCAC can l�ad to a correction of 
nearly SQ%, 50 on� does not expect fine precision in the lifetimes. Cahihbo's theory included a 
way of calculating the axial couplings, but ! shall not go into that h�r�. 
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Fig, 9.4 The dec�y KO ---> . ' + ... -. Fig. 9,S The GIM mechanism . This diigr�m 
cancels Figure 9A. Note the virtual , quark 
replilong the u. 

to this dilemma was proposed in 1970 by Glashow, Iliopoulos, and Maiani (GIM) 
[3}. They introduced a fourth quark, c (note that this was four years before the 
'November Revolution' produced the first dire<:t e:q>erimental evidence for charm) 
whose couplings to s and d carry factors of cos Be and - sin Be, respectively: 

w-l w-l � � 
-� yl'( l - y>)(- sinBc) 2v2 

(9.81) 

In the 'GIM me<:hanism', the diagram in Figure 9.4 is canceled by thecorresponding 
diagram with c in place of u (Figure 9.5), for this rime the amplitude is proportional 
to - sin Be cos Be" 

The Cabibbo-GIM scheme invites a simple and beautiful interpretation: instead 
of the physical quarks d and 5, the 'correct' states to use in the weak interactions 
are tf and i, given by 

cl = dcosBe + ssin8e, s' = -dsinBc + s cos Be (9.82) 

• The clncel�tion is not P'tftd, beau� the 
mass of the e is not the ume as the IN.SS 
of the ... Howe""r, these virtrnll !"Irticles are 
SO far off the mass shell that both pr0!"lga· 
tors art essentially just ;�/<i. (In Glkulating 
AI: we sholl be in�ratin8 over the one rt· 
maining in�rnal momenNm which is not 
fuce<l by the conservation laws. n,is is essen· 
tUlly the momenNm 'circulating around the 

loop'. llecauSO!' of the two W propagators, the 
main contribution will co� in the region of 
the W mass, which is so much greater than 
the , or " mass that the lallet can, to good ap­
proximation, be neglected. Actually, the de· 
uy WS <xcur, it's just elCtremely slow, and if 
you ilLdlld< the effects of w/e mass difference, 
the calculation is consis�nt with the ob�� 
rate,) 

1 321 



32S I 9 Weak 'nt.,aaion5 

or, in matrix form (d') ( "" oe 
1 = - sinOc 

,'nBC) (d) 
cosBc S 

(9,83) 

The W's couple to the 'Cabibbo-rotated' states 

in exactly the same way that they couple to lepton pairs, (�.) and (�); their 

couplings to the physical particles (states of specific Aavor) are then given by 

(9.84) 

That is, d _ l.( + W- carries a factor cos Oc, S --+ l.( + W- carries a factor sin Oc, 
and so on: 

At the time, the GIM mechanism seemed a little extravagant - introducing a 
new quark just to fix a rather esoteric technical defect in a largely untested theory. 
But the skeptics were silenced by the discovery of the .p(c') in 1974. Meanwhile, 
Kobayashi and Maskawa [41 had generalized the Cabibbo-GIM scheme to handle 
three generations of quarks.t the 'weak interaction generations', 

• It is pur�ly con�ntional that w� 'rotato':' d and 
5, rather than u and c; we could accomplish 
th� ";"n� purpose by introducing " _ u cos 
9c - c sin ge and t:' _ u sin ge + c cos ge. 
Incidentally, you might be wondering whether 
a similar rotation occurs in the ItpIOIi sec· 
tor. If aU neutrinos wele massless, any linear 
combination of them would <lilI be massl .... , 
and there would be no 'tag' to identify the 
'umot�t«l' stat .... But, if neutrinos ha� mass 
( ... _ now know they do), ther� is no rea· 
son to suppose that the 'mass eigenstato':s' ar� 
the ... me as the weak imeraction states, .. nd 
the """e rotation story plays out _ only in reo 
.... =, since the 'familiar' nrutrinos are the 
on ... paired with the charg«lleprons in the 

(9.8S) 

"",ale into':ractions and we need to rOlate back 
to get the 'physical' stato':s (see Chapter 11). 

t It is interesting to note that Kobayashi and 
Masbwa proposed a third quark generation 
before the ="d waS complete, and long be­
fore there was any experimental eviden� for 
.. third. They were moti .... ted by a desire to 
expwn CP violation within the c..bibbo-GIM 
scheme. It turned out th .. t for this purpose 
they needed a complex number in the 'rota· 
lion' matrix (Equation 9.83), but such a term 
could a1w .. ys be eliminated by suitable ,«le{. 
inilion of the quark phases, unl.,,;,; tMY went 
to l 3 x 3 matrix, lnd hence to three generl' 
lions (Problem 9.18) . 
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are related to the physical quark states by the CKM matrix: 

(9.86) 

where V"-<I, for example, specifies the coupling of u to d (d -4 u + W-). 
lbere are nine (complex) elements in the CKM matrix, but they are not all 

independent (see Problem 9.18); V can be reduced to a kind of 'canonical form', in 
which there remain just three 'generalized Cabibbo angles', (0\2, 02], 00) and one 
phase factor (�) [SJ : 

S\2Cll 
, CllCn - SUSllsnt 

-C12Sl] - S\2C2lsUd' ''''-') SHCll 
C2lCll 

(9.87) 

Here cij stands for cos Oij, and sij for sin Oij. If On _ Oil _ 0, the third generation 
does not mix with the other two, and we recover the Cabibbo-GIM picture, with 
B12 - Oe. However, there is compelling evidence (namely, the observed deGIY of 
the B-Wu) meson) for some third·generation mixing, although it must be fairly 
small in order to account for the success of the original Cabibbo-GIM scheme. 
The Standard Model offers no insight into the CKM matrix (indeed. this is one of 
its most conspicuous weaknesses); for the moment, we simply take the values of 
the matrix elements from experiment. The magnitudes are [6]: 

••• 

(0.9738 
IVijl "" 0.2271 

0.0081 

0.2272 
0.9730 
0.0416 

Neutral Weak Interactions 

0.0040) 0.0422 
0.9991 

(9.88) 

In 1958, Bludman [7] suggested that there might exist lUulral weak interactions, 
mediated by an uncharged partner of the W's - the zfJ: 

Here f stands for any lepton or any quark. Notice that the same fermion comes 
out as went in (just as in QED and QCD). We do not allow couplings of the form 
J,L- -.. e- + zfJ, for example (this would violate conservation of muon and electron 
number), nor of the form S -4 d + zfJ (such a strangeness-changing neutral process 
would lead to � -4 /1-+ + /1--, which, as I have already remarked, is strongly 



fig. 9.6 The �rst picture of a neutral weak 
pr<><:ess [iiI' + e- ..... li,. +e-). The neutrino 
enters from below �eaving no trad), and 
strikes an electron, which moves off (up­
ward), emitting two photons (which show 

,­
" 

:1 -", , 

up in the �gure only when they subsequently 
produce electron-positron plirs) as it slows 
down and spirils inward in the superim­
posed magnetic �eld (the big circle in me 
lower left is a lamp)_ {Sou",e: (ERN.) 

suppressed).' [n 1961, Glashow [8J published the first paper on unification of weak 
and electromagnetic interactions; his theory required the existence of neutral weak 
processes, and specified their strocture (see Section 9.7). In 1%7, Weinberg and 
Salam [9J formulated Glashow's model as a 'spontaneously broken gauge theory', 
and in 1971, 't Hooft (10) demonstrated that theGlashow-Weinberg-Salam(GWS) 
scheme is renormalizable. Thus there were increasingly persuasive theoretical 
reasons for thinking that neutral weak interactions occur in nature, but for a long 
time there were no experimel1tal data to support this hope. Finally, in 1973 [IlJ, 

• In the case of newlr4.1 processes, it doesn't matter whether )'Ou use the physical states (d, s, b) Or X'::: :�.;� ::::::": ::::::';::: :::::::,' � give; .4 -7:1 = ddsin'9c + «<<>s'9, + (d., +  Sd) sin9ccos9c. 

So the sum of the two is .4  - ;;-of +- U _ tid .. it. Thus the n<l amplitude, once both di<lgrams 
are combined, is the s:.me whichever states we use. (The s:.me argument gettera)izes to thn.e 
generations, as Ion8 as the CKM matrix is unitary.) 
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a bubble chamber photograph at CERN (Figure 9.6) revealed the first convincing 
evidence for the reaction 

jj,, + e � jj,, + e  

suggesting mediation by the ZO; 

• , 

z 

"" 

The same series of experiments also witnessed the corresponding neutrino-quark 
process, in the fonn of inclusive neutrino�nudeon scattering: 

jj,, + N � jj,, + X 

v,, + N � v,, + X  

Their cross sections were about a third as large as those of the related charged 
events (iiI' + N � j.t+ + X and v" + N � j.t- + X), indicating that this was indeed 
a new kind of weak interaction, and not simply the higher·order process, 

• • 
". 

w w 

(which would yield a far smaller cross se<:tion). The CERN results came as welcome 
encouragement to eledroweak theorists, who had been out on a limb now for 
several years [12]. 

As we have seen, the coupling of quarks and leptons to w± is a universal ' V·A' 

form; the vertex faclor is always 

(Wo!< vertex factor) (9.89) 

(It is true that the axial coupling to composite structures, such as the proton. is 
modified, but that is a result of strong interaction contamination - the underlying 
quark process is pure V.A.) The coupling of the ZO is not so simple: 

(ZO vertex factor) (9.90) 
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Table 9.1 Neutril Vedor ind ixiil �to' couplings in the CWS model 

f " " 

� .. v". v, , 
, 

e-. /A . '  - t + 2sinl0", -j 
". C.I i _ j sin1o... j 
d. s. b _ i + � sinlo... , -, 

where gz is the neutral coupling constant. and the coefficients 4. and � depend on 
the particular quark or lepton if) involved. In the GWS model, aU these numbers are 
determined by a single fundamental parameter 0..,. called the 'weak mixing angle' 
(or 'Weinberg angle'), as indicated in Table 9.1. The weak and electromagnetic 
coupling constants are related: 

g, = g. sin8 .. cos8 ... 
(9.91) 

where St, remember, is essentially the charge of the electron (g.. = e./4if7lfC). 
Finally, the W�and ZO masses are related by 

Mw = Mz(Qs8.. (9.92) 

Equations 9.9{}-9.92 are the basic predictions of the GWS model; you'll see how 
they were obtained in the next set:tion. 

The Standard Model provides no way to calculate 8,.. itself; like the CKM matrix, 
its value is taken from experiment: 

(sin1 8 .. = 0.2314) (9.93) 

Butgiven the value of8 ... , we can calculate the W and Z masses (see Problem 9.20). 
Their discovery by Rubbia at CERN in 1983, at Mw-82 GeV/ ,1 and Mz _ 92 GeV/ 
,2 (as predicted) was persuasive evidence for the GWS model [13]. 

Example 9,4 Elasti' Neufrino-Electron Scattering In Example 9.1 we calculated the 
cross section for the W-mediated process VI' + e __ v. + J.L. We now consider the 
related ZO·mediated reaction v" + e __ v" + e. 

� � • 

ql z 

", "" ::;: � 
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The zfJ propagator is (Equation 9.3) 

-i(&,. - ql'q,/M�2) q2 M�cl 
At low energies (f « M�(2) it reduces to 

With this appro:timation. the amplitude is 

and hence (Problem 9.2) 

(1...Ifll) = 2 (4�Z')· Trlyl'(l - y5)lly"(1 - y5)1)] 

x Tr(y,,(cv - CAYs)qt2 + me)y.(cv - C .... yl)qt. + me)] 

= � (�c r {Icy + c .... )2(pl . Pl){Pl . P4] 

(9.94) 

(9.95) 

(9.96) 

+ (cv - , .... )l(p) . P.)(Pl . Pj) - (mc)l(c� - C�)(PI . Pl)) (9.97) 

where m is the mass of the electron. and Cv and c .... are the neutral weak couplings 
for the electron. If we now go to the eM frame. and ignore the electron mass 
(m -+ 0). we find 

where E is the electron (or neutrino) energy. and () is the scattering 
(Figure 9.7). The differential scattering cross section (Equation 9.47) is 

do (")' ( g, )' , [  , " 'J dQ = 2 -;; 4Mzcl E (cv + c .... ) + (cv - c .... ) cos 2" 

and the total cross section (integrating over aU angles) is 

(9.98) 

angle 

(9.99) 

(9.100) 



Beton: 

Fig. 9,7 EI�stic neutrino-electron scattering in the eM, 

Putting in the GWS values for Cv and 'A (from Table 9_1), and comparing the result 
of Example 9.1 (Equation 9,14), we find that for energies substantially above the 
muon mass 

(9.101) 

The current experimental value [14] is 0.11, which, given the 10% uncertainties in 
the measurements, is reasonable agreement. _ 

You might well ask why it took so long for neutral weak interactions to be detected 
in the laboratory; after all, 15 years separate Bludman's original speculations from 
the definitive experiments at CERN. The reason is that most neutral processes 
are 'masked' by competing electromagnetic ones. For example, e+ + e- - ;t+ 
+ ;t- can occur tither by a virtual z!l or by a virtual y (Figure 9.8); at low 
energies the photon mechanism overwhelmingly dominates.' That's why neutrino 
scattering was originally used to confirm the existence of neutral weak interactions; 
neutrinos have no electromagnetic coupling, so the weak effe<:ts are not obscured. 
But neutrino experiments are notoriously difficult - hence the long delay. An 
alternative is to work at high energy - specifically, in the neighborhood of the 
ZO mass, where the denominator of the z!l propagator is small, and the 'weak' 
interaction is correspondingly large. In the early days it was hard to estimate 0 ... , 
and hence the z!l mass was quite uncertain. But by the late seventies, a variety of 
experimental data pointed to Ow "'" 29Q , and hence to Mz _ 90 GeV It?- [see Problem 
9.20). This prediction was stunningly confirmed in 1983 [131, and inspired the 

, 

z 
, • 

Fig. 9.8 Weak �nd electromagnetic contributions to e" + e- ..... ..... + ... -

• In principle, there is weak contamination in 
Mry dectromagnetic process, since the z!' 
couples to everything the y does {�nd then 
some�. For �mple, the Coulomb potential 
binding the electrons to the nucleus in an 
atom is slightly modifiM by z!' exchange, 

and Ihis i. observable in atomic spe<I", . 
Similarly, there is a weak contribution to 
electron-proton SCl.ttering. Although these 
effects are minute, they Ie."" • teU.tale 
fingerprint: p.rity violation 115\, 
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Fig. 9.9 Electron-positron scattering near the ZO pol�. 

construction of electron-positron colliders designed to operate at the ZO peak: SLC 
at SLAC, and LEP at CERN. 

Example 9.5 Electron-Positron Scattering Near the z!l Pole Consider the process ,+ 

+ ,- ...... f + j(Figure9.9), where! isanyquarkor lepton.' This time we shall not use 
the approximate form of the z!! propagator (Equation 9.95), for we are interested 
precisely in the regime ct <::: (Mzc)2. The amplitude is 

(9.102) 

where q -PI + P2 -pJ + p •• Since we are working in the vicinityof90 GeV, we can 
afford to ignore the lepton and quark masses.t In this case the second term in the 
propagator contributes nothing, for q" contracts with y" to give 

u(4)j1(cv -CAys)v(3) 

but}f = '13 + 'I. and ii(4)'I. "" 0 (Equation 9.96 with m - 0), and 

'I*v - CAys)v(3) "" (ev + cAY\')u(3) = 0 

for the same reason. Thus 

and it follows that 

(loL)2) = [S(f g{MzC)2)
]2 Tr(y"(4 -�ys)'IJY·(4 _ �yS),.) 

x Tr[y,,(c� - C�yS)'lY"(c'V -C�yS)'
2
J 

• No: an electron, however. for then we would have to include th� rotated di"llram. 

(9.104) 

t I assum� mf « Mz, which rxclud ... th� top quark. But th� I cannot br producoNl anyway, at 
theu energi .... 
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Now, the first trace is (Problem 9.2) 

and there is the corresponding expression for the s«ond trace, so 

O.L12) = � [if f�ZC)2 r 1[(4)2 + (c�.l][(C�)2 + (cA)2] 

X [(PI · PJ)(P2 . p.) + (PI . P.)\P2 . Pl)] 
+ 44�c"vcA[(Pl . PJ)\P2 . p.) - (PI . p.)(Pz • PI)]} 

In the eM frame this reduces to 

(9.105) 

(9.106) 

(9.107) 

where E is the energy of each particle and B is the angle between PI and PI- The 

differential scattering cross section (Equation 9.47) is, therefore, 

(9.108) 

and the total cross section is 

(9.109) 

As it stands, a blows up at the ZO pole - that is, when the total energy (2E) hits 
the value Mzc2 (just right to put the ZO on its mass shell). The problem is that we 
have treated the ZO as a stable particle, which it is not. Its lifetime is finite, and this 
has the effect of'smearing out' its mass. We can account for this by modifying the 
propagator [16J 

I 
(M zc)2 -->- 'q'>=CI'M;:,O'OI'C+'"ih"MO,OrC::, (9.110) 



�G NtulnJlWtak I"uroaiom 

where rz is the decay rate (experimentally. fz - 3.791 ± 0.003 x 1024/s). With this 
adjustment. the cross section be<omes 

u = (!icg:E)2 [(4l + (c�iH(c�)2 + (CA)2J 
4811" [(2E)2 (MZC2)lJ2 + (IiMzc2rz)1 (9.111) 

Because lirz « Mzc2 • the correction for finite z? lifetime is negligible except 
in the immediate vicinity of the ZO pole. where it has the effect of softening the 
infinite spike. 

In Chapter 8 we calculated the cross section for the same process when mediated 
by a photon (Equation 8.6J: 

(9.112) 

(where o! is the charge of J. in units of e). Thus the ratio of weak to electromagnetic 
rates in (for example) muon production. is 

u(e+e- --+ z!! --+ JL+JC) = I u - 2sin2 /:1", + 4 sin·e ... ]2 ) 
u(e+e- --+ Y --+ JL+JL-) (sine ... cose .. )4 

(9.113) 

The factor in curly brackets is approximately 2. Substantially bdow the z? pole (2E 
« Mze2). then • 

• , ( E )
' 

uy
;;;;: 2 Mzc2 (9.114) 

and the electromagnetic route dominates (at 2E = �Mze2. for instance. the weak 
contribution is less than 1%). But right on the z!! pole (2E _ M Z,2). 

Uz ;;;;: ! (MzC2) "" 200 f1y 8 lirz (9.115) 

At the z!! pole. therefore. the weak mechanism is favored. by a factor of around 200 
(Figure 9.10): _ 

• Equ.ally interesting is the electrom�gneti'· 
weak 'intrrfrrnlce' that occurs whnl the two 
amplitudes ;are combined: 1.4" r + .4"d • 
1.4".12 + l.4"d + 2 Re(..K r ..kz). We h�ve 
akulated I""" d and (in Ch�pt.., 8) 1.4".11• 
but the cross term provides � sensitive test 
of the GWS theory. even at energies subs Ian· 
ti�lIy below the ZO pole. (See Halzen �nd 

Martin, ref. (11). SK\ion 13.6. and ref. (ISJ.) 
Indeed. it w�s the success of the electroweak 
interfrren� experiments in 1978 that (On· 
vinced most theorists th�t the GWS model 
is coned. For a contemporary account. see 
P"�ia Today. September 1978. p. 17. 
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Fig. 9.10 Eledron·positron $cattering in the neighborhood of the zC pole. 

9.7 
Electroweak Unification 

9.7.1 
Chiral Fl!rmion Statl!s 

AU the cards are now on the table;" it remains only to ex-plain where the GWS 
parameters in Table9.1 and Equations 9.90-9.92 come from. Glashow's original aim 
was to unifY the weak and electromagnetic interactions - to combine them into a 
single theoretical system, in which they would appear not as unrelated phenomena, 
but rather as different manifestations of one fundamental 'electroweak' interaction. 
This was a bold proposition, in 1961 [17J. In the first place. there was the enormous 
disparity in strength between weak and electromagnetic forces. However, as 
Glashow and others recognized, this could be accounted for if the weak interactions 
were mediated by ernemely massive particles. Of course, this immediately begs the 
second question: ifit's really all one basic interaction, how come the electromagnetic 
mediator (y) is massless, when the weak mediators (w± and zO) are so heavy? 
Glashow had no particularly good answer ('It is a stumbling block we must overlook', 
he said coyly). The solution was provided by Weinberg and Salam, in 1967 (see refs. 
[8] and [9]) in the form of the 'Higgs mechanism' (Chapter 10). Finally, there is a 
structural difference between the electromagnetic and weak vertex factors, which 
at first glance would seem to preclude any possibility of unification: the former are 
purely vectorial (y'"'). whereas the latter contain vector and axial vector parts. In 
particular, the w±coupling is 'maximally' mixed V -A in character: y'"'(l - y�) . 

• I have nol discussed the couplings of W's �nd ZO's to One �nother (or of W·s to the photon). 
1be ruks ar� similar to those for gluon-gluon coupling in QeD, and �re listed in App"ndix D. 
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This last difficulty is overcome by the ingenious device of absorbing the matrix 
(1 - yS) into the particle spinor itself. Specifically, we define 

(9.116) 

The subscript (L) stands for 'left·handed', and is supposed to make you think 
'helicity -1'. However, this is seriously misleading, since UL is not, in general. a 
helicity eigenstate. In fact, for solutions to the Dirac equation, 

(9.117) 

(Problem 9.26). if the partick in question is massless, then E = Iplc, and 

(9.118) 

where 

(9.119) 

as before. Remember that (ll/l)I is the spin matrix for a Dirac particle, and hence 
((:I . I) is the helicity, with eigenvalues ± 1. Accordingly 

1 , I 0, 
-(I - Y )u(P) = 
2 u(P), 

if u(P) carries helicity + 1 ] 
if u(P) carries helicity - 1 

(for m = 0) (9.120) 

(If u(P) is lIot a helicity eigenstate, i (1 - y5) functions as a 'projection operator', 
picking out the helicity -1 componenl.) On the other hand, if the particle is 
lIot massless, it is only in the ultrarelativistic regime (E » mez) that Equation 
9.118 holds (approximately), and hence only in this limit that UL (as defined by 
Equation 9.116 carries helicity -1. Nevertheless, everybody calls Ut a 'left·handed' 
state, and I shall stick to the customary language: 

Meanwhile, for alltipartic/u we definet 

(9.121) 

• Ple�se unders�nd; Equation 9.116 is the .kfittilWn of "L � nobodys �rguing about Wt. rm 
only ...... rning you that the """'" is misleading, ·left·handed· does rwI mean 'helicity -1". except 
in CQntnts where the partide's m.1SS is negligible. 

t If the sign of yj seems strange, refer to the fOOlnote following Equation 7.30. 
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Table 9.2 Chirai spinors 

Partides Antiparticles 

R and L co=spond 10 hdidty +1 
�nd -I if 1ft _ I), _nd appn:>.x;'n"tdy 
so if E » m2. 

The corresponding 'right-handed' spinors are 

(9.122) 

As for the adjoint spinors, since yS is Hermitian (ySt _ yS), and it anticommutes 
with y!J. (y!J.yS _ _  ySy!J.), 

(9.123) 

Similarly 

(9.124) 

We call these various spinors (summarized in Table 9.2) 'chiral' fermion states 
(from the Greek word for 'hand' - same root as 'chiropractor'). 

I emphasize that this is nothing but notation; it is u�ful because it allows us 
to recast the weak and electromagnetic interactions in a form that facilitates their 
unification. Consider, to begin with, the coupling of an electron and a neutrino to 
the w- (as it occurs, say, in inverse beta decay, Example 9.1): 

, 
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111e contribution to J( from this vertex is given by 

(1 - Y') );, = liy" -,- , (9.125) 

(here e and v stand for the particle spinors; for a while we need to keep careful 
track of the different particle species, and u" u •• , elc. just gels too cumbersome). 
111is quantity is calle<! the weak 'current'; as we shall see, it plays a role analogous 
10 the electric current in QED. Now 

'0 

(!..::..C) _ (!..±L) Y" 2 - 2 Y" 

(!..::..C) _ (!..±L) (!..::..C) y" 2 2 y" 2 

(9.126) 

(9.127) 

(9.128) 

This may not look like much of an improvement, but it enables us to write 
Equation 9.125 more neatly, in terms of the chiral spinors: 

(9.129) 

111e weak vertex factor is now purdy vectorial - but it couples left-handed electrons 
to left-handed neutrinos. In this sense it is still structurally different from the funda­
menial vertex in QED; however, we can playa similar game there, too. Notice thai 

(9.130) 

(similady, U -UL + uRI, so the electromagnetic analog can itselfbe written in lerms 
of chira] spinors: 

(9.131) 

(For future purposes, it is best to build in a faclor of -1, 10 accounl for Ihe negative 
charge of the electron). Observe that the 'cross terms' vanish: 

( I + r' )  ( I + Y' )  ( I - Y' ) ( I + Y' )  tLy"eR = t  -,- Y" -,- e = ty" -,- -,- ' (9.132) 



'" I 
bu' 

(9.133) 

Equations 9.129 and 9.131 are beginning to look like the stuff of which one might 
build a unified theory. It is true that the weak current only couples left·handed 
states, whereas the electromagnetic current couples both types, but apart from 
that they aTe strikingly similar. So attractive is this formulation that physicists 
have come to regard left· and right-handed fermions almost as different particles: 
In this view, the factor (1 - yS)/2 in the charged weak vertex characterizes the 
participating particles, rather than the interaction itself; the latter is vectorial in all 
cases - strong, electromagnetic, and weak alike. 

9.7.2 
Weak 1505pi" and Hypercharge 

In addition to the (negatively charged) weak current 

describing the process e- ...... v, + W-. there is also, of course, a positively charged 
current 

w< l � 
• Tbtte is a danger in carrying this 100 f�r. You 

may find yoursrlf wondering, for rumple, 
whe�r the left·hmded electton necessarily 
has the same m"ss as the right·handed elec· 
tron; or, noting that no vecTOr inte=tion can 
couple a Ieft·handed p;lrtide TO a right·handed 
one (� Equations 9.112 and 9.113), you 
may �sk now the two 'worlds' communica� 
a! all. Both questions art based on a mis· 
understanding of Ul and u�. "The problem 
is that, usrful:as it is in describing p;lrtide 
iIIumctio/lj, h�ndedness is no! conseMd in the 

prop;lgation of a frte p;lrtide (unless il$ =55 
is uro). Formally, )'1 does not commu� 
with the free·p;lrtide Hamil!onian. In fact, 
u, and w. do not samfy the Dirac fiJuation 
(� Problem 9.26). II p;lrticle that starts out 
left·handed will soon evo]"" a right·handed 
component (By contrut, lulkity is conserved 
in free·p;lrtkle prop;lgation.) Only for mal.1ess 
fennions can ]"ft· and righ!.handed species be 
considered distinct p.1rtides in the full "'....., 
of the word. 
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representing the process II. -+ e- + w+. We can express them both in a more 
compact notation by introducing the left·handed doublet 

(9.134) 

and the 2 x 2 matrices 

(9.13S) 

so that 

The matrices r'"'are linear combinations of the first two Pauli spin matrices 
(Equation 4.26): 

(9.137) 

(I use the letter r here, instead of u, to avoid any possible confusion with ordinary 
spin.) This is all very reminiscent of iS05pin: in Se<;tion 4.5, we put the proton and 
neutron into a doublet similar to Equation 9.134. Indeed, we could contemplate a 
full 'weak isospin" symmetry, if only there were a third weak current, corresponding 

to !r3 = ! (1 0 ), l l 0 -1 

(9.138) 

'Perfect!' (I hear you exclaim), 'There's the m:utral weak current!' Not so fast. This 
current only couples kfi"handed particles; in the older language, it is pure V·A, 
whereas the neutral weak interaction involves right. handed components as well. 
But hang on - we're almost there. 

Building on the parallel with isospin, we are led to consider a weak analog of 
hypercharge (Y): which is related to electric charge (Q, in units of t) and the third 
component ofisospin (ll), by the Gell·Mann-Nishijima formula (Equation 4.37): 

(9.139) 

We introduce, then, the 'weak hypercharge' current 

(9.140) 

• You h�ve prob.lbly forgotten this word. but hyp.n:karg< i$ �$S�nti.ally the $ame as strangeness. 
only shifted, in the GO"" of b.lryons. sO th�t th� c�nter rOW of Eightfold Way di.-.grams wiD al· 
w�ys carry Y � I). Specifically. Y � S ... A. whMe A is th� baryon number. 
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This is an invariant construct. as far as weak isospin is concerned. for the latter 
does not touch right-handed components at all. and the combination 

is itselfinvariant.· The underlying symmetry group is called SU(2)L 0 U(I); SU(2)L 
refers to the weak isospin (with a subscript to remind us that it involves left·handed 
states only). and U(I) refers to weak hypercharge (involving both chiralities). 

! have developed aU this in terms of the eie.::tron and its neutrino. but it is a 
simple matter to extend it to the other leptons and quarks. From the left·handed 
doublets (cabibbo-rotated. in the case of the quarks) 

(9.141) 

we construct three weak isospin currents 

(9.142) 

and a weak hypercharge current 

(9.143) 

wherej:;" is theele.::tric current: 

, 
J:m = L Q;(ii;LYI'UjL + U,RYI'UjR) (9.144) 

•• t 

{summed over the particles in the doublet. with Q. the electric charge).t 

• If you UTe to Ihink of it this w�y. what 
� h�ve done is to combine two weak 
isospin doublets to make an isotriplet. 
"iiLtL. (liLVt - <L�d. <tV, (an:ologom to 
Equation 5.38). and an isosinglet (liLVt + 'ted 
(analogous to Eqmtion 5.39). � first three 
8" to mau the weak isospin currents l' and 
/; the Lost. together with a right·handed pi�e. 
m�kes the we�k hypercharge current. /. 

t You might ask what Ihe diffi ... na is be�n 
""''''' isospin (and hypercharge) and their or· 
dinary ('strong') counterparts. The question 
is JUrticul�rly pertinent when you come 10 
the light quarh: the weak isospin doublet is (;) t' whereas Ihe strong i"""pin doublet 

is (�). Pretty similar . . .  is there anything 

10 Ihis? Nope. After all. (i) we�1: i",,"pin ap' 
plies 10 leptons as weD as quarks (and to all 
Ihree qmrk generations); (ii) weok isospin 
involves only the Itft-"�",kd chiralities. (all 
right.handed states are nngllU - that is. in· 
v�riant - �s far as weak isospin is concerned); 
jiii) weak isodoublets are Cabibb'Hotated. To 
put it pbinly. strong isospin and weak isospin 
have nothing to do with one another. s,ave for 
a common mathematical structure (which. for 
that mailer. the� sh�re with many other sys· 
tems. such as ordinary spin t) and the (per. 
haps unforrut1llte) simil.o.riry in tlleir n�mes. 
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9.7.3 
Electroweak Mixing 

Now, the GWS model asserts that the three weak isospin currents couple, with 
strength g"" to a weak isotriplet of vector bosons, W, whereas the weak hypercharge 
current couples with strength g /2 to an isosinglet, B: 

(9.145) 

(Ibese four particles correspond, ultimately, to the weak and electromagnetic me­
diators: W±, ZO, and y - but with a twist, as we shall soon see.) I use bold face 
here to denote a three-vector in weak isospin space; the dot product can be written 
out explicitly: 

i,,'W" = j1 Wl'l +.i! W .. 2 + j! w,,) (9.146) 

or, in terms of the charged currents,j; = j1 ± y;': 

(9.147) 

where 

(9.148) 

are the wave functions representing the wi: particles. 
The couplings to w± can be read off immediately, from the coefficients of 

W; in Equation 9.147 For example, in the process �- -!o v, + W- we have 
jj; = vLy .. tr = vy .. [(t - yS)/2J�, giving a term 

(9.149) 

The vertex factor is 

(9.150) 

which is exactly what we started with (Equation 9.5). 
But the two neutral states (Wl and B) 'mix', in Glashow's theory, producing one 

massless linear combination (the photon), and an orthogonal massive combination 
(the ZO): 

AI' = B .. cos 9", + W! sin9", 

2" = -B" sin 9", + W! cos8", (9.151) 
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(You see why 0.., is called the 'weak mixing angle'.) In terms of the physical fields 
(A" and Z"), the neutral portion of the electroweak interaction (Equation 9.145) 
reads as follows: 

-i [g..,j! W"l + �j!W ] = -j { [g..,sinO..,j! + � COSO..,j!] A" 

+ [g..,COSO..,j! - � sinO..,j!] Zil l (9.152) 

Of course, we know the electromagnetic coupling; in the present language it is 

-igd:;'A" (9.153) 

Meanwhile, from Equation 9.143,):' = j! + �j!. Consistency of the unified elec­
troweak theory with ordinary QED requires 

g ... sin 0 .. = tcosO ... =g. (9.154) 

Evidently the weak and electromagnetic coupling constants are not independent. 
There remain the weak couplings to the ZOo Using Equations 9.143, 9.152, and 

9.154,we obtain 

(9.155) 

where 

.. 
� = sinO ... cosO.., 

(9.156) 

From Equation 9.155 we can pick out the neutral weak couplings. For example, 
the process v. -. v. + ZO comes exclusively from the j! tenn; referring back to 
Equation 9.138, we have 

(9.157) 

and hence the vector and axial ve<:tor couplings (Equation 9.90) are 'v = ,� = !. 
I'll leave it for you to work out the other entries in Table 9.1 (Problem 9.28)'-

All this raises some obvious questions: by what mechanism is the underlying 
SU(2)L ® U(l) symmetry of the electroweak interactions 'broken'? Why do the B 
and Wl states 'mix' to form the ZO and the photon? If weak and electromagnetic 
interactions are, deep down, both manifestations of a single ele<:troweak force, how 
come the weak mediators (W*and ZO) are so heavy, while the electromagnetic 
mediator (y) is massless? I'll address these questions in the next chapter . 

• Sinc� th� weak mixing anglr is undetermined in th� GWS model, th�r� r�main. in effttt, IIW 
indep"ndent <:oupling constants (g. and g ... R�, or g. and g.): in this sense, it is not a com· 
pletely wnijied theory, but rather an inUgrUtul tMory of �ak and eiectrOIn:rgna;c interactions. 
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9.1 Derive the completeness relation for a massive particle of spin 1 (see Problem 9.27 for 
the mnsless �n;llog), (Hint: �t the z uis point along p. First construd three mutually 
orthogonal polarization vectors {{ill, {�2I,{�I») that �tisfy p"{u = 0 and {I'll' = -1.( 

(9.158) 

9.2 Calculate the trace 

for arbitnory (real) numbers Cv and c". [Answer : 4(et + c!)[Pj pi + Pl� -PI . P2 8"OJ 

(9.159) 

9.3 (0) Calculate ( 1.A12 ) for v" + t- ..... jA.- + v, using the more general coupling )''' 
(1 + f )'1). Check tlut your ansW!'r reduc� to Equation 9.11 in the case ( _ -1. 

(hI Let m. - m" - 0, and calculate the CM differential scattering cross section. Also, find 
the IoUl/ cross section. 

(el /fyou had accurate experimental data on this reaction, how could you determine {� 
9.4 Show that Equ�tion 9.30 is equivalent to EqUlltion 9.29. 
9.S By making the appropriate chang� in Equ.:ttion 9.35, determine the lifetime of the r 

lepton, pretending the deay is purely leptonic. (Assume also that the muon mass can 
be neglected. in comp<lrison with m,_) Comp<lre the experimental value. 

9.6 Suppose the weak interaction WBe pun: \'tela. (no y} in Equation 9.5). Would you still 
get the same shape for the graph in Figure 9_1� 
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9.7 What is the Quen:l8l' vilue of the electron energy in muon decay? 

9.8 Using the coupling ),"(1 + � )'1) for n ...... p + W, but ),"{l -)'1) for 1M leptons, cakuIate 
the spin·ave"'ged amplitude for neutron bet:I decay. Show ih;ot your result reduces to 
Equation 9.<41 when f �-\. 

+(p, . P4}!P2 . Pl}(l + (i)l - (I - (il)mpm"c1(pz . P4}1] 
9.9 (a) Derive Equation 9.52. (bl Derive Equation 9.58. 

9.10 In the !ext. I said that electron energies in neutron decay range up to about (m" - m,)c2. 
This is not =1, since it ignores the kinetic energy of the proton and 1M �lltrino. 
What kinematic configur.ltion gives the m;u:imum electron energy? Apply conservation 
of energy and momentum to determine the oacl milXimum electron energy. 

How far offis the approxinute anS_r (give the percent error)? 
9.B la) Integrate Equation 9.59 to get Equation 9.&0. 

(bJApproximate as suitable for m.« t:. m � (m� - m,). Note that m. now drops out. 
9.12 Obtain Equation 9.62. 
9.\3 Find the minimum de Broglie wavelength (l. • "!p) of 1M W in neutron decay. 

and compare it with the diameter of the neutron (� 1O-1l em). [Amwt:r: maximum 
Ipl = 1.18 MeV/c, occurring when p and t emerge back to back. so the minimum A � 

to-LOem] 
9.H Anilyze ,.,- decay as a scattering process, using themethods of Example 7.8 and Section 

8.5. Calculate the decay rate. and. by comparing your answer with the one in the text, 
obtain the fonnula for f. in tenns of(+(O)l2. Take the quarks to be massless. 

U5 Show that if mel « E 

where II is a particle spinor satisfYing 1M Dj",c equation: 

(Eqs. 7.35 and 7.41). Show therefore Uut the proje<:tion ""'In>: 
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picks OUI th� helicity ± 1 component of u: 

'.1� Cakul;tte the ratio of the decay rates K- ..... e- + v, and K- -> Jl.- + ;;;�. Compare the 
observed branching ratios. 

Hi Calculate decay n� for the following processes: (a) EO -> I:+ + e + ii •. (b) E- .... 
A + t + v,,{cl S- ..... SO + t + ii.,(d) A ..... p + t + ii  .. (e) E- ..... l1 + t + ;;,: If) SO ..... 
1:+ + e + 'ii._ Assume the coupling is always y"(l - yS) - that is, ignore the strong 
interaction corrections 10 the axial coupling - but do not forget the Cabibbo factor, 
Compare the experimental d;tta. 

9.l8 (a) Show that as long as the CKM matrix is .. "itw}'· (V-1 
_ Vt), the GIM mechanism 

for eliminating � ..... Jl.+Jl.- works for thr� (or any number of) genentions. [Note: 
.. ..... d + W" carries a CKM factor V,.j; d ..... II + W- carries a fador V:,.. 

(bl How mmy independent real parameters are there in thege�nJ 1 x 3 unitary matrixl 
How about n x /1) [Hint II helps to know that my unitary matrix (U) can � written 
in the form U = iH, wh� H is a hermitian matrix. So an equivalent question is, 
how rmony independent real p;orameters are there in the general I\t:rmiliall matrix)) 
We are f� to change the phase of each quark MIlle function (normalization of u 

really only determines INll; s� Problem 7.3), $0 211 of these p;orameters are arbitrary 
- or rather, (In - I), since changing the phase of aU quark wave functions by the 
same amount has no effect on V. QlImioll: Can we thus reduce the CKM matrix to a 
real matrix (ifit is real and unitary, then it is orlhogonal: V-I = V). 

(e) How many independent real p;orameters are there in the genen.! 3 x 3 (real) 
orthogonal matrix? How about n x II? 

(d) So, what is the answer? Can you re-duce the CKM matrix to real fonn? How about for 
only two gen�rations {II � 2)1 

9.19 Show that th� CKM matrix (Equation 9.87) is unitary for any (real) numbers OIl, OJ), 
en, and d. 

9.20 Using th� e�perim�ntal values of the F�nni constant Gf (Equation 9.38) and the weak 
mixing angle 8. (Equation 9.93), 'prNict' th� rmoss of th� W±and th� z!>, in GWS 
th�ry. Comp;or� th� experimental values. 

9.21 In Exampl� 9.4 I used muon neutrinos, rather than tkctroll neutrinos. As a matter of 
bet. Vp and ii .. beams are �asi�r to produc� than v, and ii,. but ther� is also a �retical 
r�ason why v .. + �- ..... v� + r is simpl�r than v, + e- ..... v, + r Or ii, + e- -10 ii, + e-. 
Explain. 

9.2.2 (.) Calculate the differential and total cross section for ii .. + e- -> ii .. + e- in the GWS 
m�l. [Allswer: 5am� as Equation 9.100. only with the sign of 'A'V reversN.[ 

(b) Find the ratio u(ii .. + r ..... ii .. + e-)Ju{v� + r ..... v� + r). Assume the energy is 
high enough that you can set .... . O. 

9.2.3 (al Calculate the decay rate for z!> -10 f + j. where f is any quark or any lepton. Assume 
f is so light {compared to the Z} that its mass can be n�ected. IYou'U n� th� 
completeness relation for th� z!> - � Problem 9.1.) 

(b) Assuming these are th� dominant decay modes. find th� branching ratio for �ach 
species of quark and lepton (remember that the quarks come in thr� colors). Should 
you includ� the top quark among th� allowed decays? (AII"""r: 3% each for e, Il. r :  

7% each for v,. v .. ' v,; 12% each for u. c; 15% each for d .  s, P.) 

• For experimental confirmation see Problem 9.13. 
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(e) Caleul�t'" th", lifctim", ofth", z!J. Quanlil�tivdy, how would it dlang'" ifther'" """r", a 

founh genen.lion (quarks and leptons)? (Notie", WI an accun� m"'a5ur",m",nl of the 
z.O lif�me tells us how many quarks and I",ptons there Gin � with masses I",ss wn 
45 GI'Nlc1.) 

9.24 Estimat", R (th'" total l1ltio of quark pair production 10 muon pair production in e+e­
sGittering). when the process is mooiatoo by z.O. For the sake of argument. pre�nd the 
top quark is light enough so that Equation 9.109 un be used. Don·t forget color. 

9.25 Graph the ratio in Equation 9.113 asa function of:li: "" 2E/Mze1. u� rz = 7.3�/48Jr) 
(Mze1/fi) (Problem 9.23). 

9
.
2(; (0) If "(P) satisfi",s th", (momentum spae",) Dir3e equation (Equation 7.49), show tlut Ut 

and "R (Table 9.2) do lIat (unless III _ 0). 
(b) Find the eig",nvalues and eigt'nspinors of the matrices P:I: - t(1 ± )'�). 
(e) Can th"'re exist spinors thaI are simuluneously eigenstates of P + (say) and of the 

Dinc operator r.; - "")? 

(Answer : No; these oper.ltors do not commute.] 

9.27 Work oul the """ak isospin currents)! and}! for the lighl quark doublel U and rf. 
Also, construd the electromagn�c <:um!nt (f.."') and the weak hypercharge current U:). 
(Leav", your answers in �rms of If.) 

9.28 From Equation 9.155. determine the vector and ui;!l vector couplings in Table 9.1. 
9.29 In Problem 9.5 you found thedKaynte r for t ...... e + �, + ii" and for r ..... IL + �, + Vu 

(which is essentially the same). Howabout for the hadronic modes (T ...... d + v, + Ii and 
T ...... S + �t + II)? Estima� the Iifetim'" of the T (including both leptonie and Iudronic 
modes) and the bnnching ratios for the dedron, muon, and Iudron modes. Compare 
the experimental values. (PartiQ! allsw.:r: r"" -5 r] 

9.30 (al Estima� the lif�m'" of th", charmoo quark. (First dec:ide what modes domina�. and 
then make the appropriate modifications in the muon dKay fonnw... Equation 9.35) 
(Hilll: Refer to Problem (9.29)1 

(b) On the basis of (a). estimate the lif�me of the 0 meson (0" _ eli and 0+ - cd), 
treating the light quark as a spe<:tator. Also ",stimate the branching ratios for the 
various �mileptonit modes and for the hadronic mode. Compare the experimental 
values. 

(e) In th", same way, estimale the lif�me of the B meson (8" .. bd and B- .. bU). Note 
that mor", decay modes ar'" avail able 10 the b quark. Find the branching ratios, and 
compare the experimental values. 

(d) According to Equation 9.35. the decay rate goes like thefi}th power of th� mass. The 
bottom quark is almost four times as massive as the charmed quark. Why. then. 
isn·t the lif�me of the D meson 1000 tim�s longer than that of th", B? InJact. their 
lifetimes are quile comparable, but this is som�thing of a coincidence. Explain. 

9.31 Calculate the lifetime of the top quark. Note that bec�use III, ". mb + IIIW. th", top c�n 
decay into a rlilll W (I ..... b + W+). wh�r�as aU oth",r quarks must go via a virtual W. 
As a consequence. its lifetime is much shorter, and wt"s why il does not fonn bound 
states ('truthful· mesons and baryons). Take the b quark to � massless (comparoo to ' 
and W). (Allswor: 4 " lO-lS s) 

9.32 Th� radicai new (your nam",) theory of weak interactions as�rts that the W actually has 
spin 0 (not I). and the coupling is ·scalar/pseudo-scalar', inst�ad of·vector/axial.vector'. 
Specifically. in your theory th'" W propagalor is 
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(replacing Equation 9.4), and th� ven�x factor is 

-ig... s - (l - y )  
2.jj 

(replacing Equation 9.5). Consider 'inverse muon decay' (v� + t ..... � + v.), in this 
theory: 

lal Draw the Feynman diagram, and construct the amplirude, A, 
(hI Determin� th� spin-averaged quantity, ( [All). 
Ie) Find the differential sc.;ottering cross section, in the CM frame, in tenns of th� dectron 

�nergy E and th� scattering angl� (J. Assume E » m� r? » m,e2, so you c.;on safely 
neglect the masses oCboth the �lectron and the muon (and, of cours�, the neutrinos). 

(d) Calculate the IOtil cross section, und�r the same conditions. 
I�J Bycomparing th� orthodox predictions for this proc�ss, instruct the aperim�ntilists 

how best to confinn your theory (and demolish the Standard Model). (Note: lhere 
is no reason to sup� that the weak coupling constant (g,.) in your theory has th� 
same value as it does in the Standard Model. so a test that depends on this number 
is not going to be very persuasiv�.) 

'.33 lhe rows (and columns) of a unitory matrix are orthonormal. 1ms suggests a number 
of tests of the CKM model, as the values of the matrix elements are measured with 
increasing precision. For ex.ompl�, orthogonality of the first and third columns impli�s 
(Equation 9.86) 

Or (dividing by the middl� term) 

1 +Zl +Z2 = 0, where 

Plotted in th� compla plane, the numbers I, ZI, and Z2 must add up to form a dosed 
loop, called the 'unitority triangl�'. Look up the best current values for the CKM matrix 
elements, and plot I, ZI, and :2. Does their swn in fact form a closed triangle? 

9.14 Find the threshold v� �n�rgy forinv� muon decay (Example 9.1), assuming thetirget 
electron is at rest. Why is the answer so huge, when all we're doing is producing a 
muon? 
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Gauge Theories 

This chapter introduces the 'gauge fhwms' that describe aU dmu:ntary partick interac­
tions. I begin with the wgrangian formulation of classical mechanics, and procr�d to 
Lagrangian field fhwty, tht priru:iple of local gauge invarianu, the notion oJspontaneous 
symmetry·breaking, and the Higgs mechanism (which accounts for the mass oftk W's 
and the Z). This material is quite abstract (in contrast to previous chapters); it COltuntS 
the fondarnmtal quantum jitld thwrns from which the Fq'nman rules derive. It will not 
htlp you to calculate any cross sections or lifetilm5. On the other hand, the ideas discussed 
hert constitute the foundation on which virtuaUy all motkm theories an: predicataf. To 
understand this chapter it wi!! hdp to havtstuditd some Lagrangian mechanics, but more 
essential is the relativistic notation in Chapter 3, tht taste of group thwry in Chapter 4, 
the Feynrnan calculus from Chapter 6, and tht Dirac equatiolt from Chapter 7. 

10.1 
Lagrangian Formulation ofClassial Particle Mechanics 

According to Newton's set:ond law of motion, a particle of mass m, subjet:ted to a 
force F, undergoes an acceleration a given by 

F "nna (10.1) 

If the force is C(ln5f)vatiw:, it can be expressed as the gradient of a scalar potential 
energy function U: 

F =  -VU 

and Newton's law reads 

d. m- = -VU 
d. 

where v is the velOCity [IJ. 

I .. troduaio .. '0 Ekmen'4ry P4rfidn, Swmd Edition. David Griffiths 
Copyright (I 2008 W1LEY·VCH V�rbg GmbH & Co. KGlA. W�;nh";m 
ISBN: 973-)·527-40601·2 

(10.2) 

(10.3) 
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An alternative formulation of classical mechanics begins with the 'Lagrangian' 

L =  T - U (10.4) 

where T is the kinetic energy of the particle: 

(10.5) 

The Lagrangian is a function of the coordinates q; (say, ql = x, '12 = }', ql = z) and 
their time derivatives ili (ill = v�, ilz = Vf, ill = vz). In the Lagrangian formulation, 
the fundamental law of motion is the Euler-Lagrange equation [2]: 

� G�) = :�  (i = I,2,3) (10.6) 

Thus in cartesian coordinates we have 

at aT 
aill 

� - = mv" a" (10.7) 

at au 
aq, ax 

(10.8) 

and the Euler-Lagrange equation (for i = 1) reproduces the x component of 
Newton's law, in the form of Equation 10.3. The Lagrangian formulation is thus 
equivalent to Newton's (at least, for conservative systems), but it has certain theo­
retical advantages, as we shall see in the following sections (see also Problem 10.1). 

10.2 
Lagrangians in Relativistic Field Theory 

A particle, by its nature, is a /ccalized entity: in classical particle mechanics we are typ­
ically interested in calculating its position as a function of time: X(I), }'(I), z(t). Afidd, 
on the other hand, occupies some ngion of space; in field theory our concern is to 
calculate one or more functions of position and time: <p;(x, }', z, I). The field variables 

<Pi might be, for example, the temperature at each point in a room, or the electric po­
tential V, or the three components of the magnetic field B. In particle mechanics, we 

introduced a Lagrangian L that was a function of the coordinates, q;, and their time 
derivatives, il;: in field theory we start with a Lagrangian (technically, a Lagrangian 
density) .¥, which is a function of the fields <p; and their x, }', z, and t derivatives: 

(10.9) 

In the former case, the left side of the Euler-Lagrange Equation 10.6 involves only 
the time derivative; a rdatiuistie theory must treat space and time coordinates on 
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an equal footing, and the Euler-Lagrange equations generalize in the simplest 
possible way, to: 

( 'It' )  ,It' iJ" iJ(iJ"ofJ;) = iJofJi (i = 1,2,3, . . .  ) 

Example JO. J The Klein-Gordon Lagrangian jor a Scalar (Spin·O) fidd 

have a single, scalar field variable ofJ, and the Lagrangian is 

1 1 (�)' .z = -(iJ"ofJ)(iJ"ofJ) _ _ _ 
ofJ2 

1 1 , 

In this case, 

(If this confuses you, write out the Lagrangian 'longhand': 

In this form, it is clear that 

and so on.) Meanwhile 

and hence the Euler-Lagrange formula leads to 

(10.10) 

Suppose we 

(10.11) 

(10.12) 

{IO.OJ 

which is the Klein-Gordon equation (Equation 7.9), describing (in quantum field 
theory) a particle of spin 0 and mass m. _ 

Example 10.2 The Dirac Lagrangian jor a SpinOf (Spin-!) Field Consider now a 
spinor field of! , and the Lagrangian 
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We treat 1/1 and the adjoint spinor ifi as independent field variables." Applying the 
Euler-Lagrange equation to ifi, I find 

so that 

,:" 
03(03l'ifi) 

"" 0, 

iyl'031'1/I - c;;) '" "" 0 (10.lS) 

This is the Dirac equation (Equation 7.20), describing (in qwntum field theory) a 
particle of spin ! and mass m. Meanwhile, if we apply the Euler-lagrange equation 
to if! , we obtain 

and hence 

which is the adjoint of the Dirac equation (see Problem 7.1S). l1li 

Example 10.3 The Pr()(;a Lagrangian for a Vectcr (Spin. J) Field Finally, suppose we 
take a vector field, AI', with the lagrangian 

Here 

az -1 --- "" -(a" A" - 03· A") a(03I'Ao) 411" 

(see Problem 10.1) and 

,:" 1 (�)' , 
03A. == 411" Ii A 

so the Euler-lagrange equation yields 

• Since 'It is a compl�x spinor. th�I� are ac· 
rually dg/ll inde�dent fi�lds her� Ii runs 
from 1 10 8): the real and imaginary p;orts of 
�ach of the four components of t. BUI in 
applying the Euler-Lagrange �uations any 

(10.16) 

(10.17) 

(10.18) 

(10.19) 

linear combinations of these eight will do 
just as _D. and w<: chOOSt to US<: the four 
components of "iF plus the four components 
oft· 
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This is called the Proca equation; it describes a particle of spin 1 and mass m. 
Incidentally, since the combination (a" A" - a" A") occurs repeatedly in this theory, 
it is useful to introduce the shorthand 

(10.20) 

Then, the Lagrangian reads 

(10.21) 

and the field equation becomes 

(10.22) 

If the notation is beginning to remind you of electrodynamics, it's no acci· 
dent, for the electromagnetic field is precisely a massless vector field; if you 
set m = 0 in Equation 10.22 you're left with Maxwell's equations for empty 
space: _ 

The Lagrangians in these examples came out of thin air (or rather, they were 
concocted in such a way as to reproduce the desired field equations). In classical 
particle mechanics, L is dtrivtd (L = T - U), but in relativistic field theory it' is 
usually taken as axiomatic - you have to start somewhere. The Lagrangian for a 
particular system is not unique; you can always multiply it' by a constant, or add a 
constant - or for that matter the divergence of an arbitrary vector function (o"M", 
where MI' is any function of I/J; and OI'I/J;); such terms cancel out when you apply the 
Euler-Lagrangeequations, so theydo not affect the field equations. In this sense, the 
factors of l in the Klein-Gordon Lagrangian, for example, are purelyconventionaLt 
Apart from that, however, what we have here are the Lagrangians for spin O. spin }, and spin 1. So far, however, we are talking only offru fields, with no sources or 
interactions. 

• Notic� tint in this fonnulation A." is th� fun· 
d;om�n"'l q""ntity �nd F�' is just conveni�nt 
no"'tion (Eq""tion 10.20) - th� reverse of tll� 
pfisp«tive "'ken in classical d�lIodynamics. 
wh�r� E and B (Il�nc� F�') �re fundamen. 
",1 and � poten tiols are constructs. In po.r· 
ticular, for PUIJ'OS"s of the Euler-Lagrange 
e<[uations th� 'fi�lds' ar� the components of 
A�. '101 F�·. 

t The lagrangion (I) carries units of energy 
(Eq""tion 10.4), and the lagrangian d<MIity 
(.2') has the units of energy p<r .. M;I 1'01 .. "",. 
The fo:Ids carry dim�nsions as foUows: 

I/J (scalar field): ./Mi./T 

1/1 (spinor field): L-l/1 
AI' (vector field): ./Mi./T 

These are chosen so that 'it will go o""r to the 
Schrodingcr wa"., function (in the nonrela· 
tivi"tic limit) �nd A� to the M�ll vector 
potential (in the nonquantum limit). By the 
way, in Heaviside-l.orentz units the Proca 
and Maxwell Lagrangians are conoentionally 
multipUed by 4".. 
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Example lOA The Ma)I'Well Lagrangian for a Massless Vector Field with SOlJfU )/' 
Suppose 

(IO.2l) 

where Fl'v (again) stands fOf {(lI'Av - (l" AI') andjl' is some specified function. The 
Euler-Lagrange equations yield 

o"FI'V = 4J!"
)" 

, 
(IO.24) 

which (as we found in Section 7.4) is the tensor form of Maxwell's equations, 
describing the electromagnetic fields produced by a current ]1'. Incidentally, it 
follows from Equation 10.24 that 

(lV)" = 0  (10.25) 

That is, the internal consistency of the Maxwell Lagrangian (Equation 10.23) 
requires that the current satisfy the continuity equation (Equation 7.74); you 
can't just put in an}' old function for ]I' - it's got to respect conselVation of 
charge. _ 

10.3 

Loa! Gauge Invariance 

Notice that the Dirac Lagrangian 

is invariant under the transformation 

(global phase transfonnation) (10.26) 

(where 0 is any real number), for then � -+ e-i8�, and in the combination �l/t 
the exponential factors cancel out. (Already in nonrelativistic quantum mechanics, 
of course, the overall phase of the wave function is arbitrary.) But what if the phase 
factor is different at different space-time points; that is, what if B is a jUnction 
of xl'; 

(local phase transformation) (10.27) 

Is the Lagrangian invariant under such a 'local' phase transformation? The answer 
is no, for now we pick up an extra term from the derivative of 0: 

(10.28) 



so that 

(10.29) 

For what follows, it is convenient to pull a factor of -(qjfic) out ofB, letting 

(10.30) 

where q is the charge of the particle involved. In terms of A, then, 

(10.31) 

under the local phase transformation 

(10.32) 

So far, there is nothing particularly new or deep about this. The crucial point 
comes when we dtmand that tlu compJeu Lagrangian b� invariant undtr local phase 
transformations." Since the fra Dirac Lagrangian (Equation 10.14) is not locally 
phase invariant, we are obliged to add something, in order to soak up the extra 
term in Equation 10.31. Specifically, suppose 

(10.33) 

where AI' is some ntw field, which changes (in coordination with the local phase 
transformation of >/t) according to the rule 

AI' - AI' +<11'). (10.34) 

This 'new, improved' Lagrangian is now locally invariant - the <1,,A in 
Equation 10.34 exactly compensates for the 'extra' term in Equation 10.31. The 
price we have to pay is the introduction of a new vector field that couples to 1/t 
through the last term in Equation 10.33 (see Problem 10.6). But Equation 10.33 
isn't the whole story; the foU Lagrangian must include a 'free' term for the field AI' 
itself. Since it's a vector, we look to the Proca Lagrangian (Equation 10.21) 

-1 1 (m,,), 2' �  --FI'"F + - -- A"A 
161T IL" 81T n " 

But there is a problem here, for whereas FI'" := (ijl' A" - a" AIL) is invariant under 
Equation 10.34 (as you should chec.k for yourself), A" A" is not. EvidtnUy th� new 
fi�1d must be massless (m,.., "'" 0), othelWise the invariance will be lost. 

• I know of no compdling physical argum�nt 
for insisting that a global invarian"" lkould 
hold loc.ally. If you belie"" that pha.., trans· 
fornutions ar� in some s�n'" 'fund.1mental', 
then I suppose one should ]", able to) (any 
them ()Ut ind�dently at sp<I""Hke 5ep<oTated 

points (which art. after aU. ()Ut of commu· 
nication with one another). But I think this 
],.,gs the qutStion. Better, for the moment at 
kast, to take the rt<ju;",ment oflocal phasr 
invarianct as a n�w principk of physics in its 
own right. 
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Conclu.sion: If we start with the Dirac lagrangian, and demand local phase 
invariance, we are forced to introduce a massless vector field (A"), and the 
complete Lagrangian becomes 

(10.3S) 

As you will have guessed, A" is nothing but the electromagnetic potential; the 
transfonnation rule for AU (Equation 10.34) is precisely the gau� invariance' we 
found back in Chapter 7 (Equation 7.81), and the last two terms in Equation to.3S 
reproduce the Maxwell Lagrangian (Equation 10.23), with the current density 

(10.36) 

Thus the requirement of local phase invariance, applied to the free Dirac la· 
grangian, generates all of electrodynamics and specifies the current produced by 
Dirac particles. 

This is a truly breathtaking accomplishment. The critical step was the added 
term in Equation 10.33. How was this obtained? The difference between global 
and local phase transformations arises when we calculate derivatives of the fields 
(Equation 10.28): 

a .. 1Jr ->- e-iqJ./fI£ [a" - i;t-(a,,)..)] 1Jr (10.37) 

Instead of a simple phase factor, we pick up an extra piece involving a .. )... Ifin tht 
original (free) wgrongian IVt' nplace eVf'1)' derivative (a .. ) by the so<alled 'covariant 
derivative' 

!D .. ii a .. + itA .. (10.38) 

(and every a" by !D") the gauge transformation of A .. (Equation 10.34) will cancel 
the offending term in Equation 10.37 

(10.39) 

and the invariance of Z is restored. The substitution of !D .. for a .. , then, is 
a beautifully simple device for converting a globaUy invariant lagrangian into 
a locally invariant one; we call it the 'minimal coupling /"Uk'.t But the covariant 

• Beuusr of thr connrction with gau� invari­
an", in mssical rlectrodymmics. � nOW call 
Eqmtions 10.34 and 10.26 'gauge transforITlil' 
tions', A� is called tM 'gauge field', and thr 
entire stntegy is caned 'gauge theory. 

t The minima! couplin8 rule is much older 
than the principle ofloc.al gauge in""rian",. 
In terms of momentum (p� .... ilia.) it reads 
p • ..... p. - i(q/c)A., and i. a well·known 

trick in dassicil electrodynamics for obtainin8 
the equation of motion for a charged pani. 
cle in the presence of electrodynamic fields. It 
amounts, in this �nsr, to a sophisticated for· 
mu�tion of the Lorentz fot'" law, [n modern 
I"'rticle throry � plef�r to "'gard local gauge 
invman", as fundamen�land minimal cou· 
piing as the vehicle for achieving it. 
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derivative introduces a new vector field (A,,), which requires its ownftu Lagrangian; 
if the latter is not to spoil local gauge invariance, we must take the gauge 
field to be massless. This leads to the final expression (Equation 10.35), which 
people in the know would immediately recognize as the Lagrangian for quantum 
electrodynamics - Dirac fields (electrons and positrons) interacting with Maxwell 
fields (photons). 

The idea of local gauge invariance goes back to Hermann Weyl in 1918 [3J. 
However, its power and generality were not fully appreciated until the early 19705. 
OUf starting point (the global phase transformation in Equation 10.26) may be 
thought of as multiplication of '" by a unitary 1 x 1 matrix: 

"' _  U1/I, where Ut U = 1  (10.40) 

(here, U = till). The group of ell! such matrices is UtI) (s� Table 4.2), and 
hence the symmetry involved is called 'UtI) gauge invariance'. This terminology 
is e1Clravagant for the case at hand (a 1 x 1 matrix is a number, so why not leave 
it at that?). but in 1954 Yang and Mills (41 applied the same strategy (insisting 
that a global invariance hold locally) to the group SU(2), and later on the idea was 
extended to color SU(3), producing chromodynamics. In the Standard Model. aU 
of the fundamental interactions are generated in this way. 

10.4 
Yang-Mills Theory 

Suppose now that we have two spin.! fields. 1/11 and 1/11. The Lagrangian, in the 
absence of any interactions, is 

(10.41) 

It's just the sum of the two Dirac Lagrangians. (Apply the Euler-Lagrange equations 
to this Z, and you'll find that both 1/11 and 1/12 obey the Dirac equation, with the 
appropriate mass.) But we can write Equation 10.41 more compactly by combining 
"'1 and 1/12 into a two·component column vector: 

(10.42) 

(Of course, 1/11 and "'2 are themselves four·component Dirac spinors, and you 
might prefer a double-index notation: "'a.i, where a = 1, 2 identifies the parncle 
and i = I, 2, 3, 4 labels the spinor component. However, in the present context we 
are only concerned with the particle index, although the Dirac matrices, of course, 

act on the spinor indices.) The adjoint spinor is 

(10.43) 
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and the Lagrangian becomes 

(to.44) 

where 

(10.45) 

is the 'mass matrix'. In particular, if the two masses happen to be equal 
Equation 10.44 reduces to 

(10.46) 

This looks just like the one· particle Dirac Lagrangian. However, 1/1 is now a 
two·element column vector, and .!i! admits a more general global invariance than 
before: 

(10.47) 

where U is any 2 x 2 unitary matrix 

(10.48) 

For under the transformation in Equation 10.47, 

(10.49) 

and hence the combination �1/1 is invariant. Now, just as any complex number of 
modulus 1 can be written in the form tf8, with real 0, so any unitary matrix can be 
written in the form [5] 

(to.sO) 

where H is Hennitian (Ht "" H).' Moreover, the most general Hermitian 2 x 
2 matrix can be expressed in terms of four rea! numbers, al, al, al. and 8 
(Problem 10.10): 

H ",, 8 1 + t · a  

• In INlrix l!leo!)' the n�lur�l generaliz�tion of 
complex conjugation (*) is Hermiti.1n conju· 
gation It) - Iranspose conjugation. Of cours.e. 
thtre's no distinction in the c.ase of 1 " 1 ma· 
trices (complex num�s). but for higher di· 
mensions it is the Hennitian conjugate Wt 

(10.51) 

shares the most useful properties of ordinary 
complex conjugation. In this sense the dos· 
est analog to a real number (ii '" a*) is a Hu· 
mil;"n matrix IA '" AI), and the analog to a 
number of modulus I (ii*ii '" \) ;s a un'lary 
nullix (ALA _ 1). 
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where 1 is the 2 x 2 unit matrix, fl, fl, Tl are the Pauli matrices (Equation 4.26), 
and the dot product is a convenient shorthand for flal + f2a2 + flill. Thus any 
unitary 2 x 2 matrix can be expressed as a product: 

(10.52) 

We have already explored the implications of pilau transformations (t"6); in this 
section we shall concentrate on transformations of the form 

(global SU(2) transformation) (10.53) 

The matrix dr .• has determinant 1 (see Problem 4.22), and therefore belongs to 
the group SU(2). Generalizing the terminology of Section 10.3, we say that the 
Lagrangian is invariant under global SU(2) gauge transformations: What Yang 
and Mills did was to promote this global invariance to the status of a local invariance. 

The inspiration and the strategy were similar to Weyl's, but the implementation 
is more subtle; in fact, it's quite remarkable that it works at all. The first step is 
to let the parameters (a) be functions of XIL (as before, !'lliet .l..(x) i: -(fic/q}a(x), 
where q is a coupling constant analogous to ele<:tric charge): 

>/! -+ S>/!, where 5 :=  £-i<!r·�j%)/� (local SU(2) transformation) (10.54) 

As it stands, !f is not invariant under such a transformation, for the derivative 
picks up an extra term: 

(10.55) 

The remedy, again, is to replace the derivative in !f by a 'covariant derivative', 
modeled on Equation 10.38, but taking into account the structure of Equation 10.55: 

fit,, !!!! a" + itT · A" (10.56) 

and assign to the gauge fields AIL (it takes thru of them this time) a transformation 
rule such that 

(10.57) 

for then the Llgrangian (Equation 10.46) will clearly be invariant. 
[t is not a trivial matter to deduce the transformation rule for A" from 

Equation 10.57 (61. I'U leave it for you to show (problem 10.11) that A" -+ A�, 
where A� is given by 

(10.58) 

• Ii is also invariant und�r th� largor group U(2). But Equation 10.S2 shows th..t any el�ment 
of U(2] can be expressed ;lS .. n element of SU(2) tim"l; .. n appropriate pha� faclor (in 
group"theo"'tical langua�, U(2) = U(I) ® SU(2U, and since we have al",ady studied U(I) 
;nv .. Ii .. nce. the only thing /lew here is the SU(2) symmetry. 
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This much is relatively straightforward. But 5 and 5-1 in the first term cannot be 
brought together. because they do not commute with r . A". Nor is the gradient 
of 5 simply -i(qr . iJ"l./lic)5. because 5 does not commute with r . iJ"l.. You can 
work out the exact result (using Problems 4.20 and 4.21). if you have the energy. 
but the answer is not particularly illuminating. For our purposes it will suffice to 
know the approximate transformation rule. in the limiting case of very small )l.I. 
for which we may expand 5 and keep only the first·order terms: 

5 :;::;' 1 - � r  . l.. 5-1 ;::;: 1 +  �r l.. 0,,5 :;::;' -:t . iJ"l. 

In this approximation Equation 10.58 yields 

-r · A� ;::;: r . A,, + �[r . A". r . l.J + -r .  iJ"l. 

and hence (using Problem 4.20. to evaluate the commutator) 

� 
2, 

AI" = A" + iJ"l. + Iic(l. x A,,) 

The resulting Lagrangian 

(10.59) 

(10.60) 

(10.61) 

.!t' = ilicty":1),,1/' - me2t1/' = [ilicty"iJ,,1/' - me2t1/'J - (qty"-r1/') · A" 
(10.62) 

is invariant under local gauge transformations (Equations 10.54 and 10.58). but we 
have been oblige<! to introduce three new vector fields A" = (Aj. A�. Ai). and they 
will require their own fru Lagrangian: 

I p," I p;' I p;' I .  2'/1. = - 1611" I F,,'1 - 1611" 2 F,,'2 - 1611" 1 F"'1 = -
1611"F" . F". 

(10.63) 

(Again. the three·vector notation pertains to the particle indices.) The Proca mass 
term 

1 (m,,)' " - - A · A 
811" Ii 

• (10.64) 

is excluded by local gauge invariance; as before. the gauge fields must be massless. 
But this time the old association F'" = iJ" A' - iJ' A" must itself be modified. for 
with this definition the gauge field Lagrangian (Equation 10.63) is not invariant 
either (see Problem 10.12). Rather. we take' 

F'" E iJ"A' _ o"A" - �(A" x A'l " 

• This definition is not as arbitrary as it may 
seem. The point is tlw with Ihru:-VKIor 
fields there is .. second antisymmetric tensor 
fonn available (A� x A'). and the coefficient. 
-2qJ�. is chosen precisely IQ maL: it'll. 

(10.65) 

invariant. Notice that when the coupling 
constant q goes to :terO we are left with the 
free Dirac Lagrangian for each spinor field 
and the free (massless) Prca Lagrangi.l.n for 
each of the thrtt gauge fields. 
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Under infinitesimal local gauge transformations (Equation 10.61), 

FI<" -+ FI<" + �(). X FI<") 
'" 

(10.66) 

(Problem 10.13), and hence 2 .... is invariant. (See Problem 10.14 for a proof that 
the invariance extends to finite gauge transformations.) 

Conclusion: The complete Yang-Mills Lagrangian is 

(10.67) 

with FI<" defined by Equation 10.65; it is invariant under local SU(2) gauge 
transformations (Equations 10.54 and 10.58), and describes two equal-mass Dirac 
fields in interaction with three massless vector gauge fields. All this results 
from insisting that the globa! SV(2) invariance of the original free Lagrangian 
(Equation 10.46) shall hold Iocal!y. Borrowing the language of electrodynamics, we 
say that the Dirac fields generate three curnnfs 

(10.68) 

which act as soun:es for the gauge fields; the Lagrangian for the gauge fields alone 

2 =  --'-FI<" . 

", 
, 

FI<> - -,I< . AI< , 
(10.69) 

is reminiscent of the Maxwell Lagrangian (Equation 10.23), and gives rise to a rich 
and interesting classica! field theory [7[ (see Problem 10.15). 

Although Yang-Mills theory was inspired by the same idta as Weyl's (namely: a 
global invariance should hold locally), the implementation was more subtle at two 
points: (i) the local transformation rule for gauge fields, and (ii) the expression for 
FI<" in terms of AI<. Both complications derive from the fact that the symmetry 
group in question is non-Abelian (2 x 2 matrices do not commute, whereas 1 x 
1 matrices - obviously - do). To emphasize the distinction, we refer to the weyl 
case as an Abelian gauge theory and Yang-Mills as a non-Am!ian gauge theory. 
In contemporary elementary particle physics, many symmetry groups have been 
explored; we shall encounter a few in the remaining sections of this book. However, 
the hard work is over: extending non-Abelian gauge theQry to higher symmetry 
groups is a straightforward procedure, once the Yang-Mills model is on the table. 

Curiously, though, Yang-Mills theQry in its original form turned out to be of 
little use. After aU, it starts from the premise that there exist two elementary spin-� 
particles of equal mass, andas far as we know there are no such pairs in nature. Yang 
and Mills themselves had the nucleon system (proton and neutron) in mind, and 
thought of their model as a way of implementing Heisenberg's i50spin invariance 
in the strong interactions. The small mass difference between proton and neutron, 
1.29 MeV/,z, would be attributed to electromagnetic symmetry-breaking. For the 
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theory to succeed there had to exist a massless isotriplet of vector (spin-I) particles. 
The only candidates in sight are the p mesons; but they are hardly massless (Mp 
= 770 MeV/(2), and this is not a minor discrepancy that can be plausibly blamed 
on electromagnetic contamination. A number of attempts were made to doctor up 
Yang-Mills theory to accommodate massive gauge bosons, but by the time they 
finally bore fruit (through the Higgs mechanism) it was pretty clear that p, n, and p 
are composite particles anyway. and that isospin is just one component of a larger 
flavor synunetry that is too drastically broken to play any fundamental role in the 
strong interactions. When non-Abelian gauge theory finally came into its own, it 
was in the context of color SUP) symmetry in the strong interactions and (weak) 
isospin-hypercharge SU(2)L ® Uti) symmetry in the weak interactions. Meanwhile, 
for more than a decade after 1954 the Yang-Mills model languished - a lovely idea 
that nature had evidently chosen not to exploit. 

10.S 

Chromodynamics 

According to the Standard Model, each flavor of quark comes in three colors - red, 
blue, and green. Although the various flavors carry different masses (fable 404), the 
three colors of a given flavor are all supposed to weigh the same. Thus the free 
liIgrangian for a particular flavor reads 

(10.70) 

As before, we can simplify the notation by introducing 

(10.71) 

so that 

(10.72) 

This looks just like the original Dirac liIgrangian, only 1/1 now stands for a 
three-component column vector (each element of which is itself a four-component 
Dirac spinor). Just as the one-particle Dirac lagrangian (Equation 10.14) has (global) 
Uti) phase invariance, and the (equal mass) two-particle Lagrangian (Equation 
10041) admits U(2) invariance, so this (equal mass) three-particle Lagrangian ex· 
hibits UP) symmetry. That is to say, it is invariant under transformations of the 
form 

(10.73) 



where U is any unitary 3 x 3 matrix: 

UtU =: 1  (10.74) 

But remember (Equation 10.50). any unitary matrix can be written as an 
exponentiated Hermitian matrix: 

with Ht 
=:= H (10.7S) 

Moreover. any 3 x 3 Hermitian matrix can be expressed in terms of nine real 
numbers. �l. �2 . . . . •  a8. and (J (Problem 10.16): 

H =:= (Jl + A · a  (10.76) 

where 1 is the 3 x 3 unit matrix. Ai. A2 . . . .. A8 are the Gell·Mann matrices 
(Equation 8.34). and the dot product now denotes a sum from 1 to 8: 

(10.77) 

Thus. 

u d'.!' • (10.78) 

We have already explored phast transformations (eOl); what is /leW is the second 
term. The matrix eil. · · has determinant 1 (see Problem 10.17); it belongs to the 
group SU(3)! So what we are interested in is the invariance of the lagrangian 
(Equation 10.72) under SU(3) transformations. a global symmetry that we now 
propose to make local. 

That is. we modifY !Z in such a way as to render it invariant under local SU(3) 
gauge transformations: 

(10.79) 

(again. I let ¢ !!! -(ticJq)a. with the coupling constant q playing a role analogous to 
electric charge in QED). As always. the trick is to replace the ordinary derivative. 
a". by the 'covariant derivative' g,,,: 

(10.80) 

and assign to the gauge fields A" (there are eight of them. notice) a transformation 
rule such that 

(10.81) 

• III th� langu.ag� of group theory. U{J) ., U(I) 0 SU(J). 
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Again (see Equation 10.58), this entails 

(10.82) 

which, for the infinitesimal case, yields a formula identical to Equation 10.61: 

However, this time the cross product notation is shorthand for 

• 
(B X C)i = Lf�It.BjCIt. j.t_\ 

(10.83) 

(10.84) 

wherefijlt. are the structure constants of SU(3) (Equation 8.35), analogous to fiji< 
for SU(2) (Problem 10.18). 

The modified Lagrangian 

Y = ihc"ifiyl'.:$10 '" - mil"ifi'" = [ilic"ifiyl'iJl' '" - mil"ifi"'l - (q"ifiyI'A "') . AI' 
(10.85) 

is invariant under local S UP) gauge transformations (Equations 10.79 and 10.82), 
but as usual the cost is the introduction of gauge fields AI' (eight of them, this 
time). [n particle language, these correspond to the eight giuons, just as the U(l) 
gauge field in Weyl's theory represents the photon: To finish the job, we must 
adjoin the free gluon Lagrangian 

Ygll>Onl = _ _ 
I
_ FI'" . FlO" 

16rr 

where, as in the Yang-Mills case 

(with the SU(3) 'cross product' defined by Equation 10.84). 

ColtClusion: The complete Lagrangian for chromodynamics is 

(10.86) 

(10.87) 

(10.88) 

Y is invariant under local SU(3) gauge transformations and describes three 
equal-mass Dirac fields (the three colOrs of a given quark flavor) in interaction with 
eight massless vector fields (the gluons). It derives from the requirement that the 

• Remembf,r th�t � 'ninth gluon·. coupling universcl1y to �ll quarks. is excluded by experiment 
[see Problem 8.11). 
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global SU(3) symmetry of the original Lagrangian (Equation 10.70) should hold 
locally. The Dirac fields constitute eight color currents 

(lO.89) 

which act as sources for the color fields (AI')' in the same way that the eketric current 
acts as the source for eltctromagnttic fields. The theory described here is very close 
in structure to that of Yang and Mills; in this case, however, we believe it to be 
the correct description of a phenomenon realized in nature: the strong interaction. 
(Of course, we need six replicas of 1/1, in Equation 10.88, each with the appropriate 
mass, to handle the six quark flavors.) 

10.6 

Feynman Rules 

Up to this point, the Lagrangians we have considered might just as well describe 
classical fields as quantum ones; indeed, the Maxwell Lagrangian wil l  be found in 
any textbook on classical electrodynamics. The passage from a classical field theory 
to the corresponding quantum field theory does not involve modification of the 
Lagrangian or the field equations, but rather a reinterpretation of the field variables; 
the fields are 'quantized: and partidts emerge as quanta of the associated fields. 
Thus. the photon is the quantum of the electrodynamic field, AI'; leptons and 
quarks are quanta of Dirac fields; gluons are quanta of the eight SU(3) gauge fields; 
and W± and z!! are quanta of the corresponding Proca fields. The quantization 
procedure itself is recondite, and this is not the place to go into it [8J; for our 
purposes the essential point is that each Lagrangian prescribts a particular set of 
Feynman rub. What we need, then, is a protocol for obtaining the Feynman rules 
dictated by a given Lagrangian. 

To begin with, notice that Sf consists of two kinds of terms: the free la· 

grangian for each participating field, plus various intaaction terms (Zin,). The 
former - Klein-Gordon, for spin 0; Dirac, for spin i; Proca, for spin 1; or 
something more exotic, for a theory with higher spin - determines the propaga­
tor; the latter - obtained by invoking local gauge invariance, or by some other 
means - determine the vertex factors: 

Free Lagrangian => propagator 
Interaction terms => vertex factors 

Let us consider the propagators first. 
Application of the Euler-Lagrange equation to the free Lagrangian yields the 

free field equations (Eqs. 10.13. 10.15, and 10.22): 

[(11'(11' + (';)2] ¢ = 0 (Klein-Gordon, for spin 0) 
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[iyl'al' - (n;)] '" = 0 (Dirac, for spin D 
[al'(al'A" - a' A") + (n;f A'] = 0 (Proca, for spin 1) 

The corresponding 'momentum-space' equations are obtained by the standard 
prescription PI' _ iliill': 

IF - (me)lloP = 0 (spin 0) 

11- (me)]", :: 0 (sPin D 
[(_p2 + (me)2}gJ.!' + PJ.!P.]A' = 0 (spin 1) 

(10.90) 

(10.91) 

(10.92) 

The propagator is simply (i limes) the invtm of the factor in square brackets: 

Spin·O propagator: :;,,----;::::;;c 
y (me}l 

__ '_ = , 1,, + me) 
Splll·l propagator ),[ 

., _ me p2 (me)2 

Spin.} propagator: ...1 -
i 

1 [&.. - PlOP; 1 
y. (me) (me) 

(10.93) 

(10.94) 

(10.95) 

Note that in the second case this factor is a 4 x 4 matrix and we want the matrix 
inverse; in the third case the factor is a second·rank tensor (TJ.!') and we want 
the tensor inverse (T-1)J.!" such that Tl'l(ll)�' :: 8; (Problem 10.19). These are 
precisely the propagators we used in Chapters 6, 7, and 9: Since we obviously 
cannot set m ...". 0 in the Proca propagator (Equation 10.95), we must go back to the 
free field equation (Equation 10.22) to work out the photon propagator: 

al'(a"A' - a"A") = O  (massless spin 1) (10.96) 

As I have remarked before, this equation does not uniquely determine AI'; if we 
impose the Lorentz condition (Equation 7.82) 

al'A" = 0  

then (Equation 10.96) reduces to 

alA" :: 0 

• Actually. this proc�ur� only d�!�rmines the 
propasalor up 10 a multiplicative constant. 
since the field equalions can aIWlIYO t.. mul· 
tipli� by such a factor. In the ·canonical· 
fonn of these equations, the coefficient of 

(10.97) 

me or (mc)l is taken to be ± I, with !h� sisn 
matchins that of the mus lerm in Z. Other 
conventions lead to a slilJb!1y diffe",nt set of 
Feynman rule-<, but do no!, of course. cban� 
the C1lcub!� reaction amplitudes. 
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which, in momentum space, can be written as 

(10.98) 

So the photon propagator is 

Massless spin-l propagator. (10.99) 

To get the vertex factors, first write down i Yi"' in momentum space (iM", -+ p",) 
and examine the .fields involved; these determine the qualitative structure 
of the interaction. For example, in the case of the QED Lagrangian (Equation 
10.35) 

(10.100) 

there are thru fields involved (�.1Jr, and A",) and this defines a vertex in which 
three lines are joined - an incoming fermion, an outgoing fermion, and a photon. 
To obtain the vertex factor itself, simply rub out the .field variables: 

(QED vertex factor) (10.101) 

(In the case of the photon, what we actually rub out is ./7fC]4if A",; the extra factor 
is due to our use of cgs units which are, for this purpose, a little cumbersome.) lbe 
same goes for chromodynamics (Equation 10.88): the quark-gluon coupling 

(10.102) 

yields a vertex of the form 

9 

q 

with the vertex factor 

(10.103) 

(Ibe strong coupling constant is traditionally defined with a factor of 2: g, ;;;; 
2..j4ii"J1fiq, where q is the 'strong charge· appearing in the Lagrangian). However, 
there are also direct gluon-gluon couplings, coming from the F"'V . F,," term in y, 
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since P" contains not only the 'free' part, 01' A' - 0" AI' , but also an interaction 
term, -2qjlU:(A'" )( A V) (Equation 10.87). Squaring it out, we find 

= (-'-) ((aI'A" - ,VAl') (A", )( Av) + (AI' )( A") . (a"A, - a.A,,)] 8,,,, 

-4JrilU:)1 
(N' x AV) . (A", )( A,) (10.104) 

The first term carries three factors of AI', and leads to the three·gluon vertex 
(Equation 8.42); the second term carries four factors of A"', and gives the four-gluon 
vertex (Equation 8.43). (For practice in extracting Feynman rules from Lagrangians, 
see Problems 10.20 and 10.21.) 

10.7 
The Mass Term 

The principle of local gauge invariance works beautifully for the strong and 
electromagnetic interactions. In the first place, it gives us a machint for determining 
the couplings (in the 'old days' the construction of 2'inl was a purely ad hoc guess). 
Moreover, as 't HooR and others proved in the early 1970s, [91 gauge theories are 
renormalizable. But the application to weak interactions was stymied by the fact 
that gauge fields have to be massless. Remember, the mass tenn in the Proca 

Lagrangian is not locally gauge invariant, and while the photon and the gluons 
arc massless, the W's and the ZO certainly are not. So the question arises: can we 

doctor up gauge theory in such a way as to accommodate massive gauge fields? 
The answer is yes, but the procedure - exploiting spontaneous symmetry-breaking 
and the Higgs mechanism - is diabolically subtle, and it pays to begin by thinking 
very carefully about how one identifies the mass term in a Lagrangian. 

Suppose, for instance, you were given the following Lagrangian for a scalar 
field ¢: 

:t' "" !(a",¢)«l"ofJ) + C-(o-.;)l 
2 

(10.105) 

where (f is some (real) constant. Where is the mass term here? At first giance 
there's no sign of one, and you might conclude that this is a massless field. But that 

is incorrect, for if you expand the exponential, !i' takes the form 

1 2 2 1 4 . 1 6 6  !i' "" z(a",¢)«l"4» + l - ct  ¢ + "2(f 4> - 6()' ¢ + ... (10.106) 

The 1 is irrelevant (a constant term in !i' has no effect on the field equations), but 
the second term looks just like the mass term in the Klein-Gordon Lagrangian 
(Equation 10.11), with ct1 = !(mc/Ii)2. EVidently. this Lagrangian describes a 
particle of mass 

m =  J2aIi/c (10.107) 
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The higher-order terms represent couplings, of the form 

, / , / 
, / 

� 
" 

/ , 
/ , 

and so on, This is not supposed to be a realistic theory, of course - I offer it only as 
an example of how the mass term in a Lagrangian may be 'disguised'. To expose it, 
we expand Z in powers of tP and pick out the term proportional to </J2 (in general, 
it's the term of second order in the fields - </J, 1/1 ,  N', or whatever), 

But there is a deeper subtlety lurking here, which [ illustrate with the following 
Lagrangian: 

(10.108) 

Here J.! and ). are (real) constants. The second term looks like a mass (and the 
third like an interaction). But wait! The sign is wrong (compare Equation 10.11) - if 
that's a mass term, then m is imaginary, which is nonsense. How, then, should 
we interpret this Lagrangian?' To answer this question, we must understand that 
the Feynman calculus is really a perturbation procedure, in which we start from 
the ground state (the 'vacuum') and treat the fields as fluctuations about that 
state. For the Lagrangians we have considered so far, the ground state - the field 
configuration of minimum energy - has always been the trivial one: </J "" O. But 
for the Lagrangian in Equation 10.108, </J = 0 is nol the ground state. To detennine 
the true ground slate, we write .!l' as a 'kinetic' term (!a,..tPi"'</J) minus a 'potential' 
term (inspired by the classical Lagrangian, Equation 10.4): 

(10.109) 

and look for the minimum of%' . In the present case, 

, [ lik� to im.ogi"" that God has a giant 
comput�r-controUed r .. ctory. which takes 
lagrangian.. as input and ddi�rs tht uni· 
�rses they r�present as output. Usually God's 
computtr has no difficulty - whtn you fttd 
in the Maxw�ll lagr .. ngian. Equation 10,35. 
for aample, it irrunediatdy creates an dt<:­
trom;ogn�tk uni�rse or interacting electrons. 
positrons, and photons. Sometimts it tak�s 

(10.110) 

a lillIe longer _ th� lagrangian in Equation 
10.1OS. for instance. confuses it at first. until 
it deciphfis the 'hidden' mass term. And 
occasionally it returns an errOr messa�; 
'this lagrangian does not dtscrib.. a possible 
universe: please check for synta. errOrs Or 
incorrect signs'. ThaI's what it would do, 
for example, if you fed h th� lagrangian in 
Equation 10.108 without the J.. term. 
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and the minimum occurs at 

� = ±/J-/>" (10.111) 

(see Figure 10.1). The Feynman calculus must be formulated in terms of deviations 
from one or the other of these ground states. This suggests that we introduce a new 
field variable, 1/, defined by 

(10.112) 

In terms of I), the Lagrangian reads 

(10.113) 

The second quantity is now a mass term with the comet sign, and we discover 
(comparing Equation 10.11) that the mass of the particle is 

Meanwhile, the third and fourth tenns represent couplings of the form 

, / , / , / 
� 

" 
/ , 

/ , 

(the last tenn is a constant, signifying nothing). 

(10.114) 

[ emphasize that these Lagrangians (Equations 10.108 and 10.113) represent 
exactly tlu same physical syskrn; all we have done is to change the notation 
(Equation 10.112). But the first version is not suited to the Feynman calculus 
(technically, a perturbation series in � would not converge, because it is an expan­
sion about an unstable point); only in the second formulation can we read off the 
mass and the vertex factors . 

• 

Fig. 10.1 Graph of'!t(4') (Equal;on 10.110). 
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ColtClusion: To identify the mass term in a lagrangian, we first locate the ground 

state (the field configuration for which %'(4)) is a minimum) and re.express '£ as 

a function of the deviation, I), from this minimum. Expanding in powers of I), we 

obtain the mass from the coefficient of the '12 term. 

10.8 
Spontaneous Symmetry-breaking 

The example we have just considered illustrates another phenomenon of impor' 
tance: sponlanrous symmttry.brtaking. The original lagrangian (Equation 10.108) 
is tIItn in r/!: it is invariant as r/! -.. -r/!. But the reformulated lagrangian 

(Equation 10.113) is not even in '1: the symmetry has been 'broken'. How did 

this happen? It happened because the 'vacuum' (whichever of the two ground 

states we care to work with) does not share the symmetry of the lagrangian. (The 

collection of aU ground states, of course, does, but to set up the Feynman formalism 

we are obliged to work with one or the other of them, and that spoils the sym· 

metry.) We call this 'spontaneous' symmetry-breaking because no txternal agency 

is responsible (as occurs, for example, when gravity breaks the three-dimensional 
symmetry in this room, making 'up' and 'down' quite different from 'left' and 

'right'). To put it the other way around, the true symmetry of the system is 'con· 
cealed' by the arbitrary selection of a particular (asymmetrical) ground state. There 

are examples of spontaneous symmetry-breaking in many branches of physics. 
Take, for instance, a thin plastic strip (say, a short ruler): if you squeeze the ends 
together, it will snap into a curved configuration, but it can just as well buckle to the 
left as to the right - both are ground states for the system, and either one breaks 
the left-right symmetry (Figure to.2). 

But the spontaneously broken symmetry we have just considered was a discrete 
symmetry, with just two ground states. More interesting things happen when 

we consider continuous symmetries. (Replace the plastic strip in Figure 10.2 with a 

, 
, 
, 
, 
, 
, 

fig. 10.2 Sponl�n�ous symmdry·b,e�king in a pl�slic strip. 
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plastic rod - say, a knitting needle. lben it can buckle in �ny direction. not just 
left or right.') It is easy to construct a Lagrangian with spontaneously broken 
continuous symmetry. For example, 

.!L' = t(il,,4>d(il"4>d + !(il,,4>21W4>2) + t�2(4)f + ¢il - !>..l(4)f + 4>i)2 
(10.lIS) 

lbis is identical to Equation 10.1OS, except that now there are two fields, 4>1 and ¢2, 
and because:t' involves only the sum of the squares, it is invariant under rotations 
in 4>1, 4>2 space.t 

This time the 'potential energy' function is 

(10.116) 

and the minima lie on a circle of radius !1-/>": 

(lO.tt7) 

(Figure 10.3). To apply the Feynman calculus, we have to expand about a particular 
ground state ('the vacuwn') - we may as well pick 

(to.118) 

Fig. 10.3 The potential function (Equation 10.116) . 

• A more sophistiQled example is the ferromasnet in the ground s�te �Il the electron spins are 
alisned. but the din,l;'m of a1ignmem is an occident of history. The Ihtory is symmetriQI. but 
a given piece of iron has to pick a pa"ku�r orien�tiQn. and that fspontane<lusly'l breaks the 
symmetry. 

t Group theoretiQlly. it is invariam under SO(2):�, ..... ¢" CO$ (J + �, sin (J; ¢'I --> -¢" sin (J + 
¢'l cos (J, for any 'rotation ansle' (J (see Problem 4.6). 
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As before, we introduce new fields, '1 and �, which are the fluctuations about this 
vacuum state: 

1) 5! <Pl - J.l./)...; � 5! <f!2  (10.119) 

Rewriting the Lagrangian in terms of these new field variables, we find (Prob. 
lem 10.22): 

Ie = [�(a"I))WI)) - J.l.21)2] + U(a,,�)(a"n] 
(10.120) 

The first term is a free Klein-Gordon Lagrangian (Equation 10.11) for the field I), 
which evidently carries a mass 

(10.l21) 

(same as before, Equation 10,114); the se.::ond term is a free Lagrangian for the 
field �, which is evidently mass1=: 

(10,122) 

and the third term defines five couplings: 

(the final constant, of course, is irrelevant). In this fonn the Lagrangian doesn't 
look symmetrical at all; the symmetry of Equation 10.115 has been broken (or 
rather, 'hidden') by the selection of a particular vacuum state. 

The important thing to notice here is that one of the fields (�) is automaticaUy 
masslt:SS. This is no accident. It can be shown (Goldstone's theorem [10]) that 
spontaneous breaking of a continuous global symmetry is always accompanied 
by the appearance of one or more massless scalar (spin·O) particles (we call 
them 'Goldstone hosans').· Well, this is a disaster; we were hoping to use the 
me<hanism of spontaneous symmetry.breaking to account for the mass of the 
weak interaction gauge fields, but now we find that this introduces a massless 
scalar boson, and there is no such thing on the roster of known elementary 
particles.t But hold on, for there is one final incredible twist in the story. It comes 

• Intuitively, this is Te�ted to the f�ct tim !here is no rWSI�nce (0 e�dmions in the � direction. 
Flick th� bent huning needle and il will spin fr�ly about th� axis, wh�r�as r<>ditJt excitations 
encounter a restoring for«, and the system osciU�tes. 

t 11 is hard to imagine th�t such a �rtide could h�ve escaped detection, With k",,"Y �Ttides. this 
is �Iway$ a ponibility _ maybe you just didn't have �nough energy 10 produu il - but a I"I"I<W­
!ess particle would surely have sllown up sotmWhere, if only in the form of 'mining' energy �nd 
mo=nlum. 
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when we apply the idea of spontaneous symmetry.breaking to the case of local 
gauge invariance. 

10.9 
The Higgs Mechanism 

The Lagrangian we studied in Se<tion 10.8 can be written more neatly if we 
combine the two real fields, 11 and 12, into a single complex field: 

(10.123) 

so that 

(10.124) 

In this notation (and it is nothing but notation), the Lagrangian (Equation 10.115) 
reads 

(10.125) 

and the rotational S0{2) symmetry that was spontaneously broken becomes invari· 
ance under U(l) phase transformations: 

(10.126) 

This is precisely the kind of symmetry we considered back in Section 10.3, except 
that now we are working with scalar fields instead of with spinors. We can make 
the system invariant under local gauge transformations 

(10.127) 

by the usual device of introducing a massless gauge field A", and replacing the 
derivatives in Equation 10.125 with covc.zriant derivatives (Equation 10.38): 

(10.128) 

(10.129) 
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Now we simply retrace our steps in Section 10.8. applying them to the locally 
invariant Lagrangian (Equation 10.129). Defining the new fields 

(10.130) 

(compare Equation 10.119). the Lagrangian becomes (Problem 10.2S): 

z = U(il"'I)(il"'I) - �2tl] + [�(a,,�)(il"�)] 
+ [ - 1�1T F"" F,," + � (t i r A"A" ] 
+ {!(I)(il,,�) - �(il"I)))A" + i (tf I)(A"A") 

+ i (tf (�l + 1)1)(A"A") -.l.;.t(I)} + 1)�2) _ �.l.2(1)4 + 21)1�2 + �4)} 

+ (�.i) I'  ,)A' + ("')' 
.I. fie " 2.1. 

(10.131) 

The first line is the same as before (Equation 10.120): it represents a scalar particle 

(I)). of mass ..fi�ti./c. anda massless Goldstone boson In The second line describes 
the free gauge field A". but - mirabik dictu! - it has acquired a mass: 

(10.132) 

(compare the Proca Lagrangian. Equation 10.121). The term in curly brackets 
specifies various couplings of �. 'I. and A" (Problem 10.26). It is interesting 
to see where the mass of A" came from: the original Lagrangian (Equation 
10.129) contains a term of the form </1*</1 A"A". which - absent spontaneous 
symmetry-breaking - would represent a coupling: 

V 
/ , 

/ , 
/ , 

/ ¢ ¢ "'  
/ , 

But when the ground state moves 'off center'. and the field </11 picks up a constant 
(Equation 10.130). this piece of the Lagrangian emerges as a Proca mass term. 
However. we still have that unwanted Goldstone boson (n. Moreover. there is a 

suspicious-looking quantity in Z: 

(10.133) 
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What are we to make of fhis? Ifwe read it as an intuaction, it leads to a vertex of 
the form 

, A 
- - - - � 

in which the � turns into an A. Any such term, bilinear in two different fields, 
indicates that we have incorre.::tly identified the fundamental particles in the 
theory (see Problem 10.23). Both difficulties involve the field � "" 4J2, and both 
can be resolved exploiting the local gauge invariance of.2' (in the original form, 
Equation 10.129) to transjonn this fidd away entirely! Writing Equation 10.126 in 
terms of its real and imaginary parts, 

4J -+ 4J' = (cosO + isinO)(4JI + i4J2) 
= (4Jl cos (J -<h. sin (J) + i(¢>l sin(J + ¢>2 cos tI) (10.134) 

we see that picking 

(10.135) 

will render ¢>' real, which is to say that ¢>' 2 = O. The gauge field A" will transform 
accordingly (Equation 10.34), but the lagrangian will take the same form in terms 
of the new field variables as it did in terms of the old ones (that's what it /mans to 
say that !£ is invariant). The only difference is that � is now zero. In this particular 
gauge, then, the Lagrangian (Equation 10.131) reduces to 

:t' :: [�(a"I))(a"I)) -#21)2] + [-l�l/"· Fl'. + � (-� tfY A"AI'] 
+ {i (�)2 

I){A"A") + � (-�f I)2(A"AI') - 1-#1)3 - �I-ll).} 
(10.136) 

By an astute choice of gauge, we have eliminated the Goldstone boson and the 
offending term in:t'; we are left with a single massive scalar I) (the 'Higgs' particle) 
and a massive gauge field A". 

Please understand: The Lagrangians in Equations 10.129 and 10.136 describe 
exactly the same physical system; all we have done is to sele.::t a convenient gauge 
(Equation 10.135) and rewrite the fields in terms of fluctuations about a particular 
ground state (Equation 10.130). We have sacrificed manifest symmetry in favor 
of notation that makes the physical content more transparent, and allows us to 
extract the Feynman rules more directly. But it's still the same Lagrangian. There 
is an illuminating way to think about this: a masslt:SS vector field carries two degrees 
offreedom (transverse polarizations): when AI' acquires mass. it picks up a third 
(longitudinal polarization). Where did this extra degree of freedom come from? 
Answer: It came from the Goldstone boson, which meanwhile disappeared from 
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the theory. lbe gauge field 'ate' the Goldstone boson, thereby acquiring both a 
mass and a third polarization state.* lbis is the famous Higgs mechanism, the 
remarkable offspring of the marriage of local gauge invariance and spontaneous 
symmetry-breaking [11]. 

According to the Standard Model, the Higgs me<:hanism is responsible for the 
masses of the weak interaction gauge bosons (W:!: and ZO). The details are still 
matters of speculation - the Higgs particle has never been seen in the labora· 
tory (presumably it is just too heavy to make with any existing accelerator), and 
the Higgs 'potential', 0/.1(4)), is unknown (I used %' = _��2(4)'4>) + �).2(4)'4>)2 
just for the sake of argument).t There may in fact be many Higgs particles, 
or it may be a composite struchlre, but never mind: the important thing is 
that we have found a way in principle of imparting mass to the gauge fields,t 
and that is our license to believe that all the fundamental interactions - weak 
as well as strong and electromagnetic - can be described by local gauge theo· 
ries [12J. 
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10.1 One advaOlage of the l.:Igrangiao formulation is that it does not commit us to any 
particular coordinate system - the q's in Equation 10.6 could be Cartesian coordinates, 
Or polar coordinates, or any other variables w<: might use to designale the particle's 
position. Suppose, for example, we want to analyze the motion of a particle that slides 
frictionlessly on the inside surface of a cone mounted with its axis pointing upward, as 
shown, 

, 

y 

x 

(a) Express T and U in terms of the variables .z and � and the consunts a (the opening 
angle of the cone), m {the mass of the particle}, and g (the acceleration of gravity). 

(bt Construct the l.:Igrangian, and apply the Euler-Lagrange equations to obtain differ· 
ential equations for z(l) and � (I). 

(e) Show that L = {m tan�a).zl¢ is a constant of the motion. What is this quantity, 
physicaJly� 
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(d)Use the result in (e) to eliminate 4> from the z �u;ation. (You are left with a 
=nd-order differential equation for z(l): if you want to pursue the problem further, 
it is easiest to invoke conselVation of tlttlg}'. which yields afirn-order equation for :.) 

10.2 Derive Equation 10.17 
10.3 St4lrting with Equation 10.19, show that 3"A" = 0, and hence that each component of 

A" satisfies the Klein-Gordon equation: DA" + (me/h)l A" _ O. 
10.4 As it st4lnds, the Din.c Lagrangian (Equation 10.1-4) treats '" and f asymmetrically. Some 

ptople prefer to deal with them on an equal footing. using the modified Lagrangian 

Apply the Euler-Lagrange equations to this 2. and show that you get the Din.c�uation 
(Equation 10.15) and its adjoint. 

10.5 The Klein-Gordon Lagrangian for a compkx field would � 

Treating 4> and </>* as independent field variables, deduce the field equations for each. 
and show that thf,se field �uations are consistent (i.e. one is the complex conjugate of 
the other). 

10.6 Apply the Euler-Lagn.nge equations to Equation 10.33 to obtain the Dine equation 
with electromagnetic coupling. 

10.7 Show that the Dirac rurrent (Equation 10.36) satisfies the continuily equation 
(Equation 10.25). 

10.& The complex Klein-Gordon Lagrangian (Problem 10.5) is invariant under the global 
gauge transformation 4> ..... . ;fI4>. Impose loc;ol gauge invariance to construct the 
complete gauge·invariant Lagrangian. and determine the current density r. Using the 
Euler·Lagn.nge �uation for 4>, show that this current obeys the continuity equation 
(Equation 10.2S). (Warnil1g: The cwrent is defined by Equation 10.H. ItO! by Equation 
10.23. It is true that the former follows (ordinarily) from the latter, but not when 1" 
depends explicitly on A". In this (rare) cireumst4lnce you cannot just pick off the term 
in 2 that is proportional to A": rather, you must use the Euler-Lagn.nge equations to 
de�rmine 3" P", and get the current from that.) 

10.� (_I Suppose the field variables (4)i) are subjected to an infinitesimal global transformation 
8</>;. Show that the Lagrangian .ft'(4)i. 3,,4>;) changes by an amount 

In particular, if the Lagrangian is iltvarialtl under the transformation in question, 
then!2 = O. and the term in curly brackets constitutes a conserved rurrent (that is, it 
obeys the continuity equation). More precisely, if the transfomution �i is specified 
by a pan.meter !8. the Noetherian current is 

(up to an overall constant, chosen for convenience in the particular context). This 
is the essence of Noether's theorem (3), relating symmetr�s of the Lagrangian to 
conservation laws. 
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(1)1 Apply Noether's theorem to � Oir.lc LaBr.In�n (Equation 10-14), to construct the 
conserved current associated with global pluseinvariance (Equation 10.26). Comp,aff 
the electric current (EqUOItion 10.36). 

Ie) Do the same for the complex Klein-Gordon Lagr.lngian in Problem 10.8 
10.10 Derive EqUOItion 10.51 
10.11 !}duce Equation 10.58 from Equation 10.57, using Equations 10.�-10.56. 
10.12 Suppose we were to define 

in Yang-Mills theory. 
(>] Find the tr.lnsformation rule for this P". under infinitesimal �uge transformations 

(Equation 10.61). 
(tt) Determine the infinitesimal tnnsformation rule for .:t'll (Equation 10.63), in this 

case. Is the Lagrangian invariant) 

10.11 Derive EqUOItion 10.66, sUlrting with Equations 10.61 and 10.65. 
10.14 Prove that gauge field Lagr.lng�n (Equation 10.63) is invariant under finite local gauge 

transformations. as follows: 
(a) Using Equations 10.58 and 10.65, show that 

[Note that a�(S-LS) == O ;j.  (a� S-I)S = -S-I{a�S).) 
(hi Show. therefore, that 

Tr[(y . F�")(Y . F".)] 

is invariant. 
(e) Using Problem 4.20(c). show that the trace in (b) is �ual to 2F'" . F� •. 

10.15 Apply � Euler-Lagr.lnge equations to the Lagrangian in Equation 10.69. Using the 
standard associations (Equations 7.71, 7.72. and 7.79), obtain 'Maxwell's eqUOltions' for 
classical Yang-Mills theory. [Note that there are ,II"", charge densities, three current 
densities, three scalar potentials. three vector potentials, three 'electric' fields. and three 
'magnetic' fields. in this theory.) (Unlike electrodynamio, your expressions for the 
divergence and curl of the E's and B's will inevitably involve the pot�n'iaIs.) 

10.16 Show !lut any Hermitian 3 x 3 matrix can be written as a linear combination of � 
unit matrix and the eight Gell·Mann matrices (EqUOltion 10.76) 

10.11 (a) Show that det(�) == ,TT{I\). for any matrix A. [Hint: Check it first for a diagonal 
matrix. Then extend the proof to any diagonaUzobk matrill (S-I AS == D. where D 
is diagonal, for some matrix S) - show !lut Tr(A) == Tr{O) and S-I .... S = �D. so 
that det{ .... ) = det{��. Of course, not all matrices an diagonalizable; however, every 
matrix can be brought into Jordan canonical form {S-' AS ==], where ] is diagonll.! 
except for some l's immediately below the main diagonal). nke it from there.j 

(b) Show that tfl·, (in Equation 10.78) has determinant 1. 
10.18 Starting with Equation 10.81, derive Equations 10.82 and 10.83. 
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10.19 Confirm th;ot the PrOQl prop;lg�tor (Equ�tion 10.95) is the inverse of the tensor in 

Equation 10.92, in the sen� explained in the text. 
10.20 Construct the ugrangi�n for ABC theory (Ch;opter 6). 
10.21 Give � physical int�rpreUlion of the Yuhwa ugnngian: 

:t' = lilictyl'0l'tP - mlc2V/1/r1 

+ [�(Ol'oiI)(i:II'oiI) - � (m;')l oiI2] - ayl1/roil (10.137) 

What are the spins �nd mas�s of the p;lrticles? Wlut ue their prOp;lg<ltors? Dr�w the 
Feynnun diagnm for their interaction and detennine the vertex f;wor. 

10.22 Derive Equation 10.120 
10,23 Suppose we took 

�s the fundamental fields. instead of Equation 10.119 Express the ugrangian 
(Equation 10,120) in tenns of >{I, and >{II. 
(Commrnl: Offh�nd, it looks n though we have two mimi"" fields here, �nd thus escape 
Goldstone's theorem. Unfortunately. there is also a term of the form _".1>{I1'/12. [fyou 
interpret this �s �n inkradion. it converts '/II into "'I. �nd vice vers�, but th�t means 
neither one exists as an independent free p;lrticle. Rather. such an expression should be 
interpreted as an off·(liagonai term in the mass matrix (Equation 10.45). indicating th;ot 
we have incorrectly identified th� fundamental fields in th� theory. The physical fields 
are those for which M is diagonal and for which no direct transitions from one to the 
other can occur. We have encountered this situation once before, in Section 4.4,3: we 
found th;ot.l«l .... K'. and h�nce that these are not the physical p;lrtide states; inste�d, 
the linear combin�tions K, and Kj, in terms of which the mass matrix is di<lgon�l, ue 
the 'true' p;lrticles.] 

10.24 Generaliu th� ugument following Equation 10.115 to thru fields (4'" 4'2, 4'1). What ue 
the mas�s of the three p;lrticles? How many Goldstone basOIIS are there in this ca�? 

10.lS Starting from Equations 10.129 and 10.130. d�rive Equation 10.131 
10.26 Oraw the primitive vertices for ;ill the inler�ctions in curly brackets in Equation 10.131 

Cirde the ones that survive in Equation 10.136 
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Neutrino Oscillations 

Rea"t txptrimtnts have shown that �utrin05 can convert from one jlullOr to ,,"otner (for 
instanct, v • ..... vJ.I)' This means that neutrinos havt: nonuro mass, and that the lepton 
numbers (ekelron, muon, and tau) an: not separately conserved. Neutrino oscillations 
resolve Jm sclar neutrino problem, lind suggest mcdtst changes in the Standard Model. 
The treatmmt hae is /argdy self-wntained. and could evt:n be rcad immediately after 
Chapter 2. 

11.1 
The Solar Neutrino Problem 

The siory begins [1) in the middle of the nineteenth century. when Lord Rayleigh 
undertook to calculate the age of the sun. He assumed (as everyone did, at the 
time) that the source of the sun's energy was gravity - the energy accumulated 
when all that matter 'fell down' from infinity is liberated over time in the form 
of radiation. On the basis of the known rate of solar radiation (which he took to 
be constant), Rayleigh showed that the maximum possible age of the sun was 
substantially shorter than the age of the earth as estimated by geologists, and, more 
to the point, shorter than Dazwin's theory of evolution required. This pleased Lord 
Rayleigh, who was opposed to evolution on quaint religiOUS grounds, but it worried 
Darwin, who removed his own estimate from subsequent editions of his book. 

In 1896, Becquerel discovered radioactivity. In subsequent studies he and the 
Curies noted that radioactive substances such as radium give off prodigious 
amounts of heat. This suggested that nuclear fission, not gravity, might be the 
source of the sun's energy, and this would allow for a much longer lifetime. The 
only trouble was that there didn't appear to bt any radioactive stuff in the sun, 
which is made almost entirely of hydrogen (plus a small amount of light elements, 
but certainly not uranium or radium). 

By 1920, Aston completed a series of meticulous measurements of atomic 
weights, and Eddington noticed that four hydrogen atoms weigh slightly more than 
one atom ofhelium-4. This implied (in view of Einstein's E _ mel) that the fusion 
of four hydrogens would be energetically favorable, and would release a substantial 

J,Uroo:/UC!;OIlIO EltIlltIl!�'Y PGrlicW. Stcolld Ed;!;",,- D.vid Griffiths 
Copyright Cl 2008 WILEY·VCH Verlag GmbH & Co. KG.". Weinheim 
ISBN, 978-3·527·40601·2 



388 1 " N�lJtriflo (N;;!lot;o", 

amount of energy. Eddington suggeste<! that this process (nuclear fusion) powers 
the sun, and in essence he was right. Of course, Eddington didn't know what the 
memanism for binding the hydrogens together might be; this had to await the 
development of nuclear physics in the 1930s - in particular, Chadwick's discovery 
of the neutron and Pauli's invention of the neutrino. 

In 1938, Hans Bethe worked out the details, which tum out to be quite com· 
plicated. In heavy stars the dominant mechanism is the CNO (Carbon-Nitrogen 
-Oxygen) cycle, in which the fusion process is 'catalyze<!' by small amounts of those 
three elements. But in the sun (and other relatively light stars) the dominant route 
is the so-called pp chain (Figure 11.1). To begin with, a pair of protons (hydrogen 
nuclei) combine to make a deuteron, a positron, and a neutrino. (The deuteron is a 
proton and a neutron, so what really happene<! here is that a proton converted into 
a neutron, a positron, and a neutrino - the reverse of neutron decay.) Alternatively, 
the outgoing positron could be replaced by an incoming electron. Either way, we 
have produce<! deuterons (along with some neutrinos) from protons. The deuteron 

soon picks up another proton to make a helium·3 nucleus (two protons and a 
neutron), releasing energy in the form of a photon. Helium·3 has three options: 

it can join with another loose proton to make an alpha particle - the nucleus of 
helium-4 (two protons and two neutrons). Once again. a proton has been converted 
into a neutron (with emission of a positron and a neutrino). Or two helium·3s can 
get together to make an alpha particle and two leftover protons. Or the helium-3 
can combine with an alpha particle (produced in one of the previous reactions) to 
make beryllium.7, with the emission of a photon. Finally, the beryllium can either 

The pp Chain 
Step 1: Two protOIiS make a deuteron 

Step 2: Deuteroll plus proton makes lHe. 

d + p  .... lHe+1" 

Step 3: Hc!ium·3 make.. alpha partidc or 7[k 
JHc+ p 

3He+3He 
lHe + a 

o + e'" + v_ 

a + p + p 
lBe+"I 

Step 4: BcriUiUl" lHakes alpha par�icles. 

7[3c + e� 

7Li + P 
'[3c + P 

"B 
"Be-

lLi + v. 
a + .  
88 + "1  
aBe' + e� + v< 
0 + 0  

Fig. 11,1 The pp chain: how protons make alpha particles in the sun. 
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absorb an electron, making lithium, which picks up a proton, yielding two alpha 
particles, or else it absorbs a proton, making boron, which goes to an excited state 
ofberyllium-S, and from there to two alpha particles. 

The details are not so important; the point is that it all starts out as hydrogen 
(protons), and it all ends up as a particles (helium-4 nuclei) - precisely Eddington's 
reaction - plus some electrons, positrons, photons . _ .  and neutrinos. But is this 
complicated story really Ime? How can we tell what is going on inside the sun? 
Photons take athousand years to work their way out from the center to the surface, 
and what we see from earth doesn't tell us much about the interior. But neutrinos -
because they interact so weakly, emerge virtually unscathed by passage through the 
sun. Neutrinos, therefore, are the perfect probes for studying the interior of the sun. 

In the pp chain there are five reactions that yield neutrinos, and for each one the 
neutrinos come out with a characteristic energy spectrum, as shown in Figure 11.2 
The ovelWhelming majority come from the initial reaction p + P _ d + e + v,_ 
Unfortunately, they carry relatively low energy, and most detectors are insensitive 
in this regime. For that reason, even though the boron-S neutrinos are far less 
abundant, most experiments actually work with them. 

There are certainly plenty of neutrinos coming from the sun. John Bahcall, who 
was responsible for most of the calculations of solar neutrino abundances, liked to 
say that 100 billion neutrinos pass through your thumbnail every second; and yet 
they are so ethereal that you can look fOlWard to only one or two neutrino-induced 
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Fig. 11.2 The c�tculated energy spectra for solar neutrinos. 
(Soura: ). N. Bahcali, A.M. Serenelii, and S. Basu, As1rophYS;· 
wi journal 621, L85 (2005).) 
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reactions in your body during your entire lifetime. In 1968. Ray Davis tt at. [2] 
reported the first experiments to measure solar neutrinos, using a huge lank of 
chlorine (actually, cleaning fluid) in the Homestake mine in South Dakota (you have 
to do it deep underground to eliminate background from cosmic rays). Chlorine 
can absorb a neutrino and convert to argon by the reaction v, + He! -+ 17 Ar + t 
(essentially again v. + n -+ p + t). The Davis experiment -for which he was finally 
awarded Nobel Prize in 2002 - colle<:ted argon atoms for several months (they were 
produced at a rate of about one atom every two dill'S)' The total accumulation was 
only about a third of what Bahcall predicted [3]. Thus was born the famous solar 
neutrino probltm. 

11.2 
Oscillations 

At the time, most physicists assumed the experiments were wrong. After all, Davis 
claime<! to have flushed a total of33 argon atoms out of a tank containing 615 metric 
tons of tetrachloroethylene - it was not hard to imagine that he might have missed 
a few. On the theory side, Bahcall's calculations require<! an audacious confidence 
in the so·nlle<! Standard Solar Model of the interior of the sun. But gradually the 
community came to take the solar neutrino problem seriously - espedally when 
other experiments, using quite different detection methods, confirmed the deficit. 

In 1%8, Bruno Pontecorvo suggested a beautifully simple explanation for the 
solar neutrino problem. He proposed that the electron neutrinos produced by the 
sun are transformed in flight into a different species (muon neutrinos. say, or 
even antineutrinos). to which Davis' experiment was insensitive [4). This is the 
mechanism we now call neutrino osciUation. The theory is quite simple - it is 
basically the quantum mechanics of mixed states. which itself is almost identical to 
the classical theory of coupled oscillators [51. Consider the case of just two neutrino 
types - say. v, and v". If one can spontaneously convert into the other, it means 
that neither is an eigenfunction of the Hamiltonian. The true stationary states for 
the system are evidently some orthogonal linear combinations: 

vl = cosB v,, - sin B v,; vz = sinB v,, + cosBv. (ILl) 

(Writing the coefficients as sines and cosines is just a cute way of enforcing 
normalization.) 

According to the Schr&iinger equation, these eigenstates have the simple time 
dependence ,_iE,ljh: 

(11.2) 

Suppose, for example, that the particle starts out as an electron neutrino: 

v,(O) = l. '1,,(0) =0. so vJ(0) = - sinB, II2(0) = cos8 (11.3) 
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In that case 

(11.4) 

Solving Equa tion 11.1 for VI" 

The probability that the electron neutrino has converted into a muon neutrino, 
after a time t, is evidently 

IV,,(1)l2 "" (sin8 cos 8)2 (e-iE2,/n 
_ e-iEI'/�) (df2'ln 

_ 
dfl'IA) 

= Sln;28) (1 _ d(fl-fll'I" 
_ e-i(frfll'/h + 1) 

� --- 2 - 2cos = ---4sm ---, 
sin2(28) ( (£2 - Edt) sin2 (28) . 2 (E2 - EI ) 

4 fi 4 2ft 

(11.6) 

You see why they are called neutrino oscillations: v. will convert to vI" and then 
ba<:k again, sinusoidally, just as coupled oscillators go back and forth between the 
normal modes. In this theory the electron and muon neutrinos themselves do not 
have well-defined energies - or masses; the 'mass eigenstates' are VI and V2, with 
masses ml and "'2.' What is the energy ofa highly relativistic particle of mass '" 
and momentum p? Well, £2 - lpl2cZ _ ",2,4, so 

Evidently, then,t 

(11.71 

• In I"rticular, it is lit�rally noll><,... to sprak of th� ·rnass· of an ekctron n�utrino (for �J<amp!e) 
- it lias no nuss. an� more dun a three· note chord has a (single) pitch. 

t 1 follow here 1M standard derivation. in which p. not E. is held cons�t. Kayser 161 notes dut 
this is 'tr<hnically incon�'. but a 'harml�s$ �nor·. sin� it l�.d$ (much more simply) to 1M 
right anSWer. 
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and hence' 

1 · . [1ml - m11" 1 1' P ....... u = sm(20) sm 4hE t (11.8) 

Write the answer, if you prefer, in terms of the distance z "'" ct the neutrinos have 
traveled: 

1 [(ml - m'I" 1 1' P"'''''Vu = sin(20) sin 4hE 1 z (11.9) 

In particular. after a distance 

L � "2"rr,,h:::E", 
(mi mt)c) (ll.lO) 

the probability of conversion hits a maximum, sin 2(20), and at 2L they are all back 
to electron neutrinos. 

Notice that two things are necessary. in order for neutrino oscillations to occur: 
111ere must be mixing (0). and the masses must be unequal - in particular, they 
cannot both be zero. It is sometimes asserted that the Standard Model requires 
that neutrinos be massless, but I don't agree. It's true that some of the calculations 
are easier if you make this assumption. but there is no jUndamt:ntal reason why 
neutrinos should have zero mass (whereas for the photon this is absolutelyessential). 
Cross-generation mixing is a more significant change, though it already happens 
in the quark sector, and in a way it would be more surprising ifit did not occur for 
the leptons.t 

11.3 
Confirmation 

In 2001, the Super-Kamiokande collaboration presented its results on solar 
neutrinos [9J. Unlike the Davis experiment, SuperK uses water as the detector 
(Figure 11.3), and it is sensitive to muon and tau neutrinos as well as electron 
neutrinos. The process is elastic neutrino-electron scattering: v + e --. v + e; the 
outgoing electron is detected by the Cerenkov radiation it emits in water. The 
neutrino can be of any type, but the detection efficiency is 6.S times greater 

• Eucdy th� $arne formalism appU ... to n�u· 
Ira] kaon mixing (Mction •. 8.1) � Stt Pro!>· 
km 11.2. 

t For neutrinos p<.ssing through maIler (as 0p­
posed to vacuum) there are additio�] �ff�ts. 
du� to eLostic scattering of �lectron n�utrinos 
(v, + .  -+ v, + •. by exchan� of a W) and the 
zl·mediated inteucrion of neutrinos of any 

flavor with �. p. and M. This possibility. first 
noted by Wolfenstein. Mikheyev. and Smirnov 
171 (he� known origiruilly as the MSW ef. 
fect), does not alter the functional form of 
Eq .... tion 11.9, but it does modify the effective 
mixing angle and nuss splitting in a nunner 
that depends on � density of the matter and 
the tnergy of the beam 18]. 
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Fig. 11.3 The Super-lUImiokande detector (note the p<!Ople in the rubber raft). 

for electron neutrinos than for the other two kinds: They recorded 45% of the 
predicted number . . . assuming all of these neutrinos were still electron neutrinos. 
But remember that their detector is less efficient in counting J.t and T neutrinos. If 
some of the v;s had converted to v,:s or v;s, then the actual flU){ would be higher 
- but how much higher they could not say, because they had no way of knowing 
what fracticl1 of the neutrinos had in fact converted. You could look back at the 
Homestake data (remember, Homestake counted only dutrol1 neutrinos), but the 
conditions were sufficiently different that the comparison was not persuasive. 

Meanwhile, at the Sudbury Neutrino ObselVatory (SNO) a very similar exper­
iment was under way, using htavy water (D20) instead of ordinary water. The 
virtue of heavy water is that the J1.eutrol1S present admit two other reactions (in 
addition to elastic scattering off electrons), and these enable one to measure sep· 
arately the electrol1 neutrino fiU){ and the total neutrino fiU){ (Figure 11.4). In the 
summer of2oo1 the SNO collaboration published their first results [101, reporting 
on the neutrino absorption process (which applies only to electron neutrinos). 
They got 35% of the predicted fiU){. If you compare this with the SuperK data 
(45%) it appears that 10% of the neutrinos detected at SuperK must, in fact, 
have been v" 's or liT'S. But we mow that the detector is 6.5 times more efficient 
for electron neutrinos, so if they had been v;s, they would have accounted for 

• Eta.tic neutrino_eleen-en scattering (.In pr� vi>. Z" el<Change rer aU three ntutrino 'p«ie$, 
but for dKtron ntUmnos there i. an extra diagram, mediakd by the W (� Problem ll.l). 
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Detection Methods 
Homestakc cxperimCllt (1968): 

v� + 37Cl ..... 3?Ar+e 

Super-Kamiokande experiment (19!l8): 

Solar neutrino obrervatory (2002); 

v + d  -0 n + p + v  
v + �  -0 v + e  

Fig. 11.4 o.etection rne<:hanisrns at Horn�suke, SuperK, and SNO. 

6.5 x 10 - 65%, and 35 + 65 - 100 - right on the money! This was just too perfect 
to be an accident, and many people concluded. right then that the solar neutrino 
problem was solved, and neutrino oscillations confirmed. Still. not everyone was 
convinced, be<:ause this argument involves an awkward concatenation of data from 
different instruments, taken under different conditions. To nail it down definitively, 
the two measurements - the total flux and the electron·neutrino flux - had to be 
taken under identical conditions.' Thost results were finally provided by the SNO 
collaboration in April 2002 (I2). Suffice it to say that they perfectly confirmed the 
tentative conclusions of the previous summer, with 

00<01 :::::; Trj6, (lLll) 

(for the conversion of electron neutrinos to muon and/or tau neutrinos). 
Of course, the sun is not the only supplier of neutrinos. There are also terrestrial 

sources (radioactive materials, nuclear reactors, and particle accelerators), atmo· 
spheric sources (cosmic rays), and astronomical sources (supernovae). In fact, the 
first strong evidence for neutrino oscillations was obtained at Kamiokande [13] 
(predecessor to SuperK) in the early 1990s using atmospheric neutrinos. Atmo· 
spheric neutrinos come mainly from the decay of pions and muons produced when 
cosmic rays (high-energy protons from outer space) hit air molecules in the upper 
atmosphere: 

• Incidentally, you may haw: Men wondering 
whelh�r n�utrirlO5 don't simply duay ­
that would cmainly account for the delici!. 
But what could th�y decay inUl? t-bybe 
somr ev<:n lighter fermion """ never no­
ticed before. This wu actu./.lly a viable (if 
implausible) option until the SNO experi. 
ments demonstrated c(lnclusively not only 

(11.12) 

that elKtron ,",utrinos are mi><ing, but that 
the other Aavors are apl""'ring in their place. 
Kayser ClDs this the 'smoking gun' evioknce 
for neutrino oscillations. It may weU be 
true that the hr�virst neutrino, at lust, is 
unstable. but its lifetimr is presumably too 
long to affect current uperimenl.< [11[. 
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Evidently, there should be twice as many muon neutrinos (and antineutrinos) as 
electron neutrinos.' In fact. however, Kamiolcande found roughly equal numbers 
of electron and muon neutrinos. This suggests that the muon neutrinos are 
converting to a different flavor. Indeed, the Kamiokande detector was able to sense 
the direction from which the neutrinos came; those from directly overhead, which 
had traveled only lOkm or so, arrived in the expected ratio (2: 1), but as the zenith 
angle increased (and with it the distance to the source), the ratio decreased (see 
Problem 11.4). These results were confirmed and improved by SuperK in 1998 (14], 
It seems that the muon neutrinos convert into tau neutrinos, with 

(11.13) 

The atmospheric neutrino experiments (involving muon neutrino oscillations) tell 
us nothing about the solar neutrino problem (which involves electron neutrinos), 
but it is comforting to see the same phenomenon play out in two different contexts. 

The ideal test of neutrino oscillations would involve a fixed source (a reactor 
or an accelerator) and a movable detector. As the separation increases, one 
would monitor the sinusoidal variation predicted by Equation 11.9. Unfortunately, 
neutrino detectors tend to be huge, and oscillation lengths are typically in the 
range of hundreds of kilometers (while the flux from a point source falls off like 
1/,1). So one must make do with fixed targets and extremely intense sources, 
and study the variation with e1le1K}'. The KamLAND experiment [15] uses a new 
detector at the SuperK site and looks at neutrinos from several power reactors 
IS0-200km away; the MINOS experiment [16] uses a detector in a mine in 
Soudan, Minnesota, to monitor accelerator-generated neutrinos from Fermilab, 
750 km away in Illinois. 

11.4 
Neutrino Masses 

With three neutrinos there are three mass splittings: 

(11.14) 

Only two of them are independent (6.31 - 6.21 + 6.n),t The oscillation measure­
ments (Equations 11.11 and 11.13) indicate that one splitting is quite small, and 

• Of cou�, not all pions dea� to muons, and 
not aU muons ckcay ""fOfr rraching ground 
�l; moreover, kaons as well as pions are 
produced by (osmic rays. So the factor of two 
is not '''''''1, but it sbould be pretty close. 

t The LSND elCperiment at Los Alamos re­
ported a third ma!;$ splitting incoml"tiblt 
with this constraint (17), and was for a wbilt 
interpreted as evidence of a fourtb neutrino. 

Since, bowever, it was alread� established 
(_ Section 11.9) that the", are a.ttly tbr� 
light ntuttinos particil"ting in the weak 
interactions, the 'extra' nrutrino was takrn to 
"" 'sterile' (noninteraCling. acept for s.aYity). 
At any ratr, thr MiniBooNE experiment at 
Fermil.b ltas prttty decisively repudiated tbe 
LSND result (18), and with i t  tbe notion of 
sterile neutrinos. 
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the others relatively large; we call VI and Vz the closely-spaced pair (with ml > ml), 

and V) the loner. This structure is somewhat reminiscent of the charged leptons (t 
and J.! fairly close in mass, r much higher), and the quarks (d and s close, b higher; 
u and c relatively close, t much higher), so it is natural to assume that VI is htavier 
than the other two - but it is possible that the neutrino spe<trum is 'inverted', with 
V) much lighter than VI and Vl (Figure 11.5). 

Unfortunatdy, oscillations are only sensitive to difftnnces in (the squares 01) 
neutrino masses, and one would like to measure the individual neutrino masses 
directly. This is not easy [19]. The standard method is to study the high energy 
cut-off (analogous to 9.2) in the beta-clecay spectrum of tritium, but while these 
experiments set upper bounds on the neutrino mass, no measurement to date has 
established an actual mass. Meanwhile, an independent upper bound was proVided 
serendipitously by the supernova SN1987A: 19 neutrinos, with a range of energies, 
were detected in the burst, which lasted only 10 seconds. For massive particles the 
speed is (of course) a function of energy, and the fact that these arrived so close 
together puIS a limit of about 20eV/,z on the neutrino mass (see Problem 11.5). 
On the other hand, the atmospheric neutrino oscillations (Equation 1 U3) imply 
that at least one of the neutrino masses must exceed 0.04 eV ,e2. From all available 
evidence the best we can say today (200s) is that the heaviest neutrino mass lies 
somewhere between 0.04 eV /ez and 0.4 eV /e2 .. 

" ==  '. 

" ---

Normal Inverted 

Fig. 11.5 'Norm�I' �nd 'inverted' nelJtrino maH spect'lJm. The lJnits �.e (eVI!?)l. 

• Alone amon8 the qmrks and leptons, neulli­
nos could con�iv�bly be their own anti!",rti_ 
des - 'Maioram' as opposed to 'Dirac' neu­
trinos (Problem 7.51). [n S«tion 1.5 I Jnen­
tioned the Davis and Har"""r elrpefiment. 
which appears to demonstrate that v, is dis­
tinct from iI,. But it could be the hdiciry of 
the (anti)neutrino that forbids Equation 1.13. 
The ultimate lest is ... ulrillolm double bt/a b;_ 
""y. in wbich a nucleus with atomic number 
Z goes to � nucleus of atomic number Z + 
2. with the emission of two electrons and II<l 
... .ari"", - in effect. the d�y of two n�u-

trons witb annihi\;ltion of the accomp.tnying 
neutrinos. This should be possible if;;-, . 
�,. but it has never �n obseJVed. One rea· 
son for int�rest in this scenario is that Majo­
rana neutrinos are required by the so-a.Ued 
'See·Saw· mechanism. which accounts fOT 
the el<traordinary smaUn� of the neutrino 
nu.sses by posrulatin8 that they are paired 
witb extrem�ly hea"Y neutrinos in a scheme 
whereby their masses are inversely propor_ 
tional 1201_ [n any event neutrino flavor oscil ·  
lations work the sa,"" for Dirac and Maiorana 
neutrinos . 
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11.5 
The Mixing Matrix 

In Section 1l.2 I discussed oscillations between two neutrino species (v. and vI" for 
the sake of argument). Of (ourse, there are actually three kinds, and this complicates 
the algebra a bit.' But the essential point is unchanged: neutrinos inttract as flavor 
,igenstaUs (v. is the particle that goes with the electron, vI' with the muon, and v, 
with the tau), but they propagate as eigenstates of the free-particle Hamiltonian ­
the mass 'ig,"sta� VI, V2, and VI. lbe flavor eigenstates evolve in a complicated, 
oscillatory manner. because really they (any three different masses that are playing 
off against each other, like the beats of a coupled oscillator. 

lbe same mixing happens with quarks, except that for them the familiar flavors 
(d, s, and b) em the mass eigenstates, and it is the 'weak eigenstates' (d', 1, 
and b', Equation 9.85) that are 'rotated'; they are the ones that correspond to 
the neutrinos.t lbe CKM matrix (Equation 9.86) relates the weak eigenstates to 
the mass eigenstates in the quark sector; the analogous construct for leptons is 
sometimes called the 'MNS matrix' [22]: 

U., 
U" 
U" 

U.,) (") 
U"l V2 
Ufl VJ 

(11.15) 

As before (Equation 9.87). it can be expressed in terms of three angles (91l, 6n, 
Bll) and one phase factor (,5): 

SUCIl sue 
CnC2l - 5ns1l511t"l 

-C12523 - SI2CBSlleil 
-"

) 
S2JCll 
ellCn 

(ll.1G) 

(c� = cos B�, sij s sin 6�). But whereas the mixing angles for quarks are all rather 
small (so the CKM matrix is not far from diagonal. and the cfOss-generational 
couplings are suppressed), two of the leptonic mixing angles (611 ::::: 6 ... and 6n ::::: 
6Mm) are large. Experimentally, B<l>I _ 34 ± 2° and 6�, ... _ 45 ± gO. On the other 
hand, 61l is known (23] to be less than 10°. 

• As il rums out. if on� of th� tlu� massrs is 
subsuntiaUy differ�nl from the others (which 
is in fact th��. as � have �n). then 
'quas,i·!WO·netUrino oscination' (describnl 
by Equation 11.9) remains an excellent 
approximation [211. 

t There is nothing dap here. Quarks interaa 
dominantly bjl the strong interactions, which 
are agnostic _ you could use tither set of 

states: for them ;t is natural to let fI�.or co­
incid� with mass. But nwtrinos only int�r�ct 
weakly. so for them it �ms more natural 
to use th� weak eigensute5 10 define flavor. 
In r�trospect. it would be �ef to spuk 
uniformly of 'mass eigensutes' and '�ak 
�igenstate5'; tJv, stanohrd Ravors coincide 
with mass eigenSla!� for quarks, but with 
weak eigenst�te5 for leptons. 
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Fig. 11.6 flavor cont�nts of th� n�utrino mass �ig�nstat�s. 
Btack is v •. gray is v". white is v" (The eledron-neutrino 
compOMnt of Vl is too small to show on this 5nl�). 

Because U is a unitary matrix (U-l • UtI. it is easy to invert Equation ILlS, 
expressing the mass eigenstates in terms of the flavor states: 

(11.17) 

It appears that Vl is an almost perfect so-so blend of V" and v, (with a tiny 
admixture of v.); V2 is a roughly equal combination of all three flavors; and VI 
is mostly v, (Figure 11.6). But it will be several years before we have accurate 
numbers for the elements of the MNS matrix, and who knows how long before we 
can actually w!cula/e them. 
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the SuperKamiokande atmo· 
spheric neutrino experiments 
s�e (a) Schwarzschild, B. (Au· 
gust 1998) Physics Today, 17. 

i6 Michael. D. G. et a\. (20I)6) Phys· 
ical R"';..., LttUrs, 97, 191801. 

17 Athanassopoulos, C. et al. (1995) 
Physical R"';..., Lelurs, 75, 2650, 

18 See Schwanschild, B. (June2007) 
Physic. Today, 18. For delightful 
commentary see (a) Cole, K. C. (June 
2, 2(03), Th. New Yorl;u, p. 48. 

19 For a survey of direct neutrino mass 
measurements see Haxton, W. C. 
and Holstein, B. R. (2000) Am.,· 
ie(111 jount(11 of Physics, 68, IS. 
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20 For interesting commentary on 

the distinction between neutri· 
nos and antineutrinos seeBoas, M. 
(1994) A"",ricall joum(11 of Physics, 
62. 972; (a) Hammond, R. (1995) 
Am.,ical' journal of Physics, 63, 
489; (b)Wagner, R. G. (1997) Amer· 
ican joum(1! of PhysiCl, 65. 105; 
(e) Fewell, M, P. (1998) A"",rj· 
call journal of Physics, 66, 751; 
(d) Holstein, B. R. (1998) Amer. 
ical' journol of Physics, 66, 1045; 
(e) Fewell. M. P. {1998} Ameri· 
call JournaL of Physics, 66, 751; (f) 
Boya, L J. (2000) American jour_ 

.... 1 of Physics, 68, 193. On neutri· 
noless double beta decay (,,BJI(Ov)) 
see (g) Elliott, s, R. and Vogel, P. 
(2002) Allnual R.IIi..., of Nudtar 
and Partick SciellCt, 52, 115. 

21 See Kayser, B., in R.vi..., of P(1r· 
tidt Physics (2006) p. 156. 

22 This is in honor ofMaki, Z., 
Nakagawa. M. and Sakata, S. (1962) 
whose pioneering work Progress in 
Throretical Physics, 28, 870, long 
predates the discovery of neu· 
trino oscill�tions (or of the tau), 

23 For planned experiments to mea· 
sure ell. see Feder, T. (Novem· 
ber 201)6) Physics Today, 31. 

il.1 Estimate the lifetime of the sun, assuming (as Lord Kelvin did) that the source of the 
energy radiated is gravity. Look up any empiricOll nwnbers (the power radiated by the 
sun, the mass, and "adius of the sun). 

il.l 
(.) What is theperiodof 1(0 "'" It oscillations (Section4.4.3)� IHilll:Themasseigenstates 

ar� K1 and Kt. In the neutrino case (Eq. ll.7) the particles were highly relativistic; 
for the K's, assume on the contrary that the kinetic energy is substantiOllly 1m than 
the rest energy.] 

(bt Compareyourresult in (a) to the lifetimes of K1 and Kt. Noticeth.at the � component 
of th� beam dies out - le�ving pur� Kt - well before signific�nt oscillation can 
occur. 

i1.3 Draw the lowest-<:>rder diagrams for elastic neutrino-electron scattering, (a) fordectron 
neutrinos, (b) for muon neutrinos, (e) for tau neutrinos. 

11.4 (a) Suppose atmospheric neutrinos are produced at an altitude h, and the detector is at 
sea l<'"Vel, Find the distance x from the source to the detector, as � function ofth� zenith 
angle e (dire-ctly overhe�d is e _ O. the horizon is e _ 9Qo. straight down is e _ 180"). 
Let R be the radius of the earth. 
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(h) Suppose 95% of the 'upper' neutrinos (overhe�d to horizon) re�ch the det�tor, but 
only SO% of the 'lower' neutrinos (bdow !he horizon) do. Using the oscillation formul� 
Equation 11.9 (but this time for muon neutrinos converting to tau neutrinos), determine 
6 and 1l.1TI2. Assume h _ lOkm and E _ IGeV. [This problem was posed by W�lth;om II]. 
You'lI need � computer to get the numeric�l �nswer.] 

1l.S (a) Show that the velocity of an ultra·relativistic �rtick (mass ITI) with energy E is 
approximately 

(h) Supernova SNl987A occurred in the urge Magellanic Cloud 11.7 x lOS light years 
from Earth). Neutrinos from this explosion, with energies ranging from 20 MeV to 
30 MeV. were det�ted within a 10 s time interv.r.L What upper bound on the neutrino 
mass does this imply' (Assume the neutrinos all started out at the same instant] 

11.6 Wi!h neutrino oscillations. !he individual lepton numbers (I.. L�, �nd L,) are no longer 
conse-rved, and this means that the d�ay I-' .... e + y It he absence of which suggested 
these (ons<:rv�tion I�ws in the 6rst pl�ce - see Eq. L16) is possibl., in principle. 

(.) Draw � feynm�n diagram for this process. Note: neutrino oscillations can be 
represented by ... blob: 

MIn this process you must 'borrow' the energy necesury to make the virtu�1 w. 
According to the uncertainty principle (see Problem 1.2), how soon must you 'repay' 
the debt) How rar could a neutrino get in this time? Given that neutrino oscillations 
OCCur OVer dislilnce scales of many kiloml:u", dOts it seem likely that you could 
'borrow' the energy long enough for I-' --+ • + y 10 occur? 
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Afterword: What's Next? 

So for. I have talked almost exclusively about establishtd 'facts'. With tk possible 
exctptwn of the Higgs muhanism, any Juture theory will havt: to indwk aU of this. 
But tm Standard Modd is certainly not the last word on the subjett. Already there are 
intriguing thcorctkal spuulation5 and tantalizing experimental indications of what the 
Julurt: may held. [ncreasingly, the impetus is coming from obstlV«tions in astrophysics 
and cosmology, rather than traditional coUUkr fXperimwts.* In this chapter. I'U txplon 
some of the directions in which future discovtri� sum most likdy. I'U start (Staion 
12. J) with the hunt for the Higgs, which lopS the agmda for the Large Hadron Collider 
(LHe) (and for the remaining lifetime of the Tevatron), and may lead to the explanation 

for aU particle ma=. Next (Section 12.2), 111 discuss Grand Unijication, which was 
the 'natural' next sUp 30 year.; ago, but hit a brick wmI wmn the prwic�d decay of 
tm proton LWS not obsuwd; it ne�rtm/a;s sets the con�xt for aU subsrqmnt theontical 
de�lopmen/.s. Then (Section 12.3) /'U consider CP violation and its implicatiOns for 
the mat�rlantjmatter asymmtJry of the universe. Section 12,4 is a scandalously brief 
introduction to supusymmetry, extra dimensions, and sIring theory, ideas that havt 
dominated theoretical partic� physics sinu 2984 and for which the first eXFrimental 
support may come from the LHC. FinaUy, in Section 12.5 we'U study Dark Matter and 
Dark Energy, which by curnnt eslima!.ts account for 95% of the matter in the universe, 
ltavingonly a paltry 5% forthe 'ordinary' particles wt' encoun�rt'd in the first 1 1 chap�rs. 

12.1 
The Higgs Boson 

[n the Higgs mechanism, a gauge symmetry is spontaneously broken by a 
two-component scalar field tP, whose ground state is not zero (Section 10.9). 
One component of tP is reincarnated as the third (longitudinal) polarization state 

• In r�trospttt, one might caU !h� pniod from 
!he early 1930s to 1954 !he er� of cosmic r�ys, 
and from the Cosmotron to the large Hadron 
Collider (LHC) - let's say 2010 - the era of 
accelerator physics; in this sense. we are now 
entering the era of particle utrophysics (I). 
Part of the reason is simple economics: to 

reach �r higher energies. accelerators have 
become so hu� and $0 e"l"'nsi"., mat it is 
hard to imagine anything beyond the Interna· 
tional tinear Collider (ILC) now on the draw­
ing ba.rds. Astrophysics offers a relatively in· 
expensi"" window into vastly higher energy 
regimes. 

Introduction '" E/",,,,,nt4ry P�rtida, St.:Md Edition. David Griffiths 
Copyright C 2008 W1LEY·VCH Vulag GmbH & Co. KGaA. Weinheim 
ISBN: 978·J.S2H06O[·2 

I'" 
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for a now massive gauge field, but the other remains, representing a neutral particle 
of spin 0: the Higgs boson [21. 

Most particle physicists believe in the Higgs mechanism because it seems to be 
the only way (certainly it is the clwntst way) to account for the mass of the W and the 
Z, in the context oflocal gauge theory. But if there really is a Higgs field, permeating 
all of space, with a nonzero value even in 'vacuum', it could account as well for 
the masses of the quarks and leptons, whose interaction with the primordial Higgs 
field has been likened to wading through deep water, imparting an effective inertia 
to (almost) everything that moves. In this more exalted vision, the Higgs particle 
becomes the source of aU mass." The quarks and leptons are 'born' massless,t 
but with Yukawa couplings (Problem 10.21) to the ¢: Lint = -aftfVrf¢' where 
f denotes the particular quark or lepton. When ¢ is 'shifted' by spontaneous 
symmetry-breaking (Equation 10.130), Lint splits into two pieces, one of which is a 
Yukawa coupling to the phySical Higgs field and the other a pure Fermion mass 
tenn, -mf,l�J'/IJ (in the notation of Section 10.9, mp - (/.I-/A)afi. Unfortunately, 
this doesn't help us to calculate the particle masses - it simply trades one unknown 
parameter (m.r) for another (afi. But it does suggest that the strength of the coupling 
to the Higgs is proportional to mass. 

In the simplest theory (the 'Minima! Standard Model', MSM), there are four 
scalar fields to begin with - two charged and two neutral. Three of these are 'eaten' 
by the W± and z!J (which thereby acquire mass) and the fourth remains as the 
neutral Higgs field. More complicated schemes have been proposed, involving 
multiple or composite Higgs partides,* but the MSM provides a useful roadmap 
for experimental and theoretical exploration of the Higgs sector. In this model, the 
Higgs (h) interacts with quarks and leptons by the diagram 

I 
I 
I h  
I � 

(vertex factor -imp Iv), and with the weak mediators by 

, 
I 
I h  
I � 

, 
I 
I h  
, � 

• ILon Lfflennan r:unously ulled it '1M. God P"nid<· (N�w York: o.:ba, 1993). 
t In th� Standard Model Lagrangian, fermion mass terll1$ /i"t) are nOl invariant under the eltc· 

trow�ll< symmetry SU(2), )( U(I). SO the ·starting· nusses of the quarks md leptons have to be 
zero, and th� physiul mas�s arise only when rru, symmetry is (spontaneously) broken. 

* In $uptrsymme!ric th",ries. for elYlmple. there are at least five HiSS" bosom and in technicolor 
the role of the Higgs is piayed by a bound sta� of two fermiolU. 
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(vertex factor 2iM�rg"" /(n2v), where the subscript m stands for W or Z). There 
is, as well, a direct Higgs-Higgs coupling' 

, 
1 
Ih  
1 

A / , 
......... 

h h 
....

....... 

{vertex factor -3im�c2 /(n2v)). Here, v is the 'vacuum expectation value' of </>1 (p,p .. , 
for the potential in Section 10.8). It can be calculated from the mass of the W (see 
Problem 12.1) 

� 2Mwc2 "lie v = -- = 246 GeV 
gw 

The mass oflhe Higgs itself is not determined by the theory.t 

(12,1) 

It would be nice to know whether this story (or some variation on it) is actually 
true. The Higgs particle is the only element in the Standard Model for which there is 
as yet no compelling experimental evidence. [t may have been seen al LEP (CERN), 
in the lasl months before it shut down (to make way for the LHC) 14), it could 
slill be found al lhe Tevatron (Fermilab), and unless current thl'Qries are wildly off 
it will certainly be observed al the LHC. Various conslraints - experimental and 
theoretical - suggest that its mass must lie in the range 

114 GeV/r < II1/, < 250 GeV/e2 (12.2) 

with a most probable value around 120 GeV /e2 [5), The LHC will explore the entire 
region up to 1 TeV and beyond. 

At LEP (an electron-positron coUider) the Higgs was sought in the Z·'bremss­
trahlung' reaction e+ + e- --+ Z + h: 

, 

, z z 

At hadron colliders (the Tevatron and LHC), the dominant production mechanism 
is gluon 'fusion', g + g --+ h via a quark loop (mainly the top, since it's the heaviest, 

• n..,r� ar� also 'four·poin!' couplings Ilk ..... ZZ, kll ..... ww, and 1m ..... kk (l). 
t In Equation 10.121, m. invo]""s only /-', not "lA, SO il is sensiti"" to th� shaFt of th� I"l",ntial, 

not ju" the Vaouum �pectalio" value of 41,. 
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and hence has the strongest coupling to the Higgs): 

but several other modes are expected to contribute, notably W /Z-bremsstrahlung: 

q' 

q W{Z) W{Z) 

and W / Z fusion: 

q 

h 

q 

(direct quark fusion, q + q -+ h, does not contribute much in the MSM. because 
the only readily available quarks are u's and d's, which, since they are very light. 
couple weakly to the h). 

How do we expect the Higgs to decay? Because Higgs couplings are proportional 
to mass (or mass squared, in the case of the W and Z), heavy daughters are favored. 
if they are kinematically allowed. The branching ratios depend a lot on the mass 
of the Higgs (see Figure l2.1). If m� is less than about 140 GeV/cl, the dominant 
mode is h -+ bb, but above that h -+ W+W- takes over (with a virtual W up to 
160 GeV/c1 and real W's from then on); h -+ ZZ is close behind (especially above 
180 GeV/c1). and in the unlikely event that the Higgs is heavy enough to make two 
tops (� > 360 GeV/c2) h -+ Ii assumes third place. More exotic decays are also 
possible, such as a photon or gluon pair: 

_ _ _  < _,_ 0 h � � 
These decay rates have all been calculated in great detail (6J (you can do some of 
them yourself - see Problems 12.2 and 12.3). 
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As soon as the Higgs mass is established, one will be able to draw a vertical 
line at the appropriate point in Figure 12.1 and read off the branching ratios. If 
the measurements disagree (as they probably will), then the Higgs sector is more 
interesting than the MSM contemplates. And of course if no Higgs particle is 
found at all, then we have a revolution on our hands. 

12.2 
Crand Unification 

With the success of electroweak unification, in the 1 %05, the logical next step 
was to include the strong interactions, in a 'Grand Unified Theory' (GUT) that 
would identify aU three forces as different manifestations of a single underlying 
interaction. Of course, the strong forces are enormously more powerful than the 
others; but the same could be said of electromagnetic versus weak forces, and 
we now understand that disparity as an artifact of the huge mass of the W and 
Z - their intrinsic strengths are quite similar, but it is only at energies well above 
M II/C2 that the unity becomes manifest. 

Moreover, as we saw in Sections 7.9 and 8.6, the coupling 'constants' themselves 
are functions of energy - the strong and weak couplings go down, while the 
electromagnetic coupling goes up. It is irresistible to suppose that they coalesce at 
some point (Figure 12.2); above the grand unijication scale (:0:::1016 GeV) there is just 
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Fig. 12.2 Conv�rg�rlce of the coupling constants at the GUT 
scale (al in the Minimal Standard Model. (b) with super· 
symmelI)'. The horizontal axis is energy. in GeV. 

one universal coupling constant, and the strong. electromagnetic. and weak forces 
are identical in strength: 

The first (and simplest) GUT was introduced by Georgi and Glashow in 1974 
[7[. It led to a spectacular prediction: the proton is unstable. decaying (for example) 
into a positron and a pion 

(12.3) 

The lifetime is reassuringly long - at least lOW years, which is loW times the 
age of the universe - though (since we have easy access to a lot of protons) not 
beyond the range of measurement. [n 30 years of increasingly precise experiments, 
however, proton decay has never been observed [8]. The current lower bound is 

Tproton> lOll years (12.4) 

(which probably vetoes the Georgi-Glashow model). More elaborate GUTs have 
been proposed, but almost all of them require proton decay at some level. 

Although there is no direct experimental evidence in support of grand unification, 
beliefin it is an uncontested article offaith among theorists. In a way, the 'natural' 
evolution of particle physics was rodely interropted by the failure to detect proton 
decay. Had proton decay been discovered in - say - 1985, one can easily imagine 
that enormous efforts, theoretical and experimental, would have been devoted to 
Aeshing out the details of grand unification, just as the previous two decades 
had Aeshed out the Standard Model. But that's not what happene<l, and today 
grand unification simmers, half<ooked, on a back burner.t What are its essential 
features, and why should we take it seriously? [9] . 

• Awkw�rdly. it is now de�r thol they do no! (quite) meet at � sin� point, in t� MSM; one of 
the attr�clions of sUf"!'rsymmetty is that it makes perfect con�gence possible. 

t Tesl�ble predictions of gr�nd unification. �I Ihe relatively low energies presently acceuible, are 
few and f�r between. Proton decay. if it exists. is the best probe avail/;ble. but we are fasl ar­
prOilching the practical Limit on proton lifetime measurements (see Problem 12.4). 
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Table 12.1 Fermion Stales in the SU(S) GUT 

Quin�t 

Decuplet 

Grand unification contemplates an overarching symmetry group (SU(5), in the 
Glashow-Georgi version) that contains as subgroups the (color) SU(3) and S U(2)L 
o U(I) symmetries of the Standard Model. The fundamental fennions (quarks 
and leptons) are assigned to representations of this group. much as the Eightfo(d 
Way assigned baryons and mesons to (octet, nonet, and decuplet) representations 
of (flavor) SU(3). The first generation comprises 15 particle states: u and d, each 
in three colors and two chiralities (L and R), e (L and R), and v, (L only '). [n the 
SU(5) GUT, they constitute a quintet and a decup\ett (Table 12.1); in the absence of 
symmetry.breaking (presumably by the Higgs mechanism), the states in each mul· 
tiplet share the same mass and interact identically. (The same goes, of course, for the 
other two generations.) There are 24 mediators.\: (Table 12.2): the 8 gluons, the pho· 
ton, W+, W-, andZ, and I2newones - the X (charge ±4/3, 3 colors,hence6inall) 
and the Y (charge ± 1/3, 3 colors, for another 6). Theycouple leptons to (anti)quarks,i 
and hence are known as /tptoquarks. For instance, d -+ e + X and u ....... e + Y: 

X. ! y·1 � �  
Table 12.2 Gauge Bosons in the SU(S) GUT 

Chilrge MilSs 

8 gluons 0 0 
1 photon 0 0 
1 W± , Z  L -1,0 -1(1 GeVf'z 
6 X  4/1, -4f] _10'6 GeVfcZ 
6 Y  Ifl. -1/] _1016 GeV/cl 

• In 1974, it was assumed that the neutrino is massless, and lhe fact t�1 there wu no mtural 
p\.oce for "_ WaS token as a virtue of the theory. For massi� neulrirlO$ "_ must be assi�, 
awkwardly, to a singld repr�ntation of SU(5f - or, in the case of Majorana neutrinos. the 
Higgs sector must be expanded. 

t The fact that they don't all fit into a sinsle irreducible representllion is an unattracti� feature 
of the SU(5f modd: the SO(lOf GUT usigns all tS, plus III, to a llKl.imensional repreSl!ntotion . 

.j: In �neral, SU(IIf has III - 1 mediators (eisht gloons for color SUm, thr� intermedia� vector 
boson. for SU(2fLl: U(nf has n (hence One photonf. 

i Notice that il is the anli-d that li6 in the same multiplet u the electron. 
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Fig. 12.3 Prolon dea1 in the SU(5) GUT. 

They also couple quarks to antiquarks (in this context. they are sometimes called 
diquarks). as in u -+ Ii + X and d ..... Ii + Y:" 

x>1 y > l � �  
This larger symmetry is badly broken, obviously (quarks and leptons do not have 

the same mass, and the strong interactions are - well - stronger than the others). 
Just as eJe<:troweak symmetry becomes apparent at energies well above the Wj2 
mass, GUT symmetry prevails at energies above the (huge) grand unification scale. 
That's why it is so difficult to test grand unification in the laboratory - even though 
its implications are, in principle, dramatic. The leptoquark couplings allow for 
nonconsetvation of lepton and baryon number, and hence license the decay of the 
proton, via diagrams such those in Figure (12.3). But because these mediators are 
so heavy (presumably in the neighborhood of the GUT scale: Mx ,..., My '"- 1016 

GeV feZ), the decay rate is extremely small (Problem 12.5). 
Apart from the largely aesthetic attraction of unifying the fundamental forces 

of particle physics, grand unification purports to 'explain' the relation between 
quark and lepton charges (and beyond that the quantization of charge itself). 

For technical reasons the sum of the charges in a multiplet must be zero, and 
putting quarks and leptons into the same multiplet forces (in the case of the SU(5) 
quintet) 

(12.5) 

• Ostensibly these re�ctions do not conse� color, but remember that the 'cross product" of \W<) 
color states carries a single color (Equation 10.84), and it is such a (ombi(1.l.tion thaI is implied 
here 
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Our world would be a radically different place if the electron and proton did not 
have precisely opposite charge, but short of grand unification there is no reason of 
principle why this had to be so: 

12.3 
Matter/Antimatter Asymmetry 

Everyone assumes that the Big Bang created matter and antimatter in exactly equal 
amounts. If this is the case, how come we are surrounded by electrons, protons, 
and neutrons, with no positrons, antiprotons, or antineutrons in sight? Of course, 
if a positron (for example) dots show its face, it doesn't last long: as soon as it 
encounters an electron, they annihilate. But this doesn't explain the preponderance 
of leftover electrons. Perhaps it's a local phenomenon - our matter-dominated 
corner of the universe is balanced by an antimatter region somewhere out there. 
However, there is no evidence for this - on the contrary, astrophysical observations 
indicate that the known universe, at least, is all matter (if there wtrt an antimatter 
zone, the border would be an extremely violent place, and it is hard to imagine that 
the cosmic microwave background would show no sign of the disturbance) [12]. 
Alternatively, some process must have favored matter over antimatter in the course 
of cosmic evolution. What sort of mechanism might do the job? 

In 1967, Sakharov [13] identified the necessary ingredients. Obviously, there 
must be an interaction that violates conservation of baryon and lepton number 
(something grand unification could supply). There must have been a period when 
the universe was substantially out of thermal equilibrium (otherwise any reaction 
i ...... f would go just as often the other way,f ...... i,and there would be no net change 
in baryon number). And, crucially, there must be CP violation - some reaction 
i ...... f whose rate is different from its CP-conjugate, 7 ...... J (otherwise, again, there 
would be no net change in baryon number). Conveniently, CP violation had recently 
been discovered by Cronin and Fitch in the � /I(!! system. 

To this day, the underlying nature ofCP violation is not well understood. Parity 
violation was very easy to incorporate into the theory of weak interactions: one 
simply replaced vector couplings, yl', by vector/axial vector couplings, yl' (1 _ yS) 
(Section 9.1). But the only known source of CP violation is the residual phase 
J in the CKM matrix (Equation 9.87), and it is hardly obvious why this breaks 
CP invariance. Consider a process i ...... f, and the CP-reversed process 7 ...... J (for 
instance. if i includes a left-handed electron. i includes a right-handed positron); 
CP violation means that the rate for i ...... J is not the same as for i ...... f (for 

• A mor� probl�m�tic implic�tion of grlnd 
unificllion i5 Ih� �is�ru:� of sUp<'!" huY}' 'I 
Hooft-Polylkov INgnetic monopole5 (10). 
which should be pr��nt in l.u� num!>'r. 
(left over from the Big Blng). but hlve never 
bttn okt�ted in th� bboralory (weU . 

mlY!>. ana (11)). [nHltion�ry cosmology can 
�((aunt for � dilution in th� num!>.r. but 
the prediction of (unoh!;erved) monopol� 
in grand unifi",tion - and for that mltter in 
other th�ri� �$ well - r�lruIins � troubling 
problem. 
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Fig. 12.4 Two diagrams for ffJ ...... IC' + If-. The second is a 'penguin' (Problem 4.40). 

example, If! ..... K+ + ]'(- is 13% more common than If ..... K- + ]'(+), Now, the 
amplitude, A, is a complex number, and ordinarily it is the same for i ....... j as for 
i ..... f - =pt that any CKM element gets conjugated. Thus 

(12.6) 

where 9 is the 'conjugating' phase and ¢ the 'ordinary' phase." On the other hand, 
reaction rates are proportional to )AI2, so there is no CP violation, even though 
the amplitudes themselves are different. 

But suppose that the process (i ..... fJ can proceed by two diffntnt routes (for 
example, If! can go to K+ + ]'(- in several distinct ways - see Figure 12.4), Then 
A - Ji1 + A2, with 

(12.7) 

(12.8) 

It follows (Problem 12.6) that 

(12.9) 

In this case the rates are not the same, and CP is violated. Notice that there has 
to be a conjugating phase (from the CKM matrix) as well as a nonconjugating 
phase - and these have to be dijftnnt for the two contributing routes. 

From the experiments, we know that CP violation occurs in the weak interactions 
of quarks, and is attributable to the phase factor in the CKM matrix.t Unfortunately, 
this is nowhen nt:ar enough to account for the matter dominance of the universe [IS], 

• In th� Iit�ratur�, thq a", so�im� (anr<! '_a\:' and '.trong pm..,., respe<tivdy. Th� distill(' 
tion is subtle, but in practic� e (omes exclusively from the CKM mmix element, and � typically 
involves strong interaction efT"Cls (14). 

t In f;oct, all such CP violatins elf...,ts ar� proportional to th� height of tm, 'unitarily triangle' 
(Problem 9.B). 
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so one is forced to speculate aoout other mechanisms of CP violation. With 
massive neutrinos and the leptonic analog to the CKM matrix (Section 11.5). 
the same phenomenon should occur in the lepton sector. where it would reveal 
itself. for example, in W1equal probabilities for v. -+ v" and ii, -+ Ii .... This has 
not been observed (yet). but it is conceivable that it would provide a mechanism 
(sometimes called /eplogentsis'") for the observed matter/antimatter asymmetry. 
Another possibility is CP violation in the strong interactions (in this case the 
'smoking gun' would be a nonzero electric dipole moment for the neutron). CP 
violation has never been observed in strong processes. but there does not seem to 
be any fundamental theoretical prohibition} At this point, the matter/antimatter 
asymmetry of the universe remains an uncompleted puzzle; the essential missing 
piece is the nature of the CP violation responsible. It is far from clear how this 
story will resolve itself. 

12.4 
Supersymmetry, Strings, Extra Dimensions 

12.4.1 

Supersymmetry 

The classic symmetries of quantum mechanics involve different states of the same 
system. Rotational invariance, for instance. requires that the theory be W1changed 
when the state '" is replaced by its rotated version U(9}'" (Equation 4.27) - or, more 
precisely, the Lagrangian is unchanged (in first order)t when the wave function 
is incremented by the infinitesimal amount 8", = (-illi)[�9 . 5]", (Equation 4.28). 
Particle physics long ago generalized the idea to 'internal symmetries' involving 
closely related particles (flavor multiplets. for example). In 1974. Wess and Zumino 
[17] introduced a more radical symmetry that stirred together fermions and bosons. 
For example. a scalar field ", could mix with a spinor field '" 

(12.10) 

where ( is an infinitesimal spinor describing the transformation (analogous to 89 
for rotations). and ? ... (tyO is its adjoint. What if we insist that the theory be 

• The !ermill<llogy is not entirely consistent baryogtnrn. is the generic word for the origin of nut· 
ter domin�nce. so Iepto�nesis is acrn;illy one possible me<:h�nism for b<.ryo�""sis. 

t lnd�. it is something of a mystery why strong CP violation does nol occur. One pos$lble ex­
plan�tion was suggested by Peccei �nd Quinn 116) in 19n, � neutnl spin.Q particle (the =ion) 
couples to the qu�rks in such a way u to cancel dynamically any .trong CP violation. Axlon. 
have not been observe<!. but they renuin among the viable candidates for dark nuller. 

� It i$ generally shnpler to WQrk with infinitesimal transfornutions. and there is no loss of gener. 
�lity $lnu: a finite transfornution can be built up as � sequence of infinitesimal ones (Problem 
12.7). 
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invariant under such a transformation? [t is not hard to construct a Lagrangian 
with this property; the combined free Klein-Gordon and Dirac Lagrangians are 

invariant 

(12_11) 

as long as the boson 4> and its fermion partner 1/1 carry the same mass (Problem 
12,8). A similar game can be played joining a particle of spin 1/2 to a particle of 
spin 1 - and in general pairing particles whose spins differ by 1/2. [nvariance of 
this kind, linking fermions and bosons, is called 'supersymmetry', 

Over the past 30 years an enormous amount of work has been done on su­

persymmetry [18), and [ think it is fair to say that most particle physicists are 
convinced (without as yet any supporting experimental evidence) that it is a fun­
damental symmetry of nature, Supersymmetry carries the stupendous implication 
that every fermion has a bosonic partner (identified by putting an 's' in front of the 

name - thus 'squark', 'slepton', 'selectron', 'sneutrino', etc.) and every boson has 
a fermionic partner (identified by putting an 'ino' after the name - thus 'photino', 
'gluino', 'wino', 'higgsino', etc.). Where are all these particles? If supersymmetry 
were unbroken, they would share the masses of their 'ordinary' twins - the photino 

would be a massless particle of spin 1/2, and the selectron a spin·O particle with 
a mass of 0.511 MeVjc!, This is nonsense, obviously - no such particles exist. 
So the symmetry must be badly broken (perhaps spontaneously, but there are 
other possibilities, especially if gravity is brought into the picture). Presumably 
the supersymmetric particles are much heavier - too heavy to be produced by any 
existing machine, though there are strong indications that at least some of them 
should be accessible to the LHe. 

Hmm . . . . Why should we take such an outlandish scheme seriously? Super. 
symmetry has the potential to solve several thorny problems, among them the 
following: 

1. By introducing a number of new particles, it modifies the 
energy dependence of the three running coupling constants 
(see Equations 7,191 and 8.94), making possible their perfect 
convergence at the GUT scale (Figure 12.2). 

2. [t offers a 'natural' solution to the so-called hierarchy 
problem. The Higgs mass is renonnalized by various loop 
diagrams (Section 6.3.3), which drive it way out of acceptable 
range unless there are magical cancellations ('fine tuning'). 
But loop corrections are of opposite sign for bosons and 
fennions, so supersymmetry, by pairing particles with 

'sparticles', makes the cancellation exact and automatic. 
3, [n most models, the lightest supersymmetric particle is 

colorless, neutral, and stable, making it an attractive 
candidate for Dark Matter (Section 12.5). 
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Theory of 
everything 

Moreover, attempts to formulate a quantum theory of gravity seem to require 
supersymmetry. On the other hand, the minimal supersymmetric models involve 
at least 124 independent parameters (19) - five times the (already embarrassing) 
number in the Standard Model - and they do not easily accommodate neutrino 
masses. If supersymmetric particles are discovered' at the LHC, it will be a 
spectacular triumph of inspired audacity. But I wouldn't bet your last dollar on it. 

12.4.2 
Strings 

For decades, a fundamental challenge in theoretical physics has been the for· 
mulation of a quantum theory of gravity - the quantize<! version of General 
Relativity (analogous to QED, the quantize<! version of electrodynamics). Gener· 
ations of physicists have tried, and failed - for point masses the theory seems 
to be incorrigibly nonrenormalizable. While this is embarrassing, it has not, so 
far, been catastrophic for particle physics, where gravity is much too feeble to 
play a significant role. But at extremely close range (which is to say, at very high 
energy - spedfically, the Planck scale: 1019 GeV) quantum gravity is bound to 
come into the picture. Moreover, the old dream of unifying the forces of nature 
leads inexorably to a putative 'theory of everything' that would include gravity along 
with the strong, electromagnetic, and weak interactions (Figure 12.5). 

String theory proposes to solve these problems (and more) [22]. In string the· 
ory the basic units of matter are not (zero.dimensional) particles, but rather 
one-dimensional 'strings' (or higher-dimensional 'branes'), of which 'particles' 
are various vibrational modes. The theory underwent an extraordinary evolution 
between the 1970s, when a few lonely visionaries took up the cause, and 2000, by 
which time it was well established as the dominant paradigm. Early versions con­
tained only bosons, and consistency required 25 space dimensions. This seemed 
a trifle extravagant, but it was possible to imagine that 22 of them are 'curled up' 

• There was a flurry of excitement in 2001. when discrepancies betwttn thc measured and Qku· 
law! values of the ano=lous mag""tic moment of the muOn se.emed 10 suggest a contribution 
from supersymmelric p,articles (20). But il rurned OUI that Ihe Qkulatioru; w<:rc in error - when 
a sign mis�ke in one term was corrected the disagrttment largely evaporated (21). 
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(rompacfijieJ), and hence irrelevant on the macroscopic scale.' Fermions were later 
incorporated via supersymmetry (hence 'superstrings') and the number of space 
dimensions dropped to 9 or 10. Meanwhile, it was realized that the theory auto· 
matically includes the graviton, making it a natural candidate for quantum gravity. 

In the early days, one of the great attractions of superstring theory was that it 
appeared to be uniquely detennined - we live, it seemed, in the only mathematicaUy 
possible world. Physics would no longer be a matter of discovering contingent laws 
by experimental observation, but of working out the inescapable implications of 
the one allowed theory. Sadly, this particular hope has turned inside out, and 
'M-theory' now suggests that there is in fact a whole 'landscape' of permissible 
models (10500 of them, by some estimates), and no way (short of the anthropic 
principlet) to choose the correct one. 

At this point an entire generation of theoretical physicists is way out on a limb. 
Superstring theory still holds out the best hope for ultimate unification of aU four 
interactions, and it is probably the most promising candidate for quantum gravity. 
But it has proved diabolically difficult to extract verifiable (or falsifiable) predictions 
about the low-energy world we inhabit. The discovery of supersymmetric particles, 
or indications of extra dimensions [23J, would lend some support, but anything 
approaching a confirmation of superstring theory seems, at this point, a very long 
way off[24J. 

12.S 
Dark Matter/Dark Energy 

Persuasive astronomical evidence now indicates that the matter we know about ­
described by the Standard Model - represents a measly 5% of the mass/energy 
content of the universe. The rest is Dark Malter (about 20%) and D«rk Energy 
(75%). The implica tions for particle physics are humbling: we have only seen the 
tip of the iceberg. What is aU this other stuff, and how has it managed to elude 
m' 

12.5.1 

Dark Matter 

In 1933, Fritz Zwicky measured the velocities of galaxies in the Coma cluster (from 
the Doppler shift of their atomic spectra), and use<! this information to determine 

• � id�a of extra dimensions was nOI 1l'"W. T. 
K.aluz.;r first introduced 1M notion in 1919, in 
an �(fort 1(1 unify �1'"Ctrody�mics and grav. 
ity. and in 1926 O. K!�in suggested comp,act· 
ification as a device for ·hiding· atr� dim�n· 
sions. (If you want 10 specify th� location of 
an ant on a clOIMs li=, you would probably 
just rq><>rl irs dis�nce z from one end - only 

for mum smaller bugs would the ;I�imuth;1i 
position � be of inlerest Or importance.) 

t The anthropic principle holds that th� laws 
and parame� of physics are what they ;Ire 
·beau,;.,· (if thaI's th� right word) if they wer� 
diff�"'nl, human lif� wQUld be impossibt.: 
;lnd we wouldn·t be he", to discover them. 
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the mass of the cluster. The result was surprising: 400 times larger than the visible 
stars in the cluster. Evidently the galaxies contain a lot of matter that does not 
radiate (and is called, therefore, dark mailer) [25J. More recently, rOlalien curves 
have been measured for a number of galaxies (including our own). These plot the 
(tangential) velocity v as a function of distance r from the galactic center. Newton's 
law of universal gravitation says that for stars well away from the core v should 
decrease as l/Jr (Problem 12.10); instead, it typically increases (Figure 12.6). This 

suggests that the dark matter permeates a spherical ·halo' extending well outside 
the galactic nucleus: Today it is even possible to map out the distribution of dark 
matter, using gravitational lensing (the bending of light as it passes through). 

So far, though, our only evidence for dark matter comes from its large.scale 
gravitational effects, and it is natural to wonder whether perhaps Newton's laws 
(and also General Relativity) are incorrect on some scale, and there is actually no 

dark matter out there [261. Short of such a radical alternative, the question remains: 
what is this stuff? Could it be ordinary cold matter - sand and gravel, perhaps, 
the remnants of extinct stars or dead planets. Almost certainly not. Cosmological 
models that are convincingly corroborated by the observed abW1dances of light 
elements do not allow for anywhere near enough baryons to account for dark 
matter [27J. What about neutrinos? Probably not - even though there are enormous 
numbers of them, they are much too light to contribute more than a small fraction 
of the observed dark matter.t Evidently we are looking for something much more 

• The dark malter disCllssed here is nOI 10 be confused with th� 'missing rrulU' r,",!uireillO 'do",,' 
the uni�rse. We will talk aboul that in the next section. 

t Mor...,�. n�trinos would constitute ·hot' dark matter - they are by nature highly relativistic. 
.. nd it is hard 10 irrulgin� that they could be confi� to gabc:tic halos (or to the primordial ago 
gregates from which galaxies emerged). 
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massive than neutrinos, but �ike neutrinos} weakly interacting; Bahcall called 
them WIMPs (Weakly Interacting Massive Particles)." Their mass is tentatively 
estimated to lie in the range 100-100 GeV jcl; they are certainly neutral (otherwise 
they would radiate) and stable (left over from the Big Bang). No such particle, 
of course, is known to the Standard Model. But supersymmetry does suggest a 
candidate: the lightest supersymmetric particle (probably a mixture of the photino 
and the higgsino - or possibly the Zino - calle<! the 'neutralino' . . .  obviously, this 
terminology is getting out of hand) is presumably absolutely stable. Large numbers 
might be left over from the Big Bang. Another possibility is the axion - the 
hypothetical particle introduced to account for the absence of strong CP violation. 
But surely the most exciting possibility would be something entirely new and 
unanticipated. 

How is all this going to be decided? Since the late 1980s a number of WIM P 
searches have been under way. They are based on the realization that the solar 
system orbits around the galactic center at 220 Ian s-l,t and the earth orbits 
the sun at 30km S-I, so we face a 'dark matter headwind' - 135 km S-l in 
(northern) summer and 105 km S-l in winter. (Ibe seasonal variation is a lucky 
thing, for it should enable experimentalists to filter the signal out of a much 
larger - but constant - background due to natura! radioactivity and cosmic rays.) 
Several different detet:tion mechanisms have been tried (17), but it is only recently 
that their greatly improved sensitivity has approached the requisite level. There 
have already been some (questionable) events (28), and convincing evidence may 
well come in the next few years. Meanwhile, the LHC should be in a position to 
create dark matter, and at that point the remaining task wil l be to demonstrate that 
the three approaches (galactic, terrestrial, and accelerator) are all talking about the 
same particle [19). 

12.5.2 
Dark Energy 

Before 1998, it was taken for granted that the expansion of the universe is slowing 
down, due to the gravitational attraction of all matter; the only question was 
whether the energy density ofthe universe is great enough to reverse the expansion 
completely, leading to a 'big crunch' (see Problem 12.10). Visible matter and dark 
matter together amount to about a third of the 'critical density', so for those 
who believed the expansion 'should' reverset there was a set:ond 'missing mass' 
paradox. unrelated to the dark matter problem: where is all that 'extra' energy? 

• In prindpk, d..rk rruttt�r might inter�ct ,,"ly gravi�tionaUy. but �s ai� (27) remarks coyly. 'If 
that is really th� use. physicists have no hope of � detecting it' (that is. as individual parti· 
d�s). For this reason. at least. it is generally assum� th.:it d..rk matter participates in the we�k 
interaction. 

t � dark maner halo (since it is only very weakly (oupled to matter) does not (one assumes) 
share in the g;lt.ctic rotation. 

t The widely �(cepted inlbtionary cosmology rtqwirli. th.:it tht total dtnsity of the universe have 
exactly the critical value. 
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This problem was turned inside out by the astonishing discovery that the 
expansion of the universe is not slowing down at all, but rather accduating. 
Evidently Newtonian gravity (universal attraction) is not right on the largest 
scale - either that or there is some new force that is repulsive in nature and 
overwhelms gravity in this case. [n General Relativity, there is a (sort of) natural 
place for an extra term that could account for the phenomenon: the cosmological 
constant, A. Einstein's original theory (with no cosmological constant) implied 
that the universe expands - something he regarded as absurd. He was able to 
rescue the theory by introducing an ad hoc source term, whose strength (A) 
could be adjusted to stabilize the universe. (Mathematically, the cosmological 
constant introduces a kind of primordial repulsion, or negative pressure, that 
balances the universal attraction on a cosmic scale.) Later, when Hubble discov· 
ered that the universe is in fact expanding, a chagrined Einstein disowned the 
cosmological constant, calling it ·my greatest blunder'. But when the accelerated 
expansion was discovered, the obvious remedy was to resurret:t the cosmological 
constant [30]. 

There is, however, a subtle distinction between the original notion of a cosmo· 
logical constant and its contemporary reincarnation. Einstein conceived of A as an 
unexplained fundamental constant of nature - analogous to Planck's constant or 
Boltzmann·s constant; there were tW<l distinct sources of gravitation: matter (actu· 
ally, the stress ttnsor, incorporating energy, momentum, and stress of aU forms), 
and A. [n the modern version A is taken to have a dynamical origin, in the form of 
dark tltugy associated with the vacuum expet:tation value of some quantum field. 
It is, in effect, a constant term in the stress tensor, pervading all space uniformly,' 
that we choose to peel off and treat separately. But what the nature of this field (or 
fields) might be is at this stage a mystery. Worse than a mystery, because attempts 
to construct model theories tend to yield values of A that are 120 ordus of magnitude 
too great![31] Obviously, we have a lot to learn. 

12.6 
Conclusion 

Most particle physicists anticipate that the LHC will produce Higgs hosons. Many 
believe it will create the first supersymmetric particles. Some think it will yield 
evidence of extra dimensions. Perhaps. But there is another possibility that very few 
take seriously: substructure - the idea that quarks and leptons (and maybe also the 
mediators) are composite particles, made of even more elementary constituents. 
This would change everything, just as the quark model changed everything 4() 
years ago, and Rutherford's atomic model changed everything a century ago. In 
any event, we almost certainly stand at the threshold of a fundamental revolution 
in elementary particle physics [32J . 

• This is in contrast to dark mall .. r, which is concmuated in galactic halos. 
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12.1 (al Use Equation 10.132 to determine the mass of the W, in terms of v _ IA/). and 
q .. g....;1fi1iii. Thus, confinn Equation (12.1) 

IblUse Problem 10.21 and Equation 10.130 to determine the �rta factor for the 
coupling of the Higgs to a quark or lepton. 

1(1 Use Equation 10.136 to detennine the verta factors for the couplings "WW, "22, 
,rul "'" 

12.2 (a) Calculate the decay rate for " ...... f + J (wheref is a quark or kpton), in the MSM, 

(b] lf mh - 120 GeV Ir?, what are the branching ratios r(bb)/r(" ) and r(bb)/r(r+ r-)� 
(Include a factor of 3, for c% r, in the case of quarks.] 

12,1 (>1 Calculate the decay rates for " ..... w+ + W- and " ...... 2 + 2, in the MSM. 

, ' (  , ' ) [  ' ]'" r(w+w-) = a",mhc (�) 1 _ 4
Mw + I2Mw 1 _ 4Mw 

1M Mw m� m� m� 

, ' (  , '" ) [ ' ]"' ] a",mhc mh Mz MZ Mz r(ZZ) = -- (-) 1 - 4- + 12- 1 - 4-
32h Mw m� mt m� 

(hi If m� _ 120 GeV 1,1, wh<lt is the ratio r(w+ W-)tr(2Z)? 
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11.4 ESlimatt the long�t proton lifttimt that could � me;o.sured in a realistic laboratory 
experiment. [Hi"': How many prolons could you sample, in a practial experiment 
(Super.K, for instance)? How long would you (or - mOre to tht point - your funding 
agtncy) k prepared to wait?) 

U.S Estimate the lifetime of the proton, in the Glashow/Georgi model. 
[Hillt: Don'llry to cakukltt anything here - you don't have anywhere near enough infor· 
mation. The real question is how 1M lifttime formula depends on the various masses. 
Study other decays - the muon, the neutron, the pion - and exploit dimtnsional 
analysis. if it helps.) 

12.6 Derive Equation (12.9). from Equations (12.?) and (12.8) 
12.7 Consider vectors in the xy plane: 

Ii) Show that a (counterclockwise) rOlalion [) carri� a vector a • I"., (ly) into a' • (a' x. 

,,' y) given by 

a� = cos9a,, - sin9a.,.> a� = sin9a. + cos9ily 

(b) Show that the dot product of two VK!ors is invariant under such a rotation: a' . b' 
. a ·  b. 

1<) Now consider an ;"Ji";Itsimal rOlation de. Expand the transformation rult in (a) to 
first order in dO. 

(d) Show that the dot product is invariant (to first order) under infinitesimal rOlations. 
[Of course. if you already know it's invariant under Ji"iu tr.msformations. the proof 
for infinilesimal transformations is redundant The point is that the infinitesimal 
ase is typically much simpler,[ 

12.8 The purpose of this problem is to prove that the action described by the Lagrangian in 
Eq. (12.11) is invariant under the supersymmttry transformations in Eq. (12.10). 

(aJ Show that J,p0 = it f and 61i = (i/�)fy�la�41°). 
(blConsider firsl the scalar 'kinetic' term, L, = t(a"4>')(a,,4» ;  show that U, = 

«l"4>)(a,,1i)€ +�«l"4>°)(a,,1/t). 
(e) Next treat the spinor 'kinetic' tenn . .cl = im �r"{a" .... ). Show that J.cl = -J.cl + 

a" Q", where Q" III 1i{a"4» l  + t .. .,. .. ·[4>·{a.t) - (a.4>·)"'). where .,. ... is defined in 
Eq. 7.69. 

(d) Now examine the mass terms, .c) = -2 (=/1I)1,p°41 and .c. = _1IIC1 �",. Show that 
JL) = -(=/II)l(1il4> + ,po .. ",) and U., = i(IIIC/II)[-iy"(a .. 41°)t + 1iy"((a�,p)). 

(e) FinaUy. invoke the Dint equation. which follows from the Euler·lagrange equations 
{Eq. IO.IS), 10 show thai J.c. = -J.cj + a"R", where R" = i(=/II)[-iy"4>'''' + 
�Y"l4l1· 

Although the full Lagrangian (it' = Zi + it'l + 2) +�) is nOI invariant. it changes 
only by a tOlal divergence. Jit' = a"IQ" + R"), so the action and the equations of 
motion art invariant Notice, however, that tht scalar and the spinor have to arry the 
"'''''' mass for this to work. 

12.9 (>] From c, II, and G (NeWlon's constant of universal gravitation). construct a quantity 
If with the dimensions of length. a quantity If with the dimensions of time. and a 
quantity mp with the dimensions of mass. These are known as tht Planck ltngth, the 
Pklm;k lime. and the Planck mass. respectively. afler Mall Planck. who first published 
them in 1899 - the ytar hifortthe eponymous constanl itself[33]. Work out theaclual 
"umbe�, in meters. seconds, and kilograms. Also calculate the Planck e",,'l!Y (ep . 
m,.cl), in GtV. [These quantities sel the scale at which quantum gravity is expecled 
to be relevant] 

[b)What is the gravitational analog to 1M fine structure constant? Find the actual 
number, using (i) the mass oflM electron, (ii) the Planck mass. 

12.10 Find the velocity v as a function of orbital radius r. for an object in a circular trafectory 
around a fixed center of mass M (for example, a plantt about the sun). 
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12-11 A quick naive way 10 calculate the critical density is to picture the universe as a unifonn 

sphere of radius R, and set the e$Ca� vdodty for a p.article at the surface equal to the 
expansion velocity {from Hubble's law). v .  HR. On this basis. show tlul 

lH' 

Pc = 8JrG 

Look up the value of Hubble's constmt {H). ;md determine the critical density. in 
kgfm-1. 





Appendix A 

The Dirac Delta Function 

Introduction 10 t� Dirac delta function 

The Dirac delta function, S(x), is an infinitely high, infinitesimally narrow spike at 
the origin, with area 1 (Figure A.I). Specifically 

SIx) = f 0, 100, if x # 0) 
ifx = O  

,nd (A.I) 

Technically, it's not a function at all, since its value is not finite at x = O. In the 
mathemalical literature it is known as a genualiztd function, or distribution. It is, 
if you like, the limit of a stquence of functions, such as rectangles of height n and 
width lIn, or isosceles triangles of height n and base 2/n (Figure A.2), or any other 
shape you might wish to use. 

If f{x) is some 'ordinary' func tion (that is, not another delta function - in fact, 
just to be on the safe side let's say thatf(x) is continuous) then the productf(x)S(x) 
is zero everywhere except at x = o. It follows that 

f{x)6(x) = f{O)S(x) (A.2) 

(This is the most important fact about the delta function, so make sure you 
understand why it is true. The point is that since the product is zero anyway except 
at x = 0, we may as well replace fIx) by the value it assumes at the origin.) In 
particular 

(A.3) 

Under an integral, the delta function 'picks out' the value of f(x) at x = O. (Here 
and below, the integral need not run from -00 to +00; it is sufficient that the 
domain extends across the delta function, and -� to +" would do just as well.) 

l,wed""lioM 10 Ele""'1IID1)' hnides, Second Edilion. !}avid Griffiths 
Copyrighte 2008 WllEY·VCH VerLog GmbH & Co. KG.A, Weinhtim 
ISBN: 978·J.S27·4-0601·2 
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6(lC) 

, 

Fig. 1<.1 The Dirac delta function (you must imagine. how· 
e><er, that the spi�e is 'nfinitely high and infinitesimally nar· 
row). 

Of course, we can move the spike from x = 0 to some other point, x = a: 

6(x -a) = ( 0, 
00, 

if x "# al 
if x = a 

,nd i:6(x- a)dx = 1  

(see Figure AJ). Equation A.2 generalizes to 

f(x),)(x -a) = j(a),)(x - a) 

and Equation A.3 becomes 

(A.4) 

(A.S) 

i:j(X)8(X - a) dx = f(a) (A.6) 

How should we interpret the expression 8(h), if k is some nonzero (real) 
number? Suppose we multiply by an 'ordinary' functionj(x) and integrate: 

i: f(x}6(I:x} dx 

We may change variables, letting y .. h, so that x = rlk, and dx = 11k dy. If k is 
positive, the integration still runs from -00 to +00, but if k is IUgative, then x = 00 

, 

1 14 I n , 112 J X 

Fig. 1<.2 Two sequences or functions whose limit is �(%). 



t 6(x-a) 
I 
I 

I 
. , 

Fli. A..l 'Gr�ph' of �(x - 41). 

A The Dim, DelIo Fu"ctio" I <425 

impli�s y = -00, and vict vtrsa, so tht limits ar� rtverstd - restoring th� "proper" 
order costs a minus sign. Thus 

IA.� 

(Th� lower signs apply when Ie is negative, and we account for this neatly by putting 
absolut� value bars around th� Ie, as indicattd.) In this context, then, S(Iex) serves 
th� same purpose as llllleI)S(x): 

(00 fl'I" "'I"" � (00 ft'l [+" '1] d, ,-co ,-co I I 
(A.S) 

B«aus� this holds for any fIx), il follows that tht dtlta function exprtssions are 
equal;' 

I 
Sllex) = ]Ie] SIx) (A.9) 

What we have just analyztd is really a special case of the general form Slglx)), 
where g(%) is som� function of %. In g�n�ral, SIg(x)) has spik�s at th� ztros, %L, %2, 
Xl, . . . , of g(x): 

g(x;) = 0 (i= 1,2,3, . . .  ,n) 

, You oughllO ponder th�1 LIII *tq> for � mo­
�nt. Ordirlilril)l. the equality of two integrals 
certlIinl)l dMs ,,01 imply equality of th� in� 
grand. •. The crucial point hen! i. th�1 the in� 
grail are KjUllI for allY /(1<). Suppose the ddta 
funCtion expressions &(h) and (Itlkl)8(1<) ",. 
IWIlly t1ifftrnJ. SlIy. in the nfighbofhood. of the 
point % _ 17. Then t wouJd pick, function 

/(>4 �t wu sharply pt�ktd �bout " '" 17. 

(A.IO) 

ind tilt intta"'ls would not be KjwoL Sinct, 
on tilt (onlTaIY, Ihe integrals mUll be eqwol. 
il I'oJIows that the <kIt. function expressions 
are therT\#J_ eqUllL Well, lIeC.hnkally thry 
might still differ at isolat..d points, provided 
the� contribut� nothing 10 the in!tgral, but 
we can *ilm� this objection by noting tmt 
both ,ides of Equation A. 9 �rt oorly ttrO a· 
Ct]M lt J< _ O. 
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In the neighborhood of the ith zero, we may expand g(x) as a Taylor series: 

g(x) = g(x;} + (x � Xi)g'(X,) + } (x - Xi)2g" (Xi) + .  - :;;: (x - Xi)g'(X;) (A.ll) 

In view of Equation A.9, the spike at Xi has the fOrm 

1 J(g(x)) = )g'(Xi)) J(X- Xi) (x:': Xi) (A.I2) 

The factor 18'(XI))-1 tells us the 'strength' of the delta function at Xi. Putting this 
together with the spikes at the other zeros, we conclude that 

• 

1 
.5(g(x)) = L --.5(x - Xi) (A.B) 

i.1 !g'(Xi) ) 

Thus, any expression of the form .5(g(x)) can be reduced to a sum of simple delta 
functions: 

EJ(ampl� A. J Simplify the expression .5(x2 + x - 2). 
Solution: Here g(x) = x2 + X - 2 = (x - I)(x + 2); there are two zeros, at Xl = 1 

and X2 = -2. Differentiating, g'(x) = 2x + I, so g'(X1l = 3 and g'(X2) = -3. 
Thu, 

1 1 J(x2 + x - 2) = 3.5(x - l) + 38(x+2) MIl 

The Dirac delta function can be thought of as the derivative of the Heaviside step 
function (Figure A.4):t 10, (x < o) O(x) ;;;; 

I, (x> 0) 

Obviously, dO Idx is zero everywhere except at the origin, while 

100 dB - dx = 8(00) - 8(-00) = I - ° = 1 
_00 dx 

so d91dx satisfies the defining conditions (Equation A.I) for 8(x). 

(A.14) 

(A.IS) 

It is an easy matter to generalize the delta function to three (or more) dimensions: 

(A.16) 

• Equltion A.ll is t:wct. notwith.sJanding tilt truncatrd Taylor =ies (Equation A.ll) I w;rd in its 
d�rivation. At Xi, tht '�xtra' \l!rntS ar� �ero, sinc� Ihey conJain powers of (x - Xi). 

t Th� valu� at th� discontinuity �ldom matt�rs. but if it worries you. d�fin� 0(0) _ 1/2. 
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/I(x) 

x 

Fig. A.<4 The Heaviside thet� ('step') function. 

This three-dimensional delta function is zero everywhere except at the origin, 
where it blows up. lbe triple integral over �l(r) is 1: 

,nd 

(A.IS) 

For example, the charge density (charge per unit volume) of a point charge q located 
at the point ro can be written as 

p(r) = o¥l(T - TO) 

Problems 

A.I laf li(2,.2 + 7x + l)�(x - If dx =1 
(hJ Ii In(l + x)�(". -x) dx =1 

A.2 Use Equation A.ll to simplify the expression �(..rxr+1 - "  - 1). 
A.3 Use Equation A.13 to simplify the expression 8(sin ,,). Sketch this function. 
A.4 Letf(f) = I; �(y - ,,(2 - xJ) dx. Findf(y). and plot il from y = -2 to y = +2. 

A.S I�l x' [;&�(x - 3)1 dx =1 [Hint Integrate by parts.) 
A.6 EvaJuate the integni (10 5 significant digits) 

{I 9(2x _ <4)e-lx dx i_. 

(A.19) 

A.7 Evaluate I r ·  (a - r)�)(r - b) dt" if a = (1, 2, 3), b = (3, 2, I), and the integration is 
over a sphere of rlIdius 1.5 centered at (2, 2, 2). 





Appendix B 

Decay Rates and Cross Sections 

Summary offormwas for decay rates and scattering cross sations. 

B.l 
Decays 

Suppose particle 1 det:ays into particles 2, 3, 4, . . .  , n: 

1 ...... 2 + 3 + 4 + " ' + n  

The decay rate is given by the formula 

dr = 141\n:l { [  {;n�:��2] [(;H�:��) l · ·  [(2:�:�EJ} 
X(br)�,,4(Pl -P2 -Pl - . . .  -p�) (B.l) 

where Pi = (E;!', Pi) is the 4·momentum oflhe ilh particle (which carries mass mj, 

so Ej = CJPT + mfc2). The det:aying particle is presumed to be at rest: PI = (mle; 0); 
S is a product of statistical factors; Ifj! for each group of j identical particles in the 
final state, 

B.l.1 
Two-body Oecays 

If there are just two particles in the final state, the integrals can be performed 
explicitly. The total deuy rate is 

where Ipl is the magnitude of either outgoing momentum: 

Ipl = -
'
- 1m· + m! + m4 _ 2m2"J _ 2m2m2 _ 2"Jm2 2m] V ] -. 1 ] -, ] J --, J 

lnlrodu«i"" 10 Eltm<nlO'l' Pdnidu. Socond Edilion. David Griffiths 
Copyright C> 2008 WlLEY·VCH Verlag GmbH & Co. KGaA. Weinheim 
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(B.2) 

(B.3) 

I'" 
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In particular, if the outgoing particles are massl(.SS, then Ip l  = ml e/2, and 

'.2 

s , 
r � -- I..KI 161Tfiml 

Cross Sections 

Suppose particles 1 and 2 collide, producing particles 3, 4, . . .  , n: 

1 + 2  ...... 3 + 4 + · · · + n  

The cross section is given by the formula 

(B.4) 

(8.S) 

where (as before) Pi = (E;!c, Pi) is the 4-momentum of particle i (mass mil, 
E, = elmfc2 + Pt, and S is a statistical factor (Ijj! for each group of j identical 
particles in the final state). 

B.2.1 
TWO-body Scattering 

If there are just lwo particles in the final state, the integrals can be performed 
explicitly. 

(a) In llu Clnter-ofmomenlum fratm 

>fld 

IB.� 

where Ip,l is the magnitude of either incoming momentum, 
and IPfl is the magnitude of either outgoing momentum. In 
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particular. for elastic scattering (A + B - A + BJ. Ip;l = IPrl. 
so. letting E ;5  (EI + E2)f2: 

cia = (",-)2 51.412 

dO 16n E2 

(h) 111 1m lab frame (particle 2 at rest) 

In the case of elastic scattering (A + B _ A + B). 

(8.8) 

(B.9) 

IPl lEJ cos 91 
(8.10) 

If. in particular. the incident particle is massless (m} = 0). this 
reduces to 

If the target recoil is negligible (m2c2 » EI). then 
Equation B.IO reduces to 

If the outgoing particles are massless (m3 = m4 = 0). 
Equation B.5 yields 

(B.ll) 

(B.12) 





Appendix C 

Pauli and Dirac Matrices 

Pauli and Dirac matrices. 

C.l 
Pauli Matrices 

The Pauli matrices are three Hermitian, unitary, traceless 2 x 2 matrices: 

(e.l) 

(Often we use numern:al indices: Ul = CT",CT2 = CT�,U) = Uz: CT is not part of a 
four-vector, and we do not distinguish upper and lower indices: CTI = CT I , CT l, = CT2, 
CTl = CTJ.) 

(a) Product ruks. 

(A 2 x 2 unit matrix is implied in the first term, and 
summation over I: in the second). Thus, in particular: 

(c'2) 

(0) 

(e.4) 

[CTi,CTj) = 2��1;<7l (commutator) (e.5) 

(CTi,CTj) = 2�� (anticommutator) (e.6) 

and for any two vectors a and h, 

(a CT)(b'CT) = a . b + io" . {a x b) 

I",rod"",;"" ,., £/tmmJary Ami&.. Sro:>tId flli.;"", David Griffiths 
Copyright 0 2008 WILEy.vCH Verlog GmbH & Co. KGlA-, Weinheim 
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(e.7) 
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(b) Exponlntials. 

eiiJ." = ws O + ib · u sinO 

C.2 
Dirac Matrices 

The Dirac matrices are four unitary traceless 4 x 4 matrices: 

y
' � (1 

- 0 
0 ) . ( 0  "') 

-1 ; y' 
'= -u; 0 

(CS) 

(C9) 

(Here 1 is the 2 x 2 unit matrix, and 0 is the 2 x 2 matrix of zeros;.,.i are the Pauli 
matrices. Lowering indices changes the sign of the 'spatiai' components: Yo = yl1, 

Yi = -y'.) We introduce as well the auxiliary matrices 

For any four-vector al'. we define the 4 x 4 matrix I- as follows: 

(a) Product rules. In terms of the metric 

r - (1 0 0 1.) -1 0 
0 -1 0 0 

(note thatgl'"gl'" = 4), we have: 

yl'y' + y"yl' = 2g"', 

Yl'Yl' = 4  

YI'Y·Y" = -2y", 

y .. y"y�y" = 4g"�, 

y .. I-r" = -21-

y .. /�Y" = 4a· b 

(C14) 

(CIS) 

(CI6) 

(CI?) 

(CIS) 

y"y.y�y" y" = _2yay�y., Y"I-�'Y" = -2,$1-
(C19) 

(CIO) 

(CII) 

(Cll) 

(CU) 
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(b) Trace theorems. The trace of the product of an odd number of 

gamma matrices is zero. 

Tr(l) = 4 

Tr{y"y") "" 4g"". Tr(JijS) "" 4a· b 

Tr(yl' y"yl,y�) = 4{i'"gM _ g"l.g"tJ + y}'tJ g'l,). 

TrlP$,j) = 4 [{a. b){c . dJ - (a . c)(b . dJ 

+(a· dJ(b· e)l 

(C.ZO) 

(C.ZI) 

(C.ZZ) 

Since y5 is the product of an even number of y matrices. it 
follows that Tr{ySy") _ O and Tr{ySy"y"yl.) _ O. When yS is 
multiplied by an evm number of y 's, we find 

Tr(ys) = ° 

Tr{ySy"y') = 0, 

Tr(y5y"y"yl.y") = 4i€,,'1.<r. 

Tr{ySIJ51j) = 4i€,,"1.<r a"b,cl.do-

(C.23) 

(C.Z4) 

(C.Z5) 

where E'",l,,, = -1. if J.tLl.l.O is an even permuta tion of 01Z3. 
+ 1 for an odd permutation, and ° if any two indices are the 
same. Note that 

(C.Z6) 

(e) Anticommutation rel6tions. 

(y .... y") = Z8"". (C.Z7) 





Appendix 0 

Feynman Rules (Tree Level) 

Ftynman rules for QED, QeD, and IV((.II: interactioltS. 

0.1 
External lines 

Spin 0 :  (nothing) 

Spin� ; I Incoming particle : u 
Incoming antiparticle:  ii 
Outgoing particle : u 
Outgoing antiparticle : u 

S in 1 . j  incoming : E" p . outgoing : E; 

0.2 
Propagators 

Spin O :  "��=,, 
'I" (/>te)2 

Spin ! :  
i(d + me) 

q2 (me)2 

-ig." Massless : 
T 

Spin 1 : 

Massive : -i!g.,. - q"q./{me)2) 
q2 {me)2 

/n!rod",!i<Jn I<> Ek""nla'l' Partida. Smmd £di!i<Jn. D�vid Griffith$ 
Copyright 0 2008 W1LEY-VCH V�rJ.ag GmbH &Co. KG.A. W�inh�im 
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D.3 

VerteJl Factors 

QED: 

QeD: 

GWS: 

.,. 

w-

r , 

ig..y" (g. = .J4:rrrt) 

- ia. 
-""' >.."y" 

2 

_gJa/iY[&...(ql - q* + g.,d� - q))" 
+g..,,(q) - qJ).] 

_ig;lfatlqfy6� (g,,�g.p -g"pg.l) 
+rOQjtlrq(&,.8l.P _ g,,�gyp) 
+ryqf·tlq(g,.pg.� -g".84» ) 

�Y"(l - yS) (Here I is any lepton, and 

v! the corresponding neutrino.) 



" 

"'I Z 

X" W- Z 

W' Z 

" , 

f 
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�Y"(l - yS)Vq (Here i = u, C, or I,and) = d, S, 

or b; Vis the CKM matrix.) 

=fy"(.{. -�yS) Here! is any quark or lepton; 
Cv and CA are given in the 
following table: 

<. <, 

v" LI", V, l , 
, 

r-.J.t . <  -i +2 sin2 e ... -� 
U, C, t � - � sin2 /;l ... l 
d, s, b - t + i sin2e", , -, 

ig..cos9",[g"J.(ql - q2)" 
+g,.,,{q2 - ql). + &..(ql - qd.d 

w- w-X" w� W· 

" , 
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The weak coupling constants are related to the electromagnetic coupling constant; 

g... - � . - sin8.., , - " 
g. - sin liw cos e", . 

There are also 'mixed' couplings of the photon to the W and Z: 

ig.[g"J.('11 - '12)" 
+g.,,('12 -'13)" + g"o(q) - qllJ.] 

X' W- Y 

W· Y 
" " 



Index 

• 
A: sn Baryon number 
ABC th�ry 211-223 
Abelian 118, }65 

- Set also G�uge inV<lmnce; Groups 
Acccler�tor 4-7,401 
Additive quantum nwnber 141 
Adjoin! 236,361 
Alloww 120, 127, 161-162 
0; see Fine structure constmt 
0, 173 
cr., 308, 315 
cr particle 5, 14, 156, 388-389 
Amplitude 132-133, 156, 203-204, 

211-214, 244 
Anderson, C. D. 19, 21. 31 
Angular momentum 120-128 

- addition 122-125, 154 
- eigenfunctions: see Spherical 

harmonics 
- eigenvalues 120-121 
- matrices: see Spin matrices 
- orbital 120-121. 161-163, 182 
- spin 120-121 

Annihilation: It< Pair annihilation 
Anomalous magnetic moment 

- electron 18, 165, 167,246,266 
- muon 413 
- proton 168 

Anthropic principle 414 
Antibaryon 37.40 
AnticommuUtor 155,228,237,252,435 
Antielectron: see Positron 
Antimatter 21,23 
Antimeson 37.41 
Antineutrino 24.27.128 
Antineutron 21-22 
An!ip�rtide 3. 20-23.37. 39.61-62. 

230-234 

Antiproton 21, 33, 106-107 
Antiqu�rk 39,49 
Antiscreening 300-301 
Antisymmetric sute 122. 125. 183-184 
Antisymmetric tensor 110-111. 253 
Antisymmetri:ution 245 
Associated laguerre polynomial 162 
Associ.,ued production 34 
Astrophysics 7, 394, 396. 400-401 
Asymptotic freedom 68-70,83, 220, 

298-301 
Atmospheric neutrino 394-395, 399-400 
Atomic number 24 
Atomic weight 24, 3.87 
Axia! vector 139-141,3OS 
Axion 411,416 
A:timutha! angle 201 

b 
B; see Bottom 
B factory 47,148 
B meson 47.148-149 
b quark 47 
Bahcall./. N. 389-390, 416 
Bare: Stt Charge; Coupling consunt; Mass 
Barn 211 
Baryogenesis 411 
Baryon 19,30,32, 35,40,44,122-123, 

180-193 
- decuplet 36.40, 122-123 
- magnetic moment 189-190 
- mass 191-193 
- number 22, 33, 81, no, 408-409 
- octet 35.41, 122-123, 188 

Beautiful baryon 47 
Beautiful meson 47 
Beauty 47,49 

- Set (lisa Bottom 
p: stt Electron; Positron 

inlroduai"" 10 Eltmtnf<ll)' Panicle<, SwwJ Ediricfo. D ... id Griffiths 
CopyrlihlC> 2008 WlLEy.vCH Veri,s GmbH & Co. KG.A. Weinheim 
ISBN: 978·3·527-40601·2 
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Beta decay 23-29, 47-48, 56,76, 
136-137,318 

Bethe, H. A. 166, 219, 388 
Bev;o.tron 21, 106 
Bhabha scattering 62. 86, 246 
Big B�ng 71.409.416 
Bilinearco\';\ri�nt 235-238 
Bindingenergy 103, 159-160. 194 
Bispinor 229 
Bjorken, j. D. 44. 228, 233 
Blackbody 15 
Bohr. N. 15.24.162 
Bohr energies 162 
Bohr m�gneton 190 
Bohr model 15, 163 
Bohr radius 162 
Boson 122,141, 183 
Bottom 47 
Bonomonium 159. 175-177 

- See also '( (upsilon) meson 
Bound state 2, 159-193 
Branching ratio 79,198. 404-405 
Brane 413 
Breit frame 112 
Bremsstrahlung 403-404 
Brick WOlll frame: 5U Breit fr.tme 
Broken symmetry 135-136. 375. 378. 

402,408 
Brookhaven 29, 33,44,71, 147 
Bubble chamber 7 

, 
C: see cJu.rm; Charge conjugation 
c quark 44-45 
Cv. ',t 320,331-332 
Cabibbo. N., 77 324-327 
Cabibbo angle 321, 324-325, 329 
Cabibbo theory 324-328 
Camouflage 300 
Casimir's trick 249-254, 270 
Cathode ray 13 
Center of momentum 64, 106-108 
Central potential 161 
Centrifugal barrier 161 
Cerenkov radiation 7, 392 
CERN 6-7,42. 48,51, 72, 331-332,403 
Chadwick- I· 15,24 
Charge 148,165, )01 

- b;o.re 69-70 
- conservation: 5U Conservation l;aws 
- effective 68-70,266, 29'.l 
- eltttric 70.81, 408--409 
- exchange 132 
- independence 130 

- quark 39 
- renormali;:ation 219-221,265-267 
- _ak 71-72, 320 
- See also Coupling constant 

Charge conjugation 142-149 
- conservation 143 
- number 143 
- operator 142-143,269 
- photon 143 
- positronium, 171 
- violation, 143 

Charged weak interaction 72-78, 307-308, 
324-329 

Ch;orm 44-45,49 
Charmed baryon 45-47 
Charmed meson 45-47 
Channonium 159, 172-177 

- Su alw '" meson 
Chir.t.l stilte 340 
Chromodynamics 59-60, 66-71, 366-369 

- Su also Quantum chromodynamics 
Circular polarization 241,260 
CKM matrix 51, 77-78, 81, 148, 328-329, 

350,397,409-410 
Clebsch-Gonhn coefficients 124-125, 154 
Cloud chamber 7.30-31 
CM 64, 106-108 
CNO cycle 388 
Colermm-Gbshow formula 57 
Colliding beams 5, 108-109 
Collision 87, 100-102 
Color 43-44,49-50,66-67,70, 187-188, 

278-279 
- current 369 
- factor 173, 289-294, 304 
- field 369 
- octet 187.285 
- sextet 293 
- singlet 187, 285 
- state 284-286 
- SU(3) 187, 285, 366-369 

Colorless p;!rtide 43,285 
- See also Color singlet 

Commutator 155 
Comp;!ctification 414 
Completeness 230,2)4, 242-243, 270, 

308, 348 
Composition rule 40 
Compton, A. H. 17 
Compton 

- scattering 17-18, 2),62, 86, 1l3, 
246, 249, 271-272 

- wavelength 17,69 
Confinement 42-44, 71-72,289 



Conjugating pha� 410 
Conservlltion laws 79-84 

- angular momentum 26, SO, 117, 
119, 122 

- b;"ryon number 33,79,81,85 
- charge 79,81, 85,117,238, 270 
- color 67,81,85 
- el�tron number 29,75,81 
-energy 24,64,SO,87, 100-IOI, 117, 

213, 244 
- flavor 75,82, 324 
- isosopin 130 
- lepton number 28-29, 7'.1,81,85 
- mass 2, 100-102 
- momentum 64, SO, 97-101. 117, 

213, 244 
- muon number 29,75,81 
- p.arity 73, 141-142,309 
- quark number 81 
- stnmgeness 34,82, 324 
- tau number 75,81 

Conserved current 238, 270, 358 
Constituent qu;ork 58, 180, 190, 193 
Continuity equation 238, 270, 358 
Continuous symmetry 375-377 
Contraction of indices 96 
Contraction theorems 252-253 
Contravariant 94 
Cosmic ray 4-5,19, 30-31,110, 394, «11 
Cosmological constant 417 
Coulomb force 1,9, 18,61-62,73 
Coulomb gauge 2«1-243, 286, 307 
Coulomb potential 162-163,202,290,334 
Coupling constln! 67,84-85, 213, 3(6 

- bare 220, 265 
- dimensions of 213 
- df�tive 220, 265 
- el�tromagnetic 84-85, 244 
- physical 219-220 
- renonnaliud 219-221. 265-266, 

298-301 
- running 68,85, 220, 265-266, 

300-301, 405-406, 412 
- strong 67,84-85,283-284 
- weak 84-85, 308, )l5, 320, 332, 346 
- Stt also Charge, Fine structure 

constant 
Covariant 94, %, 226, 268 
Cnvariantderivative 360, 363, 367, 378 
COWlln, C. L 27 
CP 144-149,«19-411 

- IfJ system 148-149, 409-411 
- eigenstate 146 
- invariance 145-147 

- � system 145-149 
- violation 51,139, 147-149,328, 

409-411 
Cronin,). W. 146-149,409 
Cross product 368.408 

I"dn: 1 443 

Cross section 132-133, 156, 199-203, 209, 
430-431 

- A + A  ...... B + B  215-216 
- hard sphere 200-202 
- Mott 245-246, 254-255 
- nucleon-nucleon 132 
- pair annihilation (QCD) 198 
- pairannihibtion (QED) 261 
- Rutherford 202. 2S5 
- Su olso Golden rule. Scattering 

Crossing symmetry 22-23,62 
Current 

- charged weak 341-346 
- color 369 
- con�rved 358 
- electromagnetic 238.341-344. 

358, 360 
- neutral weak 343 
- Noether 383-384 
- weak hypercharge 342-344 
- weak isospin 342-344 
- Yang-Mills 365 

Cutoff 219,264-265 
CVC hypothesis 320 
Cyclotron fonnula 8 

d 
Dmeson 47 
D, meson 47 
d quark 39 
D'A1embertian 2«1 
Darkenergy 414-417 
Dark matter 414-417 
Davis, R. 27-28. 390.3% 
De Broglie wavelength 6 
Decay 2.65. 75-84, 87. 197-198 

- b quark 351 
- c qu;ork 351 
- gO) 410 
- t:.  77 
- 'I, 298. 306 
- Higgs 404-405. 419 
- bon 325 
- A 77-78. 324 
- leptoni< 325 
- muon 25-29, 75, lIO-315, 

394-395,400 
- neutrino )94 
- neutron 25-29. 76,80,315-311,324 
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OKay (",nld.) 
- nonleptonic 325-326 

- n- n-78 

- 4> 8) 

- pion (charged) 25-29. 7G. 80. 103. 

138, 321-324, 349,394-395 

-pion (neutral) 65, 138, 143,222 

- positronium 256-261 

- proton 32-33, 85,406, 4U!, 420 

- '" 82-84 

- quukonium 298 

- semiieplonic 325-326 

- tritium 25, 3% 

- two-body 24-27. 112. 206-208. 

429-430 

- zII 337. 350-351 

- Sa also Golden rule: Lifetime 
Decaymode 79,198 

OKay nt'" 197-198, 429-430 

Decuplet 36.40, 122-123 

Deep inebstic sC<lttering 42-43, SO, 68 

Degeneracy 163 

Oelbruck scattering 86 
to huyon 33, 133 

Delu. function 
- Dir.ac 20S. 423-427 

- Kronecker 155 

�nsity of states 203 

- See .. Iso Pluse space 
DESY 73 

�t:liled balance 23, 149 

Detector 7-8,203 

Deuteriwn 169 

Deuteron 43, 103. 130-131, 194.388 

Di.;ograrn 
- disconnWed 218 

- Feynman 60-64, 213 

- higher�rder 62-63,75, 86,212. 

217-221. 2G2-267 

- loop 70. 166-167,217-218, 263, 

288, 298-299 

- penguin 148, 157,410 

- trl'!' 157,217, 265 

Difterenti;d cross section 201-203, 223, 

430-431 

- Su a/w Scattering 
Dimensions 

- �mplitude 211 

- coupling constant 213 

- cross 5eCtiOn 211 

- field 357 

Dipole function 284 

Dipole moment 
- electric 150,411 

- magnetic 150.165, 168, 189-190 

Diquark 294, 408 

Dinc, P. A. M_ 15.21. 165,219 

Dinc delta function 205,423-427 

Dirac equ�tion 21. 225-229. 356 

- momentum. sp.Ke 234 

Dirac Lagr.lgnian 355-356 

Dirac matrices 228.434-435 

Dirac neutrino 28, 396 

Dirac sea 11. 230 

Dirac spinor 229 

Direct CP viobtion 148 

Disconnected diagr.lm 218 

Discretesymmetry 118, 136-151.375 

Dot product 95 

Down quark 39 

Downness 49 

Drell, S. D. 128,233 

Dresden, M. 221 

, 
Effectivecharge 68-70. 266 

Effective mass 135-136, 180, 220 

Eigenstate 318 

Eigennlue 126-127, 160 

Eigenvector Wi-l27 

Eight b,aryon problem 133 

Eightfold Way 35-37.39,133 

Einstein, A. 16,84.417 

Einstein summation convention 93 

Elastic collision 101-102 

Elasticscattering 101-101,199 

Electric dipole moment 150, 411 

Electric form factor 283-284 

Electrodynamics 59,84,238 

- Su "Iso Quantum electrodynamics 
Electromagnetic current 238,341-344, 358, 

360 

Eledromagnetic decay 255-261 

Electromagnetic field 239 

EI�omagnetic force 59 

Electromagnetic potential 239 

Electron 4-5,13, ISO 

Electron gun 4 

Electron neutrino 29 

Electron number 29.49 

Electron volt 9 

Electron-electron scattering 246-247. 266. 

m 
Electron-muon scattering 2-45-246, 

252-255, 265, 271 

Electron-positron sattering 
- elastic 247-248 

- inelastic 256-261. 266. 275-279 



Electron-positron �nnihibrion 256-261 
Electron-proton saltering 255, 279-283 
Electrowe�k inter�ction 3,43, 60,84,338 

- See Qiso GWS theory 
Electroweak interference 337 
Electroweak mixing 345-346 
Electrowe�k unifiGition 338-346 
Elementary p,articles: see Particles 
Energy 

- conservation of 24, 64,80, 87, 
100-101. 117, 213, 244 

- kinetic 99 
- oper.ltor 160,268 
- relativistic 96-100 
- rest 99 

Energy·momentum four·vector 98 
'I meson 31, 177-179 
'1'meson 41, 177-179 
I), meson 298. 306 
Euler-u.gr;mge�u.;otion 354-35{j 
Event rate 203 
Exclu.ngeofp,articles 18.61, 183 
bclusion principle 1, 3.21. 37. 43-44. 122. 

130. 183-184 
Exclusive 199 
botic atom 169 
botic p<lrticle 41 
Expansion of universe 416-417 
ExtelTl<ll line 63,65.213, 243.287,437 
Extra dimensions 413-414 

f 
f. (pion decay constant) 322-323 
Faithful representation 119 
Fedcev-Popov ghost 288 
Fermi, E. 24. 60.133. 204, 315 
Fermi constant (GF) 313-315 
Fermi's Golden Rule 203-211 
Fermi theory of bet<! dec<ly 24. 47-48. 60 
Fennibb 6,8,47,395,41)3 
Fermion 121-122, 141,183 
Feynman. R. P. 21, 29.60. 65. 166.205.219 
Feynmanc.akulus 64, 197-223, 373 
Feynman diagnm 60-64, 213 
Feynman niles 3, 64, 203-204, 369-372. 

437-440 
- ABC theory 211-214 
- GWS theory 307-308. 331 
- QCD 283-288 
- QED 241-245 
- weak interactions 307-308. 331 

Feynman-Sttikdberginterpretation 21. 230 
Field theory 354-358 

- SGilar 355, 357 

_ spinor 355-357 
- vector 356-359 

Field strength tensor 238 
Fifth force 285 
Fine structure 165-166,169-170 

/"du 1445 

Fine structure const�nt to,64, 162. 165, 266 
Fine tuning 412 
FbvOt 39,43,49, 57,70, 82.129-136, 

184-188, 397 
Flavor dyn�mics 59-60 
Fbvoreigenstates 324.328-329. 397-398 
Force 59-60 

- dectrom�gneric 59 
- gravity 59 
- strong 18-20, 30, l4. SO, 59 
- we�k 34.48,59 

Form factor 282-284, 303,319,322 
Four·momentum 98 
Four·vector 92-96 

- charge"CUrrent 238 
- covariant 94 
- contravariant 94 
- current 238 
- energy· momentum. 98 
-lighilike 9S 
- position·rime 92 
- proper velocity % 

- spacelike 95 
- timdike 9S 

Four·vdocity 97 
Free u.gnngian 369 
Free qu�rk 41-44,72 
ft·v;r.lue 319 
Fundamental represent�rion 119, 179 
Furry's theorem 273 
Fusion 388, 403-404 

• 
G: su G·parity 
GF: sa Fermi constant 
g. 332. }46 
g, 371 
g.. 308, 315, 332, 346 
g. 332, 346 
Gal;>eticrotation 414-415 
Gamma matrices 228 
Gamma ray 5,17 

- Sa ,,/so Photon 
yl 236-237 
Gauge field 360. 364-367. 407 
Gauge invariance 117. 304 

- abelian 365 

- broken 136, 375 
- global 358, 363 
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Gauge inl':lriance (comd.) 
- local 3. 358-361.363, 367 
- nonabelian 365 

Gauge theory 353-381 
Gauge transformation 239, 270, 360 
Gaussian units 9 
Gell·Mmn, M. 34-37,56-57.60,82,133, 

145-147 
Gell-Mann matrices 286-287, 367,384 
Gell·Mmn-Nishijima formula 130-131, 

156,343 
Gel\·Mann-Okubo formula 56-57 
Generation 49-51. 75 
Ghost 241, 288, 381 
GIM mechanism 77,327-329 
Glashow, S. L 44-48,60, 77,84, 327, 330, 

338,406 
Global transformation 358. 363 
Glueball 50.67 
Gluino 52 
Gluon 50,59-60.67, 368 

- octet 285 
Gluon-gluon coupling 67,70, 286, 288 
Golden R.u1e 203-211 

- for deays 204-20S 
- for sc.;ottering 208-211 

Goldstone boson 377-381 
Goldstone'S theorem 377 
G·parity 143-144,157 
Gradient 22&. 268 
Grand Unification 33, 52, 84-85, 405-409 
Gr.lvit:ltional lensing 415 
Gr.lvity 18, 49, 59.86,413 
Gr.lviton 18,49. 59-60,414 
Gr«k index 92-93 
Greenberg. O. W. 43 
Ground st:lte 373 

- Su also Vacuum 
Group 117-118 

- abelian 118 
- continuous 118 
- discrete 118 
- finite lIS 
- infinite 118 
- Lie 118 
- loren\x. liS 
- 0(,,) lIS-119. 153 
- SO(2) 376 
- SOP) llS-1l9, 12S 
- SO(10) 407 
- SO(,,) 11S-119, 153 
- SU(2) 128, 130, U5, 362-363. 365 
- SU(2)\ x U(1) 3«, 346.366. 407 
- SU(3) 128,133, 179,187,367, 407 

- SU(5) 407 
- SU(6) 134 
- SU(,,) 1I8-119, 153 
- U(,,) 118-119,153,361, 366 

Group theory 117,133 
GUT: 5U Grand Unification 
GUT scale 405-406, 413 
GWS (Glashow/Weinberg/Salam) 3.48. SO. 

60,71-7<),84,221, 332, 337-346 
Gyromagnetic ratio 165 

h 
Hadron 30 

- Su abo Baryon; Me-son 
Hadroniution 275-276 
Half·life 79.222,319 
Halo 415-417 
Hamiltonian 160, 268 
Hard·sphere scattering 200-202 
Heniside-Lorentz units 9, 245 
Heaviside step function 205, 426-427 
Heavy lepton 47 
Heavy neutrino 3% 
Heavyquark 159 
Helidty 28, 137-138,234, 241, 268, 324, 339 
Heisenberg. W. 129 
Heisenberg uncertilinty principle 6.56,80 
Hermitian conjugate 235, 367 
Hermitian matrix 362-363.384 
Hierarchy problem 412 
Higgs boson 6, 50, 52, lSO-3S1, 4{1l-405 
Higgs mechanism 84,338, 372. 378-381. 

401-402 
Higgsino 412,416 
Higher.order proce-ss 62-63, 75. 86. 212, 

217-221, 262-267 
Hole theory 21 
Home-st:lke mine 390,393-394 
't Hooft. G. 221, 330, 372. 409 
Hot dark matter 415 
Hydrogen 15, 159,162-168 
Hypercharge 36, 343-344 
Hyperfine splitting 167-168 

- baryons 191 
- hydrogen 167-168 
- mesons 180 
- positronium 169-170 

Hyperon 33 

Identical partides 1, 43,66, 183-184. 198 
ILC 6,401 
Impact parameter 199-201 
Inclusive 199 



J ndetenniruocy 3 
IndistinguisJu.bte particles I . •  3. 66. 

183-18-4 
Inel�$tic. sattering 199 
Inertial fram� 89 
Intermediat� vector boson 47_<43. 59_60 

- Sualso W; Z 
Internal line 63. 243 
Internal momenu 2U-214 
Internal qlUnlUm number 142 
Intem.t1 symmetry 117. 119. 129-110.411 
Intrinsic angular momentum 120 
Inlerl;«ting storage rings S 
Invarianc� 117 
Invariant 93-96. 1()4-107. 110 
Inverse beU d«ay 27. 309. 3S8 
Inverse Lor�ntz transformation 90. 109 
Inversion 139 
Inverted spectrum 396 
loniution 4.8 
Irreducible representation 119 
lsospin 129-136. 156. 365 

- weak 341-344 
Isotope IS 
Isotopic spin: su lsospin 

j 
J /. meson: su • meson. Charmonium 
let SO. 276 
lordan form 384 

• 
K meson 31. 34. 145-ISI 

- KI. K.! 146-1.7 
- Kt. Ks 147-149 

K�on; _ K meson 
KEK 43. 47.1<43 
Ket 3. 121 
Kinetic energy 99. 101. 373 
K1�in-Gordon eqlUtiOn 225-227. 240. 35S 
K1ein-Nishina formula 272 
KM m.atrix: su CKM mattix 
Kobayashi-MaskaWiJ matrix: su CKM matrix 
KronKktr ddta 155 

Lagrangian 357 
- classical 353-354 
- Dirac 3S5-356. 383 
_ Fi�ld theory 354-358 
- Free 369 
- Interaction ].69 
_ Klein-Gordon 3SS. 383 
- M_ll 3S7-36O 

- pfOC,J 356-3S7 
- QCD }66-}68 
- QED 358 
- R�ati¥i$tic 35.-358 
_ Supersymmetric 412.420 
- Yang-Mills 36S 
- Yukawa 38S 

ugr.lIlgian density 35 •. 357 
- Su .. IS<! Lagrangian 

Lamb. W. E. H.I66 

1m/ex 1447 

umbshift 18.166. 170. 194-195.220.266 
1\ (cosmological consunl) 417 
A (QCD sale) JOI 
A baryon 31-34 
A malrilc 93 
A, b.uyon .6-47 
.I. matrices 286-287 
undscape 414 
1..elIding log �pproxim .. tion 299 
Lederman. L M. '19. 1.7, 402 
�. T. D. 60, !}6, 142 
Left·handed 28. 137-138. 324. 339-342 
Left·handed doubl�t 343-344 
Leptogmesis 411 
Lepton 3, 19,30,45,47.49,122 

_ generations 10 .• 9 
- number 28.81, <408-409 
- uble JO,49 
_ �ak interactions 307. 310, 329-H7 
- Sa also Electron: Muon; N�utrino: T�u 

Leptonk deay 325 
Leploquuk 407-408 
Levi·Civita symbol ISS. 253, 271 
tHC 6, 47. 52.401. 403. 412-413,416-.17 
lifetime 79_80, 91, 197_198,212 

_ II 214-215 
- channonium 44 
- kaon 147 
- muon 313-315 
_ neutron 319-321 
- (1- 57 
- pion 323-324 
_ positronium 171,261. 420 
- proton 32-33. <406, <108, 420 
- sun 387,399 
- ze 51, H7. 350-351 
- Su.uso Deay 

LightqlUrk 159. 176 
Lightqu�rkbaryon 159, 181-193 
Li&htquarkm�on IS9, 176-180 
Lightlih 9S 
Uncar conidcr 5 
Unear·plus-Coulomb potenti.al 173 
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Local gau8� inv;r;rianc� 3, 358-363 
loc;ol gauge mmsfonnation 367 
Local phase invariance 360 
Logarithmic di�rgence 219,263 
Longitudinal polari:wotion 138, 307. 380 
Loop diagram 70. 166-167, 263, 288, 

298-299 

Lorentz gauge 240, 286. 307 
Lorentzcontndion 91-92 
Lorentz group liS 
Lorentz traos[onnations 89-93 
l<Jwering operator IS6 
Luminosity 202-203, 261 

m 
Mtheory 414 
Magnetic form factor 283-284 
Magnetic moment ISO, 165 

- anomalous 18, 266 
- b.aryons 89-190, 195-1% 
- electron 165 
- proton 168 

Magnetic monopole 409 
Majonna neutrino 28,273. 3%. 407 
Mandelst;am \t,I;irabl� 113 

Marsho..k, R. E. 19 
Mass fonnubs 

- baryons 191-193,195-1% 
- Coleman-Glashow 57 
- Gell·Mann-Okubo 56-57 
- Higgs 403 

- mesons 179-180.195 
- pion 56 
- quarkonium 171-176 

- WandZ 331 
Mns SI 

- b.ne 58, 135-136,220 

- constituent 58, 135-136, 180, 190, 
193 

- effective 135-136, 180,220 
- eigenstate 328, 391, 31'7-398 
- Higgs 403,412 
- matrix 362 

- neutral kaon 147 
- neutrino 31'5-3% 
- nonconservation 101-103 
- origin 381,402 

- physiC<lI 211'-220 
- quark 135-136, 180 

- relativistic 99, 101 
- r�norm;oli� 67,220-221,266 

- running 220 
- sh�U 65, 213 
- tenn 372-375 

- virtu;ol p;lrtid� 6S 
- WIMP 416 

Massive gauge field 372, 402 
Massless pilrtide 2, 21'-30, 9'9-100, 

138-139, 241. 308, 359-361. 377, 380, 392 
Matrix elem�n\ 203 
Maner-antimaner asymmetry 21,23,51, 

148,409-411 
Maxim;ol pilrity violation 137, 148, 309 
Maxwell, J, c. 84 
Maxwell tagrangi,m 357-359 
MaxwelJ's equations 238-239, 357-358 
Mechanics 2 
Mediator 18,47-48, 59-60, 67, 122, 307, 

315,407 
- See "Ise Gluon; Graviton; In\ermediat� 

vector boson; Photon; Pioo; W; Z 
Meson 15, 18-20, 30-31, 35, 40, 44, 

122-123, 176-180 
- mass 171'-180 
- non�t 31'-'H 
- octet 35-36,41 

Metric 93-94, 252 
Millikan, R. A, 16,41 
Minimal coupling 360 
Minkowski metric 93-94, 228 
Mirrorimag� 136-137,144, 148 
Missingmass 415-416 
Mixed t�nsor 96 
Mixing 

_ fIJ/Bo 145, 149 

- KO/Ko 391-394, 399 
- matriJr: 329,397-398 
- neutrino 391-394 
- �utral mesons 145, 149 

MNS matrix 397-398 

Moller scattering 61, 246 
Momentum 97 

- conservation 64, SO, 97-101, 117, 
213, 244 

- four-vector 98 
- opuitor 226 

- relativistic 96-100 

- spilc� 234, 370 
Mott scanering 245-246, 254-255 
M5M 402-406,419 
MSW �ffect 392 

Multipl�t 130 
Multiplicativ� quantum number 141, 143 
Multiplicity 130 
Muon 19,26-30,310-315 
Muon decay 25-29, 75, 310-315, 394-395, 

'" 
Muon n�utrino 29 



Muon number 29,49 

Muonium ]69 

" 
N: sa Nucl...,n 
", sa Neutron 
u: see Neutrino 
NNdermeyer, S. ]9 

Ne'em�n, Y. 35 

Neg.ative enerSl' sl<ite 21, 230 

Neutm weak intfi�ction 72-74, 308, 

329-)38, l43 

Neutralino 416 

Neutrino IS, 23-30, 1J7-1l9, 389, 415-416 

Neutrino m�ss 395-396 

Neutrino oscilbtions 30, 52, 74, 387-398 

Neutrinoless double beta-deay 396 

Neutrino-electron SGltlering 72-73 

Neutrino-nucleon SGlrtering n 
Neutron 15, 22. 29, 76, 129-130, 150, 

315-321 

Neutron electric dipole moment 411 

Ninth gluon 285-286, 368 

Noether's th...,rem 116-117, 383_384 

Nombelian gauge 365 

Nonet )9-41 

Nonkptonicdeuy 77,325-326 

Nonn:diution 
- Dine spinor 233. 237, 2&9 

- Pauli spinor 126 

- polariution vector 24),348 

- wave funo::tion ]60 

November revolution 44-47 

Nucleon 119-130 

- Ste..Iso Neutron: Proton 
Nucleon-nucleon sattering 131-132 

Nucleus 14-15,18,42, 56, 167 

• 
0(,,) 118-119,153 

Octet 35,41, 179 

- See .. 1so Baryon; Color. Gluon; Meson 
a- baryon 37-38, 57,88, 111 

'" meson 31, 177-179 

Oppenheimer, /' R, 19 

Orthogonal matrix 1 ]8-119 

Orthogonal pobriutions 242, 348 

Orthogonal spinon 268 
Oscill�tion$ 390-392 

OZI rule 82-84, 88, 17<4 

P P:. sa Parity 

'mlu 

Pair annihilation 2J. 62, 65, 170-171. 2<46, 

256-261, 29-4-298 

PaiT production 62,2<46 

P�is, A. 33-3<4, 1<45_1<47 

P�rily 136-1<42, 157 

- baryon 1<41 

- boson 141 

- conservation 7),1<4]-142, 309 

- fermion 141 

- invariance 116, 139 

- meson 141 

- oper;!ltor, oper;!ltor 1J9-1<41, 236 

- particle/antip;orticle 141 

- photon 141 

- qIQrk 141 

- violation 73. 136-1l9, 142, 148, 309 

Particle 1<47 

- a 5, 14, 156 

- antineutrino 24, 27,128 

- antineutron 21 

- antiproton 21 

- B meson 47, 148-149 

- B, meson 47 

- B, meson 47 

- " (bottom) qu;.rk 47 

- fJ: sa Electron: Positron 
- ' (ch�nn) qIQrk 44 
- Dmeson 47 

- D, meson 47 

- d (down) qu;.rk 39 
- IJ. baryon l3. III 
- deutfion 4), 103, 130-131. ]94, J.88 
- electron 1l, 150 

- I)  meson 31, 177-179 

- ,,'meson 41, ]n-179 

- ", �on 298, 306 

- y: see Photon 
- gtoon SO 
- graviton 18,49,59-60,414 

-J orJI+: see ", meson 

- K meson 31 

- �rged 31 

- neurral 31, 145-149, 151 

- bon: see K meson 
- A baryon 31-3<4, n 

- A� baryon 47 

- A, baryon <46-47 

- /I. (muon) 19,26-30, 310-315 

- u (neutrino) 15,23-30,1l7-H9, 

389, 415-416 

- neutron 15,76, 129, ISO, 315-321 

- nucleon ]29-130 

- O- wryon 37-38, 57, n,88, 111 

- Of baryon 47 

/'"  



450 l ind/!}( 
Particle (con/d.) 

- wm<':SOn 31, 177-179 
- ¢; m<':SOn 31, 83. 177-179 
- photon 15-18, 49, 59-60 
- 11: meson 19-20. 26-29. 178. 

321-324 
- pion: su "  m<':SOn 
- positron 5, IS, 21-22 
- proton 4.15. 32-33 
- oJ! meson 44. 82-84, 174-175 

- S", a/S() Charmonium 
- p meson 31, 178 
- s (strange) quark 39 
- 1: lnryon 33-}4 
- 1:� baryon 47 
- 1:< baryon 47 
- I (top) quark 47 
- r l<':pton 47 
- .. (up) quark 39 
- Y meson 47, SS, 175-176, 195 

- S", also Bottomonium 
- W 48-49 
- 3 baryon 33-}4 
- 3) baryon 47 
- 3, baryon 47 
- Z 48-49, 350-351 

PIlrtick Physics Booklet 10-11, 47 
Parton 44 

- Set illS() Gluon; Quark 
Pauli. W. 15, 24, 139.219.227 
Pauli (spin) Imltrices 127. ISS. 228. 363. 

433-4}4 
Pauli (exclusion) principle 1. 3,21. 37. 

43-44, 122. 130. 183-184 
PCAC hypothesis 320,326 
Penguin diagram 148,157,410 
Pentaquark 43 
Perturbation theory 373 
Phase transformation 3�-360 
Phasespate 203-205. 209. 323-324 
'" meson 31. 177-179 
Photino 52,412 
Photoelectric effect 16, 18 
Photon 15-18, 49, 59-60,238-241 
Pion 19-20, 26-29, �. 178, 321-324 
Pion decay constant 322-323 
Planck, M. 15-16 
Planck formula 16,100,163 
Planck's constant 6, 16 
Planck scale 413,420 
Plane wave 231. 240 
Point particle 220 
PoLuvector 139-141 
Polariution 138, 147, 307 

Polarization vector 240. 242-243, 286. 307 
PontecOlvo, B. 390 
Positron 5, IS, 21-22, 230 
Positronium 169-172,195-196 
Potential 

- Coulomb 162,202 
- four·vector 239 
- linear·plus·CouIomb 173.195 
- quark-quark 173, 289-294 
- vector 239 

Pot/:ntial energ)' 159-160.373 
Powell, C. F. 19-20, 25-26 
ppchain 3SS-390 
Primitive V<':rtI:X 60-61, 64-67, 72-75. 

78-80, 212,308 
Principal quantum number 163 
Proc:a equation 225, 356-357 
Projection operator 339, 349 
Propagator 213, 369-370.437 

- electron 244 
- gluon 288 
- modified 263. 336 
- photon 244 
- quark 288 
- spin zero 213. 370 
- spin one-half 244, 370 
- spin one 

- massive 308, 370 
- massless 244, 371 

- unstable particle 336 
- Wand Z 308, 333. 336 

Proper time 96 
Proper velocity %-97 
Proton 4.15, 32-33. 129-130 
Pseudoscal;o.r 140-141, 236-237 
Pseudoscalarm<':SOn 35-36. 122-123.177 
Pseudovector 139-141.237 
oJ! meson 44, 174-175 

- Set Il/'" Charmonium 

q 
Q: sa Charge, electric 
QCD (quantum chromodynamits) 3, 66-71, 

173. 283-JOI, 366-369 
QED (quantum electrodynamics) 3, 60-66, 

165. 225-273 
Quantum 16, 19. 369 
Quantum field theory 2. 10, 17. 20-21. 52, 

122. ISO. 159 
Quantum mechanics 2, 17, 20, 100, 

120. 159 
Quark 3. 37.45.49, 122 

- b (bottom) 47 
- , (charm) 44-45 



- confi�m"'nt 42-44,71-72 
- constitu",nt 58 
- d {down) 39 
- f� 41-44,72 
- m�sses 51, 58, 135-136 
- mod",] 37-44,47 
- num�r 81 
- p�rity 141 
- s",� 320 
- s"'�n:h 41-44 
- 5 (strang"') 39 
- I (top) 47 
- u (up) 39 
- tab]", 49 
- val",nc", 320 
- w",�k inluactions 324-337 

- Su.me. p�rticl"'$ 
Quuk·gluon plasm� 71 
Qwrk-quark int"'r�ction 289-294 
Quarkonium 169, 171-176 

- Su aha Bottomonium: Channonium 
Quasi·boundmt", 174-175.195 

, 
R 278-280 
Rabi. l. l. 30. 163 
R.oIdi;o] equ�tion 161 
R.oIdiativ", corr""tion 166 
R�ising operator 156 
R.oIng'" 18-19,48, >6, 285 
Rank 95-96 
R",actor 5, 27 
R",al particl", 63.65 
R..,(Iuc..,(l mass 169 
R",fI""tion 139 
R"'8ulariz;otion 219 
R",]ativistic cOTr""tion 165 
Rdativistic ",n",rgy 98-99 
Re!�tivistic mass 99 
Relativistic m""hanics 2 
Relativistic momentum 98 
Rd�tivistic system 159-160 
Rdativity 2. 89-113 
Reines, F. 27 
Renonn�lization 219-221, 262-267. 

298-301 
Repr�ntation 119,128,199 
Resonance 133, 156.279 
Rest energy 99. 102 
Review of Partidt Phyrics 10-11 
p meson 31. 178 
Richter, B. 44 
Right·hand..,(l 28. 137-138,324. 

339-l4O, 342 

Rochester, G. D. 30-31 
Rosenbluth fonnula 283, 303 
Rotation 117-118 
Rotation curve 414-415 
Rotation group 118-119.128.154 
Rotation m�trix 154_155 
Rubbi�. C. 48, 332 

Index 1 451 

Running coupling constant 68.84-85. 220. 
265-266, 301. 405-406, 412 

Running mass 220 
Rutherford, E. 14-15. 42-43 
Rutherford sOl.ttering 14-15,42-43. 202. 

245-246, 254-255 
Ryd�rg ronnula 163 

, 
S (strangeness) 34-35,40-41 
5 (strange) quark 39 
Salam. A. 48.60,84,330,338 
Sakharov, A. D. 409 
Scalar 123. 237 

- Su also Invariant 
Scmr product 94-95 
SOI.ttering 2, 197-203.430-431 

- A + A  .... B + B  215-217 
- Bhabha 62.86, 246 
- Compton 17-18, 62,86,113, 246, 

249. 271-272 
- cross section 132-133 
- deep inelastic 42-43 
- Iklbrucl< 86 
- elastic 199 
- eledron-e]""tron 246, 266.271 
- electron-muon 245-246, 252_255. 

265. 271 
- electron-positron 246-248, 

256-261, 275-279. 335-337 
- electron-proton 255, 279-283 
- gIuon-gluon 306 
- hard spher'" 200-202 
- inelastic 199 
- Moller 61,246 
- Mott 245-246, 254-255 
- neutrino·electron 309-310, 

330-334,392-393 
- nucleon-nucleon 131-132 
- pion-nucleon 132-133.156 
- Rutherford 14-15,42-43,202. 

245-246, 254-255 
- S •• also Collisions: Golden Rule 

SOI.ttering amplitud'" 132-133 
Scattering angle 17, 199-203 
Scatt",ring ""nter 200-201 



.. S2! ,ndex 
Schr&linger equation 159-162, 

225-227,230 

Schwinger,l,S, 60,165-166, 219 
Screming 68-69, 85, 167, 266, 299 

Se� quark 320 
See-s�w mech<mism 396 
SelKtron 52 
Self.energy 217 
Semileptonic deay 75,325-326, 350 
Separation ofvuiablcs 160-161 
Sextet 293 

t b�ryon 33-34 
SI units 9 
Simultaneity 90-91 

Singl<"l 39,41, 125, 131, 168, 178-179, 187 
SLAC 4, 42,44, 47, 51. 148, 174 
Slash 249, 252-253 
Slepton 52,411 
SO(II) 118-119, 153 
Solar neutrino 394 
Sol�r neutrino problem 387-390 
Solar neutrino spectrum 389 
Sneutrino 52,412 
SNO 393-394 
Solid angle 201-203 

Sp�celike 9S 
Spark chamber 7 
Sparticle 412 
Spec\.;llor quark 73 
Spectrum 15, 162-164, 172 
Spherical harmonic 161 
Spin 120-121 

Spin 1/2 125-128 
Spin down 125,231,234 
Spin matrix 126-128,234,339 
Spin and statistics 122, 183 
Spin up 125,231, 234 
Spin-averaged amplitude 250 
Spin-orbit coupling 165, 168 
Spin-spin coupling 168,191 

Spinor 125,128 

- Dirac 229 

- Pauli 125, 128 
Spontaneous symmetry.breaking 375-378, 

"" 
Squark 52, 412 
SSC 6,52 

S\.;Ible particle 32, 79-80 
Standard Modd 3, "9-52, 135-136, 

392 
Standard Solar Model 390 
State 3, 122 

S\.;Itistical factor 204,209 

Step fWlction 205, 426-427 
Sterile neutrino 395 
Stevenson, E. C. 19 
Storage ring 5 

Strange particle 30-35 
Strangeness 34-35,40-41, 49. 130, 131 
StrangencsHhanging 325 
Street. I. C. 19 
String theory 52.413-414 
Strong CP violation 411 
Strong force 18-20, 30, 34, SO. 129 
Strongph�se 410 
Stroctureconstant 287.304, 368 
StUckelberg, E. c. G. 21,33 

Subgroup 133 
Subquark: set Substructure 
Substructure 50,52,58,417 

SuperKamiokande 392-395 
Supermultiplet 37. 133 
Supernova 394, 396, 400 
Superstring 52,85. 413-414 
Supersymmetry 6,52. 85, 402.406, 411-41l, 

416,420 

SU(,,) 118 
SUSY: st" Supersymmetry 
Symmetric state 122.125. 183-184 
Symmetric tensor 1l0-1i1 
Symmetry 115-lSI 
Synchrotron radiation 5 

T: setTime reversal 
, (top) quark 47 

r lepton 47 
\.;Iu number 49 
r-8 puzzle 141-142 
TCPtheorem 3, 149-151 
Technicolor 402 
Tensor 95-96, 237 
Tevatron 6,47.401. 403 
8c= see ubibbo angle 
f4: set weak mixing angle 
Theory of Everything Sl, 4!3 
Thomson,l· J. 13_14 

Three-body decay 311. 316 
Three·jet ev<:nt 276 

Threshold 23,87, 103, 106-107. 11 L 278 
Time dependence 160,230.390 
Time dilation 91-92, % 
Time reversal 149-151 
Timelike 95 
Ting, C. C. 44 
Top 47 



Toponium 47 
Total cross section 202 
Tr�c� 251-252 
Trac� theor�ms 252-253, 271, 435 
Transformation 

- charg� coniug�tion 269 
- Dir�c spinor 235, 269 
- four·�tor 94 
- Lor�ntz 89-93 
- plIrity 236 
- tensor 95 

Transition probability 
T r�nsl�tion 117-118 
Transpose 118.235 
Trms�rs� pol�rization 241 
Treediagnm 157.217.265 
Triangl� function 112 
Triangle group 117-118. 153 
Triplet 125. 131, 168. 178 
Tritium 25, 56. 3% 
Truth 47,49 

- Su a/sa Top 
21<m lin� 168 
Two-bodydK�y 24-27. 112, 206-208. 

429-430 
Two·body sanering 209-211. 430-431 
Two-i"'t ��nt 276 
Two-n�utrino hypothesis 29 

" 
" (up) quark 39 
U(n) 118 
Ultraviolet utastroplu: 15 
Unc�rta.inty principl� 6. 56,80 
Unification 11-4-85. 413 

- Su also Electroweak; GUT; GWS 
Unitarity triangl� 352.410 
Unitary matrix 118-119, 350,352, 

362-363. 367 
Units 9-10.211. 357 
Upn�ss 49 
T meson 47,88. 175-176. 195 

- Su also Bonomonium 

, 
V-A int�raction 309, 320. 331 
V�nts 31 
Vacuum 167.373-375 
Vacuum �xpectation va.lu� 403. 417 
Vacuum polariUltion 69-70, 85,167, 

262-267, 299 
Valence quark 320 
Van der Waals forc� 70 

VKtor 237 
- Su also Four �tor 

Vector interaction 341 
Vector meson 122-123,177 
Vector pot�ntial 239 
Velocity 

- ordinary %-97,105 
- proper 96-97 

V�locity addition 91-92 
Vertex 60, 212, 369, 371. 438-440 

- ABC 213 
- QCD 66,288-289, 371-372 
- QED 60-61. 244.371 
- weak 308.325, 329, 331-3)2 

Vertex corredion 217 
Vertex factor: 5te Feynmm rules; Vertex 
Virial theorem 159 
Virtual particle 63,65.213 

• 
W boson 48-49, 59-60. 88, 307-308 
Ward identity 267 
Wav� function 3. 160. 162. 181-188. 

195,226 
Weal< contamination 334 
Weak coupling constant 308. 315 
W�akcunent 341-342 
Weak eigenstate 397 

Index 1 453 

- Su allo CKM matrix, MNS matrix 
Weak force 34.48.71-79 
W�ak hypercharge 342-344 
W�ak interaction 71-79. 136-137. 307-346 

- ch�rged: su Charged weak interaction 
- neutr3l: su Neutral weak interaction 

Weak i$OSpin 342-344 
Weak mixing angl� 51. 332 
Weak phase 410 
Weinberg. S. 48,60,84,330, 338 
Weinberg angle: su Weak mixing angle 
Weyt. H. 139.361. 365 
WIMP 416 
Wino 52.412 
Work function 16 
Wu, C. S. 136-137 

, 
X mediator 407-408 
S b.oryon 33-34 

y 
Y medi�tor 407-408 
Yang, c. N. 60,136, 142, 361 
Yang-Mills theory 361-366, 384 
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Yukawa, H. 19, -48-49, 71 
Yukawa coupling 38I, 18S.402 
Yukawa meson 15,19,56 

• 
Zboson -48-.9. 51, 59-60, 72. 

307-308 

Z decay 337, 350-351 
Z factory 335 
Z pole 335-337 
Zino 52, 412,416 
Zumino. B. 411 
Zweig, G. 37,83 
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