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Aircraft wake (photo courtesy of Cessna Aircraft 
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Motion, Physics of Fluids (published by the American 
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Bowen for the Cessna Aircraft Company from the tail 
gunner’s position in a B-25 flying slightly above and ahead 
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Preface 

This volume is intended for students of engineering on courses or programmes of 
study to graduate level. 

The sequence of subject development in this edition commences with definitions 
and concepts and goes on to cover incompressible flow, low speed aerofoil and wing 
theory, compressible flow, high speed wing theory, viscous flow, boundary layers, 
transition and turbulence, wing design, propellers and propulsion. 

Accordingly the work deals first with the units, dimensions and properties of the 
physical quantities used in aerodynamics then introduces common aeronautical 
definitions before explaining the aerodynamic forces involved and the basics of 
aerofoil characteristics. The fundamental fluid dynamics required for the develop- 
ment of aerodynamics and the analysis of flows within and around solid boundaries 
for air at subsonic speeds is explored in depth in the next two chapters, which 
continue with those immediately following to use these and other methods to develop 
aerofoil and wing theories for the estimation of aerodynamic characteristics in these 
regimes. Attention is then turned to the aerodynamics of high speed air flows. 
The laws governing the behaviour of the physical properties of air are applied to 
the transonic and supersonic regimes and the aerodynamics of the abrupt changes 
in the flow characteristics at these speeds are explained. The exploitation of these and 
other theories is then used to explain the significant effects on wings in transonic and 
supersonic flight respectively, and to develop appropriate aerodynamic characteris- 
tics. Viscosity is a key physical quantity of air and its significance in aerodynamic 
situations is next considered in depth. The useful concept of the boundary layer and 
the development of properties of various flows when adjacent to solid boundaries, 
build to a body of reliable methods for estimating the fluid forces due to viscosity and 
notably, in aerodynamics, of skin friction and profile drag. Finally the two chapters 
on wing design and flow control, and propellers and propulsion respectively, bring 
together disparate aspects of the previous chapters as appropriate, to some practical 
and individual applications of aerodynamics. 

It is recognized that aerodynamic design makes extensive use of computational 
aids. This is reflected in part in this volume by the introduction, where appropriate, 
of descriptions and discussions of relevant computational techniques. However, 
no comprehensive cover of computational methods is intended, and experience 
in computational techniques is not required for a complete understanding of the 
aerodynamics in this book. 

Equally, although experimental data have been quoted no attempt has been made 
to describe techniques or apparatus, as we feel that experimental aerodynamics 
demands its own considered and separate treatment. 



xiv Preface 

We are indebted to the Senates of the Universities and other institutions referred to 
within for kindly giving permission for the use of past examination questions. Any 
answers and worked examples are the responsibility of the authors, and the author- 
ities referred to are in no way committed to approval of such answers and examples. 

This preface would be incomplete without reference to the many authors of 
classical and popular texts and of learned papers, whose works have formed the 
framework and guided the acquisitions of our own knowledge. A selection of these is 
given in the bibliography if not referred to in the text and we apologize if due 
recognition of a source has been inadvertently omitted in any particular in this 
volume. 

ELH/PWC 
2002 



Basic concepts and definitions 

1.1 Units and dimensions 
A study in any science must include measurement and calculation, which presupposes 
an agreed system of units in terms of which quantities can be measured and expressed. 
There is one system that has come to be accepted for most branches of science and 
engineering, and for aerodynamics in particular, in most parts of the world. That 
system is the Systeme International d’Unitks, commonly abbreviated to SI units, and it 
is used throughout this book, except in a very few places as specially noted. 

It is essential to distinguish between the terms ‘dimension’ and ‘unit’. For example, 
the dimension ‘length’ expresses the qualitative concept of linear displacement, 
or distance between two points, as an abstract idea, without reference to actual 
quantitative measurement. The term ‘unit’ indicates a specified amount of the quantity. 
Thus a metre is a unit of length, being an actual ‘amount’ of linear displacement, and 
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so also is a mile. The metre and mile are different units, since each contains a different 
mount  of length, but both describe length and therefore are identical dimensions.* 

Expressing this in symbolic form: 

x metres = [L] (a quantity of x metres has the dimension of length) 
x miles = [L] (a quantity of x miles has the dimension of length) 
x metres # x miles (x miles and x metres are unequal quantities of length) 
[x metres] = [ x  miles] (the dimension of x metres is the same as the dimension 
of x miles). 

1 .I .I Fundamental dimensions and units 
There are four fundamental dimensions in terms of which the dimensions of all other 
physical quantities may be expressed. They are mass [MI, length [L], time and 
temperature [e].+ A consistent set of units is formed by specifying a unit of particular 
value for each of these dimensions. In aeronautical engineering the accepted units 
are respectively the kilogram, the metre, the second and the Kelvin or degree Celsius 
(see below). These are identical with the units of the same names in common use, and 
are defined by international agreement. 

It is convenient and conventional to represent the names of these units by abbreviations: 

kg for kilogram 
m for metre 
s for second 
"C for degree Celsius 
K for Kelvin 

The degree Celsius is one one-hundredth part of the temperature rise involved when pure 
water at freezing temperature is heated to boiling temperature at standard pressure. In the 
Celsius scale, pure water at standard pressure freezes at 0 "C and boils at 100 "C. 

The unit Kelvin (K) is identical in size with the degree Celsius ("C), but the Kelvin 
scale of temperature is measured from the absolute zero of temperature, which 
is approximately -273 "C. Thus a temperature in K is equal to the temperature in 
"C plus 273 (approximately). 

1 .I .2 Fractions and multiples 
Sometimes, the fundamental units defined above are inconveniently large or incon- 
veniently small for a particular case. In such cases, the quantity can be expressed in 
terms of some fraction or multiple of the fundamental unit. Such multiples and 
fractions are denoted by appending a prefix to the symbol denoting the fundamental 
unit. The prefixes most used in aerodynamics are: 

* Quite often 'dimension' appears in the form 'a dimension of 8 metres' and thus means a specified length. 
This meaning of the word is thus closely related to the engineer's 'unit', and implies linear extension only. 
Another common example of its use is in 'three-dimensional geometry', implying three linear extensions in 
different directions. References in later chapters to two-dimensional flow, for example, illustrate this. The 
meaning above must not be confused with either of these uses. 
Some authorities express temperature in terms of length and time. This introduces complications that are 

briefly considered in Section 1.2.8. 
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M (mega) - denoting one million 
k (kilo) - denoting one thousand 
m (milli) - denoting one one-thousandth part 
p (micro) - denoting one-millionth part 

Thus 

1 MW = 1 OOOOOOW 
1 mm = 0.001m 
1 pm = 0.001 mm 

A prefix attached to a unit makes a new unit. For example, 

1 mm2 = 1 (nun>' = m2, not 10-~ m2 

For some purposes, the hour or the minute can be used as the unit of time. 

1.1.3 Units of other physical quantities 
Having defined the four fundamental dimensions and their units, it is possible to 
establish units of all other physical quantities (see Table 1.1). Speed, for example, 
is defined as the distance travelled in unit time. It therefore has the dimension 
LT-' and is measured in metres per second (ms-'). It is sometimes desirable and 
permissible to use kilometres per hour or knots (nautical miles per hour, see 
Appendix 4) as units of speed, and care must then be exercised to avoid errors 
of inconsistency. 

To find the dimensions and units of more complex quantities, appeal is made to 
the principle of dimensional homogeneity. This means simply that, in any valid 
physical equation, the dimensions of both sides must be the same. Thus if, for 
example, (mass)" appears on the left-hand side of the equation, (massy must also 
appear on the right-hand side, and similarly this applies to length, time and 
temperature. 

Thus, to find the dimensions of force, use is made of Newton's second law of motion 

Force = mass x acceleration 

while acceleration is speed + time. 
Expressed dimensionally, this is 

Force = [MI x - - T = [MLT-'] 

Writing in the appropriate units, it is seen that a force is measured in units of 
kg m s - ~ .  Since, however, the unit of force is given the name Newton (abbreviated 
usually to N), it follows that 

1 N = 1 kgmsP2 

It should be noted that there could be confusion between the use of m for milli and 
its use for metre. This is avoided by use of spacing. Thus ms denotes millisecond 
while m s denotes the product of metre and second. 

The concept of the dimension forms the basis of dimensional analysis. This is used 
to develop important and fundamental physical laws. Its treatment is postponed to 
Section 1.4 later in the current chapter. 

[;I ] 
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Table 1.1 Units and dimensions 

Quantity Dimension Unit (name and abbreviation) 

Length 
Mass 
Time 
Temperature 
Area 
Volume 
Speed 
Acceleration 
Angle 

Angular velocity 
Angular acceleration 
Frequency 
Density 
Force 
Stress 
Strain 
Pressure 
Energy work 
Power 
Moment 
Absolute viscosity 

Kinematic viscosity 
Bulk elasticity 

L 
M 
T 
e 
L2 
L3 
LT-I 
L T - ~  
1 

T-l 
T-2 
T-I 

MLT-~  
M L - ~ T - ~  
1 
M L - ~ T - ~  
M L ~ T - ~  

M L ~ T - ~  
M L - I T - I  

M L - ~ T - ~  

MLP3 

ML2TP3 

L2T- 

Metre (m) 
Kilogram (kg) 
Second (s) 
Degree Celsius ("C), Kelvin (K) 
Square metre (m2) 
Cubic metre (m3) 
Metres per second (m s-') 
Metres per second per second (m s-*) 
Radian or degree (") 
(The radian is expressed as a ratio and is therefore 
dimensionless) 
Radians per second (s-l) 
Radians per second per second ( s - ~ )  
Cycles per second, Hertz (s-' Hz) 
Kilograms per cubic metre (kgm-3) 
Newton (N) 
Newtons per square metre or Pascal (Nm-2 or Pa) 
None (expressed as %) 
Newtons per square metre or Pascal (N m-2 or Pa) 
Joule (J) 
Watt (W) 
Newton metre (Nm) 
Kilogram per metre second or Poiseuille 
(kgrn-ls-' or PI) 
Metre squared per second (m2 s - I )  
Newtons per square metre or Pascal (Nm-2 or Pa) 

1 .I .4 Imperial unitss 
Until about 1968, aeronautical engineers in some parts of the world, the United 
Kingdom in particular, used a set of units based on the Imperial set of units. In this 
system, the fundamental units were: 

mass - the slug 
length - the foot 
time - the second 
temperature - the degree Centigrade or Kelvin. 

1.2 Relevant properties 
1.2.1 Forms of matter 
Matter may exist in three principal forms, solid, liquid or gas, corresponding in that 
order to decreasing rigidity of the bonds between the molecules of which the matter is 
composed. A special form of a gas, known as a plasma, has properties different from 

Since many valuable texts and papers exist using those units, this book contains, as Appendix 4, a table of 
factors for converting from the Imperial system to the SI system. 
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those of a normal gas and, although belonging to the third group, can be regarded 
justifiably as a separate, distinct form of matter. 

In a solid the intermolecular bonds are very rigid, maintaining the molecules in 
what is virtually a fixed spatial relationship. Thus a solid has a fmed volume and 
shape. This is seen particularly clearly in crystals, in which the molecules or atoms are 
arranged in a definite, uniform pattern, giving all crystals of that substance the same 
geometric shape. 

A liquid has weaker bonds between the molecules. The distances between the 
molecules are fairly rigidly controlled but the arrangement in space is free. A liquid, 
therefore, has a closely defined volume but no definite shape, and may accommodate 
itself to the shape of its container within the limits imposed by its volume. 

A gas has very weak bonding between the molecules and therefore has neither 
a definite shape nor a definite volume, but will always fill the whole of the vessel 
containing it. 

A plasma is a special form of gas in which the atoms are ionized, i.e. they have lost 
one or more electrons and therefore have a net positive electrical charge. The 
electrons that have been stripped from the atoms are wandering free within the gas 
and have a negative electrical charge. If the numbers of ionized atoms and free 
electrons are such that the total positive and negative charges are approximately 
equal, so that the gas as a whole has little or no charge, it is termed a plasma. 
In astronautics the plasma is usually met as a jet of ionized gas produced by passing 
a stream of normal gas through an electric arc. It is of particular interest for the 
re-entry of rockets, satellites and space vehicles into the atmosphere. 

1.2.2 Fluids 
The basic feature of a fluid is that it can flow, and this is the essence of any definition 
of it. This feature, however, applies to substances that are not true fluids, e.g. a fine 
powder piled on a sloping surface will also flow. Fine powder, such as flour, poured 
in a column on to a flat surface will form a roughly conical pile, with a large angle of 
repose, whereas water, which is a true fluid, poured on to a fully wetted surface will 
spread uniformly over the whole surface. Equally, a powder may be heaped in 
a spoon or bowl, whereas a liquid will always form a level surface. A definition of 
a fluid must allow for these facts. Thus a fluid may be defined as ‘matter capable of 
flowing, and either finding its own level (if a liquid), or filling the whole of its 
container (if a gas)’. 

Experiment shows that an extremely fine powder, in which the particles are not 
much larger than molecular size, will also find its own level and may thus come under 
the common definition of a liquid. Also a phenomenon well known in the transport 
of sands, gravels, etc. is that they will find their own level if they are agitated by 
vibration, or the passage of air jets through the particles. These, however, are special 
cases and do not detract from the authority of the definition of a fluid as a substance 
that flows or (tautologically) that possesses fluidity. 

1.2.3 Pressure 
At any point in a fluid, whether liquid or gas, there is a pressure. If a body is placed in 
a fluid, its surface is bombarded by a large number of molecules moving at random. 
Under normal conditions the collisions on a small area of surface are so frequent that 
they cannot be distinguished as individual impacts. They appear as a steady force on 
the area. The intensity of this ‘molecular bombardment’ force is the static pressure. 
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Very frequently the static pressure is referred to simply as pressure. The term static is 
rather misleading. Note that its use does not imply the fluid is at rest. 

For large bodies moving or at rest in the fluid, e.g. air, the pressure is not uni- 
form over the surface and this gives rise to aerodynamic force or aerostatic force 
respectively. 

Since a pressure is force per unit area, it has the dimensions 

[Force] -k [area] = [MLT-2] t [L2] = [ML-'T-2] 

and is expressed in the units of Newtons per square metre or Pascals (Nm-2 or Pa). 

Pressure in fluid at rest 

Consider a small cubic element containing fluid at rest in a larger bulk of fluid also at 
rest. The faces of the cube, assumed conceptually to be made of some thin flexible 
material, are subject to continual bombardment by the molecules of the fluid, and 
thus experience a force. The force on any face may be resolved into two components, 
one acting perpendicular to the face and the other along it, i.e. tangential to it. 
Consider for the moment the tangential components only; there are three signifi- 
cantly different arrangements possible (Fig. 1.1). The system (a) would cause the 
element to rotate and thus the fluid would not be at rest. System (b) would cause 
the element to move (upwards and to the right for the case shown) and once more, 
the fluid would not be at rest. Since a fluid cannot resist shear stress, but only rate of 
change of shear strain (Sections 1.2.6 and 2.7.2) the system (c) would cause the 
element to distort, the degree of distortion increasing with time, and the fluid would 
not remain at rest. 

The conclusion is that a fluid at rest cannot sustain tangential stresses, or con- 
versely, that in a fluid at rest the pressure on a surface must act in the direction 
perpendicular to that surface. 

Pascal% law 

Consider the right prism of length Sz into the paper and cross-section ABC, the 
angle ABC being a right-angle (Fig. 1.2). The prism is constructed of material of 
the same density as a bulk of fluid in which the prism floats at rest with the face 
BC horizontal. 

Pressurespl,p2 andp3 act on the faces shown and, as proved above, these pressures 
act in the direction perpendicular to the respective face. Other pressures act on the 
end faces of the prism but are ignored in the present problem. In addition to these 
pressures, the weight W of the prism acts vertically downwards. Consider the forces 
acting on the wedge which is in equilibrium and at rest. 

Fig. 1.1 Fictitious systems of tangential forces in static fluid 
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Fig. 1.2 The prism for Pascal's Law 

Resolving forces horizontally, 

p~(Sxtana)Sz-pz(Sxseca)Szs ina  = 0 

Dividing by Sx Sz tan a, this becomes 

PI -P2 = 0 

i.e. 

PI = Pz 
Resolving forces vertically, 

p3SxSz -pz(Sxseca)Szcosa - W = 0 

Now 

w = pg(sxl2 tan a 62-12 

therefore, substituting this in Eqn (1.2) and dividing by Sx 62, 

1 
p3 -p2 - -pg tanabz = 0 

2 

If now the prism is imagined to become infinitely small, so that Sx 4 0 and Sz + 0, 
then the third term tends to zero leaving 

P 3 - p 2 = 0  

Thus, finally, 

P1 = Pz = p3 
Having become infinitely small, the prism is in effect a point and thus the above 

analysis shows that, at a point, the three pressures considered are equal. In addition, 
the angle a is purely arbitrary and can take any value, while the whole prism could be 
rotated through a complete circle about a vertical axis without affecting the result. 
Consequently, it may be concluded that the pressure acting at a point in a fluid at rest 
is the same in all directions. 

(1.3) 
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1.2.4 Temperature 
In any form of matter the molecules are in motion relative to each other. In gases the 
motion is random movement of appreciable amplitude ranging from about 76 x 
metres under normal conditions to some tens of millimetres at very low pressures. 
The distance of free movement of a molecule of gas is the distance it can travel 
before colliding with another molecule or the walls of the container. The mean value 
of this distance for all the molecules in a gas is called the length of mean molecular 
free path. 

By virtue of this motion the molecules possess kinetic energy, and this energy 
is sensed as the temperature of the solid, liquid or gas. In the case of a gas in motion 
it is called the static temperature or more usually just the temperature. Temperature has 
the dimension [e] and the units K or "C (Section 1.1). In practically all calculations in 
aerodynamics, temperature is measured in K, i.e. from absolute zero. 

1.2.5 Density 
The density of a material is a measure of the amount of the material contained in 
a given volume. In a fluid the density may vary from point to point. Consider the 
fluid contained within a small spherical region of volume SV centred at some point in 
the fluid, and let the mass of fluid within this spherical region be Sm. Then the density 
of the fluid at the point on which the sphere is centred is defined by 

Sm 
Density p = lim - 

6v+O SV 

The dimensions of density are thus ML-3, and it is measured in units of kilogram per 
cubic metre (kg m-3). At standard temperature and pressure (288 K, 101 325 Nm-2) 
the density of dry air is 1.2256 kgm-3. 

Difficulties arise in applying the above definition rigorously to a real fluid 
composed of discrete molecules, since the sphere, when taken to the limit, either 
will or will not contain part of a molecule. If it does contain a molecule the value 
obtained for the density will be fictitiously high. If it does not contain a molecule 
the resultant value for the density will be zero. This difficulty can be avoided in 
two ways over the range of temperatures and pressures normally encountered in 
aerodynamics: 

(i) The molecular nature of a gas may for many purposes be ignored, and the 
assumption made that the fluid is a continuum, i.e. does not consist of discrete 
particles. 

(ii) The decrease in size of the imaginary sphere may be supposed to be carried to 
a limiting minimum size. This limiting size is such that, although the sphere is 
small compared with the dimensions of any physical body, e.g. an aeroplane, 
placed in the fluid, it is large compared with the fluid molecules and, therefore, 
contains a reasonable number of whole molecules. 

1.2.6 Viscosity 
Viscosity is regarded as the tendency of a fluid to resist sliding between layers or, 
more rigorously, a rate of change of shear strain. There is very little resistance to the 
movement of a knife-blade edge-on through air, but to produce the same motion 



Basic concepts and definitions 9 

through thick oil needs much more effort. This is because the viscosity of oil is high 
compared with that of air. 

Dynamic viscosity 
The dynamic (more properly called the coefficient of dynamic, or absolute, viscosity) 
viscosity is a direct measure of the viscosity of a fluid. Consider two parallel flat 
plates placed a distance h apart, the space between them being filled with fluid. One 
plate is held fixed and the other is moved in its own plane at a speed V (see Fig. 1.3). 
The fluid immediately adjacent to each plate will move with that plate, i.e. there is no 
slip. Thus the fluid in contact with the lower plate will be at rest, while that in contact 
with the upper plate will be moving with speed V. Between the plates the speed 
of the fluid will vary linearly as shown in Fig. 1.3, in the absence of other influences. 
As a direct result of viscosity a force F has to be applied to each plate to maintain 
the motion, the fluid tending to retard the moving plate and to drag the fmed plate 
to the right. If the area of fluid in contact with each plate is A,  the shear stress is F / A .  
The rate of shear strain caused by the upper plate sliding over the lower is V/h. 

These quantities are connected by Newton's equation, which serves to define the 
dynamic viscosity p. This equation is 

F 
- A = P(;) 

Hence 

[ML-'T-2] = [p][LT-'L-'] = /p][T-'] 

Thus 

[p] = [ML-lT-'] 

and the units of p are therefore kgm-ls-l; in the SI system the name Poiseuille (Pl) 
has been given to this combination of fundamental units. At 0°C (273K) the 
dynamic viscosity for dry air is 1.714 x 

The relationship of Eqn (1.5) with p constant does not apply for all fluids. For an 
important class of fluids, which includes blood, some oils and some paints, p is not 
constant but is a function of V/h, Le. the rate at which the fluid is shearing. 

kgm-' s-l. 

Kinematic viscosity 

The kinematic viscosity (or, more properly, coefficient of kinematic viscosity) is 
a convenient form in which the viscosity of a fluid may be expressed. It is formed 

I - 

Fig. 1.3 
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by combining the density p and the dynamic viscosity p according to the 
equation 

P 
P 

y = -  

and has the dimensions L2T-l and the units m2 s-l. 
It may be regarded as a measure of the relative magnitudes of viscosity and inertia 

of the fluid and has the practical advantage, in calculations, of replacing two values 
representing p and p by a single value. 

1.2.7 Speed of sound and bulk elasticity 
The bulk elasticity is a measure of how much a fluid (or solid) will be compressed by 
the application of external pressure. If a certain small volume, V ,  of fluid is subjected 
to a rise in pressure, Sp, this reduces the volume by an amount -SV, i.e. it produces a 
volumetric strain of -SV/V. Accordingly, the bulk elasticity is defined as 

(1.6a) 

The volumetric strain is the ratio of two volumes and evidently dimensionless, so the 
dimensions of K are the same as those for pressure, namely ML-1T-2. The SI units 
are NmP2 (or Pa). 

The propagation of sound waves involves alternating compression and expansion 
of the medium. Accordingly, the bulk elasticity is closely related to the speed of 
sound, a, as follows: 

a = 6  (1.6b) 

Let the mass of the small volume of fluid be M, then by definition the density, 
p = M / V .  By differentiating this definition keeping M constant, we obtain 

Therefore, combining this with Eqns (l.6ayb), it can be seen that 

a = &  (1.6~) 

The propagation of sound in a perfect gas is regarded as an isentropic process. 
Accordingly, (see the passage below on Entropy) the pressure and density are related 
by Eqn (1.24), so that for a perfect gas 

(1.6d) 

where y is the ratio of the specific heats. Equation (1.6d) is the formula usually used 
to determine the speed of sound in gases for applications in aerodynamics. 
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1.2.8 Thermodynamic properties 
Heat, like work, is a form of energy transfer. Consequently, it has the same dimen- 
sions as energy, i.e. ML2T-2, and is measured in units of Joules (J). 

Specific heat 
The specific heat of a material is the amount of heat necessary to raise the tempera- 
ture of unit mass of the material by one degree. Thus it has the dimensions L2T-26-' 
and is measured in units of J kg-' "C-' or J kg-' K-'. 

With a gas there are two distinct ways in which the heating operation may be 
performed: at constant volume and at constant pressure; and in turn these define 
important thermodynamic properties. 
Specific heat at constant volume If unit mass of the gas is enclosed in a cylinder 
sealed by a piston, and the piston is locked in position, the volume of the gas cannot 
change, and any heat added is used solely to raise the temperature of the gas, i.e. the 
head added goes to increase the internal energy of the gas. It is assumed that the 
cylinder and piston do not receive any of the heat. The specific heat of the gas under 
these conditions is the specific heat at constant volume, cy. For dry air at normal 
aerodynamic temperatures, cy  = 718 J kg-' K-'. 

Internal energy ( E )  is a measure of the kinetic energy of the molecules comprising 
the gas. Thus 

internal energy per unit mass E = cvT 

or, more generally, 

c v =  [%Ip 
Specific heat at constant pressure Assume that the piston referred to above is now 
freed and acted on by a constant force. The pressure of the gas is that necessary to 
resist the force and is therefore constant. The application of heat to the gas causes its 
temperature to rise, which leads to an increase in the volume of the gas, in order to 
maintain the constant pressure. Thus the gas does mechanical work against the force. 
It is therefore necessary to supply the heat required to increase the temperature of the 
gas (as in the case at constant volume) and in addition the amount of heat equivalent 
to the mechanical work done against the force. This total amount of heat is called the 
specific heat at constant pressure, cp, and is defined as that amount of heat required 
to raise the temperature of unit mass of the gas by one degree, the pressure of the gas 
being kept constant while heating. Therefore, cp is always greater than cy. For dry air 
at normal aerodynamic temperatures, cp = 1005 J kg-' K-' . 

Now the sum of the internal energy and pressure energy is known as the enthalpy 
(h per unit mass) (see below). Thus 

h = cpT 

or, more generally, 

P 
cP= [g] 
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The ratio of specific heats 

This is a property important in high-speed flows and is defined by the equation 

C 7 ' 1  
CY 

(The value of for air depends on the temperature, but for much of practical 
aerodynamics it may be regarded as constant at about 1.403. This value in turn is 
often approximated to 7 = 1.4, which is, in fact, the theoretical value for an ideal 
diatomic gas.) 

Enthalpy 

The enthalpy h of a unit mass of gas is the sum of the internal energy E and pressure 
energyp x l/p. Thus, 

h = E +p/p (1.10) 

But, from the definition of specific heat at constant volume, Eqn (1.7), Eqn (1.10) 
becomes 

Again from the definition, Eqn (1.8), Eqn (1.10) gives 

c ~ T  = CVT +p/p (1.11) 

Now the pressure, density and temperature are related in the equation of state, which 
for perfect gases takes the form 

p/(pT) = constant = R (1.12) 

Substituting for p/p in Eqn (1.1 1) yields the relationship 

c p  - CY = R (1.13) 

The gas constant, R, is thus the amount of mechanical work that is obtained by 
heating unit mass of a gas through unit temperature rise at constant pressure. 
It follows that R is measured in units of J kg-' K-' or J kg-l "C-'. For air over the 
range of temperatures and pressures normally encountered in aerodynamics, R has 
the value 287.26 J kg-' K-'. 

Introducing the ratio of specific heats (Eqn (1.9)) the following expressions are 
obtained: 

Replacing CVT by [ l / ( ~  - l)]p/p in Eqn (1.1 1) readily gives the enthalpy as 

(1.14) 

Y P  cpT -- 
7 - 1 P  

(1.15) 
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It is often convenient to link the enthalpy or total heat above to the other energy of 
motion, the kinetic energy w; that for unit mass of gas moving with mean velocity Vis 

- v2 K = -  
2 (1.16) 

Thus the total energy flux in the absence of external, tangential surface forces and 
heat conduction becomes 

(1.17) 
VZ 
- + cp T = cp TO = constant 2 

where, with cp invariant, TO is the absolute temperature when the gas is at rest. 
The quantity cpTo is referred to as the total or stagnation enthalpy. This quantity is an 
important parameter of the equation of the conservation of energy. 

Applying the first law of thermodynamics to the flow of non-heat-conducting 
inviscid fluids gives 

(1.18) 

Further, if the flow is unidirectional and cvT = E, Eqn (1.18) becomes, on cancelling 
dt, 

dE +pd(i) = 0 

but differentiating Eqn (1.10) gives 

Combining Eqns (1.19) and (1.20) 

(1.19) 

(1.20) 

(1.21) 
1 
P 

dh = -dp 

but 

R 

which, together with Eqn (1.21), gives the identity 

*+ypd(j) P = O  

Integrating gives 

In p + yln - = constant (3 
or 

p = kpy 

which is the isentropic relationship between pressure and density. 

(1.22) 

(1.23) 

(1.24) 
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It should be remembered that this result is obtained from the equation of state for 
a perfect gas and the equation of conservation of energy of the flow of a non-heat- 
conducting inviscid fluid. Such a flow behaves isentropically and, notwithstanding 
the apparently restrictive nature of the assumptions made above, it can be used as a 
model for a great many aerodynamic applications. 

Entropy 

Entropy is a function of state that follows from, and indicates the working of, the 
second law of thermodynamics, that is concerned with the direction of any process 
involving heat and energy. Entropy is a function the positive increase of which 
during an adiabatic process indicates the consequences of the second law, i.e. a 
reduction in entropy under these circumstances contravenes the second law. Zero 
entropy change indicates an ideal or completely reversible process. 

By definition, specific entropy (S)* (Joules per kilogram per Kelvin) is given by the 
integral 

(1.25) 

for any reversible process, the integration extending from some datum condition; 
but, as seen above, it is the change in entropy that is important, i.e. 

dQ dS=-  
T 

(1.26) 

In this and the previous equation dQ is a heat transfer to a unit mass of gas from an 
external source. This addition will go to changing the internal energy and will do work. 

Thus, for a reversible process, 

but PIT = Rp, therefore 

Integrating Eqn (1.28) from datum conditions to conditions given by suffix 1, 

Tl P D  SI = cvln-4- Rln- 
TD P1 

Likewise, 

T2 P D  S2 = cvln-4- Rln- 
TD P2 

(1.28) 

*Note that in this passage the unconventional symbol S is used for specific entropy to avoid confusion 
with the length symbols. 
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and the entropy change from conditions 1 to 2 is given by 

(1.29) T2 PI 

T1 P2 
AS = S2 - SI = cvln-+ Rln- 

With the use of Eqn (1.14) this is more usually rearranged to be 

-=ln-+((y-  AS T2 1)ln- PI 

cv TI P2 

or in the exponential form 

Alternatively, for example, by using the equation of state, 

(1.30) 

(1.31) 

(1.32) 

These latter expressions find use in particular problems. 

1.3 Aeronautical definitions 
1.3.1 Wing geometry 
The planform of a wing is the shape of the wing seen on a plan view of the aircraft. 
Figure 1.4 illustrates this and includes the names of symbols of the various para- 
meters of the planform geometry. Note that the root ends of the leading and trailing 
edges have been connected across the fuselage by straight lines. An alternative to this 
convention is that the leading and trailing edges, if straight, are produced to the 
aircraft centre-line. 

CL X 

Fig. 1.4 Wing planform geometry 
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Wing span 

The wing span is the dimension b, the distance between the extreme wingtips. The 
distance, s, from each tip to the centre-line, is the wing semi-span. 

Chords 

The two lengths CT and co are the tip and root chords respectively; with the alter- 
native convention, the root chord is the distance between the intersections with the 
fuselage centre-line of the leading and trailing edges produced. The ratio c=/c0 is the 
taper ratio A. Sometimes the reciprocal of this, namely c o / c ~ ,  is taken as the taper 
ratio. For most wings CT/Q < 1. 

Wing area 

The plan-area of the wing including the continuation within the fuselage is the gross 
wing area, SG. The unqualified term wing area S is usually intended to mean this 
gross wing area. The plan-area of the exposed wing, i.e. excluding the continuation 
within the fuselage, is the net wing area, SN. 

Mean chords 

A useful parameter, the standard mean chord or the geometric mean chord, is 
denoted by E, defined by E = SG/b or SNIb. It should be stated whether SG or SN is 
used. This definition may also be written as 

where y is distance measured from the centre-line towards the starboard (right-hand 
to the pilot) tip. This standard mean chord is often abbreviated to SMC. 

Another mean chord is the aerodynamic mean chord (AMC), denoted by EA or E; 
and is defined by 

Aspect ratio 

The aspect ratio is a measure of the narrowness of the wing planform. It is denoted by 
A ,  or sometimes by (AR), and is given by 

span b 
SMC - : A = - -  
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If both top and bottom of this expression are multiplied by the wing span, by it 
becomes: 

a form which is often more convenient. 

Sweep-back 

The sweep-back angle of a wing is the angle between a line drawn along the span at: a 
constant fraction of the chord from the leading edge, and a line perpendicular to the 
centre-line. It is usually denoted by either A or 4. Sweep-back is commonly measured 
on the leading edge (ALE or $LE), on the quarter-chord line, i.e. the line of the chord 
behind the leading edge (A1/4 or $I/& or on the trailing edge (ATE or &E). 

Dihedral angle 

If an aeroplane is looked at from directly ahead, it is seen that the wings are not, in 
general, in a single plane (in the geometric sense), but are instead inclined to each 
other at a small angle. Imagine lines drawn on the wings along the locus of the 
intersections between the chord lines and the section noses, as in Fig. 1.5. Then the 
angle 2r is the dihedral angle of the wings. If the wings are inclined upwards, they are 
said to have dihedral, if inclined downwards they have anhedral. 

Incidence, twist, wash-out and wash-in 

When an aeroplane is in flight the chord lines of the various wing sections are not 
normally parallel to the direction of flight. The angle between the chord line of a 
given aerofoil section and the direction of flight or of the undisturbed stream is called 
the geometric angle of incidence, a. 

Carrying this concept of incidence to the twist of a wing, it may be said that, if the 
geometric angles of incidence of all sections are not the same, the wing is twisted. If 
the incidence increases towards the tip, the wing has wash-in, whereas if the incidence 
decreases towards the tip the wing has wash-out. 

1.3.2 Aerofoil geometry 
If a horizontal wing is cut by a vertical plane parallel to the centre-line, such as X-X 
in Fig. 1.4, the shape of the resulting section is usually of a type shown in Fig. 1.6~. 

Fig. 1.5 Illustrating the dihedral angle 
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(a  1 Symmetrical fairing 

( b )  
I 

Camber line 

YU'YS+YC 
Y L =ys-yc 

( C  1 Cambered aerofoil 

Fig. 1.6 Wing section geometry 

This is an aerofoil section. For subsonic use, the aerofoil section has a rounded 
leading edge. The depth increases smoothly to a maximum that usually occurs 
between f and 4 way along the profile, and thereafter tapers off towards the rear of 
the section. 

If the leading edge is rounded it has a definite radius of curvature. It is therefore 
possible to draw a circle of this radius that coincides with a very short arc of the 
section where the curvature is greatest. The trailing edge may be sharp or it, too, may 
have a radius of curvature, although this is normally much smaller than for the 
leading edge. Thus a small circle may be drawn to coincide with the arc of maximum 
curvature of the trailing edge, and a line may be drawn passing through the centres of 
maximum curvature of the leading and trailing edges. This line, when produced to 
intersect the section at each end, is called the chord line. The length of the chord line 
is the aerofoil chord, denoted by c. 

The point where the chord line intersects the front (or nose) of the section is used as 
the origin of a pair of axes, the x-axis being the chord line and the y-axis being 
perpendicular to the chord line, positive in the upward direction. The shape of the 
section is then usually given as a table of values of x and the corresponding values of y. 
These section ordinates are usually expressed as percentages of the chord, (lOOx/c)% 
and (lOOy/c)%. 

Camber 
At any distance along the chord from the nose, a point may be marked mid-way 
between the upper and lower surfaces. The locus of all such points, usually curved, is 
the median line of the section, usually called the camber line. The maximum height of 
the camber line above the chord line is denoted by S and the quantity lOOS/c% is 
called the percentage camber of the section. Aerofoil sections have cambers that are 
usually in the range from zero (a symmetrical section) to 5%,  although much larger 
cambers are used in cascades, e.g. turbine blading. 
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It is seldom that a camber line can be expressed in simple geometric or algebraic 
forms, although a few simple curves, such as circular arcs or parabolas, have been 
used. 

Thickness distribution 

Having found the median, or camber, line, the distances from this line to the upper 
and lower surfaces may be measured at any value of x. These are, by the definition of 
the camber line, equal. These distances may be measured at all points along the chord 
and then plotted against x from a straight line. The result is a symmetrical shape, 
called the thickness distribution or symmetrical fairing. 

An important parameter of the thickness distribution is the maximum thickness, 
or depth, t .  This, when expressed as a fraction of the chord, is called the thickness/ 
chord ratio. It is commonly expressed as a percentage 100t/c%. Current values in use 
range from 13% to 18% for subsonic aircraft down to 3% or so for supersonic 
aircraft. 

The position along the chord at which this maximum thickness occurs is another 
important parameter of the thickness distribution. Values usually lie between 30% 
and 60% of the chord from the leading edge. Some older sections had the maximum 
thickness at about 25% chord, whereas some more extreme sections have the max- 
imum thickness more than 60% of the chord behind the leading edge. 

It will be realized that any aerofoil section may be regarded as a thickness 
distribution plotted round a camber line. American and British conventions differ 
in the exact method of derivation of an aerofoil section from a given camber line and 
thickness distribution. In the British convention, the camber line is plotted, and the 
thickness ordinates are then plotted from this, perpendicular to the chord line. Thus 
the thickness distribution is, in effect, sheared until its median line, initially straight, 
has been distorted to coincide with the given camber line. The American convention 
is that the thickness ordinates are plotted perpendicular to the curved camber line. 
The thickness distribution is, therefore, regarded as being bent until its median line 
coincides with the given camber line. 

Since the camber-line curvature is generally very small the difference in aerofoil 
section shape given by these two conventions is very small. 

1.4 ' Dimensional analysis 
1.4.1 Fundamental principles 
The theory of dimensional homogeneity has additional uses to that described above. 
By predicting how one variable may depend on a number of others, it may be used to 
direct the course of an experiment or the analysis of experimental results. For 
example, when fluid flows past a circular cylinder the axis of which is perpendicular 
to the stream, eddies are formed behind the cylinder at a frequency that depends on a 
number of factors, such as the size of the cylinder, the speed of the stream, etc. 

In an experiment to investigate the variation of eddy frequency the obvious 
procedure is to take several sizes of cylinder, place them in streams of various fluids 
at a number of different speeds and count the frequency of the eddies in each case. 
No matter how detailed, the results apply directly only to the cases tested, and it is 
necessary to find some pattern underlying the results. A theoretical guide is helpful in 
achieving this end, and it is in this direction that dimensional analysis is of use. 
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In the above problem the frequency of eddies, n, will depend primarily on: 

(i) the size of the cylinder, represented by its diameter, d 
(ii) the speed of the stream, V 

(iii) the density of the fluid, p 
(iv) the kinematic viscosity of the fluid, u. 

It should be noted that either p or u may be used to represent the viscosity of the 
fluid. 

The factors should also include the geometric shape of the body. Since the problem 
here is concerned only with long circular cylinders with their axes perpendicular to 
the stream, this factor will be common to all readings and may be ignored in this 
analysis. It is also assumed that the speed is low compared to the speed of sound in 
the fluid, so that compressibility (represented by the modulus of bulk elasticity) may 
be ignored. Gravitational effects are also excluded. 

Then 

and, assuming that this function (. . .) may be put in the form 

n = x C d a V b p e u f  (1.33) 

where Cis a constant and a, by e andfare some unknown indices; putting Eqn (1.33) 
in dimensional form leads to 

[T-l] = [La (LT -' ) b  (MLP3)" (L'T-' ) f ]  (1.34) 

where each factor has been replaced by its dimensions. Now the dimensions of both 
sides must be the same and therefore the indices of My L and T on the two sides of the 
equation may be equated as follows: 

Mass(M) O = e  
Length (L) O=a+b-3e+2f  
Time (T) -1 = -b- f  

(1.35a) 
(1.35b) 
(1.3%) 

Here are three equations in four unknowns. One unknown must therefore be left 
undetermined: f, the index of u, is selected for this role and the equations are solved 
for a, b and e in terms off. 

The solution is, therefore, 

b = l - f  

a = - l - f  
e=O 

( 1.3 5d) 
(1.35e) 
(1.35f) 

Substituting these values in Eqn (1.33), 

(1.36) 
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Rearranging Eqn (1.36), it becomes 

V Vd -f 
n =  c C d  (7) 

or, alternatively, 

($) =g(?) 

(1.37) 

(1.38) 

where g represents some function which, as it includes the undetermined constant C 
and index f, is unknown from the present analysis. 

Although it may not appear so at first sight, Eqn (1.38) is extremely valuable, as it 
shows that the values of nd/V should depend only on the corresponding value of 
Vd/v ,  regardless of the actual values of the original variables. This means that if, for 
each observation, the values of nd/V and V d / v  are calculated and plotted as a graph, 
all the results should lie on a single curve, this curve representing the unknown 
function g. A person wishing to estimate the eddy frequency for some given cylinder, 
fluid and speed need only calculate the value of Vd/v ,  read from the curve the 
corresponding value of nd/V and convert this to eddy frequency n. Thus the results 
of the series of observations are now in a usable form. 

(a) nd/V. The dimensions of this are given by 

Consider for a moment the two compound variables derived above: 

nd -1 -1 
-= [T-I x L x (LT V ) ] = [LOTo] = [l] 

(b) Vd/v .  The dimensions of this are given by 

Vd 
- = [(LT-') x L x (L2T-')-'] = [l] 
v 

Thus the above analysis has collapsed the five original variables n, d, V, p and v 
into two compound variables, both of which are non-dimensional. This has two 
advantages: (i) that the values obtained for these two quantities are independent of 
the consistent system of units used; and (ii) that the influence of four variables on a 
fifth term can be shown on a single graph instead of an extensive range of graphs. 

It can now be seen why the index f was left unresolved. The variables with indices 
that were resolved appear in both dimensionless groups, although in the group nd/ V 
the density p is to the power zero. These repeated variables have been combined in 
turn with each of the other variables to form dimensionless groups. 

There are certain problems, e.g. the frequency of vibration of a stretched string, in 
which all the indices may be determined, leaving only the constant C undetermined. 
It is, however, usual to have more indices than equations, requiring one index or 
more to be left undetermined as above. 

It must be noted that, while dimensional analysis will show which factors are not 
relevant to a given problem, the method cannot indicate which relevant factors, if 
any, have been left out. It is, therefore, advisable to include all factors likely to have 
any bearing on a given problem, leaving out only those factors which, on a priori 
considerations, can be shown to have little or no relevance. 
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1.4.2 Dimensional analysis applied to aerodynamic force 
In discussing aerodynamic force it is necessary to know how the dependent variables, aero- 
dynamic force and moment, vary with the independent variables thought to be relevant. 

Assume, then, that the aerodynamic force, or one of its components, is denoted by 
F and when fully immersed depends on the following quantities: fluid density p, fluid 
kinematic viscosity v, stream speed V, and fluid bulk elasticity K. The force and 
moment will also depend on the shape and size of the body, and its orientation to the 
stream. If, however, attention is confined to geometrically similar bodies, e.g. 
spheres, or models of a given aeroplane to different scales, the effects of shape as 
such will be eliminated, and the size of the body can be represented by a single typical 
dimension; e.g. the sphere diameter, or the wing span of the model aeroplane, 
denoted by D. Then, following the method above 

(1.39) 

In dimensional form this becomes 

Equating indices of mass, length and time separately leads to the three equations: 

(Mass) 

(Length) 
(Time) - 

l = c + e  
1 = a + b - 3 c + 2 d - e  

-2 = -a - d -2e 

(1.40a) 
(1.40b) 
(1.40~) 

With five unknowns and three equations it is impossible to determine completely all 
unknowns, and two must be left undetermined. These will be d and e. The variables 
whose indices are solved here represent the most important characteristic of the body 
(the diameter), the most important characteristic of the fluid (the density), and the 
speed. These variables are known as repeated variables because they appear in each 
dimensionless group formed. 

The Eqns (1.40) may then be solved for a, b and c in terms of d and e giving 

a = 2 - d  - 2e 
b = 2 - d  
c = l - e  

Substituting these in Eqn (1.39) gives 
F = v2-d-2eg2-d 1-e d e 

P v K  
= pV2D2 (&r (-) K e  

P V2 

(1.41) 

The speed of sound is given by Eqns (1.6b,d) namely, 

d=-=-  7P K 
P P  
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Then 

K pa2 2 

and V/a is the Mach number, M ,  of the free stream. Therefore Eqn (1.41) may be 
written as 

F = pV2D2g - h(M) (3 (1.42) 

where g(VD/v) and h(M) are undetermined functions of the stated compound vari- 
ables. Thus it can be concluded that the aerodynamic forces acting on a family of 
geometrically similar bodies (the similarity including the orientation to the stream), 
obey the law 

-- F 
pVD2 

(1.43) 

This relationship is sometimes known as Rayleigh‘s equation. 
The term VD/v may also be written, from the definition of v, as pVD/p, as above in 

the problem relating to the eddy frequency in the flow behind a circular cylinder. It is 
a very important parameter in fluid flows, and is called the Reynolds number. 

Now consider any parameter representing the geometry of the flow round the 
bodies at any point relative to the bodies. If this parameter is expressed in a suitable 
non-dimensional form, it can easily be shown by dimensional analysis that this 
non-dimensional parameter is a function of the Reynolds number and the Mach 
number only. If, therefore, the values of Re (a common symbol for Reynolds 
number) and M are the same for a number of flows round geometrically similar 
bodies, it follows that all the flows are geometrically similar in all respects, differing only in 
geometric scale and/or speed. This is true even though some of the fluids may be gaseous 
and the others liquid. Flows that obey these conditions are said to be dynamically similar, 
and the concept of dynamic similarity is essential in wind-tunnel experiments. 

It has been found, for most flows of aeronautical interest, that the effects of 
compressibility can be disregarded for Mach numbers less than 0.3 to 0.5, and in 
cases where this limit is not exceeded, Reynolds number may be used as the only 
criterion of dynamic similarity. 

Example 1.1 An aircraft and some scale models of it are tested under various conditions: 
given below. Which cases are dynamically similar to the aircraft in flight, given as case (A)? 

Case (A) Case (B) Case (C) Case (D) Case (E) Case (F) 

span (m) 15 3 3 1.5 1.5 3 
Relative density 0.533 1 3 1 10 10 
Temperature (“C) -24.6 +15 +15 +15 +15 +15 
Speed (TAS) (ms-’) 100 100 100 75 54 54 

Case (A) represents the full-size aircraft at 6000 m. The other cases represent models under test 
in various types of wind-tunnel. Cases (C), (E) and (F), where the relative density is greater 
than unity, represent a special type of tunnel, the compressed-air tunnel, which may be 
operated at static pressures in excess of atmospheric. 
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From the figures given above, the Reynolds number VDp/p may be calculated for each case. 
These are found to be 

Case (A) Re = 5.52 x lo7 Case (D) Re = 7.75 x lo6 
Case (B) Re = 1.84 x lo7 Case (E) Re = 5.55 x lo7 
Case (C) Re = 5.56 x lo7 Case (F) Re = 1.11 x lo8 

It is seen that the values of Re for cases (C) and (E) are very close to that for the full-size 
aircraft. Cases (A), (C) and (E) are therefore dynamically similar, and the flow patterns in these 
three cases will be geometrically similar. In addition, the ratios of the local velocity to the free 
stream velocity at any point on the three bodies will be the same for these three cases. Hence, 
from Bernoulli's equation, the pressure coeficients will similarly be the same in these three 
cases, and thus the forces on the bodies will be simply and directly related. Cases (B) and @) 
have Reynolds numbers considerably less than (A), and are, therefore, said to represent a 
'smaller aerodynamic scale'. The flows around these models, and the forces acting on them, 
will not be simply or directly related to the force or flow pattern on the full-size aircraft. In case 
(F) the value of Re is larger than that of any other case, and it has the largest aerodynamic scale 
of the six. 

Example 1.2 An aeroplane approaches to land at a speed of 40 m s-l at sea level. A 1/5th 
scale model is tested under dynamically similar conditions in a Compressed Air Tunnel (CAT) 
working at 10 atmospheres pressure and 15°C. It is found that the load on the tailplane is 
subject to impulsive fluctuations at a frequency of 20 cycles per second, owing to eddies being 
shed from the wing-fuselage junction. If the natural frequency of flexural vibration of the 
tailplane is 8.5 cycles per second, could this represent a dangerous condition? 

For dynamic similarity, the Reynolds numbers must be equal. Since the temperature of 
the atmosphere equals that in the tunnel, 15 "C, the value of p is the same in both model and 
full-scale cases. Thus, for similarity 

vfdfpf = V m 4 n f i  

In this case, then, since 

Vf =mms- '  

1 
5 40x 1 x 1 = v, x - x  1o=2vm 

giving 

Now Eqn (1.38) covers this case of eddy shedding, and is 

nd - = g(Re) V 

For dynamic similarity 

Therefore 

giving nf = 8 cycles per second 
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This is very close to the given natural frequency of the tailplane, and there is thus a consider- 
able danger that the eddies might excite sympathetic vibration of the tailplane, possibly leading 
to structural failure of that component. Thus the shedding of eddies at this frequency is very 
dangerous to the aircraft. 

Example 1.3 An aircraft flies at a Mach number of 0.85 at 18300m where the pressure is 
7160Nm-2 and the temperature is -56.5 "C. A model of l/lOth scale is to be tested in a high- 
speed wind-tunnel. Calculate the total pressure of the tunnel stream necessary to give dynamic 
similarity, if the total temperature is 50 "C. It may be assumed that the dynamic viscosity is 
related to the temperature as follows: 

314 E =  (6) 
Po 

where TO = 273°C and po = 1.71 x kgm-ls-l 

(i) Full-scale aircraft 

M = 0.85, a = 20.05(273 - 56.5)'12 = 297ms-' 
V = 0.85 x 297 = 252m s-' 

7160 = 0.1151 kgm-3 P p = - =  
RT 287.3 x 216.5 

e=($&) 314 = 1.19 

P 

1.44 x kgm-ls-l 171 
1.19 

= - 10-5 = 

Consider a dimension that, on the aircraft, has a length of 10 m. Then, basing the Reynolds 
number on this dimension: 

= 20.2 x lo6 R e f = - =  Vdp 252 x 10 x 0.1151 
P 1.44 x 10-5 

(ii) Model 
Total temperature Ts = 273 + 50 = 323 K 

Therefore at M = 0.85: 

Ts 1 
-= 1 +-(OM)'= 1.1445 
T 5 
T = 282K 

Therefore 
a = 20.05 x (282)'12 = 337m s-l 

V = 0.85 x 337 = 287m s-' 

-- - r$)314= 1.0246 
PO 
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giving 

p = 1.71 x 1.0246 x = 1.751 x lop5 kgm-’s-l 

For dynamic similarity the Reynolds numbers must be equal, Le. 

287 x 1 x p 
= 20.2 x 106 

1.75 x 10-5 
giving 

p = 1.23kgmP3 

Thus the static pressure required in the test section is 

p = pRT = 1.23 x 287.3 x 282 = 99500Nm-* 

The total pressure p s  is given by 

e= (1 + t M 2 ) 3 ’ 5 =  (1.1445)3.5 = 1.605 
P 
p s  = 99 500 x 1.605 = 160 000 N mP2 

If the total pressure available in the tunnel is less than this value, it is not possible to achieve 
equality of both the Mach and Reynolds numbers. Either the Mach number may be achieved 
at a lower value of Re or, alternatively, Re may be made equal at a lower Mach number. In 
such a case it is normally preferable to make the Mach number correct since, provided the 
Reynolds number in the tunnel is not too low, the effects of compressibility are more important 
than the effects of aerodynamic scale at Mach numbers of this order. Moreover, techniques are 
available which can alleviate the errors due to unequal aerodynamic scales. 

In particular, the position at which laminar-turbulent transition (see Section 7.9) of the 
boundary layer occurs at full scale can be fixed on the model by roughening the model surface. 
This can be done by gluing on a line of carborundum powder. 

1.5 Basic aerodynamics 
1.5.1 Aerodynamic force and moment 
Air flowing past an aeroplane, or any other body, must be diverted from its original 
path, and such deflections lead to changes in the speed of the air. Bernoulli’s equation 
shows that the pressure exerted by the air on the aeroplane is altered from that of the 
undisturbed stream. Also the viscosity of the air leads to the existence of frictional 
forces tending to resist its flow. As a result of these processes, the aeroplane experiences 
a resultant aerodynamic force and moment. It is conventional and convenient to 
separate this aerodynamic force and moment into three components each, as follows. 

Lift, LI-Z) 
This is the component of force acting upwards, perpendicular to the direction of 
flight or of the undisturbed stream. The word ‘upwards’ is used in the same sense that 
the pilot’s head is above his feet. Figure 1.7 illustrates the meaning in various 
attitudes of flight. The arrow V represents the direction of flight, the arrow L 
represents the lift acting upwards and the arrow W the weight of the aircraft, and 
shows the downward vertical. Comparison of (a) and (c) shows that this upwards is 
not fixed relative to the aircraft, while (a), (b), and (d) show that the meaning is not 
fixed relative to the earth. As a general rule, if it is remembered that the lift is always 
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(a) High speed level flight (b) Climbing flighi 

(c) Low speed level flight (d) Banked circling flight 

Fig. 1.7 The direction of the lift force 

a component perpendicular to the flight direction, the exact direction in which the lift 
acts will be obvious, particularly after reference to Fig. 1.7. This may not apply to 
certain guided missiles that have no obvious top or bottom, and the exact meaning of 
‘up’ must then be defined with care. 

Drag, D(-X) 

This is the component of force acting in the opposite direction to the line of flight, or 
in the same direction as the motion of the undisturbed stream. It is the force that resists 
the motion of the aircraft. There is no ambiguity regarding its direction or sense. 

Cross-wind force, Y 

This is the component of force mutually perpendicular to the lift and the drag, i.e. in 
a spanwise direction. It is reckoned positive when acting towards the starboard 
(right-hand to the pilot) wing-tip. 

Pitching moment, M 

This is the moment acting in the plane containing the lift and the drag, i.e. in the 
vertical plane when the aircraft is flying horizontally. It is positive when it tends to 
increase the incidence, or raise the nose of the aircraft upwards (using this word in the 
sense discussed earlier). 

Rolling moment, LR 

This is the moment tending to make the aircraft roll about the flight direction, i.e. 
tending to depress one wing-tip and to raise the other. It is positive when it tends to 
depress the starboard wing-tip. 

Yawing moment, N 

This is the moment that tends to rotate the aircraft about the lift direction, i.e. to 
swing the nose to one side or the other of the flight direction. It is positive when it 
swings, or tends to swing, the nose to the right (starboard). 
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L Lift 

Cross-wind 

moment 

Fig. 1.8 The systems of force and moment components. The broad arrows represent forces used in 
elementary work; the line arrows, the system in control and stability studies. The moments are common to 
both systems 

The relation between these components is shown in Fig. 1.8. In each case the arrow 
shows the direction of the positive force or moment. All three forces are mutually 
perpendicular, and each moment acts about the line of one of the forces. 

The system of forces and moments described above is conventionally used for 
performance analysis and other simple problems. For aircraft stability and control 
studies, however, it is more convenient to use a slightly different system of forces. 

I .5.2 Force and moment coefficients 
The non-dimensional quantity F/(pV2S) (c.f. Eqn 1.43) (where F is  an aerodynamic 
force and S is an area) is similar to the type often developed and used in aerody- 
namics. It is not, however, used in precisely this form. In place of pV2 it is conven- 
tional for incompressible flow to use i p V z ,  the dynamic pressure of the free-stream 
flow. The actual physical area of the body, such as the planform area of the wing, or 
the maximum cross-sectional area of a fuselage is usually used for S .  Thus aero- 
dynamic force coefficient is usually defined as follows: 

F 
CF = - 

i p V 2 s  
(1.44) 

The two most important force coefficients are the lift and drag coefficients, defined by: 

lift coefficient CL = lift/ Jpv2S (1 .Ma) 
drag coefficient CD = drag/ pV2S (1.44b) 

When the body in question is a wing the area S is almost invariably the planform 
area as defined in Section 1.3.1. For the drag of a body such as a fuselage, sphere or 
cylinder the area S is usually the projected frontal area, the maximum cross-sectional 
area or the The area used for definition of the lift and drag coefficients of 
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such a body is thus seen to be variable from case to case, and therefore needs to be 
stated for each case. 

The impression is sometimes formed that lift and drag coefficients cannot exceed 
unity. This is not true; with modern developments some wings can produce lift 
coefficients based on their plan-area of 10 or more. 

Aerodynamic moments also can be expressed in the form of non-dimensional 
coefficients. Since a moment is the product of a force and a length it follows that a 
non-dimensional form for a moment is Q/pV2Sl,  where Q is any aerodynamic 
moment and 1 is a reference length. Here again it is conventional to replace pV2 by 
$ pV2. In the case of the pitching moment of a wing the area is the plan-area S and the 
length is the wing chord C or .?A (see Section 1.3.1). Then the pitching moment 
coefficient C,W is defined by 

(1.45) 

1.5.3 Pressure distribution on an aerofoil 
The pressure on the surface of an aerofoil in flight is not uniform. Figure 1.9 shows some 
typical pressure distributions for a given section at various angles of incidence. It is 
convenient to deal with non-dimensional pressure differences with pm, the pressure far 
upstream, being used as the datum. Thus the coeficient of pressure is introduced below 

(P - P d  c, = 
$pv’ 

Looking at the sketch for zero incidence (CY = 0) it is seen that there are small regions 
at the nose and tail where C, is positive but that over most of the section C, is 
negative. At the trailing edge the pressure coefficient comes close to +1 but does not 
actually reach this value. More will be said on this point later. The reduced pressure 
on the upper surface is tending to draw the section upwards while that on the lower 

S 
S 

i I inciaence = o- 

Length of arrows cc Cp 
S denotes 5 at stagnation 

Direction of arrows indicates positive 
where Cp,=unity 

or negative Cp, 

( c  1 Incidence = 15O 

Fig. 1.9 Typical pressure distributions on an aerofoil section 
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surface has the opposite effect. With the pressure distribution as sketched, the effect 
on the upper surface is the larger, and there is a resultant upwards force on the 
section, that is the lift. 

(i) the pressure reduction on the upper surface increases both in intensity and extent 
until, at large incidence, it actually encroaches on a small part of the front lower 
surface; 

(ii) the stagnation point moves progressively further back on the lower surface, and 
the increased pressure on the lower surface covers a greater proportion of the 
surface. The pressure reduction on the lower surface is simultaneously decreased 
in both intensity and extent. 

The large negative values of C, reached on the upper surface at high incidences, e.g. 
15 degrees, are also noteworthy. In some cases values of -6 or -7 are found. This 
corresponds to local flow speeds of nearly three times the speed of the undisturbed 
stream. 

(i) at low incidence the lift is generated by the difference between the pressure 

(ii) at higher incidences the lift is partly due to pressure reduction on the upper 

At angles of incidence around 18" or 20" the pressure reduction on the upper 
surface suddenly collapses and what little lift remains is due principally to the 
pressure increase on the lower surface. A picture drawn for one small negative 
incidence (for this aerofoil section, about -4") would show equal suction effects on 
the upper and lower surfaces, and the section would give no lift. At more negative 
incidences the lift would be negative. 

The relationship between the pressure distribution and the drag of an aerofoil 
section is discussed later (Section 1.5.5). 

As incidence is increased from zero the following points are noted: 

From the foregoing, the following conclusions may be drawn: 

reductions on the upper and lower surfaces; 

surface and partly due to pressure increase on the lower surface. 

1.5.4 Pitching moment 
The pitching moment on a wing may be estimated experimentally by two principal 
methods: direct measurement on a balance, or by pressure plotting, as described in 
Section 1.5.6. In either case, the pitching moment coefficient is measured about some 
definite point on the aerofoil chord, while for some particular purpose it may be 
desirable to know the pitching moment coefficient about some other point on the chord. 
To convert from one reference point to the other is a simple application of statics. 

Suppose, for example, the lift and drag are known, as also is the pitching moment 
Ma about a point distance a from the leading edge, and it is desired to find the 
pitching moment Mx about a different point, distance x behind the leading edge. The 
situation is then as shown in Fig. 1 .lo. Figure 1 .loa represents the known conditions, 
and Fig. 1.10b the unknown conditions. These represent two alternative ways of 
looking at the same physical system, and must therefore give identical effects on the 
aerofoil. 

Taking moments in each case about the leading edge: 
Obviously, then, L = L and D = D. 

MLE = Ma -La cosa - Da sin0 = Mx - Lx cosa - Dx sina 
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r 
Fig. 1.10 

then 

M , = M , - ( L c o s a + D s i n a ) ( a - x )  

Converting to coefficient form by dividing by $pVSc gives 

a x  
c c  

cM, = cM, - (cL cos a + CD sin a)  (- - -) (1.46) 

With this equation it is easy to calculate C M ~ ,  for any value of x/c. As a particular 
case, if the known pitching moment coefficient is that about the leading edge, C M ~ ,  
then a = 0, and Eqn (1.46) becomes 

(1.47) 
X 

C 
CM, = CM, + - (CL COS a + CD sin a)  

Aerodynamic centre 

If the pitching moment coefficient at each point along the chord is calculated for each 
of several values of CL, one very special point is found for which CM is virtually 
constant, independent of the lift coefficient. This point is the aerodynamic centre. 
For incidences up to 10 degrees or so it is a fixed point close to, but not in general on, 
the chord line, between 23% and 25% of the chord behind the leading edge. 

For a flat or curved plate in inviscid, incompressible flow the aerodynamic centre is 
theoretically exactly one quarter of the chord behind the leading edge; but thickness 
of the section, and viscosity of the fluid, tend to place it a few per cent further 
forward as indicated above, while compressibility tends to move it backwards. For a 
thin aerofoil of infinite aspect ratio in supersonic flow the aerodynamic centre is 
theoretically at 50% chord. 

Knowledge of how the pitching moment coefficient about a point distance a 
behind the leading edge varies with CL may be used to find the position of the 
aerodynamic centre behind the leading edge, and also the value of the pitching 
moment coefficient there, CM,. Let the position of the aerodynamic centre be a 
distance XAC behind the leading edge. Then, with Eqn (1.46) slightly rearranged, 
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Now at moderate incidences, between say 3” and 7”: 

CL = 0[2ocD] and cos a = 0[10 sin a] 

where the symbol O[ ] means of the order of, i.e. CL is of the order of 20 times 
CD. Then. 

CL cos a = O[200 CD sin a] 
and therefore CD sin a can be neglected compared with CL cos a. With this approx- 
imation and the further approximation cos a = 1 , 

C M ,  = CMAC - CL (1.48) 

Differentiating Eqn (1.48) with respect to CL gives 

But the aerodynamic centre is, by definition, that point about which CM is independent 
of CL, and therefore the first term on the right-hand side is identically zero, so that 

(1.49) 

(1 S O )  

If, then, CM= is plotted against CL, and the slope of the resulting line is measured, 
subtracting this value from a/c gives the aerodynamic centre position XAC/C. 

In addition if, in Eqn (1.48), CL is made zero, that equation becomes 

c M a  CMAC (1.51) 

i.e. the pitching moment coefficient about an axis at zero lift is equal to the constant 
pitching moment coefficient about the aerodynamic centre. Because of this associa- 
tion with zero lift, CM, is often denoted by CM,. 

Example 1.4 For a particular aerofoil section the pitching moment coefficient about an axis 
1/3 chord behind the leading edge varies with the lift coefficient in the following manner: 

CL 0.2 0.4 0.6 0.8 
CM -0.02 0.00 +0.02 +0.04 

Find the aerodynamic centre and the value of CM, . 
It is seen that CM varies linearly with CL, the value of dCM/dCL being 

0.04 - (-0.02) 0.06 
= +- = +0.10 

0.80 - 0.20 0.60 

Therefore, from Eqn (1.50), with u/c = 1/3 

The aerodynamic centre is therefore at 23.3% chord behind the leading edge. Plotting CM 
against CL gives the value of CM~,  the value of CM when CL = 0, as -0.04. 
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A particular case is that when the known values of CM are those about the leading 
edge, namely C M ~ ~ .  In this case u = 0 and therefore 

(1.52) 

Taking this equation with the statement made earlier about the normal position of 
the aerodynamic centre implies that, for all aerofoils at low Mach numbers: 

(1.53) 

Centre of pressure 

The aerodynamic forces on an aerofoil section may be represented by a lift, a 
drag, and a pitching moment. At each value of the lift coefficient there will be 
found to be one particular point about which the pitching moment coefficient is 
zero, and the aerodynamic effects on the aerofoil section may be represented by 
the lift and the drag alone acting at that point. This special point is termed the 
centre of pressure. 

Whereas the aerodynamic centre is a fixed point that always lies within the profile 
of a normal aerofoil section, the centre of pressure moves with change of lift 
coefficient and is not necessarily within the aerofoil profile. Figure 1.11 shows the 
forces on the aerofoil regarded as either 

(a) lift, drag and moment acting at the aerodynamic centre; or 
(b) lift and drag only acting at the centre of pressure, a fraction k c p  of the chord 

Then, taking moments about the leading edge: 

behind the leading edge. 

M ~ ~ = M ~ ~ - ( L c o ~ a + D s i n a ) x * c = - ( L c o s a + D s i n ~ ) k c p c  

Dividing this by pV2Sc, it becomes 

XAC 

C 
CM, - ( CL cos Q + CD sin a)  - = - ( CL cos a + CD sin a ) k c p  

giving 

XAC CMAC k c p  = - - 
c CLcosa+Cgsina 

(1.54) 

Fig. 1.11 Determination of the centre of pressure position 
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Again making the approximations that cosa N 1 and CD sina can be ignored, the 
Eqn (1.54), above, becomes 

(1.55) 

At first sight this would suggest that kCp is always less than XAC/C. However, CM, is 
almost invariably negative, so that in fact kcp is numerically greater than XAC/C and 
the centre of pressure is behind the aerodynamic centre. 

Example 1.5 For the aerofoil section of Example 1.4, plot a curve showing the approximate 
variation of the position of centre of pressure with lift coefficient, for lift coefficients between 
zero and unity. For this case: 

kcp 0.233 - (-0.04/C~) 

fi 0.233 + (0.04/C~) 

The corresponding curve is shown as Fig. 1.12. It shows that kcp tends asymptotically to XAC as 
CL increases, and tends to infinity behind the aerofoil as CL tends to zero. For values of CL less 
than 0.05 the centre of pressure is actually behind the aerofoil. 

For a symmetrical section (zero camber) and for some special camber lines, the pitching 
moment coefficient about the aerodynamic centre is zero. It then follows, from Eqn (1.55), that 
kcp = XAC/C, i.e. the centre of pressure and the aerodynamic centre coincide, and that for 
moderate incidences the centre of pressure is therefore stationary at about the quarter-chord 
point. 

LE kCP TE 

Fig. 1.12 Centre of pressure position for Example 1.5 
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1.5.5 Types of drag 
Attempts have been made to rationalize the definitions and terminology associated 
with drag*. On the whole the new terms have not been widely adopted. Here we will use 
the widely accepted traditional terms and indicate alternatives in parentheses. 

Total drag 

This is formally defined as the force corresponding to the rate of decrease in momen- 
tum in the direction of the undisturbed external flow around the body, this decrease 
being calculated between stations at infinite distances upstream and downstream of the 
body. Thus it is the total force or drag in the direction of the undisturbed flow. It is also 
the total force resisting the motion of the body through the surrounding fluid. 

There are a number of separate contributions to total drag. As a first step it may be 
divided into pressure drag and skin-friction drag. 

Skin- friction drag (or surface- friction drag) 

This is the drag that is generated by the resolved components of the traction due to the 
shear stresses acting on the surface of the body. This traction is due directly to viscosity 
and acts tangentially at all points on the surface of the body. At each point it has a 
component aligned with but opposing the undisturbed flow (i.e. opposite to the direction 
of flight). The total effect of these components, taken (i.e. integrated) over the whole 
exposed surface of the body, is the skin-friction drag. It could not exist in an invisicid flow. 

Pressure drag 

This is the drag that is generated by the resolved components of the forces due to 
pressure acting normal to the surface at all points. It may itself be considered as 
consisting of several distinct contributions: 

(i) Induced drag (sometimes known as vortex drag); 
(ii) Wave drag; and 
(iii) Form drag (sometimes known as boundary-layer pressure drag). 

Induced drag (or vortex drag) 

This is discussed in more detail in Sections 1.5.7 and 5.5. For now it may be noted 
that induced drag depends on lift, does not depend directly on viscous effects, and 
can be estimated by assuming inviscid flow. 

Wave drag 

This is the drag associated with the formation of shock waves in high-speed flight. 
It is described in more detail in Chapter 6 .  

Form drag (or boundary-la yer pressure drag) 

This can be defined as the difference between the profile drag and the skin-friction 
drag where the former is defined as the drag due to the losses in total pressure and 

*For example, the Aeronautical Research Committee Current Paper No. 369 which was also published in 
the Journal of the Royal Aeronautical Society, November 1958. 
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(a) 

Fig. 1.13 (a) The displacement thickness of the boundary layer (hatched area) represents an effective 
change to the shape of the aerofoil. (Boundary-layer thickness is greatly exaggerated in this sketch.) 
(b) Pressure-distribution on an aerofoil section in viscous flow (dotted line) and inviscid flow (full line) 

total temperature in the boundary layers. But these definitions are rather unhelpful 
for giving a clear idea of the physical nature and mechanisms behind form drag, so a 
simple explanation is attempted below. 

The pressure distribution over a body in viscous flow differs from that in an ideal 
inviscid flow (Fig. 1.13). If the flow is inviscid, it can be shown that the flow speed at 
the trailing edge is zero, implying that the pressure coefficient is +l. But in a real flow 
(see Fig. 1.13a) the body plus the boundary-layer displacement thickness has a finite 
width at the trailing edge, so the flow speed does not fall to zero, and therefore the 
pressure coefficient is less than +l. The variation of coefficient of pressure due to real 
flow around an aerofoil is shown in Fig. 1.13b. This combines to generate a net 
drag as follows. The relatively high pressures around the nose of the aerofoil tend to 
push it backwards. Whereas the region of the suction pressures that follows, extend- 
ing up to the point of maximum thickness, act to generate a thrust pulling the aerofoil 
forwards. The region of suction pressures downstream of the point of maximum 
thickness generates a retarding force on the aerofoil, whereas the relatively high- 
pressure region around the trailing edge generates a thrust. In an inviscid flow, these 
various contributions cancel out exactly and the net drag is zero. In a real viscous 
flow this exact cancellation does not occur. The pressure distribution ahead of the 
point of maximum thickness is little altered by real-flow effects. The drag generated 
by the suction pressures downstream of the point of maximum thickness is slightly 
reduced in a real flow. But this effect is greatly outweighed by a substantial reduction 
in the thrust generated by the high-pressure region around the trailing edge. Thus the 
exact cancellation of the pressure forces found in an inviscid flow is destroyed in a 
real flow, resulting in an overall rearwards force. This force is the form drag. 

It is emphasized again that both form and skin-friction drag depend on viscosity 
for their existence and cannot exist in an inviscid flow. 

Profile drag for boundary-layer drag) 

The profile drag is the sum of the skin-friction and form drags. See also the formal 
definition given at the beginning of the previous item. 

Comparison of drags for various types of body 

Normalflat plate (Fig. 1.14) 
In the case of a flat plate set broadside to a uniform flow, the drag is entirely form 
drag, coming mostly from the large negative pressure coefficients over the rear face. 
Although viscous tractions exist, they act along the surface of the plate, and therefore 
have no rearwards component to produce skin-friction drag. 
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Fig. 1.14 Pressure on a normal flat plate 

Parallel flat plate (Fig. 1.15) 
In this case, the drag is entirely skin-friction drag. Whatever the distribution of 
pressure may be, it can have no rearward component, and therefore the form drag 
must be zero. 
Circular cylinder (Fig. 1.16) 
Figure 1.16 is a sketch of the distribution of pressure round a circular cylinder in 
inviscid flow (solid lines) (see Section 3.3.9 below) and in a viscous fluid (dotted 
lines). The perfect symmetry in the inviscid case shows that there is no resultant force 
on the cylinder. The drastic moditication of the pressure distribution due to viscosity 
is apparent, the result being a large form drag. In this case, only some 5% of the drag 
is skin-friction drag, the remaining 95% being form drag, although these proportions 
depend on the Reynolds number. 
Aerofoil or streamlined strut 
The pressure distributions for this case are given in Fig. 1.13. The effect of viscosity 
on the pressure distribution is much less than for the circular cylinder, and the form 
drag is much lower as a result. The percentage of the total drag represented by skin- 
friction drag depends on the Reynolds number, the thickness/chord ratio, and 
a number of other factors, but between 40% and 80% is fairly typical. 

+ * - - . )  

Fig. 1.15 Viscous tractions on a tangential flat plate 

- Inviscid 
flow 

---- Real fluid, 
Re >lo6 

Fig. 1.16 Pressure on a circular cylinder with its axis normal to the stream (see also Fig. 3.23) 
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- -- A proximate edge 
o f  wake 

Fig. 1.17 The behaviour of smoke filaments in the flows past various bodies, showing the wakes. 
(a) Normal flat plate. In this case the wake oscillates up and down at several cycles per second. Half a 
cycle later the picture would be reversed, with the upper filaments curving back as do the lower filaments 
in this sketch. (b) Flat plate at fairly high incidence. (c) Circular cylinder at low Re. For pattern at higher Re, 
see Fig. 7.14. (d) Aerofoil section at moderate incidence and low Re 

The wake 

Behind any body moving in air is a wake, just as there is a wake behind a ship. 
Although the wake in air is not normally visible it may be felt, as when, for example, 
a bus passes by. The total drag of a body appears as a loss of momentum and increase 
of energy in this wake. The loss of momentum appears as a reduction of average flow 
speed, while the increase of energy is seen as violent eddying (or vorticity) in the 
wake. The size and intensity of the wake is therefore an indication of the profile drag 
of the body. Figure 1.17 gives an indication of the comparative widths of the wakes 
behind a few bodies. 

1.5.6 Estimation of the coefficients of lift, drag and pitching 
moment from the pressure distribution 

Let Fig. 1.18 represent an aerofoil at an angle of incidence .a to a fluid flow travelling 
from left to right at speed V. The axes Ox and Oz are respectively aligned along and 
perpendicular to the chord line. The chord length is denoted by c. 

Taking the aerofoil to be a wing section of constant chord and unit spanwise 
length, let us consider the forces acting on a small element of the upper aerofoil 
surface having length 6s. The inward force perpendicular to the surface is given by 
puSs. This force may be resolved into components SX and 6 2  in the x and z 
directions. It can be seen that 

62, = -pu cos E (1.56) 

and from the geometry 

6s cos E = sx (1.57) 
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Fig. 1.18 Normal pressure force on an element of aerofoil surface 

so that 

SZ, = -puSx per unit span 

Similarly, for the lower surface 

SZe =p& per unit span 

We now add these two contributions and integrate with respect to x between x = 0 
and x = c to get 

Z = -Lcpudx + LCpcdx 

But we can always subtract a constant pressure from both pu and pe without altering 
the value of Z ,  so we can write 

where px is the pressure in the free stream (we could equally well use any other 
constant pressure, e.g. the stagnation pressure in the free stream). 

Equation (1.58) can readily be converted into coefficient form. Recalling that the 
aerofoil section is of unit span, the area S = 1 x c = cy so we obtain 

[(Pu - P ~ )  - (Pe - prn)ldx 

Remembering that (l/c)dx = d(x/c) and that the definition of pressure coefficient is 

we see that 

(1.59a) 
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or, simply 

CZ = f C,cosEd(s/c) = f Cpd(x/c), (1.59b) 

where the contour integral is evaluated by following an anti-clockwise direction 
around the contour C of the aerofoil. 

Similar arguments lead to the following relations for X. 
6Xu = pubs sin E, 6Xe = pe6s sin E :  6s sin E = 6z, 

giving 

where zmu and zme are respectively the maximum and minimum values of z, and AC, 
is the difference between the values of C, acting on the fore and rear points of an 
aerofoil for a fixed value of z. 

The pitching moment can also be calculated from the pressure distribution. For 
simplicity, the pitching moment about the leading edge will be calculated. The 
contribution due to the force 62 acting on a slice of aerofoil of length 6x is given by 

6 ~ 4  = (Pu -pe)xbx = [(Pu - pm) - (Po - pm)lx6x; 
so, remembering that the coefficient of pitching moment is defined as 

in this case, as S = c,  
M - - M CM=- 

i p v 2 s c  $pv2c2 

the coefficient of pitching moment due to the Z force is given by 

(1.61) 

Similarly, the much smaller contribution due to the X force may be obtained as 

(1.62) 

The integrations given above are usually performed using a computer or graphically. 
The force coefficients CX and CZ are parallel and perpendicular to the chord line, 

whereas the more usual coefficients CL and CD are defined with reference to the 
direction of the free-stream air flow. The conversion from one pair of coefficients to 
the other may be carried out with reference to Fig. 1.19, in which, CR, the coefficient 
of the resultant aerodynamic force, acts at an angle y to CZ.  CR is both the resultant 
of CX and CZ,  and of CL and CD; therefore from Fig. 1.19 it follows that 

CL = CR  COS(^ + a) = CR COS y COS Q - CR sin y sin a 

But CR cosy = CZ and CR sin y = Cx, so that 

CL = CZ cosa - Cxsina. (1.63) 

Similarly 
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Fig. 1.19 

The total pitching moment coefficient is 

C M  = C M Z  + CMX (1.65) 

In Fig. 1.20 are shown the graphs necessary for the evaluation of the aerodynamic 
coefficients for the mid-section of a three-dimensional wing with an ellipto- 
Zhukovsky profile. 

1.5.7 Induced drag 
Section 5.5 below should also be referred to. Consider what is happening at some 
point y along the wing span (Fig. 1.21). Each of the trailing vortices produces a 
downwards component of velocity, w, at y, known as the downwash or induced 
velocity (see Section 5.5.1). This causes the flow over that section of the wing to 
be inclined slightly downwards from the direction of the undisturbed stream V 
(Fig. 1.22) by the angle E ,  the induced angle of incidence or downwash angle. The 
local flow is also at a slightly different speed, q. 

If the angle between the aerofoil chord line and the direction of the undisturbed 
stream, the geometric angle of incidence, is a, it is seen that the angle between the 
chord line and the actual flow at that section of the wing is equal to a-E, and this is 
called the effective incidence am. It is this effective incidence that determines the lift 
coefficient at that section of the wing, and thus the wing is lifting less strongly than 
the geometric incidence would suggest. Since the circulation and therefore w and E 
increase with lift coefficient, it follows that the lift of a three-dimensional wing 
increases less rapidly with incidence than does that for a two-dimensional wing, 
which has no trailing vortices. 

Now the circulation round this section of the wing will have a value r appro- 
priate to a,, and the lift force corresponding to this circulation will be pqr per 
unit length, acting perpendicular to the direction of q as shown, i.e. inclined 
backwards from the vertical by the angle E. This force therefore has a component 
perpendicular to the undisturbed stream V, that, by definition, is called the lift, 
and is of magnitude 

V 
4 

I = pqr cos E = pqr - = pVr per unit length 

There is also a rearwards component of magnitude 
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Ellipto-Zhukovsky section at the mid-section of a three-dimensional wing. 
Geometric incidence= 6 '  

Reynolds number=4.8x lo5 

CP 
4 2  
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( a )  

Fig. 1.20 Pressure distribution on an aerofoil surface 

W d = pqr sin E = pqr - = pwr  per unit length 

This rearwards component must be reckoned as a drag and is, in fact, the induced 
drag. Thus the induced drag arises essentially from the downwards velocity induced 
over the wing by the wing-tip vortices. 

4 
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AC,(x/c) 
0.16 - 

0.02. 

0 0.2 0.4 0.6 0.8 1.0 

C, = C, cos a - C, sin a = + 0 4 2  

C, = C, sin a + C, cos a = +0.0182 

Fig. 1.20 (Continued) 

Fig. 1.21 The simplified horseshoe vortex system 
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Fig. 1.22 Flow conditions and forces at a section of a three-dimensional lifting wing 

The further apart the wing-tip vortices the less will be their effectiveness in producing 
induced incidence and drag. It is therefore to be expected that these induced quantities 
will depend on the wing aspect ratio, (AR). Some results obtained in Chapter 5 below are: 

where am is the lift curve slope for the two-dimensional wing, and the trailing vortex 
drag coefficient CD, is given by 

c =- Dv -- - " (1 +S) (Eqn(5.50)) 
Dv 4 p P S  ?r(AR) 

where S is a small positive number, constant for a given wing. 

1.5.8 Lift-dependent drag 
It has been seen that the induced drag coefficient is proportional to G, and may exist 
in an inviscid fluid. On a complete aircraft, interference at wing/fuselage, wing/ 
engine-nacelle, and other such junctions leads to modification of the boundary layers 
over the isolated wing, fuselage, etc. This interference, which is actually part of the 
profile drag, usually vanes with the lift coefficient in such a manner that it may be 
treated as of the form (a + Xi). The part of this profile drag coefficient which is 
represented by the term (bC2) may be added to the induced drag. The sum so 
obtained is known as the lift-dependent drag coefficient. The lift-dependent drag 
is actually defined as 'the difference between the drag at a given lift coefficient and 
the drag at some datum lift coefficient'. 

If this datum lift coefficient is taken to be zero, the total drag coefficient of a 
complete aeroplane may be taken, to a good approximation in most cases, as 

CD = CO, + kC?; 

where Coo is the drag coefficient at zero lift, and kC2 is the lift-dependent drag 
coefficient, denoted by CD,. 

1.5.9 Aerofoil characteristics 
Lift coefficient: incidence 
This variation is illustrated in Fig. 1.23 for a two-dimensional (infinite span) wing. 
Considering first the full curve (a) which is for a moderately thick (13%) section of 
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Fig. 1.23 Typical lift curves for sections of moderate thickness and various cambers 

zero camber, it is seen to consist of a straight line passing through the origin, curving 
over at the higher values of CL, reaching a maximum value of C,, at an incidence of 
as, known as the stalling point. After the stalling point, the lift coefficient decreases, 
tending to level off at some lower value for higher incidences. The slope of 
the straight portion of the curve is called the two-dimensional lift-curve slope, 
(dCL/da), or a,. Its theoretical value for a thin section (strictly a curved or flat 
plate) is 27r per radian (see Section 4.4.1). For a section of finite thickness in air, a 
more accurate empirical value is 

(zJm dCL = 1.87r ( 1 +0.8-  :> (1.66) 

The value of C,, is a very important characteristic of the aerofoil since it determines 
the minimum speed at which an aeroplane can fly. A typical value for the type of 
aerofoil section mentioned is about 1.5. The corresponding value of as would be 
around 18". 

Curves (b) and (c) in Fig. 1.23 are for sections that have the same thickness 
distribution but that are cambered, (c) being more cambered than (b). The effect of 
camber is merely to reduce the incidence at which a given lift coefficient is produced, 
i.e. to shift the whole lift curve somewhat to the left, with negligible change in the 
value of the lift-curve slope, or in the shape of the curve. This shift of the curve is 
measured by the incidence at which the lift coefficient is zero. This is the no-lift 
incidence, denoted by 00, and a typical value is -3". The same reduction occurs in a,. 
Thus a cambered section has the same value of CL as does its thickness distribu- 
tion, but this occurs at a smaller incidence. 

Modern, thin, sharp-nosed sections display a slightly different characteristic to the 
above, as shown in Fig. 1.24. In this case, the lift curve has two approximately 
straight portions, of different slopes. The slope of the lower portion is almost the 
same as that for a thicker section but, at a moderate incidence, the slope takes a 
different, smaller value, leading to a smaller value of CL, typically of the order of 
unity. This change in the lift-curve slope is due to a change in the type of flow near 
the nose of the aerofoil. 
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a 

Fig. 1.24 Lift curve for a thin aerofoil section with small nose radius of curvature 

Effect of aspect ratio on the CL: a curve 

The induced angle of incidence E is given by 

where A is the aspect ratio and thus 

Considering a number of wings of the same symmetrical section but of different 
aspect ratios the above expression leads to a family of CL, a curves, as in Fig. 1.25, 
since the actual lift coefficient at a given section of the wing is equal to the lift 
coefficient for a two-dimensional wing at an incidence of am. 

For highly swept wings of very low aspect ratio (less than 3 or so), the lift curve 
slope becomes very small, leading to values of C,, of about 1.0, occurring at stalling 
incidences of around 45". This is reflected in the extreme nose-up landing attitudes of 
many aircraft designed with wings of this description. 

CL I 

Fig. 1.25 Influence of wing aspect ratio on the lift curve 
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Effect of Reynolds number on the C,: a curve 

Reduction of Reynolds number moves the transition point of the boundary layer 
rearwards on the upper surface of the wing. At low values of Re this may permit 
a laminar boundary layer to extend into the adverse pressure gradient region of the 
aerofoil. As a laminar boundary layer is much less able than a turbulent boundary 
layer to overcome an adverse pressure gradient, the flow will separate from the 
surface at a lower angle of incidence. This causes a reduction of C,. This is a 
problem that exists in model testing when it is always difficult to match full-scale and 
model Reynolds numbers. Transition can be fixed artificially on the model by rough- 
ening the model surface with carborundum powder at the calculated full-scale point. 

Drag coefficient: lift coefficient 

For a two-dimensional wing at low Mach numbers the drag contains no induced or 
wave drag, and the drag coefficient is CD,. There are two distinct forms of variation 
of CD with CL, both illustrated in Fig. 1.26. 

Curve (a) represents a typical conventional aerofoil with CD, fairly constant over 
the working range of lift coefficient, increasing rapidly towards the two extreme 
values of CL. Curve (b) represents the type of variation found for low-drag aerofoil 
sections. Over much of the CL range the drag coefficient is rather larger than for the 
conventional type of aerofoil, but within a restricted range of lift coefficient 
(CL, to C b )  the profile drag coefficient is considerably less. This range of CL is 
known as the favourable range for the section, and the low drag coefficient is due to 
the design of the aerofoil section, which permits a comparatively large extent of 
laminar boundary layer. It is for this reason that aerofoils of this type are also known 
as laminar-flow sections. The width and depth of this favourable range or, more 
graphically, low-drag bucket, is determined by the shape of the thickness distribu- 
tion. The central value of the lift coefficient is known as the optimum or ideal lift 
coefficient, Cbpt or C,. Its value is decided by the shape of the camber line, and the 
degree of camber, and thus the position of the favourable range may be placed where 
desired by suitable design of the camber line. The favourable range may be placed to 
cover the most common range of lift coefficient for a particular aeroplane, e.g. C b  
may be slightly larger than the lift coefficient used on the climb, and CL, may be 

0. -- - 

Fig. 1.26 Typical variation of sectional drag coefficient with lift coefficient 
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slightly less than the cruising lift coefficient. In such a case the aeroplane will have the 
benefit of a low value of the drag coefficient for the wing throughout most of the 
flight, with obvious benefits in performance and economy. Unfortunately it is not 
possible to have large areas of laminar flow on swept wings at high Reynolds numbers. 
To maintain natural laminar flow, sweep-back angles are limited to about 15". 

The effect of a finite aspect ratio is to give rise to induced drag and this drag 
coefficient is proportional to C i ,  and must be added to the curves of Fig. 1.26. 

Drag coefficient: (lift coefficient) * 
Since 

it follows that a curve of C ,  against C i  will be a straight line of slope (1 + s)/7rA. If 
the curve CO, against C i  from Fig. 1.26 is added to the induced drag coefficient, that 
is to the straight line, the result is the total drag coefficient variation with G, as 
shown in Fig. 1.27 for the two types of section considered in Fig. 1.26. Taking an 

Fig. 1.27 Variation of total wing drag coefficient with (lift coefficient)' 

A=w 

0 9 
Fig. 1.28 Idealized variation of total wing drag coefficient with (lift coefficient)' for a family of three- 
dimensional wings of various aspect ratios 
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idealized case in which Coo is independent of lift coefficient, the C~,:(CL)~ curve for a 
family of wings of various aspect ratios as is shown in Fig. 1.28. 

Pitching moment coefficient 

In Section 1.5.4 it was shown that 

EX = constant 

the value of the constant depending on the point of the aerofoil section about which 
CM is measured. Thus a curve of CM against CL is theoretically as shown in Fig. 1.29. 

Line (a) for which dCM/dCL fi - is for CM measured about the leading edge. 
Line (c), for which the slope is zero, is for the case where CM is measured about the 
aerodynamic centre. Line (b) would be obtained if CM were measured about a point 
between the leading edge and the aerodynamic centre, while for (d) the reference 
point is behind the aerodynamic centre. These curves are straight only for moderate 
values of CL. As the lift coefficient approaches C,, , the CM against CL curve departs 
from the straight line. The two possibilities are sketched in Fig. 1.30. 

For curve (a) the pitching moment coefficient becomes more negative near the 
stall, thus tending to decrease the incidence, and unstall the wing. This is known as 
a stable break. Curve (b), on the other hand, shows that, near the stall, the pitching 
moment coefficient becomes less negative. The tendency then is for the incidence to 

dCL 

Fig. 1.29 Variation of CM with CL for an aerofoil section, for four different reference points 

CL 0 

Fig. 1.30 The behaviour of the pitching moment coefficient in the region of the stalling point, showing 
stable and unstable breaks 
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increase, aggravating the stall. Such a characteristic is an unstable break. This type of 
characteristic is commonly found with highly swept wings, although measures can be 
taken to counteract this undesirable behaviour. 

Exercises 
1 Verify the dimensions and units given in Table 1.1. 
2 The constant of gravitation G is defined by 

where F is the gravitational force between two masses m and M whose centres of 
mass are distance r apart. Find the dimensions of G, and its units in the SI system. 

(Answer: MT2L-3, kg s2 m-3) 
3 Assuming the period of oscillation of a simple pendulum to depend on the mass of 
the bob, the length of the pendulum and the acceleration due to gravity g ,  use the 
theory of dimensional analysis to show that the mass of the bob is not, in fact, 
relevant and find a suitable expression for the period of oscillation in terms of the 
other variables. (Answer: t = c f i )  

4 A thin flat disc of diameter D is rotated about a spindle through its centre at a 
speed of w radians per second, in a fluid of density p and kinematic viscosity v. Show 
that the power P needed to rotate the disc may be expressed as: 

P =  & D y ( L )  wD2 

Note: for (a) solve in terms of the index of v and for (b) in terms of the index of w. 
Further, show that wD2/v, PD/pv3 and P/pw3D5 are all non-dimensional quan- 

5 Spheres of various diameters D and'densities n are allowed to fall freely under 
gravity through various fluids (represented by their densities p and kinematic 
viscosities v) and their terminal velocities V are measured. 

Find a rational expression connecting V with the other variables, and hence 
suggest a suitable form of graph in which the results could be presented. 

Note: there will be 5 unknown indices, and therefore 2 must remain undetermined, 
which will give 2 unknown functions on the right-hand side. Make the unknown 
indices those of n and v. 

tities. (CUI 

V (Answer: V = f i  f , therefore plot curves of- a 
against (:) f i  for various values of n/p) 

6 An aeroplane weighs 60 000 N and has a wing span of 17 m. A 1110th scale model is 
tested, flaps down, in a compressed-air tunnel at 15 atmospheres pressure and 15 "C 
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at various speeds. The maximum lift on the model is measured at the various speeds, 
with the results as given below: 

Speed (ms-') 20 21 22 23 24 
Maximumlift (N) 2960 3460 4000 4580 5200 

Estimate the minimum flying speed of the aircraft at sea-level, i.e. the speed at which 
the maximum lift of the aircraft is equal to its weight. (Answer: 33 m s-') 
7 The pressure distribution over a section of a two-dimensional wing at 4" incidence 
may be approximated as follows: Upper surface; C, constant at -0.8 from the 
leading edge to 60% chord, then increasing linearly to f0.1 at the trailing edge: 
Lower surface; C, constant at -0.4 from the LE to 60% chord, then increasing 
linearly to +0.1 at the TE. Estimate the lift coefficient and the pitching moment 
coefficient about the leading edge due to lift. (Answer: 0.3192; -0.13) 

8 The static pressure is measured at a number of points on the surface of a long 
circular cylinder of 150mm diameter with its axis perpendicular to a stream of 
standard density at 30 m s-I. The pressure points are defined by the angle 8, which 
is the angle subtended at the centre by the arc between the pressure point and the 
front stagnation point. In the table below values are given of p -PO, where p is the 
pressure on the surface of the cylinder and po is the undisturbed pressure of the free 
stream, for various angles 8, all pressures being in NmP2. The readings are identical 
for the upper and lower halves of the cylinder. Estimate the form pressure drag per 
metre run, and the corresponding drag coefficient. 

8 (degrees) 0 10 20 30 40 50 60 70 80 90 100 110 120 
p - p o  (Nm-') +569 +502 +301 -57 -392 -597 -721 -726 -707 -660 -626 -588 -569 

For values of 0 between 120" and 180", p -PO is constant at -569NmP2. 
(Answer: CD = 0.875, D = 7.25Nm-') 

9 A sailplane has a wing of 18m span and aspect ratio of 16. The fuselage is 0.6m 
wide at the wing root, and the wing taper ratio is 0.3 with square-cut wing-tips. At a 
true air speed of 115 km h-' at an altitude where the relative density is 0.7 the lift and 
drag are 3500 N and 145 N respectively. The wing pitching moment Coefficient about 
the &chord point is -0.03 based on the gross wing area and the aerodynamic mean 
chord. Calculate the lift and drag coefficients based on the gross wing area, and the 
pitching moment about the $ chord point. 

(Answer: CL = 0.396, CD = 0.0169, A4 = -322Nm since CA = 1.245m) 
10 Describe qualitatively the results expected from the pressure plotting of a con- 
ventional, symmetrical, low-speed, two-dimensional aerofoil. Indicate the changes 
expected with incidence and discuss the processes for determining the resultant 
forces. Are any further tests needed to complete the determination of the overall 
forces of lift and drag? Include in the discussion the order of magnitude expected for 
the various distributions and forces described. 
11 Show that for geometrically similar aerodynamic systems the non-dimensional 
force coefficients of lift and drag depend on Reynolds number and Mach number 
only. Discuss briefly the importance of this theorem in wind-tunnel testing and 

(U of L) 

simple performance theory. (U of L) 



Governing equations 
of fluid mechanics 

2.1 Introduction 
The physical laws that govern fluid flow are deceptively simple. Paramount among 
them is Newton’s second law of motion which states that: 

Mass x Acceleration = Applied force 

In fluid mechanics we prefer to use the equivalent form of 

Rate of change of momentum = Applied force 

Apart from the principles of conservation of mass and, where appropriate, conserva- 
tion of energy, the remaining physical laws required relate solely to determining the 
forces involved. For a wide range of applications in aerodynamics the only forces 
involved are the body forces due to the action of gravity* (which, of course, requires 
the use of Newton’s theory of gravity; but only in a very simple way); pressure forces 
(these are found by applying Newton’s laws of motion and require no further 
physical laws or principles); and viscous forces. To determine the viscous forces we 

* Body forces are commonly neglected in aerodynamics. 
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need to supplement Newton’s laws of motion with a constitutive law. For pure 
homogeneous fluids (such as air and water) this constitutive law is provided by the 
Newtonian fluid model, which as the name suggests also originated with Newton. In 
simple terms the constitutive law for a Newtonian fluid states that: 

Viscous stress cx Rate of strain 

At a fundamental level these simple physical laws are, of course, merely theoretical 
models. The principal theoretical assumption is that the fluid consists of continuous 
matter - the so-called continurn model. At a deeper level we are, of course, aware 
that the fluid is not a continuum, but is better considered as consisting of myriads of 
individual molecules. In most engineering applications even a tiny volume of fluid 
(measuring, say, 1 pm3) contains a large number of molecules. Equivalently, a typical 
molecule travels on average a very short distance (known as the mean free path) 
before colliding with another. In typical aerodynamics applications the m.f.p. is less 
than l O O n m ,  which is very much smaller than any relevant scale characterizing 
quantities of engineering significance. Owing to this disparity between the m.f.p. 
and relevant length scales, we may expect the equations of fluid motion, based on the 
continuum model, to be obeyed to great precision by the fluid flows found in almost 
all engineering applications. This expectation is supported by experience. It also has 
to be admitted that the continuum model also reflects our everyday experience of the 
real world where air and water appear to our senses to be continuous substances. 
There are exceptional applications in modern engineering where the continuum model 
breaks down and ceases to be a good approximation. These may involve very small- 
scale motions, e.g. nanotechnology and Micro-Electro-Mechanical Systems (MEMS) 
technology,* where the relevant scales can be comparable to the m.f.p. Another 
example is rarefied gas dynamics (e.g. re-entry vehicles) where there are so few mole- 
cules present that the m.f.p. becomes comparable to the dimensions of the vehicle. 

We first show in Section 2.2 how the principles of conservation of mass, momen- 
tum and energy can be applied to one-dimensional flows to give the governing 
equations of fluid motion. For this rather special case the flow variables, velocity 
and pressure, only vary at most with one spatial coordinate. Real fluid flows are 
invariably three-dimensional to a greater or lesser degree. Nevertheless, in order to 
understand how the conservation principles lead to equations of motion in the form 
of partial differential equations, it is sufficient to see how this is done for a two- 
dimensional flow. So this is the approach we will take in Sections 2.4-2.8. It is usually 
straightforward, although significantly more complicated, to extend the principles 
and methods to three dimensions. However, for the most part, we will be content to 
carry out any derivations in two dimensions and to merely quote the final result for 
three-dimensional flows. 

2.1.1 Air flow 
Consider an aeroplane in steady flight. To an observer on the ground the aeroplane is 
flying into air substantially at rest, assuming no wind, and any movement of the air is 
caused directly by the motion of the aeroplane through it. The pilot of the aeroplane, 
on the other hand, could consider that he is stationary, and that a stream of air is 
flowing past him and that the aeroplane modifies the motion of the air. In fact both 

* Recent reviews are given by M. Gad-el-Hak (1999) The fluid mechanics of microdevices - The Freeman 
Scholar Lecture. J. Fluids Engineering, 121, 5-33; L. Lofdahl and M. Gad-el-Hak (1999) MEMS applica- 
tions in turbulence and flow control. Prog. in Aerospace Sciences, 35, 101-203. 
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viewpoints are mathematically and physically correct. Both observers may use the 
same equations to study the mutual effects of the air and the aeroplane and they will 
both arrive at the same answers for, say, the forces exerted by the air on the aero- 
plane. However, the pilot will find that certain terms in the equations become, from 
his viewpoint, zero. He will, therefore, find that his equations are easier to solve than 
will the ground-based observer. Because of this it is convenient to regard most 
problems in aerodynamics as cases of air flowing past a body at rest, with consequent 
simplification of the mathematics. 

Types of flow 

The flow round a body may be steady or unsteady. A steady flow is one in which the 
flow parameters, e.g. speed, direction, pressure, may vary from point to point in the 
flow but at any point are constant with respect to time, i.e. measurements of the flow 
parameters at a given point in the flow at various times remain the same. In an 
unsteady flow the flow parameters at any point vary with time. 

2.1.2 A comparison of steady and unsteady flow 
Figure 2. l a  shows a section of a stationary wing with air flowing past. The velocity of 
the air a long way from the wing is constant at V, as shown. The flow parameters are 
measured at some point fixed relative to the wing, e.g. at P(x, y). The flow perturb- 
ations produced at P by the body will be the same at all times, Le. the flow is steady 
relative to a set of axes fixed in the body. 

Figure 2.lb represents the same wing moving at the same speed Vthrough air which, 
a long way from the body, is at rest. The flow parameters are measured at a point 
P’(x‘, y‘) fixed relative to the stationary air. The wing thus moves past P’. At times tl , 
when the wing is at AI, P’ is a fairly large distance ahead of the wing, and the 
perturbations at P’ are small. Later, at time t z ,  the wing is at Az, directly beneath P’, 
and the perturbations are much larger. Later still, at time t3, P‘ is far behind the wing, 
which is now at A3, and the perturbations are again small. Thus, the perturbation at P’ 
has started from a small value, increased to a maximum, and finally decreased back to a 
small value. The perturbation at the fmed point P’ is, therefore, not constant with 
respect to time, and so the flow, referred to axes fmed in the fluid, is not steady. Thus, 
changing the axes of reference from a set fixed relative to the air flow, to a different set 
fixed relative to the body, changes the flow from unsteady to steady. This produces the 

t y  
I- 

I “  
Fig. 2.la Air moves at  speed Vpast axes fixed relative to aerofoil 
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Fig. 2.lb Aerofoil moves at speed V through air initially at rest. Axes Ox‘ Of fixed relative to 
undisturbed air at rest 

mathematical simplification mentioned earlier by eliminating time from the equations. 
Since the flow relative to the air flow can, by a change of axes, be made steady, it is 
sometimes known as ‘quasi-steady’. 

True unsteady flow 

An example of true unsteady flow is the wake behind a bluff body, e.g. a circular 
cylinder (Fig. 2.2). The air is flowing from left to right, and the system of eddies or 
vortices behind the cylinder is moving in the same direction at a somewhat lower 
speed. This region of slower moving fluid is the ‘wake’. Consider a point P, fixed 
relative to the cylinder, in the wake. Sometimes the point will be immersed in an eddy 
and sometimes not. Thus the flow parameters will be changing rapidly at P, and the 
flow there is unsteady. Moreover, it is impossible to find a set of axes relative to 
which the flow is steady. At a point Q well outside the wake the fluctuations are so 
small that they may be ignored and the flow at Q may, with little error, be regarded as 
steady. Thus, even though the flow in some region may be unsteady, there may be 
some other region where the unsteadiness is negligibly small, so that the flow there 
may be regarded as steady with sufficient accuracy for all practical purposes. 

(i) A streamline - defined as ‘an imaginary line drawn in the fluid such that there is 
no flow across it at any point’, or alternatively as ‘a line that is always in the same 

Three concepts that are useful in describing fluid flows are: 

Fig. 2.2 True unsteady flow 
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direction as the local velocity vector’. Since this is identical to the condition at a 
solid boundary it follows that: 

(a) any streamline may be replaced by a solid boundary without modifying the 
flow. (This only strictly true if viscous effects are ignored.) 

(b) any solid boundary is itself a streamline of the flow around it. 

(ii) A filament (or streak) line - the line taken up by successive particles of fluid 
passing through some given point. A fine filament of smoke injected into the 
flow through a nozzle traces out a filament line. The lines shown in Fig. 2.2 are 
examples of this. 

(iii) A path line or particle path - the path traced out by any one particle of the fluid 
in motion. 

In unsteady flow, these three are in general different, while in steady flow all three are 
identical. Also in steady flow it is convenient to define a stream tube as an imaginary 
bundle of adjacent streamlines. 

2.2 One-dimensional flow: the basic equations 
In all real flow situations the physical laws of conservation apply. These refer to the 
conservation respectively of mass, momentum and energy. The equation of state 
completes the set that needs to be solved if some or all of the parameters controlling 
the flow are unknown. If a real flow can be ‘modelled’ by a similar but simplified 
system then the degree of complexity in handling the resulting equations may be 
considerably reduced. 

Historically, the lack of mathematical tools available to the engineer required that 
considerable simplifying assumptions should be made. The simplifications used 
depend on the particular problem but are not arbitrary. In fact, judgement is required 
to decide which parameters in a flow process may be reasonably ignored, at least to 
a first approximation. For example, in much of aerodynamics the gas (air) is con- 
sidered to behave as an incompressible fluid (see Section 2.3.4), and an even wider 
assumption is that the air flow is unaffected by its viscosity. This last assumption 
would appear at first to be utterly inappropriate since viscosity plays an important 
role in the mechanism by which aerodynamic force is transmitted from the air flow to 
the body and vice versa. Nevertheless the science of aerodynamics progressed far on 
this assumption, and much of the aeronautical technology available followed from 
theories based on it. 

Other examples will be invoked from time to time and it is salutory, and good 
engineering practice, to acknowledge those ‘simplifying’ assumptions made in order 
to arrive at an understanding of, or a solution to, a physical problem. 

2.2.1 One-dimensional flow: the basic equations 
of conservation 

A prime simplification of the algebra involved without any loss of physical signifi- 
cance may be made by examining the changes in the flow properties along a stream 
tube that is essentially straight or for which the cross-section changes slowly (i.e. 
so-called quasi-one-dimensional flow). 
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Fig. 2.3 The stream tube for conservation of mass 

The conservation of mass 

This law satisfies the belief that in normally perceived engineering situations matter 
cannot be created or destroyed. For steady flow in the stream tube shown in Fig. 2.3 
let the flow properties at the stations 1 and 2 be a distance s apart, as shown. If the 
values for the flow velocity v and the density p at section 1 are the same across the 
tube, which is a reasonable assumption if the tube is thin, then the quantity flowing 
into the volume comprising the element of stream tube is: 

velocity x area = V I A ]  

The mass flowing in through section 1 is 

PlVlAl 

Similarly the mass outflow at section 2, on making the same assumptions, is 

PzvzA2 (2.2) 
These two quantities (2.1) and (2.2) must be the same if the tube does not leak or gain 
fluid and if matter is to be conserved. Thus 

PlVlAl = P2V2-42 (2.3) 

pvA = constant (2.4) 

or in a general form: 

The conservation of momentum 

Conservation of momentum requires that the time rate of change of momentum in 
a given direction is equal to the sum of the forces acting in that direction. This is 
known as Newton’s second law of motion and in the model used here the forces 
concerned are gravitational (body) forces and the surface forces. 

Consider a fluid in steady flow, and take any small stream tube as in Fig. 2.4. s is 
the distance measured along the axis of the stream tube from some arbitrary origin. 
A is the cross-sectional area of the stream tube at distance s from the arbitrary origin. 

p, p ,  and v represent pressure, density and flow speed respectively. 
A ,  p, p ,  and v vary with s, i.e. with position along the stream tube, but not with time 

since the motion is steady. 
Now consider the small element of fluid shown in Fig. 2.5, which is immersed in 

fluid of varying pressure. The element is the right frustrum of a cone of length Ss, area 
A at the upstream section, area A + SA on the downstream section. The pressure 
acting on one face of the element is p, and on the other face is p + (dp/ds)Ss. Around 
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t 
W 

Fig. 2.4 The stream tube and element for the momentum equation 

w 
Fig. 2.5 The forces on the element 

the curved surface the pressure may be taken to be the mean value p + $ (dp/ds)Ss. 
In addition the weight W of the fluid in the element acts vertically as shown. 
Shear forces on the surface due to viscosity would add another force, which is 
ignored here. 

As a result of these pressures and the weight, there is a resultant force F acting 
along the axis of the cylinder where F is given by 

S A - W C O S ~  (2.5) 

where Q is the angle between the axis of the stream tube and the vertical. 

(dp/ds)SsSA and cancelling, 
From Eqn (2.5) it is seen that on neglecting quantities of small order such as 

since the gravitational force on the fluid in the element is pgA Ss, i.e. volume x 
density x g. 

Now, Newton's second law of motion (force = mass x acceleration) applied to the 
element of Fig. 2.5, gives 

dP dv 
ds dt 

-pgASs  COS^ --ASS = PASS- 

where t represents time. Dividing by A 6s this becomes 

dp dv 
-pgcos a - - = p -  ds dt 
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But 

and therefore 

dv dvds dv 
dt - ds dt = 'ds 
- - 

dv dp 
ds ds 

pv-+-+pg cosa! = 0 

or 

dv 1 dp v- + - - + gcos a! = 0 
ds P d s  

Integrating along the stream tube; this becomes 

f + vdv + g / cos a d s  = constant 

but since 

cos a d s  = increase in vertical coordinate z I 
and 

then 

/ f + v2 + gz = constant 

This result is known as Bernoulli's equation and is discussed below. 

The conservation of energy 

Conservation of energy implies that changes in energy, heat transferred and work 
done by a system in steady operation are in balance. In seeking an equation 
to represent the conservation of energy in the steady flow of a fluid it is useful 
to consider a length of stream tube, e.g. between sections 1 and 2 (Fig. 2.6), as 

Fig. 2.6 Control volume for the energy equation 
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constituting the control surface of a ‘thermodynamic system’ or control volume. At 
sections 1 and 2, let the fluid properties be as shown. 

Then unit mass of fluid entering the system through section will possess internal 
energy cVT1, kinetic energy $2 and potential energy gzl, i.e. 

(2.9a) 

Likewise on exit from the system across section 2 unit mass will possess energy 

(2.9b) 

Now to enter the system, unit mass possesses a volume llpl which must push against 
the pressure p1 and utilize energy to the value of p1 x l/pl pressure x (specific) 
volume. At exit p2/p2 is utilized in a similar manner. 

In the meantime, the system accepts, or rejects, heat q per unit mass. As all the 
quantities are flowing steadily, the energy entering plus the heat transfer must equal the 
energy leaving.* Thus, with a positive heat transfer it follows from conservation of energy 

However, enthalpy per unit mass of fluid is cvT + p / p  = cpT. Thus 

or in differential form 

-(cpT+l+gscosa) d v2 =$ 
ds (2.10) 

For an adiabatic (no heat transfer) horizontal flow system, Eqn (2.10) becomes zero 
and thus 

(2.11) 
V2 

2 
cp T + - = constant 

The equation of state 
The equation of state for a perfect gas is 

P / ( m  = R 
Substituting forplp in Eqn (1.11) yields Eqn (1.13) and (1.14), namely 

~p - cv = R, cP = - R c y = -  ‘ R  
Y-1 Y-1 

* It should be noted that in a general system the fluid would also do work which should be taken into the 
equation, but it is disregarded here for the particular case of flow in a stream tube. 
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The first law of thermodynamics requires that the gain in internal energy of a mass of 
gas plus the work done by the mass is equal to the heat supplied, i.e. for unit mass of 
gas with no heat transfer 

E +  pd - =constant s (3 
or 

dE+pd(b) = o  

Differentiating Eqn (1 .lo) for enthalpy gives 

and combining Eqns (2.12) and (2.13) yields 
1 
P 

dh = -dp 

But 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

Therefore, from Eqns (2.14) and (2.15) 

*+ypd(;)  P = o  

which on integrating gives 

1np + y In (b) = constant 

or 
p = kp^/ 

where k is a constant. This is the isentropic relationship between pressure and 
density, and has been replicated for convenience from Eqn (1.24). 

The momentum equation for an incompressible fluid 

Provided velocity and pressure changes are small, density changes will be very small, 
and it is permissible to assume that the density p is constant throughout the flow. 
With this assumption, Eqn (2.8) may be integrated as 

1 dp + zp? + pgz = constant 

Performing this integration between two conditions represented by suffices 1 and 2 
gives 

1 

1 
(P2 -P1) + p ( v ;  - vi) + P d Z 2  - a )  = 0 
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i.e. 

1 2  1 
PI + -pv,  + P P I  =p2 + -pv; + pgzz 2 2 

In the foregoing analysis 1 and 2 were completely arbitrary choices, and therefore 
the same equation must apply to conditions at any other points. Thus 

1 
2 

p + -pv2 + pgz = constant (2.16) 

This is Bernoulli’s equation for an incompressible fluid, Le. a fluid that cannot 
be compressed or expanded, and for which the density is invariable. Note that 
Eqn (2.16) can be applied more generally to two- and three-dimensional steady flows, 
provided that viscous effects are neglected. In the more general case, however, it is 
important to note that Bernoulli’s equation can only be applied along a streamline, 
and in certain cases the constant may vary from streamline to streamline. 

2.2.2 Comments on the momentum and energy equations 
Referring back to Eqn (2.8), that expresses the conservation of momentum in 
algebraic form, 

/ f + v2 + gz = constant 

the first term is the internal energy of unit mass of the air, 4 v2 is the kinetic energy of 
unit mass and gz is the potential energy of unit mass. Thus, Bernoulli’s equation in 
this form is really a statement of the principle of conservation of energy in the 
absence of heat exchanged and work done. As a corollary, it applies only to flows 
where there is no mechanism for the dissipation of energy into some form not 
included in the above three terms. In aerodynamics a common form of energy 
dissipation is that due to viscosity. Thus, strictly the equation cannot be applied in 
this form to a flow where the effects of viscosity are appreciable, such as that in a 
boundary layer. 

2.3 The measurement of air speed 
2.3.1 The Pit6t-static tube 
Consider an instrument of the form sketched in Fig. 2.7, called a Pit6t-static tube. 
It consists of two concentric tubes A and B. The mouth of A is open and faces 
directly into the airstream, while the end of B is closed on to A, causing B to be sealed 
off. Some very fine holes are drilled in the wall of B, as at C, allowing B to commu- 
nicate with the surrounding air. The right-hand ends of A and B are connected to 
opposite sides of a manometer. The instrument is placed into a stream of air, with the 

Fig. 2.7 The simple Pit&-sat c tube 
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mouth of A pointing directly upstream, the stream being of speed v and of static 
pressure p .  The air flowing past the holes at C will be moving at a speed very little 
different from v and its pressure will, therefore, be equal top, and this pressure will be 
communicated to the interior of tube B through the holes C. The pressure in B is, 
therefore, the static pressure of the stream. 

Air entering the mouth of A will, on the other hand, be brought to rest (in the 
ultimate analysis by the fluid in the manometer). Its pressure will therefore be equal 
to the total head of the stream. As a result a pressure difference exists between the air 
in A and that in B, and this may be measured on the manometer. Denote the pressure 
in A by PA,  that in B by p ~ ,  and the difference between them by Ap.  Then 

A P = P A - P B  (2.17) 

But, by Bernoulli's equation (for incompressible flow) 

and therefore 

1 
2 

A p  = -pv2  

whence 

(2.18) 

(2.19) 

The value of p, which is constant in incompressible flow, may be calculated from the 
ambient pressure and the temperature. This, together with the measured value of A p ,  
permits calculation of the speed v.* 

The quantity $ p v 2  is the dynamic pressure of the flow. Since P A  = total 
pressure = P O  (i.e. the pressure of the air at rest, also referred to as the stagnation 
pressure), and p~ = static pressure = p ,  then 

1 
P o - P = p ?  (2.20) 

which may be expressed in words as 

stagnation pressure - static pressure = dynamic pressure 

It should be noted that this equation applies at all speeds, but the dynamic pressure is 
equal to $pv2  only in incompressible flow. Note also that 

1 
-p? = [ML-3L2T-2] = [ML-'TP2] 2 

= units of pressure 

as is of course essential. 

* Note that, notwithstanding the formal restriction of Bernoulli's equation to inviscid flows, the PitBt- 
static tube is commonly used to determine the local velocity in wakes and boundary layers with no app- 
arent loss of accuracy. 
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Defining the stagnation pressure coefficient as 

(2.21) 

it follows immediately from Eqn (2.20) that for incompressible flow 

C,, = 1 (always) (2.22) 

2.3.2 The pressure coefficient 
In Chapter 1 it was seen that it is often convenient to express variables in a non- 
dimensional coefficient form. The coefficient of pressure is introduced in Section 1.5.3. 
The stagnation pressure coefficient has already been defined as 

This is a special case of the general ‘pressure coefficient’ defined by pressure coefficient: 

where C,, = pressure coefficient 
p = static pressure at some point in the flow where the velocity is q 

p = density of the undisturbed flow 
v = speed of the undisturbed flow 

p x  = static pressure of the undisturbed flow 

Now, in incompressible flow, 

1 1 
P + p 2 = P W  +-p? 2 

Then 

and therefore 
2 

c, = 1 - (;) 

(2.23) 

(2.24) 

Then 

(i) if C, is positive p > p X  and q < v 
(ii) if C, is zerop = p w  and q = v 

(iii) if C, is negative p < pw and q > v 

2.3.3 The air-speed indicator: indicated and equivalent 
air speeds 

A PitGt-static tube is commonly used to measure air speed both in the laboratory and 
on aircraft. There are, however, differences in the requirements for the two applica- 
tions. In the laboratory, liquid manometers provide a simple and direct method for 
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measuring pressure. These would be completely unsuitable for use on an aircraft 
where a pressure transducer is used that converts the pressure measurement into an 
electrical signal. Pressure transducers are also becoming more and more commonly 
used for laboratory measurements. 

When the measured pressure difference is converted into air speed, the correct 
value for the air density should, of course, be used in Eqn (2.19). This is easy enough 
in the laboratory, although for accurate results the variation of density with the 
ambient atmospheric pressure in the laboratory should be taken into account. At one 
time it was more difficult to use the actual air density for flight measurements. 
This was because the air-speed indicator (the combination of Pit&-static tube and 
transducer) would have been calibrated on the assumption that the air density took 
the standard sea-level International Standard Atmosphere (ISA) value. The (incor- 
rect) value of air speed obtained from Eqn (2.19) using this standard value of 
pressure with a hypothetical perfect transducer is known as the equivalent air speed 
(EAS). A term that is still in use. The relationship between true and equivalent air 
speed can be derived as follows. Using the correct value of density, p ,  in Eqn (2.19) 
shows that the relationship between the measured pressure difference and true air 
speed, u, is 

Ap = -PU 1 2  (2.25) 
2 

whereas if the standard value of density, po = 1.226 kg/m3, is used we find 

1 
AP = p.2, (2.26) 

where UE is the equivalent air speed. But the values of Ap in Eqns (2.25) and (2.26) 
are the same and therefore 

1 1 -pod 2 =pd 

or 

(2.27) 

(2.28) 

If the relative density 0 = p/po is introduced, Eqn (2.28) can be written as 

UE = v f i  (2.29) 

The term indicated air speed (IAS) is used for the measurement made with an actual 
(imperfect) air-speed indicator. Owing to instrument error, the IAS will normally 
differ from the EAS. 

The following definitions may therefore be stated: IAS is the uncorrected reading 
shown by an actual air-speed indicator. Equivalent air speed EAS is the uncorrected 
reading that would be shown by a hypothetical, error-free, air-speed indicator. 
True air speed (TAS) is the actual speed of the aircraft relative to the air. Only when 
0 = 1 will true and equivalent air speeds be equal. Normally the EAS is less than 
the TAS. 

Formerly, the aircraft navigator would have needed to calculate the TAS from 
the IAS. But in modem aircraft, the conversion is done electronically. The calibration 
of the air-speed indicator also makes an approximate correction for compressibility. 



66 Aerodynamics for Engineering Students 

2.3.4 The incompressibility assumption 
As a first step in calculating the stagnation pressure coefficient in compressible flow 
we use Eqn (1.6d) to rewrite the dynamic pressure as follows: 

(2.30) 

where M is Mach number. 

value for air), the stagnation pressure coefficient then becomes 
When the ratio of the specific heats, y, is given the value 1.4 (approximately the 

c --=- Po - P  ("" _ _  1) 0.7pW 0.7M2 p 
(2.31) 

Now 

E=[ l+p4]  1 2 112 

P 
(Eqn (6.16a)) 

Expanding this by the binomial theorem gives 

P o + + -  - 7 ( 1  -M2 ) +--- 7 5 1  ( 1  - M  2 ) 2  + ---- 7 5 3 1  (I -M2 ) 3  + 
P 2 5  222! 5 2223! 5 

7M2 7M4 7M6 7M8 
= 1 + - + 7  +- +-+a 400 16 000 10 

Then 

1 10 7M2 7M4 7M6 7M8 - -- +-+-+-+... 
7M2 [w 40 400 16 000 

iW? M4 M6 =I+-+-+-+.*,  
4 40 1600 (2.32) 

It can be seen that this will become unity, the incompressible value, at M = 0. This is 
the practical meaning of the incompressibility assumption, i.e. that any velocity 
changes are small compared with the speed of sound in the fluid. The result given 
in Eqn (2.32) is the correct one, that applies at all Mach numbers less than unity. At 
supersonic speeds, shock waves may be formed in which case the physics of the flow 
are completely altered. 

Table 2.1 shows the variation of C,, with Mach number. It is seen that the error in 
assuming C,, = 1 is only 2% at M = 0.3 but rises rapidly at higher Mach numbers, 
being slightly more than 6% at M = 0.5 and 27.6% at M = 1.0. 

Table 2.1 Variation of stagnation pressure coefficient with Mach numbers less than unity 

M 0 0.2 0.4 0.6 0.7 0.8 0.9 1 .o 
G o  1 1.01 1.04 1.09 1.13 1.16 1.217 1.276 
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It is often convenient to regard the effects of compressibility as negligible if the 
flow speed nowhere exceeds about 100 m s-l. However, it must be remembered that 
this is an entirely arbitrary limit. Compressibility applies at all flow speeds and, 
therefore, ignoring it always introduces an error. It is thus necessary to consider, for 
each problem, whether the error can be tolerated or not. 

In the following examples use will be made of the equation (1.6d) for the speed of 
sound that can also be written as 

a = m  

For air, with y = 1.4 and R = 287.3 J kg-'K-' this becomes 

a = 2 0 . 0 5 e m  s-' (2.33) 

where Tis the temperature in K. 

Example 2.1 The air-speed indicator fitted to a particular aeroplane has no instrument errors 
and is calibrated assuming incompressible flow in standard conditions. While flying at sea level 
in the ISA the indicated air speed is 950 km h-' . What is the true air speed? 
950 km h-' = 264 m s-' and this is the speed corresponding to the pressure difference applied 
to the instrument based on the stated calibration. This pressure difference can therefore be 
calculated by 

1 
Po - P = AP = 5 P O 4  

and therefore 

1 
2 po -p = - x 1.226(264)' = 42670NmP2 

Now 

In standard conditionsp = 101 325Nm-'. Therefore 

+ 1 = 1.421 
po - 42670 
p 101325 

Therefore 

1 
5 
1 
- M2 = 0.106 
5 

M' = 0.530 
M = 0.728 

1 + - M 2  = (1.421)2'7 = 1.106 

The speed of sound at standard conditions is 

a = 20.05(288)4 = 340.3 m s-' 
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Therefore, true air speed = M a  = 0.728 x 340.3 

248 m s-' = 89 1 km h-' 

In this example, ~7 = 1 and therefore there is no effect due to density, Le. the difference is due 
entirely to compressibility. Thus it is seen that neglecting compressibility in the calibration has 
led the air-speed indicator to overestimate the true air speed by 59 km h-' . 

2,4 Two-dimensional flow 

Consider flow in two dimensions only. The flow is the same as that between two planes set 
parallel and a little distance apart. The fluid can then flow in any direction between and 
parallel to the planes but not at right angles to them. This means that in the subsequent 
mathematics there are only two space variables, x and y in Cartesian (or rectangular) 
coordinates or r and 0 in polar coordinates. For convenience, a unit length of the flow 
field is assumed in the z direction perpendicular to x and y. This simplifies the treatment 
of two-dimensional flow problems, but care must be taken in the matter of units. 

In practice if two-dimensional flow is to be simulated experimentally, the method 
of constraining the flow between two close parallel plates is often used, e.g. small 
smoke tunnels and some high-speed tunnels. 

To summarize, two-dimensional flow is fluid motion where the velocity at all 
points is parallel to a given plane. 

We have already seen how the principles of conservation of mass and momentum 
can be applied to one-dimensional flows to give the continuity and momentum 
equations (see Section 2.2). We will now derive the governing equations for 
two-dimensional flow. These are obtained by applying conservation of mass and 
momentum to an infinitesimal rectangular control volume - see Fig. 2.8. 

2.4.1 Component velocities 
In general the local velocity in a flow is inclined to the reference axes Ox, Oy and it is 
usual to resolve the velocity vector ?(magnitude q) into two components mutually at 
right-angles. 

Fig. 2.8 An infinitesimal control volume in a typical two-dimensional flow field 
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Fig. 2.9 

In a Cartesian coordinate system let a particle move from point P(x,y) to point 
Q(x + Sx, y + Sy), a distance of 6s in time St (Fig. 2.9). Then the velocity of the 
particle is 

. 6s ds ]Im- = - = q 
6+0 St dt 

Going from P to Q the particle moves horizontally through SX giving the horizontal 
velocity u = dx/dt positive to the right. Similarly going from P to Q the particle 
moves vertically through Sy and the vertical velocity v = dy/dt (upwards positive). By 
geometry: 

(Ss)2 = (Sx)2 + (Sy)2 

q 2 = 2 2 + v 2  

Thus 

and the direction of q relative to the x-axis is a = tan-’ (v/u). 

to Q(r + Sr, 0 + SO) in time 5t. The component velocities are: 
dr radially (outwards positive) q - - ’ - dt 

In a polar coordinate system (Fig. 2.10) the particle moves distance 6s from P(r, 0) 

do 
tangentially (anti-clockwise positive) qt = r - 

dt 
Again 

(Ss)2 = (Sr)2 + (rSo)2 

Fig. 2.10 
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Y t  

P ( x ,  y )  I 
Fig. 2.11 

Thus 

4' = q: + 4: 
and the direction of q relative to the radius vector is given by 

1% p = tan- 
4n 

Fluid acceleration 

The equation of acceleration of a fluid mass is rather different from that of a vehicle, 
for example, and a note on fluid acceleration follows. Let a fluid particle move from 
P to Q in time St in a two-dimensional flow (Fig. 2.11). At the point P(x, y) the 
velocity components are u and v. At the adjacent point Q(x+ Sx, y +  by) the 
velocity components are u + 61.4 and v + Sv, i.e. in general the velocity component 
has changed in each direction by an increment Su or Sv. This incremental change is the 
result of a spatial displacement, and as u and v are functions of x and y the velocity 
components at Q are 

(2.34) au au a V  av 
ax  ay ax ay u + Su = u + - Sx + -by and v + Sv = v + - SX + - Sy 

The component of acceleration in the On direction is thus 

d(u+Su) au dudx audy --+--+-- - 
dt at dxdt  aydt  

= - + u - + v -  au  au au 
at ax ay 

and in the Oy direction 

d(v+ Sv) au dv dv -_  - + u - + v -  
dt at a x  ay 

(2.35) 

(2.36) 

The change in other flow variables, such as pressure, between points P and Q may be dealt 
with in a similar way. Thus, if the pressure takes the value p at P ,  at Q it takes the value 

aP aP 
ax ay p + sp = p + -6x + -6y (2.37) 
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4 

U- 

Fig. 2.12 Rectangular space of volume 6x x Sy x 1 at the point P (x, y) where the velocity components 
are u and v and the density is p 

2.4.2 The equation of continuity or conservation of mass 
Consider a typical elemental control volume like the one illustrated in Fig. 2.8. This is 
a small rectangular region of space of sides Sx, Sy and unity, centred at the point 
P(x, y )  in a fluid motion which is referred to the axes Ox, Oy.  At P(x, y )  the local 
velocity components are u and v and the density p, where each of these three 
quantities is a function of x ,  y and t (Fig. 2.12). Dealing with the flow into the box 
in the O x  direction, the amount of mass flowing into the region of space per second 
through the left-hand vertical face is: 

mass flow per unit area x area 

i.e. 

(2.38) 

The amount of mass leaving the box per second through the right-hand vertical face 
is: 

(2.39) 

The accumulation of mass per second in the box due to the horizontal flow is the 
difference of Eqns (2.38) and (2.39), Le. 

Similarly, the accumulation per second in the O y  direction is 

so that the total accumulation per second is 

(2.40) 

(2.41) 

(2.42) 
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As mass cannot be destroyed or created, Eqn (2.42) must represent the rate of 
change of mass of the fluid in the box and can also be written as 

a ( p  x volume) 
at 

but with the elementary box having constant volume (Sx by x 1) this becomes 

-6xSy aP x 1 
at 

Equating (2.42) and (2.43) gives the general equation of continuity, thus: 

aP a(Pu) a(P.1 - 0 -+- +-- at ax ay 

This can be expanded to: 

-+u-+v-+p -+- = o  aP ap ap 
at ax ay (E i;) 

(2.43) 

(2.45) 

and if the fluid is incompressible and the flow steady the first three terms are all zero 
since the density cannot change and the equation reduces for incompressible flow to 

au av -+-=o 
ax ay (2.46) 

This equation is fundamental and important and it should be noted that it expresses 
a physical reality. For example, in the case given by Eqn (2.46) 

This reflects the fact that if the flow velocity increases in the x direction it must 
decrease in they direction. 

For three-dimensional flows Eqns (2.45) and (2.46) are written in the forms: 

1 at ax ay az (ax ay az 
ap ap ap ap au av aw 
-+u-+v-+w-+p -+-+- = o  

au av aw -+-+-=o 
ax ay az 

(2.47a) 

(2.47b) 

2.4.3 The equation of continuity in polar coordinates 
A corresponding equation can be found in the polar coordinates r and 0 where the 
velocity components are qn and qt radially and tangentially. By carrying out a similar 
development for the accumulation of fluid in a segmental elemental box of space, the 
equation of continuity corresponding to Eqn (2.44) above can be found as follows. 
Taking the element to be at P(r, 0) where the mass flow is pq per unit length 
(Fig. 2.13), the accumulation per second radially is: 

(2.48) 



Governing equations of fluid mechanics 73 

Fig. 2.13 Rectangular element at P (r,  0) in a system of polar coordinates 

and accumulation per second tangentially is: 

Total accumulation per second 

(2.50) 

and this by the previous argument equals the rate of change of mass within the region 
of space 

Equating (2.50) and (2.51) gives: 

Hence for steady flow 

and the incompressible equation in this form becomes: 

(2.51) 

(2.52) 

(2.53) 

(2.54) 

2.5 The stream function and streamline 
2.5.1 The stream function y/ 

Imagine being on the banks of a shallow river of a constant depth of 1 m at a pos- 
ition 0 (Fig. 2.14) with a friend directly opposite at A, 40m away. Mathematically 
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Fig. 2.14 

the bank can be represented by the Ox axis, and the line joining you to your friend at 
A the Oy axis in the two-coordinate system. Now if the stream speed is 2ms-' the 
amount of water passing between you and your friend is 40 x 1 x 2 = 80 m3 s-l and 
this is the amount of water flowing past any point anywhere along the river which 
could be measured at a weir downstream. Suppose you now throw a buoyant rope to 
your friend who catches the end but allows the slack to fall in the river and float into 
a curve as shown. The amount of water flowing under the line is still 80m3 s-' no 
matter what shape the rope takes, and is unaffected by the configuration of the rope. 

Suppose your friend moves along to a point €3 somewhere downstream, still 
holding his end of the line but with sufficient rope paid out as he goes. The volume 
of water passing under the rope is still only 80m3 s-l providing he has not stepped 
over a tributary stream or an irrigation drain in the bank. It follows that, if no water 
can enter or leave the stream, the quantity flowing past the line will be the same as 
before and furthermore will be unaffected by the shape of the line between 0 and €3. 
The amount or quantity of fluid passing such a line per second is called the stream 
function or current function and it is denoted by +. 

Consider now a pair of coordinate axes set in a two-dimensional air stream that is 
moving generally from left to right (Fig. 2.15). The axes are arbitrary space references 
and in no way interrupt the fluid streaming past. Similarly the line joining 0 to a point 
P in the flow in no way interrupts the flow since it is as imaginary as the reference axes 
Ox and Oy. An algebraic expression can be found for the line in x and y .  

X / --. 

Fig. 2.15 
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Let the flow past the line at any point Q on it be at velocity q over a small length 6s 
of line where direction of q makes angle /3 to the tangent of the curve at Q. The 
component of the velocity q perpendicular to the element 6s is q sin /3 and therefore, 
assuming the depth of stream flow to be unity, the amount of fluid crossing the 
element of line 6s is q sin /3 x 6s x 1 per second. Adding up all such quantities crossing 
similar elements along the line from 0 to P, the total amount of flow past the line 
(sometimes called flux) is 

which is the line integral of the normal velocity component from 0 to P. 
If this quantity of fluid flowing between 0 and P remains the same irrespective of 

the path of integration, i.e. independent of the curve of the rope then sop q sin /3 ds is 
called the stream function of P with respect to 0 and 

Note: it is implicit that $0 = 0. 

Sign convention for stream functions 

It is necessary here to consider a sign convention since quantities of fluid are being 
considered. When integrating the cross-wise component of flow along a curve, the 
component can go either from left to right, or vice versa, across the path of integra- 
tion (Fig. 2.16). Integrating the normal flow components from 0 to P, the flow 
components are, looking in the direction of integration, either (a) from left to right or 
(b) from right to left. The former is considered positive flow whilst the latter is 
negative flow. The convention is therefore: 

Flow across the path of integration is positive if, when looking in the direction of 
integration, it crosses the path from left to right. 

2.5.2 The streamline 
From the statement above, $p is the flow across the line OP. Suppose there is a point 
PI close to P which has the same value of stream function as point P (Fig. 2.17). Then 
the flow across any line OP1 equals that across OP, and the amount of fluid flowing 
into area OPPIO across OP equals the amount flowing out across OP1. Therefore, no 
fluid crosses line PP1 and the velocity of flow must be along, or tangential to, PPI. 

Fig. 2.16 
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Fig. 2.17 

All other points Pz, P3, etc. which have a stream function equal in value to that of P 
have, by definition, the same flow across any lines joining them to 0, so by the same 
argument the velocity of the flow in the region of PI, Pz, P3, etc. must be along PP1, 
Pz, P3, etc., and no fluid crosses the line PP1, P2,. . .,P,. Since $pl = h2 = 
1clp3 = +p = constant, the line PP1, Pz, . . . P,, etc. is a line of constant $ and is called 
a streamline. It follows further that since no flow can cross the line PP, the velocity 
along the line must always be in the direction tangential to it. This leads to the two 
common definitions of a streamline, each of which indirectly has the other’s meaning. 
They are: 

A streamline is a line of constant $ 

and/or 

A streamline is a line of fluid particles, the velocity of each particle being 
tangential to the line (see also Section 2.1.2). 

It should be noted that the velocity can change in magnitude along a streamline but 
by definition the direction is always that of the tangent to the line. 

2.5.3 Velocity components in terms of w 
(a) In Cartesian coordinates Let point P(x, y)  be on the streamline AB in Fig. 2.18a 
of constant $ and point Q(x + Sx, y + Sy) be on the streamline CD of constant 
$ + S$. Then from the definition of stream function, the amount of fluid flowing 
across any path between P and Q = S$, the change of stream function between 
P and Q. 

The most convenient path along which to integrate in this case is PRQ, point R 
being given by the coordinates (x + Sx, y). Then the flow across PR = -vSx (since 
the flow is from right to left and thus by convention negative), and that across 
RQ = uSy. Therefore, total flow across the line PRQ is 

S$ = uSy - VSX (2.55) 

Now $ is a function of two independent variables x and y in steady motion, and thus 

a$ a$ 
ax ay 

S$ = -Sx + -Sy (2.56) 
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I \’ - s x  -- qf 

I > 
l o  X 

Fig. 2.18a 

aQ/ax and aQ/ay being the partial derivatives with respect to x and y respectively. 
Then, equating terms: 

u = a+/ay (2.56a) 

and 

v = -a+/ax (2.56b) 

these being the velocity components at a point x, y in a flow given by stream function Q. 
(b) In polar coordinates Let the point P(r, 8) be on the streamline AB (Fig. 2.18b) of 
constant Q, and point Q(r + Sr, 8 + SO) be on the streamline CD of constant Q + SQ. 
The velocity components are qn and qt, radially and tangentially respectively. Here 
the most convenient path of integration is PRQ where OP is produced to R so that 
PR = Sr, i.e. R is given by ordinates (r + Sr, 8). Then 

SQ = -q& + qn(r + Sr)M 
= -q& + qnrM + qJrS8 

To the first order of small quantities: 
SQ = -q& + qnrS8 (2.57) 

’ Detail at P,Q 

Fig. 2.18b 
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Fig. 2.19 

But here $ is a function of (r, Q) and again 

a$ 
dr dB 6$ = -6r -t -60 

and equating terms in Eqns (2.57) and (2.58) 

a$ qt 1 -- 
dr 

(2.58) 

(2.58a) 

(2.58b) 

these being velocity components at a point r ,  Q in a flow given by stream function $. 
In general terms the velocity q in any direction s is found by differentiating the 

stream function $ partially with respect to the direction II normal to q where n is 
taken in the anti-clockwise sense looking along q (Fig. 2.19): 

q = -  a$ 
dn 

2.6 The momentum equation 

The momentum equation for two- or three-dimensional flow embodies the applica- 
tion of Newton’s second law of motion (mass times acceleration = force, or rate of 
change of momentum = force) to an infinitesimal control volume in a fluid flow (see 
Fig. 2.8). It takes the form of a set of partial differential equations. Physically it states 
that the rate of increase in momentum within the control volume plus the net rate at 
which momentum flows out of the control volume equals the force acting on the fluid 
within the control volume. 

There are two distinct classes of force that act on the fluid particles within the 
control volume. 

(i) Body forces. Act on all the fluid within the control volume. Here the only body 
force of interest is the force of gravity or weight of the fluid. 

(ii) Surface forces. These only act on the control surface; their effect on the fluid 
inside the control volume cancels out. They are always expressed in terms of 
stress (force per unit area). Two main types of surface force are involved namely: 

(a) Pressure force. Pressure, p ,  is a stress that always acts perpendicular to the control 
surface and in the opposite direction to the unit normal (see Fig. 1.3). In other words 
it always tends to compress the fluid in the control volume. Although p can vary 
from point to point in the flow field it is invariant with direction at a particular point 
(in other words irrespective of the orientation of the infinitesimal control volume the 
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pressure force on any face will be -pSA where 6A is the area of the face) - see 
Fig. 1.3. As is evident from Bernoulli's Eqn (2.16), the pressure depends on the flow 
speed. 

(b) Viscousforces. In general the viscous force acts at an angle to any particular face 
of the infinitesimal control volume, so in general it will have two components 
in two-dimensional flow (three for threedimensional flow) acting on each face 
(one due to a direct stress acting perpendicularly to the face and one shear stress 
(two for three-dimensional flow) acting tangentially to the face. As an example let 
us consider the stresses acting on two faces of a square infinitesimal control volume 
(Fig. 2.20). For the top face the unit normal would be j (unit vector in the 
y direction) and the unit tangential vector would be i (the unit vector in the 
x direction). In this case, then, the viscous force acting on this face and the side 
face would be given by 

(ayxi + ayyj)6x x 1, (axxi + axyj)Sy x 1 

respectively. Note that, as in Section 2.4, we are assuming unit length in the 
z direction. The viscous shear stress is what is termed a second-order tensor - 
i.e. it is a quantity that is characterized by a magnitude and two directions 
(c.f. a vector or first-order tensor that is characterized by a magnitude and one 
direction). The stress tensor can be expressed in terms of four components 
(9 for three-dimensional flow) in matrix form as: 

(F 2)  
Owing to symmetry ax,, = au.. Just as the components of a vector change 
when the coordinate system is changed, so do the components of the stress 
tensor. In many engineering applications the direct viscous stresses (axx, ayy) 
are negligible compared with the shear stresses. The viscous stress is generated 
by fluid motion and cannot exist in a still fluid. 

Other surface forces, e.g. surface tension, can be important in some engin- 
eering applications. 

D W 6 X X 1  t U,&X1 

Fig. 2.20 
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When the momentum equation is applied to an infinitesimal control volume (c.v.), 
it can be written in the form: 

Rate of increase of momentum within the C.V. 

+ Net rate at which momentum leaves the C.V. 
-, 
(ii) 

= Body force + pressure force + viscous force --- 
(iii) (iv) (4 

(2.59) 

We will consider now the evaluation of each of terms (i) to (v) in turn for the case 

Term (i) is dealt with in a similar way to Eqn (2.43), once it is recalled that 
of two-dimensional incompressible flow. 

momentum is (mass) x (velocity), so Term (i) is given by 

(2.60) 
a aP; -((pxvolume x i') =-6xSy x 1 = 
at at 

To evaluate Term (ii) we will make use of Fig. 2.21 (c.f. Fig. 2.12). Note that the 
rate at which momentum crosses any face of the control volume is (rate at which 
mass crosses the face) x velocity. So if we denote the rate at which mass crosses a face 
by h, Term (ii) is given by 

h3 x $3 -hl x $1 +hZq x ? 4 - h 2  x $2 (2.61) 

But rj23 and ml are given by Eqns (2.38) and (2.39) respectively, and m z  and h 4  by 
similar expressions. In a similar way it can be seen that, recalling ?= (u, v) 

$1 = (u,v) - ($E) ;, 

(;;,;;) : (;;,;;): + 
v 2 =  (u ,v)  - - - -, $4 = (u ,v )+ -.- - 

r i l l X r f 1  m 3 x i 7 3  

Fig. 2.21 
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So the x component of Eqn (2.61) becomes 
du sx du sx du sx du sx 

p ( u+-- d x 2 )  S y x l  ( u+-- d x 2 )  - p  ( u--- d x 2 )  S y x l  ( u--- a x 2 )  

dv sy 
+ p  v+-- S x x l  u+-- - p  v--- S x x l  u--- ( d y 2 )  ( :;;) ( ;;:) ( :;3 

Cancelling like terms and neglecting higher-order terms simplifies this expression to 

p ( 2 u g + v $ + u g ) s x s y x  1 

This can be rearranged as 

p u - + v - + u  -+- SxSy x 1 ( :: du ay {E 3) (2.62a) 
- -  

= 0 Eqn (2.46) 

In an exactly similar way the y component of Eqn (2.61) can be shown to be 

p u-+ v- sxsy x 1 ( ;: :;) (2.62b) 

Term (iii) the body force, acting on the control volume, is simply given by the 
weight of the fluid, i.e. the mass of the fluid multiplied by the acceleration (vector) 
due to gravity. Thus 

Normally, of course, gravity acts vertically downwards, so gx = 0 and g,, = -g. 

illustrated in Fig. 2.22. In the x direction the net pressure force is given by 
The evaluation of Term (iv), the net pressure force acting on the control volume is 

( P - a x ~ ) s y x l - ( p + g ~ ) s ~ x l = - - S x S ~ x ~  ap sx dP 
d X  

(2.64a) 

Fig. 2.22 Pressure forces acting on the infinitesimal control volume 
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Similarly, the y component of the net pressure force is given by 

aP --SxSy x I 
aY 

(2.64b) 

The evaluation of the x component of Term (v), the net viscous force, is illustrated 
in Fig. 2.23. In a similar way as for Eqn (2.64a7b), we obtain the net viscous force in 
the x and y directions respectively as 

(%+%)6xSy x 1 

( Z + 3 ) S x S y  x 1 

(2.65a) 

(2.65b) 

We now substitute Eqns (2.61) to (2.65) into Eqn (2.59) and cancel the common 
factor SxSy x 1 to obtain 

p - + u - + v -  =pg,--+-+- aP aa,, a c x y  (t : ;;) ax ax ay 

(E i: ;;) ay ax ay 
aP aa,, a y y  p -+u-+v- =pgy--+-+- 

(2.66a) 

(2.66b) 

These are the momentum equations in the form of partial differential equations. 
For three dimensional flows the momentum equations can be written in the form: 

av av av 

(2.67~) 

where g,, gy, g, are the components of the acceleration g due to gravity, the body 
force per unit volume being given by pg. 

The only approximation made to derive Eqns (2.66) and (2.67) is the continuum 
model, i.e. we ignore the fact that matter consists of myriad molecules and treat it as 
continuous. Although we have made use of the incompressible form of the continuity 

Fig. 2.23 x-component of forces due to viscous stress acting on infinitesimal control volume 
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Eqn (2.46) to simplify Eqn (2.58a,b), Eqns (2.62) and (2.63) apply equally well to 
compressible flow. In order to show this to be true, it is necessary to allow density to 
vary in the derivation of Term (i) and to simplify it using the compressible form of the 
continuity Eqn (2.45). 

2.6.1 The Euler equations 
For some applications in aerodynamics it can be an acceptable approximation to 
neglect the viscous stresses. In this case Eqns (2.66) simplify to 

aP p -++-+v- =pg,-- (Z ;: ;;) ax 
dP 

p -++-+v- -pg -- dv)- Y ay ( at ax a y  
dv dv 

(2.68a) 

(2.68 b) 

These equations are known as the Euler equations. In principle, Eqns (2.68a,b), 
together with the continuity Eqn (2.46), can be solved to give the velocity components 
u and v and pressurep. However, in general, this is difficult because Eqns (2.68a,b) can 
be regarded as the governing equations for u and v ,  but p does not appear explicitly in 
the continuity equation. Except for special cases, solution of the Euler equations can 
only be achieved numerically using a computer. A very special and comparatively 
simple case is irrotational flow (see Section 2.7.6). For t h s  case the Euler equations 
reduce to a single simpler equation - the Laplace equation. This equation is much more 
amenable to analytical solution and this is the subject of Chapter 3. 

2.7 Rates of strain, rotational flow and vorticity 
As they stand, the momentum Eqns (2.66) (or 2.67), together with the continuity Eqn 
(2.46) (or 2.47) cannot be solved, even in principle, for the flow velocity and pressure. 
Before this is possible it is necessary to link the viscous stresses to the velocity field 
through a constitutive equation. Air, and all other homogeneous gases and liquids, 
are closely approximated by the Newtonian fluid model. This means that the viscous 
stress is proportional to the rate of strain. Below we consider the distortion experi- 
enced by an infinitesimal fluid element as it travels through the flow field. In this way 
we can derive the rate of strain in terms of velocity gradients. The important flow 
properties, vorticity and circulation will also emerge as part of this process. 

2.7.1 Distortion of fluid element in flow field 
Figure 2.24 shows how a fluid element is transformed as it moves through a flow 
field. In general the transformation comprises the following operations: 

(i) Translation - movement from one position to another. 
(ii) DilationlCompression ~ the shape remains invariant, but volume reduces or increases. 

For incompressible flow the volume remains invariant from one position to another. 
(iii) Distortion - change of shape keeping the volume invariant. 

Distortion can be decomposed into anticlockwise rotation through angle 
(a - p)/2 and a shear of angle (a + /3)/2. 

The angles a and p are the shear strains. 
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Start 

(d) Distortion 

n--i I 
(b) Dilation 

Rotation Shear 

Fig. 2.24 Transformation of a fluid element as it moves through the flow field 

2.7.2 Rate of shear strain 
Consider Fig. 2.25. This shows an elemental control volume ABCD that initially at 
time t = ti is square. After an interval of time 6t has elapsed ABCD has moved and 
distorted into A’B‘C’D’. The velocities at t = ti at A, B and C are given b y  

auSx ausy  a v s x  a v s y  
ax 2 ay 2 

a x  2 a y  2 ’  a x  2 ay 2 

a x 2  a y 2 ,  v A = v - - - - - -  (2.69a) 

(2.69b) 

U A  = ------ 

U B  = u----+--  a u s x  a u s y  V B  = v - - - + - -  a v s x  a v s y  

a u s x  ausy a v s x  a v s y  u c = u +  ----- v c = v + - - - - -  ax 2 ay 2 ’ ax 2 ay 2 ( 2 . 6 9 ~ )  
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T B  

Fig. 2.25 

Therefore, if we neglect the higher-order terms, 

YCt -YA‘ - avsx avsy ( avsx aVsy ) } s t  = -st a v  - ( v c -  VA) -=  v+  ------ v ------ - 
6 X  St { a x 2  a y 2  ax  2 ay 2 sx ax a= 

6 X  

(2.7 1 a) 

(2.71b) 

The rate of shear strain in the xy plane is given by 

In much the same way, for three-dimensional flows it can be shown that there are 
two other components of the rate of shear strain 

-- ( ) d 7 X L -  1 -+- aw 
au , d t  2 ax az 

(2.72b, c) 

2.7.3 Rate of direct strain 
Following an analogous process we can also calculate the direct strains and their 
corresponding rates of strain, for example 

au sx st au 
X F  - X E  S X  a x  2 sx ax 

Exx = xF‘-xE’ - - ( U F ‘ - U E ’ ) s t z  (.+--- ( u - g $ ) } - = - & t  (2.73) 
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The other direct strains are obtained in a similar way; thus the rates of direct strain 
are given by 

Thus we can introduce a rate of strain tensor analogous to the stress tensor (see 
Section 2.6) and for which components in two-dimensional flow can be represented 
in matrix form as follows: 

(2.75) 

where ( ‘ ) is used to denote a time derivative. 

2.7.4 Vorticity 
The instantaneous rate of rotation of a fluid element is given by (ci - ,8)/2 - see 
above. This corresponds to a fundamental property of fluid flow called the vorticity 
that, using Eqn (2.71), in two-dimensional flow is defined as 

d a  dp av au 5 = - - - = - - - 
dt dt ax ay 

In three-dimensional flow vorticity is a vector given by 

aw av  au aw av au 
ay az ’az  w a x  ay 

(2.76) 

It can be seen that the three components of vorticity are twice the instantaneous 
rates of rotation of the fluid element about the three coordinate axes. Mathematically 
it is given by the following vector operation 

Q = V x v  (2.78) 

Vortex lines can be defined analogously to streamlines as lines that are tangential 
to the vorticity vector at all points in the flow field. Similarly the concept of the 
vortex tube is analogous to that of stream tube. Physically we can think of flow 
structures like vortices as comprising bundles of vortex tubes. In many respects 
vorticity and vortex lines are even more fundamental to understanding the flow 
physics than are velocity and streamlines. 

2.7.5 Vorticity in polar coordinates 
Referring to Section 2.4.3 where polar coordinates were introduced, the correspond- 
ing definition of vorticity in polar coordinates is 

(2.79) 

Note that consistent with its physical interpretation as rate of rotation, the units of 
vorticity are radians per second. 
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%Reference axes 

Fig. 2.26 

2.7.6 Rotational and irrotational flow 
It will be made clear in Section 2.8 that the generation of shear strain in a fluid element, 
as it travels through the flow field, is closely linked with the effects of viscosity. It is also 
plain from its definition (Eqn (2.76)) that vorticity is related to rate of shear strain. 
Thus, in aerodynamics, the existence of vorticity is associated with the effects of 
viscosity.* Accordingly, when the effects of viscosity can be neglected, the vorticity is 
usually equivalently zero. This means that the individual fluid elements do not rotate, 
or distort, as they move through the flow field. For incompressible flow, then, this 
corresponds to the state of pure translation that is illustrated in Fig. 2.26. Such a flow is 
termed irrotational flow. Mathematically, it is characterized by the existence of a velocity 
potential and is, therefore, also called potential flow. It is the subject of Chapter 3. 
The converse of irrotational flow is rotational flow. 

2.7.7 Circulation 
The total amount of vorticity passing through any plane region within a flow field is 
called the circulation, r. This is illustrated in Fig. 2.27 which shows a bundle of vortex 
tubes passing through a plane region of area A located in the flow field. The 
perimeter of the region is denoted by C .  At a typical point P on the perimeter, the 
velocity vector is designated q or, equivalently, t. At P, the infinitesimal portion of C 
has length 6s and points in the tangential direction defined by the unit vector t (or i‘). 
It is important to understand that the region of area A and its perimeter C have no 
physical existence. Like the control volumes used for the application of conservation 
of mass and momentum, they are purely theoretical constructs. 

Mathematically, the total strength of the vortex tubes can be expressed as an 
integral over the area A; thus 

(2.80) 

where n is the unit normal to the area A .  In two-dimensional flow the vorticity is in the 
z direction perpendicular to the two-dimensional flow field in the (x, y )  plane. Thus 
n = k (i.e. the unit vector in the z direction) and = Ck, so that Eqn (2.80) simplifies to 

(2.81) 

* Vorticity can also be created by other agencies, such as the presence of spatially varying body forces in the 
flow field. This could correspond to the presence of particles in the flow field, for example. 
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' Bundle of vortex tubes 

Fig. 2.27 

Circulation can be regarded as a measure of the combined strength of the total 
number of vortex lines passing through A.  It is a measure of the vorticityjlux carried 
through A by these vortex lines. The relationship between circulation and vorticity is 
broadly similar to that between momentum and velocity or that between internal 
energy and temperature. Thus circulation is the property of the region A bounded by 
control surface C, whereas vorticity is a flow variable, like velocity, defined at a 
point. Strictly it makes no more sense to speak of conservation, generation, or 
transport of vorticity than its does to speak of conservation, generation, or transport 
of velocity. Logically these terms should be applied to circulation just as they are to 
momentum rather than velocity. But human affairs frequently defy logic and aero- 
dynamics is no exception. We have become used to speaking in terms of conservation 
etc. of vorticity. It would be considered pedantic to insist on circulation in this 
context, even though this would be strictly correct. Our only motivation for 
making such fine distinctions here is to elucidate the meaning and significance of 
circulation. Henceforth we will adhere to the common usage of the terms vorticity 
and circulation. 

In two-dimensional flow, in the absence of the effects of viscosity, circulation is 
conserved. This can be expressed mathematically as follows: 

(2.82) 

In view of what was written in Section 2.7.6 about the link between vorticity and 
viscous effects, it may seem somewhat illogical to neglect such effects in Eqn (2.82). 
Nevertheless, it is often a useful approximation to use Eqn (2.82). 

Circulation can also be evaluated by means of an integration around the 
perimeter C .  This can be shown elegantly by applying Stokes theorem to Eqn 
(2.8 1); thus 

(2.83) 

This commonly serves as the definition of circulation in most aerodynamics text. 

Chapters 5 and 6. 
The concept of circulation is central to the theory of lift. This will become clear in 
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Y -vi y2 ------ 

Fig. 2.28 

Example 2.2 For the rectangular region of a two-dimensional flow field depicted in Fig. 2.28, 
starting with the definition Eqn (2.81) of circulation, show that it can also be evaluated by 
means of the integral around the closed circuit appearing as the last term in Eqn (2.83). 

From Eqns (2.76) and (2.81) it follows that 

Therefore 

But along the lines: C1, q = ui, t = i, ds = dx; C2, q = vj, t = j, ds = dy; C,, q = ui, t = -i, 
ds = -dx; and Cq, q = uj, t = -j, ds = -dy. It therefore follows that Eqn (2.84) is equivalent to 

2.8 The Navier-Stokes equations 
2.8.1 Relationship between rates of strain 

and viscous stresses 
In solid mechanics the fundamental theoretical model linking the stress and strain 
fields is Hooke’s law that states that 

Stress 0; Strain (2 .85)  
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The equivalent in fluid mechanics is the model of the Newtonianfluid for which it is 
assumed that 

Stress 0: Rate of strain (2.86) 

However, there is a major difference in status between the two models. At best 
Hooke's law is a reasonable approximation for describing small deformations of 
some solids, particularly structural steel. Whereas the Newtonian fluid is a very 
accurate model for the behaviour of almost all homogeneous fluids, in particular 
water and air. It does not give good results for pseudofluids formed from suspensions 
of particles in homogeneous fluids, e.g. blood, toothpaste, slurries. Various Non- 
Newtonian fluid models are required to describe such fluids, which are often called 
non-Newtonian fluids. Non-Newtonian fluids are of little interest in aerodynamics 
and will be considered no further here. 

For two-dimensional flows, the constitutive law (2.86) can be written 

(2.87) 

where ( * ) denotes time derivatives. The factor 2 is merely used for convenience so as 
to cancel out the factor 1/2 in the expression (2.72a) for the rate of shear strain. 
Equation (2.87) is sufficient in the case of an incompressible fluid. For a compressible 
fluid, however, we should also allow for the possibility of direct stress being gener- 
ated by rate of change of volume or dilation. Thus we need to add the following to the 
right-hand side of (2.87) 

(2.88) 

p and X are called the first and second coefficients of viscosity. More frequently p is 
just termed the dynamic viscosity in contrast to the kinematic viscosity I/ = p/p. If it is 
required that the actual pressure p - 4 (oXx + ayy) + a,, in a viscous fluid be identical 
to the thermodynamic pressure p ,  then it is easy to show that 

2 
3 

3X+2p=O or X = - - p  

This is often called Stokes hypothesis. In effect, it assumes that the bulk viscosity, 
p', linking the average viscous direct stress to the rate of volumetric strain is zero, i.e. 

(2.89) 
2 
3 

This is still a rather controversial question. Bulk viscosity is of no importance in 
the great majority of engineering applications, but can be important for describing 
the propagation of sound waves in liquids and sometimes in gases also. Here, for the 
most part, we will assume incompressible flow, so that 

p' = x + - p II 0 

. du av 
i x x  + Eyy = %+- aY = 0 

and Eqn (2.87) will, accordingly, be valid. 
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2.8.2 The derivation of the Navier-Stokes equations 
Restricting our derivation to two-dimensional flow, Eqn (2.87) with (2.72a) and 
(2.73) gives 

(2.90) 
d U  dV au av 
ax aY 

a,,=2p--, orV=2p--, CTxy=uyx=p (ay -+-) ax 

So the right-hand side of the momentum Eqns (2.66a) becomes 

(au) :(;; 3 
ax (ax2 a y 2  ax ax ay 

aP 
ax ax ax g,--+2p- - + p -  -+- 

- -gx - -+p  ap -+- a2U a2u) +p- a (au -+- av) (2.91) 
v 

=0, Eqn (2.46) 

The right-hand side of (2.66b) can be dealt with in a similar way. Thus the momen- 
tum equations (2.66a,b) can be written in the form 

p -+u-+v- =pgx--+p -+- <g ax au ay ax ap (8x2 a2U 9 ay2 

ap a2v $7 (E ax ay "1 y ay (ax2 ay2 

av 
p -+u-+v- =pg - - + p  -+- 

(2.92a) 

(2.92b) 

This form of the momentum equations is known as the Navier-Stokes equations for 
two-dimensional flow. With the inclusion of the continuity equation 

au av 
ax ay 
- + - = O  (2.93) 

we now have three governing equations for three unknown flow variables u, v, p. 

below: 
The Navier-Stokes equations for three-dimensional incompressible flows are given 

au av a w  
ax ay az - + - + - = O  (2.94) 

au au au au ap azU 8% a Z U  
p(at + u- + v- + w -) = pg, - - (2.95a) ax ay az ax + (32  + ayz + 32) 

a v  av ap aZv a2 azv (E ax ay aZ ay (ax2 ay2 az2 

ap  a2W a 2 W  a2W 

az  6 x 2  ay2 a z 2  

aw aw 
p =pgz- - -+p  -+-+-) 

p -+u-+v-+w- =pgy--+p -++++) (2.95b) 

(2.95~) 

2.9 Properties of the Navier-Stokes equations 

At first sight the Navier-Stokes equations, especially the three-dimensional version, 
Eqns (2.95), may appear rather formidable. It is important to recall that they are 
nothing more than the application of Newton's second law of motion to fluid flow. 
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For example, the left-hand side of Eqn (2.95a) represents the total rate of change of 
the x component of momentum per unit volume. Indeed it is often written as: 

D d d d  d + u - +  v-+ w- Du where --- - 
D t -  at a x  ay az (2.96) 

is called the total or material derivative. It represents the total rate of change with time 
following the fluid motion. The left-hand sides of Eqns (2.95bYc) can be written in a 
similar form. The three terms on the right-hand side represent the x components of body 
force, pressure force and viscous force respectively acting on a unit volume of fluid. 

The compressible versions of the Navier-Stokes equations plus the continuity 
equation encompass almost the whole of aerodynamics. To be sure, applications 
involving combustion or rarified flow would require additional chemical and phys- 
ical principles, but most of aerodynamics is contained within the Navier-Stokes 
equations. Why, then, do we need the rest of the book, not to mention the remaining 
vast, ever-growing, literature devoted to aerodynamics? Given the power of modern 
computers, could we not merely solve the Navier-Stokes equations numerically for 
any aerodynamics application of interest? The short answer is no! Moreover, there is 
no prospect of it ever being possible. To explain fully why this is so is rather difficult. 
We will, nevertheless, attempt to give a brief indication of the nature of the problem. 

Let us begin by noting that the Navier-Stokes equations are a set of partial 
differential equations. Few analytical solutions exist that are useful in aerodynamics. 
(The most useful examples will be described in Section 2.10.) Accordingly, it is 
essential to seek approximate solutions. Nowadays, it is often possible to obtain very 
accurate numerical solutions by using computers. In many respects these can be 
regarded almost as exact solutions, although one must never forget that computer- 
generated solutions are subject to error. It is by no means simple to obtain such 
numerical solutions of the Navier-Stokes equations. There are two main sources of 
difficulty. First, the equations are nonlinear. The nonlinearity arises from the left- 
hand sides, i.e. the terms representing the rate of change of momentum - the so-called 
inertial terms. To appreciate why these terms are nonlinear, simply note that when 
you take a term on the right-hand side of the equations, e.g. the pressure terms, when 
the flow variable (e.g. pressure) is doubled the term is also doubled in magnitude. 
This is also true for the viscous terms. Thus these terms are proportional to the 
unknown flow variables, i.e. they are linear. Now consider a typical inertial term, say 
uduldx. This term is plainly proportional to u2 and not u, and is therefore nonlinear. 
The second source of difficulty is more subtle. It involves the complex effects of 
viscosity. 

In order to understand this second point better, it is necessary to make the Navier- 
Stokes equations non-dimensional. The motivation for working with non-dimen- 
sional variables and equations is that it helps to make the theory scale-invariant and 
accordingly more universal (see Section 1.4). In order to fix ideas, let us consider the air 
flowing at speed U, towards a body, a circular cylinder or wing say, of length L .  See 
Fig. 2.29. The space variables x,  y ,  and z can be made nondimensional by dividing by 
L .  L / U ,  can be used as the reference time to make time non-dimensional. Thus we 
introduce the non-dimensional coordinates 

X = x / L ,  Y = y / L ,  Z = z / L ,  and T = t U / L  (2.97) 

U, can be used as the reference flow speed to make the velocity components 
dimensionless and pU& (c.f. Bernoulli equation Eqn (2.16)) used as the reference 
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Fig. 2.29 

pressure. (For incompressible flow, at least, only pressure difference is of significance 
and not the absolute value of the pressure.) This allows us to introduce the following 
non-dimensional flow variables: 

U = u/Um, V = v / U X ,  W = w/U,,  and P = p / ( p U L )  (2.98) 

If, by writing x = XL etc. the non-dimensional variables given in Eqns (2.97) and 
(2.98) are substituted into Eqns (2.94) and (2.95) with the body-force terms omitted, 
we obtain the Navier-Stokes equations in the form: 

au av aw -+-+-=o ax aY az (2.99) 

(2.100a) 

(2.100b) 

(2.1 OOC) 
DW dP 1 8 W  @‘W @‘W 
DT --E+%(=+dr2+=) 

where the short-hand notation (2.96) for the material derivative has been used. 
A feature of Eqns (2.100) is the appearance of the dimensionless quantity known 
as the Reynolds number: 

-- 

(2.101) PUmL R e = -  
P 

From the manner in which it has emerged from making the Navier-Stokes equations 
dimensionless, it is evident that the Reynolds number (see also Section 1.4) represents 
the ratio of the inertial to the viscous terms (i.e. the ratio of rate of change of 
momentum to the viscous force). It would be difficult to overstate the significance 
of Reynolds number for aerodynamics. 

It should now be clear from Eqns (2.99) and (2.100) that if one were to calculate 
the non-dimensional flow field for a given shape - a circular cylinder, for example - 
the overall flow pattern obtained would depend on the Reynolds number and, in the 
case of unsteady flows, on the dimensionless time T .  The flow around a circular 
cylinder is a good example for illustrating just how much the flow pattern can change 
over a wide range of Reynolds number. See Section 7.5 and Fig. 7.14 in particular. 
Incidentally, the simple dimensional analysis carried out above shows that it is not 
always necessary to solve equations in order to extract useful information from them. 

For high-speed flows where compressibility becomes important the absolute value 
of pressure becomes significant. As explained in Section 2.3.4 (see also Section 1.4), 
this leads to the appearance of the Mach number, M (the ratio of the flow speed to the 
speed of sound), in the stagnation pressure coefficient. Thus, when compressibility 
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becomes important (see Section 2.3.4), Mach number becomes a second dimension- 
less quantity characterizing the flow field. 

The Navier-Stokes equations are deceptively simple in form, but at high Reynolds 
numbers the resulting flow fields can be exceedingly complex even for simple geo- 
metries. This is basically a consequence of the behaviour of the regions of vortical 
flow at high Reynolds number. Vorticity can only be created in a viscous flow and 
can be regarded as a marker for regions where the effects of viscosity are important in 
some sense. 

For engineering applications of aerodynamics the Reynolds numbers are very 
large, values well in excess of lo6 are commonplace. Accordingly, one would expect 
that to a good approximation one could drop the viscous terms on the right-hand 
side of the dimensionless Navier-Stokes Eqns (2.100). In general, however, this view 
would be mistaken and one never achieves a flow field similar to the inviscid one no 
matter how high the Reynolds number. The reason is that the regions of non-zero 
vorticity where viscous effects cannot be neglected become confined to exceedingly 
thin boundary layers adjacent to the body surface. As Re + oc the boundary-layer 
thickness, 6 + 0. If the boundary layers remained attached to the surface they would 
have little effect beyond giving rise to skin-friction drag. But in all real flows the 
boundary layers separate from the surface of the body, either because of the effects of 
an adverse pressure gradient or because they reach the rear of the body or its trailing 
edge. When these thin regions of vortical flow separate they form complex unsteady 
vortex-like structures in the wake. These take their most extreme form in turbulent 
flow which is characterized by vortical structures with a wide range of length and 
time scales. 

As we have seen from the discussion given above, it is not necessary to solve the 
Navier-Stokes equations in order to obtain useful information from them. This is 
also illustrated by following example: 

Example 2.3 Aerodynamic modelling 
Let us suppose that we are interested carrying out tests on a model in a wind-tunnel in order to 
study and determine the aerodynamic forces exerted on a motor vehicle travelling at normal 
motorway speeds. In this case the speeds are sufficiently low to ensure that the effects of 
compressibility are negligible. Thus for a fixed geometry the flow field will be characterized 
only by Reynolds number.* In this case we can use U,, the speed at which the vehicle travels 
(the air speed in the wind-tunnel working section for the model) as the reference flow speed, 
and L can be the width or length of the vehicle. So the Reynolds number Re pU,L/p.  For 
a fixed geometry it is clear from Eqns (2.99) and (2.100) that the non-dimensional flow 
variables, U, V, W, and P are functions only of the dimensionless coordinates X :  Y ,  2: T ,  
and the dimensionless quantity, Re. In a steady flow the aerodynamic force, being an overall 
characteristic of the flow field, will not depend on X ,  Y ,  Z ,  or T.  It will, in fact, depend only 
on Re. Thus if we make an aerodynamic force, drag (0) say, dimensionless, by introducing 
a force (i.e. drag) coefficient defined as 

(2.102) 

(see Section 1.5.2 and noting that here we have used Lz in place of area S) it should be clear 
that 

Co = F(Re) i.e. a function of Re only (2.103) 

* In fact, this statement is somewhat of an over-simplification. Technically the turbulence characteristics of 
the oncoming flow also influence the details of the flow field. 
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If we wish the model tests to produce useful information about general characteristics of the 
prototype’s flow field, in particular estimates for its aerodynamic drag, it is necessary for the 
model and prototype to be dynamically similar, i.e. for the forces to be scale invariant. It can be 
seen from Eqn (2.103) that this can only be achieved provided 

Re, = Re,, (2.104) 

where suffices m and p denote model and prototype respectively. 
It is not usually practicable to use any other fluid but air for the model tests. For standard 

wind-tunnels the air properties in the wind-tunnel are not greatly different from those experi- 
enced by the prototype. Accordingly, Eqn (2.104) implies that 

u, =-up L P  (2.105) 
L, 

Thus, if we use a 1/5-scale model, Eqn (2.105) implies that U,  = 5UP. So a prototype speed of 
100 km/hr (c. 30 m/s) implies a model speed of 500 km/hr (c. 150 m/s). At such a model speed 
compressibility effects are no longer negligible. This illustrative example suggests that, in 
practice, it is rarely possible to achieve dynamic similarity in aerodynamic model tests using 
standard wind-tunnels. In fact, dynamic similarity can usually only be achieved in aerody- 
namics by using very large and expensive facilities where the dynamic similarity is achieved by 
compressing the air (thereby increasing its density) and using large models. 

In this example we have briefly revisited the material covered in Section 1.4. The objective 
was to show how the dimensional analysis of the Navier-Stokes equations (effectively the exact 
governing equations of the flow field) could establish more rigorously the concepts introduced 
in Section 1.4. 

2.10 Exact solutions of the Navier-Stokes 
equations 

Few physically realizable exact solutions of the Navier-Stokes equations exist. Even 
fewer are of much interest in Engineering. Here we will present the two simplest 
solutions, namely Couette flow (simple shear flow) and plane Poiseuille flow (channel 
flow). These are useful for engineering applications, although not for the aerody- 
namics of wings and bodies. The third exact solution represents the flow in the 
vicinity of a stagnation point. This is important for calculating the flow around 
wings and bodies. It also illustrates a common and, at first sight, puzzling feature. 
Namely, that if the dimensionless Navier-Stokes equations can be reduced to an 
ordinary differential equation, this is regarded as tantamount to an exact solution. 
This is because the essentials of the flow field can be represented in terms of one or 
two curves plotted on a single graph. Also numerical solutions to ordinary differ- 
ential equations can be obtained to any desired accuracy. 

2.10.1 Couette flow - simple shear flow 
This is the simplest exact solution. It corresponds to the flow field created between 
two infinite, plane, parallel surfaces; the upper one moving tangentially at speed U T ,  
the lower one being stationary (see Fig. 2.30). Since the flow is steady and two- 
dimensional, derivatives with respect to z and t are zero, and w = 0. The streamlines 
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h 

Fig. 2.30 

are parallel to the x axis, so v = 0. Therefore Eqn (2.93) implies du/dx = 0, i.e. u is a 
function only of y. There is no external pressure field, so Eqn (2.92a) reduces to 

(2.106) p- = 0 implying u = Cly + C2 

where C1 and C2 are constants of integration. u = 0 and UT when y = 0 and h 
respectively, so Eqn (2.106) becomes 

a2U 

dY2 

where T is the constant viscous shear stress. 
This solution approximates well the flow between two concentric cylinders with the 

inner one rotating at fmed speed, provided the clearance is small compared with the 
cylinder’s radius, R. This is the basis of a viscometer - an instrument for measuring 
viscosity, since the torque required to rotate the cylinder at constant speed w is 
proportional to T which is given by pwR/h. Thus if the torque and rotational speed 
are measured the viscosity can be determined. 

2.10.2 Plane Poiseuille flow - pressure-driven channel flow 
This also corresponds to the flow between two infinite, plane, parallel surfaces (see 
Fig. 2.31). Unlike Couette flow, both surfaces are stationary and flow is produced by 
the application of pressure. Thus all the arguments used in Section 2.10.1 to simplify 
the Navier-Stokes equations still hold. The only difference is that the pressure term 
in Eqn (2.95a) is retained so that it simplifies to 

(2.108) dp 8% 1 dPY2 
- - + p- = 0 implying u = --- + clY + c2 dx 8y2 pdx 2 

The no-slip condition implies that u = 0 at y = 0 and h, so Eqn (2.108) becomes 

(2.109) 

Thus the velocity profile is parabolic in shape. 
The true Poiseuille flow is found in capillaries with round sections. A very similar 

solution can be found for this case in a similar way to Eqn (2.109) that again has 



Governing equations of fluid mechanics 97 

h 

Y A  

X - V 
......................................... 

Fig. 2.31 

a parabolic velocity profile. From this solution, Poiseuille’s law can be derived 
linking the flow rate, Q, through a capillary of diameter d to the pressure gradient, 
namely 

Q=--- 7rd4 dp 
128p dx 

(2.110) 

Poiseuille was a French physician who derived his law in 1841 in the course of 
his studies on blood flow. His law is the basis of another type of viscometer whereby 
the flow rate driven through a capillary by a known pressure difference is measured. 
The value of viscosity can be determined from this measurement by using Eqn (2.110). 

2.10.3 Hiemenz flow - two-dimensional stagnation-point flow 
The simplest example of this type of flow, illustrated in Fig. 2.32, is generated by 
uniform flow impinging perpendicularly on an infinite plane. The flow divides equally 
about a stagnation point (strictly a line). The velocity field for the corresponding 
inviscid potential flow (see Chapter 3) is 

u = ax v = -ay where a is a const. (2.111) 

The real viscous flow must satisfy the no-slip condition at the wall - as shown in Fig. 2.32 - 
but the potential flow may offer some hints on seeking the full viscous solution. 

This special solution is of particular interest for aerodynamics. All two- 
dimensional stagnation flows behave in a similar way near the stagnation point. 
It can therefore be used as the starting solution for boundary-layer calculations in the 
case of two-dimensional bodies with rounded noses or leading edges (see Example 2.4). 
There is also an equivalent axisymmetric stagnation flow. 

The approach used to find a solution to the two-dimensional Navier-Stokes 
Eqns (2.92) and (2.93) is to aim to reduce the equations to an ordinary differential 
equation. This is done by assuming that, when appropriately scaled, the non-dimensional 
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Fig. 2.32 Stagnation-zone flow field 

velocity profile remains the same shape throughout the flow field. Thus the nature of the 
flow field suggests that the normal velocity component is independent of x ,  so that 

v = -f 0.1) (2.112) 

where f(y) is a function of y that has to be determined. Substitution of Eqn (2.1 12) 
into the continuity Eqn (2.93) gives 

(2.113) 824 - =f'(y); integrate to get u = xf '(y) ax 
where ( )' denotes differentiation with respect to y.  The constant of integration in Eqn 
(2.113) is equivalently zero, as u = v = 0 at x = 0 (the stagnation point), and was 
therefore omitted. 

For a potential flow the Bernoulli equation gives 

1 
P + p(+) =Po. 

dXz+$yZ 

So for the full viscous solution we will try the form: 

(2.114) 

(2.1 1 5) 

where F( y )  is another function of y .  If the assumptions (2.112) and (2.11 5 )  are 
incorrect, we will fail in our objective of reducing the NavierStokes equations to 
ordinary differential equations. 

Substitute Eqns (2.112), (2.113) and (2.115) into Eqn (2.92a,b) to get 

(2.116) au au ap a2u d2U 
ax ay ax ax2 ay2 

pu-++v- = -- +p(- + -) - - -  P X f R  - p x p  -w=x Y s  
av av 

pu-++v-= 
ax ay 

- P ? '  -@F'/2 

(2.117) 
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Simplifying these two equations gives 

(2.118) 

(2.119) 

where use has been made of the definition of kinematic viscosity (v = p/p). Evidently 
the assumptions made above were acceptable, since we have succeeded in the aim 
of reducing the Navier-Stokes equations to ordinary differential equations. Also 
note that the second Eqn (2.1 19) is only required to determine the pressure field, 
Eqn (2.118) on its own can be solved for f , thus determining the velocity field. 

1 
2 

f f‘ = -a2F’ - vf” 

The boundary conditions at the wall are straightforward, namely 

u =  v = O  at y = O  implying f =f ’=O at y = O  (2.120) 

u - a x  as y - +  co implying f ’ = a  as y-+ 00 (2.121) 

As y -+ m the velocity will tend to its form in the corresponding potential flow. Thus 

In its present form Eqn (2.118) contains both a and v, so that f depends on these 
parameters as well as being a function of y. It is desirable to derive a universal form 
of Eqn (2.118), so that we only need to solve it once and for all. We attempt to 
achieve this by scaling the variables f ( y )  and y ,  i.e. by writing 

f ( Y )  = P$(r]), 71 = a Y  (2.122) 

where a and ,B are constants to be determined by substituting Eqn (2.122) into 
Eqn (2.118). Noting that 

Eqn (2.1 18) thereby becomes 

QZp2$’2 - &@q5$“ = a2 + ya3pq5“‘ (2.123) 

Thus providing 

a2p2 = 2 = m 3 p ,  implying a = m, p = (2.124) 

they can be cancelled as common factors and Eqn (2.124) reduces to the universal 
form: 

q5’” + qkj” - $12 + 1 = 0 (2.125) 

with boundary conditions 

$(O) = q5’(0) = 0, qqco) = 1 
In fact, 4‘ = u/U, where U, = ax the velocity in the corresponding potential flow 
found when r] -+ cc. It is plotted in Fig. 2.33. We can regard the point at which 
$’ = 0.99 as marking the edge of the viscous region. This occurs at r] E 2.4. This 
viscous region can be regarded as the boundary layer in the vicinity of the stagnation 
point (note, though, no approximation was made to obtain the solution). Its thick- 
ness does not vary with x and is given by 

S N 2 . 4 G  (2.126) 
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Fig. 2.33 

Example 2.4 Calculating the boundary-layer thickness in the stagnation zone at the leading 
edge. 
We will estimate the boundary-layer thickness in the stagnation zone of (i) a circular cylinder 
of 120mm diameter in a wind-tunnel at a flow speed of 20mls; and (ii) the leading-edge of a 
Boeing 747 wing with a leading-edge radius of 15Omm at a flight speed of 250mls. 

For a circular cylinder the potential-flow solution for the tangential velocity at the surface is 
given by 2U,sin4 (see Eqn (3.44)). Therefore in Case (i) in the stagnation zone, 
x = R sin 4 N R4, so the velocity tangential to the cylinder is 

X 

Therefore, as shown in Fig. 2.34, if we draw an analogy with the analysis in Section 2.10.3 
above, a = 2U,/R = 2 x 2010.06 = 666.7 sec-I. Thus from Eqn (2.126), given that for air the 
kinematic viscosity, Y N 15 x 10-6m2/s, 

6 N 2 . 4 8  = 2.4/- 666.7 = 360 pm 

For the aircraft wing in Case (ii) we regard the leading edge as analogous locally to a circular 
cylinder and follow the same procedure as for Case (i). Thus R = 150mm = 0.15 m and 
U, = 250m/s, so in the stagnation zone, a = 2U,/R = 2 x 25010.15 = 3330s~-l  and 

These results underline just how thin the boundary layer is! A point that will be taken up in 
Chapter 7. 
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Fig. 2.34 

Exercises 
1 Continuity Equation for axisymmetricflow 
(a) Consider an axisymmetric flow field expressed in terms of the cylindrical 
coordinate system (r,  4, z) where all flow variables are independent of the azimuthal 
angle 4. For example, the axial flow over a body of revolution. If the velocity 
components (u, w) correspond to the coordinate directions (r, z) respectively, show 
that the continuity equation is given by 

du u dw -+-+-=o 
dr r dz 

(b) Show that the continuity equation can be automatically satisfied by a stream- 
function 11, of a form such that 

2 Continuity equation for two-dimensional flow in polar coordinates 
(a) Consider a two-dimensional flow field expressed in terms of the cylindrical 
coordinate system (r,  4, z) where all flow variables are independent of the azimuthal 
angle 4. For example, the flow over a circular cylinder. If the velocity components 
(u, v) correspond to the coordinate directions (r, 4) respectively, show that the 
continuity equation is given by 

du u ldv -+-+--=o 
dr r r&i5 

(b) Show that the continuity equation can be automatically satisfied by a stream- 
function $ of a form such that 
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3 Transport equation for contaminant in two-dimensional flow field 
In many engineering applications one is interested in the transport of a contaminant 
by the fluid flow. The contaminant could be anything from a polluting chemical to 
particulate matter. To derive the governing equation one needs to recognize that, 
provided that the contaminant is not being created within the flow field, then the 
mass of contaminant is conserved. The contaminant matter can be transported by 
two distinct physical mechanisms, namely convection and molecular diffusion. Let C 
be the concentration of contaminant (i.e. mass per unit volume of fluid), then the rate 
of transport of contamination per unit area is given by 

where i and j are the unit vectors in the x and y directions respectively, and V is the 
diffusion coefficient (units m2/s,  the same as kinematic viscosity). 

Note that diffusion transports the contaminant down the concentration gradient 
(i.e. the transport is from a higher to a lower concentration) hence the minus sign. It 
is analogous to thermal conduction. 
(a) Consider an infinitesimal rectangular control volume. Assume that no contam- 
inant is produced within the control volume and that the contaminant is sufficiently 
dilute to leave the fluid flow unchanged. By considering a mass balance for the 
control volume, show that the transport equation for a contaminant in a two- 
dimensional flow field is given by 

dC dC dC 
- + u - + v - - v  
d t  a x  a y  

(b) Why is it necessary to assume a dilute suspension of contaminant? What form 
would the transport equation take if this assumption were not made? Finally, how 
could the equation be modified to take account of the contaminant being produced 
by a chemical reaction at the rate of riz, per unit volume. 

4 Euler equations for axisymmetric jlow 
(a) for the flow field and coordinate system of Ex. 1 show that the Euler equations 
(inviscid momentum equations) take the form: 

5 The Navier-Stokes equations for two-dimensional axisymmetric jlow 
(a) Show that the strain rates and vorticity for an axisymmetric viscous flow like that 
described in Ex. 1 are given by: 

. d u  . dw . u  
E$$ = - r Err = - -  dr Y Ezz = z; 
dw au 

[Hint: Note that the azimuthal strain rate is not zero. The easiest way to determine it 
+ i d $  + iZ2 = 0 must be equivalent to the continuity equation.] is to recognize that 
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(b) Hence show that the Navier-Stokes equations for axisymmetric flow are given by 

ap @u l d u  u @u 
dr r2 r dr r2 dz2 = pg, - - + p(F + -- - - + -) 

=pgz--+p(-+--+-) ap @W l a w  @W 

d Z  dr2 r dr dz2 
6 Euler equations for two-dimensional f l ow  in polar coordinates 
(a) For the two-dimensional flow described in Ex. 2 show that the Euler equations 
(inviscid momentum equations) take the form: 

dr 

[Hints: (i) The momentum components perpendicular to and entering and leaving 
the side faces of the elemental control volume have small components in the radial 
direction that must be taken into account; likewise (ii). the pressure forces acting on 
these faces have small radial components.] 
7 Show that the strain rates and vorticity for the flow and coordinate system of Ex. 6 
are given by: 

. du . l d v  u 
QQ =-- r a d + ;  Err = -. 

?j =-  1 av ---+--). i d u  c =---- i d u  av +- 
r& 2 ( dr r ra+ ’ rw dr r 

[Hint: (i) The angle of distortion (p) of the side face must be defined relative to the 
line joining the origin 0 to the centre of the infinitesimal control volume.] 

8 (a) The flow in the narrow gap (of width h) between two concentric cylinders of length 
L with the inner one of radius R rotating at angular speed w can be approximated by the 
Couette solution to the NavierStokes equations. Hence show that the torque T and 
power P required to rotate the shaft at a rotational speed of w rad/s are given by 

2rpwR3 L 2 T p w 2 ~ 3 ~  
h P =  h ’  

T =  

9 Axisymmetric stagnation-point f l ow  
Carry out a similar analysis to that described in Section 2.10.3 using the axisymmetric 
form of the NavierStokes equations given in Ex. 5 for axisymmetric stagnation- 
point flow and show that the equivalent to Eqn (2.11 8) is 

411’ + 2441 - 412 + 1 = 0 

where 4’ denotes differentiation with respect to the independent variable c = m z  
and 4 is defined in exactly the same way as for the two-dimensional case. 



Potential flow 

3.1 Introduction 

The concept of irrotational flow is introduced briefly in Section 2.7.6. By definition 
the vorticity is everywhere zero for such flows. This does not immediately seem a very 
significant simplification. But it turns out that zero vorticity implies the existence of a 
potential field (analogous to gravitational and electric fields). In aerodynamics the 
main variable of the potential field is known as the velocity potential (it is analogous 
to voltage in electric fields). And another name for irrotational flow is potentialflow. 
For such flows the equations of motion reduce to a single partial differential equa- 
tion, the famous Laplace equation, for velocity potential. There are well-known 
techniques (see Sections 3 .3  and 3.4) for finding analytical solutions to Laplace’s 
equation that can be applied to aerodynamics. These analytical techniques can also 
be used to develop sophisticated computational methods that can calculate the 
potential flows around the complex three-dimensional geometries typical of modern 
aircraft (see Section 3.5). 

In Section 2.7.6 it was explained that the existence of vorticity is associated with 
the effects of viscosity. It therefore follows that approximating a real flow by a 
potential flow is tantamount to ignoring viscous effects. Accordingly, since all real 
fluids are viscous, it is natural to ask whether there is any practical advantage in 
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studying potential flows. Were we interested only in bluff bodies like circular cylin- 
ders there would indeed be little point in studying potential flow, since no matter how 
high the Reynolds number, the real flow around a circular cylinder never looks 
anything like the potential flow. (But that is not to say that there is no point in 
studying potential flow around a circular cylinder. In fact, the study of potential flow 
around a rotating cylinder led to the profound Kutta-Zhukovski theorem that links 
lift to circulation for all cross-sectional shapes.) But potential flow really comes into 
its own for slender or streamlined bodies at low angles of incidence. In such cases the 
boundary layer remains attached until it reaches the trailing edge or extreme rear of 
the body. Under these circumstances a wide low-pressure wake does not form, unlike 
a circular cylinder. Thus the flow more or less follows the shape of the body and the 
main viscous effect is the generation of skin-friction drag plus a much smaller 
component of form drag. 

Potential flow is certainly useful for predicting the flow around fuselages and other 
non-lifting bodies. But what about the much more interesting case of lifting bodies 
like wings? Fortunately, almost all practical wings are slender bodies. Even so there is 
a major snag. The generation of lift implies the existence of circulation. And circul- 
ation is created by viscous effects. Happily, potential flow was rescued by an important 
insight known as the Kuttu condition. It was realized that the most important effect of 
viscosity for lifting bodies is to make the flow leave smoothly from the trailing edge. 
This can be ensured within the confines of potential flow by conceptually placing one 
or more (potential) vortices within the contour of the wing or aerofoil and adjusting 
the strength so as to generate just enough circulation to satisfy the Kutta condition. 
The theory of lift, i.e. the modification of potential flow so that it becomes a suitable 
model for predicting lift-generating flows is described in Chapters 4 and 5. 

3.1.1 The velocity potential 
The stream function (see Section 2.5) at a point has been defined as the quantity 
of fluid moving across some convenient imaginary line in the flow pattern, and lines of 
constant stream function (amount of flow or flux) may be plotted to give a picture 
of the flow pattern (see Section 2.5). Another mathematical definition, giving a 
different pattern of curves, can be obtained for the same flow system. In this case 
an expression giving the amount of flow along the convenient imaginary line is found. 

In a general two-dimensional fluid flow, consider any (imaginary) line OP joining 
the origin of a pair of axes to the point P(x, y). Again, the axes and this line do not 
impede the flow, and are used only to form a reference datum. At a point Q on the 
line let the local velocity q meet the line OP in /3 (Fig. 3.1). Then the component of 
velocity parallel to 6s is q cos p. The amount of fluid flowing along 6s is q cos ,6 6s. The 
total amount of fluid flowing along the line towards P is the sum of all such amounts 
and is given mathematically as the integral Jqcospds. This function is called the 
velocity potential of P with respect to 0 and is denoted by 4. 

Now OQP can be any line between 0 and P and a necessary condition for 
Sqcospds to be the velocity potential 4 is that the value of 4 is unique for the 
point P, irrespective of the path of integration. Then: 

Velocity potential q5 = q cos /3 ds (3.1) 
L P  

If this were not the case, and integrating the tangential flow component from 0 to P 
via A (Fig. 3.2) did not produce the same magnitude of 4 as integrating from 0 to P 
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Fig. 3.1 

Q 

Fig. 3.2 

via some other path such as €3, there would be some flow components circulating in 
the circuit OAPBO. This in turn would imply that the fluid within the circuit 
possessed vorticity. The existence of a velocity potential must therefore imply zero 
vorticity in the flow, or in other words, a flow without circulation (see Section 2.7.7), 
i.e. an irrotational flow. Such flows are also called potential flows. 

Sign convention for velocity potential 

The tangential flow along a curve is the product of the local velocity component and 
the elementary length of the curve. Now, if the velocity component is in the direction 
of integration, it is considered a positive increment of the velocity potential. 

3.1.2 The equipotential 
Consider a point P having a velocity potential 4 (4 is the integral of the flow 
component along OP) and let another point PI close to P have the same velocity 
potential 4. This then means that the integral of flow along OP1 equals the integral of 
flow along OP (Fig. 3.3). But by definition OPPl is another path of integration from 
0 to PI. Therefore 

4 =  J qcosPds= 
OP 
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Fig. 3.3 

but since the integral along OP equals that along OP1 there can be no flow along the 
remaining portions of the path of the third integral, that is along PPI. Similarly for 
other points such as P2, P3, having the same velocity potential, there can be no flow 
along the line joining PI to Pz. 

The line joining P, PI, P2, P3 is a line joining points having the same velocity 
potential and is called an equipotential or a line of constant velocity potential, i.e. a 
line of constant 4. The significant characteristic of an equipotential is that there is no 
flow along such a line. Notice the correspondence between an equipotential and a 
streamline that is a line across which there is no flow. 

The flow in the region of points P and PI should be investigated more closely. 
From the above there can be no flow along the line PPI, but there is fluid flowing in 
this region so it must be flowing in such a way that there is no component of 
velocity in the direction PPI. So the flow can only be at right-angles to PPI, that is 
the flow in the region PPI must be normal to PPI. Now the streamline in this region, 
the line to which the flow is tangential, must also be at right-angles to PPI which is 
itself the local equipotential. 

This relation applies at all points in a homogeneous continuous fluid and can be 
stated thus: streamlines and equipotentials meet orthogonally, i.e. always at right- 
angles. It follows from this statement that for a given streamline pattern there is a 
unique equipotential pattern for which the equipotentials are everywhere normal to 
the streamlines. 

3.1.3 Velocity components in terms of @ 
(a) In Cartesian coordinates Let a point P(x, y )  be on an equipotential 4 and 
a neighbouring point Q(x + 6x, y + Sy) be on the equipotential 4 + 64 (Fig. 3.4). 
Then by definition the increase in velocity potential from P to Q is the line 
integral of the tangential velocity component along any path between P and Q. 
Taking PRQ as the most convenient path where the local velocity components are 
u and v: 

64 = usx + vsy 
but 

a4 * 
ax ay 

64 = -sx + -6y 
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Thus, equating terms 

and 

(b) In polar coordinates Let a point P(r, 0) be on an equipotential q5 and a neigh- 
bouring point Q(r + Sr, 0 + SO) be on an equipotential q5 + Sq5 (Fig. 3.5). By definition 
the increase Sq5 is the line integral of the tangential component of velocity along any 
path. For convenience choose PRQ where point R is ( I  + Sr, 0). Then integrating 
along PR and RQ where the velocities are qn and qt respectively, and are both in the 
direction of integration: 

Sq5 = qnSr + qt(r + Sr)SO 
= qnSr + qtrSO to the first order of small quantities. 

Fig. 3.5 
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But, since 4 is a function of two independent variables; 

and (3.3) 

Again, in general, the velocity q in any direction s is found by differentiating the 
velocity potential q5 partially with respect to the direction s of q: 

ad q = -  
d S  

3.2 Laplace's equation 
As a focus of the new ideas met so far that are to be used in this chapter, the main 
fundamentals are summarized, using Cartesian coordinates for convenience, as 
follows: 

(1) The equation of continuity in two dimensions (incompressible flow) 
au av - + - = o  
ax ay 

(2) The equation of vorticity 
av du 
ax ay = 5  - -_ (ii) 

(3) The stream function (incompressible flow) .IC, describes a continuous flow in two 
dimensions where the velocity at any point is given by 

(iii) 

(4) The velocity potential C#J describes an irrotational flow in two dimensions where 
the velocity at any point is given by 

Substituting (iii) in (i) gives the identity 

= o  g$J @$J 
axay axay 

824 824 
axay axay 

which demonstrates the validity of (iii), while substituting (iv) in (ii) gives the identity 

= o  
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demonstrating the validity of (iv), Le. a flow described by a unique velocity potential 
must be irrotational. 

Alternatively substituting (iii) in (ii) and (iv) in (i) the criteria for irrotational 
continuous flow are that 

a=+ a=+ +- a24 a24 -+-=o=-  
8x2 ay2 8x2 ay= 

also written as V2q5 = V2$ = 0, where the operator nabla squared 

(3.4) 

a2 a2 v =-+- 
ax= ay= 

Eqn (3.4) is Laplace's equation. 

3.3 Standard flows in terms of w and @ 

There are three basic two-dimensional flow fields, from combinations of which all 
other steady flow conditions may be modelled. These are the uniform parallelflow, 
source (sink) and point vortex. 

The three flows, the source (sink), vortex and uniform stream, form standard flow 
states, from combinations of which a number of other useful flows may be derived. 

3.3.1 Two-dimensional flow from a source 
(or towards a sink) 

A source (sink) of strength m(-m) is a point at, which fluid is appearing (or 
disappearing) at a uniform rate of m(-m)m2 s- . Consider the analogy of a 
small hole in a large flat plate through which fluid is welling (the source). If there 
is no obstruction and the plate is perfectly flat and level, the fluid puddle will get 
larger and larger all the while remaining circular in shape. The path that any particle 
of fluid will trace out as it emerges from the hole and travels outwards is a purely 
radial one, since it cannot go sideways, because its fellow particles are also moving 
outwards. 

Also its velocity must get less as it goes outwards. Fluid issues from the hole at a 
rate of mm2 s- . The velocity of flow over a circular boundary of 1 m radius is 
m/27rm s-I. Over a circular boundary of 2m radius it is m/(27r x 2), i.e. half as much, 
and over a circle of diameter 2r the velocity is m/27rr m s-'. Therefore the velocity of 
flow is inversely proportional to the distance of the particle from the source. 

All the above applies to a sink except that fluid is being drained away through the 
hole and is moving towards the sink radially, increasing in speed as the sink is 
approached. Hence the particles all move radially, and the streamlines must be radial 
lines with their origin at the source (or sink). 

To find the stream function w of a source 

Place the source for convenience at the origin of a system of axes, to which the point 
P has ordinates (x, y )  and ( r ,  0) (Fig. 3.6). Putting the line along the x-axis as $ = 0 
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Fig. 3.6 

(a datum) and taking the most convenient contour for integration as OQP where QP 
is an arc of a circle of radius r,  

$ = flow across OQ + flow across QP 
= velocity across OQ x OQ + velocity across QP x QP 

m 
= O + - x r O  

27rr 
Therefore 

or putting e = tan-' b / x )  
$ = m13/27r 

There is a limitation to the size of e here. 0 can have values only between 0 and 21r. 
For $ = m13/27r where 8 is greater \ban 27r would mean that $, i.e. the amount of fluid 
flowing, was greater than m m2 s- , which is impossible since m is the capacity of the 
source and integrating a circuit round and round a source will not increase its strength. 
Therefore 0 5 0 5 21r. 

For a sink 
$ = -(m/21r)e 

To find the velocity potential # of a source 

The velocity everywhere in the field is radial, i.e. the velocity at any point P(r, e)  is given by 
4 = d m  and 4 = 4n here, since 4t = 0. Integrating round OQP where Q is point (r, 0) 

4 = 1 qcosPds + i p q c o s B d s  
OQ 

= S,, 4ndr + i p q t r a Q =  S,, 4n d r +  0 

But 

Therefore 

m 
27rr 4n =- 

m m r  
4 = L G d r  = T;;'n,, 

where ro is the radius of the equipotential 4 = 0. 
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Alternatively, since the velocity q is always radial (q = qn) it must be some function 
of r only and the tangential component is zero. Now 

qn=-=- m 84 
27rr a r  

Therefore 
m m r  

4 = Lor2md' = 

In Cartesian coordinates with 4 = 0 on the curve ro = 1 

The equipotential pattern is given by 4 = constant. From Eqn (3.7) 
m m 4 = -1nr - C where C = -1nro 
27r 27r 

(3.7) 

which is the equation of a circle of centre at the origin and radius e2T($+o/m when 4 is 
constant. Thus equipotentials for a source (or sink) are concentric circles and satisfy 
the requirement of meeting the streamlines orthogonally. 

3.3.2 Line (point) vortex 
This flow is that associated with a straight line vortex. A line vortex can best be 
described as a string of rotating particles. A chain of fluid particles are spinning on 
their common axis and carrying around with them a swirl of fluid particles which flow 
around in circles. A cross-section of such a string of particles and its associated flow 
shows a spinningpoint outside of which is streamline flow in concentric circles (Fig. 3.7). 

Vortices are common in nature, the difference between a real vortex as opposed to 
a theoretical line (potential) vortex is that the former has a core of fluid which is 
rotating as a solid, although the associated swirl outside is similar to the flow outside 
the point vortex. The streamlines associated with a line vortex are circular and 
therefore the particle velocity at any point must be tangential only. 

.@ 
A-3 -3 

Cross-section showing 
a few of the associated 
streamlines 

0 Straight line 
vortex 

Fig. 3.7 
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Consider a vortex located at the origin of a polar system of coordinates. But the 
flow is irrotational, so the vorticity everywhere is zero. Recalling that the streamlines 
are concentric circles, centred on the origin, so that qe = 0, it therefore follows from 
Eqn (2.79), that 

So d(rq,)/dr = 0 and integration gives 

rq, = C 

where C is a constant. Now, recall Eqn (2.83) which is one of the two equivalent 
definitions of circulation, namely 

In the present example, 4'. t'= qr and ds = rde, so 

r = 2rrq, = 2rC.  

Thus C = r / ( 2 r )  and 

dlCI qt = --=- 
dr 2rr 

and 
+= J--dr r 

2rr 

Integrating along the most convenient boundary from radius ro to P(r, 6') which in 
this case is any radial line (Fig. 3.8): 

' r  + = - J -dr (ro = radius of streamline, + = 01 
ro 2rr 

(3.10) 

Circulation is a measure of how fast the flow circulates the origin. (It is introduced 
and defined in Section 2.7.7.) Here the circulation is denoted by r and, by convention, 
is positive when anti-clockwise. 

Fig. 3.8 
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Since the flow due to a line vortex gives streamlines that are concentric circles, the 
equipotentials, shown to be always normal to the streamlines, must be radial lines 
emanating from the vortex, and since 

qn = 0, q5is a function of 8, and 

Therefore 

and on integrating 

r 
d+ =-de 

27r 

r 
@ = -6  + constant 

2n 

By defining q5 = 0 when 8 = 0: 
r +=-e 
2n 

(3.11) 

Compare this with the stream function for a source, i.e. 

Also compare the stream function for a vortex with the function for a source. Then 
consider two orthogonal sets of curves: one set is the set of radial lines emanating 
from a point and the other set is the set of circles centred on the same point. Then, if 
the point represents a source, the radial lines are the streamlines and the circles are the 
equipotentials. But if the point is regarded as representing a vortex, the roles of 
the two sets of curves are interchanged. This is an example of a general rule: consider 
the streamlines and equipotentials of a two-dimensional, continuous, irrotational 
flow. Then the streamlines and equipotentials correspond respectively to the equi- 
potentials and streamlines of another flow, also two-dimensional, continuous and 
irrotational. 

Since, for one of these flows, the streamlines and equipotentials are orthogonal, 
and since its equipotentials are the streamlines of the other flow, it follows that the 
streamlines of one flow are orthogonal to the streamlines of the other flow. The same 
is therefore true of the velocity vectors at any (and every) point in the two flows. If 
this principle is applied to the sourcesink pair of Section 3.3.6, the result is the flow 
due to a pair of parallel line vortices of opposite senses. For such a vortex pair, 
therefore the streamlines are the circles sketched in Fig. 3.17, while the equipotentials 
are the circles sketched in Fig. 3.16. 

3.3.3 Uniform flow 
Flow of constant velocity parallel to Ox axis from lei? to right 

Consider flow streaming past the coordinate axes Ox, Oy at velocity U parallel to O x  
(Fig. 3.9). By definition the stream function $ at a point P(x, y )  in the flow is given by 
the amount of fluid crossing any line between 0 and P. For convenience the contour 
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Fig. 3.9 

OTP is taken where T is on the Ox axis x along from 0, i.e. point T is given by (x, 0). 
Then 

$ = flow across line OTP 

= flow across line OT plus flow across line TP 

= O +  U x length TP 

= o + u y  

Therefor e 

$ =  UY 
The streamlines (lines of constant $) are given by drawing the curves 

@ = constant = Uy 

Now the velocity is constant, therefore 

1cI y = - = constant on streamlines 
U 

(3.12) 

The lines $ = constant are all straight lines parallel to Ox. 
By definition the velocity potential at a point P(x, y )  in the flow is given by the line 

integral of the tangential velocity component along any curve from 0 to P. For 
convenience take OTP where T has ordinates (x, 0). Then 

#I = flow along contour OTP 
= flow along OT + flow along TP 
= u x + o  

Therefore 

#I = u x  (3.13) 

The lines of constant #I, the equipotentials, are given by Ux = constant, and since the 
velocity is constant the equipotentials must be lines of constant x, or lines parallel to 
Oy that are everywhere normal to the streamlines. 

Flow of constant velocity parallel to 0 y axis 

Consider flow streaming past the Ox, Oy axes at velocity Vparallel to Oy (Fig. 3.10). 
Again by definition the stream function $ at a point P(x, y)  in the flow is given by the 
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Fig. 3.10 

amount of fluid crossing any curve between 0 and P. For convenience take OTP 
where T is given by (x, 0). Then 

1c, = flow across OT + flow across TP 
=-Vx+O 

Note here that when going from 0 towards T the flow appears from the right and 
disappears to the left and therefore is of negative sign, i.e. 

+ = -vx (3.14) 

The streamlines being lines of constant + are given by x = -+/V and are parallel to 
Oy axis. 

Again consider flow streaming past the Ox, Oy axes with velocity V parallel to the 
Oy axis (Fig. 3.10). Again, taking the most convenient boundary as OTP where T is 
given by (x ,  0) 

= flow along OT + flow along TP 
= o + v y  

Therefore 

q!I = VY (3.15) 

The lines of constant velocity potential, q!I (equipotentials), are given by 
Vy = constant, which means, since Vis constant, lines of constant y, are lines parallel 
to Ox axis. 

Flow of constant velocity in any direction 

Consider the flow streaming past the x, y axes at some velocity Q making angle 0 with 
the Ox axis (Fig. 3.11). The velocity Q can be resolved into two components U and V 
parallel to the O x  and Oy axes respectively where Q2 = U2 + V2 and tan0 = V/U.  

Again the stream function 1c, at a point P in the flow is a measure of the amount of 
fluid flowing past any line joining OP. Let the most convenient contour be OTP, 
T being given by (x ,  0). Therefore 
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Fig. 3.11 

$ = flow across OT (going right to left, therefore negative in sign) 
+flow across TP 

=-component of Q parallel to Oy times x 
+component of Q parallel to Ox times y 

$=-vx+ uy (3.16) 

Lines of constant $ or streamlines are the curves 
-Vx + Uy = constant 

assigning a different value of $ for every streamline. Then in the equation V and U 
are constant velocities and the equation is that of a series of straight lines depending 
on the value of constant $. 

Here the velocity potential at P is a measure of the flow along any curve joining 
P to 0. Taking OTP as the line of integration [T(x, O)]: 

4 = flow along OT + flow along TP 

c$=vx+vy (3.17) 
= u x +  v y  

Example 3.1 Interpret the flow given by the stream function (units: mz s-') 
$ = 6 ~ + 1 2 y  

w 
dY 
w 
dX 

The constant velocity in the horizontal direction = - = +12rns-' 

The constant velocity in the vertical direction = - - = -6 m s-] 

Therefore the flow equation represents uniform flow inclined to the Ox axis by angle 0 where 
tan0 = -6/12, i.e. inclined downward. 

The speed of flow is given by 

Q = &TiF = m m s - '  
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3.3.4 Solid boundaries and image systems 
The fact that the flow is always along a streamline and not through it has an 
important fundamental consequence. This is that a streamline of an inviscid flow 
can be replaced by a solid boundary of the same shape without affecting the 
remainder of the flow pattern. If, as often is the case, a streamline forms a closed 
curve that separates the flow pattern into two separate streams, one inside and one 
outside, then a solid body can replace the closed curve and the flow made outside 
without altering the shape of the flow (Fig. 3.12a). To represent the flow in the region 
of a contour or body it is only necessary to replace the contour by a similarly shaped 
streamline. The following sections contain examples of simple flows which provide 
continuous streamlines in the shapes of circles and aerofoils, and these emerge as 
consequences of the flow combinations chosen. 

When arbitrary contours and their adjacent flows have to be replaced by identical 
flows containing similarly shaped streamlines, image systems have to be placed within 
the contour that are the reflections of the external flow system in the solid streamline. 

Figure 3.12b shows the simple case of a source A placed a short distance from an 
infinite plane wall. The effect of the solid boundary on the flow from the source is 
exactly represented by considering the effect of the image source A' reflected in the 
wall. The source pair has a long straight streamline, i.e. the vertical axis of symmetry, 
that separates the flows from the two sources and that may be replaced by a solid 
boundary without affecting the flow. 

Fig. 3.12 Image systems 
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Figure 3 .12~  shows the flow in the cross-section of a vortex lying parallel to the axis 
of a circular duct. The circular duct wall can be replaced by the corresponding 
streamline in the vortex-pair system given by the original vortex €3 and its image B'. 
It can easily be shown that B' is a distance ?-1s from the centre of the duct on the 
diameter produced passing through B, where r is the radius of the duct and s is the 
distance of the vortex axis from the centre of the duct. 

More complicated contours require more complicated image systems and these are 
left until discussion of the cases in which they arise. It will be seen that Fig. 3.12a, which 
is the flow of Section 3.3.7, has an internal image system, the source being the image of a 
source at --x and the sink being the image of a sink at f-x. This external source and 
sink combination produces the undisturbed uniform stream as has been noted above. 

3.3.5 A source in a uniform horizontal stream 
Let a source of strength m be situated at the origin with a uniform stream of -U 
moving from right to left (Fig. 3.13). 

Then 
me 
2n 

$ = - - u y  (3.18) 

which is a combination of two previous equations. Eqn (3.18) can be rewritten 
m - lY  $=-tan - - U y  
2T X 

to make the variables the same in each term. 
Combining the velocity potentials: 

m r  
+=-ln--Ux 

2n ro 

or 

+=-ln -+- -Ux 5 c; :;) 
or in polar coordinates 

(3.19) 

(3.20) 

(3.21) 

These equations give, for constant values of +, the equipotential lines everywhere 
normal to the streamlines. 

Streamline patterns can be found by substituting constant values for $ and plot- 
ting Eqn (3.18) or (3.19) or alternatively by adding algebraically the stream functions 
due to the two cases involved. The second method is easier here. 

Fig. 3.13 
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Method (see Fig. 3.14) 

(1) Plot the streamlines due to a source at the origin taking the strength of the source 
equal to 20m2s-' (say). The streamlines are n/lO apart. It is necessary to take 
positive values of y only since the pattern is symmetrical about the Ox axis. 

(2) Superimpose on the plot horizontal lines to a scale so that 1c, = -Uy = -1, 
-2, -3, etc., are lines about 1 unit apart on the paper. Where the lines intersect, 
add the values of 1c, at the lines of intersection. Connect up all points of constant 1c, 
(streamlines) by smooth lines. 

The resulting flow pattern shows that the streamlines can be separated into two 
distinct groups: (a) the fluid from the source moves from the source to infinity 
without mingling with the uniform stream, being constrained within the streamline 
1c, = 0; (b) the uniform stream is split along the Ox axis, the two resulting streams 
being deflected in their path towards infinity by 1c, = 0. 

It is possible to replace any streamline by a solid boundary without interfering with 
the flow in any way. If 1c, = 0 is replaced by a solid boundary the effects of the source 
are truly cut off from the horizontal flow and it can be seen that here is a mathem- 
atical expression that represents the flow round a curved fairing (say) in a uniform 
flow. The same expression can be used for an approximation to the behaviour of a 
wind sweeping in off a plain or the sea and up over a cliff. The upward components 
of velocity of such an airflow are used in soaring. 

The vertical velocity component at any point in the flow is given by -a$/ax. Now 

&!J - m atan-lb/x) ab/.) 
ax 2n ab/.) ax  

_ _ _ - -  

9 due to source at origin 

9 of combination streamlines 

Fig. 3.14 
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or 
rn v = -  
27r x2 + y2 

and this is upwards. 
This expression also shows, by comparing it, in the rearranged form x2 +y2- 

(m/27rv)y = 0, with the general equation of a circle (x2 + y2  + 2gx + 2hy +f = 0) ,  
that lines of constant vertical velocity are circles with centres (0, rn/47rv) and 
radii rnl47rv. 

The ultimate thickness, 2h (or height of cliff h) of the shape given by $ = 0 for this 
combination is found by putting y = h and 0 = 7r in the general expression, i.e. 
substituting the appropriate data in Eqn (3 .18):  

Therefore 

h = m/2U 

Note that when 0 = ~ / 2 ,  y = h/2. 

(3.22) 

The position of the stagnation point 

By finding the stagnation point, the distance of the foot of the cliff, or the front of the 
fairing, from the source can be found. A stagnation point is given by u = 0, v = 0, i.e. 

U (3.23) 
w r n x  u = - = 0 =--- 
dY 27rx2 + y2 

(3.24) 

From Eqn (3.24) v = 0 when y = 0, and substituting in Eqn (3.23) when y = 0 and 
x = xo: 

when 

xo = rn/2.rrU 

The local velocity 

The local velocity q = d m .  
rn and $ = -tan-' - Uy w 

dY 27r X 
jy=- 

(3.25) 

Therefore 

rn 1 / x  
2 - u  

u = -  
27r 1 + ( y / x )  
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giving 

and from v = -&)/ax 
m v = -  
27rx2 + y2 

from which the local velocity can be obtained from q = d m  and the direction 
given by tan-' (vlu) in any particular case. 

3.3.6 Source-sink pair 
This is a combination of a source and sink of equal (but opposite) strengths situated 
a distance 2c apart. Let f m  be the strengths of a source and sink situated at points 
A (cy 0) and B ( -c ,  0), that is at a distance of c m on either side of the origin (Fig. 3.15). 
The stream function at a point P(x, y ) ,  (r, e) due to the combination is 

me1 me2 m 
27r 27r 27r $=---=-((e 1 - 02) 

m 
i = z ; ; P  

Transposing the equation to Cartesian coordinates: 

Y , tan 62 = - tanel =- 
x - c  x + c  

Y 

Therefore 

2CY 
x2 + y - c2 p = el - e2 = tan-' 

and substituting in Eqn (3.26): 

(3.26) 

(3.27) 

(3.28) 

Fig. 3.15 
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To find the shape of the streamlines associated with this combination it is neces- 
sary to investigate Eqn (3.28). Rearranging: 

2cy 

or 

or 

2Ir$ x2 + y2 - 2ccot-y - c2 = 0 
m 

which is the equation of a circle of radius cdcot2 (27r$/m) + 1, and centre 
c cot (21r$/m). 

Therefore streamlines for this combination consist of a series of circles with centres 
on the Oy axis and intersecting in the source and sink, the flow being from the source 
to the sink (Fig. 3.16). 

Consider the velocity potential at any point P(r, O)(x, y).* 

6 = ( x  - c)2 + y2 = 2 + y2 + 2 - 2xc 

r; = ( x + c ) ~  + y 2  = 2 + y2 + 2 +2xc  

Fig. 3.16 Streamlines due to a source and sink pair 

(3.29) 

*Note that here ro is the radius of the equipotential Q = 0 for the isolated source and the isolated sink, but 
not for the combination. 



124 Aerodynamics for Engineering Students 

Therefore 

m x 2 + y 2 + c 2 - 2 x c  
47r x2 + y2 + c2 + 2xc 

+=-ln 

Rearranging 

Then 

(x2 +yz  + 2 +2xc)X = 2 +yz + c2 - 2xc 
(x2+y2+c2)[X-l]+2xc(X+1) = o  

X + 1  x2 + y2 + 2xc (-) A - 1  + = 0 

which is the equation of a circle of centre 

x = -c (S) , y = 0 

i.e. 

and radius 

(3.30) 

274 = 2c cosech- 
m 

Therefore, the equipotentials due to a source and sink combination are sets of 
eccentric non-intersecting circles with their centres on the O x  axis (Fig. 3.17). This 
pattern is exactly the same as the streamline pattern due to point vortices of opposite 
sign separated by a distance 2c. 

Fig. 3.17 Equipotential lines due to a source and sink pair 
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3.3.7 A source set upstream of an equal sink 
in a uniform stream 

The stream function due to this combination is: 

(3.31) 

Here the first term represents a source and sink combination set with the source to 
the right of the sink. For the source to be upstream of the sink the uniform stream 
must be from right to left, i.e. negative. If the source is placed downstream of the sink 
an entirely different stream pattern is obtained. 

The velocity potential at any point in the flow due to this combination is given by: 
m I1 
27r r2 

$=-ln--  Ursine 

or 

m 2 + y 2 + c 2 - 2 x c  
+=- ln  - ux 

47r x 2 + y 2 + $ + 2 x c  

(3.32) 

(3.33) 

The streamline $ = 0 gives a closed oval curve (not an ellipse), that is symmetrical 
about the Ox and Oy axes. Flow of stream function $ greater than $ = 0 shows the 
flow round such an oval set at zero incidence in a uniform stream. Streamlines can be 
obtained by plotting or by superposition of the separate standard flows (Fig. 3.18). 
The streamline $ = 0 again separates the flow into two distinct regions. The first is 
wholly contained within the closed oval and consists of the flow out of the source and 
into the sink. The second is that of the approaching uniform stream which flows 
around the oval curve and returns to its uniformity again. Again replacing $ = 0 by a 
solid boundary, or indeed a solid body whose shape is given by $ = 0, does not 
influence the flow pattern in any way. 

Thus the stream function $I of Eqn (3.31) can be used to represent the flow around 
a long cylinder of oval section set with its major axis parallel to a steady stream. To 
find the stream function representing a flow round such an oval cylinder it must be 
possible to obtain m and c (the strengths of the source and sink and distance apart) in 
terms of the size of the body and the speed of the incident stream. 

Fig. 3.18 
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Suppose there is an oval of breadth 2bo and thickness 2to set in a uniform flow 
of U. The problem is to find m and c in the stream function, Eqn (3.31), which will 
then represent the flow round the oval. 

(a) The oval must conform to Eqn (3.31): 

(b) On streamline T+!J = 0 maximum thickness to occurs at x = 0,  y = to. Therefore, 
substituting in the above equation: 

and rearranging 

2sUto - 2toc tan- - - 
m ti  - c2 

(3.34) 

(c) A stagnation point (point where the local velocity is zero) is situated at the 'nose' 
of the oval, i.e. at the pointy = 0, x = bo, Le.: 

- u  1 (2 + y2 - c2)2c - 2y 2cy -=- w m  
ay 2 s  ( x 2 + 3  - c2)2 1 + (&) 

and putting y = 0 and x = bo with w / a y  = 0: 

U 
m (bg - c2)2c O = -  
2s  (b; - c2)2 

Therefore 

b; - c2 
m = TU- 

C 
(3.35) 

The simultaneous solution of Eqns (3.34) and (3.35) will furnish values of m and c 
to satisfy any given set of conditions. Alternatively (a), (b) and (c) above can be used 
to find the thickness and length of the oval formed by the streamline + = 0. This 
form of the problem is more often set in examinations than the preceding one. 

3.3.8 Doublet 
A doublet is a source and sink combination, as described above, but with the separation 
infinitely small. A doublet is considered to be at a point, and the definition of the 
strength of a doublet contains the measure of separation. The strength ( p )  of a doublet 
is the product of the infinitely small distance of separation, and the strength of source 
and sink. The doublet axis is the line from the sink to the source in that sense. 
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Fig. 3.19 

The streamlines due to a source and sink combination are circles each intersecting 
in the source and sink. As the source and sink approach, the points of intersection 
also approach until in the limit, when separated by an infinitesimal distance, the 
circles are all touching (intersecting) at one point - the doublet. This can be shown as 
follows. For the source and sink: 

$ = (rn/2n)P from Eqn (3.26) 

By constructing the perpendicular of length p from the source to the line joining the 
sink and P it can be seen that as the source and sink approach (Fig. 3.19), 

p -+ 2csinO and also p + r p  

Therefore in the limit 

2c sin e = r p  or 
2c sin 8 p=- 

r 

rn2c . 
2 n  r 

$=-- sin 8 

and putting p = 2cm = strength of the doublet: 

$=- sine 
2nr 

(3.36) 

On converting to Cartesian coordinates where 

and rearranging gives 

(X* + y2> - -Y P = 0 
2~ 

which, when $ is a constant, is the equation of a circle. 
Therefore, lines of constant $ are circles of radius p/(4n$) and centres (0, p/(4n$)) 

(Fig. 3.20), Le. circles, with centres lying on the Oy axis, passing through the origin as 
deduced above. 
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Doublet 
axis 

Fig. 3.20 Streamlines due to a doublet 

- 2c - 
- x -  

Fig. 3.21 

Consider again a source and sink set a very small distance, 2c, apart (Fig. 3.21). 
Then* 

rn rl rn r2 = - In - - - In - 
’ 2n ro 27r ro 

where f rn is the strength of the source and sink respectively. Then 

r n r l r n 6  
2n 12 4n 

C$ = - In - = - In - 

* Here TO is the radius of the equipotential q5 = 0 for the isolated source and the isolated sink, but not for 
the combination. 
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Now 

and 

Therefore 

r; = x2 + y2 - 2xc + c2 

m x 2 + y 2 - 2 x c + c 2  
47r x2 + y2 + 2xc + c2 $I=-ln 

and dividing out 

4s x2 + y2 + c2 + 2xc 

On expanding, 

Therefore: 

$I=- - 4xc - 1 6x2 c2 - ...I 
47r - [  x2 + y2 + c2 + 2xc 2(x2 + y2 + c2 + 2x42 

Since c is very small 2 can be neglected. Therefore, ignoring c? and higher powers of c 

m 4xc $I=-- 
4 s  x2 + y2 + 2xc 

and as c * 0, and 2mc = p (which is the strength of the doublet) a limiting value of $I 
is given by 

Therefore 

b = - -  case ( 3 . 3 8 )  27rr 

3.3.9 Flow around a circular cylinder given by a doublet 
in a uniform horizontal flow 

The stream function due to this combination is: 

+ L  sine - Uy (3.39) 2sr 
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It should be noted that the terms in the stream functions must be opposite in sign to 
obtain the useful results below. Here again the source must be upstream of the sink in 
the flow system. Equation (3.39) converted to rectangular coordinates gives: 

$=--- IJ u y  (3.40) 
2TX2 + y2 

and for the streamline $ = 0 

i.e. 
y = o  or x 2 + y 2 = -  IJ 

2nu 
This shows the streamline 
centre 0, of radius d&l a (say). 

- 0 to consist of the O x  axis together with a circle, 

Alternatively by converting Eqn (3.39) to polar coordinates: 

$2- sin 8 - Ur sin 8 
2nr 

Therefore 

giving 

or 

sin8=O so 8 = 0  or f n  

/ & = a  
_-  ’ u r  = O  giving r = 
2 ~ r  

the two solutions as before. 
The streamline $ = 0 thus consists of a circle and a straight line on a diameter 

produced (Fig. 3.22). Again in this case the streamline $ = 0 separates the flow into 
two distinct patterns: that outside the circle coming from the undisturbed flow a long 

Fig. 3.22 Streamlines due to a doublet in a uniform stream 
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way upstream, to flow around the circle and again to revert to uniform flow down- 
stream. That inside the circle is from the doublet. This is confined within the circle 
and does not mingle with the horizontal stream at all. This inside flow pattern is 
usually neglected. This combination is consequently a mathematical device for giving 
expression to the ideal two-dimensional flow around a circular cylinder. 

The velocity potential due to this combination is that corresponding to a uniform 
stream flowing parallel to the Ox axis, superimposed on that of a doublet at the 
origin. Putting x = r cos e: 

(3.41) 

where a = d m  is the radius of the streamline $J = 0. 

method outlined in previous cases. Rewriting Eqn (3.39) in polar coordinates 
The streamlines can be obtained directly by plotting using the superposition 

P 
27rr 

$=-sine- Ursine 

and rearranging, this becomes 
$J = usine(- P - r) 

27rr U 
and with p/(27ru> = u2 a constant (a = radius of the circle$ = 0) 

= usine($- r )  (3.42) 

Differentiating this partially with respect to r and 8 in turn will give expressions for 
the velocity everywhere, i.e.: 

a$ 
dr qt = --= Usin8 

(3.43) 

Putting r = u (the cylinder radius) in Eqns (3.43) gives: 

(i) qn = U cos 8 [l - 11 = 0 which is expected since the velocity must be parallel to 

(ii) qt = Usin€J[l + 11 = 2Usine. 

Therefore the velocity on the surface is 2U sin e and it is important to note that the 
velocity at the surface is independent of the radius of the cylinder. 

the surface everywhere, and 

The pressure distribution around a cylinder 

If a long circular cylinder is set in a uniform flow the motion around it will, ideally, 
be given by the expression (3.42) above, and the velocity anywhere on the surface by 
the formula 

q = 2Usin13 (3.44) 
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By the use of Bernoulli's equation, the pressure p acting on the surface of the cylinder 
where the velocity is q can be found. If po is the static pressure of the free stream 
where the velocity is U then by Bernoulli's equation: 

= p + - 1 p(2 u sin el2 
2 

Therefore 

(3.45) 

Plotting this expression gives a curve as shown on Fig. 3.23. Important points to 
note are: 

(1) At the stagnation points (0" and 180") the pressure difference (p -PO) is positive 

(2) At 30" and 150 where sin 8 = 1, ( p  - P O )  is zero, and at these points the local 

(3) Between 30" and 15O0C, is negative, showing that p is less thanpo. 
(4) The pressure distribution is symmetrical about the vertical axis and therefore 

there is no drag force. Comparison of this ideal pressure distribution with that 
obtained by experiment shows that the actual pressure distribution is similar to 
the theoretical value up to about 70" but departs radically from it thereafter. 
Furthermore, it can be seen that the pressure coefficient over the rear portion of 
the cylinder remains negative. This destroys the symmetry about the vertical axis 
and produces a force in the direction of the flow (see Section 1.5.5). 

and equal to 1 U2. 

velocity is the same as that of d e  free stream. 
Z P O  

Fig. 3.23 
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3.3.10 A spinning cylinder in a uniform flow 
This is given by the stream function due to a doublet, in a uniform horizontal flow, 
with a line vortex superimposed at the origin. By adding these cases 

P I ’ r  
$=-sine- Uy--1n- 

2rr 2 r  ro 

Converting to homogeneous coordinates 

but from the previous case d m  = a, the radius of the cylinder. 

therefore the stream function becomes: 
Also since the cylinder periphery marks the inner limit of the vortex flow, ro = a; 

(3.46) 

and differentiating partially with respect to r and 0 the velocity components of the 
flow anywhere on or outside the cylinder become, respectively: 

@ qt =--= Usin0 
ar 

1w q - - -=ucos0  
n - r  8tI 

and 

(3.47) 

4 = d q ;  + 4: 

On the surface of the spinning cylinder r = a. Therefore, 

qn = 0 

(3.48) r 
qt = 2U sin 0 + - 

27ra 
Therefore 

r 
q = qt = 2U sin 0 + - 

2ra 
and applying Bernoulli’s equation between a point a long way upstream and a point 
on the cylinder where the static pressure is p :  

Therefore 

p - p o = - p U  1 -  2sin0f- 2 2 [  ( 2 r u a  >’ (3.49) 



134 Aerodynamics for Engineering Students 

This equation differs from that of the non-spinning cylinder in a uniform stream of 
the previous section by the addition of the term (r/(2nUu)) = B (a constant), in the 
squared bracket. This has the effect of altering the symmetry of the pressure dis- 
tribution about a horizontal axis. This is indicated by considering the extreme top 
and bottom of the cylinder and denoting the pressures there by p~ and p~ respect- 
ively. At the top p = p~ when 8 = 7r/2 and sin 8 = 1. Then Eqn (3.49) becomes 

1 
2 PT -PO = - p U 2 ( 1  - [2+B]’) 

(3.50) 1 
2 

= --pU2(3+4B+BZ) 

At the bottom p = p~ when 8 = -n/2 and sin O = - 1 : 

(3.51) 
1 
2 

PB -PO = --pU2(3 -4B+BZ) 

Clearly (3.50) does not equal (3.51) which shows that a pressure difference exists 
between the top and bottom of the cylinder equal in magnitude to 

which suggests that if the pressure distribution is integrated round the cylinder then a 
resultant force would be found normal to the direction of motion. 

The normal force on a spinning circular cylinder in a uniform stream 

Consider a surface element of cylinder of unit span and radius a (Fig. 3.24). The area 
of the element = a68 x 1, the static pressure acting on element = p ,  resultant 
force = (p - po)a 68, vertical component = (p - po)a Sf3 sin 6. 

Substituting for (p - po)  from Eqn (3.49) and retaining the notation B = I? 27rUa, the 
vertical component of force acting on the element = 4 pU2[ 1 - (2 sin 8 + B) ]a 66 sin 8. 
The total vertical force per unit span by integration is (Zpositive upwards): 

4 

Z=12T-fpU2a[l  - (2~in8+B)~]sinOdO 

which becomes 

I = - - p U  a [sin8(1-BZ)-4Bsin28-4sin38]d0 
2 I” 

Fig. 3.24 The pressure and velocity on the surface of unit length of a cylinder of radius a 
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On integrating from 0 to 27r the first and third terms vanish leaving 

1" 4B sin2 0 d0 = 4B7r 

Therefore 

1 
2 1 = -pU2a4B7r 

Replacing B by I'/27rUa and cancelling gives the equation for the lift force per unit 
span 

I = pur (3.52) 

The lift per unit span in N is equal to the product of density p, the linear velocity U, 
and the circulation r. 

This expression is the algebraic form of the Kutta-Zhukovsky theorem, and is 
valid for any system that produces a circulation superimposed on a linear velocity 
(see Section 4.1.3). The spinning cylinder is used here as it lends itself to stream 
function theory as well as being of interest later. 

It is important to note that the diameter of the cylinder has no influence on the 
final expression, so if a line vortex of strength r moved with velocity U in a uniform 
flow of density p, the same sideways force 1 = pur per unit length of vortex would be 
found. This sideways force commonly associated with a spinning object moving 
through the air has been recognized and used in ball games since ancient times. 
It is usually referred to as the Magnus effect after the scholar and philosopher 
Magnus. 

The flow pattern around a spinning cylinder 

The flow pattern around the spinning cylinder is also altered as the strength of the 
circulation increases. In Fig. 3.25 when r = 0 the flow pattern is that associated with 
the previous non-spinning case with front and rear stagnation points S1 and S2 -* A&& 

r = o  - U 

Fig. 3.25 
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respectively, occurring on the horizontal axis. As r is increased positively a small 
amount the stagnation points move down below the horizontal axis. 

Since from the equation for the velocity anywhere on the surface 

27ra 
r 

qt = 2U sin 0 + - = 0 at the stagnation points 

8 = arc sin(-r/47raU) 

which is negative. As r is further increased a limiting condition occurs when 
0 = - 4 2 ,  i.e. I' = 47raU, the stagnation points merge at the bottom of the cylinder. 
When I' is greater than 47raU the stagnation point ( S )  leaves the cylinder. The cylinder 
continues to rotate within the closed loop of the stagnation streamline, carrying 
round with it a region of fluid confined within the loop. 

3.3.1 1 Bernoulli's equation for rotational flow 
Consider fluid moving in a circular path. Higher pressure must be exerted from the 
outside, towards the centre of rotation, in order to provide the centripetal force. That 
is, some outside pressure force must be available to prevent the particles moving in a 
straight line. This suggests that the pressure is growing in magnitude as the radius 
increases, and a corollary is that the velocity of flow must fall as the distance from the 
centre increases. 

With a segmental element at P(r, 0) where the velocity is qt only and the pressurep, 
the pressures on the sides will be shown as in Fig. 3.26 and the resultant pressure 
thrust inwards is 

(. + % g) (. + $) se - (. - % $) ( r  - $) se -p sr se 

which reduces to 

This must provide the centripetal force = mass x centripetal acceleration 

(3.53) 

= pr sr se & I p  (3.54) 

Fig. 3.26 
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(3.55) 

The rate of change of total pressure H i s  

and substituting for Eqn (3.55): 

aff  - 4: dqt 
- P- r + P4t - dr = pqt 

Now for this system (l/r)(aq,/%) is zero since the streamlines are circular and 
therefore the vorticity is (qt/r) + (dq,/dr) from Eqn (2.79), giving 

(3.56) 

3.4 Axisymmetric flows (inviscid and 
incompressible flows) 

Consider now axisymmetric potential flows, i.e. the flows around bodies such as 
cones aligned to the flow and spheres. In order to analyse, and for that matter to 
define, axisymmetric flows it is necessary to introduce cylindrical and spherical 
coordinate systems. Unlike the Cartesian coordinate system these coordinate systems 
can exploit the underlying symmetry of the flows. 

3.4.1 Cylindrical coordinate system 
The cylindrical coordinate system is illustrated in Fig. 3.27. The three coordinate 
surfaces are the planes z = constant and 0 = constant and the surface of the cylinder 
having radius r. In contrast, for the Cartesian system all three coordinate surfaces are 

X 

Fig. 3.27 Cylindrical coordinates 
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planes. As a consequence for the Cartesian system the directions ( x ,  y, z) of the 
velocity components, say, are fixed throughout the flow field. For the cylindrical 
coordinate system, though, only one of the directions (z) is fixed throughout the flow 
field; the other two (r and 8)  vary throughout the flow field depending on the value of 
the angular coordinate 8. In this respect there is a certain similarity to the polar 
coordinates introduced earlier in the chapter. The velocity component qr is always 
locally perpendicular to the cylindrical coordinate surface and qg is always tangential 
to that surface. Once this elementary fact is properly understood cylindrical coord- 
inates become as easy to use as the Cartesian system. 

In a similar way as the relationships between velocity potential and velocity 
components are derived for polar coordinates (see Section 3.1.3 above), the following 
relationships are obtained for cylindrical coordinates 

42 = & & (3.57) & 1 a4 4s = -- r d 8 '  q r  = dr 
An axisymmetric flow is defined as one for which the flow variables, i.e. velocity 

and pressure, do not vary with the angular coordinate 8. This would be so, for 
example, for a body of revolution about the z axis with the oncoming flow directed 
along the z axis. For such an axisymmetric flow a stream function can be defined. 
The continuity equation for axisymmetric flow in cylindrical coordinates can be 
derived in a similar manner as it is for two-dimensional flow in polar coordinates 
(see Section 2.4.3); it takes the form 

(3.58) 

The relationship between stream function and velocity component must be such as to 
satisfy Eqn (3.58); hence it can be seen that 

(3.59) 

3.4.2 Spherical coordinates 
For analysing certain two-dimensional flows, for example the flow over a circular 
cylinder with and without circulation, it is convenient to work with polar coord- 
inates. The axisymmetric equivalents of polar coordinates are spherical coordinates, 
for example those used for analysing the flow around spheres. Spherical coordinates 
are illustrated in Fig. 3.28. In this case none of the coordinate surfaces are plane 
and the directions of all three velocity components vary over the flow field, depending 
on the values of the angular coordinates 0 and p. In this case the relationships 
between the velocity components and potential are given by 

(3.60) 

For axisymmetric flows the variables are independent of 8 and in this case the 
continuity equation takes the form 

(3.61) 
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Fig. 3.28 Spherical coordinates 

Again the relationship between the stream function and the velocity components 
must be such as to satisfy the continuity Eqn (3.61); hence 

1 a+ q, ---- 
R2sincp a(p '- RsmcpdR 

1 ay q R = - -  (3.62) 

3.4.3 Axisymmetric flow from a point source 
(or towards a point sink) 

The point source and sink are similar in concept to the line source and sink discussed 
in Section 3.3. A close physical analogy can be found if one imagines the flow into or 
out of a very (strictly infinitely) thin round pipe - as depicted in Fig. 3.29. As 
suggested in this figure the streamlines would be purely radial in direction. 

Let us suppose that the flow rate out of the point source is given by Q. Q is usually 
referred to as the strength of the point source. Now since the flow is purely radial 
away from the source the total flow rate across the surface of any sphere having its 
centre at the source will also be Q. (Note that this sphere is purely notional and does 
not represent a solid body or in any way hinder the flow.) Thus the radial velocity 
component at any radius R is related to Q as follows 

Thin pipe 

Fig. 3.29 
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It therefore follows from Eqn (3.60) that 

q R = - = -  % Q  
dR 4rR2 

Integration then gives the expression for the velocity potential of a point source as 

4=-- Q 
4rR 

(3.63) 

In a similar fashion an expression for stream function can be derived using Eqn (3.62) 
giving 

Q $ = -- coscp 
47r 

(3.64) 

3.4.4 Point source and sink in a uniform axisymmetric flow 
Placing a point source and/or sink in a uniform horizontal stream of -U leads to 
very similar results as found in Section 3.3.5 for the two-dimensional case with line 
sources and sinks. 

First the velocity potential and stream function for uniform flow, -U, in the z 
direction must be expressed in spherical coordinates. The velocity components q R  
and qp are related to -U as follows 

q R  = -Ucosp and qp = Usinp 

Using Eqn (3.60) followed by integration then gives 

_-  - -Ucoscp 4 4 = -U Rcos cp + f ( cp )  
dR 

- URsincp --f q5 = -URcoscp+g(R) 84 
a(p 
- _  

f ( c p )  and g(R) are arbitrary functions that take the place of constants of integration 
when partial integration is carried out. Plainly in order for the two expressions for q5 
derived above to be in agreement f (cp) = g(R) = 0. The required expression for the 
velocity potential is thereby given as 

+ = - U R C O S ~  (3.65) 

Similarly using Eqn (3.62) followed by integration gives 

2 UR2 . U R2 
-U R cos cpsinp = -- sin2p + $ = - cos2cp + f (R) alCl 

acp 2 4 
-= 

UR2 $ = - - 
2 sin2 cp + g(cp) _-  dR - -U R sin2 cp 

Recognizing that cos 2cp = 1 - 2 sin2 cp it can be seen that the two expressions given above 
for $ will agree if the arbitrary functions of integration take the values f (R) = - U R2/4 
and g(p) = 0. The required expression for the stream function is thereby given as 

U RZ $ = -- sin’p 
2 (3.66) 
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Using Eqns (3.63) and (3.65) and Eqns (3.64) and (3.66) it can be seen that for a 
point source at the origin placed in a uniform flow - U along the z axis 

Q + = - U R C O S ~ - -  
41rR 

$=--UR2sin 1 Z Q  p--cos'p 
2 4Ir 

(3.67a) 

(3.67b) 

The flow field represented by Eqns (3.67) corresponds to the potential flow around 
a semi-finite body of revolution - very much like its two-dimensional counterpart 
described in Section 3.3.5. In a similar way to the procedure described in Section 3.3.5 
it can be shown that the stagnation point occurs at the point (-a, 0) where 

(3.68) 

and that the streamlines passing through this stagnation point define a body of 
revolution given by 

R~ = 2a2 ( 1 + cos cp) / sin2 'p (3.69) 

The derivation of Eqns (3.68) and (3.69) are left as an exercise (see Ex. 19) for the 
reader. 

In a similar fashion to the two-dimensional case described in Section 3.3.6 a point 
source placed on the z axis at z = -a combined with an equal-strength point sink also 
placed on the z axis at z = a (see Fig. 3.30) below gives the following velocity 
potential and stream function at the point P. 

Q (3.70) Q 
+ =  

4.rr[(Rcos 'p + a)' + R2 sin2 cp]'/2 - 41r[(Rcos cp - a)' + R2 sin2 cp]'/' 

II, = Q (cos cp1 - cos 9 2 )  (3.71) 

where 

Rcos'p+a 
[ ( R c o s ' ~ + u ) ~  + ~ ~ s i n ~ ' p ] ' / ~  

COScpl = 

Fig. 3.30 
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If this source-sink pair is placed in a uniform stream -U in the z direction it 
generates the flow around a body of revolution known as a Rankine body. The shape 
is very similar to the two-dimensional Rankine oval shown in Fig. 3.18 and described 
in Section 3.3.7. 

3.4.5 The point doublet and the potential flow around 
a sphere 

A point doublet is produced when the source-sink pair in Fig. 3.30 become infinitely 
close together. This is closely analogous to line doublet described in Section 3.3.8. 
Mathematically the expressions for the velocity potential and stream function for a 
point doublet can be derived from Eqns (3.70) and (3.71) respectively by allowing 
a + 0 keeping p = 2Qa fixed. The latter quantity is known as the strength of the 
doublet. 

If a is very small a2 may be neglected compared to 2Ra cos cp in Eqn (3.70) then it 
can be written as 

1 
{ R2 cos2 cp + R2 sin2 cp + 2aR cos cp}  'I2 

1 1 
{ R2 cos2 cp + R2 sin2 cp - 2aR cos cp}lI2 

- 

(3.72) 1 1 1 
{ 1 + 2(a/R) cos cp}'I2 - { 1 - 2(a/R) cos cp}l/' 

On expanding 

1 
- l T F - X +  * * .  -- 1 

&E 2 

Therefore as a --t 0 Eqn (3.72) reduces to 

~=-(l--coscp-1--coscp Q a 
4sR R R 

coscp = -- coscp Qa -- - - 
2rR2 4sR2 

In a similar way write 

a a  
R R  

= c o s c p ~ - ~ - c o s 2 c p  

Thus as a + 0 Eqn (3.71) reduces to 

$=- Qa 2 P 2  (1 - cos cp) = - sin cp 
21rR 41rR 

(3.73) 

(3.74) 

The streamline patterns corresponding to the point doublet are similar to those 
depicted in Fig. 3.20. It is apparent from this streamline pattern and from the form 
of Eqn (3.74) that, unlike the point source, the flow field for the doublet is not 
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omnidirectional. On the contrary the flow field is strongly directional. Moreover, the 
case analysed above is something of a special case in that the source-sink pair lies on the 
z axis. In fact the axis of the doublet can be in any direction in three-dimensional space. 

For two-dimensional flow it was shown in Section 3.3.9 that the line doublet 
placed in a uniform stream produces the potential flow around a circular cylinder. 
Similarly it will be shown below that a point doublet placed in a uniform stream 
corresponds to the potential flow around a sphere. 

From Eqns (3.65) and (3.73) the velocity potential for a point doublet in a uniform 
stream, with both the uniform stream and doublet axis aligned in the negative z 
direction, is given by 

4 =  -U R c o s ~ - -  cosp 
47rR2 

From Eqn (3.60) the velocity components are given by 

(3.75) 

(3.76) 

(3.77) 

The stagnation points are defined by q R  = qp = 0. Let the coordinates of the 
stagnation points be denoted by (&, ps). Then from Eqn (3.77) it can be seen that either 

R3 =-- ’ or sinq, = o 
47ru 

The first of these two equations cannot be satisfied as it implies that R, is not a positive 
number. Accordingly, the second of the two equations must hold implying that 

ps=O and 7r (3.78a) 

It now follows from Eqn (3.76) that 

R, = (&)I” ( 3.78 b) 

Thus there are two stagnation points on the z axis at equal distances from the origin. 
From Eqns (3.66) and (3.74) the stream function for a point doublet in a uniform 

flow is given by 

$=-- R2 sin2 p + sin2 p 2 47rR 
(3.79) 

It follows from substituting Eqns (3.78b) in Eqn (3.79) that at the stagnation points 
$ = 0. So the streamlines passing through the stagnation points are described by 

(3.80) 

Equation (3.79) shows that when p # 0 or 7r the radius R of the stream-surface, 
containing the streamlines that pass through the stagnation points, remains fixed 
equal to R,. R can take any value when p = 0 or 7r. Thus these streamlines define the 
surface of a sphere of radius R,. This is very similar to the two-dimensional case of 
the flow over a circular cylinder described in Section 3.3.9. 
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From Eqns (3.77) and (3.78b) it follows that the velocity on the surface of the 
sphere is given by 

3 
2 

q = - Usinp 

So that using the Bernoulli equation gives that 

1 1 
Po + 2 PU2 = p + p p "  

Therefore the pressure variation over the sphere's surface is given by 

1 9 
2 4 

p - p o  =-u2(1 --sin2p) (3.81) 

Again this result is quite similar to that for the circular cylinder described in Section 
3.3.9 and depicted in Fig. 3.23. 

3.4.6 Flow around slender bodies 
In the foregoing part of this section it has been shown that the flow around a class of 
bodies of revolution can be modelled by the use of a source and sink of equal 
strength. Accordingly, it would be natural to speculate whether the flow around 
more general body shapes could be obtained by using several sources and sinks or a 
distribution of them along the z axis. It is indeed possible to do this as first shown by 
Fuhrmann.* Two examples similar to those presented by him are shown in Fig. 3.31. 
Although Fuhrmann's method could model the flow around realistic-looking bodies 
it suffered an important defect from the design point of view. One could calculate the 
body of revolution corresponding to a specified distribution of sources and sinks, but a 
designer would wish to be able to solve the inverse problem of how to choose the variation 
of source strength in order to obtain the flow around a given shape. This more practical 
approach became possible after Munkt introduced his slender-body theory for calculat- 
ing the forces on airship hulls. A brief description of this approach is given below. 

Fig. 3.31 Two examples of flow around bodies of revolution generated by (a) a point source plus a linear 
distribution of source strength; and (b) two linear distributions of source strength. The source distributions 
are denoted by broken lines 

* Fuhrmann, G. (191 l), Drag and pressure measurements on balloon models (in German), 2. &tech., 11, 165. 
Munk, M.M. (1924), The Aerodynamic Forces on Airship Hulls, NACA Report 184. 



Potential flow 145 

Sources 

A/ U rw , x x x x x x x x x x q  X )  

Fig. 3.32 Flow over a slender body of revolution modelled by source distribution 

For Munk's slender-body theory it is assumed that the radius of the body is very 
much smaller than its total length. The flow is modelled by a distribution of sources 
and sinks placed on the z axis as depicted in Fig. 3.32. In many respects this theory is 
analogous to the theory for calculating the two-dimensional flow around symmetric 
wing sections - the so-called thickness problem (see Section 4.9). 

For an element of source distribution located at z = z1 the velocity induced at 
point P (r, z) is 

(3.82) 

where a(z1) is the source strength per unit length and o(zl)dzl takes the place of Q in 
Eqn (3.63). Thus to obtain the velocity components in the r and z directions at P due 
to all the sources we resolve the velocity given by Eqn (3.82) in the two coordinate 
directions and integrate along the length of the body. Thus 

I 
qr = 1 qRsinP 

(3.83) 

(3.84) 

The source strength can be related to the body geometry by the following physical 
argument. Consider the elemental length of the body as shown in Fig. 3.33. If the 
body radius rb is very small compared to the length, 1, then the limit r --+ 0 can be 
considered. For this limit the flow from the sources may be considered purely radial 
so that the flow across the body surface of the element is entirely due to the sources 
within the element itself. Accordingly 

2rrq,dzl = a(z1)dzl at r = rb provided rb + 0 

But the effects of the oncoming flow must also be considered as well as the sources. 
The net perpendicular velocity on the body surface due to both the oncoming flow 
and the sources must be zero. Provided that the slope of the body contour is very 
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fdl? 

Fig. 3.33 

small (Le. drb/dz << 1) then the perpendicular and radial velocity components may be 
considered the same. Thus the requirement that the net normal velocity be zero 
becomes (see Fig. 3.33) 

- 
Sources Oncoming flow 

So that the source strength per unit length and body shape are related as follows 

dS 
dz o(z)  = u- 

where S is the frontal area of a cross-section and is given by S = ~ 4 .  
In the limit as r + 0 Eqn (3.84) simplifies to 

(3.85) 

(3.86) 

Thus once the variation of source strength per unit length has been determined 
according to Eqn (3.85) the axial velocity can be obtained by evaluating Eqn (3.86) 
and hence the pressure evaluated from the Bernoulli equation. 

It can be seen from the derivation of Eqn (3.86) that both rb and drbldz must be 
very small. Plainly the latter requirement would be violated in the vicinity of z = 0 if 
the body had a rounded nose. This is a major drawback of the method. 

The slender-body theory was extended by Munk* to the case of a body at an 
angle of incidence or yaw. This case is treated as a superposition of two distinct 
flows as shown in Fig. 3.34. One of these is the slender body at zero angle of 
incidence as discussed above. The other is the slender body in a crossflow. For 
such a slender body the flow around a particular cross-section is closely analogous 
to that around a circular cylinder (see Section 3.3.9). Accordingly this flow can 
be modelled by a distribution of point doublets with axes aligned in the direction 

*Munk, M.M. (1934), Fluid Mechanics, Part VI, Section Q, in Aerodynamic Theory, volume 1 (ed. 
W. Durand), Springer, Berlin; Dover, New York. 
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Fig. 3.34 Flow at angle of yaw around a body of revolution as the superposition of two  flows 

Doublei 

usin a t 
Fig. 3.35 Cross-flow over slender body of revolution modelled as distribution of doublets 

of the cross-flow, as depicted in Fig. 3.35. Slender-body theory will not be 
taken further here. The reader is referred to Thwaites and Karamcheti for 
further details.* 

3.5 Computational (panel) methods 

In Section 3.3.7, it was shown how the two-dimensional potential flow around an 
oval-shaped contour, the Rankine oval, could be generated by the superposition of 
a source and sink on the x axis and a uniform flow. An analogous three-dimensional 
flow can also be generated around a Rankine body ~ see Section 3.4.4 above - by 
using a point source and sink. Thus it can be demonstrated that the potential flow 
around certain bodies can be modelled by placing sources and sinks in the interior of 
the body. However, it is only possible to deal with particular cases in this way. It is 
possible to model the potential flow around slender bodies or thin aerofoils of any 
shape by a distribution of sources lying along the x axis in the interior of the body. 
This slender-body theory is discussed in Section 3.4 and the analogous thin-wing 
theory is described in Section 4.3. However, calculations based on this theory are 
only approximate unless the body is infinitely thin and the slope of the body contour 
is very small. Even in this case the theory breaks down if the nose or leading edge is 
rounded because there the slope of the contour is infinite. The panel methods 
described here model the potential flow around a body by distributing sources over 
the body surface. In this way the potential flow around a body of any shape can be 

*see Bibliography. 
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P 

P 

Fig. 3.36 

calculated to a very high degree of precision. The method was developed by Hess and 
Smith* at Douglas Aircraft Company. 

If a body is placed in a uniform flow of speed U, in exactly the same way as for the 
Rankine oval of Section 3.3.7, or the Rankine body of Section 3.4.4, the velocity 
potential for the uniform flow may be superimposed on that for the disturbed flow 
around the body to obtain a total velocity potential of the form 

@ = U x + +  (3.87) 

where + denotes the so-called disturbance potential: i.e. the departure from fresstream 
conditions. It can be shown that the disturbance potential flow around a body of any 
given shape can be modelled by a distribution of sources over the body surface (Fig. 3.36). 
Let the source strength per unit arc of contour (or per area in the three-dimensional 
case) be ‘TQ. In the two-dimensional case ‘TQ dsQ would replace m / 2 ~  h Eqn (3.7) and 
constant C can be set equal to zero without loss of generality. Thus the velocity potential 
at P due to sources on an element dSQ of arc of contour centred at point Q is given by 

+PQ = UQ In R P Q ~ Q  (3.8 8a) 

where RPQ is the distance from P to Q .  For the three-dimensional body ‘ T Q ~ A Q  would 
replace - Q / ( ~ T )  in Eqn (3.63) and the velocity potential due to the sources on an 
element, ~ A Q ,  of surface area at point Q is given by 

(3.8 8b) 

The velocity potential due to all the sources on the body surface is obtained by 
integrating (3.88b) over the body surface. Thus following Eqn (3.87) the total velocity 
potential at P can be written as 

+p = Ux + $‘TQ In RpQdSQ for the two-dimensional case, (a) 

+p = Ux + /IPdAQ for the three-dimensional case, (b) (3.89) 
RPQ 

* J.L. Hess and A.M.O. Smith ‘Calculation of Potential Flow about Arbitrary Bodies’ Prog. in Aero. Sci., 
8 (1967). 
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where the integrals are to be understood as being carried out over the contour (or 
surface) of the body. Until the advent of modern computers the result (3.89) was of 
relatively little practical use. Owing to the power of modern computers, however, it 
has become the basis of a computational technique that is now commonplace in 
aerodynamic design. 

In order to use Eqn (3.89) for numerical modelling it is first necessary to ‘discretize’ 
the surface, i.e. break it down into a finite but quite possibly large number of separate 
parts. This is achieved by representing the surface of the body by a collection of 
quadrilateral ‘panels’ - hence the name - see Fig. 3.37a. In the case of a two- 
dimensional shape the surface is represented by a series of straight line segments - 
see Fig. 3.37b. For simplicity of presentation concentrate on the two-dimensional 
case. Analogous procedures can be followed for the three-dimensional body. 

The use of panel methods to calculate the potential flow around a body may be 
best understood by way of a concrete example. To this end the two-dimensional flow 
around a symmetric aerofoil is selected for illustrative purposes. See Fig. 3.37b. 

The first step is to number all the end points or nodes of the panels from 1 to N as 
indicated in Fig. 3.37b. The individual panels are assigned the same number as the 
node located to the left when facing in the outward direction from the panel. The 
mid-points of each panel are chosen as coZIocation points. It will emerge below that 
the boundary condition of zero flow perpendicular to the surface is applied at these 
points. Also define for each panel the unit normal and tangential vectors, f i i  and ii 
respectively. Consider panels i andj  in Fig. 3.37b. The sources distributed over panelj 
induce a velocity, which is denoted by the vector ?q, at the collocation point of panel i. 
The components of ?g perpendicular and tangential to the surface at the collocation 

Fig. 3.37 Discretization of (a) three-dimensional body surface into panels; and (b) aerofoil contour into 
straight line segments 
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point i are given by the scalar (or dot) products i$ . r i i  and 6, . & respectively. Both of 
these quantities are proportional to the strength of the sources on panel j and 
therefore they can be written in the forms 

cy.A. 1 -  - 0 . N . .  J V and 9.. Ll . ;. I - J ' J  - g . T . .  (3.90) 

Ng and Tg are the perpendicular and tangential velocities induced at the collocation 
point of panel i by sources of unit strength distributed over panelj; they are known as 
the normal and tangential influence coefficients. 

The actual velocity perpendicular to the surface at collocation point i is the sum of 
the perpendicular velocities induced by each of the N panels plus the contribution 
due to the free stream. It is given by 

N 

j =  1 

In a similar fashion the tangential velocity at collocation point i is given by 

(3.91) 

(3.92) 

If the surface represented by the panels is to correspond to a solid surface then the 
actual perpendicular velocity at each collocation point must be zero. This condition 
may be expressed mathematically as vni = 0 so that Eqn (3.91) becomes 

+ N 
C g j N i j =  - U . & ( i =  172: ..., N )  (3.93) 
j = l  

Equation (3.93) is a system of linear algebraic equations for the N unknown source 
strengths, aj ( i  = 1,2, .  . . , N). It takes the form of a matrix equation 

N O = b  (3.94) 
where N is an N x N matrix composed of the elements Nu, o is a column matrix 
coxnposed of the N elements gi, and b is a column matrix composed of the N elements 
- U - rii. Assuming for the moment that the perpendicular influence coefficients Nu have 
been calculated and that the elements of the right-hand column matrix b have also been 
calculated, then Eqn (3.94) may, in principle at least, be solved for the source strengths 
comprising the elements of the column matrix cr. Systems of linear equations like (3.94) 
can be readily solved numerically using standard methods. For the results presented here 
the LU decomposition was used to solve for the source strengths. This method is 
described by Press et al.* who also give listings for the necessary computational routines. 

Once the influence coefficients Nu have been calculated the source strengths can be 
determined by solving the system of Eqn (3.93) by some standard numerical technique. 
If the tangential influence coefficients To have also been calculated then, once the 
source strengths have been determined, the tangential velocities may be obtained from 
Eqn (3.92). The Bernoulli equation can then be used to calculate the pressure acting at 
collocation point i, in particular the coefficient of pressure is given by Eqn (2.24) as: 

2 
c, = 1 - ($) (3.95) 

* W.H. Press etal. (1992) Numerical Recipes. The Art of Scientific Computing. 2nd ed. Cambridge Uni- 
versity Press. 
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The calculation of the influence coefficient is a central and essential part of the panel method, 
and this is the question now addressed. As a first step consider the calculation of the velocity 
induced at a point P by sources of unit strength distributed over a panel centred at point Q. 

In terms of a coordinate system ( X Q ,  Y Q )  measured relative to the panel (Fig. 3.38), the 
disturbance potential is given by integrating Eqn (3.88) over the panel. Mathematically 
this is expressed as follows 

QPQ = /&I2 In &=iiG&< (3.96) 

The corresponding velocity components at P in the X Q  and YQ directions can be 
readily obtained from Eqn (3.96) as 

-&I2 

(3.97) 

y Q  dJ 
(XQ - <)2 + & 

(3.98) = - lm-1 (XO :,”’”> - tan-’ ( X Q  - yQ  AS/^ )] 
Armed with these results for the velocity components induced at point P due to the 

sources on a panel centred at point Q return now to the problem of calculating the 
influence coefficients. Suppose that points P and Q are chosen to be the collocation 
points i and j respectively. Equations (3.97) and (3.98) give the velocity components 
in a coordinate system relative to panel j ,  whereas what are required are the velocity 
components perpendicular and tangential to panel i. In vector form the velocity at 
collocation point i is given by 

Fig. 3.38 
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Therefore to obtain the components of this velocity vector perpendicular and tangential 
to panel i take the scalar product of the velocity vector with ii; and Z; respectively to obtain 

(3.99a) Nu = VPQ . ii; = vXQn; . tj + vraii; . i i j  
(3.99b) T.. I I -  - ?PQ . Z; = ~ , ~ t ;  . tj + vYQti . nj 

-+ A *  

* A  

A computational routine in FORTRAN 77 
In order to see how the calculation of the influence coefficients works in practice, a 
computational routine written in standard FORTRAN 77 is given below, with a descrip- 
tion of each step. 

SUBROUTINEINFLU(XC, YC, AN, A T ,  NHAT, THAT, N ,  NM) 
Onexit XCandYCare columnmatrices o f l e n g t h N c o n t a i n i n g t h e c o - o r d i n a t e s o f  
thecollocation points; ANandATaretheN*Ninfluencecoefficientmatrices; and 
NHATandTHATaretheN*2matricescontain~ngtheco-ord~natesoftheun~tnormal 
and tangent vectors, the first andsecondcolumns contain thexandy co-ordinates 
respectively.NisthenumberofpanelsandNMisthemaximumnumberofpane1s. 

PARAMETER(NMAX=200,PI=3.141592654) 
REAL NHAT,NTIJ,NNIJ 
DIMENSION XC (NM), YC (NM ), AN ( N M ,  NM ), AT (NM, NM) 
DIMENSION XP (NMAX),YP (NMAX),NHAT ( N M ,  2), 

& THAT (NM, 2) , S (NMAX) 
OPEN(7,FILE='POINTS.DAT',STATUS='OLD') 
DO 10 I=l,N Read ing inco-o rd ina te so fpane l  

CLOSE (7 ) 
DO 20 J=l,N 

10 READ(7,*) XP(I), YP(1) end-points. 

IF (J.EQ.1) THEN 
XPL=XP(N) 
YPL=YP(N) 

ELSE 
XPL=XP (J - 1) 
YPL=YP (J - 1) 

ENDIF 
XC (J) = 0.5* (XP (J) +XPL) 
YC(J) =0.5*(YP(J)+YPL) collocationpoints. 
S(J)=SQRT((XP(J)-XPL)**2+(YP(J)-YPL)**2) Calculatingpanel length. 
THAT(J,l) = (XP(J)-XPL) /S(J) Calculatingxco-ordinateof unit tangent vector. 
THAT(J,2) = (YP(J)-YPL)/S(J) Calculat ingyco-ordinateof  unit tangentvector. 
NHAT (J, 1) = -THAT (J, 2 ) Calculatingxco-ordinateof unitnormal vector. 
NHAT(J,2) = THAT(J,l) Calculatingyco-ordinateofunitnormalvector. 

Calculating co-ordinates of 

20 CONTINUE 

Calculationofthe influence coefficients. 

DO 30 I=l,N 
DO 40 J=l,N 
IF (I. EQ. J) THEN 
AN(1,J) =PI 
AT(1,J) = O . O  

DX=XC(I)-XC(J) C a l c u l a t i n g x a n d y c o m p o n e n t s o f l i n e  
DY=YC(I)-YC(J) joining collocationpoint iand j 

Case of i= j. 

ELSE 
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XQ=DX*THAT(J,~)+DY*THAT(J,~) Cocvertiigtoco-ordinate system 
YQ=DX*NHAT (J, 1) '3Y*NHAT (J, 2 )  
VX=O.5*(LOG((XQ+O.5*S(J))**2+YQ*YQ ) U s i n g E q n .  (3.97) 

W = A ~ ~ ( ( X Q + O . 5 * S ( J ) ) / Y Q )  - U s i n g E q n .  (3.98) 

based on panel j . 

5 -LOG( ( X Q - O . S * S ( J )  )**2+YQ*YQ) 

& ATAX ( (XQ - 0 -5 * S (J) ) /YQ ) 

B e g i n c a l c u l a t i o n o f v a r i o u s  sca ia rprodac tsofan5tvec torsusedinEqr i .  (3.99) 

N T I  J = C . 0 
N N I J = O . O  
T T I J =  0 . 0  
T N I  J= 0 . 3  
DO 50 K = 1 , 2  
NTI J = NHAT ( I ,  K) *THAT ( J ,  K) + N T I  J 
hNI J = iiHA'? ( I ,  K )  *N!IAT ( J , K) + N?Ji J 
T T I J  =THAT ( I ,  i()*THAT (J, K) + T T I J  
T K I J  = T3AT ( I ,  K)*NHAT (J ,  K)  + T N I J  

5c CONTINUE 

Z ' r d c a l c u l a t i o n o f  scalararoducts.  

A N ( 1 ,  J )  = V X * N T I J + V Y * h N I J  U s i n g  E q n .  (3.99a) 
A N ( I , J ) = V X * T T I C + W * T N I J  U s i n g y q n .  (3.9933) 

E N D I F  
LO CONTINJE 
30 CONTINUE 

RETURN 
E N 3  

The routine, step by step, performs the following. 

Discretizes the surface by assigning numbers from 1 to N to points on the surface 
of the aerofoil as suggested in Fig. 3.37. The x and y coordinates of these points are 
entered into a file named POINTS.DAT. The subroutine starts with reading these 
coordinates XP(Z), YP(Z), say 4, y:, from this file for Z = 1 to N .  
For each panel from J = 1 to N 
The collocation points are calculated by taking an average of the coordinates at 
either end of the panel in question. 
The length S(J) ,  i.e. Asj, of each panel is calculated. 
The x and y components of the unit tangent vectors for each panel are calculated 
as follows: 

The unit normal vectors are then calculated from njx = -ti, and njy = tix. The main 
task of the routine, that of calculating the influence coefficients, now begins. 
For each possible combination of panels, i.e. Z and J = 1 to N .  
First the special case is dealt with when i = j ,  i.e. the velocity induced by the sources 
on the panel itself at its collocation point. From Eqn (3.93, 3.97, 3.98) it is seen that 

vpQX = ln(1) = 0 when X Q  = YQ = 0 (3.1 OOa) 
V ~ Q ~  = tan-'(oo) - tan-'(--m) = ?r when X Q  = Y Q  = 0 (3.100b) 

When i # j the influence coefficients have to be calculated from Eqns (3.97,3.98,3.99). 
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7 The components DX and D Y  of R ~ Q  are calculated in terms of the x and y 

8 The components of RPQ in terms of the coordinate system based on panelj are 
coordinates. 

then calculated as 
-+ -+ 

XQ = R ~ Q .  4 and YQ = R ~ Q  . i i j  

9 VX and V Y  (i.e. vxn and vm) are evaluated using Eqns (3.97) and (3.98). 
10 i i i  . 4, rii - i i j, ?i a 4, and ii fij are evaluated. 
11 Finally the influence coefficients are evaluated from Eqn (3.99). 

The routine presented above is primarily intended for educational purposes and 
has not been optimized to economize on computing time. Nevertheless, using a 
computer program based on the above routine and LU decomposition, accurate 
computations of the pressure distribution around two-dimensional aerofoils can be 
obtained in a few seconds with a modern personal computer. An example of such a 
calculation for an NACA 0024 aerofoil is presented in Fig. 3.39. In this case 29 panels 
were used for the complete aerofoil consisting of upper and lower surfaces. 

The extension of the panel method to the case of lifting bodies, i.e. wings, is 
described in Sections 4.10 and 5.8. When the methods described there are used it is 
possible to compute the flow around the entire aircraft. Such computations are carried 
out routinely during aerodynamic design and have replaced wind-tunnel testing to a 
considerable extent. However, calculation of the potential flow around complex three- 
dimensional bodies is very demanding in terms of computational time and memory. In 
most cases around 70 to 80 per cent of the computing time is consumed in calculating 
the influence coefficients. Accordingly considerable effort has been devoted to devel- 
oping routines for carrying out these calculations efficiently. 

x /c 

Fig. 3.39 Calculation of pressure coefficient for NACA 0024 aerofoil 
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What are the advantages of the panel method compared to other numerical 
methods such as finite differences and finite elements? Both of the latter are 
field methods that require that the whole of the flow field be discretized. The 
panel method, on the other hand, only requires the discretization of the body 
surface - the boundary of the flow field. The dimensions of the solution are 
thereby reduced by one compared to the field method. Thus for the aerofoil calcula- 
tion presented above the panel method required N node points along the aerofoil 
contour, whereas a field method would require N x N points throughout the flow 
field. However, this advantage is more apparent than real, since for the panel method 
the N x N influence coefficients need to be calculated. The real advantages of panel 
methods lie elsewhere. First, like finite-element methods, but unlike finite difference 
methods, the panel method can readily accommodate complex geometries. In fact, an 
alternative and perhaps more appropriate term to panel method is boundary-element 
method. This name makes the connection with finite elements more clear. A second 
advantage compared to any field method is the ease with which panel methods can deal 
with an infinite flow field; note that the aerofoil in Fig. 3.39 is placed in an airflow of 
infinite extent, as is usual. Thirdly, as can readily be seen from the example in Fig. 3.39, 
accurate results can be obtained by means of a relatively coarse discretization, i.e. using 
a small number of panels. Lastly, and arguably the most important advantage from the 
viewpoint of aerodynamic design, is the ease with which modifications of the design can 
be incorporated with a panel method. For example, suppose the effects of under-wing 
stores, such as additional fuel tanks or missiles, were being investigated. If an additional 
store were to be added it would not be necessary to repeat the entire calculation with a 
panel method. It would be necessary only to calculate the additional influence coeffi- 
cients involving the new under-wing store. This facility of ,panel methods allows the 
effects of modifications to be investigated rapidly during aerodynamic design. 

Exercises 
1 Define vorticity in a fluid and obtain an expression for vorticity at a point with 
polar coordinates (r,  e), the motion being assumed two-dimensional. From the 
definition of a line vortex as irrotational flow in concentric circles determine the 
variation of velocity with radius, hence obtain the stream function ($), and the velocity 
potential (+), for a line vortex. 
2 A sink of strength 120 m2sP1 is situated 2 m downstream from a source of equal 
strength in an irrotational uniform stream of 30 m s-l. Find the fineness ratio of the 
oval formed by the streamline $ = 0. (Answer: 1.51)(CU) 
3 A sink of strength 20 m2 s-' is situated 3 m upstream of a source of 40 m2 s-' , in a 
uniform irrotational stream. It is found that at the point 2.5 m equidistant from both 
source and sink, the local velocity is normal to the line joining the source and sink. 
Find the velocity at this point and the velocity of the undisturbed stream. 

(Answer: 1.02 m s-l , 2.29 m s-')(CU) 
4 A line source of strength m and a sink of strength 2m are separated a distance c. 
Show that the field of flow consists in part of closed curves. Locate any stagnation 

5 Derive the expression giving the stream function for irrotational flow of an 
incompressible fluid past a circular cylinder of infinite span. Hence determine the 
position of generators on the cylinder at which the pressure is equal to that of the 
undisturbed stream. (Answer: f. 30°, f. 150°)(U of L) 

(U of L) 

points and sketch the field of flow. (U of L) 
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6 Determine the stream function for a two-dimensional source of strength m. Sketch 
the resultant field of flow due to three such sources, each of strength m, located at the 
vertices of an equilateral triangle. (v of L) 
7 Derive the irrotational flow formula 

1 
2 p -PO = -pu2(1 - 4sin2o) 

giving the intensity of normal pressure p on the surface of a long, circular cylinder set 
at right-angles to a stream of velocity U. The undisturbed static pressure in the fluid 
is PO and 19 is the angular distance round from the stagnation point. Describe briefly 
an experiment to test the accuracy of the above formula and comment on the results 

8 A long right circular cylinder of diameter a m  is set horizontally in a steady stream 
of velocity Um s-l and caused to rotate at w rad s-l. Obtain an expression in terms 
of w and U for the ratio of the pressure difference between the top and the bottom of 
the cylinder to the dynamic pressure of the stream. Describe briefly the behaviour of 
the stagnation lines of such a system as w is increased from zero, keeping U constant. 

Answer: - (CU) 

9 A line source is immersed in a uniform stream. Show that the resultant flow, if 
irrotational, may represent the flow past a two-dimensional fairing. If a maximum 
thickness of the fairing is 0.15 m and the undisturbed velocity of the stream 6.0 m s-l, 
determine the strength and location of the source. Obtain also an expression for the 
pressure at any point on the surface of the fairing, taking the pressure at infinity 
as datum. (Answer: 0.9 m2 s-', 0.0237 m)(U of L) 

10 A long right circular cylinder of radius a m  is held with its axis normal to an 
irrotational inviscid stream of U. Obtain an expression for the drag force acting on 
unit length of the cylinder due to the pressures exerted on the front half only. 

Answer: --pU2a (CU) 

11 Show that a velocity potential exists in a two-dimensional steady irrotational 
incompressible fluid motion. The stream function of a two-dimensional motion of an 
incompressible fluid is given by 

obtained. (U of L) 

( "1 

( 3 l )  

a C 
$J = -x2 + bxy - - y2  

2 2 
where a, b and c are arbitrary constants. Show that, if the flow is irrotational, the 
lines of constant pressure never coincide with either the streamlines or the equipo- 

12 State the stream function and velocity potential for each of the motions induced 
by a source, vortex and doublet in a two-dimensional incompressible fluid. Show that 
a doublet may be regarded, either as 

(i) the limiting case of a source and sink, or 
(ii) the limiting case of equal and opposite vortices, indicating clearly the direction of 

tential lines. Is this possible for rotational motion? (U of L) 

the resultant doublet. (U of L) 
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13 Define (a) the stream function, (b) irrotational flow and (c) the velocity potential 
for two-dimensional motion of an incompressible fluid, indicating the conditions 
under which they exist. Determine the stream function for a point source of strength 
0 at the origin. Hence, or otherwise, show that for the flow due to any number of 
sources at points on a circle, the circle is a streamline provided that the algebraic sum 

14 A line vortex of strength I? is mechanically fixed at the point (1, 0) referred to 
a system of rectangular axes in an inviscid incompressible fluid at rest at 
infinity bounded by a plane wall coincident with the y-axis. Find the velocity in the 
fluid at the point (0, y )  and determine the force that acts on the wall (per unit depth) 
if the pressure on the other side of the wall is the same as at infinity. Bearing 
in mind that this must be equal and opposite to the force acting on unit length 
of the vortex show that your result is consistent with the Kutta-Zhukovsky 

15 Write down the velocity potential for the two-dimensional flow about a circular 
cylinder with a circulation I? in an otherwise uniform stream of velocity U. Hence 
show that the lift on unit span of the cylinder is pur. Produce a brief but plausible 
argument that the same result should hold for the lift on a cylinder of arbitrary shape, 
basing your argument on consideration of the flow at large distances from the 

16 Define the terms velocity potential, circulation, and vorticity as used in two- 
dimensional fluid mechanics, and show how they are related. The velocity distribu- 
tion in the laminar boundary layer of a wide flat plate is given by 

of the strengths of the sources is zero. (U of L) 

theorem. (U of L) 

cylinder. (U of L) 

where uo is the velocity at the edge of the boundary layer where y equals 6. Find the 
vorticity on the surface of the plate. 

3 uo (Answer: ---) (U of L) 2 6  

17 A two-dimensional fluid motion is represented by a point vortex of strength r set 
at unit distance from an infinite straight boundary. Draw the streamlines and plot the 

18 The velocity components of a two-dimensional inviscid incompressible flow are 
given by 

velocity distribution on the boundary when I? = 7r. (U of L) 

X v = - 2 x -  Y u = 2 y -  
(.2 + y z ) 1 / 2  (x2 + y 2 y  

Find the stream function, and the vorticity, and sketch the streamlines. 

1 Answer: $ = 2 + y2 + (x2 + y2)l/’: C = - 

19 (a) Given that the velocity potential for a point source takes the form 
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where in axisymmetric cylindrical coordinates (r, z)R = d w ,  show that when a 
uniform stream, U, is superimposed on a point source located at the origin, there is a 
stagnation point located on the z-axis upstream of the origin at distance 

@) Given that in axisymmetric spherical coordinates (R, p) the stream function for 
the point source takes the form 

show that the streamlines passing through the stagnation point found in (a) define a 
body of revolution given by 

2 4  1 + cos $0) 

sin' 'p 
R2 = 

Make a rough sketch of this body. 



Two-dimensional wing theory 

4.1 Introduction 

By the end of the nineteenth century the theory of ideal, or potential, flow (see 
Chapter 3) was extremely well-developed. The motion of an inviscid fluid was a well- 
defined mathematical problem. It satisfied a relatively simple linear partial differen- 
tial equation, the Laplace equation (see Section 3.2),  with well-defined boundary 
conditions. Owing to this state of affairs many distinguished mathematicians were 
able to develop a wide variety of analytical methods for predicting such flows. Their 
work was and is very useful for many practical problems, for example the flow around 
airships, ship hydrodynamics and water waves. But for the most important practical 
applications in aerodynamics potential flow theory was almost a complete failure. 

Potential flow theory predicted the flow field absolutely exactly for an inviscid 
fluid, that is for infinite Reynolds number. In two important respects, however, it did 
not correspond to the flow field of real fluid, no matter how large the Reynolds 
number. Firstly, real flows have a tendency to separate from the surface of the body. 
This is especially pronounced when the bodies are bluff like a circular cylinder, and in 
such cases the real flow bears no resemblance to the corresponding potential flow. 
Secondly, steady potential flow around a body can produce no force irrespective of 
the shape. This result is usually known as d’Alembert’s paradox after the French 
mathematician who first discovered it in 1744. Thus there is no prospect of using 
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potential flow theory in its pure form to estimate the lift or drag of wings and thereby 
to develop aerodynamic design methods. 

Flow separation and d’Alembert’s paradox both result from the subtle effects of 
viscosity on flows at high Reynolds number. The necessary understanding and 
knowledge of viscous effects came largely from work done during the first two 
decades of the twentieth century. It took several more decades, however, before this 
knowledge was fully exploited in aerodynamic design. The great German aeronaut- 
ical engineer Prandtl and his research team at the University of Gottingen deserve 
most of the credit both for explaining these paradoxes and showing how potential 
flow theory can be modified to yield useful predictions of the flow around wings and 
thus of their aerodynamic characteristics. His boundary-layer theory explained why 
flow separation occurs and showed how skin-friction drag could be calculated. This 
theory and its later developments are described in Chapter 7 below. He also showed 
how a theoretical model based on vortices could be developed for the flow field of 
a wing having large aspect ratio. This theory is described in Chapter 5. There it is 
shown how a knowledge of the aerodynamic characteristics, principally the lift 
coefficient, of a wing of infinite span - an aerofoil - can be adapted to give estimates 
of the aerodynamic characteristics of a wing of finite span. This work firmly estab- 
lished the relevance of studying the two-dimensional flow around aerofoils that is the 
subject of the present chapter. 

4.1.1 The Kutta condition 
How can potential flow be adapted to provide a reasonable theoretical model for the 
flow around an aerofoil that generates lift? The answer lies in drawing an analogy 
between the flow around an aerofoil and that around a spinning cylinder (see Section 
3.3.10). For the latter it can be shown that when a point vortex is superimposed with 
a doublet on a uniform flow, a lifting flow is generated. It was explained in Section 
3.3.9 that the doublet and uniform flow alone constitutes a non-circulatory irrota- 
tional flow with zero vorticity everywhere. In contrast, when the vortex is present the 
vorticity is zero everywhere except at the origin. Thus, although the flow is still 
irrotational everywhere save at the origin, the net effect is that the circulation is non- 
zero. The generation of lift is always associated with circulation. In fact, it can be 
shown (see Eqn 3.52) that for the spinning cylinder the lift is directly proportional to 
the circulation. It will be shown below that this important result can also be extended 
to aerofoils. The other point to note from Fig. 3.25 is that as the vortex strength, and 
therefore circulation, rise both the fore and aft stagnation points move downwards 
along the surface of the cylinder. 

Now suppose that in some way it is possible to use vortices to generate circulation, 
and thereby lift, for the flow around an aerofoil. The result is shown schematically 
in Fig. 4.1. Figure 4.la shows the pure non-circulatory potential flow around 
an aerofoil at an angle of incidence. If a small amount of circulation is added the 
fore and aft stagnation points, SF and SA, move as shown in Fig. 4.lb. In this case 
the rear stagnation point remains on the upper surface. On the other hand, if 
the circulation is relatively large the rear stagnation point moves to the lower surface, 
as shown in Fig. 4 .1~.  For all three of these cases the flow has to pass around the 
trailing edge. For an inviscid flow this implies that the flow speed becomes infinite at 
the trailing edge. This is evidently impossible in a real viscous fluid because viscous 
effects ensure that such flows cannot be sustained in nature. In fact, the only position 
for the rear stagnation point that is sustainable in a real flow is at the trailing edge, as 
illustrated in Fig. 4.ld. Only with the rear stagnation point at the trailing edge does 
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(a) No circulation 

(b) Low circulation 

(c) High circulation 

(d) Circulation such that Kutta condition is satisfied 

Fig. 4.1 Effect of circulation on the f low around an aerofoil at an angle of incidence 

the flow leave the upper and lower surfaces smoothly at the trailing edge. This is the 
essence of the Kutta condition first introduced by the German mathematician Kutta.* 

Imposing the Kutta condition gives a unique way of choosing the circulation for 
an aerofoil, and thereby determining the lift. This is extremely important because 
otherwise there would be an infinite number of different lifting flows, each corres- 
ponding to a different value of circulation, just as in the case of the spinning cylinder 

* W. Kutta (1902) ‘Lift forces in flowing fluids’ (in German), Ill. Aeronaut. Mitt., 6, 133. 
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V 1 = V * = O  Vl =V2# 0 

Fig. 4.2 

for which the lift generated depends on the rate of spin. In summary, the Kutta 
condition can be expressed as follows. 

0 For a given aerofoil at a given angle of attack the value of the circulation must take 
the unique value which ensures that the flow leaves the trailing edge smoothly. 
For practical aerofoils with trailing edges that subtend a finite angle ~ see Fig. 4.2a - 
this condition implies that the rear stagnation point is located at the trailing edge. 

All real aerofoils are like Fig. 4.2a, of course, but (as in Section 4.2) for theoretical 
reasons it is frequently desirable to consider infinitely thin aerofoils, Fig. 4.2b. In this 
case and for the more general case of a cusped trailing edge the trailing edge need not 
be a stagnation point for the flow to leave the trailing edge smoothly. 

0 If the angle subtended by the trailing edge is zero then the velocities leaving the 
upper and lower surfaces at the trailing edge are finite and equal in magnitude and 
direction. 

4.1.2 Circulation and vorticity 
From the discussion above it is evident that circulation and vorticity, introduced in 
Section 2.7, are key concepts in understanding the generation of lift. These concepts 
are now explored further, and the precise relationship between the lift force and 
circulation is derived. 

Consider an imaginary open curve AB drawn in a purely potential flow as in 
Fig. 4.3a. The difference in the velocity potential 4 evaluated at A and B is given by 
the line integral of the tangential velocity component of flow along the curve, i.e. if 
the flow velocity across AB at the point P is q, inclined at angle a to the local tangent, 
then 

which could also be written in the form 

$ A - ~ B =  (Udx+vdy) s,, 
Equation (4.1) could be regarded as an alternative definition of velocity potential. 

Consider next a closed curve or circuit in a circulatory flow (Fig. 4.3b) (remember 
that the circuit is imaginary and does not influence the flow in any way, Le. it is not 
a boundary). The circulation is defined in Eqn (2.83) as the line integral taken around 
the circuit and is denoted by I?, i.e. 
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Y 

Fig. 4.3 (a) An open curve in a potential flow. (b) A closed curve in a circulatory flow; A and B coincide 

It is evident from Eqns (4.1) and (4.2) that in a purely potential flow, for which $A 
must equal 4~ when the two points coincide, the circulation must be zero. 

Circulation implies a component of rotution of flow in the system. This is not to say 
that there are circular streamlines, or that elements of fluid are actually moving 
around some closed loop although this is a possible flow system. Circulation in a flow 
means that the flow system could be resolved into a uniform irrotational portion and 
a circulating portion. Figure 4.4 shows an idealized concept. The implication is that 
if circulation is present in a fluid motion, then vorticity must be present, even though 
it may be confined to a restricted space, e.g. as in the core of a point vortex. 
Alternatively, as in the case of the circular cylinder with circulation, the vorticity at 
the centre of the cylinder may actually be excluded from the region of flow con- 
sidered, namely that outside the cylinder. 
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V + V  
f- 

V 
f- 

Fig. 4.4 

Consider this by the reverse argument. Look again at Fig. 4.3b. By definition the 
velocity potential of C relative to A (&A) must be equal to the velocity potential of 
C relative to B ( ~ c B )  in a potential flow. The integration continued around ACB gives 

= ~ C A  i= ~ C B  = 0 

This is for a potential flow only. Thus, if I' is finite the definition of the velocity 
potential breaks down and the curve ACB must contain a region of rotational flow. 
If the flow is not potential then Eqn (ii) in Section 3.2 must give a non-zero value for 
vorticity. 

An alternative equation for I' is found by considering the circuit of integration to 
consist of a large number of rectangular elements of side Sx by (e.g. see Section 2.7.7 
and Example 2.2). Applying the integral I' = J (u dx + v dy) round abcd, say, which is 
the element at P(x, y) where the velocity is u and v, gives (Fig. 4.5). 

av sx av sx 

The sum of the circulations of all the areas is clearly the circulation of the circuit as 
a whole because, as the AI' of each element is added to the AI? of the neighbouring 
element, the contributions of the common sides disappear. 

Applying this argument from element to neighbouring element throughout the 
area, the only sides contributing to the circulation when the AI'S of all areas are 
summed together are those sides which actually form the circuit itself. This means 
that for the circuit as a whole 

over the area round the circuit 

and 

av au _ _ - _  - c  ax  ay 

This shows explicitly that the circulation is given by the integral of the vorticity 
contained in the region enclosed by the circuit. 
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Fig. 4.5 

If the strength of the circulation remains constant whilst the circuit shrinks to 
encompass an ever smaller area, i.e. until it shrinks to an area the size of a rectangular 
element, then: 

I? = C x SxSy = 5 x area of element 

Therefore, 

(4.3) 
r 

vorticity = lim 
area-0 area of circuit 

Here the (potential) line vortex introduced in Section 3.3.2 will be re-visited and the 
definition (4.2) of circulation will now be applied to two particular circuits around 
a point (Fig. 4.6). One of these is a circle, of radius r1, centred at the centre of the 
vortex. The second circuit is ABCD, composed of two circular arcs of radii r1 and r2 
and two radial lines subtending the angle ,6 at the centre of the vortex. For the 
concentric circuit, the velocity is constant at the value 

where C is the constant value of qr. 
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Fig. 4.6 Two circuits in the flow around a point vortex 

Since the flow is, by the definition of a vortex, along the circle, a is everywhere zero 
and therefore cos a = 1. Then, from Eqn (4.2) 

Now suppose an angle 8 to be measured in the anti-clockwise sense from some 
arbitrary axis, such as OAB. Then 

ds = rld8 

whence 

Since C is a constant, it follows that r is also a constant, independent of the radius. 
It can be shown that, provided the circuit encloses the centre of the vortex, the 
circulation round it is equal to I?, whatever the shape of the circuit. The circulation 
I' round a circuit enclosing the centre of a vortex is called the strength of the vortex. 
The dimensions pf circulation and vortex strength are, from Eqn (4.2), velocity times 
length, Le. L2T- , the units being m2 s-*. Now r = 2nC, and C was defined as equal 
to qr; hence 

I' = 2nqr 

and 
r q = -  

2nr (4.5) 

Taking now the second circuit ABCD, the contribution towards the circulation from 
each part of the circuit is calculated as follows: 

(i) Rudiul line AB Since the flow around a vortex is in concentrk circles, the 
velocity vector is everywhere perpendicular to the radial line, i.e. a = 90°, 
cosa = 0. Thus the tangential velocity component is zero along AB, and there 
is therefore no contribution to the circulation. 

(ii) Circular arc BC Here a = 0, cos a = 1. Therefore 
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But, by Eqn (4.5), 

(iii) 

(iv) 

Radial line CD As for AB, there is no contribution to the circulation from this 
part of the circuit. 
Circular arc DA Here the path of integration is from D to A, while the direction 
of velocity is from A to D. Therefore a = 180", cosa = -1.  Then 

Therefore the total circulation round the complete circuit ABCD is 

Thus the total circulation round this circuit, that does not enclose the core of the 
vortex, is zero. Now any circuit can be split into infinitely short circular arcs joined 
by infinitely short radial lines. Applying the above process to such a circuit would 
lead to the result that the circulation round a circuit of any shape that does not 
enclose the core of a vortex is zero. This is in accordance with the notion that 
potential flow is irrotational (see Section 3.1). 

4.1.3 Circulation and lift (Kutta-Zhukovsky theorem) 
In Eqn (3.52) it was shown that the lift l per unit span and the circulation r of 
a spinning circular cylinder are simply related by 

1 = p m  

where p is the fluid density and Vis the speed of the flow approaching the cylinder. In 
fact, as demonstrated independently by Kutta* and Zhukovskyt, the Russian physi- 
cist, at the beginning of the twentieth century, this result applies equally well to a 
cylinder of any shape and, in particular, applies to aerofoils. This powerful and useful 
result is accordingly usually known as the KutteZhukovsky Theorem. Its validity is 
demonstrated below. 

The lift on any aerofoil moving relative to a bulk of fluid can be derived by direct 
analysis. Consider the aerofoil in Fig. 4.7 generating a circulation of l-' when in a stream 
of velocity V, density p, and static pressure PO. The lift produced by the aerofoil must 
be sustained by any boundary (imaginary or real) surrounding the aerofoil. 

For a circuit of radius r, that is very large compared to the aerofoil, the lift of the 
aerofoil upwards must be equal to the sum of the pressure force on the whole 
periphery of the circuit and the reaction to the rate of change of downward momen- 
tum of the air through the periphery. At this distance the effects of the aerofoil 
thickness distribution may be ignored, and the aerofoil represented only by the 
circulation it generates. 

* see footnote on page 161. 
' N. Zhukovsky 'On the shape of the lifting surfaces of kites' (in German), Z .  Flugtech. Motorluftschiffahrt, 
1; 281 (1910) and 3, 81 (1912). 
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Fig. 4.7 

The vertical static pressure force or buoyancy h, on the circular boundary is the sum 
of the vertical pressure components acting on elements of the periphery. At the 
element subtending SO at the centre of the aerofoil the static pressure is p and the 
local velocity is the resultant of V and the velocity v induced by the circulation. 
By Bernoulli's equation 

1 1 
PO + - 2 PV' = p + -p[v2 2 + VZ + ~ V V  sin e ]  

giving 

p =po - pVvsin8 

if v2 may be neglected compared with V2, which is permissible since r is large. 
The vertical component of pressure force on this element is 

-pr sin 8 St) 

and, on substituting for p and integrating, the contribution to lift due to the force 
acting on the boundary is 

lb = -l (PO - pVvsine)rsin ode 
2iT 

(4.7) 
= +pVvrr 

with po and r constant. 
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The mass flow through the elemental area of the boundary is given by pVr cos 8 SO. 
This mass flow has a vertical velocity increase of v cos 8, and therefore the rate of 
change of downward momentum through the element is -pVvr cos2 O SO; therefore by 
integrating round the boundary, the inertial contribution to the lift, li, is 

2n 
li =+I pVvrcos20d0 

J o  
= pVvr.ir 

Thus the total lift is: 

I = 2pVvm 

From Eqn (4.5): 

giving, finally, for the lift per unit span, 1: 

1 = pvr (4.10) 

This expression can be obtained without consideration of the behaviour of air in 
a boundary circuit, by integrating pressures on the surface of the aerofoil directly. 

It can be shown that this lift force is theoretically independent of the shape of the 
aerofoil section, the main effect of which is to produce a pitching moment in 
potential flow, plus a drag in the practical case of motion in a real viscous fluid. 

4.2 The development of aerofoil theory 
The first successful aerofoil theory was developed by Zhukovsky." This was based on 
a very elegant mathematical concept - the conformal transformation - that exploits 
the theory of complex variables. Any two-dimensional potential flow can be repre- 
sented by an analytical function of a complex variable. The basic idea behind 
Zhukovsky's theory is to take a circle in the complex < = (5 + iv) plane (noting that 
here ( does not denote vorticity) and map (or transform) it into an aerofoil-shaped 
contour. This is illustrated in Fig. 4.8. 

= 4 + i+ 
where, as previously, 4 and $ are the velocity potential and stream function respect- 
ively. The same Zhukovsky mapping (or transformation), expressed mathematically as 

A potential flow can be represented by a complex potential defined by 

(where C is a parameter), would then map the complex potential flow around the 
circle in the <-plane to the corresponding flow around the aerofoil in the z-plane. This 
makes it possible to use the results for the cylinder with circulation (see Section 
3.3.10) to calculate the flow around an aerofoil. The magnitude of the circulation is 
chosen so as to satisfy the Kutta condition in the z-plane. 

From a practical point of view Zhukovsky's theory suffered an important draw- 
back. It only applied to a particular family of aerofoil shapes. Moreover, all the 

* see footnote on page 161. 
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iy z plane 

0 

U 

Fig. 4.8 Zhukovsky transformation, of the flow around a circular cylinder with circulation, to  that around 
an aerofoil generating lift 

members of this family of shapes have a cusped trailing edge whereas the aerofoils 
used in practical aerodynamics have trailing edges with finite angles. Kkrmkn and 
Trefftz* later devised a more general conformal transformation that gave a family of 
aerofoils with trailing edges of finite angle. Aerofoil theory based on conformal 
transformation became a practical tool for aerodynamic design in 1931 when the 
American engineer Theodorsen' developed a method for aerofoils of arbitrary shape. 
The method has continued to be developed well into the second half of the twentieth 
century. Advanced versions of the method exploited modern computing techniques 
like the Fast Fourier Transform.** 

If aerodynamic design were to involve only two-dimensional flows at low speeds, 
design methods based on conformal transformation would be a good choice. How- 
ever, the technique cannot be extended to three-dimensional or high-speed flows. For 
this reason it is no longer widely used in aerodynamic design. Methods based on 
conformal transformation are not discussed further here. Instead two approaches, 
namely thin aerofoil theory and computational boundary element (or panel) methods, 
which can be extended to three-dimensional flows will be described. 

The Zhukovsky theory was of little or no direct use in practical aerofoil design. 
Nevertheless it introduced some features that are basic to any aerofoil theory. Firstly, 
the overall lift is proportional to the circulation generated, and secondly, the magni- 
tude of the circulation must be such as to keep the velocity finite at the trailing edge, 
in accordance with the Kutta condition. 

It is not necessary to suppose the vorticity that gives rise to the circulation be due 
to a single vortex. Instead the vorticity can be distributed throughout the region 
enclosed by the aerofoil profile or even on the aerofoil surface. But the magnitude of 
circulation generated by all this vorticity must still be such as to satisfy the Kutta 
condition. A simple version of this concept is to concentrate the vortex distribution 
on the camber line as suggested by Fig. 4.9. In this form, it becomes the basis of the 
classic thin aerofoil theory developed by Munk' and G1auert.O 

Glauert's version of the theory was based on a sort of reverse Zhukovsky trans- 
formation that exploited the not unreasonable assumption that practical aerofoils are 

* 2. Fhgtech. Motorluftschiffahrt, 9, 1 1  1 (1918). 

** N.D. Halsey (1979) Potential flow analysis of multi-element airfoils using conformal mapping, AZAA J., 
12, 1281. 

NACA Report, No. 411 (1931). 

NACA Report, No. 142 (1922). 
Aeronautical Research Council, Reports and Memoranda No. 910 (1924). 
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Fig. 4.9 

thin. He was thereby able to determine the aerofoil shape required for specified 
aerofoil characteristics. This made the theory a practical tool for aerodynamic 
design. However, as remarked above, the use of conformal transformation is 
restricted to two dimensions. Fortunately, it is not necessary to use Glauert’s 
approach to obtain his final results. In Section 4.3, later developments are followed 
using a method that does not depend on conformal transformation in any way and, 
accordingly, in principle at least, can be extended to three dimensions. 

Thin aerofoil theory and its applications are described in Sections 4.3 to 4.9. As the 
name suggests the method is restricted to thin aerofoils with small camber at  small 
angles of attack. This is not a major drawback since most practical wings are fairly 
thin. A modern computational method that is not restricted to thin aerofoils is 
described in Section 4.10. This is based on the extension of the panel method of 
Section 3.5 to lifting flows. It was developed in the late 1950s and early 1960s by Hess 
and Smith at  Douglas Aircraft Company. 

v. * 

4.3 <The general thin aerofoil theory 
For the development of this theory it is assumed that the maximum aerofoil thickness 
is small compared to the chord length. It is also assumed that the camber-line shape 
only deviates slightly from the chord line. A corollary of the second assumption is 
that the theory should be restricted to low angles of incidence. 

Consider a typical cambered aerofoil as shown in Fig. 4.10. The upper and lower 
curves of the aerofoil profile are denoted by y, and yl respectively. Let the velocities 
in the x and y directions be denoted by u and v and write them in the form: 

u =  UCOSQ+U’.  v =  Usincu+v‘ 

Fig. 4.10 
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u’ and v’ represent the departure of the local velocity from the undisturbed free 
stream, and are commonly known as the disturbance or perturbation velocities. In 
fact, thin-aerofoil theory is an example of a small perturbation theory. 

The velocity component perpendicular to the aerofoil profile is zero. This 
constitutes the boundary condition for the potential flow and can be expressed 
mathematically as: 

-usinp+vcosp=O at y = y u  and y1 

Dividing both sides by cos p, this boundary condition can be rewritten as 

- (Ucosa+ul)-+Usina+v’=O dY at y = y u  and y1 (4.11) 

By making the thin-aerofoil assumptions mentioned above, Eqn (4.11) may be 
simplified. Mathematically, these assumptions can be written in the form 

dx 

dYu dyl yu and yl e c; a,- and - << 1 dx dx 
Note that the additional assumption is made that the slope of the aerofoil profile is 
small. These thin-aerofoil assumptions imply that the disturbance velocities are small 
compared to the undisturbed free-steam speed, i.e. 

ut  and V I < <  U 
Given the above assumptions Eqn (4.1 1) can be simplified by replacing cos a and 

sina by 1 and a respectively. Furthermore, products of small quantities can be 
neglected, thereby allowing the term u‘dyldx to be discarded so that Eqn (4.1 1) 
becomes 

(4.12) 

One further simplification can be made by recognizing that if yu and y1 e c then to 
a sufficiently good approximation the boundary conditions Eqn (4.12) can be applied 
at y = 0 rather than at y = y, or y1. 

Since potential flow with Eqn (4.12) as a boundary condition is a linear system, the 
flow around a cambered aerofoil at incidence can be regarded as the superposition of 
two separate flows, one circulatory and the other non-circulatory. This is illustrated 
in Fig. 4.1 1. The circulatory flow is that around an infinitely thin cambered plate and 
the non-circulatory flow is that around a symmetric aerofoil at zero incidence. This 
superposition can be demonstrated formally as follows. Let 

y u = y c + y t  and H = y c - y t  
y = yc(x) is the function describing the camber line and y = yt = (yu - y1)/2 is known 
as the thickness function. Now Eqn (4.12) can be rewritten in the form 

dYc dYt V I =  u-- Ua f u- dx dx -- 
Circulatory Non-circulatory 

where the plus sign applies for the upper surface and the minus sign for the lower 
surface. 
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Cumbered plate at incidence 
(circulatory flow ) 

Symmetric aerofoil at zero 
incidence 
( non-circulatory flow) 

Fig. 4.11 Cambered thin aerofoil at incidence as superposition of a circulatory and non-circulatory flow 

Thus the non-circulatory flow is given by the solution of potential flow subject to 
the boundary condition v' = f U dyt/dx which is applied at y = 0 for 0 5 x 5 c. The 
solution of this problem is discussed in Section 4.9. The lifting characteristics of the 
aerofoil are determined solely by the circulatory flow. Consequently, it is the solution 
of this problem that is of primary importance. Turn now to the formulation and 
solution of the mathematical problem for the circulatory flow. 

It may be seen from Sections 4.1 and 4.2 that vortices can be used to represent 
lifting flow. In the present case, the lifting flow generated by an infinitely thin 
cambered plate at incidence is represented by a string of line vortices, each of 
infinitesimal strength, along the camber line as shown in Fig. 4.12. Thus the camber 
line is replaced by a line of variable vorticity so that the total circulation about the 
chord is the sum of the vortex elements. This can be written as 

r = L'kds (4.13) 

Fig. 4.12 Insert shows velocity and pressure above and below 6s 
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where k is the distribution of vorticity over the element of camber line 6s and 
circulation is taken as positive in the clockwise direction. The problem now becomes 
one of determining the function k(x) such that the boundary condition 

I dYc v = U - - U a  at y = O ,  O < x < l  
dx 

(4.14) 

is satisfied as well as the Kutta condition (see Section 4.1.1). 
There should be no difficulty in accepting this idealized concept. A lifting wing 

may be replaced by, and produces forces and disturbances identical to, a vortex 
system, and Chapter 5 presents the classical theory of finite wings in which the idea of 
a bound vortex system is fully exploited. A wing replaced by a sheet of spanwise 
vortex elements (Fig. 5.21), say, will have a section that is essentially that of the 
replaced camber line above. 

The leading edge is taken as the origin of a pair of coordinate axes x and y ;  
Ox along the chord, and Oy normal to it. The basic assumptions of the theory permit 
the variation of vorticity along the camber line to be assumed the same as the 
variation along the Ox axis, i.e. Ss differs negligibly from Sx, so that Eqn (4.13) 
becomes 

I? = L C k d x  

Hence from Eqn (4.10) for unit span of this section the lift is given by 

Alternatively Eqn (4.16) could be written with pUk = p :  

I = L'pUkdx = 

(4.15) 

(4.16) 

(4.17) 

Now considering unit spanwise length, p has the dimensions of force per unit area 
or pressure and the moment of these chordwise pressure forces about the leading 
edge or origin of the system is simply 

(4.18) 

Note that pitching 'nose up' is positive. 
The thin wing section has thus been replaced for analytical purposes by a line 

discontinuity in the flow in the form of a vorticity distribution. This gives rise to an 
overall circulation, as does the aerofoil, and produces a chordwise pressure variation. 

For the aerofoil in a flow of undisturbed velocity U and pressure PO,  the insert 
to Fig. 4.12 shows the static pressures p1 and p2 above and below the element 6s 
where the local velocities are U + u1 and U + 242, respectively. The overall pressure 
difference p is p2 - p1. By Bernoulli: 

1 1 
2 

1 1 
2 

p1 + p ( U + u 1 ) 2  =po +-pu2 

p2 + 5 p( u + u2)2 = Po + - pu2 



Two-dimensional wing theory 175 

and subtracting 

p 2 - p 1 = - p u  2 [  2 ("1 --- " 2 )  + ( 3 2 - ( ? ) 2 ]  - 
2 u u  

and with the aerofoil thin and at small incidence the perturbation velocity ratios ul/U 
and u2/U will be so small compared with unity that (u1/U)2 and ( u ~ / U ) ~  are neglected 
compared with ul/U and uZ/U, respectively. Then 

P = p2 - P1 = P W U l  - u2) (4.19) 

The equivalent vorticity distribution indicates that the circulation due to element 
Ss is kSx (Sx because the camber line deviates only slightly from the Ox axis). 
Evaluating the circulation around 6,s and taking clockwise as positive in this case, 
by taking the algebraic sum of the flow of fluid along the top and bottom of Ss, gives 

kSx = +(U + u ~ ) S X  - ( U  + UZ)SX = ( ~ 1  - u~)SX (4.20) 

Comparing (4.19) and (4.20) shows that p = pUk as introduced in Eqn (4.17). 
For a trailing edge angle of zero the Kutta condition (see Section 4.1.1) requires 

u1 = 2.42 at the trailing edge. It follows from Eqn (4.20) that the Kutta condition is 
satisfied if 

k=O at x = c  (4.21) 

The induced velocity v in Eqn (4.14) can be expressed in terms of k, by considering 
the effect of the elementary circulation k Sx at x, a distance x - x1 from the point 
considered (Fig. 4.13). Circulation kSx induces a velocity at the point X I  equal to 

1 k6x 
27rX-X1 

from Eqn (4.5). 

v' where 
The effect of all such elements of circulation along the chord is the induced velocity 

Fig. 4.13 Velocities at x1 from 0: U + u1, resultant tangential to camber lines; v', induced by chordwise 
variation in circulation; U, free stream velocity inclined at angle Q to  Ox 
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and introducing this in Eqn (4.14) gives 

(4.22) 

The solution for k d x  that satisfies Eqn (4.22) for a given shape of camber 
line (defining dy,/dx) and incidence can be introduced in Eqns (4.17) and (4.18) to 
obtain the lift and moment for the aerofoil shape. The characteristics CL and Cv,, 
follow directly and hence k C p ,  the centre of pressure coefficient, and the angle 
for zero lift. 

* (  

4.4 The solution of the generat equation 

In the general case Eqn (4.22) must be solved directly to determine the function k(x) 
that corresponds to a specified camber-line shape. Alternatively, the inverse design 
problem may be solved whereby the pressure distribution or, equivalently, the 
tangential velocity variation along the upper and lower surfaces of the aerofoil is 
given. The corresponding k(x) may then be simply found from Eqns (4.19) and 
(4.20). The problem then becomes one of finding the requisite camber line shape 
from Eqn (4.22). The present approach is to work up to the general case through the 
simple case of the flat plate at incidence, and then to consider some practical 
applications of the general case. To this end the integral in Eqn (4.22) will be 
considered and expressions for some useful definite integrals given. 

In order to use certain trigonometric relationships it is convenient to change 
variables from x to 8, through x = (c/2)(1 - cos Q ) ,  and to H I ,  then the limits 
change as follows: 

Q ~ O A T  as x w O + c ,  and 

so 

(4.23) 
k d x  j7 ksinOd0 1 -k (cos8 - cosQ1) 

Also the Kutta condition (4.21) becomes 

k = O  at Q = T  (4.24) 

The expressions found by evaluating two useful definite integrals are given below 

cosnQ sin nO1 
sin 81 

dQ = ny : n = 0 , 1 , 2 , .  . . s 0 (COS Q - COS 6'1) 
sinnQsinQ 

dQ=-rcosnQI  : n = 0 , 1 , 2 ,  . . .  s 0 (COS Q - COS 01)  

(4.25) 

(4.26) 

The derivations of these results are given in Appendix 3. However, it is not necessary 
to be familiar with this derivation in order to use Eqns (4.25) and (4.26) in applica- 
tions of the thin-aerofoil theory. 
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4.4.1 The thin symmetrical flat plate aerofoil 
In this simple case the camber line is straight along Ox, and dy,/dx = 0. Using 
Eqn (4.23) the general equation (4.22) becomes 

(4.27) 

What value should k take on the right-hand side of Eqn (4.27) to give a left-hand side 
which does not vary with x or, equivalently, e? To answer this question consider the 
result (4.25) with n = 1. From this it can be seen that 

Comparing this result with Eqn (4.27) it can be seen that if k = kl = 2Ua cos f3/sin f3 
it will satisfy Eqn (4.27). The only problem is that far from satisfying the Kutta 
condition (4.24) this solution goes to infinity at the trailing edge. To overcome this 
problem it is necessary to recognize that if there exists a function k2 such that 

(4.28) 

then k = kl + k2 will also satisfy Eqn (4.27). 
Consider Eqn (4.25) with n = 0 so that 

de = 0 
1 sT ( cose -cose l )  

Comparing this result to Eqn (4.28) shows that the solution is 

where C is an arbitrary constant. 
Thus the complete (or general) solution for the flat plate is given by 

2uacose+ c k = kl +kz = 
sin 8 

The Kutta condition (4.24) will be satisfied if C = 2Ua giving a final solution of 

(4.29) 

Aerodynamic coefficients for a flat plate 

The expression for k can now be put in the appropriate equations for lift and moment 
by using the pressure: 

1 +case 
p = pUk = 2pU2a sin 0 

(4.30) 
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The lift per unit span 

= a p U 2 c l T ( l  +cosO)dO = 7i-apU2c 

It therefore follows that for unit span 
I 

CL = 
($q) =27ra 

The moment about the leading edge per unit span 

MLE = -lCp dx 

Changing the sign 

Therefore for unit span 

7i- - 
- 

Comparing Eqns (4.31) and (4.32) shows that 

CL CMLB = -- 4 

(4.31) 

(4.32) 

(4.33) 

The centre of pressure coeficient kcp is given for small angles of incidence approxi- 
mately by 

(4.34) 

and this shows a fixed centre of pressure coincident with the aerodynamic centre as is 
necessarily true for any symmetrical section. 

4.4.2 The general thin aerofoil section 
In general, the camber line can be any function of x (or 0) provided that yc = 0 at 
x = 0 and c (i.e. at 6 = 0 and T). When trigonometric functions are involved 
a convenient way to express an arbitrary function is to use a Fourier series. Accord- 
ingly, the slope of the camber line appearing in Eqn (4.22) can be expressed in terms 
of a Fourier cosine series 

(4.35) 
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Sine terms are not used here because practical camber lines must go to zero at the 
leading and trailing edges. Thus yc is an odd function which implies that its derivative 
is an even function. 

Equation (4.22) now becomes 

The solution for k as a function of 8 can be considered as comprising three parts so 
that k = kl + kz + k3 where 

(4.37) 

(4.38) 

(4.39) 

The solutions for kl and k2 are identical to those given in Section 4.4.1 except that 
U(a - Ao) replaces Ua in the case of kl. Thus it is only necessary to solve Eqn (4.39) 
for k3. By comparing Eqn (4.26) with Eqn (4.39) it can be seen that the solution to 
Eqn (4.39) is given by 

0 

k3(0) = 2 U x A n s i n n 8  
n=l 

Thus the complete solution is given by 

00 cos8 c 
k(8)  = kl +k2 +k3 = 2U(a - 140)-+-+ 2U xAnsinnO 

sin8 sin8 n= 1 

The constant C has to be chosen so as to satisfy the Kutta condition (4.24) which 
gives C = 2U(a - Ao). Thus the final solution is 

(4.40) 

To obtain the coefficients A0 and A, in terms of the camberline slope, the usual 
procedures for Fourier series are followed. On integrating both sides of Eqn (4.35) 
with respect to 8, the second term on the right-hand side vanishes leaving 

l " g d 8  = ~ " A o  de = Aon 
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Therefore 

(4.41) 

Multiplying both sides of Eqn (4.35) by cos me, where m is an integer, and integrating 
with respect to e 

L n A n  cos nf3 cos me de = 0 except when n = m 

Then the first term on the right-hand side vanishes, and also the second term, except 
for n = m, i.e. 

whence 

A, = z/TgcosnBd6'  n - 0  (4.42) 

Lift and moment coefficients for a general thin aerofoil 

From Eqn (4.7) 

I =  p U k d x =  pUEksinBd0 1= 1" 2 

?T 1 
2 2 - Ao) + - A I ]  = C L - ~ U ~ C  

Since 

1 *sin ne dB = 0 when n # 1, giving 

(4.43) dCL 
da  

CL = (Cb) + - 01 = r (A1-  2Ao) + 27ra 
The first term on the right-hand side of Eqn (4.43) is the coefficient of lift at zero 
incidence. It contains the effects of camber and is zero for a symmetrical aerofoil. It is 
also worth noting that, according to general thin aerofoil theory, the lift curve slope 
takes the same value 2n- for all aerofoils. 
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With the usual substitution 

since 

lT sin ne sin me dB = 0 when n # rn, or 

In terms of the lift coefficient, CM, becomes 

C M ,  = - 5 [ 1 + w ]  A1 - A2 
4 

Then the centre of pressure coefficient is 

(4.44) 

(4.45) 

and again the centre of pressure moves as the lift or incidence is changed. Now, from 
Section 1.5.4, 

(4.46) 

and comparing Eqns (4.44) and (4.45) gives 

(4.47) 
7r 

- C M , p  = - (A1 - A2) 4 
This shows that, theoretically, the pitching moment about the quarter chord point for 
a thin aerofoil is constant, depending on the camber parameters only, and the quarter 
chord point is therefore the aerodynamic centre. 

It is apparent from this analysis that no matter what the camber-line shape, only 
the first three terms of the cosine series describing the camber-line slope have any 
influence on the usual aerodynamic characteristics. This is indeed the case, but the 
terms corresponding to n > 2 contribute to the pressure distribution over the chord. 

Owing to the quality of the basic approximations used in the theory it is found 
that the theoretical chordwise pressure distribution p does not agree closely with 
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experimental data, especially near the leading edge and near stagnation points where 
the small perturbation theory, for example, breaks down. Any local inaccuracies tend 
to vanish in the overall integration processes, however, and the aerofoil coefficients 
are found to be reliable theoretical predictions. 

' '  4.s The flapped aerofoil 
Thin aerofoil theory lends itself very readily to aerofoils with variable camber such as 
flapped aerofoils. The distribution of circulation along the camber line for the 
general aerofoil has been found to consist of the sum of a component due to a flat 
plate at incidence and a component due to the camber-line shape. It is sufficient for 
the assumptions in the theory to consider the influence of a flap deflection as an 
addition to the two components above. Figure 4.14 shows how the three contribu- 
tions can be combined. In fact the deflection of the flap about a hinge in the camber 
line effectively alters the camber so that the contribution due to flap deflection is the 
effect of an additional camber-line shape. 

The problem is thus reduced to the general case of finding a distribution to fit 
a camber line made up of the chord of the aerofoil and the flap chord deflected 
through 7 (see Fig. 4.15). The thin aerofoil theory does not require that the leading 
and/or trailing edges be on the x axis, only that the surface slope is small and the 
displacement from the x axis is small. 

With the camber defined as hc the slope of the part AB of the aerofoil is zero, and 
that of the flap - h/F. To find the coefficients of k for the flap camber, substitute 
these values of slope in Eqns (4.41) and (4.42) but with the limits of integration 
confined to the parts of the aerofoil over which the slopes occur. Thus 

(4.48) 

where q5 is the value of 0 at the hinge, i.e. 

(1 - F ) c = - ( 1  C -cos$) 
2 

y ( a  1 Due to carnberline shape 

----t +- 
- _  --  

( c Due to incidence change 

Fig. 4.14 Subdivision of lift contributions to total l i f t  of cambered flapped aerofoil 
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Fig. 4.15 

whence cos q5 = 2F - 1. Evaluating the integral 

i.e. since all angles are small h / F  = tanq N q, so 

A0 = -(1 -:)q 

Similarly from Eqn (4.42) 

(4.49) 

(4.50) 

Thus 

2 sin q5 sin 24 
A I  =- q and A2 =- rl 

7r 7r 

The distribution of chordwise circulation due to flap deflection becomes 

sinno q (4.51) 1 q5 ~ + c o s S + $ ~ S ; ~ ~ ~ ~  
+2U[(l-;) sin 0 

1 +cos8 
sin e k = 2Ua 

and this for a constant incidence a is a linear function of q, as is the lift coefficient, 
e.g. from Eqn (4.43) 

giving 
CL = 27ra + 2(7r - q5 + sin q5)q 

Likewise the moment coefficient CM, from Eqn (4.44) is 

(4.52) 
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Note that a positive flap deflection, i.e. a downwards deflection, decreases the 
moment coefficient, tending to pitch the main aerofoil nose down and vice versa. 

4.5.1 The hinge moment coefficient 
A flapped-aerofoil characteristic that is of great importance in stability and control 
calculations, is the aerodynamic moment about the binge line, shown as Hin Fig. 4.16. 

Taking moments of elementary pressures p ,  acting on the flap about the hinge, 
trailing edge 

pd dx 
H = - J h g e  

where p = pUk and x’ = x - (1 - F)c. Putting 
C C c x / = - ( i  -cose) - - ( i -cos~)  =- (cos~-cose)  
2 2 2 

and k from Eqn (4.51): 

+,( (1  -;) C O S 4 I l  - (1 

where 

’t 

(4.54) 

Fig. 4.16 
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1 3  = LTsinnOsinOdO = - 
n - 1  1 

1 sin(n - 2)4 
14 = n - 2  

In the usual notation CH = b l a  + b277, where 

From Eqn (4.54): 

bl = - LT( 1 + COS 0) (cos 4 - COS 0)d0 

giving 

(4.55) 

Similarly from Eqn (4.54) 
1 

b2 =- = - x coefficient of r ]  in Eqn (4.54) 
% F2 

This somewhat unwieldy expression reduces to* 

{ (1 - cos 24)  - 2(7r - $)’( 1 - 2 cos 4) + 4(7r - 4) sin $} (4.56) 1 
47rF2 

b2 = -- 

The parameter ul = dCL/da is 27r and u2 = dC~/tlq from Eqn (4.52) becomes 

u2 = 2 ( ~ - 4 + s i n + )  (4.57) 

Thus thin aerofoil theory provides an estimate of all the parameters of a flapped 
aerofoil. 

Note that aspect-ratio corrections have not been included in this analysis which is 
essentially two-dimensional. Following the conclusions of the finite wing theory in 
Chapter 5 ,  the parameters ul,  u2, bl and b2 may be suitably corrected for end effects. 
In practice, however, they are always determined from computational studies and 
wind-tunnel tests and confirmed by flight tests. 

4.6 The jet flap 

Considering the jet flap (see also Section 8.4.2) as a high-velocity sheet of air issuing 
from the trailing edge of an aerofoil at some downward angle T to the chord line of 
the aerofoil, an analysis can be made by replacing the jet stream as well as the aerofoil 
by a vortex distribution.+ 

*See R and M, No. 1095, for the complete analysis. 
+D.A. Spence, The lift coefficient of a thin, jet flapped wing, Proc. Roy. SOC. A, ,  No. 1212, Dec. 1956. 
D.A. Spence., The lift of a thin aerofoil with jet augmented flap, Aeronautical Quarterly, Aug. 1958. 
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'I T 

Fig. 4.17 

The flap contributes to the lift on two accounts. Firstly, the downward deflection 
of the jet efflux produces a lifting component of reaction and secondly, the jet affects 
the pressure distribution on the aerofoil in a similar manner to that obtained by an 
addition to the circulation round the aerofoil. 

The jet is shown to be equivalent to a band of spanwise vortex filaments which for 
small deflection angles T can be assumed to lie along the Ox axis (Fig. 4.17). In the 
analysis, which is not proceeded with here, both components of lift are considered in 
order to arrive at the expression for CL: 

CL = 47rAoT + 27r( 1 f 2&)a (4.58) 

where A0 and Bo are the initial coefficients in the Fourier series associated with the 
deflection of the jet and the incidence of the aerofoil respectively and which can be 
obtained in terms of the momentum (coefficient) of the jet. 

It is interesting to notice in the experimental work on jet flaps at National Gas 
Turbine Establishment, Pyestock, good agreement was obtained with the theoretical 
CL even at large values of 7. 

4.7 The normal force and pitching moment 
derivatives due to pitching* 

4.7.1 (Zq)(Mq) wing contributions 
Thin-aerofoil theory can be used as a convenient basis for the estimation of these 
important derivatives. Although the use of these derivatives is beyond the general 
scope of this volume, no text on thin-aerofoil theory is complete without some 
reference to this common use of the theory. 

When an aeroplane is rotating with pitch velocity q about an axis through the 
centre of gravity (CG) normal to the plane of symmetry on the chord line produced 
(see Fig. 4.18), the aerofoil's effective incidence is changing with time as also, as 
a consequence, are the aerodynamic forces and moments. 

The rates of change of these forces and moments with respect to the pitching 
velocity q are two of the aerodynamic quasi-static derivatives that are in general 
commonly abbreviated to derivatives. Here the rate of change of normal force on the 
aircraft, i.e. resultant force in the normal or Z direction, with respect to pitching 
velocity is, in the conventional notation, i3Zjaq. This is symbolized by Z,. Similarly 
the rate of change of A4 with respect to q is aA4jaq = M,. 

In common with other aerodynamic forces and moments these are reduced to non- 
dimensional or coefficient form by dividing through in this case by pVlt and pVl: 
respectively, where It is the tail plane moment arm, to give the non-dimensional 

* It is suggested that this section be omitted from general study until the reader is familiar with these 
derivatives and their use. 
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Fig. 4.18 

normal force derivative due to pitching z,, and the non-dimensional pitching moment 
derivative due to pitching m,. 

The contributions to these two, due to the mainplanes, can be considered by 
replacing the wing by the equivalent thin aerofoil. In Fig. 4.19, the centre of rotation 
(CG) is a distance hc behind the leading edge where c is the chord. At some point x 
from the leading edge of the aerofoil the velocity induced by the rotation of the 
aerofoil about the CG is d = -q(hc - x). Owing to the vorticity replacing the camber 
line a velocity v is induced. The incident flow velocity is V inclined at a to the chord 
line, and from the condition that the local velocity at x must be tangential to the 
aerofoil (camber line) (see Section 4.3) Eqn (4.14) becomes for this case 

v - - a  = v - v ’  (2 ) 
or 

(4.59) 

C and with the substitution x = -(1 - cos 0) 
2 

From the general case in steady straight flight, Eqn (4.35), gives 

-- d~ a=Ao-a++A,cosne (4.60) 
dx 

but in the pitching case the loading distribution would be altered to some general 
form given by, say, 

(4.61) V - = B~ + CB, cosne 
V 

Fig. 4.19 
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where the coefficients are changed because of the relative flow changes, while the 
camber-line shape remains constant, i.e. the form of the function remains the same 
but the coefficients change. Thus in the pitching case 

dy -- 
dx 

Equations (4.60) and (4.62) give: 

and 

(4.62) 

B,, = A, 

In analogy to the derivation of Eqn (4.40), the vorticity distribution here can be 
written 

and following similar steps for those of the derivation of Eqn (4.43), this leads to 

(4.63) 

It should be remembered that this is for a two-dimensional wing. However, the 
effect of the curvature of the trailing vortex sheet is negligible in three dimensions, so 
it remains to replace the ideal aC,/& = 27r by a reasonable value, Q, that accounts 
for the aspect ratio change (see Chapter 5). The lift coefficient of a pitching rect- 
angular wing then becomes 

(4.64) 

Similarly the pitching-moment coefficient about the leading edge is found from 
Eqn (4.44): 

7r 7rqC 1 = - ( A 2 - A 1 ) - - - -  
4 8V 4cL (4.65) 

which for a rectangular wing, on substituting for CL, becomes 

The moment coefficient of importance in the derivative is that about the CG and 

(4.67) 

this is found from 

CM,, = CMm + hCL 

and substituting appropriate values 
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which can be rearranged in terms of a function of coefficients An plus a term 
involving q, thus: 

The contribution of the wings to 2, or zq thus becomes 

by differentiating Eqn (4.64) with respect to q. 
Therefore for a rectangular wing, defining zq by Zq/(pVSlt), 

-a 3 
zq = (; - h) 

(4.68) 

(4.69) 

For other than rectangular wings an approximate expression can be obtained by 
using the strip theory, e.g. 

Z,  = - p V / ' -  a 3  (-- h)c2dy 
+ 2  4 

giving 

(4.70) 

In a similar fashion the contribution to Mq and mq can be found by differentiating 
the expression for MCG, with respect to q, i.e. 

from Eqn (4.68) 

+- 2K-alvsc2 32 

giving for a rectangular wing 

For other than rectangular wings the contribution becomes, by strip theory: 

Mq = - p v / - s ( ; ( l  - 2h)2 +- 27r - " )  c3 dy 
--s 32 

and 

mq = 

(4.71) 

(4.72) 

(4.73) 

(4.74) 
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For the theoretical estimation of zq and m4, of the complete aircraft, the contribu- 
tions of the tailplane must be added. These are given here for completeness. 

(4.75) 

where the terms with dashes refer to tailplane data. 

P I .  

4.8 Particular camber lines 
It has been shown that quite general camber lines may be used in the theory 
satisfactorily and reasonable predictions of the aerofoil characteristics obtained. 
The reverse problem may be of more interest to the aerofoil designer who wishes to 
obtain the camber-line shape to produce certain desirable characteristics. The general 
design problem is more comprehensive than this simple statement suggests and the 
theory so far dealt with is capable of considerable extension involving the introduc- 
tion of thickness functions to give shape to the camber line. This is outlined in 
Section 4.9. 

4.8.1 Cubic camber lines 
Starting with a desirable aerodynamic characteristic the simpler problem will be 
considered here. Numerous authorities* have taken a cubic equation as the general 
shape and evaluated the coefficients required to give the aerofoil the characteristic of 
a fixed centre of pressure. The resulting camber line has the reflex trailing edge which 
is the well-known feature of this characteristic. 

Example 4.1 Find the cubic camber line that will provide zero pitching moment about the 
quarter chord point for a given camber. 

The general equation for a cubic can be written as y = a’x(x + h’)(x + d’) with the origin at the 
leading edge. For convenience the new variables x1 = x / c  and 1’1 = p / b  can be introduced. b is 
the camber. The conditions to be satisfied are that: 

(i) .y = 0 when x = 0, Le. yl = X I  = 0 at  leading edge 
(ii) y = 0 when x = c, i.e. yl = 0 when XI = 1 

(iii) dy/dx = 0 and y = 6, Le. dyl/dxl = 0 when yl = 1 (when x1 = .x”) 
(iv) CM, = 0, i.e. A1 - A2 = 0 

Rewriting the cubic in the dimensionless variables xI and y r  

y1 = ax1 ( X I  + b)(x1 + d )  (4.76) 

this satisfies condition (i). 
To  satisfy condition (ii), ( X I  + d)  = 0 when XI = 1 ,  therefore d = -1, giving 

1’1 = axi (x]  + h ) ( X l  - 1 )  

yl = ux; + u(b - 1)x; ~ uhxl 

(4.77) 

(4.7X) 

or multiplying out 

* H. Glauert, Aerqfoil and Airscrew Theory; N.A.V. Piercy, Aeroclynumic,~; etc. 
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Differentiating Eqn (4.78) to satisfy (iii) 

(4.79) dY1 - - - 3 a 4  + 2a(b - 1)xl - ab = 0 when y1 = 1 
dx1 

and if xo corresponds to the value of x1 when yl = 1, i.e. at the point of maximum displace- 
ment from the chord the two simultaneous equations are 

1 1 = ax; + a(b - l)$ - abxo 
0 = 3 4  + 2a(b - 1)XO - ab 

(4.80) 

To satisfy (iv) above, A I  and A2 must be found. dyl/dxl can be converted to expressions 
suitable for comparison with Eqn (4.35) by writing 

C 1 
2 2 

x = - ( 1  -case) or x1 =-(1 -case) 

- = L ( i  - 2cose + cosze) + a(b - 1) - a(b - 1) case - ab dYl 
dxl 4 

Comparing Eqn (4.81) and (4.35) gives 

3a s 
8 c  

A2 =-- 

Thus to satisfy (iv) above, A1 = A2, i.e. 

-(;+ub):=ai- 3s giving b = - -  7 
8 

The quadratic in Eqn (4.80) gives for xo on cancelling a, 

(4.81) 

(4.82) 

-2(b - 1)  f d22(b-  1)2 +4 x 3b ( 1  - b) &&z + b +  1 - - 
6 3 

x(j = 

7 
8 

From Eqn (4.82), b = - - gives 

7.45 
or - 

24 
22.55 

xo = - 
24 

i.e. taking the smaller value since the larger only gives the point of reflexure near the trailing 
edge: 

y = 6 when x = 0.31 x chord 

Substituting xo = 0.31 in the cubic of Eqn (4.80) gives 

a=-- ' - 8.28 
0.121 
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The camber-line equation then is 

(4.83) 

This cubic camber-line shape is shown plotted on Fig. 4.20 and the ordinates given on the inset 
table. 
Lvt  coefficient The lift coefficient is given from Eqn (4.43) by 

So with the values of A0 and A1 given above 

C, = 27~. [a - i: - f (: + ab) 3 
7 Substituting for a = 8.28 and b = - - 8 

giving a no-lift angle 

6 
a0 = -0.518- radians 

c 

or with ,O = the percentage camber = 1006/c 

a0 = -0.3,O degrees 

The load distribution From Eqn (4.40) 

c c 

for the first three terms. This has been evaluated for the incidence a' = 29.6(6/c) and the result 
shown plotted and tabulated in Fig. 4.20. 

It should be noted that the leading-edge value has been omitted, since it is infinite according 
to this theory. This is due to the term 

1 +cos8 
(a - Ao) 7 

becoming infinite at 0 = 0. When 

1 +cos8 
(a - Ao) becomes zero so (a - Ao) ___ sin 8 

becomes zero. Then the intensity of circulation at the leading edge is zero and the stream flows 
smoothly on to the camber line at the leading edge, the leading edge being a stagnation point. 
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x/c 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 

y/s 1 
y/8 0 0.324 0.577 0.765 0.894 0.970 0.999 

Camberline ordinates for 
CMk'O 

0.988 0.943 O.St0, 

0.2 0.4 0.6 0.8 1.0 x/c 

x/c 0.5 0.56 0.6 0.65 0.7 0.75 0.8 

y/6 0,776 0.666 0.546 0.424 0.304 0.194 0.099 

0.85 0.9 0.95 1.0 
0.026 5.019 5.03 0 

x/c 

k/2nU 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 
03 0,127 0.123 0.121 OJ18 0.1 12 0.105 0.096 0.087 0.076 

Fig. 4.20 

x/c 
k/%U 

This is the so-called Theodorsen condition, and the appropriate CL is the ideal, optimum, or 
design lift coefficient, C L , , ~ ~ .  

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0 
0.Om 0.053 0.042 0.030 0.019 0.009 5.006 5.008 5.013 5.014 0 

4.8.2 The NACA four-digit wing sections 
According to Abbott and von Doenhoff when the NACA four-digit wing sections 
were first derived in 1932, it was found that the thickness distributions of efficient 



194 Aerodynamics for Engineering bdents 

wing sections such as the Gottingen 398 and the Clark Y were nearly the same when 
the maximum thicknesses were set equal to the same value. The thickness distribution 
for the NACA four-digit sections was selected to correspond closely to those for 
these earlier wing sections and is given by the following equation: 

yt = f5ct[0.2969& - 0.12605 - 0.3516$ + 0.2843J3 - 0.101554] (4.84) 

where t is the maximum thickness expressed as a fraction of the chord and 5 = x/c. 
The leading-edge radius is 

rt = 1.1019ctz (4.85) 

It will be noted from Eqns (4.84) and (4.85) that the ordinate at any point is 
directly proportional to the thickness ratio and that the leading-edge radius varies as 
the square of the thickness ratio. 

In order to study systematically the effect of variation in the amount of camber 
and the shape of the camber line, the shapes of the camber lines were expressed 
analytically as two parabolic arcs tangent at the position of the maximum camber- 
line ordinate. The equations used to define the camber line are: 

mc 
Yc = p2 (2P5 - P >  E S P  

mc 
Yc = - 2 [(I - 2P) + 2PE - c21 5 1 P 

(1 - P >  
(4.86) 

where m is the maximum value of yc expressed as a fraction of the chord c, and p is 
the value of x/c corresponding to this maximum. 

The numbering system for the NACA four-digit wing sections is based on the 
section geometry. The first integer equals loom, the second equals lop, and the final 
two taken together equal 100t. Thus the NACA 4412 wing section has 4 per cent 
camber at x = 0 . 4 ~  from the leading edge and is 12 per cent thick. 

To determine the lifting characteristics using thin-aerofoil theory the camber-line 
slope has to be expressed as a Fourier series. Differentiating Eqn (4.86) with respect 
to x gives 

Changing variables from 5 to 8 where 5 = (1 - cos 8)/2 gives 

(4.87) 

where 6, is the value of 0 corresponding to x = pc. 
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Substituting Eqn (4.87) into Eqn (4.41) gives 

m m -- - [(2p - l)O, + sine,] + [(2p - l)(n - 6,) - sin e,] (4.88) 
TP2 - P )  

Similarily from Eqn (4.42) 

(4.89) 

(4.90) 

Example 4.2 The NACA 4412 wing section 
For a NACA 4412 wing section rn = 0.04 and p = 0.4 so that 

0, = cos-l(l - 2 x 0.4) = 78.46“ = 1.3694rad 

making these substitutions into Eqns (4.88) to (4.90) gives 

A0 = 0.0090, AI = 0.163 and A2 = 0.0228 

Thus Eqns (4.43) and (4.47) give 

CL = T(A~ - 2x40) + 2 ~ 0 ~  ~(0.163 - 2 x 0.009) + 2 ~ a  = 0.456 + 6.28320 (4.91) 

(4.92) 
T T 

CM,,, = - - ( A I  - Az)  = --(0.163 - 0.0228) = -0.110 
4 4 
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In Section 4.10 (Fig. 4.26), the predictions of thin-aerofoil theory, as embodied in Eqns 
(4.91) and (4.92), are compared with accurate numerical solutions and experimental data. It 
can be seen that the predictions of thin-aerofoil theory are in satisfactory agreement with the 
accurate numerical results, especially bearing in mind the considerable discrepancy between the 
latter and the experimental data. 

4.9 Thickness problem for thin-aerofoil theory 
Before extending the theory to take account of the thickness of aerofoil sections, it is 
useful to review the parts of the method. Briefly, in thin-aerofoil theory, above, the 
two-dimensional thin wing is replaced by the vortex sheet which occupies the camber 
surface or, to the first approximation, the chordal plane. Vortex filaments comprising 
the sheet extend to infinity in both directions normal to the plane, and all velocities 
are confined to the xy plane. In such a situation, as shown in Fig. 4.12, the sheet 
supports a pressure difference producing a normal (upward) increment of force of 
(p1 - p2)Ss per unit spanwise length. Suffices 1 and 2 refer to under and upper sides of 
the sheet respectively. But from Bernoulli’s equation: 

1 2 2  u2 + u1 
P1 -p2 = - P ( U ,  2 - u1) = p(u2 - 241)- 2 (4.93) 

Writing (242 + u1)/2 
on the wing becomes 

U the free-stream velocity, and u2 - u1 = k, the local loading 

(PI - p2)S~ = PUkSS (4.94) 

The lift may then be obtained by integrating the normal component and similarly the 
pitching moment. It remains now to relate the local vorticity to the thin shape of the 
aerofoil and this is done by introducing the solid boundary condition of zero velocity 
normal to the surface. For the vortex sheet to simulate the aerofoil completely, the 
velocity component induced locally by the distributed vorticity must be sufficient to 
make the resultant velocity be tangential to the surface. In other words, the compon- 
ent of the free-stream velocity that is normal to the surface at a point on the aerofoil 
must be completely nullified by the normal-velocity component induced by the 
distributed vorticity. This condition, which is satisfied completely by replacing the 
surface line by a streamline, results in an integral equation that relates the strength of 
the vortex distribution to the shape of the aerofoil. 

So far in this review no assumptions or approximations have been made, but thin- 
aerofoil theory utilizes, in addition to the thin assumption of zero thickness and small 
camber, the following assumptions: 

(a) That the magnitude of total velocity at any point on the aerofoil is that of the 
local chordwise velocity 

(b) That chordwise perturbation velocities u’ are small in relation to the chordwise 
component of the free stream U. 

(c) That the vertical perturbation velocity v anywhere on the aerofoil may be taken 
as that (locally) at the chord. 

Making use of these restrictions gives 

U + u’. 

v=s,- ‘k dx 
27T x - XI 
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and thus Eqn (4.42) is obtained: 

This last integral equation relates the chordwise loading, i.e. the vorticity, to the 
shape and incidence of the thin aerofoil and by the insertion of a suitable series 
expression for k in the integral is capable of solution for both the direct and indirect 
aerofoil problems. The aerofoil is reduced to what is in essence a thin lifting sheet, 
infinitely long in span, and is replaced by a distribution of singularities that satisfies 
the same conditions at the boundaries of the aerofoil system, i.e. at the surface and at 
infinity. Further, the theory is a linearized theory that permits, for example, the 
velocity at a point in the vicinity of the aerofoil to be taken to be the sum of the 
velocity components due to the various characteristics of the system. each treated 
separately. As shown in Section 4.3, these linearization assumptions permit an 
extension to the theory by allowing a perturbation velocity contribution due to 
thickness to be added to the other effects. 

4.9.1 The thickness problem for thin aerofoils 
A symmetrical closed contour of small thickness-chord ratio may be obtained from a 
distribution of sources, and sinks, confined to the chord and immersed in a uniform 
undisturbed stream parallel to the chord. The typical model is shown in Fig. 4.21 
where a(x) is the chordwise source distribution. It will be recalled that a system of 
discrete sources and sinks in a stream may result in a closed streamline. 

Consider the influence of the sources in the element 6x1 of chord, x1 from the 
origin. The strength of these sources is 

Srn = a(x1)Sxl 

Since the elements of upper and lower surface are impermeable, the strength of the 
sources between x1 and x1 + 6x1 are found from continuity as: 

Sm = outflow across boundary - inflow across f yt 

Neglecting second-order quantities, 

dYt 
dXl 

Srn = 2U-Sxl 

(4.95) 

(4.96) 

The velocity potential at a general point P for a source of this strength is given by 
(see Eqn (3.6)) 

(4.97) 

where r = d ( x  - xl)’ + y2. The velocity potential for the complete distribution of 
sources lying between 0 and c on the x axis becomes 
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Fig. 4.21 

and adding the free stream gives 

(4.98) 

(4.99) 

Differentiating to find the velocity components 

dx1 (4.100) (x - x1) 

dxl (4.101) 

To obtain the tangential velocity at the surface of the aerofoil the limit as y 4 0 is 
taken for Eqn (4.100) so that 

The coefficient of pressure is then given by 

(4.102) 

(4.103) 
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The theory in the form given above is of limited usefulness for practical aerofoil 
sections because most of these have rounded leading edges. At a rounded leading 
edge dyt/dxl becomes infinite thereby violating the assumptions made to develop the 
thin-aerofoil theory. In fact from Example 4.3 given below it will be seen that the 
theory even breaks down when dyt/dxl is finite at the leading and trailing edges. 
There are various refinements of the theory that partially overcome this problem* 
and others that permit its extension to moderately thick aerofoikT 

Example 4.3 Find the pressure distribution on the bi-convex aerofoil 

.=+ c 2c ( 3 2 1  

(with origin at mid-chord) set at zero incidence in an otherwise undisturbed stream. For the 
given aerofoil 

and 

From above: 

or 

-8 t 
,iT c2 

- - - - [xln(x - XI) + x1 

Thus 

At the mid-chord point: 

-8t x = o  Cp== 

At the leading and trailing edges, x = fc, C, + -m. The latter result shows that the approx- 
imations involved in the linearization do not permit the method to be applied for local effects 
in the region of stagnation points, even when the slope of the thickness shape is finite. 

* Lighthill, M.J. (1951) ‘A new approach to thin aerofoil theory’, Aero. Quart., 3, 193. 
J. Weber (1953) Aeronautical Research Council, Reports & Memoranda No. 2918. 
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4.10 Computational (panel) methods 
for two-dimensional lifting flows 

The extension of the computational method, described in Section 3.5, to two- 
dimensional lifting flows is described in this section. The basic panel method was 
developed by Hess and Smith at Douglas Aircraft Co. in the late 1950s and early 
1960s. The method appears to have been first extended to lifting flows by Rubbert* 
at Boeing. The two-dimensional version of the method can be applied to aerofoil 
sections of any thickness or camber. In essence, in order to generate the circulation 
necessary for the production of lift, vorticity in some form must be introduced into 
the modelling of the flow. 

It is assumed in the present section that the reader is familiar with the panel 
method for non-lifting bodies as described in Section 3.5. In a similar way to the 
computational method in the non-lifting case, the aerofoil section must be model- 
led by panels in the form of straight-line segments - see Section 3.5 (Fig. 3.37). 
The required vorticity can either be distributed over internal panels, as suggested by 
Fig. 4.22a, or on the panels that model the aerofoil contour itself, as shown in 
Fig. 4.22b. 

The central problem of extending the panel method to lifting flows is how to satisfy 
the Kutta condition (see Section 4.1.1). It is not possible with a computational 
scheme to satisfy the Kutta condition directly, instead the aim is to satisfy some of 
the implied conditions namely: 

(a) The streamline leaves the trailing edge with a direction along the bisector of the 

(b) As the trailing edge is approached the magnitudes of the velocities on the upper 
trailing-edge angle. 

and lower surfaces approach the same limiting value. 

( a  1 Internal vortex panels 

( b ) Surface vortex panels 
' 

Fig. 4.22 Vortex panels: (a) internal; (b) surface 

* P.E. Rubbert (1964) Theoretical Characteristics of Arbitrary Wings by a Nonplanar Vortex Lattice Method 
D6-9244, The Boeing Co. 
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Fig. 4.23 Two methods of implementing the Kutta condition a t  the trailing edge T 

(c) In the practical case of an aerofoil with a finite trailing-edge angle the trailing 
edge must be a stagnation point so the common limiting value of (b) must be 
zero. 

(d) The source strength per unit length must be zero at the trailing edge. 

Computational schemes either use conditions (a) or (b). It is not generally possible 
to satisfy (c) and (d) as well because, as will be shown below, this leads to an over- 
specification of the problem. The methods of satisfying (a) and (b) are illustrated in 
Fig. 4.23. For condition (a) an additional panel must be introduced oriented along 
the bisector of the trailing-edge angle. The value of the circulation is then fixed by 
requiring the normal velocity to be zero at the collocation point of the additional 
( N  + 1)th panel. For condition (b) the magnitudes of the tangential velocity vectors 
at the collocation points of the two panels, that define the trailing edge, are required 
to be equal. Hess* has shown that the use of condition (b) gives more accurate results 
than (a), other things being equal. The use of surface, rather than interior, vorticity 
panels is also preferable from the viewpoint of computational accuracy. 

There are two main ways that surface vorticity panels can be used. One method’ is 
to use vorticity panels alone. In this case each of the N panels carries a vorticity 
distribution of uniform strength per unit length, yi(i = 1,2, . . . , N>. In general, the 
vortex strength will vary from panel to panel. Let i = t for the panel on the upper 
surface at the trailing edge so that i = t + 1 for the panel on the lower surface at the 
trailing edge. Condition (b) above is equivalent to requiring that 

71 = -%+I (4.104) 

The normal velocity component at the collocation point of each panel must be zero, 
as it is for the non-lifting case. This gives N conditions to be satisfied for each of the 
N panels. So when account is also taken of condition Eqn (4.104) there are N + 1 
conditions to be satisfied in total. Unfortunately, there are only N unknown vortex 
strengths. Accordingly, it is not possible to satisfy all N + 1 conditions. In order to 
proceed further, therefore, it is necessary to ignore the requirement that the normal 
velocity should be zero for one of the panels. This is rather unsatisfactory since it is 
not at all clear which panel would be the best choice. 

* J.L. Hess (1972) Calculation of Potential Flow about Arbitrary Three-Dimensional Lifting Bodies Douglas 
Aircraft Co. Rep. MDC J5679,/01. 

A full description is given in J.D. Anderson (1985) Fundamentals of Aerodynamics McGraw-Hill. 
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An alternative and more satisfactory method is to distribute both sources and 
vortices of uniform strength per unit length over each panel. In this case, though, the 
vortex strength is the same for all panels, i.e. 

n = - y ( i =  1,2, ..., N )  (4.105) 

Thus there are now N + 1 unknown quantities, namely the N source strengths and 
the uniform vortex strength per unit length, 7, to match the N + 1 conditions. With 
this approach it is perfectly feasible to use internal vortex panels instead of surface 
ones. However these internal panels must carry vortices that are either of uniform 
strength or of predetermined variable strength, providing the variation is character- 
ized by a single unknown parameter. Generally, however, the use of surface vortex 
panels leads to better results. Also Condition (a) can be used in place of (b). Again, 
however, the use of Condition (b) generally gives more accurate results. 

A practical panel method for lifting flows around aerofoils is described in some 
detail below. This method uses Condition (b) and is based on a combination of 
surface vortex panels of uniform strength and source panels. First, however, it is 
necessary to show how the normal and tangential influence coefficients may be 
evaluated for vortex panels. It turns out that the procedure is very similar to that 
for source panels. 

The velocity at point P due to vortices on an element of length S< in Fig. 4.24 is 
given by 

Y 
R 

SVe = -d< (4.106) 

where ydc replaces r/(27r) used in Section 3.3.2. 6Ve is oriented at angle 8 as shown. 
Therefore, the velocity components in the panel-based coordinate directions, i.e. in 

the XQ and YQ directions, are given by 

t yo 

(4.107) 

(4.108) 

Fig. 4.24 
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To obtain the corresponding velocity components at P due to all the vortices on 
the panel, integration along the length of the panel is carried out to give 

(4.1 10) 

Following the basic method described in Section 3.5 normal and tangential influ- 
ence coefficients, N i  and Tb are introduced, the primes are used to distinguish these 
coefficients from those introduced in Section 3.5 for the source panels. Nb and Ti 
represent the normal and tangential velocity components at collocation point i due to 
vortices of unit strength per unit length distributed on panel j .  Let ii and 
ki(i = 1 , 2, . . . , N )  denote the unit tangent and normal vectors for each of the panels, 
and let the point P correspond to collocation point i, then in vector form the velocity 
at collocation point i is given by 

+ 
V p Q  = VxQ 4 + VyQfij 

To obtain the components of this velocity vector perpendicular and tangential to 
panel i take the scalar product of the velocity vector with ki and fi respectively. If 
furthermore -1 is set equal to 1 in Eqns (4.109) and (4.1 10) the following expressions 
are obtained for the influence coefficients 

N!. = vpQ .hi = V XQ i . .  2 i. J + V Y Q  & .  f i .  J (4.11 la) 

(4.1 1 lb) 

Making a comparison between Eqns (4.109) and (4.1 11) for the vortices and the 

[ V x Q I V O f l k X S  [V.QISOLUL%S and [VYQIVOI'tiL%S = - [ v x Q I S O l l r C e S  (4.112) 

With the results given above it is now possible to describe how the basic panel 
method of Section 3.5 may be extended to lifting aerofoils. Each of the N panels now 
carries a source distribution of strength q per unit length and a vortex distribution of 
strength y per unit length. Thus there are now N + 1 unknown quantities. The N x N 
influence coefficient matrices Nu and Tu corresponding to the sources must now be 
expanded to N x ( N  + 1) matrices. The ( N  + 1)th column now contains the velocities 
induced at the collocation points by vortices of unit strength per unit length on all 
the panels. Thus N ~ , N + I  represents the normal velocity at the ith collocation point 
induced by the vortices over all the panels and similarly for T i , ~ + l .  Thus using 
Eqns (4.11 1) 

- 
2/ 

2/ 

- . .  T ! . = V p Q . f i = V  X Q ' J  t^..i.+V Y Q ' J  ; . . f i .  

corresponding expressions (3.97) and (3.99) for the source panels shows that 

N N 

(4.113) 
j = l  j =  1 
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In a similar fashion as for the non-lifting case described in Section 3.5 the total 
normal velocity at each collocation point, due to the net effect of all the sources, the 
vortices and the oncoming flow, is required to be zero. This requirement can be 
written in the form: 

Sources 

These Nequations are supplemented by imposing Condition (b). The simplest way to 
do this is to equate the magnitudes of the tangential velocities at the collocation point 
of the two panels defining the trailing edge (see Fig. 4.23b). Remembering that the 
unit tangent vectors it and &+I are in opposite directions Condition (b) can be 
expressed mathematically as 

Equations (4.1 14) and (4.11 5) combine to form a matrix equation that can be written 
as 

M a = b  (4.116) 

where M is an (N + 1) x ( N  + 1) matrix and a and b are (N + 1) column vectors. The 
elements of the matrix and vectors are as follows: 

M . . = N . .  1 J  1 J  i = 1 , 2  ,..., N j = 1 , 2  ,..., N + l  

MN+l,j = T,,j + Tt+l,j j = 1,2,. . . , N + 1 

ai=ui i =  1,2, ..., N and ~ + 1  =y 
b i = - U . A i  i =  1,2, ..., N 

-+ 

-+ 

bN+1 = -u .  ( 2 ,  + & + I )  

Systems of linear equations like (4.11 6) can be readily solved numerically for the 
unknowns ai using standard methods (see Section 3.5). Also it is now possible to see 
why the Condition (c), requiring that the tangential velocities on the upper and lower 
surfaces both tend to zero at the trailing edge, cannot be satisfied in this sort of 
numerical scheme. Condition (c) could be imposed approximately by requiring, 
say, that the tangential velocities on panels t and t + 1 are both zero. Referring to 
Eqn (4.1 15) this approximate condition can be expressed mathematically as 
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Equation (4.115) is now replaced by the above two equations so that M in Eqn 
(4.116) is now a (N + 2) x (N  + 1) matrix. The problem is now overdetermined, i.e. 
there is one more equation than the number of unknowns, and Eqn (4.116) can no 
longer be solved for the vector a, i.e. for the source and vortex strengths. 

The calculation of the influence coefficients is at the heart of a panel method. In 
Section 3.5 a computational routine in FORTRAN 77 is given for computing the 
influence coefficients for the non-lifting case. It is shown below how this routine can 
be extended to include the calculation of the influence coefficients due to the vortices 
required for a lifting flow. 

Two modifications to SUBROUTINE INFLU in Section 3.5 are required to 
extend it to the lifting case. 

(1) The first two execution statements i.e. 
D O 1 0 1 = 1 , N  

1 0  R E A D ( 7 , x )  X P ( 1 )  , Y P ( I )  

should be replaced by 
N P 1 = N + 1  
DO 1 0  I = l , N  

A N ( 1 ,  N P 1 )  = 0.0 
A T ( I , N P ? )  = P I  

1 0  R E A D ( 7 , + ) X P ( I )  , Y P ( I )  

The additional lines initialize the values of the influence coefficients, N i , ~ + l  and 
Ti, ~ - 1  in preparation for their calculation later in the program. Note that the initial 
value of T i , ~ + l  is set at 7r because in Eqn (4.1 13) 

that is the tangential velocity induced on a panel by vortices of unit strength per unit 
length distributed over the same panel is, from Eqn (4.112), the same as the normal 
velocity induced by sources of unit strength per unit length distributed over the panel. 
This was shown to take the value 7r in Eqn (3.100b). 

(2) It remains to insert the two lines of instruction that calculate the additional 
influence coefficients according to Eqn (4.11 3). This is accomplished by inserting 
two additional lines below the last two execution statements in the routine, as shown 

AN(1,  J )  = V X * N T I J + W * N N I J  Existingline 
A T ( 1 ,  J )  = V X * T T I J + V Y * T N I J  Existingline 
A N ( 1 ,  N P 1 )  =AN(1, N P 1 )  + W * N T I J - V X * N N I J  
A T ( I ,  N P 1 )  = A T ( I ,  N P 1 )  + W * T T I J - V X * T N I J  

N e w  line 
N e w  line 

As with the original routine presented in Section 3.5 this modified routine is 
primarily intended for educational purposes. Nevertheless, as is shown by the exam- 
ple computation for a NACA 4412 aerofoil presented below, a computer program 
based on this routine and LU decomposition gives accurate results for the pressure 
distribution and coefficients of lift and pitching moment. The computation times 
required are typically a few seconds using a modern personal computer. 

The NACA 4412 wing section has been chosen to illustrate the use of the panel 
method. The corresponding aerofoil profile is shown inset in Fig. 4.25. As can be 
seen it is a moderately thick aerofoil with moderate camber. The variation of the 
pressure coefficient around a NACA 4412 wing section at an angle of attack of 8 
degrees is presented in Fig. 4.25. Experimental data are compared with the computed 
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- Accurate numerical 5F 

Fig. 4.25 Variation of pressure coefficient around a NACA 4412 wing section at an angle of attack of 8" 

results for 64 panels and 160 panels. The latter can be regarded as exact and are 
plotted as the solid line in the figure. It can be seen that the agreement between the 
two sets of computed data is very satisfactory. The agreement between the experi- 
mental and computed data is not good, especially for the upper surface. This is 
undoubtedly a result of fairly strong viscous effects at this relatively high angle of 
attack. The discrepancy between the computed and experimental pressure coeffi- 
cients is particularly marked on the upper surface near the leading edge. In this 
region, according to the computed results based on inviscid theory, there is a very 
strong favourable pressure gradient followed by a strong adverse one. This scenario 
is very likely to give rise to local boundary-layer separation (see Section 7.4.1 below) near 
the leading edge leading to greatly reduced peak suction pressures near the leading edge. 

The computed and experimental lift and pitching-moment coefficients, CL and 
C M ~ , ~  are plotted as functions of the angle of attack in Fig. 4.26. Again there is good 
agreement between the two sets of computed results. For the reasons explained above 
the agreement between the computed and experimental lift coefficients is not all that 
satisfactory, especially at the higher angles of attack. Also shown in Fig. 4.25 are the 
predictions of thin-aerofoil theory - see Eqns (4.91) and (4.92). In view of the 
relatively poor agreement between theory and experiment evidenced in Fig. 4.26 it 
might be thought that there is little to choose between thin-aerofoil theory and 
computations using the panel method. For predictions of CL and C M , , ~  this is 
probably a reasonable conclusion, although for aerofoils that are thicker or more 
cambered than the NACA 4412, the thin-aerofoil theory would perform much less 
well. The great advantage of the panel method, however, is that it provides accurate 
results for the pressure distribution according to inviscid theory. Accordingly, 
a panel method can be used in conjunction with a method for computing the viscous 
(boundary-layer) effects and ultimately produce a corrected pressure distribution 
that is much closer to the experimental one (see Section 7.11). 
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Fig. 4.26 Variation of lift and moment coefficients with angle of attack for NACA 4412 aerofoil 

Exercises 
1 A thin two-dimensional aerofoil of chord c is operating at its ideal lift coeffrcient 
CL~. Assume that the loading (i.e. the pressure difference across the aerofoil) varies 
linearly with its maximum value at the leading edge. Show that 

where yc defines the camber line, a is the angle of incidence, and 5 = x/c. 

write the singular integral as follows: 
[Hint: Do not attempt to make the transformation x = (c/2)(1 - cos e), instead 

Then, using this result, show that the angle of incidence and the camber-line shape 
are given by 

[Hint: Write -1 = C - 1 - C where 1 + C = 27ra/C~ and the constant C is deter- 
mined by requiring that yc = 0 at 5 = 0 and 5 = 1.1 
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2 A thin aerofoil has a camber line defined by the relation yc = kc<(< - 1)(< - 2). 
Show that if the maximum camber is 2% of chord then k = 0.052. Determine the 
coefficients of lift and pitching moment, i.e. CL and C M ] , ~ ,  at 3” incidence. 

(Answer: 0.535, -0.046) 

3 Use thin-aerofoil theory to estimate the coefficient of lift at zero incidence and the 
pitching-moment coefficient C M ~ / ~  for a NACA 8210 wing section. 

(Answer: 0.789, -0.172) 
4 Use thin-aerofoil theory to select a NACA four-digit wing section with 
a coefficient of lift at zero incidence approximately equal to unity. The maximum 
camber must be located at 40% chord and the thickness ratio is to be 0.10. 
Estimate the required maximum camber as a percentage of chord to the 
nearest whole number. [Hint: Use a spreadsheet program to solve by trial and error.] 

(Answer: NACA 9410) 

5 Use thin-aerofoil theory to select a NACA four-digit wing section with a coeffi- 
cient of lift at zero incidence approximately equal to unity and pitching-moment 
coefficient C M ] , ~  = -0.25. The thickness ratio is to be 0.10. Estimate the required 
maximum camber as a percentage of chord to the nearest whole number and its 
position to the nearest tenth of a chord. The CL value must be within 1% of the 
required value and CM], within 3%. pint:  Use a spreadsheet program to solve by 
trial and error.] 

(Answer: NACA 7610, but NACA 9410 and NACA 8510 are also close.) 
6 A thin two-dimensional flat-plate aerofoil is fitted with a trailing-edge flap of 
chord lOOe per cent of the aerofoil chord. Show that the flap effectiveness, 

where a is the angle of incidence and 7 is the flap angle, is approximately 4 & / ~  for 
flaps of small chord. 
7 A thin aerofoil has a circular-arc camber line with a maximum camber of 0.025 
chord. Determine the theoretical pitching-moment Coefficient C M ~ / ~  and indicate 
methods by which this could be reduced without changing maximum camber. 

The camber line may be approximated by the expression 

yc = kc[; - (3’1 
where x’ = x - 0 5 .  
8 The camber line of a circular-arc aerofoil is given by 

(Answer: -0.025~) 

Derive an expression for the load distribution (pressure difference across the aerofoil) 
at incidence a. Show that the zero-lift angle a0 = -2h, and sketch the load distribu- 
tion at this incidence. Compare the lift curve of this aerofoil with that of a flat plate. 
9 A flat-plate aerofoil is aligned along the x-axis with the origin at the leading edge 
and trailing edge at x = c. The plate is at an angle of incidence Q to a free stream of 



Two-dimensional wing theory 209 

air speed U. A vortex of strength rV is located at (x,, yv). Show that the distribution, 
k(x), of vorticity along the aerofoil from x = 0 to x = c satisfies the integral equation 

where x = x1 is a particular location on the chord of the aerofoil. If x, = c/2 and 
yv = h >> xv show that the additional increment of lift produced by the vortex (which 
could represent a nearby aerofoil) is given approximately by 

417 - 
37rh2 ' 



Finite wing theory 

A great step forward in aeronautics came with the vortex theory of a lifting aerofoil 
due to Lanchester* and the subsequent development of this work by Prandtl.+ 
Previously, all aerofoil data had to be obtained from experimental work and fitted 
to other aspect ratios, planforms, etc., by empirical formulae based on past experi- 
ence with other aerofoils. 

Among other uses the Lanchester-Prandtl theory showed how knowledge of 
two-dimensional aerofoil data could be used to predict the aerodynamic charac- 
teristics of (three-dimensional) wings. It is this derivation of the aerodynamic 
characteristics of wings that is the concern of this chapter. The aerofoil data can 
either be obtained empirically from wind-tunnel tests or by means of the theory 
described in Chapter 4. Provided the aspect ratio is fairly large and the assump- 
tions of thin-aerofoil theory are met (see Section 4.3 above), the theory can be 
applied to wing planforms and sections of any shape. 

* see Bibliography. 
Prandtl, L. (1918), Tragfliigeltheorie, Nachr. Ges. Wiss., Gottingen, 107 and 451. 
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5.1 The vortex system 

Lanchester’s contribution was essentially the replacement of the lifting wing by 
a theoretical model consisting of a system of vortices that imparted to the surrounding 
air a motion similar to the actual flow, and that sustained a force equivalent to the lift 
known to be created. The vortex system can be divided into three main parts: the 
starting vortex; the trailing vortex system; and the bound vortex system. Each of 
these may be treated separately but it should be remembered that they are all 
component parts of one whole. 

5.1.1 The starting vortex 
When a wing is accelerated from rest the circulation round it, and therefore the lift, is 
not produced instantaneously. Instead, at the instant of starting the streamlines over 
the rear part of the wing section are as shown in Fig. 5.1, with a stagnation point 
occurring on the rear upper surface. At the sharp trailing edge the air is required to 
change direction suddenly while still moving at high speed. This high speed calls for 
extremely high local accelerations producing very large viscous forces and the air is 
unable to turn round the trailing edge to the stagnation point. Instead it leaves the 
surface and produces a vortex just above the trailing edge. The stagnation point 
moves towards the trailing edge, the circulation round the wing, and therefore its lift, 
increasing progressively as the stagnation point moves back. When the stagnation 
point reaches the trailing edge the air is no longer required to flow round the trailing 
edge. Instead it decelerates gradually along the aerofoil surface, comes to rest at the 
trailing edge, and then accelerates from rest in a different direction (Fig. 5.2). The 
vortex is left behind at the point reached by the wing when the stagnation point 

Fig. 5.1 Streamlines of the f low around an aerofoil with zero circulation, stagnation point on the rear 
upper surface 

Fig. 5.2 Streamlines of the f low around an aerofoil with full circulation, stagnation point at the trailing 
edge. The initial eddy is left way behind 
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reached the trailing edge. Its reaction, the circulation round the wing, has become 
stabilized at the value necessary to place the stagnation point at the trailing edge 
(see Section 4.1.1).* The vortex that has been left behind is equal in strength and 
opposite in sense to the circulation round the wing and is called the starting vortex or 
initial eddy. 

5.1.2 The trailing vortex system 
The pressure on the upper surface of a lifting wing is lower than that of the 
surrounding atmosphere, while the pressure on the lower surface is greater than that 
on the upper surface, and may be greater than that of the surrounding atmosphere. 
Thus, over the upper surface, air will tend to flow inwards towards the root from the 
tips, being replaced by air that was originally outboard of the tips. Similarly, on the 
undersurface air will either tend to flow inwards to a lesser extent, or may tend to 
flow outwards. Where these two streams combine at the trailing edge, the difference 
in spanwise velocity will cause the air to roll up into a number of small streamwise 
vortices, distributed along the whole span. These small vortices roll up into two large 
vortices just inboard of the wing-tips. This is illustrated in Fig. 5.3. The strength of 

Fig. 5.3 The horseshoe vortex 

*There is no fully convincing physical explanation for the production of the starting vortex and the 
generation of the circulation around the aerofoil. Various incomplete explanations will be found in the 
references quoted in the bibliography. The most usual explanation is based on the large viscous forces 
associated with the high velocities round the trailing edge, from which it is inferred that circulation 
cannot be generated, and aerodynamic lift produced, in an inviscid fluid. It may be, however, that local 
flow acceleration is equally important and that this is sufficiently high to account for the failure of the 
flow to follow round the sharp trailing edge, without invoking viscosity. Certainly it is now known, from 
the work of T. Weis-Fogh [Quick estimates of flight fitness in hovering animals, including novel mechanisms 
for lift production, J. Expl. BioZ., 59, 16%230, 19731 and M.J. Lighthill [On the Weis-Fogh mechanism 
of lift generation, J. FZuidMech., 60,l-17,19731 on the hovering flight of the small wasp Encursiu formom, 
that it is possible to generate circulation and lift in the complete absence of viscosity. 

In practical aeronautics, fluid is not inviscid and the complete explanation of this phenomenon must take 
account of viscosity and the consequent growth of the boundary layer as well as high local velocities as the 
motion is generated. 
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each of these two vortices will equal the streagth of the vortex replacing the wing 
itself. 

The existence of the trailing and starting vortices may easily be verified visually. 
When a fast aeroplane pulls out of a dive in humid air the reduction of pressure and 
temperature at the centres of the trailing vortices is often sufficient to cause some of 
the water vapour to condense into droplets, which are seen as a thin streamer for 
a short distance behind each wing-tip (see frontispiece). 

To see the starting vortex all that is needed is a tub of water and a small piece of 
board, or even a hand. If the board is placed upright into the water cutting the 
surface and then suddenly moved through the water at a moderate incidence, an eddy 
will be seen to leave the rear, and move forwards and away from the ‘wing’. This is 
the starting vortex, and its movement is induced by the circulation round the plate. 

5.1.3 The bound vortex system 
Both the starting vortex and the trailing system of vortices are physical entities that can 
be explored and seen if conditions are right. The bound vortex system, on the other 
hand, is a hypothetical arrangement of vortices that replace the real physical wing in 
every way except that of thickness, in the theoretical treatments given in this chapter. 
This is the essence of finite wing theory. It is largely concerned with developing the 
equivalent bound vortex system that simulates accurately, at least a little distance away, 
all the properties, effects, disturbances, force systems, etc., due to the real wing. 

Consider a wing in steady flight. What effect has it on the surrounding air, and 
how will changes in basic wing parameters such as span, planform, aerodynamic or 
geometric twist, etc., alter these disturbances? The replacement bound vortex system 
must create the same disturbances, and this mathematical model must be sufficiently 
flexible to allow for the effects of the changed parameters. A real wing produces 
a trailing vortex system. The hypothetical bound vortex must do the same. A conse- 
quence of the tendency to equalize the pressures acting on the top and bottom 
surfaces of an aerofoil is for the lift force per unit span to fall off towards the tips. 
The bound vortex system must produce the same grading of lift along the span. 

For complete equivalence, the bound vortex system should consist of a large 
number of spanwise vortex elements of differing spanwise lengths all turned back- 
wards at each end to form a pair of the vortex elements in the trailing system. The 
varying spanwise lengths accommodate the grading of the lift towards the wing-tips, 
the ends turned back produce the trailing system and the two physical attributes of 
a real wing are thus simulated. 

For partial equivalence the wing can be considered to be replaced by a single 
bound vortex of strength equal to the mid-span circulation. This, bent back at each 
end, forms the trailing vortex pair. This concept is adequate for providing good 
estimations of wing effects at distances greater than about two chord lengths from 
the centre of pressure. 

5.1.4 The horseshoe vortex 
The total vortex system associated with a wing, plus its replacement bound vortex 
system, forms a complete vortex ring that satisfies all physical laws (see Section 
5.2.1). The starting vortex, however, is soon left behind and the trailing pair stretches 
effectively to infinity as steady flight proceeds. For practical purposes the system 
consists of the bound vortices and the trailing vortex on either side close to the wing. 
This three-sided vortex has been called the horseshoe vortex (Fig. 5.3) .  
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Fig. 5.4 The simplified horseshoe vortex 

Study of the completely equivalent vortex system is largely confined to investigat- 
ing wing effects in close proximity to the wing. For estimation of distant phenomena 
the system is simplified to a single bound vortex and trailing pair, known as the 
simplified horseshoe vortex (Fig. 5.4). This is dealt with in Section 5.3, before the more 
involved and complete theoretical treatments of wing aerodynamics. 

5.2 Laws of vortex motion 

The theoretical modelling of the flow around wings was discussed in the previous 
section. There the use of an equivalent vortex system to model the lifting effects of 
a wing was described. In order to use this theoretical model to obtain quantitative 
predictions of the aerodynamic characteristics of a wing it is necessary first to study 
the laws of vortex motion. These laws also act as a guide for understanding how 
modern computationally based wing theories may be developed. 

In the analysis of the point vortex (Chapter 3) it was considered to be a string of 
rotating particles surrounded by fluid at large moving irrotationally under the 
influence of the rotating particles. Further, the flow investigation was confined to 
a plane section normal to the length or axis of the vortex. A more general definition is 
that a vortex is a flow system in which a finite area in a normal section plane contains 
vorticity. Figure 5.5 shows the section area S of a vortex so called because S possesses 
vorticity. The axis of the vortex (or of the vorticity, or spin) is clearly always normal 

Fig. 5.5 The vorticity of a section of vortex tube 
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to the two-dimensional flow plane considered previously and the influence of the 
so-called line vortex is the influence, in a section plane, of an infinitely long, straight-line 
vortex of vanishingly small area. 

In general, the vortex axis will be a curve in space and area Swill have finite size. It 
is convenient to assume that S is made up of several elemental areas or, alternatively, 
that the vortex consists of a bundle of elemental vortex lines or filaments. Such 
a bundle is often called a vortex tube (c.f. a stream tube which is a bundle of 
streamlines), being a tube bounded by vortex filaments. 

Since the vortex axis is a curve winding about within the fluid, capable of flexure 
and motion as a whole, the estimation of its influence on the fluid at large is some- 
what complex and beyond the present intentions. All the vortices of significance to 
the present theory are fixed relative to some axes in the system or free to move in 
a very controlled fashion and can be assumed to be linear. Nonetheless, the vortices 
will not all be of infinite length and therefore some three-dimensional or end influ- 
ence must be accounted for. 

Vortices conform to certain laws of motion. A rigorous treatment of these is 
precluded from a text of this standard but may be acquired with additional study 
of the basic references.* 

5.2.1 Helmholtz’s theorems 
The four fundamental theorems of vortex motion in an inviscid flow are named after 
their author, Helmholtz. The first theorem has been discussed in part in Sections 2.7 
and 4.1, and refers to a fluid particle in general motion possessing all or some of the 
following: linear velocity, vorticity, and distortion. The second theorem demon- 
strates the constancy of strength of a vortex along its length. This is sometimes 
referred to as the equation of vortex continuity. It is not difficult to prove that the 
strength of a vortex cannot grow or diminish along its axis or length. The strength of 
a vortex is the magnitude of the circulation around it and this is equal to the product 
of the vorticity C and area S.  Thus 

r = ~s 
It follows from the second theorem that CS is constant along the vortex tube (or 
filament), so that if the section area diminishes, the vorticity increases and vice versa. 
Since infinite vorticity is unacceptable the cross-sectional area S cannot diminish to 
zero. 

In other words a vortex line cannot end in the fluid. In practice the vortex line must 
form a closed loop, or originate (or terminate) in a discontinuity in the fluid such as 
a solid body or a surface of separation. A refinement of this is that a vortex tube 
cannot change in strength between two sections unless vortex filaments of equivalent 
strength join or leave the vortex tube (Fig. 5.6). This is of great importance in the 
vortex theory of lift. 

The third and fourth theorems demonstrate respectively that a vortex tube consists 
of the same particles of fluid, i.e. there is no fluid interchange between tube and 
surrounding fluid, and the strength of a vortex remains constant as the vortex moves 
through the fluid. 

The theorem of most consequence to the present chapter is theorem two, although 
the third and fourth are tacitly accepted as the development proceeds. 

* Saffman, P.G. 1992 Vortex Dynamics, Cambridge University Press. 
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Fig. 5.6 

5.2.2 The Biot-Savart law 
The original application of this law was in electromagnetism, where it relates the 
intensity of the magnetic field in the vicinity of a conductor carrying an electric 
current to the magnitude of the current. In the present application velocity and 
vortex strength (circulation) are analogous to the magnetic field strength and electric 
current respectively, and a vortex filament replaces the electrical conductor. Thus the 
Biot-Savart law can also be interpreted as the relationship between the velocity 
induced by a vortex tube and the strength (circulation) of the vortex tube. Only the 
fluid motion aspects will be further pursued here, except to remark that the term 
induced velocity, used to describe the velocity generated at a distance by the vortex 
tube, was borrowed from electromagnetism. 

Allow a vortex tube of strength I?, consisting of an infinite number of vortex 
filaments, to terminate in some point P. The total strength of the vortex filaments 
will be spread over the surface of a spherical boundary of radius R (Fig. 5.7) as the 
filaments diverge from the point P in all directions. The vorticity in the spherical 
surface will thus have the total strength I?. 

Owing to symmetry the velocity of flow in the surface of the sphere will be 
tangential to the circular line of intersection of the sphere with a plane normal to 
the axis of the vortex. Moreover, the direction will be in the sense of the circulation 
about the vortex. Figure 5.8 shows such a circle ABC of radius I subtending a conical 
angle of 28 at P. If the velocity on the sphere at R, 8 from P is v, then the circulation 
round the circuit ABC is I?’ where 

I?’ = 21rR sin 8v (5.1) 

Spherical boundary 
surrounding ‘free’ 
end at point P 

Fig. 5.7 
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Fig. 5.8 

Putting r = radius of circuit = Rsinf3, Eqn (5.1) becomes 

rt = 2rrv ( 5 4  
Now the circulation round the circuit is equal to the strength of the vorticity in the 
contained area. This is on the cap ABCD of the sphere. Since the distribution of the 
vorticity is constant over the surface 

r surface area of cap 2rR2( 1 - cos 0) 
4rR2 

r =  
surface area of spherer = 

Equating (5.2) and (5.3) gives 

Now let the length, PIP, of the vortex decrease until it is very short (Fig. 5.9). The 
circle ABC is now influenced by the opposite end PI. Working through Eqns (5.1), 
(5.2) and (5.3) shows that the induced velocity due to P1 is now 

(5.5) 
-r 

v1 =-(I -cosel) 
4 m  

since I = R1 sin 81 and the sign of the vorticity is reversed on the sphere of radius R1 
as the vortex elements are now entering the sphere to congregate on PI. 

Fig. 5.9 
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The net velocity in the circuit ABC is the sum of Eqns (5.4) and (5.5): 
r 

v - v l  = - ~ i - c o s e - ( ~ - c o s e ~ ) ~  47rr 
n 

As PI approaches P 
COS el -+ cOs(8 - be) = COS e + sin e 66 

and 

v - VI --f sv 
giving 

r Sv = -sine68 
47rr 

This is the induced velocity at a point in the field of an elementary length 6s of vortex 
of strength r that subtends an angle 68 at P located by the coordinates R, 8 from the 
element. Since r = R sin 0 and R 60 = 6s sin 0 it is more usefully quoted as: 

sv = - sin ess 
47rR2 (5-7) 

Special cases of the Biot-Savart law 
Equation (5.6) needs further treatment before it yields working equations. This 
treatment, of integration, varies with the length and shape of the finite vortex being 
studied. The vortices of immediate interest are all assumed to be straight lines, so no 
shape complexity arises. They will vary only in their overall length. 
A linear vortex of fuzite length AB Figure 5.10 shows a length AB of vortex with an 
adjacent point P located by the angular displacements o and p from A and B 
respectively. Point P has, further, coordinates r and 0 with respect to any elemental 
length 6s of the length AB that may be defined as a distance s from the foot of the 
perpendicular h. From Eqn (5.7) the velocity at P induced by the elemental length 6s is 

6v = --sin86s (5.8) 4nr2 
r 

in the sense shown, i.e. normal to the plane APB. 

Fig. 5.10 
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To find the velocity at P due to the length AB the sum of induced velocities due to 
all such elements is required. Before integrating, however, all the variables must be 
quoted in terms of a single variable. A convenient variable is $ (see Fig. 5.10) and the 
limits of the integration are 

to O B = + - - @  
$,4 = -(;-a) (; 1 

since $ passes through zero when integrating from A to B. 

sin 6’ = cos 4, r2 = h2 sec’ $ 
ds = d(h tan 4) = h sec’ $d $ 

The integration of Eqn (5.8) is thus 

-- - (cosa+cosp) 
47rh (5.9) 

This result is of the utmost importance in what follows and is so often required that it 
is best committed to memory. All the values for induced velocity now to be used in 
this chapter are derived from this Eqn (5.9), that is limited to a straight line vortex of 
length AB. 
The influence of a semi-infinite vortex (Fig. 5 . 1 1 ~ )  If one end of the vortex stretches 
to infinity, e.g. end By then p = 0 and cos p = 1, so that Eqn (5.9) becomes 

47rh 
r 

v = - (cos0 + 1) (5.10) 

When the point P is opposite the end of the vortex (Fig. 5.11b), so that 
CY = 7r/2, COSQ = 0, Eqn (5.9) becomes 

r 
) I = -  

47rh 
(5.11) 

The influence of an infinite vortex (Fig. 5 .11~)  When a = ,8 = 0, Eqn (5.9) gives 

r v = -  
27rh (5.12) 

and this will be recognized as the familiar expression for velocity due to the line 
vortex of Section 3.3.2. Note that this is twice the velocity induced by a semi-infinite 
vortex, a result that can be seen intuitively. 

In nature, a vortex is a core of fluid rotating as though it were solid, and around 
which air flows in concentric circles. The vorticity associated with the vortex is 
confined to its core, so although an element of outside air is flowing in circles the 
element itself does not rotate. This is not easy to visualize, but a good analogy is with 
a car on a fairground big wheel. Although the car circulates round the axis of the 
wheel, the car does not rotate about its own axis. The top of the car is always at the 
top and the passengers are never upside down. The elements of air in the flow outside 
a vortex core behave in a very similar way. 
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B 
Q) 

Fig. 5.11 

5.2.3 Variation of velocity in vortex flow 
To c o n f m  how the velocity outside a vortex core varies with distance from the 
centre consider an element in a thin shell of air (Fig. 5.12). Here, flow conditions 
depend only on the distance from the centre and are constant all round the vortex at 
any given radius. The small element, which subtends the angle 60 at the centre, is 

Fig. 5.12 Motion of an element outside a vortex core 



Finite wing theory 221 

circulating round the centre in steady motion under the influence of the force due to 
the radial pressure gradient. 

Considering unit axial length, the inwards force due to the pressures is: 

1 1 
2 2 

(p+Sp) ( r+Sr )SB-prS6-  2(p+-Sp)Sr-S8 

which reduces to Sp(r - +Sr)Se. Ignoring 4Sr in comparison with r, this becomes 
rSpS0. The volume of unit length of the element is rSrSB and therefore its mass is 
pr Sr 68. Its centripetal acceleration is (velocity)2/radius, and the force required to 
produce this acceleration is: 

Equating this to the force produced by the pressure gradient leads to 

r ~p = pq2 Sr since se # o (5.13) 

Now, since the flow outside the vortex core is assumed to be inviscid, Bernoulli’s 
equation for incompressible flow can be used to give, in this case, 

1 1 
p + p a =  @ + 6 p ) + p ( q + 6 q I 2  

Expanding the term in q + Sq, ignoring terms such as (Sq)2 as small, and cancelling, 
leads to: 

sp + p q s q  = 0 

SP = -P4 

i.e. 

Substituting this value for Sp in Eqn (5.13) gives 

p$ Sr + pqr Sq = 0 

which when divided by pq becomes 

q Sr + r Sq = 0 

But the left-hand side of this equation is S(qr). Thus 

S(qr) = 0 
qr = constant 

(5.14) 

(5.15) 

This shows that, in the inviscid flow round a vortex core, the velocity is inversely 
proportional to the radius (see also Section 3.3.2). 

When the core is small, or assumed concentrated on a line axis, it is apparent from 
Eqn (5.15) that when r is small q can be very large. However, within the core the air 
behaves as though it were a solid cylinder and rotates at a uniform angular velocity. 
Figure 5.13 shows the variation of velocity with radius for a typical vortex. 

The solid line represents the idealized case, but in reality the boundary is not so 
distinct, and the velocity peak is rounded off, after the style of the dotted lines. 
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. .  

The core 

Fig. 5.13 Velocity distribution in a real vortex with a core 

5.3 The simplified horseshoe vortex 
A simplified system may replace the complete vortex system of a wing when con- 
sidering the influence of the lifting system on distant points in the flow. Many such 
problems do exist and simple solutions, although not all exact, can be readily 
obtained using the suggested simplification. This necessitates replacing the wing by 
a single bound spanwise vortex of constant strength that is turned through 90" at 
each end to form the trailing vortices that extend effectively to infinity behind the 
wing. The general vortex system and its simplified equivalent must have two things in 
common: 

(i) each must provide the same total lift 
(ii) each must have the same value of circulation about the trailing vortices and 

These equalities provide for the complete definition of the simplified system. 
The spanwise distributions created for the general vortex system and its simplified 

equivalent are shown in Fig. 5.14. Both have the same mid-span circulation ro that 
is now constant along part of the span of the simplified equivalent case. For 
equivalence in area under the curve, which is proportional to the total lift, the span 
length of the single vortex must be less than that of the wing. 

hence the same circulation at mid-span. 

T / ////////I/ 
TO Total I i f t i pV  1 / / / / / / I /  

( a  Normal loading ( b  ) Equivalent simplified 
loading 

Fig. 5.14 
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Thus 

lift r02s' = area under general distribution = - 
PV 

Hence 

s' total lift - 
s 2spvro 

(5.16) 

2s' is the distance between the trailing vortex core centres. From Eqn (5.47a) (see 
page 246) it follows that 

L = pV2'2S22rA1 

and substituting also 
7r I?,-, = 4sVCA, sin n - 
2 

- pV222rA1 s' 
s 2p V24s2C A, sin n 5 

7r A1 

4 [AI - A3 + A5 - A T . .  .] 

- - 

- - - 

For the general case then: 

For the simpler elliptic distribution (see Section 5.5.3 below): 

A3 = A5 = A7 = 0 

(5.17) 

(5.18) 

In the absence of other information it is usual to assume that the separation of the 
trailing vortices is given by the elliptic case. 

5.3.1 Formation flying effects 
Aircraft flying in close proximity experience mutual interference effects and good 
estimates of these influences are obtained by replacing each aircraft in the formation 
by its equivalent simplified horseshoe vortex. 

Consider the problem shown in Fig. 5.15 where three identical aircraft are flying in 
a vee formation at a forward speed V in the same horizontal plane. The total mutual 
interference is the sum of (i) that of the followers on the leader (l), (ii) that of the 
leader and follower (2) on (3): and (iii) that of leader and follower (3) on (2). (ii) and 
(iii) are identical. 

(i) The leader is flying in a flow regime that has additional vertical flow com- 
ponents induced by the following vortices. Upward components appear from 
the bound vortices a2c2, a3c3, trailing vortices c2d2, a3b3 and downward 
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Fig. 5.15 

components from the trailing vortices a2b2 and qd3. The net result is an 
upwash on the leader. 

(ii) These wings have additional influences to their own trails due to the leader and 
the other follower. Bound vortex alcl and trailing vortices albl, a2b2 produce 
downwashes. Again the net influence is an upwash. 

From these simple considerations it appears that each aircraft is flying in a regime in 
which upward components are induced by the presence of the others. The upwash 
components reduce the downward velocities induced by the aircraft's own trail and 
hence its trailing vortex drag. Because of the reduction in drag, less power is required 
to maintain the forward velocity and the well-known operational fact emerges that 
each aircraft of a formation has a better performance than when flying singly. In 
most problems it is usual to assume that the wings have an elliptic distribution, and 
that the influence calculated for mid-span position is typical of the whole wing span. 
Also any curvature of the trails is neglected and the special forms of the Biot-Savart 
law (Section 5.2.2) are used unreservedly. 

5.3.2 Influence of the downwash on the tailplane 
On most aircraft the tailplane is between the trailing vortices springing from the 
mainplanes ahead and the flow around it is considerably influenced by these trails. 
Forces on aerofoils are proportional to the square of the velocity and the angle of 
incidence. Small velocity changes, therefore, have negligible effect unless they alter 
the incidence of the aerofoil, when they then have a significant effect on the force on 
the aerofoil. 

Tailplanes work at incidences that are altered appreciably by the tilting of the 
relative wind due to the large downward induced velocity components. Each particu- 
lar aircraft configuration will have its own geometry. The solution of a particular 
problem will be given here to show the method. 

Example 5.1 Let the tailplane of an aeroplane be at distance x behind the wing centre of 
pressure and in the plane of the vortex trail (Fig. 5.16). 

Assuming elliptic distribution, the semi-span of the bound vortex is given by Eqn (5.18) as 
7r s' = (& 
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Fig. 5.16 

The downwash at the mid-span point P of the tailplane caused by the wing is the sum of that 
caused by the bound vortex ac and that of each of the trailing vortices ab and cd. Using the 
special form of BiotSavart equations (Section 5.2.2) the downwash at P: 

r0 2ro 
47rx 47rd 

W P  1 =-2sinp+-(l +cos@) 

From the sketch x = d cot /3 and x' = (7r/4)s 

27rs' 
2r0 
73s 

=-(l+secp) 

Now by using the Kutta-Zhukovsky theorem, Eqn (4.10) and downwash angle 

WP 
V 

E = -  

or 

The derivative 

Thus 

(5.19) 

For cases when the distribution is non-elliptic or the tailplane is above or below the wing 
centre of pressure, the arithmetic of the problem is altered from that above, which applies 
only to this restricted problem. Again the mid-span point is taken as representative of the 
whole tailplane. 
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Fig. 5.17 

5.3.3 Ground effects 
In this section, the influence of solid boundaries on aeroplane (or model) perform- 
ance is estimated and once again the wing is replaced by the equivalent simplified 
horseshoe vortex. 

Since this is a linear problem, the method of superposition may be used in the 
following way. If (Fig. 5.17b) a point vortex is placed at height h above a horizontal 
plane, and an equal but opposite vortex is placed at depth h below the plane, the 
vertical velocity component induced at any point on the plane by one of the vortices 
is equal and opposite to that due to the other. Thus the net vertical velocity, induced 
at any point on the plane, is zero. This shows that the superimposition of the image 
vortex is equivalent in effect to the presence of a solid boundary. In exactly the same 
way, the effect of a solid boundary on the horseshoe vortex can be modelled by 
means of an image horseshoe vortex (Fig. 5.17a). In this case, the boundary is the 
level ground and its influence on an aircraft h above is the same as that of the 
‘inverted’ aircraft flying ‘in formation’ h below the ground level (Figs 5.17a and 5.18). 

Before working out a particular problem, it is clear from the figure that the image 
system reduces the downwash on the wing and hence the drag and power required, as 
well as materially changing the downwash angle at the tail and hence the overall 
pitching equilibrium of the aeroplane. 

Example 5.2 An aeroplane of weight Wand span 2s is flying horizontally near the ground 
at altitude h and speed V. Estimate the reduction in drag due to ground effect. If 
W = 22 x 104N, h = 15.2m, s = 13.7m, V = 45m s-’, calculate the reduction in Newtons. 

With the notation of Fig. 5.18 the change in downwash at y along the span is Aw t where 
(U of L) 

On a strip of span by at y from the centre-line, 

lift I = p v r o  sy 

and change in vortex drag 

law Ad,=-  
V 

(5.20) 
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Fig. 5.18 

Total change in drag AD, across the span is the integral of Eqn (5.20) from -s‘ to s‘ (or twice 
that from 0 to s’). Therefore 

From the geometry, Y! = 4h2 + (s‘ + J J ) ~  and r; = 4h2 + (s’ - v ) ~ .  Making these substitutions 
and evaluating the integral 

With W = pvrom i.e. and s‘ = (7r/4)s (assuming elliptic distribution): 

and substituting the values given 

AD, = 1390 N 

A simpler approach is to assume that mid-span conditions are typical of the whole wing. 
With this the case 

S’ 

V F T m  Q1 = Q2 = 8 = arccos 

and the change in drag is to be 1524N (a difference of about 10% from the first answer). 

5.4 Vortex sheets 

To estimate the influence of the near wake on the aerodynamic characteristics of 
a lifting wing it is useful to investigate the ‘hypothetical’ bound vortex in greater 
detail. For this the wing is replaced for the purposes of analysis by a sheet of vortex 
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Fig. 5.19 

filaments. In order to satisfy Helmholtz’s second theorem (Section 5.2.1) each fila- 
ment must either be part of a closed loop or form a horseshoe vortex with trailing 
vortex filaments running to infinity. Even with this restriction there are still infinitely 
many ways of arranging such vortex elements for the purposes of modelling the flow 
field associated with a lifting wing. For illustrative purposes consider the simple 
arrangement where there is a sheet of vortex filaments passing in the spanwise 
direction through a given wing section (Fig. 5.19). It should be noted, however, that 
at two, here unspecified, spanwise locations each of these filaments must be turned 
back to form trailing vortex filaments. 

Consider the flow in the vicinity of a sheet of fluid moving irrotationally in the xy 
plane, Fig. 5.19. In this stylized figure the ‘sheet’ is seen to have a section curved in 
the xy plane and to be of thickness Sn, and the vorticity is represented by a number of 
vortex filaments normal to the xy plane. The circulation around the element of fluid 
having sides Ss, Sn is, by definition, AI? = 56s. Sn where 5 is the vorticity of the fluid 
within the area SsSn. 

Now for a sheet Sn - 0  and if 5 is so large that the product [Sn remains finite, the 
sheet is termed a vortex sheet of strength k = CSn. The circulation around the 
element can now be written 

AI? = kSs (5.21) 

An alternative way of finding the circulation around the element is to integrate the 
tangential flow components. Thus 

AI?= (UZ - u~)SS (5.22) 

Comparison of Eqns (5.21) and (5.22) shows that the local strength k of the vortex 
sheet is the tangential velocity jump through the sheet. 

Alternatively, a flow situation in which the tangential velocity changes discontinu- 
ously in the normal direction may be mathematically represented by a vortex sheet of 
strength proportional to the velocity change. 

The vortex sheet concept has important applications in wing theory. 



Finite wing theory 229 

5.4.1 The use of vortex sheets to model the lifting 
effects of a wing 

In Section 4.3, it was shown that the flow around a thin wing could be regarded as a 
superimposition of a circulatory and a non-circulatory flow. In a similar fashion the 
same can be established for the flow around a thin wing. For a wing to be classified as 
thin the following must hold: 

0 The maximum thickness-to-chord ratio, usually located at mid-span, must be 

0 The camber lines of all wing sections must only deviate slightly from the corres- 

0 The wing may be twisted but the angles of incidence of all wing sections must 

0 The rate of change of wing taper must be gradual. 

These conditions would be met for most practical wings. If they are satisfied then the 
velocities at any point over the wing only differ by a small amount from that of the 
oncoming flow. 

For the thin aerofoil the non-circulatory flow corresponds to that around 
a symmetrical aerofoil at zero incidence. Similarly for the thin wing it corresponds to 
that around an untwisted wing, having the same planform shape as the actual wing, 
but with symmetrical sections at zero angle of incidence. Like its two-dimensional 
counterpart in aerofoil theory this so-called displacement (or thickness) effect makes 
no contribution to the lifting characteristics of the wing. The circulatory flow - the 
so-called lifting effect - corresponds to that around an infinitely thin, cambered and 
possibly twisted, plate at an angle of attack. The plate takes the same planform shape 
as the mid-plane of the actual wing. This circulatory part of the flow is modelled by 
a vortex sheet. The lifting characteristics of the wing are determined solely by this 
component of the flow field. Consequently, the lifting effect is of much greater 
practical interest than the displacement effect. Accordingly much of this chapter 
will be devoted to the former. First, however, the displacement effect is briefly 
considered. 

much less than unity. 

ponding chord-line. 

remain small and the rate of change of twist must be gradual. 

Displacement effect 

In Section 4.9, it was shown how the non-circulatory component of the flow around 
an aerofoil could be modelled by a distribution of sources and sinks along the chord 
line. Similarly, in the case of the wing, this component of the flow can be modelled by 
distributing sources and sinks over the entire mid-plane of the wing (Fig. 5.20). In 
much the same way .as Eqn (4.103) was derived (referring to Fig. 5.20 for the 
geometric notation) it can be shown that the surface pressure coefficient at point 
( X I ,  y1) due to the thickness effect is given by 

7 

4 

where x~(z) denotes the leading edge of the wing. 
In general, Eqn (5.23) is fairly cumbersome and nowadays modern computational 

techniques like the panel method (see Section 5.8) are used. In the special case of 
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Fig. 5.20 Modelling the displacement effect by a distribution of sources 

wings having high aspect ratio, intuition would suggest that the flow over most of the 
wing behaves as if it were two-dimensional. Plainly this will not be a good approxi- 
mation near the wing-tips where the formation of the trailing vortices leads to highly 
three-dunensional flow. However, away from the wing-tip region, Eqn (5.23) reduces 
approximately to Eqn (4.103) and, to a good approximation, the C, distributions 
obtained for symmetrical aerofoils can be used for the wing sections. For complete- 
ness this result is demonstrated formally immediately below. However, if this is not of 
interest go directly to the next section. 

Change the variables in Eqn (5.23) to % = (x  - xI ) /c ,  21 = z1/c and Z = (z - z1)/c. 
Now provided that the non-dimensional shape of the wing-section does not change 
along the span, or, at any rate, only changes very slowly St = d(yt/c)/dZ does not 
vary with Z and the integral I 1  in Eqn (5.23) becomes 

" 
12 

To evaluate the integral 1 2  change variable to x = l / Z  so that 

1 1 1  1 1 
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For large aspect ratios s >> cy so provided z1 is not close to fs, i.e. near the wing-tips, 

giving 

Thus Eqn (5.23) reduces to the two-dimensional result, Eqn (4.103), i.e. 

(5.24) 

Lifting effect 

To understand the fundamental concepts involved in modelling the lifting effect of 
a vortex sheet, consider first the simple rectangular wing depicted in Fig. 5.21. Here 
the vortex sheet is constructed from a collection of horseshoe vortices located in the 
y = 0 plane. 

From Helmholtz's second theorem (Section 5.2.1) the strength of the circulation 
round any section of the vortex sheet (or wing) is the sum of the strengths of the 

vortex filaments 

CL\ 

Fig. 5.21 The relation between spanwise load variation and trailing vortex strength 
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vortex filaments cut by the section plane. As the section plane is progressively moved 
outwards from the centre section to the tips, fewer and fewer bound vortex filaments 
are left for successive sections to cut so that the circulation around the sections 
diminishes. In this way, the spanwise change in circulation round the wing is related 
to the spanwise lengths of the bound vortices. Now, as the section plane is moved 
outwards along the bound bundle of filaments, and as the strength of the bundle 
decreases, the strength of the vortex filaments so far shed must increase, as the overall 
strength of the system cannot diminish. Thus the change in circulation from section 
to section is equal to the strength of the vorticity shed between these sections. 

Figure 5.21 shows a simple rectangular wing shedding a vortex trail with each pair 
of trailing vortex filaments completed by a spanwise bound vortex. It will be noticed 
that a line joining the ends of all the spanwise vortices forms a curve that, assuming 
each vortex is of equal strength and given a suitable scale, would be a curve of the 
total strengths of the bound vortices at any section plotted against the span. This 
curve has been plotted for clarity on a spanwise line through the centre of pressure of 
the wing and is a plot of (chordwise) circulation (I') measured on a vertical ordinate, 
against spanwise distance from the centre-line (CL) measured on the horizontal 
ordinate. Thus at a section z from the centre-line sufficient hypothetical bound 
vortices are cut to produce a chordwise circulation around that section equal to I'. 
At a further section z + Sz from the centre-line the circulation has fallen to l? - ST, 
indicating that between sections z and z + Sz trailing vorticity to the strength of 
SI' has been shed. 

If the circulation curve can be described as some function of z , f l z )  say then the 
strength of circulation shed 

(5.25) 

Now at any section the lift per span is given by the Kutta-Zhukovsky theorem 
Eqn (4.10) 

I = p V T  

and for a given flight speed and air density, I' is thus proportional to 1. But I is the 
local intensity of lift or lift grading, which is either known or is the required quantity 
in the analysis. 

The substitution of the wing by a system of bound vortices has not been rigorously 
justified at this stage. The idea allows a relation to be built up between the physical 
load distribution on the wing, which depends, as shall be shown, on the wing 
geometric and aerodynamic parameters, and the trailing vortex system. 

(a) It will be noticed from the leading sketch that the trailing filaments are closer 
together when they are shed from a rapidly diminishing or changing distribution 
curve. Where the filaments are closer the strength of the vorticity is greater. Near 
the tips, therefore, the shed vorticity is the most strong, and at the centre where 
the distribution curve is flattened out the shed vorticity is weak to infinitesimal. 

(b) A wing infinitely long in the spanwise direction, or in two-dimensional flow, will 
have constant spanwise loading. The bundle will have filaments all of equal 
length and none will be turned back to form trailing vortices. Thus there is no 
trailing vorticity associated with two-dimensional wings. This is capable of 
deduction by a more direct process, i.e. as the wing is infinitely long in the 
spanwise direction the lower surface @ugh) and upper surface (low) pressures 

Figure 5.21 illustrates two further points: 
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cannot tend to equalize by spanwise components of velocity so that the streams 
of air meeting at the trailing edge after sweeping under and over the wing have no 
opposite spanwise motions but join up in symmetrical flow in the direction of 
motion. Again no trailing vorticity is formed. 

A more rigorous treatment of the vortex-sheet modelling is now considered. In 
Section 4.3 it was shown that, without loss of accuracy, for thin aerofoils the vortices 
could be considered as being distributed along the chord-line, i.e. the x axis, rather 
than the camber line. Similarly, in the present case, the vortex sheet can be located on 
the (x, z) plane, rather than occupying the cambered and possibly twisted mid-surface 
of the wing. This procedure greatly simplifies the details of the theoretical modelling. 

One of the infinitely many ways of constructing a suitable vortex-sheet model is 
suggested by Fig. 5.21. This method is certainly suitable for wings with a simple 
planform shape, e.g. a rectangular wing. Some wing shapes for which it is not at all 
suitable are shown in Fig. 5.22. Thus for the general case an alternative model is 
required. In general, it is preferable to assign an individual horseshoe vortex of 
strength k (x, z) per unit chord to each element of wing surface (Fig. 5.23). This 
method of constructing the vortex sheet leads to certain mathematical difficulties 

( a  1 Delta wing ( b ) Swept - back wing 

Fig. 5.22 

Fig. 5.23 Modelling the lifting effect by a distribution of horseshoe vortex elements 
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( a  ) Horseshoe vortices ( b )  L-shaped vortices 

Fig. 5.24 Equivalence between distributions of (a) horseshoe and (b) L-shaped vortices 

when calculating the induced velocity. These problems can be overcome by recom- 
bining the elements in the way depicted in Fig. 5.24. Here it is recognized that partial 
cancellation occurs for two elemental horseshoe vortices occupying adjacent span- 
wise positions, z and z + 6z. Accordingly, the horseshoe-vortex element can be 
replaced by the L-shaped vortex element shown in Fig. 5.24. Note that although this 
arrangement appears to violate Helmholtz’s second theorem, it is merely a math- 
ematically convenient way of expressing the model depicted in Fig. 5.23 which fully 
satisfies this theorem. 

5.5 Relationship between spanwise loading 
and trailing vorticity 

It is shown below in Section 5.5.1 how to calculate the velocity induced by 
the elements of the vortex sheet that notionally replace the wing. This is an essential 
step in the development of a general wing theory. Initially, the general case 
is considered. Then it is shown how the general case can be very considerably 
simplified in the special case of wings of high aspect ratio. The general case is 
then dropped, to be taken up again in Section 5.8, and the assumption of large aspect 
ratio is made for Section 5.6 and the remainder of the present section. Accordingly, 
some readers may wish to pass over the material immediately below and go 
directly to the alternative derivation of Eqn (5.32) given at the end of the present 
section. 

5.5.1 Induced velocity (downwash) 
Suppose that it is required to calculate the velocity induced at the point Pl(x1, z l )  in 
the y = 0 plane by the L-shaped vortex element associated with the element of wing 
surface located at point P (x, z )  now relabelled A (Fig. 5.25). 
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Fig. 5.25 Geometric notation for L-shaped vortex element 

Making use of Eqn (5.9) it can be seen that this induced velocity is perpendicular to 
the y = 0 plane and can be written as 

s v i ( x l , ~ ~ )  = (svi),, + (6vi)Bc 

- _  - ksx [cosel -cos (5.26) 
4n(x - XI)  

From the geometry of Fig. 5.25 the various trigonometric expressions in Eqn (5.26) 
can be written as 

z - z1 
cOsel = 

cose2 = - 

&x - X d 2  + (2 - 
x - x1 

J(x - + (z + sz - z1)2 

z + sz - 21 
COS e2 + - = - sin02 = ( 2  J(x - + (2 + sz - 

The binomial expansion, i.e. 

(a + b)" = d + n d - l b  + * .  . ; 

can be used to expand some of the terms, for example 

where r = d(x -XI)' + (z - ~ 1 ) ~ .  In this way, the trigonometric expressions given 
above can be rewritten as 
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(5.27) 

(5.28) 

(5.29) 

Equations (5.27 to 5.29) are now substituted into Eqn (5.26), and terms involving 
( 6 ~ ) ~  and higher powers are ignored, to give 

In order to obtain the velocity induced at P1 due to all the horseshoe vortex elements, 
6vi is integrated over the entire wing surface projected on to the (x, z) plane. Thus 
using Eqn (5.30) leads to 

The induced velocity at the wing itself and in its wake is usually in a downwards 
direction and accordingly, is often called the downwash, w, so that w = -Vi. 

It would be a difficult and involved process to develop wing theory based on 
Eqn (5.31) in its present general form. Nowadays, similar vortex-sheet models are 
used by the panel methods, described in Section 5.8, to provide computationally 
based models of the flow around a wing, or an entire aircraft. Accordingly, a 
discussion of the theoretical difficulties involved in using vortex sheets to model wing 
flows will be postponed to Section 5.8. The remainder of the present section and 
Section 5.6 is devoted solely to the special case of unswept wings having high aspect 
ratio. This is by no means unrealistically restrictive, since aerodynamic considera- 
tions tend to dictate the use of wings with moderate to high aspect ratio for low-speed 
applications such as gliders, light aeroplanes and commuter passenger aircraft. In 
this special case Eqn (5.31) can be very considerably simplified. 

This simplification is achieved as follows. For the purposes of determining the 
aerodynamic characteristics of the wing it is only necessary to evaluate the induced 
velocity at the wing itself. Accordingly the ranges for the variables of integration are 
given by -s 5 z 5 s and 0 5 x 5 (c)-. For high aspect ratios S/C> 1 so that 
Ix - XI I << r over most of the range of integration. Consequently, the contributions of 
terms (b) and (c) to the integral in Eqn (5.31) are very small compared to that of term 
(a) and can therefore be neglected. This allows Eqn (5.31) to be simplified to 

where, as explained in Section 5.4.1 , owing to Helmholtz's second theorem 

(5.32) 

(5.33) 
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Fig. 5.26 Prandtl's lifting line model 

is the total circulation due to all the vortex filaments passing through the wing section 
at z. Physically the approximate theoretical model implicit in Eqn (5.32) and (5.33) 
corresponds to replacing the wing by a single bound vortex having variable strength 
I', the so-called Zijting Zine (Fig. 5.26). This model, together with Eqns (5.32) and 
(5.33), is the basis of Prandtl's general wing theory which is described in Section 5.6. 
The more involved theories based on the full version of Eqn (5.31) are usually 
referred to as lifting surface theories. 

Equation (5.32) can also be deduced directly from the simple, less general, theor- 
etical model illustrated in Fig. 5.21. Consider now the influence of the trailing vortex 
filaments of strength ST shed from the wing section at z in Fig. 5.21. At some other 
point z1 along the span, according to Eqn (5.1 l), an induced velocity equal to 

will be felt in the downwards direction in the usual case of positive vortex strength. 
All elements of shed vorticity along the span add their contribution to the induced 
velocity at z1 so that the total influence of the trailing system at z1 is given by Eqn 
(5.32). 

5.5.2 The consequences of downwash - trailing vortex drag 
The induced velocity at z1 is, in general, in a downwards direction and is sometimes 
called downwash. It has two very important consequences that modify the flow 
about the wing and alter its aerodynamic characteristics. 

Firstly, the downwash that has been obtained for the particular point z1 is felt to 
a lesser extent ahead of z1 and to a greater extent behind (see Fig. 5.27), and has the 
effect of tilting the resultant oncoming flow at the wing (or anywhere else within its 
influence) through an angle 

where w is the local downwash. This reduces the effective incidence so that for the 
same lift as the equivalent infinite wing or two-dimensional wing at incidence ax an 
incidence a = am + E is required at that section on the finite wing. This is illustrated 
in Fig. 5.28, which in addition shows how the two-dimensional lift L, is normal to 
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Fig. 5.27 Variation in magnitude of downwash in front of and behind wing 

the resultant velocity VR and is, therefore, tilted back against the actual direction of 
motion of the wing V. The two-dimensional lift L, is resolved into the aerodynamic 
forces L and D, respectively, normal to and against the direction of the forward 
velocity of the wing. Thus the second important consequence of downwash emerges. 
This is the generation of a drag force D,. This is so important that the above 
sequence will be explained in an alternative way. 

A section of a wing generates a circulation of strength I?. This circulation super- 
imposed on an apparent oncoming flow velocity V produces a lift force L, = pVF 
according to the Kutta-Zhukovsky theorem (4.10), which is normal to the apparent 
oncoming flow direction. The apparent oncoming flow felt by the wing section is the 
resultant of the forward velocity and the downward induced velocity arising from the 
trailing vortices. Thus the aerodynamic force L, produced by the combination of I? 
and Y appears as a lift force L normal to the forward motion and a drag force D, 
against the normal motion. This drag force is called trailing vortex drug, abbreviated 
to vortex drag or more commonly induced drug (see Section 1.5.7). 

Considering for a moment the wing as a whole moving through air at rest at 
infinity, two-dimensional wing theory suggests that, taking air as being of small to 
negligible viscosity, the static pressure of the free stream ahead is recovered behind 
the wing. This means roughly that the kinetic energy induced in the flow is converted 
back to pressure energy and zero drag results. The existence of a thin boundary layer 
and narrow wake is ignored but this does not really modify the argument. 

In addition to this motion of the airstream, a finite wing spins the airflow near the 
tips into what eventually becomes two trailing vortices of considerable core size. The 
generation of these vortices requires a quantity of kinetic energy that is not recovered 

Fig. 5.28 The influence of downwash on wing velocities and forces: w = downwash; V = forward 
speed of wing; V ,  = resultant oncoming flow at wing; a = incidence; E = downwash angle = w/V; 
am = (g .- E)  = equivalent two-dimensional incidence; L, = two-dimensional lift; L = wing lift; 
D, =trailing vortex drag 
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by the wing system and that in fact is lost to the wing by being left behind. This 
constant expenditure of energy appears to the wing as the induced drag. In what 
follows, a third explanation of this important consequence of downwash will be of 
use. Figure 5.29 shows the two velocity components of the apparent oncoming flow 
superimposed on the circulation produced by the wing. The forward flow velocity 
produces the lift and the downwash produces the vortex drag per unit span. 

Thus the lift per unit span of a finite wing (I) (or the load grading) is by the Kutta- 
Zhukovsky theorem: 

I = pvr 
the total lift being 

L = /:pVTdz (5.34) 

The induced drag per unit span (d,), or the induced drag grading, again by the 
Kutta-Zhukovsky theorem is 

d, = pwr (5.35) 

and by similar integration over the span 

D, = /:pwrdz (5.36) 

This expression for D, shows conclusively that if w is zero all along the span then D, 
is zero also. Clearly, if there is no trailing vorticity then there will be no induced drag. 
This condition arises when a wing is working under two-dimensional conditions, or if 
all sections are producing zero lift. 

As a consequence of the trailing vortex system, which is produced by the basic 
lifting action of a (finite span) wing, the wing characteristics are considerably modi- 
fied, almost always adversely, from those of the equivalent two-dimensional wing of 
the same section. Equally, a wing with flow systems that more nearly approach the 
two-dimensional case will have better aerodynamic characteristics than one where 

I =pvr 

L= f spl/rdz 
-S 

d, =pwr 

Fig. 5.29 Circulation superimposed on forward wind velocity and downwash to give lift and vortex drag 
(induced drag) respectively 



240 Aerodynamics for Engineering Students 

the end-effects are more dominant. It seems therefore that a wing that is large in the 
spanwise dimension, i.e. large aspect ratio, is a better wing - nearer the ideal - than 
a short span wing of the same section. It would thus appear that a wing of large 
aspect ratio will have better aerodynamic characteristics than one of the same section 
with a lower aspect ratio. For this reason, aircraft for which aerodynamic efficiency is 
paramount have wings of high aspect ratio. A good example is the glider. Both the 
man-made aircraft and those found in nature, such as the albatross, have wings with 
exceptionally high aspect ratios. 

In general, the induced velocity also varies in the chordwise direction, as is evident 
from Eqn (5.31). In effect, the assumption of high aspect ratio, leading to Eqn (5.32), 
permits the chordwise variation to be neglected. Accordingly, the lifting character- 
istics of a section from a wing of high aspect ratio at a local angle of incidence a(z) 
are identical to those for a two-dimensional wing at an effective angle of incidence 
a(z) - e. Thus Prandtl's theory shows how the two-dimensional aerofoil character- 
istics can be used to determine the lifting characteristics of wings of finite span. The 
calculation of the induced angle of incidence E now becomes the central problem. This 
poses certain difficulties because E depends on the circulation, which in turn is closely 
related to the lift per unit span. The problem therefore, is to some degree circular in 
nature which makes a simple direct approach to its solution impossible. The required 
solution procedure is described in Section 5.6. 

Before passing to the general theory in Section 5.6, whereby the spanwise circula- 
tion distribution must be determined as part of the overall process, the much simpler 
inverse problem of a specified spanwise circulation distribution is considered in some 
detail in the next subsection. Although this is a special case it nevertheless leads to 
many results of practical interest. In particular, a simple quantitative result emerges 
that reinforces the qualitative arguments given above concerning the greater aero- 
dynamic efficiency of wings with high aspect ratio. 

5.5.3 The characteristics of a simple symmetric 
loading - elliptic distribution 

In order to demonstrate the general method of obtaining the aerodynamic charac- 
teristics of a wing from its loading distribution the simplest load expression for 
symmetric flight is taken, that is a semi-ellipse. In addition, it will be found to be a 
good approximation to many (mathematically) more complicated distributions and 
is thus suitable for use as first predictions in performance estimates. 

The spanwise variation in circulation is taken to be represented by a semi-ellipse 
having the span (2s) as major axis and the circulation at mid-span (ro) as the semi- 
minor axis (Fig. 5.30). From the general expression for an ellipse 

or 

(5.37) 

This expression can now be substituted in Eqns (5.32), (5.34) and (5.36) to find the 
lift, downwash and vortex drag on the wing. 
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Fig. 5.30 Elliptic loading 

Lift for elliptic distribution 

From Eqn (5.34) 

i.e. 

whence 

S 
L = pvTo7r- 

2 

or introducing 

1 
2 L = CL-pvZs 

(5.38) 

(5.39) 

giving the mid-span circulation in terms of the overall aerofoil lift coefficient and 
geometry. 

Downwash for elliptic distribution 

Here 

Substituting this in Eqn (5.32) 

wz, = 
z dz 

d G ( Z  - z1) 
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Writing the numerator as (z - zl) + z1: 

1 =$[I s d z  +zl  J s  dz 
47rs -s&E-7 - s d ? Z f ( z - z 1 )  

Evaluating the first integral which is standard and writing I for the second 

(5.40) 

Now as this is a symmetric flight case, the shed vorticity is the same from each side of 
the wing and the value of the downwash at some point z1 is identical to that at the 
corresponding point - z1 on the other wing. 

TO 
47rs wz, =-[7r+z1l] 

So substituting for f z l  in Eqn (5.40) and equating: 

This identity is satisfied only if I = 0, so that for any point z - z1 along the span 

r0 

4s 
w = -  

This important result shows that the downwash is constant along the span. 

Induced drag (vortex drag) for elliptic distribution 

From Eqn (5.36) 

whence 
A 2  
8 

D~ = -pro 

Introducing 
1 
2 

e, vs 

Dv = Co,-pV2S 

and from Eqn (5.39) 

ro =- 
T S  

Eqn (5.42) gives 

1 CLVS eo, - 2 P v2s = 5 P ( F) 

(5.41) 

(5.42) 

or 

(5.43) 
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since 

4s2 span2 
S area 

- aspect ratio(AR) - 

Equation (5.43) establishes quantitatively how CDv falls with a rise in (AR) and 
confirms the previous conjecture given above, Eqn (5.36), that at zero lift in sym- 
metric flight CD, is zero and the other condition that as (AR) increases (to infinity for 
two-dimensional flow) CD, decreases (to zero). 

5.5.4 The general (series) distribution of lift 
In the previous section attention was directed to distributions of circulation (or lift) along 
the span in which the load is assumed to fall symmetrically about the centre-line according 
to a particular family of load distributions. For steady symmetric manoeuvres this is quite 
satisfactory and the previous distribution formula may be arranged to suit certain cases. 
Its use, however, is strictly limited and it is necessary to seek further for an expression that 
will satisfy every possible combination of wing design parameter and flight manoeuvre. 
For example, it has so far been assumed that the wing was an isolated lifting surface that 
in straight steady flight had a load distribution rising steadily from zero at the tips to a 
maximum at mid-span (Fig. 5.31a). The general wing, however, will have a fuselage 
located in the centre sections that will modify the loading in that region (Fig. 5.31b), and 
engine nacelles or other excrescences may deform the remainder of the curve locally. 

The load distributions on both the isolated wing and the general aeroplane wing will 
be considerably changed in anti-symmetric flight. In rolling, for instance, the upgoing 
wing suffers a large decrease in lift, which may become negative at some incidences 
(Fig. 5.3 IC). With ailerons in operation the curve of spanwise loading for a wing is no 
longer smooth and symmetrical but can be rugged and distorted in shape (Fig. 5.31d). 

It is clearly necessary to find an expression that will accommodate all these various 
possibilities. From previous work the formula 1 = p VI' for any section of span is familiar. 
Writing I in the form of the non-dimensional lift coefficient and equating to pVT:  

CL r=-vc 
2 

(5.44) 

is easily obtained. This shows that for a given steady flight state the circulation at any 
section can be represented by the product of the forward velocity and the local chord. 

Isolated wing in 

flight 
( a m  steady symmetric 

I 
I 
I 
I 

(b) I Lift distribution 
modified by 
fuselage effects 

I 
I 

I 
I 

( d m  
Antisymmetric flight 
with ailerons 
in operation 

Fig. 5.31 Typical spanwise distributions of lift 
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Now in addition the local chord can be expressed as a fraction of the semi-span s, and 
with this fraction absorbed in a new number and the numeral 4 introduced for later 
convenience, I? becomes: 

r = 4crs 

where Cr is dimensionless circulation which will vary similarly to r across the span. 
In other words, Cr is the shape parameter or variation of the I' curve and being 
dimensionless it can be expressed as the Fourier sine series ETA, sin ne in which the 
coefficients A,, represent the amplitudes, and the s u m  of the successive harmonics 
describes the shape. The sine series was chosen to satisfy the end conditions of the 
curve reducing to zero at the tips where y = As. These correspond to the values of 
0 = 0 and R. It is well understood that such a series is unlimited in angular measure 
but the portions beyond 0 and n can be disregarded here. Further, the series can fit 
any shape of curve but, in general, for rapidly changing distributions as shown by 
a rugged curve, for example, many harmonics are required to produce a sum that is 
a good representation. 

In particular the series is simplified for the symmetrical loading case when the even 
terms disappear (Fig. 5.32 01)). For the symmetrical case a maximum or minimum 
must appear at the mid-section. This is only possible for sines of odd values of 742.. 
That is, the symmetrical loading must be the s u m  of symmetrical harmonics. Odd 

I 

x 7r 
2 

0 

-S 0 S 

Fig. 5.32 Loading make-up by selected sine series 
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harmonics are symmetrical. Even harmonics, on the other hand, return to zero again 
at 7r/2 where in addition there is always a change in sign. For any asymmetry in the 
loading one or more even harmonics are necessary. 

With the number and magnitude of harmonics effectively giving all possibilities the 
general spanwise loading can be expressed as 

W 

r = 4sV A, sin ne (5.45) 
1 

It should be noted that since I = pFT the spanwise lift distribution can be expressed 
as 

W 

I = 4 p ~ ~ s C ~ , s i n n e  (5.46) 

The aerodynamic characteristics for symmetrical general loading are derived in the 
next subsection. The case of asymmetrical loading is not included. However, it may 
be dealt with in a very similar manner, and in this way expressions derived for such 
quantities as rolling and yawing moment. 

1 

5.5.5 Aerodynamic characteristics for symmetrical 
general loading 

The operations to obtain lift, downwash and drag vary only in detail from the 
previous cases. 

Lift on the wing 

and changing the variable z = -scos 8, 
r?F 

L = lo pVI'ssinf3dO 

and substituting for the general series expression 

sin(n - i)e sin(n + 1)e - 

The sum within the squared bracket equals zero for all values of n other than unity 
when it becomes 

[ lim = A i r  
(n-l)+O 
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Thus 
1 1 
2 2 L = A ~ T - ~ V ~ ~ S ~  = CL-PV'S 

and writing aspect ratio (AR) = 481s gives 

CL T A ~  (AR)  (5.47) 

This indicates the rather surprising result that the lift depends on the magnitude of 
the coefficient of the first term only, no matter how many more may be present in the 
series describing the distribution. This is because the terms A3 sin 38, As sin 58, etc., 
provide positive lift on some sections and negative lift on others so that the overall 
effect of these is zero. These terms provide the characteristic variations in the 
spanwise distribution but do not affect the total lift of the whole which is determined 
solely from the amplitude of the first harmonic. Thus 

CL = T(AR)AI and L = 27rpV2?A1 (5.47a) 

Down wash 

Changing the variable and limits of Eqn (5.32), the equation for the downwash is 

w0, =- 47rs s" case - COS el 
In this case I? = 4sV A,  sin n8 and thus on differentiating 

d B = 4 s V x n A , c o s n 8  d r  

Introducing this into the integral expression gives 

= nA,G, 
7r 

and writing in G, = nsinn8l/sin81 from Appendix 3 ,  and reverting back to the 
general point 8: 

nA, sin ne w = v  
sin 8 (5.48) 

This involves all the coefficients of the series, and will be symmetrically distributed 
about the centre line for odd harmonics. 

Induced drag (vortex drag) 
The drag grading is given by d, = pwr .  Integrating gives the total induced drag 

D, = L p w r d z  

or in the polar variable 
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V nA, sin ne 
4sVCA, sin n8 s sin 8 de --- ~ v = l " P  

I r dz 

= pV22 L" nA, sin 8 A, sin ne de 

The integral becomes 

This can be demonstrated by multiplying out the first three (say) odd harmoni 
r r  

thu 

(A1sin8+3A3sin38+5Assin58)(A1 sin8+A3sin38+ Assin8)d8 

= L"{A; sin2 8 + 3A: sin2 8 + 5A: sin2 8 + sin8sin38and 

other like terms which are products of different multiples of 81) df3 

On carrying out the integration from 0 to 7r all terms other than the squared terms 
vanish leaving 

I = L"(Af  sin2 8 + 3Az sin2 38 + 5A: sin2 58 + .)dB 

7T 7r =-[A;+3A:+5A:+..-] = 2 c n A i  
2 

This gives 
1 

2 2 DV = 4 p V 2 ? Z c n A i  = C,-pV2S 

whence 

From Eqn (5.47) 

CDv = .rr(AR) (5.49) 

(5.50) 
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Plainly 6 is always a positive quantity because it consists of squared terms that must 
always be positive. Co, can be a minimum only when S =  0. That is when 
A3 = A5 = A7 = . . . = 0 and the only term remaining in the series is A1 sin 8. 

Minimum induced drag condition 

Thus comparing Eqn (5.50) with the induced-drag coefficient for the elliptic case 
(Eqn (5.43)) it can be seen that modifying the spanwise distribution away from the 
elliptic increases the drag coefficient by the fraction S that is always positive. It 
follows that for the induced drag to be a minimum S must be zero so that the 
distribution for minimum induced drag is the semi-ellipse. It will also be noted that 
the minimum drag distribution produces a constant downwash along the span 
whereas all other distributions produce a spanwise variation in induced velocity. 
This is no coincidence. It is part of the physical explanation of why the elliptic 
distribution should have minimum induced drag. 

To see this, consider two wings (Fig. 5.33a and b), of equal span with spanwise 
distributions in downwash velocity w = wg = constant along (a) and w = f(z) along 
(b). Without altering the latter downwash variation it can be expressed as the sum of 
two distributions wo and w1 = fl(z) as shown in Fig. 5.33~. 

If the lift due to both wings is the same under given conditions, the rate of change 
of vertical momentum in the flow is the same for both. Thus for (a) 

L 0; 1:mwodz 

and for (b) 

(5.51) 

(5.52) 

where riz is a representative mass flow meeting unit span. Since L is the same on each 
wing 

l ) l f l ( z ) d z  = 0 (5.53) 

Now the energy transfer or rate of change of the kinetic energy of the representative 
mass flows is the induced drag (or vortex drag). For (a): 

(5.54) 

Fig. 5.33 (a) Elliptic distribution gives constant downwash and minimum drag. (b) Non-elliptic distribution 
gives varying downwash. (c) Equivalent variation for comparison purposes 



Finite wing theory 249 

For (b): 

and since S”_,ritfl(z) = 0 in Eqn (5.53) 

(5.55) 

Comparing Eqns (5.54) and (5.55) 

and since fl(z) is an explicit function of z, 

J_:(fl(Z))2dZ > 0 

since (f1(z))2 is always positive whatever the sign of fl(z). Hence DV(b) is always 
greater than D v ( ~ ) .  

5.6 Determination of the load distribution 
on a given wing 

This is the direct problem broadly facing designers who wish to predict the perform- 
ance of a projected wing before the long and costly process of model tests begin. This 
does not imply that such tests need not be carried out. On the contrary, they may be 
important steps in the design process towards a production aircraft. 

The problem can be rephrased to suggest that the designers would wish to have 
some indication of how the wing characteristics vary as, for example, the geometric 
parameters of the project wing are changed. In this way, they can balance the 
aerodynamic effects of their changing ideas against the basic specification - provided 
there is a fairly simple process relating the changes in design parameters to the 
aerodynamic characteristics. Of course, this is stating one of the design problems in 
its baldest and simplest terms, but as in any design work, plausible theoretical 
processes yielding reliable predictions are very comforting. 

The loading on the wing has already been described in the most general terms 
available and the overall characteristics are immediately to hand in terms of the 
coefficients of the loading distribution (Section 5.5). It remains to relate the coeffi- 
cients (or the series as a whole) to the basic aerofoil parameters of planform and 
aerofoil section characteristics. 

5.6.1 The general theory for wings of high aspect ratio 
A start is made by considering the influence of the end effect, or downwash, on the 
lifting properties of an aerofoil section at some distance z from the centre-line of the 
wing. Figure 5.34 shows the lift-versus-incidence curve for an aerofoil section of 
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- - 
Incidence 

c .- 
e 
Lc - 

Incidence 

m 0 c 

0 c .- 
e 
Lc - 
P 

Fig. 5.34 Lift-versus-incidence curve for an aerofoil section of a certain profile, working two-dimensionally 
and working in a flow regime influenced by end effects, i.e. working at some point along the span of 
a finite lifting wing 

a certain profile working two-dimensionally and working in a flow regime influenced 
by end effects, i.e. working at some point along the span of a finite lifting wing. 

Assuming that both curves are linear over the range considered, i.e. the working 
range, and that under both flow regimes the zero-lift incidence is the same, then 

(5.56) c, = uoo[aoo - ao] = u[a - a01 

Taking the first equation with a, = Q - E 

CL = u,[(a - .o) - €1 (5.57) 

But equally from Eqn (4.10) 

lift per unit span I 

P W  
4pv2c 
217 c, =- 
VC 

217 
-= VI(. - a01 - 4 

c, = =- f pV2c f p V c  

=- 

Equating Eqn (5.57) and (5.58) and rearranging: 

cam 

(5.58) 
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and since 

VE = w = - ' / ' M d z  from Eqn (5.32) 
47r -3 z-21 

(5.59) 

This is Prandtl's integral equation for the circulation I? at any section along the span 
in terms of all the aerofoil parameters. These will be discussed when Eqn (5.59) is 
reduced to a form more amenable to numerical solution. To do this the general series 
expression (5.45) for I' is taken: 

r = 4 s ~ C ~ , s i n n ~  

The previous section gives Eqn (5.48): 
VCnA, sin ne 

sin 8 
which substituted in Eqn (5.59) gives together 

W =  

4sVCAn sin ne V nA, sin ne 

Cancelling V and collecting caX/8s into the single parameter p this equation becomes: 

= V(a  - ao) - 
sin 6 

2 
cam 

(5.60) 

The solution of this equation cannot in general be found analytically for all points 
along the span, but only numerically at selected spanwise stations and at each end. 

5.6.2 General solution of Prandtl's integral equation 
This will be best understood if a particular value of 0, or position along the span, be 
taken in Eqn (5.60). Take for example the position z = - 0 . 5 ~ ~  which is midway 
between the mid-span sections and the tip. From 

Then if the value of the parameter p is p1 and the incidence from no lift is (a1 - ~01)  
Eqn (5.60) becomes 

k] + AZ sin 1200 1 + - pl (q  - a01) = A1 sin60" [l + sin 60" [ s 2 0 " ]  

This is obviously an equation with AI, A2, A3, A4, etc. as the only unknowns. 
Other equations in which A l ,  A2, A3, A4, etc., are the unknowns can be found by 

considering other points z along the span, bearing in mind that the value of p and of 
(a - ao) may also change from point to point. If it is desired to use, say, four terms in 
the series, an equation of the above form must be obtained at each of four values of 6, 
noting that normally the values 8 = 0 and T, i.e. the wing-tips, lead to the trivial 
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equation 0 = 0 and are, therefore, useless for the present purpose. Generally four 
coefficients are sufficient in the symmetrical case to produce a spanwise distribution 
that is insignificantly altered by the addition of further terms. In the case of sym- 
metric flight the coefficients would be A I ,  A3, As, A7, since the even harmonics do 
not appear. Also the arithmetic need only be concerned with values of 0 between 
0 and 4 2  since the curve is symmetrical about the mid-span section. 

If the spanwise distribution is irregular, more harmonics are necessary in the series 
to describe it adequately, and more Coefficients must be found from the integral 
equation. This becomes quite a tedious and lengthy operation by ‘hand’, but being 
a simple mathematical procedure the simultaneous equations can be easily pro- 
grammed for a computer. 

The aerofoil parameters are contained in the expression 
chord x two-dimensional lift slope 

8 x semi-span P =  

and the absolute incidence (a - ao). p clearly allows for any spanwise variation in the 
chord, i.e. change in plan shape, or in the two-dimensional slope of the aerofoil 
profile, i.e. change in aerofoil section. a is the local geometric incidence and will vary 
if there is any geometric twist present on the wing. ao, the zero-lift incidence, may 
vary if there is any aerodynamic twist present, i.e. if the aerofoil section is changing 
along the span. 

Example 5.3 Consider a tapered aerofoil. For completeness in the example every parameter is 
allowed to vary in a linear fashion from mid-span to the wing-tips. 

Mid-span data 
3.048 Chord m 

5.5 

5.5 

per radian 

absolute incidence a’ 

Wing-tip data 
1.524 

5.8 

3.5 

Total span of wing is 12.192m 

Obtain the aerofoil characteristics of the wing, the spanwise distribution of circulation, 
comparing it with the equivalent elliptic distribution for the wing flying straight and level at 
89.4 m s-l at low altitude. 

From the data: 

3.048 + 1.524 
2 x 12.192 = 27.85m2 Wing area S = 

span’ 12.192’ - 5.333 
area 27.85 

Aspect ratio (AR) = - - 

At any section z from the centre-line [B  from the wing-tip] 

[ 3.048 - 1.524 (;)I chord c = 3.048 1 - = 3.048[1 + OSCOSB] 3.048 

( 2 ) m = a = 5 . 5 [ 1 + -  5 ’ 5 5 ~ ~ ’ 8  (31 = 5.5[1 - 0.054 55 cos B] 

a o = 5 . 5  [ 1-- 5*55T:’5 (31 = 5.5[1 + 0.363 64 cos e] 
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Table 5.1 

7~/8 0.382 68 0.923 88 0.923 88 0.382 68 0.923 88 
~ 1 4  0.707 11 0.707 11 -0.707 11 -0.707 11 0.707 11 
3 ~ 1 8  0.923 88 -0.382 68 -0.38268 0.923 88 0.38268 
7512 1 .ooo 00 - 1 .ooo 00 1 .ooo 00 - 1 .ooo 00 0.000 00 

This gives at any section: 

and 

par = 0.032995(i+o.5cOse)(i - o.o5455~0se)(i +0.36364cosq 

where a! is now in radians. For convenience Eqn (5.60) is rearranged to: 

par sinB=AlsinO(sin8+p) +A3sin3f3(sin8+3p) +A5sin50(sinO+5p) 
+ A7 sin 78(sin 8 + 7p) 

and since the distribution is symmetrical the odd coefficients only will appear. Four coefficients 
will be evaluated and because of symmetry it is only necessary to take values of 8 between 0 and 
~ 1 2 ,  Le. n-18, n/4, 3~18, 4 2 .  

Table 5.1 gives values of sin 0, sin ne, and cos 8 for the above angles and these substituted in 
the rearranged Eqn (5.60) lead to the following four simultaneous equations in the unknown 
coefficients. 

0.004739 = 0.22079 A1 + 0.89202 A3 + 1.251 00 A5 + 0.66688 A7 

0.011637 = 0.663 19 A1 f0.98957 A3 - 1.315 95A5 - 1.64234 A7 

0.0216 65 = 1.1 15 73 A1 - 0.679 35 A3 - 0.896 54 A5 + 2.688 78 A7 

0.032998 = 1.343 75 A I  - 2.031 25 A3 - 2.718 75 A5 - 3.40625 A7 

These equations when solved give 

A1 = 0.020 329, A3 = -0.000 955; A5 = 0.001 029; A7 = -0.000 2766 

Thus 

r = 4sY{0.020 329 sin 8 - 0.000 955 sin 38 + 0.001 029 sin 50 - 0.000 2766 sin 78) 

and substituting the values of 8 taken above, the circulation takes the values of: 

4 s  1 0.924 0.707 0.383 0 

F i r o  0 0.343 0.383 0.82 1 .o 
rm2s-I 0 16.85 28.7 40.2 49.2 
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As a comparison, the equivalent elliptic distribution with the same coefficient of lift gives a 
series of values 

rm2s-l 0 14.9 27.6 36.0 38.8 

The aerodynamic characteristics follow from the equations given in Section 5.5.4. Thus: 

CL = r(AR)A1 = 0.3406 

C, =- ‘ [l + 61 = 0.007068 
4 A R )  

since 

i.e. the induced drag is 2% greater than the minimum. 
For completeness the total lift and drag may be given 

1 
2 Lift = C,-pVZS= 0.3406 x 139910 =47.72kN 

1 
2 

Drag (induced) = CD,-PV’S = 0.007068 x 139910 = 988.82N 

Example 5.4 A wing is untwisted and of elliptic planform with a symmetrical aerofoil section, 
and is rigged symmetrically in a wind-tunnel at incidence a1 to a wind stream having an axial 
velocity V. In addition, the wind has a small uniform angular velocity w, about the tunnel axis. 
Show that the distribution of circulation along the wing is given by 

r = 4sV[A1 sin 8 + A2 sin281 

and determine A1 and A2 in terms of the wing parameters. Neglect wind-tunnel constraints. 
(CUI 

From Eqn (5.60) 

In this case QO = 0 and the effective incidence at any section z from the centre-line 

W W 
~ = Q ~ + z - = = Q ~ - - ~ ~ ~ ~ ~  V V 

Also since the planform is elliptic and untwisted p = po sin 8 (Section 5.5.3) and the equation 
becomes for this problem 

h s i n 8  a1 --scosB = EA,sinn8 [ v  “ I  
Expanding both sides: 
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Equating like terms: 

peal sin 0 = A1 (1 + po) sin 0 

p s i n 2 0 = ~ ~ ( 1 + 2 h ) s i n 2 0  

0 = A3( 1 + 3p0) sin 30 etc. 
2 v  

Thus the spanwise distribution for this case is 

r =4sV[A1sin0+Aasin28] 

and the coefficients are 

and 

A2 = ( ” ) ws 
2(1 + 2po) 7 

5.6.3 Load distribution for minimum drag 
Minimum induced drag for a given lift will occur if C, is a minimum and this will be 
so only if S is zero, since S is always a positive quantity. Since S involves squares of all 
the coefficients other than the first, it follows that the minimum drag condition 
coincides with the distribution that provides A3 = A5 = A7 = A, = 0. Such a distri- 
bution is I? = 4sVA1 sin8 and substituting z = -scos8 

which is an elliptic spanwise distribution. These findings are in accordance with those 
of Section 5.5.3. This elliptic distribution can be pursued in an analysis involving the 
general Eqn (5.60) to give a far-reaching expression. Putting A,  = 0, n # 1 in Eqn 
(5.60) gives 

p ( a  - a0) = A1 sin0 1 +- ( s t e )  
and rearranging 

(5.61) 

Now consider an untwisted wing producing an elliptic load distribution, 
and hence minimum induced drag. By Section 5.5.3 the downwash is constant 
along the span and hence the equivalent incidence (a - 00 - w/V) anywhere along 
the span is constant. This means that the lift coefficient is constant. Therefore in the 
equation 

(5.62) 
1 
2 

lift per unit span I = p v ~  = CL - pv2c 
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as I and r vary elliptically so must c, since on the right-hand side c ~ $ p V ’  is 
a constant along the span. Thus 

c = cod1  - = cosine 

and the general inference emerges that for a spanwise elliptic distribution an 
untwisted wing will have an elliptic chord distribution, though the planform may 
not be a true ellipse, e.g. the one-third chord line may be straight, whereas for a true 
ellipse, the mid-chord line would be straight (see Fig. 5.35). 

It should be noted that an elliptic spanwise variation can be produced by varying 
the other parameters in Eqn (5.62), e.g. Eqn (5.62) can be rearranged as 

V 
2 

r = cL-c 
and putting 

CL = a,[(a - QO) - E ]  from Eqn (5.57) 
r 0: ca,[(a - ao) - 4 

Thus to make I? vary elliptically, geometric twist (varying (a - ao)) or change in 
aerofoil section (varying am and/or ao) may be employed in addition to, or instead 
of, changing the planform. 

Returning to an untwisted elliptic planform, the important expression can be 
obtained by including c = co sin 8 in p to give 

coam 
p = po sin 8 where po = - 

8s 

Then Eqn (5.61) gives 

(5.63) 

But 

A1 =- cL from Eqn (5.47) 
4 A R )  

Now 

= a = three-dimensional lift slope CL 
(a - a01 

I I 1 

I-/ 
I 

Fig. 5.35 Three different wing planforms with the same elliptic chord distribution 
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and 

for an elliptic chord distribution, so that on substituting in Eqn (5.63) and rearran- 
ging 

(5.64) 

This equation gives the lift-curve slope a for a given aspect ratio ( A R )  in terms of the 
two-dimensional slope of the aerofoil section used in the aerofoil. It has been derived 
with regard to the particular case of an elliptic planform producing minimum drag 
conditions and is strictly true only for this case. However, most practical aerofoils 
diverge so little from the elliptic in this respect that Eqn (5.64) and its inverse 

a 
am = 

1 - [a/744R)I 
can be used with confidence in performance predictions, forecasting of wind-tunnel 
results and like problems. 

Probably the most famous elliptically shaped wing belongs to the Supermarine 
Spitfire - the British World War I1 fighter. It would be pleasing to report that the 
wing shape was chosen with due regard being paid to aerodynamic theory. Unfortu- 
nately it is extremely doubtful whether the Spitfire’s chief designer, R.D. Mitchell, 
was even aware of Prandtl’s theory. In fact, the elliptic wing was a logical way to meet 
the structural demands arising from the requirement that four big machine guns be 
housed in the wings. The elliptic shape allowed the wings to be as thin as possible. 
Thus the true aerodynamic benefits were rather more indirect than wing theory 
would suggest. Also the elliptic shape gave rise to considerable manufacturing 
problems, greatly reducing the rate at which the aircraft could be made. For this 
reason, the Spitfire’s elliptic wing was probably not a good engineering solution when 
all the relevant factors were taken into account.* 

5.7 Swept and delta wings 
Owing to the dictates of modern flight many modern aircraft have sweptback or 
slender delta wings. Such wings are used for the benefits they confer in high- 
speed flight - see Section 6.8.2. Nevertheless, aircraft have to land and take off. 
Accordingly, a text on aerodynamics should contain at least a brief discussion of 
the low-speed aerodynamics of such wings. 

5:7.1 Yawed wings of infinite span 
For a sweptback wing of fairly high aspect ratio it is reasonable to expect that away 
from the wing-tips the flow would be similar to that over a yawed (or sheared) wing 
of infinite span (Fig. 5.36). In order to understand the fundamentals of such flows it 
is helpful to use the coordinate system (x’, y ,  z’), see Fig. 5.36. In this coordinate 
system the free stream has two components, namely U ,  cos A and U ,  sin A, per- 
pendicular and parallel respectively to the leading edge of the wing. As the flow 

*L. Deighton (1977) Fighter Jonathan Cape Ltd 
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,Streamline 

Fig. 5.36 Streamline over a sheared wing of infinite span 

approaches the wing it will depart from the freestream conditions. The total velocity 
field can be thought of as the superposition of the free stream and a perturbation field 
(u', 6,O) corresponding to the departure from freestream conditions. Note that the 
velocity perturbation, w' = 0 because the shape of the wing remains constant in the 
z' direction. 

An immediate consequence of using the above method to construct the velocity 
field is that it can be readily shown that, unlike for infinite-span straight wings, the 
streamlines do not follow the freestream direction in the x-z plane. This is an 
important characteristic of swept wings. The streamline direction is determined by 

Urn cosA + ut (g) sL= U, sin A (5.65) 

When ut = 0, downstream of the trailing edge and far upstream of the leading edge, 
the streamlines follow the freestream direction. As the flow approaches the leading- 
edge the streamlines are increasingly deflected in the outboard direction reaching 
a maximum deflection at the fore stagnation point (strictly a stagnation line) where 
u' = U,. Thereafter the flow accelerates rapidly over the leading edge so that 
u' quickly becomes positive, and the streamlines are then deflected in the opposite 
direction - the maximum being reached on the line of minimum pressure. 

Another advantage of the (2, y ,  2) coordinate system is that it allows the theory 
and data for two-dimensional aerofoils to be applied to the infinite-span yawed wing. 
So, for example, the lift developed by the yawed wing is given by adapting Eqn (4.43) 
to read 
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(5.66) 

where an is the angle of incidence defined with respect to the x' direction and aon is 
the corresponding angle of incidence for zero lift. Thus 

a!, = a!/ COS A (5.67) 

so the lift-curve slope for the infinite yawed wing is given by 

-- dCL - rz)2~s - A N 2 7 ~ ~ 0 s  A 
da! (5.68) 

and 

LmcosA (5.69) 

5.7.2 Swept wings of finite span 
The yawed wing of infinite span gives an indication of the flow over part of a swept 
wing, provided it has a reasonably high aspect ratio. But, as with unswept wings, 
three-dimensional effects dominate near the wing-tips. In addition, unlike straight 
wings, for swept wings three-dimensional effects predominate in the mid-span region. 
This has highly significant consequences for the aerodynamic characteristics of swept 
wings and can be demonstrated in the following way. Suppose that the simple lifting- 
line model shown in Fig. 5.26, were adapted for a swept wing by merely making 
a kink in the bound vortex at the mid-span position. This approach is illustrated by 
the broken lines in Fig. 5.37. There is, however, a crucial difference between straight 
and kinked bound-vortex lines. For the former there is no self-induced velocity or 
downwash, whereas for the latter there is, as is readily apparent from Eqn (5.7). 
Moreover, this self-induced downwash approaches infinity near the kink at mid- 
span. Large induced velocities imply a significant loss in lift. 

Fig. 5.37 Vortex sheet model for a swept wing 
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Nature does not tolerate infinite velocities and a more realistic vortex-sheet model 
is also shown in Fig. 5.37 (full lines). It is evident from this figure that the assump- 
tions leading to Eqn (5.32) cannot be made in the mid-span region even for high 
aspect ratios. Thus for swept wings simplified vortex-sheet models are inadmissible 
and the complete expression Eqn (5.31) must be used to evaluate the induced 
velocity. The bound-vortex lines must change direction and curve round smoothly 
in the mid-span region. Some may even turn back into trailing vortices before 
reaching mid-span. All this is likely to occur within about one chord from the mid- 
span. Further away conditions approximate those for an infinite-span yawed wing. 
In effect, the flow in the mid-span region is more like that for a wing of low aspect 
ratio. Accordingly, the generation of lift will be considerably impaired in that region. 
This effect is evident in the comparison of pressure coefficient distributions over 
straight and swept wings shown in Fig. 5.38. The reduction in peak pressure over the 
mid-span region is shown to be very pronounced. 

( b )  

Fig. 5.38 A comparison between the pressure distributions over straight and swept-back wings 
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The pressure variation depicted in Fig. 5.38b has important consequences. First, if 
it is borne in mind that suction pressure is plotted in Fig. 5.38, it can be seen that 
there is a pronounced positive pressure gradient outward along the wing. This tends 
to promote flow in the direction of the wing-tips which is highly undesirable. 
Secondly, since the pressure distributions near the wing-tips are much peakier than 
those further inboard, flow separation leading to wing stall tends to occur first near 
the wing-tips. For straight wings, on the other hand, the opposite situation prevails 
and stall usually first occurs near the wing root - a much safer state of affairs. The 
difficulties briefly described above make the design of swept wings a considerably 
more challenging affair compared to that of straight wings. 

5.7.3 Wings of small aspect ratio 
For the wings of large aspect ratio considered in Sections 5.5 and 5.6 above it was 
assumed that the flow around each wing section is approximately two-dimensional. 
Much the same assumption is made at the opposite extreme of small aspect ratio. The 
crucial difference is that now the wing sections are taken as being in the spanwise 
direction: see Fig. 5.39. Let the velocity components in the (x, y, z) directions be 
separated into free stream and perturbation components, i.e. 

( U ,  cos a + u', U, sin a + v', w') (5.70) 

streamlines in 
/ transverse plane 

Fig. 5.39 Approximate flow in the transverse plane of a slender delta wing from two-dimensional 
potential flow theory 
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Let the velocity potential associated with the perturbation velocities be denoted by 
9'. For slender-wing theory cp' corresponds to the two-dimensional potential flow 
around the spanwise wing-section, so that 

(5.71) 

Thus for an infinitely thin uncambered wing this is the flow around a two-dimen- 
sional flat plate which is perpendicular to the oncoming flow component U ,  sin a. 
The solution to this problem can be readily obtained by means of the potential flow 
theory described above in Chapter 3. On the surface of the plate the velocity potential 
is given by 

cp' = &Urn ~ina.\ /(b/2)~ - z2 (5.72) 

where the plus and minus signs correspond to the upper and lower surfaces respect- 
ively. 

As previously with thin wing theory, see Eqn (4.103) for example, the coefficient of 
pressure depends only on u' = aCp'/ax. x does not appear in Eqn (5.71), but it does 
appear in parametric form in Eqn (5.72) through the variation of the wing-section 
width b. 

Example 5.5 Consider the slender delta wing shown in Fig. 5.39. Obtain expressions for the 
coefficients of lift and drag using slender-wing theory. 

From Eqn (5.72) assuming that b varies with x 

I =-=*Umsina a(p' b db 
ax 2 & z G d x  

From the Bernoulli equation the surface pressure is given by 

(5.73) 

1 
P = PO - 7 P(Um + u' + v' + w y  N Po;, - pumu' + O(#) 

So the pressure difference acting on the wing is given by 

sina b db 
A p = p u : T & E - & T d x  

The lift is obtained by integrating Ap over the wing surface and resolving perpendicularly to 
the freestream. Thus, changing variables to 5 = 2z/b, the lift is given by 

Evaluating the inner integral first 

Therefore Eqn (5.74) becomes 

L = - s i n a c o s a p U i l ' b $ d x  K 

2 

(5.74) 

(5.75) 
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For the delta wing b = 2x tan A so that 

1‘ b g  dx = 4 tan’ A x dx = 2c’ tan’ A LC 
Eqn (5.75) then gives 

= 2ir tan A sin a cos a (5.76) 
L 

ipU&cztanA 
CL = 

The drag is found in a similar fashion except that now the pressure force has to be resolved 
in the direction of the free stream, so that CD oc sin a whereas CL 3; cos a therefore 

CD = CL tan a (5.77) 

For small a, sin a 
small a Eqn (5.76) can be rearranged to give 

tan a N a. Note also that the aspect ratio (AR) = 4 tan A and that for 

CL 
27~ tan A 

a=- 

Thus for small a Eqn (5.77) can also be written in the form 

(5.78) 

Note that this is exactly twice the corresponding drag coefficient given in Eqn (5.43) for an 
elliptic wing of high aspect ratio. 

At first sight the procedure outlined above seems to violate d’Alembert’s Law (see 
Section 4.1) that states that no net force is generated by a purely potential flow 
around a body. For aerofoils and wings it has been found necessary to introduce 
circulation in order to generate lift and induced drag. Circulation has not been 
introduced in the above procedure in any apparent way. However, it should be noted 
that although the flow around each spanwise wing section is assumed to be non- 
circulatory potential flow, the integrated effect of summing the contributions of each 
wing section will not, necessarily, approximate the non-circulatory potential flow 
around the wing as a whole. In fact, the purely non-circulatory potential flow around 
a chordwise wing section, at the centre-line for example, will look something like that 
shown in Fig. 4.la above. By constructing the flow around the wing in the way 
described above it has been ensured that there is no flow reversal at the trailing edge 
and, in fact, a kind of Kutta condition has been implicitly imposed, implying that the 
flow as a whole does indeed possess circulation. 

The so-called slender wing theory described above is of limited usefulness because 
for wings of small aspect ratio the ‘wing-tip’ vortices tend to roll up and dominate the 
flow field for all but very small angles of incidence. For example, see the flow field 
around a slender delta wing as depicted in Fig. 5.40. In this case, the flow separates 
from the leading edges and rolls up to form a pair of stable vortices over the upper 
surface. The vortices first appear at the apex of the wing and increase in strength on 
moving downstream, becoming fully developed by the time the trailing edge is 
reached. The low pressures generated by these vortices contribute much of the lift. 
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,Vortex core 

Inboard chordwise flow 

Lateral flow beneath primaryvortex 

Tip flowbeneath secondary vortex 

Fig. 5.40 Real flow field around a slender delta wing, showing vortex structure and surface flow pattern 

Pohlhamus* offered a simple way to estimate the contribution of the vortices to lift 
on slender deltas (see Figs 5.41 and 5.42). He suggested that at higher angles of 
incidence the potential-flow pattern of Fig. 5.39, be replaced by a separated flow 
pattern similar to that found for real flow around a flat plate oriented perpendicular 
to the oncoming flow. So, in effect, this transverse flow generates a ‘drag force’ (per 
unit chord) of magnitude 

1 
2 
-pu; sin2 a bCDp 

where CDP has the value appropriate to real flow past a flate plate of infinite span 
placed perpendicular to the free stream (i.e. CDP 1.95). Now this force acts per- 
pendicularly to the wing and the lift is the component perpendicular to the actual free 
stream, so that 

1 
2 

L = -pU; sin2  COS a b C ~ p  bdx, or CL = CDP sin2 a cos Q (5.79) 

This component of the lift is called the vortex lift and the component given in Eqn 
(5.76) is called the potentialflow lift. 

* Pohlhamus, E.C. (1966), ‘A Concept of the Vortex Lift of Sharp-Edge Delta Wings Based on a Leading- 
Edge-Suction Analogy’, NASA TN 0-3767; See also ‘Applying Slender Wing Benefits to Military Aircraft’, 
AIAA J. Aircraft, 21, 545-559, 1984. 
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Fig. 5.41 Vortices above a delta wing: The symmetrical pair of vortices over a delta wing are made visible 
by the use of dye in water flow. The wing is made of thin plate and has a semi-vertex angle of 15". The 
angle of attack is 20" and the Reynolds number is 20000 based on chord. The f low direction is from top to 
bottom. See also Fig. 5.40 on page 264. (The photograph was taken by H. Wer/e at ONERA, France.) 
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Fig. 5.42 Vortices above a delta wing: The symmetrical pair of vortices over a delta wing are made visible 
by the use of electrolysis in water flow. The wing is made of thin plate and has a semi-vertex angle of Io". 
The angle of attack is 35" and the Reynolds number is 3000 based on chord. The flow direction is from top 
to bottom. Vortex breakdown occurs at about 0.7 maximum chord. See also Fig. 5.40 on page 264. (The 
photograph was taken by J.-L. Solignac at ONERA, France.) 
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The total lift acting on a slender delta wing is assumed to be the sum of the vortex 

CL = Kpsinacosa, + Kvsin'acosa (5.80) 

where Kp and KV are coefficients which are given approximately by 2n tan A and 
1.95 respectively, or alternatively can be determined from experimental data. The 
potential-flow term dominates at small angles of incidence and the vortex lift at 
higher incidence. The mechanism for generating the vortex lift is probably nonlinear 
to a significant extent, so there is really no theoretical justification for simply sum- 
ming the two effects. Nevertheless, Eqn (5.80) fits the experimental data reasonably 
well as shown in Fig. 5.43 where the separate contributions of potential-flow lift and 
vortex lift are plotted. 

It can be seen from Fig. 5.43 that there is not a conventional stalling phenomenon 
for a slender delta in the form of a sudden catastrophic loss of lift when a certain 
angle of incidence is reached. Rather there is a gradual loss of lift at around a = 35". 
This phenomenon is not associated directly with boundary-layer separation, but is 
caused by the vortices bursting at locations that move progressively further upstream 
as the angle of incidence is increased. The phenomenon of vortex breakdown is 
illustrated in Fig. 5.45 (see also Figs 5.42 and 5.44). 

and potential flow lifts. Thus 

w- vortex lift 

1 
Vortex breakdown 

/location 

i. 
\- 

1.0 

*IC, 
I 
c 

- 0  1 
' 40' 50' 

a 

Fig. 5.43 Typical variation of lift coefficient with angle of incidence for a slender delta wing. PFL and VL 
denote respectively the contributions from the first and second terms on the right-hand side of Eqn (5.80) 
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Fig. 5.44 Vortex breakdown above a delta wing: The wing is made of thin plate and its planform is an equilateral triangle. The vortices are made visible by the use 
of dye filaments in water flow. The angle of attack is 20". In (a) where the Reynolds number based on chord is 5000 the laminar vortices that form after separation 
from the leading edge abruptly thicken and initially describe a larger-scale spiral motion which is followed by turbulent flow. For (b) the Reynolds number based on 
chord is 10000. At  this higher Reynolds number the vortex breakdown moves upstream and appears to change form. The f low direction is from top to bottom. See 
also Fig. 5.42 on page 266. (The photographs were taken by H. Wer/e at ONERA, France.) 
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\ 
'\ 

Fig. 5.45 A schematic view of the vortex breakdown over a slender delta wing, showing both the 
axisymmetric and spiral forms 

5.8 Computational (panel) methods for wings 
The application of the panel method described in Sections 3.5 and 4.10 above, to 
whole aircraft leads to additional problems and complexities. For example, it can be 
difficult to define the trailing edge precisely at the wing-tips and roots. In some more 
unconventional lifting-body configurations there may well be more widespread 
difficulties in identifying a trailing edge for the purposes of applying the Kutta 
condition. In most conventional aircraft configurations, however, it is a relatively 
straightforward matter to divide the aircraft into lifting and non-lifting portions - 
see Fig. 5.46. This allows most of the difficulties to be readily overcome and 
the computation of whole-aircraft aerodynamics is now routine in the aircraft 
industry. 

In Section 4.10, the bound vorticity was modelled by means of either internal or 
surface vortex panels, see Fig. 4.22. Analogous methods have been used for the three- 
dimensional wings. There are, however, certain difficulties in using vortex panels. 
For example, it can often be difficult to avoid violating Helmholtz's theorem (see 
Section 5.2.1) when constructing vortex panelling. For this and other reasons most 
modern methods are based on source and doublet distributions. Such methods have 
a firm theoretical basis since Eqn (3.89b) can be generalized to lifting flows to read 

where n denotes the local normal to the surface and ~7 and p are the source and 
doublet strengths respectively. 
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Segment i trailing edge 

Fig. 5.46 Panel method applied to a wing-body combination 

For a given application there is no unique mix of sources and doublets. For many 
methods* in common use each panel of the lifting surface is assigned a distribution 
of constant-strength sources. The doublet distribution must now be such that it 
provides one additional independent parameter for each segment of the trailing edge. 
Once the doublet strength is known at the trailing edge then the doublet strength on the 
panels comprising the trailing vorticity is determined. The initially unknown doublet 
strength at the trailing edge segments represents the spanwise load distribution of the 
wing. With this arrangement each chordwise segment of wing comprises N (say) panels 
and 1 trailing-edge segment. There are therefore N unknown source strengths and one 
unknown doublet parameter. Thus for each chordwise segment the N + 1 unknowns 
are determined by satisfying the N zero-normal-velocity conditions at the collocation 
points of the panels on the wing, plus the Kutta condition. 

As in Section 4.10 the Kutta condition may be implemented either by adding an 
additional panel at the trailing edge or by requiring that the pressure be the same for 
the upper and lower panels defining the trailing edge - see Fig. 4.23. The former 
method is much less accurate since in the three-dimensional case the streamline 
leaving the trailing edge does not, in general, follow the bisector of the trailing edge. 
On the other hand, in the three-dimensional case equating the pressures on the two 
trailing-edge panels leads to a nonlinear system of equations because the pressure is 
related by Bernoulli equation to the square of the velocity. Nevertheless this method 
is still to be preferred if computational inaccuracy is to be avoided. 

Exercises 
1 An aeroplane weighing 73.6 kN has elliptic wings 15.23 m in span. For a speed of 
90m/s in straight and level flight at low altitude find (a) the induced drag; (b) the 
circulation around sections halfway along the wings. (Answer: 1.37 kN, 44m2/s) 

* See B. Hunt (1978) ‘The panel method for subsonic aerodynamic flows: A survey of mathematical for- 
mulations and numerical models and an outline of the new British Aerospace scheme’, in Computational 
FZuidDynumics, ed. by W. Kollmann, Hemisphere Pub. Corp., 100-165; and a review by J.L. Hess (1990) 
‘Panel methods in computational fluid dynamics’, Ann. Rev. Fluid Mech, 22, 255-274. 
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2 A glider has wings of elliptical planform of aspect ratio 6.  The total drag is given by 
CD = 0.02 + 0 . 0 6 G .  Find the change in minimum angle of glide if the aspect ratio is 
increased to 10. 

3 Discuss the statement that minimum induced drag of a wing is associated with 
elliptic loading, and plot a curve of induced drag coefficient against lift coefficient for 
a wing of aspect ratio 7.63. 

4 Obtain an expression for the downward induced velocity behind a wing of span 2s 
at a point at distance y from the centre of span, the circulation around the wing at 
any point y being denoted by I?. If the circulation is parabolic, i.e. 

calculate the value of the induced velocity w at mid-span, and compare this value 
with that obtained when the same lift is distributed elliptically. 

5 For a wing with modified elliptic loading such that at distance y from the centre of 
the span, the circulation is given by 

where s is the semi-span, show that the downward induced velocity at y is 

-(-+-) ro 11 y2 
4s 12 2s2 

Also prove that for such a wing of aspect ratio (AR)  the induced drag coefficient at 
lift coefficient CL is 

628 c 
Do - 625 TAR 

6 A rectangular, untwisted, wing of aspect ratio 3 has an aerofoil section for which 
the lift-curve slope is 6 in two-dimensional flow. Take the distribution of circulation 
across the span of a wing to be given by 

and use the general theory for wings of high aspect ratio to determine the approximate 
circulation distribution in terms of angle of incidence by retaining only two terms in the 
above expression for circulation and satisfying the equation at 6' = ~ / 4  and ~ 1 2 .  

(Answer: A1 = 0 . 3 7 2 ~ ~  A2 = 0.0231~) 

7 A wing of symmetrical cross-section has an elliptical planform and is twisted so 
that when the incidence at the centre of the span is 2" the circulation r at a distance y 
from the wing root is given by 

Find a general expression for the downwash velocity along the span and determine 
the corresponding incidence at the wing-tips. The aspect ratio is 7 and the lift-curve 
slope for the aerofoil section in two-dimensional flow is 5.8. 

(Answer: a,* = 0.566") 
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8 A straight wing is elliptic and untwisted and is installed symmetrically in a wind- 
tunnel with its centre-line along the tunnel axis. If the air in the wind-tunnel has an 
axial velocity V and also has a small uniform angular velocity w about its axis, show 
that the distribution of circulation along the wing is given by 

I? = 4sAz sin(20) 

and determine A2 in terms of w and the wing parameters. (The wind-tunnel wall 
corrections should be ignored.) 

9 The spanwise distribution of circulation along an untwisted rectangular wing of 
aspect ratio 5 can be written in the form: 

r = 4sva[0.023 40 sin(8) + 0.002 68 sin(30) + 0.000 72 sin(58) + 0.000 10 sin(70)l 

Calculate the lift and induced drag coefficients when the incidence a measured to no 
lift is 10". (Answer: CL = 0.691, C,i = 0.0317) 

10 An aeroplane weighing 250 kN has a span of 34 m and is flying at 40 m/s with its 
tailplane level with its wings and at height 6.1 m above the ground. Estimate the 
change due to ground effect in the downwash angle at the tailplane which is 18.3 m 
behind the centre of pressure of the wing. (Answer: 3.83") 

11 Three aeroplanes of the same type, having elliptical wings of an aspect ratio of 6, 
fly in vee formation at 67m/s with CL = 1.2. The followers keep a distance of one 
span length behind the leader and also the same distance apart from one another. 
Estimate the percentage saving in induced drag due to flying in this formation. 

(Answer: 22%) 

12 An aeroplane weighing 100kN is 24.4m in span. Its tailplane, which has 
a symmetrical section and is located 15.2 m behind the centre of pressure of the wing, 
is required to exert zero pitching moment at a speed of 67 m/s. Estimate the required 
tail-setting angle assuming elliptic loading on the wings. (Answer: 1.97") 

13 Show that the downwash angle at the centre span of the tailplane is given to 
a good approximation by 

CL 
AR 

E = constant x - , 

where AR is the aspect ratio of the wing. Determine the numerical value of the 
constant for a tailplane located at 2s/3 behind the centre of pressure, s being the 
semi-span. (Answer: 0.723 for angle in radians) 

14 An aero lane weighing lOOkN has a span of 19.5m and a wing-loading of 
1.925 kN/m . The wings are rather sharply tapered having around the centre of span 
a circulation 10% greater than that for elliptic wings of the same span and lift. 
Determine the downwash angle one-quarter of the span behind the centre of pres- 
sure, which is located at the quarter-chord point. The air speed is 67 m/s. Assume the 
trailing vorticity to be completely rolled up just behind the wings. 

(Answer: 4.67') 

P 



Compressible flow 
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6.1 Introduction 
In previous chapters the study of aerodynamics has been almost exclusively restricted 
to incompressible flow. This theoretical model is really only suitable for the aero- 
dynamics of low-speed flight and similar applications. For incompressible flow the 
air density and temperature are assumed to be invariant throughout the flow field. 
But as flight speeds rise, greater pressure changes are generated, leading to the 
compression of fluid elements, causing in turn a rise in internal energy and, in 
consequence, temperature. The resulting variation of these flow variables throughout 
the flow field makes the results obtained from incompressible flow theory less and 
less accurate as flow speeds rise. For example, in Section 2.3.4 we showed how use of 
the incompressibility assumption led to errors in estimating the stagnation-pressure 
coefficient of 2% at M = 0.3, rising to 6% at M = 0.5, and 28% at M = 1. 

But these errors in estimating pressures and other flow variables are not the most 
important disadvantage of using the incompressible flow model. Far more significant 
is the marked qualitative changes to the flow field that take place when the local flow 
speed exceeds the speed of sound. The formation of shock waves is a particularly 
important phenomenon and is a consequence of the propagation of sound through 
the air. In incompressible flow the fluid elements are not permitted to change in 
volume as they pass through the flow field. And, since sound waves propagate by 
alternately compressing and expanding the medium (see Section 1.2.7), this is tanta- 
mount to assuming an infinite speed of sound. This has important consequences 
when a body like a wing moves through the air otherwise at rest (or, equivalently, 
a uniform flow of air approaches the body). The presence of the body is signalled by 
sound waves propagating in all directions. If the speed of sound is infinite the 
presence of the body is instantly propagated to the farthest extent of the flow field 
and the flow instantly begins to adjust to the presence of the body. 

The consequences of a finite speed of sound for the flow field are illustrated in 
Fig. 6.11(p.308). Figure 6.11b depicts the wave pattern generated when a source of 
disturbances (e.g. part of a wing) moves at subsonic speed into still air. It can be seen that 
the wave fronts are closer together in the direction of flight. But, otherwise, the flow field is 
qualitatively little different from the one (analogous to incompressible flow) correspond- 
ing to the stationary source shown in Fig. 6.1 la. In both cases the sound waves eventually 
reach all parts of the flow field (instantly in the case of incompressible flow). Contrast this 
with the case, depicted in Fig. 6.1 IC, of a souce moving at supersonic speed. Now the 
waves propagating in the forward direction line up to make planar wave fronts. The flow 
field remains undisturbed outside the regions reached by these planar wave fronts, and 
waves no longer propagate to all parts of the flow field. These planar wave fronts are 
formed from a superposition of many sound waves and are therefore much stronger than 
an individual sound wave. In many cases they correspond to shock waves, across which 
the flow variables change almost discontinuously. At supersonic speeds the flow field is 
fundamentally wavelike in character, meaning that information is propagated from one 
part of the flow field to another along wave fronts. Whereas in subsonic flow fields, which 
are not wavelike in character, information is propagated to all parts of the flow field. 

This wavelike character of supersonic flow fields makes them qualitiatively different 
from the low-speed flow fields studied in previous chapters. Furthermore, the existence 
of shock waves brings about additional drag and many other undesirable changes from 
the viewpoint of wing aerodynamics. As a consequence, the effects of flow compressi- 
bility has a strong influence on wing design for high-speed flight even at subsonic flight 
speeds. It might at first be assumed that shock waves only affect wing aerodynamics at 
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supersonic flight speeds. This is not so. It should be recalled that the local flow speeds 
near the point of minimum pressure over a wing are substantially greater than the free- 
stream flow speed. The local flow speed first reaches the speed of sound at a free-stream 
flow speed termed the critical flow speed. So, at flight speeds above critical, regions of 
supersonic flow appear over the wing, and shock waves are generated. This leads to 
wave drag and other undesirable effects. It is to postpone the onset of these effects that 
swept-back wings are used for high-speed subsonic aircraft. It is also worth pointing out 
that typically for such aircraft, wave drag contributes 20 to 30% of the total. 

In recent decades great advances have been made in obtaining computational solutions 
of the equations of motion for compressible flow. This gives the design engineer much 
greater freedom to explore a wide range of possible configurations. It might also be 
thought that the ready availability of such computational solutions makes a knowledge 
of approximate analytical solutions unnecessary. Up to a point there is some truth in this 
view. There is certainly no longer any need to learn complex and involved methods of 
approximation. Nevertheless, approximate analytical methods will continue to be of 
great value. First and foremost, the study of relatively simple model flows, such as the 
one-dimensional flows described in Sections 6.2 and 6.3, enables the essential flow physics 
to be properly understood. In addition, these relatively simple approaches offer approxi- 
mate methods that can be used to give reasonable estimates within a few minutes. They 
also offer a valuable way of checking the reliability of computer-generated solutions. 

6.2 Isentropic one-dimensional flow 
For many applications in aeronautics the viscous effects can be neglected to a good 
approximation and, moreover, no significant heat transfer occurs. Under these circum- 
stances the thermodynamic processes are termed adiabatic. Provided no other irrever- 
sible processes occur we can also assume that the entropy will remain unchanged, such 
processes are termed isentropic. We can, therefore, refer to isentropic flow. At this 
point it is convenient to recall the special relationships between the main thermo- 
dynamic and flow variables that hold when the flow processes are isentropic. 

In Section 1.2.8 it was shown that for isentropic processes p = kpy (Eqn (1.24)), 
where k is a constant. When this relationship is combined with the equation of state 
for a perfect gas (see Eqn (1.12)), namely p / ( p T )  = R, where R is the gas constant, we 
can write the following relationships linking the variables at two different states (or 
stations) of an isentropic flow: 

P1 -P2 --- P1 - P2 

PIT1 P27-2' p: p; 

From these it follows that 

(6.2) 

A useful, special, simplifed model flow is one-dimensional, or more precisely quasi- 
one-dimensional flow. This is an internal flow through ducts or passages having 
slowly varying cross-sections so that to a good approximation the flow is uniform 
at each cross-section and the flow variables only vary with x in the streamwise 
direction. Despite the seemingly restrictive nature of these assumptions this is a very 
useful model flow with several important applications. It also provides a good way to 
learn about the fundamental features of compressible flow. 
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The equations of conservation and state for quasi-onedimensional, adiabatic flow 
in differential form become 

-- d(pA) - o (for conservation of mass) 
dx 

where u is the streamwise, and only non-negligible, velocity component. 

d(P$A) dP 
dx + A- dx = 0 (for momentum) 

(for the equation of state) 

Expanding Eqn (6.3) and rearranging, 

dp du dA -+-+-=o 
P u A  

Similarly, for Eqn (6.6) 

- 0  
dp dp d T  
P P T  

From Eqn (6.4), using eqn (6.3) 

puAdu+Adp=O 

which, on dividing through by d A  and using the identity M 2  = u2/a2 = pu2/(yp),* 
using Eqn (1.6d) for the speed of sound in isentropic flow becomes 

(6.10) 

Likewise the energy Eqn (6.5), with cpT = d/(-y - 1) found by combining Eqns (1.15) 
and (1.6d), becomes 

- dT = -(y - l ) M  2dU ; 
T (6.11) 

Then combining Eqns (6.7) and (6.8) to eliminate dp/p and substituting for dp/p and 
d T/ T gives 

du dA 
u A  

( M  -1)-=- (6.12) 

* M is the symbol for the Mach number, that is defined as the ratio of the flow speed to the speed of sound 
at a point in a fluid flow and is named after the Austrian physicist Ernst Mach. The Mach number of an 
aeroplane in flight is the ratio of the flight speed to the speed of sound in the surrounding atmosphere (see 
also Section 1.4.2). 
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Equation (6.12) indicates the way in which the cross-sectional area of the stream tube 
must change to produce a change in velocity for a given mass flow. It will be noted 
that a change of sign occurs at M = 1. 

For subsonic flow dA must be negative for an increase, Le. a positive change, in 
velocity. At M = 1, dA is zero and a throat appears in the tube. For acceleration to 
supersonic flow a positive change in area is required, that is, the tube diverges from 
the point of minimum cross-sectional area. 

Eqn (6.12) indicates that a stream tube along which gas speeds up from subsonic to 
supersonic velocity must have a converging-diverging shape. For the reverse process, 
the one of slowing down, a similar change in tube area is theoretically required but 
such a deceleration from supersonic flow is not possible in practice. 

Other factors also control the flow in the tube and a simple convergence is not the 
only condition required. To investigate the change of other parameters along the tube 
it is convenient to consider the model flow shown in Fig. 6.1. In this model the air 
expands from a high-pressure reservoir (where the conditions may be identified by 
suffix 0), to a low-pressure reservoir, through a constriction, or throat, in a con- 
vergent-divergent tube. Denoting conditions at two separate points along the tube by 
suffices 1 and 2, respectively, the equations of state, continuity, motion and energy 
become 

P1 P2 - 
PlTl P2T2 

PI441 -P2&2+P1A1 -p2A2+4(p1+p2)(A2-A1) = o  

(6.13) 

(6.14) 

(6.15) 

(6.16) 

a 

n s 

M= 0 

Fig. 6.1 One-dimensional isentropic expansive flow 
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The last of these equations, on taking account of the various ways in which the 
acoustic speed can be expressed in isentropic flow (see Eqn (1.6cYd)), i.e. 

a = E = = 4- = u / ~ ;  

may be rewritten in several forms for one-dimensional isentropic flow: 

or 

or 

u: a: - 4 a; -+---+- 
2 7 - 1  2 (7-1) 

(6.17) i 
6.2.1 Pressure, density and temperature ratios 

along a streamline in isentropic flow 
Occasionally, a further manipulation of Eqn (6.17) is of more use. Rearrangement 
gives successively 

since it follows from the relationship (6.1) for isentropic processes that 
PlIP2 = (Pl/P2>Y. 

Finally, with a; = (7p2/p2) this equation can be rearranged to give, 

(6.18) 

If conditions 1 refer to stagnation or reservoir conditions, u1 = 0, p1 =PO, the 
pressure ratio is 

(6.18a) 

where the quantity without suffix refers to any point in the flow. This ratio is plotted 
on Fig. 6.2 over the Mach number range 0-4. More particularly, taking the ratio 
between the pressure in the reservoir and the throat, where M = M* = 1, 

Po + 1 d ( Y - 1 )  

P* -=[TI = 1.89 for air flow (6.18b) 
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Fig. 6.2 

Note that this is the minimum pressure ratio that will permit sonic flow. A greater 
value is required to produce supersonic flow. The ratios of the other parameters 
follow from Eqns (6.18) and (6.2): 

and 

= 1.58 for airflow 

_-  TO T - l + 2  Y - l M 2  

for airflow 

(6.19) 

(6.19a) 

(6.19b) 

(6.20) 

(6.20a) 

(6.20b) 
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Example 6.1 In streamline airflow near the upper surface of an aeroplane wing the velocity 
just outside the boundary layer changes from 257 km h-’ at a point A near the leading edge to 
466 kmh-’ at a point B to the rear of A. If the temperature at A is 281 K calculate the 
temperature at B. Take 7 = 1.4. Find also the value of the local Mach number at the point B. 

(LU) 
Assume that the flow outside the boundary layer approximates closely to quasi-one-dimen- 
sional, isentropic flow. 
Then 

UA = 7 2 . 4 f i  and TA = 8 + 273 = 281 K 
UA = 1215kmh-’ 

1 
TA 5 
- _  TB - 1 + - [0.2122 - 0.385’1 = 0.979 = 1 - 0.021 

Therefore 

TB = 0.979 x 281 = 275K = temperature at B 

UB = 72.4&% = 1200 km h-’ 

MB=-- 466 -0.386 
1200 

Example 6.2 An aerofoil is tested in a high-speed wind tunnel at a Mach number of 0.7 and at 
a point on the upper surface the pressure drop is found to be numerically equal to twice the 
stagnation pressure of the undisturbed stream. Calculate from first principles the Mach 
number found just outside the boundary layer at the point concerned. Take y = 1.4. (LU) 
Let suffix 30 refer to the undisturbed stream. Then, from above, 

with = 1.4, this becomes 

5a2, + 2, = 5 2  + 3 
Dividing by 2, 

but 
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with the data given, 

P - = 1 - 7 M k  = 0.314 
Pm 

and Eqn (i) gives 

M2 = 2.635 giving M = 1.63 

6.2.2 The ratio of areas at different sections of the stream tube 
in isentropic flow 

It is necessary to introduce the mass flow (riz) and the equation of continuity, Eqn 
(6.14). Thus riz = puA for the general section, i.e. without suffix. Introducing again 
the reservoir or stagnation conditions and using Eqn (6.1): 

(6.21) 

Now the energy equation (6.17) gives the pressure ratio (6.18) above, which when 
referred to the appropriate sections of flow is rearranged to 

Substituting d 5  for a0 and introducing both into Eqn (6.21), the equation of 
continuity gives 

(6.22) 

Now, if the general section be taken to be the particular section at the throat, 
where in general usage conditions are identified by an asterisk e), the equation of 
continuity (6.22) becomes 

But from Eqn (6.18b) the ratio p*/po has the explicit value 

(6.23) 

p* + 1 -7/(7-1) 

Po -= [TI 
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and hence 

(6.24) 

be eliminated from Eqns (6.22) and (6.24), 

A* 

If now the constant quantities m, PO, 
the area ratio becomes 

and, substituting from Eqns (6.20) and (6.20a), 

from Eqn (6. Ha), the expression reduces to 

(6.25) 

Fig. 6.2 shows this ratio plotted against Mach number over the range 0 < M < 4. 

Example 6.3 Derive from first principles the following expression for the rate of change of 
stream-tube area with Mach number in the isentropic flow of air, with y = 1.4. 

dA 5A M2 - 1 
dM M W + 5  

At the station where M = 1.4 the area of the stream tube is increased by 1%. Find the 
corresponding change in pressure. (Lu) 
From Eqn (6.25) 

-=-- 

For y = 1.4 

or 

A (y)3 
-= 
A* M 

Differentiating this expression with respect to M: 



which rearranged gives 

dA 5 A M Z - 1  -=-- 
dM M M 2 + 5  

Similarly from Eqn (6.18a), withy = 1.4 

E , -  
Po [@: 5] 7/2 

Thus 

dp dM -7MZ 
p M M 2 + 5  
- 

From (ii) above: 

dM dA M2+5 -=- 
M A 5(W- 1) 
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(fi) 

(iii) 

and this substituted in (iv) gives the non-dimensional pressure change in terms of the Mach 
number and area change, i.e. 

dp - dA -7MZ - _ -  
p A 5(@ - 1) 

In the question above, M = 1.4, MZ = 1.96, dA/A = 0.01, so 

dP - = -0.0286 
P 

6.2.3 Velocity along an isentropic stream tube 
The velocity at any point may best be expressed as a ratio of either the critical 
speed of sound a* or the ultimate velocity c, both of which may be taken as flow 
parameters. 

The critical speed of sound a* is the local acoustic speed at the throat, i.e. where the 
local Mach number is unity. Thus the local velocity is equal to the local speed of 
sound. This can be expressed in terms of the reservoir conditions by applying the 
energy equation (6.17) between reservoir and throat. Thus: 

which with u* = a* yields 

(6.26) 

The ultimate velocity c is the maximum speed to which the flow can accelerate from the 
given reservoir conditions. It indicates a flow state in which all the energy of the gas is 
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converted to kinetic energy of linear motion. It follows from the definition that this 
state has zero pressure and zero temperature and thus is not practically attainable. 

Again applying the energy Eqn (6.17) between reservoir and ultimate conditions 

so the ultimate, or maximum possible, velocity 

(6.27) 

Expressing the velocity as a 
Mach number: 

- uz 
C2 
-- 

or 

ratio of the ultimate velocity and introducing the 

and substituting Eqn (6.20a) for T/To: 

U 7 - 1  
C 2+(y- l )M2 

(6.28) 

6.2.4 Variation of mass flow with pressure 
Consider a converging tube (Fig. 6.3) exhausting a source of air at high stagnation 
pressure po into a large receiver at some lower pressure. The mass flow induced in the 
nozzle is given directly by the equation of continuity (Eqn (6.22)) in terms of pressure 
ratio p/po and the area of exit of the tube A ,  i.e. 

(7-1)l-Y 
-- - k) "'I 2ypopo [ 1 - k) ] (Eqn(6.22)) 

7 - 1  

Low pressure 
P 

Fig. 6.3 
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A slight rearrangement allows the mass flow, in a non-dimensional form, to be 
expressed solely in terms of the pressure ratio, i.e. 

(6.29) 

Inspection of Eqn (6.29), or Eqn (6.22), reveals the obvious fact that riz = 0 when 
p/po = 1, i.e. no flow takes place for zero pressure difference along the duct. Further 
inspection shows that riz is also apparently zero when p/po = 0, i.e. under maximum 
pressure drop conditions. This apparent paradox may be resolved by considering the 
behaviour of the flow as p is gradually decreased from the value PO. As p is lowered 
the mass flow increases in magnitude until a condition of maximum mass flow 
occurs. 

The maximum condition may be found by the usual differentiation process, Le. 
from Eqn (6.29): 

( Y + l ) l Y  2 6 [ (;)2’7-(;) ] = 0 when ~ is a maximum, 
d E  

i.e. 

which gives 

(6.30) 

It will be recalled that this is the value of the pressure ratio for the condition M = 1 
and thus the maximum mass flow occurs when the pressure drop is sufficient to 
produce sonic flow at the exit. 

Decreasing the pressure further will not result in a further increase of mass 
flow, which retains its maximum value. When these conditions occur the nozzle 
is said to be choked. The pressure at the exit section remains that given by Eqn 
(6.30) and as the pressure is further lowered the gas expands from the exit in 
a supersonic jet. 

From previous considerations the condition for sonic flow, which is the condition 
for maximum mass flow, implies a throat, or section of minimum area, in the stream. 
Further expansion to a lower pressure and acceleration to supersonic flow will be 
accompanied by an increase in section area of the jet. It is impossible for the pressure 
ratio in the exit section to fall below that given by Eqn (6.30), and solutions of 
Eqn (6.29) have no physical meaning for values of 
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I 
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Fig. 6.4 

Equally it is necessary for the convergent-divergent tube of Fig. 6.1 to be choked 
before the divergent portion will maintain supersonic conditions. If this condition is 
not realized, the flow will accelerate to a maximum value in the throat that is less 
than the local sonic speed, and then decelerate again in the divergent portion, 
accompanied by a pressure recovery. This condition can be schematically shown by 
the curves A in Fig. 6.4 that are plots of p/po against tube length for increasing mass 
flow magnitudes. Curves B and C result when the tube is carrying its maximum flow. 
Branch B indicates the pressure recovery resulting from the flow that has just reached 
sonic conditions in the throat and then has been retarded to subsonic flow again in 
the divergent portion. Branch B is the limiting curve for subsonic flow in the duct and 
for mass flows less than the maximum or choked value. The curve C represents the 
case when the choked flow is accelerated to supersonic velocities downstream of the 
throat. 

Considerations dealt with so far would suggest from the sketch that pressure ratios 
of a value between those of curves B and C are unattainable at a given station 
downstream of the throat. This is in fact the case if isentropic flow conditions are 
to be maintained. To arrive at some intermediate value D between B and C implies 
that a recompression from some point on the supersonic branch C is required. This is 
not compatible with isentropic flow and the equations dealt with above no longer 
apply. The mechanism required is called shock recompression. 

Example 6.4 A wind-tunnel has a smallest section measuring 1.25m x 1 m, and a largest 
section of 4m square. The smallest is vented, so that it is at atmospheric pressure. A pressure 
tapping at the largest section is connected to an inclined tube manometer, sloped at 30" to the 
horizontal. The manometer reservoir is vented to the atmosphere, and the manometer liquid 
has a relative density of 0.85. What will be the manometer reading when the speed at the 
smallest section is (i) 80ms-' and (ii) 240ms-'? In the latter case, assume that the static 
temperature in the smallest section is 0 "C, (273 K). 

Denote conditions at the smallest section by suffix 2, and the largest section by sufix 1. Since 
both the smallest section and the reservoir are vented to the same pressure, the reservoir may 
be regarded as being connected directly to the smallest section. 

Area of smallest section A2 = 1.25mZ 
Area of largest section A1 = 16 mz 
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(i) Since the maximum speed is 80 m s-l the flow may be regarded as incompressible. Then 

= ~ 2 A 2  

i.e. 

V I  x 16 = 80 x 1.25 

giving 

vl = 6.25ms-' 

By Bernoulli's equation, and assuming standard temperature and pressure: 

1 
P1 +pv: =p2+;pv; 

Then 

1 
2 PI -p2 = - p ( 4  - $) = 0.613(8d - 6.252) 

= 0.613 x 86.25 x 73.25 
= 3900 NmP2 

This is the pressure across the manometer and therefore 

Ap = pmgAh 

where Ah is the head of liquid and pm the manometric fluid density, Le. 

3900 = (1000 x 0.85) x 9.807 x Ah 

This gives 

Ah = 0.468 m 

But 

Ah = r sin B 

where r is the manometer reading and B is the manometer slope. Then 

and therefore 

1 
2 

0.468 = r sin 30" = - r 

r = 0.936 m 

(ii) In this case the speed is well into the range where compressibility becomes important, and 
it will be seen how much more complicated the solution becomes. At the smallest section, 

uz = (1.4 x 287.1 x 273$ = 334ms-' 

T2 = 0°C = 273K 

From the equation for conservation of mass 

PlAlVl = P2A2V2 

pi - 4 2 ~ 2  

P2 AlVl 

i.e. 

-=- 
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Also, from the isentropic flow relation Eqn (6.19) for compressible flow: 

Equating these expressions for PI/&, and putting in the known values for AI,  A2, v2 and a2 

1 v: - (240)2 2'5 1 16vl [ 5 (334)2 
= 1--  1.25 x 240 

or 

v1 

A first approximation to v1 can be obtained by assuming incompressible flow, for which 

v1 = 240 x 1.25/16 = 18.75m s-l 

With this value, v:/557 780 = 0.0008. Therefore the second term within the brackets on the 
right-hand side can be ignored, and 

18.75/v1 = (1.1035)2'5 = 1.278 

Therefore 

v1 = 14.7ms-' 

which value makes the ignored term even smaller. 
Further 

p1/p2 = 18.75/~1 = 1.278 

and therefore 

7 E = (2) = (1.278)'.4 = 1.410 

Therefore 

PI -p2 = p z  -- 1 t )  
= 101 325 x 0.410 
= 41 500Nm-2 

Then the reading of the manometer is given by 

AP 41 500 x 2 r = - -  
hgsint9 - 1000 x 0.85 x 9.807 

= 9.95 m 

This result for the manometer reading shows that for speeds of this order a manometer using 
a low-density liquid is unsuitable. In practice it is probable that mercury would be used, when 
the reading would be reduced to 9.95 x 0.85113.6 = 0.62m, a far more manageable figure. The 
use of a suitable transducer that converts the pressure into an electrical signal is even more 
probable in a modem laboratory. 
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Example 6.5 The reading of the manometer in Example 6.4 at a certain tunnel speed is 
710mm. Another manometer tube is connected at its free end to a point on an aerofoil model 
in the smallest section of the tunnel, while a third tube is connected to the total pressure tube of 
a Pitiit-static tube. If the liquid in the second tube is 76 mm above the zero level, calculate the 
pressure coefficient and the speed of flow at the point on the model. Calculate also the reading, 
including sense, of the third tube. 

(i) To find speed of flow at smallest section: 

Manometer reading = 0.710 m 

Therefore 

pressure difference = 1000 x 0.85 x 9.807 x 0.71 x f 
= 2960 N m-2 

But 

and 

Therefore 

PI - Pz = i p o ( 6  - v:) 

2960 = 0.6134 [ 1 - 

Therefore 

2960 4096 = 4860 (m s-l)2 
= 0.613 x 4071 

v2 = 69.7ms-' 

Hence, dynamic pressure at smallest section 

= fpov:  = 0.613 V: 
= 2980 NmP2 

(ii) Pressure coefficient: 
Since static pressure at smallest section = atmospheric pressure, then pressure difference 
between aerofoil and tunnel stream = pressure difference between aerofoil and atmosphere. 
This pressure difference is 76 mm on the manometer, or 

A p  = 1000 x 0.85 x 9.807 x 0.076 x f = 317.5NmP2 

Now the manometer liquid has been drawn upwards from the zero level, showing that the 
pressure on the aerofoil is less than that of the undisturbed tunnel stream, and therefore the 
pressure coefficient will be negative, i.e. 

- -0.1068 - P -PO - -317.5 
p - l p v 2 - 2 9 8 0 -  
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Now 

c, = 1 - (y 
-0.1068 = 1 - - (3’ 

Hence 

q = ~ ‘ ( 1  - C,)’/’ = 69.7(1.1068)’/2 
= 73.2 m s-l 

(iii) The total pressure is equal to stream static pressure plus the dynamic pressure and, therefore, 
pressure difference corresponding to the reading of the third tube is (PO + f p 4 )  -PO, i.e. is equal 
to f p 4 .  Therefore, if the reading is 1 3  

+ p 4 = m r 3 s i n i ?  

2980 = 1000 x 0.85 x 9.807 x 13 x f 
whence 

13 = 0.712m 
Since the total head is greater than the stream static pressure and, therefore, greater than 
atmospheric pressure, the liquid in the third tube will be depressed below the zero level, i.e. the 
reading will be -0.712m. 

Example 6.6 An aircraft is flying at 6100m, where the pressure, temperature and relative 
density are 46500Nm-’, -24.6”C, and 0.533 respectively. The wing is vented so that its 
internal pressure is uniform and equal to the ambient pressure. On the upper surface of the 
wing is an inspection panel 15Omm square. Calculate the load tending to lift the inspection 
panel and the air speed over the panel under the following conditions: 

(i) Mach number = 0.2, mean C, over panel = -0.8 
(ii) Mach number = 0.85, mean C, over panel = -0.5. 

(i) Since the Mach number of 0.2 is small, it is a fair assumption that, although the speed over 
the panel will be higher than the flight speed, it will still be small enough for compressibility to 
be ignored. Then, using the definition of coefficient of pressure (see Section 1.5.3) 

c - P1-P 
PI -- 0.7pMz 

pi -p = 0.7pM2 C,, = 0.7 x 46 500 x (0.2)’ x (-0.8) 
= -1041 Nm-’ 

The load on the panel = pressure difference x area 
= 1041 x (0.15)2 
= 23.4N 

Also 

e,, = 1 - (y 



Compressible flow 291 

i.e. 

-0.8 = 1 - (!)’ 
whence 

(!)’= 1.8 giving - 4 = 1.34 
V 

Now speed of sound = 20.05 (273 - 24.6)’j’ = 318m s-l 
Therefore, true flight speed = 0.2 x 318 = 63.6m s-l 
Therefore, air speed over panel, q = 63.6 x 1.34 = 85.4m s-’ 
(ii) Here the flow is definitely compressible. As before, 

P1 -P c -- 
PI - 0.7pMz 

and therefore 

pi -p = 0.7 x 46 500 x (0.85)2 x (-0.5) 
= -11 740Nm-’ 

Therefore, load on panel = 11 740 x (0.15)’ = 264N 
There are two ways of calculating the speed of flow over the panel from Eqn (6.18): 

( 4  

1 q2 - 3 3s P1 
P [ 5 a’ 

where a is the speed of sound in the free stream, i.e. 

Now 

p1 -p = -11 740N m-’ 

and therefore 

p1 = 46 500 - 1 1 740 = 34 760 N mP2 

Thus substituting in the above equation the known values p = 46 500Nm-2, 
P I  = 34760Nm-’ and M = 0.85 leads to 

(!!)’= 1.124 giving - 4 = 1.06 
U 

Therefore 

q = 1.06~ = 1.06 x 318 = 338ms-’ 

It is also possible to calculate the Mach number of the flow over the panel, as follows. The 
local temperature Tis found from 
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giving 

Ti = 0.920 T 

and 

a1 = ~(0 .920) ' /~  = 318(0.920)1/2 = 306ms-' 

Therefore, Mach number over panel = 338/306 = 1.103. 
(b) The alternative method of solution is as follows, with the total pressure of the flow denoted 
by Po: 

PO= [1 +;M2]3.5= [1+4 (0.85)' 3'5 

P 

= (1.1445)3.5 = 1.605 

Therefore 

As found in method (a) 

and 

Then 

PO = 46 500 x 1.605 = 74 500 N mP2 

p1 - p  = -11  740NmP2 

p1 = 34760NmP2 

giving 

M? = 1.22,Ml = 1.103 

which agrees with the result found in method (a). 
The total temperature TO is given by 

1/3.5 $= e) = 1.1445 

Therefore 

Then 

To = 1.1445 x 248.6 = 284 K 

_ -  To - (2.15)1/3.5 = 1.244 
Tl 

giving 

7'1 =-- 284 - 228 K 
1.244 
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and the local speed of sound over the panel, al, is 

a1 = 20.05(228)'/2 = 305ms-' 

Therefore, flow speed over the panel 

q = 305 x 1.103 = 338ms-' 

which agrees with the answer obtained by method (a). 
An interesting feature of this example is that, although the flight speed is subsonic 

(M = 0.85), the flow over the panel is supersonic. This fact was used in the 'wing-flow' method 
of transonic research. The method dates from about 1940, when transonic wind-tunnels were 
unsatisfactory. A small model was mounted on the upper surface of the wing of an aeroplane, 
which then dived at near maximum speed. As a result the model experienced a flow that was 
supersonic locally. The method, though not very satisfactory, was an improvement on other 
methods available at that time. 

Example 6.7 A high-speed wind-tunnel consists of a reservoir of compressed air that dis- 
charges through a convergent-divergent nozzle. The temperature and pressure in the reservoir 
are 200 "C and 2 MNrnp2 gauge respectively. In the test section the Mach number is to be 2.5. 
If the test section is to be 125 mm square, what should be the throat area? Calculate also the mass 
flow, and the pressure, temperature, speed, dynamic and kinematic viscosity in the test section. 

A 1 5 + M 2  1 5+6.25 
A* M (  6 ) 2.5(  6 ) = 2 . 6 4  
-= - -  = - -  

( 12q2 
2.64 

Therefore, throat area = - = 5920 (mm)* 

Since the throat is choked, the mass flow may be calculated from Eqn (6.24), is 

massflow=0.0404 - A* (3 
Now the reservoir pressure is 2MNm-2 gauge, or 2.101 MNm-2 absolute, while the 

reservoir temperature is 200 "C = 473K. Therefore 

mass flow = 0.0404 x 2.101 x lo6 x 5920 x 10-6/(473)''2 
= 23.4 kg s-l 

In the test section 

1 6 25 
5 5 

1 + - M 2  = 1 + - = 2.25 

Therefore 

po/pl = (2.25)3.5 = 17.1 

Therefore 

= 123 kNm-2 2.101 x 106 pressure in test section = 17.1 

Also 

-- To - 2.25 
TI 
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Therefore: 

473 
2.25 Temperature in test section = - = 210 K = -63 "C 

Density in test section = 123 Oo0 = 2.042 kgmP3 
287.3 x 210 

Speed of sound in test section = (1.4 x 287.1 x 210)f = 293ms-l 

Air speed in test section = 2.5 x 293 = 732 m s-' 

Using the approximation given in Section 1.4.2 (Example 1.3) for the variation of viscosity 
with temperature 

p = 1.71 x - = 1.50 x kgm-ls-' 
(:::)3'4 

p 1.50 x loP5 
p 2.042 

v = - =  = 0.735 x lo-' m2s-' 

As a check, the mass flow may be calculated from the above results. This gives 

Mass flow = pvA = 2.042 x 732 x 15625 x 

= 23.4 kg S-' 

6.3 One-dimensional flow: weak waves 

To a certain extent the results of this section have already been assumed in that 
certain expressions for the speed of sound propagation have been used. Pressure 
disturbances in gaseous and other media are propagated in longitudinal waves and 
appeal is made to elementary physics for an understanding of the phenomenon. 

Consider the air in a stream tube to be initially at rest and, as a simplification, 
divided into layers 1, 2, 3, etc., normal to the possible direction of motion. A small 
pressure impulse felt on the face of the first layer moves the layer towards the right 
and it acquires a kinetic energy of uniform motion in so doing. At the same time, 
since layers 1, 2, 3 have inertia, layer 1 converts some kinetic energy of translational 
motion into molecular kinetic energy associated with heat, i.e. it becomes com- 
pressed. Eventually all the relative motion between layers 1 and 2 is absorbed in 
the pressure inequality between them and, in order to ease the pressure difference, the 
first layer acquires motion in the reverse direction. At the same time the second layer 
acquires kinetic energy due to motion from left to right and proceeds to react on layer 
3 in a like manner. In the expansive condition, again due to its inertia, it moves 
beyond the position it previously occupied. The necessary kinetic energy is acquired 
from internal conditions so that its pressure falls below the original. Reversion to the 
status quo demands that the kinetic energy of motion to the left be transferred back to 
the conditions of pressure and temperature obtaining before the impulse was felt, 
with the fluid at rest and not displaced relative to its surroundings. 

A first observation of this sequence of events is that the gas has no resultant mean 
displacement velocity or pressure different from that of the initial conditions, and it 
serves only to transmit the pressure pulse throughout its length. Secondly, the 
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u) - 

Direction of 

wave propagation particles in direction 
Values for successive 

of wave motion - at instant t 

T 

at instant t + 6t ---- 

Fig. 6.5 

displacement, and hence velocity, pressure, etc., of an individual particle of gas is 
changing continuously while it is under the influence of the passing impulse. 

A more graphic way of expressing the gas conditions in the tube is to plot those of 
successive particles in the direction of movement of the impulse, at a given instant of 
time while the impulse is passing. Another curve of the particles’ velocities at an 
instant later shows how individual particles behave. 

Fig. 6.5 shows a typical set of curves for the passage of small pressure impulses, 
and a matter of immediate interest is that an individual particle moves in the 
direction of the wave propagation when its pressure is above the mean, and in the 
reverse direction in the expansive phase. 

6.3.1 The speed of sound (acoustic speed) 
The changing conditions imposed on individual particles of gas as the pressure 
pulse passes is now considered. As a first simple approach to defining the pulse 
and its speed of propagation, consider the stream tube to have a velocity such that 
the pulse is stationary, Fig. 6.6a. The flow upstream of the pulse has velocity u, 
density p and pressure p ,  while the exit flow has these quantities changed by infini- 
tesimal amounts to u + Su, p + Spy p + Sp. 

The flow situation now to be considered is quasi-steady, assumed inviscid 
and adiabatic (since the very small pressure changes take place too rapidly for 
heat transfer to be significant), takes place in the absence of external forces, and is 
one-dimensional, so that the differential equations of continuity and motion are 
respectively 

ap a u  
ax ax 

u - + p - = o  (6.31) 
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( a )  Stationary wave 

( b ) Moving wave 

Fig. 6.6 

and 

au l a p  
ax pax 

u-=--  

Eliminating du/ax from these equations leaves 

(6.32) 

(6.33) 

This implies the speed of flow in the stream tube that is required to maintain 
a stationary pulse of weak strength, is uniquely the speed given by ,,/= (see 
Section 1.2.7, Eqn (1.6~)). 

The problem is essentially unaltered if the pulse advances at speed u = z/apiap 
through stationary gas and, since this is the (ideal) model of the propagation of weak 
pressure disturbances that are commonly sensed as sounds, the unique speed d m  
is referred to as the acoustic speed a. When the pressure density relation is isentropic 
(as assumed above) this velocity becomes (see Eqn (1.6d)) 

(6.34) 

It will be recalled that this is the speed the gas attains in the throat of a choked 
stream tube and it follows that weak pressure disturbances will not propagate 
upstream into a flow where the velocity is greater than a, i.e. u > a or A4 > 1. 

119.1 Onedimensional flow: plane normal 
shook waves 

In the previous section the behaviour of gas when acting as a transmitter of waves of 
infinitesimal amplitude was considered and the waves were shown to travel at an 
(acoustic) speed of a = d= relative to the gas, while the gas properties of 
pressure, density etc. varied in a continuous manner. 
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If a disturbance of large amplitude, e.g. a rapid pressure rise, is set up there are 
almost immediate physical limitations to its continuous propagation. The accelera- 
tions of individual particles required for continuous propagation cannot be sustained 
and a pressure front or discontinuity is built up. This pressure front is known as a 
shock wave which travels through the gas at a speed, always in excess of the acoustic 
speed, and together with the pressure jump, the density, temperature and entropy of 
the gas increases suddenly while the normal velocity drops. 

Useful and quite adequate expressions for the change of these flow properties 
across the shock can be obtained by assuming that the shock front is of zero 
thickness. In fact the shock wave is of finite thickness being a few molecular mean 
free path lengths in magnitude, the number depending on the initial gas conditions 
and the intensity of the shock. 

6.4.1 One-dimensional properties of normal shock waves 
Consider the flow model shown in Fig. 6.7a in which a plane shock advances 
from right to left with velocity u1 into a region of still gas. Behind the shock the 
velocity is suddenly increased to some value u in the direction of the wave. It is 
convenient to superimpose on the system a velocity of u1 from left to right to bring 
the shock stationary relative to the walls of the tube through which gas is flowing 
undisturbed at u1 (Fig. 6.7b). The shock becomes a stationary discontinuity into 
which gas flows with uniform conditions, p1, p1, u1, etc., and from which it flows with 
uniform conditions, p2, p2, u2, etc. It is assumed that the gas is inviscid, and non-heat 
conducting, so that the flow is adiabatic up to and beyond the discontinuity. 

The equations of state and conservation for unit area of shock wave are: 
State 

(6.35) 

Mass flow 

Siationary 
shock 

( b )  

Fig. 6.7 
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Momentum, in the absence of external and dissipative forces 

P1 + Plu: = Pz + P24 
Energy 

6.4.2 Pressure-density relations across the shock 
Eqn (6.38) may be rewritten (from e.g. Eqn (6.27)) as 

which on rearrangement gives 

From the continuity equation (6.36): 

and from the momentum equation (6.37): 

1 
m u2--1 =Tb1 - P z )  

Substituting for both of these in the rearranged energy equation (6.39) 

(6.37) 

(6.38) 

(6.39) 

(6.40) 

and this, rearranged by isolating the pressure and density ratios respectively, gives the 
RankineHugoniot relations: 

7 + 1  PZ 1 

(6.41) 

(6.42) 
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Taking y = 1.4 for air, these equations become: 

(6.41a) 

and 

P2 6-+ 1 
P2 - P1 

P2 P1 6 + -  
PI 

(6.42~1) 

Eqns (6.42) and (6.42a) show that, as the value of p2/p1 tends to (y + l)/(*/ - 1) 
(or 6 for air), p2/p1 tends to infinity, which indicates that the maximum possible 
density increase through a shock wave is about six times the undisturbed density. 

6.4.3 Static pressure jump across a normal shock 
From the equation of motion (6.37) using Eqn (6.36): 

P1 P1 PI 

or 

E -  P1 1 =./M:[1-3 
but from continuity u2/u1 = p1/p2, and from the RankineHugoniot relations p2/p1 is 
a function of (p2/p1).  Thus, by substitution: 

Isolating the ratio p2/p1 and rearranging gives 

Note that for air 

P2 - 7M: - 1 - _  
P1 6 

(6.43) 

(6.43a) 

Expressed in terms of the downstream or exit Mach number M2, the pressure ratio 
can be derived in a similar manner (by the inversion of suffices): 

(6.44) 
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or 

P1-7@-1 - - for air 
P2 6 

(6.44a) 

6.4.4 Density jump across the normal shock 
Using the previous results, substituting for p2/p1 from Eqn (6.43) in the Rankine- 
Hugoniot relations Eqn (6.42): 

-= 

or rearranged 

For air -/ = 1.4 and 

p2 6M: 
P1 5 + M ?  
-=- 

Reversed to give the ratio in terms of the exit Mach number 

- P1 - - (Y+ w; 
p2 2 +  (7- 1)M; 

For air 

6.4.5 Temperature rise across the normal shock 
Directly from the equation of state and Eqns (6.43) and (6.45): 

For air 

(6.45) 

(6.45a) 

(6.46) 

(6.46a) 

(6.47) 

(6.47a) 
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Since the flow is non-heat conducting the total (or stagnation) temperature remains 
constant. 

6.4.6 Entropy change across the normal shock 
Recalling the basic equation (1.32) 

= ( ~ ~ ~ ~ - ' =  e) (E)' from the equation of state 

which on substituting for the ratios from the sections above may be written as a sum 
of the natural logarithms: 

These are rearranged in terms of the new variable (M: - 1) 

On ex anding these logarithms and collecting like terms, the first and second powers 
of (M,  !i? - 1) vanish, leaving a converging series commencing with the term 

(6.48) 

Inspection of this equation shows that: (a) for the second law of thermodynamics to 
apply, i.e. AS to be positive, M1 must be greater than unity and an expansion shock 
is not possible; (b) for values of M1 close to (but greater than) unity the values of the 
change in entropy are small and rise only slowly for increasing M I .  Reference to the 
appropriate curve in Fig. 6.9 below shows that for quite moderate supersonic Mach 
numbers, i.e. up to about M1 = 2, a reasonable approximation to the flow conditions 
may be made by assuming an isentropic state. 

6.4.7 Mach number change across the normal shock 
Multiplying the above pressure (or density) ratio equations together gives the Mach 
number relationship directly: 

= 1  p2 xp' = 2YM; - (7- 1) 2YM; - (7 - 1) 
P1 P2 Y + l  Y + l  

Rearrangement gives for the exit Mach number: 

(6.49) 
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For air 

M:+5 M 2  - 
2 - 7 M f - 1  

(6.49a) 

Inspection of these last equations shows that M2 has upper and lower limiting 
values: 

For M1 4 0 3  M2 + E = ( l / &  = 0.378 for air) 

ForM1+ 1 M 2 +  1 

Thus the exit Mach number from a normal shock wave is always subsonic and for air 
has values between 1 and 0.378. 

6.4.8 Velocity change across the normal shock 
The velocity ratio is the inverse of the density ratio, since by continuity u2/u1 = p1/p2. 
Therefore, directly from Eqns (6.45) and (6.45a): 

or for air 

(6.50) 

(6.50a) 

Of added interest is the following development. From the energy equations, with cpT 
replaced by [r/(-y - l)lp/p, p l / p ~  and p2/p2 are isolated: 

!!! - - (cPTo - $) ahead of the shock 
P1 Y 

and 

E = 
P2 7 

(cPTo - 2) downstream of the shock 

The momentum equation (6.37) is rearranged with plul = p2u2 from the equation of 
continuity (6.36) to 

P2 P1 u 1 - - 2 = - - -  
p2u2 PlUl 

and substituting from the preceding line 
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PlMl 

UIT( 

Disregarding the uniform flow solution of u1 = 242 the conservation of mass, motion 
and energy apply for this flow when 

P 2 4  

U 2 G  
-- 

(6.51) 

i.e. the product of normal velocities through a shock wave is a constant that depends 
on the stagnation conditions of the flow and is independent of the strength of the 
shock. Further it will be recalled from Eqn (6.26) that 

where a* is the critical speed of sound and an alternative parameter for expressing the 
gas conditions. Thus, in general across the shock wave: 

241242 = a*2 (6.52) 

This equation indicates that u1 > a* > 242 or vice versa and appeal has to be made to 
the second law of thermodynamics to see that the second alternative is inadmissible. 

6.4.9 Total pressure change across the normal shock 
From the above sections it can be seen that a finite entropy increase occurs in 
the flow across a shock wave, implying that a degradation of energy takes 
place. Since, in the flow as a whole, no heat is acquired or lost the total temperature 
(total enthalpy) is constant and the dissipation manifests itself as a loss in total 
pressure. Total pressure is defined as the pressure obtained by bringing gas to rest 
isentropically. 

Now the model flow of a uniform stream of gas of unit area flowing through a 
shock is extended upstream, by assuming the gas to have acquired the conditions of 
suffix 1 by expansion from a reservoir of pressure pol and temperature TO, and 
downstream, by bringing the gas to rest isentropically to a total pressurep02 (Fig. 6.8) 

Isentropic flow from the upstream reservoir to just ahead of the shock gives, from 
Eqn (6.18a): 

(6.53) 

Fig. 6.8 
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and from just behind the shock to the downstream reservoir: 

(6.54) 

Eqn (6.43) recalled is 

and Eqn (6.49) is 

These four expressions, by division and substitution, give successively 

Rewriting in terms of (M? - 1): 

x [l + (M: - 1)]-7/(74 

Expanding each bracket and multiplying through gives the series 

For values of Mach number close to unity (but greater than unity) the s u m  of the 
terms involving M ;  is small and very close to the value of the first term shown, so 
that the proportional change in total pressure through the shock wave is 

-- APO -pol -pOz e -  2y (M: - 113 
(Y+ 3 Po 1 Po 1 

(6.55) 

It can be deduced from the curve (Fig. 6.9) that this quantity increases only slowly 
from zero near M1 = 1, so that the same argument for ignoring the entropy increase 
(Section 6.4.6) applies here. Since from entropy considerations M I  > 1, Eqn (6.55) 
shows that the total pressure always drops through a shock wave. The two phenomena, 
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Fig. 6.9 

i.e. total pressure drop and entropy increase, are in fact related, as may be seen in the 
following. 

Recaiiing Eqn (1.32) for entropy: 

eAS/c, =E (cy= E (cy 
P1 P2 POI Po2 

since 

5 =Po' etc, 
P: 4, 

But across the shock To is constant and, therefore, from the equation of state 
pol /pol = p02/po;? and entropy becomes 

and substituting for AS from Eqn (6.48): 

(6.56) 
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Now for values of M I  near unity /3 << 1 and 

= 1 - e-P -- APO -Pol - Po2 
Po1 Pol 

- - ~  APO - 2n' (M: - 'I3 (as before, Eqn (6.55)) 
Po1 (y+  1)2 3 

6.4.10 Pit& tube equation 
The pressure registered by a small open-ended tube facing a supersonic stream is 
effectively the 'exit' (from the shock) total pressure p02, since the bow shock wave 
may be considered normal to the axial streamline, terminating in the stagnation 
region of the tube. That is, the axial flow into the tube is assumed to be brought to 
rest at pressure p02 from the subsonic flow p2 behind the wave, after it has been 
compressed from the supersonic region p1 ahead of the wave, Fig. 6.10. In some 
applications this pressure is referred to as the static pressure of the free or undis- 
turbed supersonic streampl and evaluated in terms of the free stream Mach number, 
hence providing a method of determining the undisturbed Mach number, as follows. 

From the normal shock static-pressure ratio equation (6.43) 

P2 -= 2-M: - (7 - 1) 
P1 -!+I 

From isentropic flow relations, 

- MlPl PI Y- 

Shock.assumed normal 
ond plane l m l l y  to the oxiol streamline 

Fig. 6.10 
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Dividing these expressions and recalling Eqn (6.49), as follows: 

the required pressure ratio becomes 

(6.57) 

This equation is sometimes called Rayleigh 's supersonic Pit6t tube equation. 
The observed curvature of the detached shock wave on supersonic PitGt tubes was 

once thought to be sufficient to bring the assumption of plane-wave theory into 
question, but the agreement with theory reached in the experimental work was well 
within the accuracy expected of that type of test and was held to support the 
assumption of a normal shock ahead of the wave.* 

A small deflection in supersonic flow always takes place in such a fashion that the flow 
properties are uniform along a front inclined to the flow direction, and their only change is 
in the direction normal to the front. This front is known as a wave and for small flow 
changes it sets itself up at the Mach angle (p)  appropriate to the upstream flow conditions. 

For finite positive or compressive flow deflections, that is when the downstream 
pressure is much greater than that upstream, the (shock) wave angle is greater than the 
Mach angle and characteristic changes in the flow occur (see Section 6.4). For finite 
negative or expansive flow deflections where the downstream pressure is less, the turning 
power of a single wave is insufficient and a fan of waves is set up, each inclined to the flow 
direction by the local Mach angle and terminating in the wave whose Mach angle is that 
appropriate to the downstream condition. 

For small changes in supersonic flow deflection both the compression shock and 
expansion fan systems approach the character and geometrical properties of a Mach 
wave and retain only the algebraic sign of the change in pressure. 

6.6 Mach waves 
Figure 6.1 1 shows the wave pattern associated with a point source P of weak pressure 
disturbances: (a) when stationary; and (b) and (c) when moving in a straight line. 

(a) In the stationary case (with the surrounding fluid at rest) the concentric circles 
mark the position of successive wave fronts, at a particular instant of time. In 
three-dimensional flow they will be concentric spheres, but a close analogy to the 

* D.N. Holder etal., ARCR and M ,  2782, 1953. 
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I )  Stationary source P 

B represents position of wove 
front t sec after emission 
PB = ut 

IB All fluid Is eventually disturbed 

b) Source moving at subsonic 
velocity u u 
B=position of wave front t 
sec after emissim from A 
AB= at 
PA-displacement of P in t sec 
PA-ut 

JB All fluid is eventually disturbed 

c) Source moving at supersonic 
speed u > u 

B=position of wove front t 
sec after emission from A 
AB= ut 
PA=displacement of P in t sec 
PA=ut 

JB Disturbed fluid confined 
within Mach wedge (or cone) 

~~ 

d )  
PI is in the 'forward image' 
of the Mach wedge (or cone) of 
P and consequently P is 
within the Mach wedge o f  P, 
(dashed) 

Pz is outside and cannot 
affect P with i ts Mach 
wedge (full line) 

Fig. 6.11 

two-dimensional case is the appearance of the ripples on the still surface of a 
pond from a small disturbance. The wave fronts emanating from P advance at 
the acoustic speed a and consequently the radius of a wave t seconds after its 
emission is at. If t is large enough the wave can traverse the whole of the fluid, 
which is thus made aware of the disturbance. 

(b) When the intermittent source moves at a speed u less than a in a straight line, the 
wave fronts adopt the different pattern shown in Fig. 6.11b. The individual waves 
remain circular with their centres on the line of motion of the source and are 
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eccentric but non-intersecting. The point source moves through a distance ut in the 
time the wave moves through the greater distance at. Once again the waves signalling 
the pressure disturbance will move through the whole region of fluid, ahead of and 
behind the moving source. 

(c) If the steady speed of the source is increased beyond that of the acoustic speed the 
individual sound waves (at any one instant) are seen in Fig. 6.1 IC to be eccentric 
intersecting circles with their centres on the line of motion. Further the circles are 
tangential to two symmetrically inclined lines (a cone in three dimensions) with their 
apex at the point source P. 

While a wave has moved a distance at, the point P has moved ut and thus the semi- 
vertex angle 

at 1 
p = arc sin- = arc sin- 

ut M (6.58) 

My the Mach number of the speed of the point P relative to the undisturbed stream, is 
the ratio ula, and the angle p is known as the Mach angle. Were the disturbance 
continuous, the inclined lines (or cone) would be the envelope of all the waves 
produced and are then known as Much waves (or cones). 

It is evident that the effect of the disturbance does not proceed beyond the Mach 
lines (or cone) into the surrounding fluid, which is thus unaware of the disturbance. 
The region of fluid outside the Mach lines (or cone) has been referred to as the zone 
of silence or more dramatically as the zone of forbidden signals. 

It is possible to project an image wedge (or cone) forward from the apex P, Fig. 6.1 Id, 
and this contains the region of the flow where any disturbance PI, say, ahead would have 
an effect on P, since a disturbance P2 outside it would exclude P from its Mach wedge (or 
cone); providing always that PI and P2 are moving at the same Mach number. 

If a uniform supersonic stream M is superimposed from left to right on the flow in 
Fig. 6 .11~ the system becomes that of a uniform stream of Mach number M > 1 
flowing past a weak disturbance. Since the flow is symmetrical, the axis of symmetry 
may represent the surface of a flat plate along which an inviscid supersonic stream 
flows. Any small disturbance caused by a slight irregularity, say, will be communicated 
to the flow at large along a Mach wave. Figure 6.12 shows the Mach wave emanating 
from a disturbance which has a net effect on the flow similar to a pressure pulse that 
leaves the downstream flow unaltered. If the pressure change across the Mach wave is 
to be permanent, the downstream flow direction must change. The converse is also true. 

Fig. 6.12 
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It is shown above that a slight pressure change in supersonic flow is propagated along 
an oblique wave inclined at p to the flow direction. The pressure difference is across, or 
normal to, the wave and the gas velocity will alter, as a consequence, in its component 
perpendicular to the wave front. If the downstream pressure is less, the flow velocity 
component normal to the wave increases across the wave so that the resultant downstream 
flow is inclined at a greater angle to the wave front, Fig. 6.13a. Thus the flow has been 
expanded, accelerated and deflected away from the wave front. On the other hand, if the 
downstream pressure is greater, Fig. 6.13b, the flow component across the wave is reduced, 
as is the net outflow velocity, which is now inclined at an angle less than ,u to the wave 
front. The flow has been compressed, retarded and deflected towards the wave. 

Quantitatively the turning power of a wave may be obtained as follows: Figure 6.14 
shows the slight expansion round a small deflection Sv,, from flow conditions 
p ,  p ,  M ,  q, etc., across a Mach wave set at ,u to the initial flow direction. Referring 
to the velocity components normal and parallel to the wave, it may be recalled that 
the final velocity q + Sq changes only by virtue of a change in the normal velocity 
component u to u + Su as it crosses the wave, since the tangential velocity remains 
uniform throughout the field. Then, from the velocity diagram after the wave: 

(q+sq)2=(u+Su)2+t2 

Fig. 6.13 
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M 

Fig. 6.14 Expansion round an infinitesimal deflection through a Mach wave 

on expanding 

q f 2qsq + (sq)2 = 22 + 22462.4 + (su)2 + v2 

and in the limit, ignoring terms of the second order, and putting u2 + 3 = q2: 

qdq = udu (6.59) 

Equally, from the definition of the velocity components: 

U 1 du v p=arctan- and d p =  - = -& 
V 1 + (u/v)2 v q2 

but the change in deflection angle is the incremental change in Mach angle. Thus 

(6.60) V dvp = dp = -du 
q2 

Combining Eqns (6.59) and (6.60) yields 

dq 24 U 1 
dvp v V m _-  - q - since - = arc tan p = 

(6.61) 

where q is the flow velocity inclined at vp to some datum direction. It follows from 
Eqn (6. lo), with q substituted for p, that 

(6.62) 
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Fig. 6.15 

or in pressure-coefficient form 

(6.63) 

The behaviour of the flow in the vicinity of a single weak wave due to a small pressure 
change can be used to study the effect of a larger pressure change that may be treated as the 
sum of a number of small pressure changes. Consider the expansive case first. Figure 6.15 
shows the expansion due to a pressure decrease equivalent to three incremental pressure 
reductions to a supersonic flow initially having a pressure p1 and Mach number M I .  
On expansion through the wavelets the Mach number of the flow successively increases 
due to the acceleration induced by the successive pressure reductions and the Mach 
angle (p = arc sin 1/M) successively decreases. Consequently, in such an expansive 
regime the Mach waves spread out or diverge, and the flow accelerates smoothly to 
the downstream conditions. It is evident that the number of steps shown in the figure 
may be increased or the generating wall may be continuous without the flow mechanism 
being altered except by the increased number of wavelets. In fact the finite pressure drop 
can take place abruptly, for example, at a sharp comer and the flow will continue to 
expand smoothly through a fan of expansion wavelets emanating from the comer. This 
case of two-dimensional expansive supersonic flow, i.e. round a corner, is known as the 
Prandtl-Meyer expansion and has the same physical mechanism as the one-dimensional 
isentropic supersonic accelerating flow of Section 6.2. In the Prandtl-Meyer expansion 
the streamlines are turned through the wavelets as the pressure falls and the flow 
accelerates. The flow velocity, angular deflection (from some upstream datum), pressure 
etc. at any point in the expansion may be obtained, with reference to Fig. 6.16. 

Algebraic expressions for the wavelets in terms of the flow velocity be obtained 
by further manipulation of Eqn (6.61) which, for convenience, is recalled in the 
form: 

Introduce the velocity component v = q cos p along or tangential to the wave front 
(Fig. 6.13). Then 

dv=dqcosp-qsinpdp=qsinp (6.64) 

It is necessary to define the lower limiting or datum condition. This is most con- 
veniently the sonic state where the Mach number is unity, a = a*, vp = 0, and the 
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Fig. 6.16 Prandtl-Meyer expansion with finite deflection angle 

wave angle p = 4 2 .  In the general case, the datum (sonic) flow may be inclined 
by some angle a to the coordinate in use. Substitute dvp for (l/q)dq/tanp from 
Eqn (6.61) and, since qsinp = a, Eqn (6.64) becomes dvp - dp = dv/a. But from the 
energy equation, with c = ultimate velocity, a2/(7 - 1) + (q2/2) = (c2/2) and with 
q2 = (v2 + a2) (Eqn (6.17)): 

which gives the differential equation 

Equation (6.66) may now be integrated. Thus 

or 

From Eqn (6.65) 

(6.65) 

(6.66) 

(6.67) 
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which allows the flow deflection in Eqn (6.67) to be expressed as a function of Mach 
angle, i.e. 

vp - a = p + $2 tan-' $ s c o t .  - K - 
Y + l  2 (6.68) 

or 

vp - = f(p) (6.68a) 

In his original paper Meyer" used the complementary angle to the Mach wave 
(+) = [(7c/2) - p] and expressed the function 

as the angle q5 to give Eqn (6.68a) in the form 

vp-a=q5-+ (6.68 b) 

The local velocity may also be expressed in terms of the Mach angle p by rearranging 
the energy equation as follows: 

q2 a2 c2 
2 7 - 1  2 
-+-=- 

but a2 = q2 sin2 p. Therefore 

or 

(6.69) 

Equations (6.68) and (6.69) give expressions for the flow velocity and direction at any 
point in a turning supersonic flow in terms of the local Mach angle p and hence the 
local Mach number M .  

Values of the deflection angle from sonic conditions (vp - a), the deflection of the 
Mach angle from its position under sonic conditions q5, and velocity ratio q/c for a 
given Mach number may be computed once and for all and used in tabular form 
thereafter. Numerous tables of these values exist but most of them have the Mach 
number as dependent variable. It will be recalled that the turning power of a wave is a 
significant property and a more convenient tabulation has the angular deflection 
(vp - a) as the dependent variable, but it is usual of course to give a the value of zero 
for tabular purposes.+ 

* Th. Meyer, Uber zweidimensionale Bewegungsvorgange in einem Gas das mit Uberschallgeschwzhdigkeit 
strcmmt, 1908. 

See, for example, E.L. Houghton and A.E. Brock, Tables for the Compressible Flow of Dry Air, 3rd Edn, 
Edward Arnold, 1975. 
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Compression 

h < P 4  
MI > M4 
PI <P4 
and Mach waves 
converge 

Fig. 6.17 

Compression flow through three wavelets springing from the points of flow 
deflection are shown in Fig. 6.17. In this case the flow velocity is reducing, M is 
reducing, the Mach angle increases, and the compression wavelets converge towards 
a region away from the wall. If the curvature is continuous the large number of 
wavelets reinforce each other in the region of the convergence, to become a finite 
disturbance to form the foot of a shock wave which is propagated outwards and 
through which the flow properties change abruptly. If the finite compressive deflec- 
tion takes place abruptly at a point, the foot of the shock wave springs from the point 
and the initiating system of wavelets does not exist. In both cases the presence of 
boundary layers adjacent to real walls modifies the flow locally, having a greater 
effect in the compressive case. 

6.6.1 Mach wave reflection 
In certain situations a Mach wave, generated somewhere upstream, may impinge on 
a solid surface. In such a case, unless the surface is bent at the point of contact, the 
wave is reflected as a wave of the same sign but at some other angle that depends on 
the geometry of the system. Figure 6.18 shows two wavelets, one expansive and the 
other compressive, each of which, being generated somewhere upstream, strikes 
a plane wall at P along which the supersonic stream flows, at the Mach angle 

L wavelet 

Compressive wavelet 

Fig. 6.18 Impingement and reflection of plane wavelets on a plane surface 



31 6 Aerodynamics for Engineering Students 

appropriate to the upstream flow. Behind the wave the flow is deflected away from 
the wave (and wall) in the expansive case and towards the wave (and wall) in the 
compressive case, with appropriate increase and decrease respectively in the Mach 
number of the flow. 

The physical requirement of the reflected wave is contributed by the wall 
downstream of the point P that demands the flow leaving the reflected wave 
parallel to the wall. For this to be so, the reflected wave must turn the flow 
away from itself in the former case, expanding it further to M3 > M I ,  and towards 
itself in the compressive case, thus additionally compressing and retarding its down- 
stream flow. 

If the wall is bent in the appropriate sense at the point of impingement at an angle 
of sufficient magnitude for the exit flow from the impinging wave to be parallel 
to the wall, then the wave is absorbed and no reflection takes place, Fig. 6.19. 
Should the wall be bent beyond this requirement a wavelet of the opposite sign is 
generated. 

A particular case arises in the impingement of a compressive wave on a wall if the 
upstream Mach number is not high enough to support a supersonic flow after 
the two compressions through the impinging wave and its reflection. In this case 
the impinging wave bends to meet the surface normally and the reflected wave forks 
from the incident wave above the normal part away from the wall, Fig. 6.20. The 
resulting wave system is Y-shaped. 

On reflection from an open boundary the impinging wavelets change their sign as a 
consequence of the physical requirement of pressure equality with the free atmo- 
sphere through which the supersonic jet is flowing. A sequence of wave reflections is 
shown in Fig. 6.21 in which an adjacent solid wall serves to reflect the wavelets onto 
the jet boundary. As in a previous case, an expansive wavelet arrives from upstream 
and is reflected from the point of impingement PI while the flow behind it is 
expanded to the ambient pressure p and deflected away from the wall. Behind the 
reflected wave from PI the flow is further expanded to p3 in the fashion discussed 
above, to bring the streamlines back parallel to the wall. 

On the reflection from the free boundary in Q1 the expansive wavelet PlQl is 
required to compress the flow from p3 back top  again along Q1P2. This compression 

Expansive wavelet 

Compressive wavelet 

Fig. 6.19 Impingement and absorption of plane wavelets at bent surfaces 
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Fig. 6.20 

Fig. 6.21 Wave reflection from an open boundary 

deflects the flow towards the wall where the compressive reflected wave from the wall 
(P242) is required to bring the flow back parallel to the wall and in so doing 
increases its pressure to p1 (greater than p ) .  The requirement of the reflection of 
P2Q2 in the open boundary is thus expansive wavelet QzP3 which brings the pressure 
back to the ambient value p again. And so the cycle repeats itself. 

The solid wall may be replaced by the axial streamline of a (two-dimensional) 
supersonic jet issuing into gas at a uniformly (slightly) lower pressure. If the ambient 
pressure were (slightly) greater than that in the jet, the system would commence with 
a compressive wave and continue as above (QlP2) onwards. 

In the complete jet the diamonds are seen to be regions where the pressure is 
alternately higher or lower than the ambient pressure but the streamlines are axial, 
whereas when they are outside the diamonds, in the region of pressure equality with 
the boundary, the streamlines are alternately divergent or convergent. 

The simple model discussed here is considerably different from that of the flow in a 
real jet, mainly on account of jet entrainment of the ambient fluid which affects the 
reflections from the open boundary, and for a finite pressure difference between 
the jet and ambient conditions the expansive waves are systems of fans and the 
compressive waves are shock waves. 

6.6.2 Mach wave interference 
Waves of the same character and strength intersect one another with the same 
configuration as those of reflections from the plane surface discussed above, since 
the surface may be replaced by the axial streamline, Fig. 6.22a and b. When the 
intersecting wavelets are of opposite sign the axial streamline is bent at the point of 
intersection in a direction away from the expansive wavelet. This is shown in 
Fig. 6.22~. The streamlines are also changed in direction at the intersection of waves 
of the same sign but of differing turning power. 
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Fig. 6.22 Interference of wavelets 

( a  1 Expansive 
wavelets 

( b 1 Compressive 
wavelets 

( c 1 Wavelets of 
opposite 
strength 

6.7 Shock waves 

The generation of the flow discontinuity called a shock wave has been discussed 
in Section 6.4 in the case of one-dimensional flow. Here the treatment is extended 
to plane oblique and curved shocks in two-dimensional flows. Once again, 
the thickness of the shock wave is ignored, the fluid is assumed to be inviscid and 
non-heat-conducting. In practice the (thickness) distance in which the gas stabilizes 
its properties of state from the initial to the final conditions is small but finite. 
Treating a curved shock as consisting of small elements of plane oblique shock 
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wave is reasonable only as long as its radius of curvature is large compared to the 
thickness. 

With these provisos, the following exact, but relatively simple, extension to the 
one-dimensional shock theory will provide a deeper insight into those problems of 
shock waves associated with aerodynamics. 

6.7.1 Plane oblique shock relations 
Let a datum be fixed relative to the shock wave and angular displacements measured 
from the free-stream direction. Then the model for general oblique flow through a 
plane shock wave may be taken, with the notation shown in Fig. 6.23, where VI  is the 
incident flow and V2 the exit flow from the shock wave. The shock is inclined at an 
angle ,6 to the direction of VI  having components normal and tangential to the 
wave front of u1 and v1 respectively. The exit velocity V2 (normal u2, tangential v2 
components) will also be inclined to the wave but at some angle other than ,6. 
Relative to the incident flow direction the exit flow is deflected through 6. The 
equation of continuity for flow normal to the shock gives 

Conservation of linear momentum parallel to the wave front yields 

PlUlVl = p2u2v2 (6.71) 

i.e. since no tangential force is experienced along the wave front, the product of the 
mass entering the wave per unit second and its tangential velocity at entry must equal 

Fig. 6.23 
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the product of the mass per second leaving the wave and the exit tangential velocity. 
From continuity, Eqn (6.71) yields 

v1 = v2 (6.72) 

Thus the velocity component along the wave front is unaltered by the wave and the 
model reduces to that of the one-dimensional flow problem (cf. Section 6.4.1) on 
which is superimposed a uniform velocity parallel to the wave front. 

Now the normal component of velocity decreases abruptly in magnitude through 
the shock, and a consequence of the constant tangential component is that the exit 
flow direction, as well as magnitude, changes from that of the incident flow, and the 
change in the direction is towards the shock front. From this it emerges that the 
oblique shock is a mechanism for turning the flow inwards as well as compressing it. 
In the expansive mechanism for turning a supersonic flow (Section 6.6) the angle 
of inclination to the wave increases. 

Since the tangential flow component is unaffected by the wave, the wave properties 
may be obtained from the one-dimensional flow case but need to be referred to 
datum conditions and direction are different from the normal velocities and direc- 
tions. In the present case: 

Vl u1 VI M1 =-=-- 
a1 a1 u1 

or 

Similarly 

(6.73) 

(6.74) 

The results of Section 6.4.2 may now be used directly, but with M I  replaced by 

Static pressure jump from Eqn (6.43): 
M1 sin p, and M2 by A42 sin (p - 6). The following ratios pertain: 

or as inverted from Eqn (6.44): 

Density jump from Eqn (6.45): 

or from Eqn (6.46) 

(6.75) 

(6.76) 

(6.77) 

(6.78) 



Static temperature change from Eqn (6.47): 

Mach number change from Eqn (6.49): 
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(6.79) 

(6.80) 

The equations above contain one or both of the additional parameters p and S that 
must be known for the appropriate ratios to be evaluated. 

An expression relating the incident Mach number MI, the wave angle p and flow 
deflection S may be obtained by introducing the geometrical configuration of the flow 
components, i.e. 

- U1 = tanp, - UZ = tan@ - S) 
V1 v2 

but 
u1 p2 

V I  = v2 and -=- 
u2 P1 

by continuity. Thus 

(6.81) 

Equations (6.77) and (6.81) give the different expressions for pz/p1, therefore the 
right-hand sides may be set equal, to give: 

(6.82) 

Algebraic rearrangement gives 

(6.83) 
- 1 M i  - ( 

2 

Plotting values of p against S for various Mach numbers gives the carpet of graphs 
shown in Fig. 6.24. 

It can be seen that all the curves are confined within the M1 = 00 curve, and that 
for a given Mach number a certain value of deflection angle S up to a maximum value 
6~ may result in a smaller (weak) or larger (strong) wave angle p. To solve Eqn (6.83) 
algebraically, i.e. to find P for a given M1 and 6, is very difficult. However, Collar* 
has shown that the equation may be expressed as the cubic 

- cx2 - + ( B  - AC) = 0 (6.84) 

* A.R. Collar, J R Ae S, Nov 1959. 
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Fig. 6.24 

where 

x = Cot/?, A = M2 - 1, B = - T+lM;tanS 2 
and 

He further showed that the first root may be obtained from the iterative process 

(6.85) 

and a suitable first approximation is X I  = ,/Mf - 1. 
The iteration completed yields the root xo = cot ,& where pW is the wave angle 

corresponding to the weak wave, Le. ,& is the smaller value of wave angle shown 
graphically above (Fig. 6.24). Extracting this root (XO) as a factor from the cubic 
equation (6.84) gives the quadratic equation 

x2 + (C + x0)x + [xo(C + XO) - A] = 0 (6.86) 

having the formal solution 

x = J [ - ( C + X O )  f . \ / ( C + X O ) ( ~ - ~ X O )  +4A] (6.87) 
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Now xo = cot ,& is one of the positive roots of the cubic equations and one of the 
physically possible solutions. The other physical solution, corresponding to the 
strong shock wave, is given by the positive root of the quadratic equation (6.87). 

It is thus possible to obtain both physically possible values of the wave angle 
providing the deflection angle I5 < am=. Sm, may be found in the normal way by 
differentiating Eqn (6.83) with reference to p, with M I  constant and equating to zero. 
This gives, for the maximum value of tan 6: 

Substituting back in Eqn (6.82) gives a value for tan ti-. 

6.7.2 The shock polar 
Although in practice plane-shock-wave data are used in the form of tables and curves 
based upon the shock relationships of the previous section, the study of shock waves is 
considerably helped by the use of a hodograph or velocity polar diagram set up for a 
given free-stream Mach number. This curve is the exit velocity vector displacement curve 
for all possible exit flows downstream of an attached plane shock in a given undisturbed 
supersonic stream, and to plot it out requires rearrangement of the equations of motion 
in terms of the exit velocity components and the inlet flow conditions. 

Reference to Fig. 6.25 shows the exit component velocities to be used. These are qt 
and qn, the radial and tangential polar components with respect to the free stream VI  
direction taken as a datum. It is immediately apparent that the exit flow direction is 
given by arctan(qt/q,). For the wave angle p (recall the additional notation of 

Fig. 6.25 
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Fig. 6.23), linear conservation of momentum along the wave front, Eqn (6.72), gives 
vi = v2, or, in terms of geometry: 

VI cos p = V2 cos@ - 6) (6.89) 

Expanding the right-hand side and dividing through: 

VI = V2[cosS+ tanpsin6I 

or, in terms of the polar components: 

which rearranged gives the wave angle 

(6.90) 

(6.91) 

To express the conservation of momentum normal to the wave in terms of the polar 
velocity components, consider first the flow of unit area normal to the wave, i.e. 

Pi + Plu: = P2 + P24 (6.92) 

Then successively, using continuity and the geometric relations: 

p2 =pi + pi VI sinp[ Vi sinp - qn sinp + qn cos /3 tan SI 
PZ =PI + PI Vi sin P[( Vi - qn) sin P + qt COS PI 

and, using Eqn (6.89): 

PZ=PI+PIVI(VI -qn) 

Again from continuity (expressed in polar components): 

pi Vi sin P = p2 V2 sin(P - S) = mqn(sin ,B - cos ,8 tan 6) 

or 

Divide Eqn (6.93) by Eqn (6.94) to isolate pressure and density: 

Again recalling Eqn (6.91) to eliminate the wave angle and rearranging: 

(6.93) 

(6.94) 

(6.95) 
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Finally from the energy equation expressed in polar velocity components: up to the 
wave 

and downstream from the wave 

(6.96) 

(6.97) 

Substituting for these ratios in Eqn (6.93) and isolating the exit tangential velocity 
component gives the following equation: 

(6.98) 

that is a basic form of the shock-wave-polar equation. 
To make Eqn (6.98) more amenable to graphical analysis it may be made non- 

dimensional. Any initial flow parameters, such as the critical speed of sound u*, the 
ultimate velocity c, etc., may be used but here we follow the originator A. Busemann* 
and divide through by the undisturbed acoustic speed a1 : 

where 4: = (qt/a1)2, etc. This may be further reduced to 

where 

(6.99) 

(6.100) 

(6.101) 

Inspection of Eqn (6.99) shows that the curve of the relationship between dt and Qn 
is uniquely determined by the free-stream conditions ( M I )  and conversely one 
shock-polar curve is obtained for each free stream Mach number. Further, since 

*A. Busemann, Stodola Festschrift, Zurich, 1929. 
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the non-dimensional tangential component ijt appears in the expression as a squared 
term, the curve is symmetrical about the qn axis. 

Singular points will be given by setting ijt = 0 and 00. For ijt = 0, 

(MI - ijn)2(ij; -%I) = 0 

giving intercepts of the ijn axis at A: 

ijn = M I  (twice) 

at B 

(6.102) 

(6.103) 

For ijt = 00, at C,  

(6.104) 

For a shock wave to exist M I  > 1. Therefore the three points By A and C of the qn 
axis referred to above indicate values of q n  < M I ,  = M I ,  and > M I  respectively. 
Further, as the exit flow velocity cannot be greater than the inlet flow velocity for a 
shock wave the region of the curve between A and C has no physical significance and 
attention need be confined only to the curve between A and B. 

Plotting Eqn (6.98) point by point confirms the values A, B and C above. Fig. 6.26 
shows the shock polar for the undisturbed flow condition of M I  = 3. The upper 

Fig. 6.26 Construction of shock polar March 3 
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branch of the curve in Fig. 6.26 is plotted point by point for the case of flow at a free 
stream of M1 = 3. The lower half, which is the image of the upper reflected in the Qn 
axis shows the physically significant portion, i.e. the closed loop, obtained by a 
simple geometrical construction. This is as follows: 

(i) Find and plot points A, B and C from the equations above. They are all 

(ii) Draw semi-circles (for a half diagram) with AB and CB as diameters. 
(iii) At a given value 4jn (Oa) erect ordinates to meet the larger semi-circle in c. 
(iv) Join c to B intersecting the smaller semi-circle at b. 
(v) The required point d is the intercept of bA and ac. 

Geometrical proof Triangles Aad and acB are similar. Therefore 
ad aA 
aB - ac 

explicitly functions of M I .  

_ -  - 
i.e. 

2 

(ad)2 = (aA)2 r:) 
Again, from geometrical properties of circles, 

(ac)2 = aB x aC 

which substituted in Eqn (6.105) gives 

2 aB (ad)2 = (aA) - 
aC 

(6.105) 

(6.106) 

Introduction of the scaled values, ad = &, 

reveals Eqn (6.100), i.e. 

Consider the physically possible flows represented by various points on the closed 
portion of the shock polar diagram shown in Fig. 6.27. Point A is the upper limiting 
value for the exit flow velocity and is the case where the free stream is subjected only 
to an infinitesimal disturbance that produces a Mach wave inclined at p to the free 
stream but no deflection of the stream and no change in exit velocity. The Mach wave 
angle is given by the inclination of the tangent of the curve at A to the vertical and 
this is the limiting case of the construction required to find the wave angle in general. 

Point D is the second point at which a general vector emanating from the origin 
cuts the curve (the first being point E). The representation means that in going 
through a certain oblique shock the inlet stream of direction and magnitude given 
by OA is deflected through an angle 6 and has magnitude and direction given by 
vector OD (or Od in the lower half diagram). The ordinates of OD give the normal 
and tangential exit velocity components. 
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I 

4, 

0 

I 

Fig. 6.27 Shock polar for Mach 3 

The appropriate wave angle & is determined by the geometrical construction 
shown in the lower half of the curve, i.e. by the angle Ada. To establish this recall 
Eqn (6.99): 

i.e. p~ = a=. 
The wave angle may be seen in better juxtaposition to the deflection S, by a small 

extension to the geometrical construction. Produce Ad to meet the perpendicular 
from 0 in d’. Since AaAdl I lAAd’0, 

ATd’ = A X  = pW 

Of the two intercepts of the curve the point D yields the weaker shock wave, i.e. the 
shock wave whose inclination, characteristics, etc., are closer to the Mach wave at A. 
The other physically possible shock to produce the deflection S is represented by the 
point E. 

Point E; by a similar construction the wave angle appropriate to this shock 
condition is found (see Fig. 6.27), i.e. by producing Ae to meet the perpendicular 
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from 0 in e’. Inspection shows that the wave is nearly normal to the flow, the velocity 
drop to OE from OA is much greater than the previous velocity drop OD for the 
same flow deflection and the shock is said to be the stronger shock. 

As drawn, OE is within the sonic line, which is an arc of centre 0 and radius 
[&IM2 = 1, i.e. of radius 

-={ a* ( 7 -  1)Mf+2 
41 7 + 1  

Point F is where the tangent to the curve through the origin meets the curve, and 
the angle so found by the tangent line and the Qn axis is the maximum flow deflection 
possible in the given supersonic stream that will still retain an attached shock wave. 
For deflections less than this maximum the curve is intersected in two physically real 
points as shown above in D and E. Of these two the exit flows OE corresponding to 
the strong shock wave case are always subsonic. The exit flows OD due to the weaker 
shocks are generally supersonic but a few deflection angles close to S,, allow of weak 
shocks with subsonic exit flows. These are represented by point G. In practice weaker 
waves are experienced in uniform flows with plane shocks. When curved detached 
shocks exist, their properties may be evaluated locally by reference to plane-shock 
theory, and for the near-normal elements the strong shock representation OE may be 
used. Point B is the lower (velocity) limit to the polar curve and represents the normal 
(strongest) shock configuration in which the incident flow of velocity OA is com- 
pressed to the exit flow of velocity OB. 

There is no flow deflection through a normal shock wave, which has the maximum 
reduction to subsonic velocity obtainable for the given undisturbed conditions. 

6.7.3 Two-dimensional supersonic flow past a wedge 
This can be described bearing the shock polar in mind. For an attached plane wave 
the wedge semi-vertex angle A, say, Fig. 6.28, must be less than or equal to the 
maximum deflection angle S,, given by point F of the polar. The shock wave then 
sets itself up at the angle given by the weaker-shock case. The exit flow is uniform and 
parallel at a lower, in general supersonic, Mach number but with increased entropy 
compared with the undisturbed flow. 

If the wedge angle A is increased, or the free-stream conditions altered to allow 
A > the shock wave stands detached from the tip of the wedge and is curved 

Fig. 6.28 
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Sonic line 

Fig. 6.29 

from normal to the flow at the dividing streamline, to an angle approaching the 
Mach angle a long way from the axial streamline (Fig. 6.29). 

All the conditions indicated by the closed loop of the shock polar can be identified: 

B - on the axis the flow is undeflected but compressed through an element of 
normal shock to a subsonic state. 
E - a little way away from the axis the stream deflection through the shock is less than 
the lflsLximum possible but the exit flow is still subsonic given by the stronger shock. 
F - further out the flow deflection through the shock wave reaches the max- 
imum possible for the free-stream conditions and the exit flow is still subsonic. 
Beyond this point elements of shock wave behave in the weaker fashion giving 
a supersonic exit for streamlines meeting the shock wave beyond the intersection 
with the broken sonic line. 
D - this point corresponds to the weaker shock wave. Further away from the 
axis the inclination of the wave approaches the Mach angle (the case given by 
point A in Fig. 6.27). 

It is evident that a significant variable along the curved wave front is the product 
A41 sinp, where p is the inclination of the wave locally to the incoming streamline. 
Uniform undisturbed flow is assumed for simplicity, but is not a necessary restric- 
tion. Now ,u < < 7r12 and M1 sinp, the Mach number of the normal to the wave 
inlet component velocity, is thus the effective variable, that is a maximum on the axis, 
reducing to a minimum at the extremes of the wave (Fig. 6.30). Likewise all the other 
properties of the flow across the curved wave that are functions of M I  sin p, will vary 
along the shock front. In particular, the entropy jump across the shock, which from 
Eqn (6.48) is 

(6.107) 

will vary from streamline to streamline behind the shock wave. 
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Fig. 6.30 

An entropy gradient in the flow is associated with rotational flow and thus 
a curved shock wave produces a flow in which vorticity exists away from the surface 
of the associated solid body. At low initial Mach numbers or with waves of small 
curvature the same approximations as those that are the consequences of assuming 
A S e  0 may be made. For highly curved strong shock waves, such as may occur at 
hypersonic speed, the downstream flow contains shock-induced vorticity, or the 
entropy wake as it is sometimes called, which forms a large and significant part of 
the flow in the immediate vicinity of the body associated with the wave. 

6.8 Wings in compressible flow 
In this section the compressible-flow equations in their various forms are considered 
in order to predict the behaviour of aerofoil sections in high sub- and supersonic 
flows. Except in the descriptive portions the effects of viscosity are largely neglected. 

6.8.1 Transonic flow, the critical Mach number 
When the air flows past a body, or vice versa, e.g. a symmetrical aerofoil section at 
low incidence, the local airspeed adjacent to the surface just outside the boundary 
layer is higher or lower than the free-stream speed depending on whether the local 
static pressure is less or greater than the ambient. In such a situation the value of the 
velocity somewhere on the aerofoil exceeds that of the free stream. Thus as the free- 
stream flow speed rises the Mach number at a point somewhere adjacent to the 
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surface reaches sonic conditions before the free stream. This point is usually the 
minimum-pressure point which in this case is on the upper surface. The value of the 
free-stream Mach number (M,) at which the flow somewhere on the surface first 
reaches M = 1 is called the critical Much number, M,. Typically for a slender wing 
section at low incidence Mc may be about 0.75. Below that critical Mach number the 
flow is subsonic throughout. 

Above the critical Mach number the flow is mixed, part supersonic part subsonic. 
As M ,  is increased progressively from low numbers to Mc the aerodynamic char- 
acteristics of the aerofoil section undergo progressive and generally smooth changes, 
and for thin aerofoil shapes at low incidences these changes may be predicted by the 
small-perturbation or linearized theory outlined below due to Prandtl and Glauert. 

As M ,  is increased progressively beyond M, a limited region in which the flow is 
supersonic develops from the point where the flow first became sonic and grows 
outwards and downstream, terminating in a shock wave that is at first approximately 
normal to the surface. As M ,  increases the shock wave becomes stronger, longer and 
moves rearwards. At some stage, at a value of M ,  > M,, the velocity somewhere on 
the lower surface approaches and passes the sonic value, a supersonic region termin- 
ating in a shock wave appears on the lower surface, and that too grows stronger and 
moves back as the lower supersonic region increases. 

Eventually at a value of M ,  close to unity the upper and lower shock waves reach 
the trailing edge. In their rearward movement the shock waves approach the trailing 
edge in general at different rates, the lower typically starting later and ahead of the 
upper, but moving more rapidly and overtaking the upper before they reach the 
trailing edge. When the free-stream Mach number has reached unity a bow shock 
wave appears at a small stand-off distance from the rounded leading edge. For higher 
Mach numbers the extremes of the bow and trailing waves incline rearwards to 
approach the Mach angle. For round-nosed aerofoils or bodies the bow wave is a 
‘strong’ wave and always stands off, and a small subsonic region exists around the 
front stagnation point. The sequence is shown in Fig. 6.31. For sharp leading edges 
the bow shock waves are plane, and usually ‘weak’, with the downstream flow still, at 
a lower Mach number, supersonic. This case is dealt with separately below. 

The effect on the aerofoil characteristics of the flow sequence described above is 
dramatic. The sudden loss of lift, increase in drag and rapid movement in centre of 
pressure are similar in flight to those experienced at the stall and this flight regime 
became known as the shock stall. Many of the effects can be minimized or delayed by 
design methods that are beyond the scope of the present volume. 

To appreciate why the aerofoil characteristics begin to change so dramatically we 
must recall the properties of shock waves the first appearance of which signals the 
start of the change. Across the shock wave, which is the only mechanism for a finite 
pressure increase in supersonic flow, the pressure rise is large and sudden. Moreover 
the shock wave is a process accompanied by an entropy change which manifests itself 
as an immediate rise in drag, i.e. an irreversible conversion of mechanical energy to 
heat (which is dissipated) takes place and sustaining this loss results in the drag. The 
drag increase is directly related to the strengths of the shock waves which in turn 
depend on the magnitude of the supersonic regions ahead. Another contribution to 
the drag will occur if the boundary layer at the foot of the shock separates as 
a consequence of accommodating the sudden pressure rise. 

The lift on the other hand continues to rise smoothly with increase in M ,  > Mc as 
a consequence of the increased low-pressure area on the upper surface. The sequence 
is seen in Fig. 6.32. The lift does not begin to decrease significantly until the 
low-pressure area on the lower surface becomes appreciably extensive owing to the 
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M, = 0.6 Mm= 0.7 

Mm= 0.76 '. 
Mm=0.85 

M>I  

M,= 2.0 

Fig. 8.31 Flow development on two-dimensional aerofoil as M, increases beyond Muit; &it = 0.58 

growth of the supersonic region there; Fig. 6.32~. The presence of the shock wave can 
be seen by the sharp vertical pressure recovery terminating the supersonic regions 
(shaded areas in Fig. 6.32). It is apparent that the marked effect on the lift is 
associated more with the growth of the shock wave on the lower surface. Movement 
of the centre of pressure also follows as a consequence of the varying pressure 
distributions and is particularly marked as the lower shock wave moves behind the 
upper at the higher Mach numbers approaching unity. 

It may also be noted from the pressure distributions (e) and (f) that the pressure 
recovery at the trailing edge is incomplete. This is due to the flow separation at 
the feet of the shock waves. This will lead to buffeting of any control surface near the 
trailing edge. It is also worth noting that even if the flow remained attached the 
pressure information that needs to be propagated to the pressure distribution by 
a control movement (say) cannot be propagated upstream through the supersonic 
region so that the effectiveness of a trailing-edge control surface is much reduced. As 
the free-stream Mach number M ,  becomes supersonic the flow over the aerofoil, 
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Fig.6.32 Pressure distribution on two-dimensional aerofoil (Merit = 0.57) as ME increases through Adcrit 

except for the small region near the stagnation point, is supersonic, and the shock 
system stabilizes to a form similar to the supersonic case shown last in Fig. 6.31. 

6.8.2 Subcritical flow, small perturbation theory 
(Prandtl-Glauert rule) 

In certain cases of compressible flow, notably in supersonic flow, exact solutions to the 
equations of motion may be found (always assuming the fluid to be inviscid) and when 
these are applied to the flow in the vicinity of aerofoils they have acquired the 
soubriquet of exact theories. As described, aerofoils in motion near the speed of sound, 
in the transonic region, have a mixed-flow regime, where regions of subsonic and 
supersonic flow exist side by side around the aerofoil. Mathematically the analysis of 
this regime involves the solution of a set of nonlinear differential equations, a task that 
demands either advanced computational techniques or some degree of approximation. 
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The most sweeping approximations, producing the simplest solutions, are made in the 
present case and result in the transformation of the equations into soluble linear 
differential equations. This leads to the expression linearized theory associated with 
aerofoils in, for example, high subsonic or low supersonic flows. The approximations 
come about mainly from assuming that all disturbances are small disturbances or small 
perturbations to the free-stream flow conditions and, as a consequence, these two terms 
are associated with the development of the theory. 

Historically, H. Glauert was associated with the early theoretical treatment of the 
compressibility effects on aerofoils approaching the speed of sound, and developed what 
are, in essence, the linearized equations for subsonic compressible flow, in R and M ,  305 
(1927), a note previously published by the Royal Society. In this, mention is made of the 
same results being quoted by Prandtl in 1922. The si&icant compressibility effect in 
subsonic-flow has subsequently been given the name of the Prandtl~lauert rule (or law). 

Furthermore, although the theory takes no account of viscous drag or the onset of 
shock waves in localized regions of supersonic flow, the relatively crude experimental 
results of the time (obtained from the analysis of tests on an airscrew) did indicate the 
now well-investigated critical region of flight where the theory breaks down. Glauert 
suggested that the critical speed at which the lift falls off depends on the shape and 
incidence of the aerofoil, and this has since been well-substantiated. 

In what follows, attention is paid to the approximate methods of satisfying 
the equations of motion for an inviscid compressible fluid. These depend on the 
simultaneous solution of the fundamental laws of conservation and of state. Initially 
a single equation is desired that will combine all the physical requirements. The 
complexity of this equation and whether it is amenable to solution will depend on 
the nature of the particular problem and those quantities that may be conveniently 
minimized. 

The equations of motion of a compressible fluid 
The equation of continuity may be recalled in Cartesian coordinates for two-dimen- 
sional flow in the form 

(6.108) 

since, in what follows, analysis of two-dimensional conditions is sufficient to demon- 
strate the method and derive valuable equations. The equations of motion may also 
be recalled in similar notation as 

and for steady flow 

1 ap du au 

1 a p -  av av 
P a y  ax aY 

- _ _ _  u - + v -  
(6.1 10) 
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For adiabatic flow (since the assumption of negligible viscosity has already been 
made, the further stipulations of adiabatic compression and expansion imply isentropic 
flow): 

For steady flow, Eqn (6.108) may be expanded to 

ap ap au  a v  
ax a y  ax a y  

u-+ v-+p-+p-= 0 

But 

so that Eqn (6.112) becomes 

u ap v ap  au av -- +- -+ p-+p-  = 0 
a2 ax a2 a y  ax a y  

(6.111) 

(6.112) 

(6.113) 

Substitution in Eqn (6.113) for dp/ax,  ap/ay from Eqn (6.110) and cancelling p gives 

uz du uv au  vu a v  ~2 av au av + - - t - = O  - - - - - - - - - - - - 
a2 ax a2 a y  a2 ax a2 a y  ax a y  

or, collecting like terms: 

( l - ~ ) E - u v ( E + ~ ) + ( l - ~ ) ! & o  a2 d x  a2 d x  (6.114) 

For irrotational flow av /dx  = du/ay,  and a velocity potential 41 

and since u = aq5l/ax, v = &$l/ay, Eqn (6.1 14a) can be written 

(say) exists, so that 

(6.114a) 

Finally the energy equation provides the relation between a, u, v, and the acoustic 
speed. Thus: 

1.2 + v2 a2 + - = constant 
2 7 - 1  

or 

(6.115) 

(6.1 1 5a) 
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Combining Eqns (6.114b) and (6.115a) gives an expression in terms of the local 
velocity potential. 

Even without continuing the algebra beyond this point it may be noted that the 
resulting nonlinear differential equation in $1 is not amenable to a simple closed 
solution and that further restrictions on the variables are required. Since all possible 
restrictions on the generality of the flow properties have already been made, it is 
necessary to consider the nature of the component velocities themselves. 

Small disturbances 

So far it has been tacitly assumed that the flow is steady at infinity, and the local flow 
velocity has components u and v parallel to coordinate axes x and y respectively, the 
origin of coordinate axes furnishing the necessary datum. Let the equations now refer 
to a class of flows in which the velocity changes only slightly from its steady value at 
infinity and the velocity gradients themselves are small (thin wings at low incidence, 
etc). Further, identify the x axis with the undisturbed flow direction (see Fig. 6.33). 
The local velocity components u and v can now be written: 

u=u,+d: v = v ’  

where u‘ and v’ are small compared to the undisturbed stream velocity, and are 
termed the perturbation or disturbance velocities. These may be expressed non- 
dimensionally in the form 

U‘ V’ 
--<1,-<<1 u, urn 

Similarly, au’/ax, av’/ay are small. 
Making this substitution, Eqn (6.11 5) becomes 

(u ,+u’ )2+v’ z  a2 v“, u k  +-=-+- 
2 7 - 1  2 7-1 

When the squares of small quantities are neglected this equation simplifies to 

similarly 

urn 
General two-dimensional flow Smal I disturbance flaw 

Fig. 6.33 
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Thus the coefficient terms of Eqn (6.1 14a) become: 

Putting U,/a, = M, the free stream Mach number: 

and 
2uv 2(UW + d )  ' 2U,V' v =  - -- 
a2 a2 a& - (y - l)Uffiu' 

2v' 
- UCC 

- 
- Mk 1 - [(y - l)M&(u'/L)] 

Also, 1 - (v'/U,)2c 1 from the small disturbance assumption. 
Now, if the velocity potential 41 is expressed as the s u m  of a velocity potential due 

to the flow at infinity plus a velocity potential due to the disturbance, i.e. 
41 = 4, + 4, Eqn (6.1 14b) becomes, with slight re-arrangement: 

(6.116) 

where 4 is the disturbance potential and d = a4/ax, d = a+/ay, etc. 
The right-hand side of Eqn (6.116) vanishes when M ,  = 0 and the coefficient of 

the first term becomes unity, so that the equation reduces to the Laplace equation, 
i.e. when M, = 0, Eqn (6.116) becomes 

(6.117) 

Since velocity components and their gradients are of the same small order their 
products can be neglected and the bracketed terms on the right-hand side of 
Eqn (6.116) will be negligibly small. This will control the magnitude of the right- 
hand side, which can therefore be assumed essentially zero unless the remaining 
quantity outside the bracket becomes large or indeterminate. This will occur when 
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i.e. when M k ( y  - l)u'/U, + 1. It can be seen that by assigning reasonable values to 
u'lUx and -1 the equality will be made when M ,  5, i.e. put u'/U, = 0.1, y = 1.4, 
then M& 25. 

Within the limitations above the equation of motion reduces to the linear equation 

(1-M,)-+-=o 2 @4 a24 
ax2 ay2 

(6.118) 

A further limitation in application of Eqn (6.1 16) occurs when M ,  has a value in the 
vicinity of unity, i.e. where the flow regime may be described as transonic. Inspection of 
Eqn (6.1 16) will also show a fundamental change in form as M ,  approaches and passes 
unity, i.e. the quantity (1 - M;) changes sign, the equation changing from an elliptic to 
a hyperbolic type. 

As a consequence of these restrictions the further application of the equations finds 
its most use in the high subsonic region where 0.4 < M ,  < 0.8, and in the supersonic 
region where 1.2 < M ,  < 5. 

To extend theoretical investigation to transonic or hypersonic Mach numbers 
requires further development of the equations that is not considered here. 

Prandtl-Glauert rule - the application of linearized theories of subsonic flow 

Consider the equation (6.1 18) in the subsonic two-dimensional form: 

(1 -Mk)-+-=O @4 a24 (Eqn(6.118)) 
ax2 ay2 

For a given Mach number M ,  this equation can be written 

(6.119) 

where B is a constant. This bears a superficial resemblance to the Laplace equation: 

(6.120) 

and if the problem expressed by Eqn (6.118), that of finding 4 for the subsonic 
compressible flow round a thin aerofoil, say, could be transformed into an equation 
such as (6.120), its solution would be possible by standard methods. 

Figure 6.34 shows the thin aerofoil occupying, because it is thin, in the definitive 
sense, the Ox axis in the real or compressible plane, where the velocity potential 4 
exists in the region defined by the xy ordinates. The corresponding aerofoil in 
the Laplace or incompressible Jq plane has a velocity potential a. If the simple 
relations: 

@ = A 4 ,  E=Cx and q = D y  (6.121) 

The boundary conditions on the aerofoil surface demand that the flow be locally 
are assumed, where A,  C and D are constants, the transformation can proceed. 

tangential to the surface so that in each plane respectively 

v;=umz= dY (Z) 
y = o  

(6.122) 
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Fig. 6.34 

and 

(6.123) 

where the suffices c and i denote the compressible and incompressible planes respec- 
tively. 

Using the simple relationships of Eqn (6.121) gives 

a@ a(A4)  A & b  8% A $4 _-  _ -  -=-- 
x-a(cx)= ~ a x '  a p  cz a x ~  

and 

a@ A & b  $@ A $ +  -=-- -=-- 
% D ay' a+ 02 ay2 

Thus Eqn (6.120) by substitution and rearrangement of constants becomes 

@O @@ A D2 $4 $4 -+-=- x2 c3$ D Z [ ( F ) s + w ] = o  
(6.124) 

Comparison of Eqns (6.124) and (6.119) shows that a solution to Eqn (6.120) (the 
left-hand part of Eqn (6.124)) provides a solution to Eqn (6.119) (the right-hand part 
of Eqn (6.119)) if the bracketed constant can be identified as the B2, i.e. when 

(6.125) C 
Without generalizing further, two simple procedures emerge from Eqn (6.125). 

These are followed by making C or D unity when D = B or 1/C = B respectively. 
Since C and D control the spatial distortion in the Laplace plane the two procedures 
reduce to the distortion of one or the other of the two ordinates. 

Constant chordwise ordinates 

If the aerofoil is thin, and by definition this must be so for the small-disturbance 
conditions of the theory from which Eqn (6.1 18) is derived, the implication of this 
restriction is that the aerofoils are of similar sha e in both planes. Take first the case 
of C = 1, i.e. < = x .  This gives D = B = ,/& from Eqn (6.125). A solution of 
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Y 

C 

Fig. 6.35 

Compressible xy plane 

Velocity potential 4 
7) = (&@y 

- 
x 

’ Laplace ’ plane 

Velocity potential 

@=(hq&l 

n - t = x  

Eqns (6.118) or (6.1 19) is found by applying the transformation 77 = d m y  (see 
Fig. 6.35). Then Eqns (6.122) and (6.123) give 

but D = B, since DIC = B and C = 1. 

and, for this to be so: 
For similar aerofoils, it is required that dyldx = drl/dc at corresponding points, 

A = B = ,/I - M L  

The transformed potential is thus 

The horizontal flow perturbations are now easily found: 

a6 1 a@ Uf 

c ax d m d x = j -  u ’ = - =  

(6.126) 

(6.127) 

(6.128) 

(6.129) 

I 

C 
CL = - f Cpdx 

the relationship between lift coefficients in compressible and equivalent incompress- 
ible flows follows that of the pressure coefficients, i.e. 

CLi 
cL = d m -  (6.130) 

This simple use of the factor d m  is known as the Prandtl-Glauert rule or law 
and ,/- is known as Glauert’s factor. 
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Constant normal ordinates (Fig, 6.36) 

Glauert,* however, developed the affine transformation implicit in taking a transformed 
plane distorted in the x-direction. The consequence of this is that, for a thin aerofoil, the 
transformed section about which the potential Q, exists has its chordwise lengths altered 
by the factor 1/C. 
With D = 1, i.e. 17 = y, Eqn (6.131) gives 

(6.131) 

Thus the solution to Eqn (6.1 18) or (6.1 19) is found by applying the transfonnation 
X 

and, for this and the geometrical condition of Eqns (6.122) and (6.123) to apply, 
A can be found. Eqn (6.122) gives 

By substituting Q, = Aq5, Eqn (6.121), y = 17, Eqn (6.131), but from Eqn (6.122) 

To preserve the identity, A = Jm and the transformed potential 
@ = d-4, as previously shown in Eqn (6.127). The horizontal flow perturb- 
ations, pressure coefficients and lift coefficients follow as before. 

Glauert explained the latter transformation in physical terms by appealing to the 
fact that the flow at infinity in both the original compressible plane and the trans- 
formed, ideal or Laplace plane is the same, and hence the overall lifts to the systems 
are the same. But the chord of the ideal aerofoil is greater (due to the < = x / d m  distortion) than the equivalent compressible aerofoil and thus for 
an identical aerofoil in the compressible plane the lift is greater than that in the ideal 
(or incompressible) case. The ratio Lc/L is as before, i.e. (1 - M&)-'''. 

Compressible xy plane Laplace' plane 

Velocity potential C# 

0 

Fig. 6.36 

* H. Glauert, The effect of compressibility on aerofoil lift, ARCR and M ,  1135, 1927. 
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Critical pressure coeficient 

The pressure coefficient of the point of minimum pressure on an aerofoil section, 
using the notation of Fig. 6.37b, is 

1 1 
2 but since -pmVk = z ~ p o O M k ,  Eqn (6.132) may be written 

(6.132) 

(6.133) 

The critical condition is when pmin first reaches the sonic pressure p* and M ,  
becomes M c ~ t  (see Fig. 6.37~). C,, is then the critical pressure coefficient of the 
aerofoil section. Thus 

(6.134) 

An expression for p*/poc in terms of Mc,it may be readily found by recalling the 
energy equation applied to isentropic flow along a streamline (see Section 6.2) which 
in the present notation gives 

v; u', v2 u2 -+--- - +- 
2 7 - 1  2 y - 1  

Pmiq 
I 

Fig. 6.37 (a) 'Incompressible' flow. (b) Compressible subscritical flow. (c) Critical flow 
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Divide through by a2 for the condition when V = u = a*, M ,  = etc. 

On rearranging 

2 
M2 7 - 1  2 (g)= e r i t y + l f y + l  

But 

and on substituting for p*/prn in Eqn (6.134) 

(6.135) 

In this expression Mcit is the critical Mach number of the wing, and is the parameter 
that is often required to be found. Cpdt is the pressure coefficient at the point of 
maximum velocity on the wing when locally sonic conditions are just attained, and is 
usually also unknown in practice; it has to be predicted from the corresponding 
minimum pressure coefficient (C,) in incompressible flow. Cpi may be obtained from 
pressure-distribution data from low-speed models or, as previously, from the solu- 
tion of the Laplace equation of a potential flow. 

The approximate relationship between C,, and Cpi was discussed above for two- 
dimensional wings. The Prandtl-Glauert rule gives: 

(6.136) 

A simultaneous solution of Eqns (6.135) and (6.136) with a given C, yields values of 
critical Mach number 

Application to swept wings 

In the same way as for the incompressible case (see Section 5.7), the compressible 
flow over an infinite-span swept (or sheared) wing can be considered to be the 
superposition of two flows. One component is the flow perpendicular to the swept 
leading edge. The other is the flow parallel to the leading edge. The free-stream 
velocity now consists of two components, see Fig. 6.38. For the component perpen- 
dicular to the leading edge Eqn (6.118) becomes 

(6.137) 
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\ 
Fig. 6.38 

Only the perpendicular component affects the pressure so that Eqns (6.128) and 
(6.129) become 

It follows directly that 

(6.139) 

(6.140) 

Example 6.8 For the NACA 4 digit series of symmetrical aerofoil sections in incompressible 
flow the maximum disturbance velocity ( U ' / V ~ ) , ~  (corresponding to (C&,J varies in the 
following way with thickness-to-chord ratio, tlc: 

NACA AEROFOIL DESIGNATION rlc (u'l V,),,, 

NACA0006 
NACAOOO8 
NACAOO 10 
NACAOO 12 
NACAOO 1 5 
NACAOO 18 
NACAOO2 1 
NACAOO24 

0.06 0.107 
0.08 0.133 
0.10 0.158 
0.12 0.188 
0.15 0.233 
0.18 0.278 
0.21 0.325 
0.24 0.374 
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Use this data to determine the critical Mach number for 
(i) A straight wing of infinite span with a NACA 0010 wing section; and 

(ii) An infinite-span wing with a 45" sweepback with the same wing section perpendicular to 

All the 4-digit NACA wing sections are essentially the same shape, but with different thickness- 
to-chord ratios, as denoted by the last two digits. Thus a NACA 0010 wing section at a given 
freestream Mach number M, is equivalent to a 4-digit NACA series in incompressible flow 
having a thickness of 

the leading edge. 

(t/C)i = 0 . 1 0 ~ 1  - M& 

The maximum disturbance velocity, [ (U ' /V, )~~~]~ for such a wing section is obtained by using 
linear interpolation on the data in the table given above. The maximum perturbation velocity 
in the actual compressible flow at M, is given by 

The maximum local Mach number is given approximately by 

Equations (a) and (b) and linear interpolation of the table of data can be used to determine 
Mm for a specified M,. The results are set out in the table below 

0.5 0.866 
0.6 0.08 
0.7 0.0714 
0.75 0.066 
0.8 0.06 

0.141 
0.133 
0.120 
0.114 
0.107 

0.188 0.594 
0.2078 0.725 
0.2353 0.865 
0.2606 0.945 
0.2972 1.038 

Linear interpolation between M, = 0.75 and 0.8 gives the critical value of MW N 0.78 
(i.e. corresponding to Mmax = 1.0). 

For the 45" swept-back wing 

( t / C ) i  = 0.104- = 0 . 1 0 ~ ~  

V,  must be replaced by (V,),, i.e. V,  cos A, so the maximum disturbance velocity is given by 

The maximum local Mach number is then obtained from 

Thus in a similar way as for the straight wing the following table is obtained. 
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0.5 0.0935 0.144 
0.6 0.0906 0.143 
0.7 0.0869 0.141 
0.8 0.0825 0.136 
0.85 0.0799 0.133 
0.9 0.0771 0.128 

0.116 0.558 
0.123 0.674 
0.132 0.792 
0.141 0.913 
0.147 0.975 
0.152 1.037 

Linear interpolation gives a critical Mach number of about 0.87. 
It will be noted that although the wing section is the same in both cases the critical Mach 

number is much higher for the sweptback wing. This is principally because V,, is considerably 
less than V,. It is for this reason that aircraft, such as airliners, that are designed to cruise at 
high subsonic Mach numbers invariably have swept-back wings, in order to keep wave drag to 
a minimum. 

6.8.3 Supersonic linearized theory (Ackeret's rule) 
Before proceeding to considerations of solution to the supersonic form of the 
simplified (small perturbation) equation of motion, Eqn (6.1 18), Le. where the Mach 
number is everywhere greater than unity, it is pertinent to review the early work of 
Ackeret* in this field. Notwithstanding the intrinsic historical value of the work 
a fresh reading many decades later still has interest in the general development of 
first-order theory. 

Making obvious simplifications, such as assuming thin sharp-edged wings of small 
camber at low incidence in two-dimensional frictionless shock-free supersonic flow, 
briefly Ackeret argued that the flow in the vicinity of the aerofoil may be likened 
directly to that of the Prandtl-Meyer expansion round a corner. With the restrictions 
imposed above any leading-edge effect will produce two Mach waves issuing from the 
sharp leading edge (Fig. 6.39) ahead of which the flow is undisturbed. Over the upper 
surface of the aerofoil the flow may expand according to the two-dimensional solution 
of the flow equations originated by Prandtl and Meyer (see p. 314). If the same 
restrictions apply to the leading edge and lower surface, then providing the inclinations 
are gentle and no shock waves exist the Prandtl-Meyer solution may still be used by 
employing the following device. Since the undisturbed flow is supersonic it may be 
assumed to have reached that condition by expanding through the appropriate angle vp 
from sonic conditions, then any isentropic compressive deflection 6 will lead to flow 
conditions equivalent to an expansion of (vp - 6) from sonic flow conditions. 

Thus, providing that nowhere on the surface will any compressive deflections be 
large, the Prandtl-Meyer values of pressure may be found by reading off the valuest 
appropriate to the flow deflection caused by the aerofoil surface, and the aerody- 
namic forces etc. obtained from pressure integration. 

Referring back to Eqn (6.118) with M ,  > 1: 

(6.141) 

* J. Ackeret, Z. Flugtech Motorluftschiff, pp. 72-4, 1925. Trans. D.M. Milner in NAC & TM, 317. 
'From suitable tables, e.g. E.L. Houghton and A.E. Brock, Tables for the Compressible Flow of Dry Air, 
3rd Edn, Edward Arnold, 1975. 
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Fig. 6.39 

/ 
/ -22 / 

/ 

Fig. 6.40 Supersonic f low over as wedge: The schlieren method was used to obtain this f low visualization. 
A parallel light beam is refracted by the density differences in the f low field. I t  is then focused on to a knife 
edge and gives a f low visualization in the image on the photographic film, which takes the form of bright or 
dark patterns, depending on the direction the beam is bent by refraction. The main features of the f low field 
are the oblique bow shock wave which is slightly rounded at  the nose (see Fig. 7.54, page 479). the 
expansion fans at  the trailing edge, followed by recompression shock waves which form downstream in the 
wake. These last are slightly curved owing to  the interaction wi th  the expansion waves from trailing edge. 
(The photograph was taken by D.J. Buckingham at the School of Engineering, University of Exeter, UK.) 
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This wave equation has a general solution 

where F1 and F2 are two independent functions with forms that depend on the 
boundary conditions of the flow. In the present case physical considerations 
show that each function exists separately in well-defined regions of the flow (Figs 6.40, 
6.41 and 6.42). 

By inspection, the solution q5 = Fl(x - d m  y)  allows constant values of q5 
along the lines x - d m  y = C,  i.e. along the straight lines with an inclination of 
arc tan l/d- to the x axis (Fig. 6.42). This means that the disturbance originat- 
ing on the aerofoil shape (as shown) is propagated into the flow at large, along the 
straight lines x = ,/Ad2 - 1 y + C. Similarly, the solution q5 = F2(x + d m  y )  
allows constant values of q5 along the straight lines x = - d m  y + c with 
inclinations of 

arc tan(- 1 ) 
d m  

to the axis. 
It will be remembered that Mach lines are inclined at an angle 

p = arc tan f ( &) 
to the free-stream direction and thus the lines along which the disturbances are 
propagated coincide with Mach lines. 

Since disturbances cannot be propagated forwards into supersonic flow, the 
appropriate solution is such that the lines incline downstream. In addition, the effect 
of the disturbance is felt only in the region between the first and last Mach lines and 
any flow conditions away from the disturbance are a replica of those adjacent to the 
body. Therefore within the region in which the disturbance potential exists, taking 
the positive solution, for example: 

and 

(6.142) 

(6.143) 
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Fig. 6.41 Transonic f low through a turbine cascade: The holographic interferogram shows fringes 
corresponding to  lines of constant density. The f low enters from the right and exits a t  a Mach number 
of about 1.3 from the left. The convex and concave surfaces of the turbine blades act as suction and 
pressure surfaces respectively. Various features of the f low field may be discerned from the interferogram: 
e.g. the gradual drop in density from inlet to outlet until the formation of a sharp density gradient marking 
a shock wave where the constant-density lines fold together. The shock formation at the trailing edge may 
be compared wi th  Fig. 7.51 on page 476. (The phototgraph was taken by P.J. Bryanston-Cross in the 
Engineering Deparlment, University of Warwick, UK.) 
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Fig. 6.42 

Now the physical boundary conditions to the problem are such that the velocity on the 
surface of the body is tangential to the surface. This gives an alternative value for VI, i.e. 

(6.144) 

where df(x)/dx is the local surface slope, f(x) the shape of the disturbing surface and U, 
the undisturbed velocity. Equating Eqns (6.143) and (6.144) on the surface where y = 0: 

T I  

or 

On integrating: 

(6.145) 

With the value of 4 (the disturbance potential) found, the horizontal perturbation 
velocity becomes on the surface, from Eqn (6.142): 
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The local pressure coefficient which in the linearized form is C, = -(2u')/U, gives, 
for this flow: 

2 dfx c -  P - d m d "  
But dfxldx is the local inclination of the surface to the direction of motion, i.e. 
dfxldx = E (say). Thus 

2& 
(6.146) 

Example 6.9 A shallow irregularity of length 1, in a plane wall along which a two-dimensional 
supersonic stream MO = uo/q  is flowing, is given approximately by the expression 
y = kx[l - (x / / ) ] ,  where 0 < x < 1 and k << .1 (see Fig. 6.43). Using Ackeret's theory, prove 
that the velocity potential due to the disturbance in the flow is 

and obtain a corresponding expression for the local pressure coefficient anywhere on the 
irregularity. (Lu) 

(Mi-l)---=O @4 @4 
ax2 ay 

has the solution applicable here of 4 = 4(x - d@ - ly) where 4 is the disturbance potential 
function. Local perturbation velocity compon ts on the wall are 

y=o 

r 1 

At x from the leading edge the boundary conditions require the flow velocity to be tangential 
to the surface 

Fig. 6.43 
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Equating Eqns (6.143) and (6.144) on the surface where y = 0, Eqn (6.145) gives: 
r 1 

Also on the surface, with the same assumptions: 

It is now much more convenient to use the pressure coefficient (dropping the suffix m): 

(6.147) 2E c -  p - d m  
where E may be taken as +ve or -ve according to whether the flow is compressed or expanded 
respectively. Some care is necessary in designating the sign in a particular case, and in the use 
of this result the angle E is always measured from the undisturbed stream direction where the 
Mach number is M, and not from the previous flow direction if different from this. 

Symmetrical double wedge aerofoil in supersonic flow 
Example 6.10 Plot the pressure distribution over the symmetrical double-wedge, 10 per cent 
thick supersonic aerofoil shown in Fig. 6.44 when the Mach 2.2 flow meets the upper surface 
(a) tangentially; and (b) and (c) at incidence 2" above and below this. Estimate also the lift, 
drag, and pitching moment coefficients for these incidences. 

The semi-wedge angle EO = arc tan 0.1 = 5.72" = 0.1 radians 

M = 2.2; M2 = 4.84; = 1.96 

and for the incidence a = EO = 0.1". Using Eqn (6.146), the distribution is completed in tabular 
and graphical forms in Fig. 6.45. 

Fig. 6.44 
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Fig. 6.45 Solution to Example 6.10 

For the lift drag and moment a more general approach can be adopted. If a chordwise 
element SX, x from the leading edge be taken, the net force normal to the chord is 

1 
(PL - m)Sx = (CpL - CPU) z PV2SX 

Total normal force = lift (since a is small) 

L = C,-pVZc 1 = l c ( C p ~  - Cpu)zpV2dx 1 2 

In this case Eqn (6.148) integrates to give 
C C 

CLC = - (CP3 - CP,) + z (CP4 - CPA 2 
and on substituting Cp, = 2~14-, etc., 

But for the present configuration 

E1 = Eo - a, E2 = -Eo - a, E3 = Eo + a, E4 = -E0 + a 
when Eqn (6.149) becomes 

(6.148) 

(6.149) 

4a 
m CL = (6.1 50) 
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In the present example 

c ~ 3 . 4 2  = 0.132, c ~ 5 . 7 2  = 0.204, c ~ 7 . 7 2  = 0.275 

The contribution to drag due to a chordwise element of lower surface, say, is 

1 
PLELSX = cPL ~ ~ V ’ E L S X  +POELSX 

where po is the free-stream static pressure which integrates to zero and may be neglected 
throughout. Again using C,L = 2 ~ i d m ,  the elemental contribution to drag becomes 

The corresponding contribution from the upper surface is 

The total wave drag becomes 

In the present case, with E ]  = EO - CY, = -(CY + E ~ ) ,  = + 0, E4 = a - Eo: 

But E; = ( t / ~ ) ~ ,  therefore: 

(6.151) 

It is now seen that aerofoil thickness contributes to the wave drag, which is a minimum for 
a wing of zero thickness, i.e. a flat plate. Alternatively, for other than the flat plate, minimum 
wave drag occurs at zero incidence. This is generally true for symmetrical sections although the 
magnitude of the minimum wave drag varies. In the present example the required values are 

CD,, = 0.029, = 0.0408, CD,,, = 0.0573 

Lift to wave drag ratio. Directly from Eqns (6.150), and (6.151): 

(6.152) 
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Now LID is a maximum when D/L = a + (~ /c )~ /Q  is a minimum and t h i s  occurs when the two 
terms involved are numerically equal, i.e. in this case, when Q = t/c. Substituting back gives the 
maximum L/D ratio as 

For the present example, with t/c = 0.1: [L/D],, = 5 occurring at 5.72" of incidence, and 

[;I 3,72= 4.55, [j 5.72= 5.0, [;I 7.72= 4.8 

Moment about the leading edge Directly from the lift case above, the force normal to the 
chord from an element 6x of chord x from the leading edge is (CpL - Cp,)~pv26x and this 
produces the negative increment of pitching moment 

1 
2 AM = -(CpL - Cp,)~-pV26~ 

Integrating gives the total moment 

1 1 
- M =  ic(CpL - Cp,)2pV2xdx = - C ~ - p v ~ c '  2 

Making the appropriate substitution for C,: 

-c - /' M(EL - Eu)xdx " - C 2 d m  0 

which for the profile of the present example gives 

i.e. 

(6.153) 

Hence 

C M ~ , ~ ~  = -0.066, C M ~ , ~  = -0.102; C M ~ . ~ ~  = -0.138 

Centre of pressure coefficient kcp: 

km=-- -cM - 0.5 (6.154) 
CL 

and this is independent of Mach number and (for symmetrical sections) of incidence. 

Symmetrical biconvex circular arc aerofoil in supersonic flow 
While still dealing with symmetrical sections it is of use to consider another class of 
profile, i.e. one made up of biconvex circular arcs. Much early experimental work 
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Fig. 6.46 

was done on these sections both with symmetrical and cambered profiles and this is 
readily available to compare with the theory. 

Consider the thin symmetrical aerofoil section shown in Fig. 6.46. On the upper 
surface x from the leading edge and the deflection of the flow from the free- 
stream direction is EU, and EU = -a + ~ 0 [ 1  - (2x/c)],* so that the local pressure 
coefficient is 

c -  [ - a + E o ( l  -31 
- dXF-3 (6.155) 

For the lower surface 

c -  " - d m  [ Q + E 0 ( l  -31 
Then the contribution to lift of the upper and lower surfaces x from the leading edge is 

1 1 
2 

2a-pV26x = ScL-pv2c 
2 

SL = 
d m  2 

and integrating over the chord gives 

4 a  
CL = dr 

2 - 1  
(6.156) 

as before. The contributions to wave drag of each of the surfaces x from the leading 
edge are together 

*This approximate form of equation for a circular an: is justified for shallow concavities, i.e. large radii of 
curvature, and follows from simple geometry, i.e. from Fig. 6.47: 

Therefore 

_=-  e 2~ and E = E o ( ~ - $ )  

EO c 
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Fig. 6.47 

and integrating gives after substituting for E; and E; 

Now, by geometry, and since EO is small, EO = 2(t/c), giving 

The lift/drag ratio is a maximum when, by division, D/L = a + [ ; ( t / ~ ) ~ l / a ]  is 
a minimum, and this occurs when 

Then 

1 c 0.433 ---=- a [;I,,=---- -- - 
a2+a2 2a 4 t t / c  

For a 10% thick section (LID),, = 44 at a = 6.5" 
Moment coefficient and kcp 
Directly from previous work, i.e. taking the moment of SL about the leading edge: 

(6.157) 
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0.9 - 

- 4 8 12 16 20 24 

Fig. 8.48 

and the centre of pressure coefficient = - (CM/CL) = 0.5 as before. A series of results 
of tests on supersonic aerofoil sections published by A. Ferri* serve to compare with 
the theory. The set chosen here is for a symmetrical bi-convex aerofoil section 
of t / c  = 0.1 set in an air flow of Mach number 2.13. The incidence was varied from 
-10" to 28" and also plotted on the graphs of Fig. 6.48 are the theoretical values of 
Eqns (6.156) and (6.157). 

Examination of Fig. 6.48 shows the close approximation of the theoretical 
values to the experimental results. The lift coefficient varies linearly with incidence 
but at some slightly smaller value than that predicted. No significant reduction in 
CL, as is common at high incidences in low-speed tests, was found even with 
incidence >20". 

The measured drag values are all slightly higher than predicted which is under- 
standable since the theory accounts for wave drag only. The difference between 
the two may be attributed to skin-friction drag or, more generally, to the presence 
of viscosity and the behaviour of the boundary layer. It is unwise, however, to 
expect the excellent agreement of these particular results to extend to more general 
aerofoil sections - or indeed to other Mach numbers for the same section, as 
severe limitations on the use of the theory appear at extreme Mach numbers. 
Nevertheless, these and other published data amply justify the continued use of 
the theory. 

* A. Ferri, Experimental results with aerofoils tested in the high-speed tunnel at Guidornia, Atti Guidornia, 
No. 17, September 1939. 
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General aerofoil section 

Retaining the major assumptions of the theory that aerofoil sections must be 
slender and sharp-edged permits the overall aerodynamic properties to be assessed 
as the sum of contributions due to thickness, camber and incidence. From previous 
sections it is known that the local pressure at any point on the surface is due to the 
magnitude and sense of the angular deflection of the flow from the free-stream 
direction. This deflection in turn can be resolved into components arising from the 
separate geometric quantities of the section, i.e. from the thickness, camber and 
chord incidence. 

The principle is shown figuratively in the sketch, Fig. 6.49, where the pressure 
p acting on the aerofoil at a point where the flow deflection from the free stream is 
E may be considered as the sum ofpt + pc $-pa. If, as is more convenient, the pressure 
coefficient is considered, care must be taken to evaluate the sum algebraically. With 
the notation shown in Fig. 6.49; 

CP = CPt + CPC + C h  (6.158) 

or 

(6.159) 

Lvt The lift coefficient due to the element of surface is 

SX -2 
(Et+Ec+E,)-  sc - C L - d F T  

which is made up of terms due to thickness, camber and incidence. On integrating 
round the surface of the aerofoil the contributions due to thickness and camber 
vanish leaving only that due to incidence. This can be easily shown by isolating the 
contribution due to camber, say, for the upper surface. From Eqn (6.148) 

D 

Symmetrical --+ \ section r -  contributing 
thickness in 

Incidence 
contribution 

Fig. 6.49 
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but 

~ c ~ c d x = ~ ~ ( ~ ) c d x = ~ c d y c =  k];=O 

Therefore 

CLCamber = 0 

Similar treatment of the lower surface gives the same result, as does consideration of 
the contribution to the lift due to the thickness. 

This result is also borne out by the values of CL found in the previous examples, Le. 

Now (upper surface) = -a and (lower surface) = +a 

4a 
CL = m (6.160) 

Drug (wave) The drag coefficient due to the element of surface shown in Fig. 6.49 is 

which, on putting E = + + E~ etc., becomes 

On integrating this expression round the contour to find the overall drag, only the 
integration of the squared terms contributes, since integration of other products 
vanishes for the same reason as given above for the development leading to 
Eqn (6.160). Thus 

(6.161) 

Now 

2 ~ i d x  = 4a2c f 
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and for a particular section 

and 

2 E:&= kcP2c ! 
so that for a given aerofoil profile the drag coefficient becomes in general 

(6.16 1 a) 

where t/c and P are the thickness chord ratio and camber, respectively, and kt, k, are 
geometric constants. 

Lift/wave drag ratio It follows from Eqns (6.160) and (6.161) that 

D kt(t/c)’ + ktP2 -=a+ 4a L 

which is a minimum when 

kt(t/C)2 + kcP2 
4 

a =  

Moment coefficient and centre of pressure coefjcient Once again the moment about 
the leading edge is generated from the normal contribution and for the general 
element of surface x from the leading edge 

6cM=-( 2 ) - & -  x dx 
J m C  c 

x dx 
C M  = h?=-l c c  

Now 

is zero for the general symmetrical thickness, since the pressure distribution due to 
the section (which, by definition, is symmetrical about the chord) provides neither lift 
nor moment, i.e. the net lift at any chordwise station is zero. However, the effect of 
camber is not zero in general, although the overall lift is zero (since the integral of the 
slope is zero) and the influence of camber is to exert a pitching moment that is 
negative (nose down for positive camber), i.e. concave downwards. Thus 
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The centre of pressure coefficient follows from 
1 

and this is no longer independent of incidence, although it is still independent of 
Mach number. 

Aerofoil section made up of unequal circular arcs 

A convenient aerofoil section to consider as a first example is the biconvex aerofoil 
used by Stanton* in some early work on aerofoils at speeds near the speed of sound. 
In his experimental work he used a conventional, i.e. round-nosed, aerofoil (RAF 
31a) in addition to the biconvex sharp-edged section at subsonic as well as supersonic 
speeds, but the only results used for comparison here will be those for the biconvex 
section at the supersonic speed M = 1.12. 

Example 6.11 Made up of two unequal circular arcs a profile has the dimensions 
shown in Fig. 6.50. The exercise here is to compare the values of lift, drag, moment 
and centre of pressure coefficients found by Stanton* with those predicted by Ackeret's 
theory. From the geometric data given, the tangent angles at leading and trailing edges 
are 16" = 0.28 radians and 7" = 0.12radians for upper and lower surfaces respectively. 
Then, measuring x from the leading edge, the local deflections from the free-stream direction are 

~ ~ ~ 0 . 2 8  1-2-  - a  ( :> 
and 

&L=0.12 1-2-  + a  ( :> 
for upper and lower surfaces respectively. 

M = I .72 

Fig. 6.50 Stanton's biconvex aerofoil section t /c  = 0.1 

* T.E. Stanton, A high-speed wind channel for tests on aerofoils, ARCR and M ,  1130, January 1928. 
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L$t coefficient 

4a 
CL =- d r n  

For M = 1.72 

CL = 2.86a 

Drag (wave) coefficient /' [ (0.28 (1 - $) - a)2+(0.12(1- 2 q  + a) 2 ] dx 
c D = c m  0 C 

(4aZ + 0.0619) 
m CD = 

For M = 1.72 (as in Stanton's case), 

Co = 2.86~~'  + 0.044 

Moment coefficient (about leading edge) 

or 
2 

CM, = dm [a + 0.02711 

For M = 1.72 

= 1 . 4 3 ~ ~  + 0.039 

Centre-of-pressure coefficient 

- C M ~  2a + 0.054 k e = - -  - 
CL 4a 

0.5 + 0.0135 
a kcp = 

L$t/drag ratio 

4a 
-- L - m =  a 
D 4a2 + 0.0619 CY' - 0.0155 

d m  
This is a maximum when a = d m  = 0.125rads. = 8.4" giving (LID), = 4.05. 
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Fig. 6.51 

It will be noted again that the calculated and observed values are close in shape but the latter 
are lower in value, Fig. 6.51. The differences between theory and experiment are probably 
explained by the fact that viscous drag is neglected in the theory. 

Double wedge aerofoil section 

Example 6.12 Using Ackeret's theory obtain expressions for the lift and drag coefficients of 
the cambered double-wedge aerofoil shown in Fig. 6.52. Hence show that the minimum 
lift-drag ratio for the uncambered doublewedge aerofoil is f i  times that for a cambered 
one with h = t/2. Sketch the flow patterns and pressure distributions around both aerofoils at 
the incidence for (L/D),,,ax. (u of L) 
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Fig. 6.52 

Lift Previous work, Eqn (6.160) has shown that 

Drag (wave) From Eqn (6.161) on the general aerofoil 

Here, as before: 

2 &;-=4azC f :  
For the given geometry 

i.e. one equal contribution from each of four flat surfaces, and 

Le. one equal contribution from each of four flat surfaces. Therefore 

Lift-drag ratio 

L Cr a 
I 

D=G= [ a’+ (a’ - +4 (3’1 - 

For the uncambered aerofoil h = 0: 

For the cambered section, given h = t/c: 
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No camber 
Upper surface 

Rear 
f a =  for [$Im 

c Lower surface 

Fig. 6.53 Flow patterns and pressure distributions around both aerofoils a t  incidence of [L/D],,, 

6.8.4 Other aspects of supersonic wings 

The shock-expansion approximation 

The supersonic linearized theory has the advantage of giving relatively simple for- 
mulae for the aerodynamic characteristics of aerofoils. However, as shown below in 
Example 6.13 the exact pressure distribution can be readily found for a double-wedge 
aerofoil. Hence the coefficients of lift and drag can be obtained. 

Fixample 6.13 Consider a symmetrical double-wedge aerofoil at zero incidence, similar in 
shape to that in Fig. 6.44 above, except that the semi-wedge angle EO = 10". Sketch the wave 
pattern for M ,  = 2.0, calculate the Mach number and pressure on each face of the aerofoil, 
and hence determine Co. Compare the results with those obtained using the linear theory. 
Assume the free-stream stagnation pressure, porn = 1 bar. 

The wave pattern is sketched in Fig. 6.54a. The flow properties in the various regions can be 
obtained using isentropic flow and oblique shock tables.* In region 1 M = M ,  = 2.0 and 
p h  = 1 bar. From the isentropic flow tables pol/pl  = 7.83 leading to p1 = 0.1277 bar. In 
region 2 the oblique shock-wave tables give p2/p1 = 1.7084 (leading to p2 = 0.2182 bar), 
M2 = 1.6395 and shock angle = 39.33". Therefore 

(0.2182/0.1277) - 1 
= 0.253 - - 

0.5 x 1.4 x 22 

e.g. E.L. Houghton and A.E. Brock, Tables for the Compressible Flow of Dry Air, 3rd Edn., Edward 
Arnold, 1975. 
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Oblique shock waves 

M =  2.0 

( a )  

Stand-off bow shock wave 
\ 

Fig. 6.54 

(Using the linear theory, Eqn (6.145) gives 

In order to continue the calculation into region 3 it is first necessary to determine the Prandtl-Meyer 
angle and stagnation pressure in region 2. These can be obtained as follows using the isentropic flow 
tables:p& = 4.516 givingpm = 4.516 x 0.2182 = 0.9853 bar; and Machangle, p~ = 37.57" and 
Prandtl-Meyer angle, v2 = 16.01'. 

Between regions 2 and 3 the flow expands isentropically through 20" so v3 = v2 + 20" = 36.01'. 
From the isentropic flow tables this value of v3 corresponds to M3 = 2.374, p3 = 24.9" and 
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p03/p3 = 14.03. Since the expansion is isentropic po3 = poz = 0.9853 bar so that 
p3 = 0.9853/14.03 = 0.0702 bar. Thus 

= -0.161 (0.0702/0.1277) - 1 
cp3= 0.7 x 22 

(Using the linear theory, Eqn (6.145) gives 

2E -2 x (lO?T/180) c -  = -0.202) p 3 - 4 T 5 T =  d K - i  
There is an oblique shock wave between regions 3 and 4. The oblique shock tables give 
p4/p3 = 1.823 and M4 = 1.976 givingp4 = 1.823 x 0.0702 = 0.128 bar and a shock angle of 33.5". 

The drag per unit span acting on the aerofoil is given by resolving the pressure forces, so that 

so 

CD = (Cpz - Cp3) tan( 100) = 0.0703 
(Using the linear theory, Eqn (6.151) with o = 0 gives 

It can be seen from the calculations above that, although the linear theory does not approx- 
imate the value of C, very accurately, it does yield an accurate estimate of CD. 

When M ,  = 1.3 it can be seen from the oblique shock tables that the maximum compres- 
sion angle is less than 10". This implies that in this case the flow can only negotiate the leading 
edge by being compressed through a shock wave that stands off from the leading edge and is 
normal to the flow where it intersects the extension of the chord line. This leads to a region of 
subsonic flow being formed between the stand-off shock wave and the leading edge. The 
corresponding flow pattern is sketched in Fig. 6.54b. 

A similar procedure to that in Example 6.13 can be followed for aerofoils with curved 
profiles. In this case, though, the procedure becomes approximate because it ignores 
the effect of the Mach waves reflected from the bow shock wave - see Fig. 6.55. The 
so-called shock-expansion approximation is made clearer by the example given below. 

Example 6.14 Consider a biconvex aerofoil at zero incidence in supersonic flow at M ,  = 2, 
similar in shape to that shown in Fig. 6.46 above so that, as before, the shape of the upper 
surface is given by 

y = X E ~  1 - - giving local flow angle e(= E )  = arc tan ( 3  
Bow shock wave 

Reflected Mach wave 

Fig. 6.55 
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Calculate the pressure and Mach number along the surface as functions of x/c for the case of 
EO = 0.2. Compare with the results obtained with linear theory. Take the freestream stagnation 
pressure to be 1 bar. 

Region 1 as in Example 6.13, i.e. M1 = 2.0, pol = 1 bar and p1 = 0.1277 bar 
At x = 0 e = arctan(0.2) = 11.31'. Hence initially the flow is turned by the bow shock 

through an angle of 11.31", so using the oblique shock tables gives p2/p1 = 1.827 and 
M2 = 1.59. Thuspz = 1.827 x 0.1277 = 0.233 bar. From the isentropic flow tables it is found 
that M2 = 1.59 corresponds topo2/p2 = 4.193 givingpo2 = 0.977 bar. 

Thereafter the pressures and Mach numbers around the surface can be obtained using the 
isentropic flow tables as shown in the table below. 

f tan0 

0.0 0.2 
0.1 0.16 
0.2 0.12 
0.3 0.08 
0.5 0.0 
0.7 -0.08 
0.8 -0.12 
0.9 -0.16 
1.0 -0.20 

e 
11.31" 
9.09" 
6.84" 
4.57" 
0.0 

-4.57" 
-6.84" 
-9.09" 

-11.31" 

ne 
0" 
2.22" 
4.47" 
6.74" 

11.31' 
15.88" 
18.15" 
20.40" 
22.62" 

V 

14.54" 
16.76" 
19.01' 
21.28" 
25.85" 
30.42' 
32.69" 
34.94" 
37.16" 

M 

1.59 
1.666 
1.742 
1.820 
1.983 
2.153 
2.240 
2.330 
2.421 

h 
P 

4.193 
4.695 
5.265 
5.930 
7.626 
9.938 

11.385 
13.104 
15.102 

0.233 
0.208 
0.186 
0.165 
0.128 
0.098 
0.086 
0.075 
0.065 

C P  

0.294 
0.225 
0.163 
0.104 
0.0008 

-0.0831 
-0.1166 
-0.1474 
-0.1754 

W P ) l i 7 l  

0.228 
0.183 
0.138 
0.092 
0 

-0.098 
-0.138 
-0.183 
-0.228 

Wings of finite span 

When the component of the free-stream velocity perpendicular to the leading edge is 
greater than the local speed of sound the wing is said to have a supersonic leading 
edge. In this case, as illustrated in Fig. 6.56, there is two-dimensional supersonic flow 
over much of the wing. This flow can be calculated using supersonic aerofoil theory. 
For the rectangular wing shown in Fig. 6.56 the presence of a wing-tip can only be 
communicated within the Mach cone apex which is located at the wing-tip. The same 
consideration would apply to any inboard three-dimensional effects, such as the 
'kink' at the centre-line of a swept-back wing. 

The opposite case is when the component of free-stream velocity perpendicular to 
the leading edge is less than the local speed of sound and the term subsonic leading 
edge is used. A typical example is the swept-back wing shown in Fig. 6.57. In t h i s  case 
the Mach cone generated by the leading edge of the centre section subtends the whole 
wing. This implies that the leading edge of the outboard portions of the wing 
influences the oncoming flow just as for subsonic flow. Wings having finite thickness 
and incidence actually generate a shock cone, rather than a Mach cone, as shown in 

Mach cone Tip effects 

Fig. 6.56 A typical wing with a supersonic leading edge 
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Fig, 6.57 A wing with a subsonic leading edge 

Fig. 6.58 

Fig. 6.58. Additional shocks are generated by other points on the leading edge and 
the associated shock angles will tend to increase because each successive shock wave 
leads to a reduction in the Mach number. These shock waves progressively decelerate 
the flow, so that at some section, such as AA', the flow approaching the leading edge 
will be subsonic. Thus subsonic wing sections would be used over most of the wing. 

Wings with subsonic leading edges have lower wave drag than those with super- 
sonic ones. Consequently highly swept wings, e.g. slender deltas, are the preferred 
configuration at supersonic speeds. On the other hand swept wings with supersonic 
leading edges tend to have a greater wave drag than straight wings. 

Computational methods 

Computational methods for compressible flows, particularly transonic flow over 
wings, have been the subject of a very considerable research effort over the past three 
decades. Substantial progress has been made, although much still remains to be done. 
A discussion of these methods is beyond the scope of the present book, save to note 
that for the linearized compressible potential flow Eqn (6.1 18) panel methods (see 
Sections 3.5, 4.10 and 5.8) have been developed for both subsonic and supersonic 
flow. These can be used to obtain approximate numerical solutions in cases with 
exceedingly complex geometries. A review of the computational methods developed 
for the full inviscid and viscous equations of motion is given by Jameson.* 

*A. Jameson, 'Full-Potential, Euler and Navier-Stokes Schemes', in Applied Computational Aerodynamics, 
Vol. 125 of Prog. in Astronautics and Aeronautics (ed. By P.A. Henne), 39-88 (1990), A I M  New York. 
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Exercises 
1 A convergentdivergent duct has a maximum diameter of 15Omm and a pitot- 
static tube is placed in the throat of the duct. Neglecting the effect of the Pitot-static 
tube on the flow, estimate the throat diameter under the following conditions: 
(i) air at the maximum section is of standard pressure and density, pressure differ- 

(ii) pressure and temperature in the maximum section are 101 300 N m-2 and 100 "C 

(Answer: (i) 123 mm; (ii) 66.5 mm) 

ence across the Pitot-static tube = 127 mm water; 

respectively, pressure difference across Pitot-static tube = 127 mm mercury. 

2 In the wing-flow method of transonic research an aeroplane dives at a Mach 
number of 0.87 at a height where the pressure and temperature are 46 500NmP2 
and -24.6"C respectively. At the position of the model the pressure coefficient is 
-0.5. Calculate the speed, Mach number, 0 . 7 ~  M 2 ,  and the kinematic viscosity of the 
flow past the model. 

(Answer: 344m s-'; M = 1.133; 0.7pM2 = 30 XOON m-2; v = 2.64 x 10-3m2s-') 

3 What would be the indicated air speed and the true air speed of the aeroplane in 
Exercise 2, assuming the air-speed indicator to be calibrated on the assumption of 
incompressible flow in standard conditions, and to have no instrument errors? 

(Answer: TAS = 274m s-l; IAS = 219m s-') 

4 On the basis of Bernoulli's equation, discuss the assumption that the compressi- 
bility of air may be neglected for low subsonic speeds. 

A symmetric aerofoil at zero lift has a maximum velocity which is 10% greater 
than the free-stream velocity. This maximum increases at the rate of 7% of the free- 
stream velocity for each degree of incidence. What is the free-stream velocity at which 
compressibility effects begins to become important (i.e. the error in pressure 
coefficient exceeds 2%) on the aerofoil surface when the incidence is 5"? 

(Answer: Approximately 70m s-') (U of L) 

5 A closed-return type of wind-tunnel of large contraction ratio has air at standard 
conditions of temperature and pressure in the settling chamber upstream of the 
contraction to the working section. Assuming isentropic compressible flow in the 
tunnel estimate the speed in the working section where the Mach number is 0.75. 
Take the ratio of specific heats for air as y = 1.4. (Answer: 242 m s-') (U of L) 



Viscous flow and 
boundary layers* 

7.1 Introduction 
In the other chapters of this book, the effects of viscosity, which is an inherent 
property of any real fluid, have, in the main, been ignored. At first sight, it would 
seem to be a waste of time to study inviscid fluid flow when all practical fluid 

* This chapter is concerned mainly with incompressible flows. However, the general arguments developed 
are also applicable to compressible flows. 
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Effects of viscosity negligible 
in regions not in close proximity 
to the body 
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Fig. 7.1 

problems involve viscous action. The purpose behind this study by engineers dates 
back to the beginning of the previous century (1904) when Prandtl conceived the idea 
of the boundary layer. 

In order to appreciate this concept, consider the flow of a fluid past a body of 
reasonably slender form (Fig. 7.1). In aerodynamics, almost invariably, the fluid 
viscosity is relatively small (i.e. the Reynolds number is high); so that, unless the 
transverse velocity gradients are appreciable, the shearing stresses developed [given 
by Newton’s equation I- = p(au/dy) (see, for example, Section 1.2.6 and Eqn (2.86))] 
will be very small. Studies of flows, such as that indicated in Fig. 7.1, show that the 
transverse velocity gradients are usually negligibly small throughout the flow field 
except for thin layers of fluid immediately adjacent to the solid boundaries. Within 
these boundary layers, however, large shearing velocities are produced with conse- 
quent shearing stresses of appreciable magnitude. 

Consideration of the intermolecular forces between solids and fluids leads to the 
assumption that at the boundary between a solid and a fluid (other than a rarefied 
gas) there is a condition of no slip. In other words, the relative velocity of the fluid 
tangential to the surface is everywhere zero. Since the mainstream velocity at a small 
distance from the surface may be considerable, it is evident that appreciable shearing 
velocity gradients may exist within this boundary region. 

Prandtl pointed out that these boundary layers were usually very thin, provided that 
the body was of streamline form, at a moderate angle of incidence to the flow and that 
the flow Reynolds number was sufficiently large; so that, as a first approximation, their 
presence might be ignored in order to estimate the pressure field produced about the 
body. For aerofoil shapes, this pressure field is, in fact, only slightly modified by the 
boundary-layer flow, since almost the entire lifting force is produced by normal 
pressures at the aerofoil surface, it is possible to develop theories for the evaluation 
of the lift force by consideration of the flow field outside the boundary layers, where 
the flow is essentially inviscid in behaviour. Herein lies the importance of the inviscid 
flow methods considered previously. As has been noted in Section 4.1, however, no 
drag force, other than induced drag, ever results from these theories. The drag force is 
mainly due to shearing stresses at the body surface (see Section 1.5.5) and it is in the 
estimation of these that the study of boundary-layer behaviour is essential. 

The enormous simplification in the study of the whole problem, which follows 
from Prandtl’s boundary-layer concept, is that the equations of viscous motion need 
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be considered only in the limited regions of the boundary layers, where appreciable 
simplifying assumptions can reasonably be made. This was the major single impetus 
to the rapid advance in aerodynamic theory that took place in the first half of the 
twentieth century. However, in spite of this simplification, the prediction of boundary- 
layer behaviour is by no means simple. Modern methods of computational fluid 
dynamics provide powerful tools for predicting boundary-layer behaviour. However, 
these methods are only accessible to specialists; it still remains essential to study 
boundary layers in a more fundamental way to gain insight into their behaviour and 
influence on the flow field as a whole. To begin with, we will consider the general 
physical behaviour of boundary layers. 

7.2 The development of the boundary layer 
For the flow around a body with a sharp leading edge, the boundary layer on any 
surface will grow from zero thickness at the leading edge of the body. For a typical 
aerofoil shape, with a bluff nose, boundary layers will develop on top and bottom 
surfaces from the front stagnation point, but will not have zero thickness there (see 
Section 2.10.3). 

On proceeding downstream along a surface, large shearing gradients and stresses 
will develop adjacent to the surface because of the relatively large velocities in the 
mainstream and the condition of no slip at the surface. This shearing action is 
greatest at the body surface and retards the layers of fluid immediately adjacent to 
the surface. These layers, since they are now moving more slowly than those above 
them, will then influence the latter and so retard them. In this way, as the fluid near 
the surface passes downstream, the retarding action penetrates farther and farther 
away from the surface and the boundary layer of retarded or ‘tired’ fluid grows in 
thickness. 

7.2.1 Velocity profile 
Further thought about the thickening process will make it evident that the increase in 
velocity that takes place along a normal to the surface must be continuous. Let y be 
the perpendicular distance from the surface at any point and let u be the correspond- 
ing velocity parallel to the surface. If u were to increase discontinuously with y at any 
point, then at that point au/ay would be infinite. This would imply an infinite 
shearing stress [since the shear stress T = p(au/dy)] which is obviously untenable. 

Consider again a small element of fluid (Fig. 7.2) of unit depth normal to the flow 
plane, having a unit length in the direction of motion and a thickness Sy normal to 
the flow direction. The shearing stress on the lower face AB will be T = p(au/ay) 
while that on the upper face CD will be T + (a ~ / b y ) S y ,  in the directions shown, 
assuming u to increase with y .  Thus the resultant shearing force in the x-direction will 
be [T + (a ~/dy)Sy] - T = (a ~/dy)Sy  (since the area parallel to the x-direction is unity) 
but T = p(du/dy) so that the net shear force on the element = p(a2u/ay2)6y. Unless p 
be zero, it follows that a2u/ay2 cannot be infinite and therefore the rate of change of 
the velocity gradient in the boundary layer must also be continuous. 

Also shown in Fig. 7.2 are the streamwise pressure forces acting on the fluid 
element. It can be seen that the net pressure force is -(dp/dx)Sx. Actually, owing 
to the very small total thickness of the boundary layer, the pressure hardly varies at 
all normal to the surface. Consequently, the net transverse pressure force is zero to 
a very good approximation and Fig. 7.2 contains all the significant fluid forces. The 
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Fig. 7.2 

effects of streamwise pressure change are discussed in Section 7.2.6 below. At this 
stage it is assumed that aplax = 0. 

If the velocity u is plotted against the distance y it is now clear that a smooth curve 
of the general form shown in Fig. 7.3a must develop (see also Fig. 7.11). Note that at 
the surface the curve is not tangential to the u axis as this would imply an infinite 
gradient au/ay, and therefore an infinite shearing stress, at the surface. It is also 
evident that as the shearing gradient decreases, the retarding action decreases, so that 

U 
-I 

U 

( a  1 ( b )  4 

Fig. 7.3 
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at some distance from the surface, when &lay becomes very small, the shear stress 
becomes negligible, although theoretically a small gradient must exist out to y = m. 

7.2.2 Bou ndary-layer thickness 
In order to make the idea of a boundary layer realistic, an arbitrary decision must be 
made as to its extent and the usual convention is that the boundary layer extends to 
a distance 5 from the surface such that the velocity u at that distance is 99% of the local 
mainstream velocity U, that would exist at the surface in the absence of the boundary 
layer. Thus 6 is the physical thickness of the boundary layer so far as it needs to be 
considered and when defined specifically as above it is usually designated the 99%, or 
general, thickness. Further thickness definitions are given in Section 7.3.2. 

7.2.3 Non-dimensional profile 
In order to compare boundary-layer profiles of different thickness, it is convenient to 
express the profile shape non-dimensionally. This may be done by writing ii = u/U, 
and J = y/S so that the profile shape is given by U = f( 7). Over the range y = 0 to 
y = 5, the velocity parameter ii varies from 0 to 0.99. For convenience when using 
ii values as integration limits, negligible error is introduced by using ii = 1.0 at the 
outer boundary, and considerable arithmetical simplification is achieved. The vel- 
ocity profile is then plotted as in Fig. 7.3b. 

7.2.4 Laminar and turbulent flows 
Closer experimental study of boundary-layer flows discloses that, like flows in pipes, 
there are two different regimes which can exist: laminar flow and turbulent flow. In 
luminarfZow, the layers of fluid slide smoothly over one another and there is little 
interchange of fluid mass between adjacent layers. The shearing tractions that develop 
due to the velocity gradients are thus due entirely to the viscosity of the fluid, i.e. the 
momentum exchanges between adjacent layers are on a molecular scale only. 

In turbulent flow considerable seemingly random motion exists, in the form of 
velocity fluctuations both along the mean direction of flow and perpendicular to it. 
As a result of the latter there are appreciable transports of mass between adjacent 
layers. Owing to these fluctuations the velocity profile varies with time. However, 
a time-averaged, or mean, velocity profile can be defined. As there is a mean velocity 
gradient in the flow, there will be corresponding interchanges of streamwise momen- 
tum between the adjacent layers that will result in shearing stresses between them. 
These shearing stresses may well be of much greater magnitude than those that 
develop as the result of purely viscous action, and the velocity profile shape in 
a turbulent boundary layer is very largely controlled by these Reynolds stresses (see 
Section 7.9), as they are termed. 

As a consequence of the essential differences between laminar and turbulent flow 
shearing stresses, the velocity profiles that exist in the two types of layer are also 
different. Figure 7.4 shows a typical laminar-layer profile and a typical turbulent- 
layer profile plotted to the same non-dimensional scale. These profiles are typical of 
those on a flat plate where there is no streamwise pressure gradient. 

In the laminar boundary layer, energy from the mainstream is transmitted towards 
the slower-moving fluid near the surface through the medium of viscosity alone and 
only a relatively small penetration results. Consequently, an appreciable proportion 
of the boundary-layer flow has a considerably reduced velocity. Throughout the 



378 Aerodynamics for Engineering Students 

Fig. 7.4 

boundary layer, the shearing stress T is given by T = p(aU/dy) and the wall shearing 
stress is thus rw = p(d~/dy),=~ = p(du/dy),(say). 

In the turbulent boundary layer, as has already been noted, large Reynolds stresses 
are set up owing to mass interchanges in a direction perpendicular to the surface, so 
that energy from the mainstream may easily penetrate to fluid layers quite close to 
the surface. This results in the turbulent boundary away from the immediate influ- 
ence of the wall having a velocity that is not much less than that of the mainstream. 
However, in layers that are very close to the surface (at this stage of the discussion 
considered smooth) the velocity fluctuations perpendicular to the wall are evidently 
damped out, so that in a very limited region immediately adjacent to the surface, the 
flow approximates to purely viscous flow. 

In this viscous sublayer the shearing action becomes, once again, purely viscous and 
the velocity falls very sharply, and almost linearly, within it, to zero at the surface. 
Since, at the surface, the wall shearing stress now depends on viscosity only, i.e. 
rw = p(du/dy),, it will be clear that the surface friction stress under a turbulent layer 
will be far greater than that under a laminar layer of the same thickness, since 
(du/dy), is much greater. It should be noted, however, that the viscous shear-stress 
relation is only employed in the viscous sublayer very close to the surface and not 
throughout the turbulent boundary layer. 

It is clear, from the preceding discussion, that the viscous shearing stress at the surface, 
and thus the surface friction stress, depends only on the slope of the velocity profile at the 
surface, whatever the boundary-layer type, so that accurate estimation of the profile, in 
either case, will enable correct predictions of skin-friction drag to be made. 

7.2.5 Growth along a flat surface 
If the boundary layer that develops on the surface of a flat plate held edgeways on to the 
free stream is studied, it is found that, in general, a laminar boundary layer starts to 
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Fig. 7.5 Note: Scale normal to surface of plate is greatly exaggerated 

develop from the leading edge. This laminar boundary layer grows in thickness, in 
accordance with the argument of Section 7.2, from zero at the leading edge to some 
point on the surface where a rapid transition to turbulence occurs (see Fig. 7.29). This 
transition is accompanied by a corresponding rapid thickening of the layer. Beyond this 
transition region, the turbulent boundary layer then continues to thicken steadily as it 
proceeds towards the trailing edge. Because of the greater shear stresses within the 
turbulent boundary layer its thickness is greater than for a laminar one. But, away from 
the immediate vicinity of the transition region, the actual rate of growth along the plate 
is lower for turbulent boundary layers than for laminar ones. At the trailing edge the 
boundary layer joins with the one from the other surface to form a wake of retarded 
velocity which also tends to thicken slowly as it flows away downstream (see Fig. 7.5). 

On a flat plate, the laminar profile has a constant shape at each point along 
the surface, although of course the thickness changes, so that one non-dimensional 
relationship for ii =f(v) is sufficient (see Section 7.3.4). A similar argument applies 
to a reasonable approximation to the turbulent layer. This constancy of profile 
shape means that flat-plate boundary-layer studies enjoy a major simplification and 
much work has been undertaken to study them both theoretically and experimentally. 

However, in most aerodynamic problems, the surface is usually that of a stream- 
line form such as a wing or fuselage. The major difference, affecting the boundary- 
layer flow in these cases, is that the mainstream velocity and hence the pressure in 
a streamwise direction is no longer constant. The effect of a pressure gradient along the 
flow can be discussed purely qualitatively initially in order to ascertain how the 
boundary layer is likely to react. 

7.2.6 Effects of an external pressure gradient 
In the previous section, it was noted that in most practical aerodynamic applications 
the mainstream velocity and pressure change in the streamwise direction. This has 
a profound effect on the development of the boundary layer. It can be seen from 
Fig. 7.2 that the net streamwise force acting on a small fluid element within the 
boundary layer is 

87 ap 
-&y --&x ay ax 

When the pressure decreases (and, correspondingly, the velocity along the edge of 
the boundary layer increases) with passage along the surface the external pressure 
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Fig. 7.6 Effect of external pressure gradient on the velocity profile in the boundary layer 

gradient is said to be favourable. This is because dpldx < 0 so, noting that &-lay < 0, 
it can be seen that the streamwise pressure forces help to counter the effects, dis- 
cussed earlier, of the shearing action and shear stress at the wall. Consequently, the 
flow is not decelerated so markedly at the wall, leading to a fuller velocity profile 
(see Fig. 7.6), and the boundary layer grows more slowly along the surface than for 
a flat plate. 

The converse case is when the pressure increases and mainstream velocity 
decreases along the surface. The external pressure gradient is now said to be 
unfavourable or adverse. This is because the pressure forces now reinforce the effects 
of the shearing action and shear stress at the wall. Consequently, the flow decelerates 
more markedly near the wall and the boundary layer grows more rapidly than in the 
case of the flat plate. Under these circumstances the velocity profile is much less 
full than for a flat plate and develops a point of inflexion (see Fig. 7.6). In fact, as 
indicated in Fig. 7.6, if the adverse pressure gradient is sufficiently strong or pro- 
longed, the flow near the wall is so greatly decelerated that it begins to reverse 
direction. Flow reversal indicates that the boundary layer has separated from the 
surface. Boundary-layer separation can have profound consequences for the whole 
flow field and is discussed in more detail in Section 7.4. 

7.3 The boundary-layer equations 
To fix ideas it is helpful to think about the flow over a flat plate. This is a particularly 
simple flow, although like much else in aerodynamics the more one studies the details 
the less simple it becomes. If we consider the case of infinite Reynolds number, 
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i.e. ignore viscous effects completely, the flow becomes exceedingly simple. The stream- 
lines are everywhere parallel to the flat plate and the velocity uniform and equal to 
U,, the value in the free stream infinitely far from the plate. There would, of course, 
be no drag, since the shear stress at the wall would be equivalently zero. (This is 
a special case of d'Alembert's paradox that states that no force is generated by irrota- 
tional flow around any body irrespective of its shape.) Experiments on flat plates 
would confirm that the potential (i.e. inviscid) flow solution is indeed a good 
approximation at high Reynolds number. It would be found that the higher the 
Reynolds number, the closer the streamlines become to being everywhere parallel 
with the plate. Furthermore, the non-dimensional drag, or drag coefficient (see 
Section 1.4.5), becomes smaller and smaller the higher the Reynolds number 
becomes, indicating that the drag tends to zero as the Reynolds number tends to 
infinity. 

But, even though the drag is very small at high Reynolds number, it is evidently 
important in applications of aerodynamics to estimate its value. So, how may we use 
this excellent infinite-Reynolds-number approximation, i.e. potential flow, to do 
this? Prandtl's boundary-layer concept and theory shows us how this may be 
achieved. In essence, he assumed that the potential flow is a good approximation 
everywhere except in a thin boundary layer adjacent to the surface. Because the 
boundary layer is very thin it hardly affects the flow outside it. Accordingly, it may be 
assumed that the flow velocity at the edge of the boundary layer is given to a good 
approximation by the potential-flow solution for the flow velocity along the surface 
itself. For the flat plate, then, the velocity at the edge of the boundary layer is U,. In 
the more general case of the flow over a streamlined body like the one depicted in 
Fig. 7.1, the velocity at the edge of boundary layer varies and is denoted by U,. 
Prandtl went on to show, as explained below, how the Navier-Stokes equations may 
be simplified for application in this thin boundary layer. 

7.3.1 Derivation of the laminar boundary-layer equations 
At high Reynolds numbers the boundary-layer thickness, 6, can be expected to be 
very small compared with the length, L, of the plate or streamlined body. (In 
aeronautical examples, such as the wing of a large aircraft 6/L is typically around 
0.01 and would be even smaller if the boundary layer were laminar rather than 
turbulent.) We will assume that in the hypothetical case of ReL .+ 00 (where 
ReL = pU,L/p), 6 -+ 0. Thus if we introduce the small parameter 

we would expect that 6 -, 0 BS E .+ 0, so that 

(7.2) 
6 
- x E" 
L 

where n is a positive exponent that is to be determined. 
Suppose that we wished to estimate the magnitude of velocity gradient within the 

laminar boundary layer. By considering the changes across the boundary layer along 
line AB in Fig. 7.7, it is evident that a rough approximation can be obtained by writing 

du u, u, 1 
a y -  6 L E" 
---=-- 



382 Aerodynamics for Engineering Students 

E 
D 

//////////////////////////////, 
B 

Fig. 7.7 

Although this is plainly very rough, it does have the merit of remaining valid as the 
Reynolds number becomes very high. This is recognized by using a special symbol for 
the rough approximation and writing 

For the more general case of a streamlined body (e.g. Fig. 7. I), we use x to denote 
the distance along the surface from the leading edge (strictly from the fore stagnation 
point) and y to be the distance along the local normal to the surface. Since the 
boundary layer is very thin and its thickness much smaller than the local radius of 
curvature of the surface, we can use the Cartesian form, Eqns (2.92aYb) and (2.93), of 
the Navier-Stokes equations. In this more general case, the velocity varies along the 
edge of the boundary layer and we denote it by Ue, so that 

where Ue replaces U,, so that Eqn (7.3) applies to the more general case of 
a boundary layer around a streamlined body. Engineers think of O( Ue/@ as meaning 
order of magnitude of Ue/S or very roughly a similar magnitude to Ue/S. To math- 
ematicans F = 0(1/~") means that F oc lie" as E -+ 0. It should be noted that the 
order-of-magnitude estimate is the same irrespective of whether the term is negative 
or positive. 

Estimating du/ay is fairly straightforward, but what about du/dx? To estimate this 
quantity consider the changes along the line CD in Fig. 7.7. Evidently, u = U, at C 
and u + 0 as D becomes further from the leading edge of the plate. So the total 
change in u is approximately U, - 0 and takes place over a distance Ax N L. Thus 
for the general case where the flow velocity varies along the edge of the boundary 
layer, we deduce that 

dU ue 
dX 
- = (7.4) 

Finally, in order to estimate second derivatives like d2u/dy2, we again consider the 
changes along the vertical line AB in Fig. 7.7. At B the estimate (7.3) holds for du/ay 
whereas at A ,  du/ay N 0. Therefore, the total change in du/dy across the boundary 
layer is approximately (Urn/@ - 0 and occurs over a distance 6. So, making use of 
Eqn (7.1), in the general case we obtain 
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In a similar way we deduce that 

We can now use the order-of-magnitude estimates (7.3)-(7.6) to estimate the order 
of magnitude of each of the terms in the Navier-Stokes equations. We begin with the 
continuity Eqn (2.93) 

If both terms are the same order of magnitude we can deduce from Eqn (7.7) that 

One might question the assumption that two terms are the same order of magnitude. 
But, the slope of the streamlines in the boundary layer is equal to v/u by definition 
and will also be given approximately by 6/L, so Eqn (7.8) is evidently correct. 

We will now use Eqns (7.3)-(7.6) and (7.8) to estimate the orders of magnitude of 
the terms in the Navier-Stokes equations (2.92a,b). We will assume steady flow, 
ignore the body-force terms, and divide throughout by p (noting that the kinematic 
viscosity u = p/p), thus 

Now E = l/ReL is a very small quantity so that a quantity of O(EU~/L) is negligible 
compared with one of O(U:/L). It therefore follows that the second term on the 
right-hand side of Eqn (7.9) can be dropped in comparison with the terms on the left- 
hand side. What about the third term on the right-hand side of Eqn (7.9)? If 2n = 1 it 
will be the same order of magnitude as those on the left-hand side. If 2n < 1 then this 
remaining viscous term will be neghgible compared with the left-hand side. This 
cannot be so, because we know that the viscous effects are not negligible within 
the boundary layer. On the other hand, if 2n > 1 the terms on the left-hand side of 
Eqn (7.9) will be negligible in comparison with the remaining viscous term. So, for 
the flat plate for which ap/ax 0, Eqn (7.9) reduces to 

This can be readily integrated to give 
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Note that, as it is a partial derivative, arbitrary functions of x,f(x) and g(x), take the 
place of constants of integration. In order to satisfy the no-slip condition (u = 0) at 
the surface, y = 0, g(x) = 0, so that u oc y .  Evidently this does not conform to the 
required smooth velocity profile depicted in Figs 7.3 and 7.7. We therefore conclude 
that the only possiblity that fits the physical requirements is 

and Eqn (7.9) simplifies to 

(7.1 1 )  

(7.12) 

It is now plain that all the terms in Eqn (7.10) must be S ( E ' / ~ U ~ / L )  or even smaller 
and are therefore negligibly small compared to the terms retained in Eqn (7.12). We 
therefore conclude that Eqn (7.10) simplifies drastically to 

(7.13) 

In other words, the pressure does not change across the boundary layer. (In fact, this 
could be deduced from the fact that the boundary layer is very thin, so that the 
streamlines are almost parallel with the surface.) This implies that p depends only on 
x and can be determined in advance from the potential-flow solution. Thus Eqn (7.12) 
simplifies further to 

(7.14) 
au au 1 dP $24 

ax ay P dx +v(w) u - + v - =  --- 
+ 

a known function of x 

Equation (7.14) plus (7.7) are usually known as the (Prandtl) boundary-layer 
equations. 

To sum up, then, the velocity profiles within the boundary layer can be obtained as 
follows: 

(i) Determine the potential flow around the body using the methods described in 

(ii) From this potential-flow solution determine the pressure and the velocity along 

(iii) Solve equations (7.7) and (7.14) subject to the boundary conditions 

Chapter 3; 

the surface; 

u = v = O  at y = O ;  u = U ,  at y = S ( o r  co) (7.15) 

The boundary condition, u = 0, is usually referred to as the no-slip condition because 
it implies that the fluid adjacent to the surface must stick to it. Explanations can be 
offered for why this should be so, but fundamentally it is an empirical observation. 
The second boundary condition, v = 0, is referred to as the no-penetration condition 
because it states that fluid cannot pass into the wall. Plainly, it will not hold when the 
surface is porous, as with boundary-layer suction (see Section 8.4.1). The third 
boundary condition (7.15) is applied at the boundary-layer edge where it requires 
the flow velocity to be equal to the potential-flow solution. For the approximate 
methods described in Section 7.7, one usually applies it at y = 6. For accurate 
solutions of the boundary-layer equations, however, no clear edge can be defined; 
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the velocity profie is such that u approaches ever closer to U, the larger y becomes. 
Thus for accurate solutions one usually chooses to apply the boundary condition at 
y = 30, although it is commonly necessary to choose a large finite value of y for 
seeking computational solutions. 

7.3.2 Various definitions of boundary-layer thickness 
In the course of deriving the boundary-layer equations we have shown in Eqn (7.11) 
how the boundary-layer thickness varies with Reynolds number. This is another 
example of obtaining useful practical information from an equation without needing 
to solve it. Its practical use will be illustrated later in Example 7.1. Notwithstanding 
such practical applications, however, we have already seen that the boundary-layer 
thickness is rather an imprecise concept. It is difficult to give it a precise numerical 
value. In order to do so in Section 7.2.2 it was necessary, rather arbitrarily, to identify 
the edge of the boundary layer as corresponding to the point where u = 0.99Ue. 
Partly owing to this rather unsatisfactory vagueness, several more precise definitions 
of boundary-layer thickness are given below. As will become plain, each definition 
also has a useful and significant physical interpretation relating to boundary-layer 
characteristics. 

Displacement thickness (a*) 
Consider the flow past a flat plate (Fig. 7.8a). Owing to the build-up of the boundary 
layer on the plate surface a stream tube that, at the leading edge, is close to the 
surface will become entrained into the boundary layer. As a result the mass flow in 
the streamtube will decrease from pUe, in the main stream, to some value pu, and - to 
satisfy continuity - the tube cross-section will increase. In the two-dimensional flows 
considered here, this means that the widths, normal to the plate surface, of the 
boundary-layer stream tubes will increase, and stream tubes that are in the main- 
stream will be displaced slightly away from the surface. The effect on the mainstream 
flow will then be as if, with no boundary layer present, the solid surface had been 
displaced a small distance into the stream. The amount by which the surface would 
be displaced under such conditions is termed the boundary-layer displacement thick- 
ness (@) and may be calculated as follows, provided the velocity profile =f(F) (see 
Fig. 7.3) is known. 

At station x (Fig. 7.8c), owing to the presence of the boundary layer, the mass flow 
rate is reduced by an amount equal to 

Lm (pue - pu)dy 

corresponding to area OABR. This must equate to the mass flow rate deficiency that 
would occur at uniform density p and velocity Ue through the thickness 6*, corres- 
ponding to area OPQR. Equating these mass flow rate deficiencies gives 

L s ( p U e  - pu)dy pUeF 

i.e. 

s* =i9(1 - 6 ) d Y  (7.16) 
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/ 

( b )  Velocity profile at station x ( c  Mass flow profile at station x 

Fig. 7.8 

The idea of displacement thickness has been put forward here on the basis of 
two-dimensional flow past a flat plate purely so that the concept may be considered 
in its simplest form. The above definition may be used for any incompressible two- 
dimensional boundary layer without restriction and will also be largely true for 
boundary layers over three-dimensional bodies provided the curvature, in planes 
normal to the free-stream direction, is not large, i.e. the local radius of curvature 
should be much greater than the boundary-layer thickness. If the curvature is 
large a displacement thickness may still be defined but the form of Eqn (7.16) will 
be slightly modified. An example of the use of displacement thickness will be found 
later in this chapter (Examples 7.2 and 7.3). 

Similar arguments to those given above will be used below to define other 
boundary-layer thicknesses, using either momentum flow rates or energy flow rates. 
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Momentum thickness (9) 

This is defined in relation to the momentum flow rate within the boundary layer. This 
rate is less than that which would occur if no boundary layer existed, when the 
velocity in the vicinity of the surface, at the station considered, would be equal to the 
mainstream velocity U,. 

For the typical streamtube within the boundary layer (Fig. 7.8b) the rate of 
momentum defect (relative to mainstream) is pu( U, - u)Sy. Note that the mass flow 
rate pu actually within the stream tube must be used here, the momentum defect of 
this mass being the difference between its momentum based on mainstream velocity 
and its actual momentum at position x within the boundary layer. 

The rate of momentum defect for the thickness 8 (the distance through which the 
surface would have to be displaced in order that, with no boundary layer, the total 
flow momentum at the station considered would be the same as that actually 
occurring) is given by pU28. Thus: 

i.e. 

8 = Lx e (1 - e) dy (7.17) 

The momentum thickness concept is used in the calculation of skin friction losses. 

Kinetic energy thickness (S**) 
This quantity is defined with reference to kinetic energies of the fluid in a manner 
comparable with the momentum thickness. The rate of kinetic-energy defect within 
the boundary layer at any station x is given by the difference between the energy that 
the element would have at main-stream velocity U, and that it actually has at velocity u, 
being equal to 

while the rate of kinetic-energy defect in the thickness S** is $pU:S**. Thus 

lx pu( U: - u2)dy = pU:!6"* 

i.e. 

s** = L-$ [I - (;)3dY (7.18) 

7.3.3 Skin friction drag 
The shear stress between adjacent layers of fluid in a laminar flow is given 
by T = p(du/ay) where au/ay is the transverse velocity gradient. Adjacent to the 
solid surface at the base of the boundary layer, the shear stress in the fluid is 
due entirely to viscosity and is given by p(du/ay),. This statement is true for both 
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laminar and turbulent boundary layers because, as discussed in Section 7.2.4, 
a viscous sublayer exists at the surface even if the main boundary-layer flow is 
turbulent. The shear stress in the fluid layer in contact with the surface is essentially 
the same as the shear stress between that layer and the surface so that for all 
boundary layers the shear stress at the wall, due to the presence of the boundary 
layer, is given by 

r w  = P($ )w (7.19) 

where rw is the wall shear stress or surface friction stress, usually known as the skin 
friction. 

Once the velocity profile (laminar or turbulent) of the boundary layer is known, 
then the surface (or skin) friction can be calculated. The skin-friction stress can 
be defined in terms of a non-dimensional local skin-friction coefficient, Cf, as 
follows. 

rw = Cf,PUe 1 2  (7.20) 

Of particular interest is the total skin-friction force I ;  on the surface under 
consideration. This force is obtained by integrating the skin-friction stress over the 
surface. For a two-dimensional flow, the force F per unit width of surface may be 
evaluated, with reference to Fig. 7.9, as follows. The skin-fiction force per unit width 
on an elemental length (Sx) of surface is 

SF = rwSx 

Therefore the total skin-friction force per unit width on length L is 
L F = L  rWdx (7.21) 

The skin-fiction force F may be expressed in terms of a non-dimensional coeffi- 
cient CF, defined by 

(7.22) 
1 

F = C F T ~ U L S ~  

I L .  

Fig. 7.9 
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where S, is the wetted area of the surface under consideration. Similarly for a flat 
plate or aerofoil section, the total skin-friction drag coefficient CD, is defined by 

DF = c~,-pu,S 1 2  (7.23) 

where DF = total skin-friction force on both surfaces resolved in the direction of the 
free stream, and S = plan area of plate or aerofoil. For a flat plate or symmetrical 
aerofoil section, at zero incidence, when the top and bottom surfaces behave identi- 
cally, DF = 2F and S = S, (the wetted area for each surface). Thus 

2 

(7.24) 

When flat-plate flows (at constant pressure) are considered, U, = U,. Except 

Subject to the above condition, use of Eqns (7.20) and (7.22) in Eqn (7.21) leads to 
where a general definition is involved, U, will be used throughout. 

(7.25) 

Equation (7.25) is strictly applicable to a flat plate only, but on a slim aerofoil, for 
which U, does not vary greatly from U, over most of the surface, the expression will 
give a good approximation to CF. 

We have seen in Eqn (7.1 1) how the boundary-layer thickness varies with Reynolds 
number. This result can also be used to show how skin friction and skin-friction drag 
varies with ReL. Using the order-of-magnitude estimate (7.3) it can be seen that 

But, by definition, ReL = pU,L/p, so the above becomes 

(7.26) 

It therefore follows from Eqns (7.20) and (7.25) that the relationships between the 
coefficients of skin-friction and skin-friction drag and Reynolds number are identical 
and given by 

1 
and CD, cc- 

1 
a Cf cx - d E  (7.27) 

Example 7.1 Some engineers wish to obtain a good estimate of the drag and boundary-layer 
thickness at the trailing edge of a miniature wing. The chord and span of the wing are 6mm 
and 30mm respectively. A typical flight speed is 5m/s in air (kinematic viscosity 
= 15 x m2/s, density = 1.2 kg/m3). They decide to make a superscale model with chord and 
span of 150 mm and 750 mm respectively. Measurements on the model in a water channel flowing at 
0.5m/s (kinematic viscosity = 1 x m2/s, density = lo00 kg/m3) gave a drag of 0.19N and a 
boundary-layer thickness of 3 mm. Estimate the corresponding values for the prototype. 

The Reynolds numbers of model and prototype are given by 

= 2000 
0.006 x 5 
15 x 

0'15 0'5 = 75 000 and (Re&, = (ReL) ,  = 1 10-6 
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Evidently, the Reynolds numbers are not the same for model and prototype, so the flows are 
not dynamically similar. But, as a streamlined body is involved, we can use Eqns (7.11) and 
(7.27). From Eqn (7.1 1) 

6 75000 'I2 
= 3 x x (=) = 0.735 mm = 735 pm 

and from Eqn (7.27) 

But Df = i p U 2 S C ~ f .  So, if we assume that skin-friction drag is the dominant type of drag and 
that it scales in the same way as the total drag, the prototype drag is given by 

= 0.00022 N = 220 pN 

7.3.4 Solution of the boundary-layer equations for a flat plate 
There are a few special exact solutions of the boundary-layer equations (7.7) and 
(7.14). The one for the boundary layer in the vicinity of a stagnation point is an exact 
solution of the Navier-Stokes equations and was described in Section 2.10.3. In this 
case, we saw that an exact solution was interpreted as meaning that the governing 
equations are reduced to one or more ordinary differential equations. This same 
interpretation carries over to the boundary-layer equations. The most famous, and 
probably most useful, example is the solution for the boundary layer over a flat plate 
(see Fig. 7.7). This was first derived by one of Prandtl's PhD students, Blasius, in 1908. 

A useful starting point is to introduce the stream function, $, (see Section 2.5 and 
Eqns 2.56a,b) such that 

(7.28a,b) 

This automatically satisfies Eqn (7.7), reducing the boundary-layer equations to a 
single equation (7.14) that takes the form: 

(7.29) 

For the flat plate dpldx = 0. 
Consider the hypothetical case of an infinitely long flat plate. For practical appli- 

cation we can always assume that the boundary layer at a point x = L, say, on an 
infinitely long plate is identical to that at the trailing edge of a flat plate of length 
L. But, if the hypothetical plate is infinitely long, we cannot use its length as a reference 
dimension. In fact, the only length dimension available is vlU,. This strongly 
suggests that the boundary layer at a point X I ,  say, will be identical to that at another 
point x2, except that the boundary-layer thicknesses will differ. Accordingly we 
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propose that, as suggested in Fig. 7.7, the velocity profile does not change shape as the 
boundary layer develops along the plate. That is, we can write 

If we replace L by x in Eqn (7.11) we deduce that 

implying 6 M x1J2 
6 1  
-M- 
x d z  

So that Eqn (7.30) can be written 

Let 

1cI = bflf(rl)  
where b and m will be determined below. 

We now tranform the independent variables 

(7.30) 

(7.31) 

(7.32) 

so that 

=O = a J x ' l L o J p  

From Eqns (7.28a), (7.32) and (7.34) we obtain 

Thus if the form Eqn (7.31) is to hold we must require ab = Uw and m = 1/2, 
therefore 

Substituting Eqn (7.35) into (7.33) gives 

(7.35) 

(7.36) 

(7.37) 
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Likewise, if we replace $ by “lay in Eqn (7.33) and make use of Eqn (7.36), we 
obtain 

Similarly using Eqn (7.34) and (7.36) 

(7.39) 

(7.40) 

We now substitute Eqns (7.36H7.40) into Eqn (7.29) to obtain 

After cancelling like terms, this simplifies to 

Then cancelling common factors and rearranging leads to 

-+-f-=O d3f U, d2f 
dn3 2va2 dn2 

(7.41) 
‘ V ‘  

=1, say 

As suggested, if we wish to obtain the simplest universal (i.e. independent of the 
values of U, and v) form of Eqn (7.41), we should set 

-= urn 1 implying a =  
h a 2  

So that Eqn (7.41) reduces to 

d3f d2f -+f--0; 
d713 d.12 

(7.42) 

(7.43) 

The boundary conditions (7.15) become 

atV=O; f + l  as q+oo (7.44) 
f = - = o  df 

dV 
The ordinary differential equation can be solved numerically for f .  The velocity 

From this solution the various boundary-layer thicknesses given in Section 7.3.2 
profile df /dV thus obtained is plotted in Fig. 7.10 (see also Fig. 7.1 1). 

can be obtained by evaluating the integrals numerically in the forms: 

(7.45) UX 
f50.99 = 5.0dK 
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U I U ,  

Fig. 7.10 

Displacement thickness 

1.7208 

Momentum thickness 

(7.46) 

Energy thickness 

8 = lw& (1 - $)dy = co drl df { 1 - K)’}dq = 1.0444 

The local wall shear stress and hence the skin-friction drag can also be calculated 
readily from function f (q): 

(7.49) 
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Fig. 7.11 Velocity profile in a boundary layer: The velocity profile that forms in a boundary layer along a 
flat wall  is made visible by lines of aluminium powder dropped from a trough on to the flowing fluid 
surface. The fluid is a dilute solution of wallpaper paste in water. The Reynolds number based on distance 
along the wall  is about 50000. See also Fig. 7.3 on page 376. (The photograph was taken by 
D.J. Buckingham at the School of Engineering, University of Exeter, UK.) 

Thus the skin-friction coefficient is given by 

rw(x) 0.664 P U W X  

;PU& d z  P 
where Re, = ~ 

- Cf(X) = - - - (7.50) 

The drag of one side of the plate (spanwise breadth B and length L) is given by 

(7.51) 

Thus combining Eqns (7.49) and (7.51) we find that the drag of one side of the plate is 
given by 

DF = 0 . 3 3 2 p B U m E / L *  =0.664pBUW - = 0.664pBUm& (7.52) 
o f i  

Hence the coefficient of skin-friction drag is given by 

1.328 DF - - 

; ~ U & B L  a C D F  = (7.53) 

Example 7.2 The Blasius solution for the laminar boundary layer over a flat plate will be used to 
estimate the boundary-layer thickness and skin-friction drag for the miniature wing of Example 7.1. 

The Reynolds number based on length ReL = 2000, so according to Eqns (7.45) and (7.46) 
the boundary-layer thicknesses at the trailing edge are given by 

1.7208 
x 0.67 = 0.23 mm = 0.67mm 6* =- 

5 
5.0L 5 x 6 - 

60.99 ~ 

Re;'=- &666 
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Remembering that the wing has two sides, an estimate for its skin-friction drag is given by 

1*328 x 1.2 x 5* x 30 x 6 x = 160pN 
1 DF = 2 x CDF x - ULBL = - 
2 m 

7.3.5 Solution for the general case 
The solution of the boundary-layer equations for the flat plate described in Section 
7.3.4 is a very special case. Although other similarity solutions exist (i.e. cases where 
the boundary-layer equations reduce to an ordinary differential equation), they are 
of limited practical value. In general, it is necessary to solve Eqns (7.7) and (7.14) or, 
equivalently Eqn (7.29), as partial differential equations. 

To fix ideas, consider the flow over an aerofoil, as shown in Fig. 7.12. Note that the 
boundary-layer thickness is greatly exaggerated. The first step is to determine the 
potential flow around the aerofoil. This would be done computationally by using 
the panel method described in Section 3.6 for non-lifting aerofoils or Section 4.10in 
the case where lift is generated. From this solution for the potential flow the velocity 
Cre along the surface of the aerofoil can be determined. This will be assumed to be the 
velocity at the edge of the boundary layer. The location of the fore stagnation point 
F can also be determined from the solution for U,. Plainly it corresponds to U, = 0. 
(For the non-lifting case of a symmetric aerofoil at zero angle of attack the location 
of the fore stagnation point will be known in advance from symmetry). This point 
corresponds to x = 0. And the development of the boundary layers over the top and 
bottom of the aerofoil have to be calculated separately, unless they are identical, as in 
symmetric aerofoils at zero incidence. 

Mathematically, the boundary-layer equations are parabolic. This means that their 
solution (i.e. the boundary-layer velocity profile) at an arbitrary point PI, say, (where 
x = XI) on the aerofoil depends only on the solutions upstream, i.e. at x < XI. This 
property allows special efficient numerical methods to be used whereby one begins 
with the solution at the fore stagnation point and marches step by step around the 
aerofoil, solving the boundary-layer equations at each value of x in turn. This is very 
much easier than solving the Navier-Stokes equations that in subsonic steady flow 
are elliptic equations like the Laplace equation. The term elliptic implies that the 
solution (i.e. the velocity field) at a particular point depends on the solutions at all 
other points. For elliptic equations the flow field upstream does depend on condi- 
tions downstream. How else would the flow approaching the aerofoil sense its 
presence and begin gradually to deflect from uniform flow in order to flow smoothly 

Fig. 7.12 The boundary layer developing around an aerofoil 
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around the aerofoil? Nevertheless, numerical solution of the boundary-layer 
equations is not particularly simple. In order to avoid numerical instability, so-called 
implicit methods are usually required. These are largely beyond the scope of the 
present book, but are described in a simple treatment given below in Section 7.11.3. 

For aerofoils and other bodies with rounded leading edges, the stagnation flow 
field determined in Section 2.10.3 gives the initial boundary-layer velocity profile in 
the vicinity of x = 0. The velocity U, along the edge of the boundary layer increases 
rapidly away from the fore stagnation point, F.  The evolving velocity profile in the 
boundary layer is found by solving the boundary-layer equations step by step by 
‘marching’ around the surface of the aerofoil. At some point U, will reach a max- 
imum at the point of minimum pressure. From this point onwards the pressure 
gradient along the surface will change sign to become adverse and begin to slow 
down the boundary-layer flow (as explained above in Section 7.2.6 and below in 
Section 7.4). A point of inflexion develops in the velocity profile (e.g. at point P2 in 
Fig. 7.12, see also Fig. 7.6) that moves towards the wall as x increases. Eventually, the 
inflexion point reaches the wall itself, the shear stress at the wall falls to zero, reverse 
flow occurs (see Fig. 7.6), and the boundary layer separates from the surface of the 
aerofoil at point S. The boundary-layer equations cease to be valid just before 
separation (where rw = p(du/ay), = 0) and the calculation is terminated. 

Overall the same procedures are involved when using the approximate methods 
described in Section 7.1 1 below. There a more detailed account of the computation of 
the boundary layer around an aerofoil will be presented. 

The behaviour of a boundary layer in a positive pressure gradient, i.e. pressure 
increasing with distance downstream, may be considered with reference to Fig. 7.13. 
This shows a length of surface that has a gradual but steady convex curvature, such 
as the surface of an aerofoil beyond the point of maximum thickness. In such a flow 
region, because of the retardation of the mainstream flow, the pressure in the main- 
stream will rise (Bernoulli’s equation). The variation in pressure along a normal to 
the surface through the boundary-layer thickness is essentially zero, so that the 
pressure at any point in the mainstream, adjacent to the edge of the boundary layer, 
is transmitted unaltered through the layer to the surface. In the light of this, consider 
the small element of fluid (Fig. 7.13) marked ABCD. On face AC, the pressure is p ,  
while on face BD the pressure has increased to p + (dp/ax)Sx. Thus the net pressure 
force on the element is tending to retard the flow. This retarding force is in addition 
to the viscous shears that act along AB and CD and it will continuously slow the 
element down as it progresses downstream. 

This slowing-down effect will be more pronounced near the surface where the 
elements are more remote from the accelerating effect, via shearing actions, of the 
mainstream, so that successive profile shapes in the streamwise direction will change 
in the manner shown. 

Ultimately, at a point S on the surface, the velocity gradient (du/dy),  becomes 
zero. Apart from the change in shape of the profile it is evident that the boundary 
layer must thicken rapidly under these conditions, in order to satisfy continuity 
within the boundary layer. Downstream of point S, the flow adjacent to the 
surface will be in an upstream direction, so that a circulatory movement, in 
a plane normal to the surface, takes place near the surface. A line (shown dotted 
in Fig. 7.13) may be drawn from the point S such that the mass flow above this 
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line corresponds to the mass flow ahead of point S .  The line represents the 
continuation of the lower surface of the upstream boundary layer, so that, in 
effect, the original boundary layer separates from the surface at point S .  This is 
termed the separation point. 

Reference to the velocity profiles for laminar and turbulent layers (Fig. 7.4) will 
make it clear that, owing to the greater extent of lower-energy fluid near the 
surface in the laminar boundary layer, the effect of a positive pressure gradient 
will cause separation of the flow much more rapidly than if the flow were 
turbulent. A turbulent boundary layer is said to stick to the surface better than 
a laminar one. 

The result of separation on the rear half of an aerofoil is to increase the thickness 
of the wake flow, with a consequent reduction in the pressure rise that should occur 
near the trailing edge. This pressure rise means that the forward-acting pressure force 
components on the rear part of the aerofoil do not develop to offset the rearward- 
acting pressures near the front stagnation point, in consequence the pressure drag of 
the aerofoil increases. In fact, if there were no boundary layers, there would be 
a stagnation point at the trailing edge and the boundary-1ayer.pressure drag, as well 
as the skin-friction drag, would be zero. If the aerofoil incidence is sufficiently large, 
the separation may take place not far downstream of the maximum suction point, 
and a very large wake will develop. This will cause such a marked redistribution of 
the flow over the aerofoil that the large area of low pressure near the upper-surface 
leading edge is seriously reduced, with the result that the lift force is also greatly 
reduced. This condition is referred to as the stall. A negative pressure gradient will 
obviously have the reverse effect, since the streamwise pressure forces will cause 
energy to be added to the slower-moving air near the surface, decreasing any 
tendency for the layer adjacent to the surface to come to rest. 
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7.4.1 Separation bubbles 
On many aerofoils with relatively large upper-surface curvatures, high local curva- 
ture over the forward part of the chord may initiate a laminar separation when the 
aerofoil is at quite a moderate angle of incidence (Fig. 7.14). 

Small disturbances grow much more readily and at low Reynolds numbers in 
separated, as compared to attached, boundary layers. Consequently, the separated 
laminar boundary layer may well undergo transition to turbulence with characteristic 
rapid thickening. This rapid thickening may be sufficient for the lower edge of the, 
now-turbulent, shear layer to come back into contact with the surface and re-attach 
as a turbulent boundary layer on the surface. In this way, a bubble of fluid is trapped 
under the separated shear layer between the separation and re-attachment points. 
Within the bubble, the boundary of which is usually taken to be the streamline that 
leaves the surface at the separation point, two regimes exist. In the upstream region 
a pocket of stagnant fluid at constant pressure extends back some way and behind 
this a circulatory motion develops as shown in Fig. 7.14, the pressure in this latter 
region increasing rapidly towards the re-attachment point. 

Two distinct types of bubble are observed to occur: 

(0 

(ii) 

a short bubble of the order of 1 per cent of the chord in length (or 100 separation- 
point displacement thicknesses*) that exerts negligible effect on the peak suction 
value just ahead of the bubble. 
a long bubble that may be of almost any length from a few per cent of the chord 
(10 000 separation displacement thicknesses) up to almost the entire chord, which 
exerts a large effect on the value of the peak suction near the aerofoil leading 
edge. 

It has been found that a useful criterion, as to whether a short or long bubble is 
formed, is the value at the separation point of the displacement-thickness Reynolds 
number Rep = Ues*/v. If Rep < 400 then a long bubble will almost certainly form, 

Transition region (at maximum bubble height) 

Laminar 
separation 
profile 

Laminar separation point 

Fig. 7.14 

*Displacement thickness s* is defined in Section 7.3.2. 
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while for values >550 a short bubble is almost certain. In between these values either 
type may occur. This is the Owen-Klanfer* criterion. 

Short bubbles exert very little influence on the pressure distribution over the 
aerofoil surface and remain small, with increasing incidence, right up to the stall. 
They will, in general, move slowly forward along the upper surface as incidence is 
increased. The final stall may be caused by forward movement of the rear turbulent 
separation point (trailing-edge stall) or by breakdown of the small bubble at 
the leading edge owing to failure, at high incidence, of the separated shear flow to 
re-attach (leading-edge stall). 

If a long bubble forms at moderate incidence, its length wili rapidly increase with 
increasing incidence, causing a continuous reduction of the leading-edge suction 
peak. The bubble may ultimately extend right to the trailing edge or even into the 
wake downstream, and this condition results in a low lift coefficient and effective 
stalling of the aerofoil. This type of progressive stall usually occurs with thin aerofoils 
and is often referred to as thin-aerofoil stall. There are thus three alternative mechan- 
isms that may produce subsonic stalling of aerofoil sections. 

7.5 Flow past cylinders and spheres 
Some of the properties of boundary layers discussed above help in the explanation of 
the behaviour, under certain conditions, of a cylinder or sphere immersed in 
a uniform free stream. So far discussion has been restricted to the flow over 
bodies of reasonably streamline form, behind which a relatively thin wake is formed. 
In such cases, the drag forces are largely due to surface friction, i.e. to shear stresses 
at the base of the boundary layer. When dealing with non-streamlined or 
bluff bodies, it is found that, because of the adverse effect of a positive pressure 
gradient on the boundary layer, the flow usually separates somewhere near points at 
the maximum cross-section, with the formation of a broad wake. As a result, the 
skin-friction drag is only small, and the major part of the total drag now consists of 
form drag due to the large area at the rear of the body acted upon by a reduced 
pressure in the wake region. Experimental observation of the flow past a sphere or 
cylinder indicates that the drag of the body is markedly influenced by the cross- 
sectional area of the wake, a broad wake being accompanied by a relatively high drag 
and vice versa. 

The way in which the flow pattern around a bluff body can change dramatically as 
the Reynolds number is varied may be considered with reference to the flow past 
a circular cylinder. For the most part the flow past a sphere also behaves in a similar 
way. At very low Reynolds number,+ i.e. less than unity, the flow behaves as if it were 
purely viscous with negligible inertia. Such flow is known as creeping or Stokes flow. 
For such flows there are no boundary layers and the effects of viscosity extend an 
infinite distance from the body. The streamlines are completely symmetrical fore and 
aft, as depicted in Fig. 7.15a. In appearance the streamline pattern is superficially 
similar to that for potential flow. For creeping flow, however, the influence of 
the cylinder on the streamlines extend to much greater distances than for potential 
flow. Skin-friction drag is the only force generated by the fluid flow on the cylinder. 
Consequently, the body with the lowest drag for a fixed volume is the sphere. 

* P.R. Owen and L. Klanfer, RAE Reports Aero., 2508, 1953. 

viscosity in the free stream and D is the cylinder diameter. 
Reynolds number here is defined as U,D/v, where U ,  is the free stream velocity, v is the kinematic 
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Perhaps, it is for this reason that microscopic swimmers such as protozoa, bacteria 
and spermatazoa tend to be near-spherical. In the range 1 < Re < 5 ,  the streamline 
pattern remains fairly similar to that of Fig. 7.15a, except that as Re is increased 
within this range a more and more pronounced asymmetry develops between the fore 
and aft directions. Nevertheless, the flow remains attached. 

When Re exceeds a value of about 5, a much more profound change in the flow 
pattern occurs. The flow separates from the cylinder surface to form a closed wake of 
recirculating flow - see Fig. 7.15b. The wake grows progressively in length as Re is 
increased from 5 up to about 41. The flow pattern is symmetrical about the hori- 
zontal axis and is steady, i.e. it does not change with time. At these comparatively low 
Reynolds numbers the effects of viscosity still extend a considerable distance from 
the surface, so it is not valid to use the concept of the boundary layer, nevertheless the 
explanation for flow separation occurring is substantially the same as that given in 
Section 7.4. 

When Re exceeds a value of about 41 another profound change occurs; steady flow 
becomes impossible. In some respects what happens is similar to the early stages of 
laminar-turbulent transition (see Section 7.9), in that the steady recirculating wake 
flow, seen in Fig. 7.15b, becomes unstable to small disturbances. In this case, though, 
the small disturbances develop as vortices rather than waves. Also in this case, the 
small disturbances do not develop into turbulent flow, but rather a steady laminar 
wake develops into an unsteady, but stable, laminar wake. The vortices are generated 

Fig. 7.16 The wake of a circular cylinder at ReD N 5000: Vortices are formed when flow passes over 
circular cylinders for a wide range of Reynolds numbers - see Fig. 7.15 on page 400. The flow is from left 
to right. The Reynolds number is sufficiently large for a thin laminar boundary layer to form over the 
upstream surface of the cylinder. It separates at a point just ahead of maximum thickness and breaks up 
into a turbulent wake which is dominated by large-scale vortices. Flow visualization is obtained by using 
aluminium particle tracers on water flow. (The photograph was taken by D.J. Buckingham at the School of 
Engineering, University of Exeter, UK) 
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periodically on alternate sides of the horizontal axis through the wake and the centre 
of the cylinder. In this way, a row of vortices are formed, similar to that shown in 
Fig. 7.17~. The vortex row persists for a very considerable distance downstream. This 
phenomenon was first explained theoretically by von KBrmLn in the first decade of 
the twentieth century. 

For Reynolds numbers between just above 40 and about 100 the vortex street 
develops from amplified disturbances in the wake. However, as the Reynolds number 
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beginning to form 

Circulation about cylinder 
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Fig. 7.17 
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rises an identifiable thin boundary layer begins to form on the cylinder surface and 
the disturbance develops increasingly closer to the cylinder. Finally, above about 
Re = 100 eddies are shed alternately from the laminar separation points on either 
side of the cylinder (see Fig. 7.16). Thus, a vortex will be generated in the regon 
behind the separation point on one side, while a corresponding vortex on the other 
side will break away from the cylinder and move downstream in the wake. When the 
attached vortex reaches a particular strength, it will in turn break away and a new 
vortex will begin to develop again on the second side and so on. 

The wake thus consists of a procession of equal-strength vortices, equally spaced 
but alternating in sign. This type of wake, which can occur behind all long cylinders 
of bluff cross-section, including flat plates normal to the flow direction, is termed 
a von Khrmhn vortex street or trail (see Fig. 7.17a). In a uniform stream flowing past 
a cylinder the vortices move downstream at a speed somewhat less than the free- 
stream velocity, the reduction in speed being inversely proportional to the streamwise 
distance separating alternate vortices. 

It will be appreciated that, during the formation of any single vortex while it is 
bound to the cylinder, an increasing circulation will exist about the cylinder, with the 
consequent generation of a transverse (lift) force. With the development of 
each successive vortex this force will change sign, giving rise to an alternating 
transverse force on the cylinder at the same frequency as the vortex shedding. If the 
frequency happens to coincide with the natural frequency of oscillation of the 
cylinder, however it may be supported, then appreciable vibration may be caused. 
This phenomenon is responsible, for example, for the singing of telegraph wires in the 
wind (Aeolian tones). 

A unique relationship is found to exist between the Reynolds number and 
a dimensionless parameter involving the shedding frequency. This parameter, known 
as the Strouhal number, is defined by the expression S = n D / U , ,  where n is the 
frequency of vortex shedding. Figure 7.17b shows the typical variation of S with Re 
in the vortex street range. 

Despite the many other changes, described below, which occur in the flow pattern 
as Re increases still further, markedly periodic vortex shedding remains a character- 
istic flow around the circular cylinder and other bluff bodies up to the highest 
Reynolds numbers. This phenomenon can have important consequences in engineer- 
ing applications. An example was the Tacoma Narrows Bridge (in Washington State, 
U.S.A.) A natural frequency of the bridge deck was close to its shedding frequency 
causing resonant behaviour in moderate winds, although its collapse in 1940 was due 
to torsional aeroelastic instability excited by stronger winds. 

For two ranges of Reynolds number, namely 200 < R e  <400 and 
3 x lo5 < Re < 3 x IO6, the regularity of vortex shedding is greatly diminished. In 
the former range very considerable scatter occurs in values of Strouhal number, while 
for the latter range all periodicity disappears except very close to the cylinder. The 
values of Reynolds number marking the limits of these two ranges are associated with 
pronounced changes in the flow pattern. In the case of Re N 400 and 3 x lo6 the 
transitions in flow pattern are such as to restore periodicity. 

Below Re 11 200 the vortex street persists to great distances downstream. Above 
this Reynolds number, transition to turbulent flow occurs in the wake thereby 
destroying the periodic vortex wake far downstream. At this Reynolds number the 
vortex street also becomes unstable to three-dimensional disturbances leading to 
greater irregularity. 

At Re N 400 a further change occurs. Transition to turbulence now occurs close to 
the separation points on the cylinder. Rather curiously, perhaps, this has a stabilizing 
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Fig. 7.18 Flow past a sphere: In both cases the f low is from left t o  right. ReD = 1 5  000 for (a) which 
uses dye in water to show a laminar boundary layer separating ahead of the equator and remaining laminar 
for almost one radius before becoming turbulent. This case corresponds to Fig. 7.15d on page 400. Air 
bubbles in water provide the f low visualization in (b). For this case ReD = 30000 and a wire hoop on the 
downstream surface trips the boundary layer ensuring that transition occurs in the separation bubble 
leading to reattachment and a final turbulent separation much further rearward. This case corresponds to 
Fig. 7.15e on page 400. The much reduced wake in (b) as compared wi th  (a) leads to  a dramatically reduced 
drag. The use of a wire hoop to promote transition artificially produces the drag reduction at  a much lower 
Reynolds number than for the smooth sphere. (The photographs were taken by H. Werle at ONERA, France.) 
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effect on the shedding frequency even though the vortices themselves develop con- 
siderable irregular fluctuations. This pattern with laminar boundary-layer separation 
and a turbulent vortex wake persists until Re ci 3 x lo5, and is illustrated in Figs 
7.15d and 7.16. Note that with laminar separation the flow separates at points on the 
front half of the cylinder, thereby forming a large wake and producing a high-level of 
form drag. In this case, the contribution of skin-friction drag is all but negligible. 

When the Reynolds number reaches a value in the vicinity of 3 x lo5 the laminar 
boundary layer undergoes transition to turbulence almost immediately after separ- 
ation. The increased mixing re-energizes the separated flow causing it to reattach as 
a turbulent boundary layer, thereby forming a separation bubble (as described in 
Section 7.4.1) - see Figs 7.15e and 7.18. 

At this critical stage the second and final point of separation, which now takes 
place in a turbulent layer, moves suddenly downstream, because of the better sticking 
property of the turbulent layer, and the wake width is very appreciably decreased. 
This stage is therefore accompanied by a sudden decrease in the total drag of the 
cylinder. For this reason the value of Re at which this transition in flow pattern 
occurs is often called the Critical Reynolds number. The wake vorticity remains 
random with no clearly discernible frequency. With further increase in Reynolds 
number the wake width will gradually increase to begin with, as the turbulent 
separation points slowly move upstream round the rear surface. The total drag 
continues to increase steadily in this stage, due to increases in both pressure and 
skin-friction drag, although the drag coefficient, defined by 

drag per unit span 
7 pcx: ULD 

c D =  1 

tends to become constant, at about 0.6, for values of Re > 1.3 x lo6. The final 
change in the flow pattern occurs at Re 21 3 x lo6 when the separation bubble 
disappears, see Fig. 7.15f. T h s  transition has a stabilizing effect on the shedding 
frequency which becomes discernible again. CD rises slowly as the Reynolds number 
increases beyond 3 x lo6. 

The actual value of the Reynolds number at the critical stage when the dramatic 
drag decrease occurs depends, for a smooth cylinder, on the small-scale turbulence 
level existing in the oncoming free stream (see Fig. 7.18). Increased turbulence, or, 
alternatively, increased surface roughness, will provoke turbulent reattachment, with 
its accompanying drag decrease, at a lower Reynolds number. The behaviour of 
a smooth sphere under similarly varying conditions exhibits the same characteristics 
as the cylinder, although the Reynolds numbers corresponding to the changes of flow 
regime are somewhat different. One marked difference in behaviour is that the 
eddying vortex street, typical of bluff cylinders, does not develop in so regular 
a fashion behind a sphere. Graphs showing the variations of drag coefficient with 
Reynolds number for circular cylinders and spheres are given in Fig. 7.19. 

7.5.1 Turbulence spheres 
The effect of free-stream turbulence on the Reynolds number at which the critical drag 
decrease occurs was widely used many years ago to ascertain the turbulence level in the 
airstream of a wind-tunnel working section. In t h s  application, a smooth sphere is 
mounted in the working section and its drag, for a range of tunnel speeds, is read off on 
the drag balance. The speed, and hence the Reynolds number, at which the drag 
suddenly decreases is recorded. Experiments in air of virtually zero small-scale 
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Fig. 7.19 Approximate values of CD with Re for spheres and circular cylinders 

turbulence have indicated that the highest critical sphere Reynolds number attainable is 
385 000. A turbulence factor, for the tunnel under test, is then defined as the ratio of 
385 000 to the critical Reynolds number of the test tunnel. 

A major difficulty in this application is the necessity for extreme accuracy in 
the manufacture of the sphere, as small variations from the true spherical shape 
can cause appreciable differences in the behaviour at the critical stage. As a result, 
this technique for turbulence measurement is not now in favour, and more recent 
methods, such as hot-wire anemometry, took its place some time ago. 

7.5.2 Golf balls 
In the early days of the sport, golf balls were made with a smooth surface. It was soon 
realized, however, that when the surface became worn the ball travelled farther when 
driven, and subsequently golf balls were manufactured with a dimpled surface to 
simulate the worn surface. The reason for the increase in driven distance with the 
rough surface is as follows. 

The diameter of a golf ball is about 42 mm, which gives a critical velocity in air, for 
a smooth ball, of just over 135ms-1 (corresponding to Re = 3.85 x lo5). This is 
much higher than the average flight speed of a driven ball. In practice, the critical 
speed would be somewhat lower than this owing to imperfections in manufacture, 
but it would still be higher than the usual flight speed. With a rough surface, 
promoting early transition, the critical Reynolds number may be as low as lo5, giving 
a critical speed for a golf ball of about 35 m scl  , which is well below the flight speed. 
Thus, with the roughened surface, the ball travels at above the critical drag speed 
during its flight and so experiences a smaller decelerating force throughout, with 
consequent increase in range. 
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7.5.3 Cricket balls 
The art of the seam bowler in cricket is also explainable with reference to boundary- 
layer transition and separation. The bowling technique is to align the seam at a small 
angle to the flight path (see Fig. 7.20). This is done by spinning the ball about an axis 
perpendicular to the plane of the seam, and using the gyroscopic inertia to stabilize this 
seam position during the trajectory. On the side of the front stagnation point where the 
boundary layer passes over the seam, it is induced to become turbulent before reaching 
the point of laminar separation. On this side, the boundary layer remains attached to 
a greater angle from the fore stagnation point than it does on the other side where no 
seam is present to trip the boundary layer. The flow past the ball thus becomes 
asymmetric with a larger area of low pressure on the turbulent side, producing a lateral 
force tending to move the ball in a direction normal to its flight path. The range of flight 
speeds over which this phenomenon'can be used corresponds to those of the medium to 
medium-fast pace bowler. The diameter of a cricket ball is between 71 and 72.5 mm. In 
air, the critical speed for a smooth ball would be about 75 m s-I. However, in practice it 
is found that transition to turbulence for the seam-free side occurs at speeds in the 
region of 30 to 35 m s-l, because of inaccuracies in the spherical shape and minor 
surface irregularities. The critical speed for a rough ball with early transition (Re M lo5) 
is about 20m s-l and below this speed the flow asymmetry tends to disappear because 
laminar separation occurs before the transition, even on the seam side. 

Thus within the speed range 20 io about 30 m s-l , very approximately, the ball may 
be made to swing by the skilful bowler. The very fast bowler will produce a flight 
speed in excess of the upper critical and no swing will be possible. A bowler may 
make the ball swing late by bowling at a speed just too high for the asymmetric 
condition to exist, so that as the ball loses speed in flight the asymmetry will develop 
later in the trajectory. It is obvious that considerable skill and experience is required 
to know at just what speed the delivery must be made to do this. 

It will also be realized that the surface condition, apart from the seam, will affect 
the possibility of swinging the ball, e.g. a new, smooth-surfaced ball will tend to 
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maintain laminar layers up to separation even on the seam side, while a badly worn 
ball will tend to induce turbulence on the side remote from the seam. The slightly 
worn ball is best, especially if one side can be kept reasonably polished to help 
maintain flow on that side only. 

. * * *  . * 

7.6 The 'momentum integral equation 
The accurate evaluation of most of the quantities defined above in Sections 7.3.2 and 
7.3.3 requires the numerical solution of the differential equations of motion. This will 
be discussed in Section 7.11. Here an integral form of the equations of motion is 
derived that allows practical solutions to be found fairly readily for certain engineer- 
ing problems. 

The required momentum integral equation is derived by considering mass and 
momentum balances on a thin slice of boundary layer of length ax. This slice is 
illustrated in Fig. 7.21. Remember that in general, quantities vary with x, Le. along 
the surface; so it follows from elementary differential calculus that the value of 
a quantityf, say, on CD (where the distance from the origin is x + Sx) is related to 
its value on AB (where the distance from the origin is x) in the following way: 

f(x+Sx) -f(x) +-SX df 
dx 

(7.54) 

First the conservation of mass for an elemental slice of boundary layer will be 
considered, see Fig. 7.21b. Since the density is assumed to be constant the mass flow 
balance for slice ABCD states, in words, that 
Volumetric flow rate into the slice across AB =Volumetric flow rate out across CD 

+Volumetric flow rate out across AD 
+Volumetric flow rate out across BC 

The last item in the volumetric flow balance allows for the possibility of flow due 
to suction passing through a porous wall. In the usual case of an impermeable wall 
Vs = 0. Expressed mathematically this equation becomes 

v, Sx (7.55) 
v Qi = v 

across AB - - across BC across CD across AD 

Note that Eqn (7.54) has been used, Qi replacing f where 
6 

udy 
0 

Cancelling common factors, rearranging Eqn (7.55) and taking the limit Sx -+ dx 
leads to an expression for the perpendicular velocity component at the edge of the 
boundary layer, i.e. 

The definition of displacement thickness, Eqn (7.16), is now introduced to give 

d 
dx 

Ve = - - (S* Ue)  - Vs (7.56) 
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Fig. 7.21 Mass and momentum balances on a thin slice of boundary layer 

The y-momentum balance for the slice ABCD of boundary layer is now consid- 
ered. This is illustrated in Fig. 7.21~. In this case, noting that the y-component of 
momentum can be carried by the flow across side AD only and that the only force in 
the y direction is pressure,* the momentum theorem states that the 

* The force of gravity is usually ignored in aerodynamics. 
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Rate at which y-component 
of momentum crosses AD = acting on the slice ABCD 

The net pressure force in the y direction 

Or in mathematical terms 

PV,2SX = (Pw - Pl)SX 

Pw -P1 = Pv: 

Thus cancelling the common factor Sx leads to 

It can readily be shown from this result that the net pressure difference across the 
boundary layer is negligible, i.e. pw N p1, as it should be according to boundary-layer 
theory. For simplicity the case of the boundary layer along an impermeable flat plate 
when U, = U,(=const.) and V, = 0 is considered, so that from Eqn (7.56) 

It must be remembered, however, that the boundary layer is very thin compared with 
the length of the plate thus dS*/dx << 1, so that its square is negligibly small. This 
argument can be readily extended to the more general case where U, varies along the 
edge of the boundary layer. Thus it can be demonstrated that the assumption of a thin 
boundary layer implies that the pressure does not vary appreciably across the boundary 
layer. This is one of the major features of boundary-layer theory (see Section 7.3.1). It 
also implies that within the boundary layer the pressure p is a function of x only. 

Finally, the x-momentum balance for the slice ABCD is considered. This case is 
more complex since there are both pressure and surface friction forces to be con- 
sidered, and furthermore the x component of momentum may be carried across AB, 
CD and AD. The forces involved are depicted in Fig. 7.21d while the momentum 
fluxes are shown in Fig. 7.21e. In this case, the momentum theorem states that 

Rate at which Rate at which Net pressure force Surface friction 
momentum leaves) - (momentum enters) = ( in x direction acting )-( for;;acc ) 

across CD and AD across AB on ABCD 

Using Eqn (7.54) this can be expressed mathematically as: 
dMin dS 

Mi, + -+ PVeUeSx - ~U:--SX -Mi, dx dx v - -in across AB out across CD out across AD 

(7.57) 

where 

After cancelling common factors, taking the limit 6x -, dx and simplification Eqn 
(7.57) becomes 

J6pu2dy-pu:-+pueve= dS - s - - - ~  dP 
dx 0 dx dx (7.58) 
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The Bernoulli equation can be used at the edge of the boundary layer so that 

dP d ue - = - p ~ , - - -  dx dx p + p ~ :  = const.: 

After substituting Eqn (7.56) for V,, introducing the definition, Eqn (7.17), of 
momentum thickness and using the result given above, Eqn (7.58) reduces to 

(7.59) 

This is the momentum integral equation first derived by von Kh-mi,. Since no 
assumption is made at this stage about the relationship between T~ and the velocity 
gradient at the wall, the momentum integral equation applies equally well to laminar 
or turbulent flow. 

When suitable forms are chosen for the velocity profile the momentum integral 
equation can be solved to provide the variations of 6, P ,  6 and Cf along the surface. 
A suitable approximate form for the velocity profile in the laminar boundary layer is 
derived in Section 7.6.1. In order to solve Eqn (7.59) in the turbulent case additional 
semi-empirical relationships must be introduced. In the simple case of the flat plate 
the solution to Eqn (7.59) can be found in closed form, as shown in Section 7.7. In the 
general case with a non-zero pressure gradient it is necessary to resort to computa- 
tional methods to solve Eqn (7.59). Such methods are discussed in Section 7.11. 

7.6.1 An approximate velocity profile for the laminar 
boundary layer 

As explained in the previous subsection an approximate expression is required for the 
velocity profile in order to use the momentum integral equation. A reasonably 
accurate approximation can be obtained by using a cubic polynomial in the form: 

i i ( ~  u/Ue)  = a + bJ + + dJ3 (7.60) 
where J = y/6. In order to evaluate the coefficients a, b, c and d four conditions are 
required, two at S; = 0 and two at S; = 1. Two of these conditions are readily avail- 
able, namely 

U = O  at S ; = O  (7.6 1 a) 
U = l  at J = 1  (7.6 1 b) 

In real boundary-layer velocity profiles - see Fig. 7.10 - the velocity varies smoothly 
to reach U,; there is no kink at the edge of the boundary layer. Accordingly, it 
follows that the velocity gradient is zero at y = 6 giving a third condition, namely 

dii 
- = O  at J = l  
dS; 

(7.6 1 c) 

To obtain the fourth and final condition it is necessary to return to the boundary- 
layer equation (7.14). At the wall y = 0, u = v = 0, so both terms on the left-hand 
side are zero at y = 0. Thus, noting that r = p duldy, the required condition is given 
by 
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Since y = JS and p + pUz = const. the above equation can be rearranged to read 

at J = O  aZii S2 due 
w=-y= (7.6 1 d) 

In terms of the coefficients u, by c and d the four conditions (7.61aY by cy d) become 

u = O  

b + c + d = l  
b + 2c + 3d = 0 

S2 dUe 
2c = -A where A E - - 

v dx 

(7.62a) 
(7.62b) 
(7.62~) 

(7.62d) 

Equations (7.62b,cYd) can be readily solved for by c and d to give the following 
approximate velocity profile 

3 3 1  A 
2 2  4 

= -J - -y3 + - (J  - 2 3  + J  ) (7.63) 

The parameter A in Eqn (7.63) is often called the Pohlhausen parameter. It 
determines the effect of an external pressure gradient on the shape of the velocity 
profile. A > 0 and <O correspond respectively to favourable and unfavourable 
pressure gradients. For A = -6 the wall shear stress T~ = 0 and for more negative 
values of A flow reversal at the wall develops. Thus A = -6 corresponds to 
boundary-layer separation. Velocity profiles corresponding to various values of 
A are plotted in Fig. 7.6. In this figure, the flat-plate profile corresponds to A = 0; 
A = 6 for the favourable pressure gradient; A = -4 for the mild adverse pressure 
gradient; A = -6 for the strong adverse pressure gradient; and A = -9 for the 
reversed-flow profile. 

For the flat-plate case A = 0, the approximate velocity profile of Eqn (7.63) is 
compared with two other approximate profiles in Fig. 7.22. The velocity profile 
labelled Blasius is the accurate solution of the differential equations of motion given 
in Section 7.3.4 and Fig. 7.10. 

The various quantities introduced in Sections 7.3.2 and 7.3.3 can readily be 
evaluated using the approximate velocity profile (7.63). For example, if Eqn (7.63) 
is substituted in turn into Eqns (7.16), (7.17) and (7.19), with use of Eqn (7.20), the 
following are obtained. 

= 1 - (;+;) +a+ (i-k) 
3 A  
8 48 

- _ _ _  - (7.64a) 
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99% thickness 

(Thickness parameters, 
8*,8 and 8" are bosed 
on sine profile) 

Dimensionless velocity parollel to surface, S(=u/U') 

Fig. 7.22 Laminar velocity profile 

(7.64b) 

(7 .64~)  
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The quantities I1 and I depend only on the shape of the velocity profile, and for this 
reason they are usually known as shape parameters. If the more accurate differential 
form of the boundary-layer equations were to be used, rather than the momentum- 
integral equation with approximate velocity profiles, the boundary-layer thickness 
6 would become a rather less precise quantity. For this reason, it is more common to 
use the shape parameter H = 6*/0. Frequently, H is referred to simply as the shape 
parameter. 

For the numerical methods discussed in Section 7.11 below for use in the 
general case with an external pressure gradient, it is preferable to use a some- 
what more accurate quartic polynomial as the approtimate velocity profile. This 
is particularly important for predicting the transition point. This quartic velocity 
profile is derived in a very similar way to that given above, the main differences 
are the addition of another term, e?, on the right-hand side of Eqn (7.60), and 
the need for an additional condition at the edge of the boundary layer. This 
latter requires that 

d2 Li 
- = 0  at j=1  
dy2 

This has the effect of making the velocity profile even smoother at the edge of the 
boundary layer, and thereby improves the approximation. The resulting quartic 
velocity profile takes the form 

A u = 2 j  - 2 j 3  + 9 + - ( j  - 3 j 2  + 3y3 - j 4 )  
6 

(7.65) 

Using this velocity profile and following similar procedures to those outlined above 
leads to the following expressions: 

3 A  Il =--- 
lo 120 

I = -  

(7.64a') 

(7.64b') 

(7.64~') 

Note that it follows from Eqn (7.64~') that with the quartic velocity profile the 
separation point where rw = 0 now corresponds to A = -12. 

7.7 Approximate methods for a boundary layer 
on a flat plate with zero pressure gradient 

In this section, the momentum integral equation (7.59) will be solved to give 
approximate expressions for the skin-friction drag and for the variation of 
6,6*, 0 and Cf along a flat plate with laminar, turbulent and mixed laminar/ 
turbulent boundary layers. This may seem a rather artificial and restrictive case 
to study in depth. It should be noted, however, that these results can be used 
to provide rough, but reasonable, estimates for any streamlined body. The 
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equivalent flat plate for a specific streamlined body would have the same 
surface area and total streamwise length as the body. In this way reasonable 
estimates can be obtained, especially for the skin-friction drag, provided that 
the transition point is correctly located using the guidelines given at the end of 
Section 7.9. 

7.7.1 Simplified form of the momentum integral equation 
For the flat plate dpldx = 0 and U, = U, = const. so that dU,/dx = 0. Accordingly, 
the momentum integral equation (7.59) reduces to the simple form 

2 de rw = pU, - 
dx 

(7.66) 

Now the shape factor I = 016 is simply a numerical quantity which depends only 

So Eqn (7.66) may then be expressed in the alternative form 
on the shape of the velocity profile. 

d6 
Cf = 2 I -  

dx 
(7.67) 

where I has been assumed to be independent of x. Equations (7.66) and (7.67) are 
forms of the simple momentum integral equation. 

7.7.2 Rate of growth of a laminar boundary layer on a flat plate 
The rate of increase of the boundary-layer thickness S may be found by integrating 
Eqn (7.67), after setting A = 0 in Eqns (7.64b and c) and substituting for I and Cf. 

d6 Cf 140 p 
dx 21 13 pU,S 

Thus Eqn (7.67) becomes 

-=-=-- 

Therefore 

whence 

S2 140 px 
2 13 pU, 
- 

The integration constant is zero if x is measured from the fore stagnation point where 
6 = 0, i.e. 

6 = 4.64~/(Re,)l/~ (7.68) 

The other thickness quantities may now be evaluated using Eqns (7.64a,b) with 
A = 0. Thus 

s* = 0.3756 = 1.74~/(Re,)”~ (7.69) 

(7.70) 19 = 0.1398 = 0.646x/(ReX)‘/’ 
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7.7.3 Drag coefficient for a flat plate of streamwise length 
L with wholly laminar boundary layer 

Note that 

(7.71) 

where B(L) is the value of the momentum thickness at x = L.  Thus using Eqn (7.70) 
in Eqn (7.71) gives 

CF = 1.293/Re1/’ 

and 

CD, = 2.586/Re’I2 (7.72) 

These expressions are shown plotted in Fig. 7.25 (lower curve). 

Example 7.3 A flat plate of 0.6 m chord at zero incidence in a uniform airstream of 45 m s-l. 
Estimate (i) the displacement thickness at the trailing edge, and (ii) the overall drag coefficient 
of the plate. 

At the trailing edge, x = 0.6 m and 
45 x 0.6 Re - = 1.85 x lo6 

- 14.6 x 
Therefore, using Eqn (7.69), 

1.74 x 0.6 
s”= = 0.765 x m = 0.8mm 

m x  103 
Re has the same value as Re, at the trailing edge. So Eqn (7.72) gives 

= 0.0019 2.54 
m~ 103 

CD, = 

7.7.4 Turbulent velocity profile 
A commonly employed, turbulent-boundary-layer profile is the seventh-root profile, 
which was proposed by Prandtl on the basis of friction-loss experiments with 
turbulent flow in circular pipes correlated by Blasius. The latter investigated experi- 
mental results on the resistance to flow and proposed the following empirical rela- 
tionships between the local skin friction coefficient at the walls, cf(= rwlipU ) and 
the Reynolds number of the flow Re (based on the average flow velocity U in the pipe 
and the diameter 0). Blasius proposed the relationship 

- 0.0791 
Cf = - -1 14 Re 

(7.73) 

This expression gives reasonably good agreement with experiment for values of Re up 
to about 2.5 x lo5. 

Assuming that the velocity profile in the pipe may be written in the form 

(7.74) 
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where u is the velocity at distance y from the wall and a = pipe radius D/2, it remains 
to determine the value of n. From Eqn (7.74), writing Urn = CO, where C is 
a constant to be determined: 

u = cut)" 
i.e. 

U = - ( - )  - u a "  
C 

(7.75) 

Substituting for cf in the expression above for surface friction stress at the wall, 

(7.76) 
- 1 -2  0 . 0 7 9 1 ~ ' / ~  1 -2  -7/4 114 

-pU = 0.039 55pU (-) 
D 

rw=Cf-pU = 
2 D1/4u1/4 2 

From Eqn (7.75) 

so that Eqn (7.76) becomes 

i.e. 

(7.77) 

It may now be argued that very close to the wall, in the viscous sublayer (u # 0), the 
velocity u will not depend on the overall size of the pipe, i.e. that u # f(a). If this is so, 
then it immediately follows that rw, which is p(du/dy),, cannot depend on the pipe 
diameter and therefore the term a[(7n/4)-(1/4)1 in Eqn (7.77) must be unity in order not 
to affect the expression for T ~ .  For this to be so, 7n/4 - 1/4 = 0 which immediately 
gives n = 3. Substituting this back into Eqn (7.74) gives u/Um = ( Y/u)'/~. This expres- 
sion thus relates the velocity u at distance y from the surface to the centre-line velocity 
Urn at distance a from the surface. Assuming that this will hold for very large pipes, it 
may be argued that the flow at a section along a flat, two-dimensional plate is similar 
to that along a small peripheral length of pipe, so that replacing a by S will give the 
profile for the free boundary layer on the flat plate. Thus 

(7.78) 

This is Prandtl's seventh-root law and is found to give surprisingly good overall 
agreement with practice for moderate Reynolds numbers (Re, < lo7). It does, how- 
ever, break down at the wall where the profile is tangential to the surface and gives an 
infinite value of (d2/djj)w. In order to find the wall shear stress, Eqn (7.77) must be 
used. The constant C may be evaluated by equating expressions for the total volume 
flow through the pipe, i.e. (using Eqns (7.75) and (7.78)), 
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a d O = 2 n l a u r d r = 2 a U C i  a e) 117 (a-y)dy=--xUCa2 49 - 

60 
60 
49 

giving C = - = 1.224. Substituting for C and n in Eqn (7.77) then gives 

T, = 0 . 0 2 3 4 p ~ ~ / ~  (I) lJ4 

that, on substituting for u from Eqn (7.78), gives 

v 114 
rW = O.O234pUz4 (z) 

Finally, since 

for a free boundary layer: 

'I4 0.0468 Cf = 0.0468 (z) = - 
VeclS ReiJ4 

(7.79) 

(7.80) 

Using Eqns (7.78) and (7.80) in the momentum integral equation enables the growth 
of the turbulent boundary layer on a flat plate to be investigated. 

7.7.5 Rate of growth of a turbulent boundary layer 
on a flat plate 

dS/dx = Cf/2I 

where 

and 

Therefore 

i.e. 

Cf = 0.0468(~/U,S)~/~ 

dS - 72 x 0 . 0 4 6 8 ~ ~ 1 ~  
dx 
- - 

2 x 7 x (Um6)1/4 

114 
S'/4dS = 0.241 (&) dx 
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20 

15 

E 
& 10. 

Therefore 

- 

/ 

5 

5 x 0.241 

Ca 
I 

5 

or, in terms of Reynolds number Re,, this becomes 

-k-- Laminar growt 
I 

X 
6 = 0.383 ~ 

(Re,)115 
(7.81) 

The developments of laminar and turbulent layers for a given stream velocity are 
shown plotted in Fig. 7.23. 

In order to estimate the other thickness quantities for the turbulent layer, the 
following integrals must be evaluated: 

(c) _-_ -  - 0.175 - - 
8 10 

Using the value for I in Eqn (a) above ( I  = = 0.0973) and substituting appropri- 
ately for 6, from Eqn (7.81) and for the integral values, from Eqns (b) and (c), in Eqns 
(7.16), (7.17) and (7.18), leads to 

0.0479~ 
(Re,) ' I 5  

0.0372~ 
(Re,) ' I 5  

0.0761~ 
(Re,) ' I 5  

6* = 0.1256 = ~ 

19 = 0.09736 = ~ 

6** = 0.1756 = ~ 

(7.82) 

(7.83) 

(7.84) 

x (metres) 

Fig. 7.23 Boundary layer growths on flat plate at free stream speed of 60rnls-l 
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Fig. 7.24 Turbulent velocity profile 

The seventh-root profile with the above thickness quantities indicated is plotted in 
Fig. 7.24. 

Example 7.4 A wind-tunnel working section is to be designed to work with no streamwise 
pressure gradient when running empty at an airspeed of 60m s-'. The working section is 3.6m 
long and has a rectangular cross-section which is 1.2 m wide by 0.9 m high. An approximate 
allowance for boundary-layer growth is to be made by allowing the side walls of the working 
section to diverge slightly. It is to be assumed that, at the upstream end of the working 
section, the turbulent boundary layer is equivalent to one that has grown from zero 
thickness over a length of 2.5 m; the wall divergence is to be determined on the assumption 
that the net area of flow is correct at the entry and exit sections of the working section. 
What must be the width between the walls at the exit section if the width at the entry section 
is exactly 1.2 m? 

For the seventh-root profile: 

At entry, x = 2.5 m. Therefore 

U x 60 x 2.5 
R e , = - =  - 102.7 x lo5 v 14.6 x 10W- 

= 25.2 
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1.e. 

At exit, x = 6.1 m. Therefore 

Rei/' = 30.2 

1.e. 

0.0479 x 6.1 
30.2 

s*=  = 0.00968 m 

Thus S* increases by (0.009 68 - 0.004 75) = 0.004 93 m. This increase in displacement thick- 
ness OCCUTS on all four walls, i.e. total displacement area at exit (relative to entry) = 
0.00493 x 2(1.2 + 0.9) = 0.0207m2. 

The allowance is to be made on the two side walls only so that the displacement area on side 
walls = 2 x 0.9 x = 1.88" m2, where A* is the exit displacement per wall. Therefore 

A" =- 0207 = 0.0115m 
1.8 

This is the displacement for each wall, so that the total width between side walls at the exit 
section = 1.2+2 x 0.0115 = 1.223m. 

7.7.6 Drag coefficient for a flat plate with wholly turbulent 
boundary layer 

The local friction coefficient Cf may now be expressed in terms of x by substituting 
from Eqn (7.81) in Eqn (7.80). Thus 

'I4 (Re,)'/20 -- 0.0595 (;L) ( 0 . 3 8 3 ~ ) ' ~ ~  - (ReX)'l5 
Cf = 0.0468 - 

whence 

(7.85) 

(7.86) 

The total surface friction force and drag coefficient for a wholly turbulent boundary 
layer on a flat plate follow as 

C, = i' Cfd(:) = i'0.0595($-) 115x-1/5d(3 

(7.87) 
= (&) 115x~ .~595  [;i 5 (z) x 415 ] = 0.0744Re-'I5 

0 

and 

cD, = 0.1488Re-'I5 (7.88) 
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Fig. 7.25 Two-dimensional surface friction drag coefficients for a flat plate. Here Re = plate Reynolds 
number, i.e. U,L/v; Ret = transition Reynolds number, i.e. U,xt/vl, CF = F/$pU$L; F = skin friction 
force per surface (unit width) 

These expressions are shown plotted in Fig. 7.25 (upper curve). It should be clearly 
understood that these last two coefficients refer to the case of a flat plate for which 
the boundary layer is turbulent over the entire streamwise length. 

In practice, for Reynolds numbers (Re) up to at least 3 x lo5, the boundary layer 
will be entirely laminar. If the Reynolds number is increased further (by increasing 
the flow speed) transition to turbulence in the boundary layer may be initiated 
(depending on free-stream and surface conditions) at the trailing edge, the transition 
point moving forward with increasing Re (such that Re, at transition remains 
approximately constant at a specific value, Ret, say). However large the value of 
Re there will inevitably be a short length of boundary layer near the leading edge that 
will remain laminar to as far back on the plate as the point corresponding to 
Re, = Ret. Thus, for a large range of practical Reynolds numbers, the boundary- 
layer flow on the plate will be partly laminar and partly turbulent. The next stage is to 
investigate the conditions at transition in order to evaluate the overall drag coeffi- 
cient for the plate with mixed boundary layers. 

7.7.7 Conditions at transition 
It is usually assumed for boundary-layer calculations that the transition from lam- 
inar to turbulent flow within the boundary layer occurs instantaneously. This is 
obviously not exactly true, but observations of the transition process do indicate 
that the transition region (streamwise distance) is fairly small, so that as a 
first approximation the assumption is reasonably justified. An abrupt change in 
momentum thickness at the transition point would imply that dO/dx is infinite. The 
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simplified momentum integral equation (7.66) shows that this in turn implies that the 
local skin-friction coefficient Cf would be infinite. This is plainly unacceptable on 
physical grounds, so it follows that the momentum thickness will remain constant 
across the transition position. Thus 

eLt = OT, (7.89) 

where the suffices L and T refer to laminar and turbulent boundary layer flows 
respectively and t indicates that these are particular values at transition. Thus 

The integration being performed in each case using the appropriate laminar or 
turbulent profile. The ratio of the turbulent to the laminar boundary-layer thick- 
nesses is then given directly by 

(7.90) 

Using the values of Z previously evaluated for the cubic and seventh-root profiles 
(Eqns (ii), Sections 7.6.1 and 7.7.3): 

6~~ 0.139 
6~~ 0.0973 

- 1.43 - (7.91) 

This indicates that on a flat plate the boundary layer increases in thickness by about 
40% at transition. 

It is then assumed that the turbulent layer, downstream of transition, will grow as 
if it had started from zero thickness at some point ahead of transition and developed 
along the surface so that its thickness reached the value ST, at the transition position. 

7.7.8 Mixed boundary layer flow on a flat plate 
with zero pressure gradient 

Figure 7.26 indicates the symbols employed to denote the various physical dimen- 
sions used. At the leading edge, a laminar layer will begin to develop, thickening with 
distance downstream, until transition to turbulence occurs at some Reynolds number 
Ret = U,x,/v. At transition the thickness increases suddenly from 6~~ in the laminar 
layer to ST, in the turbulent layer, and the latter then continues to grow as if it had 
started from some point on the surface distant XT, ahead of transition, this distance 
being given by the relationship 

for the seventh-root profile. 
The total skin-friction force coefficient CF for one side of the plate of length L may 

be found by adding the skin-friction force per unit width for the laminar boundary 
layer of length xt to that for the turbulent boundary layer of length (L - xt), and 
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Fig. 7.26 

dividing by $pUkL, where L is here the wetted surface area per unit width. Working 
in terms of Ret, the transition position is given by 

V 
xt = -Ret u, (7.92) 

The laminar boundary-layer momentum thickness at transition is then obtained from 
Eqn (7.70): 

0.646xt eLt = - - 
(Ret 1 

that, on substituting for xt from Eqn (7.92), gives 
V eLt = 0.646 - (Ret) lI2 

u, 
(7.93) 

The corresponding turbulent boundary-layer momentum thickness at transition then 
follows directly from Eqn (7.83): 

(7.94) 

The equivalent length of turbulent layer (xT,) to give this thickness is obtained from 
setting = eTt; using Eqn (7.93) and (7.94) this gives 

115 
0 . 6 4 6 ~ ~  (L)’”= 0 . 0 3 7 ~ ~ ~  

Ua3xt 
leading to 
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Thus 

(7.95) v 518 
X T ~  = 35.5-Ret 

UCCl 
Now, on a flat plate with no pressure gradient, the momentum thickness at transition 
is a measure of the momentum defect produced in the laminar boundary layer 
between the leading edge and the transition position by the surface friction stresses 
only. As it is also being assumed here that the momentum thickness through transi- 
tion is constant, it is clear that the actual surface friction force under the laminar 
boundary layer of length xt must be the same as the force that would exist under 
a turbulent boundary layer of length X T ~ .  It then follows that the total skin-friction 
force for the whole plate may be found simply by calculating the skin-friction force 
under a turbulent boundary layer acting over a length from the point at a distance XT, 

ahead of transition, to the trailing edge. Reference to Fig. 7.26 shows that the total 
effective length of turbulent boundary layer is, therefore, L - xt + XT,. 

Now, from Eqn (7.21), 

Cfdx 
I; = g'-xt+xT' 

where Cf is given from Eqn (7.85) as 

0.0595 115 

(Rex) 
-- ,15 - 0.0595 (&) x-lI5 

Thus 

1 (IJ) 'I5: [x4,5] L-xt+xTt F = -pU;$ x 0.0595 - 
2 

Now, CF = F/$pU$,L,  where L is the total chordwise length of the plate, so that 

= 0 . 0 7 4 4 ( ~ )  v (y U,L - - uoox 
U L  V V 

i.e. 

518 415 (Re - Ret + 35.5Ret ) 
0.0744 

Re CF = - (7.96) 

This result could have been obtained, alternatively, by direct substitution of the 
appropriate value of Re in Eqn (7.87), making the necessary correction for effective 
chord length (see Example 7.5). 

The expression enables the curve of either CF or C D ~ ,  for the flat plate, to be 
plotted against plate Reynolds number Re = (U,L/v) for a known value of the 
transition Reynolds number Ret. Two such curves for extreme values of Ret of 
3 x lo5 and 3 x IO6 are plotted in Fig. 7.25. 

It should be noted that Eqn (7.96) is not applicable for values of Re less than Ret, 
when Eqns (7.71) and (7.72) should be used. For large values of Re, greater than 
about lo8, the appropriate all-turbulent expressions should be used. However, 
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Eqns (7.85) and (7.88) become inaccurate for Re > lo7. At higher Reynolds numbers 
the semi-empirical expressions due to Prandtl and Schlichting should be used, i.e. 

Cf = [210glo(Re,) - 0.65]-2.3 (7.97a) 

0.455 
(log,, Re)2.58 

CF = (7.97b) 

For the lower transition Reynolds number of 3 x lo5 the corresponding value of 
Re, above which the all-turbulent expressions are reasonably accurate, is lo7. 

Example 7.5 (1) Develop an expression for the drag coefficient of a flat plate of chord c and 
infinite span at zero incidence in a uniform stream of air, when transition occurs at a distance 
pc  from the leading edge. Assume the following relationships for laminar and turbulent 
boundary layer velocity profiles, respectively: 

(2) On a thin two-dimensional aerofoil of 1.8 m chord in an airstream of 45 m s-', estimate the 
required position of transition to give a drag per metre span that is 4.5N less than that for 
transition at the leading edge. 

(1) Refer to Fig. 7.26 for notation. 
From Eqn (7.99, setting xt = p c  

Equation (7.88) gives the drag coefficient for an all-turbulent boundary layer as 
C, = 0.1488/Re''5. For the mixed boundary layer, the drag is obtained as for an all-turbulent 
layer of length [XT, + (1 - p)c] .  The corresponding drag coefficient (defined with reference to 
length [XT~ + (1 - p)c]) is then obtained directly from the all-turbulent expression where Re is 
based on the same length [m, + (1 -p)c] .  To relate the coefficient to the whole plate length c 
then requires that the quantity obtained should now be factored by the ratio 

[XTt + (1 -p)c1 
C 

Thus 

1415 
- - [FxT~ + (1 -p)Re 

0.1488[x~, + (1 -p)cI4/' - - ( v )4/5 
+ c  D z  

N.B. Re is here based on total plate length c.  Substituting from Eqn (i) for XT,, then gives 

CD, =- 0'1488 [35.5p5I8Re5I8 + (1  -p)ReI4l5 
Re 

This form of expression (as an alternative to Eqn (7.96)) is convenient for enabling a quick 
approximation to skin-friction drag to be obtained when the position of transition is likely to 
be fixed, rather than the transition Reynolds number, e.g. by position of maximum thickness, 
although strictly the profile shapes will not be unchanged with length under these conditions 
and neither will U, over the length. 
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(2) With transition at the leading edge: 

0.1488 
CDF =Re'/5 

In this case 

Uc 45 x 1.8 
v 14.6 x 

R e = - =  = 55.5 io5 

Re'f5 = 22.34 

and 

0.1488 
CD, =- 22.34 = 0.006 67 

The corresponding aerofoil drag is then DF = 0.006 67 x 0.6125 x (45)' x 1.8 = 14.88 N. 
With transition at pc, DF = 14.86 - 4.5 = 10.36N, i.e. 

C, = 10.36 x 0.006 67 = 0.004 65 
14.88 

Using this value in (i), with ReSi8 = 16 480, gives 

0.1488 
0.004 65 = [35.5p5f8 x 16480 + 55.8 x lo5 - 55.8 x I05pj4f5 55.8 x 105 

i.e. 

55.8 465 5f4 - 55.8 x lo5 = (35.6 - 55.8)105 ( 0.1488 ) 5.84 - 55.8 x 1oSp = 

or 

55 .8~  - 5 . 8 4 ~ ~ 1 ~  = 20.2 

The solution to this (by successive approximation) is p = 0.423, i.e. 

pc = 0.423 x 1.8 = 0.671 m behind leading edge 

Example 7.6 A light aircraft has a tapered wing with root and tip chord-lengths of 2.2 m and 
1.8 m respectively and a wingspan of 16 m. Estimate the skin-friction drag of the wing when the 
aircraft is travelling at 55 m/s. On the upper surface the point of minimum pressure is located at 
0.375 chord-length from the leading edge. The dynamic viscosity and density of air may 
be taken as 1.8 x 

The average wing chord is given by F = 0.5(2.2 + 1.8) = 2.0m, so the wing is taken to be 
equivalent to a flat plate measuring 2.0m x 16m. The overall Reynolds number based on 
average chord is given by 

kg s/m and 1.2 kg/m3 respectively. 

1.2 x 55 x 2.0 
Re = = 7.33 x 106 

1.8 x 10-5 

Since this is below lo7 the guidelines at the end of Section 7.9 suggest that the transition point 
will be very shortly after the point of minimum pressure, so xt 0.375 x 2.0 = 0.75m; also 
Eqn (7.96) may be used. 

Ret = 0.375 x Re = 2.75 x lo6 
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So Eqn (7.96) gives 

CF = 0'0744 (7.33 x lo6 - 2.75 x lo6 + 35.5(2.75 x 106)5/8}4/5 = 0.0023 
7.33 x 106 

Therefore the skin-friction drag of the upper surface is given by 

1 
2 

D = - ~ U & ~ S C F  = 0.5 x 1.2 x 552 x 2.0 x 16 x 0.0023 = 133.8N 

Finally, assuming that the drag of the lower surface is similar, the estimate for the total skin- 
friction drag for the wing is 2 x 133.8 N 270N. 

7.8 Additional examples of the application 
of the momentum integral equation 

For the general solution of the momentum integral equation it is necessary to resort 
to computational methods, as described in Section 7.11. It is possible, however, in 
certain cases with external pressure gradients to find engineering solutions using the 
momentum integral equation without resorting to a computer. Two examples are 
given here. One involves the use of suction to control the boundary layer. The other 
concerns determining the boundary-layer properties at the leading-edge stagnation 
point of an aerofoil. For such applications Eqn (7.59) can be written in the alter- 
native form with H = @/e: 

Cf - Vs 9 due de 
2 U, Ue dx dx 
- - -+ - - ( H  + 2) t- (7.98) 

When, in addition, there is no pressure gradient and no suction, this further reduces 
to the simple momentum integral equation previously obtained (Section 7.7.1, Eqn 
(7.66)), i.e. Cf = 2(d9/dx). 

Example 7.7 A two-dimensional divergent duct has a total included angle, between the plane 
diverging walls, of 20". In order to prevent separation from these walls and also to maintain a 
laminar boundary-layer flow, it is proposed to construct them of porous material so that 
suction may be applied to them. At entry to the diffuser duct, where the flow velocity is 
48ms-' the section is square with a side length of 0.3m and the laminar boundary layers 
have a general thickness (6) of 3mm. If the boundary-layer thickness is to be maintained 
constant at this value, obtain an expression in terms of x for the value of the suction vel- 
ocity required, along the diverging walls. It may be assumed that for the diverging walls 
the laminar velocity profile remains constant and is given approximately by 
0 = 1.65j3 - 4.30jj2 + 3.65j. 

The momentum equation for steady flow along the porous walls is given by Eqn (7.98) as 

If the thickness 6 is to remain constant and the profile also, then 0 = constant and dO/dx = 0. Also 
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i.e. 

aa - = 4.959 - 8.607 + 3.65 
8j 

(E) = 3.65 
W 

Equation (7.16) gives 

(1 - 1.65j3 + 4.30j2 - 3.65J)dY = 0.1955 

Equation (7.17) gives 

= 6' u(l - a)dy = (3.657 - 17.657' + 3 3 . 0 5 ~ ~  - 30.55j+ + 1 4 . 2 ~ ~  - 2.75j+)d7 = 0.069 

- 2.83 H = - = - -  6* 0.1955 
e 0.069 

Also 6 = 0.003 m 

section, i.e. 
Diffuser duct cross-sectional area = 0.09 + 0 . 0 6 ~  tan 10" where x = distance from entry 

A = 0.09 + 0.106~ 

and 

A/Ae = 1 + 1.178~ 

where suffix i denotes the value at the entry section. Also 

A, U ,  = A U, 
A 48 u - - I u  - 

e - A - 1 + 1.178~ 

Then 

-= due -48 x 1.178(1 + 1.178~)-' 
dx 

Finally 

14.6 x 3.65 + 48 x 1.178 x 4.83 x 0.003 x 0.069 
0.003 (1 + 1.178~)' 

v, = 

0.0565 
(1 + 1 . 1 7 8 ~ ) ~  

= 0.0178 + m s-' 

Thus the maximum suction is required at entry, where V, = 0.0743 m s-l. 

For bodies with sharp leading edges such as flat plates the boundary layer grows 
from zero thickness. But in most engineering applications, e.g. conventional aero- 
foils, the leading edge is rounded. Under these circumstances the boundary layer has 
a finite thickness at the leading edge, as shown in Fig. 7.27a. In order to estimate the 
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Boundary-layer edge Boundary-layer edge 

Stagnation point 

( b )  

point 

( a )  

Fig. 7.27 Boundary-layer flow in the vicinity of the fore stagnation point 

initial boundary-layer thickness it can be assumed that the flow in the vicinity of the 
stagnation point is similar to that approaching a flat plate oriented perpendicularly 
to the free-stream, as shown in Fig. 7.27b. For this flow U, = ex (where c is 
a constant) and the boundary-layer thickness does not change with x .  In the example 
given below the momentum integral equation will be used to estimate the initial 
boundary-layer thickness for the flow depicted in Fig. 7.27b. An exact solution to the 
NavierStokes equations can be found for this stagnation-point flow (see Section 
2.10.3). Here the momentum integral equation is used to obtain an approximate 
solution. 

Example 7.8 Use the momentum integral equation (7.59) and the results (7.64a', b', c') to 
obtain expressions for 6,6*, 0 and Cf. It may be assumed that the boundary-layer thickness 
does not vary with x and that Ue = cx. 

Hence 0 = const. also and Eqn (7.59) becomes 

Substituting Eqns (7.64a', b', c') leads to 

Multiplying both sides by Slvcx and using the above result for A, gives 

After rearrangement this equation simplifies to 

or 

0.00022A3 + 0.01045Az - 0.3683A + 2 = 0 



Viscous flow and boundary layers 431 

It is known that A lies somewhere between 0 and 12 so it is relatively easy to solve this equation 
by trial and error to obtain 

A = 7.052 + S = E = 2.6556 

Using Eqns (7.64a’, b’, c’) then gives 

Once the value of c = (dU,/dx),=, is specified (see Example 2.4) the results given above can be 
used to supply initial conditions for boundary-layer calculations over aerofoils. 

7.9 Laminar-turbulent transition 
It was mentioned in Section 7.2.5 above that transition from laminar to turbulent 
flow usually occurs at some point along the surface. This process is exceedingly 
complex and remains an active area of research. Owing to the very rapid changes 
in both space and time the simulation of transition is, arguably, the most challenging 
problem in computational fluid dynamics. Despite the formidable difficulties how- 
ever, considerable progress has been made and transition can now be reliably 
predicted in simple engineering applications. The theoretical treatment of transition 
is beyond the scope of the present work. Nevertheless, a physical understanding of 
transition is vital for many engineering applications of aerodynamics, and accord- 
ingly a brief account of the underlying physics of transition in a boundary layer on 
a flat plate is given below. 

Transition occurs because of the growth of small disturbances in the boundary 
layer. In many respects, the boundary layer can be regarded as a complex nonlinear 
oscillator that under certain circumstances has an initially linear wave-like response 
to external stimuli (or inputs). This is illustrated schematically in Fig. 7.28. In free 
flight or in high-quality wind-tunnel experiments several stages in the process can be 
discerned. The first stage is the conversion of external stimuli or disturbances into 
low-amplitude waves. The external disturbances may arise from a variety of different 
sources, e.g. free-stream turbulence, sound waves, surface roughness and vibration. 
The conversion process is still not well understood. One of the main difficulties is that 
the wave-length of a typical external disturbance is invariably very much larger than 
that of the wave-like response of the boundary layer. Once the low-amplitude wave is 
generated it will propagate downstream in the boundary layer and, depending on the 
local conditions, grow or decay. If the wave-like disturbance grows it will eventually 
develop into turbulent flow. 

While their amplitude remains small the waves are predominantly two-dimen- 
sional (see Figs 7.28 and 7.29). This phase of transition is well understood and was 
first explained theoretically by Tollmien* with later extensions by Schlichtingt and 
many others. For this reason the growing waves in the early so-called linear phase of 
transition are known as Tollmien-Schlichting waves. This linear phase extends for 
some 80% of the total transition region. The more advanced engineering predictions 

* W. Tollmien (1929) Uber die Entstehung der Turbulenz. I .  Mitt.  Nachr. Ges. Wiss. Gottingen, Math. 
Phys. Klasse, pp. 2144. 
+ H. Schlichting (1933) Zur Entstehung der Turbulenz bei der Plattenstromung. Z .  angew. Math. Mech., 13, 
171-1 74. 
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are, in fact, based on modern versions of Tollmien's linear theory. The theory is 
linear because it assumes the wave amplitudes are so small that their products can be 
neglected. In the later nonlinear stages of transition the disturbances become increas- 
ingly three-dimensional and develop very rapidly. In other words as the amplitude of 
the disturbance increases the response of the boundary layer becomes more and more 
complex. 

This view of transition originated with Prandtl* and his research team at Gottingen, 
Germany, which included Tollmien and Schlichting. Earlier theories, based on 
neglecting viscosity, seemed to suggest that small disturbances could not grow in 
the boundary layer. One effect of viscosity was well known. Its so-called dissipative 
action in removing energy from a disturbance, thereby causing it to decay. Prandtl 
realized that, in addition to its dissipative effect, viscosity also played a subtle but 
essential role in promoting the growth of wave-like disturbances by causing energy to 
be transferred to the disturbance. His explanation is illustrated in Fig. 7.30. Consider 
a small-amplitude wave passing through a small element of fluid within the boundary 

Small-amplitude wave 

( b )  No viscosit u'and v ' 9 0  degrees out of ( c ) With -ity phase difference exceeds 
phase. u# = 0 90Ou'v'< 0 

Fig. 7.30 Prandtl's explanation for disturbance growth 

* L. F'randtl(l921) Bermerkungen uber die Enstehung der Turbulenz, Z .  mgew. Math. Mech., 1,431436. 
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layer, as shown in Fig. 7.30a. The instantaneous velocity components of the wave are 
(u', v') in the (x ,  y )  directions, u' and v' are very much smaller than u, the velocity in 
the boundary layer in the absence of the wave. The instantaneous rate of increase in 
kinetic energy within the small element is given by the difference between the rates at 
which kinetic energy leaves the top of the element and enters the bottom, i.e. 

I t a u  
aY 

-pu v - + higher order terms 

In the absence of viscosity u' and v' are exactly 90 degrees out of phase and the 
average of their product over a wave period, denoted by u", is zero, see Fig. 7.30b. 
However, as realized by Prandtl, the effects of viscosity are to increase the phase 
difference between u' and v' to slightly more than 90 degrees. Consequently, as shown 
in Fig. 7.30c, u" is now negative, resulting in a net energy transfer to the disturbance. 
The quantity - p a  is, in fact, the Reynolds stress referred to earlier in Section 7.2.4. 
Accordingly, the energy transfer process is usually referred to as energy production by 
the Reynolds stress. This mechanism is active throughout the transition process and, 
in fact, plays a key role in sustaining the fully turbulent flow (see Section 7.10). 

Tollmien was able to verify Prandtl's hypothesis theoretically, thereby laying the 
foundations of the modern theory for transition. It was some time, however, before 
the ideas of the Gottingen group were accepted by the aeronautical community. In 
part this was because experimental corroboration was lacking. No sign of Tollmien- 
Schlichting waves could at first be found in experiments on natural transition. 
Schubauer and Skramstadt* did succeed in seeing them but realized that in order 
to study such waves systematically they would have to be created artificially in 
a controlled manner. So they placed a vibrating ribbon having a controlled frequency, w, 
within the boundary layer to act as a wave-maker, rather than relying on natural 
sources of disturbance. Their results are illustrated schematically in Fig. 7.31. They 
found that for high ribbon frequencies, see Case (a), the waves always decayed. For 
intermediate frequencies (Case (b)) the waves were attenuated just downstream of the 
ribbon, then at a greater distance downstream they began to grow, and finally at still 
greater distances downstream decay resumed. For low frequencies the waves grew 
until their amplitude was sufficiently large for the nonlinear effects, alluded to above, 
to set in, with complete transition to turbulence occurring shortly afterwards. Thus, as 
shown in Fig. 7.31, Schubauer and Skramstadt were able to map out a curve of non- 
dimensional frequency versus Re,(= U,x/v) separating the disturbance frequencies 
that will grow at a given position along the plate from those that decay. When 
disturbances grow the boundary-layer flow is said to be unstable to small disturbances, 
conversely when they decay it is said to be stable, and when the disturbances neither 
grow nor decay it is in a state of neutralstability. Thus the curve shown in Fig. 7.31 is 
known as the neutral-stability boundary or curve. Inside the neutral-stability curve, 
production of energy by the Reynolds stress exceeds viscous dissipation, and vice versa 
outside. Note that a critical Reynolds number Re, and critical frequency wc exist. The 
Tollmien-Schlichting waves cannot grow at Reynolds numbers below Re, or at 
frequencies above w,. However, since the disturbances leading to transition to turbu- 
lence are considerably lower than the critical frequency, the transitional Reynolds 
number is generally considerably greater than Re,. 

The shape of the neutral-stability curve obtained by Schubauer and Skramstadt 
agreed well with Tollmien's theory, especially at the lower frequencies of interest for 

* G.B. Schubauer and H.K. Skramstadt (1948) Laminar boundary layer oscillations and transition on 
a flat plate. NACA Rep., 909. 
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Fig. 7.31 Schematic of Schubauer and Skramstadt’s experiment 

transition. Moreover Schubauer and Skramstadt were also able to measure the 
growth rates of the waves and these too agreed well with Tollmien and Schlichting’s 
theoretical calculations. Publication of Schubauer and Skramstadt’s results finally 
led to the Gottingen ‘small disturbance’ theory of transition becoming generally 
accepted. 

It was mentioned above that Tollmien-Schlichting waves could not be easily 
observed in experiments on natural transition. This is because the natural sources 
of disturbance tend to generate wave packets in an almost random fashion in time 
and space. Thus at any given instant there is a great deal of ‘noise’, tending to obscure 
the wave-like response of the boundary layer, and also disturbances having a wide 
range of frequencies are continually being generated. In contrast, the Tollmien- 
Schlichting theory is based on disturbances with a single frequency. Nevertheless, 
providing the initial level of the disturbances is low, what seems to happen is that the 
boundary layer responds preferentially, so that waves of a certain frequency grow 
most rapidly and are primarily responsible for transition. These most rapidly grow- 
ing waves are those predicted by the modern versions of the Tollmien-Schlichting 
theory, thereby allowing the theory to predict, approximately at least, the onset of 
natural transition. 

It has been explained above that provided the initial level of the external distur- 
bances is low, as in typical free-flight conditions, there is a considerable difference 
between the critical and transitional Reynolds number. In fact, the latter is about 
3 x lo6 whereas Re, N 3 x lo5. However, if the initial level of the disturbances rises, 
for example because of increased free-stream turbulence or surface roughness, the 
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downstream distance required for the disturbance amplitude to grow sufficiently for 
nonlinear effects to set in becomes shorter. Therefore, the transitional Reynolds 
number is reduced to a value closer to Re,. In fact, for high-disturbance environ- 
ments, such as those encountered in turbomachinery, the linear phase of transition 
is by-passed completely and laminar flow breaks down very abruptly into fully 
developed turbulence. 

The Tollmien-Schlichting theory can also predict very successfully how transition 
will be affected by an external pressure gradient. The neutral-stability boundaries for 
the flat plate and for typical adverse and favourable pressure gradients are plotted 
schematically in Fig. 7.32. In accordance with the theoretical treatment Re6 is used as 
the abscissa in place of Re,. However, since the boundary layer grows with passage 
downstream Res can still be regarded as a measure of distance along the surface. 
From Fig. 7.32 it can be readily seen that for adverse pressure gradients not only is 
(Res), smaller than for a flat plate, but a much wider band of disturbance frequencies 
are unstable and will grow. When it is recalled that the boundary-layer thickness also 
grows more rapidly in an adverse pressure gradient, thereby reaching a given critical 
value of Res sooner, it can readily be seen that transition is promoted under these 
circumstances. Exactly the converse is found for the favourable pressure gradient. 
This circumstance allows rough and ready predictions to be made for the transition 

Fig. 7.32 Schematic plot of the effect of external pressure gradient on the neutral stability boundaries 
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Fig. 7.33 Modern laminar-flow aerofoil and its pressure distribution 

point on bodies and wings, especially in the case of the more classic streamlined 
shapes. These guidelines may be summarized as follows: 

(i) If lo5 < ReL < lo7 (where ReL = U,L/v is based on the total length or chord of 
the body or wing) then transition will occur very shortly downstream of the 
point of minimum pressure. For aerofoils at zero incidence or for streamlined 
bodies of revolution, the point of minimum pressure often, but not invariably, 
coincides with the point of maximum thickness. 

(ii) If for an aerofoil ReL is kept constant increasing the angle of incidence advances 
the point of minimum pressure towards the leading edge on the upper surface, 
causing transition to move forward. The opposite occurs on the lower surface. 

(iii) At constant incidence an increase in ReL tends to advance transition. 
(iv) For ReL > lo7 the transition point may slightly precede the point of minimum 

The effects of external pressure gradient on transition also explain how it may be 
postponed by designing aerofoils with points of minimum pressure further aft. 
A typical modern aerofoil of this type is shown in Fig. 7.33. The problem with this 
type of aerofoil is that, although the onset of the adverse pressure gradient is 
postponed, it tends to be correspondingly more severe, thereby giving rise to bound- 
ary-layer separation. This necessitates the use of boundary-layer suction aft of the 
point of minimum pressure in order to prevent separation and to maintain laminar 
flow. See Section 7.4 and 8.4.1 below. 

pressure. 

7.10 The physics of turbulent boundary layers 
In this section, a brief account is given of the physics of turbulent boundary layers. 
This is still very much a developing subject and an active research topic. But some 
classic empirical knowledge, results and methods have stood the test of time and are 
worth describing in a general textbook on aerodynamics. Moreover, turbulent flows 
are so important for engineering applications that some understanding of the rele- 
vant flow physics is essential for predicting and controlling flows. 
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7.10.1 Reynolds averaging and turbulent stress 
Turbulent flow is a complex motion that is fundamentally three-dimensional and 
highly unsteady. Figure 7.34a depicts a typical variation of a flow variable, f , such as 
velocity or pressure, with time at a fixed point in a turbulent flow. The usual 
approach in engineering, originating with Reynolds*, is to take a time average. Thus 
the instantaneous velocity is given by 

f = f + f '  (7.99) 

where the time average is denoted by ( - ) and ( )I denotes the fluctuation (or deviation 
from the time average). The strict mathematical definition of the time average is 

T 
7 = lim - f ( x ,  y ,  z, t = to + t')dt' 

T - w  
(7.100) 

where to is the time at which measurement is notionally begun. For practical meas- 
urements T is merely taken as suitably large rather than infinite. The basic approach 
is often known as Reynolds averaging. 

Fig. 7.34 

* Reynolds, 0. (1895) ' On the dynamical theory of incompressible viscous fluids and the determination of 
the criterion', Philosophical Transactions of the Royal Society of London, Series A,  186, 123. 
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We will now use the Reynolds averaging approach on the continuity equation 
(2.94) and x-momentum Navier-Stokes equation (2.95a). When Eqn (7.99) with u for 
fand similar expressions for v and w are substituted into Eqn (2.94) we obtain 

dii av aiit dd dv' dw' - + - + - + - + - + - = O  
ax ay az ax ay az (7.101) 

Taking a time average of a fluctuation gives zero by definition, so taking a time 
average of Eqn (7.101) gives 

Subtracting Eqn (7.102) from Eqn (7.101) gives 

aul avl awl -+-+-=o 
ax ay dz 

(7.102) 

(7.103) 

This result will be used below. 

(2.95a) to obtain 
We now substitute Eqn (7.99) to give expressions for u, v, w and p into Eqn 

We now take a time average of each term, noting that although the time average of a 
fluctuation is zero by definition (see Fig. 7.34b), the time averageof a product of 
fluctuations is not, in general, equal to zero (e.g. plainly u" = uR > 0, see Fig. 
7.34b). Let us also assume that the turbulent boundary-layer flow is two-dimensional 
when time-averaged, so that no time-averaged quantities vary with z and W = 0. Thus 
if we take the time average of each term of Eqn (7.104), it simplifies to 

- * 

The term marked with * can be written as 

Y 

=O from Eqn (7.103) 

am 

(7.105) 

=O no variation with z 
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So that Eqn (7.105) becomes 

where we have written 

(7.106) 

dii - aii - 
dX dY 

axx = p- - pu'2; axy = p- - pdv' 

This notation makes it evident that when the turbulent flow is time-averaged - p z  
and - p a  take on the character of a direct and shear stress respectively. For this 
reason, the quantities are known as Reynolds stresses or turbulent stresses. In fully 
turbulent flows, the Reynolds stresses are usually very much greater than the viscous 
stresses. If the time-averaging procedure is applied to the full three-dimensional 
Navier-Stokes equations (2.95), a Reynolds stress tensor is generated with the form 

-p (" u'v' p w) (7.107) 

It can be seen that, in general, there are nine components of the Reynolds stress 
comprising six distinct quantities. 

- -  
u'v' u'w' 

m w w "  

7.10.2 Boundary-layer equations for turbulent flows 
For the applications considered here, namely two-dimensional boundary layers 
(more generally, two-dimensional shear layers), only one of the Reynolds stresses 
is significant, namely the Reynolds shear stress, - p a .  Thus for two-dimensional 
turbulent boundary layers the time-averaged boundary-layer equations (c.f. Eqns 7.7 
and 7.14), can be written in the form 

(7.108a) 

(7.108b) 

The chief difficulty of turbulence is that there is no way of determining the Reynolds 
stresses from first principles, apart from solving the unsteady three-dimensional 
NavierStokes equations. It is necessary to formulate semi-empirical approaches 
for modelling the Reynolds shear stress before one can begin the process of solving 
Eqns (7.108a,b). 

The momentum integral form of the boundary-layer equations derived in Section 
7.6.1 is equally applicable to laminar or turbulent boundary layers, providing it is 
recognized that the time-averaged velocity should be used in the definition of 
momentum and displacement thicknesses. This is the basis of the approximate 
methods described in Section 7.7 that are based on assuming a 1/7th. power velocity 
profile and using semi-empirical formulae for the local skin-friction coefficient. 

7.10.3 Eddy viscosity 
Away from the immediate influence of the wall which has a damping effect on the 
turbulent fluctuations, the Reynolds shear stress can be expected to be very much 
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greater than the viscous shear stress. This can be seen by comparing rough order- 
of-magnitude estimates of the Reynolds shear stress and the viscous shear stress, i.e. 

- dii 
- p u v  c.f. p- 

a y  

Assume that u" N CU; (where C is a constant), then 

w 
1/Re 

where S is the shear-layer width. So provided C = O(1) then 

showing that for large values of Re (recall that turbulence is a phenomenon that 
only occurs at large Reynolds numbers) the viscous shear stress will be negligible 
compared with the Reynolds shear stress. Boussinesq* drew an analogy 
between viscous and Reynolds shear stresses by introducing the concept of the eddy 
viscosity ET: 

viscous shear stress Reynolds shear stress 

Boussinesq, himself, merely assumed that eddy viscosity was constant everywhere 
in the flow field, like molecular viscosity but very much larger. Until comparatively 
recently, his approach was still widely used by oceanographers for modelling turbu- 
lent flows. In fact, though, a constant eddy viscosity is a very poor approximation for 
wall shear flows like boundary layers and pipe flows. For simple turbulent free shear 
layers, such as the mixing layer and jet (see Fig. 7.39, and wake it is a reasonable 
assumption to assume that the eddy viscosity varies in the streamwise direction but 
not across a particular cross section. Thus, using simple dimensional analysis 
Prandtlt and ReichardtS proposed that 

E T =  K, x AU X 6 (7.1 10) 

n is often called the exchange coefficient and it varies somewhat from one type of flow 
to another. Equation (7.110) gives excellent results and can be used to determine 
the variation of the overall flow characteristics in the streamwise direction (see 
Example 7.9). 

The outer 80% or so of the turbulent boundary layer is largely free from the effects 
of the wall. In this respect it is quite similar to a free turbulent shear layer. In this 

v v v 
const. Velocity difference across shear layer shear-layer width 

* J. Boussinesq (1872) Essai sur la thkorie des earn courantes. Mirnoires Acad. des Science, Vol. 23, No. 1, 
Pans. 

L. Prandtl(l942) Bemerkungen mr Theorie der freien Turbulenz, ZAMM, 22,241-243. 
H. Reichardt (1942) Gesetzmassigkeiten der freien Turbulenz, VDZ-Forschungsheft, 414, 1st Ed., Berlin. 
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Fig. 7.35 An ideal inviscid jet compared with a real turbulent jet near the nozzle exit 

outer region it is commonly assumed, following Laufer (1954), that the eddy viscosity 
can be determined by a version of Eqn (7.110) whereby 

ET = Kueb* (7.111) 

Example 7.9 The spreading rate of a mixing layer 
Figure 7.35 shows the mixing layer in the intial region of a jet. To a good approximation 
the external mean pressure field for a free shear layer is atmospheric and therefore constant. 
Furthermore, the Reynolds shear stress is very much larger than the viscous stress, so that, 
after substituting Eqns (7.109) and (7.1 lo), the turbulent boundary-layer equation (7.108b) 
becomes 

The only length scale is the mixing-layer width, 6(x), which increases with x, so dimensional 
arguments suggest that the velocity profde does not change shape when expressed in terms of 
dimensionless y ,  i.e. 
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This is known as making a similarity assumption. The assumed form of the velocity profile 
implies that 

where F’(q) dF/dq. 
Integrate Eqn (7.108a) to get 

so 

a5 
ax 

V = UJ - G(q) where G = / qF’(q)dq 

The derivatives with respect to y are given by 

aii %dii U .  
-_ = 2 F’(q) _ -  

ay-aydq 6 

d2u % d  aii ( - ) = Z F ” ( v )  
ay* - aydq ay 

The results given above are substituted into the reduced boundary-layer equation to obtain, 
after removing common factors, 

--_ - v Fn. of qonly 
Fn. of x only Fn’ Of ’I Only Fn. of x only 

The braces indicate which terms are functions of x only or q only. So, we separate the variables 
and thereby see that, in order for the similarity form of the velocity to be a viable solution, we 
must require 

1 d6 

After simplification the term on the left-hand side implies 

d6 -=const. or 6 x x  dx 
Setting the term, depending on q, with F” as numerator, equal to a constant leads to a 
differential equation for F that could be solved to give the velocity profile. In fact, it is easy 
to derive a good approximation to the velocity profile, so this is a less valuable result. 

When a turbulent (or laminar) flow is characterized by only one length scale - as in the 
present case - the term sev-similarity is commonly used and solutions found this way are called 
similarity solutions. Similar methods can be used to determine the overall flow characteristics 
of other turbulent free shear layers. 

7.10.4 Prandtl’s mixing-length theory of turbulence 
Equation (7.11 1) is not a good approximation in the region of the turbulent bound- 
ary layer or pipe flow near the wall. The eddy viscosity varies with distance from the 
wall in this region. A commonly used approach in this near-wall region is based on 
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Fig. 7.36 

Prandtl's mixing-length theory.* This approach to modelling turbulence is loosely 
based on the kinematic theory of gases. A brief account is given below and illustrated 
in Fig. 7.36. 

Imagine a blob of fluid is transported upward by a fluctuating turbulent velocity v' 
through an average distance lm - the mixing length - (analogous to the mean free 
path in molecular dynamics). In the new position, assuming the streamwise velocity 
of the blob remains unchanged at the value in its original position, the fluctuation in 
velocity can be thought to be generated by the difference in the blob's velocity and 
that of its new surroundings. Thus 

Term (i) is the mean flow speed in the new environment. In writing the term in this 
form it is assumed that lm << 6, so that, in effect, it is the first two terms in 
a Taylor's series expansion. 
Term (ii) is the mean velocity of blob. 
If it is also assumed that v' N (&/ay)&, then 

Term (iii) is written with an absolute value sign so that the Reynolds stress changes 
sign with &lay, just as the viscous shear stress would. 

7.10.5 Regimes of turbulent wall flow 
As the wall is aproached it has a damping effect on the turbulence, so that very 
close to the wall the viscous shear stress greatly exceeds the Reynolds shear stress. 
This region right next to the wall where viscous effects dominate is usually known 
as the viscous sub-layer. Beyond the viscous sub-layer is a transition or buffer layer 

* L. Prandtl(1925) Bericht uber Untersuchunger zur ausgebildeten Turbulenz, ZAMM, 5, 136139. 
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where the viscous and Reynolds shear stresses are roughly equal in magnitude. 
This region blends into the fully turbulent region where the Reynolds shear stress 
is very much larger than the viscous shear stress. It is in this fully turbulent near- 
wall region that the mixing-length theory can be used. The outer part of the 
boundary layer is more like a free shear layer and there the Reynolds shear stress 
is given by Eqn (7.11 1). 

A major assumption is that the fully turbulent layer begins at a height above the 
wall of y << 6; so that 

d r  
dv 

7 = rw +-y+. . * N r w  (7.113) - 
<<TW 

Near the wall in the viscous sub-layer the turbulence is almost completely damped, 
so only molecular viscosity is important, thus 

dii 7, r = p - = r  therefore ii = - y 
dY P 

(7.114) 

In the fully turbulent region the Reynolds shear stress is much greater than the 
viscous shear stress, so: 

7- = -pu'v' = r w  

So if Eqn (7.112) is used and it is assumed that e,  0: y, then 

dii 2 rw 1 dii V, (6) 0:--? implying -0:- 
dY Y 

(7.115) 

where we have introduced the friction velocity: 

v* = rn (7.116) 

as the reference velocity that is subsequently used to render the velocity in the near- 
wall region non-dimensional. 

Integrate Eqn (7.115) and divide by V, to obtain the non-dimensional velocity 
profile in the fully turbulent region, and also re-write (7.1 14) to obtain the same in the 
viscous sub-layer. Thus 

Fully turbulent flow: 

Viscous sub-layer: 

(7.117) 

(7.118) 

where C1 and C2 are constants of integration to be determined by comparison with 
experimental data; and r] or y+ = y V,/u is the dimensionless distance from the wall; 
the length !+ = u/V* is usually known as the wall unit. 

Figure 7.37 compares (7.117) and (7.118) with experimental data for a turbulent 
boundary layer and we can thereby deduce that 
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3 0 r  --- Eqn (7.1 18) 
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Fig. 7.37 
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Fully developed turbulence: 

(7.119) 

The constants C1 and C, can be determined from comparison with the experi- 
mental data so that (7.1 17) becomes: 

Logarithmic velocity profile: 
- u - 
V* 

(7.120) 

C1 is often written as 1 / ~ .  where K. = 0.41 is known as the von Khrmhn constant* 
because he was the first to derive the logarithmic velocity profile. Equation (7.1 17) is 
often known as the Law of the wall. It applies equally well to the near-wall region of 
turbulent pipe and channel flows for which better agreement with experimental data 
is found for slightly different values of the constants. It is worth noting that it is not 
essential to evoke Prandtl's mixing-length theory to derive the law of the wall. The 
logarithmic form of the velocity profile can also be derived purely by means of 
dimensional analysis. 

* Th. von K h i n  (1930) Mechanische Ahnlichkeit und Turbulenz, Nachrichten der Akademie der 
Wissenschaften Gottingen, Math.-Phys. Klasse, p. 58. 
G.I. Barenblatt and V.M. Prostokishin (1993) Scaling laws for fully-developed turbulent shear flows, 

J.  Fluid Mech., 248: 513-529. 
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The outer boundary layer 

The outer part of the boundary layer that extends for 70 or 80% of the total thickness 
is unaffected by the direct effect of the wall. It can be seen in Fig. 7.37 that the 
velocity profile deviates considerably from the logarithmic form in this outer part of 
the boundary layer. In many respects it is analogous to a free shear layer, especially a 
wake. It is sometimes referred to as the defect layer or wake region. Here inertial 
effects dominate and viscous effects are negligible, so the appropriate reference 
velocity and length scales to use for non-dimensionalization are U, (the streamwise 
flow speed at the boundary-layer edge) and 6 (the boundary-layer thickness) or some 
similar length scale. Thus the so-called outer variables are: 

7.10.6 Formulae for local skin-friction coefficient and drag 
Although it is not valid in the outer part of the boundary layer, Eqn (7.117) can be 
used to obtain the following more accurate semi-empirical formulae for the local 
skin-friction coefficient and the corresponding drag coefficient for turbulent bound- 
ary layers over flat plates. 

= (2log1, Re, - 0.65)-2.3 Cf =- TW 

; PUk 
(7.121) 

(7.122) 

where B and L are the breadth and length of the flat plate. The Prandtl-Schlichting 
formula (7.122) is more accurate than Eqn (7.88) when ReL > lo7. 

Effects of wall roughness 

Turbulent boundary layers, especially at high Reynolds numbers, are very sensitive 
to wall roughness. This is because any roughness element that protrudes through the 
viscous sub-layer will modify the law of the wall. The effect of wall roughness on the 
boundary layer depends on the size, shape and spacing of the elements. To bring a 
semblance of order Nikuradze matched each ‘type’ of roughness against an equivalent 
sand-grain roughness having roughness of height, k,. Three regimes of wall roughness, 
corresponding to the three regions of the near-wall region, can be defined as follows: 

Hydraulically smooth If k,V*/u 5 5 the roughness elements lie wholly within the 
viscous sublayer, the roughness therefore has no effect on the velocity profile or on 
the value of skin friction or drag. 

Completely rough If k,V& 2 50 the roughness elements protrude into the region 
of fully developed turbulence. This has the effect of displacing the logarithmic 
profile downwards, i.e. reducing the value of C2 in Eqn (7.117). In such cases the 
local skin-friction and drag coefficients are independent of Reynolds number and are 
given by 

cf =[2.87 + 1.58 log10(~/k,)]-~.~ (7.123) 

CDf =[1.89 + 1.6210gl,(L/k,)]-~.~ (7.124) 
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Transitional roughness If 5 I k,V*/u 5 50 the effect of roughness is more complex 
and the local skin-friction and drag coefficients depend both on Reynolds number 
and relative roughness, kJ6. 

The relative roughness plainly varies along the surface. But the viscous sub-layer 
increases slowly and, although its maximum thickness is located at the trailing edge, 
the trailing-edge value is representative of most of the rest of the surface. The degree 
of roughness that is considered admissible in engineering practice is one for which the 
surface remains hydraulically smooth throughout, i.e. the roughness elements remain 
within the viscous sub-layer all the way to the trailing edge. Thus 

kad, = 5U/(V*)TE (7.125) 

In the case of a flat plate it is found that Eqn (7.125) is approximately equivalent to 

(7.126) 

Thus for plates of similar length the admissible roughness diminishes with increasing 
ReL. In the case of ships’ hulls admissible roughness ranges from 7pm (large fast 
ships) to 20pm (small slow ships); such values are utterly impossible to achieve in 
practice, and it is always neccessary to allow for a considerable increase in drag due 
to roughness. For aircraft admissible roughness ranges from 10 pm to 25 pm and that 
is just about attainable in practice. Model aircraft and compressor blades require the 
same order of admissible roughness and hydraulically smooth surfaces can be 
obtained without undue difficulty. At the other extreme there are steam-turbine 
blades that combine a small chord (L) with a fairly high Reynolds number 
(5 x lo6) owing to the high velocities involved and to the comparatively high pres- 
sures. In this cases admissible roughness values are consequently very small, ranging 
from 0 . 2 ~  to 2pm. This degree of smoothness can barely be achieved on newly 
manufactured blades and certainly the admissible roughness would be exceeded after 
a period of operation owing to corrosion and the formation of scaling. 

The description of the aerodynamic effects of surface roughness given above has 
been in terms of equivalent sand-grain roughness. It is important to remember that 
the aerodynamic effects of a particular type of roughness may differ greatly from that 
of sand-grain roughness of the same size. It is even possible (see Section 8.5.3) for 
special forms of wall ‘roughness’, such as riblets, to lead to a reduction in drag.* 

7.10.7 Distribution of Reynolds stresses and turbulent kinetic 
energy across the boundary layer 

Figure 7.38plotsthe variation of Reynolds shear stress and kinetic energy (per unit 
mass), k = (d2 + vR + w9/2 across the boundary layer. What is immediately striking 
is how comparatively high the levels are in the near-wall region. The Reynolds shear 
stress reaches a maximum at about y+ 100 while the turbulence kinetic energy 
appears to reach its maximum not far above the edge of the viscous sub-layer. 

Figure 7.39 plots the distributions of the so-called turbulence intensities of the 
- velocity components, i.e. the square-roots of the direct Reynolds stresses, u‘*, vfZ and 
d2. Note that in the outer part of the boundary layer the three turbulent intensities 
tend to be the same (they are ‘isotropic’), but they diverge widely as the wall is 
approached (i.e. they become ‘anisotropic’). The distribution of eddy viscosity across 

* P.W. Carpenter (1997) The right sort of roughness, Nature, 388, 713-714. 
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Fig. 7.38 ‘ariation of Reynolds shear stress and turbulence kinetic energy across the near-w: 
of the turbulent boundary layer 

‘0.4 0.6 0.8 1.0 

region 

_ _  
Fig. 7.39 Variations of the root mean squares of ut2, v’* and w’z across a turbulent boundary layer 

the turbulent boundary layer is plotted in Fig. 7.40. This quantity is important for 
engineering calculations of turbulent boundary layers. Note that the form adopted in 
Eqn (7.112) for the near-wall region according to the mixing-length theory with 
l ,  0: y is borne out by the behaviour shown in the figure. 

If a probe were placed in the outer region of a boundary layer it would show that 
the flow is only turbulent for part of the time. The proportion of the time that the 
flow is turbulent is called the intermittency (7). The intermittency distribution is also 
plotted in Fig. 7.40. 

7.10.8 Turbulence structure in the near-wall region 
The dominance of the near-wall region in terms of turbulence kinetic energy and 
Reynolds shear stress motivated engineers to study it in more detail with a view to 
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Fig. 7.40 Distributions of eddy viscosity and intermittency across a turbulent boundary layer 

identifying the time-varying flow structures there. Kline et al.* carried out a seminal 
study of this kind. They obtained hydrogen-bubble flow visualizations for the tur- 
bulent boundary layer. These revealed that streak-like structures develop within the 
viscous sub-layer. These are depicted schematically in Fig. 7.41. The streak-like 
structures are continuously changing with time. Observations over a period of time 
reveal that there are low- and high-speed streaks. The streak structures become less 
noticeable further away from the wall and apparently disappear in the law-of-the- 
wall region. In the outer region experiments reveal the turbulence to be intermittent 
and of larger scale (Fig. 7.41). 

The conventional view is that the streaks are a manifestation of the existence of 
developing hair-pin vortices. See Figs 7.41 and 7.42 for a schematic illustration of the 
conceptual burst cycle of these structures, that is responsible for generating transient 
high levels of wall shear stress. The development of the 'hair pin vortices' tends to be 
quasi-periodic with the following sequence of events: 

(i) Formation of the low-speed streaks: During this process the legs of the vortices lie 
close to the wall. 

(ii) Lif-up or ejection: Stage E in Fig. 7.41. The velocity induced by these vortex legs 
tends to cause the vortex head to lift off away from the wall. 

(iii) OsciZlation or instability: The first part of Stage B in Fig. 7.41. A local point of 
inflexion develops in the velocity profile and the flow becomes susceptible to 
Helmholtz instability locally causing the head of the vortex to oscillate fairly 
violently. 

(iv) Bursting or break-up: The latter part of Stage B in Fig. 7.41. The oscillation 
culminates in the vortex head bursting. 

(v) High-speed sweep: Stage S in Fig. 7.41. After a period of quiescence the bursting 
event is followed by a high-speed sweep towards the wall. It is during this 
process that the shear stress at the wall is greatest and the new hairpin-vortex 
structures are generated. 

It should be understood that Fig. 7.41 is drawn to correspond to a frame moving 
downstream with the evolving vortex structure. So a constant streamwise velocity is 
superimposed on the ejections and sweeps. 

* S.J. Kline, W.J. Reynolds, F.A. Schraub and P.W. Runstadler (1967) The structure of turbulent boundary 
layers, J .  Fluid Mech., 30, 741-773. 
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Fig. 7.41 Schematic of f low structures in a turbulent boundary layer showing the conceptual burst cycle 
E, ejection stage; B, break-up stage; 5, sweep stage. 

The events described above are quasi-periodic in a statistical sense. The mean 
values of their characteristics are as follows: spanwise spacing of streaks = lOOv/V,; 
they reach a vertical height of 50v/V,; their streamwise extent is about lOOOv/V,; and 
the bursting frequency is about 0.004V,2/v. This estimate for bursting frequency is 
still a matter of some controversy. Some experts* think that the bursting frequency 
does not scale with the wall units, but other investigators have suggested that this 
result is an artefact of the measurement system.+ Much greater detail on these near- 
wall structures together with the various concepts and theories advanced to explain 
their formation and regeneration can be found in Panton.$ 

*K. Narahari Rao, R. Narasimha and M.A. Badri Narayanan (1971) The ‘bursting’ phenomenon in a 
turbulent boundary layer, J .  Fluid Mech., 48, 339. 
Blackwelder, R.F. and Haritonidis, J.H. (1983) Scaling of the bursting frequency in turbulent boundary 

layers, J .  Fluid Mech., 132, 87-103. 
R.L. Panton (ed.) (1997) Self-Sustaining Mechanisms of Wall Turbulence, Computational Mechanics 

Publications, Southampton. 
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Fig. 7.42 Schematic of the evolution of a hairpin vortex in the near-wall region 

Example 7.10 Determining specifications of a MEMS actuator for flow control 
Modern technology is rapidly developing the capability of making very small machines that, 
among many other applications, can be used for actuation and sensing in flow-control systems. 
Such machines are collectively known as MEMS (Micro-electro-mechanical Systems). The 
term is usually used to refer to devices that have characteristic overall dimensions of less than 
1 mm but more than 1 pm. Such devices combine electrical and mechanical components that 
are manufactured by means of integrated circuit batch-processing techniques.* 

A conceptual MEMS actuator for use as part of a flow-control system is depicted schema- 
tically in Fig. 7.43. This device consists of a diaphragm located at the bottom of a buried cavity 
that connects to the boundary layer via an exit orifice. The diaphragm would be made of 
silicon or a suitable polymeric material and driven by a piezoceramic driver. When a voltage is 
applied to the driver, depending on the sign of the electrical signal, it either contracts or 
expands, thereby displacing the diaphragm up or down. Thus, if an alternating voltage is 
applied to the diaphragm, it will be periodically driven up and down. This in turn will 
alternately reduce and increase the volume of the cavity, thereby raising then reducing the 
air pressure there. An elevated cavity pressure will drive air through the exit orifice into the 
boundary layer followed by air returning to the cavity when the cavity pressure falls. This 
periodic outflow and inflow creates what is termed a synthetic jet. Despite the fact that over a 
cycle there is no net air leaving the cavity, vortical structures propagate into the boundary 
layer, much as they would from a steady micro-jet. It is also possible to drive the diaphragm 
with short-duration steady voltage thereby displacing the diaphragm suddenly upward and 
driving a ‘puff of air into the boundary layer.+ 

* For a general description of MEMS technology see Maluf, N. (2000) An Introduction to Microelectro- 
mechanical Systems Engineering. Artech House; Boston/London. And for a description of their potential 
use for flow control see Gad-el-Hak, M. (2000) Flow Control. Passive, Active, and Reactive Flow Munage- 
ment, Cambridge University Press. 

The concept of the synthetic jet was introduced by Smith, B.L. and Glezer, A. (1998) The formation and 
evolution of synthetic jets, Phys. Fluids, 10, 2281-2297. For its use for flow control, see: Crook, A,, Sadri. 
A.M. and Wood, N.J. (1999) The development and implementation of synthetic jets for the control of 
separated flow, AIAA Paper 99-31 76; and Amitay, M. e f  al. (2001) Aerodynamics flow control over an 
unconventional airfoil using synthetic jet actuators, AZAA Journal, 39,361-370. A study of the use of these 
actuators for boundary-layer control based on numerical simulation is described by Lockerby, D.A., 
Carpenter, P.W. and Davies, C. (2002) Numerical simulation of the interaction of MEMS actuators and 
boundary layers, AIAA Journal, 39, 67-73. 
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Fig. 7.43 Schematic sketch of a jet-type actuator 

It has been proposed that synthetic-jet actuators be used to control the near-wall, streak- 
like, structures in the turbulent boundary layer over the flap of a large airliner. In particular, 
the aim is to increase the so-called bursting frequency in order to increase the level of 
turbulence. The increased turbulence level would be expected to lead to a delay of boundary- 
layer separation, allowing the flap to be deployed at a larger angle of incidence, thereby 
increasing its performance. The basic concept is illustrated in Fig. 7.44. The question to be 
addressed here is what dimensions and specifications should be chosen for the MEMS actuator 
in this application. 

Consider an aircraft similar to the Airbus A340 with a mean wing chord of 6 m and a flap 
chord of 1.2m. Assume that the approach speed is about 100m/s and assume standard sea- 
level conditions so that the kinematic viscosity of the air is around 15 x 10-6m2/s. It is 
proposed to locate the array of MEMS actuators near the point of minimum pressure 
200mm from the leading edge of the flap. A new boundary layer will develop on the flap 
underneath the separated boundary layer from the main wing. This will ensure that the flap 
boundary layer is strongly disturbed provoking early transition to turbulence. 

Thus 

R e , = - ?  o'2 loo = 1.33 106. 
v 15 x 

Main wing 

/ Main-wina boundarv laver 

Fig. 7.44 
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In a low-disturbance environment we would normally expect the boundary layer to be laminar 
at this Reynolds number (see Section 7.9), but the flap boundary layer is highly disturbed by 
the separated boundary layer from the main Wing, ensuring early transition. Using Eqn (7.121) 
we can estimate the local skin-friction coefficient, i.e. 

cf = (210g10(1.33 x lo6) - 0.65)-2.3 = 0.00356. 

From this we can then estimate the wall shear stress and friction velocity, thus 

1 1 
2 2 Tw =-pU:cf N - x 1.2 x 100' x 0.00356 = 21.36Pa, V, = = = 4.22m/s. 

The boundary-layer thickness is not strictly needed for determining the actuator specifications, 
but it is instructive to determine it also. In Eqn (7.71) it was shown that C O ~  = 20(L)/L, i.e. 
there is a relationship between the coefficient of skin-friction drag and the momentum thick- 
ness at the trailing edge. This relationship can be exploited to estimate the momentum 
thickness in the present application. We merely assume for this purpose that the flap boundary 
layer terminates at the point in question, i.e. at x = 200 mm, so that 

X Q(x) = -CD~(X). 
2 

Using Fiqn (7.122) 

2,58 = 0.00424. 0.455 - 0.455 
CDf (x) = 

- (1ogl0(1.33 x 10 )) 

Thus 

X 0.2 
2 2 O(X) = -CD~(X) = - x 0.00424 N 425 m. 

From Fiqn (7.83) 

0 424 
0.0973 

8 = 0.09736 giving 6 = - = 4.36mm. 

This illustrates yet again just how thin the boundary layer actually is in aeronautical applica- 
tions. 

Wall unit: 
We can now calculate the wall unit and thence the other dimensions of interest. 

Viscous sub-layer thickness: 

5 e+ N 17.5 p; 

Average spanwise spacing of streaks: 

iooe+ 350 p; 

Bursting frequency: 

4'22 - 4.8 kHz. 
vz 
U 3.5 x 10-6 - 0.004" = 0.004 x 

This suggests that the spanwise dimensions of the MEMS actuators should not exceed about 
100 p; Le. about 30 per cent of average spanwise streak spacing. They also need to be able to 
effect control at frequencies of at least ten times the bursting frequency, say 50 kHz. 
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7.1 1 Computational methods 

7.11.1 Methods based on the momentum integral equation 
In the general case with an external pressure gradient the momentum integral 
equation must be solved numerically. There are a number of ways in which this 
can be done. One method for laminar boundary layers is to use the approximate 
expressions (7.64a’,b’,c’) with Eqn (7.59) (or 7.98) rewritten as 

( H  + 2) 
db’ - Cf V, e dU, 
- - - - - - - - 
dx 2 Ue Ue dx 

dO/dx can be related to dS/dx as follows: 

de d(SI) dS d I  dS d I  dA dS - -  - - =I-+S-=I-+S--- 
dx dx dx dx dx dA dS dx 

It follows from Eqns (7.62d) and (7.64b’) respectively that 

dA 2S2 dUe 
dS v dx 

6- = - ~ = 2A 

-- 

so 
dS db’ 

dx dx 
- = 8’1 (A) - 

(7.127) 

(7.128) 

where 

Thus Eqn (7.127) could be readily converted into an equation for dS/dx by dividing 
both sides by Fl(A). The problem with doing this is that it follows from Eqn (7.64~’) 
that 

Thus in cases where either 6 = 0 or U, = 0 at x = 0, the initial value of Cf, and 
therefore the right-hand side of Eqn (7.127) will be infinite. These two cases are in 
fact the two most common in practice. The former corresponds to sharp leading 
edges and the latter to blunt ones. To deal with the problem identified above both 
sides of Eqn (7.127) are multiplied by 2UeS/v, whereby with use of Eqn (7.128) it 
becomes 

Ue dS2 2VSS 
F1 (A) - - = F 2  (A) - - 

v dx V 
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where use of Eqns (7.64a',b',c') gives 

A 3 A2 4 Fz(A) =4+---A+-+- 
3 10 60 63 

To obtain the final form of Eqn (7.127) for computational purposes Fl(A)S2dUe/dx is 
added to both sides and then both sides are divided by Fl(A); thus 

(7.129) 

where the dependent variable has been changed from S to Z = S2Ue/v. In the usual 
case when V, = 0 the right-hand side of Eqn (7.129) is purely a function of A. Note 
that 

A=--  Z dUe and 6=g 
U, dx ' 

Since U, is a prescribed function of x this allows both A and 6 to be obtained from a 
value of 2. The other quantities of interest can be obtained from Eqn (7.64a', b', c'). 

With the momentum-integral equation in the form (7.129) it is suitable for the 
direct application of standard methods for numerical integration of ordinary differ- 
ential equations.* It is recommended that the fourth-order RungeKutta method be 
used. It could be used with an adaptive stepsize control, the advantage of which is 
that small steps would be chosen in regions of rapid change, e.g. near the leading 
edge, while larger steps would be taken elsewhere. 

In order to begin the calculation it is necessary to supply initial values for 2 and A 
at x = 0, say. For a sharp leading edge S = 0 giving 2 = A = 0 at x = 0, whereas for 
a round leading edge Ue = 0 and 2 = 0 but A = 7.052, see Example 7.8 above, this 
value of A should be used to evaluate the right-hand side of (7.129) at x = 0. 

Boundary-layer computations using the method described above have been carried 
out for the case of a circular cylinder of radius l m  in air flowing at 
20 m/s (v = 1.5 x m2/s). In Fig. 7.45, the computed values of A and momentum 
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Fig. 7.45 

* Complete FORTRAN subroutines for this are to be found in W.H. Press eral. (1992) Zoc. cit. 
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thickness are plotted against angle around the cylinder's surface measured from the 
fore stagnation point. A fourth-order RungeKutta integration scheme was used 
with 200 fixed steps between x = O  and x =  3. This gave acceptable accuracy. 
According to this approximate calculation the separation point, corresponding to 
A = -12, occurs at 106.7'. This should be compared with the accurately computed 
value of 104.5" obtained using the differential form of the equations of motion. Thus 
it can be seen that the Pohlhausen method gives reasonably acceptable results in 
terms of a comparison with more accurate methods. In point of fact neither value 
given above for the separation point is close to the actual value found experimentally 
for a laminar boundary layer. Experimentally, separation is found to occur just 
ahead of the apex of the cylinder. The reason for the large discrepancy between 
theoretical and observed separation points is that the large wake substantially alters 
the flow outside the boundary layer. This main-stream flow, accordingly, departs 
markedly from the potential-flow solution assumed for the boundary-layer calcula- 
tions. Boundary-layer theory only predicts the separation point accurately in the case 
of streamlined bodies with relatively small wakes. Nevertheless, the circular cylinder 
is a good test case for checking the accuracy of boundary-layer computations. 

Numerical solutions of the momentum integral equation can also be found using 
Thwaites' method.* This method does not make use of the Pohlhausen approximate 
velocity profile Eqn (7.63) or Eqn (7.65). It is very simple to use and for some 
applications it is more accurate than the Pohlhausen method described above. A 
suitable FORTRAN program for Thwaites method is given by Cebeci and Bradshaw 
(1977). 

Computational methods based on the momentum integral equation are also 
available for the turbulent boundary layer. In this case, one or more semi-empirical 
relationships are also required in addition to the momentum integral equation. For 
example, most methods make use of the formula for Cf due to Ludwieg and Tillmann 
(1 949), namely 

Cf = 0.246 x 10- 0.6788 (y) 
A very good method of this type is due to Head (1958).+ This method is relatively 
simple to use but, nevertheless, performs better than many of the much more com- 
plex methods based on the differential equations of motion. A FORTRAN program 
based on Head's method is also given by Cebeci and Bradshaw loc. cit. 

In order to begin the computation of the turbulent boundary layer using Head's 
method it is necessary to locate the transition point and to supply initial values of 0 
and H = 6*/0. In Section 7.7.7, it was shown that for the boundary layer on a flat 
plate Eqn (7.89) held at the transition point, Le. there is not a discontinuous change 
in momentum thickness. This applies equally well to the more general case. So once 
the transition point is located the starting value for 8 in the turbulent boundary layer 
is given by the final value in the laminar part. However, since transition is assumed 
to occur instantaneously at a specific location along the surface, there will be 
a discontinuous change in velocity profile shape at the transition point. This implies 
a discontinuous change in the shape factor H. To a reasonable approximation 

* B. Thwaites (1949) 'Approximate calculation of the laminar boundary layer', Aero. Quart., 1, 245. 
M.R. Head (1958) 'Entrainment in the turbulent boundary layers', Aero. Res. Council, Rep. & Mem., 3152. 
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where 

A H  = 0.821 + 0.11410g,,(Re~~) 
A H  = 1.357 

Re& < 5 x lo4 
Re& > 5 x lo4 

7.1 1.2 Transition prediction 
The usual methods of determining the transition point are based on the so-called e" 
method developed by A.M.O. Smith and H. Gamberoni (1956) at Douglas Aircraft 
Co.* These methods are rather complex and involve specialized computational 
techniques. Fortunately, Smith and his colleagues have devised a simple, but highly 
satisfactory alternative.+ They have found on a basis of predictions using the e" 
method that the transition Reynolds number  re^ (where Re, = U,x/v) is related to 
the shape factor H by the following semi-empirical formula: 

loglo(ReXt) = -40.4557 + 64.80668 - 26.7538H2 + 3.3819H3 2.1 < H < 2.8 
(7.130) 

To use this method log,, (Re,) is plotted against x (distance along the surface from 
the fore stagnation point on the leading edge). A laminar boundary-layer calculation 
is carried out and the right-hand side of Eqn (7.130) is also plotted against x .  
Initially, the former curve will lie below the latter; the transition point is located at 
the value of x (or Re,) where the two curvesfirst cross. This is illustrated in Fig. 7.46 

Fig. 7.46 

* See N.A. Jaffe, T.T. Okamura and A.M.O. Smith (1970) 'Determination of spatial amplification factors 
and their application to predicting transition', AIAA J., 8, 301-308. 

A.R. Wazzan, C. Gazley and A.M.O. Smith (1981) 'H-R, method for predicting transition', AZAA J., 19, 
810412. 
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where the left-hand side (denoted by LHS) and the right-hand side (denoted by RHS) 
of Eqn (7.130), calculated for the case of the circular cylinder illustrated in Fig. 7.45, 
are plotted against Re,. In this case, the two curves cross at a value of 
Re, E 6.2 x lo6 and this is taken to correspond to the transition point. 

7.11.3 Computational solution of the laminar 
boundary-layer equations 

Nowadays, with the ready availability of powerful desktop computers, it is perfectly 
feasible to solve the boundary-layer equations computationally in their original form 
as partial differential equations. Consequently, methods based on the momentum 
integral equation are now less widely used. Computational solution of the boundary- 
layer equations is now a routine matter for industry and university researchers alike, 
and suitable computer programs are widely available. Nevertheless, specialized 
numerical techniques are necessary and difficulties are commonly encountered. Good 
expositions of the required techniques and the pitfalls to be avoided are available in 
several textbooks.* All-purpose commercial software packages for computational 
fluid dynamics are also widely available. As a general rule such software does not 
handle boundary layers well owing to the fine resolution required near the wallt. 
Only a brief introduction to the computational methods used for boundary layers 
will be given here. For full details the recommended texts should be consulted. 

It is clear from the examples given that in aeronautical applications boundary layers 
are typically very thin compared with the streamwise dimensions of a body like a wing. 
This in itself would pose difficulties for computational solution. For this reason 
equations (7.7) and (7.14) are usually used in the following non-dimensional form 

dU d V  -+-=o 
d X  dY 

aU dU d P  8 U  u-+ v-= --+- 
d X  d Y  dX dY2 

(7.131) 

(7.132) 

where U = u/U,, V = v/(ReLU,), P = p/(pUL),  X = x/L, and Y = y/(LReL). In 
many respects this form was suggested by the method of derivation given in Section 
7.3.1. What this form of the equations achieves is to make the effective range of both 
independent variables X and Y similar in size, i.e. O(1). The two dependent variables 
U and V are also both O(1). Thus the grid used to discretize the equations for 
computational solution can be taken as rectangular and rectilinear, as depicted in 
Fig. 7.47. 

Mathematically, the boundary-layer equations are what are termed parabolic. 
What this means for computational purposes is that one starts at some initial point 
X = XO,  say, where U is known as a function of Y, e.g. the stagnation-point solution 
(see Section 2.10.3) should be used in the vicinity of the fore stagnation point. The 
object of the computational scheme is then to compute the solution at XO + AX 
where AX is a small step around the body surface. One then repeats this procedure 
until the trailing edge or the boundary-layer separation point is reached. For obvious 

*For example, see Fersiger, J.H. (1998) Numerical Methods for Engineering Application, 2nd Ed., Wiley; 
Fersiger, J.H. and Peric, M. (1999) Computational Methods for Fluid Dynamics, 2nd Ed., Springer; Schli- 
chting, H. and Gersten, K. (2000) Bowzdary Layer Theory, Chap. 23, 8th Ed., McGraw-Hill. 
i A  guide on how to use commercial CFD is given by Shaw, C.T. (1992) Using Computational Fluid 
Mechanics, Prentice Hall. 
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I,  I i - l  i i + l  

X 

Fig. 7.47 

reasons such a procedure is called a marching scheme. The faot that the equations are 
parabolic allows one to use such a marching scheme. It would not work for the 
Laplace equation, for example. In this case, quite different methods must be used (see 
Section 3.5). 

The simplest approach is based on a so-called explicit finite-difference scheme. 
This will be briefly explained below. 

It is assumed that the values of U are known along the line X = Xi, i.e. the discrete 
values at the grid points (like P) are known. The object is to devise a scheme for 
calculating the values of U at the grid points along X = Xi+l.  To do this we rewrite 
Eqn (7.132) in a form for determining dU/dX at the point P in Fig. 7.47. Thus 

(E) d X  i , j  =L{-vi , j(E) u i , j  dY i , j  -(E) dX +(E) dy2 i , j  }. (7.133) 

Values at X = Xi+l  can then be estimated by writing 

(7.134) 

The last term on the right-hand side indicates the size of the error involved in using 
this approximation. The pressure gradient term in Eqn (7.133) is a known function of 
X obtained either from experimental data or from the solution for the potential flow 
around the body. But the other terms have to be estimated using finite differences. To 
obtain estimates for the first and second derivatives with respect to Y we start with 
Taylor expansions about the point P in the positive and negative Y directions. Thus 
we obtain 
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First we subtract Eqn (7.135b) from (7.135a) and rearrange to obtain the estimate 

(7.136) 

We then add Eqns (7.135a) and (7.135b) and rearrange to obtain the estimate 

(7.137) 

The results given in Eqns (7.136) and (7.137) are usually referred as centred finite 
differences. Finally, the value of Vi,j also has to be estimated. This has to be obtained 
from Eqn (7.131) which can be rewritten as 

(E) =-(E) 
i , j  i,j 

Using a result analogous to Eqn (7.136) we get 

There are two problems with this result. First it gives Vj,j+l rather than Vi,j; this is 
easily remedied by replacingj b y j  - 1 to obtain 

(7.138) 

The other problem is that it requires a value of (dU/dX) i , j - l .  But the very reason we 
needed to estimate Vi, in the first place was to obtain an estimate for (dU/dX)i, j!  
Fortunately, this does not represent a problem provided the calculations are done in 
the right order. 

At the wall, sayj  = 0, U = V = 0 (assuming it to be impermeable), also from the 
continuity equation (7.131), dV/dY = 0. Thus, using an equation analogous to Eqn 
(7.135a), 

=O 

With this estimate of Vi, 1 ,  (aU/dX) ,  can now be estimated from Eqn (7.133), the 
first term on the right-hand side being equivalently zero. Ui+l, 1 is then estimated 
from Eqn (7.134). All the values are now known for j  = 1. The next step is to setj  = 2 
in Eqn (7.138), so that 

( d U / a X ) , ,  can now be estimated from Eqn (7.133) and so on right across the 
boundary layer. It is necessary, of course, to choose an upper boundary to the 
computational domain at a finite, but suitably large, height, y = YJ, corresponding 
to j = J, say. 

This explicit finite-difference scheme is relatively simple to execute. But explicit 
schemes are far from ideal for boundary-layer calculations. Their main drawback is 
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that their use leads to numerical instability that is characterized by the solution 
displaying increasingly large oscillations as the calculation marches downstream 
leading to unacceptedly large errors. In order to ensure that this does not happen, 
it is necessary to impose the following condition on the streamwise step length in 
order to ensure numerical stability: 

A X  5 (7.139) 

Since U is very small at the first grid point near the wall, very small values of AX will 
be required to ensure numerical stability. 

Because of the problems with numerical instability, so-called implicit schemes are 
much to be preferred, because these permit step-size to be determined by considera- 
tions of accuracy rather than numerical stability. Here a scheme based on the Crank- 
Nicholson method will be briefly described. The essential idea is to rewrite Eqn 
(7.134) in the form 

1 
Imin( Ui>j) ( A  Y ) 2  I 

So that the derivative at x = xi is replaced by the average of that and the derivative at 
x = xi,l. Formally, this is more accurate and numerically much more stable. The 
problem is that Eqn (7.133) implies that 

and Eqns (7.136) and (7.137) imply that 

(7.142) 

(7.143) 

Thus the unknown values of U at Xi-1, i.e. Ui+l,j( j  = 1,. . . , J ) ,  appear on both 
sides of Eqn (7.140). This is what is meant by the term implicit. In order to solve 
Eqn (7.140) for these unknowns it must be rearranged as a matrix equation of the form 

A U = R  

where A is the coefficient matrix, U is a column matrix containing the unknowns 
U,l, j( j  = 1, . . . , 4, and R is a column matrix of containing known quantities. 
Fortunately A has a tridiagonal form, Le. only the main diagonal and the two 
diagonals either side of it are non-zero. Tridiagonal matrix equations can be solved 
very efficiently using the Thomas (or Tridiagonal) algorithm, versions of which can 
be found in Press etal. (loc. cit.) and on the Internet site associated with Ferziger 
(1998) (loc. cit.). 

One of the most popular and widely used implicit schemes for computational 
solution of the boundary-layer equations is the Keller* box scheme which is slightly 
more accurate than the Crank-Nicholson method. 

* Keller, H.B. (1978) Numerical methods in boundary-layer theory, Annual Review FZuidMech., 10,417-433. 
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7.1 1.4 Computational solution of turbulent boundary layers 
The simplest approach is based on the turbulent boundary-layer equations (7.108a,b) 
written in the form: 

(7.144) 

(7.145) 

No attempt is made to write these equations in terms of non-dimensional variables as 
was done for Eqns (7.131) and (7.132). A similar procedure would be advantageous 
for computational solutions, but it is not necessary for the account given here. 

The primary problem with solving Eqns (7.131) and (7.132) is not computational. 
Rather, it is that there are only two equations, but three dependent variables to 
determine by calculation, namely ii, v and u”. The ‘solution’ described in Section 
7.10 is to introduce an eddy-viscosity model (see Eqn 7.109) whereby 

(7.146) 

In order to solve Eqns (7.144) and (7.145), ET must be expressed in terms of ii (and, 
possibly, V). This can only be done semi-empirically. Below in Section 7.11.5 it will be 
explained how a suitable semi-empirical model for the eddy viscosity can be devel- 
oped for computational calculation of turbulent boundary layers. First, a brief 
exposition of the wider aspects of this so-called turbulence modelling approach is 
given. 

From the time in the 1950s when computers first began to be used by engineers, 
there has been a quest to develop increasingly more effective methods for computa- 
tional calculation of turbulent flows. For the past two decades it has even been 
possible to carry out direct numerical simulations (DNS) of the full unsteady, three- 
dimensional, Navier-Stokes equations for relatively simple turbulent flows at com- 
paratively low Reynolds numbers. * Despite the enormous advances in computer 
power, however, it is unlikely that DNS will be feasible, or even possible, for most 
engineering applications within the foreseeable future. All alternative computational 
methods rely heavily on semi-empirical approaches known collectively as turbulent 
modelling. The modern methods are based on deriving additional transport equations 
from the Navier-Stokes equations for quantities like the various components of the 
Reynolds stress tensor (see Eqn 7.107), the turbulence kinetic energy, and the viscous 
dissipation rate. In a sense, such approaches are based on an unattainable goal, 
because each new equation that is derived contains ever more unknown quantities, so 
that the number of dependent variables always grows faster than the number of 
equations. As a consequence, an increasing number of semi-empirical formulae is 
required. Nevertheless, despite their evident drawbacks, the computational methods 
based on turbulence modelling have become an indispensable tool in modern 

* Spalart, P.R. and Watmuff, J.H. (1993) Direct simulation of a turbulent boundary layer up to Re = 1410, 
J.  Fluid Mech., 249, 337-371; Moin, P. and Mahesh, K. (1998) Direct numerical simulation: A tool in 
turbulence research, Annual Review Fluid Mech., 30, 539-578; Friedrich, R. et al. (2001) Direct numerical 
simulation of incompressible turbulent flows, Computers & Fluids, 30, 555-579. 
’ Agarwal, R. (1999) Computational fluid dynamics of whole-body aircraft, Annual Review Fluid Mech., 
31, 125-170. 
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engineering. A brief account of one of the most widely used of these methods will be 
given in Section 7.11.6. 

Increasingly, an alternative approach to this type of turbulence modelling is 
becoming a viable computational tool for engineering applications. This is large- 
eddy simulation (LES) that was first developed by meteorologists. It still relies 
on semi-empirical turbulence modelling, however. A brief exposition will be given 
in Section 7.1 1.7. 

7.1 1.5 Zero-equation methods 
Computational methods that are based on Eqns (7.144) and (7.145) plus semi- 
empirical formulae for eddy viscosity are often known as zero-equation methods. 
This terminology reflects the fact that no additional partial differential equations, 
derived from the NavierStokes equations, have been used. Here the Cebeci-Smith 
method* will be described. It was one of the most successful zero-equation methods 
developed in the 1970s. 

Most of the zero-equation models are based on extensions of Prandtl's mixing- 
length concept (see Sections 7.10.4 and 7.10.5), namely: 

aii aii 
aY aY 

- u ' v / = ~ T -  E T = I C ~  1 - 1  (i.e.&=ICy) 

The constant IC is often known as the von Grmbn constant. 
Three key modifications were introduced in the mid 1950s: 

(1) Damping near the wall: Van Driestt 
An exponential damping function was proposed that comes into play as y + 0. This 
reflects the reduction in turbulence level as the wall is approached and extends the 
mixing-length model into the buffer layer and viscous sub-layer: 

lm = ~ y [ l -  exp(-y+/A;)] A; = 26 

(2) Outer wake-like flow: Clausert 
It was recognized that the outer part of a boundary layer is like a free shear layer 
(specifically, like a wake flow), so there the Prandtl-Gortler eddy-viscosity model, see 
Eqns (7.1 10) and (7.1 1 l), is more appropriate: 

E = Q XU,S* v 
const. 

where U, is the flow speed at the edge of the boundary layer and 6* is the boundary- 
layer displacement thickness. 

(3)  Intermittency: Corrsin and Kistler, and Klebannoff 
It was recognized that the outer part of the boundary layer is only intermittently 
turbulent (see Section 7.10.7 and Fig. 7.40). To allow for this it was proposed that ET 

be multiplied by the following semi-empirical intermittency factor: 

* Cebeci, T. and Smith, A.M.O. (1974) Analysis of Turbulent Boundary Layers, Academic Press. 

%Clauser, F.H. (1956) The turbulent boundary layer, Adv. in Applied Mech., 4, 1-51. 
#Corrsin, S. and Kistler, A.L. (1954) The free-stream boundaries of turbulent flows, NACA Tech. Note 
3133. Klebannoff, P.S. (1954) Characteristics of influence in a boundary layer with zero pressure gradient, 
NACA Tech. Note 3178 and NACA RepJ247. 

Van Driest, E.R. (1956) On the turbulent flow near a wall, J. Aeronautical Sciences, 23, 1007-101 1.  
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7tr = [1+ (3"--' 
Cebeci4mith method 
The Cebeci-Smith method incorporates versions of these three key modifications. 
For the inner region of the turbulent boundary layer: 

where the mixing length 

(7.147) 

(7.148) 

Term (i) is a semi-empirical modification of Van Driest's damping model that takes 
into account the effects of the streamwise pressure gradient; IC = 0.4 and 

Damping Length: 

(7.149) 

For the outer region of the turbulent boundary layer: 

 ET>^ = aUeS*Ttr ~c I Y I (7.150) 

where a = 0.0168 when Reo 2 5000. yc is determined by requiring 

(-ET)i = (€TIo  at Y = Y c  (7.151) 

See Cebeci and Bradshaw (1977) for further details of the Cebeci-Smith method. 
It does a reasonably good job in calculating conventional turbulent boundary- 

layer flows. For applications involving separated flows, it is less successful and one- 
equation methods like that due to Baldwin and Lorna* are preferred. 

For further details on the Baldwin-Lomax and other one-equation methods, 
including computer codes, Wilcox (1993) and other specialist texts should be con- 
sulted. 

7.1 1.6 The k-E method - A typical two-equation method 
Probably the most widely used method for calculating turbulent flows is the 
k--E model which is incorporated into most commercial CFD software. It 
was independently developed at Los Alamost and at Imperial College 
London.$ 

*Baldwin, B.S. and Lorna, H. (1978) Thin layer approximation and algebraic model for separated 
turbulent flows. AIAA Paper 78-257. 
Harlow, F.H. and Nakayama, P.I. (1968) Transport of turbulence energy decay rate. Univ. of California, 

Los Alamos Science Lab. Rep. LA-3854. 
Jones, W.P. and Launder, B.E. (1972) The prediction of laminarkation with a two-equation model of 

turbulence, Int. J. Heat Muss Transfer, 15, 301-314. 
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The basis of the k--E and most other two-equation models is an eddy-viscosity 

ET = C,k'J2e C, is an empirical const. (7.152) 

Note that the kinetic energy per unit mass, k = (u" + + z ) / 2 .  Some previous 
two-equation models derived a transport equation for the length-scale e. This seemed 
rather unphysical so, based on dimensional reasoning, the k--E model took 

e = k3J2/& (7.153) 

where E is the viscous dissipation rate per unit mass and should not be confused with 
the eddy viscosity, E T .  A transport equation for E was then derived from the Navier- 
Stokes equations. 

Both this equations for E and the turbulence kinetic energy k contain terms 
involving additional unknown dependent variables. These terms must be modelled 
semi-empirically. For flows at high Reynolds number the transport equations for k 
and E are modelled as follows: 

Turbulence energy: 

formula based on dimensional reasoning and taking the form: 

Energy dissipation: 

(7.154) 

(7.155) 

These equations contain 5 empirical constants that are usually assigned the following 
values: 

Cp c1 c2 uk UE 
0.09 1.55 2.0 1.0 1.3 

where Ck and a& are often termed effective turbulence Prandtl numbers. Further 
modification of Eqns (7.154 and 7.155) is required to deal with relatively low 
Reynolds numbers. See Wilcox (1993) for details of this and the choice of wall 
boundary conditions. 

The k-  E model is intended for computational calculations of general turbulent 
flows. It is questionable whether it performs any better than, or even as well as, the 
zero-equation models described in Section 7.11.5 for boundary layers. But it can be 
used for more complex flows, although the results should be viewed with caution. A 
common misconception amongst practising engineers who use commercial CFD 
packages containing the k--E model is that they are solving the exact Navier-Stokes 
equations. They are, in fact, solving a system of equations that contains several 
approximate semi-empirical formulae, including the eddy-viscosity model described 
above. Real turbulent flows are highly unsteady and three-dimensional. The best one 
can expect when using the k--E, or any other similar turbulence model, is an 
approximate result that gives guidance to some of the features of the real turbulent 
flow. At worst, the results can be completely misleading, for an example, see the 
discussion in Wilcox (1993) of the round-jet/plane-jet anomaly. 

For a full description and discussion of two-equation turbulence models and other 
more advanced turbulence models see Wilcox (1993), Pope (2000) and other special- 
ized books. 
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7.1 1.7 Large-eddy simulation 
This approach to computational calculation of turbulent flow originated with 
meteorologists. In a sense LES is half way between the turbulence modelling based 
on Reynolds averaging and direct numerical simulations. LES is motivated by the 
view that the larger-scale motions are likely to vary profoundly between one type of 
turbulent flow and another, but that the small-scale turbulence is likely to be much 
more universal in character. Accordingly any semi-empirical turbulence modelling 
should be confined to the small-scale turbulence. With this in mind the flow variables 
are partitioned into 

{ u , v , w , p }  = {ii,ij,Kq} + { u / , v / , w y }  (7.156) -- 
Resolved field Subgrid-scale field 

The resolved or large-scale field is computed directly while the subgrid-scale field is 
modelled semi-empirically. 

The resolved field is obtained by applying afilter to the flow variables, e.g. 

ii(2) = G ( 2 -  0 u(adf (7.157) 
J- 

If the fiter function is chosen appropriately this has the effect of ‘averaging’ over the 
sub-grid scales. 

Filter function 

Two common choices of filter function 

(1) Box Filter *: 

1 12-4 < A / 2  G(2 - ‘ = { 0 Otherwise 
(2)  Gaussian Filter +: 

(7.158) 

(7.159) 

The choice made for the size of A or A, in Eqns (7.158) or (7.159) determines the 
sub-grid scale. Filtering the Navier-Stokes equations gives: 

(7.161) 

where u1, u2 and u3 denote u, v and w, and X I ,  x2 and x3 denote x ,  y and z; and where 

(7.162) 
- - - -  

1 - - fi.- luj + E4;iij + upi + u!u! 
1 J  

* Deardorff, J.W. (1970) A numerical study of three-dimensional turbulent channel flow at large Reynolds 
numbers, J.  FZuid Meeh., 41,453-480. 

Leonard, A. (1974) Energy cascade in large eddy simulations of turbulent fluid flow, Adv. Geophys., 18A, 
237-248. 
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Usually the following approximation suggested by Leonard (1974) is made 
- 
u!u! (7.163) 

- A2 diii diij 
uiuj N i i i i i j  + --- + 

12 due due a - modelled semi-empirically 

Sub-grid scale modelling 

A common approach, originating with Smagorinsky* is to use an eddy viscosity, so that 

A common way of modelling ET is also due to Smagorinsky (1963): 

(7.164) 

(7.165) 

where c is a semi-empirically determined constant. 
For more information on LES see Wilcox (1993) and Pope (2000). LES is very 

demanding in terms of computational resources but with the rapid increase in 
computer power it is becoming more and more feasible for engineering calculations. 
An alternative that is less demanding on computational resources is to use conven- 
tional turbulence modelling based on Reynolds averaging, but to include the time 
derivatives of the mean velocity components in the Reynolds-averaged Navier- 
Stokes equations. This approach is sometimes known as very-large-eddy simulation 
(VLES). See Tucker (2001)+ for a specialized treatment. 

* - *  

7.12 Estimation of profile drag from velocity 
profile in wake 

At the trailing edge of a body immersed in a fluid flow, there will exist the 
boundary layers from the surfaces on either side. These boundary layers will join 
up and move downstream in the form of a wake of retarded velocity. The velocity 
profile will change with distance downstream, the wake cross-section increasing in 
size as the magnitude of its mean velocity defect, relative to free stream, decreases. At 
a sufficient distance downstream, the streamlines will all be parallel and the static 
pressure across the wake will be constant and equal to the free-stream value. If 
conditions at this station are compared with those in the undisturbed stream ahead 
of the body, then the rate at which momentum has been lost, while passing the body, 
will equate to the drag force on the body. The drag force so obtained will include 
both skin-friction and form-drag components, since these together will produce the 
overall momentum change. A method of calculating the drag of a two-dimensional 
body using the momentum loss in the wake is given below. The method depends on 
conditions remaining steady with time. 

* Smagorinsky, J. (1963) General circulation experiments with the primitive equations: I. The basic equa- 
tions, Mon. Weather Rev., 91, 99-164. 
‘Tucker, P.G. (2001) Computation of Unsteady Internal Flows. Kluwer Academic Publishers, Norwell, MA, 
U.S.A. 
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7.12.1 The momentum integral expression for the drag 
of a two-dimensional body 

Consider a two-dimensional control volume fixed in space (see Fig. 7.48) of unit 
width, with two faces (planes 0 and 2) perpendicular to the free stream, far 
ahead of and far behind the body respectively, the other two lying parallel to the 
undisturbed flow direction, and situated respectively far above and far below 
the body. For any stream tube (of vertical height Sy) that is contained within the 
wake at the downstream boundary, the mass flow per unit time is pu2Syz and 
the velocity reduction between upstream and downstream is U, - 242. The loss of 
momentum per unit time in the stream tube = pu2(U, - u2)6y2 and, for the 
whole field of flow: 

Total loss of momentum per unit time = pu~(U, - u2)dyz L 
In fact, the limits of this integration need only extend across the wake because the 
term U, - 2.42 becomes zero outside it. 

This rate of loss of momentum in the wake is brought about by the reaction on the 
fluid of the profile drag force per unit span D, acting on the body. Thus 

(7.166) 

This expression enables the drag to be calculated from an experiment arranged to 
determine the velocity profile at some considerable distance downstream of the body, 
i.e. where p = p,. 

For practical use it is often inconvenient, or impossible, to arrange for 
measurement so far away from the body, and methods that allow measure- 
ments to be made close behind the body (plane 1 in Fig. 7.48) have been 
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developed by Betz* and B.M. Jones.+ The latter's method is considerably the 
simpler and is reasonably accurate for most purposes. 

7.12.2 B.M. Jones' wake traverse method for determining 
profile drag 

In the wake close behind a body the static pressure, as well as the velocity, will vary 
from the value in the free stream outside the wake. E. Melville Jones allowed for this 
fact by assuming that, in any given stream tube between planes 1 (close to the body) 
and 2 (far downstream), the stagnation pressure could be considered to remain 
constant. This is very nearly the case in practice, even in turbulent wakes. 

Let H,  be the stagnation pressure in any stream tube at plane 0 and H I  = HZ be 
its value in the same stream tube at planes 1 and 2. Then 

1 ,  1 
Hl =p1 +-pu; 2 =pw +-pu, 2 

The velocities are given by 

Substituting the values for U, and u2 into Eqn (7.166) gives 

D = 2 1 2  l / G ( l / K F E -  l / z = z ) d Y z  (7.167) 

To refer this to plane 1, the equation of continuity in the stream tube must be used, i.e. 

u1 SYl = U Z S Y Z  

or 

(7.168) 

Referred to the wake at plane 1, Eqn (7.167) then becomes 

(7.169) 

In order to express Eqn (7.169) non-dimensionally, the profile-drag coefficient Cop is 
used. For unit span: 

* A. Betz, ZFM, 16,42, 1925. 
B. Melville Jones, ARCR undM, 1688, 1936. 
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so that Eqn (7.169) becomes 

It will be noticed again that this integral needs to be evaluated only across the wake, 
because beyond the wake boundary the stagnation pressure HI becomes equal to H, 
so that the second term in the bracket becomes unity and the integrand becomes zero. 

Equation (7.170) may be conveniently used in the experimental determination of 
profile drag of a two-dimensional body when it is inconvenient, or impracticable, to 
use a wind-tunnel balance to obtain direct measurement. It can, in fact, be used to 
determine the drag of aircraft in free flight. All that is required is a traversing 
mechanism for a Pitot-static tube, to enable the stagnation and static pressures HI 
andpl to be recorded at a series of positions across the wake, ensuring that measure- 
ments are taken as far as the undisturbed stream on either side, and preferably an 
additional measurement made of the dynamic pressure, H, -pm,  in the incoming 
stream ahead of the body. In the absence of the latter it can be assumed, with 
reasonable accuracy, that H, - p m  will be the same as the value of HI - p1 outside 
the wake. 

Using the recordings obtained from the traverse, values of HI - p1 and HI - pm 
may be evaluated for a series of values of y l / c  across the wake, and hence a 
corresponding series of values of the quantity 

By plotting a curve of this function against the variable y l /c  a closed area will be 
obtained (because the integral becomes zero at each edge of the wake). The magni- 
tude of this area is the value of the integral, so that the coefficient CD, is given 
directly by twice the area under the curve. 

In order to facilitate the actual experimental procedure, it is often more convenient 
to construct a comb or rake of pitot and static tubes, set up at suitable spacings. The 
comb is then positioned across the wake (it must be wide enough to read into the free 
stream on either side) and the pitot and static readings recorded. 

The method can be extended to measure the drag of three-dimensional bodies, by 
making a series of traverses at suitable lateral (or spanwise) displacements. Each 
individual traverse gives the drag force per unit span, so that summation of these in a 
spanwise direction will give the total three-dimensional drag. 

7.12.3 Growth rate of two-dimensional wake, using 
the general momentum integral equation 

As explained the two boundary layers at the trailing edge of a body will join up and 
form a wake of retarded flow. The velocity profile across this wake will vary appreciably 
with distance behind the trailing edge. Some simple calculations can be made that will 
relate the rate of growth of the wake thickness to distance downstream, provided the 
wake profile shape and external mainstream conditions can be specified. 
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The momentum integral equation for steady incompressible flow, Eqn (7.98) may 
be reduced to 

(7.171) 

Now Cf is the local surface shear stress coefficient at the base of the boundary layer, 
and at the wake centre, where the two boundary layers join, there is no relative 
velocity and therefore no shearing traction. Thus, for each half of the wake, Cf is zero 
and Eqn (7.17 1) becomes 

(7.172) 

It is clear from this that if the mainstream velocity outside the wake is constant, then 
dUe/dx = 0 and the right-hand side becomes zero, i.e. the momentum thickness of 
the wake is constant. This would be expected from the direct physical argument that 
there are no overall shearing tractions at the wake edges under these conditions, so 
that the total wake momentum will remain unaltered with distance downstream. 
0 may represent the momentum thickness for each half of the wake, considered 
separately if it is unsymmetrical, or of the whole wake if it is symmetrical. 

The general thickness S of the wake is then obtainable from the relationship 
1 

0 = 6 1  ii(l-n)dy=I16 

so that 

(7.173) 

where suffices a and b refer to two streamwise stations in the wake. Knowledge of the 
velocity profiles at stations a and b is necessary before the integrals I, and I b  can be 
evaluated and used in this equation. 

Example 7.11 A two-dimensional symmetrical aerofoil model of 0.3 m chord with a roughened 
surface is immersed, at zero incidence, in a uniform airstream flowing at 30 m s-l. The minimum 
velocity in the wake at a station 2.4 m downstream from the trailing edge is 27 m s-l. Estimate 
the general thickness of the whole wake at this station. Assume that each boundary layer at the 
trailing edge has a ‘seventh root’ profile and a thickness corresponding to a turbulent flat-plate 
growth from a point at 10% chord, and that each half-wake profile at the downstream station 
may be represented by a cubic curve of the form = ay3 + byz + cy + d .  
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At the trailing edge, where x = 0.3 m: 

Re, = ~ 30 0.3 io6 = 6.16 x 105 
14.6 

Re:f5 = 14.39 

Also 

Z, = 0.0973 Eqn (a) (Section 7.7.5) 

At the wake station: 

aa 
- = 3aj2 + 2b7 + c 
?F 

ii = aj3 + bj2 + cjj + d ,  

The conditions to be satisfied are that (i) ii = 0.9 and (ii) &/@ = 0, when j = 0; and (iii) 
ii = 1.0 and (iv) %/aj = 0, when j = 1. (Condition (ii) follows because, once the wake is 
established at a short distance behind the trailing edge, the profile discontinuity at the centre- 
line disappears.) Thus: 

d=0 .9 ,  c=O,  1 = a + b + 0 . 9  and O=3a+2b  

i.e. 
2 
3 

a = - b  

1 = 1 -- b+0.9 or b=0.3 and a =  -0.2 

ii = -0.2j3 + 0.3J2 + 0.9 
( :> 

1 

I b  = 1 U( 1 - ii)dj = (-0.2j3 + 0.3j2 + 0.9)(1 + 0.2j3 - 0.3j2 - 0.9)dj = 0.0463 I '  
6, - la - 0.0973 
- = 2.1 - - - _  

6, I b  0.0463 

i.e. 

6b = 2.1 x 2 x 0.007 19 = 0.0302m (30.2mm) 

A few comments may now be made about the qualitative effects on boundary-layer 
flow of shock waves that may be generated in the mainstream adjacent to the surface 
of a body. A normal shock in a supersonic stream invariably reduces the Mach 
number to a subsonic value and this speed reduction is associated with a very rapid 
increase in pressure, density and temperature. 

For an aerofoil operating in a transonic regime, the mainstream flow just outside 
the boundary layer accelerates from a subsonic speed near the leading edge to sonic 
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speed at some point near the subsonic-peak-suction position. At this point, the 
streamlines in the local mainstream will be parallel and the effect of the aerofoil 
surface curvature will be to cause the streamlines to begin to diverge downstream. 
Now the characteristics of a supersonic stream are such that this divergence is 
accompanied by an increase in Mach number, with a consequent decrease in pres- 
sure. Clearly, this state of affairs cannot be maintained, because the local mainstream 
flow must become subsonic again at a higher pressure by the time it reaches the 
undisturbed free-stream conditions downstream of the trailing edge. The only mechan- 
ism available for producing the necessary retardation of the flow is a shock wave, which 
will set itself up approximately normal to the flow in the supersonic region of the 
mainstream; the streamwise position and intensity (which will vary with distance from 
the surface) of the shock must be such that just the right conditions are established 
behind it, so that the resulting mainstream approaches ambient conditions far down- 
stream. However, this simple picture of a near-normal shock requirement is compli- 
cated by the presence of the aerofoil boundary layer, an appreciable thickness of which 
must be flowing at subsonic speed regardless of the mainstream flow speed. Because of 
this, the rapid pressure rise at the shock, which cannot be propagated upstream in the 
supersonic regions of flow, can be so propagated in the subsonic region of the boundary 
layer. As a result, the rapid pressure rise associated with the shock becomes diffused 
near the base of the boundary layer and appears in the form of a progressive pressure 
rise starting at some appreciable distance upstream of the incident shock. The length of 
this upstream diffusion depends on whether the boundary layer is laminar or turbulent. 
In a laminar boundary layer the length may be as much as one hundred times the 
nominal general thickness (8 at the shock, but for a turbulent layer it is usually nearer 
ten times the boundary-layer thickness. This difference can be explained by the fact 
that, compared with a turbulent boundary layer, a larger part of the laminar boundary- 
layer flow near the surface is at relatively low speed, so that the pressure disturbance 
can propagate upstream more rapidly and over a greater depth. 

It has already been pointed out in Sections 7.2.6 and 7.4 that an adverse pressure 
gradient in the boundary layer will at least cause thickening of the layer and may well 
cause separation. The latter effect is more probable in the laminar boundary layer 
and an additional possibility in this type of boundary layer is that transition to 
turbulence may be provoked. There are thus several possibilities, each of which 
may affect the external flow in different ways. 

7.13.1 Near-normal shock interaction with laminar 
boundary layer 

There appear to be three general possibilities when a near-normal shock interacts with a 
laminar boundary layer. With a relatively weak shock, corresponding to an upstream 
Mach number just greater than unity, the diffused pressure rise may simply cause a 
gradual thickening of the boundary layer ahead of the shock with no transition and no 
separation. The gradual thickening causes a family of weak compression waves to 
develop ahead of the main shock (these are required to produce the supersonic main- 
stream curvature) and the latter sets itself up at an angle, between itself and the upstream 
surface, of rather less than 90" (see Fig. 7.49). The compression waves join the main 
shock at some small distance from the surface, giving a diffused base to the shock. 

Immediately behind the shock, the boundary layer tends to thin out again and 
a local expansion takes place which brings a small region of the mainstream up to 
a slightly supersonic speed again and this is followed by another weak near-normal 
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Main shock wave 

Fig. 7.4.9 

shock which develops in the same way as the initial shock. This process may be 
repeated several times before the mainstream flow settles down to become entirely 
subsonic. Generally speaking this condition is not associated with boundary-layer 
separation, although there may possibly be a very limited region of separation near 
the base of the main shock wave. 

As the mainstream speed increases so that the supersonic region is at a higher Mach 
number, the above pattern tends to change, the first shock becoming very much 
stronger than the subsequent ones and all but one of the latter may well not occur at 
all for local upstream Mach numbers much above 1.3. This is to be expected, because a 
strong first shock will produce a lower Mach number in the mainstream behind it. This 
means that there is less likelihood of the stream regaining supersonic speed. Concur- 
rently with this pattern change, the rate of thickening of the boundary layer, upstream 
of the first and major shock, becomes greater and the boundary layer at the base of the 
normal part of the shock will generally separate locally before reattaching. There is a 
considerable possibility that transition to turbulence will occur behind the single sub- 
sidiary shock. This type of flow is indicated in Fig. 7.50. 

With still greater local supersonic Mach numbers, the pressure rise at the shock 
may be sufficient to cause separation of the laminar boundary layer well ahead of the 
main shock position. This will result in a sharp change in direction of the mainstream 
flow just outside the boundary layer and this will be accompanied by a well-defined 
oblique shock which joins the main shock at some distance from the surface. This 
type of shock configuration is called a lambda-shock, for obvious reasons. It is 
unlikely that the boundary layer will reattach under these conditions, and the 
secondary shock, which normally appears as the result of reattachment or boundary- 
layer thinning, will not develop. This type of flow is indicated in Fig. 7.51. This 
sudden separation of the upper-surface boundary layer on an aerofoil, as Mach 
number increases, is usually associated with a sudden decrease in lift coefficient 
and the phenomenon is known as a shock stall. 



476 Aerodynamics for Engineering Students 

Main shock wave 

/ Sonic boundary 

f waves \Transition to 
turbulence and Laminar separation 
reattachment 

Fig. 7.50 

/ 

ition 

Separation 

Fig. 7.51 



Viscous flow and boundary layers 477 

7.13.2 Near-normal shock interaction with turbulent 
boundary layer 

Because the turbulent boundary layer is far less susceptible to disturbance by an adverse 
pressure gradient than is a laminar one, separation is not likely to occur for local 
mainstream Mach numbers, ahead of the shock, of less than about 1.3 (this corresponds 
to a downstream-to-upstream pressure ratio of about 1.8). When no separation occurs, 
the thickening of the boundary layer ahead of the shock is rapid and the compression 
wavelets near the base of the main shock are very localized, so that the base of the shock 
appears to be slightly diffused, although no lambda formation is apparent. Behind the 
shock no subsequent thinning of the boundary layer appears to occur and the secondary 
shocks, typical of laminar boundary-layer interaction, do not develop. 

If separation of the turbulent layer occurs ahead of the main shock a lambda shock 
develops and the mainstream flow looks much like that for a fully separated laminar 
boundary layer. 

7.13.3 Shock-wave/boundary-layer interaction 
in supersonic flow 

One of the main differences between subsonic and supersonic flows, as far as 
boundary-layer behaviour is concerned, is that the pressure gradient along the flow 
is of opposite sign with respect to cross-sectional area change. Thus in a converging 
supersonic flow the pressure rises and in a diverging flow the pressure falls in the 
stream direction (see Section 6.2). As a result the pressure gradient at a convex corner 
is negative and the boundary layer will generally negotiate the comer without 
separating, and the effect of the boundary layer on the external or mainstream flow 
will be negligible (Fig. 7.52a). Conversely, at a concave corner an oblique shock wave 
is generated and the corresponding pressure rise will cause boundary-layer thickening 
ahead of the shock, and in the case of a laminar boundary layer will probably cause 
local separation at the corner (see Figs 7.52b and 7.53). The resultant curvature of the 
flow just outside the boundary layer causes a wedge of compression wavelets to 
develop which, in effect, diffuse the base of the shock wave as shown in Fig. 7.52b. 

At the nose of a wedge, the oblique nose shock will be affected by the boundary- 
layer growth; the presence of the rapidly thickening boundary layer near the leading 
edge produces an effective curvature of the nose of the wedge and a small region of 
expansive Prandtl-Meyer) flow will develop locally behind the nose shock, which 
will now be curved and slightly detached from the nose (Fig. 7.54a). A similar effect 
will occur at the leading edge of a flat plate where a small detached curved local 
shock will develop. This shock will rapidly degenerate into a very weak shock 
approximating to a Mach wave at a small distance from the leading edge (Fig. 7.54b). 

In some cases, an oblique shock that has been generated at some other point in the 
mainstream may be incident on the surface and boundary layer. Such a shock will be 
at an angle, between the upstream surface and itself, of considerably less than 90". 
The general reaction of the boundary layer to this condition is similar to that already 
discussed in the transonic case, except that the oblique shock does not, in general, 
reduce the mainstream flow to a subsonic speed. 

If the boundary layer is turbulent, it appears to reflect the shock wave as another 
shock wave in much the same way as would the solid surface in the absence of the 
boundary layer, although some thickening of the boundary layer occurs. There may also 
be local separation and reattachment, in which case the reflected shock originates just 
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Fig. 7.53 Supersonic f low through a sharp concave corner: The f low is from left to right at a downstream 
Mach number of 2.5. The holographic interferogram shows f low turning through an angle of 11" thereby 
forming an oblique shock wave that interacts with the turbulent boundary layer present on the wall. Each 
fringe corresponds to constant density The boundary layer transmits the effect of the shock wave a short 
distance upstream but there is no f low separation. Compare with Fig. 7.52b above. (The photograph was taken 
by P. J. Byanston-Cross in the Engineering Department, University of Warwick, U K )  
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ahead of the point of incidence. A laminar boundary layer, however, thickens gradually 
up to the point of incidence, and may separate locally in this region, and then rapidly 
become thinner again. The shock then reflects as a fan of expansion waves, followed by a 
diffused shock a little farther downstream. There is also a set of weak compression waves 
set up ahead of the incident shock, owing to the boundary-layer thickening, but these do 
not usually set up a lambda configuration as with a near-normal incident shock. 

Approximate representations of the above cases are shown in Fig. 7.55. 
One other condition of interest that occurs in a closed uniform duct (two-dimen- 

sional or circuIar) when a supersonic stream is being retarded by setting up a back 
pressure in the duct. In the absence of boundary layers, the retardation would 
normally occur through a plane normal shock across the duct, reducing the flow, 
in one jump, from supersonic to subsonic speed. However, because of the presence of 
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the boundary layer, which thickens ahead of the shock, causing the base of the shock 
to thicken or bifurcate (lambda shock) depending on the nature and thickness of the 
boundary layer, in much the same way as for the transonic single-surface case. 

Because of the considerable thickening of the boundary layers, the net flow area is 
reduced and may reaccelerate the subsonic flow to supersonic, causing another normal 
shock to be set up to re-establish the subsonic condition. This situation may be repeated 
several times until the flow reduces to what is effectively fully-developed subsonic 
boundary-layer flow. If the boundary layers are initially thick, the first shock may 
show a large degree of bifurcation owing to the large change of flow direction well 
ahead of the normal part of the shock. In some cases, the extent of the normal shock 
may be reduced almost to zero and a diamond pattern of shocks develops in the duct. 
Several typical configurations of this sort are depicted in Fig. 7.56. 

To sum up the last two sections, it can be stated that, in contrast to the case of most 
subsonic mainstream flows, interaction between the viscous boundary layer and the 
effectively inviscid, supersonic, mainstream flow is likely to be appreciable. In the 
subsonic case, unless complete separation takes place, the effect of the boundary-layer 
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Fig. 7.56 (a) Low upstream Mach number; thin boundary layer; relatively small pressure rise; no separation. 
(b) Higher upstream Mach number; thin boundary layer; larger overall pressure rise; separation at first 
shock. (cl Moderately high upsmam Mach number; thick boundary layer; large overall pressure rise; 
separation at first shock 

development on the mainstream can usually be neglected, so that an inviscid main- 
stream-flow theory can be developed independently of conditions in the boundary 
layer. The growth of the latter can then be investigated in terms of the velocities and 
streamwise pressure gradients that exist in the previously determined mainstream flow. 

In the supersonic (and transonic) case, the very large pressure gradients that 
exist across an incident shock wave are propagated both up- and downstream in 
the boundary layer. The rapid thickening and possible local separation that result 
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Fig. 7.57 Complex wave interactions in supersonic flow: The f low is from left to right for this holographic 
interferogram. Complex interactions occur between shock waves, expansion waves and boundary layers on the upper 
and lower walls. An oblique shock wave runs up and to the right from the leading edge of the wedge. This interacts 
with a fan of expansion waves running downwards and to the right from a sharp turn in the upper surface. A 
subsequent compression turn in the upper surface located at the top of the photograph generates a second shock 
wave running downward and to the right which interacts first with the leading-edge shock wave, then with an 
expansion wave emanating from the lower surface, and finally with the boundary layer on the lower surface. The 
pressure rise associated with this second shock wave has led to boundary-layer separation on the upper surface close 
to the label 2. See Fig. 7.55 on page 480. Interferograms can supply quantitative data in form of density or Mach 
number values. The Mach numbers corresponding to the numerical labels (given in parentheses) appearing in the 
photograph are as follows: 0.92(-7). 0.98(-6), 1.05(-5), 1.13(-4), 1.21(-3), 1.28(-2), 
1.36(-I), 1.44(0), 1.53(1), 1.64(2), 1.75(3). (The photograph was taken by P.J. Byanston-Cross in the 
Engineering Depaltment, University of Warwick, UK) 

frequently have considerable effects on the way in which the shock is reflected by the 
boundary layer (see Fig. 7.57). In this way, the whole character of the mainstream flow 
may frequently be changed. It follows from this that a supersonic mainstream flow is 
much more dependent on Reynolds number than a subsonic one because of the 
appreciably different effects of an incident shock on laminar and turbulent boundary 
layers. The Reynolds number, of course, has a strong influence on the type of boundary 
layer that will occur. The theoretical quantitative prediction of supersonic stream 
behaviour in the presence of boundary layers is, consequently, extremely difficult. 

Exercises 
1 A thin plate of length 50cm is held in uniform water flow such that the length of 
the plate is parallel to the flow direction. The flow speed is 10m/s, the viscosity, 
p = 1.0 x lop3 Pas, and the water density is 998 kg/m3. 

(i) What is the Reynolds number based on plate length. What can be deduced from 
its value? 

(ii) On the assumption that the boundary layer is laminar over the whole surface, 
use the approximate theory based on the momentum-integral equation to find: 
(a) The boundary-layer thickness at the trailing edge of the plate; and 
(b) The skin-friction drag coefficient. 



Viscous flow and boundary layers 483 

(iii) Repeat (ii), but now assume that the boundary layer is turbulent over the whole 
surface. (Use the formulae derived from the 1/7-power-law velocity profile.) 
(Answer: ReL = 500000; S II 3.3mm, Cof 21 0.0018;S = 13.4mm, Cof 21 0.0052) 

2 A thin plate of length 1 .O m is held in a uniform air flow such that the length of the 
plate is parallel to the flow direction. The flow speed is 25m/s, the viscosity, 
p = 14.96 x lop6 Pas, and the air density is 1.203 kg/m3. 

(i) If it is known that transition from laminar to turbulent flow occurs when the 
Reynolds number based on x reaches 500 000, find the transition point. 

(ii) Calculate the equivalent plate length for an all-turbulent boundary layer with 
the same momentum thickness at the trailing edge as the actual boundary 
layer. 

(iii) Calculate the coefficient of skin-friction drag per unit breadth for the part of the 
plate with 
(a) A laminar boundary layer; and 
(b) A turbulent boundary layer. (Use the formulae based on the 1/7-power-law 
velocity profile.) 

(iv) Calculate the total drag per unit breadth. 
(v) Estimate the percentage of drag due to the turbulent boundary layer alone. 

(Answer: 300mm from the leading edge; 782mm; 0.00214, 0.00431; 
1.44 N/m per side; 88%) 

3 The geometric and aerodynamic data for a wing of a large white butterfly is 
as follows: Flight speed, U, = 1.35 m/s; Average chord, c = 25 mm; Average 
span, s = 50 mm; air density = 1.2 kg/m3; air viscosity, p = 18 x lop6 Pa s; Drag at 
zero lift = 120pN (measured on a miniature wind-tunnel balance). Estimate 
the boundary-layer thickness at the trailing edge. Also compare the measured drag 
with the estimated skin-friction drag. How would you account for any difference in 
value? (Answer: 2.5 mm; 75 pN) 

4 A submarine is 130m long and has a mean perimeter of 50m. Assume its 
wetted surface area is hydraulically smooth and is equivalent to a flat plate 
measuring 130m x 50m. Calculate the power required to maintain a cruising speed 
of 16 m/s when submerged in a polar sea at 0 "C. If the engines develop the same 
power as before, at what speed would the submarine be able to cruise in a tropical sea 
at 20 "C? 

Take the water density to be 1000kg/m3, and its kinematic viscosity to be 
1.79 x 1Op6rn2/s at 0°C and 1.01 x 10-6m2/s at 20°C. 

(Answer: 20.5 MW; 16.37m/s) 

5 A sailing vessel is 64 m long and its hull has a wetted surface area of 560 m2. Its top 
speed is about 9 m/s. Assume that normally the equivalent sand-grain roughness, k,, 
of the hull is about 0.2 mm. 

The total resistance of the hull is composed of wave drag plus skin-friction 
drag. Assume that the latter can be estimated by assuming it to be the same as 
the equivalent flat plate. The skin-friction drag is exactly half the total drag 
when sailing at the top speed under normal conditions. Assuming that the water 
density and kinematic viscosity are 1000 kg/m3 and 1.2 x lop6 m2/s respectively, 
estimate: 
(a) The admissible roughness for the vessel; 
(b) The power required to maintain the vessel at its top speed when the hull is 

unfouled (having its original sand-grain roughness); 
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(c) The amount by which the vessel’s top speed would be reduced if barnacles and 
seaweed were allowed to remain adhered to the hull, thereby raising the equiva- 
lent sand-grain roughness, k,, to about 5 mm. 

(Answer: 2.2 pm; 1.06 MW; 8.04 m/s, i.e. a reduction of 10.7%) 
6 Suppose that the top surface of a light-aircraft wing travelling at an air speed of 
55 m/s were assumed to be equivalent to a flat plate of length 2 m. Laminar-turbulent 
transition is known to occur at a distance of 0.75 m from the leading edge. Given that 
the kinematic viscosity of air is 15 x 10-6m2/s, estimate the coefficient of skin- 
friction drag. (Answer: 0.00223) 
7 Dolphins have been observd to swim at sustained speeds up to 11 m/s. According 
to the distinguished zoologist Sir James Gray, this speed could only be achieved, 
assuming normal hydrodynamic conditions prevail, if the power produced per unit 
mass of muscle far exceeds that produced by other mammalian muscles. This result is 
known as Gray’s paradox. The object of this exercise is to carry out revised estimates 
of the power required in order to check the soundness of Gray’s calculations. 

Assume that the dolphin’s body is hydrodynamically equivalent to a prolate 
spheroid (formed by an ellipse rotated about its major axis) of 2m length with a 
maximum thickness-to-length ratio of 1 :6. 

Volume of a prolate spheroid = -Tab2 
4 
3 

4 Z - P  
Surfacelarea = 2rb2 + 2Ta2b arc sin ( a ) d 2 7 7  

where 2a is the length and 2b the maximum thickness. 
Calculate the dimensions of the equivalent flat plate and estimate the power 

required to overcome the hydrodynamic drag (assuming it to be solely due to skin 
friction) at 11 m/s for the following two cases: 

(a) Assuming that the transitional Reynolds number takes the same value as the 

(b) Assuming that transition occurs at the point of maximum thickness (i.e. at the 

The propulsive power is supplied by a large group of muscles arranged around the 
spine, typically their total mass is about 36 kg, the total mass of the dolphin being 
typically about 90 kg. Assuming that the propulsive efficiency of the dolphin’s tail 
unit is about 75%, estimate the power required per unit mass of muscle for the two 
cases above. Compare the results with the values given below. 
Running man, 40 W/kg; Hovering humming-bird, 65 W/kg. 

(Answer: 2m x 0.832m; 2.87 kW, 1.75 kW; 106 W/kg, 65 W/kg) 
8 Many years ago the magazine The Scientific American published a letter concerned 
with the aerodynamics of pollen spores. A photograph accompanied the letter 
showing a spore having a diameter of about 20pm and looking remarkably like 
a golf ball. The gist of the letter was that nature had discovered the principle of golf- 
ball aerodynamics millions of years before man. Explain why the letter-writer’s logic 
is faulty. 

maximum found for a flat plate, i.e. 2 x lo6, say; 

point of minimum pressure), which is located half-way along the body. 



Flow control and wing 
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design 

8.1 Introduction 
Wing design is an exceedingly complex and multi-faceted subject. It is not possible to 
do justice to all that it involves in the present text. It is possible, however, to cover 
some of the fundamental principles that underly design for high lift and low drag. 

For fixed air properties and freestream speed, lift can be augmented in four main 
ways, namely: 

(i) Increase in wing area; 
(ii) Rise in angle of incidence; 
(iii) Increased camber; or 
(iv) Increased circulation by the judicious application of high-momentum fluid. 

The extent to which (ii) and (iii) can be exploited is governed by the behaviour of 
the boundary layer. A wing can only continue to generate lift successfully if bound- 
ary-layer separation is either avoided or closely controlled. Lift augmentation is 
usually accomplished by deploying various high-lift devices, such as flaps and multi- 
element aerofoils. Such devices lead to increased drag, so they are generally used only 
at the low speeds encountered during take-off and landing. Nevertheless, it is instruct- 
ive to examine the factors governing the maximum lift achievable with an unmodified 
single-element aerofoil before passing to a consideration of the various high-lift 
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devices. Accordingly, in what follows the maximization of lift for single-element 
aerofoils is considered in Section 8.2, followed by Section 8.3 on multi-element 
aerofoils and various types of flap, and Section 8.4 on other methods of boundary- 
layer control. Finally, the various methods used for drag reduction are described 
in Sections 8.5 to 8.8. 

8.2 Maximizing lift for single-element aerofoils 

This section addresses the question of how to choose the pressure distribution, 
particularly that on the upper wing surface, to maximize the lift. Even when a 
completely satisfactory answer is found to this rather difficult question, it still 
remains to determine the appropriate shape the aerofoil should assume in order to 
produce the specified pressure distribution. This second step in the process is the 
so called inverse problem of aerofoil design. It is very much more demanding than 
the direct problem, discussed in Chapter 4, of determining the pressure distribution 
for a given shape of aerofoil. Nevertheless, satisfactory inverse design methods are 
available. They will not, however, be discussed any further here. Only the more 
fundamental question of choosing the pressure distribution will be considered. 

In broad terms the maximum lift achievable is limited by two factors, namely: 

(i) Boundary-layer separation; and 
(ii) The onset of supersonic flow. 

In both cases it is usually the upper wing surface that is the more critical. Boundary- 
layer separation is the more fundamental of the two factors, since supercritical wings 
are routinely used even for subsonic aircraft, despite the substantial drag penalty in 
the form of wave drag that will result if there are regions of supersonic flow over the 
wing. However, no conventional wing can operate at peak efficiency with significant 
boundary-layer separation. 

(a) The severity and quality of the adverse pressure gradient; and 
(b) The kinetic-energy defect in the boundary layer at the start of the adverse 

This latter quantity can be measured by the kinetic-energy thickness, S**, introduced 
in Section 7.3.2. Factor (a) is more vague. Precisely how is the severity of an adverse 
pressure gradient assessed? What is the optimum variation of adverse pressure 
distribution along the wing? Plainly when seeking an answer to the first of these 
questions a suitable non-dimensional local pressure must be used in order to remove, 
as far as possible, the effects of scale. What soon becomes clear is that the conven- 
tional definition of coefficient of pressure, namely 

In two-dimensional flow boundary-layer separation is governed by: 

pressure gradient. 

is not at all satisfactory. Use of this non-dimensional quantity invariably makes 
pressure distributions with high negative values of C, appear to be the most severe. 
It is difficult to tell from the variation of C,, along an aerofoil whether or not the 
boundary layer has a satisfactory margin of safety against separation. Yet it is known 
from elementary dimensional analysis that if the Reynolds number is the same for two 
aerofoils of the same shape, but different size and freestream speed, the boundary 
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layers will behave in an identical manner. Furthermore, Reynolds-number effects, 
although very important, are relatively weak. 

There is a more satisfactory definition of pressure coefficient for characterizing the 
adverse pressure gradient. This is the canonicaI pressure coefficient, Cp, introduced 
by A.M.O. Smith.* The definition of cp is illustrated in Fig. 8.1. Note that local 
pressure is measured as a departure from the value of pressure, prn, (the correspond- 
ing local velocity at the edge of the boundary layer is Urn) at the start of the pressure 
rise. Also note that the local dynamic pressure at the start of the pressure rise is now 
used to make the pressure difference non-dimensional. When the canonical repre- 
sentation is used, cp = 0 at the start of the adverse pressure gradient and Cp = 1, 
corresponding to the stagnation point where U = 0, is the maximum possible value. 
Furthermore, if two pressure distributions have the same shape a boundary layer 
experiencing a deceleration of (U/U,)2 from 20 to 10 is no more or less likely to 
separate than one experiencing a deceleration of (U/U,)2 from 0.2 to 0.1. With 
the pressure-magnitude effects scaled out it is much easier to assess the effect of 
the adverse pressure gradient by simple inspection than when a conventional C, 
distribution is used. 

How are the two forms of pressure coefficient related? From the Bernoulli equation 
it follows that 

u 2  
and Cp = l-(%) 

Therefore it follows that 

= 1-(l-Cp)(-) urn 
u, 

The factor (Urn/Um)2 is just a constant for a given pressure distribution or aerofoil 
shape. 

x /c 

Fig. 8.1 Smith’s canonical pressure distribution 

jA.M.0.  Smith (1975) ‘High-Lift Aerodynamics’, J.  Aircraft, 12, 501-530. Many of the topics discussed in 
Sections 8.1 and 8.2 are covered in greater depth by Smith. 
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1 Thick boundary layer at x = 0 
2 Thin boundary layer at x =O 

X 

Fig. 8.2 Effects of different types of adverse pressure variation on separation 

Figure 8.2 gives some idea of how the quality of the adverse pressure distribution 
affects boundary-layer separation. For this figure it is assumed that a length of 
constant pressure is followed by various types of adverse pressure gradient. Suppose 
that from the point x = 0 onwards C, o( 9. For the curve labelled convex, m II 4, 
say; for that labelled linear, m = 1; and for that labelled concave, m N 1/4. One would 
not normally design a wing for which the flow separates before the trailing edge is 
reached, so ideally the separation loci should coincide with the trailing edge. The 
separation loci in Fig. 8.2 depend on two additional factors, namely the thickness of 
the boundary layer at the start of the adverse pressure gradient, as shown in Fig. 8.2; 
and also the Reynolds number per unit length in the form of U,,,/v. This latter effect is 
not illustrated, but as a general rule the higher the value of Um/v the higher the value 
of Cp that the boundary layer can sustain before separating. 

It is mentioned above that the separation point is affected by the energy defect in 
the boundary layer at the start of the adverse pressure gradient, x = 0. Other things 
being equal this implies that the thinner the boundary layer is at x = 0, the farther the 
boundary layer can develop in the adverse pressure gradient before separating. This 
point is illustrated in Fig. 8.3. This figure is based on calculations (using Head's 
method) of a turbulent boundary layer in an adverse pressure gradient with 
a preliminary constant-pressure region of variable length, xg. It is shown very clearly 
that the shorter xo is, the longer the distance Axs from x = 0 to the separation point. 
It may be deduced from this result that it is best to keep the boundary layer laminar, 
and therefore thin, up to the start of the adverse pressure gradient. Ideally, transition 
should occur at or shortly after x = 0, since turbulent boundary layers can withstand 
adverse pressure gradients much better than laminar ones. Fortunately the physics of 
transition, see Section 7.9, ensures that this desirable state of affairs can easily be 
achieved. 

The canonical plot in Fig. 8.2 contains much information of practical value. For 
example, suppose that at typical cruise conditions the value of ( U/U,)2 at the trailing 
edge is 0.8 corresponding to C, = 0.2, and typically C, = 0.4 (say) there. In this case 
any of the c, curves in Fig. 8.2 would be able to sustain the pressure rise without 
leading to separation. Therefore, suitable aerofoils with a wide variety of pressure 
distributions could be designed to meet the specification. If, on the other hand, the 
goal is to achieve the maximum possible lift, then a highly concave pressure-rise curve 
with m N 1/4 would be the best choice. This is because, assuming that separation 
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G 0p-K Separation 

0 Axs x 1.0 

xO 

Fig. 8.3 Variation of location of separation with length of initial flat plate for a turbulent boundary layer 
in a specified adverse pressure variation 

occurs at the trailing edge, the highly concave distribution not only gives the largest 
possible value of (CP)TE and therefore the largest possible value of U,/UTE; but also 
because the pressure rises to its value at the trailing edge the most rapidly. This latter 
attribute is of great advantage because it allows the region of constant pressure to be 
maintained over as much of the aerofoil surface as possible, leading to the greatest 
possible average value of I C, I on the upper surface and, therefore, the greatest 
possible lift. For many people this conclusion is counter-intuitive, since it seems to 
violate the classic rules of streamlining that seek to make the adverse pressure 
gradient as gentle as possible. Nevertheless, the conclusions based on Fig. 8.2 are 
practically sound. 

The results depicted in Fig. 8.2 naturally suggest an important practical question. 
Is there, for a given situation, a best choice of adverse pressure distribution? The 
desired goals would be as above, namely to maximize U,/UTE and to maximize the 
rate of pressure rise. This question, or others very similar, have been considered by 
many researchers and designers. A widely quoted method of determining the 
optimum adverse pressure distribution is due to Stratford.* His theoretically derived 
pressure distributions lead to a turbulent boundary layer that is on the verge of 
separation, but remains under control, for much of the adverse pressure gradient. It 
is quite similar qualitatively to the concave distribution in Fig. 8.2. Two prominent 
features of Stratford’s pressure distribution are: 

(a) The initial pressure gradient dC,/dx is infinite, so that small pressure rises can be 
accomplished in very short distances. 

(b) It can be shown that in the early stages C, 0: x1/3. 

If compressible effects are taken into account and it is considered desirable to 
avoid supersonic flow on the upper wing surface, the minimum pressure must 
correspond to sonic conditions. The consequences of this requirement are illustrated 
in Fig. 8.4. Here it can be seen that at comparatively low speeds very high values of 
suction pressure can be sustained before sonic conditions are reached, resulting in a 
pronounced peaky pressure distribution. For high subsonic Mach numbers, on the 

* B.S. Stratford (1959) The prediction of separation of the turbulent boundary layer. J. Fhid Mech., 5, 1-16. 
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1 

Fig. 8.4 Upper-wing-surface pressure distributions with laminar rooftop 

other hand, only modest maximum suction pressures are permissible before sonic 
conditions are reached. In this case, therefore, the pressure distribution is very flat. 
An example of the practical application of these ideas for low flight speeds is 
illustrated schematically in Fig. 8.5. This shows a Liebeck* aerofoil. This sort of 
aerofoil was used as a basis for the aerofoil designed by Lissamant specially for the 
successful man-powered aircraft Gossamer Albatross and Condor. In this application 
high lift and low drag were paramount. Note that there is a substantial fore-portion 
of the aerofoil with a favourable pressure gradient, rather than a very rapid initial 
acceleration up to a constant-pressure region. The favourable pressure gradient 
ensures that the boundary layer remains laminar until the onset of the adverse 
pressure gradient, thereby minimizing the boundary-layer thickness at the start of 
the pressure rise. Incidentally, note that the maximum suction pressure in Fig. 8.5 is 
considerably less than that in Fig. 8.4 for the low-speed case. But, it is not, of course, 
suggested here that at the speeds encountered in man-powered flight the flow over the 
upper wing surface is close to sonic conditions. 

There is some practical disadvantage with aerofoils designed for concave pressure- 
recovery distributions. This is illustrated in Fig. 8.6 which compares the variations of 
lift coefficient with angle of incidence for typical aerofoils with convex and concave 
pressure distributions. It is immediately plain that the concave distribution leads to 
much higher values of ( C L ) ~ ~ .  But the trailing-edge stall is much more gentle, 
initially at least, for the aerofoil with the convex distribution. This is a desirable 

* R.H. Liebeck (1973) A class of aerofoils designed for high lift in incompressible flow. J.  ofdircraft, 10, 
61M17. 
P.B.S. Lissaman (1983) ‘Low-Reynolds-number airfoils’, Annual Review of Fluid Mechanics, 15: 223-239. 
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Fig. 8.5 Typical low-speed high-lift aerofoil - schematic representation of a Liebeck aerofoil 
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Fig. 8.6 Comparison of the variations of lift coefficient versus angle of incidence for aerofoils with 
concave and convex pressure-recovery distributions. Re = 2 x 1 05. x, Wortmann FX-137 aerofoil (convex); 
0, Selig-Guglielmo SI 223 aerofoil (concave) 
Source: Based on Figs 7 and 14 of M.S. Selig and J.J. Guglielmo (1997) 'High-lift low Reynolds number 
airfoil design', AlAA Journal of Aircraft, 34(1), 72-79 
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Sonic line 

I 1 

Fig. 8.7 Schematic figure illustrating a modern supercritical aerofoil 

feature from the viewpoint of safety. The much sharper fall in CL seen in the case of the 
aerofoil with the concave pressure distribution is explained by the fact that the 
boundary layer is close to separation for most of the aerofoil aft of the point of 
minimum pressure. (Recall that the ideal Stratford distribution aims for the boundary 
layer to be on the verge of separation throughout the pressure recovery.) Conse- 
quently, when the angle of incidence that provokes separation is reached, any further 
rise in incidence sees the separation point move rapidly forward. 

As indicated above, it is not really feasible to design efficient wings for aircraft 
cruising at high subsonic speeds without permitting a substantial region of supersonic 
flow to form over the upper surface. However, it is still important to minimize the 
wave drag as much as possible. This is achieved by tailoring the pressure distribution 
so as to minimize the strength of the shock-wave system that forms at the end of the 
supersonic-flow region. A schematic figure illustrating the main principles of modern 
supercritical aerofoils is shown in Fig. 8.7. This sort of aerofoil would be designed for 
M ,  in the range of 0.75-0.80. The principles behind this design are not very 
dissimilar from those exemplified by the high-speed case in Fig. 8.4, in the sense that 
a constant pressure is maintained over as much of the upper surface as possible. 

8.3 Multi-element aerofoils 
At the low speeds encountered during landing and take-off, lift needs to be greatly 
augmented and stall avoided. Lift augmentation is usually achieved by means of 
flaps* of various kinds - see Fig. 8.8. The plain flap shown in Fig. 8.8a increases the 
camber and angle of incidence; the Fowler flap (Fig. 8.8b) increases camber, angle of 

*The most complete account is given by A.D. Young (1953) ‘The aerodynamic characteristics of flaps’, 
Aero. Res. Council, Rep. & Mem. No. 2622. 
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Fig. 8.8 Some types of flaps 

incidence and wing area; and the nose flap (Fig. 8.8g) increases camber. The flaps 
shown in Fig. 8.8 are relatively crude devices and are likely to lead to boundary-layer 
separation when deployed. Modern aircraft use combinations of these devices in the 
form of multi-element wings - Fig. 8.9. The slots between the elements of these wings 
effectively suppress the adverse effects of boundary-layer separation, providing that 
they are appropriately designed. Multi-element aerofoils are not a new idea. The 
basic concept dates back to the early days of aviation with the work of Handley Page 
in Britain and Lachmann in Germany. Nature also exploits the concept in the wings 
of birds. In many species a group of small feathers, attached to the thumb-bone and 
known as the alula, acts as a slat. 

Main aerofoil 

Fig. 8.9 Schematic sketch of a four-element aerofoil 
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How do multi-element aerofoils greatly augment lift without suffering the adverse 
effects of boundary-layer separation? The conventional explanation is that, since a 
slot connects the high-pressure region on the lower surface of a wing to the relatively 
low-pressure region on the top surface, it therefore acts as a blowing type of 
boundary-layer control (see Section 8.4.2). This explanation is to be found in a large 
number of technical reports and textbooks, and as such is one of the most widespread 
misconceptions in aerodynamics. It can be traced back to no less an authority than 
Prandtl* who wrote: 

The air coming out of a slot blows into the boundaiy layer on the top of the wing 
and imparts fresh momentum to the particles in it, which have been slowed 
down by the action of viscosity. Owing to this help the particles are able to reach 
the sharp rear edge without breaking away. 

This conventional view of how slots work is mistaken for two reasons. Firstly, since 
the stagnation pressure in the air flowing over the lower surface of a wing is exactly the 
same as for that over the upper surface, the air passing through a slot cannot really be 
said to be high-energy air, nor can the slot act like a kind of nozzle. Secondly, the slat 
does not give the air in the slot a high velocity compared to that over the upper surface 
of the unmodified single-element wing. This is readily apparent from the accurate and 
comprehensive measurements of the flow field around a realistic multi-element aerofoil 
reported by Nakayama etaZ.+ In fact, as will be explained below, the slat and slot 
usually act to reduce the flow speed over the main aerofoil. 

The flow field associated with a typical multi-element aerofoil is highly complex. Its 
boundary-layer system is illustrated schematically in Fig. 8.10 based on the measure- 
ments of Nakayama et al. It is noteworthy that the wake from the slot does not interact 
strongly with the boundary layer on the main aerofoil before reaching the trailing edge 
of the latter. The wake from the main aerofoil and boundary layer from the flap also 
remain separate entities. As might well be expected, given the complexity of the flow 
field, the true explanation of how multi-element aerofoils augment lift, while avoiding 
the detrimental effects of boundary-layer separation, is multifaceted. And, the bene- 
ficial aerodynamic action of a well-designed multi-element aerofoil is due to a number 
of different primary effects, that will be described in turn.t 

Fig. 8.10 Typical boundary-layer behaviour for a three-element aerofoil 

* L. Prandtl and O.G. Tietjens Applied Hydro- and Aeromechanics, Dover, New York, p. 227. 

multielement airfoil’, A f A A  J., 26, 14-21. 
A. Nakayama, H.-P. Kreplin and H.L. Morgan (1990) ‘Experimental investigation of flowfield about a 

Many of the ideas described in the following passages are due to A.M.O. Smith (1975) ibid. 
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8.3.1 The slat effect 
To appreciate qualitatively the effect of the upstream element (e.g. the slat) on the 
immediate downstream element (e.g. the main aerofoil) the former can be modelled 
by a vortex. The effect is illustrated in Fig. 8.1 1. When one considers the component 
of the velocity induced by the vortex in the direction of the local tangent to the 
aerofoil contour in the vicinity of the leading edge (see inset in Fig. 8.1 l), it can be 
seen that the slat (vortex) acts to reduce the velocity along the edge of the boundary 
iayer on the upper surface and has the opposite effect on the lower surface. Thus the 
effect of the slat is to reduce the severity of the adverse pressure gradient on the main 
aerofoil. In the case illustrated schematically in Fig. 8.11 it can be seen that the 
consequent reduction in pressure over the upper surface is counter-balanced by the 
rise in pressure on the lower surface. For a well-designed slat/main-wing combination 
it can be arranged that the latter effect predominates resulting in a slight rise in lift 
coefficient. 

Fig. 8.1 

X 
i 

-Vortex alone 

1 Effect of a slat (modelled by a vortex) on the velocity distribution over the main aerofoil 
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Aerofoil alone 

*...-... ... 

8.3.2 The vane effect 
In a similar way the effect of the downstream element (e.g. the vane) on the 
immediate upstream element (e.g. the main aerofoil) can also be modelled approxi- 
mately by placing a vortex near the trailing edge of the latter. This effect is illustrated 
in Fig. 8.12. This time the vane (vortex) near the trailing edge induces a velocity over 
the main aerofoil surface that leads to a rise in velocity on both upper and lower 
surfaces. In the case of the upper surface this is beneficial because it raises the velocity 
at the trailing edge, thereby reducing the severity of the adverse pressure gradient. 
In addition to this, the vane has a second beneficial effect. This can be understood 
from the inset in Fig. 8.12. Note that owing to the velocity induced by the vane at the 
trailing edge, the effective angle of attack has been increased. If matters were left 
unchanged the streamline would not now leave smoothly from the trailing edge of the 
main aerofoil. This would violate the Kutta condition - see Section 4.1.1. What must 
happen is that viscous effects generate additional circulation in order that the Kutta 
condition be satisfied once again. Thus the presence of the vane leads to enhanced 
circulation and, therefore, higher lift. 

8.3.3 Off-the-surface recovery 
What happens with a typical multi-element aerofoil, as shown in Figs 8.9 and 8.13, 
is that the boundary layer develops in the adverse pressure gradient of the slat, 

Fig. 8.12 Effect of a vane (modelled by a vortex) on the velocity distribution over the main wing 
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reaches the trailing edge in an unseparated state, and then leaves the trailing edge 
forming a wake. The slat wake continues to develop in the adverse pressure gradient 
over the main aerofoil; but for well-designed multi-element aerofoils the slot is 
sufficiently wide for the slat wake and main-aerofoil boundary layer to remain 
separate, likewise the wake of the main aerofoil and flap boundary layer. It is 
perfectly possible for the flow within the wakes to decelerate to such an extent in 
the downstream adverse pressure gradient that reversed flow occurs in the wake. This 
would give rise to stall, immediately destroying any beneficial effect. For well- 
designed cases it appears that the wake flows can withstand adverse pressure 
gradients to a far greater degree than attached boundary layers. Accordingly, flow 
reversal and wake breakdown are usually avoided. Consequently, for a multi-element 
aerofoil the total deceleration (or recovery, as it is often called) of the velocity along 
the edge of the boundary layer can take place in stages, as illustrated schematically in 
Fig. 8.13. In terms of the canonical pressure coefficient, U/Um takes approximately 
the same value at the trailing edge of each element and, moreover, the boundary layer 
is on the verge of separation at the trailing edge of each element. (In fact, owing to the 
vane effect, described above, the value of ( U/Um)m for the flap will be lower than that 
for the main aerofoil.) It is then evident that the overall reduction in (U/Um) from 
(Um/Um)ht to (Um/Um)fl? will be very much greater than the overall reduction 
for a single-element aerofoif In this way the multi-element aerofoil can withstand a 

I 
X 

\--- 

Fig. 8.13 Typical distributions of velocity ratio over the elements of a three-element aerofoil 
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very much greater overall velocity ratio or pressure difference than a comparable 
single-element aerofoil. 

8.3.4 Fresh boundary-layer effect 
It is evident from Fig. 8.10 that the boundary layer on each element develops largely 
independently from those on the others. This has the advantage of ensuring a 
fresh thin boundary layer, and therefore small kinetic-energy defect, at the start of 
the adverse pressure gradient on each element. The length of pressure rise that the 
boundary layer on each element can withstand before separating is thereby 
maximized - c.f. Fig. 8.3. 

8.3.5 Use of multi-element aerofoils on racing cars 
In the 1960s and early 1970s several catastrophic accidents occurred in which racing 
cars became airborne. In some cases aerodynamic interference from nearby competing 
vehicles was undoubtedly a factor. Nevertheless, these accidents are a grim reminder of 
what can happen to a racing car if insufficient aerodynamic downforce is generated. 
Modern Grand Prix cars generate their prodigious aerodynamic downforces from two 
main sowces, namely ‘ground effect’ and inverted wings. Under current Formula-One 
rules the undertray of the car must be completely flat between the front and rear 
wheels. This severely limits the ability of the racingcar designer to exploit ground 
effect for generating downforce.* 

Inverted wings, mounted in general above the front and rear axles (Fig. 8.14), first 
began to appear on Formula-One cars in 1968. The resultant increase in the down- 
ward force between the tyre and road immediately brought big improvements in 
cornering, braking and traction performance. The front wing is the most efficient 
aerodynamic device on the car. Except when closely following another car, this wing 
operates in undisturbed airflow, so there is nothing preventing the use of conven- 
tional aerofoils to generate high downforce (negative lift) with a relatively small drag. 
If the wing is located close to the ground the negative lift is further enhanced owing to 
increased acceleration of the air between the bottom of the wing and the ground, 
leading to lower suction pressure. (Fig. 8.15.) However, if the ground clearance is too 
small, the adverse pressure gradient over the rear of the wing becomes more severe, 
resulting in stall. Even if stall is avoided, too close a proximity to the ground may 
result in large and uncontrollable variations in downforce when there are unavoid- 
able small changes in ride height due to track undulations or to roll and pitch of the 
vehicle. Sudden large changes in downward force that are inevitably accompanied by 
sudden changes to the vehicle’s centre of pressure could make the car extremely 
difficult to drive. Racing-car designers must therefore compromise between optimum 
aerodynamic efficiency and controllability. 

Under Formula-One rules the span of each wing is limited, so that the adverse 
three-dimensional effects found with wings of low aspect ratio are relatively severe. 
One of these adverse effects is the strong reduction in the spanwise lift distribution 
from root to tip. A common solution to this problem is to use plane end-plates, as 
illustrated in Fig. 8.14; these help keep the flow quasi-two-dimensional over the 

*The information for this section comes from two main sources, namely, R.G. Dominy (1992) 
‘Aerodynamics of Grand Prix Cars’, Proc. I. Mech. E., Parr D: J.  of Automobile Engineering, 206, 
267-274; and P.G. Wright (1982) ‘The influence of aerodynamics on the design of Formula One racing 
cars’, Int. J. of Vehicle Design, 3(4), 383-397. 
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Fig. 8.14 Main aerodynamic features of a Grand Prix car 
Source: Based on Fig. 1 of R.G. Dominy (1992) 'Aerodynamics of Grand Prix Cars', Proc. 1. Mech. E., Parr D: 
J. of Automobile Engineering, 206, 267-274 

entire span. End-plates do not eliminate the generation of strong wing-tip vortices 
which have other undesirable effects. Consequently, semi-tubular guides along the 
lower edges of the end-plates are often used in an attempt to control these vortices 
(see Fig. 8.14). It can also be seen in Fig. 8.14 that the front wing comprises a main 
wing and a flap. The chord and camber of the flap are very much greater over its 
outer section compared with inboard. This arrangement is adopted in order to reduce 

1 .o 
P-P- 
P0-P- 
- 

0 

-1 .o 

Main section 

Distance along sutface 

Fig. 8.15 Effects of ground proximity and a Gurney flap on the pressure distribution over a two-element 
front wing - schematic only. Key: -, wing in free flow; - - - -, wing in close proximin/ to the ground; - . - . -, 
wing fitted with a Gurney flap and in close proximity to the ground 
Source: Based on Figs 5 and 6 of R.G. Dominy (1992) 'Aerodynamics of Grand Prix Cars', Proc. 1. Mech. E., 
Part D: J. of Automobile Engineering, 206, 267-274 
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the adverse effects of the front wing’s wake on the cooling air entering the radiator 
intakes. 

The rear wing has to operate in the vehicle’s wake. So the generation of high 
downforce by the rear wing is inevitably much less efficient than for the front wing. 
The car’s wake is a highly unsteady, turbulent flow containing complex vortical flow 
structures. As a consequence, the effective angle of incidence along the leading edge 
of the rear wing may vary by up to 20”. Also the effective onset speeds may be much 
reduced compared with the front wings, further impairing aerodynamic efficiency. 
Despite all these problems, in order to maintain the required position for the centre 
of pressure, the design engineers have to ensure that the rear wing generates more 
than twice the downforce of the front wings. This is achieved by resorting to the sort 
of highly cambered, multi-element, aerofoils deployed by aircraft wings for landing. 
The high drag associated with the rear wing places severe limits on the top speed of 
the cars. But the drag penalty is more than offset by the much higher cornering 
speeds enabled by the increased downforce. 

8.3.6 Gurney flaps 
As well as being a great racing-car driver, Dan Gurney is also well-known for his 
technical innovations. His most widely emulated innovation is probably the now- 
obligatory practice of winning drivers spraying their supporters with champagne 
from vigorously shaken bottles. But it is for the Gurney flap that he is known in 
aerodynamics. This is a deceptively simple device consisting merely of a small plate 
fixed to and perpendicular to the trailing edge of a wing. It can be seen attached to 
the trailing edge of the multi-element rear wing in Figs 8.14 and 8.15. 

Gurney first started fitting these ‘spoilers’ pointing upwards at the end of the rear 
deck of his Indy 500 cars in the late 1960s in order to enhance the generation of the 
downforce. The idea was completely contrary to the classic concepts of aerodynamics. 
Consequently, he was able to disguise his true motives very effectively by telling his 
competitors that the devices were intended to prevent cut hands when the cars were 
pushed out. So successful was this deception that some of his competitors attached the 
tabs projecting downwards in order to better protect the hands. Although this 
‘improved’ arrangement undoubtedly impaired, rather than enhanced, the generation 
of a downforce, it was several years before they eventually realized the truth. 

Gurney flaps became known in aerodynamics after Dan Gurney discussed his 
ideas with the aerodynamicist and wing designer, Bob Liebeck of Douglas Aircraft. 
They reasoned that if the tabs worked at the rear end of a car, they should be capable 
of enhancing the lift generated by conventional wings. This was confirmed experi- 
mentally by Liebeck.* The beneficial effects of a Gurney flap in generating an 
enhanced downforce is illustrated by the pressure distribution over the flap of the 
two-element aerofoil shown in Fig. 8.15. The direct effects of Gurney flaps of various 
heights on the lift and drag of wings were demonstrated by other experimental 
studies, see Fig. 8.16. It can be seen that the maximum lift rises as the height of the 
flap is increased from 0.005 to 0.02 chord. It is plain, though, that further improve- 
ment to aerodynamic performance diminishes rapidly with increased flap height. 
The drag polars plotted in Fig. 8.16b show that for a lift coefficient less than unity 
the drag is generally greater with a Gurney flap attached. They are really only an 
advantage for generating high lift. 

* R.H. Liebeck (1978) ‘Design of subsonic airfoils for high lift’, AIAA J. of Aircraft, 15(9), 547-561. 
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Fig. 8.16 The effects of Gurney flaps placed at the trailing edge of a NACA 4412 wing on the variation of 
lift and drag with angle of incidence. The flap height varies from 0.005 to 0.02 times the chord, c. -, 
baseline without flap; - ---, 0.005~; - . - . -, 0.01 c; .--, 0.015~; ---, 0 . 0 2 ~  
Source: Based on Fig. 7 of B.L Storms and C.S. Jang (1994) 'Lift enhancement of an airfoil using a Gurney 
flap and vortex generators,' AlAA J. of Aircraft, 31(3), 542-547 

Why do Gurney flaps generate extra lift? The answer is to be found in the 
twin-vortex flow field depicted in Fig. 8.17. Something like this was hypothesized 
by Liebeck (1978).* However, it has only been confirmed comparatively recently by 
the detailed laser-Doppler measurements carried out at Southampton University 
(England)+ of the flow fields created by Gurney flaps. As can be seen in Fig. 8.17, 
two contra-rotating vortices are created behind the flap. A trapped vortex is also 
included immediately ahead of the flap even though this is not shown clearly in the 

* R.H. Liebeck (1978) 'Design of subsonic airfoils for high lift', AIAA J. of Aircraft, 15(9), 547-561. 
D. Jeffrey, X. Zhang and D.W. Hurst (2000) 'Aerodynamics of Gurney flaps on a single-element high-lift 

wing', AIAA J. of Aircraft, 37(2), 295-301; D. Jeffrey, X. Zhang and D.W. Hurst (2001) 'Some aspects of 
the aerodynamics of Gurney flaps on a double-element wing', Trans. of ASME, J. of Fluids Engineering, 
123,99-104. 
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Fig. 8.17 Flow pattern downstream of a Gurney flap 
Source: Based on figures in D. Jeffrey, X. Zhang and D.W. Hurst (2000) 'Aerodynamics of Gurney flaps on 
a single-element high-lift wing', AlAA J. of Aircraft, 37(2), 295-301 

measurements. This must be present, as was originally suggested by Liebeck. In an 
important respect, however, Fig. 8.17 is misleading. This is because it cannot depict 
the unsteady nature of the flow field. The vortices are, in fact, shed alternately in a 
similar fashion to the von KBrmPn vortex street behind a circular cylinder (see 
Section 7.5). It can be also seen in Fig. 8.17 (showing the configuration for enhancing 
downforce) that the vortices behind the Gurney flap deflect the flow downstream 
upwards. In some respects the vortices have a similar circulation-enhancing effect as 
the downstream flap in a multi-element aerofoil (see Section 8.3.2). 

The principle of the Gurney flap was probably exploited in aeronautics almost by 
accident many years before its invention. Similar strips had been in use for many 
years, but were intended to reduce control-surface oscillations caused by patterns of 
flow separation changing unpredictably. It is also likely that the split and Zap flaps, 
shown in Fig. 8.8b and cy that date back to the early 1930s, produced similar flow 
fields to the Gurney flap. Nevertheless, it is certainly fair to claim that the Gurney 
flap is unique as the only aerodynamic innovation made in automobile engineering 
that has been transferred to aeronautical engineering. Today Gurney flaps are widely 
used to increase the effectiveness of the helicopter stabilizers.* They were first used in 
helicopters on the trailing edge of the tail on the Sikorsky S-76B because the first 
flight tests had revealed insufficient maximum (upwards) lift. This problem was 
overcome by fitting a Gurney flap to the inverted NACA 2412 aerofoil used for 
the horizontal tail. Similar circumstances led to the use of a Gurney flap on the 
horizontal stabilizer of the Bell JetRanger (Fig. 8.18.). Apparently, in this case the 
design engineers had difficulty estimating the required incidence of the stabilizer. 
Flight tests indicated that they had not guessed it quite correctly. This was remedied 
by adding a Gurney flap. 

Another example is the double-sided Gurney flap installed on the trailing edge of 
the vertical stabilizer of the Eurocopter AS-355 Twinstar. This is used to cure a 
problem on thick surfaces with large trailing-edge angles. In such a case lift reversal 

*The infomation on helicopter aerodynamics used here is based on an article by R.W. Prouty, 'The 
Gurney Flap, Part 2' in the March 2000 issue of Rotor & Wing (http://www.aviationtoday.com/reports/ 
rotorwing/). 
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Fig. 8.18 The Gurney flap installed on the horizontal stabilizer of a Bell 206 JetRanger 

can occur for small angles of attack, as shown in Fig. 8.19, thereby making the 
stabilizer a ‘destabilizer’! The explanation for this behaviour is that at small positive 
angle of attack, the boundary layer separates near to the trailing edge on the upper 
(suction) side of the aerofoil. On the lower side the boundary layer remains attached. 
Consequently the pressure is lower there than over the top surface. The addition of a 
double Gurney flap stabilizes the boundary-layer separation and eliminates the lift 
reversal. 

Fig. 8.19 Lift reversal for thick aerofoils 
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8.3.7 Movable flaps: artificial bird feathers* 
This concept is illustrated in Fig. 8.20. Superficially it appears similar to the Gurney 
flap. However, the mode of operation is quite different. And, in any case, for positive 
high lift the Gurney flap would be attached to the trailing edge pointing downwards. 
The basic idea here is that at high angles of attack when flow separation starts to 
occur near the trailing edge, the associated reversed flow causes the movable flap to 
be raised. This then acts as a barrier to the further migration of reversed flow towards 
the leading edge, thereby controlling flow separation. 

The movable flap concept originated with Liebe’ who was the inventor of the 
boundary-layer fence (see Section 8.4.3). He observed that during the landing 
approach or in gusty winds, the feathers on the upper surface of many bird wings 
tend to be raised near the trailing edge. (Photographs of the phenomenon on a skua 
wing are to be found in Bechert etal. 1997.) Liebe interpreted this behaviour as a form 
of biological high-lift device and his ideas led to some flight tests on a Messerchmitt Me 
109 in 1938. The device led to the development of asymmetric lift distributions that 
made the aircraft difficult to control and the project was abandoned. Many years later 
a few preliminary flight tests were carried out in Aachen on a glider.$ In this case small 
movable plastic sheets were installed on the upper surface of the wing. Apparently it 
improved the glider’s handling qualities at high angles of attack. 

There are problems with movable flaps. Firstly, they have a tendency to flip over at 
high angles of attack when the reversed flow becomes too strong. Secondly, they tend 
not to lie flat at low angles of attack, leading to a deterioration in aerodynamic 
performance. This is because when the boundary layer is attached the pressure rises 
towards the trailing edge, so the space under the flap connects with a region of 
slightly higher pressure that tends to lift it from the surface. These problems were 
largely overcome owing to three features of the design depicted in Fig. 8.21 which 
was fitted to a laminar glider aerofoil (see Bechert etal. 1997). Ties limited the 
maximum deflection of the flaps. And making the flap porous and the trailing edge 
jagged both helped to equalize the static pressure on either side of the flap during 
attached-flow conditions. These last two features are also seen in birds’ feathers. The 
improvement in the aerodynamic characteristics can also be seen in Fig. 8.21. 

Movable flap 
increasing pressure 

Flow 

Fig. 8.20 Schematic illustrating the basic concept of the movable flap 

*The account given here is based on a more detailed treatment by D.W. Bechert, M. Bruse, W. Hage and 
R. Meyer (1997) ‘Biological surfaces and their technological application - Laboratory and flight experi- 
ments on drag reduction and separation control’, AIAA Paper 97-1960. 

W. Liebe (1975) ‘Der Auftrieb am Tragfliigel: Enstehung and Zusammenbruch’, Aerokurier, Heft 12, 
152C1523. 
B. Malzbender (1984) ‘Projekte der FV Aachen, Erfolge im Motor- und Segelflug’, Aerokurier, Heft 1,4. 
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Fig. 8.21 Improved design of the movable flap and resulting improvement in aerodynamic characteristics 
for a laminar glider aerofoil 
Source: Based on Fig. 25 of Bechert eta/. (1997) 

Successful flight tests on similar movable flaps were carried out later on a motor 
glider. 

8.4 Boundary layer control for the prevention 
of separation 

Many of the widely used techniques have already been described in Section 8.3. But 
there are various other methods of flow-separation control that are used on aircraft and 
in other engineering applications. These are described here.* Some of the devices used 
are active, Le. they require the expenditure of additional power from the propulsion 
units; others are passive and require no additional power. As a general rule, however, 
the passive devices usually lead to increased drag at cruise when they are not required. 
The active techniques are discussed first. 

8.4.1 Boundary-layer suction 
The basic principle was demonstrated experimentally in Prandtl's paper that intro- 
duced the boundary-layer concept to the world.+ He showed that the suction through 
a slot could be used to prevent flow separation from the surface of a cylinder. 
The basic principle is illustrated in Fig. 8.22. The layer of low-energy ('tired') air 
near the surface approaching the separation point is removed through a suction slot. 

* A  more complete recent account is to be found in M. Gad-el-Hak (2000) Flow Control: Passive, Active 
and Reactive Flow Management, Cambridge University Press. 
'L. Prandtl(l904) 'Uber Fliissigkeitsbewegung bei sehr kleiner Reibung', in Proc. 3rdZnt. Math. Mech., 5 ,  
484-491, Heidelberg, Germany. 
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Fig. 8.22 

The result is a much thinner, more vigorous, boundary layer that is able to progress 
further along the surface against the adverse pressure gradient without separating. 

Suction can be used to suppress separation at high angles of incidence, thereby 
obtaining very high lift coefficients. In such applications the trailing edge may be 
permitted to have an appreciable radius instead of being sharp. The circulation is 
then adjusted by means of a small spanwise flap, as depicted in Fig. 8.23. If sufficient 
boundary layer is removed by suction, then a flow regime, that is virtually a potential 
flow, may be set up and, on the basis of the Kutta-Zhukovsky hypothesis, the sharp- 
edged flap will locate the rear stagnation point. In this way aerofoils with elliptic, or 
even circular, cross-sections can generate very high-lift coefficients. 

Small flap to locate 
rear stagnation point 

layer 

Fig. 8.23 
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Fig. 8.24 Features of the F-15 engine-inlet flow management 

There are great practical disadvantages for this type of high-lift device. First of all 
it is very vulnerable to dust blocking the suction slots. Secondly, it is entirely reliant 
on the necessary engine power being available for suction. Either blockage or engine 
failure would lead to catastrophic failure. For these reasons suction has not been 
used in this way for separation control in production aircraft. But it has been tested 
on rotors in prototype helicopters. 

Many supersonic aircraft feature forms of suction in the intakes to their engines in 
order to counter the effects of shock-wave/boundary-layer interaction. Without such 
measures the boundary layers in the inlets would certainly thicken and be likely to 
separate. And some form of shock-wave system is indispensible because the air needs 
to be slowed down from the supersonic flight speed to about a Mach number of 0.4 at 
entry to the compressor. Two commonly used methods of implementing boundary- 
layer suction (or bleed) are porous surfaces and a throat slot by-pass. Both were used 
for the first time in a production aircraft on the McDonnell Douglas F-4 Phantom. 
Another example is the wide slot at the throat that acts as an effective and sophis- 
ticated form of boundary-layer bleed on the Concorde, thereby making the intake 
tolerant of changes in engine demand or the amount of bleed. The McDonnell 
Douglas F-15 Eagle also incorporates a variety of such boundary-layer control 
methods, as illustrated in Fig. 8.24. This aircraft has porous areas on the second 
and third engine-inlet ramps, plus a throat by-pass in the form of a slot and a porous 
region on the sideplates in the vicinity of the terminal shock wave. All the porous 
areas together account for about 30% of the boundary-layer removal with the throat 
by-pass accounting for the remainder. 

8.4.2 Control by tangential blowing 
Since flow separation is due to the complete loss of kinetic energy in the boundary 
layer immediately adjacent to the wall, another method of preventing it is to 
re-energize the ‘tired’ air by blowing a thin, high-speed jet into it. This method is 
often used with trailing-edge flaps (Fig. 8.25). To obtain reasonable results with this 
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Fig. 8.25 A blown trailing-edge flap 

method, great care must be taken with the design of the blowing duct. It is essential 
that good mixing takes place between the blown air and the boundary layer. 

Most applications of tangential blowing for flow control exploit the so-called 
C o d a  effect. This name is used for the tendency of a fluid jet issuing tangentially 
on to a curved or angled solid surface to adhere to it, as illustrated in Fig. 8.26. The 
name derives from the Franco-Romanian engineer, Henri Coanda, who filed a French 
patent in 1932 for a propulsive device exploiting the phenomenon. The explanation for 
the phenomenon can be understood by considering the radial equilibrium of the fluid 
element depicted in Fig. 8.26a. This can be expressed in simple terms as follows: 

_-  dP pv2 - 
dr r 

where p is the pressure within the jet boundary layer (strictly, the wall jet) issuing 
from the nozzle exit slot, r is the radial distance from the centre of curvature of the 
surface, p is the fluid density, and V is the local flow speed. It is easy to see that 
the pressure field thereby created forces the flow issuing from the nozzle to adhere to 
the surface. But this does not explain why the equally valid flow solution shown in 
Fig. 8.26b is only found in practice when the Coanda effect breaks down. Presumably 
the slightly enhanced viscous drag, experienced by the jet on its surface side as it 
emerges from the nozzle, tends to deflect it towards the surface. Thereafter, the 
pressure field set up by the requirements of radial equilibrium will tend to force the 
jet towards the surface. Another viscous effect, namely entrainment of the fluid 
between the jet and the surface, may also help pull the jet towards the surface. 

The practical limits on the use of the Coanda effect can also be understood to a 
certain extent by considering the radial equilibrium of the fluid element depicted in 
Fig. 8.26a. Initially we will assume that the flow around the curved surface is inviscid 
so that it obeys Bernoulli’s equation 

wherepo is the stagnation pressure of the flow issuing from the nozzle. Equation (8.2) 
may be substituted into Eqn (8.1) which is then rearranged to give 

dV - = dr, i.e. V = V, exp (k) , 
V 
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Fig. 8.26 The Coanda effect - the flow of a jet around a circular cylinder 
Source: Based on Fig. 1 of P.W. Carpenter and P.N. Green (1997) 'The aeroacoustics and aerodynamics of 
highzspeed Coanda devices', J. Sound & Whation, 208(5), 777-801 

where V, is the (inviscid) flow speed along the wall and R, is the radius of curvature 
of the surface. When the ratio of the exit-slot width, by to the radius of curvature is 
small, r 21 R, and V N Vw. It then follows from Eqn (8.1) that near the exit slot the 
pressure at the wall is given by 

where pw is the ambient pressure outside the Coanda flow. 
It can be seen from Eqn (8.4) that the larger pV2b/& is, the more the wall pressure 

falls below p w .  In the actual viscous flow the average flow speed tends to fall with 
distance around the surface. As a consequence, the wall pressure rises with distance 
around the surface, thereby creating an adverse pressure gradient and eventual 
separation. This effect is intensified for large values of pV2b/R,, so the nozzle exit- 
slot height, b, must be kept as small as possible. For small values of b/Rc the Coanda 
effect may still break down if the exit flow speed is high enough. But the simple 
analysis leading to Eqn (8.4) ignores compressible-flow effects. In fact, the blown air 
normally reaches supersonic speeds before the Coanda effect breaks down. At 
sufficiently high supersonic exit speeds shock-wave/boundary-layer interaction will 
provoke flow separation and cause the breakdown of the Coanda effect.* This places 
practical limits on the strength of blowing that can be employed. 

The Coanda principle may be used to delay separation over the upper surface of a 
trailing-edge flap. The blowing is usually powered by air ducted from the engines. By 
careful positioning of the flap surface relative to the blown air jet and the main wing 
surface, advantage can be taken of the Coanda effect to make the blown jet adhere to 
the upper surface of the flap even when it is deflected downwards by as much as 60" 
(Fig. 8.25). In this way the circulation around the wing can be greatly enhanced. 

*For a recent review on the aerodynamics of the Coanda effect, see P.W. Carpenter and P.N. Green (1997) 
'The aeroacoustics and aerodynamics of high-speed Coanda devices', J.  Sound & Vibration, 208(5), 777-801. 
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Jet sheet 

Fig. 8.27 A jet flap with a vestigial control flap 

A more extreme version of the principle is depicted in Fig. 8.27 where only a vestigial 
flap is used. This arrangement is occasionally found at the trailing edge of a conven- 
tional blown flap. The termjetflap has sometimes been applied to this device, but the 
term is used rather imprecisely; it has even been applied to blown-flap systems in 
general. Here we will reserve the term for the case where the air is blown so strongly 
as to be supersonic. Such an arrangement is found on fighter aircraft with small 
wings, such as the Lockheed F-104 Starfighter, the Mig-21 PFM, and the McDonnell 
Douglas F-4 Phantom. This was done in order to increase lift at low speeds, thereby 
reducing the landing speed. The air is bled from the engine compressor and blown 
over the trailing-edge flaps. According to McCormick,* prior to 1951 it was thought 
that, if supersonic blown air were to be used, it would not only fail to adhere to the 
flap surface, but also lead to unacceptable losses due to the formation of shock 
waves. This view was dispelled by an undergraduate student, John Attinello, in his 
honours thesis at Lafayette College in the United States. Subsequently, his concept 
was subjected to more rigorous and sophisticated experimental studies before being 
flight tested and ultimately used on many aircraft, including the examples mentioned 
above. 

Table 8.1 Aerodynamic performance of some high-lift systems 

System c, 
Internally blown flap 
Upper surface blowing 
Externally blown flap 
Vectored thrust 
Boeing 767 with slat + triple 

Boeing 727 with slat + single 
flap 

flap 

9 
8 
7 
3 
2.8 

2.45 

Source: Based on Tables 2 and 3 of A. Filippone 1999-2001 
Aerodynamics Database - Lift CoeSficients (http://aerodyn.org/ 
HighLift/tables.html). 

* B.W. McConnick (1979) Aerodynamics, Aeronautics and Flight Mechanics, Wiley. 
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Fig. 8.29 An externally blown flap 

Internally blown flaps give the best performance of any high-lift system, see Table 
8.1, but upper surface blowing (Fig. 8.28) is also very effective. This arrangement is 
used on various versions of the Antonov An 72/74 transport aircraft. A slightly less 
efficient system is the externally blown flap (Fig. 8.29). A version of this is used on 
the Boeing C-17 Globemaster heavy transport aircraft. The engine exhaust flow is 
directed below and through slotted flaps to produce an additional lifting force. This 
allows the aircraft to make a steep, low-speed, final approach with a low landing 
speed for routine short-field landings. Many STOL (Short Take-Off and Landing) 
aircraft and fighter aircraft make use of thrust vectoring that also exploits the 
Coanda effect. One possible arrangement is depicted in Fig. 8.30. 

Blown flaps and some other high-lift systems actually generate substantial additional 
circulation and do not just generate the required high lift owing to an increased angle of 
attack. For this reason in some applications the term circulation-control wings is often 
used. It is not necessary to install a flap on a circulation-control wing. For example, see 
the system depicted in Fig. 8.31. Rotors have been fitted with both suction-type 
circulation control (see Fig. 8.23) and the more common blown and jet flaps, and have 
been tested on a variety of helicopter prototypes.* But, as yet, circulation-control rotors 

* See R.W. Prouty’s articles on ‘Aerodynamics’ in Aviation Today: Rotor & Wing May, June and July, 2000 
(http:/jwww.aviationtoday.com/reports/rotorwing/). 



51 2 Aerodynamics for Engineering Students 

Fig. 8.30 Use of the Coanda effect for thrust vectoring 
Source: Based on Fig. 1 of P.M. Bevilaqua and J.D. Lee (1987) ‘Design of supersonic Coanda jet nozzles‘, 
Proc. of the Circulation-Control Workshop 1986, NASA Conf Pub. 2432 

Plenum for internal air supply 
\ Coanda surface 

Fig. 8.31 A circulation-control wing 

have not been used on any production aircraft. A recent research development, mainly 
in the last 10 years, is the use of periodic blowing for separation control.* Significant lift 
enhancement can be achieved efficiently with the use of very low flow rates. Almost all 
the experimental studies are at fairly low Reynolds number, but Seifert and Packt have 
carried out wind-tunnel tests at Reynolds numbers typical of flight conditions. 

Tangential blowing can only be applied to the prevention of separation, unlike 
suction that can be employed for t h i s  purpose or for laminar-flow control. The flow 
created by blowing tends to be very vulnerable to laminar-turbulent transition, so 
tangential blowing almost inevitably triggers transition. 

8.4.3 Other methods of separation control 
Passive flow control through the generation of streamwise vortices is frequently used 
on aircraft and other applications. Some of the devices commonly in use are depicted 

* See the recent review by D. Greenblatt and I. Wygnanski (2000) ‘The control of flow separation by 
periodic excitation’, Prog. in Aerospace Sciences, 36,487-545. 
+A. Seifert and L.G. Pack (1999) ‘Oscillatory control of separation at high Reynolds number’, AZAA J., 
37(9), 1062-1071. 



Flow control and wing design 513 

in Fig. 8.32. Figure 8.32a shows a row of vortex generators on the upper surface of a 
wing. These take a variety of forms and often two rows at two different chordwise 
locations are used. The basic principle is to generate an array of small streamwise 
vortices. These act to promote increased mixing between the high-speed air in the 
main stream and outer boundary layer with the relatively low-speed air nearer 
the surface. In this way the boundary layer is re-energized. Vortex generators 
promote the reattachment of separated boundary layers within separation bubbles, 
thereby postponing fully developed stall. 

Fixed vortex generators are simple, cheap, and rugged. Their disadvantages are 
that they cannot be used for active stall control, a technology now being used for 
highly manceuvrable fighter aircraft; also they generate parasitic drag at cruise 
conditions where stall suppression is not required. These disadvantages have led to 
the development of vortex-generator jets (VGJ) whereby angled small jets are blown, 
either steadily or in a pulsatory mode, through orifices in the wing surface. The 
concept was first proposed by Wallis in Australia and Pearcey in the U.K.* primarily 

Fig. 832 
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* R.A. Wallis (1952) ‘The use of air jets for boundary layer control’, Aerodynamic Research Laboratories, 
Australia, Aero. Note 110 (N-34736); H.H. Pearcey (1961) ‘Shock-induced separation and its prevention’, 
in Boundary Layer & Flow Control, Vol. 2 (edited by G.V. Lwhmann), Pergamon, pp. 1170-1344. 
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Fig. 8.32 (Continued) 

for the control of shock-induced separation. More recently the concept has been 
reexamined as an alternative to conventional vortex generators*. 

Wing fences (Fig. 8.32b) and ‘vortilons’ act as a barrier to tipward flow on swept- 
back wings. They also generate powerful streamwise vortices. The saw-tooth leading 
edge (Fig. 8.32~) is another common device for generating a powerful streamwise 
vortex; as is the leading-edge strake (Fig. 8.32d). In this last case the vortex reener- 
gizes the complex, three-dimensional, boundary-layer flow that develops along the 
wing-body junction. 

‘8.5 Reduction of skin-friction drag 
Four main types of drag are found in aerodynamics - see Section 1.5.5 - namely: 
skin-friction drag, form drag, induced drag, and wave drag. The methods in use for 

* For example, see J.P. Johnston and M. Nishi (1990) ‘Vortex generator jets - means for flow separation 
control’, AIAA J. ,  28(6), 989-994; see also the recent reviews by Greenblatt and Wygnanski (2000) refer- 
enced in Section 8.4.2 and Gad-el-Hak (2000) referenced at the beginning of Section 8.4., and J.C. Magill 
and K.R. McManus (2001) ‘Exploring the feasibility of pulsed jet separation control for aircraft config- 
urations’, AIAA J.  of Aircraft, 38(1), 48-56. 
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the reduction of each type of drag are discussed in turn in the sections that follow. 
A more detailed recent account of drag reduction is given by Gad-el-Hak.* 

In broad terms skin-friction dragt can be reduced in one of two ways. Either 
laminar flow can be maintained by postponing laminar-turbulent transition, this is 
the so-called laminar-flow technology, or ways are found to reduce the surface shear 
stress generated by the turbulent boundary layer. The maintenance of laminar-flow 
by prolonging a favourable or constant-pressure region over the wing surface is 
discussed briefly in Section 7.9. Active laminar-flow control requires the use of 
boundary-layer suction and this is described in Section 8.5.1. Another laminar-flow 
technique based on the use of compliant walls (artificial dolphin skin) is described 
in Section 8.5.2. Riblets are the main technique available for reducing turbulent 
skin-friction and their use is described in Section 8.5.3. 

8.5.1 Laminar flow control by boundary-layer suction 
Distributed suction acts in two main ways to suppress laminar-turbulent transition. 
First, it reduces the boundary-layer thickness. Recall from Section 7.9 that for a fixed 
pressure gradient a critical Reynolds number based on boundary-layer thickness 
must be reached before transition is possible. Second, it creates a much fuller velocity 
profile within the boundary layer, somewhat similar to the effect of a favourable 
pressure gradient. This makes the boundary layer much more stable with respect to 
the growth of small disturbances (e.g. Tollmien-Schlichting waves). In effect, this also 
greatly increases the critical Reynolds number. The earliest work on laminar-flow 
control (LFC) including the use of suction was carried out in Germany and Switzer- 
land during the late 1930s in wind-tunnels.’ The first flight tests were carried out in 
the United States in 1941 using a B-18 bomber fitted with a wing glove. The 
maximum flight speed available and the chord of the wing glove limited the transi- 
tional Reynolds number achieved to a lower value than that obtained in wind-tunnel 
tests. 

Research on suction-type LFC continued up to the 1960s in Great Britain and 
the United States. This included several flight tests using wing gloves on aircraft like 
the F-94 and Vampire. In such tests full-chord laminar flow was maintained on the 
wing’s upper surface at Reynolds numbers up to 30 x lo6. To achieve this transition 
delay exceptionally well-made smooth wings were required. Even very small surface 
roughness, due to insect impact, for example, caused wedges of turbulent flow to 
form behind each individual roughness element. Further flight tests in the United 
States and Great Britain (the latter used a vertically mounted test wing on a Lan- 
caster bomber) revealed that it was much more difficult to maintain laminar flow 
over swept wings. This was because swept leading edges bring into play more 
powerful routes to transition than the amplification of Tollmien-Schlichting waves. 
First of all, turbulence propagates along the leading edge from the wing roots, this is 
termed leading-edge contamination. Secondly, completely different and more powerful 

* M. Gad-el-Hak (2000) Flow Control: Passive, Active and Reactive Flow Management, Cambridge Uni- 
versity Press. 

Reviews of many aspects of this subject are to be found in Viscous Drag Reduction in Boundary Layers, 
edited by D.M. Bushnell and J.N. Hefner, A I M  Washington, D.C. (1990). 

H. Holstein (1 940) ‘Messungen zur Laminarhaltung der Grenzschicht an einem Fliigel’, Lilienthal Bericht, 
S10, 17-27; 3. Ackeret, M. Ras, and W. Pfenninger (1941) ‘Verhinderung des Turbulentwerdens einer 
Grenzschicht durch Absaugung’, Naturwissenschaften, 29, 622-623; and M. Ras and J. Ackeret (1941) 
‘Uber Verhinderung der Grenzschicht-Turbulenz durch Absaugung’, Helv. Phys. Acta, 14, 323. 



51 6 Aerodynamics for Engineering Students 

disturbances form in the boundary layer over the leading-edge region of swept wings. 
These are called cross-flow vortices. 

Owing to the practical difficulties and to the relatively low price of aviation fuel, 
LFC research was discontinued at the end of the 1960s. More recently, with the 
growing awareness of the environmental requirements for fuel economy and limiting 
engine emissions, it has been revived. LFC is really the only technology currently 
available with the potential for very substantial improvement to fuel economy. For 
transport aircraft, the reduction in fuel burnt could exceed 30%. Recent technical 
advances have also helped to overcome some of the practical difficulties. The princi- 
pal such advances are: 

(i) Krueger (Fig. 8.33) flaps at the leading edge that increase lift and act to protect 
the leading-edge region from insect impact during take-off and climb-out; 

(ii) Improved manufacturing techniques, such as laser drilling and electron-beam 
technology, that permit the leading edges to be smooth perforated titanium 
skins; 

(iii) The use of hybrid LFC. 

The application of the first two innovations is illustrated in Fig. 8.33. Perforated 
skins give distributed suction which is more effective than the use of discrete suction 
slots. Hybrid LFC would be particularly useful for swept-back wings because it is not 
possible to maintain laminar flow over them by means of natural LFC alone. This 
depends on shaping the wing section in order to postpone the onset of an adverse 
pressure gradient to as far aft as possible. Tollmien-Schlichting waves can be sup- 
pressed in this way, but not the more powerful transition mechanisms of leading-edge 
contamination and cross-flow vortices found in the leading-edge region on swept 
wings. With hybrid LFC, suction is used only in the leading-edge region in order to 
suppress the cross-flow vortices and leading-edge contamination. Over the remainder 
of the wing where amplification of Tollmien-Schlichting waves is the main route to 

Electron-beam perforated 

.... 

De-icer insert 

600 pm skiithickness 

Fig. 8.33 Leading-edge arrangement for 1983-1987 flight tests conducted on a JetStar aircraft at NASA 
Dryden Flight Research Center. Important features were: (1) Suction on upper surface only; (2) Suction 
through electron-beam-perforated skin; (3) Leading-edge shield extended for insect protection; (4) De-icer 
insert on shield for ice protection; (5) Supplementary spray nozzles for protection from insects and ice 
Source: Based on Fig. 12 of Braslow (2000) ibid 
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transition, wing-profile shaping can be used to reduce the effects of an adverse 
pressure gradient. In practice, it is easier to achieve this for the upper surface only. 
Owing to the higher flow speeds there, the upper surface produces most of the skin- 
friction drag. Hybrid LFC wings were extensively and successfully flight tested by 
Boeing on a modified 757 airliner during the early 1990s. Although, LFC based on 
the use of boundary-layer suction has yet to be used in any operational aircraft, the 
technology in the form of the less risky hybrid LFC has been established as practically 
realizable. In this way, based on proven current technology, a 10 to 20% improvement 
in fuel consumption could be achieved for moderate-sized subsonic commercial aircraft. 

A detailed account of LFC technology and its history is given by Braslow.* 

8.5.2 Compliant walls: artificial dolphin skins 
It is widely thought that some dolphin species possess an extraordinary laminar-flow 
capability. Certainly mankind has long admired the swimming skills of these fleet 
creatures. Scientific interest in dolphin hydrodynamics dates back at least as far as 
1936 when Grayt published his analysis of dolphin energetics. It is widely accepted that 
species like the bottle-nosed dolphin (Tursiops truncatus) can maintain a sustained 
swimming speed of up to 9 m/s. Gray followed the usual practice of marine engineers in 
modelling the dolphin’s body as a one-sided flat plate of length 2 m. The corresponding 
value of Reynolds number based on overall body length was about 20 x lo6. Even in a 
very-low-noise flow environment the Reynolds number, Rext, for transition from 
laminar to turbulent flow does not exceed 2 to 3 x lo6 for flow over a flat plate. 
Accordingly, Gray assumed that if conventional hydrodynamics were involved, the 
flow would be mostly turbulent and the dolphin would experience a large drag force. 
So large, in fact, that at 9 m/s its muscles would have to deliver about seven times more 
power per unit mass than any other mammalian muscle. This led him and others 
to argue that the dolphin must be capable of maintaining laminar flow by some 
extraordinary means. This hypothesis has come to be known as Gray’s Paradox. 

Little in detail was known about laminar-turbulent transition in 1936 and Gray would 
have been unaware of the effects of the streamwise pressure gradient along the boundary 
layer (see Section 7.9). We now know that transition is delayed in favourable pressure 
gradients and promoted in adverse ones. Thus, for the dolphin, the transition point 
would be expected to occur near the point of minimum pressure. For Tursio s truncatus 
this occurs about halfway along the body corresponding to Rext = 10 x 10 . When this 
is taken into account the estimated drag is very much less and the required power output 
from the muscles only exceeds the mammalian norm by no more than a factor of two. 
There is also some recent evidence that dolphin muscle is capable of a higher output. So 
on re-examination of Gray’s paradox there is now much less of an anomaly to explain. 
Nevertheless, the dolphin may still find advantage in a laminar-flow capability. More- 
over, there is ample evidence which will be briefly reviewed below, that the use of 
properly designed, passive, artificial dolphin skins, i.e. compliant walls, can maintain 
laminar flow at much higher Reynolds numbers than found for rigid surfaces. 

In the late 1950s, Max Kramer,* a German aeronautical engineer working in the 
United States, carried out a careful study of the dolphin epidermis and designed 

* A.L. Braslow (2000) Laminar-Flow Control, NASA web-based publication on http://www/dfrc.nasa.gov/ 
History/Publications/LFC. 

J. Gray (1936) ‘Studies in animal locomotion. VI The propulsive powers of the dolphin’, J.  Experimental 
Biology, 13, 192-199. 

M.O. Kramer (1957, 1960) ‘Boundary layer stabilization by distributed damping’, J. Aeronaufical Sci- 
ences, 24, 459; and J. American Society of Naval Engineers, 74, 341-348. 

t! 
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compliant coatings closely based on what he considered to be its key properties. 
Figure 8.34 shows his compliant coatings and test model. Certainly, his coatings bore 
a considerable resemblance to dolphin skin, particularly with respect to dimensions 
(see also Fig. 8.35). They were manufactured from soft natural rubber and he 
mimicked the effects of the fatty, more hydrated tissue, by introducing a layer of 
highly viscous silicone oil into the voids created by the short stubs. He achieved drag 
reductions of up to 60% for his best compliant coating compared with the rigid-walled 
control in sea-water at a maxirnum speed of 18 m/s. Three grades of rubber and various 
silicone oils with a range of viscosities were tested to obtain the largest drag reduction. 
The optimum viscosity was found to be about 200 times that of water. 

Although no evidence existed beyond the drag reduction, Kramer believed that his 
compliant coatings acted as a form of laminar-flow control. His idea was that they 
reduced or suppressed the growth of the small-amplitude Tollmien-Schlichting 
waves, thereby postponing transition to a much higher Reynolds number or even 
eliminating it entirely. He believed that the fatty tissue in the upper dermal layer of 

/rSeamiess hose I 
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I t  
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t 
Fig. 8.34 Kramer’s compliant coating and model. All dimensions are in mm. (a) Cross-section; (b) Cut 
through stubs; (c) Model: shaded regions were coated 
Source: Based on Fig. 1 of P.W. Carpenter, C. Davies and A.D. Lucey (2000) ‘Hydrodynamics and compliant 
walls: Does the dolphin have a secret?’, Current Science, 79(6), 758-765 
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10-15 mm T 
(b) 

Fig. 8.35 Structure of dolphin skin. (a) Cross-section; (b) Cut through the dermal papillae at AA’; (c) Front 
view. Key: a, cutaneous ridges or microscales; b, dermal papillae: c, dermal ridge; d, upper epidermal layer; 
e, fatty tissue 
Source: Based on Fig. 1 of P.W. Carpenter eta/. (see Fig. 8.34) 

the dolphin skin and, by analogy the silicone oil in his coatings, acted as damping to 
suppress the growth of the waves. This must have seemed eminently reasonable at the 
time. Surprisingly, however, the early theoretical work by Benjamin,* while showing 
that wall compliance can indeed suppress the growth of Tollmien-Schlichting waves, 
also showed that wall damping in itself promoted wave growth (i.e. the waves grew 
faster for a high level of damping than for a low level). This led to considerable 
scepticism about Kramer’s claims. But the early theories, including that of Benjamin, 
were rather general in nature and made no attempt to model Kramer’s coatings 
theoretically. A detailed theoretical assessment of the laminar-flow capabilities of his 
coatings was carried out much later by Carpenter and Garradt who modelled 
the coatings as elastic plates supported on spring foundations with the effects of 
visco-elastic damping and the viscous damping fluid included. Their results broadly 

* T.B. Benjamin (1960) ‘Effects of a flexible boundary on hydrodynamic stability’, J.  Fluid Mech., 9, 

P.W. Carpenter and A.D. Garrad (1985) ‘The hydrodynamic stability of flows over Kramer-type com- 
513-532. 

pliant surfaces. Pt. 1.  Tollmien-Schlichting instabilities’, J.  Fluid Mech., 155, 465-510. 
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confirm that the Kramer coatings were capable of substantially reducing the growth 
of Tollmien-Schlichting waves. 

Experimental confirmation for the stabilizing effects of wall compliance on Tollmien- 
Schlichting waves was provided by Gaster* who found close agreement between the 
measured growth and the predictions of the theory. Subsequently many authors have 
used versions of this theory to show how suitably designed compliant walls can achieve 
a fivefold or greater increase in the transitional Reynolds number, Rext, as compared 
with the corresponding rigid surfaces. Although, compliant walls have yet to be used 
for laminar-flow control, there is little doubt that they have the potential for this in 
certain marine applications. In principle, they could also be used in aeronautical 
applications. But, in practice, owing to the need to match the inertias of the air and 
the wall, the wall structure would have to be impractically light and flimsy.+ 

8.5.3 Riblets 
A moderately effective way of reducing turbuIent skin friction involves surface 
modification in the form of riblets. These may take many forms, but essentially 
consist of minute streamwise ridges and valleys. One possible configuration is 
depicted in Fig. 8.36b. Similar triangular-shaped riblets are available in the form of 
polymeric film from the 3M Company. The optimum, non-dimensional, spanwise 
spacing between the riblets is given in wall units (see Section 7.10.5) by 

s+ = s m  = 10 to 20 

This corresponds to an actual spacing of 25 to 75 pm for flight conditions. (Note that 
the thickness of a human hair is approximately 70 pm). The 3M riblet film has been 
flight tested on an in-service Airbus A300-600 and on other aircraft. It is currently 
being used on regular commercial flights of the Airbus A340-300 aircraft by Cathay 
Pacific. The reduction in skin-friction drag observed was of the order of 5 to 8%. 
Skin-friction drag accounts for about 50% of the total drag for the Airbus A340-300 
(a rather higher proportion than for many other types of airliner). Probably only 
about 70% of the surface of the aircraft is available to be covered with riblets leading 
to about 3% reduction in total drag.’ This is fairly modest but represents a worth- 
while savings in fuel and increase in payload. Riblets have also been used on 
Olympioclass rowing shells in the United States and on the hull of the Stars and 
Stripes, the winner of the 1987 America’s Cup yacht race. 

The basic concept behind the riblets had many origins, but it was probably the 
work at NASA Langley5 in the United States that led to the present developments. 

* M. Gaster (1987) ‘Is the dolphin a red herring?‘, Proc. of IUTAM Symp. on Turbulence Management and 
Relaminurisation, edited by H.W. Liepmann and R. Narasimha, Springer, New York, pp. 285204. See 
also A.D. Lucey and P.W. Carpenter (1995) ‘Boundary layer instability over compliant walls: comparison 
between theory and experiment’, Physics of F l u a ,  7(11), 23552363. 

Detailed reviews of recent progress can be found in: P.W. Carpenter (1990) ‘Status of transition delay 
using compliant walls’, Viscous Drag Reduction in Boundary Layers, edited by D.M. BushneU and 
J.N. Hefner, Vol. 123, Progress in Astronautics and Aeronautics, AIAA, Washington, D.C., pp. 79-113; 
M. Gad-el-Hak (2000) Flow control, Cambridge University Press; and P.W. Carpenter, A.D. Lucey and 
C. Davies (2001) ‘Progress on the use of compliant walls for laminar-flow control’, AIAA J. of Aircraft, 
38(3), 504-512. 

See D.W. Bechert, M. Bruse, W. Hage and R. Meyer (1997) ‘Biological surfaces and their technological 
application - laboratory and flight experiments and separation control’, AIAA Paper 97-1960. 
* M.J. Walsh and L.M. Weinstein (1978) ‘Drag and heat transfer on surfaces with longitudinal fins’, AZAA 
Paper No. 78-1161. 
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Fig. 8.36 The effect of riblets on the near-wall structures in a tlrrbulent boundary layer 

The concept was also discovered independently in Germany through the study of the 
hydrodynamics of riblet-like formations on shark scales.* The non-dimensional 
riblet spacings found on shark scales lie in the range 8 < s+ < 18, i.e. almost identical 
to the range of values given above for optimum drag reduction in the experiments of 
NASA and others on man-made riblets. 

Given that the surface area is increased by a factor of 1.5 to 2.0, the actual 
reduction in mean surface shear stress achieved with riblets is some 12-16%. How 
do riblets produce a reduction in skin-friction drag? At first sight it is astonishing that 
such minute modifications to the surface should have such a large effect. The 

* See W.-E. Reif and A. Dinkelacker (1982) ‘Hydrodynamics of the squamation in fast swimming sharks’, 
Neues Jahrbuchftir Geologie m d  Paleontologie, 164,184-187; and D.W. Bechert, G. Hoppe and W.-E. Reif 
(1985) ‘On the drag reduction of the shark skin’, AIAA Paper No. 85-0546. 
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phenomenon is also in conflict with the classic view in aerodynamics and hydro- 
dynamics that surface roughness should lead to a drag increase. A plausible 
explanation for the effect of riblets is that they interfere with the development of 
the near-wall structures in the turbulent boundary that are mainly responsible for 
generating the wall shear stress. (See Section 7.10.8) These structures can be thought 
of as ‘hairpin’ vortices that form near the wall, as depicted in Fig. 8.36a. As these 
vortices grow and develop in time they reach a point where the head of the vortex is 
violently ejected away from the wall. Simultaneously the contra-rotating, streamwise- 
oriented, legs of the vortex move closer together, thereby inducing a powerful down- 
wash of high-momentum fluid between the vortex legs. This sequence of events is 
often termed a ‘near-wall burst’. It is thought that riblets act to impede the close 
approach of the vortex legs, thereby weakening the bursting process. 

8.6 Reduction of form drag 
Form drag is kept to a minimum by avoiding flow separation and in this respect has 
already been discussed in the previous sections. Streamlining is vitally important for 
reducing form drag. It is worth noting that at high Reynolds numbers a circular 
cylinder has roughly the same overall drag as a classic streamlined aerofoil with a 
chord length equal to 100 cylinder radii. Form drag is overwhelmingly the main 
contribution to the overall drag for bluff bodies like the cylinder, whereas in the case 
of streamlined bodies skin-friction drag is predominant, form drag being less than ten 
per cent of the overall drag. For bluff bodies even minimal streamlining can be very 
effective. 

8.7 Reduction of induced drag 
Aspects of this topic have already been discussed in Chapter 5.  There it was shown 
that, in accordance with the classic wing theory, induced drag falls as the aspect ratio 
of the wing is increased. It was also shown that, for a given aspect ratio, elliptic- 
shaped wings (strictly, wings with elliptic wing loading) have the lowest induced drag. 
Over the past 25 years the winglet has been developed as a device for reducing 
induced drag without increasing the aspect ratio. A typical example is depicted in 
Figs 8.37a and 8.40. Winglets of this and other types have been fitted to many 
different civil aircraft ranging from business jets to very large airliners. 

The physical principle behind the winglet is illustrated in Figs. 8.37b and 8.37~. On 
all subsonic wings there is a tendency for a secondary flow to develop from the high- 
pressure region below the wing round the wing-tip to the relatively low-pressure 
region on the upper surface (Fig. 8.37b). This is part of the process of forming the 
trailing vortices. If a winglet of the appropriate design and orientation is fitted to the 
wing-tip, the secondary flow causes the winglet to be at an effective angle of 
incidence, giving rise to lift and drag components L, and D, relative to the winglet, 
as shown in Fig. 8.37~. Both L, and D, have components in the direction of flight. 
L, provides a component to counter the aircraft drag, while D, provides one that 
augments the aircraft drag. For a well-designed winglet the contribution of L, 
predominates, resulting in a net reduction in overall drag, or a thrust, equal to AT 
(Fig. 8.37~). For example, data available for the Boeing 747400 indicate that 
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Fig. 8.37 Using winglets to reduce induced drag 

winglets reduce drag by about 2.5% corresponding to a weight saving of 9.5 tons at 
take-off.* 

The winglet shown in Fig. 8.37a has a sharp angle where it joins the main wing. This 
creates the sort of corner flow seen at wing-body junctions. Over the rear part of the 
wing the boundary layer in this junction is subject to an adverse streamwise 
pressure gradient from both the main wing and the winglet. This tends to intensify 
the effect of the adverse pressure gradient leading to a risk of flow separation and 
increased drag. This can be avoided by the use of blended winglets (Fig. 8.38a) or a 
winglet that is shifted downstream (Fig. 8.38b). Variants of both these designs are very 
common. The pressure distributions over the upper surface of the main wing close to 
the wing-tip are plotted in Fig. 8.39 for all three types of winglet and for the 
unmodified wing. The winglet with the sharp corner has a distribution with a narrow 
suction peak close to the leading edge that is followed by a steep adverse pressure 
gradient. This type of pressure distribution favours early laminar-turbulent transition 
and also risks flow separation. In contrast, the other two designs, especially the 

* See A. Filippone (1999-2001) ‘Wing-tip devices’ (http://aerodyn.org/Drag/tip-devices.html). 
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J-i Front view 

Side view 

Fig. 8.38 Alternative winglet designs. (a) The blended winglet; (b) The winglet shifted downstream. 

downstream-shifted winglet, have much more benign pressure distributions. Calcula- 
tions using the panel method indicate that all three winglet types lead to a similar 
reduction in induced drag.* This suggests that the two winglet designs shown in Fig. 
8.38 are to be preferred to the one with a sharp corner. 

Fig. 8.39 Streamwise pressure distributions over the upper surface of the main wing close to the wing-tip 
for different winglet configurations (schematic only). a, wing-tip without winglet; b. winglet with sharp 
corner; c, blended winglet; d, winglet shifted downstream 
Source: Based on a figure from 'Winglets, a close look' (http://beadecl .ea.bs.dlr.de/airfoiIs/wingltl .htm) 

* 'Winglets. a close look' (http://beadecl .ea.bs.dlr.de/airfoils/winglt1 .htm). 



Flow control and wing design 525 

Fig. 8.40 A view of the Airbus A340 showing the winglets attached to the wing-tips. These devices are 
used in order to reduce induced drag. See Fig. 8.37, page 523. In the foreground is the wing of the Airbus 
A320-200 fitted wi th  another wing-tip device known as a wing-tip fence. (The photograph was provided by 
Gert Wunderlch.) 

8.8 Reduction of wave drag 
Aspects of this have been covered in the discussion of swept wings in Section 5.7 and 
of supercritical aerofoils in Sections 7.9 and 8.2. In the latter case it was found that 
keeping the pressure uniform over the upper wing surface minimized the shock 
strength, thereby reducing wave drag. A somewhat similar principle holds for the 
whole wing-body combination of a transonic aircraft. This was encapsulated in the 
area rule formulated in 1952 by Richard Whitcomb” and his team at NACA Langley. 
It was known that as the wing-body configuration passed through the speed of 
sound, the conventional straight fuselage, shown in Fig. 8.41a, experienced a sharp 
rise in wave drag. Whitcomb’s team showed that this rise in drag could be consider- 
ably reduced if the fuselage was waisted, as shown in Fig. 8.41b, in such a way as to 
keep the total cross-sectional area of the wing-body combination as uniform as 
possible. Waisted fuselages of this type became common features of aircraft designed 
for transonic operation. 

The area rule was first applied to a production aircraft in the case of the Convair 
F-l02A, the USAF’s first supersonic interceptor. Emergency application of the area 
rule became necessary owing to a serious problem that was revealed during the flight 
tests of the prototype aircraft, the YF-102. Its transonic drag was found to exceed the 
thrust produced by the most powerful engine then available. This threatened to 

* R.T. Whitcomb (1956) ‘A study of the zero-lift drag-rise characteristics of wing-body combinations near 
the speed of sound’, NACA Rep. 1273. 
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( b 1 Waisted fuselage 

Fig. 8.41 Application of the area rule for minimizing wave drag 

jeopardize the whole programme because a supersonic flight speed was an essential 
USAF specification. The area rule was used to guide a major revised design of the 
fuselage. This reduced the drag sufficiently for supersonic Mach numbers to be 
achieved. 



Propellers and propulsion 

Preamble 
Propulsive systems using atmospheric air include propellers, turbo-jets, 
ramjets, helicopters and hovercraft. Those which are independent of the 
atmosphere (if any)  through which they move include rocket motors. In every 
case mentioned above the propulsive force is obtained by increasing the 
momentum of the working gas in thc direction opposite to that of the force, 
assisted in the case of the hovercraft by a cushioning effect. A simple 
momentum theory of propulsion is applied to airscrews rind rotors that 
permits performance criteria to be derived. A blade-element theory is also 
described. For the rocket motor and rocket-propelled body a similar 
momentum treatment is used. The hovercraft is briefly treated separately. 

The forward propulsive force, or thrust, in aeronautics is invariably obtained by 
increasing the rearward momentum of a quantity of gas. Aircraft propulsion systems 
may be divided into two classes: 

(I) those systems where the gas worked on is wholly or principally atmospheric air; 
(11) other propulsive systems, in which the gas does not contain atmospheric air in 
any appreciable quantity. 

Class I includes turbo-jets, ram-jets and all systems using airscrews or helicopter 
rotors. It also includes ornithopters (and, in nature, birds, flying insects, etc.). The 
only example of the Class I1 currently used in aviation is the rocket motors. 

9.1 Froude’s momentum theory of propulsion 
This theory applies to propulsive systems of Class I. In this class, work is done on air 
from the atmosphere and its energy increased. This increase in energy is used to 
increase the rearwards momentum of the air, the reaction to which appears as a 
thrust on the engine or airscrew. 

The theory is based on the concept of the ideal actuator disc or pure energy 
supplier. This is an infinitely thin disc of area S which offers no resistance to air 
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P. 

P 

Fig. 9.1 The ideal actuator disc, and flow in the slipstream 

passing through it. Air passing through the disc receives energy in the form of 
pressure energy from the disc, the energy being added uniformly over the whole area 
of the disc. It is assumed that the velocity of the air through the disc is constant over 
the whole area and that all the energy supplied to the disc is transferred to the air. 

Consider the system shown in Fig. 9.1. This represents an actuator disc at rest in a 
fluid that, a long way ahead of the disc, is moving uniformly with a speed of V and 
has a pressure ofpo. The outer curved lines represent the streamlines that separate the 
fluid which passes through the disc from that which does not. As the fluid between 
these streamlines approaches the disc it accelerates to a speed VO, its pressure 
decreasing to p1. At the disc, the pressure is increased to p2 but continuity prohibits 
a sudden change in speed. Behind the disc the air expands and accelerates until, well 
behind the disc, its pressure has returned topo, when its speed is V,. The flow between 
the bounding streamlines behind the disc is known as the slipstream. 

In unit time: 

mass of fluid passing through disc = pSV0 ( 9 4  

Increase of rearward momentum of this mass of fluid 

= pSVo( V, - V )  ( 9 4  

T=pSVo(V, -  V )  (9.3) 

T = S(p2 -PI)  (9.4) 

and this is the thrust on the disc. Thus 

The thrust can also be calculated from the pressures on the two sides of the disc as 

The flow is seen to be divided into two regions 1 and 2, and Bernoulli's equation may 
be applied within each of these regions. Since the fluid receives energy at the disc 
Bernoulli's equation may not be applied through the disc. Then 

1 
(9.5) 

1 
po + p V 2  =p1 +-pV;: 2 

and 
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From Eqns (9.5) and (9.6) 

1 1 
(..+?PVi) - ( p 1 + p V i )  = (po+fpv;) - (pO+fpV2) 

i.e. 

1 
p2-p1 =.p(V?- V2) (9.7) L 

Substituting this in Eqn (9.4) and equating the result to Eqn (9.3), i.e. equating the 
two expressions for the thrust: 

1 
2 
-ps(V;-V~)=psVo(V,-VV) 

Vo = Z(V, + V )  

and dividing this by pS(V, - V) gives 

(9.8) 
1 

showing that the velocity through the disc is the arithmetic mean of the velocities well 
upstream, and in the fully developed slipstream. Further, if the velocity through the 
disc VO is written as 

Vo = V(1 + a )  (9.9) 
it follows from Eqn (9.8) that 

V, + V = 2V0 = 2V(1 + a )  

whence 

V, = V (  1 + 2a) (9.10) 

The quantity a is termed the inflow factor. 
and a 

pressure energy appropriate to the pressure PO, whereas the same mass well behind 
the disc has, after passing through the disc, kinetic energy of 4 rf and pressure energy 
appropriate to the pressurepo. Thus unit mass of the fluid receives an energy increase 
of 4 (Vf - V2) on passing through the disc. Thus the rate of increase of energy of the 
fluid in the system, dEldt, is given by 

Now unit mass of the fluid upstream of the disc has kinetic energy of 

1 
2 = -psVo(V; - V2) (9.11) 

This rate of increase of energy of the fluid is, in fact, the power supplied to the 
actuator disc. 

If it is now imagined that the disc is moving from right to left at speed V into 
initially stationary fluid, useful work is done at the rate TV. Thus the efficiency of the 
disc as a propulsive system is 

TV 
vi = ;psVo(V; - V) 
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Substituting for T from Eqn (9.3) gives 

(9.12) 

This is the ideal propulsive efficiency or the Froude efficiency of the propulsive system. 
In practice the part of the ideal actuator disc would be played by the airscrew or jet 

engine, which will violate some or all of the assumptions made. Each departure from 
the ideal will lead to a reduction in efficiency, and thus the efficiency of a practical 
propulsive system will always be less than the Froude efficiency as calculated for an 
ideal disc of the same area producing the same thrust under the same conditions. 

Equation (9.12) may be treated to give several different expression for the effi- 
ciency, each of which has its own merit and use. Thus 

1 - -- 
(1 +a> 

(9.12a) 

(9.12b) 

(9.12~) 

Also, since useful power = TV, and the efficiency is V/Vo, the power supplied is 

(9.13) 

Of particular interest is Eqn (9.12a). This shows that, for a given flight speed V, the 
efficiency decreases with increasing V,. Now the thrust is obtained by accelerating 
a mass of air. Consider two extreme cases. In the first, a large mass of air is affected, 
i.e. the diameter of the disc is large. Then the required increase in speed of the air is 
small, so Vs/V differs little from unity, and the efficiency is relatively high. In the 
second case, a disc of small diameter affects a small mass of air, requiring a large 
increase in speed to give the same thrust. Thus V,/V is large, leading to a low 
efficiency. Therefore to achieve a given thrust at a high efficiency it is necessary to 
use the largest practicable actuator disc. 

An airscrew does, in fact, affect a relatively large mass of air, and therefore has a 
high propulsive efficiency. A simple turbo-jet or ram-jet, on the other hand, is closer 
to the second extreme considered above, and consequently has a poor propulsive 
efficiency. However, at high forward speeds compressibility causes a marked reduc- 
tion in the efficiency of a practical airscrew, when the advantage shifts to the jet 
engine. It was to improve the propulsive efficiency of the turbo-jet engine that the by- 
pass or turbo-fan type of engine was introduced. In this form of engine only part of 
the air taken is fully compressed and passed through the combustion chambers and 
turbines. The remainder is slightly compressed and ducted round the combustion 
chambers. It is then exhausted at a relatively low speed, producing thrust at a fairly 
high propulsive efficiency. The air that passed through the combustion chambers is 
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ejected at high speed, producing thrust at a comparatively low efficiency. The overall 
propulsive efficiency is thus slightly greater than that of a simple turbo-jet engine 
giving the same thrust. The turbo-prop engine is, in effect, an extreme form of 
by-pass engine in which nearly all the thrust is obtained at high efficiency. 

Another very useful equation in this theory may be obtained by expressing 
Eqn (9.3) in a different form. Since 

Vo = V(l + a)  and V, = V(l + 2a) 
T = p S V 0 ( V s -  V ) = p S V ( l + a ) [ Y ( 1 + 2 a ) - V ]  

= 2pSV24 1 + a)  (9.14) 

Example 9.1 An airscrew is required to produce a thrust of 4000N at a flight speed of 
120ms-’ at sea level. If the diameter is 2Sm, estimate the minimum power that must be 
supplied, on the basis of Froude’s theory. 

T = 2pSV2Q( 1 + Q) 

i.e. 

T 
a+$=- 

2 p s v  

Now T = 4000 N, V = 120 m s-l and S = 4.90 m2. Thus 

= 0.0232 4000 
2 x 1.226 x 14 400 x 4.90 Q + Q ’ =  

whence 

Q = 0.0227 

Then the ideal efficiency is 

1 
q=m 

Useful power = TV = 480 000 W 

Therefore minimum power supplied, P, is given by 

P = 480000 x 1.0227 = 491 kW 

The actual power required by a practical airscrew would probably be about 15% greater than 
this, Le. about 560 kW. 

Example 9.2 A pair of airscrews are placed in tandem (Fig. 9.2), at a streamwise spacing 
sufficient to eliminate mutual interference. The rear airscrew is of such a diameter that it just 
fills the slipstream of the front airscrew. Using the simple momentum theory calculate: (i) the 
efiiciency of the combination and (ii) the efficiency of the rear airscrew, if the front airscrew 
has a Froude efficiency of 90%, and if both airscrews deliver the same thrust. (u of L) 
For the front airscrew, q = 0.90 = $. Therefore 

Thus 
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/ 

Fig. 9.2 Actuator discs in tandem 

and 

11  
9 

V, = V(1+2a) = - V  

The thrust of the front airscrew is 

The second airscrew is working entirely in the slipstream of the fist. Therefore the speed of 
the approaching flow is V,, i.e. V.  The thrust is 

T = pSZV;(V; - V’) = pSZV;(V; - Vs) 

PSZVi!J = PS1 Vo 

Now, by continuity: 

and also the thrusts from the two airscrews are equal. Therefore 

T = pSlVo(Vs - V )  = pS2V;(Vi - V’) = pSlVo(V; - Vs) 
whence 

V, - V = v; - V, 

i.e. 

Then, if the rate of mass flow through the discs is m: 

thrust of rear airscrew = h(c - V,) = ri? 

The useful power given by the second airscrew is TV, not TV,, and therefore: 

2 
9 

useful power from 2nd airscrew = - k V 2  

Kinetic energy added per second by the second airscrew, which is the power supplied by (and 
to) the second disc, is 
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Thus the efficiency of the rear components is 

irizV2 
hrizV2 

= 0.75 or 75% 

TV Power input to front airscrew = - 
0.90 
TV Power input to rear airscrew = - 

0.75 
Therefore 

total power input = 

total useful power output = 2TV 
Therefore 

=0.818 or 81.8%. 
2TV 9 
T T V - 1 1  

efficiency of combination = - - 

Airscrew coefficients 
The performance of an airscrew may be determined by model tests. As is the case 
with all model tests it is necessary to find some way of relating these to the full-scale 
performance, and dimensional analysis is used for this purpose. This leads to a 
number of coefficients, analogous to the lift and drag coefficients of a body. These 
coefficients also serve as a very convenient way of presenting airscrew performance 
data, which may be calculated by blade-element theory (Section 9.4), for use in 
aircraft design. 

9.2.1 Thrust coefficient 
Consider an airscrew of diameter D revolving at n revolutions per second, driven by a 
torque Q, and giving a thrust of T .  The characteristics of the fluid are defined by its 
density, p, its kinematic viscosity, v, and its modulus of bulk elasticity, R. The 
forward speed of the airscrew is I/. It is then assumed that 

T = h(D, n,  P, v, K ,  V) 
= CDanbpcvdKe Vf 

Then, putting this in dimensional form, 

[MLT-'1 = [(L)"(T)-b(ML-3)c(L2T-1)d(ML-'T-2)e(LT-1~] 
Separating this into the three fundamental equations gives 

(M) I = c + e  
(L) 1 = a - 3 c + 2 d - e + f  
(T) 2 = b + d + 2 e + f  

(9.15) 
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Solving these three equations for a, b and c in terms of d, e and f gives 

a = 4 - 2e - 2d - f 
b = 2 - d - 2e - f 
c = l - e  

Substituting these in Eqn (9.15) gives 
T =  c ~ 4 - 2 - 2 d - f  2-d-2e-f I-e d e f n p V K V  

= CpnZD4f [(z)d(L)e(-3f] D2n pD2n2 (9.16) 

Consider the three factors within the square brackets. 

(i) v/D2n; the product Dn is a multiple of the rotational component of the blade tip 
speed, and thus the complete factor is of the form v/(length x velocity), and is 
therefore of the form of the reciprocal of a Reynolds number. Thus ensuring 
equality of Reynolds numbers as between model and full scale will take care of 
this term. 

(ii) K/pD2n2; K/p = a2, where a is the speed of sound in the fluid. As noted above, 
Dn is related to the blade tipspeed and therefore the complete factor is related to 
(speed of sound/velocity)2, i.e. it is related to the tip Mach number. Therefore 
care in matching the tip Mach number in model test and full-scale flight will 
allow for this factor. 

(iii) V/nD; V is the forward speed of the airscrew, and therefore V/n is the distance 
advanced per revolution. Then V/nD is this advance per revolution expressed as 
a multiple of the airscrew diameter, and is known as the advance ratio, denoted 
by J. 

Thus Eqn (9.16) may be written as 

T = Cpn2D4h(Re, M ,  J) (9.17) 

The constant C and the function h(Re, M ,  J) are usually collected together, and 
denoted by kT, the thrust coefficient. Thus, finally. 

T = k~pn’D~ (9.18) 

kT being a dimensionless quantity dependent on the airscrew design, and on 
Re, M and J. This dependence may be found experimentally, or by the blade-element 
theory. 

9.2.2 Torque coefficient 
The torque Q is a force multiplied by a length, and it follows that a rational 
expression for the torque is 

Q = k ~ p n ~ D ~  (9.19) 

kQ being the torque coefficient which, like kT, depends on the airscrew design and on 
Re, M and J.  
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9.2.3 Efficiency 
The power supplied to an airscrew is Pi, where 

Pin = 27rnQ 

whereas the useful power output is Pout where 

Pout = TV 

Therefore, the airscrew efficiency, q, is given by 

9.2.4 Power coefficient 
The power required to drive an airscrew is 

P = 27rnQ = 2nn(k~pn’D’) = 27rk~pn~D’ 

The power coefficient, Cp, is then defined by 

P = Cppn3D5 

i.e. 
P 

c p  = - 
pn3D5 

By comparison of Eqns (9.21) and (9.22) it is seen that 

c p  = 2 r k ~  

Then, from Eqn (9.20), the efficiency of the airscrew is 

71= J ( $ )  

(9.20) 

(9.21) 

(9.22) 

(9.22a) 

(9.22b) 

(9.23) 

9.2.5 Activity factor 
The activity factor is a measure of the power-absorbing capacity of the airscrew, 
which, for optimum performance, must be accurately matched to the power pro- 
duced by the engine. 

Consider an airscrew of diameter D rotating at n with zero forward speed, and 
consider in particular an element of the blade at a radius of r, the chord of the 
element being c. The airscrew will, in general, produce a thrust and therefore there 
will be a finite speed of flow through the disc. Let this inflow be ignored, however. 
Then the motion and forces on the element are as shown in Fig. 9.3. 
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Fig. 9.3 

and therefore the torque associated with the element is 

SQ = 22pcDn2(cr3)6r 

It is further assumed that CD is constant for all blade sections. This will not normally 
be true, since much of the blade will be stalled. However, within the accuracy 
required by the concept of activity factor, this assumption is acceptable. Then the 
total torque required to drive an airscrew with B blades is 

Jroot 

Thus the power absorbed by the airscrew under static conditions is approximately 

P = 2mQ = 4??pc~Bn~ lo: cr3 dr 

In a practical airscrew the blade roots are usually shielded by a spinner, and the lower 
limit of the integral is, by convention, changed from zero (the root) to 0.1 D. Thus 

P = 4?T3pC~Bi13 11; cr?' dr 

Defining the activity factor (AF) as 
105 0.5D 

A F = -  D5 1.1, Cr3dr 

leads to 

Further work on 
means of examples. 

the topic of airscrew coeficients is most conveniently done by 

Example 9.3 An airscrew of 3.4m diameter has the following characteristics: 

J 1.06 1.19 1.34 1.44 
k, 0.0410 0.0400 0.0378 0.0355 
77 0.76 0.80 0.84 0.86 
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Calculate the forward speed at which it will absorb 750 k W  at 1250 rpm at 3660 m (c = 0.693) 
and the thrust under these conditions. Compare the efficiency of the airscrew with that of the 
ideal actuator disc of the same area, giving the same thrust under the same conditions. 

Power = 2nnQ 

Therefore 
750 000 x 60 - 5730 - torque Q = 
2n x 1250 

n = -  1250 = 20.83 rps 
60 

Therefore 

= 0.0368 
Q 5730 

k Q = T =  
Pn D 0.639 x 435 x (3.4)5 x 1.226 

Plotting the given values of ke and q against J shows that, for ke = 0.0368, J = 1.39 and 
q = 0.848. Now J = V/nD, and therefore 

V = JnD = 1.39 x 20.83 x 3.4 = 98.4ms-’ 

Since the efficiency is 0.848 (or 84.8%), the thrust power is 

750 x 0.848 = 635 k W  

Therefore the thrust is 
Power 635 000 - 6460 T = -  - 
Speed 98.4 

For the ideal actuator disc 

= 0.0434 
T 6460 

a( l  +a) = - - 
2Psv’ - 2 x 0.693 x “3.4)’ x (98.4)’ x 1.226 

4 

whence 

a = 0.0417 

Thus the ideal efficiency is 
1 

1.0417 71 =- = 0.958 or 95.8% 

Thus the efficiency of the practical airscrew is (0.848/0.958) of that of the ideal actuator disc. 
Therefore the relative efficiency of the practical airscrew is 0.885, or 88.5%. 

Example 9.4 An aeroplane is powered by a single engine with speed-power characteristic: 

Speed (rpm) 1800 1900 2000 2100 
Power (kW) 1072 1113 1156 1189 

The fixed-pitch airscrew of 3.05 m diameter has the following characteristics: 

J 0.40 0.42 0.44 0.46 0.48 0.50 
k T  0.118 0.115 0.112 0.109 0.106 0.103 
kQ 0.0157 0.0154 0.0150 0.0145 0.0139 0.0132 
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and is directly coupled to the engine crankshaft. What will be the airscrew thrust and efficiency 
during the initial climb at sea level, when the aircraft speed is 45 m s-l? 

Preliminary calculations required are: 

Q = kQpn2DS = 324.2 kQn2 

after using the appropriate values for p and D. 

J = V/nD = 14.751n 

The power required to drive the airscrew, P,, is 

P, = 27rnQ 

With these expressions, the following table may be calculated: 

rPm 1800 
Pa(kW) 1072 
n (rps) 30.00 
n2(rps)* 900 
J 0.492 

0.013 52 
3950 

kQ 
Q(Nm) 
Pr(kW) 745 

1900 2000 
1113 1156 

31.67 33.33 
1003 1115 

0.465 0.442 
0.01436 0.01494 

4675 5405 
930 1132 

2100 
1189 

35.00 
1225 

0.421 
0.015 38 

6100 
1340 

In this table, Pa is the brake power available from the engine, as given in the data, whereas the 
values of kQ for the calculated values of J are read from a graph. 

A graph is now plotted of Pa and P, against rpm, the intersection of the two curves giving 
the equilibrium condition. This is found to be at a rotational speed of 2010rpm, i.e. n = 33.5 rps. 
For this value of n, J = 0.440 giving kT = 0.1 12 and kQ = 0.0150. Then 

T = 0.112 x 1.226 x (33.5)2 x (3.05)4 = 13330N 

and 

1 0.112 
x 0,440 = 0.523 or 52.3% 

l k  77 =-L J =-- 
2 T k ~  2~0.0150 

As a check on the correctness and accuracy of this result, note that 

thrust power = TV = 13 300 x 45 = 599 kW 

At 2010rpm the engine produces 1158 kW (from engine data), and therefore the efficiency is 
599 x 100/1158 = 51.6%, which is in satisfactory agreement with the earlier result. 

9.3 Airscrew pitch 
By analogy with screw threads, the pitch of an airscrew is the advance per revolution. 
This definition, as it stands, is of little use for airscrews. Consider two extreme cases. 
If the airscrew is turning at, say, 2000 rpm while the aircraft is stationary, the advance 
per revolution is zero. If, on the other hand, the aircraft is gliding with the engine 
stopped the advance per revolution is infinite. Thus the pitch of an airscrew can take 
any value and is therefore useless as a term describing the airscrew. To overcome this 
difficulty two more definite measures of airscrew pitch are accepted. 
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Fig. 9.4 

9.3.1 Geometric pitch 
Consider the blade section shown in Fig. 9.4, at radius r from the airscrew axis. The 
broken line is the zero-lift line of the section, i.e. the direction relative to the section 
of the undisturbed stream when the section gives no lift. Then the geometric pitch of 
the element is 27rr tan 8. This is the pitch of a screw of radius r and helix angle (90 - 8) 
degrees. This geometric pitch is frequently constant for all sections of a given air- 
screw. In some cases, however, the geometric pitch varies from section to section of 
the blade. In such cases, the geometric pitch of that section at 70% of the airscrew 
radius is taken, and called the geometric mean pitch. 

The geometric pitch is seen to depend solely on the geometry of the blades. It is 
thus a definite length for a given airscrew, and does not depend on the precise 
conditions of operation at any instant, although many airscrews are mechanically 
variable in pitch (see Section 9.3.3). 

9.3.2 Experimental mean pitch 
The experimental mean pitch is defined as the advance per revolution when the 
airscrew is producing zero net thrust. It is thus a suitable parameter for experimental 
measurement on an existing airscrew. Like the geometric pitch, it has a definite value 
for any given airscrew, provided the conditions of test approximate reasonably well 
to practical flight conditions. 

9.3.3 Effect of geometric pitch on airscrew performance 
Consider two airscrews differing only in the helix angles of the blades and let the blade 
sections at, say, 70% radius be as drawn in Fig. 9.5. That of Fig. 9.5a has a fine pitch, 
whereas that of Fig. 9.5b has a coarse pitch. When the aircraft is at rest, e.g. at the start 
of the take-off run, the air velocity relative to the blade section is the resultant VR of 
the velocity due to rotation, 27rnr, and the inflow velocity, Vi,. The blade section of the 
fine-pitch airscrew is seen to be working at a reasonable incidence, the lift SL will be 
large, and the drag SD will be small. Thus the thrust ST will be large and the torque SQ 
small and the airscrew is working efficiently. The section of the coarse-pitch airscrew, 
on the other hand, is stalled and therefore gives little lift and much drag. Thus the 
thrust is small and the torque large, and the airscrew is inefficient. At high flight speeds 
the situation is much changed, as shown in Fig. 9.5c,d. Here the section of the coarse- 
pitch airscrew is working efficiently, whereas the fine-pitch airscrew is now giving a 
negative thrust, a situation that might arise in a steep dive. Thus an airscrew that has 
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Fig. 9.5 Effect of geometric pitch on airscrew performance 

a pitch suitable for low-speed fight and take-off is liable to have a poor performance at 
high forward speeds, and vice versa. This was the one factor that limited aircraft 
performance in the early days of powered fight. 

A great advance was achieved consequent on the development of the two-pitch 
airscrew. This is an airscrew in which each blade may be rotated bodily, and set in 
either of two positions at will. One position gives a fine pitch for take-off and climb, 
whereas the other gives a coarse pitch for cruising and high-speed flight. Consider 
Fig. 9.6 which shows typical variations of efficiency 7 with J for (a) a fine-pitch and 
(b) a coarse-pitch airscrew. 

For low advance ratios, corresponding to take-off and low-speed flight, the fine 
pitch is obviously better whereas for higher speeds the coarse pitch is preferable. If 
the pitch may be varied at will between these two values the overall performance 

J 

Fig. 9.6 Efficiency for a two-pitch airscrew 



Propellers and propulsion 541 

J 

Fig. 9.7 Efficiency for a constant-speed airscrew 

attainable is as given by the hatched line, which is clearly better than that attainable 
from either pitch separately. 

Subsequent research led to the development of the constant-speed airscrew in 
which the blade pitch is infinitely variable between predetermined limits. A mech- 
anism in the airscrew hub varies the pitch to keep the engine speed constant, per- 
mitting the engine to work at its most efficient speed. The pitch variations also result 
in the airscrew working close to its maximum efficiency at all times. Figure 9.7 shows 
the variation of efficiency with J for a number of the possible settings. Since the blade 
pitch may take any value between the curves drawn, the airscrew efficiency varies 
with J as shown by the dashed curve, which is the envelope of all the separate q, J 
curves. The requirement that the airscrew shall be always working at its optimum 
efficiency while absorbing the power produced by the engine at the predetermined 
constant speed calls for very skilful design in matching the airscrew with the engine. 

The constant-speed airscrew, in turn, led to the provision of feathering and reverse- 
thrust facilities. In feathering, the geometric pitch is made so large that the blade 
sections are almost parallel to the direction of flight. This is used to reduce drag and 
to prevent the airscrew turning the engine (windmilling) in the event of engine failure. 
For reverse thrust, the geometric pitch is made negative, enabling the airscrew to give 
a negative thrust to supplement the brakes during the landing ground run, and also 
to assist in manoeuvring the aircraft on the ground. 

9.4 Blade element theory 
This theory permits direct calculation of the performance of an airscrew and the 
design of an airscrew to achieve a given performance. 

9.4.1 The vortex system of an airscrew 
An airscrew blade is a form of lifting aerofoil, and as such may be replaced by a 
hypothetical bound vortex. In addition, a trailing vortex is shed from the tip of each 
blade. Since the tip traces out a helix as the airscrew advances and rotates, the trailing 
vortex will itself be of helical form. A two-bladed airscrew may therefore be con- 
sidered to be replaced by the vortex system of Fig. 9.8. Photographs have been taken 
of aircraft taking off in humid air that show very clearly the helical trailing vortices 
behind the airscrew. 
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Rei11 trailing helical vortices 

Hypothetical bound vortex I\ A 

Fig. 9.8 Simplified vortex system for a two-bladed airscrew 

Rotational interference The slipstream behind an airscrew is found to be rotating, 
in the same sense as the blades, about the airscrew axis. This rotation is due in part to 
the circulation round the blades (the hypothetical bound vortex) and the remainder is 
induced by the helical trailing vortices. Consider three planes: plane (i) immediately 
ahead of the airscrew blades; plane (ii), the plane of the airscrew blades; and plane 
(iii) immediately behind the blades. Ahead of the airscrew, in plane (i) the angular 
velocity of the flow is zero. Thus in this plane the effects of the bound and trailing 
vortices exactly cancel each other. In plane (ii) the angular velocity of the flow is due 
entirely to the trailing vortices, since the bound vortices cannot produce an angular 
velocity in their own plane. In plane (iii) the angular velocity due to the bound 
vortices is equal in magnitude and opposite in sense to that in plane (i), and the 
effects of the trailing and bound vortices are now additive. 

Let the angular velocity of the airscrew blades be a, the angular velocity of the 
flow in the plane of the blades be bay and the angular velocity induced by the bound 
vortices in planes ahead of and behind the disc be &pa2. This assumes that these 
planes are equidistant from the airscrew disc. It is also assumed that the distance 
between these planes is small so that the effect of the trailing vortices at the three 
planes is practically constant. Then, ahead of the airscrew (plane (i)): 

(b  - ,O)O = 0 

i.e. 

b = P  

Behind the airscrew (plane (iii)), if w is the angular velocity of the flow 

w = (b + ,B)O = 2b0 

Thus the angular velocity of the flow behind the airscrew is twice the angular velocity 
in the plane of the airscrew. The similarity between this result and that for the axial 
velocity in the simple momentum theory should be noted. 

9.4.2 The performance of a blade element 
Consider an element, of length Sr and chord cy at radius r of an airscrew blade. This 
element has a speed in the plane of rotation of ar. The flow is itself rotating in the 
same plane and sense at bay  and thus the speed of the element relative to the air in 
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this plane is Rr(1 - b). If the airscrew is advancing at a speed of V the velocity 
through the disc is V(l +a), a being the inflow at the radius r.  Note that in this 
theory it is not necessary for u and b to be constant over the disc. Then the total 
velocity of the flow relative to the blade is VR as shown in Fig. 9.9. 

If the line CC’ represents the zero-lift line of the blade section then t9 is, by definition, 
the geometric helix angle of the element, related to the geometric pitch, and a is the 
absolute angle of incidence of the section. The element will therefore experience lift 
and drag forces, respectively perpendicular and parallel to the relative velocity VR, 
appropriate to the absolute incidence a. The values of CL and CD will be those for a 
two-dimensional aerofoil of the appropriate section at absolute incidence a, since 
three-dimensional effects have been allowed for in the rotational interference term, 
bR. This lift and drag may be resolved into components of thrust and ‘torque-force’ 
as in Fig. 9.9. Here SL is the lift and SD is the drag on the element. SR is the resultant 
aerodynamic force, making the angle y with the lift vector. SR is resolved into 
components of thrust 6T and torque force SQ/r, where SQ is the torque required to 
rotate the element about the airscrew axis. Then 

(9.24) 
(9.25) 
(9.26) 

t anr  = SD/SL = CD/CL 
VR = V (  1 + a)cosec $ = Rr( 1 - b) sec $ 
ST = SRCOS($ + 7 )  

SQ - = SR sin($ + y) 
r 

V (  1 + a) tan$ = 
Rr( 1 - b) 

(9.27) 

(9.28) 

The efficiency of the element, 71, is the ratio, useful power out/power input, i.e. 

V ST Vcos($ + y) 
R SQ Rr sin($ + y) 

VI=- - -=  

Now from the triangle of velocities, and Eqn (9.28): 
V 1 - b  

-=-tan$ 
Rr l + a  

C’ 
/ 

(9.29) 

V ( I + d  

Fig. 9.9 The general blade element 
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whence, by Eqn (9.29): 
1 - b tan4 

rll =- l + a t a n ( + + y )  
(9.30) 

Let the solidity of the annulus, u, be defined as the ratio of the total area of blade in 
annulus to the total area of annulus. Then 

where B is the number of blades. 
Now 

From Fig. 9.9 

ST = SLcosqb - SDsin+ 
1 
2 = BcSr - p Vi ( CL cos 4 - CD sin 4) 

Therefore 
d T  1 - = BC- p v i (  CL cos 4 - CD sin 4) dr 2 

1 
=2.rrra-p~i(~r.cosqb- 2 ~Dsinqb) 

Bearing in mind Eqn (9.24), Eqn (9.33) may be written as 

(9.31) 

(9.32a) 

(9.32b) 

(9.33) 

d T  
- = mupV;tCL(cos4 - tanysinqb) 
dr 

= 7rrupViCL sec y (cos 4 cos y - sin 4 sin 7) 

Now for moderate incidences of the blade section, tany is small, about 0.02 or so, 
i.e. LID -h 50, and therefore sec y 5 1 , when the above equation may be written as 

d T  - = mup vi CL cos (4 + y) 
dr 

Writing 
t = CL cos($ + 7) 

Then 
d T  - = nrutpVi for the airscrew 
dr 

1 
2 = Bc-pVit for the airscrew 

(9.34) 

(9.3 5a) 

(9.35b) 

(9.35c) = c - 1 p V i  t per blade 
2 
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Similarly 

- 'Q = SL sin4 + SD cos4 
r 

whence, using Eqn (9.32a and b) 

dQ 1 - = 2 n r 2 a - p ~ i ( ~ L s i n 4 +  C D C O S ~ )  
dr 2 

Writing now 

leads to 

q = CL sin(+ + 7 )  (9.36) 

dQ - = 7rr2aqpVi totd 
dr 

(9.37a) 

I 
= Bcr-pViq total 

= cr-pViq  per blade 

2 
1 
2 

(9.37b) 

(9.37c) 

The quantities dT/dr and dQ/dr are known as the thrust grading and the torque 
grading respectively. 

Consider now the axial momentum of the flow through the annulus. The thrust ST 
is equal to the product of the rate of mass flow through the element with the change 
in the axial velocity, i.e. ST = mSV. Now 

= area of annulus x velocity through annulus x density 
= (27rrSr) [ V (  1 + a)]p 

= 2mpSr V (  1 + a)  
A V = V, - V = V (  1 + 2 ~ )  - V = 2~ V 

whence 

ST = 2 n r p ~ r ~ ~ 2 a ( l +  a)  

giving 

d T  
- = 47rpr V2a( 1 + a) dr 

Equating Eqn (9.38) and (9.35a) and using also Eqn (9.25), leads to: 

4.rrprV2a(l + a) = 7rrarpV2(1 + a)2cosec2q5 

(9.38) 

whence 

a 1  
- = -at cosec2+ l + a  4 (9.39) 
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In the same way, by considering the angular momentum 

SQ = maw? 

where Aw is the change in angular velocity of the air on passing through the airscrew. - 
Then 

SQ = (27rr~r)[Pv(1+ u)](2bfl)r2 
= 4xr3pVb(l + u ) R S ~  

whence 

9 = 47rr3pVb( 1 + u)QS 
dr 

Now, as derived previously, 

dQ - = nr2uqpVi (Eqn (9.37a)) dr 

Substituting for VR both expressions of Eqn (9.25), this becomes 

dQ -= d u p [ V ( l  +a)cosecq5][Rr(l - b)sec4]q  
dr 

(9.40) 

(9.41) 

Equating this expression for dQ/dr to that of Eqn (9.41) gives after manipulation 

b 1  
1 - b  4 

1 
2 

- = -uq cosec q5secq5 

(9.42) = -uq cosec 24 

The local efficiency of the blade at the element, ql, is found as follows. 

dT 
Useful power output = VST = V-Sr dr 

dQ 
dr 

Power input = 27m SQ = 2.nn - Sr 

Therefore 

V dT/dr 
V I = - -  

27rn dQ/dr 

(9.43) 

which is an alternative expression to Eqn (9.30). 
With the expressions given above, dT/dr and dQ/dr may be evaluated at several 

radii of an airscrew blade given the blade geometry and section characteristics, the 
forward and rotational speeds, and the air density. Then, by plotting dT/dr and 
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dQ/dr against the radius r and measuring the areas under the curves, the total thrust 
and torque per blade and for the whole airscrew may be estimated. In the design of a 
blade this is the usual first step. With the thrust and torque gradings known, the 
deflection and twist of the blade under load can be calculated. This furnishes new 
values of 8 along the blade, and the process is repeated with these new values of 8. 
The iteration may be repeated until the desired accuracy is attained. 

A further point to be noted is that portions of the blade towards the tip may attain 
appreciable Mach numbers, large enough for the effects of compressibility to become 
important. The principal effect of compressibility in this connection is its effect on the 
lift-curve slope of the aerofoil section. Provided the Mach number of the relative flow 
does not exceed about 0.75, the effect on the lift-curve slope may be approximated by 
the Prandtl-Glauert correction (see Section 6.8.2). This correction states that, if the 
lift curve slope at zero Mach number, i.e. in incompressible flow, is a0 the lift-curve 
slope at a subsonic Mach number A4 is aM where 

an 

Provided the Mach number does not exceed about 0.75 as stated above, the effect 
of compressibility on the section drag is very small. If the Mach number of any part 
of the blade exceeds the value given above, although the exact value depends on the 
profile and thickness/chord ratio of the blade section, that part of the blade loses lift 
while its drag rises sharply, leading to a very marked loss in overall efficiency and 
increase in noise. 

Example 9.5 At 1.25m radius on a 4-bladed airscrew of 3.5m diameter the local chord of 
each of the blades is 250 mm and the geometric pitch is 4.4 m. The lift-curve slope of the blade 
section in incompressible flow is 0.1 per degree, and the lift/drag ratio may, as an approxima- 
tion, be taken to be constant at 50. Estimate the thrust and torque gradings and the local 
efficiency in flight at 4600m (a = 0.629, temperature = -14.7 "C), at a flight speed of 67ms-' 
TAS and a rotational speed of 1500 rpm. 

The solution of this problem is essentially a process of successive approximation to the 
values of a and b. 

Be 4 x 0.25 
27rr 27r x 1.25 solidity a = - = = 0.1273 

1500rpm = 25rps = n 

1 
50 

tany=- whence y =  1.15" 

geometric pitch = 27rr tan 0 = 4.4 

whence 

tane = 0.560, e = 29.3" 

Speed of sound in atmosphere = 20.05(273 - 14.7)'/2 = 325 m s-' 
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Suitable values for initial guesses for a and b are a = 0.1, b = 0.02. Then 

1.1 
0.98 

tan4 = 0.3418- = 0.383 

4 = 20.93", = 29.3 - 20.93 = 8.37" 
VR = V( 1 + a) cosec 4 

206 
325 M = - = 0.635, = 0.773 

dCL - 0.1 
- 0,1295 per degree d a  0.773 

Since a is the absolute incidence, i.e. the incidence from zero lift: 

dCL 
d a  

C, = a- = 0.1295 x 8.37 = 1.083 

Then 

q = CL sin(4 + y) = 1.083 sin(20.93 + 1.15)' = 0.408 

and 

t = C L C O S ( ~ + ~ )  = 1.083~0~22.08" = 1.004 

uq 0.1274 x 0.408 
= 0.0384 

b 1  - = -uq cosec 24 = - = 
1 - b  2 2 sin 24 2 x 0.675 

giving 

0.0384 
1.0384 

b = - = 0.0371 

a 1  0.1274 x 1.004 = o.2515 
- ot cosecz4= l + a  4 4 x 0.357 x 0.357 

giving 

0.2515 
0.7485 

u = - = 0.336 

Thus the assumed values a = 0.1 and b = 0.02 lead to the better approximations a = 0.336 
and b = 0.0371, and a further iteration may be made using these values of a and b. A rather 
quicker approach to the final values of a and b may be made by using, as the initial values for 
an iteration, the arithmetic mean of the input and output values of the previous iteration. 
Thus, in the present example, the values for the next iteration would be a=0.218 and 
b = 0.0286. The use of the arithmetic mean is particularly convenient when giving instructions 
to computers (whether human or electronic). 

The iteration process is continued until agreement to the desired accuracy is obtained 
between the assumed and derived values of a and b. The results of the iterations were: 

u = 0.1950 b = 0.0296 
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to four significant figures. With these values for a and b substituted in the appropriate 
equations, the following results are obtained: 

c+5 = 22'48' 
a = 6'28' 

giving 

and 

VR = 207ms-' M = 0.640 

dT 1 
- = -pV ic t  = 3167Nm-' per blade dr 2 

de = I p V i c r q  = 1758Nmm-' per blade dr 2 
Thus the thrust grading for the whole airscrew is 12670Nm-' and the torque grading is 
7032 N m m-l. 

The local efficiency is 

V t  
2irnr q 

71 =--= 0.768 or 76.8% 

* *  

9.5 The momentum theory applied 
to the helicopter rotor 

In most, but not all, states of helicopter flight the effect of the rotor may be approxi- 
mated by replacing it by an ideal actuator disc to which the simple momentum theory 
applies. More specifically, momentum theory may be used for translational, i.e. 
forward, sideways or rearwards, flight, climb, slow descent under power and hovering. 

9.5.1 The actuator disc in hovering flight 
In steady hovering flight the speed of the oncoming stream well ahead of (i.e. above) 
the disc is zero, while the thrust equals the helicopter weight, ignoring any downward 
force arising from the downflow from the rotor acting on the fuselage, etc. If the 
weight is W, the rotor area A ,  and using the normal notation of the momentum 
theory, with p as the air density 

w = pAVo(V, - V )  = pAVoV, (9.44) 

since V = 0. V, is the slipstream velocity and VO the velocity at the disc. 
The general momentum theory shows that 

1 

1 
2 

VO = 5 (V,  + V )  (Eqn(9.8)) 

= - V, in this case (9.45) 

or 

v, = 2V0 
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which, substituted in Eqn (9.44), gives 

W = 2pAVi 

i.e. 

vo = d w m  
Defining the effective disc loading, I&, as 

Ide = W/AU 

where CT is the relative density of the atmosphere, then 

w w1CT 1 
2pA A C T ~  p 2po 

= -&le -- 

po being sea-level standard density. Then 

(9.46) 

(9.47) 

(9.48) 

(9.49) 

The power supplied is equal to the rate of increase of kinetic energy of the air, i.e. 

1 
2 P=-pAVo(V:  - V 2 )  

Substituting for VO from Eqn (9.47) leads to 

(9.50) 

(9.5 1 a) 

(9.5 1 b) 

This is the power that must be supplied to the ideal actuator disc. A real rotor would 
require a considerably greater power input. 

9.5.2 Vertical climbing flight 
The problem of vertical climbing flight is identical to that studied in Section 9.1 , with 
the thrust equal to the helicopter weight plus the air resistance of the fuselage etc., 
to the vertical motion, and with the oncoming stream speed V equal to the rate of 
climb of the helicopter. 

9.5.3 Slow, powered, descending flight 
In this case, the air approaches the rotor from below and has its momentum decreased on 
passing through the disc. The associated loss of kinetic energy of the air appears as a power 
input to the ideal actuator, which therefore acts as a windmill. A real rotor will, however, 
still require to be driven by the engine, unless the rate of descent is large. This case, for the 
ideal actuator disc, may be treated by the methods of Section 9.1 with the appropriate 
changes in sign, i.e. Vpositive, V, < VO < V ,  p1 > p2 and the thrust T = - W. 
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9.5.4 Translational helicopter flight 
It is assumed that the effect of the actuator disc used to approximate the rotor is to 
add incremental velocities u, and fi, vertically and horizontally respectively, at the 
disc. It is further assumed, in accordance with the simple axial momentum theory of 
Section 9.1, that in the slipstream well behind the disc these incremental velocities 
increase to 2v, and 2% respectively. The resultant speed through the disc is denoted 
by U and the resultant speed in the fully developed slipstream by U1. Then, by 
considering vertical momentum: 

W = pAU(2vv) = 2pAUuV (9.52) 

Also, from the vector addition of velocities: 

u2 = ( V  + @J2 + (uv)2 (9.53) 

where Vis the speed of horizontal flight. By consideration of horizontal momentum 
1 
- p V 2 A C ~  = 2pAU1q, 2 

(9.54) 

where CD is the drag coefficient of the fuselage, etc., based on the rotor area A .  
Power input = rate of increase of KE, i.e. 

1 
2 

P = -pAU(Uf - V 2 )  (9.55) 

and from vector addition of velocities: 

uf = ( V  + 2 f i ) 2  + (2u,)2 (9.56) 

The most useful solution of the five equations Eqn (9.52) to Eqn (9.56) inclusive is 
obtained by eliminating U1, ~q, and u,. 

W 
U" = - 

2pAU 

Then, from Eqn (9.53): 

u2 = v2 + 2vvh + v i  + v: 

Substituting for v, and fi, and multiplying by U2 gives 

Introducing the effective disc loading, Ide, from Eqn (9.48) leads to 

1 1 
2 16 

v4 - u2v2 - -c#u = -cp4 -k 

(9.52a) 

(9.54a) 

(9.57) 
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a quartic equation for U in terms of given quantities. Since, from Eqn (9.56), 

u; = v2 + 4vv, + 4 4  + 4 4  

Then 

1 1 
2 2 P = - p A U ( U ?  - V2) =-pAU[4vv,+4v;+4v,] 

(9.58) 

which, with the value of U calculated from Eqn (9.57) and the given quantities, may 
be used to calculate the power required. 

Example 9.6 A helicopter weighs 24000N and has a single rotor of 15m diameter. Using 
momentum theory, estimate the power required for level flight at a speed of 15ms-’ at sea 
level. The drag coefficient, based on the rotor area, is 0.006. 

A = - (1q2 = 176.7m2 
7r 

4 

With the above values, and with V = 15ms-’, Eqn (9.57) is 

(1 5)4 
1 (0.006)2 

U4 - 225U2 - - U(0.006)(3375) = (55.6)2 + ~ 2 16 

i.e. 

U4 - 225U’ - 10.125U = 3091 

This quartic equation in U may be solved by any of the standard methods (e.g. Newton- 
Raphson), the solution being U = 15.45 m s-l to four significant figures. Then 

0.006 x (15)3 (0.006)2 x (55.6)’ P = 2 x 1.226 x 176.7 
+ 16 x 15.45 +-I 15.45 

= 88.9kW 

This is the power required if the rotor behaves as an ideal actuator disc. A practical rotor 
would require considerably more power than this. 

9.6 The rocket motor 

As noted on page 527 the rocket motor is the only current example of aeronautical 
interest in Class I1 of propulsive systems. Since it does not work by accelerating 
atmospheric air, it cannot be treated by Froude’s momentum theory. I t  is unique 
among current aircraft power plants in that it can operate independently of air from 
the atmosphere. The consequences of this are: 
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(i) it can operate in a rarefied atmosphere, or an atmosphere of inert gas 
(ii) its maximum speed is not limited by the thermal barrier set up by the high ram- 

In a rocket, some form of chemical is converted in the combustion chamber into 
gas at high temperature and pressure, which is then exhausted at supersonic speed 
through a nozzle. Suppose a rocket to be travelling at a speed of V ,  and let the gas leave 
the nozzle with a speed of v relative to the rocket. Let the rate of mass flow of gas be riz.* 
This gas is produced by the consumption, at the same rate, of the chemicals in the rocket 
fuel tanks (or solid charge). Whilst in the tanks the mean m of fuel has a forward 
momentum of mV. After discharge from the nozzle the gas has a rearward momentum 
of m(v - V). Thus the rate of increase of rearward momentum of the fuel/gas is 

compression of the air in all air-breathing engines. 

riz(v - V )  - (-rizV) = rizv (9.59) 

and this rate of change of momentum is equal to the thrust on the rocket. Thus the 
thrust depends only on the rate of fuel consumption and the velocity of discharge 
relative to the rocket. The thrust does not depend on the speed of the rocket itself. In 
particular, the possibility exists that the speed of the rocket V can exceed the speed of 
the gas relative to both the rocket, v, and relative to the axes of reference, v - V.  

When in the form of fuel in the rocket, the mass m of the fuel has a kinetic energy 
of i m V 2 .  After discharge it has a kinetic energy of $m(v - V)'. Thus the rate of 
change of kinetic energy is 

dE 1 2 1 
- = -yiz[(v - V )  - V2] = -riz(? - 2vV) dt 2 2 

(9.60) 

the units being Watts. 

propulsive efficiency of the rocket is 
Useful work is done at the rate TV, where T = rizv is the thrust. Thus the 

rate of useful work 
= rate of increase of KE of fuel 

2 - 2v V - - 
v2 - 2vV - ( v / V )  - 2 

(9.61) 

Now suppose v/V = 4.  Then 

*=4_2- - 1 or 100% 

If v/V < 4, i.e. V > v/4, the propulsive efficiency exceeds 100%. 
This derivation of the efficiency, while theoretically sound, is not normally 

accepted, since the engineer is unaccustomed to efficiencies in excess of 100%. 
Accordingly an alternative measure of the efficiency is used. In this the energy input 
is taken to be the energy liberated in the jet, plus the initial kinetic energy of the fuel 
while in the tanks. The total energy input is then 

*Some authors denote mass flow by rn in rocketry, using the mass discharged (per second, understood) as 
the parameter. 
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giving for the efficiency 

(9.62) 

By differentiating with respect to v /V,  this is seen to be a maximum when v/V = 1, 
the propulsive efficiency then being 100%. Thus the definition of efficiency leads to a 
maximum efficiency of 100% when the speed of the rocket equals the speed of the 
exhaust gas relative to the rocket, i.e. when the exhaust is at rest relative to an 
observer past whom the rocket has the speed V. 

If the speed of the rocket Vis small compared with the exhaust speed v, as is the case 
for most aircraft applications, V z  may be ignored compared with 9 giving 

(9.63) 

9.6.1 The free motion of a rocket-propelled body 
Imagine a rocket-propelled body moving in a region where aerodynamic drag and 
lift and gravitational force may be neglected, Le. in space remote from any planets, etc. 
At time t let the mass of the body plus unburnt fuel be My and the speed of the 
body relative to some axes be V. Let the fuel be consumed at a rate of riz, the resultant 
gas being ejected at a speed of v relative to the body. Further, let the total rearwards 
momentum of the rocket exhaust, produced from the instant of firing to time t, be 
Irelative to the axes. Then, at time t, the total forward momentum is 

H l = M V - I  (9.64) 

At time ( t  + St) the mass of the body plus unburnt fuel is ( M  - rizSt) and its speed is 
(V + SV), while a mass of fuel hSt has been ejected rearwards with a mean speed, 
relative to the axes, of (v - V - ;ST/?. The total forward momentum is then 

1 
2 

Now, by the conservation of momentum of a closed system: 

H2 = ( M  - rizbt)( V + SV) - rizSt(v - V - -SV) - I 

Hi = H2 

i.e. 

M Y  - I =MV + MSV - .%VSt - rizStSV - rizvSt + hVSt 
1 
2 

+ -rizStSV - I 

which reduces to 

1 
2 

MSV - -rizStSV - mvSt = 0 

Dividing by St and taking the limit as St + 0, this becomes 

dV 
dt M - - ~ v = O  (9.65) 
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Note that this equation can be derived directly from Newton’s second law, 
force = mass x acceleration, but it is not always immediately clear how to apply this 
law to bodies of variable mass. The fundamental appeal to momentum made above 
removes any doubts as to the legitimacy of such an application. Equation (9.65) may 
now be rearranged as 

dV m 
dt M 

---v - 

i.e. 

1 m 
-dV = -dt 
V A4 

Now riz = -dM/dt, since ni is the rate of which fuel is burnt, and therefore 

1 1 dM dM 
V M dt M 
-dV= ---dt= -- 

Therefore 

V/v = -M + constant 

assuming v, but not necessarily my to be constant. If the rate of fuel injection into 
the combustion chamber is constant, and if the pressure into which the nozzle 
exhausts is also constant, e.g. the near-vacuum implicit in the initial assumptions, 
both riz and v will be closely constant. If the initial conditions are M = Mo, V = 0 
when t = 0 then 

0 = - In MO + constant 

i.e. the constant of integration is In Mo. With this 

= l n M o - l n M = l n  
V - 
V 

or, finally 

V = vln(Mo/M) (9.66) 

The maximum speed of a rocket in free space will be reached when all the fuel is 
burnt, i.e. at the instant the motor ceases to produce thrust. Let the mass with all fuel 
burnt be MI. Then, from Eqn (9.66) 

V,, = vln(MO/Ml) = vln R (9.66a) 

where R is the mass ratio Mo/Ml. Note that if the mass ratio exceeds e = 2.718.. ., 
the base of natural logarithms, the speed of the rocket will exceed the speed of 
ejection of the exhaust relative to the rocket. 

Distance travelled during firing 

From Eqn (9.66), 

V = vln(Mo/M) = vlnMo - vln(M0 - rizizt) 
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Now if the distance travelled from the instant of firing is x in time t: 

x = Lt Y dt 

t 
= v 1 [In Mo - ln(M0 - ht)]dt 

= vtlnMo - v ln(M0 - rizt)dt 1’ 
To solve the integral (G, say) in Eqn (9.67), let 

y = ln(M0 - rizt) 

Then 
1 

m exp(y)=Mo-rizt and t=: (Mo-eY)  

whence 

Then 
t 

G = 1 ln(M0 - rizt)dt 

= ly y (- k g d y )  

where 

yo = lnM0 and y1 = ln(M0 - mt) 

Therefore 

which, on integrating by parts, gives 

1 1 
rn m G=-,[eY(y-l)]~~=T[eY(l-y)]~~ 

Substituting back for y in terms of Mo, my and t gives 

1 
m 
1 

m 

G = T [(Mo - &)(l - ~ { M o  - lizt))]; 

=-[M(l -1nM) -Mo(l -1nMo)l 

where M = MO - mt. Thus finally 

1 
G = [ (M - Mo) - M l n M  + MolnMo] 

rn 

(9.67) 
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Substituting this value of the integral back into Eqn (9.67) gives, for the distance 
travelled 

V x = vt ln Mo - ( ( M  - Mo) - Mln M + Mo In Mo} (9.68) m 

Now, if m is constant: 
1 
m t = T(M0 - M )  

which, substituted into Eqn (9.68), gives 
V 

x = %{ (Mo - M )  lnMo - ( M  - Mo) + M l n M  - Mo In&} 

For the distance at all-burnt, when x = X and M = M I  = Mo/R: 

m 

Alternatively, this may be written as 

V MO 
m R  X = - - [ ( R -  1)-lnR] 

i.e. 

M1 
m 

X = v [(R - 1) - In R] 

(9.69) 

(9.70) 

(9.71) 

(9.72) 

Example 9.7 A rocket-propelled missile has an initial total mass of 11 000 kg. Of this 
mass, 10 000 kg is fuel which is completely consumed in 5 minutes burning time. The exhaust is 
1500m s-l relative to the rocket. Plot curves showing the variation of acceleration, speed and 
distance with time during the burning period, calculating these quantities at each half-minute. 

For the acceleration 

dV m 
dt - M V  
--_ 

Now 

m=-= ' loooo 2000kg min-' = 33.3 kgs-' 
5 

M = Mo - ht = 11 000 - 33.3t kg 

where t is the time from firing in seconds, or 

M =  11000-1OOONkg 

where N is the number of half-minute periods elapsed since firing. 

(9.65a) 

_-  Mo l 1  Oo0 - 330 seconds +I 100/3 
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Table 9.1 

t (min) M (1000kg) Acceleration (m sP2) V (m s-') x (km) 

0 11 4.55 0 0 
0.5 10 5.00 143 2.18 
1 9 5.55 300 9.05 
1.5 8 6.25 478 19.8 
2 7 7.15 679 37.6 
2.5 6 8.33 919 61.4 
3 5 10.0 1180 92.0 
3.5 4 12.5 1520 133 
4 3 16.7 1950 185 
4.5 2 25.0 2560 256 
5 1 50.0 3600 342 
5.5 1 0 3600 450 

Substituting the above values into the appropriate equations leads to the final results given in 
Table 9.1. The reader should plot the curves defined by the values in Table 9.1. It should be noted 
that, in the 5 minutes of burning time, the missile travels only 342 kilometres but, at the end of this 
time, it is travelling at 3600m s-l or 13 000 km h-' . Another point to be noted is the rapid increase 
in acceleration towards the end of the burning time, consequent on the rapid percentage decrease 
of total mass. In Table 9.1, the results are given also for the first half-minute after all-burnt. 

9.7 The hovercraft 
In conventional winged aircraft lift, associated with circulation round the wings, is 
used to balance the weight, for helicopters the 'wings' rotate but the lift generation is 
the same. A radically different principle is used for sustaining of the hovercraft. In 
machines of this type, a more or less static region of air, at slightly more than 
atmospheric pressure, is formed and maintained below the craft. The difference 
between the pressure of the air on the lower side and the atmospheric pressure on 
the upper side produces a force tending to lift the craft. The trapped mass of air under 
the craft is formed by the effect of an annular jet of air, directed inwards and 
downwards from near the periphery of the underside. The downwards ejection of 
the annular jet produces an upwards reaction on the craft, tending to lift it. In steady 
hovering, the weight is balanced by the jet thrust and the force due to the cushion of 
air below the craft. The difference between the flight of hovercraft and normal jet-lift 
machines lies in the air cushion effect which amplifies the vertical force available, 
permitting the direct jet thrust to be only a small fraction of the weight of the craft. 
The cushion effect requires that the hovering height/diameter ratio of the craft be 
small, e.g. 1/50, and this imposes a severe limitation on the altitude attainable by the 
hovercraft. 

Consider the simplified system of Fig. 9.10, showing a hovercraft with a circular 
planform of radius r, hovering a height h above a flat, rigid horizontal surface. An 
annular jet of radius r, thickness t ,  velocity V and density p is ejected at an angle 8 to 
the horizontal surface. The jet is directed inwards but, in a steady, equilibrium state, 
must turn to flow outwards as shown. If it did not, there would be a continuous increase of 
mass within the region C, which is impossible. Note that such an increase of mass will occur 
for a short time immediately after starting, while the air cushion is being built up. The 
curvature of the path of the air jet shows that it possesses a centripetal acceleration and this 
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Fig. 9.10 The simplified hovercraft system 

is produced by a difference between the pressure p ,  within the air cushion and the atmos- 
pheric pressurepo. Consider a short peripheral length 6s of the annular jet and assume: 

(i) that the pressure p ,  is constant over the depth h of the air cushion 
(ii) that the speed V of the annular jet is unchanged throughout the motion. 

Then the rate of mass flow within the element of peripheral length 6s is pVt 6s kg s-l. 
This mass has an initial momentum parallel to the rigid surface (or ground) of 
pVt6sVcose = pV2tcosi36s inwards. 

After turning to flow radially outwards, the air has a momentum parallel to the 
ground of p Vt 6s V = p V2t 6s outwards. Therefore there is a rate of change of momen- 
tum parallel to the ground of pV2t( 1 + cos e) 6s. This rate of change of momentum is 
due to the pressure difference ( p ,  - PO) and must, indeed, be equal to the force exerted 
on the jet by this pressure difference, parallel to the ground, which is ( p ,  - po)h 6s. Thus 

(pc-po)h6s=pV2t(l + C O S ~ ) ~ S  

or 

Thus the lift Lc due to the cushion of air on a circular body of radius r is 

(9.73) 

(9.74) 

The direct lift due to the downwards ejection of the jet is 

~j = p ~ t 2 m ~ s i n e  = 2 ~ r p ~ ~ t s i n 0  (9.75) 

and thus the total lift is 

L = mpv2t 2 sin e + (1 + cos e ) }  (9.76) { h 

If the craft were remote from any horizontal surface such as the ground or sea, so 
that the air cushion has negligible effect, the lift would be due only to the direct jet 
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thrust, with the maximum value Lj, = 2mpV2t when 0 = 90". Thus the lift amplifica- 
tion factor, LILj,, is 

Differentiation with respect to 6 shows that this has a maximum value when 

2h 
r kine=- 

(9.77) 

(9.78) 

Since machines of this type are intended to operate under conditions such that h is 
very small compared to r ,  it follows that the maximum amplification is achieved 
when 8 is close to zero, i.e. the jet is directed radially inwards. Then with the 
approximations sin 8 = 0, cos 8 = 1: 

L h  - 
4 0  

and 

r r 274p v 2 t  
h 

L = -q0 = - 2mpv2 t  = 
h h 

(9.79) 

(9.80) 

It will be noted that the direct jet lift is now, in fact, negligible. 

time,* which is 
The power supplied is equal to the kinetic energy contained in the jet per unit 

(9.81) - 27rrp v t  v2 = m p  v3t 

Denoting t h i s  by P, combining Eqns (9.80) and (9.81), and setting lift L equal to the 
weight W, leads to 

P Vh 

1 
2 

_ -  
W - 2 r  

as the minimum power necessary for sustentation, while, if 8 # 0, 

Vh 
A 

P -- w r(i + C O S ~ )  

ignoring a term involving sin 8. Thus if Vis small, and if h is small compared to r,  it 
becomes possible to lift the craft with a comparatively small power. 

The foregoing analysis applies to hovering flight and has, in addition, involved a 
number of simplifying assumptions. The first is the assumption of a level, rigid surface 
below the machine. This is reasonably accurate for operation over land but is not justified 
over water, when a depression will be formed in the water below the craft. It must be 
remembered that the weight of the craft will be reacted by a pressure distributed over the 
surface below the machine, and this will lead to deformation of a non-rigid surface. 

* The power supplied to the jet will also contain a term relating to the increase in potential (pressure) 
energy, since the jet static pressure will be slightly greater than atmospheric. Since the jet pressure will be 
approximately equal to pc,  which is, typically, about 750 Nm-2 above atmospheric, the increase in pressure 
energy will be very small and has been neglected in this simpWied analysis. 
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Another assumption is that the pressure pc is constant throughout the air cushion. 
In fact, mixing between the annular jet and the air cushion will produce eddies 
leading to non-uniformity of the pressure within the cushion. The mixing referred 
to above, together with friction between the air jet and the ground (or water) will lead 
to a loss of kinetic energy and speed of the air jet, whereas it was assumed that the 
speed of the jet remained constant throughout the motion. These effects produce only 
small corrections to the results of the analysis above. 

If the power available is greater than is necessary to sustain the craft at the selected 
height h, the excess may be used either to raise the machine to a greater height, or to 
propel the craft forwards. 

Exercises 
1 If an aircraft of wing area S and drag coefficient CD is flying at a speed of Yin air 
of density p and if its single airscrew, of disc area A ,  produces a thrust equal to the 
aircraft drag, show that the speed in the slipstream Y,, is, on the basis of Froude's 
momentum theory 

V , = V  l+-Co / A s  
2 A cooling fan is required to produce a stream of air, 0.5 m in diameter, with a speed 
of 3 m scl when operating in a region of otherwise stationary air of standard density. 
Assuming the stream of air to be the fully developed slipstream behind an ideal 
actuator disc, and ignoring mixing between the jet and the surrounding air, estimate 
the fan diameter and the power input required. (Answer: 0.707 m diameter; 3.24 W) 
3 Repeat Example 9.2 in the text for the case where the two airscrews absorb equal 
powers, and finding (i) the thrust of the second airscrew as a percentage of the thrust 
of the first, (ii) the efficiency of the second and (iii) the efficiency of the combination. 

(Answer: 84%; 75.5%; 82.75%) 

4 Calculate the flight speed at which the airscrew of Example 9.3 of the text will 
produce a thrust of 7500 N, and the power absorbed, at the same rotational speed. 

(Answer: 93 m s-l; 840 kw) 
5 At 1.5m radius, the thrust and torque gradings on each blade of a 3-bladed 
airscrew revolving at 1200 rpm at a flight s eed of 90 m s-l TAS at an altitude where 
n = 0.725 are 300 Nm-l and 1800 N m  m- respectively. If the blade angle is 28', find 
the blade section absolute incidence. Ignore compressibility. (Answer: 1'48') (CU) 
6 At 1.25m radius on a 3-bladed airscrew, the aerofoil section has the following 
characteristics: 

solidity = 0.1; 8 = 29"7'; a = 4'7'; CL = 0.49; LID = 50 

Allowing for both axial and rotational interference find the local efficiency of the 
element. (Answer: 0.885) (CU) 
7 The thrust and torque gradings at 1.22m radius on each blade of a 2-bladed 
airscrew are 2120Nm-' and 778Nmm-' respectively. Find the speed of rotation 
(in rads-') of the airstream immediately behind the disc at 1.22m radius. 

(Answer: 735 rads-') 

P 
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8 A 4-bladed airscrew is required to propel an aircraft at 125 m s-l at sea level, the 
rotational speed being 1200 rpm. The blade element at 1.25 m radius has an absolute 
incidence of 6" and the thrust grading is 2800 N m-l per blade. Assuming a reason- 
able value for the sectional lift curve slope, calculate the blade chord at 1.25 m radius. 
Neglect rotational interference, sectional drag and compressibility. 

(Answer: 240 mm) 
9 A 3-bladed airscrew is driven at 1560 rpm at a flight speed of 110 m s-l at sea level. At 
1.25m radius the local efficiency is estimated to be 87%, while the lift/drag ratio of the 
blade section is 57.3. Calculate the local thrust grading, ignoring rotational interference. 

(Answer: 9000 N m-l per blade) 
10 Using simple momentum theory develop an expression for the thrust of a pro- 
peller in terms of its disc area, the air density and the axial velocities of the air a long 
way ahead, and in the plane, of the propeller disc. A helicopter has an engine 
developing 600 k W  and a rotor of 16m diameter with a disc loading of 170Nm-'. 
When ascending vertically with constant speed at low altitude, the product of the lift 
and the axial velocity of the air through the rotor disc is 53% of the power available. 
Estimate the velocity of ascent. (Answer: 110mmin-'1 (U of L) 
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Appendix 1: symbols 
and notation 

Moment of inertia about OX. Aspect ratio (also (AR)). With suffices, coefficients 
in a Fourier series of sine terms, or a polynomial series in z 
Activity factor of an airscrew 
Aspect ratio (also A )  
Speed of sound. Axial inflow factor in airscrew theory. Lift curve slope. 
dCl;/da (suffices denote particular values). Radius of vortex core. Acceleration 
or deceleration 
Number of blades on an airscrew 
Rotational interference factor in airscrew theory. Total wing span (= 2s). 
Hinge moment coefficient slope 
Centre of gravity 
Total drag coeficient 
Zero-lift drag coefficient 
Trailing vortex drag coefficient 
Lift-dependent drag coefficient. (Other suffices are used in particular cases.) 
Hinge moment coefficient 
Lift coefficient 
Pitching moment coefficient 
Pressure coefficient 
Power coefficient for airscrews 
Resultant force coefficient 
Wing chord. A distance 
Standard or geometric mean chord 
Aerodynamic mean chord 
Root chord 
Tip chord 
Specific heats at constant pressure and constant volume 
Centre of pressure 
Drag (suffices denote particular values). Airscrew diameter. A length 
(occasionally) 
Diameter, occasionally a length 
Spanwise trailing vortex drag grading ( = pwr) 
Internal energy per unit mass. Kinetic energy 
Fractional flap chord. Force 
Function of the stated variables 
Acceleration due to gravity 
Function of the stated variables 
Hinge moment. Total pressure. Momentum. Shape factor, F/O 
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Fractional camber of a flapped plate aerofoil. Distance between plates in 
Newton's definition of Viscosity. Enthalpy per unit mass 
Function of the stated variables 
Fractional position of the aerodynamic centre 
Momentum of rocket exhaust 
The imaginary operator, 
Advance ratio of an airscrew 
Modulus of bulk elasticity 
Chordwise variation of vorticity. Lift-dependent drag coefficient factor 
Centre of pressure coefficient 
Thrust and torque coefficients (airscrews) 
Lift. Dimension of length. Temperature lapse rate in the atmosphere 
Length. Lift per unit span 
Effective disc loading of a helicopter 
Dimension of mass. Mach number. Pitching moment about Oy 
Mass. Strength of a source (-sink). An index 
Rate of mass flow 
Rpm of an airscrew. Normal influence coefficient. Number of panel points 
Revolutions per second of an airscrew. Frequency. An index 
Unit normal vector 
Origin of coordinates 
Power. The general point in space 
Static pressure in a fluid 
Torque, or a general moment. Total velocity of a uniform stream 
Angular velocity in pitch about Oy. Local resultant velocity. A coefficient in 
airscrew theory 
Radial and tangential velocity components 
Real part of a complex number 
Reynolds number 
Resultant force. Characteristic gas constant. Radius of a circle 
Radius vector, or radius generally 
Wing area. Vortex tube area. Area of actuator disc. Entropy 
Tailplane area 
Semi-span (= i b ) .  Distance. Specific entropy 
Spacing of each trailing vortex centre from aircraft centre-line 
Dimension of time. Thrust. Temperature (suffices denote particular values). 
Tangential influence coefficient 
Time. Aerofoil section thickness. A coefficient in airscrew theory 
Tangential unit vector 
Velocity. Steady velocity parallel to Ox 
Freestream flow speed 
Mainstream flow speed 
Velocity component parallel to Ox 
Disturbance velocity parallel to Ox 
Velocity. Volume. Steady velocity parallel to Oy 
Stalling speed 
Equivalent air speed 
Resultant speed 
Velocity component parallel to Oy. Velocity 
Disturbance velocity parallel to Oy 
Weight. Steady velocity parallel to Oz 
Wing loading. Downwash velocity. Velocity parallel to Oz 
Components of aerodynamic or external force 
Coordinates of the general point P 
Distance 
Distance. Spanwise coordinate 
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A 
x 
P 
V 

E 
P c 
U 

7 

4 

Suffices 

0 
1 
4 
1 
2 
3 

AC 
a 

CP 
f 
g 
h 
i 
in 
L 
LE 
1 
rn 
max 
min 
md 
n 
n 
opt 
out 
P 

cy) 

C 

Angle of incidence or angle of attack. An angle, generally 
A factor in airscrew theory. An angle generally 
Circulation 
Half the dihedral angle; the angle between each wing and the Oxy plane 
Ratio of specific heats, cP/w. Shear strain 
Boundary layer thickness. A factor. Camber of an aerofoil section 
Downwash angle. Surface slope. Strain 
Vorticity. Complex variable in transformed plane ( = + ill) 
Efficiency. Ordinate in c-plane 
Dimension of temperature. Polar angular coordinate. Blade helix angle 
(airscrews). Momentum thickness 
Angle of sweepback or sweep-forward. Pohlhausen pressure-gradient parameter 
Taper ratio (= ~ / c o ) .  A constant 
Strength of a doublet. Dynamic viscosity. Aerofoil parameter in lifting line theory 
Kinematic viscosity. Prandtl-Meyer angle 
Abscissa in <-plane 
Density. Radius of curvature 
Summation sign 
Relative density. Blade or annular solidity (airscrews). Stress 
Shear stress 
Sweepback angle. Velocity potential. A polar coordinate. Angle of relative 
wind to plane of airscrew disc 
The stream function 
Angular velocity of airscrew 
Angular velocity in general 
Laplace’s operator V2( = a2/a2 + @lay2) 

No lift. Standard sea level. Straight and level flight. Undisturbed stream 
Quarter chord point 
A particular value 
A particular value 
A particular value 
Infinity or two-dimensional conditions 
Aerodynamic centre 
available 
Chord from Ox axis. Compressible 
Centre of pressure 
Full scale or flight 
Ground 
Horizontal 
Ideal, computation numbering sequence. Incompressible 
Input. Computation numbering sequence. Length 
Lower surface 
Leading edge 
Local 
Model 
Maximum 
Minimum 
Minimum drag 
normal 
Denotes general term 
Optimum 
output 
Prandtl-Meyer 
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P 
r 

TE 
t 
U 
V 
W 

S 

Propulsive parallel 
Required 
Stagnation or reservoir conditions. Slipstream. Stratosphere. Surface 
Trailing edge 
Thickness (aerofoil), panel identification in computation. Tangential 
Upper surface 
Vertical 
Wall 

Primes and superscripts 
I 

* Perturbance or disturbance 
Throat (locally sonic) conditions. Boundary-layer displacement thickness 

** Boundary-layer energy thickness 
A Unit vector 
4 Vector 

The dot notation is frequently used for differentials, e.g. 3 = dy/dx, the rate of change of y 
with x .  
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standard atmosphere 

(1) Sea level conditions 
To = +15"C = 288.16K 
po = 10 1325Nmp2 
p = 1.2256 kgmp3 

= 1.783 x lop5 kgm-'s-' 
yo = 1.455 x lop5 m2s-l 

(2) Relative values 

Altitude (m) Temperature Pressure Density Viscosity 
e =   TIT^ 6 = PIP0 

u = plpo u112 p = p/po f i =  u/uo 

-0 1 1 1 1 1 1 
250 0.9944 0.9707 0.9762 0.9880 0.9956 1.0198 
500 0.9887 0.9421 0.9528 0.9761 0.991 1 1.0402 
750 0.9831 0.9142 0.9299 0.9643 0.9867 1.0610 

1000 0.9774 0.8869 0.9074 0.9526 0.9822 1.0824 
1250 0.9718 0.8604 0.8853 0.9409 0.9777 1.1044 
1500 0.9661 0.8344 0.8637 0.9293 0.9733 1.1269 
1750 0.9605 0.8091 0.8424 0.9178 0.9688 1.1500 
2000 0.9549 0.7845 0.8215 0.9064 0.9642 1.1737 
2250 0.9492 0.7604 0.801 1 0.8950 0.9597 1.1980 
2500 0.9436 0.7369 0.7810 0.8837 0.9552 1.2230 
2750 0.9379 0.7141 0.7613 0.8725 0.9506 1.2487 
3000 0.9323 0.6918 0.7420 0.8614 0.9461 1.2750 
3250 0.9266 0.6701 0.7231 0.8503 0.9415 1.3020 
3500 0.9210 0.6489 0.7045 0.8394 0.9369 1.3298 
3750 0.9154 0.6283 0.6863 0.8285 0.9323 1.3584 
4000 0.9097 0.6082 0.6685 0.8176 0.9277 1.3877 
4250 0.9041 0.5886 0.6511 0.8069 0.9231 1.4178 
4500 0.8984 0.5696 0.6339 0.7962 0.9184 1.4488 
4750 0.8928 0.5510 0.6172 0.7856 0.9138 1.4806 
5000 0.8872 0.5329 0.6007 0.7751 0.9091 1.5133 
5250 0.8815 0.5154 0.5846 0.7646 0.9044 1.5470 
5500 0.8759 0.4983 0.5689 0.7542 0.8997 1.5816 
5750 0.8702 0.4816 0.5534 0.7439 0.8950 1.6172 
6000 0.8646 0.4654 0.5383 0.7337 0.8903 1.6538 
6250 0.8589 0.4497 0.5235 0.7236 0.8855 1.6915 
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Altitude (m) Temperature Pressure Density Viscosity 
8 = TITO 6 = PIP0 

5 =  plpo 5'12 ,ii = 5 = u/* 

6500 
6750 
7000 
7250 
7500 
7750 
8000 
8250 
8500 
8750 
9000 
9250 
9500 
9750 

10 000 
10 250 
10 500 
10 750 
11 000 
11 500 
12 000 
12 500 
13 000 
13 500 
14 000 
14 500 
15000 
15 500 
16 000 
16 500 
17 000 
17 500 
18 000 
18 500 
19000 
19 500 
20 000 
20 500 
21 000 
21 500 
22 000 
22 500 
23 000 
23 500 
24 000 
24 500 
25 000 

0.8533 
0.8477 
0.8420 
0.8364 
0.8307 
0.8251 
0.8194 
0.8138 
0.8082 
0.8025 
0.7969 
0.7912 
0.7856 
0.7799 
0.7743 
0.7687 
0.7630 
0.7574 
0.7517 
Constant 
in 
stratosphere 

Constant 
in 
stratosphere 

0.4344 
0.4195 
0.4050 
0.3910 
0.3773 
0.3640 
0.351 1 
0.3386 
0.3264 
0.3146 
0.3032 
0.2921 
0.2813 
0.2708 
0.2607 
0.2509 
0.2413 
0.2321 
0.2232 
0.2062 
0.1906 
0.1761 
0.1628 
0.1505 
0.1390 
0.1285 
0.1 188 
0.1098 
0.1014 
0.0937 
0.0866 
0.0801 
0.0740 
0.0684 
0.0632 
0.0584 
0.0540 
0.0499 
0.0461 
0.0426 
0.0394 
0.0364 
0.0336 
0.0311 
0.0287 
0.0266 
0.0245 

0.5091 
0.4949 
0.4810 
0.4674 
0.4542 
0.4412 
0.4285 
0.4161 
0.4039 
0.3921 
0.3805 
0.3691 
0.3581 
0.3472 
0.3367 
0.3264 
0.3163 
0.3064 
0.2968 
0.2743 
0.2535 
0.2343 
0.2166 
0.2001 
0.1850 
0.1709 
0.1580 
0.1470 
0.1349 
0.1247 
0.1153 
0.1065 
0.0984 
0.0910 
0.0841 
0.0777 
0.0718 
0.0664 
0.0613 
0.0567 
0.0524 
0.0484 
0.0447 
0.0414 
0.0382 
0.0353 
0.0326 

0.7135 
0.7035 
0.6936 
0.6837 
0.6739 
0.6642 
0.6546 
0.6450 
0.6356 
0.6262 
0.6168 
0.6076 
0.5984 
0.5893 
0.5802 
0.5713 
0.5624 
0.5536 
0.5448 
0.5238 
0.5035 
0.4841 
0.4654 
0.4474 
0.4301 
0.4135 
0.3975 
0.3821 
0.3673 
0.3531 
0.3395 
0.3264 
0.3138 
0.3016 
0.2900 
0.2788 
0.2680 
0.2576 
0.2477 
0.2381 
0.2289 
0.2200 
0.21 15 
0.2034 
0.1955 
0.1879 
0.1807 

0.8808 
0.8760 
0.8713 
0.8665 
0.8617 
0.8568 
0.8520 
0.8471 
0.8423 
0.8374 
0.8325 
0.8276 
0.8227 
0.8177 
0.8128 
0.8078 
0.8028 
0.7978 
0.7928 
Constant 
in 
stratosphere 

Constant 
in 
stratosphere 

1.7303 
1.7702 
1.8113 
1.8536 
1.8972 
1.9421 
1.9884 
2.0361 
2.0852 
2.1359 
2.1881 
2.2420 
2.2976 
2.3549 
2.4141 
2.4752 
2.5383 
2.6034 
2.6707 
2.8897 
3.1268 
3.3833 
3.6608 
3.981 1 
4.2860 
4.6376 
5.0180 
5.4297 
5.8751 
6.3570 
6.8785 
7.4427 
8.0532 
8.7138 
9.4286 

10.202 
11.039 
11.945 
12.924 
13.985 
15.132 
16.373 
17.716 
19.169 
20.742 
22.443 
24.284 



Appendix 3*: a solution of 
integrals of the type of 

Glauert's integral 

Glauert's integral 

In Chapters 4 and 5 much use is made of the integral 

the result for which was quoted as 

sin ne1 
sin 01 

7r- 

This may be proved, by contour integration, as follows. 
In the complex plane, integrate the function 

2" 
f(z) = zz - 22 COS el + 1 

with respect to z round the circle of unit radius centred at the origin. On this circle z = eie and 
therefore 

which, cancelling eie from numerator and denominator, putting 

eie =cose+isine 

and using De Moivre's theorem, reduces to 

dB /+'i cos ne + i sin ne 
2 -?r c o ~ e - c o ~ e l  

(A3.1) 

*This section may be omitted at a fust reading. 
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The poles or singulurities of the function f(z) are those points where f(z) is infinite, i.e. in this 
case where 

2 - 2 z ~ ~  el + 1 = o 
i.e. 

z = cos el f sin el = e*iel 

In general if a function f(z) has a simple pole at the point z = c, then 

lim(z - c)f(z) 
Z+C 

(A3.2) 

is finite and its value is called the residue at the pole. In this case 

(z - c)z" 
Z+C 

which, by L'H6pital's theorem 

Thus differentiating and reducing, and for this case putting c = 
residues at the two poles are (sin ne1 f cos n@/2 sin 81 and the sum of the residues is 

from Eqn (A3.2) the 

sin ne1 
sin O1 

(A3.3) 

Now for this case the poles (at the points z = efiel) are on the contour of integration and by 
Cauchy's residue theorem the value of the integral (Eqn (A3.1)) is equal to f i x  (sum of the 
residues on the contour). Thus 

Equating the imaginary parts of this equation, 

and by the symmetry of the integrand: 

i.e. 

cosne sin ne1 
sin O1 

dB = T- 

Using the result that 

1 1 sinnOsinB=-cos(n- l)O--cos(n+ l)e 
2 2 

it follows that 

(A3.4) 

(A3.5) 
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Then from Eqn ( A 3 4  it follows that 

?I sinnosine T sin(n - 1)01 - sin(n + 1)01 
de=-  s ,, c ~ ~ e - c ~ ~ e ~  2 sin 81 

and since 

sin(n - l)el - sin(n + l)el = -2cos ne1 sin 01 

the integral becomes 

sinnosine 
dB = -acosnB1 n = 0,1,2,. . , 

COS e - cos el (A3.6) 



Appendix 4: conversion of 
imperial units to systeme 

international (SI) units 

The conversion between Imperial units and SI units is based on the fact that the fundamental 
units (pound mass, foot, second and degree Centigrade) of the Imperial system have been 
defined in terms of the corresponding units of the SI. These definitions are as follows: 

1 foot = 0.3048m 
1 pound = 0.453 592 27 kg 

The second and the degree Celsius (degree Centigrade) are identical in the two systems. 
Working from these definitions, the conversion factors given in Table A4.1 are calculated. This 

table covers the more common quantities encountered in aerodynamics. The conversion factors 
have been rounded to five significant figures where appropriate. 

Table A4.1 Conversion factors between Imperial units and SI units 

One of these is equal to this number of these 

ft 
in 
statute mile 
nautical mile 
ft2 
in2 
in2 
ft3 
in3 
in3 
slug 
slug ft-3 
lbf 
lbf ft-2 
lbf in-2 
ft lbf 
hP 

0.3048 
25.4 
1609.3 
1853.2 
0.0929 
6.4516 x 
645.16 
0.028 32 
1.6387 x 
16 387 
14.594 
515.38 
4.4482 
47.880 
6894 8 
1.3558 
745.70 

m 
mm 
m 
m 
m2 
m2 
mm2 
m3 
m3 
mm3 
kg 
kg m-3 
N 
Nm-’ 
Nm-’ 
J 
W 
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lbf ft 1.3558 Nm 
ft s-1 0.3048 m s-l 
mile h-' 0.447 04 m s-I 
knot 0.514 77 m s-l 

The knot Even with standardization on the SI, the knot continues to be used as a preferred 
non-metric unit in practical aeronautics. The knot is a unit of speed, and is defined as one 
nautical mile per hour, where one nautical mile is equal to 1853 m (6080 feet). 
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Index 

Aachen 504 
Acceleration, fluid 70 
Ackeret, J. 347 
Ackeret’s rule 347 
Acoustic speed 10, 295 
Activity factor of airscrew 535 
Actuator disc: 

ideal 528 
in hovering flight 549 

Actuator, jet type 453 
Actuator, MEMS 452 
Admissible roughness 448 
Adverse pressure gradient 380, 486 
Aeolian tones 403 
Aerodynamic centre 3 1 
Aerodynamic characteristics, laminar glider 

aerofoil with movable flaps 505 
Aerodynamic coefficient for a flat plate 
Aerodynamic force 6 
Aerodynamic force, dimensional 

analysis 22 
Aerodynamic mean chord 16 
Aerodynamic modelling 94 
Aerofoil: 

171 

camber 18 
flapped 182 
four element 493 
geometry 17 
laminar glider, aerodynamic 

characteristics 505 
Liebeck 490 
modern laminar-flow 437 
modern supercritical 492 
multi-element 492 
pressure distribution 29 
section of unequal circular arcs in 

Selig-Guglielmo S1223 49 1 
single-element 487 
supercritical 492 
theory, thin 171 

supersonic flow 363 

thickness distribution 19 
thick, lift reversal 503 
thin, general lift coefficient 180 
thin, general moment Coefficient 
three element 494,497 
Wortmann FX-137 491 

Aerofoils, multi on racing cars 498 
Aerostatic force 6 
Airbus: 

18 1 

A300-600, use of riblets 520 
A320-200, wing-tip fence 525 
A340 453, 525 
A340-300, use of riblets 520 

Airscrew activity factor 535 
Airscrew: 

blade element theory 542 
compressibility effect 547 
constant speed 541 
experimental mean pitch 539 
geometric pitch 539 
pitch 538 
power coefficient 535 
propulsive efficiency 

propulsive efficiency, ideal 530 
rotational interference 542 
thrust coefficient 533 
torque coefficient 534 
thrust grading 545 
torque grading 545 
total thrust of blade 547 
total torque of blade 547 
two pitch 540 
vortex system 541 

equivalent 64 
indicated 64 
indicator 64 
measurement of 62 
true 65 

Alula 493 

530, 535 

Airspeed 



57% Index 

America’s Cup yacht racer, use of 

Angle of incidence, induced 240 
Anhedral 17 
Anisotropy in distribution of turbulence 

Annulus, solidity 544, 546 
Antonov An 72/74 transport aircraft, upper 

Application of linearized theories of subsonic 

Area ratio in isentropic flow 281 
Area rule (for wave drag reduction) 525 
Artificial bird feathers 504 
Artificial dolphin skin 519 
Aspect ratio 16 
Aspect ratio, effect on lift coeficient versus 

Attinello, John 510 
Augmentation of lift 485 
Axisymmetric: 

Euler equations 103 
flow from a source 139 
flow, Navier Stokes equations 102 
stagnation-point flow 103 

riblets 520 

stresses 448 

surface blowing 5 11 

flow 339 

incidence curve 46 

B.M. Jones’ wake traverse method 40 
B-18 bomber, fitted with wing glove 515 
Baldwin-Lomax method 465 
Bechert, D.W. 504 
Bell 206 Jet Ranger, use of Gurney flap on 

Benjamin, T.B. 519 
Bernoulli’s equation for rotational flow 
Bernoulli’s equation 62 
Bi-convex aerofoil 199 
Bi-convex circular arc aerofoil section in 

Biot-Savart law 216 
Bird feathers, artificial 504 
Bird wings 504 
Blade element theory, airscrew 542 
Blade element, efficiency 543 
Blasius, H. 390,416 
Blasius skin-friction formula for turbulent 

flow 416 
Blasius solution for the laminar boundary 

layer over a flat plate 390 
Bleed holes, engine intakes 507 
Bleed, use to control flow in engine 

inlets 507 
Blended winglet 523 
Blowing, periodic 512 
Blowing, upper-surface 5 1 1 
Blown flap 511 

horizontal stabilizer 503 

136 

supersonic flow 356 

Blown flap, externally 51 1 
Blown trailing-edge flap 508 
Body forces 52 
Body forces, two-dimensional flow 78 
Boeing 200 
Boeing C-17 Globemaster, externally blown 

Boeing 727, with slat plus single flap 510 
Boeing 747, wing leading edge 100 
Boeing 747400, use of winglets 522 
Boeing 757, modified for hybrid LFC 517 
Boeing 767, with slat plus triple flap 510 
Bottle-nosed dolphin 517 
Bound vortex system 213 
Boundary-element computational (panel) 

method 155 
Boundary layer 374 

control by suction 505, 507, 515 
control by tangential blowing 507 
control, prevention of separation 505 
development 375 
displacement thickness 385 
effect of external pressure gradient 379 
effects in supersonic flow 473 
equations 380 
equations, example of parabolic equation 

equations for a flat plate 390 
equations for a flat plate, solution 390 
equations for a general case 395 
equations for laminar flow 381 
equations for turbulent flow 440 
fresh effect 498 
growth of laminar layer on flat 

growth of turbulent boundary layer 418 
interaction with shock wave in supersonic 

kinetic energy thickness 377, 

laminar computational solution 459 
laminar velocity profile (approximate 

method) 411 
laminar, shock interaction 474 
mixed flow on flat plate 423 
momentum integral equation 408 
momentum thickness 387 
no-penetration condition 384 
no-slip condition 384 
Prandtl’s equations 384 
pressure drag 35 
separation 396 
suction 515 
thickness 377,505 
transition 379,422,431 
turbulent computational solution 463 

flaps 511 

system 395 

plate 378, 415 

flow 477 

387,486 



Index 579 

turbulent kinetic energy across 448 
turbulent, shock interaction 477 
turbulent, two-equation method 465 
turbulent velocity profile 416 
velocity profile 375, 393, 394, 413 

Boussinesq, J. 441 
Bow shock wave 369 
Box filter function 467 
Braslow, A.L. 517 
Breakdown: 

Coanda effect 508 
wake 497 
vortex 267 

Buffer layer 444 
Buffeting 333 
Bulk elasticity, definition 10 
Bulk viscosity 90 
Burst, near-wall effect of riblets 
Bursting 450 
Bursting frequency 45 1 

522 

C-17 Globemaster, externally blown 
flaps 511 

Camber 18 
Camber lines 190 
Camber line, cubic 190 
Canonical pressure coefficient, A.M.0 

Car racing, aerodynamics of 498 
Carpenter, P.W. 509, 519 
Cathay Pacific, riblets 520 
Cebeci-Smith method 464, 465 
Centre of pressure 33 
Centre of pressure coefficient 
Centred finite-differences 461 
Champagne 500 
Chord 16 

Smith’s 487 

18 1 

aerodynamic mean 16 
mean 16 
standard mean 16 

Circulation 41, 87, 162 
Circulation-control wings and rotors 
Circulation enhancement 509 
Clark Y wing section 194 
Clauser, F. 464 
Climbing flight, vertical 550 
Coanda, Henri 508 
Coanda effect 508 
Coefficient of local skin-friction, 

definition 388 
Coefficient of skin-friction drag, 

definition 389 
Collocation points in computational (panel) 

methods 149 
Completely rough (roughness) 448 

51 1 

Complex wave interactions in supersonic 

Compliant coating, Kramer’s 5 18 
Compliant walls 517 
Compressibility effect on airscrew 547 
Compressible flow 273 
Compressible fluid, equations of 

Computational methods based on the 

Computational methods for: 
boundary layers 455 
compressible flows 371 
transonic flow 371 

flow 482 

motion 335 

momentum integral equation 455 

Computational (panel) methods for 

Computational (panel) methods for 

Computational routine in Fortran 77 
Computational solution of: 

two-dimensional lifting flows 200 

wings 269 
152 

laminar boundary layer 459 
turbulent boundary layer 463 

Concorde, boundary-layer bleed 507 
Condor, Gossamer 490 
Conservation of energy 52 

one-dimensional flow 59 
Conservation of mass 52 

one-dimensional flow 57 
Conservation of momentum, 

one-dimensional flow 57 
Constant-speed airscrew 541 
Constitutive equation 83 
Contamination, leading-edge 5 15 
Contaminant matter in flow 102 
Continuity equation for axisymmetric 

Continuity equation in polar coordinates 72 
Continuity, two dimensional flow 71 
Control volume, thermodynamic system 60 
Control, boundary-layer 505 
Control by tangential blowing 507 
Convair F-102A 525 
Convection 102 
Co-ordinate system, cylindrical 137 
Corrsin, S. 464 
Couette flow 95 
Crank-Nicholson method 462 
Creeping flow 399 
Cricket balls 407 
Critical frequency 434 
Critical Mach number 332 
Critical pressure coefficient 343 
Critical Reynolds number 405, 434 
Critical speed of sound 283 
Cross-flow vortices 516 
Cross-wind force 27 

flow 101 
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Cubic camber line 190 
Current function 74 
Cushion of hovercraft 559 
Cylinder: 

drag coefficient versus Reynolds 

flowpast 399 
spinning in uniform stream 133 

number 406 

D’Alembert’s paradox 159, 381 
apparent violation of by slender-wing 

theory 263 
Damping near wall, Van Driest 464 
Damping, compliant wall 519 
Defect layer 447 
De-icer insert, leading-edge suction unit 5 16 
Delta wings 261 
Delta wings, slender 261 
Delta wings, vortex structure 264 
Density, definition 8 
Density jump across normal shock 300 
Density ratios in isentropic flow 279 
Density rise across a plane oblique 

Derivatives, normal force 186 
Derivatives, pitching moment 186 
Design, high-lift and low-drag 485 
Design, wing 485 
Detached shock wave 330 
Diffuser ramp, engine inlets 507 
Dihedral 17 
Dimensional analysis 19 

Dimensions 2, 3 
Direct numerical simulation (DNS) 463 
Direct strain, rate of 85 
Displacement effect, wing 229 
Displacement thickness, boundary 

Distance in firing of rocket 555 
Distortion of fluid element 83 
Distributed suction 516 
Distribution of load for minimum 

drag 255 
Disturbance velocity 172 
Dolphin 517 
Dolphin epidermis 517 
Dolphin skin: 

shock 321 

of aerodynamic force 22 

layer 385 

structure 519 
artificial 519 

Double-sided Gurney flap, use on vertical 

Double-slotted flap 493 
Double-wedge aerofoil in supersonic 

flow 353, 365 

helicopter stabilizer 502 

Double-wedge cambered aerofoil in 
supersonic flow 365 

Douglas Aircraft Company 171,457, 500 
Downforce, racing cars 498 
Downwash 234 

for elliptic loading 241 
for symmetrical general loading 246 
on tailplane 224 

Drag 27 
Drag, boundary layer pressure 35 
Drag coefficient: 

for a flat plate with a laminar boundary 

for a flat plate with a turbulent boundary 

from pressure distribution 40 
versus lift coefficient 47 
versus (lift coefficient)’ 48 
versus Reynolds number for spheres and 

circular cylinders 406 

layer 416 

layer 421 

Drag: 
form 35 
induced 35,41 
lift-dependent 44 
polars, effects of Gurney flaps 500 
pressure 35 
profile 36 
skin friction 35, 387 
surface friction 35 
total 35 
trailing vortex 237 
vortex 35 
wave 35 

Dynamic pressure 63 
Dynamic similarity 23,95 
Dynamic viscosity 9, 90 

en method of transition prediction 458 
Eddy simulation 464,467 
Eddy viscosity 440 
Effective turbulence Prandtl numbers 466 
Effects of an external pressure gradient 

on boundary layer 379 
Efficiency, of blade element 543 
Ejection 450 
Electron-beam-perforated skin 516 
Elliptic chord distribution, wing 

Elliptic equations 395 
Elliptic loading: 

planforms 256 

distribution of lift 240 
downwash 241 
induced drag 242 

Encarsia formosa 212 
End plates 498 



Index 581 

Energy production by Reynolds 
stress 434 

Energy, conservation of, one-dimensional 
flow 59 

Engine-inlet flow management 507 
Enthalpy 12 

stagnation 13 
total 13 

Entrainment, role in Coanda effect 508 
Entropy change across a normal shock 301 
Entropy: 

definition 14 
specific 14 

Epidermis, dolphin 517 
Equation of state 60 
Equations of motion for a compressible 

fluid 335 
Equations of motion for a compressible fluid, 

linearized 339 
Equipotential 106 
Equivalent airspeed 64 
Equivalent sand-grain roughness 447 
Euler equations for axisymmetric flow 102 
Euler equations 83 
Eurocopter AS-355 Twinstar, vertical 

Exchange coefficient 441 
Expansion fan 3 12 
Experimental mean pitch, airscrew 539 
Explicit finite-difference schemes 460 
External pressure gradient, effects on 

stabilizer 502 

boundary layer 379 

F-4 Phantom, McDonnell Douglas 507, 

F-15 Eagle, McDonnell Douglas 507 
F-94, wing gloves 515 
F-102A Convair, area rule 525 
F-104 Starfighter, Lockheed 510 
Fan, expansion 312 
Fast Fourier Transform 170 
Favourable pressure gradient 380 
Fence, wing 513 
Fence, wing-tip 525 
Feathers, birds’ 504 
Ferri 359 
Filament 56 
Filter function 467 
Finite-difference schemes 460 
Finite-wing theory 21 1 
First law of thermodynamics 
Flap: 

510 

13, 61 

blown 511 
blown trailing edge 508 
double-slotted 493 

externally blown 5 11 
Fowler 493 
Gurney 499, 500 
jet 185, 510 
Kreuger 516 
movable 504 
nose 493 
plain 493 
single-slotted 493 
split 493 
zap 493 

Flapped aerofoil 182 
Flat-plate aerofoil 177 
Flat-plate aerofoil coefficient 171 
Flat plate boundary layer (approximate 

Flat plate: 
method) 414 

boundary layer equations 390 
drag coefficient for laminar boundary 

drag Coefficient for turbulent boundary 

growth of laminar boundary layer 415 
growth of turbulent boundary layer 418 
mixed boundary layer flow 423 
transition in boundary layer over 432 

around slender bodies 144 
around spinning cylinder in uniform 

at stagnation point 97 
axisymmetric, continuity equation 101 
axisymmetric, Eulers equations 102 
axisymmetric, Navier-Stokes 

axisymmetric, stagnation point 103 
control 485 
Couette 95 
creeping 399 
Hiemenz 97 
irrotational 87 
management, aircraft inlets 507 
of contaminant matter 102 
past cylinders and spheres 399 
pattern around a spinning cylinder 135 
Poiseuille 96 
potential 87 
potential, around a sphere 142 
rotation 163 
rotational 83, 87, 136 
simple shear 95 
small disturbance 337 
stagnation zone field 98 
steady 54 
Stokes’ 399 
sub-critical 334 

layer 416 

layer 421 

Flow: 

stream 133 

equations 102 
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Flow (continued) 
transonic 331 
unsteady 54 
visualization by the schlieren method 
acceleration 70 

Fluid element distortion 83 
Fluid, Newtonian 90 
Fluid, non-Newtonian 90 
Forbidden signals, zone of 309 
Force and moment coefficients 28 
Force: 

aerodynamic 6 
aerostatic 6 
on a spinning cylinder in a uniform 

stream 134 
Formdrag 35 
Form drag, reduction 522 
Formation flying effects 223 
Formula-One: 

rules 498 
cars 498 

Four-element aerofoil 493 
Fowler flap 493 
Free motion of rocket 554 
Fresh boundary layer effect 498 
Friction velocity 445 
Front wing, Grand Prix car 499 
Froude momentum theory of 

Fuselage, waisted 525 
propulsion 527 

Gad-el-Hak, M. 515 
Gamberoni, H. 458 
Garrad, A.D. 519 
Gaster, M. 520 
Gaussian filter function 467 
General aerofoil section in supersonic 

General aerofoil, boundary layer 

General distribution of lift 243 
General thin aerofoil: 

flow 360 

equations 395 

section 178 
lift and moment coefficients 180 
centre of pressure coefficient 181 

downwash 246 
induced drag 246 
lift 245 

Generators, vortex 513 
Geometric pitch, airscrew 539 
Glauert, H. 170,335, 342 
Glauert’s factor 341 
Glauert’s integral, solution 569 
Glider, movable flaps on 504 

General symmetrical loading: 

Globemaster, Boeing C-17 51 1 
Glove, wing 515 
Golfballs 406 

348 Gossamer Albatross 490 
Gossamer Condor 490 
Gottingen 433 
Gottingen 398 wing section 194 
Grand Prix cars, aerodynamic 

downforce 498 
Gray, J. 517 
Gray’s paradox 517 
Green, P.N. 509 
Ground effects 226,498 
Growth of laminar boundary layer on 

a flat plate 415 
Growth of turbulent boundary layer on 

a flat plate 418 
Gurney, Dan 500 
Gurney flap 499, 500 

Hairpin vortices 450 
Handley Page, F. 493 
Head‘s method for calculating turbulent 

Height/diameter ratio of hovercraft 558 
Helicopter: 

descending flight, slow powered 550 
rotor, suction separation 

stabilizers, use of Gurney 

translational flight 551 
vertical climbing flight 550 

Helmholtz instability 450 
Helmholtz’s second theorem 228 
Helmholtz’s theorems 215 
Hess, J.L. 171 
Hiemenzflow 97 
High-lift devices 485, 507 
High-speed sweep 450 
Hinge moment coeficient 184 
Holographic interferograms 350, 

478,482 
Hooke’s law 89 
Horizontal skirt, Grand Prix car 499 
Horizontal stabilizer, helicopter 502 
Horseshoe vortex 213 
Horseshoe vortex element, modelling of 

Hovercraft 55 8 
cushion 559 
height/diameter ratio 558 
lift amplification factor 560 

Hybrid laminar-flow control 516 
Hydraulically smooth (roughness) 447 

boundary layers 457 

control 507 

flaps 502 

lifting effect 233 
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I.S.A. 65 
Ideal actuator disc 528 
Ideal propulsive efficiency 530 
Imperial College London 465 
Imperial units 4 
Imperial units, conversion to SI 

Implicit finite difference schemes 462 
Incompressibility assumption 65 
Indicated airspeed 64 
Induced angle of incidence 240 
Induced drag 41,237 

units 572 

for elliptic loading 242 
for symmetrical general loading 246 
minimum condition 248 
reduction 522 

Induced velocity 216, 234 
Indy 500 cars 500 
Infinite vortex, influence of 219 
Influence coefficients in computational 

(panel) methods 150, 203 
Inlet flow management, engine 507 
Insect impact, leading edge 5 16 
Interference of Mach waves 317 
Interferogram 350, 478, 482 
Intermittency 449, 464 
Intermittency factor 465 
Internal energy 11 
Internal vortex panels 200 
International Standard Atmosphere 

Inverted NACA 2412 aerofoil 502 
Irrotational flow 87 
Isentropic flow: 

density ratios 279 
pressure ratios 278 
ratio of streamtube areas 282 
temperature ratios 279 

65, 568 

Isentropic expansive one-dimensional 

Isentropic one-dimensional flow 275 
Isentropic relation 13 

flow 277 

Jameson 371 
Jet flap 185, 510 
JetStar aircraft, flight tests 516 
Jet, supersonic 3 17 
Jet, synthetic 452 
Jet, turbulent 442 
Jets, vortex-generator 513 
Jones, B.M. 470 

k-E method 465 
Kirman, Th. von 402,411 

K h i n  constant 446, 464 
Karmin vortex street 402 
Keller box scheme 462 
Kinematic viscosity 9, 90 
Kinetic energy boundary layer 

thickness 387,487 
Kinetic-energy defect 486 
Kistler, A.L. 464 
Klebanoff, P.S. 464 
Kline, S. 450 
Kramer, M.O. 517 
Kramer compliant coating 518 
Kreuger flaps 515 
Kutta, W. 161 
Kutta condition 160 
Kutta-Zhukovsky theorem 135, 167 

L-shaped vortex element 234 
Lachmann, G.V. 493 
Lafayette College 510 
Lambda shock 475, 507 
Laminar and turbulent flow in boundary 

Laminar-flow: 
layers 377 

aerofoil 437 
boundary layer equations 381 
control (LFC) 515 

Laminar separation point 398 
Laminar separation profile 398 
Laminar-turbulent transition 379,431 
Lancaster bomber, use to flight 

Lanchester, F. 210 
Lanchester-Prandtl theory 210 
Laplace equation 83, 110 
Large-eddy simulation 464, 467 
Laser drilling 516 
Laufer, F. 442 
Law of the wall 445 
Laws of vortex motion 214 
Layer, defect 447 
Leading-edge: 

test LFC 515 

contamination 5 15 
region of swept wings, transition 516 
sawtooth 514 
strake 514 

Leonard stress 468 
Liebe, W. 504 
Liebeck, R.H. 490, 500 
Liebeck aerofoil 490 
Lift 26 
Lift variation with angle of attack for a 

Lift-amplification factor of hovercraft 560 
Lift augmentation 485 

NACA 4421 aerofoil 205 
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Lift coefficient: 
for a general thin aerofoil 180 
from pressure distribution 47 
versus incidence 44 

Lift-dependent drag 44 
Lift: 

distribution for elliptic loading 240 
distribution in antisymmetric flight 243 
distribution modified by fuselage 243 
for symmetrical general loading 245 
general distribution 243 
reversal 502 

Lift-Up 450 
Lifting effect, wing 231 
Lifting line theory 237 
Lifting-surface theory 237 
Lighthill, M. J. 199, 212 
Linear vortex of finite length, influence 

of 218 
Linearized equation of motion, subsonic 

flow 339 
Linearized equation of motion, supersonic 

flow 347 
Linearized theory: 

subsonic flow 335 
subsonic flow, applications 339 
subsonic flow, applications to swept 

wings 344 
supersonic flow 347 

Lissaman, P.B.S. 490 
Load distribution for minimum drag 255 
Lockheed F-104 Starfighter, blown 

flaps 510 
Logarithmic velocity profiie in turbulent wall 

flow 445 
Los Alamos 465 
Low-speed streak 450 
Ludwieg-Tillmann formula for skin-friction 

coefficient 457 

Mq wing contribution 186 
McCormick, B.W. 510 
McDonnell Douglas F-4 Phantom 507, 510 
McDonnell Douglas F-15 Eagle 507 
Mach, E. 276 
Machangle 309 
Machcone 309 
Mach number 66,93,276 

change across plane normal shock 301 
change across plane oblique shock 320 
critical 332 

Mach wave 307,309 
interference 3 17 
reflection 3 15 

Magnus effect 135 

Mass, conservation in two dimensional 

Mass, conservation of, one-dimensional 

Mass flow, variation with pressure 284 
Material derivative 92 
Maximizing lift for single-element 

aerofoil 486 
Maximum flow deflection with attached 

shock wave 322 
Measurement of airspeed 62 
MEMS actuator 452 
Messerchmitt Me 109, movable flaps 

on 504 
Meyer, Th. 314 
Micro-electriomechanical systems 53, 452 
Mig-21 PFM, blown flap 510 
Minimum drag, load distribution for 255 
Minimum induced-drag condition 248 
Mixing length 444 
Mixing-length, theory of turbulence, 

Prandtl's 443 
Mitchell, Spitfire chief designer 257 
Modelling, aerodynamic 94 
Molecular diffusion 102 
Moment coefficient, for general thin 

Moment Coefficient, hinge 184 
Moment variation with angle of attack for 

NACA 4421 aerofoil 205 
Momentum equation: 

flow 71 

flow 57 

aerofoil 181 

incompressible fluid 61 
in partial differential form 82 
two dimensional flow 78 

Momentum integral equation for boundary 

Momentum thickness, boundary layer 387 
Momentum, conservation of, 

Movable flaps 504 
Multi-element aerofoils 492 
Munk, M. 170 
Munk's slender body theory 145 

layers 408 

one-dimensional flow 57 

NACA 4421 aerofoil, variation of pressure 
coefficient with angle of attack 206 

NACA 4421 aerofoil, variation of lift and 
moment with angle of attack 200,207 

NACA 4412 wing section 195 
NACA 4412 wing section, effects of Gurney 

Flap 501 
NACA four digit symmetrical aerofoils in 

compressible flow 345 
NACA four digit wing sections 
NACA 2412 aerofoil, inverted 502 

193 
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Nakayama, A. 494 
NASA Dryden Flight Research 

Center 516 
NASA Langley Research Center 520, 525 
National Gas Turbine Establishment 186 
Navier-Stokes equations 89 
Navier-Stokes equations, exact solutions 95 
Navier-Stokes equations, properties of 91 
Navier-Stokes equations, two dimensional 

Near-normal shock interaction with laminar 

Near normal shock interaction with turbulent 

Near-wall structures of the turbulent 

Negative lift 498 
Neutral stability 434 
Neutral-stability boundary (or curve) 434 

Newton’s second law of motion 52 
Newtonian fluid 90 
Newtonian fluid model 83 
Nikuradze, J. 447 
No-penetration condition in boundary 

layer 384 
No-slip condition in boundary layer 384 
Nodes, computational (panel) methods 149 
Non-Newtonian flow 90 
Normal-force derivatives 186 
Normal influence coefficients 150 
Nose flap 493 
Normal shock waves 296 

axisymmetric flow 102 

boundary layer 474 

boundary layer 477 

boundary layer 449 

effect of streamwise pressure on 436 

Off-the-surface recovery 496 
Olympic-class rowing shell, riblets 520 
One-dimensional flow, isentropic 275 
One-dimensional flow, weak waves 294 
Outer wake flow 464 
Owen-Klanfer criterion 398 

Pack, L.G. 512 
Panel computational methods: 

for non-lifting potential flows 147 
for two-dimensional lifting flows 200 

Panton, R. 451 
Parabolic equations, boundary-layer 

Paradox, d’Alembert’s 159, 381 
Paradox, Gray’s 517 
Pascal’s law 6 
Path line 56 
Pearcey, H.H. 513 
Periodic blowing, flow control 512 

equations as an example 395,459 

Perturbation velocity 172 
Phantom, McDonnell Douglas F-4 507,510 
Pitch, airscrew 538 
Pitching moment 27, 30 

coefficient 49 
coefficient from pressure distribution 40 
coefficient versus lift coefficient 46 
derivatives 186 

Pitot-static tube 62 
Pitot tube equation 306 
Plain flap 493 
Plane normal shock waves 296 
Plane oblique shock waves 318 
Plane oblique shock relations 3 19 
Planform of wing 15 
Plasma 4, 5 
Pohlhamus, E.C. 264 
Pohlhausen method of boundary-layer 

Pohlhausen parameter 412 
Point doublet 142 
Point source and sink in uniform 

axisymmetric flow 110 
Poiseuille flow 96 
Potential flow 87, 104 
Potential flow around a sphere 
Potential flow lift 264 
Power coefficient of airscrew 535 
Prandtl, L. 210, 335, 374,416,426,433, 

441,444,494, 505 
Prandtl numbers, effective 

turbulence 466,434 
Prandtl-Glauert rule 334,339 
Prandtl-Mayer expansion 3 12 
Prandtl-Schlichting formula for skin-friction 

drag coefficient 426 
Prandtl-Schlichting formulae 447 
Prandtl’s boundary layer equations 384 
Prandtl’s explanation for disturbance growth 

Prandtl‘s integral equation 251 
Prandtl’s lifting-line model 237 
Prandtl’s mixing length theory of 

Prandtl’s seventh root law, approximate 

calculation 455 

142 

in transition 433 

turbulence 443 

velocity profile for turbulent boundary 
layer 417 

Prediction of transition 458 
Pressure coefficient 64 

canonical 487 
stagnation 64 

shock 298 
Pressure-density relations across a normal 

Pressure distribution on an aerofoil 29, 334 
Pressure drag 35 
Pressure, dynamic 63 
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Pressure force 52, 78 
Pressure gradient: 

adverse 380 
effect on boundary layer 379 
favourable 380 
unfavourable 380 

Pressure jump across a normal shock 299 
Pressure ratios in isentropic flow 278 
Pressure rise across plane oblique shock 320 
Pressure transducer 65 
Pressure variation with mass flow 284 
Pressure, stagnation 63 
Pressure, static 5, 63 
Primary Mach waves 369 
Profile drag 36 
Profde drag, estimation by wake 

Profde drag from velocity profde 

Properties of Navier-Stokes equations 91 
Properties of normal shock waves 297 
Propulsive efficiency of rocket 553 

traverse 470 

inwake 468 

Quasi one-dimensional flow 275 

Racing cars, multi-element aerofoils 498 
Raised nose, on Grand Prix car 499 
Ramp, engine inlet 507 
Rankine body 147 
RankineHugoniot relations 298 
Rankine oval 147 
Rate of direct strain 85 
Rate of shear strain 84 
Ratio of areas in isentropic flow 281 
Ratio of specific heats 12 
Rayleigh’s equation 23 
Rayleigh’s supersonic Pitot tube 

equation 306 
Rear wing, Grand Prix car 499 
Reattachment point, turbulent 398 
Reflected Mach wave 369 
Reflection, of Mach wave 3 15 
Regimes of turbulent wall flow 444 
Reichardt, H. 441 
Resolved field, large-eddy simulations 467 
Reynolds, 0. 438 
Reynolds averaging 438 
Reynolds number 23, 90, 93 
Reynolds number, critical 405, 434 
Reynolds shear stress 441 
Reynolds stress 377, 434 

tensor 440 
distribution in boundary layer 448 
energy production 434 

Riblets 448, 520 
Rocket 553 
Rocket, propulsive efficiency 553 
Rolling moment 27 
Rotational flow 83,87 
Rotational flow, Bernoulli’s equation 136 
Rotational interference, airscrew 542 
Rotors in prototype helicopters, separation 

Roughness: 
control 507, 511 

admissible 448 
completely rough 448 
equivalent, sand-grain 447 
hydraulically smooth 447 
transitional 448 

Round-jet/plane-jet anomaly 466 
Rowing shells, riblets 520 
Rule, area 525 
Runge-Kutta method 456 
Ruppert, P.E. 200 

Saw-tooth leading edge 514 
SI units 1 
SI units, conversion of imperial 

Saw-tooth leading edge 514 
Schlichting, H. 426, 431, 433 
Schlieren method of flow visualization 348 
Schubauer, G.B. 434 
Schubauer and Skramstadt experiment 

Second law of thermodynamics 14 
Seifert, A. 512 
Self-similarity 443 
Selig-Guglielmo S 1223 aerofoil 49 1 
Semi-infinite vortex, influence of 219 
Semi-tubular guides on Grand 

Separation: 

units to 572 

on transition 434 

Prix cars 499 

boundary layer 380, 395 
bubbles 398 
prevention 505 
point, laminar 398 
point of 397 

Shape parameter, discontinuous change 

Shape parameters 414 
Shark scales 521 
Shear strain, rate of 84 
Shear stress, Reynolds 441 
Shear stress, viscous 441 
Shock-expansion approximation for 

Shock polar 323 
Shock stall 332 

at transition point 457 

supersonic aerofoil characteristics 367 
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Shock wave 274, 3 18 
boundary layer interaction in supersonic 

flow 477 
bow 369 
density jump 300 
detached 330 
entropy change 301 
lambda 475 
normal; properties of 297 
plane normal in one-dimensional 

plane normal, density rise 300 
plane normal, entropy change 301 
plane normal, temperature rise 300 
plane normal, Mach number change 301 
plane normal, static pressure jump 
plane normal, total temperature 

plane normal: velocity change 302 
plane oblique, density change 321 
plane oblique, Mach number 

plane oblique, pressure across 320 
pressure-density relation 298 
static pressure jump 299 
temperature rise 300 
total pressure change 303 
velocity change 302 

flow 296 

300 

change 303 

change 320 

Short-take-off-and-landing (STOL) aircraft, 

Shroud 493 
Side plate bleed holes, engine inlet 507 
Sikorsky S-76B 502 
Similarity solutions 395 
Simple shear flow 95 
Simplified horseshoe vortex 43, 213, 222 
Single-slotted flap 493 
Skin-friction, coefficient of 388,416, 

thrust vectoring 51 1 

418,426 
drag 35, 387 
drag, coefficient of 389,416, 422,425 
drag coefficient, Prandtl-Schlichting 

formula 426 
drag, reduction 514 
formula, Blasius 416 

Skramstadt, H.K. 434 
Skua 504 
Slat 493 
Slat effect 495 
Slender body theory, Munk's 145 
Slender delta wing, approximate flow in 

transverse plane of 26 1 
Slender delta wing, real flow field 264 
Slender-wing theory 26 1 
Slipstream 528 
Slot 493 

Slots, incorrect conventional view on how 

Slotted flap 493 
Smagorinsky, J. 468 
Small aspect ratio, wings of 261 
Small-disturbance compressible 

flow 337 
Small-perturbation theory, 

subcritical flow 334 
Smith, A.M.O. 171,458: 487 
Solidity of annulus 544, 546,464 
Sonicline 330 
Sound waves 274,294 
Sources (sinks), modelling of displacement 

effects 229 
Southampton University, research on 

Gurney flap 501 
Spanwise loading, relation with trailing 

vorticity 234 
Specific geometry 14 
Specific heat 11 

theywork 494 

at constant pressure 11 
at constant volume 11 

Specific heats, ratio 12 
Speed of rocket in free space 554 
Speed of sound 295 

critical 283 
definition 10 
in isentropic flow 276 

Sphere, drag coefficient versus 
Reynolds number 406 

Sphere: flow past 399,404 
Spheres, turbulence 405 
Spherical coordinates 138 
Spin 214 
Spinning cylinder in uniform flow 
Spitfire, Supermarine 257 
Split flap 493, 502 
Spray nozzle, leading-edge unit 5 16 
Stabilisers, helicopter 502 
Stagnation enthalpy 13 
Stagnation-point flow 97 
Stagnation point, boundary-layer 

Stagnation pressure 63 
Stagnation pressure, coefficient 64 
Stagnation-zone flow field 98 
Stall 397 
Stall, trailing-edge 490 
Standard atmosphere, international 65 
Standard mean chord 16 
Stanton, T. 363 
Starfighter, Lockheed F-104 510 
Stars and Stripes, riblets 520 
Starting vortex 21 1 
Static pressure 63 

133 

flow 430 
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Static pressure, jump across a normal 
shock 299 

Steady flow 54 
Stokes’ flow 399 
Stokes’ hypothesis 90 
Stokes’ Theorem 88 
Strain tensor 86 
Strake, leading-edge 514 
Stratford, B.S. 489 
Stratford pressure distribution. 489 
Streakline 56 
Streak structures 450 
Streamfunction 73 
Streaks, spanwise spacing 451 
Streaks, streamwise extent 451 
Streamtube 56 
Streamline 48,75 
Streamtube area ratios in isentropic 

flow 282 
Street, vortex 402 
Stress tensor 79 
Strouhal number 402 
Sub-critical flow, small-perturbation 

theory 334 
Sub-grid scale modelling 468 
Suction: 

boundary layer 515 
boundary layer control 505, 507, 515 
distributed 516 
slot 506 

Supercritical aerofoil 492 
Supermarine Spitfire 257 
Supersonic aerofoil characteristics, 

Supersonic flow: 
shock-expansion approximation 367 

complex wave interactions 482 
over a double-wedge aerofoil 

over a wedge 329, 349 
over aerofoil made up of unequal circular 

through a sharp concave corner 478 

section 365 

arcs 363 

Supersonic jet 317 
Subsonic leading edge 370 
Supersonic leading edge 370 
Supersonic linearised theory 347 
Surface forces 78 
Surface-friction drag 35 
Surface vortex panels 200 
Sweep, high-speed 450 
Sweepback 17 
Swept wings in subsonic compressible 

flow 344 
Swept wings of finite span 259 
Swept wings, transition in leading-edge 

region 516 

Symmetrical biconvex circular arc 

Symmetrical double wedge aerofoil 

Synthetic jet 452 

aerofoil in supersonic flow 356 

in supersonic flow 353 

Tacoma Narrows Bridge 403 
Tailplane, influence of the 

downwash on 224 
Tangential blowing, boundary layer 

control 507 
Tangential influence coefficients 150 
Tapered wing 252 
Temperature, definition 8 
Temperature ratios in isentropic 

Temperature rise across normal shock 300 
Thermodynamics, first law 13,61 
Thermodynamics, second law 14 
Thick aerofoil, lift reversal 503 
Thickness distribution 19 
Thickness problem for thin aerofoils 
Thin-aerofoil theory 171 
Thin-aerofoil, thickness problem 197 
Thomas algorithm 462 
Three-element aerofoil 497 
3M Company, riblet film 520 
Throat 277 
Throat by-pass, engine inlet 507 
Thrust: 

coefficient of airscrew 533 
grading of airscrew 545 
total of airscrew blade 547 
vectoring 511 

flow 279 

197 

Thwaites’ method of calculating laminar 
boundary layers 457 

Titanium, perforated skin 516 
Tollmien, W. 431,433,434 
Tollmien-Schlichting waves 431, 518 
Torque: 

coefficient of airscrew 534 
grading of airscrew 545 
total of airscrew blade 547 

Total derivative 92 
Total drag 35 
Total enthalpy 13 
Total pressure change across a normal 

shock 303 
Trailing-edge flap, blown 508 
Trailing-edge stall 490 
Trailing vortex 212 
Trailing vortex drag 237 
Transition: 

conditions 422 
guidelines 437 
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in boundary layer 379, 431 
in boundary layer over a flat plate 432 
layer 444 
linear theory 433 

Transition, prediction 458 
Transitional roughness 448 
Transonic flow 33 1 

aerofoil 334 
pressure distribution on two-dimensional 

through a turbine cascade 350 
Transport equation, contaminant in 

two dimensional flow 102 
Tridiagonal algorithm 462 
True airspeed 65 
Tube, vortex 215 
Turbine cascade, transonic flow 

through 350 
Turbulence spheres 405 
Turbulent boundary layer, near-wall 

structures 449 
Turbulent boundary layer, two-equation 

method 465 
Turbulent boundary layers 437 
Turbulent fluctuation 438 
Turbulent kinetic energy across boundary 

layer 448 
Turbulent jet 442 
Turbulent mixing layer 442 
Turbulence modelling 463 
Turbulent reattachment point 398 
Turbulent stress 438 
Turbulent structures in near wall region 449 
Tursiops truncatus 517 
Two-pitch airscrew 540 

Ultimate velocity 283 
Unfavourable pressure gradient 380 
Units, definitions 2, 3 
Units, Imperial 4 
units, SI 2, 3 
Unsteady flow 54 
Upper-surface blowing 5 1 1 

Vampire eircraft, flight testing of LFC 
Van Driest, E.R. 464 
Van Driest exponential wall damping 

function 464 
Vane 493 
Vane effect 496 
Velocity along isentropic steamtube 283 
Velocity change across a normal shock 302 
Velocity, friction 445 
Velocity in terms of stream function 76 
Velocity, induced 216 

515 

Velocity potential 105 
Velocity profile: 

for laminar boundary layer (approximate 

for laminar boundary layer over flat plate 

for turbulent boundary layer 416,420 
logarithmic for turbulent boundary 

of boundary layer 375, 393, 394 
Velocity variation in vortex flow 220 
Viscosity, definition 8 
Viscosity, dynamic 9 
Viscosity, eddy 440 
Viscous forces 52 
Viscous forces, two dimensional flow 78, 79 
Viscosity, kinematic 9 
Viscous shear stress 441 
Viscous sub-layer 444 
Von KLrmPn, Th. 402,411 
Von Kiu-mLn constant 446,464 
Von KLrmLn vortex street 402 
Vortex breakdown 267 

bound system 213 
core 220 
cross flow 516 
drag 35,237 
flow, variation of velocity in 220 
generators 5 13 
generator jets 513 
hairpin 450 
horseshoe 213 
lift 264 
lines 86 
motion, laws of 214 
sheet, modelling of lifting effect 

of wing 231 
sheets 227 
simplified horseshoe 214 
starting 211 
street, von K h h  402 
structure on delta wings 264 
system 211 
system, of airscrew 541 
trailing 212 
tube 86,215 
wake of circular cylinder 401 

method) 411, 413 

(Blasius solution) 393 

layer 445 

Vortices, cross-flow 5 16 
Vorticity 83, 86, 87, 162,214 
Vorticity flux 88 
Vortilons 514 

Wake 38 
Wake breakdown 497 
Wing, front on racing cars 498 
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Wing, rear on racing cars 498 
Waisted fuselage 525 
Wake, growth rate using momentum 

Wake, outer flow 464 
Wake, profile drag from velocity profie 468 
Wake traverse method for profile drag 470 
Wall damping, compliant 519 
Wall region 447 
Wall, law of 445 
Wall roughness effects 447 
Wall unit 445 
Wallis, R.A. 515 
Walls, compliant 517 
Washout 17 
Wasp 212 
Wave drag 35 

reduction 525 
Wave equation 349 
Waves, plane normal shock in 

Waves, weak, in one-dimensional flow 294 
Wedge, supersonic flow over 348 
Weis-Fogh mechanism of lift 

generation 212 
Whitcomb, Richard 525 
Wing area 16 
Wing, bird's 504 
Wing-body combination, panel method 

integral equation 470 

one-dimensional flow 296 

appliedto 270 

Wing: 
chord 16 
circulation control 51 1 
design 485 
fence 513 
geometry 15 
glove 515 
span 16 

Wing-tip fence 525 
Winglet, blended 524 
Winglets 523 
Wings, computational (panel) methods 268 
Wings in compressible flow 331 
Wings of finite span in supersonic flow 370 
Wings of high aspect ratio, 

Wings of small aspect ratio 261 
Wortmann FX- 137 aerofoil 491 

general theory 249 

Yawed wings of infinite span 257 
Yawing moment 27 

2, wing contribution 186 
Zap flap 493, 502 
Zero-equation methods 464 
Zhukovsky, N. 167 
Zhukovsky transformation 170 
Zone of forbidden signals 309 
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