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Frontispiece (see overleaf)

Aircraft wake (photo courtesy of Cessna Aircraft
Company).

This photograph first appeared in the Gallery of Fluid
Motion, Physics of Fluids (published by the American
Institute of Physics), Vol. 5, No. 9, Sept. 1993, p. S5, and
was submitted by Professor Hiroshi Higuchi (Syracuse
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Preface

This volume is intended for students of engineering on courses or programmes of
study to graduate level.

The sequence of subject development in this edition commences with definitions
and concepts and goes on to cover incompressible flow, low speed aerofoil and wing
theory, compressible flow, high speed wing theory, viscous flow, boundary layers,
transition and turbulence, wing design, propellers and propulsion.

Accordingly the work deals first with the units, dimensions and properties of the
physical quantities used in aerodynamics then introduces common aeronautical
definitions before explaining the aerodynamic forces involved and the basics of
aerofoil characteristics. The fundamental fluid dynamics required for the develop-
ment of aerodynamics and the analysis of flows within and around solid boundaries
for air at subsonic speeds is explored in depth in the next two chapters, which
continue with those immediately following to use these and other methods to develop
aerofoil and wing theories for the estimation of aerodynamic characteristics in these
regimes. Attention is then turned to the aerodynamics of high speed air flows.
The laws governing the behaviour of the physical properties of air are applied to
the transonic and supersonic regimes and the aerodynamics of the abrupt changes
in the flow characteristics at these speeds are explained. The exploitation of these and
other theories is then used to explain the significant effects on wings in transonic and
supersonic flight respectively, and to develop appropriate acrodynamic characteris-
tics. Viscosity is a key physical quantity of air and its significance in aerodynamic
situations is next considered in depth. The useful concept of the boundary layer and
the development of properties of various flows when adjacent to solid boundaries,
build to a body of reliable methods for estimating the fluid forces due to viscosity and
notably, in aecrodynamics, of skin friction and profile drag. Finally the two chapters
on wing design and flow control, and propellers and propulsion respectively, bring
together disparate aspects of the previous chapters as appropriate, to some practical
and individual applications of aerodynamics.

It is recognized that aerodynamic design makes extensive use of computational
aids. This is reflected in part in this volume by the introduction, where appropriate,
of descriptions and discussions of relevant computational techniques. However,
no comprehensive cover of computational methods is intended, and experience
in computational techniques is not required for a complete understanding of the
aerodynamics in this book.

Equally, although experimental data have been quoted no attempt has been made
to describe techniques or apparatus, as we feel that experimental aerodynamics
demands its own considered and separate treatment.



Xiv Preface

We are indebted to the Senates of the Universities and other institutions referred to
within for kindly giving permission for the use of past examination questions. Any
answers and worked examples are the responsibility of the authors, and the author-
ities referred to are in no way committed to approval of such answers and examples.

This preface would be incomplete without reference to the many authors of
classical and popular texts and of learned papers, whose works have formed the
framework and guided the acquisitions of our own knowledge. A selection of these is
given in the bibliography if not referred to in the text and we apologize if due
recognition of a source has been inadvertently omitted in any particular in this
volume.

ELH/PWC
2002



Basic concepts and definitions

Preamble

The study of acrodynamics, as is the case with that of all physical sciences and
technologies, requires the common acceptance of a number of basic definitions
including an unambiguous nomenclature and an understanding of the relevant
physical properties, the related mechanics and the appropriate mathematics.

Of course, many of these are common to other disciplines and it is the purpose
of this chapter to identify and explain those that are basic and pertinent to
aerodynamics and which are to be used in the remainder of the volume. i

The units and dimensions of all physical properties and the relevant properties
of fluids are recalled, and after a review of the aeronautical definitions of wing and
aerofoil geometry, the remainder of the chapter introduces aerodynamic force.

The origins of aerodynamic force and how it is manifest on wings and
other aeronautical bodies and the theories that permit its evaluation and design
are to be found in the remainder of the volume, but in this chapter the lift, drag,
side-wind components and associated moments of aerodynamic force are
conventionally identified, the application of dimensional theory establishing their
coefficient form. The significance of the pressure distribution around an aero-
dynamic body and the estimation of lift, drag and pitching moment on it in flight,
completes this chapter of basic concepts and definitions.

1.1 Units and dimensions

A study in any science must include measurement and calculation, which presupposes
an agreed system of units in terms of which quantities can be measured and expressed.
There is one system that has come to be accepted for most branches of science and
engineering, and for aerodynamics in particular, in most parts of the world. That
system is the Systéme International d’Unités, commonly abbreviated to SI units, and it
1s used throughout this book, except in a very few places as specially noted.

It is essential to distinguish between the terms ‘dimension’ and ‘unit’. For example,
the dimension ‘length’ expresses the qualitative concept of linear displacement,
or distance between two points, as an abstract idea, without reference to actual
quantitative measurement. The term ‘unit’ indicates a specified amount of the quantity.
Thus a metre is a unit of length, being an actual ‘amount’ of linear displacement, and
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so also is a mile. The metre and mile are different units, since each contains a different
amount of length, but both describe length and therefore are identical dimensions.*
Expressing this in symbolic form:

x metres = [L] (a quantity of x metres has the dimension of length)

x miles = [L] (a quantity of x miles has the dimension of length)

x metres 3 x miles (x miles and x metres are unequal quantities of length)

[x metres] = [x miles] (the dimension of x metres is the same as the dimension
of x miles).

1.1.1 Fundamental dimensions and units

There are four fundamental dimensions in terms of which the dimensions of all other
physical quantities may be expressed. They are mass [M], length [L], time [T] and
temperaturc [6].T A consistent set of units is formed by specifying a unit of particular
value for each of these dimensions. In aeronautical engineering the accepted units
are respectively the kilogram, the metre, the second and the Kelvin or degree Celsius
(see below). These are identical with the units of the same names in common use, and
are defined by international agreement.

It is convenient and conventional to represent the names of these units by abbreviations:

kg for kilogram

m for metre

s for second

°C for degree Celsius
K for Kelvin

The degree Celsius is one one-hundredth part of the temperature rise involved when pure
water at freezing temperature is heated to boiling temperature at standard pressure. In the
Celsius scale, pure water at standard pressure freezes at 0°C and boils at 100 °C.

The unit Kelvin (K) is identical in size with the degree Celsius (°C), but the Kelvin
scale of temperature is measured from the absolute zero of temperature, which
is approximately —273 °C. Thus a temperature in K is equal to the temperature in
°C plus 273 (approximately).

1.1.2 Fractions and multiples

Sometimes, the fundamental units defined above are inconveniently large or incon-
veniently small for a particular case. In such cases, the quantity can be expressed in
terms of some fraction or multiple of the fundamental unit. Such multiples and
fractions are denoted by appending a prefix to the symbol denoting the fundamental
unit. The prefixes most used in aerodynamics are:

* Quite often ‘dimension’ appears in the form ‘a dimension of 8 metres’ and thus means a specified length.
This meaning of the word is thus closely related to the engineer’s ‘unit’, and implies linear extension only.
Another common example of its use is in ‘three-dimensional geometry’, implying three linear extensions in
different directions. References in later chapters to two-dimensional flow, for example, illustrate this. The
meaning above must not be confused with either of these uses.

t Some authorities express temperature in terms of length and time. This introduces complications that are
briefly considered in Section 1.2.8.
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M (mega) — denoting one million

k (kilo) — denoting one thousand

m (milli) — denoting one one-thousandth part
4 (micro) — denoting one-millionth part

Thus

1MW = 1000000 W
1 mm = 0.00l m
1 pm = 0.001 mm

A prefix attached to a unit makes a new unit. For example,
1mm? =1 (mm)* = 10~ m?, not 10> m?

For some purposes, the hour or the minute can be used as the unit of time.

1.1.3 Units of other physical quantities

Having defined the four fundamental dimensions and their units, it is possible to
establish units of all other physical quantities (see Table 1.1). Speed, for example,
is defined as the distance travelled in unit time. It therefore has the dimension
LT! and is measured in metres per second (ms™). It is sometimes desirable and
permissible to use kilometres per hour or knots (nautical miles per hour, see
Appendix 4) as units of speed, and care must then be exercised to avoid errors
of inconsistency.

To find the dimensions and units of more complex quantities, appeal is made to
the principle of dimensional homogeneity. This means simply that, in any valid
physical equation, the dimensions of both sides must be the same. Thus if, for
example, (mass)” appears on the left-hand side of the equation, (mass)” must also
appear on the right-hand side, and similarly this applies to length, time and
temperature.

Thus, to find the dimensions of force, use is made of Newton'’s second law of motion

Force = mass x acceleration

while acceleration is speed =+ time.
Expressed dimensionally, this is

L
Force = [M] x [T + T] = [MLT %
Writing in the appropriate units, it is seen that a force is measured in units of
kgms~2. Since, however, the unit of force is given the name Newton (abbreviated
usually to N), it follows that

IN=1kgms™>

It should be noted that there could be confusion between the use of m for milli and
its use for metre. This is avoided by use of spacing. Thus ms denotes millisecond
while m s denotes the product of metre and second.

The concept of the dimension forms the basis of dimensional analysis. This is used
to develop important and fundamental physical laws. Its treatment is postponed to
Section 1.4 later in the current chapter.
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Table 1.1 Units and dimensions

Quantity Dimension Unit (name and abbreviation)

Length L Metre (m)

Mass M Kilogram (kg)

Time T Second (s)

Temperature 0 Degree Celsius (°C), Kelvin (K)

Area L’ Square metre (m?)

Volume L? Cubic metre (m?)

Speed LT Metres per second (ms™!)

Acceleration LT 2 Metres per second per second (ms~?)

Angle | Radian or degree (°)
(The radian is expressed as a ratio and is therelore
dimensionless)

Angular velocity T! Radians per second (s™})

Angular acceleration T2 Radians per second per second (s~2)

Frequency T Cycles per second, Hertz (s~' Hz)

Density ML Kilograms per cubic metre (kgm™)

Force MLT2 Newton (N)

Stress ML-'T-? Newtons per square metre or Pascal (Nm~2 or Pa)

Strain \ None (expressed as %)

Pressure ML-'T-? Newtons per square metre or Pascal (Nm~2 or Pa)

Energy work ML2T—2 Joule (J)

Power ML?T? Watt (W)

Moment ML2T-? Newton metre (Nm)

Absolute viscosity ML-'T"! Kilogram per metre second or Poiseuille
(kgm~!'s! or PI)

Kinematic viscosity L>T! Metre squared per second (m”s~')

Bulk elasticity ML-IT? Newtons per square metre or Pascal (N m~2 or Pa)

1.1.4 Imperial units’

Until about 1968, acronautical engineers in some parts of the world, the United
Kingdom in particular, used a set of units based on the Imperial set of units. In this

system, the fundamental units were:

mass — the slug

length — the foot

time — the second

temperature — the degree Centigrade or Kelvin.

1.2 Relevant properties
1.2.1

Matter may exist in three principal forms, solid, liquid or gas, corresponding in that
order to decreasing rigidity of the bonds between the molecules of which the matter is
composed. A special form of a gas, known as a plasma, has properties different from

Forms of matter

! Since many valuable texts and papers exist using those units, this book contains, as Appendix 4, a table of
{actors for converting from the Imperial system to the SI system.
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those of a normal gas and, although belonging to the third group, can be regarded
justifiably as a separate, distinct form of matter.

In a solid the intermolecular bonds are very rigid, maintaining the molecules in
what is virtually a fixed spatial relationship. Thus a solid has a fixed volume and
shape. This is seen particularly clearly in crystals, in which the molecules or atoms are
arranged in a definite, uniform pattern, giving all crystals of that substance the same
geometric shape.

A liquid has weaker bonds between the molecules. The distances between the
molecules are fairly rigidly controlled but the arrangement in space is free. A liquid,
therefore, has a closely defined volume but no definite shape, and may accommodate
itself to the shape of its container within the limits imposed by its volume.

A gas has very weak bonding between the molecules and therefore has neither
a definite shape nor a definite volume, but will always fill the whole of the vessel
containing it.

A plasma is a special form of gas in which the atoms are ionized, i.e. they have lost
one or more electrons and therefore have a net positive electrical charge. The
electrons that have been stripped from the atoms are wandering free within the gas
and have a negative electrical charge. If the numbers of ionized atoms and free
electrons are such that the total positive and negative charges are approximately
equal, so that the gas as a whole has little or no charge, it is termed a plasma.
In astronautics the plasma is usually met as a jet of ionized gas produced by passing
a stream of normal gas through an electric arc. It is of particular interest for the
re-entry of rockets, satellites and space vehicles into the atmosphere.

1.2.2 Fluids

The basic feature of a fluid is that it can flow, and this is the essence of any definition
of it. This feature, however, applies to substances that are not true fluids, e.g. a fine
powder piled on a sloping surface will also flow. Fine powder, such as flour, poured
in a column on to a flat surface will form a roughly conical pile, with a large angle of
repose, whereas water, which is a true fluid, poured on to a fully wetted surface will
spread uniformly over the whole surface. Equally, a powder may be heaped in
a spoon or bowl, whereas a liquid will always form a level surface. A definition of
a fluid must allow for these facts. Thus a fluid may be defined as ‘matter capable of
flowing, and either finding its own level (if a liquid), or filling the whole of its
container (if a gas)’.

Experiment shows that an extremely fine powder, in which the particles are not
much larger than molecular size, will also find its own level and may thus come under
the common definition of a liquid. Also a phenomenon well known in the transport
of sands, gravels, etc. is that they will find their own level if they are agitated by
vibration, or the passage of air jets through the particles. These, however, are special
cases and do not detract from the authority of the definition of a fluid as a substance
that flows or (tautologically) that possesses fluidity.

1.2.3 Pressure

At any point in a fluid, whether liquid or gas, there is a pressure. If a body is placed in
a fluid, its surface is bombarded by a large number of molecules moving at random.
Under normal conditions the collisions on a small area of surface are so frequent that
they cannot be distinguished as individual impacts. They appear as a steady force on
the area. The intensity of this ‘molecular bombardment’ force is the static pressure.
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Very frequently the static pressure is referred to simply as pressure. The term static is
rather misleading. Note that its use does not imply the fluid is at rest.

For large bodies moving or at rest in the fluid, e.g. air, the pressure is not uni-
form over the surface and this gives rise to aerodynamic force or aerostatic force
respectively.

Since a pressure is force per unit area, it has the dimensions

[Force] + [area] = [MLT 2] + [L?] = [ML™!T~

and is expressed in the units of Newtons per square metre or Pascals (Nm~? or Pa).

Pressure in fluid at rest

Consider a small cubic element containing fluid at rest in a larger bulk of fluid also at
rest. The faces of the cube, assumed conceptually to be made of some thin flexible
material, are subject to continual bombardment by the molecules of the fluid, and
thus experience a force. The force on any face may be resolved into two components,
one acting perpendicular to the face and the other along it, i.e. tangential to it.
Consider for the moment the tangential components only; there are three signifi-
cantly different arrangements possible (Fig. 1.1). The system (a) would cause the
element to rotate and thus the fluid would not be at rest. System (b) would cause
the element to move (upwards and to the right for the case shown) and once more,
the fluid would not be at rest. Since a fluid cannot resist shear stress, but only rate of
change of shear strain (Sections 1.2.6 and 2.7.2) the system (c) would cause the
element to distort, the degree of distortion increasing with time, and the fluid would
not remain at rest.

The conclusion is that a fluid at rest cannot sustain tangential stresses, or con-
versely, that in a fluid at rest the pressure on a surface must act in the direction
perpendicular to that surface.

Pascal’s law

Consider the right prism of length §z into the paper and cross-section ABC, the
angle ABC being a right-angle (Fig. 1.2). The prism is constructed of material of
the same density as a bulk of fluid in which the prism floats at rest with the face
BC horizontal.

Pressures pj, p» and p; act on the faces shown and, as proved above, these pressures
act in the direction perpendicular to the respective face. Other pressures act on the
end faces of the prism but are ignored in the present problem. In addition to these
pressures, the weight W of the prism acts vertically downwards. Consider the forces
acting on the wedge which is in equilibrium and at rest.

- — —
(a) {b) (c)

Fig. 1.1 Fictitious systems of tangential forces in static fluid
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Fig. 1.2 The prism for Pascal's Law

Resolving forces horizontally,

pi(bxtan @)bz — py(6xseca)bzsina =0

Dividing by éx éztan ¢, this becomes
pr—p2=0
ie.
p=p (1.1)

Resolving forces vertically,

P36x6z — pr(6xseca)bzcosa — W =0 (1.2)

Now
W= pg(th)2 tan a 6z/2
therefore, substituting this in Eqn (1.2) and dividing by éx éz,

1
P3s—P2—5/P8 tanadz =10

If now the prism is imagined to become infinitely small, so that §x — 0 and §z — 0,
then the third term tends to zero leaving

pn—p2=0
Thus, finally,

pL=p2=p (1.3)

Having become infinitely small, the prism is in effect a point and thus the above
analysis shows that, at a point, the three pressures considered are equal. In addition,
the angle « is purely arbitrary and can take any value, while the whole prism could be
rotated through a complete circle about a vertical axis without affecting the result.
Consequently, it may be concluded that the pressure acting at a point in a fluid at rest
is the same in all directions.
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1.2.4 Temperature

In any form of matter the molecules are in motion relative to each other. In gases the
motion is random movement of appreciable amplitude ranging from about 76 x 10~°
metres under normal conditions to some tens of millimetres at very low pressures.
The distance of free movement of a molecule of gas is the distance it can travel
before colliding with another molecule or the walls of the container. The mean value
of this distance for all the molecules in a gas is called the length of mean molecular
free path,

By virtue of this motion the molecules possess kinetic energy, and this energy
is sensed as the temperature of the solid, liquid or gas. In the case of a gas in motion
it is called the static temperature or more usually just the temperature. Temperature has
the dimension [#] and the units K or °C (Section 1.1). In practically all calculations in
aerodynamics, temperature is measured in K, i.e. from absolute zero.

1.25 Density

The density of a material is a measure of the amount of the material contained in
a given volume. In a fluid the density may vary from point to point. Consider the
fluid contained within a small spherical region of volume 6V centred at some point in
the fluid, and let the mass of fluid within this spherical region be ém. Then the density
of the fluid at the point on which the sphere is centred is defined by

. om
Density p = ].lmo % (1.4)

The dimensions of den51ty are thus ML ™3, and it is measured in units of kilogram per
cubic metre (kgm™ ) At standard temperature and pressure (288 K, 101 325N m™2)
the density of dry air is 1.2256 kgm™3

Difficulties arise in applying the above definition rigorously to a real fluid
composed of discrete molecules, since the sphere, when taken to the limit, either
will or will not contain part of a molecule. If it does contain a molecule the value
obtained for the density will be fictitiously high. If it does not contain a molecule
the resultant value for the density will be zero. This difficulty can be avoided in
two ways over the range of temperatures and pressures normally encountered in
aerodynamics:

(i) The molecular nature of a gas may for many purposes be ignored, and the
assumption made that the fluid is a continuum, i.e. does not consist of discrete
particles.

(ii) The decrease in size of the imaginary sphere may be supposed to be carried to
a limiting minimum size. This limiting size is such that, although the sphere is
small compared with the dimensions of any physical body, e.g. an aeroplane,
placed in the fluid, it is large compared with the fluid molecules and, therefore,
contains a reasonable number of whole molecules.

1.2.6 Viscosity

Viscosity is regarded as the tendency of a fluid to resist sliding between layers or,
more rigorously, a rate of change of shear strain. There is very little resistance to the
movement of a knife-blade edge-on through air, but to produce the same motion
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through thick oil needs much more effort. This is because the viscosity of oil is high
compared with that of air.

Dynamic viscosity

The dynamic (more properly called the coefficient of dynamic, or absolute, viscosity)
viscosity is a direct measure of the viscosity of a fluid. Consider two parallel flat
plates placed a distance 4 apart, the space between them being filled with fluid. One
plate is held fixed and the other is moved in its own plane at a speed ¥ (see Fig. 1.3).
The fluid immediately adjacent to each plate will move with that plate, i.e. there is no
slip. Thus the fluid in contact with the lower plate will be at rest, while that in contact
with the upper plate will be moving with speed V. Between the plates the speed
of the fluid will vary linearly as shown in Fig. 1.3, in the absence of other influences.
As a direct result of viscosity a force F has to be applied to each plate to maintain
the motion, the fluid tending to retard the moving plate and to drag the fixed plate
to the right. If the area of fluid in contact with each plate is A, the shear stress is F/4.
The rate of shear strain caused by the upper plate sliding over the lower is V/h.

These quantities are connected by Newton’s equation, which serves to define the
dynamic viscosity p. This equation is

§=#<%) (1.5)

ML™'T%) = [W[LT 'L = [ul[T™]

Hence

Thus
[u] = ML™'T™]

and the units of u are therefore kgm~!s~!; in the SI system the name Poiseuille (P1)
has been given to this combination of fundamental units. At 0°C (273K) the
dynamic viscosity for dry air is 1.714 x 105 kgm~!s~1,

The relationship of Eqn (1.5) with u constant does not apply for all fluids. For an
important class of fluids, which includes blood, some oils and some paints, p is not
constant but is a function of V/h, i.e. the rate at which the fluid is shearing.

Kinematic viscosity

The kinematic viscosity (or, more properly, coefficient of kinematic viscosity) is
a convenient form in which the viscosity of a fluid may be expressed. It is formed

— v ,

Fig. 1.3
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by combining the density p and the dynamic viscosity u according to the
equation

y="E

p
and has the dimensions L2T~! and the units m?s~!.

It may be regarded as a measure of the relative magnitudes of viscosity and inertia
of the fluid and has the practical advantage, in calculations, of replacing two values
representing u and p by a single value.

1.2.7 Speed of sound and bulk elasticity

The bulk elasticity is a measure of how much a fluid (or solid) will be compressed by
the application of external pressure. If a certain small volume, ¥, of fluid is subjected
to a rise in pressure, 8p, this reduces the volume by an amount —6V, i.e. it produces a
volumetric strain of —§V/V. Accordingly, the bulk elasticity is defined as

_ % _ 1dp
VIV vav

(1.6a)

The volumetric strain is the ratio of two volumes and evidently dimensjonless, so the
dimensions of K are the same as those for pressure, namely ML~!T~2. The SI units
are Nm~2 (or Pa).

The propagation of sound waves involves alternating compression and expansion
of the medium. Accordingly, the bulk elasticity is closely related to the speed of
sound, a, as follows:

a=,|~ (1.6b)

Let the mass of the small volume of fluid be M, then by definition the density,
p = M/V. By differentiating this definition keeping M constant, we obtain

M dv

Therefore, combining this with Eqns (1.6a,b), it can be seen that

dp
a= \/-;; (1.6c)

The propagation of sound in a perfect gas is regarded as an isentropic process.
Accordingly, (see the passage below on Entropy) the pressure and density are related
by Eqn (1.24), so that for a perfect gas

a= \/% (1.6d)

where v is the ratio of the specific heats. Equation (1.6d) is the formula usually used
to determine the speed of sound in gases for applications in aerodynamics.
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1.2.8 Thermodynamic properties

Heat, like work, is a form of energy transfer. Consequently, it has the same dimen-
sions as energy, i.e. ML?T~2, and is measured in units of Joules (J).

Specific heat

The specific heat of a material is the amount of heat necessary to raise the tempera-
ture of unit mass of the material by one degree. Thus it has the dimensions L*T 26!
and is measured in units of Jkg=!°C~! or Jkg ' K~1.

With a gas there are two distinct ways in which the heating operation may be
performed: at constant volume and at constant pressure, and in turn these define
important thermodynamic properties.

Specific heat at constant volume If unit mass of the gas is enclosed in a cylinder
sealed by a piston, and the piston is locked in position, the volume of the gas cannot
change, and any heat added is used solely to raise the temperature of the gas, i.e. the
head added goes to increase the interrnal energy of the gas. It is assumed that the
cylinder and piston do not receive any of the heat. The specific heat of the gas under
these conditions is the specific heat at constant volume, c¢y. For dry air at normal
aerodynamic temperatures, cy = 718 Jkg=1 K1,

Internal energy (E) is a measure of the kinetic energy of the molecules comprising
the gas. Thus

internal energy per unit mass £ = ¢cp T

or, more generally,

o [gg]p (1)

Specific heat at constant pressure Assume that the piston referred to above is now
freed and acted on by a constant force. The pressure of the gas is that necessary to
resist the force and is therefore constant. The application of heat to the gas causes its
temperature to rise, which leads to an increase in the volume of the gas, in order to
maintain the constant pressure. Thus the gas does mechanical work against the force.
It is therefore necessary to supply the heat required to increase the temperature of the
gas (as in the case at constant volume) and in addition the amount of heat equivalent
to the mechanical work done against the force. This total amount of heat is called the
specific heat at constant pressure, ¢,, and is defined as that amount of heat required
to raise the temperature of unit mass of the gas by one degree, the pressure of the gas
being kept constant while heating. Therefore, c, is always greater than c;. For dry air
at normal aerodynamic temperatures, c, = 1005Jkg~! KL

Now the sum of the internal energy and pressure energy is known as the enthalpy
(h per unit mass) (see below). Thus

or, more generally,

¢ = [%L (1.8)
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The ratio of specific heats
This is a property important in high-speed flows and is defined by the equation
=
Y= (1.9)

(The value of v for air depends on the temperature, but for much of practical
aerodynamics it may be regarded as constant at about 1.403. This value in turn is
often approximated to vy = 1.4, which is, in fact, the theoretical value for an ideal
diatomic gas.)

Enthalpy

The enthalpy 4 of a unit mass of gas is the sum of the internal energy F and pressure
energy p x 1/p. Thus,

h=E+p/p (1.10)

But, from the definition of specific heat at constant volume, Eqn (1.7), Eqn (1.10)
becomes

h=cyT +p/p
Again from the definition, Eqn (1.8), Eqn (1.10) gives
T =cyT+p/p (1.11)

Now the pressure, density and temperature are related in the equation of state, which
for perfect gases takes the form

p/(pT) = constant = R (1.12)
Substituting for p/p in Eqn (1.11) yields the relationship
¢ —cy=R (1.13)

The gas constant, R, is thus the amount of mechanical work that is obtained by
heating unit mass of a gas through unit temperature rise at constant pressure.
It follows that R is measured in units of Jkg=! K1 or Jkg~! °C~!. For air over the
range of temperatures and pressures normally encountered in aerodynamics, R has
the value 287.26 J kg~ K1,

Introducing the ratio of specific heats (Eqn (1.9)) the following expressions are

obtained:
__ ~_R
cp_’y_lR and CV—-’Y_I (1.14)
Replacing ¢y T by [1/(y — 1)]p/p in Eqn (1.11) readily gives the enthalpy as
el =—12 (1.15)

y—1p
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It is often convenient to link the enthalpy or total heat above to the other energy of
motion, the kinetic energy K; that for unit mass of gas moving with mean velocity V is
_ p2

K=— 1.16

5 (1.16)

Thus the total energy flux in the absence of external, tangential surface forces and
heat conduction becomes

V2

2
where, with ¢, invariant, Tq is the absolute temperature when the gas is at rest.
The quantity ¢, Ty is referred to as the total or stagnation enthalpy. This quantity is an
important parameter of the equation of the conservation of energy.

Applying the first law of thermodynamics to the flow of non-heat-conducting
inviscid fluids gives

+¢,T = ¢, Tp = constant (1.17)

d(eyT) | d(1/p)
= 1
T +p Qi 0 (1.18)
Further, if the flow is unidirectional and ¢y T = E, Eqn (1.18) becomes, on cancelling
dt,
1
dE+pd(;) =0 (1.19)
but differentiating Eqn (1.10) gives
dh = dE + pd (1> +14p (1.20)
p) P
Combining Eqns (1.19) and (1.20)
dh = ldp (1.21)
p
but
4 /4 v |1 1
dh:ch:—ﬁd(—) =_[_d n d(_)] 122
» 74\) ==L (1.22)
which, together with Eqn (1.21), gives the identity
5e(;)
——+qpd{-] =0 1.23
PRIV (1.23)
Integrating gives
1
Inp+vyln (To) = constant
or

p=ko (1.24)

which is the isentropic relationship between pressure and density.
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It should be remembered that this result is obtained from the equation of state for
a perfect gas and the equation of conservation of energy of the flow of a non-heat-
conducting inviscid fluid. Such a flow behaves isentropically and, notwithstanding
the apparently restrictive nature of the assumptions made above, it can be used as a
model for a great many aerodynamic applications.

Entropy

Entropy is a function of state that follows from, and indicates the working of, the
second law of thermodynamics, that is concerned with the direction of any process
involving heat and energy. Entropy is a function the positive increase of which
during an adiabatic process indicates the consequences of the second law, ie. a
reduction in entropy under these circumstances contravenes the second law. Zero
entropy change indicates an ideal or completely reversible process.

By definition, specific entropy (S)* (Joules per kilogram per Kelvin) is given by the

integral
dg
S= / T (1.25)

for any reversible process, the integration extending from some datum condition;
but, as seen above, it is the change in entropy that is important, i.e.

30

ds T

(1.26)

In this and the previous equation dQ is a heat transfer to a unit mass of gas from an
external source. This addition will go to changing the internal energy and will do work.
Thus, for a reversible process,

1

_ dag _ cydT +pd(1/p)

ds T T T

(1.27)

but p/T = R, therefore

. chT+Rd(1/p)
T 1/p

Integrating Eqn (1.28) from datum conditions to conditions given by suffix 1,

ds

(1.28)

Pp

T
S| = Cyln——l-l- Rln
Tp p1
Likewise,

T
S = Cyln——2+ Rln@
Tp P2

* Note that in this passage the unconventional symbol .S is used for specific entropy to avoid confusion
with the Jength symbols.
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and the entropy change from conditions 1 to 2 is given by
T
AS=5S,—8 =cyln=2+Rln2 (1.29)
T, P2
With the use of Eqn (1.14) this is more usually rearranged to be
AS T:
n-? i (1.30)
cy l p2

or in the exponential form
, T !
eAS/er :—2<ﬂ> (1.31)
Ty \p

Alternatively, for example, by using the equation of state,

-\ /pi\""

ASjer _ (12 l_l>

e = 1.32
(T.) <l’2 (132

These latter expressions find use in particular problems.

1.3 Aeronautical definitions
1.3.1 Wing geometry

The planform of a wing is the shape of the wing seen on a plan view of the aircraft.
Figure 1.4 illustrates this and includes the names of symbols of the various para-
meters of the planform geometry. Note that the root ends of the leading and trailing
edges have been connected across the fuselage by straight lines. An alternative to this
convention is that the leading and trailing edges, if straight, are produced to the
aircraft centre-line.

/ . A Direction
edQe 8 %, of flight
o892 ol g
¥ o|l5 | S
A A
2 2
7 e
— l
o -+ T
‘é‘ / o d
$ Traiting €dd® X I
|
3 s )Jr s -
b=2s =

Fig. 1.4 Wing planform geometry
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Wing span

The wing span is the dimension b, the distance between the extreme wingtips. The
distance, s, from each tip to the centre-line, is the wing semi-span.

Chords

The two lengths cr and ¢q are the tip and root chords respectively; with the alter-
native convention, the root chord is the distance between the intersections with the
fuselage centre-line of the leading and trailing edges produced. The ratio ¢r/co is the
taper ratio A. Sometimes the reciprocal of this, namely co/ct, is taken as the taper
ratio. For most wings ct/co < 1.

Wing area

The plan-area of the wing including the continuation within the fuselage is the gross
wing area, Sg. The unqualified term wing area S is usually intended to mean this
gross wing area. The plan-area of the exposed wing, i.e. excluding the continuation
within the fuselage, is the net wing area, Sy.

Mean chords

A useful parameter, the standard mean chord or the geometric mean chord, is
denoted by ¢, defined by ¢ = Sg/b or Sn/b. It should be stated whether Sg or Sy is
used. This definition may also be written as

/ c dy
-5

+5
dy

C =
—s

where y is distance measured from the centre-line towards the starboard (right-hand
to the pilot) tip. This standard mean chord is often abbreviated to SMC.

Another mean chord is the aerodynamic mean chord (AMC), denoted by ca or ¢
and is defined by

+s
¢ dy

= ~s

CA="Fm —
/ cdy
-5

Aspect ratio

The aspect ratio is a measure of the narrowness of the wing planform. It is denoted by
A4, or sometimes by (4R), and is given by
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If both top and bottom of this expression are multiplied by the wing span, b, it
becomes:

»*  (span)?
A = =
bc area

a form which is often more convenient.

Sweep-back

The sweep-back angle of a wing is the angle between a line drawn along the span at a
constant fraction of the chord from the leading edge, and a line perpendicular to the
centre-line. It is usually denoted by either A or ¢. Sweep-back is commonly measured
on the leading edge (ALg or ¢pg), on the quarter-chord line, i.e. the line 1 of the chord
behind the leading edge (Aj/s or ¢1/4), or on the trailing edge (Atg or cer).

Dihedral angle

If an aeroplane is looked at from directly ahead, it is seen that the wings are not, in
general, in a single plane (in the geometric sense), but are instead inclined to each
other at a small angle. Imagine lines drawn on the wings along the locus of the
intersections between the chord lines and the section noses, as in Fig. 1.5. Then the
angle 2T" is the dihedral angle of the wings. If the wings are inclined upwards, they are
said to have dihedral, if inclined downwards they have anhedral.

Incidence, twist, wash-out and wash-in

When an aeroplane is in flight the chord lines of the various wing sections are not
normally parallel to the direction of flight. The angle between the chord line of a
given aerofoil section and the direction of flight or of the undisturbed stream is called
the geometric angle of incidence, .

Carrying this concept of incidence to the twist of a wing, it may be said that, if the
geometric angles of incidence of all sections are not the same, the wing is twisted. If
the incidence increases towards the tip, the wing has wash-in, whereas if the incidence
decreases towards the tip the wing has wash-out.

1.3.2 Aerofoil geometry

If a horizontal wing is cut by a vertical plane parallel to the centre-line, such as X-X
in Fig. 1.4, the shape of the resulting section is usually of a type shown in Fig. 1.6c.

r

Fig. 1.5 lilustrating the dihedral angle
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Fig. 1.6 Wing section geometry

This is an aerofoil section. For subsonic use, the aerofoil section has a rounded
leading edge. The depth increases smoothly to a maximum that usually occurs
between § and % way along the profile, and thereafter tapers off towards the rear of
the section.

If the leading edge is rounded it has a definite radius of curvature. It is therefore
possible to draw a circle of this radius that coincides with a very short arc of the
section where the curvature is greatest. The trailing edge may be sharp or it, too, may
have a radius of curvature, although this is normally much smaller than for the
leading edge. Thus a small circle may be drawn to coincide with the arc of maximum
curvature of the trailing edge, and a line may be drawn passing through the centres of
maximum curvature of the leading and trailing edges. This line, when produced to
intersect the section at each end, is called the chord line. The length of the chord line
is the aerofoil chord, denoted by c.

The point where the chord line intersects the front (or nose) of the section is used as
the origin of a pair of axes, the x-axis being the chord line and the y-axis being
perpendicular to the chord line, positive in the upward direction. The shape of the
section is then usually given as a table of values of x and the corresponding values of y.
These section ordinates are usually expressed as percentages of the chord, (100x/¢)%
and (100y/c)%.

Camber

At any distance along the chord from the nose, a point may be marked mid-way
between the upper and lower surfaces. The locus of all such points, usually curved, is
the median line of the section, usually called the camber line. The maximum height of
the camber line above the chord line is denoted by § and the quantity 1006/c% is
called the percentage camber of the section. Aerofoil sections have cambers that are
usually in the range from zero (a symmetrical section) to 5%, although much larger
cambers are used in cascades, e.g. turbine blading,.
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It is seldom that a camber line can be expressed in simple geometric or algebraic
forms, although a few simple curves, such as circular arcs or parabolas, have been
used.

Thickness distribution

Having found the median, or camber, ling, the distances from this line to the upper
and lower surfaces may be measured at any value of x. These are, by the definition of
the camber line, equal. These distances may be measured at all points along the chord
and then plotted against x from a straight line. The result is a symmetrical shape,
called the thickness distribution or symmetrical fairing.

An important parameter of the thickness distribution is the maximum thickness,
or depth, . This, when expressed as a fraction of the chord, is called the thickness/
chord ratio. It is commonly expressed as a percentage 100t/¢%. Current values in use
range from 13% to 18% for subsonic aircraft down to 3% or so for supersonic
aircraft.

The position along the chord at which this maximum thickness occurs is another
important parameter of the thickness distribution. Values usually lie between 30%
and 60% of the chord from the leading edge. Some older sections had the maximum
thickness at about 25% chord, whereas some more extreme sections have the max-
imum thickness more than 60% of the chord behind the leading edge.

It will be realized that any aerofoil section may be regarded as a thickness
distribution plotted round a camber line. American and British conventions differ
in the exact method of derivation of an aerofoil section from a given camber line and
thickness distribution. In the British convention, the camber line is plotted, and the
thickness ordinates are then plotted from this, perpendicular to the chord line. Thus
the thickness distribution is, in effect, sheared until its median line, initially straight,
has been distorted to coincide with the given camber line. The American convention
is that the thickness ordinates are plotted perpendicular to the curved camber line.
The thickness distribution is, therefore, regarded as being bent until its median line
coincides with the given camber line.

Since the camber-line curvature is generally very small the difference in aerofoil
section shape given by these two conventions is very small.

1.4 Dimensional analysis

1.4.1 Fundamental principles

The theory of dimensional homogeneity has additional uses to that described above.
By predicting how one variable may depend on a number of others, it may be used to
direct the course of an experiment or the analysis of experimental results. For
example, when fluid flows past a circular cylinder the axis of which is perpendicular
to the stream, eddies are formed behind the cylinder at a frequency that depends on a
number of factors, such as the size of the cylinder, the speed of the stream, etc.

In an experiment to investigate the variation of eddy frequency the obvious
procedure is to take several sizes of cylinder, place them in streams of various fluids
at a number of different speeds and count the frequency of the eddies in each case.
No matter how detailed, the results apply directly only to the cases tested, and it is
necessary to find some pattern underlying the results. A theoretical guide is helpful in
achieving this end, and it is in this direction that dimensional analysis is of use.
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In the above problem the frequency of eddies, n, will depend primarily on:

() the size of the cylinder, represented by its diameter, d
(ii) the speed of the stream, V
(i) the density of the fluid, p
(iv) the kinematic viscosity of the fluid, v.

It should be noted that either 4 or ¥ may be used to represent the viscosity of the
fluid.

The factors should also include the geometric shape of the body. Since the problem
here is concerned only with long circular cylinders with their axes perpendicular to
the stream, this factor will be common to all readings and may be ignored in this
analysis. It is also assumed that the speed is low compared to the speed of sound in
the fluid, so that compressibility (represented by the modulus of bulk elasticity) may
be ignored. Gravitational effects are also excluded.

Then

h= f(d: V7P’V)
and, assuming that this function (...) may be put in the form
n=Y_ CdVtpe/ (1.33)

where C is a constant and a, b, e and f are some unknown indices; putting Eqn (1.33)
in dimensional form leads to

[T~] = [LLT P (ML (AT )] (1.34)
where each factor has been replaced by its dimensions. Now the dimensions of both

sides must be the same and therefore the indices of M, L and T on the two sides of the
equation may be equated as follows:

Mass (M) O=e (1.35a)
Length (L) O0=a+b—3e+2f (1.35b)
Time (T) —-1=-b—f (1.35c)

Here are three equations in four unknowns. One unknown must therefore be left
undetermined: f, the index of v, is selected for this role and the equations are solved
for a, b and ¢ in terms of f.

The solution is, therefore,

b=1-f (1.35d)
e=0 (1.35¢)
a=—1—f (1.35f)

Substituting these values in Eqn (1.33),

n=>Y_ cd IV S (1.36)
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Rearranging Eqn (1.36), it becomes

n=>" cg (—I;‘f)_f (1.37)

)+

where g represents some function which, as it includes the undetermined constant C
and index f, is unknown from the present analysis.

Although it may not appear so at first sight, Eqn (1.38) is extremely valuable, as it
shows that the values of nd/V should depend only on the corresponding value of
Vd/v, regardless of the actual values of the original variables. This means that if, for
each observation, the values of nd/V and Vd/v are calculated and plotted as a graph,
all the results should lie on a single curve, this curve representing the unknown
function g. A person wishing to estimate the eddy frequency for some given cylinder,
fluid and speed need only calculate the value of Vd/v, read from the curve the
corresponding value of nd/V and convert this to eddy frequency n. Thus the results
of the series of observations are now in a usable form.

Consider for a moment the two compound variables derived above:

or, alternatively,

(a) nd/V. The dimensions of this are given by
M = L x (LT = LT = 1]

(b) Vd/v. The dimensions of this are given by

V4 _ (LT x Lx (LT = 1]

14

Thus the above analysis has collapsed the five original variables n, d, V, p and v
into two compound variables, both of which are non-dimensional. This has two
advantages: (i) that the values obtained for these two quantities are independent of
the consistent system of units used; and (ii) that the influence of four variables on a
fifth term can be shown on a single graph instead of an extensive range of graphs.

It can now be seen why the index f'was left unresolved. The variables with indices
that were resolved appear in both dimensionless groups, although in the group nd/V
the density p is to the power zero. These repeated variables have been combined in
turn with each of the other variables to form dimensionless groups.

There are certain problems, e.g. the frequency of vibration of a stretched string, in
which all the indices may be determined, leaving only the constant C undetermined.
It is, however, usual to have more indices than equations, requiring one index or
more to be left undetermined as above.

It must be noted that, while dimensional analysis will show which factors are not
relevant to a given problem, the method cannot indicate which relevant factors, if
any, have been left out. It is, therefore, advisable to include all factors likely to have
any bearing on a given problem, leaving out only those factors which, on a priori
considerations, can be shown to have little or no relevance.
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1.4.2 Dimensional analysis applied to aerodynamic force

In discussing aerodynamic force it is necessary to know how the dependent variables, aero-
dynamic force and moment, vary with the independent variables thought to be relevant.

Assume, then, that the aerodynamic force, or one of its components, is denoted by
F and when fully immersed depends on the following quantities: fluid density p, fluid
kinematic viscosity v, stream speed ¥, and fluid bulk elasticity K. The force and
moment will also depend on the shape and size of the body, and its orientation to the
stream. If, however, attention is confined to geometrically similar bodies, e.g.
spheres, or models of a given aeroplane to different scales, the effects of shape as
such will be eliminated, and the size of the body can be represented by a single typical
dimension; e.g. the sphere diameter, or the wing span of the model aeroplane,
denoted by D. Then, following the method above

F=f(V: D: oV, K)

1.39
=XCV DA Ke (1.39)

In dimensional form this becomes

ERICEIGIGIE)]

Equating indices of mass, length and time separately leads to the three equations:

(Mass) l=c+e (1.40a)
(Length) l=a+b—-3c+2d—e (1.400b)
(Time) —2=—a—d—2e (1.40c)

With five unknowns and three equations it is impossible to determine completely all
unknowns, and two must be left undetermined. These will be d and e. The variables
whose indices are solved here represent the most important characteristic of the body
(the diameter), the most important characteristic of the fluid (the density), and the
speed. These variables are known as repeated variables because they appear in each
dimensionless group formed.

The Eqns (1.40) may then be solved for g, b and ¢ in terms of d and e giving

a=2—d-2e
b=2-d
c=1—-e

Substituting these in Eqn (1.39) gives
F = VZ—d—ZeDZ——dpl—eVdKe

=szDz(V_Z)d (%) (1.41)

The speed of sound is given by Eqns (1.6b,d) namely,

2_w_X
pp
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Then
K= ()
pV:  pV2

v
and V/a is the Mach number, M, of the free stream. Therefore Eqn (1.41) may be
written as

F = pV2D%g (KUQ) h(M) (1.42)

where g(VD/v) and h(M) are undetermined functions of the stated compound vari-
ables. Thus it can be concluded that the aerodynamic forces acting on a family of
geometrically similar bodies (the similarity including the orientation to the stream),
obey the law

F . VD
p—mﬁ = functlon{T H M} (143)
This relationship is sometimes known as Rayleigh’s equation.

The term VD/v may also be written, from the definition of v, as pVD/u, as above in
the problem relating to the eddy frequency in the flow behind a circular cylinder. It is
a very important parameter in fluid flows, and is called the Reynolds number.

Now consider any parameter representing the geometry of the flow round the
bodies at any point relative to the bodies. If this parameter is expressed in a suitable
non-dimensional form, it can easily be shown by dimensional analysis that this
non-dimensional parameter is a function of the Reynolds number and the Mach
number only. If, therefore, the values of Re (a common symbol for Reynolds
number) and M are the same for a number of flows round geometrically similar
bodies, it follows that all the flows are geometrically similar in all respects, differing only in
geometric scale and/or speed. This is true even though some of the fluids may be gaseous
and the others liquid. Flows that obey these conditions are said to be dynamically similar,
and the concept of dynamic similarity is essential in wind-tunnel experiments.

It has been found, for most flows of aeronautical interest, that the effects of
compressibility can be disregarded for Mach numbers less than 0.3 to 0.5, and in
cases where this limit is not exceeded, Reynolds number may be used as the only
criterion of dynamic similarity.

Example 1.1 An aircraft and some scale models of it are tested under various conditions,
given below. Which cases are dynamically similar to the aircraft in flight, given as case (A)?

Case (A) Case (B) Case(C) Case (D) Case(E) Case(F)

Span (m) 15 3 3 1.5 1.5 3
Relative density 0.533 1 3 1 10 10
Temperature (°C) —24.6 +15 +15 +15 +15 +15
Speed (TAS) (ms~}) 100 100 100 75 54 54

Case (A) represents the full-size aircraft at 6000 m. The other cases represent models under test
in various types of wind-tunnel. Cases (C), (E) and (F), where the relative density is greater
than unity, represent a special type of tunnel, the compressed-air tunnel, which may be
operated at static pressures in excess of atmospheric.
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From the figures given above, the Reynolds number ¥ Dp/u may be calculated for each case.
These are found to be

Case (A) Re =5.52x 107 Case (D) Re =17.75 x 106
Case (B) Re=1.84 x 107 Case (E) Re =5.55 x 107
Case (C) Re =5.56 x 107 Case (F) Re=1.11 x 108

It is seen that the values of Re for cases (C) and (E) are very close to that for the full-size
aircraft. Cases (A), (C) and (E) are therefore dynamically similar, and the flow patterns in these
three cases will be geometrically similar. In addition, the ratios of the local velocity to the free
stream velocity at any point on the three bodies will be the same for these three cases. Hence,
from Bernoulli’s equation, the pressure coefficients will similarly be the same in these three
cases, and thus the forces on the bodies will be simply and directly related. Cases (B) and (D)
have Reynolds numbers considerably less than (A), and are, therefore, said to represent a
‘smaller aerodynamic scale’. The flows around these models, and the forces acting on them,
will not be simply or directly related to the force or flow pattern on the full-size aircraft. In case
(F) the value of Reis larger than that of any other case, and it has the largest aerodynamic scale
of the six.

Example 1.2 An aeroplane approaches to land at a speed of 40ms™! at sea level. A 1/5th
scale model is tested under dynamically similar conditions in a Compressed Air Tunnel (CAT)
working at 10 atmospheres pressure and 15°C. It is found that the load on the tailplane is
subject to impulsive fluctuations at a frequency of 20 cycles per second, owing to eddies being
shed from the wing-fuselage junction. If the natural frequency of flexural vibration of the
tailplane is 8.5 cycles per second, could this represent a dangerous condition?

For dynamic similarity, the Reynolds numbers must be equal. Since the temperature of
the atmosphere equals that in the tunnel, 15°C, the value of p is the same in both model and
full-scale cases. Thus, for similarity

Vfdfpf = dempm

In this case, then, since

Vi =40ms™!
40 x 1 x1=me%x 10 =2V,
giving
Vim =20ms™!
Now Eqn (1.38) covers this case of eddy shedding, and is
1 — g(Re)

For dynamic similarity
nd\ _ nd
|4 f B |4 m

nfx1_20x§
4 20

giving ny = 8 cycles per second

Therefore
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This is very close to the given natural frequency of the tailplane, and there is thus a consider-
able danger that the eddies might excite sympathetic vibration of the tailplane, possibly leading
to structural failure of that component. Thus the shedding of eddies at this frequency is very
dangerous to the aircraft.

Example 1.3 An aircraft flies at a Mach number of 0.85 at 18 300m where the pressure is
7160 Nm~2 and the temperature is —56.5°C. A model of 1/10th scale is to be tested in a high-
speed wind-tunnel. Calculate the total pressure of the tunnel stream necessary to give dynamic
similarity, if the total temperature is 50 °C. It may be assumed that the dynamic viscosity is

related to the temperature as follows:
L T\ 4
= (&)

where Ty = 273°C and  po = 1.71 x 103 kgm~!s~!

() Full-scale aircraft

M =085, a=20.05(273 — 56.5)"/* = 297ms~!
¥V =0.85x%x297 =252ms™!

_p _ 7160
P = RT ~ 2873 x 2165

34
Ko =(_2£) =1.19

=0.1151kgm™

L \216.5
p= i—g x107° =144 x 10~ kgm ' s~

Consider a dimension that, on the aircraft, has a length of 10 m. Then, basing the Reynolds
number on this dimension:

_Vdp 252 x 10 x 0.1151

_ 6
= T Taaxios 20210

.REf

(i) Model
Total temperature 75 = 273 4+ 50 = 323K

Therefore at M = 0.85:

T . 1 2 _
7= 1+5(085)" = 1.1445
T =282K

Therefore
a=20.05 x (282)"/* =337ms™"!

¥ =0.85 % 337 =287ms™!

3/4
_/%: @—%) = 1.0246
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giving
pw=1.71%1.0246 x 1075 = 1.751 x 10 kgm ™' s~
For dynamic similarity the Reynolds numbers must be equal, i.e.

7 x1xp o
T75x105 20.2 x 10
giving
p=123kgm™*
Thus the static pressure required in the test section is
p=pRT =123 x287.3 x 282 =99500Nm?

The total pressure p; is given by

3.5
%: (1 +%M2) = (1.1445)*% = 1.605

Ps = 99500 x 1.605 = 160 000 Nm™?

If the total pressure available in the tunnel is less than this value, it is not possible to achieve
equality of both the Mach and Reynolds numbers. Either the Mach number may be achieved
at a lower value of Re or, alternatively, Re may be made equal at a lower Mach number. In
such a case it is normally preferable to make the Mach number correct since, provided the
Reynolds number in the tunnel is not too low, the effects of compressibility are more important
than the effects of aerodynamic scale at Mach numbers of this order. Moreover, techniques are
available which can alleviate the errors due to unequal aerodynamic scales.

In particular, the position at which laminar-turbulent transition (see Section 7.9) of the
boundary layer occurs at full scale can be fixed on the model by roughening the model surface.
This can be done by gluing on a line of carborundum powder.

1.5 Basic aerodynamics

1.5.1 Aerodynamic force and moment

Air flowing past an aeroplane, or any other body, must be diverted from its original
path, and such deflections lead to changes in the speed of the air. Bernoulli’s equation
shows that the pressure exerted by the air on the aeroplane is altered from that of the
undisturbed stream. Also the viscosity of the air leads to the existence of frictional
forces tending to resist its flow. As a result of these processes, the aeroplane experiences
a resultant aerodynamic force and moment. It is conventional and convenient to
separate this aerodynamic force and moment into three components each, as follows.

Lift, L(-2)

This is the component of force acting upwards, perpendicular to the direction of
flight or of the undisturbed stream. The word ‘upwards’ is used in the same sense that
the pilot’s head is above his feet. Figure 1.7 illustrates the meaning in various
attitudes of flight. The arrow V represents the direction of flight, the arrow L
represents the lift acting upwards and the arrow W the weight of the aircraft, and
shows the downward vertical. Comparison of (a) and (¢) shows that this upwards is
not fixed relative to the aircraft, while (a), (b), and (d) show that the meaning is not
fixed relative to the earth. As a general rule, if it is remembered that the lift is always
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L v .
1’4 \
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(a) High speed level flight (b) Climbing flight
L L
14
<
w w
{c) Low speed level flight (d) Banked circling flight

Fig. 1.7 The direction of the lift force

a component perpendicular to the flight direction, the exact direction in which the lift
acts will be obvious, particularly after reference to Fig. 1.7. This may not apply to
certain guided missiles that have no obvious top or bottom, and the exact meaning of
‘up’ must then be defined with care.

Drag, D{-X)

This is the component of force acting in the opposite direction to the line of flight, or
in the same direction as the motion of the undisturbed stream. It is the force that resists
the motion of the aircraft. There is no ambiguity regarding its direction or sense.

Cross-wind force, Y

This is the component of force mutually perpendicular to the lift and the drag, i.e. in
a spanwise direction. It is reckoned positive when acting towards the starboard
(right-hand to the pilot) wing-tip.

Pitching moment, M

This is the moment acting in the plane containing the lift and the drag, i.e. in the
vertical plane when the aircraft is flying horizontally. It is positive when it tends to
increase the incidence, or raise the nose of the aircraft upwards (using this word in the
sense discussed earlier).

Rolling moment, Ly

This is the moment tending to make the aircraft roll about the flight direction, i.e.
tending to depress one wing-tip and to raise the other. It is positive when it tends to
depress the starboard wing-tip.

Yawing moment, N

This is the moment that tends to rotate the aircraft about the lift direction, i.e. to
swing the nose to one side or the other of the flight direction. It is positive when it
swings, or tends to swing, the nose to the right (starboard).



28 Aerodynamics for Engineering Students

L Lift
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Y force D Drag
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Pitching M
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moment

Fig. 1.8 The systems of force and moment components. The broad arrows represent forces used in
elementary work; the line arrows, the system in control and stability studies. The moments are common to
both systems

The relation between these components is shown in Fig. 1.8. In each case the arrow
shows the direction of the positive force or moment. All three forces are mutually
perpendicular, and each moment acts about the line of one of the forces.

The system of forces and moments described above is conventionally used for
performance analysis and other simple problems. For aircraft stability and control
studies, however, it is more convenient to use a slightly different system of forces.

1.5.2 Force and moment coefficients

The non-dimensional quantity F/(p¥2S) (c.f. Eqn 1.43) (where F is an aerodynamic
force and S is an area) is similar to the type often developed and used in aerody-
namics. It is not, however, used in precisely this form. In place of p¥? it is conven-
tional for incompressible flow to use %sz, the dynamic pressure of the free-stream
flow. The actual physical area of the body, such as the planform area of the wing, or
the maximum cross-sectional area of a fuselage is usually used for S. Thus aero-
dynamic force coefficient is usually defined as follows:

F

S 44
Cr =155 (1.44)

The two most important force coefficients are the lift and drag coefficients, defined by:

lift coefficient C;, = lift/§ pV2S (1.44a)
drag coefficient Cp = drag/ipV2S (1.44b)

When the body in question is a wing the area S is almost invariably the planform
area as defined in Section 1.3.1. For the drag of a body such as a fuselage, sphere or
cylinder the area S is usually the projected frontal area, the maximum cross-sectional
area or the (volume)?>. The area used for definition of the lift and drag coefficients of
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such a body is thus seen to be variable from case to case, and therefore needs to be
stated for each case.

The impression is sometimes formed that lift and drag coefficients cannot exceed
unity. This is not true; with modern developments some wings can produce lift
coefficients based on their plan-area of 10 or more.

Aerodynamic moments also can be expressed in the form of non-dimensional
coefficients. Since a moment is the product of a force and a length it follows that a
non-dimensional form for a moment is Q/p¥?2Sl, where Q is any aerodynamic
moment and / is a reference length. Here again it is conventional to replace p¥? by
1 p¥2. In the case of the pitching moment of a wing the area is the plan-area S and the
ength is the wing chord ¢ or ¢ (see Section 1.3.1). Then the pitching moment
coefficient Cys is defined by

M

Cy=——m 1.45
M %szSE (1.45)

1.5.3 Pressure distribution on an aerofoil

The pressure on the surface of an aerofoil in flight is not uniform. Figure 1.9 shows some
typical pressure distributions for a given section at various angles of incidence. It is
convenient to deal with non-dimensional pressure differences with p,,, the pressure far
upstream, being used as the datum. Thus the coefficient of pressure is introduced below

— (P _poo)
3oV

Looking at the sketch for zero incidence (a = 0) it is seen that there are small regions
at the nose and tail where Cj, is positive but that over most of the section Cj, is
negative. At the trailing edge the pressure coefficient comes close to +1 but does not
actually reach this value. More will be said on this point later. The reduced pressure
on the upper surface is tending to draw the section upwards while that on the lower

(a) Incidence=0°
() Incidence = 6°

Co

Length of arrows a G,

§ denotes C;, at stagnation
where Cpg=unity

Direction of arrows indicates positive
or negative Cyg

(¢ ) Incidence =15°

Fig. 1.9 Typical pressure distributions on an aerofoil section
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surface has the opposite effect. With the pressure distribution as sketched, the effect
on the upper surface is the larger, and there is a resultant upwards force on the
section, that is the lift.

As incidence is increased from zero the following points are noted:

(i) the pressure reduction on the upper surface increases both in intensity and extent
until, at large incidence, it actually encroaches on a small part of the front lower
surface;

(ii) the stagnation point moves progressively further back on the lower surface, and
the increased pressure on the lower surface covers a greater proportion of the
surface. The pressure reduction on the lower surface is simultaneously decreased
in both intensity and extent.

The large negative values of Cj, reached on the upper surface at high incidences, e.g.
15 degrees, are also noteworthy. In some cases values of —6 or —7 are found. This
corresponds to local flow speeds of nearly three times the speed of the undisturbed
stream.

From the foregoing, the following conclusions may be drawn:

(i) at low incidence the lift is generated by the difference between the pressure
reductions on the upper and lower surfaces;

(ii) at higher incidences the lift is partly due to pressure reduction on the upper
surface and partly due to pressure increase on the lower surface.

At angles of incidence around 18° or 20° the pressure reduction on the upper
surface suddenly collapses and what little lift remains is due principally to the
pressure increase on the lower surface. A picture drawn for one small negative
incidence (for this aerofoil section, about —4°) would show equal suction effects on
the upper and lower surfaces, and the section would give no lift. At more negative
incidences the lift would be negative.

The relationship between the pressure distribution and the drag of an aerofoil
section is discussed later (Section 1.5.5).

1.5.4 Pitching moment

The pitching moment on a wing may be estimated experimentally by two principal
methods: direct measurement on a balance, or by pressure plotting, as described in
Section 1.5.6. In either case, the pitching moment coefficient is measured about some
definite point on the aerofoil chord, while for some particular purpose it may be
desirable to know the pitching moment coefficient about some other point on the chord.
To convert from one reference point to the other is a simple application of statics.

Suppose, for example, the lift and drag are known, as also is the pitching moment
M, about a point distance a from the leading edge, and it is desired to find the
pitching moment M, about a different point, distance x behind the leading edge. The
situation is then as shown in Fig. 1.10. Figure 1.10a represents the known conditions,
and Fig. 1.10b the unknown conditions. These represent two alternative ways of
looking at the same physical system, and must therefore give identical effects on the
aerofoil.

Obviously, then, L = L and D = D.
Taking moments in each case about the leading edge:

Mg=M,—Lacosa—Dasina=M, — Lx cosa — Dx sina
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{(b)

Fig. 1.10

then
My =M, — (Lcosa+ D sina)(a— x)

Converting to coefficient form by dividing by 1 pV2Sc gives

Cyt, = Cy, — (Cr cosa + Cp sina) (g —g) (1.46)

With this equation it is easy to calculate Cys,, for any value of x/c. As a particular
case, if the known pitching moment coefficient is that about the leading edge, Cyy,,,
then a = 0, and Eqn (1.46) becomes

Cut. = Cog +§(CL cosa + Cp sina) (1.47)

Aerodynamic centre

If the pitching moment coefficient at each point along the chord is calculated for each
of several values of Cy, one very special point is found for which Cj is virtually
constant, independent of the lift coefficient. This point is the aerodynamic centre.
For incidences up to 10 degrees or so it is a fixed point close to, but not in general on,
the chord line, between 23% and 25% of the chord behind the leading edge.

For a flat or curved plate in inviscid, incompressible flow the aerodynamic centre is
theoretically exactly one quarter of the chord behind the leading edge; but thickness
of the section, and viscosity of the fluid, tend to place it a few per cent further
forward as indicated above, while compressibility tends to move it backwards. For a
thin aerofoil of infinite aspect ratio in supersonic flow the aerodynamic centre is
theoretically at 50% chord.

Knowledge of how the pitching moment coefficient about a point distance a
behind the leading edge varies with Cr may be used to find the position of the
aerodynamic centre behind the leading edge, and also the value of the pitching
moment coefficient there, Cy,.. Let the position of the aerodynamic centre be a
distance xac behind the leading edge. Then, with Eqn (1.46) slightly rearranged,

Cu, = Cupc — (Crcosa+ Cpsina) (% - g)
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Now at moderate incidences, between say 3° and 7°:
Cp =0[20Cp] and cosa = O[10sinc]

where the symbol O[ ] means of the order of, i.e. Cy is of the order of 20 times
C D Then.

Crcosa = 0200 Cp sin ¢

and therefore Cp sin a can be neglected compared with C; cos a. With this approx-
imation and the further approximation cos a = 1,

- _c,(Fac 8
Cut, = Chuc CL( ; c) (1.48)
Differentiating Eqn (1.48) with respect to C;, gives
d _ d XACc 4
E(CM“) T dcy (Chanc) ( c c)

But the aerodynamic centre is, by definition, that point about which Cj, is independent
of Cr, and therefore the first term on the right-hand side is identically zero, so that

d _ XAC @\ _ 4 XAC
d_CL_(CM")_O (c _c)—c c (149)

Xac a d
—=—-—-—(C 1.50
2 o (Cn) (1.50)
If, then, Cy, is plotted against C;, and the slope of the resulting line is measured,
subtracting this value from a/c gives the aerodynamic centre position xac/c.
In addition if, in Eqn (1.48), C; is made zero, that equation becomes

Cu, = Cic (1.51)

i.e. the pitching moment coefficient about an axis at zero lift is equal to the constant
pitching moment coefficient about the aerodynamic centre. Because of this associa-
tion with zero lift, Cpy,. is often denoted by Cyy,.

Example 1.4 For a particular aerofoil section the pitching moment coefficient about an axis
1/3 chord behind the leading edge varies with the lift coefficient in the following manner:

Cy, 0.2 0.4 0.6 0.8
Cym —0.02 0.00 +0.02 +0.04

Find the aerodynamic centre and the value of Cyy,.
It is seen that Cys varies linearly with Cy,, the value of dCys/dCy, being

0.04 — (0.02) 006
080-020 ~ Togo 1010

Therefore, from Eqn (1.50), with a/c = 1/3

e _1_10=0233
c 3

The aerodynamic centre is therefore at 23.3% chord behind the leading edge. Plotting Cys
against Cy. gives the value of Cyy,, the value of Cyy when Cp = 0, as —0.04.
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A particular case is that when the known values of Cjs are those about the leading
edge, namely Cyy, .. In this case @ = 0 and therefore

me__ 4
~ " dq (Cuyz) (1.52)

Taking this equation with the statement made earlier about the normal position of
the aerodynamic centre implies that, for all aerofoils at low Mach numbers:

d 1
ECTL(CMLE)ﬁ _Z (153)

Centre of pressure

The aerodynamic forces on an aerofoil section may be represented by a lift, a
drag, and a pitching moment. At each value of the lift coefficient there will be
found to be one particular point about which the pitching moment coefficient is
zero, and the aerodynamic effects on the aerofoil section may be represented by
the lift and the drag alone acting at that point. This special point is termed the
centre of pressure.

Whereas the aerodynamic centre is a fixed point that always lies within the profile
of a normal aerofoil section, the centre of pressure moves with change of lift
coefficient and is not necessarily within the aerofoil profile. Figure 1.11 shows the
forces on the aerofoil regarded as either

(a) lift, drag and moment acting at the aerodynamic centre; or
(b) lift and drag only acting at the centre of pressure, a fraction kcp of the chord
behind the leading edge.

Then, taking moments about the leading edge:
Mg = Mac — (L cosa+ D sina)xac = —(L cosa + D sin a)kcpe
Dividing this by 5 p#"2Sc, it becomes

Ciac — (Crcosa+ Cpsin a)xATC = —(Crcosa + Cp sin a)kcp

giving

XAC Cu,
ko — 2AC AC 1.
ce c Crcosa+ Cpsina (1.54)

{(a) (b)

Fig. 1.11 Determination of the centre of pressure position
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Apgain making the approximations that cosa ~ 1 and Cp sin a can be ignored, the
Eqn (1.54), above, becomes

xac Cu,
kcp="2= A€ .55
o i Cll (1.55

At first sight this would suggest that kcp is always less than xsc/c. However, Cy, . is
almost invariably negative, so that in fact kcp is numerically greater than xac/c and
the centre of pressure is behind the aerodynamic centre.

Example 1.5 For the aerofoil section of Example 1.4, plot a curve showing the approximate
variation of the position of centre of pressure with lift coefficient, for lift coefficients between
zero and unity. For this case:
kcp =0.233 — (—0.04/C})
=0.233 + (0.04/Cy)

The corresponding curve is shown as Fig. 1.12. It shows that kcp tends asymptotically to xac as
C}, increases, and tends to infinity behind the aerofoil as Cy, tends to zero. For values of Cy, less
than 0.05 the centre of pressure is actually behind the aerofoil.

For a symmetrical section (zero camber) and for some special camber lines, the pitching
moment coefficient about the aerodynamic centre is zero. It then follows, from Eqn (1.55), that
kcp = xac/c, i.e. the centre of pressure and the aerodynamic centre coincide, and that for

moderate incidences the centre of pressure is therefore stationary at about the quarter-chord
point.

L
1,0
0.9}
o.sf
0.7}
0.6}
0.5}
0.4
0.3}
0.2}
o}

Aerodynamic centre

T

0 0. 0203 040506 07 0809 1.0 .l 1.2 .3 1.4
LE Kep TE

Fig. 1.12 Centre of pressure position for Example 1.5
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1.5.5 Types of drag

Attempts have been made to rationalize the definitions and terminology associated
with drag*. On the whole the new terms have not been widely adopted. Here we will use
the widely accepted traditional terms and indicate alternatives in parentheses.

Total drag

This is formally defined as the force corresponding to the rate of decrease in momen-
tum in the direction of the undisturbed external flow around the body, this decrease
being calculated between stations at infinite distances upstream and downstream of the
body. Thus it is the total force or drag in the direction of the undisturbed flow. It is also
the total force resisting the motion of the body through the surrounding fluid.

There are a number of separate contributions to total drag. As a first step it may be
divided into pressure drag and skin-friction drag.

Skin-friction drag (or surface-friction drag)

This is the drag that is generated by the resolved components of the traction due to the
shear stresses acting on the surface of the body. This traction is due directly to viscosity
and acts tangentially at all points on the surface of the body. At each point it has a
component aligned with but opposing the undisturbed flow (i.e. opposite to the direction
of flight). The total effect of these components, taken (i.e. integrated) over the whole
exposed surface of the body, is the skin-friction drag. It could not exist in an invisicid flow.

Pressure drag

This is the drag that is generated by the resolved components of the forces due to
pressure acting normal to the surface at all points. It may itself be considered as
consisting of several distinct contributions:

(1) Induced drag (sometimes known as vortex drag);
(i) Wave drag; and
(iii) Form drag (sometimes known as boundary-layer pressure drag).

Induced drag (or vortex drag)

This is discussed in more detail in Sections 1.5.7 and 5.5. For now it may be noted
that induced drag depends on lift, does not depend directly on viscous effects, and
can be estimated by assuming inviscid flow.

Wave drag

This is the drag associated with the formation of shock waves in high-speed flight.
It is described in more detail in Chapter 6.

Form drag (or boundary-layer pressure drag)
This can be defined as the difference between the profile drag and the skin-friction
drag where the former is defined as the drag due to the losses in total pressure and

*For example, the deronautical Research Committee Current Paper No. 369 which was also published in
the Journal of the Royal Aeronautical Society, November 1958.
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=2
{a)

Fig. 1.13 (a) The displacement thickness of the boundary layer (hatched area) represents an effective
change to the shape of the aerofoil. (Boundary-layer thickness is greatly exaggerated in this sketch.)
(b} Pressure-distribution on an aerofoil section in viscous flow (dotted line) and inviscid flow {full line)

total temperature in the boundary layers. But these definitions are rather unhelpful
for giving a clear idea of the physical nature and mechanisms behind form drag, so a
simple explanation is attempted below.

The pressure distribution over a body in viscous flow differs from that in an ideal
inviscid flow (Fig. 1.13). If the flow is inviscid, it can be shown that the flow speed at
the trailing edge is zero, implying that the pressure coefficient is +1. But in a real flow
(see Fig. 1.13a) the body plus the boundary-layer displacement thickness has a finite
width at the trailing edge, so the flow speed does not fall to zero, and therefore the
pressure coefficient is less than +1. The variation of coefficient of pressure due to real
flow around an aerofoil is shown in Fig. 1.13b. This combines to generate a net
drag as follows. The relatively high pressures around the nose of the aerofoil tend to
push it backwards. Whereas the region of the suction pressures that follows, extend-
ing up to the point of maximum thickness, act to generate a thrust pulling the aerofoil
forwards. The region of suction pressures downstream of the point of maximum
thickness generates a retarding force on the aerofoil, whereas the relatively high-
pressure region around the trailing edge generates a thrust. In an inviscid flow, these
various contributions cancel out exactly and the net drag is zero. In a real viscous
flow this exact cancellation does not occur. The pressure distribution ahead of the
point of maximum thickness is little altered by real-flow effects. The drag generated
by the suction pressures downstream of the point of maximum thickness is slightly
reduced in a real flow. But this effect is greatly outweighed by a substantial reduction
in the thrust generated by the high-pressure region around the trailing edge. Thus the
exact cancellation of the pressure forces found in an inviscid flow is destroyed in a
real flow, resulting in an overall rearwards force. This force is the form drag.

It is emphasized again that both form and skin-friction drag depend on viscosity
for their existence and cannot exist in an inviscid flow.

Profile drag (or boundary-layer drag)

The profile drag is the sum of the skin-friction and form drags. See also the formal
definition given at the beginning of the previous item.

Comparison of drags for various types of body

Normal flat plate (Fig. 1.14)

In the case of a flat plate set broadside to a uniform flow, the drag is entirely form
drag, coming mostly from the large negative pressure coefficients over the rear face.
Although viscous tractions exist, they act along the surface of the plate, and therefore
have no rearwards component to produce skin-friction drag.
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Fig. 1.14 Pressure on a normal flat plate

Parallel flat plate (Fig. 1.15)

In this case, the drag is entirely skin-friction drag. Whatever the distribution of
pressure may be, it can have no rearward component, and therefore the form drag
must be zero.

Circular cylinder (Fig. 1.16)

Figure 1.16 is a sketch of the distribution of pressure round a circular cylinder in
inviscid flow (solid lines) (see Section 3.3.9 below) and in a viscous fluid (dotted
lines). The perfect symmetry in the inviscid case shows that there is no resultant force
on the cylinder. The drastic modification of the pressure distribution due to viscosity
is apparent, the result being a large form drag. In this case, only some 5% of the drag
is skin-friction drag, the remaining 95% being form drag, although these proportions
depend on the Reynolds number.

Aerofoil or streamlined strut

The pressure distributions for this case are given in Fig. 1.13. The effect of viscosity
on the pressure distribution is much less than for the circular cylinder, and the form
drag is much lower as a result. The percentage of the total drag represented by skin-
friction drag depends on the Reynolds number, the thickness/chord ratio, and
a number of other factors, but between 40% and 80% is fairly typical.

T e i
—_ e g — =

Fig. 1.15 Viscous tractions on a tangential flat plate

_ Inviscid
flow

-~—— Real fluid,
Re >I08

Fig. 1.16 Pressure on a circular cylinder with its axis normal to the stream (see also Fig. 3.23)



38 Aerodynamics for Engineering Students

————
= —

(a)

{b)

/—\\ —_—— Arproximate edge
0

wake

T
e mly
M M

Fig. 1.17 The behaviour of smoke filaments in the flows past various bodies, showing the wakes.
(a) Normal flat plate. In this case the wake oscillates up and down at several cycles per second. Half a
cycle later the picture would be reversed, with the upper filaments curving back as do the lower filaments
in this sketch. (b) Flat plate at fairly high incidence. (c) Circular cylinder at low Re. For pattern at higher Re,
see Fig. 7.14. (d) Aerofoil section at moderate incidence and low Re

The wake

Behind any body moving in air is a wake, just as there is a wake behind a ship.
Although the wake in air is not normally visible it may be felt, as when, for example,
a bus passes by. The total drag of a body appears as a loss of momentum and increase
of energy in this wake. The loss of momentum appears as a reduction of average flow
speed, while the increase of energy is seen as violent eddying (or vorticity) in the
wake. The size and intensity of the wake is therefore an indication of the profile drag

of the body. Figure 1.17 gives an indication of the comparative widths of the wakes
behind a few bodies.

1.5.6 Estimation of the coefficients of lift, drag and pitching
moment from the pressure distribution

Let Fig. 1.18 represent an aerofoil at an angle of incidence « to a fluid flow travelling
from left to right at speed V. The axes Ox and Oz are respectively aligned along and
perpendicular to the chord line. The chord length is denoted by c.

Taking the aerofoil to be a wing section of constant chord and unit spanwise
length, let us consider the forces acting on a small element of the upper aerofoil
surface having length 8s. The inward force perpendicular to the surface is given by
pubs. This force may be resolved into components 6X and 6Z in the x and z
directions. It can be seen that

6Z, = —p,cose (1.56)
and from the geometry

dscose = bx (1.57)
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4

=
Fig. 1.18 Normal pressure force on an element of aerofail surface

so that
6Z, = —pubx per unit span
Similarly, for the lower surface
6Z¢ = pebx per unit span

We now add these two contributions and integrate with respect to x between x = 0

and x = ¢ to get
4 4
z=—/ pudx-l-/pedx
0 0

But we can always subtract a constant pressure from both p, and p; without altering
the value of Z, so we can write

Z= —/Oc(p,,—px)dx—I-/oc(pg—poc)dx (1.58)

where p, is the pressure in the free stream (we could equally well use any other
constant pressure, e.g. the stagnation pressure in the free stream).

Equation (1.58) can readily be converted into coefficient form. Recalling that the
aerofoil section is of unit span, the area S = 1 x ¢ = ¢, so we obtain

VA 1 ¢
Cz= =- —Poo) — — d
2= Lovae= o7 ) (u =P~ e =Pl
Remembering that (1/c)dx = d(x/c) and that the definition of pressure coefficient is
_ D — P
P %sz

we see that

1
Cp=— / (Cpy — Coe)d(x/0) (1.59)
0
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or, simply

Cz = fé Cpcosed(s/c) = fé Cpd(x/c), (1.59b)

where the contour integral is evaluated by following an anti-clockwisc direction
around the contour C of the aerofoil.
Similar arguments lead to the following relations for X

6X, = p,bs sing, b6X¢ = pebs sing, bssine = 6z,
giving
Zmy
Cx = f Cpsined(s/c) = f Cod(z/c) = / acd(2), (1.60)
C C Zme c

where z,, and zp, are respectively the maximum and minimum values of z, and AC,
is the difference between the values of C, acting on the fore and rear points of an
aerofoil for a fixed value of z.

The pitching moment can also be calculated from the pressure distribution. For
simplicity, the pitching moment about the leading edge will be calculated. The
contribution due to the force §Z acting on a slice of aerofoil of length éx is given by

6M = (py — pe)x6x = [(Pu — Poo) — (P& — Poo)]X6x;
so, remembering that the coefficient of pitching moment is defined as

M M
~1pv2Sc Lpv2c?

Cu in this case, as S = ¢,

the coefficient of pitching moment due to the Z force is given by

Cumz = —?g Cpgd(g) = /Oc[cpu - Cpe]gd(g) (1.61)

Similarly, the much smaller contribution due to the X force may be obtained as

Cux = "?ﬁ Cp sine%d(%) =

The integrations given above are usually performed using a computer or graphically.

The force coefficients Cx and Cz are parallel and perpendicular to the chord line,
whereas the more usual coefficients C;, and Cp are defined with reference to the
direction of the free-stream air flow. The conversion from one pair of coefficients to
the other may be carried out with reference to Fig. 1.19, in which, Cg, the coefficient
of the resultant aerodynamic force, acts at an angle v to Cz. Cg is both the resultant
of Cy and Cz, and of C; and Cp; therefore from Fig. 1.19 it follows that

¥4

" ac,24(%) (1.62)

Zme

Cr. = Crcos(y+a) = Crcosvycosa — Crsinysina
But Cr cosy = Cz and Cgsiny = Cy, so that
Cr =Cz cosa— Cysina. (1.63)
Similarly

Cp = Crsin(a+4) = Czsina + Cycos o (1.64)



Basic concepts and definitions 41

Fig. 1.19

The total pitching moment coefficient is
CM:CM;"'CMx (165)

In Fig. 1.20 are shown the graphs necessary for the evaluation of the aerodynamic
coefficients for the mid-section of a three-dimensional wing with an ellipto-
Zhukovsky profile.

1.5.7 Induced drag

Section 5.5 below should also be referred to. Consider what is happening at some
point y along the wing span (Fig. 1.21). Each of the trailing vortices produces a
downwards component of velocity, w, at y, known as the downwash or induced
velocity (see Section 5.5.1). This causes the flow over that section of the wing to
be inclined slightly downwards from the direction of the undisturbed stream V'
(Fig. 1.22) by the angle ¢, the induced angle of incidence or downwash angle. The
local flow is also at a slightly different speed, q.

If the angle between the aerofoil chord line and the direction of the undisturbed
stream, the geometric angle of incidence, is o, it is seen that the angle between the
chord line and the actual flow at that section of the wing is equal to a—e¢, and this is
called the effective incidence a. It is this effective incidence that determines the lift
coefficient at that section of the wing, and thus the wing is lifting less strongly than
the geometric incidence would suggest. Since the circulation and therefore w and ¢
increase with lift coefficient, it follows that the lift of a three-dimensional wing
increases less rapidly with incidence than does that for a two-dimensional wing,
which has no trailing vortices.

Now the circulation round this section of the wing will have a value T' appro-
priate to a, and the lift force corresponding to this circulation will be pgl" per
unit length, acting perpendicular to the direction of ¢ as shown, i.e. inclined
backwards from the vertical by the angle . This force therefore has a component
perpendicular to the undisturbed stream V, that, by definition, is called the lift,
and is of magnitude

I = pgl’ cose = qu‘% = pVT per unit length

There is also a rearwards component of magnitude
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Ellipto-Zhulovsky section at the mid-section of a three-dimensional wing.
Geometric incidence=6"
Reynolds number=4.8x10°
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Upper surface
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Cy=—0.024

Lower surface

Fig. 1.20 Pressure distribution on an aerofoil surface

d=pql sineg = pq]."% = pwl per unit length

This rearwards component must be reckoned as a drag and is, in fact, the induced
drag. Thus the induced drag arises essentially from the downwards velocity induced
over the wing by the wing-tip vortices.
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C; = Czco8 a—Cy sin a = +0-402
Cp = Cysin a+ Cxcos a = +0-0182

Cry = Cra,+ Cry = —0-096

dCp/dCy = 0-24

Fig. 1.20 (Continued}
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Fig. 1.21 The simplified horseshoe vortex system



44  Aerodynamics for Engineering Students

Fig. 1.22 Flow conditions and forces at a section of a three-dimensional lifting wing

The further apart the wing-tip vortices the less will be their effectiveness in producing
induced incidence and drag. It is therefore to be expected that these induced quantities
will depend on the wing aspect ratio, (AR). Some results obtained in Chapter 5 below are:

C_,_ o
da 1+ ax/m(4R)
where 4., is the lift curve slope for the two-dimensional wing, and the trailing vortex
drag coefficient Cp, is given by
Dy c?

Cou =5 = (19 (Ban(550))

where § is a small positive number, constant for a given wing.

(Eqn(5.64))

1.5.8 Lift-dependent drag

It has been seen that the induced drag coefficient is proportional to C2, and may exist
in an inviscid fluid. On a complete aircraft, interference at wing/fuselage, wing/
engine-nacelle, and other such junctions leads to modification of the boundary layers
over the isolated wing, fuselage, etc. This interference, which is actually part of the
profile drag, usually varies with the lift coefficient in such a manner that it may be
treated as of the form (a+ 5C%). The part of this profile drag coefficient which is
represented by the term (bC?) may be added to the induced drag. The sum so
obtained is known as the lift-dependent drag coefficient. The lift-dependent drag
is actually defined as ‘the difference between the drag at a given lift coefficient and
the drag at some datum lift coefficient’.

If this datum lift coefficient is taken to be zero, the total drag coefficient of a
complete aeroplane may be taken, to a good approximation in most cases, as

Cp = Cp, +kC2

where Cp, is the drag coefficient at zero lift, and kC? is the lift-dependent drag
coefficient, denoted by Cp,.

1.5.9 Aerofoil characteristics
Lift coefficient: incidence

This variation is illustrated in Fig. 1.23 for a two-dimensional (infinite span) wing.
Considering first the full curve (a) which is for a moderately thick (13%) section of
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Fig. 1.23 Typical lift curves for sections of moderate thickness and various cambers

zero camber, it is seen to consist of a straight line passing through the origin, curving
over at the higher values of C;, reaching a maximum value of Cy__ at an incidence of
a5, known as the stalling point. After the stalling point, the lift coefficient decreases,
tending to level off at some lower value for higher incidences. The slope of
the straight portion of the curve is called the two-dimensional lift-curve slope,
(dCr/da),, or ax. Its theoretical value for a thin section (strictly a curved or flat
plate) is 27 per radian (see Section 4.4.1). For a section of finite thickness in air, a
more accurate empirical value is

dC;, t
(d—a)m_ 1.87r(1 + 0.82) (1.66)

The value of Cy__ is a very important characteristic of the aerofoil since it determines
the minimum speed at which an aeroplane can fly. A typical value for the type of
aerofoil section mentioned is about 1.5. The corresponding value of o would be
around 18°.

Curves (b) and (c) in Fig. 1.23 are for sections that have the same thickness
distribution but that are cambered, (c) being more cambered than (b). The effect of
camber is merely to reduce the incidence at which a given lift coefficient is produced,
i.e. to shift the whole lift curve somewhat to the left, with negligible change in the
value of the lift-curve slope, or in the shape of the curve. This shift of the curve is
measured by the incidence at which the lift coefficient is zero. This is the no-lift
incidence, denoted by oy, and a typical value is —3°. The same reduction occurs in ¢.
Thus a cambered section has the same value of C;__ as does its thickness distribu-
tion, but this occurs at a smaller incidence.

Modern, thin, sharp-nosed sections display a slightly different characteristic to the
above, as shown in Fig. 1.24. In this case, the lift curve has two approximately
straight portions, of different slopes. The slope of the lower portion is almost the
same as that for a thicker section but, at a moderate incidence, the slope takes a
different, smaller value, leading to a smaller value of C;_,_, typically of the order of
unity. This change in the lift-curve slope is due to a change in the type of flow near
the nose of the aerofoil.
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a

Fig. 1.24 Lift curve for a thin aerofoil section with small nose radius of curvature

Effect of aspect ratio on the C;: a curve
The induced angle of incidence ¢ is given by

e kCy,
T mA
where A is the aspect ratio and thus
O = O — kCr
o TA

Considering a number of wings of the same symmetrical section but of different
aspect ratios the above expression leads to a family of C;, a curves, as in Fig. 1.25,
since the actual lift coefficient at a given section of the wing is equal to the lift
coefficient for a two-dimensional wing at an incidence of a.

For highly swept wings of very low aspect ratio (less than 3 or so), the lift curve
slope becomes very small, leading to values of C;__ of about 1.0, occurring at stalling
incidences of around 45°. This is reflected in the extreme nose-up landing attitudes of
many aircraft designed with wings of this description.

CL

/

4 a

Fig. 1.25 Influence of wing aspect ratio on the lift curve
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Effect of Reynolds number on the C;: o curve

Reduction of Reynolds number moves the transition point of the boundary layer
rearwards on the upper surface of the wing. At low values of Re this may permit
a laminar boundary layer to extend into the adverse pressure gradient region of the
aerofoil. As a laminar boundary layer is much less able than a turbulent boundary
layer to overcome an adverse pressure gradient, the flow will separate from the
surface at a lower angle of incidence. This causes a reduction of Cy__ . This is a
problem that exists in model testing when it is always difficult to match full-scale and
model Reynolds numbers. Transition can be fixed artificially on the model by rough-
ening the model surface with carborundum powder at the calculated full-scale point.

Drag coefficient: lift coefficient

For a two-dimensional wing at low Mach numbers the drag contains no induced or
wave drag, and the drag coefficient is Cp,. There are two distinct forms of variation
of Cp with C;, both illustrated in Fig. 1.26.

Curve (a) represents a typical conventional aerofoil with Cp, fairly constant over
the working range of lift coefficient, increasing rapidly towards the two extreme
values of C;. Curve (b) represents the type of variation found for low-drag aerofoil
sections. Over much of the C; range the drag coefficient is rather larger than for the
conventional type of aerofoil, but within a restricted range of lift coefficient
(Cr, to Cr,) the profile drag coefficient is considerably less. This range of Cy is
known as the favourable range for the section, and the low drag coefficient is due to
the design of the aerofoil section, which permits a comparatively large extent of
laminar boundary layer. It is for this reason that aerofoils of this type are also known
as laminar-flow sections. The width and depth of this favourable range or, more
graphically, low-drag bucket, is determined by the shape of the thickness distribu-
tion. The central value of the lift coefficient is known as the optimum or ideal lift
coefficient, Cy, or Cy,. Its value is decided by the shape of the camber line, and the
degree of camber, and thus the position of the favourable range may be placed where
desired by suitable design of the camber line. The favourable range may be placed to
cover the most common range of lift coefficient for a particular aeroplane, €.g. Cy,
may be slightly larger than the lift coefficient used on the climb, and C;, may be

Co
o.0l12T (b) [
N
- AW, ! |
\l ’ (a) [
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l | ]
0 2% Cip Lenax

Fig. 1.26 Typical variation of sectional drag coefficient with lift coefficient
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slightly less than the cruising lift coefficient. In such a case the aeroplane will have the
benefit of a low value of the drag coefficient for the wing throughout most of the
flight, with obvious benefits in performance and economy. Unfortunately it is not
possible to have large areas of laminar flow on swept wings at high Reynolds numbers.
To maintain natural laminar flow, sweep-back angles are limited to about 15°.

The effect of a finite aspect ratio is to give rise to induced drag and this drag
coefficient is proportional to C%, and must be added to the curves of Fig. 1.26.

Drag coefficient: (lift coefficient)?

Since
Ct
Cp, = —4 (1+6)

it follows that a curve of Cp, against C? will be a straight line of slope (1 + §)/74. If
the curve Cp, against C? from Fig. 1.26 is added to the induced drag coefficient, that
is to the straight line, the result is the total drag coefficient variation with C%, as
shown in Fig. 1.27 for the two types of section considered in Fig. 1.26. Taking an

Cp
(b)
(a)

cP
Fig. 1.27 Variation of total wing drag coefficient with (lift coefficient)?
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Fig. 1.28 Idealized variation of total wing drag coefficient with {lift coefficient)? for a family of three-
dimensional wings of various aspect ratios
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idealized case in which Cp, is independent of lift coefficient, the Cp, :(C)* curve for a
family of wings of various aspect ratios as is shown in Fig. 1.28.

Pitching moment coefficient
In Section 1.5.4 it was shown that

dCu = tant
ac, — cons

the value of the constant depending on the point of the aerofoil section about which
Cy is measured. Thus a curve of Cys against Cy, is theoretically as shown in Fig. 1.29.

Line (a) for which dCys/dC; = —41 is for Cy measured about the leading edge.
Line (c), for which the slope is zero, is for the case where C)s is measured about the
aerodynamic centre. Line (b) would be obtained if Cys were measured about a point
between the leading edge and the aerodynamic centre, while for (d) the reference
point is behind the aecrodynamic centre. These curves are straight only for moderate
values of Cy. As the lift coefficient approaches Cy_,,, the Cys against Cy, curve departs
from the straight line. The two possibilities are sketched in Fig. 1.30.

For curve (a) the pitching moment coefficient becomes more negative near the
stall, thus tending to decrease the incidence, and unstall the wing. This is known as
a stable break. Curve (b), on the other hand, shows that, near the stall, the pitching
moment coefficient becomes less negative. The tendency then is for the incidence to

Cw

0 / Jf G
c )
x R

(a)

Fig. 1.29 Variation of Cys with C; for an aerofoil section, for four different reference points
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Fig. 1.30 The behaviour of the pitching moment coefficient in the region of the stalling point, showing
stable and unstable breaks
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increase, aggravating the stall. Such a characteristic is an unstable break. This type of
characteristic is commonly found with highly swept wings, although measures can be
taken to counteract this undesirable behaviour.

Exercises
1 Verify the dimensions and units given in Table 1.1.
2 The constant of gravitation G is defined by

F=g™4
;

where F is the gravitational force between two masses m and M whose centres of
mass are distance r apart. Find the dimensions of G, and its units in the SI system.
(Answer: MT?L 73, kgs?m™?)

3 Assuming the period of oscillation of a simple pendulum to depend on the mass of
the bob, the length of the pendulum and the acceleration due to gravity g, use the
theory of dimensional analysis to show that the mass of the bob is not, in fact,
relevant and find a suitable expression for the period of oscillation in terms of the
other variables. (Answer: t = c\/1[g)

4 A thin flat disc of diameter D is rotated about a spindle through its centre at a
speed of w radians per second, in a fluid of density p and kinematic viscosity v. Show
that the power P needed to rotate the disc may be expressed as:

v
@) P= DY (55)
_pv (wD?
®) P _F"<T>

Note: for (a) solve in terms of the index of v and for (b) in terms of the index of w.
Further, show that wD?/v, PD/pv’ and P/pw’D’ are all non-dimensional quan-
tities. (CU)

5 Spheres of various diameters D and ‘densities o are allowed to fall freely under
gravity through various fluids (represented by their densities p and kinematic
viscosities v) and their terminal velocities V' are measured.

Find a rational expression connecting ¥ with the other variables, and hence
suggest a suitable form of graph in which the results could be presented.

Note: there will be 5 unknown indices, and therefore 2 must remain undetermined,
which will give 2 unknown functions on the right-hand side. Make the unknown
indices those of o and v.

o D Vv
Answer: V = /D (—)h(—\/D ), therefore plot curves of ———
( vDgf o)F\5 v De p i

. D .
against (7) +/ Dg for various values of o/p)

6 An acroplane weighs 60 000 N and has a wing span of 17 m. A 1/10th scale model is
tested, flaps down, in a compressed-air tunnel at 15 atmospheres pressure and 15°C
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at various speeds. The maximum lift on the model is measured at the various speeds,
with the results as given below:

Speed (ms™) 20 21 2 23 24
Maximum Lift (N) 2960 3460 4000 4580 5200

Estimate the minimum flying speed of the aircraft at sea-level, i.e. the speed at which
the maximum lift of the aircraft is equal to its weight. (Answer: 33 ms~1)

7 The pressure distribution over a section of a two-dimensional wing at 4° incidence
may be approximated as follows: Upper surface; C, constant at —0.8 from the
leading edge to 60% chord, then increasing linearly to +0.1 at the trailing edge:
Lower surface; C, constant at —0.4 from the LE to 60% chord, then increasing
linearly to +0.1 at the TE. Estimate the lift coefficient and the pitching moment
coefficient about the leading edge due to lift. (Answer: 0.3192; —0.13)

8 The static pressure is measured at a number of points on the surface of a long
circular cylinder of 150mm diameter with its axis perpendicular to a stream of
standard density at 30ms~!. The pressure points are defined by the angle 8, which
is the angle subtended at the centre by the arc between the pressure point and the
front stagnation point. In the table below values are given of p — pg, where p is the
pressure on the surface of the cylinder and py is the undisturbed pressure of the free
stream, for various angles 8, all pressures being in Nm™2. The readings are identical
for the upper and lower halves of the cylinder. Estimate the form pressure drag per
metre run, and the corresponding drag coefficient.

0 (degrees) 0 10 20 30 40 50 60 70 8 9 100 110 120
p—po Nm™2) 4569 +502 +301 -57 —392 —597 —721 —726 —707 —660 —626 —588 —569

For values of § between 120° and 180°, p — py is constant at —569 N m~2.
(Answer: Cp = 0.875, D =7.25Nm™!)

9 A sailplane has a wing of 18 m span and aspect ratio of 16. The fuselage is 0.6 m
wide at the wing root, and the wing taper ratio is 0.3 with square-cut wing-tips. At a
true air speed of 115kmh~! at an altitude where the relative density is 0.7 the lift and
drag are 3500 N and 145 N respectively. The wing pitching moment coefficient about
the i~chord point is —0.03 based on the gross wing area and the aerodynamic mean
chord. Calculate the lift and drag coefficients based on the gross wing area, and the
pitching moment about the § chord point.

(Answer: Cr = 0.396, Cp = 0.0169, M = —322 N m since ¢a = 1.245m)

10 Describe qualitatively the results expected from the pressure plotting of a con-
ventional, symmetrical, low-speed, two-dimensional aerofoil. Indicate the changes
expected with incidence and discuss the processes for determining the resultant
forces. Are any further tests needed to complete the determination of the overall
forces of lift and drag? Include in the discussion the order of magnitude expected for
the various distributions and forces described. (UofL)

11 Show that for geometrically similar aerodynamic systems the non-dimensional
force coefficients of lift and drag depend on Reynolds number and Mach number
only. Discuss briefly the importance of this theorem in wind-tunnel testing and
simple performance theory. (UofL)



Governing equations
of fluid mechanics

Preamble

This chapter is the first of two which set out the fundamental fluid dynamics
required for the further development of aerodynamics. In it the study of air in
motion starts with the physics and mathematics of one-dimensional fluid motion.
Many of the physical phenomena evident in all stages of aerodynamics are most
readily approached by considering the one-dimensional mode, without prejudice
to the wider analysis of two- and three-dimensional motions.

The laws governing the changes in the physical properties of air are first
covered and the relevant mathematics introduced. These laws are applied to the
accelerating gas as it moves out of the low-speed (incompressible) regime and into
the transonic and supersonic regimes where the abrupt changes in properties are
manifest,

2.1 Introduction

The physical laws that govern fluid flow are deceptively simple. Paramount among
them is Newton’s second law of motion which states that:

Mass Xx Acceleration = Applied force
In fluid mechanics we prefer to use the equivalent form of
Rate of change of momentum = Applied force

Apart from the principles of conservation of mass and, where appropriate, conserva-
tion of energy, the remaining physical laws required relate solely to determining the
forces involved. For a wide range of applications in aerodynamics the only forces
involved are the body forces due to the action of gravity* (which, of course, requires
the use of Newton’s theory of gravity; but only in a very simple way); pressure forces
(these are found by applying Newton’s laws of motion and requirc no further
physical laws or principles); and viscous forces. To determine the viscous forces we

* Body forces are commonly neglected in aerodynamics.
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need to supplement Newton’s laws of motion with a constitutive law. For pure
homogeneous fluids (such as air and water) this constitutive law is provided by the
Newtonian fluid model, which as the name suggests also originated with Newton. In
simple terms the constitutive law for a Newtonian fluid states that:

Viscous stress o« Rate of strain

At a fundamental level these simple physical laws are, of course, merely theoretical
models. The principal theoretical assumption is that the fluid consists of continuous
matter — the so-called continuum model. At a deeper level we are, of course, aware
that the fluid is not a continuum, but is better considered as consisting of myriads of
individual molecules. In most engineering applications even a tiny volume of fluid
(measuring, say, 1 um?) contains a large number of molecules. Equivalently, a typical
molecule travels on average a very short distance (known as the mean free path)
before colliding with another. In typical acrodynamics applications the m.f.p. is less
than 100 nm, which is very much smaller than any relevant scale characterizing
quantities of engineering significance. Owing to this disparity between the m.f.p.
and relevant length scales, we may expect the equations of fluid motion, based on the
continuum model, to be obeyed to great precision by the fluid flows found in almost
all engineering applications. This expectation is supported by experience. It also has
to be admitted that the continuum model also reflects our everyday experience of the
real world where air and water appear to our senses to be continuous substances.
There are exceptional applications in modern engineering where the continuum model
breaks down and ceases to be a good approximation. These may involve very small-
scale motions, e.g. nanotechnology and Micro-Electro-Mechanical Systems (MEMS)
technology,* where the relevant scales can be comparable to the m.f.p. Another
example is rarefied gas dynamics (e.g. re-entry vehicles) where there are so few mole-
cules present that the m.f.p. becomes comparable to the dimensions of the vehicle.

We first show in Section 2.2 how the principles of conservation of mass, momen-
tum and energy can be applied to one-dimensional flows to give the governing
equations of fluid motion. For this rather special case the flow variables, velocity
and pressure, only vary at most with one spatial coordinate. Real fluid flows are
invariably three-dimensional to a greater or lesser degree. Nevertheless, in order to
understand how the conservation principles lead to equations of motion in the form
of partial differential equations, it is sufficient to see how this is done for a two-
dimensional flow. So this is the approach we will take in Sections 2.4-2.8. It is usually
straightforward, although significantly more complicated, to extend the principles
and methods to three dimensions. However, for the most part, we will be content to
carry out any derivations in two dimensions and to merely quote the final resuit for
three-dimensional flows.

2.1.1 Air flow

Consider an aeroplane in steady flight. To an observer on the ground the acroplane is
flying into air substantially at rest, assuming no wind, and any movement of the air is
caused directly by the motion of the aeroplane through it. The pilot of the aeroplane,
on the other hand, could consider that he is stationary, and that a stream of air is
flowing past him and that the aeroplane modifies the motion of the air. In fact both

* Recent reviews are given by M. Gad-el-Hak (1999) The fluid mechanics of microdevices — The Freeman
Scholar Lecture. J. Fluids Engineering, 121, 5-33; L. Lofdahl and M. Gad-el-Hak (1999) MEMS applica-
tions in turbulence and flow control. Prog. in Aerospace Sciences, 35, 101-203.
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viewpoints are mathematically and physically correct. Both observers may use the
same equations to study the mutual effects of the air and the aeroplane and they will
both arrive at the same answers for, say, the forces exerted by the air on the aero-
plane. However, the pilot will find that certain terms in the equations become, from
his viewpoint, zero. He will, therefore, find that his equations are easier to solve than
will the ground-based observer. Because of this it is convenient to regard most
problems in aerodynamics as cases of air flowing past a body at rest, with consequent
simplification of the mathematics.

Types of flow

The flow round a body may be steady or unsteady. A steady flow is one in which the
flow parameters, e.g. speed, direction, pressure, may vary from point to point in the
flow but at any point are constant with respect to time, i.e. measurements of the flow
parameters at a given point in the flow at various times remain the same. In an
unsteady flow the flow parameters at any point vary with time.

2.1.2 A comparison of steady and unsteady flow

Figure 2.1a shows a section of a stationary wing with air flowing past. The velocity of
the air a long way from the wing is constant at V, as shown. The flow parameters are
measured at some point fixed relative to the wing, e.g. at P(x, y). The flow perturb-
ations produced at P by the body will be the same at all times, i.c. the flow is steady
relative to a set of axes fixed in the body.

Figure 2.1b represents the same wing moving at the same speed ¥ through air which,
a long way from the body, is at rest. The flow parameters are measured at a point
P/(X, ") fixed relative to the stationary air. The wing thus moves past P’. At times ¢,
when the wing is at 4,, P’ is a fairly large distance ahead of the wing, and the
perturbations at P’ are small. Later, at time £, the wing is at A,, directly beneath P/,
and the perturbations are much larger. Later still, at time 5, P’ is far behind the wing,
which is now at A3, and the perturbations are again small. Thus, the perturbation at P/
has started from a small value, increased to a maximum, and finally decreased back to a
small value. The perturbation at the fixed point P’ is, therefore, not constant with
respect to time, and so the flow, referred to axes fixed in the fluid, is not steady. Thus,
changing the axes of reference from a set fixed relative to the air flow, to a different set
fixed relative to the body, changes the flow from unsteady to steady. This produces the

A y
_)_/’_—_‘P(X'y)\
.,’//®\—
—

v
0 o

Fig. 2.1a Air moves at speed V past axes fixed relative to aerofoil
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Fig. 2.1b Aerofoil moves at speed V through air initially at rest. Axes Ox’ Oy fixed relative to
undisturbed air at rest

mathematical simplification mentioned earlier by eliminating time from the equations.
Since the flow relative to the air flow can, by a change of axes, be made steady, it is
sometimes known as ‘quasi-steady’.

True unsteady flow

An example of true unsteady flow is the wake behind a bluff body, e.g. a circular
cylinder (Fig. 2.2). The air is flowing from left to right, and the system of eddies or
vortices behind the cylinder is moving in the same direction at a somewhat lower
speed. This region of slower moving fluid is the ‘wake’. Consider a point P, fixed
relative to the cylinder, in the wake. Sometimes the point will be immersed in an eddy
and sometimes not. Thus the flow parameters will be changing rapidly at P, and the
flow there is unsteady. Moreover, it is impossible to find a set of axes relative to
which the flow is steady. At a point Q well outside the wake the fluctuations are so
small that they may be ignored and the flow at Q may, with little error, be regarded as
steady. Thus, even though the flow in some region may be unsteady, there may be
some other region where the unsteadiness is negligibly small, so that the flow there
may be regarded as steady with sufficient accuracy for all practical purposes.
Three concepts that are useful in describing fluid flows are:

(i) A streamline — defined as ‘an imaginary line drawn in the fluid such that there is
no flow across it at any point’, or alternatively as ‘a line that is always in the same

fﬁa =
* <

P

‘—\,/ =
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Fig. 2.2 True unsteady flow
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direction as the local velocity vector’. Since this is identical to the condition at a
solid boundary it follows that:

(a) any streamline may be replaced by a solid boundary without modifying the
flow. (This only strictly true if viscous effects are ignored.)
(b) any solid boundary is itself a streamline of the flow around it.

(i) A filament (or streak) line — the line taken up by successive particles of fluid
passing through some given point. A fine filament of smoke injected into the
flow through a nozzle traces out a filament line. The lines shown in Fig. 2.2 are
examples of this.

(iii) A path line or particle path — the path traced out by any one particle of the fluid
in motion.

In unsteady flow, these three are in general different, while in steady flow all three are
identical. Also in steady flow it is convenient to define a srream tube as an imaginary
bundle of adjacent streamlines.

2.2 One-dimensional flow: the basic equations -

In all real flow situations the physical laws of conservation apply. These refer to the
conservation respectively of mass, momentum and energy. The equation of state
completes the set that needs to be solved if some or all of the parameters controtling
the flow are unknown. If a real flow can be ‘modelled’ by a similar but simplified
system then the degree of complexity in handling the resulting equations may be
considerably reduced.

Historically, the lack of mathematical tools available to the engineer required that
considerable simplifying assumptions should be made. The simplifications used
depend on the particular problem but are not arbitrary. In fact, judgement is required
to decide which parameters in a flow process may be reasonably ignored, at least to
a first approximation. For example, in much of aerodynamics the gas (air) is con-
sidered to behave as an incompressible fluid (see Section 2.3.4), and an even wider
assumption is that the air flow is unaffected by its viscosity. This last assumption
would appear at first to be utterly inappropriate since viscosity plays an important
role in the mechanism by which aerodynamic force is transmitted from the air flow to
the body and vice versa. Nevertheless the science of aerodynamics progressed far on
this assumption, and much of the aeronautical technology available followed from
theories based on it.

Other examples will be invoked from time to time and it is salutory, and good
engineering praclice, to acknowledge those ‘simplifying’ assumptions made in order
to arrive at an understanding of, or a solution to, a physical problem.

2.2.1 One-dimensional flow: the basic equations
of conservation

A prime simplification of the algebra involved without any loss of physical signifi-
cance may be made by examining the changes in the flow properties along a stream
tube that is essentially straight or for which the cross-section changes slowly (i.e.
so-called quasi-one-dimensional flow).
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Fig. 2.3 The stream tube for conservation of mass

The conservation of mass

This law satisfies the belief that in normally perceived engineering situations matter
cannot be created or destroyed. For steady flow in the stream tube shown in Fig. 2.3
let the flow properties at the stations 1 and 2 be a distance s apart, as shown. If the
values for the flow velocity v and the density p at section 1 are the same across the
tube, which is a reasonable assumption if the tube is thin, then the quantity flowing
into the volume comprising the element of stream tube is:

velocity x area = v| 4,

The mass flowing in through section 1 is

A, (2.1)
Similarly the mass outflow at section 2, on making the same assumptions, is
pavadz (2.2)

These two quantities (2.1) and (2.2) must be the same if the tube does not leak or gain
fluid and if matter is to be conserved. Thus

pvidy = pavads (2.3)
or in a general form:
pvA = constant (2.4)

The conservation of momentum

Conservation of momentum requires that the time rate of change of momentum in
a given direction is equal to the sum of the forces acting in that direction. This is
known as Newton’s second law of motion and in the model used here the forces
concerned are gravitational (body) forces and the surface forces.

Consider a fluid in steady flow, and take any small stream tube as in Fig. 2.4. s is
the distance measured along the axis of the stream tube from some arbitrary origin.
A is the cross-sectional area of the stream tube at distance s from the arbitrary origin.

p, p, and v represent pressure, density and flow speed respectively.

A4, p, p, and v vary with s, i.e. with position along the stream tube, but not with time
since the motion is steady.

Now consider the small element of fluid shown in Fig. 2.5, which is immersed in
fluid of varying pressure. The element is the right frustrum of a cone of length 6s, area
A at the upstream section, area 4 + 64 on the downstream section. The pressure
acting on one face of the element is p, and on the other face is p + (dp/ds)és. Around

57
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Fig. 2.5 The forces on the element

the curved surface the pressure may be taken to be the mean value p + %(dp/ds)&s.
In addition the weight W of the fluid in the element acts vertically as shown.
Shear forces on the surface due to viscosity would add another force, which is
ignored here.

As a result of these pressures and the weight, there is a resultant force F acting
along the axis of the cylinder where F is given by

F=pA—(p+d—p6s)(A+6A)+<p+d—p§)6A—Wcosa (2.5)
ds ds 2

where « is the angle between the axis of the stream tube and the vertical.

From Eqn (2.5) it is seen that on neglecting quantities of small order such as
(dp/ds)bséA4 and cancelling,

F= —%A s — pg A (bs) cos o (2.6)
since the gravitational force on the fluid in the element is pg A4 é8s, i.e. volume x

density x g.
Now, Newton’s second law of motion (force = mass x acceleration) applied to the
element of Fig. 2.5, gives

dp dv
—pg Abs cosa—aA bs = pA ﬁsa (2.7)
where ¢ represents time. Dividing by A4 6s this becomes
dp dv

——pgcosa—a=pa
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But
dv_dvds_ dv
dt dsdr  ds
and therefore
dv dp _
pva+d—s+pgcosa—0
or
dv 1dp
va+;a+gcosa—0

Integrating along the stream tube, this becomes

/djp+/vdv+g/cosads=constant

but since
/ cos e ds = increase in vertical coordinate z
and
/ vdv = %vz
then
9p£ + %vz + gz = constant (2.8)

This result is known as Bernoulli’s equation and is discussed below.

The conservation of energy

Conservation of energy implies that changes in energy, heat transferred and work
done by a system in steady operation are in balance. In seeking an equation
to represent the conservation of energy in the steady flow of a fluid it is useful
to consider a length of stream tube, e.g. between sections 1 and 2 (Fig. 2.6), as

4

Fig. 2.6 Control volume for the energy equation
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constituting the control surface of a ‘thermodynamic system’ or control volume. At
sections 1 and 2, let the fluid properties be as shown.

Then unit mass of fluid entering the system through section will possess internal
energy cy T}, kinetic energy v3/2 and potential energy gz, i.e.

2
(cVT1 +% +g21) (2.9a)
Likewise on exit from the system across section 2 unit mass will possess energy
v
cvh +7+gzz (2.9b)

Now to enter the system, unit mass possesses a volume 1/p; which must push against
the pressure p; and utilize energy to the value of p; x 1/p; pressure x (specific)
volume. At exit py/p; is utilized in a similar manner.

In the meantime, the system accepts, or rejects, heat ¢ per unit mass. As all the
quantities are flowing steadily, the energy entering plus the heat transfer must equal the
energy leaving.* Thus, with a positive heat transfer it follows from conservation of energy

V¥ V2
cvTh +—1+1£+g21 +q=cyT +24 2 o
2 m 2 p

However, enthalpy per unit mass of fluid is ¢y T + p/p = ¢,T. Thus

2 v2
(cpTz +—22 +g22) — (cpT1 +71+gzl) =q
or in differential form

d v dq
a(cpT+7+gs cosa) =% (2.10)

For an adiabatic (no heat transfer) horizontal flow system, Eqn (2.10) becomes zero
and thus

2
T + % = constant (2.11)

The equation of state

The equation of state for a perfect gas is

p/(pT) =R
Substituting for p/p in Eqn (1.11) yields Eqn (1.13) and (1.14), namely
~ 1
CP—CV=R, cP:ﬁR CV=mR

* It should be noted that in a general system the fluid would also do work which should be taken into the
equation, but it is disregarded here for the particular case of flow in a stream tube.
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The first law of thermodynamics requires that the gain in internal energy of a mass of
gas plus the work done by the mass is equal to the heat supplied, i.e. for unit mass of

gas with no heat transfer
1
E+ / pd <;) = constant

dE + pd (%) —0 (2.12)

Differentiating Eqn (1.10) for enthalpy gives

or

dh=dE+pd(%)+%dp=O (2.13)
and combining Eqns (2.12) and (2.13) yields
dh = ldp (2.14)
p
But
¢ (P v |1 1
M=CdT=ldC):___Pd4—dCﬂ 2.15

Therefore, from Eqns (2.14) and (2.15)

dp LA
7o) =

which on integrating gives

1
Inp+~In (;) = constant

or
p=kp’

where &k is a constant. This is the isentropic relationship between pressure and
density, and has been replicated for convenience from Eqn (1.24).

The momentum equation for an incompressible fluid

Provided velocity and pressure changes are small, density changes will be very small,
and it is permissible to assume that the density p is constant throughout the flow.
With this assumption, Eqn (2.8) may be integrated as
1
/dp + Epv2 + pgz = constant

Performing this integration between two conditions represented by suffices 1 and 2
gives

(52— ) + 5003~ R) +palzz — ) =0
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Le.

1 1
P30V pgz1 = pa+ 3 pv) +
In the foregoing analysis | and 2 were completely arbitrary choices, and therefore
the same equation must apply to conditions at any other points. Thus

1
P+ E,ov2 + pgz = constant (2.16)

This is Bernoulli’s equation for an incompressible fluid, i.e. a fluid that cannot
be compressed or expanded, and for which the density is invariable. Note that
Eqn (2.16) can be applied more generally to two- and three-dimensional steady flows,
provided that viscous effects are neglected. In the more general case, however, it is
important to note that Bernoulli’s equation can only be applied along a streamline,
and in certain cases the constant may vary from streamline to streamline.

2.2.2 Comments on the momentum and energy equations

Referring back to Eqn (2.8), that expresses the conservation of momentum in
algebraic form,

d |
/_p + ~v? 4 gz = constant
p 2

the first term is the internal energy of unit mass of the air, 12 v is the kinetic energy of
unit mass and gz is the potential energy of unit mass. Thus, Bernoulli’s equation in
this form is really a statement of the principle of conservation of energy in the
absence of heat exchanged and work done. As a corollary, it applies only to flows
where there is no mechanism for the dissipation of energy into some form not
included in the above three terms. In aerodynamics a common form of energy
dissipation is that due to viscosity. Thus, strictly the equation cannot be applied in
this form to a flow where the effects of viscosity are appreciable, such as that in a
boundary layer.

2.3 The measurement of air speéd
2.3.1 The Pitot-static tube

Consider an instrument of the form sketched in Fig. 2.7, called a Pit6t-static tube.
It consists of two concentric tubes A and B. The mouth of A is open and faces
directly into the airstream, while the end of B is closed on to A, causing B to be sealed
off. Some very fine holes are drilled in the wall of B, as at C, allowing B to commu-
nicate with the surrounding air. The right-hand ends of A and B are connected to
opposite sides of a manometer. The instrument is placed into a stream of air, with the

Fig. 2.7 The simple Pitdt-static tube
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mouth of A pointing directly upstream, the stream being of speed v and of static
pressure p. The air flowing past the holes at C will be moving at a speed very little
different from v and its pressure will, therefore, be equal to p, and this pressure will be
communicated to the interior of tube B through the holes C. The pressure in B is,
therefore, the static pressure of the stream.

Air entering the mouth of A will, on the other hand, be brought to rest (in the
ultimate analysis by the fluid in the manometer). Its pressure will therefore be equal
to the total head of the stream. As a result a pressure difference exists between the air
in A and that in B, and this may be measured on the manometer. Denote the pressure
in A by pa, that in B by pp, and the difference between them by Ap. Then

Ap =pa — pB (2.17)

But, by Bernoulli’s equation (for incompressible flow)

1,5 1
pa+5(0) —pn+2pv2

and therefore

1
pa—pp=5p" (2.18)

or
Ap = %pv2

whence

v=1+/2Ap/p (2.19)

The value of p, which is constant in incompressible flow, may be calculated from the
ambient pressure and the temperature. This, together with the measured value of Ap,
permits calculation of the speed v.*

The quantity 1pv* is the dynamic pressure of the flow. Since pa = total
pressure = py (i.e. the pressure of the air at rest, also referred to as the stagnation
pressure), and pg = static pressure = p, then

1

which may be expressed in words as
stagnation pressure — static pressure = dynamic pressure
It should be noted that this equation applies at all speeds, but the dynamic pressure is
equal to %pv2 only in incompressible flow. Note also that
% p#* = [ML7L2T7?] = [ML™IT?
= units of pressure

as is of course essential.

* Note that, notwithstanding the formal restriction of Bernoulli’s equation to inviscid flows, the Pitot-
static tube is commonly used to determine the local velocity in wakes and boundary layers with no app-
arent loss of accuracy.
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Defining the stagnation pressure coefficient as

_bPo—p
Cp = T2 (2.21)
it follows immediately from Eqn (2.20) that for incompressible flow
Cp, = 1(always) (2.22)

2.3.2 The pressure coefficient

In Chapter 1 it was seen that it is often convenient to express variables in a non-
dimensional coefficient form. The coefficient of pressure is introduced in Section 1.5.3.
The stagnation pressure coefficient has already been defined as

Po—p
Cp, =5
'Po %p V2
This is a special case of the general ‘pressure coefficient’ defined by pressure coefficient:
_ D — Do
Co = T2 (2.23)
where C,, = pressure coefficient
p = static pressure at some point in the flow where the velocity is ¢
D = static pressure of the undisturbed flow
p = density of the undisturbed flow
v = speed of the undisturbed flow
Now, in incompressible flow,
1, 1
P+508" =Poo+5pV
Then
1
P=Po=5p(" — )
and therefore
_1- (1)
G=1-(% (2.24)

Then

(i) if G, is positive p > pc and g < v
(11) if G @s ZET0 p = Poo andg=v
(iii) if C, is negative p < po and g > v

2.3.3 The air-speed indicator: indicated and equivalent
air speeds
A Pit6t-static tube is commonly used to measure air speed both in the laboratory and

on aircraft. There are, however, differences in the requirements for the two applica-
tions. In the laboratory, liquid manometers provide a simple and direct method for
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measuring pressure. These would be completely unsuitable for use on an aircraft
where a pressure transducer is used that converts the pressure measurement into an
electrical signal. Pressure transducers are also becoming more and more commonly
used for laboratory measurements.

When the measured pressure difference is converted into air speed, the correct
value for the air density should, of course, be used in Eqn (2.19). This is easy enough
in the laboratory, although for accurate results the variation of density with the
ambient atmospheric pressure in the laboratory should be taken into account. At one
time it was more difficult to use the actual air density for flight measurements.
This was because the air-speed indicator (the combination of Pit6t-static tube and
transducer) would have been calibrated on the assumption that the air density took
the standard sea-level International Standard Atmosphere (ISA) value. The (incor-
rect) value of air speed obtained from Eqn (2.19) using this standard value of
pressure with a hypothetical perfect transducer is known as the equivalent air speed
(EAS). A term that is still in use. The relationship between true and equivalent air
speed can be derived as follows. Using the correct value of density, p, in Eqn (2.19)
shows that the relationship between the measured pressure difference and true air
speed, v, is

Ap= %p}/z (2.25)
whereas if the standard value of density, py = 1.226 kg/m®, is used we find
Ap = %polf% (2.26)

where vg is the equivalent air speed. But the values of Ap in Eqns (2.25) and (2.26)
are the same and therefore

1 1
Soovg =7 (227)

or

vE = vV p/po (2.28)

If the relative density o = p/py is introduced, Eqn (2.28) can be written as
vE = /o (2.29)

The term indicated air speed (IAS) is used for the measurement made with an actual
(imperfect) air-speed indicator. Owing to instrument error, the IAS will normally
differ from the EAS.

The following definitions may therefore be stated: IAS is the uncorrected reading
shown by an actual air-speed indicator. Equivalent air speed EAS is the uncorrected
reading that would be shown by a hypothetical, error-free, air-speed indicator.
True air speed (TAS) is the actual speed of the aircraft relative to the air. Only when
o =1 will true and equivalent air speeds be equal. Normally the EAS is less than
the TAS.

Formerly, the aircraft navigator would have needed to calculate the TAS from
the IAS. But in modern aircraft, the conversion is done electronically. The calibration
of the air-speed indicator also makes an approximate correction for compressibility.
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2.3.4 The incompressibility assumption

As a first step in calculating the stagnation pressure coefficient in compressible flow
we use Eqn (1.6d) to rewrite the dynamic pressure as follows:

1 1/p 1 2 1 >
ot ==[1 =—Yp— =M 2.
50V 2<7p)7p1/2 5P =57 (2.30)
where M is Mach number.

When the ratio of the specific heats, v, is given the value 1.4 (approximately the
value for air), the stagnation pressure coefficient then becomes

_p—p _ 1 (p_
o = 07pME ~ 0TI ( » 1) (231)

Now
P _ 142 M (Eaqn (6.16
;—[+§ 1" (Eaqn (6.16a))

Expanding this by the binomial theorem gives

3 4
T/ L\ 151 (1. ,\F 7531 /1. )\ 75311 /1, .,
N L 222 (Zp2) 4 122220 -
) 1+2(5M)+222! M) T35 M) TG )
7M2+7M4+7M6+ M8 e
10 " 20 400 T 16000

10
= (5-1)

_ 10 7M2+7M4+7M6+ TM?® 4
T IM?2 | 10 40 ' 400 ' 16 000

M2 M* MC
1+ 7 + 20 +1600+ (2.32)
It can be seen that this will become unity, the incompressible value, at M = 0. This is
the practical meaning of the incompressibility assumption, i.e. that any velocity
changes are small compared with the speed of sound in the fluid. The result given
in Eqn (2.32) is the correct one, that applies at all Mach numbers less than unity. At
supersonic speeds, shock waves may be formed in which case the physics of the flow
are completely altered.
Table 2.1 shows the variation of Cp, with Mach number. It is seen that the error in
assuming Cp, = 1 is only 2% at M = 0.3 but rises rapidly at higher Mach numbers,
being slightly more than 6% at M = 0.5 and 27.6% at M = 1.0.

=14

Then

Table 2.1 Variation of stagnation pressure coefficient with Mach numbers less than unity

M 0 0.2 0.4 0.6 0.7 0.8 0.9 1.0
Cp, 1 1.01 1.04 1.09 1.13 1.16 1.217 1.276




Governing equations of fluid mechanics

It is often convenient to regard the effects of compressibility as negligible if the
flow speed nowhere exceeds about 100 m s~!. However, it must be remembered that
this is an entirely arbitrary limit. Compressibility applies at all flow speeds and,
therefore, ignoring it always introduces an error. It is thus necessary to consider, for
each problem, whether the error can be tolerated or not.

In the following examples use will be made of the equation (1.6d) for the speed of
sound that can also be written as

a=+/yRT
For air, with y = 1.4 and R = 287.3J kg~!K~! this becomes
a=20.05v/Tms™ (2.33)

where T is the temperature in K.

Example 2.1 The air-speed indicator fitted to a particular aeroplane has no instrument errors
and is calibrated assuming incompressible flow in standard conditions. While flying at sea level
in the ISA the indicated air speed is 950 km h™!. What is the true air speed?

950kmh~! = 264ms~! and this is the speed corresponding to the pressure difference applied
to the instrument based on the stated calibration. This pressure difference can therefore be
calculated by

1
Po—p=Ap=7pg
and therefore
Do—p= % x 1.226(264)* = 42670Nm2

Now

3.5
Po _ [1 +1M2]
)4 5

In standard conditions p = 101 325 N 'm™2. Therefore

po _ 42670

=207 1 =1421
» ~Toiszs !

Therefore

1 +% M? = (1.421)7" = 1.106

é M?*=0.106
M?* =0.530
M=0.728

The speed of sound at standard conditions is

a=20.05(288)} = 340.3m s~

67
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Therefore, true air speed = Ma = 0.728 x 340.3
248ms' =891 kmh™!

In this example, o = | and therefore there is no effect due to density, i.e. the difference is due
entirely to compressibility. Thus it is seen that neglecting compressibility in the calibration has
led the air-speed indicator to overestimate the true air speed by 59 kmh™'.

2.4 Two-dimensional flow

Consider flow in two dimensions only. The flow is the same as that between two planes set
parallel and a little distance apart. The fluid can then flow in any direction between and
parallel to the planes but not at right angles to them. This means that in the subsequent
mathematics there are only two space variables, x and y in Cartesian (or rectangular)
coordinates or r and € in polar coordinates. For convenience, a unit length of the flow
field is assumed in the z direction perpendicular to x and y. This simplifies the treatment
of two-dimensional flow problems, but care must be taken in the matter of units.

In practice if two-dimensional flow is to be simulated experimentally, the method
of constraining the flow between two close parallel plates is often used, ¢.g. small
smoke tunnels and some high-speed tunnels.

To summarize, two-dimensional flow is fluid motion where the velocity at all
points is parallel to a given plane.

We have already seen how the principles of conservation of mass and momentum
can be applied to one-dimensional flows to give the continuity and momentum
equations (see Section 2.2). We will now derive the governing equations for
two-dimensional flow. These are obtained by applying conservation of mass and
momentum to an infinitesimal rectangular control volume — see Fig. 2.8.

2.4.1 Component velocities

In general the local velocity in a flow is inclined to the reference axes Ox, Oy and it is
usual to resolve the velocity vector ¥ (magnitude ¢) into two components mutually at
right-angles.

Fig. 2.8 An infinitesimal control volume in a typical two-dimensional flow field
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Fig. 2.9

In a Cartesian coordinate system let a particle move from point P(x, y) to point
Q(x + éx, y + 6y), a distance of 6s in time 6¢ (Fig. 2.9). Then the velocity of the
particle is

s _ds _
s06r di ¢
Going from P to Q the particle moves horizontally through §x giving the horizontal
velocity u = dx/ds positive to the right. Similarly going from P to Q the particle
moves vertically through &y and the vertical velocity v = dy/d¢ (upwards positive). By
geometry:

(65)" = (6x)” + (6%)°
Thus
¢ =u* + v

and the direction of g relative to the x-axis is & = tan™! (v/u).
In a polar coordinate system (Fig. 2.10) the particle moves distance és from P(r, )
to Q(r + ér, 6 + 86) in time 5¢. The component velocities are:

. . d

radially (outwards positive) g, = d—;
. . . .\ do
tangentially (anti-clockwise positive) ¢, = ri

Again
(6s)* = (6r)* + (ré6)?

Q(r+8r ,6+86)
o r86
X
88
ar—
£/
o 6 P8

Fig. 2.10
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Fig. 2.11
Thus

F=a+q
and the direction of ¢ relative to the radius vector is given by

B =tan™! 4

n

Fluid acceleration

The equation of acceleration of a fluid mass is rather different from that of a vehicle,
for example, and a note on fluid acceleration follows. Let a fluid particle move from
P to Q in time 6t in a two-dimensional flow (Fig. 2.11). At the point P(x, y) the
velocity components are » and v. At the adjacent point Q(x + éx, y + 6y) the
velocity components are # + éu and v + év, i.e. in general the velocity component
has changed in each direction by an increment éu or §v. This incremental change is the
result of a spatial displacement, and as » and v are functions of x and y the velocity
components at Q are

Ou ou ov ov
u+6u—u+6—x§x+6—y§y and v+6v_v+-6—x§x+6—y§y (2.34)
The component of acceleration in the Ox direction is thus
dlu+8) _ou oudx  oudy
dt ot Oxdt ' oydt
ou ou Ou
—5;+ua+ v-a—y (2.35)
and in the Oy direction
div+év) Ou, 6 0Ov _Ov
& "% + ua + vay (2.36)

The change in other flow variables, such as pressure, between points P and Q may be dealt
with in a similar way. Thus, if the pressure takes the value p at P, at Q it takes the value

I .
p+ép —p+ax6x+6y6y (2.37)
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Fig. 2.12 Rectangular space of volume éx x &y x 1 at the point P (x, ) where the velocity components
are v and v and the density is p

2.4.2 The equation of continuity or conservation of mass

Consider a typical elemental control volume like the one illustrated in Fig. 2.8. This is
a small rectangular region of space of sides 8x, §y and unity, centred at the point
P(x, y) in a fluid motion which is referred to the axes Ox, Oy. At P(x, y) the local
velocity components are u and v and the density p, where each of these three
quantities is a function of x, y and ¢ (Fig. 2.12). Dealing with the flow into the box
in the Ox direction, the amount of mass flowing into the region of space per second
through the left-hand vertical face is:

mass flow per unit area x area

i.e.

(pu - %%x) dyx1 (2.38)

The amount of mass leaving the box per second through the right-hand vertical face
is:

(pu + %%) dyx1 (2.39)

The accumulation of mass per second in the box due to the horizontal flow is the
difference of Eqns (2.38) and (2.39), i.e.

9(pu)
- 8xéy (2.40)
Similarly, the accumulation per second in the Oy direction is
9(pv)
~5y 8x8y (2.41)

so that the total accumulation per second is

- (% + %‘;‘1)—) 5x8y (2.42)
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As mass cannot be destroyed or created, Eqn (2.42) must represent the rate of
change of mass of the fluid in the box and can also be written as

d(p x volume)
ot
but with the elementary box having constant volume (6x §y x 1) this becomes
%6x sy x1 (2.43)
Equating (2.42) and (2.43) gives the general equation of continuity, thus:

9p | O(pu) | 8(pv)

b1 + ox + -—ay =0 (244)
This can be expanded to:
Op Op Op Ou  Ov\ _
6t+u5§+v6_y+p<6x+6y) =0 (2.45)

and if the fluid is incompressible and the flow steady the first three terms are all zero
since the density cannot change and the equation reduces for incompressible flow to

Ou n ov

ox ' 8y
This equation is fundamental and important and it should be noted that it expresses
a physical reality. For example, in the case given by Eqn (2.46)

Oou ov

ox oy

This reflects the fact that if the flow velocity increases in the x direction it must
decrease in the y direction.
For three-dimensional flows Eqns (2.45) and (2.46) are written in the forms:

0 (2.46)

Op ,  Op Op Op Ou  Ov  Owy
6t+u6x+v6y+w62+p(6x+6y+ 62) =0 (2.47a)
Ou Ov ow

2.4.3 The equation of continuity in polar coordinates

A corresponding equation can be found in the polar coordinates r and ¢ where the
velocity components are g, and g, radially and tangentially. By carrying out a similar
development for the accumulation of fluid in a segmental elemental box of space, the
equation of continuity corresponding to Eqn (2.44) above can be found as follows.
Taking the element to be at P(r, §) where the mass flow is pg per unit length
(Fig. 2.13), the accumulation per second radially is:

o) (s (g, 4 2
(”q“ o 2\ 7))\t )7 T 7))

= —pgy br 66 — %r&r 50 (2.48)
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Fig. 2.13 Rectangular element at P (r, §) in a system of polar coordinates

and accumulation per second tangentially is:

<PCI\ - M£$g>6r— (pql + Mﬁ) or = —%&6@ (2.49)

o 2 o 2
Total accumulation per second
pan | Opqn) | 19(pq)
S 2] Z 9 .
< r + " + . réré (2.50)

and this by the previous argument equals the rate of change of mass within the region
of space
O préré)

Equating (2.50) and (2.51) gives:

pgn  Op  Opgn) 10(pq) _
r +8t+ or r o =0 (2.5

Hence for steady flow

Aprqn) | O(pq) _
= tgg =0 (2.53)

and the incompressible equation in this form becomes:

gn  Oqn 10q,
ek L) )
e (2.54)

2.5 The stream function and streamline

2.5.1 The stream function y

Imagine being on the banks of a shallow river of a constant depth of 1 m at a pos-
ition O (Fig. 2.14) with a friend directly opposite at A, 40 m away. Mathematically
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Fig. 2.14

the bank can be represented by the Ox axis, and the line joining you to your friend at
A the Oy axis in the two-coordinate system. Now if the stream speed is 2ms™~! the
amount of water passing between you and your friend is 40 x 1 x 2 =80m3s~! and
this is the amount of water flowing past any point anywhere along the river which
could be measured at a weir downstream. Suppose you now throw a buoyant rope to
your friend who catches the end but allows the slack to fall in the river and float into
a curve as shown. The amount of water flowing under the line is still 80m3s~! no
matter what shape the rope takes, and is unaffected by the configuration of the rope.

Suppose your friend moves along to a point B somewhere downstream, still
holding his end of the line but with sufficient rope paid out as he goes. The volume
of water passing under the rope is still only 80m?s~! providing he has not stepped
over a tributary stream or an irrigation drain in the bank. It follows that, if no water
can enter or Jeave the stream, the quantity flowing past the line will be the same as
before and furthermore will be unaffected by the shape of the line between O and B.
The amount or quantity of fluid passing such a line per second is called the stream
Sfunction or current function and it is denoted by .

Consider now a pair of coordinate axes set in a two-dimensional air stream that is
moving generally from left to right (Fig. 2.15). The axes are arbitrary space references
and in no way interrupt the fluid streaming past. Similarly the line joining O to a point
P in the flow in no way interrupts the flow since it is as imaginary as the reference axes
Ox and Oy. An algebraic expression can be found for the line in x and y.

xY

Detdil at Q

Fig. 2.15
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Let the flow past the line at any point Q on it be at velocity g over a small length és
of line where direction of ¢ makes angle 8 to the tangent of the curve at Q. The
component of the velocity g perpendicular to the element és is ¢ sin 3 and therefore,
assuming the depth of stream flow to be unity, the amount of fluid crossing the
element of line s is g sin 3 x §s x 1 per second. Adding up all such quantities crossing
similar elements along the line from O to P, the total amount of flow past the line

(sometimes called flux) is
/ gsin g ds
OP

which is the line integral of the normal velocity component from O to P.

If this quantity of fluid flowing between O and P remains the same irrespective of
the path of integration, i.e. independent of the curve of the rope then [, ¢sin 8ds is
called the stream function of P with respect to O and

zlzp:/opqsmﬂds

Note: it is implicit that ¢y = 0.

Sign convention for stream functions

It is necessary here to consider a sign convention since quantities of fluid are being
considered. When integrating the cross-wise component of flow along a curve, the
component can go either from left to right, or vice versa, across the path of integra-
tion (Fig. 2.16). Integrating the normal flow components from O to P, the flow
components are, looking in the direction of integration, either (a) from left to right or
(b) from right to left. The former is considered positive flow whilst the latter is
negative flow. The convention is therefore:

Flow across the path of integration is positive if, when looking in the direction of
integration, it crosses the path from left to right.

2.5.2 The streamline

From the statement above, vp is the flow across the line OP. Suppose there is a point
P, close to P which has the same value of stream function as point P (Fig. 2.17). Then
the flow across any line OP, equals that across OP, and the amount of fluid flowing
into area OPP ;0 across OP equals the amount flowing out across OP;. Therefore, no
fluid crosses line PP, and the velocity of flow must be along, or tangential to, PP;.

Fig. 2.16
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Fig. 217

All other points P,, P3, etc. which have a stream function equal in value to that of P
have, by definition, the same flow across any lines joining them to O, so by the same
argument the velocity of the flow in the region of P,, P,, P53, etc. must be along PP,
P,, P;, etc, and no fluid crosses the line PP;, P,,...,P,. Since vp, = p, =
1p, = ¥p = constant, the line PPy, Py, ... P,, etc. is a line of constant 4 and is called
a streamline. It follows further that since no flow can cross the line PP, the velocity
along the line must always be in the direction tangential to it. This leads to the two
common definitions of a streamline, each of which indirectly has the other’s meaning.
They are:

A streamline is a line of constant 1)
and/or

A streamline is a line of fluid particles, the velocity of each particle being
tangential to the line (see also Section 2.1.2).

It should be noted that the velocity can change in magnitude along a streamline but
by definition the direction is always that of the tangent to the line.

25.3 Velocity components in terms of y

(a) In Cartesian coordinates Let point P(x, y) be on the streamline AB in Fig. 2.18a
of constant ¢ and point Q(x + 6x, y + §y) be on the streamline CD of constant
1+ 6. Then from the definition of stream function, the amount of fluid flowing
across any path between P and Q = &), the change of stream function between
P and Q.

The most convenient path along which to integrate in this case is PRQ, point R
being given by the coordinates (x + 6x, y). Then the flow across PR = —véx (since
the flow is from right to left and thus by convention negative), and that across
RQ = uby. Therefore, total flow across the line PRQ is

& = uby — vbx (2.55)
Now 1 is a function of two independent variables x and y in steady motion, and thus
&p = 6—¢6x + o by (2.56)

ox dy
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O¢/0x and Ov/0y being the partial derivatives with respect to x and y respectively.
Then, equating terms:

u=0y/dy (2.56a)

and
v=—0¢/0x (2.56b)
these being the velocity components at a point x, y in a flow given by stream function .

(b) In polar coordinates Let the point P(r, §) be on the streamline AB (Fig. 2.18b) of
constant ¢, and point Q(r + 6r, 8 + 66) be on the streamline CD of constant ¢ + 6.
The velocity components are ¢, and ¢, radially and tangentially respectively. Here
the most convenient path of integration is PRQ where OP is produced to R so that
PR = ér, i.e. R is given by ordinates (r + ér, §). Then
&Y = —qibr + qu(r + 6r)66
= —q:6r + qnrd0 4 ga6r6

To the first order of small quantities:
6 = —q,6r + gnré8 (2.57)
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But here v is a function of (r, 8) and again

v, o
= E& + B o6 (2.58)
and equating terms in Eqns (2.57) and (2.58)
oy ,
G = —6—1;) (2.584a)
1oy

these being velocity components at a point r, 8 in a flow given by stream function .

In general terms the velocity ¢ in any direction s is found by differentiating the
stream function ¥ partially with respect to the direction #» normal to ¢ where n is
taken in the anti-clockwise sense looking along ¢ (Fig. 2.19):

o
q_é?n

2.6 The momentum equation

The momentum equation for two- or three-dimensional flow embodies the applica-
tion of Newton’s second law of motion (mass times acceleration = force, or rate of
change of momentum = force) to an infinitesimal control volume in a fluid flow (see
Fig. 2.8). It takes the form of a set of partial differential equations. Physically it states
that the rate of increase in momentum within the control volume plus the net rate at
which momentum flows out of the control volume equals the force acting on the fluid
within the control volume.

There are two distinct classes of force that act on the fluid particles within the
control volume.

(i) Body forces. Act on all the fluid within the control volume. Here the only body
force of interest is the force of gravity or weight of the fluid.

(i) Surface forces. These only act on the control surface; their effect on the fluid
inside the control volume cancels out. They are always expressed in terms of
stress (force per unit area). Two main types of surface force are involved namely:

(a) Pressure force. Pressure, p, is a stress that ahvays acts perpendicular to the control
surface and in the opposite direction to the unit normal (see Fig. 1.3). In other words
it always tends to compress the fluid in the control volume. Although p can vary
from point to point in the flow field it is invariant with direction at a particular point
(in other words irrespective of the orientation of the infinitesimal control volume the
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pressure force on any face will be —p6A4 where 64 is the area of the face) — see
Fig. 1.3. As is evident from Bernoulli’s Eqn (2.16), the pressure depends on the flow
speed.

(b) Viscous forces. In general the viscous force acts at an angle to any particular face
of the infinitesimal control volume, so in general it will have two components
in two-dimensional flow (three for three-dimensional flow) acting on each face
(one due to a direct stress acting perpendicularly to the face and one shear stress
(two for three-dimensional flow) acting tangentially to the face. As an example let
us consider the stresses acting on two faces of a square infinitesimal control volume
(Fig. 2.20). For the top face the unit normal would be j (unit vector in the
y direction) and the unit tangential vector would be i (the unit vector in the
x direction). In this case, then, the viscous force acting on this face and the side
face would be given by

(oyed + 0yyf)6x x 1, (Oxxl + 0x§)by x 1

respectively. Note that, as in Section 2.4, we are assuming unit length in the
z direction. The viscous shear stress is what is termed a second-order tensor —
i.e. it is a quantity that is characterized by a magnitude and fwo directions
(c.f. a vector or first-order tensor that is characterized by a magnitude and one
direction). The stress tensor can be expressed in terms of four components
(9 for three-dimensional flow) in matrix form as:

( Oxx Oxy )

Oyx  Jyy

Owing to symmetry oy, = oy.. Just as the components of a vector change
when the coordinate system is changed, so do the components of the stress
tensor. In many engineering applications the direct viscous stresses (oxx, oyy)
are negligible compared with the shear stresses. The viscous stress is generated
by fluid motion and cannot exist in a still fluid.

Other surface forces, e.g. surface tension, can be important in some engin-
eering applications.

oy fxx1

Tyx X% 1

oxy fyx1

& o fyx 1

Fig. 2.20
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When the momentum equation is applied to an infinitesimal control volume (c.v.),
it can be written in the form:

Rate of increase of momentum within the c.v,
®

+ Net rate at which momentum leaves the c.v,
(i)

= podyvforcg + Pressuff force + yiscous force (2.59)
(iif) (iv) ®

We will consider now the evaluation of each of terms (i) to (v) in turn for the case
of two-dimensional incompressible flow.

Term (i) is dealt with in a similar way to Eqn (2.43), once it is recalled that
momentum is (mass) x (velocity), so Term (i) is given by

ot Ot 8t ’ ot

To evaluate Term (ii) we will make use of Fig. 2.21 (c.f. Fig. 2.12). Note that the
rate at which momentum crosses any face of the control volume is (rate at which
mass crosses the face) x velocity. So if we denote the rate at which mass crosses a face
by m, Term (ii) is given by

i9—(,0 x volume x V) = %6x6y x 1= (aﬂ %)6x6y x 1 (2.60)

Ih3XV3—Ih1XV1+Iﬁ4XV4—Ih2XV2 (2.61)

But ri13 and riry are given by Eqns (2.38) and (2.39) respectively, and rip and rig by
similar expressions. In a similar way it can be seen that, recalling Vv = (u, v)

. ou Ov\ bx . Oou Ov\ b6x
v1=(u,v)— _a_xaa ?) V3=(u,V)+ aa'a_x 7

L Ou Ov\ by . du Ov\ by
v2_(uav)_(ay7ay) 2, v4_(u7v)+(a_y:ay) 2

rhy XV4
myxvi—— x y) L M3 xV3

e

Maxvs

Fig. 2.21
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So the x component of Eqn (2.61) becomes

+@§Eé x 1 u+@6—x - —?21556 x 1 ——@-(?f
P ¥ T2 )7 Ox 2 PAH Ox 2 v “Tox 2
Ov by Ou by ov by _ Ouby
+p<v+ay2>6xxl(u+$2) p(v 52 bxx1|u 32
Cancelling like terms and neglecting higher-order terms simplifies this expression to
Ou Ou O
p(Zua + V—a'; + u5>6x6y x 1

This can be rearranged as

Ou Ou Ou Oy
p(u—a;+vé;+u{a+5})6x6y x 1 (2.62a)
————
= 0 Eqn (2.46)

In an exactly similar way the y component of Eqn (2.61) can be shown to be

ov  Ov
p(ua + va—y) oxby x 1 (2.62b)

Term (iii) the body force, acting on the control volume, is simply given by the
weight of the fluid, i.e. the mass of the fluid multiplied by the acceleration (vector)
due to gravity. Thus

pbxby x 1 x g = (pgx, pgy)bxby x 1 (2.63)

Normally, of course, gravity acts vertically downwards, so g, = 0 and g, = —g.
The evaluation of Term (iv), the net pressure force acting on the control volume is
illustrated in Fig. 2.22. In the x direction the net pressure force is given by

_opéx (4208 __ o
< 6x2)6yx1 <p+5£2)6yx1— 6—x6x6yx1 (2.64a)

(p + —zs—gz)& x 1

_0p & &
(p ax2)8yx]—><— .

%‘»L— (p + —gxpgx-)iiy x1

NQ+NQ»«

—
-

Fig. 2.22 Pressure forces acting on the infinitesimal control volume
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Similarly, the y component of the net pressure force is given by
—Z—i&x&y x 1 (2.64b)

The evaluation of the x component of Term (v), the net viscous force, is illustrated
in Fig. 2.23. In a similar way as for Eqn (2.64a,b), we obtain the net viscous force in
the x and y directions respectively as

Ooxx  Ooxy
(W-'_ 3}1 )6x6y x 1 (2.653)
0o yx 6ayy>

(6x + By bxby x 1 (2.65b)

We now substitute Eqns (2.61) to (2.65) into Eqn (2.59) and cancel the common
factor 6x6y x 1 to obtain

Ou Ou Ou\ 8p | Goxx | oxy
P(EE-F % +Vay) - =+ Ox +—= By (2.66a)
o v 0N 0p o oy
p(at+u8x+v8y)—-pgy—ay+ ax T By (2.66b)

These are the momentum equations in the form of partial differential equations.
For three dimensional flows the momentum equations can be written in the form:

Ou Ou Ou Ou Op Ooxx Ooy 0O0x
(a:“ ="t 62) "o ax Ty T 2873
v Bv  Ov o\ _ Op Ooyx  Ooy  Ooy
p(3t+u6x+v6y+wc’)z>_ Y 6y+ B =+ By + P (2.67b)
ow ow ow ow\ Op 0o 0oy 00z
p(@t +u6x+v6y+waz)_ Z_E—i_ £ + By + 3 (2.67c)

where gx, gy, g; are the components of the acceleration g due to gravity, the body
force per unit volume being given by pg.

The only approximation made to derive Eqns (2.66) and (2.67) is the continuum
model, i.e. we ignore the fact that matter consists of myriad molecules and treat it as
continuous. Although we have made use of the incompressible form of the continuity

a0, &
+ X2 hxx1
("*’ oy 2y)
—
5
e ot e o
——

ag,, &
(a,y-T’)‘/l—;)éxxl

Fig. 2.23 x-component of forces due to viscous stress acting on infinitesimal control volume
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Eqn (2.46) to simplify Eqn (2.58a,b), Eqns (2.62) and (2.63) apply equally well to
compressible flow. In order to show this to be true, it is necessary to allow density to
vary in the derivation of Term (i) and to simplify it using the compressible form of the
continuity Eqn (2.45).

2.6.1 The Euler equations

For some applications in aerodynamics it can be an acceptable approximation to
neglect the viscous stresses. In this case Eqns (2.66) simplify to

Ou Ou o\ ap ’
v v Qv ap
au— v )=po, — X 2.

P (81 tugy (9y> =3, (2.680)

These equations are known as the Euler equations. In principle, Eqns (2.68a,b),
together with the continuity Eqn (2.46), can be solved to give the velocity components
u and v and pressure p. However, in general, this is difficult because Eqns (2.68a,b) can
be regarded as the governing equations for » and v, but p does not appear explicitly in
thé continuity equation. Except for special cases, solution of the Euler equations can
only be achieved numerically using a computer. A very special and comparatively
simple case is irrotational flow (see Section 2.7.6). For this case the Euler equations
reduce to a single simpler equation — the Laplace equation. This equation is much more
amenable to analytical solution and this is the subject of Chapter 3.

2.7 Rates of strain, rotational flow and vorticity

As they stand, the momentum Eqns (2.66) (or 2.67), together with the continuity Eqn
(2.46) (or 2.47) cannot be solved, even in principle, for the flow velocity and pressure.
Before this is possible it is necessary to link the viscous stresses to the velocity field
through a constitutive equation. Air, and all other homogeneous gases and liquids,
are closely approximated by the Newtonian fluid model. This means that the viscous
stress is proportional to the rate of strain. Below we consider the distortion experi-
enced by an infinitesimal fluid element as it travels through the flow ficld. In this way
we can derive the rate of strain in terms of velocity gradients. The important flow
properties, vorticity and circulation will also emerge as part of this process.

2.7.1 Distortion of fluid element in flow field

Figure 2.24 shows how a fluid element is transformed as it moves through a flow
field. In general the transformation comprises the following operations:

(1) Translation — movement from one position to another.
(i1) Dilation/Compression — the shape remains invariant, but volume reduces or increases.
For incompressible flow the volume remains invariant from one position to another.
(ii1) Distortion — change of shape keeping the volume invariant.

Distortion can be decomposed into anticlockwise rotation through angle
(o — B)/2 and a shear of angle (a + $3)/2.

The angles « and 3 are the shear strains.
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(a) Translation

-
P
e
-

-~ End
A

Start

-~

(b} Dilation

$(a-5)

(d) Distortion Rotation Shear

Fig. 2.24 Transformation of a fluid element as it moves through the flow field

2.7.2 Rate of shear strain

Consider Fig. 2.25. This shows an elemental control volume ABCD that initially at
time ¢ = ¢; is square. After an interval of time 6¢ has elapsed 4BCD has moved and
distorted into 4’B'C'DY. The velocities at ¢t = ¢; at 4, B and C are given by

Oubdx Ouby ovbx Ovby

u,4=u—57—6—y?, VA=V_57_8_})7 (2.692)
Oubx Ouby _ Ovéx Ovéby

Uup=1u % 2 ay ) s Vg =V — 57_'—8_})7 (2.69b)
Oubx Ouby _ dvéx Ovéby

uc u+5;7—6_y?’ VC—V+57_8_},“2— (2.69¢)

X4 = uqét, y4 = v40t etc. (2.70)



Governing equations of fluid mechanics 85

Fig. 2.25

Therefore, if we neglect the higher-order terms,

bx Ox2 0Oy?2 Ox2 0Oy2 éx Ox
(2.71a)
_ Xp—Xg ot Oubx Ouby _@61_@@ ﬂ_@
A=—% ~s—ud; _{” 2 y2 \“" 2 &2))5 oy
(2.71b)
The rate of shear strain in the xy plane is given by
dyyy d fa+B) _ (Ov Ou 1 1/0v Ou
dt _dt( 7 ) =& 5%) w2 a T 5y (2722)

In much the same way, for three-dimensional flows it can be shown that there are
two other components of the rate of shear strain

dvy,, 1(0w  0Ou dv,, 1[0 ow
i —§(a+5;>’ & 2\ Ty’ (2.726,¢)

2.7.3 Rate of direct strain

Following an analogous process we can also calculate the direct strains and their
corresponding rates of strain, for example

_xp—xp _ (up —ug)bt {u n Ou bx ( Ou 5x)} 6t Ou

Exx_xp—xE bx ox 2 ”_57 bx  ox

Ox 2

8t (2.73)
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The other direct strains are obtained in a similar way; thus the rates of direct strain
are given by

Gou _Ou  dey_0v  dem_0w
dt ~ ox’ dt ~ oy’ dt ~ 8z

(2.74a,b,c)

Thus we can introduce a rate of strain tensor analogous to the stress tensor (see
Section 2.6) and for which components in two-dimensional flow can be represented
in matrix form as follows:

(é’“ ’:ny) (2.75)
Tyx  Eyy

where () is used to denote a time derivative.

2.7.4 \Vorticity

The instantaneous rate of rotation of a fluid element is given by (& — B)/2 — see
above. This corresponds to a fundamental property of fluid flow called the vorticity
that, using Eqn (2.71), in two-dimensional flow is defined as

2= (2.76)

In three-dimensional flow vorticity is a vector given by

Q= (§n¢) = (a—y—gg,a—‘a—x;a—g}j) (2.77a,b,c)

It can be seen that the three components of vorticity are twice the instantaneous
rates of rotation of the fluid element about the three coordinate axes. Mathematically
it is given by the following vector operation

Q=Vxvy (2.78)

Vortex lines can be defined analogously to streamlines as lines that are tangential
to the vorticity vector at all points in the flow field. Similarly the concept of the
vortex tube is analogous to that of stream tube. Physically we can think of flow
structures like vortices as comprising bundles of vortex tubes. In many respects
vorticity and vortex lines are even more fundamental to understanding the flow
physics than are velocity and streamlines.

2.7.5 Vorticity in polar coordinates

Referring to Section 2.4.3 where polar coordinates were introduced, the correspond-
ing definition of vorticity in polar coordinates is

q:  0q: 108g,
=4 — - 2.79
¢ r + or r o0 (2.79)
Note that consistent with its physical interpretation as rate of rotation, the units of
vorticity are radians per second.
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l Reference axes

Fig. 2.26

2.7.6 Rotational and irrotational flow

It will be made clear in Section 2.8 that the generation of shear strain in a fluid element,
as it travels through the flow field, is closely linked with the effects of viscosity. It is also
plain from its definition (Eqn (2.76)) that vorticity is related to rate of shear strain.
Thus, in aerodynamics, the existence of vorticity is associated with the effects of
viscosity.* Accordingly, when the effects of viscosity can be neglected, the vorticity is
usually equivalently zero. This means that the individual fluid elements do not rotate,
or distort, as they move through the flow field. For incompressible flow, then, this
corresponds to the state of pure translation that is illustrated in Fig. 2.26. Such a flow is
termed irrotational flow. Mathematically, it is characterized by the existence of a velocity
potential and is, therefore, also called potential flow. It is the subject of Chapter 3.
The converse of irrotational flow is rotational flow.

2.7.7 Circulation

The total amount of vorticity passing through any plane region within a flow field is
called the circulation, T'. This is illustrated in Fig. 2.27 which shows a bundle of vortex
tubes passing through a plane region of area A located in the flow field. The
perimeter of the region is denoted by C. At a typical point P on the perimeter, the
velocity vector is designated q or, equivalently, 4. At P, the infinitesimal portion of C
has length s and points in the tangential direction defined by the unit vector t (or 7).
It is important to understand that the region of area 4 and its perimeter C have no
physical existence. Like the control volumes used for the application of conservation
of mass and momentum, they are purely theoretical constructs.

Mathematically, the total strength of the vortex tubes can be expressed as an

integral over the area 4; thus
r=// n-Qd4 (2.80)
A

where n is the unit normal to the area A. In two-dimensional flow the vorticity is in the
z direction perpendicular to the two-dimensional flow field in the (x, y) plane. Thus
n = k (i.e. the unit vector in the z direction) and Q = ¢k, so that Eqn (2.80) simplifies to

r=[[ ¢ (281)

* Vorticity can also be created by other agencies, such as the presence of spatially varying body forces in the
flow field. This could correspond to the presence of particles in the flow field, for example.
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Bundle of vortex tubes

Fig. 2.27

Circulation can be regarded as a measure of the combined strength of the total
number of vortex lines passing through A. It is a measure of the vorricity flux carried
through A4 by these vortex lines. The relationship between circulation and vorticity is
broadly similar to that between momentum and velocity or that between internal
energy and temperature. Thus circulation is the property of the region 4 bounded by
control surface C, whereas vorticity is a flow variable, like velocity, defined at a
point. Strictly it makes no more sense to speak of conservation, generation, or
transport of vorticity than its does to speak of conservation, generation, or transport
of velocity. Logically these terms should be applied to circulation just as they are to
momentum rather than velocity. But human affairs frequently defy logic and aero-
dynamics is no exception. We have become used to speaking in terms of conservation
etc. of vorticity. It would be considered pedantic to insist on circulation in this
context, even though this would be strictly correct. Our only motivation for
making such fine distinctions here is to elucidate the meaning and significance of
circulation. Henceforth we will adhere to the common usage of the terms vorticity
and circulation.

In two-dimensional flow, in the absence of the effects of viscosity, circulation is
conserved. This can be expressed mathematically as follows:

S SN, S
TR e =0 (2.82)

In view of what was written in Section 2.7.6 about the link between vorticity and
viscous cffects, it may seem somewhat illogical to neglect such effects in Eqn (2.82).
Nevertheless, it is often a useful approximation to use Eqn (2.82).

Circulation can also be evaluated by means of an integration around the
perimeter C. This can be shown elegantly by applying Stokes theorem to Eqn

(2.81); thus
://n~QdA://n~V><qu:yé.q-tds (2.83)
4 4 Jc

This commonly serves as the definition of circulation in most acrodynamics text.
The concept of circulation is central to the theory of lift. This will become clear in
Chapters 5 and 6.
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Example 2.2 For the rectangular region of a two-dimensional flow field depicted in Fig. 2.28,

starting with the definition Eqn (2.81) of circulation, show that it can also be evaluated by

means of the integral around the closed circuit appearing as the last term in Eqn (2.83).
From Eqns (2.76) and (2.81) it follows that

y2 X2 X2
[ LG [ [ [
W Ju \Ox Oy

v(xz,¥)-v(x, }\ uv\])

Therefore

V2 r¥2 N2 X
= / v(x, y)dy — / v(xy,y) — / u(x, y2)dx + / u(x, yy)dx
n N X Jx)

X2 ¥2 X ¥l
= [Cutas+ [Cvtiar s [Cuoaxs [T @8
X1 X2 2

2

But along the lines: C|, q =ui, t=1i, ds =dx; C3, q=1vj, t=j, ds =dy; C3, q = ui, t = —i,
ds = —dx; and Cy4, q = uj, t = —j, ds = —dy. It therefore follows that Eqn (2.84) is equivalent to

Fz}éq-tds
Jc

2.8 The Navier-Stokes equations
2.8.1 Relationship between rates of strain
and viscous stresses

In solid mechanics the fundamental theoretical model linking the stress and strain
fields is Hooke’s law that states that

Stress o Strain (2.85)

89
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The equivalent in fluid mechanics is the model of the Newtonian fluid for which it is
assumed that

Stress o< Rate of strain (2.86)

However, there is a major difference in status between the two models. At best
Hooke’s law is a reasonable approximation for describing small deformations of
some solids, particularly structural steel. Whereas the Newtonian fluid is a very
accurate model for the behaviour of almost all homogeneous fluids, in particular
water and air. It does not give good results for pseudofluids formed from suspensions
of particles in homogeneous fluids, e.g. blood, toothpaste, slurries. Various Non-
Newtonian fluid models are required to describe such fluids, which are often called
non-Newtonian fluids. Non-Newtonian fluids are of little interest in aerodynamics
and will be considered no further here.
For two-dimensional flows, the constitutive law (2.86) can be written

(O'xx (Txy) — 2u(é:xx '?'xy) (287)
Opx  Oyy Yyx  Eyy

where ( * ) denotes time derivatives. The factor 2 is merely used for convenience so as
to cancel out the factor 1/2 in the expression (2.72a) for the rate of shear strain.
Equation (2.87) is sufficient in the case of an incompressible fluid. For a compressible

fluid, however, we should also allow for the possibility of direct stress being gener-
ated by rate of change of volume or dilation. Thus we need to add the following to the

right-hand side of (2.87)
€xx + €y 0
A( 0 bt &) ) (2.88)

1 and A are called the first and second coefficients of viscosity. More frequently u is
just termed the dynamic viscosity in contrast to the kinematic viscosity v = p/p. If it is
required that the actual pressure p — %(axx + ayy) + 0, in a viscous fluid be identical
to the thermodynamic pressure p, then it is easy to show that

3IA+21=0 or )\=—§u

This is often called Stokes hypothesis. In effect, it assumes that the bulk viscosity,
', linking the average viscous direct stress to the rate of volumetric strain is zero, i.e.

2
u’=)\+§u20 (2.89)

This is still a rather controversial question. Bulk viscosity is of no importance in
the great majority of engineering applications, but can be important for describing
the propagation of sound waves in liquids and sometimes in gases also. Here, for the
most part, we will assume incompressible flow, so that

] . Ou 0Ov
Exx ey =5+ =

Ox Oy 0

and Eqn (2.87) will, accordingly, be valid.
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2.8.2 The derivation of the Navier-Stokes equations

Restricting our derivation to two-dimensional flow, Eqn (2.87) with (2.72a) and
(2.73) gives

Ou ov Ju Ov
Oxx = Zua, Oyy = 2ua—y, Oxy = Oypx = ﬂ(a_y + a) (2.90)
So the right-hand side of the momentum Eqns (2.66a) becomes
op Ou O (Ou  Ov
&5 25 (57) TEay (5%7)
ap Pu  Pu 0 10u v
=5 it 50) T (Gt ) @91)

N————
=0, Eqn (2.46)

The right-hand side of (2.66b) can be dealt with in a similar way. Thus the momen-
tum equations (2.66a,b) can be written in the form

ou  Ou  Ouy Op u  Bu
A e Dl et ) (2922)
v v v op v 9%
il - - = - 4= 2.
Pt v@y) PBy =y T (3t 6y2) (2.92b)

This form of the momentum equations is known as the Navier—Stokes equations for
two-dimensional flow. With the inclusion of the continuity equation
Ou N v
Ox 0Oy
we now have three governing equations for three unknown flow variables u, v, p.

The Navier-Stokes equations for three-dimensional incompressible flows are given
below:

=0 (2.93)

Oou Ov aw
ou 94
5t a0 (2.94)
Ou Ou Ou  Ou Op Pu  u  Ou
(az+“a_¥+va_+‘”az) ﬂgx—a-%/t(axzwLa—yz —) (2.95a)
v Oy Oy v op Pv Pv 9y
Wit e a) = g e tarta) (9
ow ow Ow owy ap Pw  Pw  OPw
<81 +u —x+va—y+w5)~pgz 5‘*‘#(@‘%6—)}2‘%@) (2.95¢)

2.9 Properties of the Navier-Stokes equations

At first sight the Navier—Stokes equations, especially the three-dimensional version,
Eqns (2.95), may appear rather formidable. It is important to recall that they are
nothing more than the application of Newton’s second law of motion to fluid flow.
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For example, the left-hand side of Eqn (2.95a) represents the total rate of change of
the x component of momentum per unit volume. Indeed it is often written as:

Du D 19} 19} 19}
where —=—+uUu—+v—+w

PDi Dt ot 0x Oy 0Oz (2.96)

is called the total or material derivative. It represents the total rate of change with time
following the fluid motion. The left-hand sides of Eqns (2.95b,c) can be written in a
similar form. The three terms on the right-hand side represent the x components of body
force, pressure force and viscous force respectively acting on a unit volume of fluid.

The compressible versions of the Navier—Stokes equations plus the continuity
equation encompass almost the whole of aerodynamics. To be sure, applications
involving combustion or rarified flow would require additional chemical and phys-
ical principles, but most of aerodynamics is contained within the Navier-Stokes
equations. Why, then, do we need the rest of the book, not to mention the remaining
vast, ever-growing, literature devoted to aerodynamics? Given the power of modern
computers, could we not merely solve the Navier—Stokes equations numerically for
any acrodynamics application of interest? The short answer is no! Moreover, there is
no prospect of it ever being possible. To explain fully why this is so is rather difficult.
We will, nevertheless, attempt to give a brief indication of the nature of the problem.

Let us begin by noting that the Navier-Stokes equations are a set of partial
differential equations. Few analytical solutions exist that are useful in aerodynamics.
(The most useful examples will be described in Section 2.10.) Accordingly, it is
essential to seek approximate solutions. Nowadays, it is often possible to obtain very
accurate numerical solutions by using computers. In many respects these can be
regarded almost as exact solutions, although one must never forget that computer-
generated solutions are subject to error. It is by no means simple to obtain such
numerical solutions of the Navier—Stokes equations. There are two main sources of
difficulty. First, the equations are nonlinear. The nonlinearity arises from the left-
hand sides, i.e. the terms representing the rate of change of momentum — the so-called
inertial terms. To appreciate why these terms are nonlinear, simply note that when
you take a term on the right-hand side of the equations, e.g. the pressure terms, when
the flow variable (e.g. pressure) is doubled the term is also doubled in magnitude.
This is also true for the viscous terms. Thus these terms are proportional to the
unknown flow variables, i.e. they are linear. Now consider a typical inertial term, say
#Ou/Ox. This term is plainly proportional to #? and not u, and is therefore nonlinear.
The second source of difficulty is more subtle. It involves the complex effects of
viscosity.

In order to understand this second point better, it is necessary to make the Navier—
Stokes equations non-dimensional. The motivation for working with non-dimen-
sional variables and equations is that it helps to make the theory scale-invariant and
accordingly more universal (see Section 1.4). In order to fix ideas, let us consider the air
flowing at speed U,, towards a body, a circular cylinder or wing say, of length L. See
Fig. 2.29. The space variables x, y, and z can be made nondimensional by dividing by
L. L/U, can be used as the reference time to make time non-dimensional. Thus we
introduce the non-dimensional coordinates

X=x/L, Y=y/L, Z=z/L, and T=(UJL (2.97)

U can be used as the reference flow speed to make the velocity components
dimensionless and pU?2, (c.f. Bernoulli equation Eqn (2.16)) used as the reference
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Fig. 2.29

pressure. (For incompressible flow, at least, only pressure difference is of significance
and not the absolute value of the pressure.) This allows us to introduce the following
non-dimensional flow variables:

U=u/Up, V=v/Ux, W=w/Us, and P=p/(pU%) (2.98)

If, by writing x = XL etc. the non-dimensional variables given in Eqns (2.97) and
(2.98) are substituted into Eqns (2.94) and (2.95) with the body-force terms omitted,
we obtain the Navier—Stokes equations in the form:

U 8V oW
DU 8P 1 (U U 8*U
7= 57 7Gxzt 572 T 922) (2.100a)
DV 8P 1 8%V 8V @8V
57="37 "7 Gzt 572t 572) (2.100b)
DW OP 1 O*W &W W
7="5z r o t 37T T 52 (2.100c)

where the short-hand notation (2.96) for the material derivative has been used.
A feature of Eqns (2.100) is the appearance of the dimensionless quantity known
as the Reynolds number:

pUx L
7

From the manner in which it has emerged from making the Navier—Stokes equations
dimensionless, it is evident that the Reynolds number (see also Section 1.4) represents
the ratio of the inertial to the viscous terms (i.e. the ratio of rate of change of
momentum to the viscous force). It would be difficult to overstate the significance
of Reynolds number for aerodynamics.

It should now be clear from Eqns (2.99) and (2.100) that if one were to calculate
the non-dimensional flow field for a given shape — a circular cylinder, for example —
the overall flow pattern obtained would depend on the Reynolds number and, in the
case of unsteady flows, on the dimensionless time 7. The flow around a circular
cylinder is a good example for illustrating just how much the flow pattern can change
over a wide range of Reynolds number. See Section 7.5 and Fig. 7.14 in particular.
Incidentally, the simple dimensional analysis carried out above shows that it is not
always necessary to solve equations in order to extract useful information from them.

For high-speed flows where compressibility becomes important the absolute value
of pressure becomes significant. As explained in Section 2.3.4 (see also Section 1.4),
this leads to the appearance of the Mach number, M (the ratio of the flow speed to the
speed of sound), in the stagnation pressure coefficient. Thus, when compressibility

Re =

(2.101)
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becomes important (see Section 2.3.4), Mach number becomes a second dimension-
less quantity characterizing the flow field.

The Navier-Stokes equations are deceptively simple in form, but at high Reynolds
numbers the resulting flow fields can be exceedingly complex even for simple geo-
metries. This is basically a consequence of the behaviour of the regions of vortical
flow at high Reynolds number. Vorticity can only be created in a viscous flow and
can be regarded as a marker for regions where the effects of viscosity are important in
some sense.

For engineering applications of aerodynamics the Reynolds numbers are very
large, values well in excess of 10 are commonplace. Accordingly, one would expect
that to a good approximation one could drop the viscous terms on the right-hand
side of the dimensionless Navier—Stokes Eqns (2.100). In general, however, this view
would be mistaken and one never achieves a flow field similar to the inviscid one no
matter how high the Reynolds number. The reason is that the regions of non-zero
vorticity where viscous effects cannot be neglected become confined to exceedingly
thin boundary layers adjacent to the body surface. As Re — oc the boundary-layer
thickness, § — 0. If the boundary layers remained attached to the surface they would
have little effect beyond giving rise to skin-friction drag. But in all real flows the
boundary layers separate from the surface of the body, either because of the effects of
an adverse pressure gradient or because they reach the rear of the body or its trailing
edge. When these thin regions of vortical flow separate they form complex unsteady
vortex-like structures in the wake. These take their most extreme form in turbulent
flow which is characterized by vortical structures with a wide range of length and
time scales.

As we have seen from the discussion given above, it is not necessary to solve the
Navier-Stokes equations in order to obtain useful information from them. This is
also illustrated by following example:

Example 2.3 Aerodynamic modelling

Let us suppose that we are interested carrying out tests on a model in a wind-tunnel in order to
study and determine the aerodynamic forces exerted on a motor vehicle travelling at normal
motorway speeds. In this case the speeds are sufficiently low to ensure that the effects of
compressibility are negligible. Thus for a fixed geometry the flow field will be characterized
only by Reynolds number.* In this case we can use U, the speed at which the vehicle travels
(the air speed in the wind-tunnel working section for the model) as the reference flow speed,
and L can be the width or length of the vehicle. So the Reynolds number Re = pU.L/u. For
a fixed geometry it is clear from Eqns (2.99) and (2.100) that the non-dimensional flow
variables, U, ¥, W, and P are functions only of the dimensionless coordinates X, Y, Z, T,
and the dimensionless quantity, Re. In a steady flow the aerodynamic force, being an overall
characteristic of the flow field, will not depend on X, Y, Z, or T. It will, in fact, depend only
on Re. Thus if we make an aerodynamic force, drag (D) say, dimensionless, by introducing
a force (i.e. drag) coefficient defined as

D

Cp=1r——s
1pULL?

(2.102)

(see Section 1.5.2 and noting that here we have used I? in place of area S) it should be clear
that

Cp = F(Re) i.e. a function of Re only (2.103)

* In fact, this statement is somewhat of an over-simplification. Technically the turbulence characteristics of
the oncoming flow also influence the details of the flow field.
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If we wish the model tests to produce useful information about general characteristics of the
prototype’s flow field, in particular estimates for its acrodynamic drag, it is necessary for the
model and prototype to be dynamicaily similar, i.e. for the forces 1o be scale invariant. It can be
seen from Eqn (2.103) that this can only be achieved provided

Re,, = Re, (2.104)

where suffices m and p denote model and prototype respectively.

It is not usually practicable to use any other fluid but air for the model tests. For standard
wind-tunnels the air properties in the wind-tunnel are not greatly different from those experi-
enced by the prototype. Accordingly, Eqn (2.104) implies that

L,
Un = L_IU/: (2105)
m

Thus, if we use a 1/5-scale model, Eqn (2.105) implies that U,, = 5U,. So a prototype speed of
100 km/hr (c. 30 m/s) implies a model speed of 500 km/hr (c. 150 m/s). At such a model speed
compressibility effects are no longer negligible. This illustrative example suggests that, in
practice, it is rarely possible to achieve dynamic similarity in aerodynamic model tests using
standard wind-tunnels. In fact, dynamic similarity can usually only be achieved in aerody-
namics by using very large and expensive facilities where the dynamic similarity is achieved by
compressing the air (thereby increasing its density) and using large models.

In this example we have briefly revisited the material covered in Section 1.4. The objective
was to show how the dimensional analysis of the Navier-Stokes equations (effectively the exact
governing equations of the flow field) could establish more rigorously the concepts introduced
in Section 1.4.

2.10 Exact solutions of the Navier-Stokes
equations

Few physically realizable exact solutions of the Navier-Stokes equations exist. Even
fewer are of much interest in Enginecring. Here we will present the two simplest
solutions, namely Couette flow (simple shear flow) and plane Poiseuille flow (channel
flow). These are useful for engineering applications, although not for the aerody-
namics of wings and bodies. The third exact solution represents the flow in the
vicinity of a stagnation point. This is important for calculating the flow around
wings and bodies. It also illustrates a common and, at first sight, puzzling feature.
Namely, that if the dimensionless Navier—Stokes equations can be reduced to an
ordinary differential equation, this is regarded as tantamount to an exact solution.
This is because the essentials of the flow ficld can be represented in terms of one or
two curves plotted on a single graph. Also numerical solutions to ordinary differ-
ential equations can be obtained to any desired accuracy.

2.10.1 Couette flow - simple shear flow

This is the simplest exact solution. It corresponds to the flow field created between
two infinite, plane, parallel surfaces; the upper one moving tangentially at speed Uy,
the lower one being stationary (see Fig. 2.30). Since the flow is steady and two-
dimensional, derivatives with respect to z and ¢ are zero, and w = 0. The streamlines
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are parallel to the x axis, so v = 0. Therefore Eqn (2.93) implies du/0x = 0,i.e. uis a
function only of y. There is no external pressure field, so Eqn (2.92a) reduces to

P
M ayz

where C; and C; are constants of integration. =0 and U7 when y =0 and &
respectively, so Eqn (2.106) becomes

=0 implying u=Ciy+ C, (2.106)

y T
U= UTh_uy (2.107)
where T is the constant viscous shear stress.

This solution approximates well the flow between two concentric cylinders with the
inner one rotating at fixed speed, provided the clearance is small compared with the
cylinder’s radius, R. This is the basis of a viscometer — an instrument for measuring
viscosity, since the torque required to rotate the cylinder at constant speed w is
proportional to 7 which is given by uwR/h. Thus if the torque and rotational speed
are measured the viscosity can be determined.

2.10.2 Plane Poiseuille flow - pressure-driven channel flow

This also corresponds to the flow between two infinite, plane, parallel surfaces (see
Fig. 2.31). Unlike Couette flow, both surfaces are stationary and flow is produced by
the application of pressure. Thus all the arguments used in Section 2.10.1 to simplify
the Navier—Stokes equations still hold. The only difference is that the pressure term
in Eqn (2.95a) is retained so that it simplifies to

dp . Pu_ . . _ ldpy?
i + ua—yz =0 implying u= ndx 2 +Ciy+ G (2.108)
The no-slip condition implies that ¥ = 0 at y = 0 and A, so Eqn (2.108) becomes
_ _Kdpys vy
= ~2paxi (177 (2.109)

Thus the velocity profile is parabolic in shape.
The true Poiseuille flow is found in capillaries with round sections. A very similar
solution can be found for this case in a similar way to Eqn (2.109) that again has
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a parabolic velocity profile. From this solution, Poiseuille’s law can be derived
linking the flow rate, Q, through a capillary of diameter 4 to the pressure gradient,
namely

_md dp
128y dx
Poiseuille was a French physician who derived his law in 1841 in the course of

his studies on blood flow. His law is the basis of another type of viscometer whereby

the flow rate driven through a capillary by a known pressure difference is measured.
The value of viscosity can be determined from this measurement by using Eqn (2.110).

Q= (2.110)

2.10.3 Hiemenz flow — two-dimensional stagnation-point flow

The simplest example of this type of flow, illustrated in Fig. 2.32, is generated by
uniform flow impinging perpendicularly on an infinite plane. The flow divides equally
about a stagnation point (strictly a line). The velocity field for the corresponding
inviscid potential flow (see Chapter 3) is

u=ax v=-—ay whereaisa const. (2.111)

The real viscous flow must satisfy the no-slip condition at the wall —as shown in Fig. 2.32—
but the potential flow may offer some hints on seeking the full viscous solution.

This special solution is of particular interest for aerodynamics. All two-
dimensional stagnation flows behave in a similar way near the stagnation point.
It can therefore be used as the starting solution for boundary-layer calculations in the
case of two-dimensional bodies with rounded noses or leading edges (see Example 2.4).
There is also an equivalent axisymmetric stagnation flow.

The approach used to find a solution to the two-dimensional Navier—Stokes
Eqns (2.92) and (2.93) is to aim to reduce the equations to an ordinary differential
equation. This is done by assuming that, when appropriately scaled, the non-dimensional
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Fig. 2.32 Stagnation-zone flow field

velocity profile remains the same shape throughout the flow field. Thus the nature of the
flow field suggests that the normal velocity component is independent of x, so that

y=—f(y) (2.112)

where f(y) is a function of y that has to be determined. Substitution of Eqn (2.112)
into the continuity Eqn (2.93) gives

% =1"(y); integrate to get  u = xf'(y) (2.113)

where ()’ denotes differentiation with respect to y. The constant of integration in Eqn
(2.113) is equivalently zero, as u = v =0 at x = 0 (the stagnation point), and was
therefore omitted.

For a potential flow the Bernoulli equation gives

1
p3p(@ ) =po. (2.114)
ax2+a?y?

So for the full viscous solution we will try the form:
1
po—p=5pa[¥ + F(y)], (2.115)

where F(yp) is another function of y. If the assumptions (2.112) and (2.115) are
incorrect, we will fail in our objective of reducing the Navier—Stokes equations to
ordinary differential equations.

Substitute Eqns (2.112), (2.113) and (2.115) into Eqn (2.92a,b) to get

Ou Ou op Pu  B*u
pua-i-pv-a—y— ~ox M(@-i-a—yz) (2.116)
e e = M N
pxf? —px ff" —patx 0 pxfm
v v 8p v v
Pua'i‘pva—y— —5 #(@4_6_)72) (2117)
- N

e S d
O - PP O
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Simplifying these two equations gives

f'z—ff”=a2+uf”’ (2.118)
S =5 @F " (2119)

where use has been made of the definition of kinematic viscosity (v = u/p). Evidently
the assumptions made above were acceptable, since we have succeeded in the aim
of reducing the Navier-Stokes equations to ordinary differential equations. Also
note that the second Eqn (2.119) is only required to determine the pressure field,
Eqn (2.118) on its own can be solved for f, thus determining the velocity field.

The boundary conditions at the wall are straightforward, namely

u=v=0 at y=0 implying f=f"=0 at y=0 (2.120)
As y — oo the velocity will tend to its form in the corresponding potential flow. Thus
u—ax as y—oo implying f'=a as y— oo (2.121)

In its present form Eqn (2.118) contains both @ and v, so that f depends on these
parameters as well as being a function of y. It is desirable to derive a universal form
of Eqn (2.118), so that we only need to solve it once and for all. We attempt to
achieve this by scaling the variables f(y) and y, i.e. by writing

fO)=Bé(n), n=ay (2.122)

where o and # are constants to be determined by substituting Eqn (2.122) into
Eqn (2.118). Noting that

,_df _dn.d¢
f=4=g a =

Eqn (2.118) thereby becomes
02,32(}5,2 _ a2[32¢¢” — a2 + l/a3,3¢”' (2123)
Thus providing

= =va’B, implying a=+/alv, B=+av (2.124)

they can be cancelled as common factors and Eqn (2.124) reduces to the universal
form:

"+ 9" —p*+1=0 (2.125)
with boundary conditions
$(0)=¢'(0)=0,  ¢/(c0) =1

In fact, ¢’ = u/U, where U, = ax the velocity in the corresponding potential flow
found when 7 — oc. It is plotted in Fig. 2.33. We can regard the point at which
¢’ = 0.99 as marking the edge of the viscous region. This occurs at 5~ 2.4. This
viscous region can be regarded as the boundary layer in the vicinity of the stagnation
point (note, though, no approximation was made to obtain the solution). Its thick-
ness does not vary with x and is given by

§~24+/v/a (2.126)
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Example 2.4 Calculating the boundary-layer thickness in the stagnation zone at the leading
edge.
We will estimate the boundary-layer thickness in the stagnation zone of (i) a circular cylinder
of 120mm diameter in a wind-tunnel at a flow speed of 20 m/s; and (ii) the leading-edge of a
Boeing 747 wing with a leading-edge radius of 150 mm at a flight speed of 250 m/s.

For a circular cylinder the potential-flow solution for the tangential velocity at the surface is
given by 2U,sin¢ (see Eqn (3.44)). Therefore in Case (i) in the stagnation zone,
x = Rsin ¢ ~ R¢, so the velocity tangential to the cylinder is

U, ~ 2Unp = 2%2 R¢

X

Therefore, as shown in Fig. 2.34, if we draw an analogy with the analysis in Section 2.10.3
above, a = 2Uy/R =2 x 20/0.06 = 666.7 sec™!. Thus from Eqn (2.126), given that for air the
kinematic viscosity, v ~ 15 x 10~ m?/s,

v /15 x 10-6

For the aircraft wing in Case (ii) we regard the leading edge as analogous locally to a circular
cylinder and follow the same procedure as for Case (i). Thus R = 150mm = 0.15m and
U = 250m/s, so in the stagnation zone, @ = 2U,/R =2 % 250/0.15 = 3330sec~! and

v /15 x 106
5_2.4ﬁ_2.4 30 = 160 pm

These results underline just how thin the boundary layer is! A point that will be taken up in
Chapter 7.
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Fig. 2.34

Exercises

1 Continuity Equation for axisymmetric flow

(a) Consider an axisymmetric flow field expressed in terms of the cylindrical
coordinate system (r, ¢, z) where all flow variables are independent of the azimuthal
angle ¢. For example, the axial flow over a body of revolution. If the velocity
components (u, w) correspond to the coordinate directions (r, z) respectively, show
that the continuity equation is given by

ou u Ow
ot =
r r Oz

3 0

(b) Show that the continuity equation can be automatically satisfied by a stream-
function ¢ of a form such that

10y _ 19y

== —— W= ———
r oz’ r Or

2 Continuity equation for two-dimensional flow in polar coordinates

(a) Consider a two-dimensional flow field expressed in terms of the cylindrical
coordinate system (r, ¢, z) where all flow variables are independent of the azimuthal
angle ¢. For example, the flow over a circular cylinder. If the velocity components
(4, v) correspond to the coordinate directions (r, ¢) respectively, show that the
continuity equation is given by

(b) Show that the continuity equation can be automatically satisfied by a stream-
function 9 of a form such that

_1oy __9%
u'—r8¢’ Y= T
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3 Transport equation for contaminant in two-dimensional flow field
In many engineering applications one is interested in the transport of a contaminant
by the fluid flow. The contaminant could be anything from a polluting chemical to
particulate matter. To derive the governing equation one needs to recognize that,
provided that the contaminant is not being created within the flow field, then the
mass of contaminant is conserved. The contaminant matter can be transported by
two distinct physical mechanisms, namely convection and molecular diffusion. Let C
be the concentration of contaminant (i.e. mass per unit volume of fluid), then the rate
of transport of contamination per unit area is given by

—DVC = —D(199+j‘9_c)

Ox "0y

where i and j are the unit vectors in the x and y directions respectively, and D is the
diffusion coefficient (units m?/s, the same as kinematic viscosity).

Note that diffusion transports the contaminant down the concentration gradient

(i.e. the transport is from a higher to a lower concentration) hence the minus sign. It
is analogous to thermal conduction.
(a) Consider an infinitesimal rectangular control volume. Assume that no contam-
inant is produced within the control volume and that the contaminant is sufficiently
dilute to leave the fluid flow unchanged. By considering a mass balance for the
control volume, show that the transport equation for a contaminant in a two-
dimensional flow field is given by

6_C~+u6_c+ VQE_’D(@_F@) =0
ot “ox Oy ox2 " 9y2)

(b) Why is it necessary to assume a dilute suspension of contaminant? What form

would the transport equation take if this assumption were not made? Finally, how

could the equation be modified to take account of the contaminant being produced

by a chemical reaction at the rate of . per unit volume.

4 Euler equations for axisymmetric flow
(a) for the flow field and coordinate system of Ex. 1 show that the Euler equations
(inviscid momentum equations) take the form:

tu-+wo-) =g or

Ou  Ou Ou Op
p (E or az)
Oow  Ow ow dp
oot %r ") = e
5 The Navier-Stokes equations for two-dimensional axisymmetric flow
(a) Show that the strain rates and vorticity for an axisymmetric viscous flow like that
described in Ex. 1 are given by:

. _Ou oW . _u
& = B b = g oo =73
L@ oy o o
V2 =3\ T 82/ T=%r 8z

[Hint: Note that the azimuthal strain rate is not zero. The easiest way to determine it
is to recognize that €, + €44 + £2; = 0 must be equivalent to the continuity equation.]
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(b) Hence show that the Navier-Stokes equations for axisymmetric flow are given by

(@4_ 8u+ 6u)_ 6p+ (6%4_1%_34_@)
P ot or oz PEr — orr rér r 9z2

(6w+u6w+ 6_w>_ _@_i_ (@+16W+BZW)

ot 8z) P8 T 5 TH\e2 T rar T a2

6 Euler equations for two-dimensional flow in polar coordinates

(a) For the two-dimensional flow described in Ex. 2 show that the Euler equations
(inviscid momentum equations) take the form:

P\o: ™V or rog r LG
Oy Ov vov uy 16p
oGt e o5t ) = e

[Hints: (i) The momentum components perpendicular to and entering and leaving
the side faces of the elemental control volume have small components in the radial
direction that must be taken into account; likewise (ii)- the pressure forces acting on
these faces have small radial components.]

7 Show that the strain rates and vorticity for the flow and coordinate system of Ex. 6
are given by:

. Ou ] 10v u
5"3——'3; €¢0=;_+;
. 1/8v v 106u 16u av v
7’¢_E(ar_F+7a¢)’ =3 ot

[Hint: (i) The angle of distortion (3) of the side face must be defined relative to the
line joining the origin O to the centre of the infinitesimal control volume.]

8 (a) The flow in the narrow gap (of width /) between two concentric cylinders of length
L with the inner one of radius R rotating at angular speed w can be approximated by the
Couette solution to the Navier—Stokes equations. Hence show that the torque 7" and
power P required to rotate the shaft at a rotational speed of wrad/s are given by

2muwR3L P 2muA R3L

h ?
9 Axisymmetric stagnation-point flow
Carry out a similar analysis to that described in Section 2.10.3 using the axisymmetric
form of the Navier—Stokes equations given in Ex. 5 for axisymmetric stagnation-
point flow and show that the equivalent to Eqn (2.118) is
¢///+2¢¢// _ ¢12+ 1=0

where ¢’ denotes differentiation with respect to the independent variable ¢ = y/afvz
and ¢ is defined in exactly the same way as for the two-dimensional case.

T =



Potential flow

Preamble

The aim of this chapter is to describe methods for calculating the air flow
around various shapes of body. The classical assumption of irrotational flow is
made, meaning that the vorticity is everywhere zero. This also implies inviscid
flow. Irrotational flows are potential fields. A potential function, known as the
velocity potential, is introduced. It is shown how the velocity components can
be determined from the velocity potential. The equations of motion for
irrotational flow reduce to a single partial differential equation for velocity
potential known as the Laplace equation. Classical analytical techniques are
described for obtaining two-dimensional and axisymmetric solutions to the
Laplace equation for aerodynamic applications. The chapter ends by showing
how these classical analytical solutions can be used to develop computational
methods for predicting the potential flows around the complex three-
dimensional geometries typical of modern aircraft.

3.1 Introduction

The concept of irrotational flow is introduced briefly in Section 2.7.6. By definition
the vorticity is everywhere zero for such flows. This does not immediately seem a very
significant simplification. But it turns out that zero vorticity implies the existence of a
potential field (analogous to gravitational and electric fields). In aerodynamics the
main variable of the potential field is known as the velocity potential (it is analogous
to vollage in electric fields). And another name for irrotational flow is potential flow.
For such flows the equations of motion reduce to a single partial differential equa-
tion, the famous Laplace equation, for velocity potential. There are well-known
techniques (see Sections 3.3 and 3.4) for finding analytical solutions to Laplace’s
equation that can be applied to aerodynamics. These analytical techniques can also
be used to develop sophisticated computational methods that can calculate the
potential flows around the complex three-dimensional geometries typical of modern
aircraft (see Section 3.5).

In Section 2.7.6 it was explained that the existence of vorticity is associated with
the effects of viscosity. It therefore follows that approximating a real flow by a
potential flow is tantamount to ignoring viscous effects. Accordingly, since all real
fluids are viscous, it is natural to ask whether there is any practical advantage in
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studying potential flows. Were we interested only in bluff bodies like circular cylin-
ders there would indeed be little point in studying potential flow, since no matter how
high the Reynolds number, the real flow around a circular cylinder never looks
anything like the potential flow. (But that is not to say that there is no point in
studying potential flow around a circular cylinder. In fact, the study of potential flow
around a rotating cylinder led to the profound Kutta—Zhukovski theorem that links
lift to circulation for all cross-sectional shapes.) But potential flow really comes into
its own for slender or streamlined bodies at low angles of incidence. In such cases the
boundary layer remains attached until it reaches the trailing edge or extreme rear of
the body. Under these circumstances a wide low-pressure wake does not form, unlike
a circular cylinder. Thus the flow more or less follows the shape of the body and the
main viscous effect is the generation of skin-friction drag plus a much smaller
component of form drag.

Potential flow is certainly useful for predicting the flow around fuselages and other
non-lifting bodies. But what about the much more interesting case of lifting bodies
like wings? Fortunately, almost all practical wings are slender bodies. Even so there is
a major snag. The generation of lift implies the existence of circulation. And circul-
ation is created by viscous effects. Happily, potential flow was rescued by an important
insight known as the Kutta condition. It was realized that the most important effect of
viscosity for lifting bodies is to make the flow leave smoothly from the trailing edge.
This can be ensured within the confines of potential flow by conceptually placing one
or more (potential) vortices within the contour of the wing or aerofoil and adjusting
the strength so as to generate just enough circulation to satisfy the Kutta condition.
The theory of lift, i.e. the modification of potential flow so that it becomes a suitable
model for predicting lift-generating flows is described in Chapters 4 and S.

3.1.1 The velocity potential

The stream function (see Section 2.5) at a point has been defined as the quantity
of fluid moving across some convenient imaginary line in the flow pattern, and lines of
constant stream function (amount of flow or flux) may be plotted to give a picture
of the flow pattern (see Section 2.5). Another mathematical definition, giving a
different pattern of curves, can be obtained for the same flow system. In this case
an expression giving the amount of flow along the convenient imagiriary line is found.

In a general two-dimensional fluid flow, consider any (imaginary) line OP joining
the origin of a pair of axes to the point P(x, y). Again, the axes and this line do not
impede the flow, and are used only to form a reference datum. At a point Q on the
line let the local velocity ¢ meet the line OP in 3 (Fig. 3.1). Then the component of
velocity parallel to és is g cos 8. The amount of fluid flowing along és is g cos 3 és. The
total amount of fluid flowing along the line towards P is the sum of all such amounts
and is given mathematically as the integral [gcos3ds. This function is called the
velocity potential of P with respect to O and is denoted by ¢.

Now OQP can be any line between O and P and a necessary condition for
JqcosBds to be the velocity potential ¢ is that the value of ¢ is unique for the
point P, irrespective of the path of integration. Then:

Velocity potential ¢ = / gcos Bds (3.1)
opP

If this were not the case, and integrating the tangential flow component from O to P
via A (Fig. 3.2) did not produce the same magnitude of ¢ as integrating from O to P
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Fig. 3.1

Fig. 3.2

via some other path such as B, there would be some flow components circulating in
the circuit OAPBO. This in turn would imply that the fluid within the circuit
possessed vorticity. The existence of a velocity potential must therefore imply zero
vorticity in the flow, or in other words, a flow without circulation (see Section 2.7.7),
i.e. an irrotational flow. Such flows are also called potential flows.

Sign convention for velocity potential

The tangential flow along a curve is the product of the local velocity component and
the elementary length of the curve. Now, if the velocity component is in the direction
of integration, it is considered a positive increment of the velocity potential.

3.1.2 The equipotential

Consider a point P having a velocity potential ¢ (¢ is the integral of the flow
component along OP) and let another point P, close to P have the same velocity
potential ¢. This then means that the integral of flow along OP, equals the integral of
flow along OP (Fig. 3.3). But by definition OPP, is another path of integration from
O to Py. Therefore

¢>=/ gcosBds = gcosBds = gcos 3ds,
OP

OP] OPPI
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Fig. 3.3

but since the integral along OP equals that along OP, there can be no flow along the
remaining portions of the path of the third integral, that is along PP,. Similarly for
other points such as P,, P3, having the same velocity potential, there can be no flow
along the line joining P, to P,.

The line joining P, P, P, P is a line joining points having the same velocity
potential and is called an equipotential or a line of constant velocity potential, i.e. a
line of constant ¢. The significant characteristic of an equipotential is that there is no
flow along such a line. Notice the correspondence between an equipotential and a
streamline that is a line across which there is no flow.

The flow in the region of points P and P; should be investigated more closely.
From the above there can be no flow along the line PP, but there is fluid flowing in
this region so it must be flowing in such a way that there is no component of
velocity in the direction PP;. So the flow can only be at right-angles to PPy, that is
the flow in the region PP; must be normal to PP;. Now the streamline in this region,
the line to which the flow is tangential, must also be at right-angles to PP, which is
itself the local equipotential.

This relation applies at all points in a homogeneous continuous fluid and can be
stated thus: streamlines and equipotentials meet orthogonally, i.e. always at right-
angles. It follows from this statement that for a given streamline pattern there is a
unique equipotential pattern for which the equipotentials are everywhere normal to
the streamlines.

3.1.3 Velocity components in terms of ¢

(a) In Cartesian coordinates Let a point P(x, y) be on an equipotential ¢ and
a neighbouring point Q(x + éx, y + 8y) be on the equipotential ¢ + 6¢ (Fig. 3.4).
Then by definition the increase in velocity potential from P to Q is the line
integral of the tangential velocity component along any path between P and Q.
Taking PRQ as the most convenient path where the local velocity components are
uand v:

6¢p = ubx + véy

but

_0¢ oe
bp = 8x6x+ 8y6y
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$+3¢
%
Qlx +8x,y+3y)
Plx, ) :11_
=== R{x+8x,y)
u
0 / / o
Fig. 3.4
Thus, equating terms
_9%
"= ox
and (3.2)
_0¢
vy = By

(b) In polar coordinates Let a point P(r, §) be on an equipotential ¢ and a neigh-
bouring point Q(r + 6r, 8 + 66) be on an equipotential ¢ + 6¢ (Fig. 3.5). By definition
the increase 6¢ is the line integral of the tangential component of velocity along any
path. For convenience choose PRQ where point R is (r + ér, ). Then integrating
along PR and RQ where the velocities are g, and g, respectively, and are both in the
direction of integration:

b¢ = qnbr + qi(r 4 6r)66
= gnbr 4 q,r60 to the first order of small quantities.

é ¢+3¢
Qlr+3r,0+86)
\
/ \\\K Gt
J )R(r+8r,9)

Fig. 3.5
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But, since ¢ is a function of two independent variables;

o = %& + g%é@
_9%
dn —E
and (3.3)
199
"=

Again, in general, the velocity ¢ in any direction s is found by differentiating the
velocity potential ¢ partially with respect to the direction s of ¢:
d¢

1= s

3.2 Laplace’s equation

As a focus of the new ideas met so far that are to be used in this chapter, the main
fundamentals are summarized, using Cartesian coordinates for convenience, as
follows:

(1) The equation of continuity in two dimensions (incompressible flow)

Ou v .

a0

Ox * ay (i)
(2) The equation of vorticity

v Ou ..

i ¢ (ii)

(3) The stream function (incompressible flow) ¢ describes a continuous flow in two
dimensions where the velocity at any point is given by
oY oY
u= e V= o (iii)
(4) The velocity potential ¢ describes an irrotational flow in two dimensions where
the velocity at any point is given by

u= o V= o (iv)
Ox Ay
Substituting (iii) in (i) gives the identity
Py P
ox0y Oxdy
which demonstrates the validity of (iii), while substituting (iv) in (ii) gives the identity
2
P o 0

Ox0y B oxOy
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demonstrating the validity of (iv), 1.e. a flow described by a unique velocity potential
must be irrotational.

Alternatively substituting (iii) in (ii) and (iv) in (i) the criteria for irrotational
continuous flow are that

>’ e

o 0 v Y
ax2 oy

+— (3.4)

0=2"
Ox2  Oy?

also written as V2¢ = V24 = 0, where the operator nabla squared

o? o?
2_ O 07
v ox? + ay?

Eqn (3.4) is Laplace’s equation.

3.3 Standard flows in terms of y and ¢

There are three basic two-dimensional flow fields, from combinations of which all
other steady flow conditions may be modelled. These are the uniform parallel flow,
source (sink) and point vortex.

The three flows, the source (sink), vortex and uniform stream, form standard flow
states, from combinations of which a number of other useful flows may be derived.

3.3.1 Two-dimensional flow from a source
(or towards a sink)

A source (sink) of strength m(—m) 1s a point at which fluid is appearing (or
disappearing) at a uniform rate of m(—m)m?s . Consider the analogy of a
small hole in a large flat plate through which fluid is welling (the source). If there
is no obstruction and the plate is perfectly flat and level, the fluid puddle will get
larger and larger all the while remaining circular in shape. The path that any particle
of fluid will trace out as it emerges from the hole and travels outwards is a purely
radial one, since it cannot go sideways, because its fellow particles are also moving
outwards.

Also its velocity must get less as it goes outwards. Fluid issues from the hole at a
rate of mm*s . The velocity of flow over a circular boundary of 1 m radius is
m/2rms~!. Over a circular boundary of 2m radius it is m/(27 x 2), i.e. half as much,
and over a circle of diameter 2r the velocity is m/2nrms~'. Therefore the velocity of
flow is inversely proportional to the distance of the particle from the source.

All the above applies to a sink except that fluid is being drained away through the
hole and is moving towards the sink radially, increasing in speed as the sink is
approached. Hence the particles all move radially, and the streamlines must be radial
lines with their origin at the source (or sink).

To find the stream function y of a source

Place the source for convenience at the origin of a system of axes, to which the point
P has ordinates (x, y) and (r, ) (Fig. 3.6). Putting the line along the x-axis as ) = 0
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P(r,8),(x,y)

Fig. 3.6
(a datum) and taking the most convenient contour for integration as OQP where QP
is an arc of a circle of radius 7,
1 = flow across OQ + flow across QP
= velocity across OQ x OQ + velocity across QP x QP

m
=0 + % X rf
Therefore
Y=ml/2n
or putting = tan~! (y/x)
m -1y
Y =o_tan ! p (3.5)

There is a limitation to the size of 8 here. 6 can have values only between 0 and 2.
For 1y = mf/2w where 0 is greater tihan 27 would mean that 1, i.e. the amount of fluid
flowing, was greater than mm?s ™, which is impossible since m is the capacity of the
source and integrating a circuit round and round a source will not increase its strength.
Therefore 0 < 6 < 2.

For a sink

= —(m/2m)0

To find the velocity potential ¢ of a source

The velocity everywhere in the field is radial, i.e. the velocity at any point P(r, ) is given by
9=+ q* and g = ¢, here, since g; = 0. Integrating round OQP where Qs point (r, 0)

¢ = qcosﬂds—i—/ gcosBds

0Q QP
=/ qndr—i-/ q,r69=/ qndr+0
0oQ QP oQ
But
_n
In = 2mr
Therefore
"m m, r
¢ = _/,-0 mdr—-z;ln% (36)

where ro is the radius of the equipotential ¢ = 0.
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Alternatively, since the velocity g is always radial (g = ¢;) it must be some function
of r only and the tangential component is zero. Now

_m _9%
=0 or
Therefore
o= / —dr——ln— 3.7
ro
In Cartesian coordinates with ¢ = 0 on the curve ry =1
m

b= Eln(xz +5%) (3.8)

The equipotential pattern is given by ¢ = constant. From Eqn (3.7)

¢ = " inr—C where C= ﬁlnro
2 2T

r = e2r+C)/m (3.9)
and
P2 — etn(¢+C)/m

which is the equation of a circle of centre at the origin and radius e?™¢+ /" when ¢ is
constant. Thus equipotentials for a source (or sink) are concentric circles and satisfy
the requirement of meeting the streamlines orthogonally.

3.3.2 Line (point) vortex

This flow is that associated with a straight line vortex. A line vortex can best be
described as a string of rotating particles. A chain of fluid particles are spinning on
their common axis and carrying around with them a swirl of fluid particles which flow
around in circles. A cross-section of such a string of particles and its associated flow
shows a spinning point outside of which is streamline flow in concentric circles (Fig. 3.7).

Vortices are common in nature, the difference between a real vortex as opposed to
a theoretical line (potential) vortex is that the former has a core of fluid which is
rotating as a solid, although the associated swirl outside is similar to the flow outside
the point vortex. The streamlines associated with a line vortex are circular and
therefore the particle velocity at any point must be tangential only.

//
ﬁ“ﬁw
q“ﬁﬁ
Cross-section showing
?;:fe'im line a few of the associated
streamlines

Fig. 3.7
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Consider a vortex located at the origin of a polar system of coordinates. But the
flow is irrotational, so the vorticity everywhere is zero. Recalling that the streamlines
are concentric circles, centred on the origin, so that gs = 0, it therefore follows from
Eqn (2.79), that

_4 de_, .. 1d
C—r-l-dr—O, ie. rdr(rq,)—O

So d(rq;)/dr = 0 and integration gives
rg,=C

where C is a constant. Now, recall Eqn (2.83) which is one of the two equivalent
definitions of circulation, namely
= f. g-tds

In the present example, 7- £ = q, and ds = rd#, so
I' =27rq, = 2nC.
Thus C = I'/(27) and

__ S _T
= dr = 2nr
and
r
“”=/‘z;;d’

Integrating along the most convenient boundary from radius rq to P(r, §) which in
this case is any radial line (Fig. 3.8):

b= _/ _P_dr (ro = radius of streamline, ? = 0)

o 27T

=_[£7rh”] __Lnr (3.10)

Circulation is a measure of how fast the flow circulates the origin. (It is introduced
and defined in Section 2.7.7.) Here the circulation is denoted by I" and, by convention,
is positive when anti-clockwise.

Fig. 3.8
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Since the flow due to a line vortex gives streamlines that are concentric circles, the
equipotentials, shown to be always normal to the streamlines, must be radial lines
emanating from the vortex, and since

gn =0, ¢is a function of §, and

Therefore

and on integrating
., T
¢ = — 6 + constant
2T
By defining ¢ = 0 when 6 = 0:
r
=0 3.1

Compare this with the stream function for a source, i.e.

v="2 (Ban(3.5)

Also compare the stream function for a vortex with the function for a source. Then
consider two orthogonal sets of curves: one set is the set of radial lines emanating
from a point and the other set is the set of circles centred on the same point. Then, if
the point represents a source, the radial lines are the streamlines and the circles are the
equipotentials. But if the point is regarded as representing a vortex, the roles of
the two sets of curves are interchanged. This is an example of a general rule: consider
the streamlines and equipotentials of a two-dimensional, continuous, irrotational
flow. Then the streamlines and equipotentials correspond respectively to the equi-
potentials and streamlines of another flow, also two-dimensional, continuous and
irrotational.

Since, for one of these flows, the streamlines and equipotentials are orthogonal,
and since its equipotentials are the streamlines of the other flow, it follows that the
streamlines of one flow are orthogonal to the streamlines of the other flow. The same
is therefore true of the velocity vectors at any (and every) point in the two flows. If
this principle is applied to the source—sink pair of Section 3.3.6, the result is the flow
due to a pair of parallel line vortices of opposite senses. For such a vortex pair,
therefore the streamlines are the circles sketched in Fig. 3.17, while the equipotentials
are the circles sketched in Fig. 3.16.

3.3.3 Uniform flow
Flow of constant velocity parallel to Ox axis from left to right

Consider flow streaming past the coordinate axes Ox, Oy at velocity U parallel to Ox
(Fig. 3.9). By definition the stream function 4 at a point P(x, y) in the flow is given by
the amount of fluid crossing any line between O and P. For convenience the contour
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P{x,y)

-
' o

—_ Y ——

2

0 T(:r.O) X

Fig. 3.9

OTP is taken where T is on the Ox axis x along from O, i.e. point T is given by (x, 0).
Then

¢ = flow across line OTP

= flow across line OT plus flow across line TP

=0+ U x length TP

=0+4+Uy
Therefore

Y="Uy (3.12)
The streamlines (lines of constant ) are given by drawing the curves
1 = constant = Uy

Now the velocity is constant, therefore

Y

y = i constant on streamlines

The lines ¥ = constant are all straight lines parallel to Ox.

By definition the velocity potential at a point P(x, y) in the flow is given by the line
integral of the tangential velocity component along any curve from O to P. For
convenience take OTP where T has ordinates (x, 0). Then

¢ = flow along contour OTP
= flow along OT + flow along TP
=Ux+0
Therefore
¢=Ux (3.13)

The lines of constant ¢, the equipotentials, are given by Ux = constant, and since the
velocity is constant the equipotentials must be lines of constant x, or lines parallel to
Oy that are everywhere normal to the streamlines.

Flow of constant velocity parallel to Oy axis

Consider flow streaming past the Ox, Oy axes at velocity V parallel to Oy (Fig. 3.10).
Again by definition the stream function ¢ at a point P(x, y) in the flow is given by the
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4 A

Plx,y)

T(x,0)
Fig. 3.10

amount of fluid crossing any curve between O and P. For convenience take OTP
where T is given by (x, 0). Then

¥ = flow across OT + flow across TP
=—-Vx+0

Note here that when going from O towards T the flow appears from the right and
disappears to the left and therefore is of negative sign, i.e.

p=—Vx (3.14)

The streamlines being lines of constant ¢ are given by x = —/V and are parallel to
Oy axis.

Again consider flow streaming past the Ox, Oy axes with velocity V parallel to the
Oy axis (Fig. 3.10). Again, taking the most convenient boundary as OTP where T is
given by (x, 0)

¢ = flow along OT + flow along TP

Therefore
o="Vy (3.15)

The lines of constant velocity potential, ¢ (equipotentials), are given by
Vy = constant, which means, since V is constant, lines of constant y, are lines parallel
to Ox axis.

Flow of constant velocity in any direction

Consider the flow streaming past the x, y axes at some velocity Q making angle 6 with
the Ox axis (Fig. 3.11). The velocity Q can be resolved into two components U and V'
parallel to the Ox and Oy axes respectively where Q> = U? + V2 and tan# = V/U.

Again the stream function v at a point P in the flow is a measure of the amount of
fluid flowing past any line joining OP. Let the most convenient contour be OTP,
T being given by (x, 0). Therefore
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Fig. 3.11

1 ="flow across OT (going right to left, therefore negative in sign)
+ flow across TP
=— component of Q parallel to Oy times x
+ component of Q parallel to Ox times y
Y=—Vx+ Uy (3.16)

Lines of constant ¥ or streamlines are the curves
—Vx + Uy = constant

assigning a different value of ¢ for every streamline. Then in the equation ¥V and U
are constant velocities and the equation is that of a series of straight lines depending
on the value of constant .
Here the velocity potential at P is a measure of the flow along any curve joining

P to O. Taking OTP as the line of integration [T(x, O)]:

¢ = flow along OT + flow along TP

=Ux—+Vy
¢6=Ux+Vy (3.17)

Example 3.1 Interpret the flow given by the stream function (units: m?s~")

¥ =06x+12y
The constant velocity in the horizontal direction = % =+12ms™!
The constant velocity in the vertical direction = — —g—f =—6ms!

Therefore the flow equation represents uniform flow inclined to the Ox axis by angle # where
tand = —6/12, i.e. inclined downward.
The speed of flow is given by

0=+v62+122 =+/180ms™!
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3.3.4 Solid boundaries and image systems

The fact that the flow is always along a streamline and not through it has an
important fundamental consequence. This is that a streamline of an inviscid flow
can be replaced by a solid boundary of the same shape without affecting the
remainder of the flow pattern. If, as often is the case, a streamline forms a closed
curve that separates the flow pattern into two separate streams, one inside and one
outside, then a solid body can replace the closed curve and the flow made outside
without altering the shape of the flow (Fig. 3.12a). To represent the flow in the region
of a contour or body it is only necessary to replace the contour by a similarly shaped
streamline. The following sections contain examples of simple flows which provide
continuous streamlines in the shapes of circles and aerofoils, and these emerge as
consequences of the flow combinations chosen.

When arbitrary contours and their adjacent flows have to be replaced by identical
flows containing similarly shaped streamlines, image systems have to be placed within
the contour that are the reflections of the external flow system in the solid streamline.

Figure 3.12b shows the simple case of a source A placed a short distance from an
infinite plane wall. The effect of the solid boundary on the flow from the source is
exactly represented by considering the effect of the image source A’ reflected in the
wall. The source pair has a long straight streamline, i.e. the vertical axis of symmetry,
that separates the flows from the two sources and that may be replaced by a solid
boundary without affecting the flow.

-

. ‘\‘
VAN
I 1 g Y
\ i €l J

N=ZY)
~ __//'
{c) e

Fig. 3.12 Image systems
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Figure 3.12c shows the flow in the cross-section of a vortex lying parallel to the axis
of a circular duct. The circular duct wall can be replaced by the corresponding
streamline in the vortex-pair system given by the original vortex B and its image B’.
It can easily be shown that B’ is a distance r?/s from the centre of the duct on the
diameter produced passing through B, where r is the radius of the duct and s is the
distance of the vortex axis from the centre of the duct.

More complicated contours require more complicated image systems and these are
left until discussion of the cases in which they arise. It will be seen that Fig. 3.12a, which
is the flow of Section 3.3.7, has an internal image system, the source being the image of a
source at —oc and the sink being the image of a sink at +oc. This external source and
sink combination produces the undisturbed uniform stream as has been noted above.

3.3.6 A source in a uniform horizontal stream

Let a source of strength m be situated at the origin with a uniform stream of —U
moving from right to left (Fig. 3.13).
Then

=—-U 3.18
——Uy (3.18)
which is a combination of two previous equations. Eqn (3.18) can be rewritten
Pt
1/1_27Ttan p Uy (3.19)

to make the variables the same in each term.
Combining the velocity potentials:

6=l _Ux

27 Fo
or
m._ (x>
=—In|{—+=) - U 3.20
¢ 47 n(r% + r%) * (3.20)
or in polar coordinates
m, r
q&——z;lng— Urcos @ (3.21)

These equations give, for constant values of ¢, the equipotential lines everywhere
normal to the streamlines.

Streamline patterns can be found by substituting constant values for ¢ and plot-
ting Eqn (3.18) or (3.19) or alternatively by adding algebraically the stream functions
due to the two cases involved. The second method is easier here.

y

Fig. 3.13
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Method (see Fig. 3.14)

(1) Plot the streamlines due to a source at the origin taking the strength of the source
equal to 20m?s~! (say). The streamlines are 7/10 apart. It is necessary to take
positive values of y only since the pattern is symmetrical about the Ox axis.

(2) Superimpose on the plot horizontal lines to a scale so that v=—-Uy=—1,
—2, -3, etc., are lines about 1 unit apart on the paper. Where the lines intersect,
add the values of # at the lines of intersection. Connect up all points of constant 7
(streamlines) by smooth lines.

The resulting flow pattern shows that the streamlines can be separated into two
distinct groups: (a) the fluid from the source moves from the source to infinity
without mingling with the uniform stream, being constrained within the streamline
¥ = 0; (b) the uniform stream is split along the Ox axis, the two resulting streams
being deflected in their path towards infinity by ) = 0.

It is possible to replace any streamline by a solid boundary without interfering with
the flow in any way. If ¢ = 0 is replaced by a solid boundary the effects of the source
are truly cut off from the horizontal flow and it can be seen that here is a mathem-
atical expression that represents the flow round a curved fairing (say) in a uniform
flow. The same expression can be used for an approximation to the behaviour of a
wind sweeping in off a plain or the sea and up over a cliff. The upward components
of velocity of such an airflow are used in soaring,.

The vertical velocity component at any point in the flow is given by —0¢/0x. Now

m
2T

&  m dtan!(y/x) O(y/x)
Tox 2r A(y/x) ox

Y= tan—l(—;i) — Uy (Egn(3.19))

__m_ 1 -y
21 1+ (/%" 2

Y due to source at origin

A Stagnation point

Y of combination streamlines

Fig. 3.14
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or
v= m__J
T 2wxl4y?
and :this is upwards.

This expression also shows, by comparing it, in the rearranged form x? + y*—
(m/2mv)y = 0, with the general equation of a circle (x2 + y? + 2gx + 2hy + f = 0),
that lines of constant vertical velocity are circles with centres (0, m/4wv) and
radii m/4mv.

The ultimate thickness, 24 (or height of cliff /) of the shape given by ¢ = 0 for this
combination is found by putting y =k and 6 = 7 in the general expression, i.e.
substituting the appropriate data in Eqn (3.18):

b= g —Uh=0
Therefore
h=m/2U (3.22)
Note that when 6 = /2, y = h/2.

The position of the stagnation point

By finding the stagnation point, the distance of the foot of the cliff, or the front of the
fairing, from the source can be found. A stagnation point is given byu =0, v =0, i.e.

o m x

__ W _g_m_y
it ~ial It (3.24)

From Eqn (3.24) v = 0 when y = 0, and substituting in Eqn (3.23) when y = 0 and
X = Xp:

m 1
= 0 = ———
“ 27 X0
when
xo =m/27U (3.25)
The local velocity
The local velocity g = vu? + v2.
oY _ -1
u—g and 1/1—2 tan p Uy
Therefore
m 1/x
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giving
m x
MR R
and from v = —8/0x
y="_r
2w x2 4 32

from which the local velocity can be obtained from g = vu? + v and the direction
given by tan~! (v/u) in any particular case.

3.3.6 Source-sink pair

This is a combination of a source and sink of equal (but opposite) strengths situated
a distance 2¢ apart. Let +m be the strengths of a source and sink situated at points
A (¢, 0)and B (¢, 0), that is at a distance of ¢ m on either side of the origin (Fig. 3.15).
The stream function at a point P(x, y), (r, §) due to the combination is

01 m02 _ m

m
¢=T—

T 2r 27 (01— 02)

P = ;"—W (3.26)

Transposing the equation to Cartesian coordinates:

Y
x+c
tanf, —tan6, L

_ x—c _ x+c

1+tan01tan02-1+;&z

tan01=—y——, tan@, =
X—C

tan(el — 92) =

Therefore

2cy

=@ — = -1
p =06, —06=tan P

(3.27)
and substituting in Eqn (3.26):

Y= 7 tan~! 2cy

2m x2+y2—c? (3:28)

Pix, y)

ﬁxo 6

L L]
Be— ¢ e ¢ —»A x

Y

Fig. 3.15
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To find the shape of the streamlines associated with this combination it is neces-
sary to investigate Eqn (3.28). Rearranging:

2T 2cy
tan{ =9 | = ——5—
an(*ﬂd)) x2 4 y2 —
or
2cy
2, .2 2
-t =
T T
or

2
x2+y2—2ccot%/)y—cz=0

which is the equation of a circle of radius cy/cot? (2m/m)+ 1, and centre
ccot (2mp/m).

Therefore streamlines for this combination consist of a series of circles with centres
on the Oy axis and intersecting in the source and sink, the flow being from the source
to the sink (Fig. 3.16).

Consider the velocity potential at any point P(r, 8)(x, y).*

K L L T RO ™
27

r
2 ro 27 ro

r2

¢ (3.29)

rf:(x—c)2+)72:x2+yz+c2—2xc
r2=(x+c)2+y2=x2+y2+c2+2xc

Fig. 3.16 Streamlines due to a source and sink pair

* Note that here rg is the radius of the equipotential ¢ = 0 for the isolated source and the isolated sink, but
not for the combination.
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Therefore

. m nxz-i-yz+c2—2xc

T Am T x2432 4 ¢2 4 2xc
Rearranging
2.2
gtro/m — % +y 4 - 2xe = A(say)
x2 4+ 324+ c + 2xe

Then

P+ +E+2xe)A=x>+y* +¢* —2xc
4+ + AN =1]+2xc(A+1)=0

x2+y2+2xc(/\+1

- 1) +c2=0 (3.30)

which is the equation of a circle of centre

A+1
x——c(/\_l), y=0

i.e.
eldme/m) 1 1 27
xz_ce(Tﬂb/"')——l:— COthW, y=0
and radius
A+1 2 =2 \/X_2 e2nd/m
A1) TN T e — 1

=2c cosechgw—qs
m

Therefore, the equipotentials due to a source and sink combination are sets of
eccentric non-intersecting circles with their centres on the Ox axis (Fig. 3.17). This
pattern is exactly the same as the streamline pattern due to point vortices of opposite
sign separated by a distance 2¢.

Fig. 3.17 Equipotential lines due to a source and sink pair
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3.3.7 A source set upstream of an equal sink
in a uniform stream

The stream function due to this combination is:

2cy

m -1
=—tan" ————— U 3.31
Here the first term represents a source and sink combination set with the source to
the right of the sink. For the source to be upstream of the sink the uniform stream
must be from right to left, i.e. negative. If the source is placed downstream of the sink

an entirely different stream pattern is obtained.

The velocity potential at any point in the flow due to this combination is given by:
¢=%m:—;— Ursin @ (3.32)

or

m . x>+ +c*—2xc
¢_Elnx2+y2+02+2xc_Ux

(3.33)

The streamline ¢ = 0 gives a closed oval curve (not an ellipse), that is symmetrical
about the Ox and Oy axes. Flow of stream function 1 greater than ¢ = 0 shows the
flow round such an oval set at zero incidence in a uniform stream. Streamlines can be
obtained by plotting or by superposition of the separate standard flows (Fig. 3.18).
The streamline 1 = 0 again separates the flow into two distinct regions. The first is
wholly contained within the closed oval and consists of the flow out of the source and
into the sink. The second is that of the approaching uniform stream which flows
around the oval curve and returns to its uniformity again. Again replacing¢) =0bya
solid boundary, or indeed a solid body whose shape is given by ¢ = 0, does not
influence the flow pattern in any way.

Thus the stream function 1 of Eqn (3.31) can be used to represent the flow around
a long cylinder of oval section set with its major axis parallel to a steady stream. To
find the stream function representing a flow round such an oval cylinder it must be
possible to obtain m and ¢ (the strengths of the source and sink and distance apart) in
terms of the size of the body and the speed of the incident stream.

N 1] AN
[N \!f// /2

\ 2 ~
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Fig. 3.18
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Suppose there is an oval of breadth 2by and thickness 2¢ set in a uniform flow
of U. The problem is to find m and ¢ in the stream function, Eqn (3.31), which will
then represent the flow round the oval.

(a) The oval must conform to Eqn (3.31):

2
=0=""tan"! 24

= U
2 2ry—c 7

(b) On streamline ¢y = 0 maximum thickness #y occurs at x = 0, y = #,. Therefore,
substituting in the above equation:

M ian1 2
0= 27rt t% — Uty
and rearranging
27Uty 2t9c
t = 3.34
an o (3.34)

(c) A stagnation point (point where the local velocity is zero) is situated at the ‘nose’
of the oval, i.e. at the point y = 0, x = by, i.e.:

u=0 o _ 9 <mtan‘l—2£y——Uy)

- dy B ay \2m x24+y2— 2
& _m 1 (x2+y2—cz)2c—2y2cy_
dy 27!'1 + (x2+2(:y_ )2 (_x2 +y2 - cZ)2
and putting y = 0 and x = by with &y/dy = 0:
_ m@B—=c2e . m 2 U
27 (b% — (;2)2 - 27?17% —c?
Therefore
2 _ 2
m=n2=¢ (3.35)

The simultaneous solution of Eqns (3.34) and (3.35) will furnish values of m and ¢
to satisfy any given set of conditions. Alternatively (a), (b) and (c) above can be used
to find the thickness and length of the oval formed by the streamline 1 = 0. This
form of the problem is more often set in examinations than the preceding one.

3.3.8 Doublet

A doublet is a source and sink combination, as described above, but with the separation
infinitely small. A doublet is considered to be at a point, and the definition of the
strength of a doublet contains the measure of separation. The strength (u) of a doublet
is the product of the infinitely small distance of separation, and the strength of source
and sink. The doublet axis is the line from the sink to the source in that sense.
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Fig. 3.19

The streamlines due to a source and sink combination are circles each intersecting
in the source and sink. As the source and sink approach, the points of intersection
also approach until in the limit, when separated by an infinitesimal distance, the
circles are all touching (intersecting) at one point — the doublet. This can be shown as
follows. For the source and sink:

%= (m/2n)3 from Eqn (3.26)

By constructing the perpendicular of length p from the source to the line joining the
sink and P it can be seen that as the source and sink approach (Fig. 3.19),

p— 2csinf@ and also p—r8

Therefore in the limit

2esi
2esinf=r8 or f— ”‘r‘ne
m2c .
’(,[l = ET sin @
and putting ;2 = 2cm = strength of the doublet:
=P
Y= Yy sind (3.36)
On converting to Cartesian coordinates where
— /212 nf—=—2 _Br_F 3.37
r x4+ ¥4, sin ¢ \/m! /()b 27l'x2+y2 ( . )
and rearranging gives
2 2 [
P 50
(x* + %) 3

which, when %) is a constant, is the equation of a circle.

Therefore, lines of constant ¢ are circles of radius p/(4mp) and centres (0, u/(4m))
(Fig. 3.20), i.e. circles, with centres lying on the Oy axis, passing through the origin as
deduced above.
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Doublet
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Fig. 3.20 Streamlines due 1o a doublet
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Fig. 3.21

Consider again a source and sink set a very small distance, 2¢, apart (Fig. 3.21).
Then*
m It n n 2

b =—
2w 2

where = m is the strength of the source and sink respectively. Then

_mpn_mn
¢—21rlnr2_41rlnr§

* Here ry is the radius of the equipotcntial ¢ = 0 for the isolated source and the isolated sink, but not for
the combination.
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Now

ri=x*+y*—2xc+
and

r%=x2+y2+2xc+c2
Therefore

m x4+ y*—2xc+c?
dr x4+ y? + 2xc+c?

o=

and dividing out

¢-—mln 1 4xc
T Ar x2+ 2+ 2+ 2xc

On expanding,
2 £ ¢
Therefore:
6= m 4xc 3 16x%c? B
T Arn x2+y2+c2+2xc 2(x2+y2+c2+2xc)2

Since ¢ is very small ¢ can be neglected. Therefore, ignoring ¢ and higher powers of ¢

m 4xc

¢=_Z7;x2+y2+2xc

and as ¢ — 0, and 2mc¢ = y (which is the strength of the doublet) a limiting value of ¢
is given by
woox

2rx*+y /3% + 32

=cosf

Therefore
- _F
¢ = 7 rcos@ (3.38)

3.3.9 Flow around a circular cylinder given by a doublet
in a uniform horizontal flow

The stream function due to this combination is:

% =5—sinf — Uy (3.39)
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It should be noted that the terms in the stream functions must be opposite in sign to
obtain the useful results below. Here again the source must be upstream of the sink in
the flow system. Equation (3.39) converted to rectangular coordinates gives:

kY _
b=gra W (3.40)

and for the streamline 3 =0
¢ —
ety Y) =0

7
=0 x? =
Y or +7 27U
This shows the streamline 1 = 0 to consist of the Ox axis together with a circle,
centre O, of radius 1/u/(27U) = a (say).

Alternatively by converting Eqn (3.39) to polar coordinates:

i.e.

_  Gn0— Ursi
z/)_zmsmﬂ Ursin6

Therefore

P = sm9(2m Ur) 0 for =0
giving

sinf=0 so 6=0 or =+«
or
I . U
—_ = 0 = —_—
- Ur giving r 2l a

the two solutions as before.

The streamline ¢y = 0 thus consists of a circle and a straight line on a diameter
produced (Fig. 3.22). Again in this case the streamline 1) = 0 separates the flow into
two distinct patterns: that outside the circle coming from the undisturbed flow a long

—3—4—5 5 —4—3—

2

1
71 Ol

TEIITY

[

Fig. 3.22 Streamlines dus to a doublet in a uniform stream
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way upstream, to flow around the circle and again to revert to uniform flow down-
stream. That inside the circle is from the doublet. This is confined within the circle
and does not mingle with the horizontal stream at all. This inside flow pattern is
usually neglected. This combination is consequently a mathematical device for giving
expression to the ideal two-dimensional flow around a circular cylinder.

The velocity potential due to this combination is that corresponding to a uniform
stream flowing parallel to the Ox axis, superimposed on that of a doublet at the
origin. Putting x = rcos 6:

_ H
¢ = UrcosG+2mcose

2
¢=—Ucos€(r+—r—> (3.41)
where a = 1/p/(2wU) is the radius of the streamline ¢ = 0.
The streamlines can be obtained directly by plotting using the superposition
method outlined in previous cases. Rewriting Eqn (3.39) in polar coordinates
% ==—sind — Ursin®
27r
and rearranging, this becomes

e UsinQ(L—r>

2nrU
and with p/(2nU) = a* a constant (a = radius of the circle?) = 0)
2
Y= UsinO(T — r) (3.42)

Differentiating this partially with respect to r and 6 in turn will give expressions for
the velocity everywhere, i.e.:

10y a?

dn —;E —UCOSQ(r—z— 1)
(@

qz———ar—Us1n0<r—2+1)

Putting r = a (the cylinder radius) in Eqns (3.43) gives:

(3.43)

(1) gn = Ucos8[l — 1] =0 which is expected since the velocity must be parallel to
the surface everywhere, and
(ii) g = Usin @[l + 1]=2Usiné.

Therefore the velocity on the surface is 2U sin 8 and it is important to note that the
velocity at the surface is independent of the radius of the cylinder.

The pressure distribution around a cylinder

If a long circular cylinder is set in a uniform flow the motion around it will, ideally,
be given by the expression (3.42) above, and the velocity anywhere on the surface by
the formula

q=2Usind (3.44)
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By the use of Bernoulli’s equation, the pressure p acting on the surface of the cylinder
where the velocity is ¢ can be found. If pp is the static pressure of the free stream
where the velocity is U then by Bernoulli’s equation:

L, L
Po+5pU" =p+5p8

=p+ %p(ZUsin 6)*

Therefore

P—Do =%pU2[1 — 4sin’ 4] (3.45)

Plotting this expression gives a curve as shown on Fig. 3.23. Important points to
note are:

(1) At the stagnation points (0° and 180°) the pressure difference (p — po) is positive
and equal to 1 pU>.

(2) At 30° and 150° where sinf =4, (p — po) is zero, and at these points the local
velocity is the same as that of tﬁe free stream.

(3) Between 30° and 150°C, is negative, showing that p is less than pj.

(4) The pressure distribution is symmetrical about the vertical axis and therefore
there is no drag force. Comparison of this ideal pressure distribution with that
obtained by experiment shows that the actual pressure distribution is similar to
the theoretical value up to about 70° but departs radically from it thereafter.
Furthermore, it can be seen that the pressure coefficient over the rear portion of
the cylinder remains negative. This destroys the symmetry about the vertical axis
and produces a force in the direction of the flow (see Section 1.5.5).
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3.3.10 A spinning cylinder in a uniform flow

This is given by the stream function due to a doublet, in a uniform horizontal flow,

with a line vortex superimposed at the origin. By adding these cases

1[1——sm0 Uy—Z—InE

Converting to homogeneous coordinates

P = Urs1nt9( wriae )_ﬂl —
but from the previous case \/u/(27U) = a, the radius of the cylinder.
Also since the cylinder periphery marks the inner limit of the vortex flow, ry = a;
therefore the stream function becomes:

a? r r
= inf{——1] ——1In-— .
Y=Ur sm6’<r2 ) o (3.46)
and differentiating partially with respect to r and 6 the velocity components of the
flow anywhere on or outside the cylinder become, respectively:

ar
3.47
T (347
qn=;5§= Ucosf| 5 —1
and
g=1/at+at
On the surface of the spinning cylinder r = a. Therefore,
gn=0
— 2Using+—— (3.48)
= 2wa '

Therefore
=g, =2Using + L
== 2mra

and applying Bernoulli’s equation between a point a long way upstream and a point
on the cylinder where the static pressure is p:

1, 1
Po+5pU" =p+50g

= +l 2Usin§ + L\
=PTap 2ma

F 2
1-— (251n9+m)

Therefore

1
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This equation differs from that of the non-spinning cylinder in a uniform stream of
the previous section by the addition of the term (I'/(2nUa)) = B (a constant), in the
squared bracket. This has the effect of altering the symmetry of the pressure dis-
tribution about a horizontal axis. This is indicated by considering the extreme top
and bottom of the cylinder and denoting the pressures there by pr and pg respect-
ively. At the top p = pr when 6 = 7/2 and sin § = 1. Then Eqn (3.49) becomes

pr—po=5pU%(1 ~ 2+ BP)
= —%pU2(3 +4B+ BY) (3.50)
At the bottom p = pg when § = —#/2 and sinf = —1:
PR —Ppo = —%pU2(3 — 4B+ B%) (3.51)
Clearly (3.50) does not equal (3.51) which shows that a pressure difference exists
between the top and bottom of the cylinder equal in magnitude to
pr—pe= SB(—%pUZ) = —%apUl"

which suggests that if the pressure distribution is integrated round the cylinder then a
resultant force would be found normal to the direction of motion.

The normal force on a spinning circular cylinder in a uniform stream

Consider a surface element of cylinder of unit span and radius @ (Fig. 3.24). The area
of the element = aéf x 1, the static pressure acting on element = p, resultant
force = (p — po)a 86, vertical component = (p — pg)a 66 sin 6.

Substituting for (p — py) from Eqn (3.49) and retaining the notation B = I'/27Ua, the
vertical component of force acting on the element = % pU?[1 — (2sin § + B)*]a 6 sin 6.
The total vertical force per unit span by integration is (/ positive upwards):

2T
1=/ —%pUza[l—(2sin9+B)2]sin9 dé
0

which becomes

2T
I= —%pUza/ [sin6(1 — B?) — 4Bsin® § — 4sin® ]d9
0

Fig. 3.24 The pressure and velacity on the surface of unit length of a cylinder of radius a
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On integrating from 0 to 2z the first and third terms vanish leaving

2%
/ 4Bsin?0d0 = 4Br
0
Therefore
1 s
= EPU adBr

Replacing B by I'/2rUa and cancelling gives the equation for the lift force per unit
span

I = pUT (3.52)

The lift per unit span in N is equal to the product of density p, the linear velocity U,
and the circulation T".

This expression is the algebraic form of the Kutta—Zhukovsky theorem, and is
valid for any system that produces a circulation superimposed on a linear velocity
(see Section 4.1.3). The spinning cylinder is used here as it lends itself to stream
function theory as well as being of interest later.

It is important to note that the diameter of the cylinder has no influence on the
final expression, so if a line vortex of strength I" moved with velocity U in a uniform
flow of density p, the same sideways force I = pUT per unit length of vortex would be
found. This sideways force commonly associated with a spinning object moving
through the air has been recognized and used in ball games since ancient times.
It is usually referred to as the Magnus effect after the scholar and philosopher
Magnus.

The flow pattern around a spinning cylinder

The flow pattern around the spinning cylinder is also altered as the strength of the
circulation increases. In Fig. 3.25 when I' = 0 the flow pattern is that associated with
the previous non-spinning case with front and rear stagnation points S; and S;

N
U 2 S|

_ /\—\
r=0 I < 4wal/ v

T'>4mway ~~U

Fig. 3.25
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respectively, occurring on the horizontal axis. As T is increased positively a small
amount the stagnation points move down below the horizontal axis.
Since from the equation for the velocity anywhere on the surface

. T . .
g =2Usinf8 + ma Oat the stagnation points

6 = arcsin(—T'/4waU)

which is negative. As T' is further increased a limiting condition occurs when
0 = —w/2, i.e. I' = 4waU, the stagnation points merge at the bottom of the cylinder.
When I' is greater than 4wqU the stagnation point (8) leaves the cylinder. The cylinder
continues to rotate within the closed loop of the staghation streamline, carrying
round with it a region of fluid confined within the loop.

3.3.11 Bernoulli’s equation for rotational flow

Consider fluid moving in a circular path. Higher pressure must be exerted from the
outside, towards the centre of rotation, in order to provide the centripetal force. That
is, some outside pressure force must be available to prevent the particles moving in a
straight line. This suggests that the pressure is growing in magnitude as the radius
increases, and a corollary is that the velocity of flow must fall as the distance from the
centre increases.

With a segmental element at P(r, 8) where the velocity is ¢; only and the pressure p,
the pressures on the sides will be shown as in Fig, 3.26 and the resultant pressure
thrust inwards is

Op Or or Op Or or

which reduces to

op
" br 66 (3.53)
This must provide the centripetal force = mass x centripetal acceleration
=préré0q/r (3.54)
<~
X
‘b
(7,
[ ]
©,
N
=
@ P
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Fig. 3.26
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Equating (3.53) and (3.54):

9 _ rai
or r

The rate of change of total pressure H is

OH _9(p+3pa) _0p 04
or or T o ol or

and substituting for Eqn (3.55):

OH 2 0 0
—=pq7‘+pqlﬁ=pql<%+—q—‘>

(3.55)

Oor or or

Now for this system (1/r)(0¢gn/0f) is zero since the streamlines are circular and
therefore the vorticity is (g,/r) + (Oq,/0r) from Eqn (2.79), giving

OH

5 = Pas (3.56)

3.4 Axisymmetric flows (inviscid and
incompressible flows)

Consider now axisymmetric potential flows, i.e. the flows around bodies such as
cones aligned to the flow and spheres. In order to analyse, and for that matter to
define, axisymmetric flows it is necessary to introduce cylindrical and spherical
coordinate systems. Unlike the Cartesian coordinate system these coordinate systems
can exploit the underlying symmetry of the flows.

3.4.1 Cylindrical coordinate system

The cylindrical coordinate system is illustrated in Fig. 3.27. The three coordinate
surfaces are the planes z = constant and § = constant and the surface of the cylinder
having radius r. In contrast, for the Cartesian system all three coordinate surfaces are

z) \
9z
J
g T /
%
S - \q,
R z
r
8 r

X

Fig. 3.27 Cylindrical coordinates
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planes. As a consequence for the Cartesian system the directions (x, y, z) of the
velocity components, say, are fixed throughout the flow field. For the cylindrical
coordinate system, though, only one of the directions (z) is fixed throughout the flow
field; the other two (r and ) vary throughout the flow field depending on the value of
the angular coordinate 6. In this respect there is a certain similarity to the polar
coordinates introduced earlier in the chapter. The velocity component g, is always
locally perpendicular to the cylindrical coordinate surface and g is always tangential
to that surface. Once this elementary fact is properly understood cylindrical coord-
inates become as easy to use as the Cartesian system.

In a similar way as the relationships between velocity potential and velocity
components are derived for polar coordinates (see Section 3.1.3 above), the following
relationships are obtained for cylindrical coordinates

o 1as o
57 q9—';60= QZ—E

An axisymmetric flow is defined as one for which the flow variables, i.e. velocity
and pressure, do not vary with the angular coordinate 4. This would be so, for
example, for a body of revolution about the z axis with the oncoming flow directed
along the z axis. For such an axisymmetric flow a stream function can be defined.
The continuity equation for axisymmetric flow in cylindrical coordinates can be
derived in a similar manner as it is for two-dimensional flow in polar coordinates
(see Section 2.4.3); it takes the form

g4 = (3.57)

l Orq,  0q,
r Or oz

The relationship between stream function and velocity component must be such as to
satisfy Eqn (3.58); hence it can be seen that

I _1&

Qr—_r(_‘a;a QZ—75

=0 (3.58)

(3.59)

3.4.2 Spherical coordinates

For analysing certain two-dimensional flows, for example the flow over a circular
cylinder with and without circulation, it is convenient to work with polar coord-
inates. The axisymmetric equivalents of polar coordinates are spherical coordinates,
for example those used for analysing the flow around spheres. Spherical coordinates
are illustrated in Fig. 3.28. In this case none of the coordinate surfaces are plane
and the directions of all three velocity components vary over the flow field, depending
on the values of the angular coordinates § and ¢. In this case the relationships
between the velocity components and potential are given by

¢ 1 09 1 0¢

qr =_6§’ de =m@, 9p =‘ﬁ‘6; (3-60)

For axisymmetric flows the variables are independent of 6 and in this case the
continuity equation takes the form

1 O(R%gr) 1 Osinggy)
R2 BR Rsing 8p

(3.61)
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X

Fig. 3.28 Spherical coordinates

Again the relationship between the stream function and the velocity components
must be such as to satisfy the continuity Eqn (3.61); hence
1 8y 1 oy

= (3.62)

qR:stincpw 1o " Rsinyp 8R

3.4.3 Axisymmetric flow from a point source
(or towards a point sink)

The point source and sink are similar in concept to the line source and sink discussed
in Section 3.3. A close physical analogy can be found if one imagines the flow into or
out of a very (strictly infinitely) thin round pipe — as depicted in Fig. 3.29. As
suggested in this figure the streamlines would be purely radial in direction.

Let us suppose that the flow rate out of the point source is given by Q. Q is usually
referred to as the strength of the point source. Now since the flow is purely radial
away from the source the total flow rate across the surface of any sphere having its
centre at the source will also be 0. (Note that this sphere is purely notional and does
not represent a solid body or in any way hinder the flow.) Thus the radial velocity
component at any radius R is related to Q as follows

ATR*qr = Q
D——>

AN

Fig. 3.29
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It therefore follows from Eqn (3.60) that

o 0
RT8R ™ 4nR?
Integration then gives the expression for the velocity potential of a point source as
Q
== 3.63
4R ( )

In a similar fashion an expression for stream function can be derived using Eqn (3.62)
giving

Y= —% cos ¢ (3.64)

3.4.4 Point source and sink in a uniform axisymmetric flow

Placing a point source and/or sink in a uniform horizontal stream of —U leads to
very similar results as found in Section 3.3.5 for the two-dimensional case with line
sources and sinks.

First the velocity potential and stream function for uniform flow, —U, in the z
direction must be expressed in spherical coordinates. The velocity components gz
and g, are related to —U as follows

gr =—Ucosy and g, = Usinyp
Using Eqn (3.60) followed by integration then gives

%:—Ucoscp—* ¢ =—URcosp+f(p)
%= URsingp — ¢ = —U Rcos o + g(R)

J(p) and g(R) are arbitrary functions that take the place of constants of integration
when partial integration is carried out. Plainly in order for the two expressions for ¢
derived above to be in agreement f(p) = g(R) = 0. The required expression for the
velocity potential is thereby given as

¢=—URcosy (3.65)
Similarly using Eqn (3.62) followed by integration gives
U R? U R?
%=—Uchosgosingo=— sin2¢p — 9 = ) cos2¢ + f(R)
o - _ UR_,
3R —~URsin®p — = — 5 sin v+ g(p)

Recognizing that cos 2¢ = 1 — 2sin? it can be seen that the two expressions given above
for 4 will agree if the arbitrary functions of integration take the values f(R) = —U R?/4
and g(y) = 0. The required expression for the stream function is thereby given as

R2

Ph=— UR in? © (3.66)
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Using Eqns (3.63) and (3.65) and Eqns (3.64) and (3.66) it can be seen that for a
point source at the origin placed in a uniform flow —U along the z axis

¢=—URcos<p—% (3.67a)
Y= —%Ustinzzp —% cos¢ (3.67b)

The flow field represented by Eqns (3.67) corresponds to the potential flow around
a semi-finite body of revolution — very much like its two-dimensional counterpart
described in Section 3.3.5. In a similar way to the procedure described in Section 3.3.5
it can be shown that the stagnation point occurs at the point (—a, 0) where

a= ‘/74«;%7 (3.68)

and that the streamlines passing through this stagnation point define a body of
revolution given by

R? =24*(1 4 cos ¢)/sin® (3.69)

The derivation of Eqns (3.68) and (3.69) are left as an exercise (see Ex. 19) for the
reader.

In a similar fashion to the two-dimensional case described in Section 3.3.6 a point
source placed on the z axis at z = —a combined with an equal-strength point sink also
placed on the z axis at z=a (see Fig. 3.30) below gives the following velocity
potential and stream function at the point P.

6= g - g (3.70)
4r](Rcos ¢ + a)? + R2sin® ¢]/?  4x|(Rcos o — a)? + R2sin? "/
Y= %(COS 1 — €08 ) (3.711)
where
cos ) = Rcoicp+a
[(Rcos ¢ + a)* + R?sin® ] /2
cos oy = Rcosp—a

[((Rcos ¢ — a)* + R?sin? ¢]'/

Sink,
N LA )
-a ¢1 a\ z

Fig. 3.30
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If this source-sink pair is placed in a uniform stream —U in the z direction it
generates the flow around a body of revolution known as a Rankine body. The shape
is very similar to the two-dimensional Rankine oval shown in Fig. 3.18 and described
in Section 3.3.7.

3.45 The point doublet and the potential flow around
a sphere

A point doublet is produced when the source—sink pair in Fig. 3.30 become infinitely
close together. This is closely analogous to line doublet described in Section 3.3.8.
Mathematically the expressions for the velocity potential and stream function for a
point doublet can be derived from Eqns (3.70) and (3.71) respectively by allowing
a — 0 keeping u = 2Qa fixed. The latter quantity is known as the strength of the
doublet.

If a is very small a? may be neglected compared to 2Ra cos ¢ in Eqn (3.70) then it
can be written as

b=1 :
4 | {R? cos? p + R? sin® ¢ + 2aR cos p}/

1
{R2cos? ¢ + R%sin’ p — 2aR cos <p}l/2]

1 1
= g 7~ 73 (3.72)
4R |{112(a/R)cos @} {1 —2(a/R)cosp}”
On expanding
L _ 1 :le+
Vitx 2
Therefore as @ — 0 Eqn (3.72) reduces to
0 a a
¢ = IR (1 R cosyp — 1 R cos<p)
__ Qa MK
= =5, g2 0S¥ =~ g C08¥ (3.73)
In a similar way write
Rcosp+a a
cosprp = ———p—— (1 :Fﬁ cos <p)
_ a__a_ 2
—cos<p:i:R:FRcos @
Thus as a — 0 Eqn (3.71) reduces to
_ Qa 2 N K2
Y= 27rR(1 cos* ) = IR S (3.74)

The streamline patterns corresponding to the point doublet are similar to those
depicted in Fig. 3.20. It is apparent from this streamline pattern and from the form
of Eqn (3.74) that, unlike the point source, the flow field for the doublet is not
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omnidirectional. On the contrary the flow field is strongly directional. Moreover, the
case analysed above is something of a special case in that the source—sink pair lies on the
z axis. In fact the axis of the doublet can be in any direction in three-dimensional space.

For two-dimensional flow it was shown in Section 3.3.9 that the line doublet
placed in a uniform stream produces the potential flow around a circular cylinder.
Similarly it will be shown below that a point doublet placed in a uniform stream
corresponds to the potential flow around a sphere.

From Eqns (3.65) and (3.73) the velocity potential for a point doublet in a uniform
stream, with both the uniform stream and doublet axis aligned in the negative z
direction, is given by

_ G
¢ =—U Rcosp a2 S5 ¢ (3.75)
From Eqn (3.60) the velocity components are given by
_ ¢ p
qR_a—R— _(U_27rR3) Cos (3.76)
106 7 .
q'p —E%— (U+47TR3) Slnp (377)

The stagpation points are defined by gr =g, =0. Let the coordinates of the
stagnation points be denoted by (R;, ¢5). Then from Eqn (3.77) it can be seen that either

R} = —Z:—U or sinyp; =0

The first of these two equations cannot be satisfied as it implies that R; is not a positive
number. Accordingly, the second of the two equations must hold implying that

;=0 and = (3.78a)
It now follows from Eqn (3.76) that

AR
R, = (——zw) (3.78b)
Thus there are two stagnation points on the z axis at equal distances from the origin.
From Eqns (3.66) and (3.74) the stream function for a point doublet in a uniform
flow is given by
UR , b g
P=— 5 sin <p+ms1n @ (3.79)
It follows from substituting Eqns (3.78b) in Eqn (3.79) that at the stagnation points
1 = 0. So the streamlines passing through the stagnation points are described by

¢=—(UR2 £ )sin2<p=0 (3.80)

2 4R
Equation (3.79) shows that when ¢ # 0 or 7 the radius R of the stream-surface,
containing the streamlines that pass through the stagnation points, remains fixed
equal to R;. R can take any value when ¢ = 0 or 7. Thus these streamlines define the

surface of a sphere of radius R;. This is very similar to the two-dimensional case of
the flow over a circular cylinder described in Section 3.3.9.



144 Aerodynamics for Engineering Students

From Eqns (3.77) and (3.78b) it follows that the velocity on the surface of the
sphere is given by

3.
q= 3 Usingp
So that using the Bernoulli equation gives that

1 1
—pUt=p+=
po+5pU" =p+5pg

2
;;;(%Usintp)

= p + —
Therefore the pressure variation over the sphere’s surface is given by
| B 9.,
p—p0=§U (l—zsm ¥) (3.81)

Again this result is quite similar to that for the circular cylinder described in Section
3.3.9 and depicted in Fig. 3.23.

3.4.6 Flow around slender bodies

In the foregoing part of this section it has been shown that the flow around a class of
bodies of revolution can be modelled by the use of a source and sink of equal
strength. Accordingly, it would be natural to speculate whether the flow around
more general body shapes could be obtained by using several sources and sinks or a
distribution of them along the z axis. It is indeed possible to do this as first shown by
Fuhrmann.* Two examples similar to those presented by him are shown in Fig. 3.31.
Although Fuhrmann’s method could model the flow around realistic-looking bodies
it suffered an important defect from the design point of view. One could calculate the
body of revolution corresponding to a specified distribution of sources and sinks, but a
designer would wish to be able to solve the inverse problem of how to choose the variation
of source strength in order to obtain the flow around a given shape. This more practical
approach became possible after Munk! introduced his slender-body theory for calculat-
ing the forces on airship hulls. A brief description of this approach is given below.

(a) (b)

Fig. 3.31 Two examples of flow around bodies of revolution generated by (a) a point source plus a linear
distribution of source strength; and (b} two linear distributions of source strength. The source distributions
are denoted by broken lines

* Fuhrmann, G. (1911), Drag and pressure measurements on balloon models (in German), Z. Flugtech., 11, 165.
t Munk, M.M. (1924), The Aerodynamic Forces on Airship Hulls, NACA Report 184.
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Fig. 3.32 Flow over a slender body of revolution modelled by source distribution

For Munk’s slender-body theory it is assumed that the radius of the body is very
much smaller than its total length. The flow is modelled by a distribution of sources
and sinks placed on the z axis as depicted in Fig. 3.32. In many respects this theory is
analogous to the theory for calculating the two-dimensional flow around symmetric
wing sections — the so-called thickness problem (see Section 4.9).

For an element of source distribution located at z = z; the velocity induced at
point P (r, z) is

o(z1)
= d .82

IR =4z 4 (3:82)
where o(z)) is the source strength per unit length and o(z,)dz, takes the place of Q in
Eqn (3.63). Thus to obtain the velocity components in the r and z directions at P due
to all the sources we resolve the velocity given by Eqn (3.82) in the two coordinate
directions and integrate along the length of the body. Thus

1
qr=/ grsinyp dz;
0

1 r
=Elawﬁpﬂy+ﬂmﬁl (3.83)

I
qz=/ grcosp dz;
0

Z—2Z)

1 I
=), O (3.84)

The source strength can be related to the body geometry by the following physical
argument. Consider the elemental length of the body as shown in Fig. 3.33. If the
body radius r; is very small compared to the length, /, then the limit r — 0 can be
considered. For this limit the flow from the sources may be considered purely radial
so that the flow across the body surface of the element is entirely due to the sources
within the element itself. Accordingly

27rq,dz) = o(z,)dz; at r = rp provided rp — 0

But the effects of the oncoming flow must also be considered as well as the sources.
The net perpendicular velocity on the body surface due to both the oncoming flow
and the sources must be zero. Provided that the slope of the body contour is very
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Fig. 3.33

small (i.e. drp/dz < 1) then the perpendicular and radial velocity components may be
considered the same. Thus the requirement that the net normal velocity be zero
becomes (see Fig. 3.33)

. dr
q = U sing= UEI:

~— ——
Sources Oncoming flow

So that the source strength per unit length and body shape are related as follows

ds
o) =Ug (3.85)

where S is the frontal area of a cross-section and is given by S = 7r2.
In the limit as r — 0 Eqn (3.84) simplifies to

1 d 0'(21) le

(3.86)

Thus once the variation of source strength per unit length has been determined
according to Eqn (3.85) the axial velocity can be obtained by evaluating Eqn (3.86)
and hence the pressure evaluated from the Bernoulli equation.

It can be seen from the derivation of Eqn (3.86) that both r; and drp/dz must be
very small. Plainly the latter requirement would be violated in the vicinity of z = 0 if
the body had a rounded nose. This is a major drawback of the method.

The slender-body theory was extended by Munk* to the case of a body at an
angle of incidence or yaw. This case is treated as a superposition of two distinct
flows as shown in Fig. 3.34. One of these is the slender body at zero angle of
incidence as discussed above. The other is the slender body in a crossflow. For
such a slender body the flow around a particular cross-section is closely analogous
to that around a circular cylinder (see Section 3.3.9). Accordingly this flow can
be modelled by a distribution of point doublets with axes aligned in the direction

*Munk, M.M. (1934), Fluid Mechanics, Part VI, Section Q, in Aerodynamic Theory, volume | (ed.
W. Durand), Springer, Berlin; Dover, New York.
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T (b)

Using

Fig. 3.34 Flow at angle of yaw around a body of revolution as the superposition of two flows

TUSin a

Fig. 3.35 Cross-flow over slender body of revolution modelied as distribution of doublets

of the cross-flow, as depicted in Fig. 3.35. Slender-body theory will not be
taken further here. The recader is referred to Thwaites and Karamcheti for
further details.*

3.5 Computational (panel) methods

In Section 3.3.7, it was shown how the two-dimensional potential flow around an
oval-shaped contour, the Rankine oval, could be generated by the superposition of
a source and sink on the x axis and a uniform flow. An analogous three-dimensional
flow can also be generated around a Rankine body — sce Section 3.4.4 above — by
using a point source and sink. Thus it can be demonstrated that the potential flow
around certain bodies can be modelled by placing sources and sinks in the interior of
the body. However, it is only possible to deal with particular cases in this way. It is
possible to model the potential flow around slender bodies or thin aerofoils of any
shape by a distribution of sources lying along the x axis in the interior of the body.
This slender-body theory is discussed in Section 3.4 and the analogous thin-wing
theory is described in Section 4.3. However, calculations based on this theory are
only approximate unless the body is infinitely thin and the slope of the body contour
is very small. Even in this case the theory breaks down if the nose or leading edge is
rounded because there the slope of the contour is infinite. The panel methods
described here model the potential flow around a body by distributing sources over
the body surface. In this way the potential flow around a body of any shape can be

* see Bibliography.
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(a)

Fig. 3.36

calculated to a very high degree of precision. The method was developed by Hess and
Smith* at Douglas Aircraft Company.

If a body is placed in a uniform flow of speed U, in exactly the same way as for the
Rankine oval of Section 3.3.7, or the Rankine body of Section 3.4.4, the velocity
potential for the uniform flow may be superimposed on that for the disturbed flow
around the body to obtain a total velocity potential of the form

®=Ux+¢ (3.87)

where ¢ denotes the so-called disturbance potential: i.e. the departure from free-stream
conditions. It can be shown that the disturbance potential flow around a body of any
given shape can be modelled by a distribution of sources over the body surface (Fig. 3.36).
Let the source strength per unit arc of contour (or per area in the three-dimensional
case) be op. In the two-dimensional case og dsp would replace m/2m in Eqn (3.7) and
constant C can be set equal to zero without loss of generality. Thus the velocity potential
at P due to sources on an element dsg of arc of contour centred at point @ is given by

¢pg = 0o In Rppdsg (3.88a)

where Rpg is the distance from P to Q. For the three-dimensional body opd4g would
replace —Q/(4r) in Eqn (3.63) and the velocity potential due to the sources on an
element, d4g, of surface area at point Q is given by

bpo = RLQ—dAQ (3.88b)
PQ

The velocity potential due to all the sources on the body surface is obtained by
integrating (3.88b) over the body surface. Thus following Eqn (3.87) the total velocity
potential at P can be written as

¢p = Ux + $ og In Rppdsg for the two-dimensional case, (a)

¢p=Ux+ / / gg—dAQ for the three-dimensional case, (b) (3.89)
PQ

*J.L. Hess and A.M.O. Smith ‘Calculation of Potential Flow about Arbitrary Bodies’ Prog. in Aero. Sci.,
8 (1967).
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where the integrals are to be understood as being carried out over the contour (or
surface) of the body. Until the advent of modern computers the result (3.89) was of
relatively little practical use. Owing to the power of modern computers, however, it
has become the basis of a computational technique that is now commonplace in
aerodynamic design.

In order to use Eqn (3.89) for numerical modelling it is first necessary to ‘discretize’
the surface, i.e. break it down into a finite but quite possibly large number of separate
parts. This is achieved by representing the surface of the body by a collection of
quadrilateral ‘panels’ — hence the name — see Fig. 3.37a. In the case of a two-
dimensional shape the surface is represented by a series of straight line segments —
see Fig. 3.37b. For simplicity of presentation concentrate on the two-dimensional
case. Analogous procedures can be followed for the three-dimensional body.

The use of panel methods to calculate the potential flow around a body may be
best understood by way of a concrete example. To this end the two-dimensional flow
around a symmetric aerofoil is selected for illustrative purposes. See Fig. 3.37b.

The first step is to number all the end points or nodes of the panels from 1 to N as
indicated in Fig. 3.37b. The individual panels are assigned the same number as the
node located to the left when facing in the outward direction from the panel. The
mid-points of each panel are chosen as collocation points. It will emerge below that
the boundary condition of zero flow perpendicular to the surface is applied at these
points. Also define for each panel the unit normal and tangential vectors, #; and §;
respectively. Consider panels i and j in Fig. 3.37b. The sources distributed over panel j
induce a velocity, which is denoted by the vector ¥, at the collocation point of panel i.
The components of #; perpendicular and tangential to the surface at the collocation

/
,}.

Fig. 3.37 Discretization of (a) three-dimensional body surface into panels; and (b) aerofoil contour into
straight line segments
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point i are given by the scalar (or dot) products ¥j; - #; and ¥, - I; respectively. Both of
these quantities are proportional to the strength of the sources on panel j and
therefore they can be written in the forms

‘_",j - ﬁ,‘ = O}N, and ‘_",:,' . i,' = OyT,_',' (390)

Nj; and Ty are the perpendicular and tangential velocities induced at the collocation
point of panel 7 by sources of unit strength distributed over panel j; they are known as
the normal and tangential influence coefficients.

The actual velocity perpendicular to the surface at collocation point i is the sum of
the perpendicular velocities induced by each of the N panels plus the contribution
due to the free stream. It is given by

N —
=Y oiNy+ U Ay (3.91)
=1

In a similar fashion the tangential velocity at collocation point 7 is given by

N
v =Y o+ U-§ (3.92)
j=1

If the surface represented by the panels is to correspond to a solid surface then the
actual perpendicular velocity at each collocation point must be zero. This condition
may be expressed mathematically as v,, = 0 so that Eqn (3.91) becomes

N
> Ny =—U-fi=1,2,...,N) (3.93)
j=1

Equation (3.93) is a system of linear algebraic equations for the N unknown source
strengths, o;(i = 1, 2,..., N). It takes the form of a matrix equation

No=b (3.94)

where N is an N x N matrix composed of the elements Ny, o is a column matrix
composed of the N elements oy, and b is a column matrix composed of the N elements
—U - ;. Assuming for the moment that the perpendicular influence coefficients Ny have
been calculated and that the elements of the right-hand column matrix b have also been
calculated, then Eqn (3.94) may, in principle at least, be solved for the source strengths
comprising the elements of the column matrix ¢. Systems of linear equations like (3.94)
can be readily solved numerically using standard methods. For the results presented here
the LU decomposition was used to solve for the source strengths. This method is
described by Press et al.* who also give listings for the necessary computational routines.
Once the influence coefficients Nj; have been calculated the source strengths can be
determined by solving the system of Eqn (3.93) by some standard numerical technique.
If the tangential influence coefficients T; have also been calculated then, once the
source strengths have been determined, the tangential velocities may be obtained from
Eqn (3.92). The Bernoulli equation can then be used to calculate the pressure acting at
collocation point i, in particular the coefficient of pressure is given by Eqn (2.24) as:

vs\2

Cp=1- (ﬁ) (3.95)

* W.H. Press etal. (1992) Numerical Recipes. The Art of Scientific Computing. 2nd ed. Cambridge Uni-
versity Press.
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The calculation of the influence coefficient is a central and essential part of the panel method,
and this is the question now addressed. As a first step consider the calculation of the velocity
induced at a point P by sources of unit strength distributed over a panel centred at point Q.

In terms of a coordinate system (xg, yo) measured relative to the panel (Fig. 3.38), the
disturbance potential is given by integrating Eqn (3.88) over the panel. Mathematically
this is expressed as follows

As/2
¢pQ = '/—As/z In A/ (xQ - §)2 + yéd& (396)

The corresponding velocity components at P in the xg and yg directions can be
readily obtained from Eqn (3.96) as

Vig = 8¢ro _ /A’/z xg —2§
Oxg  Jonsp2(xg—€)" +33
I [(xQ + As/2)" + Y?z]
2 | (xg — As/2)* + ¥y

(3.97)

V3o

_ %rg =/AS/2 Y0 g
Oyo  Jons2(xg— &) + ¥}

= [wn"l (%QAS/Z) — tan™! (—xQ—_yQAﬁ)] (3.98)

Armed with these results for the velocity components induced at point P due to the
sources on a panel centred at point Q return now to the problem of calculating the
influence coefficients. Suppose that points P and Q are chosen to be the collocation
points i and j respectively. Equations (3.97) and (3.98) give the velocity components
in a coordinate system relative to panel j, whereas what are required are the velocity
components perpendicular and tangential to panel i. In vector form the velocity at
collocation point i is given by

VPQ = Vgl + Vyolly

> YQ

o‘

X
Y
]

As/2
Fig. 3.38
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Therefore to obtain the components of this velocity vector perpendicular and tangential
to panel / take the scalar product of the velocity vector with 7; and ¢; respectively to obtain

N,‘j = VPQ = V‘—Qﬁi . ij + vy fl,‘ . ﬁj (‘;998)

T,'j = VPQ l, = V‘—Q[, [J + v (399b)

‘o

A computational routine in FORTRAN 77

In order to see how the calculation of the influence coefficients works in practice, a
computational routine written in standard FORTRAN 77 is given below, with a descrip-
tion of each step.

SUBROUTINE INFLU(XC, YC, AN, AT, NHAT, THAT, N, NM)
On exit XCand YC are column matrices of length Ncontaining the co-ordinates of
thecollocation points; ANand AT are theN*Ninfluencecoefficient matrices; and
NHAT and THAT are the N*2 matrices containing the co-ordinates of the unit normal
and tangent vectors, the first and second columns containthexandy co-ordinates
respectively. Nis the number of panels and NM is the maximumnumber of panels.

PARAMETER (NMAX=200,PI=3.141592654)

REAL NHAT,NTIJ,NNIJ

DIMENSION XC (NM), YC (NM), AN (NM, NM), AT (NM, NM)
DIMENSION XP (NMAX),YP (NMAX), NHAT (NM, 2},

& THAT (NM, 2), S(NMAX)
OPEN(7,FILE= *POINTS.DAT',STATUS = "0OLD")
DC10I=1,N Reading in co-ordinates of panel
10 READ(7,*) XP(I), YP(T) end-points.
CLOSE(7)

DO20J=1,N
IF (J.EQ.1) THEN

XPL=XP (N}
YPL=YP (N}
ELSE

XPL=XP(J—1)
YPL=YP(J—1)

ENDIF

XC(J) =0.5*(XP(J)+ XPL) Calculating co-ordinates of
YC(J)=0.5+(YP{J)+YPL) collocation points.

S(J) =SQRT( (XP(J —XPL)**2 +(YP(J ) —YPL)**2) Calculating panel length.
THAT(J,1) = (XP(J)—XPL} /5(J) Calculatingxco-ordinateof unit tangent vector.
THAT(J,2) = ( P(J) —YPL)/S(J) Calculatingy co-ordinateof unit tangent vector.
NHAT(J,1) = —THAT(J,2) Calculating x co-ordinate of unit normal vector.
NHAT (J,2) = THAT(J,1) Calculatingy co-ordinate of unit normal vector.

20 CONTINUE
Calculationof the influence coefficients.

DO30I=1,N
pO40J=1,N
IF (I.EQ.J) THEN
AN(I,J) =PI Caseof i=73.
T(I,J)=0.0
ELSE
DX=XC(I}—XC{J) Calculating x andy components of line
DY=YC(I}-YC{J) Jjoiningcollocationpoint i and j
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XQ=DX*THAT (J,1) +DY*THAT (J,2) Converting to co-ordinate system
YQ=DX*NHAT(J,1) +DY*NHAT(J,2) basedonpanel j.
VX=0.5*(LOG( (XQ+0.5*¥S(J) ) **24+Y¥YQ*YQ ) UsingEqgn. (3.97)

& —ZLOG((XQ—0.5#*#S(J) ) **2 +¥Y0*YQ) )
VY=ATAN((XQ4+0.5%*S(J))/¥Q) — Using Ecni. (3.98)
& ATAN((XQ—0.2*S(J)) /¥Q)

Begin calculation of various scalar products of unit vectorsused in Egn. (3.99)

NTIJ=(C.0

NNIJ=0(.0

TTIJ=0.0

TNIJ=0.0

DO50K="_.,2
NTIJ=NHAT (I,K)*THAT(J,K)+NTIJ
NNIJ=NHAT (I,K)*N4AT (J,K)+NNIJ
TTIJ=THAT (I,K)*THAT(J,K)+TTIJ
TNIJ=THAT (I,K)*NHAT (J,K)+ TNIJ

50 CONTINUE

=rd calculation of scalar products.
AN(I,J) =VX*NTIJ+VY*NNIJ UsingEqn. (3.99a)
AN(I,J) =VX*TTIS+VY*TINIJ Using Zan. (3.99b)
ENDIF
£0 CONTINJE
30 CONTINUE
RETURN
END

The routine, step by step, performs the following.

1 Discretizes the surface by assigning numbers from 1 to N to points on the surface
of the aerofoil as suggested in Fig. 3.37. The x and y coordinates of these points are
entered into a file named POINTS.DAT. The subroutine starts with reading these
coordinates XP(I), YP(I), say x, y}, from this file for I =1 to N.

For each panel from J =1 to N:

2 The collocation points are calculated by taking an average of the coordinates at
either end of the panel in question.

3 The length S(J), i.e. As;, of each panel is calculated.

4 The x and y components of the unit tangent vectors for each panel are calculated
as follows:

!
P Rk U / b/ 5
= Asp T As;
5 The unit normal vectors are then calculated from n;, = —t;, and n;, = ¢;,. The main

task of the routine, that of calculating the influence coefficients, now begins.
For each possible combination of panels,i.e. Iand J =1 to N.

6 First the special case is dealt with when i = j, i.e. the velocity induced by the sources
on the panel itself at its collocation point. From Eqn (3.93, 3.97, 3.98) it is seen that

vpox =In(1) =0 when xg=yp=0 (3.100a)
vpgy = tan~!(w) — tan"!(—~cc) =7 when xg=yg=0  (3.100b)
‘When i # j the influence coefficients have to be calculated from Eqns (3.97, 3.98, 3.99).
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7 The components DX and DY of Rpp are calculated in terms of the x and y
coordinates.

8 The components of Rpp in terms of the coordinate system based on panel j are
then calculated as

XQ=R'pQ-t}a.nd YQ=§pQ-ﬁj

9 VX and VY (i.e. vy, and v,,) are evaluated using Eqns (3.97) and (3.98).
10 #; - §;, #; - Ay, 1; - 1j, and 7; - A; are evaluated.
11 Finally the influence coefficients are evaluated from Eqn (3.99).

The routine presented above is primarily intended for educational purposes and
has not been optimized to economize on computing time. Nevertheless, using a
computer program based on the above routine and LU decomposition, accurate
computations of the pressure distribution around two-dimensional aerofoils can be
obtained in a few seconds with a modern personal computer. An example of such a
calculation for an NACA 0024 aerofoil is presented in Fig. 3.39. In this case 29 panels
were used for the complete aerofoil consisting of upper and lower surfaces.

The extension of the panel method to the case of lifting bodies, i.e. wings, is
described in Sections 4.10 and 5.8. When the methods described there are used it is
possible to compute the flow around the entire aircraft. Such computations are carried
out routinely during aerodynamic design and have replaced wind-tunnel testing to a
considerable extent. However, calculation of the potential flow around complex three-
dimensional bodies is very demanding in terms of computational time and memory. In
most cases around 70 to 80 per cent of the computing time is consumed in calculating
the influence coefficients. Accordingly considerable effort has been devoted to devel-
oping routines for carrying out these calculations efficiently.

20
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Fig. 3.39 Calculation of pressure coefficient for NACA 0024 aerofoil
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What are the advantages of the panel method compared to other numerical
methods such as finite differences and finite elements? Both of the latter are
field methods that require that the whole of the flow field be discretized. The
panel method, on the other hand, only requires the discretization of the body
surface — the boundary of the flow field. The dimensions of the solution are
thereby reduced by one compared to the field method. Thus for the aerofoil calcula-
tion presented above the panel method required N node points along the aerofoil
contour, whereas a field method would require N x N points throughout the flow
field. However, this advantage is more apparent than real, since for the panel method
the N x N influence coefficients need to be calculated. The real advantages of panel
methods lie elsewhere. First, like finite-element methods, but unlike finite difference
methods, the panel method can readily accommodate complex geometries. In fact, an
alternative and perhaps more appropriate term to panel method is boundary-element
method. This name makes the connection with finite elements more clear. A second
advantage compared to any field method is the ease with which panel methods can deal
with an infinite flow field; note that the aerofoil in Fig. 3.39 is placed in an airflow of
infinite extent, as is usual. Thirdly, as can readily be seen from the example in Fig. 3.39,
accurate results can be obtained by means of a relatively coarse discretization, i.e. using
a small number of panels. Lastly, and arguably the most important advantage from the
viewpoint of aerodynamic design, is the ease with which modifications of the design can
be incorporated with a panel method. For example, suppose the effects of under-wing
stores, such as additional fuel tanks or missiles, were being investigated. If an additional
store were to be added it would not be necessary to repeat the entire calculation with a
panel method. It would be necessary only to calculate the additional influence coeffi-
cients involving the new under-wing store. This facility of panel methods allows the
effects of modifications to be investigated rapidly during aerodynamic design.

Exercises

1 Define vorticity in a fluid and obtain an expression for vorticity at a point with
polar coordinates (r, §), the motion being assumed two-dimensional. From the
definition of a line vortex as irrotational flow in concentric circles determine the
variation of velocity with radius, hence obtain the stream function (¢), and the velocity
potential (¢), for a line vortex. (Uofl)

2 A sink of strength 120 m?s " is situated 2m downstream from a source of equal
strength in an irrotational uniform stream of 30 m s~!. Find the fineness ratio of the
oval formed by the streamline ¢ = 0. (4nswer: 1.51)(CU)

3 A sink of strength 20 m? ™! is situated 3m upstream of a source of 40 m? s_l, ina

uniform irrotational stream. It is found that at the point 2.5 m equidistant from both

source and sink, the local velocity is normal to the line joining the source and sink.

Find the velocity at this point and the velocity of the undisturbed stream.
(Answer:1.02ms™!, 2.29 ms~1)(CU)

4 A line source of strength m and a sink of strength 2m are separated a distance c.
Show that the field of flow consists in part of closed curves. Locate any stagnation
points and sketch the field of flow. (U of L)

5 Derive the expression giving the stream function for irrotational flow of an
incompressible fluid past a circular cylinder of infinite span. Hence determine the
position of generators on the cylinder at which the pressure is equal to that of the
undisturbed stream. (4nswer: £=30°, = 150°)(U of L)
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6 Determine the stream function for a two-dimensional source of strength m. Sketch
the resultant field of flow due to three such sources, each of strength m, located at the
vertices of an equilateral triangle. (UoflL)

7 Derive the irrotational flow formula
1
pP—Po= EpUz(l — 4sin? §)

giving the intensity of normal pressure p on the surface of a long, circular cylinder set
at right-angles to a stream of velocity U. The undisturbed static pressure in the fluid
is pp and 6 is the angular distance round from the stagnation point. Describe briefly
an experiment to test the accuracy of the above formula and comment on the results
obtained. (U of L)

8 A long right circular cylinder of diameter am is set horizontally in a steady stream
of velocity Um s~ and caused to rotate at w rad s~!. Obtain an expression in terms
of w and U for the ratio of the pressure difference between the top and the bottom of
the cylinder to the dynamic pressure of the stream. Describe briefly the behaviour of
the stagnation lines of such a system as w is increased from zero, keeping U constant.

(Answer 8—) (cv)

9 A line source is immersed in a uniform stream. Show that the resultant flow, if
irrotational, may represent the flow past a two-dimensional fairing. If a maximum
thickness of the fairing is 0.15m and the undisturbed velocity of the stream 6.0m s~!,
determine the strength and location of the source. Obtain also an expression for the
pressure at any point on the surface of the fairing, taking the pressure at infinity
as datum. (Answer: 0.9m?s™}, 0.0237 m)(U of L)

10 A long right circular cylinder of radius em is held with its axis normal to an
irrotational inviscid stream of U. Obtain an expression for the drag force acting on
unit length of the cylinder due to the pressures exerted on the front half only.

1
(Answer ——pU2 )(CU)

11 Show that a velocity potential exists in a two-dimensional steady irrotational
incompressible fluid motion. The stream function of a two-dimensional motion of an
incompressible fluid is given by

Y= x2 + bxy — 2
where a, b and c are arbitrary constants. Show that, if the flow is irrotational, the
lines of constant pressure never coincide with either the streamlines or the equipo-
tential lines. Is this possible for rotational motion? (U of L)

12 State the stream function and velocity potential for each of the motions induced
by a source, vortex and doublet in a two-dimensional incompressible fluid. Show that
a doublet may be regarded, either as

(i) the limiting case of a source and sink, or
(ii) the limiting case of equal and opposite vortices, indicating clearly the direction of
the resultant doublet. (UoflL)
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13 Define (a) the stream function, (b) irrotational flow and (c) the velocity potential
for two-dimensional motion of an incompressible fluid, indicating the conditions
under which they exist. Determine the stream function for a point source of strength
o at the origin. Hence, or otherwise, show that for the flow due to any number of
sources at points on a circle, the circle is a streamline provided that the algebraic sum
of the strengths of the sources is zero. (Uof L)

14 A line vortex of strength I' is mechanically fixed at the point (/, 0) referred to
a system of rectangular axes in an inviscid incompressible fluid at rest at
infinity bounded by a plane wall coincident with the y-axis. Find the velocity in the
fluid at the point (0, y) and determine the force that acts on the wall (per unit depth)
if the pressure on the other side of the wall is the same as at infinity. Bearing
in mind that this must be equal and opposite to the force acting on unit length
of the vortex show that your result is consistent with the Kutta—Zhukovsky
theorem. (U of L)

15 Write down the velocity potential for the two-dimensional flow about a circular
cylinder with a circulation I' in an otherwise uniform stream of velocity U. Hence
show that the lift on unit span of the cylinder is pUT. Produce a brief but plausible
argument that the same result should hold for the lift on a cylinder of arbitrary shape,
basing your argument on consideration of the flow at large distances from the
cylinder. (UofL)

16 Define the terms velocity potential, circulation, and vorticity as used in two-
dimensional fluid mechanics, and show how they are related. The velocity distribu-
tion in the laminar boundary layer of a wide flat plate is given by

o [By 13
“—sz"‘%)]
where ug is the velocity at the edge of the boundary layer where y equals 6. Find the
vorticity on the surface of the plate. 3
Uy

(Answer: ~3% (U of L)

17 A two-dimensional fluid motion is represented by a point vortex of strength I" set
at unit distance from an infinite straight boundary. Draw the streamlines and plot the
velocity distribution on the boundary when I' = . (Uof L)

18 The velocity components of a two-dimensional inviscid incompressible flow are
given by
Y x
u=2y——=———, V=—2x——T——
@+ )7 (227

Find the stream function, and the vorticity, and sketch the streamlines.
Answer: = x* + 3 + (P + 7)1 ¢ = - 44—1 (Uof L)
(2 + )"
19 (a) Given that the velocity potential for a point source takes the form

Q

47R
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where in axisymmetric cylindrical coordinates (r, z)R = v/z2 + r2, show that when a
uniform stream, U, is superimposed on a point source located at the origin, there is a
stagnation point located on the z-axis upstream of the origin at distance

_.]2
““Varo

(b) Given that in axisymmetric spherical coordinates (R, ¢) the stream function for
the point source takes the form

o

4mR

show that the streamlines passing through the stagnation point found in (2) define a
body of revolution given by

2a%(1 + cos )

R* =
sin ¢

Make a rough sketch of this body.



Two-dimensional wing theory

Preamble

Here the basic fluid mechanics outlined previously is applied to the analysis of the
flow about a lifting wing section. It is explained that potential flow theories of
themselves offer little further scope for this problem unless modified to simulate
certain effects of real flows. The result is a powerful but elementary aerofoil
theory capable of wide exploitation. This is derived in the general form and
applied to a number of discrete aeronautical situations, including the flapped
aerofoil and the jet flap. The ‘reverse’ problem is also presented: to determine the
rudimentary aerofoil shape that produces certain aerodynamic performance
requirements. This theory is essentially relevant to thin aerofoils but thickness
parameters are added to enhance the practical applications of the method.
Classical mathematical solutions are referred to, also the solutions offered
towards the end of the chapter that employ computational panel methods.

4.1 Introduction

By the end of the nineteenth century the theory of ideal, or potential, flow (see
Chapter 3) was extremely well-developed. The motion of an inviscid fluid was a well-
defined mathematical problem. It satisfied a relatively simple linear partial differen-
tial equation, the Laplace equation (see Section 3.2), with well-defined boundary
conditions. Owing to this state of affairs many distinguished mathematicians were
able to develop a wide variety of analytical methods for predicting such flows. Their
work was and is very useful for many practical problems, for example the flow around
airships, ship hydrodynamics and water waves. But for the most important practical
applications in aerodynamics potential flow theory was almost a complete failure.
Potential flow theory predicted the flow field absolutely exactly for an inviscid
fluid, that is for infinite Reynolds number. In two important respects, however, it did
not correspond to the flow field of real fluid, no matter how large the Reynolds
number. Firstly, real flows have a tendency to separate from the surface of the body.
This is especially pronounced when the bodies are bluff like a circular cylinder, and in
such cases the real flow bears no resemblance to the corresponding potential flow.
Secondly, steady potential flow around a body can produce no force irrespective of
the shape. This resultl is usually known as d’Alembert’s paradox after the French
mathematician who first discovered it in 1744. Thus therc is no prospect of using
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potential flow theory in its pure form to estimate the lift or drag of wings and thereby
to develop aerodynamic design methods.

Flow separation and d’Alembert’s paradox both result from the subtle effects of
viscosity on flows at high Reynolds number. The necessary understanding and
knowledge of viscous effects came largely from work done during the first two
decades of the twentieth century. It took several more decades, however, before this
knowledge was fully exploited in aerodynamic design. The great German aeronaut-
ical engineer Prandtl and his research team at the University of Géttingen deserve
most of the credit both for explaining these paradoxes and showing how potential
flow theory can be modified to yield useful predictions of the flow around wings and
thus of their aerodynamic characteristics. His boundary-layer theory explained why
flow separation occurs and showed how skin-friction drag could be calculated. This
theory and its later developments are described in Chapter 7 below. He also showed
how a theoretical model based on vortices could be developed for the flow field of
a wing having large aspect ratio. This theory is described in Chapter 5. There it is
shown how a knowledge of the aerodynamic characteristics, principally the lift
coefficient, of a wing of infinite span — an aerofoil — can be adapted to give estimates
of the aerodynamic characteristics of a wing of finite span. This work firmly estab-
lished the relevance of studying the two-dimensional flow around aerofoils that is the
subject of the present chapter.

4.1.1 The Kutta condition

How can potential flow be adapted to provide a reasonable theoretical model for the
flow around an aerofoil that generates lift? The answer lies in drawing an analogy
between the flow around an aerofoil and that around a spinning cylinder (see Section
3.3.10). For the latter it can be shown that when a point vortex is superimposed with
a doublet on a uniform flow, a lifting flow is generated. It was explained in Section
3.3.9 that the doublet and uniform flow alone constitutes a non-circulatory irrota-
tional flow with zero vorticity everywhere. In contrast, when the vortex is present the
vorticity is zero everywhere except at the origin. Thus, although the flow is still
irrotational everywhere save at the origin, the net effect is that the circulation is non-
zero. The generation of lift is always associated with circulation. In fact, it can be
shown (see Eqn 3.52) that for the spinning cylinder the lift is directly proportional to
the circulation. It will be shown below that this important result can also be extended
to aerofoils. The other point to note from Fig. 3.25 is that as the vortex strength, and
therefore circulation, rise both the fore and aft stagnation points move downwards
along the surface of the cylinder.

Now suppose that in some way it is possible to use vortices to generate circulation,
and thereby lift, for the flow around an aerofoil. The result is shown schematically
in Fig. 4.1. Figure 4.1a shows the pure non-circulatory potential flow around
an aerofoil at an angle of incidence. If a small amount of circulation is added the
fore and aft stagnation points, Sr and S, move as shown in Fig. 4.1b. In this case
the rear stagnation point remains on the upper surface. On the other hand, if
the circulation is relatively large the rear stagnation point moves to the lower surface,
as shown in Fig. 4.1c. For all three of these cases the flow has to pass around the
trailing edge. For an inviscid flow this implies that the flow speed becomes infinite at
the trailing edge. This is evidently impossible in a real viscous fluid because viscous
effects ensure that such flows cannot be sustained in nature. In fact, the only position
for the rear stagnation point that is sustainable in a real flow is at the trailing edge, as
illustrated in Fig. 4.1d. Only with the rear stagnation point at the trailing edge does
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(@) No circulation

{b) Low circulation

{c) High circulation

{d) Circulation such that Kutta condition is satisfied

Fig. 4.1 Effect of circulation on the flow around an aerofoil at an angle of incidence

the flow leave the upper and lower surfaces smoothly at the trailing edge. This is the
essence of the Kutta condition first introduced by the German mathematician Kutta.*

Imposing the Kutta condition gives a unique way of choosing the circulation for
an aerofoil, and thereby determining the lift. This is extremely important because
otherwise there would be an infinite number of different lifting flows, each corres-
ponding to a different value of circulation, just as in the case of the spinning cylinder

*W. Kutta (1902) ‘Lift forces in flowing fluids’ (in German), Ill. Aeronaut. Mitt., 6, 133.
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Fig. 4.2

for which the lift generated depends on the rate of spin. In summary, the Kutta
condition can be expressed as follows.

e Fora given aerofoil at a given angle of attack the value of the circulation must take
the unique value which ensures that the flow leaves the trailing edge smoothly.

e For practical acrofoils with trailing edges that subtend a finite angle — see Fig. 4.2a —
this condition implies that the rear stagnation point is located at the trailing edge.

All real aerofoils are like Fig. 4.2a, of course, but (as in Section 4.2) for theoretical
reasons it is frequently desirable to consider infinitely thin aerofoils, Fig. 4.2b. In this
case and for the more general case of a cusped trailing edge the trailing edge need not
be a stagnation point for the flow to leave the trailing edge smoothly.

o If the angle subtended by the trailing edge is zero then the velocities leaving the
upper and lower surfaces at the trailing edge are finite and equal in magnitude and
direction.

4.1.2 Circulation and vorticity

From the discussion above it is evident that circulation and vorticiry, introduced in
Section 2.7, are key concepts in understanding the generation of lift. These concepts
are now explored further, and the precise relationship between the lift force and
circulation is derived.

Consider an imaginary open curve AB drawn in a purely potential flow as in
Fig. 4.3a. The difference in the velocity potential ¢ evaluated at A and B is given by
the line integral of the tangential velocity component of flow along the curve, i.e. if
the flow velocity across AB at the point P is ¢, inclined at angle « to the local tangent,
then

¢A—¢B:/ g cos ads 4.1
AB
which could also be written in the form
b — éB = / {(udx + vdy)
AB

Equation (4.1) could be regarded as an alternative definition of velocity potential.

Consider next a closed curve or circuit in a circulatory flow (Fig. 4.3b) (remember
that the circuit is imaginary and does not influence the flow in any way, i.e. it is not

a boundary). The circulation is defined in Eqn (2.83) as the line integral taken around
the circuit and is denoted by T, i.e.
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Fig. 4.3 (a) An open curve in a potential flow. (b) A closed curve in a circulatory flow; A and B coincide

I‘:j{qcosads or I'= ?{(udx+vdy) (4.2)

It is evident from Eqns (4.1) and (4.2) that in a purely potential flow, for which ¢4
must equal ¢p when the two points coincide, the circulation must be zero.

Circulation implies a component of rotation of flow in the system. This is not to say
that there are circular streamlines, or that elements of fluid are actually moving
around some closed loop although this is a possible flow system. Circulation in a flow
means that the flow system could be resolved into a uniform irrotational portion and
a circulating portion. Figure 4.4 shows an idealized concept. The implication is that
if circulation is present in a fluid motion, then vorticity must be present, even though
it may be confined to a restricted space, e.g. as in the core of a point vortex.
Alternatively, as in the case of the circular cylinder with circulation, the vorticity at
the centre of the cylinder may actually be excluded from the region of flow con-
sidered, namely that outside the cylinder.
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Consider this by the reverse argument. Look again at Fig. 4.3b. By definition the
velocity potential of C relative to A (¢ca) must be equal to the velocity potential of
C relative to B (¢cp) in a potential flow. The integration continued around ACB gives

I'=¢ca £écg =0

This is for a potential flow only. Thus, if T' is finite the definition of the velocity
potential breaks down and the curve ACB must contain a region of rotational flow.
If the flow is not potential then Eqn (ii) in Section 3.2 must give a non-zero value for
vorticity.

An alternative equation for I is found by considering the circuit of integration to
consist of a large number of rectangular elements of side 6x 6y (e.g. see Section 2.7.7
and Example 2.2). Applying the integral I' = [ (xdx + vdy) round abed, say, which is
the element at P(x, y) where the velocity is # and v, gives (Fig. 4.5).

_ Ov bx Ou by Ov 6x
Al = (“*a‘z‘)” ( “t o 2>5"“ <“—57)5y
Ou by
+(u—a—7)6x

v  Ou
r= (2-2)ses

The sum of the circulations of all the areas is clearly the circulation of the circuit as
a whole because, as the AT of each element is added to the AT of the neighbouring
element, the contributions of the common sides disappear.

Applying this argument from element to neighbouring element throughout the
area, the only sides contributing to the circulation when the AT's of all areas are
summed together are those sides which actually form the circuit itself. This means
that for the circuit as a whole

//(-———)d & = f(udx—}— )

over t,he area round the circuit
and
Ov Ou ¢
ox Oy

This shows explicitly that the circulation is given by the integral of the vorticity
contained in the region enclosed by the circuit.
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If the strength of the circulation I' remains constant whilst the circuit shrinks to
encompass an ever smaller area, i.e. until it shrinks to an area the size of a rectangular
element, then:

I'=({ x éx8y = x area of element

Therefore,

vorticity = lim T 4.3)

area—0 area of circuit
Here the (potential) line vortex introduced in Section 3.3.2 will be re-visited and the
definition (4.2) of circulation will now be applied to two particular circuits around
a point (Fig. 4.6). One of these is a circle, of radius ry, centred at the centre of the
vortex. The second circuit is ABCD, composed of two circular arcs of radii r; and r,
and two radial lines subtending the angle 3 at the centre of the vortex. For the
concentric circuit, the velocity is constant at the value

q=;

where C is the constant value of gr.

165
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Vortex core

Fig. 4.6 Two circuits in the flow around a point voriex

Since the flow is, by the definition of a vortex, along the circle, a is everywhere zero
and therefore cos o = 1. Then, from Eqn (4.2)

C
I'=¢—ds
ri
Now suppose an angle § to be measured in the anti-clockwise sense from some
arbitrary axis, such as OAB. Then

ds = rdf

whence
27rC
r— / € 1149 = 2nC (4.4)
0o N

Since C is a constant, it follows that T is also a constant, independent of the radius.
It can be shown that, provided the circuit encloses the centre of the vortex, the
circulation round it is equal to I', whatever the shape of the circuit. The circulation
I' round a circuit enclosing the centre of a vortex is called the strength of the vortex.
The dimensions ?f circulation and vortex strength are, from Eqn (4.2), velocity times
length, i.e. L?T" ", the units being m? s~!. Now I' = 2#C, and C was defined as equal

to gr; hence
I' = 2ngr
and
r
=5 4.5)

Taking now the second circuit ABCD, the contribution towards the circulation from
each part of the circuit is calculated as follows:

(i) Radial line AB Since the flow around a vortex is in concentric circles, the
velocity vector is everywhere perpendicular to the radial line, i.e. o= 90°,
cos & = 0. Thus the tangential velocity component is zero along AB, and there
is therefore no contribution to the circulation.

(ii) Circular arc BC Here o =0, cos & = 1. Therefore

8
' = gcos o ds = / qr.déd
BC 0
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But, by Eqn (4.5),
_ T
7= 27!‘7'2
fr Ar
E—Amrzde—i;

(iii) Radial line CD As for AB, there is no contribution to the circulation from this
part of the circuit.

(iv) Circular arc DA Here the path of integration is from D to A, while the direction
of velocity is from A to D. Therefore a = 180°, cosa = —1. Then

6 = / ——( 1)r,do = ﬁl"
Therefore the total circulation round the complete circuit ABCD is
_a, AT pr
1"—0+27r+0 27r—0 (4.6)

Thus the total circulation round this circuit, that does not enclose the core of the
vortex, is zero. Now any circuit can be split into infinitely short circular arcs joined
by infinitely short radial lines. Applying the above process to such a circuit would
lead to the result that the circulation round a circuit of any shape that does not
enclose the core of a vortex is zero. This is in accordance with the notion that
potential flow is irrotational (see Section 3.1).

4.1.3 Circulation and lift (Kutta-Zhukovsky theorem)

In Eqgn (3.52) it was shown that the lift / per unit span and the circulation I' of
a spinning circular cylinder are simply related by

[=pVT

where p is the fluid density and V'is the speed of the flow approachlng the cylinder. In
fact, as demonstrated independently by Kutta* and Zhukovsky', the Russian physi-
cist, at the beginning of the twentieth century, this result applles equally well to a
cylinder of any shape and, in particular, applies to aerofoils. This powerful and useful
result is accordingly usually known as the Kutta—Zhukovsky Theorem. Its validity is
demonstrated below.

The lift on any aerofoil moving relative to a bulk of fluid can be derived by direct
analysis. Consider the aerofoil in Fig. 4.7 generating a circulation of I' when in a stream
of velocity ¥, density p, and static pressure po. The lift produced by the aerofoil must
be sustained by any boundary (imaginary or real) surrounding the aerofoil.

For a circuit of radius r, that is very large compared to the aerofoil, the lift of the
aerofoil upwards must be equal to the sum of the pressure force on the whole
periphery of the circuit and the reaction to the rate of change of downward momen-
tum of the air through the periphery. At this distance the effects of the aerofoil
thickness distribution may be ignored, and the aerofoil represented only by the
circulation it generates.

* gee footnote on page 161.

T N. Zhukovsky ‘On the shape of the lifting surfaces of kites’ (in German), Z. Flugtech. Motorluftschiffahrt,
1, 281 (1910) and 3, 81 (1912).
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Fig. 4.7

The vertical static pressure force or buoyancy /4 on the circular boundary is the sum
of the vertical pressure components acting on elements of the periphery. At the
element subtending 660 at the centre of the aerofoil the static pressure is p and the
local velocity is the resultant of ¥ and the velocity v induced by the circulation.
By Bernoulli’s equation

l 1 .
Po +5sz =p +§p[V2 +v2 4 2Vvsin 8]
giving
p=po— pVvsing

if v* may be neglected compared with V2, which is permissible since r is large.
The vertical component of pressure force on this element is
—prsind 60
and, on substituting for p and integrating, the contribution to lift due to the force
acting on the boundary is

2r

b=~ - i in 6
b A (po — pVvsin@)rsin 6d6 (4.7)

= +4pVvrn

with po and r constant.
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The mass flow through the elemental area of the boundary is given by pVrcos 6 66.
This mass flow has a vertical velocity increase of v cos 8, and therefore the rate of
change of downward momentum through the element is —p¥vr cos® 0 60; therefore by
integrating round the boundary, the inertial contribution to the lift, 4, is

2

= +/- pVvrcos® 6de
0

= pVvrr (4.8)
Thus the total lift is:
[ =2pVvra (4.9)
From Eqn (4.5):
r
vV=—
27r

giving, finally, for the lift per unit span, /:
[ =pVT (4.10)

This expression can be obtained without consideration of the behaviour of air in
a boundary circuit, by integrating pressures on the surface of the aerofoil directly.
It can be shown that this lift force is theoretically independent of the shape of the
aerofoil section, the main effect of which is to produce a pitching moment in
potential flow, plus a drag in the practical case of motion in a real viscous fluid.

4.2 The development of aerofoil theory

Thc first successful acrofoil theory was developed by Zhukovsky.* This was bascd on
a very elegant mathematical concept — the conformal transformation — that exploits
the theory of complex variables. Any two-dimensional potential flow can be repre-
sented by an analytical function of a complex variable. The basic idea behind
Zhukovsky’s theory is to take a circle in the complex ¢ = (£ + in) plane (noting that
here ¢ does not denote vorticity) and map (or transform) it into an aerofoil-shaped
contour. This is illustrated in Fig. 4.8.

A potential flow can be represented by a complex potential defined by ¢ = ¢ + 1w
where, as previously, ¢ and ¢ are the velocity potential and stream function respect-
ively. The same Zhukovsky mapping (or transformation), expressed mathematically as

¢+ C

(where C 1s a parameter), would then map the complex potential flow around the
circle in the ¢-plane to the corresponding flow around the aerofoil in the z-plane. This
makes 1t possible to use the results for the cylinder with circulation (see Section
3.3.10) to calculate the flow around an aerofoil. The magnitude of the circulation is
chosen so as to satisfy the Kutta condition in the z-plane.

From a practical point of view Zhukovsky’s theory suffered an important draw-
back. It only applied to a particular family of aerofoil shapes. Moreover, all the

* see footnote on page 161,
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iy 2 plane

Fig. 4.8 Zhukovsky transformation, of the flow around a circular cylinder with circulation, to that around
an aerofoil generating lift

members of this family of shapes have a cusped trailing edge whereas the aerofoils
used in practical aerodynamics have trailing edges with finite angles. Karman and
Trefftz* later devised a more general conformal transformation that gave a family of
aerofoils with trailing edges of finite angle. Aerofoil theory based on conformal
transformation became a practical tool for aerodynamic design in 1931 when the
American engineer Theodorsen' developed a method for aerofoils of arbitrary shape.
The method has continued to be developed well into the second half of the twentieth
century. Advanced versions of the method exploited modern computing techniques
like the Fast Fourier Transform.**

If aerodynamic design were to involve only two-dimensional flows at low speeds,
design methods based on conformal transformation would be a good choice. How-
ever, the technique cannot be extended to three-dimensional or high-speed flows. For
this reason it is no longer widely used in aerodynamic design. Methods based on
conformal transformation are not discussed further here. Instead two approaches,
namely thin aerofoil theory and computational boundary element (or panel) methods,
which can be extended to three-dimensional flows will be described.

The Zhukovsky theory was of little or no direct use in practical aerofoil design.
Nevertheless it introduced some features that are basic to any aerofoil theory. Firstly,
the overall lift is proportional to the circulation generated, and secondly, the magni-
tude of the circulation must be such as to keep the velocity finite at the trailing edge,
in accordance with the Kutta condition.

It is not necessary to suppose the vorticity that gives rise to the circulation be due
to a single vortex. Instead the vorticity can be distributed throughout the region
enclosed by the aerofoil profile or even on the aerofoil surface. But the magnitude of
circulation generated by all this vorticity must still be such as to satisfy the Kutta
condition. A simple version of this concept is to concentrate the vortex distribution
on the camber line as suggested by Fig. 4.9. In this form, it becomes the basis of the
classic thin aerofoil theory developed by Munk* and Glauert.?

Glauert’s version of the theory was based on a sort of reverse Zhukovsky trans-
formation that exploited the not unreasonable assumption that practical aerofoils are

* Z. Flugtech. Motorluftschiffahrt, 9, 111 (1918).
T NACA Report, No. 411 (1931).

** N.D. Halsey (1979) Potential flow analysis of multi-element airfoils using conformal mapping, AI44 J.,
12, 1281.

#NACA Report, No. 142 (1922).
§ Aeronautical Research Council, Reports and Memoranda No. 910 (1924).
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thin. He was thereby able to determine the aerofoil shape required for specified
aerofoil characteristics. This made the theory a practical tool for aerodynamic
design. However, as remarked above, the use of conformal transformation is
restricted to (wo dimensions. Fortunately. it is not necessary to use Glauert’s
approach to obtain his final results. In Section 4.3, later developments are followed
using a4 method that does not depend on conformal transformation in any way and.
accordingly, in principle at least, can be extended to three dimensions.

Thin aerofoil theory and its applications are described in Sections 4.3 t0 4.9. As the
name suggests the method is restricted to thin aerofoils with small camber at small
angles of attack. This is not a major drawback since most practical wings are fairly
thin. A modern computational method that is not restricted to thin aerofoils is
described in Section 4.10. This is based on the extension of the panel method of
Section 3.5 to lifting flows. It was developed in the late 1950s and early 1960s by Hess
and Smith at Douglas Aircraft Company.

4.3 The general thin aerofoil theory

For the development of this theory it is assumed that the maximum aerofoil thickness
is small compared to the chord length. It is also assumed that the camber-line shape
only deviates slightly from the chord line. A corollary of the second assumption is
that the theory should be restricted to low angles of incidence.

Consider a typical cambered aerofoil as shown in Fig. 4.10. The upper and lower
curves of the aerofoil profile are denoted by v, and y, respectively. Let the velocities
in the v and v directions be denoted by « and v and write them in the form:

w=Ucos«+u' v=Usina+v’

171



172 Aerodynamics for Engineering Students

u' and v/ represent the departure of the local velocity from the undisturbed free
stream, and are commonly known as the disturbance or perturbation velocities. In
fact, thin-aerofoil theory is an example of a small perturbation theory.

The velocity component perpendicular to the aerofoil profile is zero. This
constitutes the boundary condition for the potential flow and can be expressed
mathematically as:

~usinB+vcosf=0 at y=y, and »n
Dividing both sides by cos 3, this boundary condition can be rewritten as

dy
dx

By making the thin-aerofoil assumptions mentioned above, Eqn (4.11) may be
simplified. Mathematically, these assumptions can be written in the form

—(Ucosa+u')==+ Usina+v'=0 at y=y, and jy (4.11)

dyn
a <1

Note that the additional assumption is made that the slope of the aerofoil profile is
small. These thin-aerofoil assumptions imply that the disturbance velocities are small
compared to the undisturbed free-steam speed, i.e.

d
yuand y < ¢ a,di; and

W and vV &U

Given the above assumptions Eqn (4.11) can be simplified by replacing cos o and
sina by 1 and a respectively. Furthermore, products of small quantities can be
neglected, thereby allowing the term #’dy/dx to be discarded so that Eqn (4.11)
becomes

' dyy !

vi=U e o and v = de Ua (4.12)

One further simplification can be made by recognizing that if y, and y; <« ¢ then to

a sufficiently good approximation the boundary conditions Eqn (4.12) can be applied
at y = 0 rather than at y = yy or y.

Since potential flow with Eqn (4.12) as a boundary condition is a linear system, the
flow around a cambered aerofoil at incidence can be regarded as the superposition of
two separate flows, one circulatory and the other non-circulatory. This is illustrated
in Fig. 4.11. The circulatory flow is that around an infinitely thin cambered plate and
the non-circulatory flow is that around a symmetric aerofoil at zero incidence. This
superposition can be demonstrated formally as follows. Let

Jw=yc+y» and yN=y.—n

¥y = yc(x) is the function describing the camber line and y = y; = (yy — 31)/2 is known
as the thickness function. Now Eqn (4.12) can be rewritten in the form

y = U—dyc —Ua + U%
dx dx
N’ N

Circulatory Non-circulatory

where the plus sign applies for the upper surface and the minus sign for the lower
surface.
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Y =h =‘§( J=n)

=+

Cambered plate at incidence Symmetric gerofoil at zero
{circulatory flow) incidence
{ non-circulatory flow)

Fig. 4.11 Cambered thin aerofoil at incidence as superposition of a circulatory and non-circulatory flow

Thus the non-circulatory flow is given by the solution of potential flow subject to
the boundary condition v' = +U dy,/dx which is applied at y = 0 for 0 < x < ¢. The
solution of this problem is discussed in Section 4.9. The lifting characteristics of the
aerofoil are determined solely by the circulatory flow. Consequently, it is the solution
of this problem that is of primary importance. Turn now to the formulation and
solution of the mathematical problem for the circulatory flow.

It may be seen from Sections 4.1 and 4.2 that vortices can be used to represent
lifting flow. In the present case, the lifting flow generated by an infinitely thin
cambered plate at incidence is represented by a string of line vortices, each of
infinitesimal strength, along the camber line as shown in Fig. 4.12. Thus the camber
line is replaced by a line of variable vorticity so that the total circulation about the
chord is the sum of the vortex elements. This can be written as

r= /0 kds (4.13)

Trailing

SCSaaqp po0

SWIE L0
i

P2

Fig. 4.12 Insert shows velocity and pressure above and below s
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where k is the distribution of vorticity over the element of camber line és and
circulation is taken as positive in the clockwise direction. The problem now becomes
one of determining the function k(x) such that the boundary condition
! dyc
v=Ud—x—Ua at y=0, 0<x<1 (4.14)
is satisfied as well as the Kutta condition (see Section 4.1.1).

There should be no difficulty in accepting this idealized concept. A lifting wing
may be replaced by, and produces forces and disturbances identical to, a vortex
system, and Chapter S presents the classical theory of finite wings in which the idea of
a bound vortex system is fully exploited. A wing replaced by a sheet of spanwise
vortex elements (Fig. 5.21), say, will have a section that is essentially that of the
replaced camber line above.

The leading edge is taken as the origin of a pair of coordinate axes x and y;
Ox along the chord, and Oy normal to it. The basic assumptions of the theory permit
the variation of vorticity along the camber line to be assumed the same as the
variation along the Ox axis, i.e. és differs negligibly from éx, so that Eqn (4.13)
becomes

[4
= / kdx (4.15)
0
Hence from Eqn (4.10) for unit span of this section the lift is given by
[=pUl'=pU/| kdx (4.16)
0

Alternatively Eqn (4.16) could be written with pUk = p:

4 [4
I=/ pdex=/pdx (4.17)
0 0

Now considering unit spanwise length, p has the dimensions of force per unit area
or pressure and the moment of these chordwise pressure forces about the leading
edge or origin of the system is simply

c [
Mg = —/pxdx =—pU| kxdx (4.18)
0 0

Note that pitching ‘nose up’ is positive.

The thin wing section has thus been replaced for analytical purposes by a line
discontinuity in the flow in the form of a vorticity distribution. This gives rise to an
overall circulation, as does the aerofoil, and produces a chordwise pressure variation.

For the aerofoil in a flow of undisturbed velocity U and pressure pg, the insert
to Fig. 4.12 shows the static pressures p; and p, above and below the element &s
where the local velocities are U + u; and U + u,, respectively. The overall pressure
difference p is p» — p;. By Bernoulli:

1 1
pr+50(U + )’ =po+5pU

1 1
P2+50(U +w)’ =po+5pU*
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and subtracting

1 S w u\2 rup\2
=3 -5) (-
p2p12pU[UU+U U
and with the aerofoil thin and at small incidence the perturbation velocity ratios u;/U

and u,/U will be so small compared with unity that (u;/U)? and (uy/ U)? are neglected
compared with »;/U and u,/U, respectively. Then

p=p2—p1=pU(u —up) (4.19)

The equivalent vorticity distribution indicates that the circulation due to element
bs is kbx (6x because the camber line deviates only slightly from the Ox axis).
Evaluating the circulation around és and taking clockwise as positive in this case,
by taking the algebraic sum of the flow of fluid along the top and bottom of és, gives

kbéx =+(U+u)bx — (U +up)bx = (uy —up)bx (4.20)

Comparing (4.19) and (4.20) shows that p = pUk as introduced in Eqn (4.17).

For a trailing edge angle of zero the Kutta condition (see Section 4.1.1) requires
u] = uy at the trailing edge. It follows from Eqn (4.20) that the Kutta condition is
satisfied if

k=0 at x=c (4.21)

The induced velocity v in Eqn (4.14) can be expressed in terms of k, by considering
the effect of the elementary circulation kéx at x, a distance x — x; from the point
considered (Fig. 4.13). Circulation k 6x induces a velocity at the point x; equal to

1 kéx

2r x —Xx

from Eqn (4.5).
The effect of all such elements of circulation along the chord is the induced velocity
v/ where
s 1 € kdx
a 2 0 X— X1

y A
v kdx
L
U st o T
_____E—" O-«—xl—ﬂ X
X
d U)(U\ v
F 7

Fig. 4.13 Velocities at x; from 0: U + w4, resultant tangential to camber lines; v/, induced by chordwise
variation in circulation; U, free stream velocity inclined at angle o to Ox
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and introducing this in Eqn (4.14) gives

dy. 1 /¢ kdx
LA = (4.22
v [d.\' a} 277,/(, X — X \ )

The solution for kdx that satisfies Eqn (4.22) for a given shape of camber
line (defining dy./dx) and incidence can be introduced in Eqns (4.17) and (4.18) to
obtain the lift and moment for the acrofoil shape. The characteristics C; and Cyy,,
follow directly and hence k¢p, the centre of pressure coefficient, and the angle
for zero hift.

4.4 The solution of the general equation

In the general case Eqn (4.22) must be solved directly to determine the function k()
that corresponds to a specificd camber-line shape. Alternatively. the inverse design
problem may be solved whereby the pressure distribution or, equivalently, the
tangential velocity variation along the upper and lower surfaces of the acrofoil is
given. The corresponding 4(x) may then be simply found from Eqns (4.19) and
(4.20). The problem then becomes one of finding the requisite camber line shape
from Eqn (4.22). The present approach is to work up to the general case through the
simple case of the flat plate at incidence, and then 1o consider some practical
applications of the general case. To this end the integral in Eqn (4.22) will be
considered and expressions for some useful definite integrals given.

In order to usc certain trigonometric relationships it is convenient to change
variables {from x 1o 6, through x = (¢/2)(1 — cos#), and x; to 6, then the limits
change as follows:

f0~0—7 as x~0—¢, and

dx = %sinﬁdﬁ

So

/ kdx B _/ ksinfdo (4.23)
Jo Jo (

X — X cosl —cos b))
Also the Kutta condition (4.21) becomes
k=0 at == (4.24)

The expressions found by evaluating two useful definite integrals are given below

/ oSl gy RS o1 (4.25)
o (cos@ —cosb) sin

" sinnfsind
/ _SIATSIRY 49 = —wcosnf, in=0.1,2,. . (4.26)
o (cosf —cosb)

The derivations of these results are given in Appendix 3. However, it 1s not necessary
to be familiar with this derivation in order to use Eqns (4.25) and (4.26) in applica-
tions of the thin-aerofoil theory.
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4.41 The thin symmetrical flat plate aerofoil

In this simple case the camber line is straight along Ox, and dy./dx = 0. Using
Eqn (4.23) the general equation (4.22) becomes

1 [m ksin@
Ve = ﬂ/o (cos 8 — cosby) (4-27)

What value should k take on the right-hand side of Eqn (4.27) to give a left-hand side
which does not vary with x or, equivalently, ? To answer this question consider the
result (4.25) with n = 1. From this it can be seen that

/ " cosfdd .

o (cosf —cosfy)

Comparing this result with Eqn (4.27) it can be seen that if k = k; = 2U« cos 6/sin 8
it will satisfy Eqn (4.27). The only problem is that far from satisfying the Kutta

condition (4.24) this solution goes to infinity at the trailing edge. To overcome this
problem it is necessary to recognize that if there exists a function k; such that

T kysin 6d8
L eshuey 4.
/0 (cos @ — cos b)) 0 (4.28)

then k = k) + k» will also satisfy Eqn (4.27).
Consider Eqn (4.25) with » = 0 so that

" 1
/0 (cos0—cos€1)d0 =0
Comparing this result to Eqn (4.28) shows that the solution is
C

= —

sin@

where C is an arbitrary constant.
Thus the complete (or general) solution for the flat plate is given by

2Uacosf+ C
sin @

The Kutta condition (4.24) will be satisfied if C = 2Ua« giving a final solution of

k=ki+k =

(14 cosf)

k=2Ua—x"

(4.29)

Aerodynamic coefficients for a flat plate

The expression for k can now be put in the appropriate equations for lift and moment
by using the pressure:

Vo, 1 +cosd

oy (4.30)

p=pUk=2p
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The lift per unit span

4 1+cosf\c .

= apU2c/ (1 + cos 6) d6 = mapU?c
0

It therefore follows that for unit span
!

1
z%)
The moment about the leading edge per unit span

¢
MLE=—/ pxdx
0

CL= = 27 (4.31)

Changing the sign

mw
B _ > (1+cosb) ¢
MLE_z”UO‘/O sing 2

v
=%pU2a02/ (1 —cos®6) do
0

(a ~cos€)%sin 9do

Therefore for unit span

_ Mg /"'1 cos 20
Cumye = %pUzcz_a . (2 > dé

kis
=a— 432
o (4.32)
Comparing Eqns (4.31) and (4.32) shows that
C
Crys = “TL (4.33)

The centre of pressure coefficient kcp is given for small angles of incidence approxi-
mately by
—Cy 1
cP C, 2 (4.34)
and this shows a fixed centre of pressure coincident with the aerodynamic centre as is
necessarily true for any symmetrical section.

44.2 The general thin aerofoil section

In general, the camber line can be any function of x (or 6) provided that y. =0 at
x=0 and ¢ (ie. at #=0 and 7). When trigonometric functions are involved
a convenient way to express an arbitrary function is to use a Fourier series. Accord-
ingly, the slope of the camber line appearing in Eqn (4.22) can be expressed in terms
of a Fourier cosine series

% = Ao+ Z Ancosnb (4.35)
n=1
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Sine terms are not used here because practical camber lines must go to zero at the
leading and trailing edges. Thus y, is an odd function which implies that its derivative
is an even function.

Equation (4.22) now becomes

= L (™ ksin ddf
U(a—Ao)—U"z:;AnCOSHO—-Zr/; m (436)

The solution for & as a function of § can be considered as comprising three parts so
that k£ = k| + ky + k3 where

1 7 sin 8
sin @
2r / (cos0 (cosf — cosfy) (cos0 —costy ¢ =0 (4.38)
sin @ o
. /0 k3(0)md0 = —U;A,, cos nf (4.39)

The solutions for k; and k; are identical to those given in Section 4.4.1 except that
U(ae — Ap) replaces Ue in the case of ki. Thus it is only necessary to solve Eqn (4.39)
for k3. By comparing Eqn (4.26) with Eqn (4.39) it can be seen that the solution to
Eqn (4.39) is given by

ks (0) = 2UZ Ay sinnd

Thus the complete solution is given by

cose C

k(6) =ki+ky+ks =2U(a— do) = sind ' sng

+2U ZA sin nf

The constant C has to be chosen so as to satisfy the Kutta condition (4.24) which
gives C = 2U(c — Ayp). Thus the final solution is

cos&+1 = ] (4.40)

k(6) =2U [(a —Ay) —— o ZA sin nf

To obtain the coefficients 4y and 4, in terms of the camberline slope, the usual
procedures for Fourier series are followed. On integrating both sides of Eqn (4.35)
with respect to 6, the second term on the right-hand side vanishes leaving

/dy°d0 /Aode Agm
0
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Therefore

/ e 49 (4.41)

Multiplying both sides of Eqn (4.35) by cos m0, where m is an integer, and integrating
with respect to ¢

/‘;%osmodo /cosm0 d0+/}3A cosnf cos mfdé
0

s
/ Apcos nf cos mfdd =0 except when n=m
0

Then the first term on the right-hand side vanishes, and also the second term, except
forn=m,i.e.

/ d ccosn0d9—/ A,,cos2n0d9=EA,,
0 dx 0 2

whence

_ 2 [Tdy.
An= =), dx ——cosnfdf (4.42)

Lift and moment coefficients for a general thin aerofoil
From Eqn (4.7)

l=/pdex=/ pU Sksin0do

0 0o 2

=2pU2%/ [(a——Ao)(l + cos 6) +EA,,sin n6 sin 6 |d6
0 1

1
=2pU%2 [w(a Ao) + = Al] Cr=pU?c

2
Since

/sinn0d0=0 when n # 1,giving
0

Cr=(Cy,) +%a = w(4y — 24p) + 2ma (4.43)

The first term on the right-hand side of Eqn (4.43) is the coefficient of lift at zero
incidence. It contains the effects of camber and is zero for a symmetrical aerofoil. It is
also worth noting that, according to general thin aerofoil theory, the lift curve slope
takes the same value 27 for all aerofoils.

c
1
—MiE = pU/ kxdx = —CMLEEpUzc2
0
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With the usual substitution

—c _2pU%(c/2)
Me T T o
m (14cosf) X . .
x/o [(a Ao) pr +ZA,,s1nn0 sing(1 — cos6) dd

T w 00
=/ (a—Ao)(l—cos20)d0+/ ZA,,sin nf sin 6d6
0 0 1
T o0
——/ ZA,, sin n@ cos O sin 6 do
0

T T iy
—E(a — Ao) +5A1 — ZA2
since

s
/sinnOs'mm@d0=0 when n s m,or
0

A
Cymye = '—g [(a —Ao) + 4, — ?2] (4.44)

In terms of the lift coefficient, Cps,, becomes

CL Ay — A3
4 [1+ CL/W]

Then the centre of pressure coefficient is

Cuy =

CM 1 T
kep=—"FE=—4—(4, -4 4.4
cr C, ~atag 4 (4.45)
and again the centre of pressure moves as the lift or incidence is changed. Now, from
Section 1.5.4,

kcp = ——+—+ 7 (4.46)
and comparing Eqns (4.44) and (4.45) gives
T
—Cuypy = Z(Al —43) (4.47)

This shows that, theoretically, the pitching moment about the quarter chord point for
a thin aerofoil is constant, depending on the camber parameters only, and the quarter
chord point is therefore the aerodynamic centre.

It is apparent from this analysis that no matter what the camber-line shape, only
the first three terms of the cosine series describing the camber-line slope have any
influence on the usual aerodynamic characteristics. This is indeed the case, but the
terms corresponding to n > 2 contribute to the pressure distribution over the chord.

Owing to the quality of the basic approximations used in the theory it is found
that the theoretical chordwise pressure distribution p does not agree closely with
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experimental data, especially near the leading edge and near stagnation points where
the small perturbation theory, for example, breaks down. Any local inaccuracies tend
to vanish in the overall integration processes, however, and the aerofoil coefficients
are found to be reliable theoretical predictions.

45 The flapped aerofoil

Thin aerofoil theory lends itself very readily to aerofoils with variable camber such as
flapped aerofoils. The distribution of circulation along the camber line for the
general aerofoil has been found to consist of the sum of a component due to a flat
plate at incidence and a component due to the camber-line shape. It is sufficient for
the assumptions in the theory to consider the influence of a flap deflection as an
addition to the two components above. Figure 4.14 shows how the three contribu-
tions can be combined. In fact the deflection of the flap about a hinge in the camber
line effectively alters the camber so that the contribution due to flap deflection is the
effect of an additional camber-line shape.

The problem is thus reduced to the general case of finding a distribution to fit
a camber line made up of the chord of the aerofoil and the flap chord deflected
through » (see Fig. 4.15). The thin aerofoil theory does not require that the leading
and/or trailing edges be on the x axis, only that the surface slope is small and the
displacement from the x axis is small.

With the camber defined as /¢ the slope of the part AB of the aerofoil is zero, and
that of the flap — 4#/F. To find the coefficients of k for the flap camber, substitute
these values of slope in Eqns (4.41) and (4.42) but with the limits of integration
confined to the parts of the aerofoil over which the slopes occur. Thus

L[ L [™ h
Ao_{;/OOdéw—;/a Fd(}} (4.48)

where ¢ is the value of # at the hinge, i.e.

I

(I = F)e==(1 —coso)

o

y A (a) Due to camberline shape

17 X
— >

iz (b) Due to flap deflection
U n X = _

e~y &/ A

y Ar (c) Due to incidence change

Qﬂ’ X

Fig. 4.14 Subdivision of lift contributions to total lift of cambered flapped aerofoil
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y 1{
I-—Fc—--l
A B c
-
P I S
7 —_—
Cl
Fig. 4.15
whence cos ¢ = 2F — 1. Evaluating the integral
—_(1_%\*
Ao = (1 7r> F
i.e. since all angles are small 4/F = tann ~ 7, so
Ao =— (1 - £>n (4.49)
T
Similarly from Eqn (4.42)
2 ¢ T h
Ay =— 0 cos n0d0+/ ——cos nfdf
T 0 ¢ F
2sinng
=" (4.50)
Thus
A1=2s1n¢ and A2=sm2¢n
T T

The distribution of chordwise circulation due to flap deflection becomes

. 1 +cosf 14+cosf N2sinng
k=2Ua ——SW—+2U[<1 ﬂ) e 2; sinné | n (4.51)

and this for a constant incidence « is a linear function of ), as is the lift coefficient,
e.g. from Eqn (4.43)

Cr = 27ra+27r'r)(1 —£> + 2nsin ¢
giving
Cr=2ra+2(r— ¢+sing)n (4.52)

Likewise the moment coefficient Cyy,, from Eqn (4.44) is

T T ¢ 2sin ¢ sin 2¢
_CMLE =EC!+E [n(l —;r') +——n———n]

T 2T

Crye = —ga - % [m— ¢ +sing(2 — cos )| (4.53)
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Note that a positive flap deflection, i.e. a downwards deflection, decreases the
moment coefficient, tending to pitch the main aerofoil nose down and vice versa.

45.1 The hinge moment coefficient

A flapped-aerofoil characteristic that is of great importance in stability and control
calculations, is the aerodynamic moment about the hinge line, shown as H in Fig. 4.16.
Taking moments of elementary pressures p, acting on the flap about the hinge,

trailing edge
H=- px' dx
hinge
where p = pUk and x' = x — (1 — F)c. Putting
¢ c ¢
X -—5(1 — cos6) —5(1 —cos @) ——2—(cos¢—cos0)

and k from Eqn (4.51):

H=—/:2pU2[{a+n(1 _%)} ¢ —;—i;c;sO)

+nz2sm"¢sinn9} %(cosqs — cos 0)%si1109d0
1

nmw

Substituting H = Cy % pU?(Fe)* and cancelling

~CyF? = a/ (1 + cos §)(cos ¢ — cos 6)dd
¢

+n{ (1 _ﬁ) cosply — (1 —£>12
T ™

X 2sinn . 2sin
+Zl: ¢cos¢13+zl: w"¢14} (4.54)

nmw n

where

I =/ (I14+cos@)dfd=m— ¢ —sing
¢

12=/ (1+ cosf)cosfdd = [ﬂ;¢sin¢_s1n2¢]
$

741 H

B~ T

Fig. 4.16
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T . 1
132/ smn05m0d0=—[
[

sin(n +1)¢ _ sin(n — l)ﬂ

2 n+1 n—1
g 1 2 1 _
Iy = / sinn@sinfcosfdf = l [sm(n +2)¢ - sin(n 2)¢}
P 2 n+2 n—2
In the usual notation Cy = by« + by7, where
_ BCH . BCH
b] = W and bz = (97]
From Eqn (4.54):
1 T
by = = , (1 + cosb)(cos ¢ — cos F)db
giving
1 . .
by = ~ i {2(r — ¢)(2cosp — 1) +4sin ¢ — sin 2¢} (4.55)
Similarly from Eqn (4.54)
1 .
by = %}i = X coefficient of 77 in Eqn (4.54)

This somewhat unwieldy expression reduces to*

by = (1 —cos2¢) — 2(r — ¢)*(1 —2cos @) +4(m — )sing}  (4.56)

1
"o
The parameter a; = 9C1 /0« is 27 and a» = 8C1 /Oy from Eqn (4.52) becomes
a =2(m— ¢+ sing) (4.57)

Thus thin aerofoil theory provides an estimate of all the parameters of a flapped
aerofoil.

Note that aspect-ratio corrections have not been included in this analysis which is
essentially two-dimensional. Following the conclusions of the finite wing theory in
Chapter 5, the parameters ay, a3, b; and by may be suitably corrected for end effects.
In practice, however, they are always determined from computational studies and
wind-tunnel tests and confirmed by flight tests.

4.6 The jet flap

Considering the jet flap (see also Section 8.4.2) as a high-velocity sheet of air issuing
from the trailing edge of an aerofoil at some downward angle 7 to the chord line of
the aerofoil, an analysis can be made by replacing the jet stream as well as the aerofoil
by a vortex distribution.’

*See R and M, No. 1095, for the complete analysis.

'D.A. Spence, The lift coefficient of a thin, jet flapped wing, Proc. Roy. Soc. A., No. 1212, Dec. 1956.
D.A. Spence, The lift of a thin aerofoil with jet augmented flap, Aeronautical Quarterly, Aug. 1958.
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y

Fig. 4.17

The flap contributes to the lift on two accounts. Firstly, the downward deflection
of the jet efflux produces a lifting component of reaction and secondly, the jet affects
the pressure distribution on the aerofoil in a similar manner to that obtained by an
addition to the circulation round the aerofoil.

The jet is shown to be equivalent to a band of spanwise vortex filaments which for
small deflection angles 7 can be assumed to lie along the Ox axis (Fig. 4.17). In the
analysis, which is not proceeded with here, both components of lift are considered in
order to arrive at the expression for Cy:

C = 4dnAoT + 27(1 + 2By)av (4.58)

where Ay and By are the initial coefficients in the Fourier series associated with the
deflection of the jet and the incidence of the aerofoil respectively and which can be
obtained in terms of the momentum (coefficient) of the jet.

It is interesting to notice in the experimental work on jet flaps at National Gas
Turbine Establishment, Pyestock, good agreement was obtained with the theoretical
C even at large values of 7.

4.7 The normal force and pitching moment
derivatives due to pitching*

4.7.1 (Z4)(Mg) wing contributions

Thin-aerofoil theory can be used as a convenient basis for the estimation of these
important derivatives. Although the use of these derivatives is beyond the general
scope of this volume, no text on thin-aerofoil theory is complete without some
reference to this common use of the theory.

When an aeroplane is rotating with pitch velocity ¢ about an axis through the
centre of gravity (CG) normal to the plane of symmetry on the chord line produced
(see Fig. 4.18), the acrofoil’s effective incidence is changing with time as also, as
a consequence, are the aerodynamic forces and moments.

The rates of change of these forces and moments with respect to the pitching
velocily ¢ are two of the aerodynamic quasi-static derivatives that are in general
commonly abbreviated to derivatives. Here the rate of change of normal force on the
aircraft, i.e. resultant force in the normal or Z direction, with respect to pitching
velocity is, in the conventional notation, 8Z/0¢. This is symbolized by Z,. Similarly
the rate of change of M with respect to ¢ is OM [0q = M.

In common with other aerodynamic forces and moments these are reduced to non-
dimensional or coefficient form by dividing through in this case by pV/ and pVI
respectively, where / is the tail plane moment arm, to give the non-dimensional

*Tuis suggested that this section be omitted from general study until the reader is familiar with these
derivatives and their usc.
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Fig. 4.18

normal force derivative due to pitching z,, and the non-dimensional pitching moment
derivative due to pitching m,.

The contributions to these two, due to the mainplanes, can be considered by
replacing the wing by the equivalent thin aerofoil. In Fig. 4.19, the centre of rotation
(CQG) is a distance hc behind the leading edge where c is the chord. At some point x
from the leading edge of the aerofoil the velocity induced by the rotation of the
aerofoil about the CG is v = —g(hc — x). Owing to the vorticity replacing the camber
line a velocity v is induced. The incident flow velocity is ¥ inclined at « to the chord
line, and from the condition that the local velocity at x must be tangential to the
aerofoil (camber line) (see Section 4.3) Eqn (4.14) becomes for this case

or

D o=y (4.59)

ax TV TY
From the general case in steady straight flight, Eqn (4.35), gives

%—a =A0 —a+EA,,cosn0 (460)

but in the pitching case the loading distribution would be aitered to some general
form given by, say,

%: By + B, cosnd (4.61)

LE pe N

fe—-C

Fig. 4.19
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where the coefficients are changed because of the relative flow changes, while the
camber-line shape remains constant, i.e. the form of the function remains the same
but the coefficients change. Thus in the pitching case

dy _ qc 1 cosf
a;—a—-Bo+EB,,cosn0—7<h 5+—2—) (4.62)
Equations (4.60) and (4.62) give:
—dg—a-26(L_ 4,4+ 2 _
By=Ay—« V(2 h), Bl—A1+2V and B, = A,

In analogy to the derivation of Eqn (4.40), the vorticity distribution here can be

written
14 cos@ .
k=2V|-By{ ——— | + XB,sinnf
sin@

and following similar steps for those of the derivation of Eqn (4.43), this leads to

Cr =2n(cc — By) + wB; = 2m [a — Ao+ % + (% — h) —ch] (4.63)

It should be remembered that this is for a two-dimensional wing. However, the
effect of the curvature of the trailing vortex sheet is negligible in three dimensions, so
it remains to replace the ideal 9C;/8a = 27 by a reasonable value, a, that accounts
for the aspect ratio change (see Chapter 5). The lift coefficient of a pitching rect-
angular wing then becomes

_ A 3 qc
CL—a[a Ao+ 7t (4 h) V] (4.64)
Similarly the pitching-moment coefficient about the leading edge is found from
Eqn (4.44):
iy C
CMLE = Z(BZ - Bl) - _4_£

mC _1
8V 4

which for a rectangular wing, on substituting for Cp, becomes

= %(A2 — 4p) — CL (4.65)

o T a A 3 qc
Cuiz _Z(AZ_AI) 87q Z{a—Ao +7+ (Z—h)V} (4.66)
The moment coefficient of importance in the derivative is that about the CG and
this is found from
CMOG = CMLE + hCy, (467)

and substituting appropriate values

2 1 A 3
Creg =3 (A2~ 1) -T2 L0 (h—z)a[a—Ao+71+ (Z—h)q—;]
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which can be rearranged in terms of a function of coefficients 4, plus a term
involving g, thus:

Cutca =04 =[50 - ] L (4.68)

16 14
The contribution of the wings to Z; or z, thus becomes
0Z OL _ 0CL1

= = 2
Z"‘aq o oq 2° VoS

_ L s
= —2pV Sa(——h) 7
by differentiating Eqn (4.64) with respect to q.
Therefore for a rectangular wing, defining z, by Zq/(pVSlt),
—a (3

For other than rectangular wings an approximate expression can be obtained by
using the strip theory, e.g.

‘a3 5

-1 ffa(3
zg "S_lt/_sf (Z—h>c2dy (4.70)

In a similar fashion the contribution to M, and m, can be found by differentiating
the expression for Mcg, with respect to g, i.e.

giving

OMcG 3CM
M., = TMcg 2
g 5q 3q 2 pV*Sc
= Lovrsedamon + =2 C fom Ban (4.68)
=72f 4 16 % an A%
2
- 71
[(1 2h)+ 32 ]VS 4.71)
giving for a rectangular wing
My a —a
—(1-2 — .
P [8( m 32 ] 2 (4.72)
For other than rectangular wings the contribution becomes, by strip theory:
Mq=——pV/( (1 —2h)* + 32 )c3dy (4.73)

and

1
my=-<p _s< (1- 32 )c3dy (4.74)
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For the theoretical estimation of =, and m,, of the complete aircraft. the contribu-
tions of the tailplane must be added. These are given herc for completeness.

1S [oc,
T TS <(‘W N C“) (4.75)
LS (oC] L o
My = —=—=\-—
S 28\ o g

where the terms with dashes refer to tailplane data.

4.8 Particular camber lines

It has been shown that quite general camber lines may be used in the theory
satisfactorily and reasonable predictions of the acroloil characteristics obtained.
The reverse problem may be of more interest to the aerofoil designer who wishes to
obtain the camber-line shape to produce certain desirable characteristics. The general
design problem is more comprehensive than this simple statement suggests and the
theory so far dealt with 1s capable of considerable extension involving the introduc-
tion of thickness functions to give shape to the camber line. This is outlined in
Section 4.9.

4.8.1 Cubic camber lines

Starting with a desirable aerodynamic characteristic the simpler problem will be
considered here. Numerous authorities* have taken a cubic equation as the general
shape and evaluated the coefficients required to give the aerofoil the characteristic of
a fixed centre of pressure. The resulting camber line has the reflex trailing edge which
is the well-known feature of this characteristic.

Example 4.1 Find the cubic camber line that will provide zero pitching moment about the
quarter chord point for a given camber.

The general equation for a cubic can be written as 1 = ¢’ x(x + #')(x + ') with the origin at the
leading edge. For convenience the new variables xy = v/c and 3y = .6 can be introduced. & is
the camber. The conditions to be satisfied are that:

(1) y =0 when v =0, i.e. v; = x; = 0 at leading cdge

(i) v =0 when x = ¢.1e. vy = 0 when x; = 1
(i) dyjdy =0and y =4, 1.e. dy|/dx; = 0 when y) = | (when x) = xy)
(IV) C“"u = O. le. A| - Ag =0

Rewriting the cubic in the dimensionless variables vy and 1)

vy =axi(x+h) v +d) (4.76)
this satisfies condition (1).
To satisfy condition (it). (x) + ) = 0 when v, = |. therefore = —1. giving
vy =avi(xy+h) (v = 1) {4.77)
or multiplying out
¥y = u.\"? +a{h - l).\‘,2 — ahx) (4.78)

*H. Glauert, Aerofoil and Airscrew Theoryy NJ ALV, Piercy. Aerodvnamics: ete.
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Differentiating Eqn (4.78) to satisfy (iii)

d

d—i‘ =3ax2 +2a(b—1)x; —ab=0 when y =1 (4.79)
1

and if xo corresponds to the value of x; when y; = 1, i.e. at the point of maximum displace-

ment from the chord the two simultaneous equations are

1 = ax3 + a(b — 1)x3 — abxy (4.80)
0 =3ax3 +2a(b ~ 1)xo — ab

To satisfy (iv) above, 4, and 4, must be found. dy,/dx; can be converted to expressions
suitable for comparison with Eqn (4.35) by writing

x=§(l—cos€) or x1=%(1—0089)

d
l=2a(l—20050+c0520)+a(b—1)—a(b—l)cose—ab
dx; 4
= 2a+ b—a—ab| — 3 +ab—a cosBJr-2 cos? g
=|zatab—a—a ya+a °
dy; 6dy, 63 2 a a
dx cdn 74008 0— (2+ab) 0050—4 (4.81)
Comparing Eqn (4.81) and (4.35) gives
ab 3 & 96
Ao="37t8%Twe
a §
1= (5+ab) 2
_3as
27]e
Thus to satisfy (iv) above, 4) = 4, i.e.
a § 36 .. 7

The quadratic in Eqn (4.80) gives for x; on cancelling a,

26— 1) /26— 1P +4x3b  (1_b)+ JETFFI
N 6 - 3

X0

From Eqn (4.82), b = —% gives
Xp = 2235 or 745
24 24
tg. taking the smaller value since the larger only gives the point of reflexure near the trailing
ge:
y =6 when x = 0.31 x chord
Substituting xo = 0.31 in the cubic of Eqn (4.80) gives

1

=61_2_1=8'28

a

191



192 Aerodynamics for Engineering Students

The camber-line equation then is
7
y=28.286x (xl — §) (x1—1)

(4.83)
y= 8.286(x} - %xf +%x1)

This cubic camber-line shape is shown plotted on Fig. 4.20 and the ordinates given on the inset
table.

Lift coefficient The lift coefficient is given from Eqn (4.43) by

CL =27r(a—A0 +%l)

So with the values of 4 and 4, given above

Substituting for @ = 8.28 and b = _%

CL= 27r(a + 0.5186)

¢
giving a no-lift angle
o = —0.518—? radians
or with 8 = the percentage camber = 1006/c
oy = —0.30 degrees
The load distribution From Eqn (4.40)

k= ZU{(a - 1'245)1 toosh 3'1626sin0+3'1626sin20}

sin @

for the first three terms. This has been evaluated for the incidence o® = 29.6(6/c) and the result
shown plotted and tabulated in Fig. 4.20.

It should be noted that the leading-edge value has been omitted, since it is infinite according
to this theory. This is due to the term

1 +cosé
sin

a:g(é) = 1.04§
8\¢ c

(@ — 4p) becomes zero so (& — Ao)

(a - Ao)

becoming infinite at § = 0. When

1+cosd
sin 8

becomes zero. Then the intensity of circulation at the leading edge is zero and the stream flows
smoothly on to the camber line at the leading edge, the leading edge being a stagnation point.
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Y8 )
Camberline ordinates for
CM‘Q=0
.0t
o.sJF
0 0.2 0.4 0.6 08 .0 ke

x| 0 |0.05) 01 |0oI5} 02 j025] 03 ]0.35| 0.4 |0.45
w8 | 0 l0.324/0.577|0.765]0.894]0.970]|0.999|0.988{0.943{0.870
xclos5 |05 06 |065] 0.7 [0.75]| 0.8 |0.85]| 0.9 |095] 1.0
/8 |0.776/0.666|0.546/0.424]0.304| 0.194[0.099]0.026]|0.019}0.03| ©
k/2wl

0.5 Lood distribution for

! above aerofoil af o =29,6 &°¢

0.i0

0.05

-+ ) - o
(=) lo 0.2 0.4 0.6 0.8 1.0 xko

x/c | 0 1005| 0l |05 0.2 |0.25] 0.3 |0.35] 0.4 |045
k/2nl 0427 |0423]0J21 1 0118 |04 12 [0.105{0.096]0,087{0.076

xc | 05|055| 06 |065| 0.7 |075| 08 {085] 09 [095]| 1.0
k/21r(|10.065)0.05310.042|0.030/0.012{0.009[0.006{0.008|0.013 |0.014| ©
Fig. 4.20

This is the so-called Theodorsen condition, and the appropriate Cy is the ideal, optimum, or
design lift coefficient, Crop.

4.8.2 The NACA four-digit wing sections

According to Abbott and von Doenhoff when the NACA. four-digit wing sections
were first derived in 1932, it was found that the thickness distributions of efficient
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wing sections such as the Gottingen 398 and the Clark Y were nearly the same when
the maximum thicknesses were set equal to the same value. The thickness distribution
for the NACA four-digit sections was selected to correspond closely to those for
these earlier wing sections and is given by the following equation:

i = £5c£{0.2969+/€ — 0.1260¢ — 0.3516€% + 0.2843¢ — 0.1015¢*] (4.84)

where ¢ is the maximum thickness expressed as a fraction of the chord and ¢ = x/ec.
The leading-edge radius is

ry = 1.1019¢22 (4.85)

It will be noted from Eqns (4.84) and (4.85) that the ordinate at any point is
directly proportional to the thickness ratio and that the leading-edge radius varies as
the square of the thickness ratio.

In order to study systematically the effect of variation in the amount of camber
and the shape of the camber line, the shapes of the camber lines were expressed
analytically as two parabolic arcs tangent at the position of the maximum camber-
line ordinate. The equations used to define the camber line are:

yc=-’1',’é(2ps—£2) ¢<p
Yo = —2 s[(1—2p) +2p6— €] €>p (4.86)
(1-p)

where m is the maximum value of y. expressed as a fraction of the chord ¢, and p is
the value of x/c corresponding to this maximum.

The numbering system for the NACA four-digit wing sections is based on the
section geometry. The first integer equals 100m, the second equals 10p, and the final
two taken together equal 100z. Thus the NACA 4412 wing section has 4 per cent
camber at x = 0.4¢ from the leading edge and is 12 per cent thick.

To determine the lifting characteristics using thin-aerofoil theory the camber-line
slope has to be expressed as a Fourier series. Differentiating Eqn (4.86) with respect
to x gives

dye _ d(e/c) _2m,_
d—x‘——T——pz(p §) £E<p

%_d(yc/c)_ 2m
dx = d¢ (1-p)

=& &£2p

Changing variables from £ to 8 where £ = (1 — cos 6)/2 gives

dy. m
—_— = — <
p2(2p l1+cosf) 60<6,
dy. m
—_—=—(2p - > .
e (l—p)z(p 1+cosf) 08>0, (4.87)

where 6, is the value of § corresponding to x = pe.
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Substituting Eqn (4.87) into Eqn (4.41) gives

1/ dye 4
—_/ pﬂ(2p—1+cos0)d0+l/w—m‘(2p—1+°030)d0
TJo p2 ™ 6p (l—p)z
m

= (2 = 1y +siny] + ﬁ [(2p— 1)(m—6,)—sing,]  (4.88)

Similarily from Eqn (4.42)

2
4 == ((ji);:cowdo
2m [b 2m T
== 2p— 1 cos0+cos20d0+——/ 2p — 1) cos 8 + cos? 6]d@
g (2p—-1) | e [(2p—1) |

_2m [(21; 1)siné, + %sin 26, + %P]

2m

(1 -p)

dyc
A =——/ —ZLcos?9de
2 0 dx

™

[(21) ~1)sinf, + %sin 20, - %(w _ o,,)] (4.89)

9, ki
=2 ["1p = 1)c0s?6-+ cos* 100+~ [1(2p — 1)cos? 0+ cos 10
0 7r(1 —P) 6y

2m 0 . 1 -3
= [(Zp 1)( sin 26, + 2) +s1n0p—§sm 0,,]
2m 0 1 .3
_m[( - 1)( sin 26, ———2—) +sin6, p —7sin 01,] (4.90)

Example 4.2 The NACA 4412 wing section
For a NACA 4412 wing section m = 0.04 and p = 0.4 so that

0, = cos™! (1 — 2 x 0.4) = 78.46° = 1.3694 rad
making these substitutions into Eqns (4.88) to (4.90) gives
= 0.0090, A; =0.163 and A, =0.0228
Thus Eqns (4.43) and (4.47) give
Cr = {4y — 240) + 2ma = 7(0.163 — 2 x 0.009) + 27 = 0.456 + 6.2832a (4.91)

Chtye = -%(A1 —Ay) = —%(0.163 —0.0228) = —0.110 (4.92)



196 Aerodynamics for Engineering Students

In Section 4.10 (Fig. 4.26), the predictions of thin-aerofoil theory, as embodied in Eqns
(4.91) and (4.92), are compared with accurate numerical solutions and experimental data. It
can be seen that the predictions of thin-aerofoil theory are in satisfactory agreement with the
accurate numerical results, especially bearing in mind the considerable discrepancy between the
latter and the experimental data.

4.9 Thickness problem for thin-aerofoil theory

Before extending the theory to take account of the thickness of aerofoil sections, it is
useful to review the parts of the method. Briefly, in thin-aerofoil theory, above, the
two-dimensional thin wing is replaced by the vortex sheet which occupies the camber
surface or, to the first approximation, the chordal plane. Vortex filaments comprising
the sheet extend to infinity in both directions normal to the plane, and all velocities
are confined to the xy plane. In such a situation, as shown in Fig. 4.12, the sheet
supports a pressure difference producing a normal (upward) increment of force of
(p1 — p2)bs per unit spanwise length. Suffices 1 and 2 refer to under and upper sides of
the sheet respectively. But from Bernoulli’s equation:

]

Uy + Uy
p—p= 50(“% —u}) = pluy — uy)

2

(4.93)

Writing (43 + u))/2 = U the free-stream velocity, and u, — ) = k, the local loading
on the wing becomes

(p1 — p2)és = pUk bs (4.94)

The lift may then be obtained by integrating the normal component and similarly the
pitching moment. It remains now to relate the local vorticity to the thin shape of the
aerofoil and this is done by introducing the solid boundary condition of zero velocity
normal to the surface. For the vortex sheet to simulate the aerofoil completely, the
velocity component induced locally by the distributed vorticity must be sufficient to
make the resultant velocity be tangential to the surface. In other words, thc compon-
ent of the free-stream velocity that is normal to the surface at a point on the aerofoil
must be completely nullified by the normal-velocity component induced by the
distributed vorticity. This condition, which is satisfied completely by replacing the
surface line by a streamline, results in an integral equation that relates the strength of
the vortex distribution to the shape of the aerofoil.

So far in this review no assumptions or approximations have been made, but thin-
aerofoil theory utilizes, in addition to the thin assumption of zero thickness and small
camber, the following assumptions:

(a) That the magnitude of total velocity at any point on the aerofoil is that of the
local chordwise velocity = U + .

(b) That chordwise perturbation velocities ' are small in relation to the chordwise
component of the free stream U.

(c) That the vertical perturbation velocity v anywhere on the aerofoil may be taken
as that (locally) at the chord.

Making use of these restrictions gives

“k dx

vy = —
Jo 2m x — X
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and thus Eqn (4.42) is obtained:

dy, _ [k dx
v -o| = [5G

This last integral equation relates the chordwise loading, i.e. the vorticity, to the
shape and incidence of the thin aerofoil and by the insertion of a suitable series
expression for k in the integral is capable of solution for both the direct and indirect
aerofoil problems. The aerofoil is reduced to what is in essence a thin lifting sheet,
infinitely long in span, and is replaced by a distribution of singularities that satisfies
the same conditions at the boundaries of the aerofoil system, i.e. at the surface and at
infinity. Further, the theory is a linearized theory that permits, for example, the
velocity at a point in the vicinity of the aerofoil to be taken to be the sum of the
velocity components due to the various characteristics of the system. each treated
separately. As shown in Section 4.3, these linearization assumptions permit an
extension to the theory by allowing a perturbation velocity contribution due to
thickness to be added to the other effects.

4.9.1 The thickness problem for thin aerofoils

A symmetrical closed contour of small thickness-chord ratio may be obtained from a
distribution of sources, and sinks, confined to the chord and immersed in a uniform
undisturbed stream parallel to the chord. The typical model is shown in Fig. 4.21
where o(x) is the chordwise source distribution. It will be recalled that a system of
discrete sources and sinks in a stream may result in a closed streamline.

Consider the influence of the sources in the element éx; of chord, x; from the
origin. The strength of these sources is

ém = J(X])&Xl

Since the elements of upper and lower surface are impermeable, the strength of the
sources between x; and x; + éx; are found from continuity as:

d .
ém = outflow across boundary <y, + —%6x1) — inflow across + y;
1

d
Neglecting second-order quantities,
_ dyt

The velocity potential at a general point P for a source of this strength is given by

(see Eqn (3.6))

=——"téx;Inr (4.97)

where r = 4/(x — x1)? 4+ y2. The velocity potential for the complete distribution of
sources lying between 0 and ¢ on the x axis becomes
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Y Plx,y)
//o-(x )

dy;
r_‘__»"' 'd';;’ SX|

8X|

’ élll
et U/ 4/ +57: Sx

-
—

Fig. 4.21
U ”dyt
= ; 6 a'x—lln rdx1 (498)
and adding the free stream gives
_ U cdy‘
¢=Ux+ =), du In rdx, (4.99)
Differentiating to find the velocity components
U (¢ -
w=2_p U o) (4.100)
Ox ™ del (x-xl) +y2
°d
Q‘E:g —y‘—————J—)————dxl (4.101)

8y wfodx (x —x1)% + )2

To obtain the tangential velocity at the surface of the aerofoil the limit as y — 0 is
taken for Eqn (4.100) so that

1

U
=U I = — dx .
u +u U+7r/0dx1x—x1 1 (4.102)
The coefficient of pressure is then given by
! c
Cp=—b= 2 1 (4.103)

U wfg dx1 x — x;
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The theory in the form given above is of limited usefulness for practical aerofoil
sections because most of these have rounded leading edges. At a rounded leading
edge dyi/dx; becomes infinite thereby violating the assumptions made to develop the
thin-aerofoil theory. In fact from Example 4.3 given below it will be seen that the
theory even breaks down when dy,/dx, is finite at the leading and trailing edges.
There are various refinements of the theory that partially overcome this problem*
and others that permit its extension to moderately thick aerofoils.’

Example 4.3 Find the pressure distribution on the bi-convex aerofoil

2=z~ ()]

(with origin at mid-chord) set at zero incidence in an otherwise undisturbed stream. For the

given aerofoil
r_tli_ (= ’
c 2 c

and
dy X1
— = 41—
dX1 02
From above:
c/2
u' = P—/ —4-52- dl dx;
TS_ep Cx—x
or
24t [ X
==— d
Cp w2 _c/zx—xl e
-8 c/2
=— iz [xln(x —x1) + xl]
T —c/2
Thus
8¢ x 2x—c¢
S =-zc [1 M ]

At the mid-chord point:

e

At the leading and trailing edges, x = %¢, C, — —oc. The latter result shows that the approx-
imations involved in the linearization do not permit the method to be applied for local effects
in the region of stagnation points, even when the slope of the thickness shape is finite.

* Lighthill, M.J. (1951) ‘A new approach to thin aerofoil theory’, Aero. Quart., 3, 193.
). Weber (1953) Aeronautical Research Council, Reports & Memoranda No. 2918,
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4.10 Computational (panel) methods
for two-dimensional lifting flows

The extension of the computational method, described in Section 3.5, to two-
dimensional lifting flows is described in this section. The basic panel method was
developed by Hess and Smith at Douglas Aircraft Co. in the late 1950s and early
1960s. The method appears to have been first extended to lifting flows by Rubbert*
at Boeing. The two-dimensional version of the method can be applied to aerofoil
sections of any thickness or camber. In essence, in order to generate the circulation
necessary for the production of lift, vorticity in some form must be introduced into
the modelling of the flow.

It is assumed in the present section that the reader is familiar with the panel
method for non-lifting bodies as described in Section 3.5. In a similar way to the
computational method in the non-lifting case, the aerofoil section must be model-
led by panels in the form of straight-line segments — see Section 3.5 (Fig. 3.37).
The required vorticity can either be distributed over internal panels, as suggested by
Fig. 4.22a, or on the panels that model the aerofoil contour itself, as shown in
Fig. 4.22b.

The central problem of extending the panel method to lifting flows is how to satisfy
the Kutta condition (see Section 4.1.1). It is not possible with a computational
scheme to satisfy the Kutta condition directly, instead the aim is to satisfy some of
the implied conditions namely:

(a) The streamline leaves the trailing edge with a direction along the bisector of the
trailing-edge angle.

(b) As the trailing edge is approached the magnitudes of the velocities on the upper
and lower surfaces approach the same limiting value.

Ky k
2 k
/ 3 4
n
{a) Internal vortex ponels
&
m
/ * oT™
1% k;

(b) Surface vortex panels

Fig. 4.22 Vortex panels: (a) internal; (b) surface

*P.E. Rubbert (1964) Theoretical Characteristics of Arbitrary Wings by a Nonplanar Vortex Lattice Method
D6-9244, The Boeing Co.
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Fig. 4.23 Two methods of implementing the Kutta condition at the trailing edge 7

(c) In the practical case of an aerofoil with a finite trailing-edge angle the trailing
edge must be a stagnation point so the common limiting value of (b) must be
Zero.

(d) The source strength per unit length must be zero at the trailing edge.

Computational schemes either use conditions (a) or (b). It is not generally possible
to satisfy (c) and (d) as well because, as will be shown below, this leads to an over-
specification of the problem. The methods of satisfying (a) and (b) are illustrated in
Fig. 4.23. For condition (a) an additional panel must be introduced oriented along
the bisector of the trailing-edge angle. The value of the circulation is then fixed by
requiring the normal velocity to be zero at the collocation point of the additional
(N + Dth panel. For condition (b) the magnitudes of the tangential velocity vectors
at the collocation points of the two panels, that define the trailing edge, are required
to be equal. Hess* has shown that the use of condition (b) gives more accurate results
than (a), other things being equal. The use of surface, rather than interior, vorticity
panels is also preferable from the viewpoint of computational accuracy.

There are two main ways that surface vorticity panels can be used. One method" is
to use vorticity panels alone. In this case each of the N panels carries a vorticity
distribution of uniform strength per unit length, v,(i = 1,2, ..., N). In general, the
vortex strength will vary from panel to panel. Let i = ¢ for the panel on the upper
surface at the trailing edge so that i = ¢ + 1 for the panel on the lower surface at the
trailing edge. Condition (b) above is equivalent to requiring that

Y = Y+l (4.104)

The normal velocity component at the collocation point of each panel must be zero,
as it is for the non-lifting case. This gives N conditions to be satisfied for each of the
N panels. So when account is also taken of condition Eqn (4.104) there are N + 1
conditions to be satisfied in total. Unfortunately, there are only N unknown vortex
strengths. Accordingly, it is not possible to satisfy all N + 1 conditions. In order to
proceed further, therefore, it is necessary to ignore the requirement that the normal
velocity should be zero for one of the panels. This is rather unsatisfactory since it is
not at all clear which panel would be the best choice.

* J.L. Hess (1972) Calculation of Potential Flow about Arbitrary Three-Dimensional Lifting Bodies Douglas
Aircraft Co. Rep. MDC J5679/01.

tA full description is given in J.D. Anderson (1985) Fundamentals of Aerodynamics McGraw-Hill.
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An alternative and more satisfactory method is to distribute both sources and
vortices of uniform strength per unit length over each panel. In this case, though, the
vortex strength is the same for all panels, i.e.

%i=v({=12...,N) (4.105)

Thus there are now N + 1 unknown quantities, namely the N source strengths and
the uniform vortex strength per unit length, -, to match the N + 1 conditions. With
this approach it is perfectly feasible to use internal vortex panels instead of surface
ones. However these internal panels must carry vortices that are either of uniform
strength or of predetermined variable strength, providing the variation is character-
ized by a single unknown parameter. Generally, however, the use of surface vortex
panels leads to better results. Also Condition (a) can be used in place of (b). Again,
however, the use of Condition (b) generally gives more accurate results.

A practical panel method for lifting flows around aerofoils is described in some
detail below. This method uses Condition (b) and is based on a combination of
surface vortex panels of uniform strength and source panels. First, however, it is
necessary to show how the normal and tangential influence coefficients may be
evaluated for vortex panels. It turns out that the procedure is very similar to that
for source panels.

The velocity at point P due to vortices on an element of length 6 in Fig. 4.24 is
given by

§Vp = %dg (4.106)

where yd€ replaces I'/(27) used in Section 3.3.2. 6V} is oriented at angle 6 as shown.
Therefore, the velocity components in the panel-based coordinate directions, i.e. in
the xp and yg directions, are given by

. gAL]
6Vy, = 6Vysinf = —=——§¢ (4.107)
e (xg — 6 +7h
(xg — )
§V,y, = —6Vgcosf = —— 1L —8) g (4.108)
Yo (xQ _ {)2 +y2Q
P(xo,yo)
b4
R
]
g

A
Y
y
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Fig. 4.24
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To obtain the corresponding velocity components at P due to all the vortices on
the panel, integration along the length of the panel is carried out to give

V. = 7/“’2_y<22_dg
~as2 (xg — &) + 73

o (ALY (0= B

As/2 x _é—
9
Vg =—v / T )
—as/2 (xg —€)" + 55

(xg + As/2)* + ¥
(xg — As/2)" + ¥4

Following the basic method described in Section 3.5 normal and tangential influ-
ence coefficients, N}, and T}; are introduced, the primes are used to distinguish these
coefficients from those introduced in Section 3.5 for the source panels. Nj; and T}
represent the normal and tangential velocity components at collocation point i due to
vortices of unit strength per unit length distributed on panel j. Let #; and
A (i =1,2, ..., N) denote the unit tangent and normal vectors for each of the panels,
and let the point P correspond to collocation point i, then in vector form the velocity

at collocation point i is given by

o

2

(4.110)

VPQ = ngfj + VyQﬁj

To obtain the components of this velocity vector perpendicular and tangential to
panel i take the scalar product of the velocity vector with 7; and 7; respectively. If
furthermore 7y is set equal to 1 in Eqns (4.109) and (4.110) the following expressions
are obtained for the influence coefficients

N:]= VPQ-ﬁiz VXQﬁi'fj'i‘ VyQﬁi'ﬁj (41118.)
Ty=Veg-bi =Vl - b+ Vygli - (4.111b)

Making a comparison between Eqns (4.109) and (4.111) for the vortices and the
corresponding expressions (3.97) and (3.99) for the source panels shows that

[qu]vortices = [Vyg]sourccs and [V)’Q]voniws = _[VXQ]soumes (4112)

With the results given above it is now possible to describe how the basic panel
method of Section 3.5 may be extended to lifting aerofoils. Each of the N panels now
carries a source distribution of strength o; per unit length and a vortex distribution of
strength - per unit length. Thus there are now N + 1 unknown quantities. The N x N
influence coefficient matrices Ny and Tj; corresponding to the sources must now be
expanded to N x (N + 1) matrices. The (N + 1)th column now contains the velocities
induced at the collocation points by vortices of unit strength per unit length on all
the panels. Thus N; x4 represents the normal velocity at the ith collocation point
induced by the vortices over all the panels and similarly for T; y-i. Thus using
Eqns (4.111)

N N
Niva=Y_N;;, and Tina=)Y T, (4.113)
j=1 j=1
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In a similar fashion as for the non-lifting case described in Section 3.5 the total
normal velocity at each collocation point, due to the net effect of all the sources, the
vortices and the oncoming flow, is required to be zero. This requirement can be
written in the form:

N
;ajzv,-, + YNy + U_-ﬁ, =0 (i=1,2,...,N) (4.114)
—— Vortices Oncoming flow

Sources

These N equations are supplemented by imposing Condition (b). The simplest way to
do this is to equate the magnitudes of the tangential velocities at the collocation point
of the two panels defining the trailing edge (see Fig. 4.23b). Remembering that the
unit tangent vectors #, and #,,, are in opposite directions Condition (b) can be
expressed mathematically as

N N
> o+ T + Ui =— (Z 01 Tir1,j + YT + U - z“,+1> (4.115)
j=1 Jj=1

Equations (4.114) and (4.115) combine to form a matrix equation that can be written
as

Ma=b (4.116)

where M is an (N + 1) x (¥ + 1) matrix and a and b are (V + 1) column vectors. The
elements of the matrix and vectors are as follows:

Mi,j=Ni,j i=12,...,.N j=12,...,N+1
MN+1,j = Tt,j+ Tt+l,j ji=12,..., N+1
a=0; i= 1,2,...,N and an+1 =7y
by=-U-# i=12,...,N
byl = -U- (& + frr1)

Systems of linear equations like (4.116) can be readily solved numerically for the
unknowns g; using standard methods (see Section 3.5). Also it is now possible to see
why the Condition (c), requiring that the tangential velocities on the upper and lower
surfaces both tend to zero at the trailing edge, cannot be satisfied in this sort of
numerical scheme. Condition (c) could be imposed approximately by requiring,

say, that the tangential velocities on panels ¢ and ¢+ 1 are both zero. Referring to
Eqn (4.115) this approximate condition can be expressed mathematically as

N
> T+ T+ U8 =0
j=1

N
fojTtH,j + TN+t + U -1 =0
=
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Equation (4.115) is now replaced by the above two equations so that M in Eqn
(4.116) is now a (N + 2) x (N + 1) matrix. The problem is now overdetermined, i.e.
there is one more equation than the number of unknowns, and Eqn (4.116) can no
longer be solved for the vector a, i.e. for the source and vortex strengths.

The calculation of the influence coefficients is at the heart of a panel method. In
Section 3.5 a computational routine in FORTRAN 77 is given for computing the
influence coefficients for the non-lifting case. It is shown below how this routine can
be extended to include the calculation of the influence coefficients due to the vortices
required for a lifting flow.

Two modifications to SUBROUTINE INFLU in Section 3.5 are required to
extend it to the lifting case.

(1) The first two execution statements i.e.

DO10I=1,N
10 READ(7,#*) XP(I),YP(I)

should be replaced by

NP1=N+1
DO10I=1%1,N
AN(I,NP1) =0.0
AT(I,NPl) =PI
10 READ(7,#)XP(I),YP(I)

The additional lines initialize the values of the influence coefficients, N; 541 and
T; n-1 in preparation for their calculation later in the program. Note that the initial
value of T; y4 is set at  because in Eqn (4.113)

3
Tniyno1 =Niyg=m

that is the tangential velocity induced on a panel by vortices of unit strength per unit
length distributed over the same panel is, from Eqn (4.112), the same as the normal
velocity induced by sources of unit strength per unit length distributed over the panel.
This was shown to take the value 7 in Eqn (3.100b).

(2) It remains to insert the two lines of instruction that calculate the additional
influence coefficients according to Eqn (4.113). This is accomplished by inserting
two additional lines below the last two execution statements in the routine, as shown

AN(I, J) = VX *NTIJ + VY *NNIJ Existing line
AT(I, J) =VXxTTIJ+ VY *TNIJ Existing line
AN(I, NP1) =AN(1l, NP1) + VY * NTIJ — VX * NNIJ New line
AT(I, NP1) =AT(I, NP1) +VY*TTIJ—VX*TNIJ New line

As with the original routine presented in Section 3.5 this modified routine is
primarily intended for educational purposes. Nevertheless, as is shown by the exam-
ple computation for a NACA 4412 aerofoil presented below, a computer program
based on this routine and LU decomposition gives accurate results for the pressure
distribution and coefficients of lift and pitching moment. The computation times
required are typically a few seconds using a modern personal computer.

The NACA 4412 wing section has been chosen to illustrate the use of the panel
method. The corresponding aerofoil profile is shown inset in Fig. 4.25. As can be
seen it is a moderately thick aerofoil with moderate camber. The variation of the
pressure coefficient around a NACA 4412 wing section at an angle of attack of 8
degrees is presented in Fig. 4.25. Experimental data are compared with the computed
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6 Accurate numerical

64 panels
o Experimental data

i

NACA 4412 wing section
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Fig. 4.25 Variation of pressure coefficient around a NACA 4412 wing section at an angle of attack of 8°

results for 64 panels and 160 panels. The latter can be regarded as exact and are
plotted as the solid line in the figure. It can be seen that the agreement between the
two sets of computed data is very satisfactory. The agreement between the experi-
mental and computed data is not good, especially for the upper surface. This is
undoubtedly a result of fairly strong viscous effects at this relatively high angle of
attack. The discrepancy between the computed and experimental pressure coeffi-
cients is particularly marked on the upper surface near the leading edge. In this
region, according to the computed results based on inviscid theory, there is a very
strong favourable pressure gradient followed by a strong adverse one. This scenario
is very likely to give rise to local boundary-layer separation (see Section 7.4.1 below) near
the leading edge leading to greatly reduced peak suction pressures near the leading edge.

The computed and experimental lift and pitching-moment coefficients, C; and
Chu,,s are plotted as functions of the angle of attack in Fig. 4.26. Again there is good
agreement between the two sets of computed results. For the reasons explained above
the agreement between the computed and experimental lift coefficients is not all that
satisfactory, especially at the higher angles of attack. Also shown in Fig. 4.25 are the
predictions of thin-aerofoil theory — see Eqns (4.91) and (4.92). In view of the
relatively poor agreement between theory and experiment evidenced in Fig. 4.26 it
might be thought that there is little to choose between thin-aerofoil theory and
computations using the panel method. For predictions of Cy and Cyy,, this is
probably a reasonable conclusion, although for aerofoils that are thicker or more
cambered than the NACA 4412, the thin-aerofoil theory would perform much less
well. The great advantage of the panel method, however, is that it provides accurate
results for the pressure distribution according to inviscid theory. Accordingly,
a panel method can be used in conjunction with a method for computing the viscous
(boundary-layer) effects and ultimately produce a corrected pressure distribution
that is much closer to the experimental one (see Section 7.11).
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Fig. 4.26 Variation of lift and moment coefficients with angle of attack for NACA 4412 aerofoil

Exercises

1 A thin two-dimensional aerofoil of chord ¢ is operating at its ideal lift coefficient
Cyi. Assume that the loading (i.e. the pressure difference across the aerofoil) varies
linearly with its maximum value at the leading edge. Show that

Sr-a-Se0-on(5) 1

where y. defines the camber line, « is the angle of incidence, and £ = x/c.
[Hint: Do not attempt to make the transformation x = (¢/2)(1 — cos 8), instead
write the singular integral as follows:

1 _ b= 1 1
[ ege=m{[ g+ [ gl

Then, using this result, show that the angle of incidence and the camber-line shape
are given by

a=Gh B CEL (e (1€ + &€~ 2)ne)

[Hint: Write —1 = C — 1 — C where 1 + C = 27a/Cy, and the constant C is deter-
mined by requiring that yo =0at£=0and { =1.]
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2 A thin aerofoil has a camber line defined by the relation y. = kc€(€ — 1)(€ — 2).
Show that if the maximum camber is 2% of chord then k£ = 0.052. Determine the
coefficients of lift and pitching moment, i.e. Cy and Cyy,,, at 3° incidence.

(Answer: 0.535, —0.046)

3 Use thin-aerofoil theory to estimate the coefficient of lift at zero incidence and the
pitching-moment coefficient Cyy,, for a NACA 8210 wing section.
(Answer: 0.789, —0.172)

4 Use thin-aerofoil theory to select a NACA four-digit wing section with
a coefficient of lift at zero incidence approximately equal to unity. The maximum
camber must be located at 40% chord and the thickness ratio is to be 0.10.
Estimate the required maximum camber as a percentage of chord to the
nearest whole number. [Hint: Use a spreadsheet program to solve by trial and error.]

(Answer: NACA 9410)

5 Use thin-aerofoil theory to select a NACA four-digit wing section with a coeffi-
cient of lift at zero incidence approximately equal to unity and pitching-moment
coefficient Cyy,, = —0.25. The thickness ratio is to be 0.10. Estimate the required
maximum camber as a percentage of chord to the nearest whole number and its
position to the nearest tenth of a chord. The Cy value must be within 1% of the
required value and Cjy,, within 3%. [Hint: Use a spreadsheet program to solve by
trial and error.]

(Answer: NACA 7610, but NACA 9410 and NACA 8510 are also close.)

6 A thin two-dimensional flat-plate aerofoil is fitted with a trailing-edge flap of
chord 100e per cent of the aerofoil chord. Show that the flap effectiveness,

aC,L
2_a
— 8¢,

aj Fo

where « is the angle of incidence and 7 is the flap angle, is approximately 4+/e/n for
flaps of small chord.

7 A thin aerofoil has a circular-arc camber line with a maximum camber of 0.025
chord. Determine the theoretical pitching-moment coefficient Cjs,, and indicate
methods by which this could be reduced without changing maximum camber.

The camber line may be approximated by the expression

oy @]

where X' = x — 0.5¢. (Answer: —0.0257)

8 The camber line of a circular-arc aerofoil is given by

n-w(1-)

Derive an expression for the load distribution (pressure difference across the aerofoil)
at incidence «. Show that the zero-lift angle oy = —2h, and sketch the load distribu-
tion at this incidence. Compare the lift curve of this aerofoil with that of a flat plate.

9 A flat-plate aerofoil is aligned along the x-axis with the origin at the leading edge
and trailing edge at x = ¢. The plate is at an angle of incidence « to a free stream of
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air speed U. A vortex of strength T, is located at (x,, y,). Show that the distribution,
k(x), of vorticity along the aerofoil from x = 0 to x = ¢ satisfies the integral equation

L/ k(x) dx — —Ua _ FV(xV _2xl)
2r Jo X —x1 (xy — x1)* + 32

where x = x; is a particular location on the chord of the aerofoil. If x, = ¢/2 and
¥y = h > x, show that the additional increment of lift produced by the vortex (which
could represent a nearby aerofoil) is given approximately by
4T
3wh?’
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Preamble

Whatever the operating requirements of an aeroplane may be in terms of speed;
endurance, pay-load and so on, a critical stage in its eventual operation is in the
low-speed flight regime, and this must be accommodated in the overall design
process. The fact that low-speed flight was the classic flight regime has meant
that over the years a vast array of empirical data has been accumulated from
flight and other tests, and a range of theories and hypotheses set up to explain
and extend these observations. Some theories have survived to provide
successful working processes for wing design that are capable of further
exploitation by computational methods.

In this chapter such a classic theory is developed to the stage of initiating the
preliminary low-speed aerodynamic design of straight, swept and delta wings.
Theoretical fluid mechanics of vortex systems are employed, to model the
loading properties of lifting wings in terms of their geometric and attitudinal
characteristics and of the behaviour of the associated flow processes.

The basis on which historical solutions to the finite wing problem were
arrived at are explained in detail and the work refined and extended to take
advantage of more modern computing techniques.

A great step forward in aeronautics came with the vortex theory of a lifting aerofoil
due to Lanchester* and the subsequent development of this work by Prandtl.’
Previously, all aerofoil data had to be obtained from experimental work and fitted
to other aspect ratios, planforms, etc., by empirical formulae based on past experi-
ence with other aerofoils.

Among other uses the Lanchester—Prandtl theory showed how knowledge of
two-dimensional aerofoil data could be used to predict the aerodynamic charac-
teristics of (three-dimensional) wings. It is this derivation of the aerodynamic
characteristics of wings that is the concern of this chapter. The aerofoil data can
either be obtained empirically from wind-tunnel tests or by means of the theory
described in Chapter 4. Provided the aspect ratio is fairly large and the assump-
tions of thin-aerofoil theory are met (see Section 4.3 above), the theory can be
applied to wing planforms and sections of any shape.

* see Bibliography.
tPrandtl, L. (1918), Tragfliigeltheorie, Nachr. Ges. Wiss., Gottingen, 107 and 451.
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5.1 The vortex system

Lanchester’s contribution was essentially the replacement of the lifting wing by
a theoretical model consisting of a system of vortices that imparted to the surrounding
air a motion similar to the actual flow, and that sustained a force equivalent to the lift
known to be created. The vortex system can be divided into three main parts: the
starting vortex; the trailing vortex system; and the bound vortex system. Each of
these may be treated separately but it should be remembered that they are all
component parts of one whole.

5.1.1 The starting vortex

When a wing is accelerated from rest the circulation round it, and therefore the lift, is
not produced instantaneously. Instead, at the instant of starting the streamlines over
the rear part of the wing section are as shown in Fig. 5.1, with a stagnation point
occurring on the rear upper surface. At the sharp trailing edge the air is required to
change direction suddenly while still moving at high speed. This high speed calls for
extremely high local accelerations producing very large viscous forces and the air is
unable to turn round the trailing edge to the stagnation point. Instead it leaves the
surface and produces a vortex just above the trailing edge. The stagnation point
moves towards the trailing edge, the circulation round the wing, and therefore its lift,
increasing progressively as the stagnation point moves back. When the stagnation
point reaches the trailing edge the air is no longer required to flow round the trailing
edge. Instead it decelerates gradually along the aerofoil surface, comes to rest at the
trailing edge, and then accelerates from rest in a different direction (Fig. 5.2). The
vortex is left behind at the point reached by the wing when the stagnation point

/

Fig. 5.1 Streamlines of the flow around an aerofoil with zero circulation, stagnation point on the rear
upper surface

m

Fig. 5.2 Streamlines of the flow around an aerofoil with full circulation, stagnation point at the trailing
edge. The initial eddy is left way behind



212 Aerodynamics for Engineering Students

reached the trailing edge. Its reaction, the circulation round the wing, has become
stabilized at the value necessary to place the stagnation point at the trailing edge
(see Section 4.1.1).* The vortex that has been left behind is equal in strength and
opposite in sense to the circulation round the wing and is called the starting vortex or
initial eddy.

5.1.2 The trailing vortex system

The pressure on the upper surface of a lifting wing is lower than that of the
surrounding atmosphere, while the pressure on the lower surface is greater than that
on the upper surface, and may be greater than that of the surrounding atmosphere.
Thus, over the upper surface, air will tend to flow inwards towards the root from the
tips, being replaced by air that was originally outboard of the tips. Similarly, on the
undersurface air will either tend to flow inwards to a lesser extent, or may tend to
flow outwards. Where these two streams combine at the trailing edge, the difference
in spanwise velocity will cause the air to roll up into a number of small streamwise
vortices, distributed along the whole span. These small vortices roll up into two large
vortices just inboard of the wing-tips. This is illustrated in Fig. 5.3. The strength of

Fig. 5.3 The horseshoe vortex

* There is no fully convincing physical explanation for the production of the starting vortex and the
generation of the circulation around the aerofoil. Various incomplete explanations will be found in the
references quoted in the bibliography. The most usual explanation is based on the large viscous forces
associated with the high velocities round the trailing edge, from which it is inferred that circulation
cannot be generated, and aerodynamic lift produced, in an inviscid fluid. It may be, however, that local
flow acceleration is equally important and that this is sufficiently high to account for the failure of the
flow to follow round the sharp trailing edge, without invoking viscosity. Certainly it is now known, from
the work of T. Weis-Fogh [Quick estimates of flight fitness in hovering animals, including novel mechanisms
for lift production, J. Expl. Biol., 59, 169230, 1973] and M.J. Lighthill [On the Weis-Fogh mechanism
of lift generation, J. Fluid Mech., 60, 117, 1973] on the hovering flight of the small wasp Encarsia formosa,
that it is possible to generate circulation and lift in the complete absence of viscosity.

In practical aeronautics, fluid is not inviscid and the complete explanation of this phenomenon must take
account of viscosity and the consequent growth of the boundary layer as well as high local velocities as the
motion is generated.
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each of these two vortices will equal the strength of the vortex replacing the wing
itself.

The existence of the trailing and starting vortices may easily be verified visually.
When a fast aeroplane pulls out of a dive in humid air the reduction of pressure and
temperature at the centres of the trailing vortices is often sufficient to cause some of
the water vapour to condense into droplets, which are seen as a thin streamer for
a short distance behind each wing-tip (see frontispiece).

To see the starting vortex all that is needed is a tub of water and a small piece of
board, or even a hand. If the board is placed upright into the water cutting the
surface and then suddenly moved through the water at a moderate incidence, an eddy
will be seen to leave the rear, and move forwards and away from the ‘wing’. This is
the starting vortex, and its movement is induced by the circulation round the plate.

5.1.3 The bound vortex system

Both the starting vortex and the trailing system of vortices are physical entities that can
be explored and seen if conditions are right. The bound vortex system, on the other
hand, is a hypothetical arrangement of vortices that replace the real physical wing in
every way except that of thickness, in the theoretical treatments given in this chapter.
This is the essence of finite wing theory. It is largely concerned with developing the
equivalent bound vortex system that simulates accurately, at least a little distance away,
all the properties, effects, disturbances, force systems, etc., due to the real wing.

Consider a wing in steady flight. What effect has it on the surrounding air, and
how will changes in basic wing parameters such as span, planform, aerodynamic or
geometric twist, etc., alter these disturbances? The replacement bound vortex system
must create the same disturbances, and this mathematical model must be sufficiently
flexible to allow for the effects of the changed parameters. A real wing produces
a trailing vortex system. The hypothetical bound vortex must do the same. A conse-
quence of the tendency to equalize the pressures acting on the top and bottom
surfaces of an aerofoil is for the lift force per unit span to fall off towards the tips.
The bound vortex system must produce the same grading of lift along the span.

For complete equivalence, the bound vortex system should consist of a large
number of spanwise vortex elements of differing spanwise lengths all turned back-
wards at each end to form a pair of the vortex elements in the trailing system. The
varying spanwise lengths accommodate the grading of the lift towards the wing-tips,
the ends turned back produce the trailing system and the two physical attributes of
a real wing are thus simulated.

For partial equivalence the wing can be considered to be replaced by a single
bound vortex of strength equal to the mid-span circulation. This, bent back at each
end, forms the trailing vortex pair. This concept is adequate for providing good
estimations of wing effects at distances greater than about two chord lengths from
the centre of pressure.

5.1.4 The horseshoe vortex

The total vortex system associated with a wing, plus its replacement bound vortex
system, forms a complete vortex ring that satisfies all physical laws (see Section
5.2.1). The starting vortex, however, is soon left behind and the trailing pair stretches
effectively to infinity as steady flight proceeds. For practical purposes the system
consists of the bound vortices and the trailing vortex on either side close to the wing.
This three-sided vortex has been called the horseshoe vortex (Fig. 5.3).
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Fig. 5.4 The simplified horseshoe vortex

Study of the completely equivalent vortex system is largely confined to investigat-
ing wing effects in close proximity to the wing. For estimation of distant phenomena
the system is simplified to a single bound vortex and trailing pair, known as the
simplified horseshoe vortex (Fig. 5.4). This is dealt with in Section 5.3, before the more
involved and complete theoretical treatments of wing aerodynamics.

5.2 Laws of vortex motion

The theoretical modelling of the flow around wings was discussed in the previous
section. There the use of an equivalent vortex system to model the lifting effects of
a wing was described. In order to use this theoretical model to obtain quantitative
predictions of the aerodynamic characteristics of a wing it is necessary first to study
the laws of vortex motion. These laws also act as a guide for understanding how
modern computationally based wing theories may be developed.

In the analysis of the point vortex (Chapter 3) it was considered to be a string of
rotating particles surrounded by fluid at large moving irrotationally under the
influence of the rotating particles. Further, the flow investigation was confined to
a plane section normal to the length or axis of the vortex. A more general definition is
that a vortex is a flow system in which a finite area in a normal section plane contains
vorticity. Figure 5.5 shows the section area S of a vortex so called because .S possesses
vorticity. The axis of the vortex (or of the vorticity, or spin) is clearly always normal

I

WA\

Fig. 5.5 The vorticity of a section of vortex tube
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to the two-dimensional flow plane considered previously and the influence of the
so-called line vortex is the influence, in a section plane, of an infinitely long, straight-line
vortex of vanishingly small area.

In general, the vortex axis will be a curve in space and area S will have finite size. It
is convenient to assume that S is made up of several elemental areas or, alternatively,
that the vortex consists of a bundle of elemental vortex lines or filaments. Such
a bundle is often called a vortex tube (c.f. a stream tube which is a bundle of
streamlines), being a tube bounded by vortex filaments.

Since the vortex -axis is a curve winding about within the fluid, capable of flexure
and motion as a whole, the estimation of its influence on the fluid at large is some-
what complex and beyond the present intentions. All the vortices of significance to
the present theory are fixed relative to some axes in the system or free to move in
a very controlled fashion and can be assumed to be linear. Nonetheless, the vortices
will not all be of infinite length and therefore some three-dimensional or end influ-
ence must be accounted for.

Vortices conform to certain laws of motion. A rigorous treatment of these is
precluded from a text of this standard but may be acquired with additional study
of the basic references.*

5.2.1 Helmholtz’s theorems

The four fundamental theorems of vortex motion in an inviscid flow are named after
their author, Helmholtz. The first theorem has been discussed in part in Sections 2.7
and 4.1, and refers to a fluid particle in general motion possessing all or some of the
following: linear velocity, vorticity, and distortion. The second theorem demon-
strates the constancy of strength of a vortex along its length. This is sometimes
referred to as the equation of vortex continuity. It is not difficult to prove that the
strength of a vortex cannot grow or diminish along its axis or length. The strength of
a vortex is the magnitude of the circulation around it and this is equal to the product
of the vorticity ¢ and area S. Thus

T=¢S

It follows from the second theorem that ¢S is constant along the vortex tube (or
filament), so that if the section area diminishes, the vorticity increases and vice versa.
Since infinite vorticity is unacceptable the cross-sectional area S cannot diminish to
Zero.

In other words a vortex line cannot end in the fluid. In practice the vortex line must
form a closed loop, or originate (or terminate) in a discontinuity in the fluid such as
a solid body or a surface of separation. A refinement of this is that a vortex tube
cannot change in strength between two sections unless vortex filaments of equivalent
strength join or leave the vortex tube (Fig. 5.6). This is of great importance in the
vortex theory of lift.

The third and fourth theorems demonstrate respectively that a vortex tube consists
of the same particles of fluid, i.e. there is no fluid interchange between tube and
surrounding fluid, and the strength of a vortex remains constant as the vortex moves
through the fluid.

The theorem of most consequence to the present chapter is theorem two, although
the third and fourth are tacitly accepted as the development proceeds.

* Saffman, P.G. 1992 Vortex Dynamics, Cambridge University Press.
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5.2.2 The Biot-Savart law

The original application of this law was in electromagnetism, where it relates the
intensity of the magnetic field in the vicinity of a conductor carrying an electric
current to the magnitude of the current. In the present application velocity and
vortex strength (circulation) are analogous to the magnetic field strength and electric
current respectively, and a vortex filament replaces the electrical conductor. Thus the
Biot—Savart law can also be interpreted as the relationship between the velocity
induced by a vortex tube and the strength (circulation) of the vortex tube. Only the
fluid motion aspects will be further pursued here, except to remark that the term
induced velocity, used to describe the velocity generated at a distance by the vortex
tube, was borrowed from electromagnetism.

Allow a vortex tube of strength I', consisting of an infinite number of vortex
filaments, to terminate in some point P. The total strength of the vortex filaments
will be spread over the surface of a spherical boundary of radius R (Fig. 5.7) as the
filaments diverge from the point P in all directions. The vorticity in the spherical
surface will thus have the total strength I'.

Owing to symmetry the velocity of flow in the surface of the sphere will be
tangential to the circular line of intersection of the sphere with a plane normal to
the axis of the vortex. Moreover, the direction will be in the sense of the circulation
about the vortex. Figure 5.8 shows such a circle ABC of radius r subtending a conical
angle of 26 at P. If the velocity on the sphere at R, 6 from P is v, then the circulation
round the circuit ABC is I where

Fig. 5.6

IV = 27 Rsin Gy (5.1)

T~
Y
-

pl‘ 7 S 4

Vortex tube strength I"
Spherical boundary

surrounding ‘free’
end at point P

Fig. 5.7
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Fig. 5.8

Putting r = radius of circuit = Rsin 8, Eqn (5.1) becomes
IV = 2nry (5.2)

Now the circulation round the circuit is equal to the strength of the vorticity in the
contained area. This is on the cap ABCD of the sphere. Since the distribution of the
vorticity is constant over the surface

- surface area of cap . 2wR*(1 —cos¥)
"~ surface area of sphere” 47R2
= g(l —cos @) (5.3)

Equating (5.2) and (5.3) gives
T
V=0 (1 —cosf) (5.4)

Now let the length, P, P, of the vortex decrease until it is very short (Fig. 5.9). The
circle ABC is now influenced by the opposite end P,. Working through Eqns (5.1),
(5.2) and (5.3) shows that the induced velocity due to P; is now
-T
V1 —-4;(1 —cos91) (55)
since r = R; sin 6, and the sign of the vorticity is reversed on the sphere of radius R,
as the vortex elements are now entering the sphere to congregate on P;.

Fig. 5.9
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The net velocity in the circuit ABC is the sum of Eqns (5.4) and (5.5):

r
v—v =E[1 —cosf — (1 —cos )]

= 41—‘? (cos 8 — cos @)

As P, approaches P
cos#; — cos(f — 86) = cos 8 + sin 60
and
v—v — by
giving
oy = Lsin9¢59 (5.6)
4mr

This is the induced velocity at a point in the field of an elementary length és of vortex
of strength T" that subtends an angle 66 at P located by the coordinates R, 6 from the
element. Since r = Rsinf and R 60 = 6ssin 4 it is more usefully quoted as:

by =

47:—‘R2 sin 66s (5.7)

Special cases of the Biot-Savart law

Equation (5.6) needs further treatment before it yields working equations. This
treatment, of integration, varies with the length and shape of the finite vortex being
studied. The vortices of immediate interest are all assumed to be straight lines, so no
shape complexity arises. They will vary only in their overall length.

A linear vortex of finite length AB Figure 5.10 shows a length AB of vortex with an
adjacent point P located by the angular displacements a and S from A and B
respectively. Point P has, further, coordinates r and 8 with respect to any elemental
length 8s of the length AB that may be defined as a distance s from the foot of the
perpendicular A. From Eqn (5.7) the velocity at P induced by the elemental length és is

_ %sinaés (5.8)
in the sense shown, i.e. normal to the plane APB.

év

Fig. 5.10
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To find the velocity at P due to the length AB the sum of induced velocities due to
all such elements is required. Before integrating, however, all the variables must be
quoted in terms of a single variable. A convenient variable is ¢ (see Fig. 5.10) and the
limits of the integration are

e=G-) 0 a9
since ¢ passes through zero when integrating from A to B.

sinf =cos¢, r*=Hhsec?e
ds = d(htan ¢) = hsec? ¢d ¢

The integration of Eqn (5.8) is thus

Hr/2-B)
v=/(,,,2 o 4frh s¢ ¢—4£h [sin(3~ 8) +sin(3~ o]

T
=k (cosa + cos 3) (5.9)
This result is of the utmost importance in what follows and is so often required that it
is best committed to memory. All the values for induced velocity now to be used in
this chapter are derived from this Eqn (5.9), that is limited to a straight line vortex of
length AB.

The influence of a semi-infinite vortex (Fig. 5.11a) If one end of the vortex stretches
to infinity, e.g. end B, then 3 = 0 and cos 3 = 1, so that Eqn (5.9) becomes

V= cosa+ 1) (5.10)

4h(

When the point P is opposite the end of the vortex (Fig. 5.11b), so that
a = /2, cosa =0, Eqn (5.9) becomes

T

The influence of an infinite vortex (Fig. 5.11¢) When a = 8 =10, Eqn (5.9) gives
T

and this will be recognized as the familiar expression for velocity due to the line
vortex of Section 3.3.2. Note that this is twice the velocity induced by a semi-infinite
vortex, a result that can be seen intuitively.

In nature, a vortex is a core of fluid rotating as though it were solid, and around
which air flows in concentric circles. The vorticity associated with the vortex is
confined to its core, so although an element of outside air is flowing in circles the
element itself does not rotate. This is not easy to visualize, but a good analogy is with
a car on a fairground big wheel. Although the car circulates round the axis of the
wheel, the car does not rotate about its own axis. The top of the car is always at the
top and the passengers are never upside down. The elements of air in the flow outside
a vortex core behave in a very similar way.
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Fig. 5.11

5.2.3 Variation of velocity in vortex flow

To confirm how the velocity outside a vortex core varies with distance from the
centre consider an element in a thin shell of air (Fig. 5.12). Here, flow conditions
depend only on the distance from the centre and are constant all round the vortex at
any given radius. The small element, which subtends the angle 66 at the centre, is

Fig. 5.12 Motion of an element outside a vortex core
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circulating round the centre in steady motion under the influence of the force due to
the radial pressure gradient.
Considering unit axial length, the inwards force due to the pressures is:

(p+ 6p)(r + 6r)66 — pr 66 — 2(p + —;—6p)6r%60

which reduces to &p(r —36r)66. Ignoring 1ér in comparison with r, this becomes

r8p 66. The volume of unit length of the element is r 6r 66 and therefore its mass is
pr6r 8. Its centripetal acceleration is (velocity)?/radius, and the force required to
produce this acceleration is:

q2

(velocity)? q
r

- = pr br b0

radius =P q2 6r 66

Equating this to the force produced by the pressure gradient leads to
rép=pq*br since 690 (5.13)
Now, since the flow outside the vortex core is assumed to be inviscid, Bernoulli’s

equation for incompressible flow can be used to give, in this case,

1 1
p+5pa" = (p+6p) +5p(q+bq)"

Expanding the term in g + 8¢, ignoring terms such as (6¢)? as small, and cancelling,
leads to:

6p+pqbqg=0
ie.
6p = —pqéq (5.14)
Substituting this value for ép in Eqn (5.13) gives

pg* 6r + pqréqg =0
which when divided by pg becomes
qér+rég=0
But the left-hand side of this equation is 6(gr). Thus
8(gry=0
qr = constant (5.15)

This shows that, in the inviscid flow round a vortex core, the velocity is inversely
proportional to the radius (see also Section 3.3.2).

When the core is small, or assumed concentrated on a line axis, it is apparent from
Eqn (5.15) that when r is small g can be very large. However, within the core the air
behaves as though it were a solid cylinder and rotates at a uniform angular velocity.
Figure 5.13 shows the variation of velocity with radius for a typical vortex.

The solid line represents the idealized case, but in reality the boundary is not so
distinct, and the velocity peak is rounded off, after the style of the dotted lines.
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Fig. 5.13 Velocity distribution in a real vortex with a core

5.3 The simplified horseshoe vortex

A simplified system may replace the complete vortex system of a wing when con-
sidering the influence of the lifting system on distant points in the {low. Many such
problems do exist and simple solutions, although not all exact, can be readily
obtained using the suggested simplification. This necessitates replacing the wing by
a single bound spanwise vortex of constant strength that is turned through 90° at
each end to form the trailing vortices that extend effectively to infinity behind the
wing. The general vortex system and its simplified equivalent must have two things in
common:

(i) each must provide the same total lift
(ii) each must have the same value of circulation about the trailing vortices and

hence the same circulation at mid-span.

These equalities provide for the complete definition of the simplified system.

The spanwise distributions created for the general vortex system and its simplified
equivalent are shown in Fig. 5.14. Both have the same mid-span circulation I'y that
is now constant along part of the span of the simplified equivalent case. For
equivalence in area under the curve, which is proportional to the total lift, the span
length of the single vortex must be less than that of the wing.

/s
Total lift< pl/ 0 Total lift+pl/
ey, Y (10000007
be— 25" —
D R
{(a) Normal loading {b) Equivalent simplified
loading

Fig. 5.14
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Thus
T lift
T'g2s’ = area under general distribution = p—V
Hence
s total lift
5= 2spVTe (5.16)

25 is the distance between the trailing vortex core centres. From Eqn (5.47a) (see
page 246) it follows that

L = pV2s*21d,
and substituting also
Ty =4sVXA, sinng

s pV2s22mA,
s 2pV4sT A, sinng
_ ™ Al
_Z[Al — A3+ As —A7...]

For the general case then:

s 4 Az As  Aq
s,—;[ A1+A1—A—l...] (5.17)

For the simpler elliptic distribution (see Section 5.5.3 below):

As3=A5=A47=0

§ = (%’)S (5.18)

In the absence of other information it is usual to assume that the separation of the
trailing vortices is given by the elliptic case.

5.3.1 Formation flying effects

Aircraft flying in close proximity experience mutual interference effects and good
estimates of these influences are obtained by replacing each aircraft in the formation
by its equivalent simplified horseshoe vortex.

Consider the problem shown in Fig. 5.15 where three identical aircraft are flying in
a vee formation at a forward speed V in the same horizontal plane. The total mutual
interference is the sum of (i) that of the followers on the leader (1), (ii) that of the
leader and follower (2) on (3), and (iii) that of leader and follower (3) on (2). (ii) and
(iii) are identical.

(1) The leader is flying in a flow regime that has additional vertical flow com-
ponents induced by the following vortices. Upward components appear from
the bound vortices ascy, azcs, trailing vortices cpdy, asb; and downward
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Fig. 5.15

components from the trailing vortices asb, and c3d;. The net result is an
upwash on the leader.

(ii) These wings have additional influences to their own trails due to the leader and
the other follower. Bound vortex ajc; and trailing vortices a;b;, a;b; produce
downwashes. Again the net influence is an upwash.

From these simple considerations it appears that each aircraft is flying in a regime in
which upward components are induced by the presence of the others. The upwash
components reduce the downward velocities induced by the aircraft’s own trail and
hence its trailing vortex drag. Because of the reduction in drag, less power is required
to maintain the forward velocity and the well-known operational fact emerges that
each aircraft of a formation has a better performance than when flying singly. In
most problems it is usual to assume that the wings have an elliptic distribution, and
that the influence calculated for mid-span position is typical of the whole wing span.
Also any curvature of the trails is neglected and the special forms of the Biot—Savart
law (Section 5.2.2) are used unreservedly.

5.3.2 Influence of the downwash on the tailplane

On most aircraft the tailplane is between the trailing vortices springing from the
mainplanes ahead and the flow around it is considerably influenced by these trails.
Forces on aerofoils are proportional to the square of the velocity and the angle of
incidence. Small velocity changes, therefore, have negligible effect unless they alter
the incidence of the aerofoil, when they then have a significant effect on the force on
the aerofoil.

Tailplanes work at incidences that are altered appreciably by the tilting of the
relative wind due to the large downward induced velocity components. Each particu-
lar aircraft configuration will have its own geometry. The solution of a particular
problem will be given here to show the method.

Example 5.1 Let the tailplane of an aeroplane be at distance x behind the wing centre of
pressure and in the plane of the vortex trail (Fig. 5.16).
Assuming elliptic distribution, the semi-span of the bound vortex is given by Eqn (5.18) as

-G
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Fig. 5.16

The downwash at the mid-span point P of the tailplane caused by the wing is the sum of that
caused by the bound vortex ac and that of each of the trailing vortices ab and cd. Using the
special form of Biot-Savart equations (Section 5.2.2) the downwash at P:

wp | = . 2s1nﬂ+—(l +cos §)

_E sm,3+1+cosﬂ
T2r\ x s

From the sketch x = 5’ cot 8 and ¢ = (7/4)s

Ty (sin  1+cosf Ty
wel=on (s’cotﬂ s ) il
2r°(l+secﬂ)

Now by using the Kutta—Zhukovsky theorem, Eqn (4.10) and downwash angle

e=2%
14
2CLVS
Ty (11l
or
8Cy,
_7l'3(AR)(l+seCﬂ)
The derivative
e _ 0 0CL _, O
8o 9CL 8o '8Cy
Thus
36_ 8a1
B0~ PR (1+secpB) (5.19)

For cases when the distribution is non-elliptic or the tailplane is above or below the wing
centre of pressure, the arithmetic of the problem is altered from that above, which applies
only to this restricted problem. Again the mid-span point is taken as representative of the
whole tailplane.
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5.3.3 Ground effects

In this section, the influence of solid boundaries on aeroplane (or model) perform-
ance is estimated and once again the wing is replaced by the equivalent simplified
horseshoe vortex.

Since this is a linear problem, the method of superposition may be used in the
following way. If (Fig. 5.17b) a point vortex is placed at height 2 above a horizontal
plane, and an equal but opposite vortex is placed at depth /# below the plane, the
vertical velocity component induced at any point on the plane by one of the vortices
is equal and opposite to that due to the other. Thus the net vertical velocity, induced
at any point on the plane, is zero. This shows that the superimposition of the image
vortex is equivalent in effect to the presence of a solid boundary. In exactly the same
way, the effect of a solid boundary on the horseshoe vortex can be modelled by
means of an image horseshoe vortex (Fig. 5.17a). In this case, the boundary is the
level ground and its influence on an aircraft 4 above is the same as that of the
‘inverted’ aircraft flying ‘in formation’ 4 below the ground level (Figs 5.17a and 5.18).

Before working out a particular problem, it is clear from the figure that the image
system reduces the downwash on the wing and hence the drag and power required, as
well as materially changing the downwash angle at the tail and hence the overall
pitching equilibrium of the aeroplane.

Example 5.2 An acroplane of weight W and span 2s is flying horizontally near the ground
at altitude # and speed V. Estimate the reduction in drag due to ground effect. If
W=22x10"N, h=152m, s = 13.7m, ¥ = 45m s~!, calculate the reduction in Newtons.
(Uof L)
With the notation of Fig. 5.18 the change in downwash at y along the span is Aw T where

_ Iy T
Aw = e cos b, +47rr2 cos 6,
_ Tofd+y -y
-l
On a strip of span 6y at y from the centre-line,
lift I = p¥VTy by
and change in vortex drag
IAw
Ad, = ——
a vV
__ pVTobyAw

7 (5.20)
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Total change in drag AD, across the span is the integral of Eqn (5.20) from —s to s (or twice
that from 0 to §'). Therefore

TPy (S ty 8~y
~AD, =2 — ——}d
/0 4 ( r + I Y
From the geometry, r} = 4h* + (s +»)? and r} = 4k + (s’ — y)*. Making these substitutions
and evaluating the integral

¢
_AD, = P58 [ 4 ) )
4R + (s — y)’

4
A (2
—47r[n{H<h

With W = pVTyns i.e. and & = (w/4)s (assuming elliptic distribution):

W?x2 72 §?
ADV = —pVZSZﬂ'3 ln<l + 1_6 —h—z)

0

and substituting the values given
AD, =1390N
A simpler approach is to assume that mid-span conditions are typical of the whole wing.
With this the case

0 = 0, = 8 = arccos

s
V52 + 4n?

and the change in drag is to be 1524 N (a difference of about 10% from the first answer).

5.4 Vortex sheets

To estimale the influence of the near wake on the aerodynamic characteristics of
a lifting wing it is useful to investigate the ‘hypothetical’ bound vortex in greater
detail. For this the wing is replaced for the purposes of analysis by a sheet of vortex

227
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filaments. In order to satisfy Helmholtz’s second theorem (Section 5.2.1) each fila-
ment must either be part of a closed loop or form a horseshoe vortex with trailing
vortex filaments running to infinity. Even with this restriction there are still infinitely
many ways of arranging such vortex elements for the purposes of modelling the flow
field associated with a lifting wing. For illustrative purposes consider the simple
arrangement where there is a sheet of vortex filaments passing in the spanwise
direction through a given wing section (Fig. 5.19). It should be noted, however, that
at two, here unspecified, spanwise locations each of these filaments must be turned
back to form trailing vortex filaments.

Consider the flow in the vicinity of a sheet of fluid moving irrotationally in the xy
plane, Fig. 5.19. In this stylized figure the ‘sheet’ is seen to have a section curved in
the xy plane and to be of thickness é», and the vorticity is represented by a number of
vortex filaments normal to the xy plane. The circulation around the element of fluid
having sides és, én is, by definition, AT" = {6s. én where ( is the vorticity of the fluid
within the area &s én.

Now for a sheet én — 0 and if ¢ is so large that the product {én remains finite, the
sheet is termed a vortex sheet of strength k = (én. The circulation around the
element can now be written

AT = k 6s (5.21)

An alternative way of finding the circulation around the element is to integrate the
tangential flow components. Thus

AT = (43 —uy)bs (5.22)

Comparison of Eqns (5.21) and (5.22) shows that the local strength k of the vortex
sheet is the tangential velocity jump through the sheet.

Alternatively, a flow situation in which the tangential velocity changes discontinu-
ously in the normal direction may be mathematically represented by a vortex sheet of
strength proportional to the velocity change.

The vortex sheet concept has important applications in wing theory.
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5.4.1 The use of vortex sheets to model the lifting
effects of a wing

In Section 4.3, it was shown that the flow around a thin wing could be regarded as a
superimposition of a circulatory and a non-circulatory flow. In a similar fashion the
same can be established for the flow around a thin wing. For a wing to be classified as
thin the following must hold:

e The maximum thickness-to-chord ratio, usually located at mid-span, must be
much less than unity.

e The camber lines of all wing sections must only deviate slightly from the corres-
ponding chord-line.

e The wing may be twisted but the angles of incidence of all wing sections must
remain small and the rate of change of twist must be gradual.

o The rate of change of wing taper must be gradual.

These conditions would be met for most practical wings. If they are satisfied then the
velocities at any point over the wing only differ by a small amount from that of the
oncoming flow.

For the thin aerofoil the non-circulatory flow corresponds to that around
a symmetrical aerofoil at zero incidence. Similarly for the thin wing it corresponds to
that around an untwisted wing, having the same planform shape as the actual wing,
but with symmetrical sections at zero angle of incidence. Like its two-dimensional
counterpart in aerofoil theory this so-called displacement (or thickness) effect makes
no contribution to the lifting characteristics of the wing. The circulatory flow — the
so-called lifting effect — corresponds to that around an infinitely thin, cambered and
possibly twisted, plate at an angle of attack. The plate takes the same planform shape
as the mid-plane of the actual wing. This circulatory part of the flow is modelled by
a vortex sheet. The lifting characteristics of the wing are determined solely by this
component of the flow field. Consequently, the lifting effect is of much greater
practical interest than the displacement effect. Accordingly much of this chapter
will be devoted to the former. First, however, the displacement effect is briefly
considered.

Displacement effect

In Section 4.9, it was shown how the non-circulatory component of the flow around
an aerofoil could be modelled by a distribution of sources and sinks along the chord
line. Similarly, in the case of the wing, this component of the flow can be modelled by
distributing sources and sinks over the entire mid-plane of the wing (Fig. 5.20). In
much the same way .as Eqn (4.103) was derived (referring to Fig. 5.20 for the
geometric notation) it can be shown that the surface pressure coefficient at point
(x1, y1) due to the thickness effect is given by

v 1 xi(z)+¢(2) dy X — X
= 2% —/ / x,7) 2 spdxdz  (523)
—.s xi(2) [(x — X1) + (Z — Zl) ] B

N—

I

where x;(z) denotes the leading edge of the wing.
In general, Eqn (5.23) is fairly cumbersome and nowadays modern computational
techniques like the panel method (see Section 5.8) are used. In the special case of
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Fig. 5.20 Modsliing the displacement effect by a distribution of sources

wings having high aspect ratio, intuition would suggest that the flow over most of the
wing behaves as if it were two-dimensional. Plainly this will not be a good approxi-
mation near the wing-tips where the formation of the trailing vortices leads to highly
three-dimensional flow. However, away from the wing-tip region, Eqn (5.23) reduces
approximately to Eqn (4.103) and, to a good approximation, the C, distributions
obtained for symmetrical aerofoils can be used for the wing sections. For complete-
ness this result is demonstrated formally immediately below. However, if this is not of
interest go directly to the next section.

Change the variables in Eqn (5.23) to ¥ = (x — x1)/¢, 21 = z;/c and z = (z — z})/c.
Now provided that the non-dimensional shape of the wing-section does not change
along the span, or, at any rate, only changes very slowly S; = d(31/c)/dx does not
vary with Z and the integral I; in Eqn (5.23) becomes

1 7! (s—z1)/c 5
I[ = —/ Sg(f)x/ —dz—mdf
¢Jo J=(stm)/e (X2 +22)7°

s

L

To evaluate the integral I, change variable to x = 1/Z so that

I /-00 X q //(s z1) X q
h=— ——=—dx — —_
—e/(s+a) (22x2 + 1)¥? o0 (2x2 + 1)3? X
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For large aspect ratios s 3> ¢, so provided z; is not close to =s, i.e. near the wing-tips,

_ 2 = 2
(Zlc)<<1 and (zlc)<<1
s+ 2z §— 2]

giving
L~ ——%
Thus Eqn (5.23) reduces to the two-dimensional result, Eqn (4.103), i.e.
Cp~ —% :x' %x E ;. (5.24)
Lifting effect

To understand the fundamental concepts involved in modelling the lifting effect of
a vortex sheet, consider first the simple rectangular wing depicted in Fig. 5.21. Here
the vortex sheet is constructed from a collection of horseshoe vortices located in the
y =0 plane.

From Helmholtz’s second theorem (Section 5.2.1) the strength of the circulation
round any section of the vortex sheet (or wing) is the sum of the strengths of the

Curve defining the
spanwise variation
in strength of the
combined bound
vortex filaments

Fig. 5.21 The relation between spanwise load variation and trailing vortex strength
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vortex filaments cut by the section plane. As the section plane is progressively moved
outwards from the centre section to the tips, fewer and fewer bound vortex filaments
are left for successive sections to cut so that the circulation around the sections
diminishes. In this way, the spanwise change in circulation round the wing is related
to the spanwise lengths of the bound vortices. Now, as the section plane is moved
outwards along the bound bundle of filaments, and as the strength of the bundle
decreases, the strength of the vortex filaments so far shed must increase, as the overall
strength of the system cannot diminish. Thus the change in circulation from section
to section is equal to the strength of the vorticity shed between these sections.

Figure 5.21 shows a simple rectangular wing shedding a vortex trail with each pair
of trailing vortex filaments completed by a spanwise bound vortex. It will be noticed
that a line joining the ends of all the spanwise vortices forms a curve that, assuming
each vortex is of equal strength and given a suitable scale, would be a curve of the
total strengths of the bound vortices at any section plotted against the span. This
curve has been plotted for clarity on a spanwise line through the centre of pressure of
the wing and is a plot of (chordwise) circulation (") measured on a vertical ordinate,
against spanwise distance from the centre-line (CL) measured on the horizontal
ordinate. Thus at a section z from the centre-line sufficient hypothetical bound
vortices are cut to produce a chordwise circulation around that section equal to I
At a further section z 4 8z from the centre-line the circulation has fallen to I" — 6T,
indicating that between sections z and z -+ 6z trailing vorticity to the strength of
OI" has been shed.

If the circulation curve can be described as some function of z, f{z) say then the
strength of circulation shed

6T = —%(Zz)az (5.25)

Now at any section the lift per span is given by the Kutta—Zhukovsky theorem
Eqn (4.10)

I=pVT

and for a given flight speed and air density, I" is thus proportional to /. But / is the
local intensity of lift or lift grading, which is either known or is the required quantity
in the analysis.

The substitution of the wing by a system of bound vortices has not been rigorously
justified at this stage. The idea allows a relation to be built up between the physical
load distribution on the wing, which depends, as shall be shown, on the wing
geometric and aerodynamic parameters, and the trailing vortex system.

Figure 5.21 illustrates two further points:

(a) It will be noticed from the leading sketch that the trailing filaments are closer
together when they are shed from a rapidly diminishing or changing distribution
curve. Where the filaments are closer the strength of the vorticity is greater. Near
the tips, therefore, the shed vorticity is the most strong, and at the centre where
the distribution curve is flattened out the shed vorticity is weak to infinitesimal.

(b) A wing infinitely long in the spanwise direction, or in two-dimensional flow, will
have constant spanwise loading. The bundle will have filaments all of equal
length and none will be turned back to form trailing vortices. Thus there is no
trailing vorticity associated with two-dimensional wings. This is capable of
deduction by a more direct process, i.e. as the wing is infinitely long in the
spanwise direction the lower surface (high) and upper surface (low) pressures
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cannot tend to equalize by spanwise components of velocity so that the streams
of air meeting at the trailing edge after sweeping under and over the wing have no
opposite spanwise motions but join up in symmetrical flow in the direction of
motion. Again no trailing vorticity is formed.

A more rigorous treatment of the vortex-sheet modelling is now considered. In
Section 4.3 it was shown that, without loss of accuracy, for thin aerofoils the vortices
could be considered as being distributed along the chord-line, i.e. the x axis, rather
than the camber line. Similarly, in the present case, the vortex sheet can be located on
the (x, z) plane, rather than occupying the cambered and possibly twisted mid-surface
of the wing. This procedure greatly simplifies the details of the theoretical modelling.

One of the infinitely many ways of constructing a suitable vortex-sheet model is
suggested by Fig. 5.21. This method is certainly suitable for wings with a simple
planform shape, e.g. a rectangular wing. Some wing shapes for which it is not at all
suitable are shown in Fig. 5.22. Thus for the general case an alternative model is
required. In general, it is preferable to assign an individual horseshoe vortex of
strength & (x, z) per unit chord to each element of wing surface (Fig. 5.23). This
method of constructing the vortex sheet leads to certain mathematical difficulties

(a) Delta wing (b) Swept-back wing

Fig. 5.22
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Fig. 5.23 Modelling the lifting effect by a distribution of horseshoe vortex elements
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Fig. 5.24 Equivalence between distributions of (a) horseshoe and (b} L-shaped vortices

when calculating the induced velocity. These problems can be overcome by recom-
bining the elements in the way depicted in Fig. 5.24. Here it is recognized that partial
cancellation occurs for two elemental horseshoe vortices occupying adjacent span-
wise positions, z and z + §z. Accordingly, the horseshoe-vortex element can be
replaced by the L-shaped vortex element shown in Fig. 5.24. Note that although this
arrangement appears to violate Helmholtz’s second theorem, it is mercly a math-
ematically convenient way of ¢xpressing the model depicted in Fig. 5.23 which fully
satisfies this theorem.

5.5 Relationship between spanwise loading
and trailing vorticity

It is shown below in Section 5.5.1 how to calculate the velocity induced by
the elements of the vortex sheet that notionally replace the wing. This is an essential
step in the development of a general wing theory. Initially, the general case
is considered. Then it is shown how the general case can be very considerably
simplified in the special case of wings of high aspect ratio. The general case is
then dropped, to be taken up again in Section 5.8, and the assumption of large aspect
ratio is made for Section 5.6 and the remainder of the present section. Accordingly,
some readers may wish to pass over the material immediately below and go
directly to the alternative derivation of Eqn (5.32) given at the end of the present
section.

5.5.1 Induced velocity (downwash)

Suppose that it is required to calculate the velocity induced at the point Py(xy, z)) in
the y = 0 plane by the L-shaped vortex element associated with the element of wing
surface located at point P (x, z) now relabelled A (Fig. 5.25).
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Fig. 5.25 Geometric notation for L-shaped vortex element

Making use of Eqn (5.9) it can be seen that this induced velocity is perpendicular to
the y = 0 plane and can be written as

Svi(x1,21) = (6vi)pp + (6¥i)ne
kéx

= [00501 - cos(ﬂ; +g)] +

1 ok (1 4+ cosé,)
4m(x — x1) bz6x

Ar 6z” (z+ 6z —z)) (5:26)

From the geometry of Fig. 5.25 the various trigonometric expressions in Eqn (5.26)
can be written as

Z—Z
COSB] =
\/zx -+ (z—21)
COSBz=— x-u

\/(x—xl)2 +(z46z—2)°

003(62+72—r-)=—sin02= ztbz -
\/(x—x1)2+ (z+6z—2)

The binomial expansion, i.e.
(@a+b)'=a"+nd" b+,
can be used to expand some of the terms, for example

_ 1 -
[(x — %12 + (z+ 6z — 2, )] 1/2=;—(_Z—-rf—1)52+-.-

where r = \/ (x—x)?+ (G- z1)*. In this way, the trigonometric expressions given
above can be rewritten as
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zZ—2Z

cosf; = (5.27)

cosby = — 2% - G x‘r)fz gt (5.28)
cs(0 +I)—£:—Z—l+ l—(z;zllé + (5.29)
S\2T3) T r r i '

Equatlons (5.27 to 5.29) are now substituted into Eqn (5.26), and terms involving
(6z)* and higher powers are ignored, to give
k (x— xl) 1 6k 1 X — X]
6 6 bz 27_1'6_2.6x6z Z— 2 r(z—zl)

(5.30)

In order to obtain the velocity induced at P, due to all the horseshoe vortex elements,
6v, is integrated over the entire wing surface projected on to the (x, z) plane. Thus
using Eqn (5.30) leads to

1 xrke x— X (x —x1)
vi{x1,21) —Z;/;s/ 82 =) +k 3 dxdz  (531)

r(z —1z1)
(a) (b) (©

The induced velocity at the wing itself and in its wake is usually in a downwards
direction and accordingly, is often called the downwash, w, so that w = —v;.

It would be a difficult and involved process to develop wing theory based on
Eqn (5.31) in its present general form. Nowadays, similar vortex-sheet models are
used by the panel methods, described in Section 5.8, to provide computationally
based models of the flow around a wing, or an entire aircraft. Accordingly, a
discussion of the theoretical difficulties involved in using vortex sheets to model wing
flows will be postponed to Section 5.8. The remainder of the present section and
Section 5.6 is devoted solely to the special case of unswept wings having high aspect
ratio. This is by no means unrealistically restrictive, since aerodynamic considera-
tions tend to dictate the use of wings with moderate to high aspect ratio for low-speed
applications such as gliders, light aeroplanes and commuter passenger aircraft. In
this special case Eqn (5.31) can be very considerably simplified.

This simplification is achieved as follows. For the purposes of determining the
aerodynamic characteristics of the wing it is only necessary to evaluate the induced
velocity at the wing itself. Accordingly the ranges for the variables of integration are
given by —s <z<ys and 0 < x < (€)p,y- For high aspect ratios s/c>> 1 so that
|x — x1] < r over most of the range of integration. Consequently, the contributions of
terms (b) and (c) to the integral in Eqn (5.31) are very small compared to that of term
(a) and can therefore be neglected. This allows Eqn (5.31) to be simplified to

fdrr 1
471' ,dz z—2z]

vi(z1) = —w(z1) = dz (5.32)

where, as explained in Section 5.4.1, owing to Helmholtz’s second theorem

() = /x O e, 2)dx (5.33)

1
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Fig. 5.26 Prandtl’s lifting line model

is the total circulation due to all the vortex filaments passing through the wing section
at z. Physically the approximate theoretical model implicit in Eqn (5.32) and (5.33)
corresponds to replacing the wing by a single bound vortex having variable strength
T, the so-called lifting line (Fig. 5.26). This model, together with Eqns (5.32) and
(5.33), is the basis of Prandtl’s general wing theory which is described in Section 5.6.
The more involved theories based on the full version of Eqn (5.31) are usually
referred to as lifting surface theories.

Equation (5.32) can also be deduced directly from the simple, less general, theor-
etical model illustrated in Fig. 5.21. Consider now the influence of the trailing vortex
filaments of strength 6T shed from the wing section at z in Fig. 5.21. At some other
point z; along the span, according to Eqn (5.11), an induced velocity equal to

1 df

- 4n(z —z)) dz bz

will be felt in the downwards direction in the usual case of positive vortex strength.
All elements of shed vorticity along the span add their contribution to the induced
velocity at z; so that the total influence of the trailing system at z; is given by Eqn
(5.32).

6vi(z1)

5.5.2 The consequences of downwash - trailing vortex drag

The induced velocity at z; is, in general, in a downwards direction and is sometimes
called downwash. It has two very important consequences that modify the flow
about the wing and alter its aerodynamic characteristics.

Firstly, the downwash that has been obtained for the particular point z, is felt to
a lesser extent ahead of z; and to a greater extent behind (see Fig. 5.27), and has the
effect of tilting the resultant oncoming flow at the wing (or anywhere else within its
influence) through an angle

e=tan'2=2

V vV
where w is the local downwash. This reduces the effective incidence so that for the
same lift as the equivalent infinite wing or two-dimensional wing at incidence a.c an
incidence o = @ + € is required at that section on the finite wing. This is illustrated
in Fig. 5.28, which in addition shows how the two-dimensional lift L., is normal to
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Fig. 5.27 Variation in magnitude of downwash in front of and behind wing

the resultant velocity ¥r and is, therefore, tilted back against the actual direction of
motion of the wing V. The two-dimensional lift L, is resolved into the aerodynamic
forces L and D, respectively, normal to and against the direction of the forward
velocity of the wing. Thus the second important consequence of downwash emerges.
This is the generation of a drag force Dy. This is so important that the above
sequence will be explained in an alternative way.

A section of a wing generates a circulation of strength I". This circulation super-
imposed on an apparent oncoming flow velocity ¥ produces a lift force Ly, = p¥T
according to the Kutta—Zhukovsky theorem (4.10), which is normal to the apparent
oncoming flow direction. The apparent oncoming flow felt by the wing section is the
resultant of the forward velocity and the downward induced velocity arising from the
trailing vortices. Thus the aerodynamic force L,, produced by the combination of T'
and V appears as a lift force L normal to the forward motion and a drag force D,
against the normal motion. This drag force is called trailing vortex drag, abbreviated
to vortex drag or more commonly induced drag (see Section 1.5.7).

Considering for a moment the wing as a whole moving through air at rest at
infinity, two-dimensional wing theory suggests that, taking air as being of small to
negligible viscosity, the static pressure of the free stream ahead is recovered behind
the wing. This means roughly that the kinetic energy induced in the flow is converted
back to pressure energy and zero drag results. The existence of a thin boundary layer
and narrow wake is ignored but this does not really modify the argument.

In addition to this motion of the airstream, a finite wing spins the airflow near the
tips into what eventually becomes two trailing vortices of considerable core size. The
generation of these vortices requires a quantity of kinetic energy that is not recovered

Fig. 5.28 The influence of downwash on wing velocities and forces: w = downwash; V = forward
speed of wing; Vr = resultant oncoming flow at wing; « = incidence; e = downwash angle = w/V
0o = (@ — £) = equivalent two-dimensional incidence; L., = two-dimensional lift; L = wing [ift;
D, = trailing vortex drag
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by the wing system and that in fact is lost to the wing by being left behind. This
constant expenditure of energy appears to the wing as the induced drag. In what
follows, a third explanation of this important consequence of downwash will be of
use. Figure 5.29 shows the two velocity components of the apparent oncoming flow
superimposed on the circulation produced by the wing. The forward flow velocity
produces the lift and the downwash produces the vortex drag per unit span.

Thus the lift per unit span of a finite wing (/) (or the load grading) is by the Kutta—
Zhukovsky theorem:

I =pVT
the total lift being

5
L=/ pVTdz (5.34)
-5

The induced drag per unit span (d,), or the induced drag grading, again by the
Kutta—Zhukovsky theorem is

dy = pwl’ (5.35)

and by similar integration over the span

5
D, = / powl'dz (5.36)
-5
This expression for D, shows conclusively that if w is zero all along the span then D,
is zero also. Clearly, if there is no trailing vorticity then there will be no induced drag.
This condition arises when a wing is working under two-dimensional conditions, or if

all sections are producing zero lift.

As a consequence of the trailing vortex system, which is produced by the basic
lifting action of a (finite span) wing, the wing characteristics are considerably modi-
fied, almost always adversely, from those of the equivalent two-dimensional wing of
the same section. Equally, a wing with flow systems that more nearly approach the
two-dimensional case will have better aerodynamic characteristics than one where

17
r
w
(=pVT d,=pwT
s L)
L= pyrde Dv=fpw1“dz
-5 it

Fig. 5.29 Circulation superimposed on forward wind velocity and downwash to give lift and vortex drag
{induced drag) respectively
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the end-effects are more dominant. It seems therefore that a wing that is large in the
spanwise dimension, i.e. large aspect ratio, is a better wing — nearer the