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Preface

Contact mechanics has its application in many engineering problems. No one can
walk without frictional contact, and no car would move for the same reason. Hence
contact mechanics has, from an engineering point of view, a long history, beginning
in ancient Egypt with the movement of large stone blocks, over first experimental
contributions from leading scientists like LEONARDO DA VINCI and COULOMB, to
today’s computational methods. In the past contact conditions were often modelled in
engineering analysis by more simple boundary conditions since analytical solutions
were not present for real world applications. In such cases, one investigated contact
as a local problem using the stress and strain fields stemming from the analysis which
was performed for the entire structure. With the rapidly increasing power of modern
computers, more and more numerical simulations in engineering can include contact
constraints directly, which make the problems nonlinear.

This book is an account of the modern theory of nonlinear continuum mechanics
and its application to contact problems, as well as of modern simulation techniques
for contact problems using the finite element method. The latter includes a variety
of discretization techniques for small and large deformation contact. Algorithms
play another prominent role when robust and efficient techniques have to be designed
for contact simulations. Finally, adaptive methods based on error controlled finite
element analysis and mesh adaption techniques are of great interest for the reliable
numerical solution of contact problems. Nevertheless, all numerical models need a
strong backup provided by modern continuum mechanics and its constitutive theory.,
which is applied in this book to the development of interface laws for normal and
frictional contact.

xiii



Xiv PREFACE

The present text can be viewed as a textbook which is basically self-contained. It
is written for students at graduate level and engineers who have to simulate contact
problems in practical applications and wish to understand the theoretical and algo-
rithmic background of modern finite element systems. The organization of the book
is straightforward. After an introductory chapter which discusses relevant contact
formulations in a simple matter, there follows a chapter which provides the contin-
uum mechanics background. The special geometrical relations needed to set up the
contact constraints and constitutive equations valid at the contact interface are then
discussed in detail without going into a numerical treatment. The topic of compu-
tational contact is then described in depth in the next chapters, providing different
formulations, algorithms and discretization techniques which have been established
so far. Here solid and beam contact is considered, as well as contact of unstable sys-
tems and thermomechanical contact. The algorithmic side includes, besides a broad
range of solution methods, adaptive discretization techniques for contact analysis.
However, it can be concluded for the present that there exists nothing which can be
called the robust method for all different types of contact simulations. This actually
also holds for other simulations, including nonlinearities. However, especially due
to the fact that such a method does not exist, it is necessary to discuss those methods
which are on the market in the light of good or bad behaviour.

It is finally a pleasure to thank many people who have assisted me in writing the
book, and who were always available in the last twenty years for deep discussions on
computational contact mechanics, including the related formulations of continuum
mechanics and implementation issues. This scientific collaboration often resulted in
joint work in which new papers or reports were written. In particular, I should like to
mention my PhD students Anna Haraldsson, Henning Braess, Michael Imhof, Joze
Korelc, Lovre Krstulovic-Opara, Tilmann Raible, Albrecht Rieger, Oliver Scherf and
Holger Tschope. But I have also to include colleagues who worked and still work
with me on issues of computational contact mechanics: Christian Miehe, Bahram
Nour-Omid, the late Panos Panagiotopoulos, Karl Schweizerhof, the late Juan Simo,
Bob Taylor, Giorgio Zavarise and Tarek Zohdi.

Furthermore, I would like to express my appreciation to Bob Taylor, Giorgio
Zavarise and Tarek Zohdi, who read early parts of the manuscript and helped with
their constructive comments and criticisms to improve the text. I would also like
to thank Elke Behrend, who together with Tilman Raible, drew most of the figures
in the text. Last but not least, I would like to thank John Wiley, especially Jan de
Landtsheer, for patience regarding the delivery of the manuscript and for the good
collaboration during the last years.

P. WRIGGERS

Hannover, January 2002



Introduction

Boundary value problems involving contact are of great importance in industry related
to mechanical and civil engineering, but also in environmental and medical applica-
tions. Virtually all movements on this planet involve contact and friction, like simple
walking or running, driving of cars, riding bicycles or steaming of trains. If friction
were not present (see movement on ice), all these motions would not be possible.
Also, the area in which a foot, a tyre or a wheel interacts with the soil, the road or the
rail is not known a priori, leading to a nonlinear boundary value problem for these
simple everyday tasks.

Due to the nonlinear nature of contact mechanics, such problems in the past were
often approximated by special assumptions within the design process. Due to the
rapid improvement of modern computer technology, one can today apply the tools of
computational mechanics to simulate applications which include contact mechanisms
numerically. This can be done to an accuracy which is sufficient for design purposes.
However, even now most of the standard finite element software is not fully capable
of solving contact problems, including friction, with robust algorithms. Hence there
is still a challenge for the finite element society to design efficient and robust methods
for computational contact mechanics.

The range of application in contact mechanics starts with relatively simple prob-
lems like foundations in civil engineering, where the lift off of the foundation from
the soil due to eccentric forces acting on a building are considered (see Figure 1.1).
Furthermore, foundations including piles as supporting members are of interest. Also,
classical bearing problems of steel constructions, the connecting of structural mem-
bers by bolts or screws or the impact of cars against building structures are areas in

xv
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Fig. 1.1 Contact problems: foundation.

which contact analysis enters the design process in civil engineering (see Figure 1.2).
Most of these problems can usually be treated by the assumption of small strains,
however due to the nature of contact problems with the a priori unknown contact
area, all applications are nonlinear and need special algorithms.

Applications of contact mechanics in mechanical engineering include the design of
gears and metal forming processes, like sheet metal or bulk forming (see Figure 1.3).
The latter problems depict large deformations within the sheet. Furthermore, drilling
problems, crash analysis of cars, rolling contact of car tyres or railroad wheels are rel-
evant technical applications of contact in mechanical engineering. Other applications
are related to biomechanics where human joints or the implantation of teeth are of
consideration. Here again, large deformation cannot be excluded in the analysis, and
complicated nonlinear material models have to be applied for a successful numerical
simulation.

Due to this variety, contact problems are today combined either with large elas-
tic or inelastic deformations, including time-dependent responses. Hence a modern
formulation within computational mechanics has to account for all these effects, leav-
ing the linear theory as a special case. For most industrial applications, numerical

VAR WAV AW VA AN

-]
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Fig. 1.2 Contact problems: roller bearing and impact of a lorry.

-
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Fig. .3 Sheet metal forming.

methods have to be applied since the contacting bodies have complex geometries
or undergo large deformations. Today we can distinguish several branches in com-
putational contact mechanics which are applied to solve different classes of contact
problems:

o Finite element methods, applied to problems undergoing small and large de-
formations, as well as in the elastic or inelastic range.

o Discrete element methods, used to compute problems in which up to 108 par-
ticles are coming into contact.

e Multi body systems, based on a description of the bodies as rigid ones. These
systems are generally small, and can be applied to model the dynamic behaviour
of engineering structures in which contact is also allowed.

Thermal coupling might need to be considered within contact analysis, cooling of elec-
tronic devices, heat removal within nuclear power plant vessels or thermal insulation
of astronautic vehicles, where the mechanical response and the thermal conduction
interacts in the contact area. When electronic devices are considered coupling with
electro-magnetic field equations can be of interest. Even stability behaviour has to be
linked to contact, like wrinkling arising in metal forming problems or the shearband
formation in soils (see Figure 1.4). The latter problem is also related to the simulation
of avalanches. Here a contact formulation together with the correct modelling of the
process in continuum mechanics can be used to compute the final position of a part of
the avalanche which has sheared off. All together, Computational Contact Mechanics
(CCM) has to cover topics from tribology, including friction, lubrication, adhesion
and wear. One has to establish weak forms for finite deformation mechanics, cou-
pling to other fields like thermal or electromagnetic fields, and to derive associated
algorithms to solve the nonlinear boundary value problems, which include inequality
constraints. Hence, CCM is an interdisciplinary area which needs input from tribolo-
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e

- Post-critical state

Fig. I.4 Shearband formation and collapse analysis in soils or avalanches.

gists, mathematicians, computer scientists and people from mechanics, together with
people working in other fields like heat conduction or electromagnetism.

Here we will restrict ourselves mainly to finite element techniques for the treatment
of contact problems, despite many other numerical schemes and analytical approaches
which could be discussed as well. However, there are common formulations and
algorithms, and also overlapping of the methods. These will be discussed in related
chapters. Generally, an overview related to modern techniques applied in discrete
element methods can be found in, for example Attig and Esser (1999) and for multi-
body-systems with special relation to contact in Pfeiffer and Glocker (1996).

Before we provide a short summary of the topics covered in this book, a short his-
torical overview on contact mechanics and computational contact mechanics is given.

Historical remarks. Due to this technical importance, a great number of re-
searchers have investigated contact problems. In ancient Egypt people needed to
move large stone blocks to build the pyramids, and thus had to overcome the fric-
tional force associated with it. This is depicted in Figure 1.5, where we can see that
even in ancient Egypt people knew about the process of lubrication. There is a man
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Fig. 1.5 Stone block moved by Egyptian worker.
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Fig. 1.6 Da VINCI'S experiments.

standing on the sledge who pours a fluid onto the ground immediately in front of the
sledge. Since friction occurs in many applications which are of technical importance,
famous researchers in the past have investigated frictional contact problems, amongst
them DA VInCI, who in the 15" century measured friction force and had already
considered the influence of the contact area on the friction force using blocks with dif-
ferent contact area but the same weight (see Dowson (1979) and Figure 1.6). He found
that the friction force is proportional to the weight of the blocks, and is independent of
the apparent contact area. Associated results are often attributed to Amontons (1699)
neglecting the contribution of DA VINCI. When putting these findings in a formula
one obtains the classical equation for friction (known as CoOULOMB’S friction law),
which every student in engineering learns during the first semesters of study:

Fr=uN (.1

where Fr is the friction force, IV is the normal force and p the coefficient of friction.

A first analysis from the mathematical point of view was carried out by EULER,
who assumed triangular section asperities for the representation of surface roughness
(Euler (1748b) and Euler (1748a)). His model is depicted in Figure 1.7. He had
already concluded from the solution of the equations of motion for a mass on a slope
that the kinetic coefficient of friction has to be smaller than the static coefficient
of friction. Actually, it was EULER who introduced the symbol p for the friction
coefficient, which is the common symbol nowadays. A comprehensive experimental

Fig. 1.7 EULER’S model for friction.
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Fig. 1.8 CouLoMB’s model for rough surfaces.

study of frictional phenomena was later performed by Coulomb (1785); see Figure
1.8. He considered the following facts relating to friction: normal pressure, extent
of surface area, materials and their surface coatings, ambient conditions (humidity,
temperature and vacuum), and time dependency of friction force. These observations
resulted in a formula for the frictional resistance to sliding of a body on a plane

,

FT:A-FA

*

(1.2)

where Fr is the friction force, NV is the normal force and p* the inverse of the
friction coefficient. A represents cohesion, an effect which was already described in
Desaguliers (1725). The second term was attributed to a ploughing action within the
interface. This result, today written as Fr = A + p N, is still acceptable, and is the
basis for many developments of contact interface laws (see e.g. Tabor (1981)). Again
CouLoMB found that i is nearly independent of the normal force, the sliding velocity.
the contact area (see also results from DA VINCI) and from the surface roughness.
However, p depends strongly upon the material pairing in the contact interface. His
further, remarkable results concerning the influence of the time of repose upon static
friction are discussed in Dowson (1979).

Starting with the classical analytical work of Hertz (1882) the theory of elasticity
was applied in contact mechanics. HERTZ investigated the elastic contact of two
spheres and derived the pressure distribution in the contact area as well as the approach
of the spheres under compression. However very few problems involving contact can
be solved analytically. For an overview one may consult the books of Johnson (1985)
or Timoshenko and Goodier (1970), and the references therein.

The finite element method developed together with the growing power of modern
computers. Hence the first attempts to solve structural problems using finite elements
were published in the late fifties (see Turner et al. (1956) or Argyris (1960)). After
this, the literature grew enormously since there were many problems of industrial im-
portance which could not be solved analytically. It then took another ten years for the
first papers in which methods for the solution of contact problems with finite element
methods appeared. As first contributions we list the work by Wilson and Parsons
(1970) or Chan and Tuba (1971), which contain early treatments of contact using the
geometrically linear theory. However, even at an earlier stage Wilkins (1964) devel-
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oped the explicit HEMP-hydrocode which could deal with large strains, and included
a simple contact model. Following this, the explicit codes DYNA2D and DYNA3D,
as well as the implicit codes NIKE2D and NIKE3D, were developed at the Lawrence
Livermore Laboratory by J. HALLQUIST, beginning in the mid-seventies. For the
first time these codes provided the possibility to solve contact problems undergoing
finite deformations on a large scale in an efficient way.

Point of departure and connection of chapters. The design of robust algorithms
to treat contact problems efficiently within the finite element method needs input from
different sources. These will be considered in the book, which also provides the phys-
ical and tribological background within the contact interface. Hence several chapters
are devoted to theoretical aspects of continuum mechanics, contact kinematics and the
constitutive behaviour in the contact interface. Other chapters contain discretization
techniques for solids, and of course, for the contact interface. Furthermore, solu-
tion algorithms are discussed, as well as adaptive techniques for contact. Chapters
dealing with special contact formulations or topics are also included to complete the
treatment of contact problems. An interaction between the chapters will be denoted
in the following more detailed description of the contents of the different chapters.

In the first introductory chapter, several contact problems and simple discretiza-
tions are treated to present the basic ideas and difficulties of contact mechanics.
including coupled and impact problems. This chapter requires no further background
besides standard engineering knowledge.

The second chapter is of a more general nature, and discusses the underlying
theoretical background for finite deformation solid mechanics, including kinematics,
weak forms, linearizations and simple hyperelastic constitutive equations. This chap-
ter is needed to understand the following chapters regarding the kinematics of large
deformation contact, and the associated weak formulations. It can be skipped if the
reader is familiar with these formulations.

The third chapter discusses contact kinematics from the continuum mechanics
point of view. The formulations stated in this chapter are the basis for the derivations
in later chapters.

The physical background of the constitutive behaviour in the contact interface is
considered in the fourth chapter. This section can be read on its own with a classi-
cal background in engineering. It contains material regarding normal and frictional
contact for different material pairings, as well as basic formulations for lubrication,
adhesion and wear.

The boundary value problem for frictionless and frictional contact is stated in
Chapter 5. This also contains different methods on how the contact constraints can
be incorporated in the weak forms needed for finite element analysis. This chapter is
based on the formulations presented in Chapters 2 and 3. This chapter also contains
a section on the treatment of rolling contact based on an Arbitrary LAGRANGIAN
EULERIAN (ALE) formulation for stationary and non-stationary processes.

The discretization of solids in contact is derived in Chapter 6 on the basis of the
theoretical formulations included in Chapter 2. This chapter is only concerned with
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the continuum part of the bodies and hence can be skipped if the reader is familiar
with this subject.

The discretization of the contact interfaces is described in Chapters 7 and 8 for
linear and nonlinear geometry, respectively. Here interpolation functions and matrix
formulations are given for two- and three-dimensional applications. Also, smooth
interpolations are introduced to obtain more robust methods for arbitrary contact
geometries. Furthermore, new techniques such as mortar or NITSCHE interpolations
are discussed in Chapter 7 which can be used for non-matching meshes. This chapter
is based on the material derived in Chapters 2, 3, 4 and 6.

Solution methods for contact problems are contained in Chapter 9. Here different
methods of algorithmic treatment are considered for the solution of contact boundary
value problems which are defined in the weak sense in Chapter 5. Furthermore, search
algorithms for contact are discussed for different applications with respect to global
and local search.

In Chapter 10 we treat the coupled thermo-mechanical problem of contact. This
chapter is concerned with the heat transfer at the contact interface, which depends upon
the mechanical response. Furthermore, the associated finite element discretization for
small and finite deformations and the algorithmic treatment of the coupled problem is
considered. The contents of this chapter is based on formulations derived in Chapters
2,3,4,7 and 8.

The contact of beam elements is of interest in, for example, the micro-mechanical
modelling of woven fabrics. Since the formulations do not fit completely into the
general scope, all relevant equations — from the continuous formulation to the finite
element discretization — are developed for the beam contact in Chapter 11. Knowledge
of the background provided in Chapters 3, 5, 6 and 9 is necessary to understand the
derivations.

Adaptive methods for contact problems which are necessary to control the errors
inherited in the finite element method are described in Chapter 12. The objective
of adaptive techniques is to obtain a mesh which is optimal in the sense that the
computational costs involved are minimal under the constraint that the error in the
finite element solution is below a certain limit. In general, adaptive methods rely on
error indicators and error estimators, which can be computed a priori or a posteriori.
In Chapter 12 an overview over different techniques is given, including different error
estimators and indicators. Again, the basic formulations of the solid and the contact
constraints from Chapters 2, 3, 6, 7, 8 and 9 are required.

Stability problems which include contact constraints are discussed in Chapter 13.
These problems arise in, for example, sheet metal forming, but can also occur in
civil engineering applications like the drilling of deep holes. Here the associated
algorithms are stated based on the formulations given in Chapters 5 and 9.



Introduction to
Contact Mechanics

To introduce the basic methodology and difficulties related to contact mechanics, some
simple contact problems will be discussed in this chapter. These are one-dimensional
examples undergoing static, thermal or dynamic contact.

1.1 CONTACT IN A MASS SPRING SYSTEM

1.1.1 A variational formulation

Let us consider a contact problem consisting of a point mass m under gravitional load
which is supported by a spring with stiffness k. The deflection of the point mass m is
restricted by a rigid plane, see Figure 1.1. The energy for this system can be written
as

1 o ,
H(u):§ku“4mgu. (1.DH

If we do not place any restriction on the displacement u, then we can compute the
extremum of (1.1) by variation, leading to

0l(u) =kudu—mgdu=0. (1.2)

Since the second variation of I1 yields 42 I = k, the extremum of (1.1) is a minimum
at u = 2. This is depicted in Figure 1.2, in which the energy of the mass spring
system is plotted.

The restriction of the motion of the mass by a rigid support can be described by

c(uy=h—-u>0, (1.3)
1
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Fig. 1.1 Point mass supported by spring. Fig. 1.2 Energy of the mass spring system.

which excludes penetration as an inequality constraint. For c(u) > 0 one has a gap
between point mass and rigid support. For ¢(u) = 0 the gap is closed.

Note that the variation du is restricted at the contact surface; from (1.3) one obtains
du < 0, which means that the virtual displacement has to fulfil the constraint and can
only point in the upward direction. The use of this variation in the variational form
(1.2) yields an inequality

kudu~-~mgdu >0 (1.4)

in which the greater sign follows from the fact that the force m g is greater than the
spring force k h in the case of contact, and that the variation is du < 0 at the rigid
support. Equation (1.4) is called a variational inequality. Due to the restriction of
the solution space by the constraint condition (1.3) the solution of (1.1) is not at the
minimum point associated with Il,,;,,, but at the point associated with II{, ;. which
denotes the minimal energy within the admissible solution space, see Figure 1.2.
Often, instead of the variation du, one uses the difference between a test function v
and the solution u: du = v — u. The test function has to fulfil the conditionv —h <0
at the contact point, as also does the solution u. With the test function . (1.2) can be

written as
ku(v—u)—mg(v—u)=0. (1.5)

Since m g > k u at the contact point, we have withv — h < 0
ku(v—h)>mg(v—nh). (1.6)

In both cases, inequality (1.3) which constrains the displacement u leads to variational
inequalities which characterize the solution of u. These variational inequalities cannot
be directly applied to solve the contact problem. For this one has to construct special
methods. Some frequently used methods are discussed in the following sections.
Once the point mass contacts the rigid surface, a reaction force fr appears. In
classical contact mechanics, we assume that the reaction force between rigid surface
and point mass is negative, hence the contact pressure can only be compression.
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Such assumption excludes adhesion forces in the contact interface and leads to the
restriction
fr<0. (1.7)

This means that either we have a compression state (fr < 0) or an inactive reaction
force (fr = 0).

Summarizing, one has to distinguish two cases within a contact problem where
the motion is constrained by (1.3):

1. The spring stiffness is sufficiently large enough that the point mass does not
touch the rigid surface. In this case, the following conditions are valid:

c(u) >0 and fr=0. (1.8)

2. The data of the system are such that the point mass comes into contact with the
rigid support. In that case conditions

c(u)=0 and fp <0 (1.9)
hold.

Both cases can be combined in the statement
c(u) >0, frR<0 and fre(u)=0 (1.10)

which are known as HERTZ—-SIGNORINI-MOREAU conditions in contact mechanics.
Such conditions coincide with KUHN-TUCKER complementary conditions in the
theory of optimization.

1.1.2 Lagrange multiplier method

The solution of a contact problem in which the motion is constrained by an inequality
(1.3) can be obtained using the method of LAGRANGE multipliers. For this we assume
that a constraint is active, which means condition (1.9) is fuifilled by the solution.
Therefore, the LAGRANGE multiplier method adds to the energy of the system (1.1)
a term which contains the constraint and yields

1. .
H(u,)\):§ktu2——mgu+/\c(u). (1.11)

A comparison with (1.10) shows that the LAGRANGE multiplier A is equivalent to
the reaction force fg. The variation of (1.11) leads to two equations, since du and JA
can be varied independently:

kudu—mgdu—Adu = 0, (1.12)
clu)dr = 0. (1.13)

The first equation represents the equilibrium for the point mass including the reaction
force when it touches the rigid surface (see also Figure 1.3), and the second equation
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m

Fig. 1.3 Point mass supported by a spring and free body diagram for the LAGRANGE mul-
tiplier method.

states the fulfillment of the kinematical constraint equation (1.3) for contact: u = h.
Due to that, the variation is no longer restricted, and one can solve for LAGRANGE
multiplier A

A=kh-mg= fg. (1.14)
However condition (1.7) still has to be checked and fulfilled by the solution (1.14).
If this condition is not met, and hence an adhesion force is computed, then the as-
sumption of contact no longer holds. This means the inequality constraint is inactive
and the correct solution can be computed from (1.2) as u = ﬂk-‘l; furthermore, the
reaction force or LAGRANGE multiplier is zero.

1.1.3 Penalty method

Another well known method which is often applied in finite element analysis of
contact problems is the penalty approach. Here for an active constraint one adds a
penalty term to the energy (1.1) as follows:

1
H(u):%Icuz—-mgu-i-avs[c(u)]2 with € > 0. (1.15)

As can be seen in Figure 1.4, the penalty parameter € can be interpreted as a spring
stiffness in the contact interface between point mass and rigid support. This is due
to the fact that the energy of the penalty term has the same structure as the potential
energy of a simple spring. The variation of (1.15) yields

kubu—mgdu—ec(u)du=0, (1.16)
from which the solution

u={(mg+eh)/(k+e¢) (1.17)
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M

Fig. 1.4 Point mass supported by a spring and a penalty spring due to the penalty term.

can be derived. The value of the constraint equation is then

kh—mg

1.1
k+ ¢ (1.18)

cluy=h—u=

Since mg > kh in the case of contact, equation (1.18) means that a penetration
of the point mass into the rigid support occurs, which is physically equivalent to a
compression of the spring, see Figure 1.4. Note that the penetration depends upon the
penalty parameter. The constraint equation is only fulfilled in the limit € — oc =
c(u) — 0. Hence, in the penalty method we can distinguish two limiting cases:

l. € &+ 00 = u — h — 0, which means that one approaches the correct solution
for very large penalty parameters. Intuitively, this is clear since that means the
penalty spring stiffness is very large, and hence only very small penetration
occurs.

2. € = 0 represents the unconstrained solution, and thus is only valid for inac-
tive constraints. In the case of contact, a solution with a very small penalty
parameter € leads to a high penetration, see (1.18).

The reaction force for a penalty method is computed (see (1.16)) from A = e c{u).
For this example, one arrives with (1.18) at

A:fR:ec(u):kLH(khmmg), (1.19)

which in the limit € — oo yields the correct solution obtained with the LAGRANGE
multiplier method, see (1.14).
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Fig. 1.5 System of two bars and loading.

1.2 FINITE ELEMENT ANALYSIS OF THE CONTACT OF TWO BARS

This example shows that even for a system which is built from two simple bars with

geometrically linear and elastic behaviour a nonlinear response curve occurs in the

case of contact. This is due to the change of stiffness within the contact process.
The potential energy of a bar loaded by i point loads is given by

1 !
m= /EA [ (x)) dx — Z F;u(z;) (1.20)
U] '

when distributed forces along the bar are neglected. £ A denotes the axial stiffness,
u(x) is the displacement of the bar and F; describes a point load at point ;. The
problem depicted in Figure 1.5 shows a system consisting of two bars which are
separated by a gap g. When the force F', acting at x = [, is large enough the gap will
close. We assume that a penetration of bar 1 into bar 2 is impossible. Due to Figure
1.5, this yields the constraint equation

w—u<g. (1.21)

For u; — u, < g no contact occurs, whereas contact takes place for u; — u, = g.
This system is discretized using three finite elements, two for the left bar and one
for the right bar. Linear shape functions are chosen (see Figure 1.6) which already
fulfil the boundary conditions at the left and right end of the structure, see also Figure
1.5. The explicit form of the shape functions and their derivatives is given within the

i

i U U g

Fig. 1.6 Shape functions.
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elements as

0<z <l Douz) =T u'(z) = 3,
l<ae<2l @ w@)=2-Fu+(F-Duy u'(r)=-%+%3,
20 < <3l ulz)= (3~ F)us w'(r) =~

(1.22)
By inserting these interpolations into (1.20), the discretized form of the potential
energy can then be derived by integration, leading for the bar system to

1 EA

II= 5 T [U% -+ ("ll,g - “1)2 -+ U%] - FU] . (]27))
The variation of II yields
. EA . . . :
oM = - [ur duy + (uz — uy) (Oug — duy) + uzdug | — Fouy =0.  (1.24)

The constraint condition (1.21) is now given by us — ug < ¢:

i) For us — us < g displacement ug = 0 and no contact occurs. One says that
the constraint equation is not active, since the gap is open. In this case, the
solution follows directly from (1.24), which has the matrix form

E{i 2uy — ug) — F
(6uy , dus , dug) Elé (ua —uy) =0, (1.25)
FA

U

leading for arbitrary virtual displacements du; to the equation system

EA 2 -1 0 Uy F
—l_‘ -1 1 0 U2 = 0 ( 1 26)
0 0 1 Us 0
with the solution
{ .
U = Uy = EA ug = 0. (1.27)

il) In case the load is increased such that F' > EA %, contact occurs and the
constraint us — w3 = g has to be fulfilled. Now the gap is closed, hence
the constraint is active. The solution will be computed using the LAGRANGE
multiplier method. As already shown in Section 1.1.2, one then has to add
the constraint to the potential energy multiplied by the LAGRANGE multiplier.
This yields

ey =0+ Ag=1+A(g+ u3 —us). (1.28)

Hence, the variation can be written in case of contact with (1.24) as

Ol ar = 811 + A (dug — dua) + A (g +ug —uz) =0, (1.29)
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where the second term is associated with the reaction force (LAGRANGE mul-
tiplier) in the gap. The third term denotes the fulfillment of the constraint
equation. The matrix form of (1.29) is given by

—EIA(2UI—’U2)—F
E,—A(uz—ul)—/\

du; ,0usg , dusz, o\ =0, 1.30
(0uy ,0ug , dus , o)) ¥u3+)\ 0. (1.30)
g+ us—u

leading for arbitrary virtual displacements du; and the virtual LAGRANGE
multiplier A to the equation system

2BA _EA 0 07 (wy (F
EA EA
—&4 E£4 0 -1 Us 0
! ! = 1.31
0 0 £ u3 0 @30
0 -1 1 o0 A -9
The solution of this system for us and A leads to
1 Fl 1 g
= - 2 —_ = — Z - F). 1.32
us 3(g+EA)and,\ 3(EAl ) (132)

Observe that the LAGRANGE multiplier fulfils condition (1.7), since F' >
(EAg) /!l when the gap is closed, see also (1.27). From (1.32) one can now
compute the dependency between load F' and displacement us:

g

F=EA (3%2-—27). (1.33)

Figure 1.7 depicts the nonlinear load-deflection curve for the complete analysis. It is
clear that the stiffness of the bar system increases when contact occurs; this can be
observed from the fact that the load has to be three times as big to obtain the same
increment to the displacement when the gap is closed as in the case when the gap is

open.

Fig. 1.7 Finite element discretization and load-deflection curve.
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Condition (1.32) includes, for us = g, the limiting case of the initiation of contact
in which A = 0. This case can also be obtained from (1.27).

Implications for numerical methods

¢ Generally, one can observe that in the case of contact two different states of the
structural system are possible. One is related to the open gap, see (i), the other
to the closed gap, see (ii). Both cases were solved using a different equation
system, which means that the topology of the structure changes due to contact.
This points out one of the difficulties when solving contact problems: the system
matrix changes its size (or non-zero form) with active or inactive constraint
equations. As will be seen in later chapters, this can also include a change
of the topology when one finite element node moves during the deformation
process from one element to another.

e Furthermore, we have the choice between different methods for the treatment
of contact problems, including the LAGRANGE multiplier or the penalty for-
mulation. The former introduces additional variables in the system, but does
fulfil the constraint equation correctly; the latter leads to non-physical pene-
tration, but has no additional variables. So both methods have advantages and
disadvantages, which will be discussed in later chapters in detail, together with
techniques to overcome the problems discussed above.

1.3 THERMO-MECHANICAL CONTACT

Contact can occur in a coupled thermo-mechanical analysis when two bodies have
different temperatures. To show some of the main effects, the following example of
a bar which contacts a rigid wall is investigated.

We can consider a problem as specified in Figure 1.8. The bar is fixed at the left
end and heated at that point with a temperature of ¥J;. On the other side there is a
gap between the end of the bar and the rigid wall which has temperature ¥5. Hence
we have to distinguish two situations: contact of the bar with the wall (¢(1) = 9,),
and the open gap (J9(I) = 0). The material properties of the bar are given by the axial
stiffness EA and the coefficient of heat transfer ap. This system will be analyzed
under the assumption of steady state solution, thus time dependent solutions will not

'U]

Fig. 1.8 Contact of a bar due to thermal heating.
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be considered. Furthermore, the mechanical constitutive properties are assumed to
be independent of the temperature. For this we can write the following equations for
the mechanical and thermal problem:

Mechanical problem

d
Kinematics: Eel = ;l_z —ar (9(z) — o)
Equilibrium: do _ (1.34)
dr

Constitutive equation: o = E¢g

with a given reference temperature 9y, the stress o, and the elastic strain £¢; in the
z-direction and YOUNG’S modulus E.

Heat conduction
d
Heat balance: 4 _ 0
dz (1.35)
. . dd
Constitutive equation: ¢ = —k o
T

where ¢ is the heat flux, 9 is the temperature and % is the thermal conductivity in
FOuRIER’S law. Note that the assumption of steady state solutions has been made.
and no internal heat will be generated in the bar.

The differential equation which governs the mechanical behaviour of the bar results
from equations (1.34):

d [du
Ea—; C—i;—aT(ﬁ(x)—ﬂo) =0 (136)

in the same way, from (1.35) one derives

29

Iz = (1.37)

The mechanical and thermal problems are decoupled in the sense that the heat equation
does not depend upon the mechanical quantities. So one can always solve for the
thermal field 9(x) independently of the mechanical field. Coupling is present in the
case of finite deformations, and when dissipative processes like friction or plasticity
have to be considered. This will be discussed in detail in later chapters.

Within the analysis one has to distinguish two different solution states. In the first
the gap is still open, and in the second the gap is closed. This is the standard situation
when contact is present (see also the previous section).

i) Gap open (inactive constraint): in this situation no contact has been made.
Hence the inequality u < g is valid, together with the fact that no contact
pressure occurs. From (1.37) there follows a constant temperature distribution
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in the bar with ¥9(xz) = ;. Furthermore, the bar is stress free. Thus for
elongation of the bar, the solution yields

u=ar(h —v)l. (1.38)
Observe, that the gap closes for a temperature of

¥y = o + ﬁ}[ . (1.39)

i) Gap closed (active constraint): for a temperature which is larger than ¥, the gap

is closed. In that case, from (1.37) one obtains a linear temperature distribution

along the bar ¥(z) = 9 + (¥2 — Y1) when a perfect conductance is assumed

in the contact point. For the displacement the condition u = ¢ holds, and hence
the stress follows with (1.34) from

{

(2} . X

g = /{E+(Y¢ [(191 -’19())+'(192~191)’l*]}d17,
0

or . )
E[%"“ﬁ"((ﬂl*ﬂ?o)'*%)] : (1.40)
As long as the second expression is now larger than the first term, a negative
stress occurs in the bar, hence the contact stress is also negative and condition
(1.9) is fulfilled.

I

ag

However, if the temperature 15 is such that the second term in (1.40) is smaller than
the first term, then a positive stress occurs, which means that the gap opens up again.
This results in an on-off contact state, since after opening the temperature in the bar
again changes to the constant value 9, leading to contact. Hence the solution is no
longer stable. Since such a response has never been observed in experiments, one
has to reformulate the problem in such a way that this instability does not occur.
One method which yields a unique solution introduces a pressure-dependent heat
conduction h(o) at the contact point. Such constitutive response can also be derived
from micromechanical observations, e.g. see Section 10.2. A simple relation is given
by

o\’
h(o) = h, (ﬁ) (1.41)
with the thermal conductivity h. in the contact point, the hardness of the material H

and a positive exponent 3 which has to be determined from experiments. The heat
conduction in the contact interface is then given by

ge = h(o) (Y. — ), (1.42)
where 9. is the contact temperature. Since ¢, = —k %, from (1.41) and (1.42) one
obtains the differential equation

d
k% = h(o) 9. — 0s), (1.43)

dr ~
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Fig. 1.9 Pressure-dependent contact temperature 9.

which has the solution
19(1):/h——(’;72(192—19c)d1+0. (1.44)

Evaluation of this equation at the contact point ¢ by considering the boundary condi-
tion 9(0) = 9, yields

_ 9 +T]‘l92

c =

with = U2

4
1+79 £k’ (1.45)

which means that there is a jump in the temperature at the contact point, since 9. # 92.
The contact temperature is depicted in Figure 1.9 as a function of the dimensionless
parameter 7 which includes the pressure dependency (large 77 means a higher contact
pressure). The curve in Figure 1.9 is plotted for the values ¥, = 100K and ¥, = 20K.
The limit cases aren = 0 = ¥, = ¥; and p = oo = ¥, — 99, as can be
seen in Figure 1.9. Hence for small contact pressures, almost no heat is conducted
through the surface. Due to the possibility of incorporating a temperature jump at the
boundary, the solution of the thermo-mechanical contact problem is stable. However,
the solution for the contact stress now has to be computed from a nonlinear equation,
which follows from the condition © = g with (1.34) and (1.45):

)
I

1
/ Z+arfd + (e -9} de
0

- 9.9 07’2!91+TI(191+’92)
=0 = ] E 5 147 . (1.46)

where 7 is a function of o defined in (1.45) and (1.41).
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Implications for numerical methods

o Inthe case of thermo-mechanical contact, in general one has to solve a system of
coupled field equations which leads to algorithms for different problem classes
when non-stationary processes are involved, since the time dependency of the
heat conduction equation is first order, and second order for the equations of
the solid.

e In the contact zone a pressure-dependent constitutive equation is needed to
avoid instability. This means that one has to use a finite element discretization
technique for contact, which yields the contact pressure and not a contact force.

1.4 IMPACT

When two bodies which have different velocities come into contact an impact occurs.
Within an impact analysis one is interested in the velocities of the bodies after impact
and in the impact force as a function of time.

Here a one-dimensional example is discussed in which a bar of length I, impacts
another bar of length [5, see Figure 1.10. Both bars have the same material properties
EA, = EA; = EA and densities p; = py = p. The left bar has an initial velocity
of vg1, whereas the right bar is at rest.

The solution of this problem can be derived from the one-dimensional wave equa-
tion - )
9—3 =-—-pA Q_lf .
Ox? ot?
Furthermore, one has to fulfil the initial and boundary conditions of the problem
stated in Figure 1.10 and the standard contact conditions (1.10), which describe that
no penetration can occur at the contact point, and also that the contact force has to be
a compression force.

The solution of (1.47) is given by

EA (1.47)

u(t) = fx —cty + gz +ct) with ¢ = \/g, (1.48)

where ¢ denotes the speed of wave travelling in the bars. Function f corresponds
to a wave travelling in the z-direction of the bar, while g is associated with a wave

V) =Yg —> Uy =

Fig. 1.10 Longitudinal impact of two bars.
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travelling in the opposite direction. By differentiation of both sides of (1.48) with
respect to x and ¢, one derives

_ Ou

e=— = fAz—ct)+g'(z+ct), (1.49)
O
v:% = c[-f{z—ct) +g'(x+ct)], (1.50)
with f/ = % and g’ = % The identity
Ou Ou

follows by comparing the last two relations. Using (1.51), one can conclude that the
normal stress o in the bar is given by

a=Es=§%:pc%%, (1.52)
which shows that there is a linear relationship between the stress at any point in the
bar and the particle velocity. Hence when a wave travels with speed c along the bar,
there is also a stress pulse which travels with the same velocity. When such a pulse
reaches the free end of the bar, one can compute the behaviour of the pulse from the
condition that the end of the bar has to be stress free. This leads, with (1.50), to the
condition

c=FEu'({#)=0=E(f'{x—ct)+¢'(z +ct)) Vt, (1.53)

from which a relation between f’ and g¢' follows for the free ends at x = 0 and
=1 +1s,
flix —ct) = —g'(x +ct) Vt. (1.54)

Thus a reflection occurs at the free ends with equal amplitude in the stress pulse but
with opposite velocity. Furthermore, the initial conditions can be stated for the impact
of two bars described in Figure 1.10 as:

v:@f = c[-flz)+g(x)]=vgfor0<z <,
ot |,
v:%iti = c[-fl@)+g(x))=0forly <z <l +1. (1.55)
t=0
azE?—u = flz)+g(z)=0for0<z<l +1I.
oz |,_,

From these conditions follow the initial values of f' and ¢’ as

f{z) = g'(x):% for0<z <,
f’(l‘) =0 g’(l‘) =0 forli <z < L+1.

(1.56)
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The problem stated in Figure 1.10 can be solved with the relations stated above. Since
the left bar has an initial velocity of vg, one has a distribution of f’ and ¢, as shown
in Figure 1.11 for ¢ = 0. These are associated with two waves, one travelling in the
z-direction and the other in the opposite direction. Several states of the waves are
depicted at certain times in Figure 1.11 for the case in which bar 2 has length I, = 21;.
Figure 1.11 also shows the stress distribution due to the travelling strain waves. The
two bodies remain in contact until time T}, = 41; / ¢, which corresponds to the
time at which the reflected wave in bar 2 arrives at the contact point. Since the first
bar is stress free, this wave encounters a free end and hence does not enter bar 1, but
reflects due to the stress free boundary condition. After that time, the bars are no
longer in contact. The final velocity of bar 1 after impact is vy, = 0, and for bar
2 the velocity is then v2 . = vg /2. As can be seen in Figure 1.11, there is still an
oscillation due to the travelling stress wave in bar 2, whereas bar 1 is at rest. If one
assumes that both bars are made of steel (£ = 2.1 -10% kN/m?, p = 7.85 - 10°
kg/m?®), and that {; = 1 m, then the wave speed is ¢ = \/E /p = 5172 m/s, and
hence the impact time is Ty, = 4 /5172 = 7.73 - 10~* 5. If the initial velocity is
chosen to be 5 m/s, a stress amplitude of o = p c vy / 2 follows from equation (1.52).
This leads in this example to a stress of o = 7.85 - 10% - 5172 - 2.5 = 10.2 - 10* kN
/m?, which represents 42% of the yield stress (oy = 24 - 10*) of a standard steel.

It is interesting to note that the classical impact theory for rigid bodies yields,
under the assumption of an elastic impact, the final velocities v, = —vg /3 and
va. = 2vg / 3, which are different when compared to the wave solution above. This
is due to the oscillations remaining in bar 2 after impact, which is, as also the impact
time, neglected in the case of rigid body impact.

Another possibility to solve the wave equation (1.47) is by separation of variables.
Using

w(z, t) = v(x) 7(t) (1.57)
one derives
2o F ;
—_—= (1.58)
v T

which has the solution

[~

v(z) = A coskz+ B sinkzx

W
7(x) = acoswt+bsinwt = (1.59)

B ==

For the bar system with free ends, one obtains with the boundary conditions ¢(0) =
a(31;) = O the equation sin k(31;) = 0, which has the eigenvalues k,, (311) = n
forn =1.2,3... The related eigenfunctions are

T

’5!1

onlT) = (1.60)

which with (1.59) yield the solution

0
71’/(

u(z,t) = n:gs [an coqc3l t+b, qmcgll COS — 311 (1.61)
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which has to be adjusted to the initial conditions. These then lead to a FOURIER series
representation of the initial conditions in terms of sin and cos functions. Here details
will be omitted. They can be found in standard textbooks. However, note that there
are two possibilities for solving the impact problem. The latter has the inconvenience
that an overshooting can occur which is a high oscillatory result near the wave fronts.

Implications for numerical methods

e As shown above for impact problems, the impact time is very short and the
stresses generated are high. Hence, the numerical methods to solve impact
problems have to include nonlinear material behaviour and have to be designed
for short time responses.

o Due to the possibility of high oscillatory responses near wave fronts, one has
to be careful when constructing algorithms for impact problems, in the sense
that one should not destroy the wave front characteristics within the numerical
scheme.
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Continuum
Solid Mechanics
and Weak Forms

The deformation of solids is generally described by the kinematic relations, the equa-
tions of balance and the constitutive equations. This chapter summarizes the main
equations which govern the deformation of solids. For a detailed treatment of this
subject the reader should consult the literature, e.g. the standard books of Eringen
(1967), Malvern (1969), Truesdell and Noll (1965), Truesdell and Toupin (1960),
Ogden (1984) or Chadwick (1999).

2.1 KINEMATICS

2.1.1 Motion and deformation gradient

In this section we discuss the motion and deformation of continua. A body B can
be described by a set of points which are in a region of the EUCLIDEAN space IE*.
A configuration of B is then a one-to-one mapping ¢: B — IE3, which places
the particles of B in IE®>. The position of a particle X of B in the configuration ¢
is defined by x = ¢ (X). The placement of the body B is described by p(B) =
{@(X)| X € B} and therefore be denoted as configuration ¢ (B) of body B.

The motion of body B is then a temporally parametric series of configurations ¢, :
B — IE*. For the position of the particle X at time ¢ € IR" we have

x = (X) =@ (X.1). | 2.1

This equation describes a curve in IE* for the particle X. X = g (X) defines
the reference configuration of body B, where X is the position of particle X in this

19



20 CONTINUUM SOLID MECHANICS AND WEAK FORMS

configuration. With (2.1) we have

x = ¢ (o5 (X), 1) (2.2)

REMARK 2.1: Body B does not have to assume the reference configuration at any time.
Since the reference configuration can be chosen in an arbitrary way, it is often selected to coin-
cide with the initial configuration. Later, in the sections regarding finite element discretizations,
it will be advantageous to use a special reference configuration, e.g. for isoparametric ele-
ments, which can be handled in a simple yet somewhat artificial manner.

For practical applications we do not need to differentiate between X and X . This
simplifies the notation, and we can write (2.2) as

x=p(X,1), (2.3)

where X depicts the position of particle X in the reference configuration B. With
this, the positions x and X are described as vectors in IE2 with respect to the origin O,
as shown in Figure 2.1. The point X is denoted in the reference configuration by the
position vector X = X4 E4. Here E4 defines an orthogonal basis in the reference
configuration with origin Q. Therefore (2.3) can be written in components:

T = @i (Xa.t). (2.4)

In the following by indices in capital letters we will denote components of vectors
and tensors if these refer to the basis E 4 of the reference configuration. X 4 are
the LAGRANGE coordinates of the particle X. Small letters are used for indices
which refer to the basis e; of the spatial or current configuration. The quantities T;
denote the spatial coordinates of X. To simplify notation, we employ an orthogonal
Cartesian basis. This coincides with the finite element method, since isoparametric
interpolations are always defined in an orthogonal Cartesian basis. The change to
arbitrary curvilinear coordinates is a purely technical matter.

Fig. 2.1 Configurations of body B.
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The equations of mechanics of continua can be formulated with respect to the
deformed or undeformed configuration of a body B. From the theoretical standpoint,
there is no difference whether the equations refer to the current or, the reference con-
figuration of the body. However, one should consider the implications due to physical
modelling, as in plasticity. When formulating numerical methods for continua, con-
siderable differences in efficiency can occur when the equations are related to either
the spatial or the reference configuration. Thus we will define strain measures with
respect to both configurations. Within this discussion, we denote by small letters
tensors which refer to the current configuration ¢ (B), and we use capital letters for
the reference configuration B.

To describe the deformation process locally, we introduce the deformation gradient
F which maps tangent vectors of the reference configuration to tangent vectors in the
spatial configuration. It is a tensor which associates to a material line element dX in

B the line element dx in ¢(B):
dx = FdX|. (2.5)

The components of the deformation gradient follow from the direct notation F =
dx / 0 X as partial derivatives Oz; / 0X 4 = x; 4. With (2.3) and (2.4) we obtain

F=Gradp(X,t) = Filae; RE4 = %}—e,@EA . (2.6)
A

Since the gradient (2.6) is a linear operator, the local transformation (2.5) is also linear.
To preserve the continuous structure in B during the deformation, the mapping (2.5)
has to be one-to-one, i.e. F cannot be singular. This is equivalent to the condition

J=detF#0, 2.7)

where J defines the JACOBIAN determinant. Furthermore, to exclude self-penetration
of the body, J has to be greater than 0. Thus its inverse exists, which is denoted by
F~!. With this we can invert equation (2.5):

dX = F'dx. (2.8)

The inverse of the deformation gradient has the following form:

Ox; -1 BXA
F'=(F4) 'Es®e ith (Fja)™'= - = 2.9
< (A) A w1 ( 1A) aXA 637@' 3 ( )
where X = ¢! (x).

It is well known that the deformation gradient F can be decomposed by the polar
decomposition theorem into a stretching and a rotational part, e.g. see Malvern
(1969):

F=RU=VR, Fia=RipUpa = Vit Rra, (2.10)
where U is the right stretch tensor with a basis in the reference configuration, and V

is the left stretch tensor which is an object in the current configuration. The rotation
tensor R is a two-field tensor which connects both configurations.
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@(B)

Fig. 2.2 Transformation between area and volume elements.

Once the deformation gradient F is known, transformations of area and volume
elements between B and ¢(B) can be derived. The transformation of area elements
between B and (B) is given by the formula due to NANSON (see e.g. Ogden (1984),

pp- 88):

|da=nda=JFTNdA=JF TdA|. @.11)

In this equation n is the normal to the surface of ¢(B) and N denotes the normal to
the surface of B (see Figure 2.2). .J is the JACOBI determinant defined in (2.7) and
da (respectively d A) are the surface elements in the associated configuration. For the
transformation of volume elements from the reference to the spatial configuration,

we have
[dv=Jav]. 2.12)

With the introduction of a displacement vector u(X, t) as the difference in position
vectors of a point in the reference and current configurations,

u(X,?) = p(X,t) - X, (2.13)
we can write for the deformation gradient (2.6)
F=Grad[X+u(X,t)]=1+Gradu=1+H, (2.14)

where H = Grad u is the displacement gradient with respect to X.

2.1.2 Strain measures

In this section we describe different strain measures which will be applied later. One
of the most common strain measures is the right CAUCHY—-GREEN tensor C, which
refers to the initial configuration B

[c=F"¥] @.13)
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Since this strain measure is not zero at the initial state (there wehave F = 1 = C = 1),
it is convenient to introduce the GREEN-LAGRANGIAN strain tensor E which refers
to the initial configuration B

E =

- 1 1 ‘
(FJF—l):—Q—(C—l), Eap =5 (Fia Fip = dap) |- (2.16)

B[ =

In (2.16) C = FT'F is the positive definite right CAUCHY-GREEN tensor which
expresses the square of the infinitesimal line element dx via the material line element
dX by dx - dx = dX - CdX. Thus the strain E is the difference of the square of the
line elements in B and ¢ (B). Furthermore, we have C = UT U = U2

The spectral decomposition of C can often be advantageous when hyperelastic
constitutive equations have to be formulated. We have

3
C=>) XNN;aN|, (2.17)

i=1

where \; and N; follow from the eigenvalue problem
(C=X)N; =0. (2.18)

Based on the spectral decomposition (2.17), we define more general strain mea-
sures:
1 3 1 3
@ o _ 9N, R °_ 1)n; @ n, 2.19
B = =2 W -DNi®N: and e =3 (\F-Dm@n. (219
i=1 i=1
E“ refers to the reference configuration, and e has its bases in the current configu-
ration. As special cases we obtain the GREEN-LAGRANGIAN strain tensor

3
1,
E=) 5O -1)N®N;. (2.20)

i=1

With respect to the current configuration, the ALMANSI strain tensor

€ =

I3

1. . )
(1-b"), en= 5 [0k — (Fia) " (Fra)™ '] (2.21)

DN =

is often applied. It is defined with the left CAUCHY -GREEN tensor b = FFY. The
ALMANSI strain tensor is connected to the GREEN—LAGRANGE strain tenor via the
following transformation:

E =FTeF, (2.22)

which can easily be verified with (2.21).
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2.1.3 Transformation of vectors and tensors

Since we know the transformation between differential elements in the reference and
current configuration, we can also transform vectors or tensors from reference to
current configuration, and vice versa. This stems from the fact that the base vectors
can be viewed as differential line elements.

If we transform a quantity from the current to the initial configuration, we call this
transformation a pull back operation, see Marsden and Hughes (1983). A transfor-
mation in the other direction is considered as a push forward operation.

For the gradient of a scalar field G(X) = g(x) = g[e(X)], we have

0G _ 0Og Ox;
6XA - 8.’[,’ 8XA ’
gradg = F TGradG. (2.24)

GradG = FT gradg <— (2.23)

In an analogous way, for the gradient of a vector field W(X) = w(x) = w[p(X)]
we obtain

GradW = gradwF <= gradw = Grad WF'|. (2.25)

An application of these general results is given by the computation of the defor-
mation gradient in terms of the displacement field u [o(X)]. Using (2.14) and (2.25)
yields

F = 1+ Gradu,
1 = F!4+GraduF!,
=F! = 1- gradu. (2.26)

Thus the inverse of the deformation gradient can be computed from the displacements
that refers to the current configuration.

REMARK 2.2 : In the case of small deformations, theGREEN-LAGRANGIAN strain tensor
E can be written in terms of the displacement field. Since the deformation gradient can be
reformulated as F = Gradx = Grad X + Gradu = 1 + gradu, by neglecting the nonlinear
terms, one obtains from (2.16)

e(n) = % (Gradw + Grad"u) . (2.27)

2.1.4 Time derivatives

The dependency of the deformation ¢ (X, t) on the time must be considered in non-
linear problems when either the constitutive relations are time- or history-dependent,
as in the case of friction, or if the complete process is time-dependent, like an impact
problem. Here we compute the time derivatives of kinematical quantities.
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The velocity of a material point in the reference configuration is defined by the
material time derivative

vx0 =22 =), (2.28)

In the current configuration, we write for the velocity v of a particle, which is a point
X at time ¢ in @(B),

V(x.t) =V (p(X;t),t) = v(x,1). (2.29)
In an analogous way, we obtain the acceleration by differentiation of the velocity
a=¢(X,t)=v(X,1). (2.30)

Using this definition, the acceleration with respect to the current configuration yields,
with (2.29) and the chain rule,
ﬁ:fl:gz[if(cp(x,t),t)]:%‘é-{-grad@@. (2.31)
The first term is known as the local derivative the second term is the convective part
of the time derivative. The local time derivative is computed by fixing the spatial
position. Time derivative (2.31) must be applied to Eulerian descriptions of motions,
which is mostly the case in fluid mechanics.
The time derivative of the deformation gradient F, with (2.6), (2.28) and (2.25),
yields
F = Grad¢ (X,t) = Gradv = grad vF. (2.32)

The spatial velocity gradient in (2.32) is often described by 1. With (2.32) we can
define the spatial velocity gradient by F:

1=FF!. (2.33)

Equation (2.32) can now be applied to compute the time derivative of the GREEN—
LAGRANGIAN strain tensor (2.16):

o % EFLETR|. (2.34)

The time derivative of E can be rewritten with the last relation in (2.32):
. -1 - .
E:F7§(l+lI)F=F7dF. (2.35)

This equation has a structure similar to (2.22), and hence it denotes a pull back of the
symmetrical spatial velocity gradient

d= % (+17) (2.36)

to the initial configuration.
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2.2 BALANCE LAWS .

The partial differential equations which represent the local balance laws of continuum
mechanics are summarized in this section. For a detailed derivation, see (Malvern
(1969), Chap. 5) or Marsden and Hughes (1983) for example.

2.2.1 Balance of mass

The balance of mass m of a body is given by the relation

m:/podV: / pdV = const. |, (2.37)
B ¢(B)

where pg is the density in the initial configuration and p the density in the current
configuration. Within the LAGRANGE description of a motion, we can conclude,
assuming sufficient smoothness, that py = J p. This equation yields a relation for
the volume elements in the initial and current configurations

dv = % dv = Jdv . (2.38)

2.2.2 Local balance of momentum and moments of momentum

The local balance of momentum with respect to a volume element in the current
configuration ¢ (B) can be written as

divo +pb=pv, oui+pbr=pix. (2.39)

In this equation o denotes the CAUCHY stress tensor. In (2.39) p b defines the volume
or body force (e.g. due to gravitation). pv is the inertia force term, which can be
neglected in the case of static analysis. Furthermore, we have the CAUCHY theorem,
which relates the stress vector t to the surface normal vector n by

t; 011 021 031 n
t=o0'n, t;=ouni, ta p=| 012 022 O3 ny p . (2.40)
t3 013 023 033 ng

This relation has been stated here in direct notation, index and matrix notation.

The local balance of angular of momentum in the absence of micropolar stresses,
which is usually the case in non-magnetic materials (e.g. see Truesdell and Toupin
(1960)), yields

o=oT, Oik = Oki |, (2.41)

which dictates the symmetry of the CAUCHY stress tensor.
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2.2.3 First law of thermodynamics

A further balance law postulates the conservation of energy of a thermodynamical

process. This is the first law of thermodynamics. This law states that the change of

totat energy F is induced by mechanical power P and heat transfer () into the system:

E = P+ (). Within continuum mechanics, ignoring magnetism, etc., the mechanical
power is defined by

=2 [ lyvaws [ o aa (2.42)

—Jt— / §pv-v L—\‘-/ o-ddv, 2.42)

&(B) ¢(B)

and thus by the material time derivative of the kinetic energy and the stress power
of the CAUCHY stress tensor and the symmetrical spatial velocity gradientd, o - d,
which contributes to the internal energy. The heat input into the system

Q:—/ q-nda + / prdv (2.43)
¢(88) #(B)

has two sources: the heat transfer through the surface of the body, described by the
heat flux vector q; and the surface normal n, and an internal heat source r. The total
energy consists of the kinetic energy K = f¢(3) %/)V - vduv and the internal energy

U= fw(B‘) pu dv (u is the specific internal energy). Introducing all relations into the

equation 5 = P + () yields, after some transformations, the local form of the first
law of thermodynamics:

{pu:a-d—i—pr—divq7 pu=opdi+pr—qi;l. (2.44)

In this equation the term o - d denotes the specific stress power.
In the framework of the constitutive theory, the free HELMHOLTZ energy is often
introduced, which is defined by

Ww=u—nb, (2.45)

where 7) is the entropy of the system and 6 the absolute temperature. With this
transformation the first law of thermodynamics can be written as

ptj):a-d+pr—divq~176—né. (2.46)

2.2.4 Transformation to the initial configuration, different stress
tensors

Equations (2.39) and (2.41) refer to the current configuration. Often one needs a for-
mulation of these equations in quantities which are related to the initial configuration
B. For this transformation, also often called pull back, we define more stress tensors,
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which follow from the equivalence of a force which is defined in B and (B):

/ anda:/aJF‘TNdA-_-/PNdA. (2.47)
8¢ (B) oB oB

This relation defines the first PIOLA-KIRCHHOFF stress tensor P. We have the
transformation

P=JoF T Ps=Jou(Fia)™? (2.48)

between the CAUCHY and the first PIOLA-KIRCHHOFF stresses, which are the actual
stresses in terms of the area of the initial configuration. Since in equation (2.48)
the spatial quantity o is only multiplied on one side by F P, it is a so-called two
field tensor where one base vector lies in B and the other in p(B). After some
manipulation, we can now transform the local balance of momentum (2.39) to the
reference configuration

DIVP+pgb=poVv]|. (2.49)

However, when using (2.48) in the balance of angular of momentum (2.41), we see
that the P10LA-KIRCHHOFF stress tensor is general in nonsymmetric: PFT = FPT.

A symmetric stress tensor which is defined with regard to the reference configura-
tion is the second P1IOLA-KIRCHHOFF stress tensor, which follows from the complete
pull back of the CAUCHY stress tensor to the reference configuration B:

S =F!P=JF'oFT,

Sap = (FAi)_l Pg; = J(FA;’)_I Uik(FkB)-l ) (2.50)

S does not represent an experimentally measurable stress. However, it is an essential
stress measure that plays a prominent role in the constitutive theory. It is “"work
conjugated” (duality paired) with the GREEN-LAGRANGIAN strain tensor (2.16).

Besides the CAUCHY stress tensor o, the KIRCHHOFF stress tensor 7 is often
employed, which is defined as the push forward of the second P1OLA-KIRCHHOFF
stress tensor S to the current configuration

r=FSF', r=Jo. 251

The transformation of the first law of thermodynamics (2.44) to the initial config-
uration yields, with (2.35),

Jo-d= (FSFT). (FTEF')=S.E. (2.52)

Furthermore, for (2.38) we have

poU=8-E-DivQ+pR, poU = SapEap —Qaa+poR.| (253)

where the internal energy, U, the internal heat source, R, and the heat flux, Q, are
referred to the initial configuration. With (2.51) or (2.16) we can also state the stress
power (2.52) as

S-E=-§-C=71-d (2.54)
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2.3 WEAK FORM OF BALANCE OF MOMENTUM, VARIATIONAL
PRINCIPLES

For the solution of boundary value problems stemming from the continuum, we
shall employ numerical methods based on variational formulations. Thus we need
associated formulations, which are given in the next sections.

2.3.1 Weak form of balance of momentum in the initial configuration

The principle of virtual work is an equivalent formulation of the balance of momentum
which often — due to its reduced regularity requirements — is called the weak form of
equilibrium. Since no constitutive equations enter a priori the weak form, it is valid
for all problem classes, including plasticity, friction or non-conservative loading. The
derivation of the weak form starts from the local equilibrium equation (Div P+ po b =
po V), which is multiplied by a vector valued functionn = {n|n = 0 on dB,} -
often called a virtual displacement or test function. Integration over the volume of
the body under consideration yields

/DivP-ndV+ / po(b—¥)-ndV =0. (2.55)
B B

Partial integration of the first term and use of the divergence theorems leads, with the
boundary conditions, to the weak form of

G(go,n)=/P-GradndV—.fpg(b—V)-ndvu / t-ndA=0. (2.56)
B B a8,

The gradient of ) can also be viewed as a virtual variation d F of the deformation
gradient

OF = ;—i [F(x +en)] (2.57)

e==0
In (2.56) we can exchange the first PIOLA-KIRCHHOFF stress tensor with P = F S
by the second PIOLA-KIRCHHOFF stress tensor:

, 1 - .
P-Gradn:S-FFGradn:S-E(FlGradn—kGradTnF):SﬁE, (2.58)

where the variation of the GREEN-LAGRANGIAN strain tensor, computed according
to (2.57), has been used. Note that JE = %60 In (2.58) one makes use of the

symmetry of S so that the antisymmetric part of F? Gradn disappears in the scalar
product. With (2.58) we can rewrite (2.56) as

l

G(go,n):/S-éEdV—/pg(f)—\'r)~nd,l~'— /E-ndA:o (259
| B B 8B,
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The first term in (2.59) denotes the virtual internal work or the stresg divergence, and
the last two terms contain the virtual work of the external forces. This equation can
be written in index notation as follows:

G(‘P’n):/SABJEABdV—]PO(EA—i)A)nAdV'_ / tanadA =0.
B

B 8B,
(2.60)

We note the equivalence of the strong form, (2.49), and the weak form, (2.59),
provided the solution is smooth enough.

2.3.2 Spatial form of the weak formulation

The transformation of the weak form (2.56) to the current configuration follows by
pure geometrical operations. For this purpose we need to transform the associated
tensors by push forward operations to the current configuration p(B). With the
transformation of the first PIOLA-KIRCHHOFF stress tensor to the CAUCHY stress
tensor (see (2.48)), 0 = -}— PFT, and by using (2.25) we derive

P-Gradn=JoF T -Gradp=Jo -GradnF~ ! = Jo-gradyp.

Furthermore, as dv = J dV and thus p = pg J is valid, we can transform the weak
form (2.56) into the current configuration:

gle,m) = / o-gradndv—/p(l_)—i')-ndv— / t-npda=0. (2.61)
©(B) ©(B) »(8Bs)

In this equation the result from (2.47) has been used to transform the stress vector t
into p(B). Symmetry of the CAUCHY stress tensor enables us to replace the spatial
gradient of i by its symmetric part. Hence, with the definition

1
Vin = 2 (gradn + grad” ), (2.62)

it follows that

g(eim) = /U-Vsndv— /p(ﬁ—w-ndv— / t-mda=0|
»(B) »(B) »(9B,)

(2.63)
This relation has exactly the same structure as the principle of virtual work in the
geometrically linear theory. The difference, however, is that all integrals, stresses
and gradients have to be computed with respect to the current coordinates, which
reflects the nonlinearity of (2.63).

2.3.3 Minimum of total potential energy

In the case of a hyperelastic material there exists the strain energy function " (see
Section 2.4.1) which describes the elastic energy stored in a body B. Based on
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this function, the classical minimum principle of the total elastic potential can be
formulated. For this also one has to consider the potential energy of the forces applied.
We assume that these forces are conservative (meaning they are path-independent).
Neglecting dynamical effects, we obtain

IT(p) = /[W(C) —pob-p]dV - / t-@pdA = MIN|. (2.64)
B 0B,

Out of all possible deformation states ¢, the one which minimizes II fulfils the
equilibrium equations. The minimum can be computed by a variation of (2.64). It
is related to the weak form (2.59). This can be shown by applying the directional
derivative, which leads to the so-called first variation of II:

=Dl (p) n= —d—H(<p+(H7) (2.65)
do =0
In explicit form we obtain
ow - o - Lo y
DIl(p)-n = [%-OL—pobn]dY"-— t-ndA =G(p,n) =0. (2.66)
B 8B,

The variation of the right CAUCHY—GREEN tensor dC can easily be expressed in
terms of the GREEN—-LAGRANGE strain tensor: 20C = JE, see also (2.58). The
partial derivative of W with respect to C leads, with 20W / 8C = 8§, to the 2.
ProLa-KIRCHHOFF stress tensor, see Eq. (2.67) in Section 2.4.1. Hence (2.66) is
equivalent to the weak form (2.59).

The construction of a minimal principle is important in several respects, since it
enables investigations regarding the existence and uniqueness of solutions. Further-
more, special solution methods can be developed on the basis of a minimal principle
which are efficient and reliable.

2.4 CONSTITUTIVE EQUATIONS

Since contact takes place at the interface between bodies, the constitutive laws for the
bodies coming into contact which describe the material behaviour within the bodies
can be arbitrary, and do not affect the main formulation of contact problems. However
it is clear that the physical properties of the surfaces of the bodies are influenced by
the general constitutive behaviour. Thus, to include a nonlinear constitutive equation
valid for large deformations, we discuss finite elasticity. Of course, we can consider
more complicated constitutive relations which can also be of inelastic nature, but this
is not the aim of this book and we refer to Desai and Siriwardane (1984), Lubliner
(1990), Khan and Huang (1995) or Simo and Hughes (1998) for example.
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2.4.1 Hyperelastic response function

Throughout this section we briefly discuss hyperelastic constitutive relations. For
more detailed information, see Ogden (1984) for example. These can be applied to
describe the constitutive behaviour of rubber or foam for instance. In the case of
small deformations, these constitutive equations reduce to the classical HOOKE's law
of linear elasticity.

The constitutive equation or response function for the second PIOLA-KIRCHHOFF
stress is, in the case of a hyperelastic material, given by the partial derivative of the
strain energy W function with respect to the right CAUCHY—GREEN tensor, e.g.
seeOgden (1984),

W (C,X) Sup=2WECX]

=2
S ocC ’ 0Cas

(2.67)

This response function represents a constitutive relation which fulfils the require-
ments of frame indifference, and hence is objective. In the case of a homogeneous
material, the strain energy W does not depend upon X. Here we restrict ourselves
to homogeneous isotropic materials. Thereafter, the strain energy function can be
specialized, and is represented by an isotropic tensor function

W(C)=W(Ic, IIc, I11c). (2.68)
The second P10LA-KIRCHHOFF stresses now follow with (2.67) by using the chain

rule

oW oW oW oW
o (e Y N1 -2 et
§=2 [ (aIC e gt ) arie © T e gt

Cll. (69

Within this equation, the following results for the derivative of invariants with respect
to tensors have been used:
olc ol ¢ olll:

ac -V B¢ ~le1-C ¢

For the special choice of the strain energy function W, we obtain the simplest pos-
sible response function, which is known as compressible NEO-HOOKIAN material.
We choose

=III-C . (2.70)

1
W(IC,J)=9(J)+§ﬂ(Ic-—3)- (2.71)

For compressible materials, function g(J) in (2.71) has to be convex. Furthermore,
the following growth conditions must hold:

Iim W - and lim W — —oc. (2.72)
J—+o00 J—0

These conditions are equivalent with the conditions that the stress for a deformed
body whose volume goes to zero has to go to —oo, and for a deformed body whose
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volume goes to +oo the stress also has to go to +occ. These growth conditions are
fulfilled when the compressible part g(.J) is chosen, according to, Ciarlet (1988), as

g()=c(J*=1)—dInJ —pln,J with ¢>0,d>0. (2.73)

The response function of the NEO-HOOKIAN material (2.71) now follows with (2.69),
and for the second PIOLA-KIRCHHOFF stress tensor yields

s = ﬁz\.(.]‘z—1)c—1+u(1—c*1); (2.74)
A, _ . _
Sap = §(J“—1)(CAB) Y+ uléap — (CaB)'].

where the constants ¢ and d have been chosenas ¢ = A/4andd = A /2. The
material constants A and p are the LAME constants, which have to be determined by
experiments.

Note that with Definition (2.51), the KIRCHHOFF stress can be written in terms
of quantities define in the initial configuration:

WO ey WO

TR : A 8C

Fip.

From this form, the KIRCHHOFF stress is given with (2.69) by

W oW s OW - oW -
= bl FT _
=2 {(Mp +1c 61%) F 571 FCF! + e 5rm-FC 'F

Since the invariants of C and b are equal using FC™'F’ = 1 one derives

aw oW W ow
T=2 [( a1, " an,,) b o Y+ b g 1}

Comparing this result to (2.69), the KIRCHHOFF stresses can also be derived from

o(b)
=2b (2.75)

directly in term of spatial quantities.

Equation (2.74) can also be transformed directly into the current configuration
by the standard push forward operations. We note that the CAUCHY stress tensor is
related, via o = J~ ! FSFT, to the second P1o1.A- KIRCHHOFF stresses, see (2.50).
With this, after some manipulation we obtain

A 5 5
o = ;]-(J —1)1+~(b——1), (2.76)

A
Oik = 2—j (Jz 1 ) Oik + (bzk dik ) . .77
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2.4.2 Incremental constitutive tensor

To derive the incremental constitutive tensor we have to compute the rate of the
response function (2.67). Thus, the response function must be differentiated with
respect to time. This leads to

W

scac (€l (2.78)

S$=2
and hence to an incremental relation between the rate of the second P1oLA-KIRCH-
HOFF stress tensor S and the right CAUCHY-GREEN tensor C. With the definition
of a fourth order incremental constitutive tensor

oW W
C=4——. =4 |, 2.79
Yacac: Caser=dgemeo | 27
for (2.78) we obtain
. 1. . 1.
S=C| 3 Cl, Sap =CaBcp §CCD. (2.80)

The push forward of equation (2.80) to the current configuration yields, with the
LiE-derivative of the KIRCHHOFF stress tensor,

(CoT)ik = Fia Sap Fis . (2.81)

and with the time derivative of the right CAUCHY—-GREEN tensors, see (2.16) and
(2.39), )
Ccp = 2Fic dim Finbp (2.82)

the relation
(LyT)ik = Fia Fic Foup FiBCaBep dim - (2.83)

d is the symmetrical spatial velocity gradient, see (2.36). Since in (2.83) each base
vector of the incremental constitutive tensor € is transformed by F, we can define a
spatial incremental constitutive tensor € as

Ciktm = Fia Fic Frup FrCaBep - (2.84)
This leads to the compact form of: (2.83)
(Ls T)ik = Ciktm dim . L. =ca[d]. (2.85)

Thereafter, we derive the incremental constitutive tensor for the constitutive equa-
tions (2.74) and its push forward to the current configuration. The response function
(2.74) depends upon the deformation via the inverse of the right CAUCHY-GREEN
tensor and its determinant: J = \/III¢. Thus for the computation of € using (2.79).
the derivatives of J and C™' with respect to C have to be computed.
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With (2.63) the derivative of the JACOBIAN is

SZ = -;—J c. (2.86)
The derivative of C™! follows from relation, (.—3?9(—” [Canm 0174]13 ]=0,as
oCy} o
3(;?,?) =~CicChp - (2.87)

Since C is symmetric we only need the symmetrical part of (2.87), and introduce the
fourth order tensor L ~-1 which has the index notation

1 v~ — Y — —
Ie-1aBep = 3 (Cac Cpp +Cap Cre) - (2.88)

With these preliminaries the constitutive tensor can be derived. After some algebraic
manipulations, we obtain

C = AFPC'oC ! +[2p—A(J?-1)]Tp-1,
AJPCLLCoh+ 12— A(J* = 1)1 apep. (2.89)

Il

Capcep

Transformation of the incremental constitutive tensor € to the current configuration
yields, with (2.84) and

—1 =1 1 =1 =1 =1 v . ¢ . ¢ .
CJAC' CBD = FpA FpC' ,FqB Fq]) Fia Fic Fyup Frp = ()pi 61)[ qu oqm = 0i1 Ok
the incremental constitutive tensor in p(B):

¢ = AJP1e1+[2p-A(J?-1)]T,
Ciklm = A Jz 57',1‘: 5!m + [2 H— A ( ']2 ~1 ) ] ]Iil.'lm s (2.90)
where 1 is the second order unit tensor and I is a fourth order unit tensor. Both

tensors are related to the current configuration. Tensor I has, in index notation, the
form

[NREE

Likim = 7 (8it Okm =+ Gim Okt ) - (2.91)

For a formulation of the equations of elasticity for numerical treatment within the
method of finite elements, it is preferable to have the matrix representation of equation
(2.85). For this purpose the components of the LiE derivative of the KIRCHHOFF
stresses and the symmetrical spatial velocity gradient d are represented in vector form.
In that case, the incremental constitutive tensor (2.90) is a matrix which can be used
to compute the incremental KIRCHHOFF stresses once d is known,

t:'u T=Dd ’ (292)



36 CONTINUUM SOLID MECHANICS AND WEAK FORMS

or explicitly
LyT14 2u+A  AJ? AJ2 0 0 O di
L:UT22 AJ2 2[[+A AJ2 0 0 0 d22
LyT33 _ A J? AJ? 2u+A 0 0 O ds3
[,1,7'12 - 0 0 0 a 0 0 2d12
LUT23 0 0 0 0 a O 2d23
‘CUTal 0 0 0 0 0 [0 2d31
1
with a=p,—§A(J2—l). (2.93)

The deformation gradient F is equal to 1 in the undeformed initial configuration.
Hence, also C~! = 1 and J = 1. Thus, when the incremental constitutive tensor in
(2.89) is evaluated at the undeformed state in the initial configuration, we obtain

Co=A1®1+2u0. (2.94)

This equation also follows directly from (2.90) since for F = 1 the initial and current
configuration coincide. The constitutive tensor € is identical to the elasticity tensor
of the geometrical linear theory of elasticity. Its matrix form is

o=Dge, (2.95)
or explicitly,
o11 2[1. +A A A 0 0 0 €11
029 A 2u+ A A 0 0 O €29
033 _ A A 2u + A 0 0 O €33
O12 - 0 0 0 u 0 O 2¢€12 (2.96)
d23 0 0 0 0 1 0 2 €23
031 0 0 0 0 0 p 2¢€31

2.5 LINEARIZATIONS

Different phenomena lead to nonlinearities in continuum mechanics. There are ge-
ometrical nonlinearities, nonlinearities stemming from the constitutive equations, or
nonlinearities due to unilateral boundary conditions, as in contact. Linearization of
the mathematical models is necessary once the associated initial or boundary value
problems have to be solved. Especially for numerical methods like the finite ele-
ment method, it has been proven that NEWTON’s method is a very efficient solution
algorithm for nonlinear continuum problems.

Thus it is necessary to have a mathematical tool which allows us to compute
linearizations of nonlinear continuum problems. The purpose of this section is to
provide these mathematical tools, and to apply them to kinematical relations, to
constitutive equations and to the weak forms. Mathematical details are omitted, but
they can be found for example in Marsden and Hughes (1983).
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Fig. 2.3 Linearization of f at .

The idea of the linearization process will first be described by means of an example.
Let us introduce a scalar valued function f which is continuous and has continuous
first derivatives (C*-continuity). Under this assumption it is possible to express f by
a TAYLOR series expansion at :

f@+uwy=f+Df-u+R. (2.97)

In this equation the following notation has been used: f = f(%) and Df = Df(Z).
The operator D denotes the derivative of f with respect to . The “-” is in this case
a simple multiplication. w is an increment and the residual term R = R(u) has
the property lim,,_,¢ sz% —+ 0. Figure 2.3 depicts the geometrical interpretation of
equation (2.97). With u being the independent variable and Z a fixed coordinate in
(2.97), the tangent to the curve described by f at Z is

fuy=f+Df-u (2.98)

which touches the curve in (Z, f). The linear part of f(z) in z = Z defines the
linearization

L[ fle=z = fl(u). (2.99)

This result for the one-dimensional case can be extended to scalar valued functions
in three dimensions. The f is a function of (x). The TAYLOR series expansion is
then

fX+u)=f+Df -u+R (2.100)

Here X is a point in three-dimensional space, and u is a vector with its origin in X. We
obtain, with the definitions,

f=f(x) and Df=Dfx = % B (2.101)
X=X

where D f denotes the gradient vector of f at X. Equation (2.100) can be written as

f(X+u) = f+Grad f(X) -u+ R. (2.102)
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The product “-” in (2.102) is now a scalar product between two vector. Now the
directional derivative of f is computed at X in the direction of u. The directional
derivative is defined by

d _
E[f(x+€“)]

e=0
where € is a scalar parameter. Since X + e u is a line in the three-dimensional space,

the directional derivative measures the increment of f in the direction of this line in
X. The computation of the directional derivative follows with the chain rule as

.:[6ﬂi+em'86+ew} _9f()
=0 €e=0

4 1 p+ew)

ox Oe ox

A comparison yields that the directional derivative

=Df-u

e=0

41+ ew)

is in coincidence with the tangent to f in X. Thus the linear part of f at X is given by
the value of f and the directional derivative at X. The directional derivative is a linear
operator, hence rules for standard derivatives like the product rule apply.

The directional derivative for infinite dimensional function spaces is given by a
formal application of the foregoing results. Hence, one can consider the following
C'-mapping, G : £ — F, where X, u are points in the associated space:

G(x+u)=G+DG-u+R. (2.103)

Here now the “-” is the inner product of the elements characterizing the associated
space. Again, the directional derivative is

d%[G(i+eu)] =DG-u (2.104)

e=0
Thus the linear part of the mapping at X is
L[G).=z =G+ DG -u. (2.105)

Here elements describing the space under consideration can be scalars, vectors or
tensors.

To simplify notation, the directional derivative D G - u will also be written as AG.
Here the bar denotes the evaluation of G at point X.

Tensors which refer to the current configuration are linearized by first perform-
ing a pull back transformation, see (B.7), to the reference configuration. There the
linearization is computed according to the rules stated above, and then the result is
transformed back to the reference configuration (push forward operation). Note that
the pull back and push forward operations depend upon the description of the tensors,
e.g. a covariant tensor has a different pull back than a contravariant tensor. Thus
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for tensors 7 which refer to a covariant base (e.g. stress tensors), the directional
derivative has the form

Dr-u=F{D[F'rF T].-u}F". (2.106)

In an analogous way, a tensor which refers to a contravariant base like a strain tensor
has the directional derivative

De-u=FT{D[FleF]-u}F'. (2.107)

2.5.1 Linearization of kinematical quantities

The linearization of strain measures is described in this section in detail for strain
measures referring to the initial and the current configuration.

The first strain measure which will be discussed is the GREEN-LAGRANGIAN
strain tensor (2.16). The linear part is given with (2.105) as

L(E],.; =E+DE-u=E+AE, (2.108)
where the directional derivative DE - u = AE has to be computed according to
(2.104)

DE-u = [%FT(¢+eu)F(¢+eu)—1]

4
de e=0

AE = -2-[1?[ Gradu + Grad"uF]. (2.109)

This result is linear in w and depends upon the deformation at ¢, which is represented
by F. The computation of (2.109) at ¢ = X yields the linear strain tensor

1 :
L[E],—x =0+ §[Gradu+Grad7u]. (2.110)
As a next strain measure the ALMANSI strain tensor, e = 1 (1 —b™"), is con-
sidered, which refers to the current configuration. First one has to compute the pull

back of e using (2.22), and then apply the directional derivative. This result is then
pushed forward to the current configuration

De-u

__T o 1 - T
F'{DE -u}F 1=§(GraduF '+ F 7 GradT u)

1 o
= 3 (gradu + gradT u) = V5Au. (2.111)

Comparison of this result with (2.109) shows that
AE = F'VSAuF, (2.112)

and thus the linearization of the ALMANSI strain tensor leads to the same structure as
shown in equation (2.35) for the time derivative of the GREEN--LAGRANGIAN strain
tensor.
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2.5.2 Linearization of constitutive equations

Linearization of the constitutive equations can be computed for hyperelastic response
functions in an analogous way as that for the time derivatives. For inelastic constitutive
equations, the linearization depends upon the algorithm which is used to integrate
the evolution equations, and thus the linearization can only be computed once the
integration algorithm is known. Here we only consider hyperelastic constitutive
equations.

The hyperelastic constitutive equation (2.67) describes the response function for
the second PIOLA-KIRCHHOFF stress tensor depending on the right CAUCHY-
GREEN tensor. According to (2.105) its linearization yields

L(Sl;—¢ = S+DS-u=S+AS

. 08 _
= s+%¢=¢ [DC-u]. (2.113)

This result can be reformulated with (2.79) and (2.109) as
L[S]¢,=¢ =S +C[AE]. (2.114)
A comparison with (2.113) yields
AS =C[AE]. (2.115)

Relation (2.115) has the same structure as the incremental constitutive equation (2.80).
Only the time derivatives have to be replaced by the directional derivatives.

2.5.3 Linearization of the weak form

Solution of nonlinear boundary value problems can in general only be obtained by
approximate methods. Many of these methods, like the finite element method, are
based on the variational formulation of the field equations, given for instance by the
weak form or principle of virtual work, hence equations (2.56) or (2.59) provide the
starting point for a numerical method. For the solution of these nonlinear equations
an iterative scheme has to be developed, since the discretization of the weak form
results in a nonlinear system of algebraic equations.

Among many possible iterative algorithms, NEWTON’s method has been proven
to often be the most efficient scheme, since it exhibits quadratic convergence near the
solution point. Within NEWTON’s method a correction of the solution is achieved
by the TAYLOR series expansion of the nonlinear equation set at a point where the
approximated solution is already known. The necessary linearization can be computed
with the aid of the directional derivative.

The linearization of the weak form is first derived with respect to the initial con-
figuration, which is based on equation (2.56). We assume that the linearization is
computed at a deformation state @ at which the body under investigation is in equi-
librium.
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The linear part of the weak form is
L{Gly=z =G (@,m) + DG (p,n) - Au. (2.116)

G(®,m) is equal to (2.58), only ¢ is exchanged by the state ¢. The directional
derivative of (4, needed to compute the linearization, has only to be applied to the
first term in (2.58) when the assumption of conservative loading is made

DG(g,n) - Au= /[DP(QZ)) - Au] - Gradn dV ; (2.117)
B

all other terms do not depend upon the deformation. The linearization of the first
P1oLA-KIRCHHOFF stress tensor yields, with P = F S,

_DG(cp,n)-Auz/{GradAuS—i—F[DS(gb)-Au]}-Gradna’.V. (2.118)
B

Quantities labelled with a bar have to be evaluated at (. For linearization of the
second P1oLA-KIRCHHOFF stresses, equation (2.115) can be used. This leads to

DS(@) - Au=C[AE], (2.119)

where the last term is the linearization of the GREEN—~LAGRANGIAN strain tensor
E at @, see (2.109). The incremental elasticity tensor Cgp which is evaluated with
respect to the reference configuration is given, with (2.79), by

= o*wW

0246—(:—56 o (2120)
p=¢
at @.
Inserting equation (2.120) into (2.118) completes the linearization:
DG(@,n)-Au= [ {GradAuS + FC[AE]} - GradndV . (2.121)

B

Note that also € has to be computed at @. By making use of the trace operation and
by considering symmetry of €, a compact form of (2.121) can be obtained:

DG(cp,n)-Au:/{GradAug-Gradn-i—(SE-C‘{AE]}dV . (2.122)
B

Note the symmetry of the linearization with respect to 7 and Au. The first term in
(2.122) is the so-called geometrical matrix or initial stress matrix. The second term
contains the initial deformations which occur in the incrementa] constitutive tensor €,
the variation of the GREEN-LAGRANGIAN strains §E = %(FTGrad n + GradTnF)
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and its linearization AE = lf(FT Grad Au+ Grad” AuF). Equation (2.122) is given
in index notation as

DG(@,m) alus = / {AuapSpcnac+0EsgCapcp AEcp }dV . (2.123)
B

With the last equations, all relations with respect to the initial and current con-
figurations, are known, which have to applied within an iterative solution procedure,
e.g. NEWTON’s method. Thus the basis for discretization using the finite element
method for nonlinear problems in solid mechanics is known.

The linearization of the weak form, defined in quantities of the current config-
uration, follows by push forward of linearization (2.122) to the already obtained
deformations state @. With the push forward V° Au of the GREEN-LAGRANGIAN
strain tensor, the second term in (2.122) can be re-written as

/ Vin-&[VSAu]dV .
B

The fourth order tensor & follows from€ by the transformation (2.79).
The first term in (2.122) can be transformed directly with # = FSF”, and thus
expressed in KIRCHHOFF stresses:

Grad AuS-Gradn = FGrad AuF ' #F ' -Grad n = gradAu 7 - gradn . (2.124)

With these transformations, the linearization in terms of quantities at the current
configuration state ¢ is

Dg(¢,n)-Au:/{ﬁmﬁ-‘gmn+vsn-@[€%u]}dv. (2.125)
B

With do = JdV integral (2.125) can be transformed into the current configuration
. For this purpose, we use the CAUCHY stress tensor & = -}-1", and define the
incremental constitutive tensor

>

C (2.126)

i =

an

such that the final result

Dg(@,mn) - Au= / {gradAué - gradn + Vo9 - € [VSAu]}dv  (2.127)
2(B)
follows. Equation (2.127) in the literature is also known as the updated Lagrange
formulation e.g. see Bathe et al. (1975), since the deformation state @ is always
updated during the nonlinear incremental solution procedure.

With the last equations all relations with respect to the current configuration are
known. These have to be applied within an iterative solution procedure, e.g. NEW-
TON’s method. Thus the basis for discretization using the finite element method for
nonlinear problems in solid mechanics is known.
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2.5.4 Linearization of a deformation dependent load

The description of a pressure load stemming from gases or fluids without internal
friction leads to a surface load which depends upon the current deformation state.
The stress vector t is then given in terms of the pressure p and the surface normal n
by t = pn. This leads in the weak form (2.63) to the additional term

g9(w,m) + gp(e,m) = gl ,m) + / pn-nda. (2.128)
‘y‘-"(éBP)

For this term the linearization is derived next.

Again, to compute the linearization, it is preferable to perform a pull back operation
and to refer (2.128) to the initial configuration. Two methods are possible. The
first relies on the transformation of the surface normal by (2.11). This yields the
expression || g PJ F~T N - ndA where linearization is complicated. Simpler is the
second method in which the normal vector n is expressed by the cross product of the
tangent vectors which are tangent to the convective coordinates of the surface of the
body, see Figure 2.4.

The normal unit vector follows with the tangent vectors, as defined in Figure 2.4,
g, (a=1,2)as

_ &1 X8
gy x gl
The tangent vectors can be computed from the deformation state using equation (B.4):
g, = ¥ ,- The area element da can be expressed by da = ||g; x g,||df; df in terms

of the tangent vectors with respect to the convective coordinates. Based on these
relations, the virtual work for pressure loading is

gplep.m) = / / plpq xX@,)-ndbdis. (2.129)
(61) (92)

\9(0611)

Fig. 2.4 Pressure dependent surface loads.
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With the introduction of the displacement field, the tangent vectors have the form
® o = (X +u) o. Hence the linearization of (2.129) yields

D gy(p,n) - Au= / / p(Au; x@,+¢; xAuy)-ndd di,, (2.130)
(61) (62)
when p itself is independent of the deformation state. The linearization refers to the

convected coordinates. It can be pushed forward to the current configuration, leading
to

Au; xp,+@; xAup

nda. (2.131)
”‘P,l X ‘P,2||

Dg,(¢,n)-Au= / p
‘P(aBp)

With this the linearization of a deformation-dependent pressure load, see (2.128), has
been derived. More theoretical considerations with regard to the nonconservative
nature of deformation dependent loads can be found in Sewell (1967), Bufler (1984),
Ogden (1984) or Simo et al. (1991).



Contact Kinematics

Many technical contact problems involve large deformations of the bodies that are in
contact. Thus we will formulate all contact relations for finite deformations, so we
look at problems where two or more bodies B* approach each other during a finite
deformation process and come into contact on parts of their boundaries denoted by I,
see Figure 3.1. We observe that two points, X' and X2, in the initial configuration of
the bodies which are distinct can occupy the same position in the current configuration,
©(X?) = ¢(X'), within the deformation process. Hence contact conditions have to
be formulated with respect to the current configuration. In general, two steps have

.r—}a‘z\‘
X2

Fig. 3.1 Finite deformation contact.

45
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Fig. 3.2 Deformed configuration of bodies B, minimum distance.

to be performed to detect whether or not contact takes place. These are the global
search for contact and the set-up of local kinematical relations which are needed to
formulate the contact constraints. Here we focus on the latter; search algorithms will
be discussed in Section 9.1.

In a large deformation, continuum-based formulation of contact kinematics, the
distance between the bodies in contact is minimized, as can be found for the classical
non-penetration condition in Curnier and Alart (1988) for example.

In the case that a small penetration due to the approach of the two bodies in contact
has to be allowed, the contact kinematics are developed in Wriggers and Miehe (1992).
This non-penetration function also plays a significant role for the definition of the
tangential velocity in the contact interface, which is needed to formulate frictional
problems, e.g. see Simo and Laursen (1992), Wriggers and Miehe (1992), Laursen
and Simo (1993b), or Curnier et al. (1995).

Let us consider two elastic bodies B>, = 1.2, each occupying the bounded
domain 2 C R3. The boundary I'® of a body B% consists of three parts: 'S
with prescribed surface loads, I'S with prescribed displacements, and I'?, where the
two bodies B! and B? come into contact. In the contact area, we have to formulate
the constraint equations or the approach function for normal contact, as well as the
kinematical relations for the tangential contact.

3.1 NORMAL CONTACT OF THREE-DIMENSIONAL BODIES

Assume that two bodies come into contact. In that case, the non-penetration condition
is given by
(x2=xY-n' >0, 3.1
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see Figure 3.2. x“ denotes the coordinates of the current configuration p(B*) of
body B%: x* = X* + u®, where X% is related to the initial configuration B* and u®
is the displacement field, see also Appendix B. The normal vector n! is associated
with body B!. By assuming that the contact boundary describes, at least locally, a
convex region, we can relate to every point x> on I'? a point X! = x!(€) on I'! via
the minimum distance problem

A€, €) = I =&l = min I —x' ()] (32)

see Fig 3.2b for the two-dimensional case. The distance can then be used to define the
gap or penetration between the two bodies. £ = (£ , £2) denotes the parameterization
of the boundary I'! via convective coordinates, e.g. see Wriggers and Miehe (1992),
Wriggers and Miehe (1994) or Laursen and Simo (1993b). The point %! is computed
from the necessary condition for the minimum of the distance function (3.2)

X - (¢ €
lIx2 = &€, €2) ||
The solution of (3.3) requires orthogonality of the first and second terms. Since
X! (£, £2) is the tangent vector al,, the first term must have the same direction as
the normal vector n' at the minimum point (€' ,£2). Thus we have the condition
—n!(£',£2) - al (&', £%) = 0, which means that the current master point X' (€', £2)
is the orthogonal projection of a given slave point x? onto the current master surface
o (T).

Here and in the following, we denote by a bar over a quantity its evaluation at the
minimal distance point (£1, £2), which means that these values denote the solution
point of (3.3). Thus

L (e, ) = 0. (33)

d€>

1 (a} x a})

llai > a3l

is the outward unit normal on the current master surface at the master point, where

al are tangent vectors at X' (€1, £2). Note that the normal can also be defined using
(3.3). The result is

34

ﬁl - X2 - il(‘flz 62) )
| x2 - % (€1, €2) |
The application of this definition is more convenient in special cases; however it can
only be used in relation with the penalty method, and it has the problem that ! is not
defined for || x2 — %' (€1, £2) ||= 0.
Once the point X! is known, we can define either the inequality constraint of the
non-penetration condition

(3.5)

ey = (¢ —x)-w > 0], (.6)

or a penetration function

(3.7)

~ [ x*=xY-n' if x*-xY)-nl <0
EN = 0 otherwise .
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The latter defines the magnitude of penetration of one body into the other and has to
be used in conjunction with the penalty method.

REMARK 3.1: It can happen that the distance function is locally non-differentiable. In
such a case the projection point %! (€', €2) is not unique. Examples of points which have a
non-unique projection are shown in Figure 3.3. Usually the discontinuity depicted in Figure
3.3a is not of great influence in practical applications, since in a next iteration step when
the point gets closer to the contact surface, the discontinuity disappears. A criterion which
provides a measure to detect whether the projection (3.3) yields a unique solution or not was
derived in Curnier et al. (1995). Using the transformation of line elements which lie in the
tangent plane of the master and slave surface d X' = P, dx?, for the area elements on master
and slave surface one obtains

ii'do' =P, n’da’. (3.8)
The ratio of these area element is now given by (see Curnier et al. (1995)),
- da' -0’ - '
] = 3.2 = 21! (39)
da 11— (k1 +K2)gn + K1 K292 |
where we can also write j = ||PL 1% ||. k1 and ko describe the principle curvature of the

master surface in point X' (€, £€2). The projection is unique when j < oc, which means that
the point x* should not be located at a point of focus which is the cutting point of two normal
vectors of equal length (see Figure 3.4a) or it should not coincide with the center of curvature
of the master surface. One can show (see Thorpe (1979)) that X (€', £2) is associated with
a local minimum if no point of focus lies on the line between x* and X' (€', €2). A global
minimum of (3.3) is given for

1

— T T 3.10
max(m] 7)) 10

lgn| <
which means that the distance between the slave node and master surface is smaller than the
smallest radius of curvature for each point of the master surface. Furthermore, to obtain a

projection (3.8) which is bijective one has to require that j > 0, which means that the condition
—n® - ' > 0 holds (see Figure 3.4b) for the normal vectors.

Fig. 3.3 Non-differentiable distance functions.
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Fig. 3.4 Uniqueness and regularity for minimum distance problem.

The case shown in Figure 3.3b is of more practical importance. This is because often, low
order interpolations are applied for the finite element discretization, which use a linear function
within the element to describe the deformed boundary. Hence there is always a discontinuity
in the normal field when point X* moves from one element to the next. This problem will be
discussed in more detail in Section 9.3.

In the case of geometrically linear kinematics, it is advantageous to write the
inequality constraint as

(W —i!)-at +gx >0, (3.11)

where u® are the displacements of the bodies B“. The initial gap g between the two

bodies is given by gx = (X? — Xl) -iil. In view of the penalty formulation which

will be applied to solve the contact problems, we introduce a penetration function as
follows:

~ (@ -a)-nt+gx if W-a')-n'+gx <0

Un = { 0 otherwise . (3.12)

Functions gy and uy, indicate a penetration of one body into the other, and show in

which parts of I'“ the constraint equations, preventing penetration, have to be acti-

vated. Thus (3.7) or (3.12) can be used to determine the contact area 'S C I'®.

REMARK 3.2: In the case of contact between a rigid surface and a deformable body,
equations (3.7) and (3.12) also hold. In this case, &* = 0 holds and ®* is the normal of the
rigid body.

3.2 TANGENTIAL CONTACT OF THREE-DIMENSIONAL BODIES

In the tangential direction of the contact interface one has generally to distinguish two
cases. The first is the so-called “stick state in which a point which is in contact is not
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allowed to move in a tangential direction. The second case is sliding, which means
that a point moves in a tangential direction in the contact interface. This movement
can of course only be described by the relative deformation in the interface.

3.2.1 Stick condition

In the first case a mathematical condition for stick is needed. Such a condition can
be derived from projection (3.3). It is clear that a point which sticks to another
body does not move in a tangential direction, and hence the computed values for
the convective coordinates (£! , £2) do not change for this point during the motion

Ea = 0. Therefore, the condition

lgT:gTaﬁa:O with gro = (x2—%')-a! (3.13)

can be formulated. Here g denotes the relative displacement in a tangential direction.
which has to be zero. Note that in the stick case, one does not have to distinguish
between the normal and tangential directions. Thus in case the normal gap is closed,
see (3.6), gn = (Ju{2 —x!)-n! = 0; then one can instead combine conditions gx = 0
and g = 0 to the more simple condition

x>-x'=0. (3.14)

The implication of this choice with respect to numerical implementation of contact
is discussed in Remark 5.2 and Section 8.2.

3.2.2 Slip condition

The tangential relative slip between two bodies is related to the change of the point x?
relative to the projection X'. This means that the solution point £ = (€', £2) which
has been obtained via the minimal distance problem (3.2) will move on the master
surface. The sketch in Figure 3.5a depicts the path of the point x? along on the master
surface beginning at o and ending at time ¢. Furthermore, the velocity v of point x?
relative to the master surface is shown at times ¢; and ¢,. Note that the path of a point
x2 on the master surface is not known a priori. It could even cross its own line, as
depicted in Figure 3.5b. Thus, during our calculations we cannot assume anything
regarding the path. Hence in a frictional sliding situation, one has to integrate the

Fig. 3.5 Path of the point x” relative to the master surface
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Fig. 3.6 Increment of the frictional path.

relative velocities to obtain the path of x? on the master surface. Details regarding
the continuum formulation are stated below.

First we state the tangential relative displacement of a point x? on the contact
surface, which is defined in terms of body B!. We compute the path of point x? on
't from

dgp = a, dé® =%, de™, (3.15)

see Figure 3.6. From (3.15) the length of the frictional path can be computed with
dgr = ||dgy || and d€* = £*dt as

t t
gr = / €%, [ dt = / \/f“"fl*ﬁa‘aﬂdt : (3.16)
i() iO

where ¢ is the time which is used to parameterize the path of point x2. For the
evaluation of (3.16), we have to know the time derivative of £*. This can be computed
from the relation

[x‘g_il]_ﬁ'l — U-, (3]7)

x

which is valid at the contact point, since the difference x? —x! is normal to the contact
surface, and a), denotes the tangent vector to the surface I'* at the minimal distance
point, see Figure 3.2b. This yields the following result:

d . . - . - : )
E[xz—il(fl,ﬁz)]-ﬁ; =[v2 -V —agéf)-al +[x* —x']-a, =0. (3.18)

With z']; =V, + f(lad €8 we obtain €7 from (3.18), which leads to the following
system of equations:

ITIQG 58 - Ra : (3.19)
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with

Hop = [Bop+gnXl s 0]

R, = [vz-v']-a,+[x*-x'] ¥, (3.20)
[v*-¥']-a; +gni'-¥),.

Well known results from differential geometry of surfaces introduce @, g as the metric

tensor and X* B (&L, ‘1 £ 2) n! as the curvature tensor bag, see also (B.15). Thus we can

rewrite Hog = [@ag + gn bag ]. Denoting H*? = (Hog) ™!, we can now explicitly
solve for the relative velocity £ = { ! ,£%},

€8 = H [(v*—¥')-a. + gyl -v.]. (3.21)

Using these results we define as the second important kinematical function the
tangential relative velocity function on the current surface ©?(I'?) by setting

Logr = €3, (3.22)

Equation (3.22) determines the evolution of the tangential slip g, which enters as
a local kinematical the constitutive function for the contact tangential stress. In the
following chapter, we will abbreviate the LIE derivative £, g, denoting the relative
tangential velocity by the term g to simplify notation.

REMARK 3.3:

1. Note that the second terms on the right-hand side of (3.19) depends upon the penetration
gnN. Thus in the case of a strong enforcement of the non-penetration condition (gn = 0)
with LAGRANGE multipliers, this term vanishes. The evolution L., in(3.22)is then given
by the projection of the spatial velocities v* and v' (), evaluated at the contact points
onto the tangential direction of the contact surface at the master point

Logp :=Pr[v' =¥ (€1, €2)], with Pr=a.ga™. (3.23)

2. If the deformed contact surface is flat, then the curvature tensor bap is zero. This is
always the case for a surface discretization by three node triangular elements.

3. Note that the (a priori objective) Lie derivative of the tangential vector g has the rep-

resentation L, g = F*{ £[F*"'(gr)]} = f" 2, based on the deformation gradient
F? of the master surface defined above. Thus (3.22) represents an evolution equation
for the objective rate L. g of the tangential vector introduced above.

4. In the case of no relative movement in a tangential direction (stick condition), we have
L.gr =8r =0.
5. In the geometrically linear case, from (3.19) and (3.21) we obtain

AN 2@, )] AL} = [V - (@, € - A3 )AL,

which yields )
Ak €® =V —¥(6, £)]-AZ
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The terms multiplied by gn can be neglected. Thus §<5 is given by the projection of
the difference velocity of the two bodies at the contact point on the tangent direction of
the undeformed surface. From the last equation, we can deduce the relative tangential
velocity at the contact point: gr = £8 ;\z.
For a penetration gn < 0 we have to take into account the second term in (3.21)
and the scaling factors Hag, both consequences of the time dependence of a2 .
For the two-dimensional contact we can specify the result in (3.19), which then

yields

1 . _ 1 -
s (Y Ve Ve (3.24)
’ N

£ =
where a1 = x!,¢ (€) - x!,¢ (€) describes the metric and b1 = x!,¢¢ (€) - ! the
curvature of the boundary. The vectors v* denote the velocities at x*. Knowing the
change of the coordinate £, we can define the relative tangential velocity as

Logr = EX e (6). (3.25)

In that case, for the total sliding distance (3.16) we obtain

4 3
QT:/ Hfli,lglldt:/ Vaq dg. (3.26)
to £o

The upper limit £ in this integral still depends upon the deformation, which is clear
from the implicit definition of £ via (3.3). However, one can transform (3.26) into an
integral with fixed limits by introducing a different parameterization, e.g. as in the
case when the isoparametric map is used in a finite element context.

3.3 VARIATION OF THE NORMAL AND TANGENTIAL GAP

The variation of the geometrical contact quantities are needed in the weak forms for
contact. In this section the variation of the gap in the normal contact direction and the
variation of the tangential relative displacement in the contact interface are derived
for the different cases discussed in the previous sections.

3.3.1 Variation of normal gap

The first case discussed is the variation of the gap function in the normal direction for
the contact between three-dimensional solids.
The variation of the normal gap follows from (3.6) as

Sgn =6 {[x* —x'(€",8))]-n* (&, M)} . (3.27)

To compute the variation (3.27) explicitly, we have to consider all terms which depend
upon the deformation. In the case of contact, we then have to take into account



54 CONTACT KINEMATICS

the projection of point x* onto the master surface parameterized by the convective
coordinates ¢! and £2. This leads to

Sgn = [n* — 7' —x!, 66 ] -y + [x> —%']-on’, (3.28)

where we have set ® = dx“. Equation (3.28) simplifies due the fact thatx’, -a' = 0.
Furthermore we have ii! - 5ii! = 0, see Appendix B. With the definition of the normal
(3.5), this eliminates the last term in (3.28). Hence we obtain the result

dgn = [n* —7']-at|. (3.29)

Note, however, that we have to start from (3.28) if we want to derive the linearization
of the variation of the gap function (3.27).

3.3.2 Variation of tangential gap

The variation of the tangential slip can be stated in the same way as the time derivative
(relative tangential slip velocity) was computed in (3.21) and (3.22). We obtain

l&gT = é€%al |, (3.30)

with the variation of £*
€2 =H [(n® - 7')-ag +gnit' -0l ] . (33D

The latter relation follows simply from (3.21) by replacing the velocities v by the test
function i with H*5 = [@a5 + gn basg ]!

In the two-dimensional case, these equations simplify. The variation of £ can be
computed using (3.24) according to (3.31). This leads to

5§_=t_——-{[772—771]"_‘,1§+81vﬁ Mg |- (3.32)
1




Constitutive Equations for
Contact Interfaces

The design of technical systems depends greatly upon the knowledge of the contact
behaviour in interfaces which connect different parts of the system. Such systems
are very general, examples being cars, printing or copy machines, human joints or
implants, unfolding space structures, robots, micro machines or base isolation systems
for buildings to protect against earthquakes.

Related to the precision which is needed to resolve the mechanical behaviour in
the contact interface, different approaches have been established over the centuries
to mode] the mechanical behaviour in the contact area.

Two main techniques can be followed to impose contact conditions in the normal
direction. These are the formulation of the non-penetration condition as a purely
geometrical constraint (the normal contact stresses then follow from the constraint
equation), and the development of an elastic or elasto-plastic constitutive laws for the
micromechanical approach within the contact area, which yields a response function
for the normal contact stresses. Such constitutive equations are often derived from
statistical models.

For the tangential direction, one has the same situation as for normal contact when
stick in the contact interface is considered. Again, either a geometrical constraint
equation can be formulated, or a constitutive law for the tangential relative micro
displacements between the contacting bodies can be applied. For tangential sliding
between bodies, one always has to derive a constitutive equation for friction which can
be stated in the form of an evolution equation. Usually the frictional evolution depends
on different parameters, like normal force, relative tangential velocity, temperature
or total slip distance.

55
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4.1 NORMAL CONTACT

The next two sections discuss the formulation of normal contact as a constraint for
non-penetration, or by introducing constitutive equations which describe the approach
of the contacting surfaces. In the case of frictionless contact, one of the models
proposed for normal contact is sufficient within the analysis. In the case of friction,
the tangential stress also has to be considered, see Section 4.2.

4.1.1 Constraint formulation

The formulation which treats normal contact as a unilateral constraint problem is in
general used when it is most essential to enforce the geometrical constraints in a correct
way (one could coin the term “low contact precision” for such a situation). In this case,
it is not necessary to specify constitutive relations in the contact interface. Therefore,
the normal contact pressure cannot be computed from a constitutive equation, but
is then obtained as a reaction in the contact area, and hence can be deduced from
the constraint equations, see Section 5.3.1. This procedure is the classical way to
formulate contact constraints, thus numerous researchers have used this strategy, e.g.
see Johnson (1985) or Kikuchi and Oden (1988).

The mathematical condition for non-penetration is stated as gy > 0, see (3.6),
which precludes the penetration of body B! into body 2. Contact takes place when
gn is equal to zero. In this case, the associated normal component p}, of the stress
vector

t' =o' =phi' +t;7a) 4.1
in the contact interface must be non-zero. The stress vector acts on both surfaces (see
Figure 4.1) obeying the action-reaction principle: t' (€', £2) = —t? in the contact
point X!. We have py = ply, = p% < 0, since adhesive stresses will not be allowed
in the contact interface throughout our considerations. Note that the tangential stress
tlTB is zero in the case of frictionless contact. For contact one has the conditions
gy = 0and py < 0. If there is a gap between the bodies, then the relations gy > 0

Fig. 4.1 Stresses in the contact interface.
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Fig. 4.2 Contact force versus normal gap.

and py = 0 hold. This leads to the statements

gv >0, pn<0, pngn=0], (4.2)

which are known as HERTZ—-SIGNORINI-MOREAU conditions for frictionless con-
tact. These conditions provide the basis to treat frictionless contact problems in the
context of constraint optimization. In Moreau (1974) this law is expressed by sub-
gradients (see also Curnier (1999)). In optimization theory such a set of equations
is called a KUHN-TUCKER condition (sometimes known as a KUHN-TUCKER~
KARUSH condition, since it was recently discovered that KARUSH developed them
first in 1938). As can be seen from Figure 4.2, equations (4.2) lead to a non-smooth
contact law for the normal contact pressure.

So far stresses related to the current configuration have been introduced. Hence
CAUCHY’s theorem was formulated in terms of the CAUCHY stresses o, see Eq.
(4.1). In the same way, one can also introduce the nominal stress or first PIOLA~
KIRCHHOFF stress P this leads to two different representations of the stress vector

t=on or T=PN. 4.3)

With NANSON’s formula (2.11) and the transformation (2.48), one concludes that
TdA = tda. Hence by introducing the JACOBIAN for the area j = da / dA, one
obtains

T=jt with j=J|FIN]|. (4.4)
The normal and tangential components follow from
t=Pt+(I-P)t, (4.5)

with the projection tensor P = fi* ® fi' and the fourth order unit tensor t = I t. Note
that P has the following properties: P2 = Pand P (I —P) = Q. With (4.4) and (4.1),
the relations

Ty =jpy=j0'-Pt and Tr=jtyr =;(I—-P)t (4.6)
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hold. Both formulations, using the nominal stresses or the CAUCHY stresses, are
equivalent when the transformations derived above are introduced in a consistent
way into constitutive equations or weak forms.

4.1.2 Constitutive equations for normal contact

There exist several contact problems where knowledge of the micromechanical ap-
proach of the surfaces to each other is essential for a proper treatment of the phys-
ical phenomena. In that case an interface compliance is needed for these problems
with “high contact precision”. Constitutive equations which include deformation of
the micro structure can be developed for normal contact by investigating the micro-
mechanical behaviour within the contact surface. Associated models have been devel-
oped based on experiments, e.g. see Greenwood and Williamson (1966) or Kragelsky
et al. (1982). The micromechanical behaviour depends in general upon material pa-
rameters like hardness and on geometrical parameters like surface roughness. How-
ever, depending on the materials of the bodies being in contact other parameters also
have to be considered when all effects stemming from the micromechanics of the
surfaces have to be included. This can be observed from Figure 4.3, which shows the
complex layer structure of a solid at its boundary. It consists for example of a con-
taminant layer (1), an absorbed gas layer (2), an oxide film (3), a work-hardened layer
(4), and finally, the metal substrate (5). Hence the real micromechanical phenomena
are very complex: it is possible to initiate even chemical reactions in the interface by
extremely high local pressures at the asperities stemming from applied mechanical
forces. However, such phenomena will be neglected here.

A micromechanical view of a rough surface is shown in Figure 4.4, which clearly
depicts different randomly distributed asperities. It is obvious that contacting bodies
at the asperities of the rough surfaces come in contact where high local stresses
occur. Thus, early investigations assumed plastic deformations when the interface
laws where derived. This is correct when the loads are only applied once. For repeated
loading one can assume that the surface is flattened due to initial plastic deformations
and hence after this pre-deformation can bear loads elastically, e.g. see Mikic (1971).
Thus the models which are used try only to capture the most important phenomena,

“ l"“ -3
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Fig. 4.3 Surface layers on a workpiece; schematic view from Rabinowicz (1995).
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Fig. 4.4 : Scan of a rough micro-mechanical surface geometry.

and assume either an elastic or a plastic deformation of the asperities that are actually
in contact at the interface.

The derivation of constitutive contact equations for the approach of two rough
surfaces involves two main steps. First one has to find a mathematical description of
the surface geometry by statistical, e.g. see Greenwood and Williamson (1966) or
lately also by fractal models e.g. see Majumdar and Bhushan (1990) and Section 4.7.
Secondly a model which describes the mechanical behaviour of one summit of the
rough surface under loading has to be introduced. Such a method leads to a contact
law for normal contact of the form (see Willner and Gaul (1997))

v =55 [ [ N PGr o) . @
¥ 0

Here {, = z /o0, is the normalized asperity height, normalized by the rms-height
o,. The height z is measured on a regular grid with spacing h (see Greenwood and
Williamson (1966)). The curvature &, stems then from a finite difference approxima-
tion, and yields the mean curvature by k, = k; / o+, normalized by the rms-curvature
ox. P(¢ , k) is the probability distribution of a joint. V;(vy} is the normal contact
force related to one summit, with v = gn / o, being the gap function normalized
by the rms-height. The contact pressure related to the apparent contact area follows
from equation (4.7), when all input data are known from measurements.



60 CONSTITUTIVE EQUATIONS FOR CONTACT INTERFACES

Fig. 4.5 Physical approach in ., undeformed and deformed situations.

In most applications it is sufficient to formulate the constitutive relation for the
apparent contact pressure like

[pv=f(d) or d=h(pn)], 4.8)

where f and h are nonlinear functions of the current mean plane distance d or the
contact pressure pn, respectively.

In the case of contact, the current mean plane distance d is related to the geometrical
approach gy, see (3.6), via the relation

¢ is the initial mean plane distance in the contact area I'., which is defined as the
mean plane distance of the two surfaces when the two surfaces just touch each other
in the initial configuration, see Figure 4.5.

Most of the interface laws can be written in the form (4.8). Out of many different
possibilities, two constitutive equations for normal pressure in the contact area will be
stated besides the general relation (4.7). The first was developed in Zavarise (1991)
and Zavarise et al. (1992a), and is based on a statistical model of the micro-geometry
proposed by Song and Yovanovich (1987). This constitutive relation for the approach
of both surfaces yields an exponential law of the form

pn =cse 4 (4.10)

A more detailed description of this interface law shows the dependency of c3 and c4
on the geometrical and material parameters of the surface:

_¢1 (1617646.152 2) _1+40.0711c; ,

- 1+00711¢e ol 411
PN 5.5801+00711 ¢z exp[ (1.3630)° } @i

c1 and c; are mechanical constants which express the nonlinear distribution of the
surface hardness, o and m are statistical parameters of the surface profile, represent-
ing the RMS surface roughness and the mean absolute asperity slope. As can be seen,
many constitutive parameters are needed to describe the approach of two rough sur-
faces within the contact area. Thus, these models are only used when really needed,
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Fig. 4.6 Contact compliance law.

like in thermo-mechanical contact where the approach enters the constitutive relation
for the heat flux, see Section 10.2.

Another law for the contact pressure has been given, based on experimental in-
vestigations, by Kragelsky et al. (1982). These authors formulated the following
constitutive equation for the contact pressure:

pn =cn{(gn)" (4.12)

in terms of the gap function gy which is defined in (3.6). cn and n are constitutive
parameters which have to be determined by experiments. For metals n is usually in
the range 2 < n < 3.33. Thus the simplest possibility with n = 1 is excluded, which
would coincide with a standard penalty method, see Section 5.3.2.

Both interface laws could be viewed as nonlinear springs (see Figure 4.6) which
yield a regularization of the HERTZ-SIGNORINI-MOREAU conditions in (4.2).

Often, elasto-plastic deformation has to be considered in a realistic micromechani-
cal model. Hence inelastic behaviour can be applied in the derivation of the statistical
models discussed above. Thereafter, a potential from which the contact pressure
follows via partial derivation with respect to the normal gap cannot be constructed.

The constitutive equations (4.10) and (4.12) represent very high stiffness, since the
approach of both surfaces is very small and limited once all asperities are flattened.
This fact leads to ill-conditioning when numerical solutions have to be obtained with
(4.10) or (4.12), e.g. by the finite element method. A way in which one can treat such
models numerically is described in Section 5.3.8.

4.2 TANGENTIAL CONTACT

The interfacial behaviour related to frictional response is very important in most
technical applications. The science related to this topic is called tribology, which is
mainly concerned with technical systems (e.g. breaks or bearings) where friction is
present. Tribology covers topics like adhesion, friction, wear, lubrication, thermal
contact or electric contact. Also form the economical point of view, tribology is an
important science, hence it can be applied to estimate the time until a mechanical part
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looses its usefulness. Examples for such processes are the wear of oil well drills, the
wear of artificial joints in biomechanics, the wear of metal cutting machines or the
wear of railroad tracks.

Sometimes it is desirable to maximize friction such as for the contact between a car
tyre and the road during braking, or for the foundations of buildings when wind forces
are acting. However, often it is important to reduce friction such as during skiing or
ice-skating. Since friction is directly linked to wear, it is necessary to decrease friction
in production processes, in e.g. the heads of computer disks, in bearings, in all moving
parts of engines, etc.

Despite the fact that friction has been investigated for a long time, starting with
LEONARDO DA VINCI, AMONTONS and COULOMB, many frictional phenomena
have to-date not been completely understood. This is due to the fact that the frictional
behaviour on the surface takes place at the atomic level with, e.g. an interaction
of chemical, electro-magnetic and mechanical processes. Thus, some researchers
tried to formulate a third body in the interface which has a special properties, and is
only present at the moment of the tangential mechanical loading, e.g. see Kragelsky
(1956). Also, the structure of surfaces that are in contact is complicated, since a typical
metallic surface consists of several layers which influence friction. In general, the
friction coefficient depends upon the normal pressure, the relative tangential velocity,
the surface roughness and the temperature, to name but a few of the most relevant
parameters. For a recent extensive overview regarding the physical understanding of
friction see Persson (2000).

We will restrict ourselves to more simple formulations which yield constitutive
equations for frictional contact for dry friction. Lubrication which is essential in
many technical applications since it reduces friction and wear will not be considered
here in detail, however a short introduction is given in section 4.3.

The most frequently used constitutive equation is the classical law of COULOMB.
However, other frictional laws are available which take into account local, micro-
mechanical phenomena within the contact interface,e.g. see Woo and Thomas (1980).
An overview with relation to numerical modelling may be found in Oden and Martins
(1986).

The main governing phenomena for dry friction are adhesion of the surfaces and
ploughing of the asperities. For the physical background, see Tabor (1981). During
the last few years, frictional phenomena have also been considered within the frame-
work of the theory of plasticity. This leads to non-associative slip rules, for which
different relations have been proposed by for instance Bowden and Tabor (1964) and
Michalowski and Mroz (1978). Further discussion on the theory of friction is con-
tained in Curnier (1984). Laws which investigate the non-local character of friction
can be found in Oden and Pires (1983a) and Oden and Pires (1983b). Constitu-
tive equations for friction with respect to metal forming have a long history, and are
discussed in Tabor (1981); modern treatments with respect to micromechanical be-
haviour are present in, for example Anand (1993), Stupkiewicz and Mroz (1999) or
Stupkiewicz (2001). At the contact interface the response in the tangential direction
can be divided into two different actions. In the first, no tangential relative displace-
ment occurs in the contact zone under a loading due to, for example a force F. This
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Fig. 4.7 Stick or slip in the contact area.

behaviour is called stick (see the left part of Figure 4.7). The second action due to the
force F is associated with a relative tangential movement g5 in the contact interface,
which denotes the so-called slip (see the right part of Figure 4.7).

4.2.1 Stick as a constraint

Stick is equivalent to the case in which the relative tangential velocity is zero. Hence,
the stick,condition can be obtained from (3.22) as

gr=0&¢g, =0 (4.13)

This condition is formulated in the current configuration, and thus in general imposes
anonlinear constraint equation on the motion in the contact interface. Associated with
this constraint is a LAGRANGE multiplier, Ay, which denotes the reaction due to the
constraint (4.13). There exist many possibilities to enforce the constraint condition
(4.13). These will be discussed in detail in Section 5.3.

4.2.2 Coulomb law

Once the tangential forces are above a certain limit (see Figure 4.8) then the contacting
surfaces no longer stick to each other, but move relative to each other. This relative
tangential movement is called sliding, and classically is described by the law of

| Y2

N |

T

Fig. 4.8 CouLOMB’S friction law.
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CouLOMB. It takes the form

(4.14)

g .
tT=—u|pN|@ if ||tr|l>ulpn|

where p is the sliding friction coefficient. This coefficient is constant in the classical
CoOULOMB law. It depends upon the material pairing of the solids in contact. Table
4.1 contains some values for different materials.

It can be seen from the bandwidth of the friction coefficient for a specific material
pairing that this coefficient must be influenced by other physical and geometrical
circumstances. In general, the friction coefficient depends upon different parameters
like the surface roughness, the relative sliding velocity g, between the contacting
bodies, the contact normal pressure py or the temperature 6, e.g. see Section 4.2.7.
If such effects are introduced, one obtains a variant of the COULOMB law with a
variable coefficient p = p(g, ,pn ,0).

One such heuristic friction law which incorporates the relative sliding velocity g
in the expression for the friction coefficient is given by

w(@r) = pp + (ps — pp ) e~ NBrl. (4.15)

It depends upon three constitutive parameters us, gp and c. Here for zero sliding
velocity, the friction coefficient assumes the static value ps. For large velocities the
dynamic friction coefficient up is approached (see also Figure 4.9). The additional
constitutive parameter c¢ describes how fast the static coefficient approaches the dy-
namic one, see the two different curves in Figure 4.9, which stem form different
values of c.

For many applications in which the surface roughness is not too large or too smooth,
the friction coefficient is independent from the surface roughness and hence from the

Table 4.1 Friction coefficient for different material pairings.

Material pairing Friction coefficient

concrete—concrete 0.5 —1.0
concrete—sand 035—06
concrete—steel 0.2-04
metal-wood 0.3 —0.65
rubber—steel 0.15—0.65
steel-steel 02—038
steel-teflon 0.04 — 0.06
steel—concrete 02—04
steel—ice 0.015—0.03
wood-steel 0.5-1.2
wood-wood 04 —1.0
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Fig. 4.9 Velocity-dependent COULOMB’S friction law.

real contact area in the interface (see below). If, furthermore, also the sliding velocity
is neither too large nor too small, then the friction force is proportional to the normal
force, leading to a constant friction coefficient p.

4.2.3 Regularization of the Coulomb law

Another possibility to formulate tangential constitutive equations in the contact in-
terface is given by a regularization of the stick-slip behaviour. Such a formulation
is used to avoid the non-differentiability of COULOMB’S law at the onset of sliding,
see Figure 4.8. Associated models were introduced by Oden and Pires (1983b); see
also Raous (1999). These are based on a functional form which yields a smooth
transition from stick to slip, as depicted in Figure 4.10. The explicit forms are given
for two-dimensional problems by

tr = —pe'(gr)|pn |, (4.16)

tr

Fig. 4.10 Regularization of COULOMB’S friction law.



66 CONSTITUTIVE EQUATIONS FOR CONTACT INTERFACES

where the function * describing the smooth transition from sticking to sliding is
defined by:

1. a square root regularization

gT
o=, @.17)

2. a hyperbolic tangent regularization

4,92 = tanh (!ITT) , 4.18)

3. or a piecewise polynomial regularization

—1 lf gT<'—€
PP=0 & if —e<gr<e. (4.19)
1 if gr > €

The scalar parameter € denotes in all cases, the regularization variable, which for
€ — 0 as the limit case yields the classical COULOMB law.

These regularized constitutive interface laws physically have the drawback that
they only describe the stick-slip motion in an approximate fashion. For a value of the
parameter ¢ that is too large, such a model might not be able to predict real stick-slip
motions. On the other hand, due to the differentiability of formulations (1) and (2),
these models lead to numerical algorithms which are simpler and more robust. The
piecewise polynomial regularization can be used to construct an algorithm for stick-
slip motion which is similar to well known algorithms from the theory of plasticity
(see also the next section).

4.2.4 Elasto-plastic analogy for friction

CouLoMB’s law and other constitutive equations for friction can also be formu-
lated in the framework of elasto-plasticity. This has been investigated by several
authors who developed different constitutive equations for frictional problems, e.g.
see Michalowski and Mroz (1978) or Curnier (1984). A treatment of frictional in-
terface laws in terms of non-associated plasticity has been considered within a finite
element formulation by Wriggers (1987), Giannokopoulos (1989), Wriggers et al.
(1990) or Laursen and Simo (1993b).

The reason to formulate elasto-plastic constitutive relations in the contact interface
stems from two sources. One is associated with the wish to regularize COULOMB’S
law. The other reason has its source in experimental observations, as shown in Fig-
ure 4.11. These experiments were carried out by Courtney-Pratt and Eisner (1957)
with metallic surfaces (platinum-to-platinum), and suggest the use of classical elasto-
plastic relations which split the tangential motion into a elastic or adhesive (stick) part
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Fig.4.11 Friction coefficient versus tangential movement; experiments from Courtney-Pratt
and Eisner (1957).

and a plastic or slip part. Experiments for steel and copper are discussed in Anand
(1993) which depict the same behaviour.

As depicted in Figure 4.12, in general one can assume softening (1) as well as
hardening (2) for the constitutive behaviour of friction, once a threshold value tr
is passed. This is also in accordance with experiments (e.g. see Figure 4.11 for
hardening) or it stems from the fact that the sliding coefficient of friction is lower
than the coefficient describing stick, which results in softening.

The key idea of the elasto-plastic approach is a split of the tangential slip g;- into
an elastic (stick or adhesive) part g5- and a plastic (slip) part g7, see Figure 4.12:

—) (4.20)

This split can be viewed as a regularization step of the frictional law. However,
one also can find a physical interpretation, in the sense that elastic tangential micro
displacements g% occur in the contact interface. These stem from the elastic behaviour
of the asperities in the real contact area. Hence, they model an elastic stick behaviour
since the associated deformations vanish once the loading is removed from the system.
The simplest possible model for the elastic part of the tangential contact is an isotropic
linear elastic relation, which yields

tr =crgp, (4.21)

where cr is the elastic constant. However, one can also think of anisotropic elastic
constitutive behaviour leading to

tr = Crgy, (4.22)
with the constitutive tensor Cz. The directions of anisotropy have to be determined

from experiments by taking into account the micro-structure of the contact surfaces,
see Figure 4.4.
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Fig. 4.12 Kinematical split of slip and elastic stick.

The plastic frictional tangential slip g7 is governed by a constitutive evolution
equation which can be formally derived by using standard concepts of elasto-plasticity
theory. Let us introduce for the derivation of a slip rule, in analogy to the derivation
of a plastic flow rule, the dissipation

D=tr-g7 >0 (4.23)
due to the plastic slip. Now consider an elastic domain
E, = {tr € R?| f,(tr) <0} (4.24)

in the space of the contact tangential stress which is bounded by the function f;. A
simple expression for f, in (4.24) is given by

fs(tr) = ||tr|| —up~ <0, (4.25)

which is the plastic slip criterion (see figure 4.13(a) for a given contact pressure
PN, and is equivalent to classical COULOMB’S law. The frictional coefficient y is a
material parameter.

The evolution equation for the plastic slip can now be computed from the maximum
dissipation principle, well known from the theory of plasticity, e.g. see Lubliner
(1985). The derivation is done here assuming the simple slip criterion (4.25), however
the methods also hold for more advanced slip criteria discussed below.

Holding py fixed, from the so-called maximum dissipation principle one obtains

(tr —t7)-gr 20V ety € E, (4.26)

the constitutive evolution equation for the plastic slip

. Ofu(t) . . tr
=422 _ 4n with np = —, 4.27)
=7 "5, T ™= el
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Fig. 4.13 (a) Coulomb frictional cone (b) more general slip surface.

which denotes the normality rule for fixed contact pressure. The left-hand side of
(4.27) denotes the relative tangential velocity due to slip. Additionally, we have the
loading-unloading conditions in KUHN-TUCKER form:

Y20, f(tr) <0, 7§ /fs(tr) =0, (4.28)

which determine the plastic parameter 7.

Another slip criterion has been formulated in Wriggers et al. (1990) which addi-
tionally takes into account the pressure dependency of the tangential response. Here
the form p = 79 / pr + (3 proposed by Tabor (1981) for the frictional parameter is
assumed, where 7 and 3 are constitutive parameters describing a model with linear
varying shear strength of the interfacial material due to the true contact pressure. The
true pressure p, is related to the true contact area A, = Zz A,; (real contact area
due to the contact of the asperities in the contact interface) whereas the pressure py
is associated with the nominal contact area A,, see Figure 4.14.

Woo and Thomas (1980) have formulated a relation for metals between the true
and the nominal area based on experimental observations:

Ar |on 1\" 5
—_— = = — 2
Aa (Aa H) 5 n 6 i (4"‘9)

with the hardness H of the material. With these relations one arrives at the following
slip criterion (e.g. see Figure 4.13(b)):
Ag 1o

fs(tr. pn) =lltr || —a |py " =B |pn | L0, a = m (4.30)
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Fig. 4.14 Contact interface, micromechanical view.

Note that the choice of one of the slip criteria (4.25) or (4.30) has to be made with
regard to experimental data within the contact interface; of course, other slip criteria
are possible.

Again we assume that the tangential plastic slip g7 is governed by a constitutive
evolution equation which can be derived using standard concepts of the theory of
elasto-plasticity. Within this framework we can formulate a plastic slip criterion

fs(tr, pn.0.9.) <0 (4.31)

for a given contact pressure py with material parameter y, a given temperature and
a hardening/softening variable like the effective slip g,.. This slip criterion function
can be specialized as follows:

fs(tT-, DN 202917) = “tT” —gs(PN-.e:gu) < 0, (4.32)

with the special case of classical COULOMB’S model, see (4.25).
Inequality (4.32) can also be expressed in terms of the nominal stresses in the
contact interface. This results, with (4.6), in

fs(TT'z TN,G,gv) - ”TT” _jgs(j—lTN 76=gz=) < 0. (4.33)

It can be seen that when function g, is a homogeneous function of its argument, as in

COULOMB’s law (4.25), then g, = G. Thus for COULOMB one can write
fs(tr.pn) =|Itr ]| —ppny <06 Fo(Tr.Tn) = || Tr|| - nTn < 0. (4.34)

In some applications (see Section 4.2.5) it makes sense to introduce constitutive
equations for friction stresses which depend upon the deformation of the contacting
bodies, and hence on the area JACOBIAN j defined in (4.4).

In all formulations derived so far, the constitutive evolution equation for the plastic
or frictional slip can be stated in a general form of a slip rule for large deformations
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in the contact zone as follows:

.5 . 6f€ . tT’

7 = Yo =Ynr, with np = —/—,
BT Vot O ]
g'i,! = ’\l 3

where equation (4.35) describes the evolution of the effective slip, which is defined
as

t
g,,:/ |l & ()| dr . (4.35)
/0

% is a parameter which describes the magnitude of the plastic slip. Also, here we can
set up the KUHN-TUCKER conditions, as before, see (4.28).

A generalization of friction models to non-isotropic behaviour is sometimes neces-
sary if the surface in the interface has a special texture. Models for anisotropic friction
can be found in Mroz and Stupkiewicz (1992) or He and Curnier (1993). Mroz and
Stupkiewicz (1992) introduced a model which is an extension of the equations derived
to-date. To simplify the notation they introduced an orthogonal cartesian reference
frame in the tangent plane of the contact interface. With respect to that, it is now
possible to describe the slip function by a super ellipse:

tr tr, 1/n
fs([),r\f,t7=lr,tfpy) = (| =z |n + ]___y‘n) —pnNn <0, (4.36)
He Hy

where t1, and t, denote the tangential stresses in the z- and y-directions and n is
a parameter which generates the form of the ellipse. Note that this model assumes
a special case of anisotropic behaviour which has different friction parameters with
respect to the cartesian co-ordinate axes.

According to (4.35), the evolution equation is now given by two equations for the
x- and y-directions,

. Ofs " . Ofs
912 =7 Bty 91y = 5;7;

(4.37)
Again, the KUHN-TUCKER conditions can be set up to complete the formulation:
720' fs(t'l";r 'tTy)éo PY./“;(’*TI*’IU):O (438)

The dissipation function, which is needed for instance in thermo-mechanical appli-
cations or problems where wear has to be computed, can also be stated; it yields

D =ty -85 =tr. 97, +iry 97y - (4.39)

4.2.5 Friction laws for metal forming

In case of metal forming, especially in bulk-forming, the use of COULOMB’s friction
law is very limited. This is because the prediction of the frictional stress related to
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Fig. 4.15 Different possibilities to limit the frictional stress.

sliding is much too high when applying this law. Hence, in most practical applications,
a threshold value is introduced to limit the friction stress, see Figure 4.15.
The simplest approach to account for a limit stress is to change the slip function
4.25)to
fs(tr) = ||tr || - R <0, (4.40)

where h is a function which can be described in different ways. Two possible choices
for function h which are relatively simple are stated in the following:

1. CouLoOMB-OROWAN law:
h=min(p|pn|.Yo). (4.41)

where the constitutive parameter Y denotes the elastic limit of the material, as
can be seen in Figure 4.15.

2. SHAW law:
h=8Yy, with f=A,/A,., (4.42)

where A, is the real and A, the nominal contact area of the contact surface.
This quotient can be computed from (4.29), for example. Thus the parameter 3
describes the flattening of the asperities depending on the normal pressure. The
law of SHAW, compared to the COULOMB-OROWAN law, leads to a smooth
function between the normal pressure and tangential stress. Hence, it is better
suited for numerical purposes.

In the literature, other nonlinear relations are also introduced to describe a smooth
transition from COULOMB’s law to a constant limiting tangential stress for high
contact pressures depending on the sliding stress and normal pressure. Constitutive
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equations which include this feature can be derived from micro-mechanical models
(e.g. see Wanheim et al. (1974), Avitzur and Nakamura (1986) or Anand (1993)). A
commonly used model (see also Stupkiewicz (2001)) is provided by the relation

tr = aYp tanh [——-—_‘NQN } . (4.43)
aYy

Additionally to the friction coefficient i for low contact pressures, already introduced

in (4.25), two more parameters appear. Yy is the shear yield stress of the workpiece,

and « can be regarded as another friction coefficient which is valid in the high pressure

range.

Furthermore, there are many applications in metal forming where a coating is used
to improve the sliding conditions in the contact interface. This results in a decreased
frictional resistance, and hence less work is needed to form a workpiece. However, it
can be that the forming process is such that the surface of the workpiece can expand.
Thereafter the coating can break, resulting in a change of the friction behaviour which
cannot be neglected. In this case it is useful to assume that the friction coefficient
1 depends on the change of area in the contact interface u = u(j), where j is the
JACOBIAN connecting the area elements da = jdA. The formula is equivalent
to equation (2.12), which describes the transformation of volume elements. Using
NANSON’s formula (2.11), one obtains

da=jdA  with j=J[F TN]|. (4.44)

Now, as shown in Stupkiewicz (2001), one can formulate a relation for COULOMB’s
friction law as follows:

, gr .
tr = —p(i) N with
&7 |l
: 1 1 j—Jo ,
w(j) = 5(111+/1.2)+§(u2—p.[)tanh —= (4.45)

where now four constitutive parameters are introduced. These are the friction coeffi-
cients yu, for coating and po for broken coating, with uo > py, and the critical surface
extension jo, as well as the width of the transition zone j. Further, more advanced
models can be found in Stupkiewicz and Mroz (1999).

42,6 Friction laws for rubber and polymers

Many technical components include rubber or polymer sealings. Also, rolling contact
of car tyres on roads or rubber coated cylinders in printing machines have a need for
the analysis of constitutive equations for friction. Since the behaviour of rubber and
polymers is different from that of metals, different friction laws have to be considered.
In general the micro-mechanical mechanism is different; a concise statement of the
interface physics known so far for rubber materials can be found in Persson (2000).

Here only the main effects are considered, leading to a constitutive model which
yields a frictional coefficient depending on the sliding velocity and the normal pres-
sure.
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In polymers the internal friction stemming from the visco-elastic behaviour of the
solids contributes to the sliding friction. Hence the frictional coefficient depends upon
the frequency w ~ v / r, where v is the sliding velocity and r denotes the diameter of
the real contact area. When w = 2/ 7, where 7 is the relaxation time of the polymer.
then the friction coefficient is maximal. Thus one can design the polymer such that
one achieves maximum friction by choosing the material so that its relaxation time
is 7 = 2 / w, or for small internal friction one has to use a material whose relaxation
timeis 7> 2 /worT € 2 /w.

Besides the internal friction, adhesion is also a main contributor to the sliding
friction of soft materials like rubber. However, this effect depends strongly upon
the surface properties. If the surface is not completely clean, as in most technical
applications, then this effect is reduced. For other polymers one observes that for
small internal friction the sliding process takes place in a thin contamination layer.
However, for large sliding velocities, melting of the polymer occurs at the surface
due to low thermal conductivity and a low melting point of the polymers. This leads
to a considerable decrease of the friction coefficient with increasing wear.

All considerations result in complex constitutive relations if one wants to take into
account all of the effects. For practical purposes, the following forms for the friction
coefficient are applied.

A velocity- and temperature-dependent form for the frictional coefficient

u(0,vr) =po+c16 [Invr —In(c28)] (4.46)

was proposed in Rieger (1968). This constitutive model for the friction of rubber
depends upon the sliding velocity v and the temperature 6. It has three parameters
which have to be determined by experiments. If the temperature can be neglected,
such as when only small sliding velocities occur, then the constitutive relation

vr

v
u(vr) = po(pn) + 1 In f ~exln ot (4.47)

which can be found in Nackenhorst (2000), can be used for a range of the sliding

velocity from 1073 to 10 m/s. In this model the parameter yg, depends upon the
normal pressure py,

DN “
—_ . 4.48
Ho (pN) 1231 [ ] ( )

Thus, this model needs seven parameters deduced from experiments.

Other frictional interface laws for contact between a road and a tyre were developed
in Kliippel and Heinrich (2000). These authors base their model on the assumptions
that the adhesion in the interface depends upon the surface free energy of the bulk
rubber and the hysteretic energy loss due to the deformation of rubber by surface
asperities. The latter effect is assumed to be the dominant factor of rubber friction
(see also Persson (2000)). To understand the frictional dynamics of rubber stemming
from stochastic excitations during sliding over multiple scale surfaces, the authors
introduce self-affine surfaces and a visco-elastic model for the behaviour of the rubber.
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Fig. 4.16 Profile of an asphalt road track from laser measurement, seeKliippel and Heinrich
(2000).

The self-affine surfaces are described by

A 2H
S.(A) = [?} £ for A< ¢, (4.49)
I

where £ and £, are the normal and tangential correlation lengths of the rough
surface. They denote the maximum length scales for which self-affinity is fulfilled.
H = 3 — D is the HURST coefficient with the fractal dimension D. With (4.49) the
surface is described by the set D, & and £ . The values for the correlation lengths
can be obtained from measurements, see Figures 4.16 and 4.17.
This, together with the visco-elastic model, results in a friction coefficient which
depends upon the sliding velocity v and the real and imaginary elastic moduli, £
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Fig.4.17 Resulting parameters D, §; and{ | describing the surface, seeKliippel and Heinrich
(2000). :
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and Ell ;

_1[e]*E! (v —vy)vr
ulor) = 1 [f_”] Earctan [—v% r— } , (4.50)

where the constants v; and v, depend upon the relaxation time and the correlation
lengths. For more details, and the implications of the formulation with respect to
the choice of fillers in the rubber material for the generation of specific friction
coefficients, see Kliippel and Heinrich (2000).

4.2.7 Friction laws for concrete structures on soil

In this section two possible friction laws which describe the interface behaviour of a
concrete structure on soil are discussed. With regard to the soil material, we restrict
ourselves to sand. The phenomenological frictional laws are developed based on
results of experimental shear tests, see Figure 4.18. The plot shows a dependency
of the frictional force on the relative tangential movement in the interface in a non-
linear way. After a first elastic response, one observes elasto-plastic behaviour with
softening. Also, hysteretic effects are present in the loading/unloading phases of the
experiment.

The first material law to describe frictional behaviour between sand and concrete
is developed following a model which was constructed for micro-sliding between
metals, see Sellgren and Olofsson (1999). This derivation is based on the observation
depicted in Figure 4.11 for metals which show a similar material behaviour.

No elasto-plastic approach (see section 4.2.4) is used. Here the frictional coef-
ficient is introduced as a function of sliding distance and contact pressure. It thus

160 T
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Fig. 4.18 Results of shear tests, see Reul (2000).
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changes throughout the motion. At each change of direction of motion the parameter
of the frictional coefficient function is actualized, so that the friction law becomes
history dependent. The following constitutive relation is considered for the tangential
stresses:

gr
b = £ 8 * , 4.51)
TEIN Tl

with the normalized contact pressure £y = %{;"— and the friction coefficient
N

as
6
W= mpo+ (a1 +po) |1 [1- —2— ) || (4.52)
(04 + MO)tN :

The relative tangential displacement g7 defines the direction of the frictional stress in
(4.51),and§ = [ ||gr]||dt denotes the accumulated sliding distance during the loading
process, which is summed over all time increments At;, leading to 6 = ), ||&r:]|-
At areversal of the tangential motion the condition €7 1 : &r» < Oholds, where
the subscript n + 1 denotes the current and n the previous time steps. At that stage,
the following parameters are changed:
6 =0

4.53
P (4.53)

In this approach a nonlinear dependency of the contact pressure on frictional stresses
is considered in (4.51), which is different from the model proposed by Sellgren and
Olofsson (1999). The model works for two- and three-dimensional problems, and
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Fig. 4.19 Fit of friction law (4.51) to experiments.
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has six constitutive parameters a; to ag which have to be determined by experiments.
This task has been performed for the experiments shown in Figure 4.18 using the
parameter identification procedure described in appendix C. The fit of these data to the
experiments yields the following parameters: a; = 0.891kN / m?, a; = 40m /kN,
az = 95.193, a4 = 0.719kN/m?, as = 0.226 and ag = 0.914. The result of
parameter identification using model (4.51) is depicted in Figure 4.19.

One observes that this model represents the hysteretic effects but not the decrease
of the frictional force with respect to increasing relative tangential displacement.
However, the dependency on the normal pressure is reproduced correctly.

Another formulation for an interface law between soil and concrete can be derived
on the basis of the elasto-plastic approach, which was described in Section 4.2.4. The
material law for the elastic depends upon the contact pressure as follows:

tr = eTf;’\}g% = ETtA?J (gr — gg—) . 4.54)
Again £ is a normalized contact pressure as introduced in (4.51). In this approach,
the slip criterion f, is described by slip,criterion

aiw
———— 4 aqarctan(asw)| = ||t — % u(w
T F a0+ agu? T (asw)| = ||tr]| — t3 pu(w) .
4.55)

This formulation is analogous to the introduction of a hardening function which was
used to describe the constitutive behaviour of sand, see Arslan (1980).
The slip rule is given by

fs = lltr|l —tR

afs tr
5 — )\ = R 4.56
T (@20
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Fig. 4.20 Fit of friction law (4.54) to experiments.
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The evolution equation for hardening is described by
w=A (4.57)

with the hardening parameter w.

Again, the parameters were fitted for the experiments shown in Figure 4.18 us-
ing the parameter identification procedure described in Appendix C. This leads to
the following set of parameters: a; = 16621.kN/m?3, a; = 19817.1/m, a3 =
19739311 / m?, a4 = 0.4915kN / m?, a5 = 535.71 / m, ag = 0.89 and a7 = 0.99.

The result of parameter identification using model (4.54) is depicted in Figure 4.20.
Now the hysteretic effects are not represented by this model, but the dependency of the
frictional stress on the relative tangential displacement g, as well as the dependency
on the normal pressure, is described correctly.

For both models the parameter identification procedure yields good results. This
is not obvious, since the model is highly nonlinear and history-dependent due to
the softening behaviour of the tangential stress with respect to the absolute relative
displacement in the interface.

4.2.8 Friction laws from computational homogenization procedures

Another method to derive contact compliances (see section 4.1.2) and friction interface
laws is provided by a computational homogenization procedure. In this case a nu-
merical simulation is performed under homogeneous boundary conditions for a Rep-
resentative Volume Element (RVE). Such an RVE is depicted as a two-dimensional
sketch in Figure 4.21 (a). The RVE has to include the real contact geometry with
known profiles from the micro-mechanical surfaces. It has to be large enough to
resolve the micro-structure of the surface geometries in the contact area. When the
boundary conditions are such that only deformations are applied in the normal direc-
tion, then the computational homogenization procedure yields a homogenized contact
law for the normal pressure py, see Figure 4.21(b). When additionally, relative tan-
gential motions are described, then a friction law for ¢7- can be derived. Note that
all computations have to be performed using three-dimensional models, since a real
micro-geometry is always a two-dimensional surface. To arrive at a statistically rep-
resentative homogenized constitutive equation for the contact interface, several com-
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Fig. 4.21 (a) Micro-structure, (b) homogenized model.
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putations have to be performed with a different distribution of the micro-geometry
until the standard deviation is below a given tolerance.

Still, for the numerical model which includes the micro-geometry, see Figure
4.21(a), one has to provide a general contact law for the contact stresses in the normal
and tangential directions. In such micro-mechanical computation no friction is as-
sumed here between the solids. The friction law then stems either from a constitutive
relation describing adhesion in the contact area, and/or the elastic-plastic response of
the solid which is related to ploughing.

Using a micro-structure in the contact surface, as depicted in Figure 4.21 (a) (see
also Figure 4.14) the normal contact stresses on the rough microstructural surface
are computed. These stresses only occur in some parts I'; of the micro-asperities,
see Figure 4.22. The sum over all areas I'; in which contact stresses py, n, are
present yields a resultant force on the entire contact surface. The contact stress can
be represented with respect to the basis (a', n™) of the contact mean plane surface

Z/p]v’nsdr =fy+fr= fN n™ + f%ag' . (4.58)
s T,

Averaging over the mean plane of the contact surface is then carried out. In the case
depicted in Figure 4.22, the mean plane is straight. Hence the resulting mean contact
stresses have the same direction

1 1
pyn™ = Zanm > pN = Z’fN
(4.59)
1 1
tr%al = 1 fay = p* = Zf%

Initial estimates regarding the structure of a frictional law can be drawn by evaluating
these stresses. Therefore, one can derive a general form for the homogenized friction

Fig. 4.22 Micro-structure of the contact zone.
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Fig. 4.23 Finite element mesh and randomly generated surface.

law; some results of such procedures are reported in Haraldsson and Wriggers (2001)
or Bandeira et al. (2002).

The general procedure to obtain friction laws from such computations is outlined
below. The three steps have to be executed for each of the samples in a statistically
representative set. In general, this means that around 100 different samples have to
be solved:

1.

]

Discretization of two solid blocks with a randomly generated surface with the
mean plane of the contact surface being A. A mesh stemming from such a
procedure is presented for one of the solids in Figure 4.23. The micro-structure
is modelled with b-splines in order to be able to discretize a wavy contact surface
for the solids. In the example depicted in Figure 4.23, 25 b-spline-nodes with
randomly chosen heights were used to generate the asperities of the surface.

. Application of a homogeneous deformation pattern at the boundary of the

blocks in the normal and tangential directions, see Figure 4.24. To derive
a friction law one has to perform several computations with different constant
normal forces py A. Hence, a normal deformation u is first applied to obtain
a certain normal force, which is then fixed throughout the computation. After
that, the relative displacement g7 is applied incrementally in the tangential
direction.

. Incremental solution of the boundary value problem for a fixed normal force,

e.g. fixed normal displacement wx. Due to the applied tangential relative
displacement gr, the tangential stresses t71 and {7 2 are computed as reactions.
From this result for normal and tangential reactions, one can then derive the
homogenized contact stresses pn and tp according to equation (4.59).

This procedure was used to derive a contact law for a concrete-soil interface; for de-
tails see Haraldsson and Wriggers (2001). One then obtains for different numerical
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Fig. 4.24 Movement of the block and resultant stresses t7) and t7».

experiments a distribution of the tangential stress in relation to normal pressure pny
and total slip g,, see Figure 4.25. Each line with values greater than zero for pj
stands for one numerical experiment. For the flat areas in between, no numerical
experiments were performed; such numerical experiments still take some time, since
one has to solve a geometrical and material nonlinear three-dimensional boundary
value problem with many unknowns. However, the effort compared with real ex-
periments is still small. Hence it makes a lot of sense to support experiments by
additional numerical simulations in order to obtain a statistical representative result
for the homogenized law. Also, one can vary the material parameters of the solids
near the contact surface and hence can account additionally for work hardening in the
case of metals. Furthermore the virtual testing procedure allows us to gain insight
into the behaviour within the micro-structure of the contact interface. A view of the

v [(!(—zL il
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Fig. 4.25 Relation between mean normal pressure p%, mean tangential stress t7 and slip
Gu-
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Normal pressure

Relative-displacement

Fig. 4.26 vON MISES stresses in the micro-structure.

stress distribution in the micro-structure is depicted in Figure 4.26 for the model com-
putation described above. The distribution of the VON MISES stresses shows clearly
that the largest plastic deformations occur at the asperities, which is intuitively clear.

4.3 LUBRICATION

Lubrication is used to reduce friction in tribological systems like bearings, engines,
gears, etc. This phenomenon is produced by, for example, a thin layer of fluid —
the lubricant — between the solids in contact. Lubrication can also appear when a
chemical reaction in the contact interface leads to a layer of contaminants which
reduce friction; also, abrasive wear can decrease the friction force in the interface.

Even before the steam engine was developed, scientists were interested in the
influence of lubrication when the friction between metals had to be reduced. Leibniz
(1706)) investigated already the difference between sliding and rolling friction and
required special technical solutions to reduce friction. Later the industrial revolution
demanded more insight, which finally lead to the formulation of the REYNOLDS
equation for thin film lubrication and the STRIBECK curves, which can be used to
distinguish mixed friction and pure hydrodynamic lubrication, see Figure 4.28. Here
only lubrication due to the elasto-hydrodynamic effects of a fluid in the interface will
be considered; for more detailed descriptions of other phenomena, see Polzer and
Meissner (1983), Rabinowicz (1995) or Persson (2000).

Lubrication only works when there is a certain relative velocity v between the solids
such that the fluid layer does not disappear, see Figure 4.27. Such a process is called
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F N

fluid

solid

Fig. 4.27 Solid-fluid interaction in the case of lubrication.

hydrodynamic lubrication. If the velocity is too small, then the fluid will be squeezed
out between the bodies leading to direct contact of the bodies, also called boundary
lubrication. Experiments and theoretical predictions show that the frictional force is
much higher for boundary lubrication than for hydrodynamic lubrication. Another
observation is that the hydrodynamic lubrication depends upon the sliding velocity,
leading to an increase in friction force for increasing velocity, see Figure 4.28.

There are two ways to introduce lubrication: one is the coupled treatment of
the problem; the other is related to the fact that lubrication in general reduces the
coefficient of friction. Hence it can be incorporated into the constitutive relations for
friction, discussed in the previous sections, by a different choice of parameters. These
have to be found from experiments or derived from equations governing lubrication,
e.g. see Khonsari and Booser (2001).

boundary lubrication

mixed lubrication

hydrodynamic
lubrication

-3
7/

Fig. 4.28 Frictional stress versus normalized sliding velocity.
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If lubrication is treated as a coupled problem, one has to state the relevant equations
for the fluid film. These derive from the classical NAVIER—STOKES equations of
fluid dynamics by introducing several simplifications inherent in the problem. It is
well known that the flow in the interface is laminar for most cases, and it is also
incompressible. With the further assumption that the nonlinear convective term in
the N AVIER—~STOKES equations can be neglected as well as inertia terms, the general
equations reduce to the REYNOLDS equation,

o [ h3 Opn o (hd dpn Opn
| 28 TEA R Bt b B N AR I 4.6
O (773 Oz ) " By (f)s Ay ) Ove ( oz ) (4.60)

This equation is valid for stationary processes when a constant relative sliding velocity
v, in the z-direction is present. The other variables are defined in Figure 4.29. h; is
the height of the gap, which can depend upon the deformations of the solids, and which
then leads to a nonlinear coupled problem with the coupling terms being the contact
pressure py and the deformation-dependent height h;. Note that (4.60) is only valid
fordg > 0, see Figure 4.29. 7, denotes the viscosity of the lubricant. This constitutive
parameter depends in general upon the contact pressure py, the temperature § or the
gap height h,. An empirical formula which includes observations from experiments
and takes the change due to h, into account can be defined as

ne(hs) = s (

Here r and 7, have to be adjusted via experimental data, and hg g, follows from
measurements of the problem geometry which can include micromechanical effects.
A pressure-dependent viscosity coefficient follows from the function

Ns(pN) = no eV, (4.62)

hs

,
) , O<r<1l1. 4.6
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Fig. 4.29 Definition of lubrication interface.
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with two constitutive parameters 79 and 7, .

Note that the gap height is usually very small, e.g. ~ 10~5 m. Hence, when the
lubrication interface problem is treated in a coupled manner using the finite element
method, one needs a high accuracy (very fine mesh) in the contact area to resolve
these small deformations of the solid.

4.4 ADHESION

If two clean plates (e.g. made of glass) are pressed together and then the load is
reversed such that one tries to pull the plates apart, one can observe that the plates
seem to be glued together. This effect is due to adhesion. This means that a positive
normal stress has to be admitted in the contact interface (py > 0). Furthermore, if the
contact stresses are large enough, the adhesion will be broken in the contact interface,
leading to a classical unilateral contact problem as defined in Section 5.1. Applications
in which adhesive forces are present are a model of the micromechanics in contact
interfaces (see the previous section or debonding processes in heterogeneous material,
e.g. Wriggers et al. (1998), Zohdi and Wriggers (2000) or Zohdi and Wriggers
(2001)). Furthermore, the analysis of tape which works due to adhesion can be
mentioned.

Hence adhesion changes the unilateral contact problem and, as a result, a consti-
tutive equation has to be formulated in the contact interface which is able to describe
the transition from total adhesion to unilateral contact. Work in this direction was
extensively pursued by the French school, e.g. see Fremond (1987). This author
formulated adhesion by using a measure for the intensity of adhesion on the interface,
which is similar to a description of damage mechanics by a damage function. Cou-
pling of adhesion to friction was discussed in Raous et al. (2000) and Raous (1999)
who also discussed the thermomechanical background and introduced a numerical
model. However, there are also other models used to investigate the debonding pro-
cesses in between matrix materials and particles, e.g. see Suresh et al. (1993).

We will not go into the details of the derivation of adhesive models, which can be
found in Fremond (1987). Here only the resulting model will be discussed. For this
purpose a condition, similar to (4.2), will be introduced, see Raous (1999),

-pn +Cngn B2 >0, gNn >0, (-pn +Cngn B%)gn =0, (4.63)

where gy is the gap function, see (3.6). The value 5 describes the intensity of
adhesion:
1 total adhesion,
B={ 0<B<1 partal adhesion, (4.64)
0 no adhesion.

Furthermore C'y is a constitutive parameter which is associated with the stiffness
in the normal direction of the interface. Still missing in this model is an evolution
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equation for the intensity of adhesion. The evolution equation

Y l ,6h(ﬂ)_ ) 1/p
8= 7 (w 35 Cn gn B) (4.65)

was proposed by Raous (1999). Here, 5 describes the viscosity of the adhesive
interface. w is the limit of the debonding energy which acts as a threshold value:
only when the force due to adhesion C g% 3 is greater than w 59%3@ is an evolution
of the adhesion intensity possible. A is a given function which can be used to adjust
the constitutive relation to experimental data. If one chooses h(8) = fand p = 1,
(4.65) simplifies to

. 1 ,
8= - (w—Cn g% B). (4.66)

This equation is to be solved for the given constitutive parameters. The behaviour
of the constitutive equation defined above is depicted in Figure 4.30. One observes
that the constitutive equations leads to a stress response which is well known from
continuum damage theory.

The incremental form of the adhesion law needed in a finite element algorithmic
treatment is provided in Section 9.5.1.

The extension of the constitutive behaviour defined above to friction will also
include adhesion in the stick/slip phase of the tangential movement. This leads to a
set of equations which basically have the same structure as the adhesion mode! for
normal contact:

f& = ltr—Crgr B2l — (pw — O gn 8%) <0,
) L Of¢ (4.67)
gT - ’)/ 8tT i )
. 1 : :
B = *E[w— (Cngx +Crllgr ) B].
Fn
loading :
0
AN #
adhesive limit
N
N
~
~
unloading

gnN

Fig. 4.30 Adhesive normal stress
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In this set of equations the only new constitutive parameter is Cr, which describes
the elastic stiffness in the tangential direction of the adhesive zone. Also, only the
simplified model (4.66) was used, but the model (4.65) can also be applied adequately.

4.5 DECOHESION

Another application, where special constitutive equations have to be formulated in
the contact interface, is debonding. Debonding describes the loss of contact of e.g.
micro-fibres or particles in a matrix material. Special constitutive equations have
to be developed to simulate debonding processes. Out of many different possible
formulations, e.g. see Tvergaard (1990) or Xu and Needleman (1993) a constitutive
equation developed by Needleman (1990) for the two-dimensional case is reported,
see Figure 4.31. Here normal stresses and the tangential stresses follow from an
elastic strain energy function ¢ which relates the stresses in the interface to the gap
opening gn in the following way:

o

gpA = @ 3 (468)

where the subscript A stands for the direction normal or tangential to the interface.
Using the strain energy function ¢ in Needleman (1990), one arrives at

on = C[an(gn—1)+adh(gn—-1)],
or = aC [gr(gn-1)*]. (4.69)

In this equation the normalized gap opening g = gn / ¢ and the normalized relative
tangential deformation g7 = gr /& have been introduced. The length é denotes
the maximum gap opening which can be tolerated in the interface before complete
debonding occurs. The constant C is related to the maximum stress carried by the
interface C = 27 /4 0mq,. In the case of gr = 0, we obtain at gy = % as the
maximum value the stress 0,,qz.

ON

gN

Fig. 4.31 Adhesive normal stress for decohesion
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46 WEAR

Wear among other events like breakage or corrosion is one of the causes leading to
the fact that a part, an engine or a tool is no longer useful. There are many examples
which underline this statement. One can think of a record player, even if such an
object is almost history, where the record as well as the needle undergoes a wear
process during use, which eventually can be observed easily just by listening to the
quality of the sound. Another simple process from everyday life is writing. What
one sees when using a pencil to write on a piece of paper is just the outcome of a
wearing process. If these processes are connected with wear, then it is clear that
wear means the removal of material from solid surfaces under mechanical action. In
general, wear is related to sliding contact. However, the amount of material which is
removed is quite small thus the wear process is not always easily detected in industrial
applications where wear between metals has to be considered.

If studied in more detail, one observes that wear involves many different disci-
plines, e.g. material science, chemistry and applied mechanics. This is because
besides the geometrical properties of surfaces and the frictional forces in the inter-
face, surface chemistry and the material properties close to the surface also play a
major role.

Basically, there are four different forms of wear mechanisms, which are discussed
below:

¢ Adhesive wear. Fragments are pulled off one surface and adhere to the other
during a sliding of smooth surfaces. If later these particle come off the surface,
they can form loose wear particles.

¢ Abrasive wear. When arough hard surface and a soft surface are in sliding con-
tact, the hard surface ploughs grooves in the soft one. The material stemming
from the grooves then forms the wear particles.

e Corrosive wear. This process occurs in a corrosive environment when a film
protects the surfaces and is removed by a sliding action. In that case, the attack
due to corrosion starts due to sliding contact.

o Surface fatigue wear. This happens if, during repeated sliding or rolling, the
material undergoes many loading/unloading cycles which lead to cracks close
to the surface. These might result in a breakup of the surface, and lead to the
formation of wear particles.

These wear mechanisms cannot be discussed in this monograph in depth; for further
details see Rabinowicz (1995), for example. From all of the above, it can be deduced
that a wear process is complicated and can also involve different mechanisms at
different stages of the process. Wear in general depends upon the properties of the
material surfaces, the surface roughness, the sliding distance, the sliding velocity
and the temperature. If one wants to describe wear mechanism through constitutive
equations and evolution laws, then one has to determine which of the aforementioned
effects play a major role. Depending on the softness of the surfaces and on the material
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data of the particles which are worn off (debris), one might have to consider a third
body (consisting of the debris) which acts in between the contacting interfaces.

The first constitutive equations which can be used to compute the volume of ma-
terial lost by the wear process are very simple. A simple law for adhesive wear was
proposed by Holm (1946) and Archard (1953). This HOLM—ARCHARD law has the

form
Fyngr

H
where ko4 is the so-called wear coefficient, which depends upon the materials in
contact, and hence can be put in relation to the friction coefficient, see Rabinowicz
(1995). H denotes the hardness of the surface which is worn away. Fy is the
normal force and gr the relative sliding distance between the materials. Equation
(4.70) provides a linear relationship between wear volume V.., and relative sliding
distance g7 should the normal force Fy be kept constant. The wear coefficient kqq
has to be deduced from experimental data; for metals it is in the range of 1073 to
1078,

Despite the fact that a completely different mechanism is associated with abrasive
wear, one can apply the same constitutive equation as (4.70) to abrasive wear, see
Rabinowicz (1995). It reads

Vwear = kad

, (4.70)

F
‘/wear = kabr —]Y‘I{;qZ . 47D

The only change is the abrasive wear coefficient k4., Which physically represents
a value that depends upon the average of the roughness angle, and ranges between
102 to 1075.

Due to the small amount of material which is worn off, no coupled analysis (con-
cerning the change of mass or change of geometry) is needed when wear problems
have to be solved. If laws (4.70) or (4.71) are used within an analysis, one only has
to apply them in a post-processing phase. However, this means that the normal force
is kept constant.

If this is not the case, as in contact problems in which deformation is involved,
then the constitutive equations have to be refined. A thermodynamically consistent
theoretical background for such models was provided by Zmitrowicz (1987a) and
Zmitrowicz (1987b). Constitutive relations leading to evolution equations were also
discussed in Curnier (1984) and application within the finite element method can be
found in Neto et al. (1996), Stromberg et al. (1996), Stromberg (1997) or Agelet de
Saracibar and Chiumenti (1999).

These authors indicated a connection between friction and wear effects. As aresult
of that, the mean rate of wear can be assumed to be proportional to the dissipation
rate due to friction, see (4.23) or (4.39). The mean rate of wear itself is characterized
by a function which represents the movement of the contacting surfaces in a normal
direction, since wear removes volume and hence brings the surfaces closer together.
The wear rate V is then given by

Vi = kwear D* . (4.72)
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where kyeqr 18 the wear parameter and D? is the dissipation rate. In general, one has
to assume different wear parameters for both contacting surfaces, which was omitted
here. Using (4.72) leads to an algorithm for wear in which the wear rate is simply
computed in each time or load increment of the frictional analysis.

In a more general situation, the wear parameter can depend upon the sliding
velocity and on the temperature generated in the contact interface due to friction:
kwear = kwear(87.0). In the latter case, the wear computation needs a coupled
thermo-mechanical treatment, e.g. see Chapter 10.

4.7 FRACTAL CONTACT INTERFACES

Rough contact surfaces can also be modelled by fractals. Here we shali state the
general ideas which lead to such a model. Examples will be given in Section 12.6.3.
Structures involving interfaces with fractal geometry are referred to as sequence of
classical interfaces problems, which result from the consideration of the fractal in-
terfaces as the unique fixed point or the deterministic attractor of a given lterated
Function System (IFS). On the interface itself, unilateral contact is assumed to hold.

The geometry of a fractal permits the accurate geometrical description of cer-
tain physical forms and of the figures and graphs resulting in physical, chemical
and biomechanical processes, see e.g. Mandelbrot (1982), Takayasu (1990), Scholz
(1989), Barnsley (1988) and Barnsley and Hurd (1993). One could mention here
the forms of clouds and mountains, landscape and coastline geometry, fluvial system
geometry, the distribution of craters in planets, etc.

In structural analysis and applied mechanics, we often have to deal with fractal
domains 2 and/or fractal boundaries I'. These are, for example, the cases of the crack
interfaces in natural bodies, the free surfaces and interfaces in fractured bones, metals
and rocks, the geometry of metallic interfaces after sandblasting or meteoritic rain,
the crashed interfaces in composite and granular materials, the geometry of fluvial
systems, nervous cells and the geometry of plants, see e.g. Takayasu (1990), Scholz
(1989) or Feder (1988).

The finite element theory on fractal interfaces in contact problems, based on the
approach of Barnsley (1988), was investigated by Panagiotopoulos et al. (1992). He
proposed an inequality fractal formulation under the assumption of the fractal in-
terfaces obeying unilateral contact with friction conditions. The influence of fractal
geometry on the mechanical quantities and on the displacement and stress fields of
deformable bodies was discussed. The reliable numerical applications from rock me-
chanics, bone mechanics and fracture engineering were given. Also, certain methods
for consideration of the fractal geometry in the FEM calculations were exploited, on
the assumption that the fractal geometry does not change during the loading process.
Here we apply this approach to define rough surfaces through fractals, see also Hu
et al. (2000).

An important tool to the theory, which finds many applications to the mechanics
of structure, is the fractal interpolation function. Suppose that in R?, for instance,
we have a set of given data z; = {x;,y;}, ¢ = 0.1,..., N, where the maps are affine
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transformations of the special structure

T a; 0 xr €;
. — i = + . 473
it w{y} [c,» di]{y} {fi}’ @7
with the restrictions

wi(z0) = zi—1, wi(zy) =2; for i=1,...,N. 4.74)

In (4.73) one parameter is free. Choosing 0 < d; < 1, we obtain that

e = (x; — x(i—l)) _ (-’L'Nx(i—l) — ZoZ;i)
' (N —z0) " (zn — x0)
N Wi —ye-n) _; G~ —y0) 4.75)
(zn — Z0) (zn — 20)
fo= (@NY-1) —Toyi) _ , (ENYo — yNTo)
(zN — x0) " (zN — Z0)

Thus we have constructed an IFS from a given set of points 2; = {z;,y;}. If A
denotes the attractor of this IFS, then A is the “fractal graph” of a continuous function
f : [zo; zn] =R which interpolates the data {z;,y;}, i = 0,1, ..., N. This function
is called a “fractal interpolation function” and it is shown that it can be defined as the
unique fixed point of a contractive transformation 7" which is defined by the relation

Tf(z) = eili ' (z) + dif (17 () + i, (4.76)

where 17! is the inverse of the linear mapping l;(z) = a;r + e;.

Let us now assume that set A is called the deterministic attractor of IFS. Further-
more, {R™; w;} is the deterministic fractal of the IFS considered. It can easily be
shown that if the points zg, ..., x 5 are equidistant, then the dim A, denoted by D, is

given by the formula
N
in (3 i)
—=l / (4.77)

InN
if the points {z;,y;}, i = 0,1, ..., N do not form a straight line (in this case D = 1),
and if Zf;] ld;| > 1. If zg, ..., N are not equidistant, then f is the real solution of
the equation

D=1+

N
> ldilaP ™t =1, 4.78)
i=1

if Zf;l |di] > 1. Note that the proper choice of the parameter d; may make D
very close to 1, i.e. we obtain a line-like fractal, or very close to 2, i.e. we obtain
a surface-like fractal which can be used to describe the rough contact interface. For
more details see Panagiotopoulos et al. (1992) or Hu et al. (2000). An application is
shown in Section 12.6.3.



Contact Boundary Value
Problem and Weak Form

For the formulation of the boundary value problem, we only have to discuss the ad-
ditional terms due to contact in detail. The equations describing the behaviour of the
bodies coming into contact do not change, and can be found in Chapter 2. For the
treatment of different material behaviour like elasto-plasticity or visco-elasticity, see
basic textbooks like Lubliner (1990), Malvern (1969), Maugin (1992) or for algo-
rithms related to plasticity and visco-plasticity in combination with finite elements,
see Simo and Hughes (1998).

Since the finite element method will be applied to solve the resulting nonlinear
boundary value problems, weak formulations have to be developed for contact prob-
lems. The main concern of this chapter is the incorporation of the constraintequations
formulated for frictionless contact in Section 3.1, and of the interface laws related
to stick and sliding in the contact interface. However, one of the major problems
in contact mechanics in the algorithmic treatment, which is associated with the nu-
merical treatment of contact problems, is the non-differentiability of normal contact
and friction terms. To overcome these difficulties, different formulations have been
developed which are discussed in section 5.3.

5.1 FRICTIONLESS CONTACT IN LINEAR ELASTICITY

As an introduction for contact, a solid with a rigid surface is considered in three-
dimensional linear elasticity. Due to the contact constraints a variational inequality
will appear instead of the standard variational equations known from classical solid
mechanics, see also Section 1.1.

93
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Due to the fact that the motion of the body is constrained from one side by the
rigid surface, the problem is called a unilateral contact problem. The derivation of the
associated variational formulation is the same as for the example in Section 1.1. One
only has to use the relevant equations for the linear elastic solid in three dimensions
which are stated in Chapter 2.

In the case of linear elasticity, the equilibrium equation (2.39) is given by

—Dive=f in B, (5.1

where o is the stress tensor at a point X in the interior of body B. In linear elasticity
the stress can be computed from the linear strain field e, see (2.27),

e(u) = % (Gradu + Grad u) (5.2)
via the classical law of HOOKE, see (2.95);
o(u) =C[e(u)], (5.3)

with the displacement field u and the elasticity tensor €. Let us assume that the
following conditions hold on the boundary (see also Figure 5.1):

1. Displacement boundary conditions, also called DIRICHLET conditions:

u=0 on TI,. (5.4)

2. Traction boundary conditions, also called NEUMANN conditions:

on=t on I,, (5.5)

i

Fig. 5.1 : Unilateral contact of an elastic solid.
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where n is the outward normal of the surface of the solid and t denotes the
applied traction on I',.

3. Contact conditions:

un — g S U7
PN S 0 on Tc, (56)
(un —g)pn = O,

with the normal component of the displacement field uy = u - n and the
contact pressure py which is equivalent with the normal component of the
traction vector py = t-n.

This boundary value problem which yields the displacement field, includes the in-
equalities related to frictionless contact. It is called SIGNORINI’S problem, see Sig-
norini (1933).

For a finite element solution of this system of equations, one needs the variational
formulation of SIGNORINI’S problem. As usual, one can introduce a space V of
vector-valued, real functions defined on B, e.g. see Kikuchi and Oden (1988). It is
assumed that the test function v (which in most of the engineering literature is called
virtual displacement) fulfils the condition v = 0 on I';, and the contact condition
vy —¢g < 0Vv € V with vy = v -n. Furthermore, let be u the solution of
SIGNORINI’S problem; then one can state the weak form of (5.1). This is equivalent
to the virtual work produced by the stresses o and the virtual strains (u — v) due
to the virtual displacements u — v, as well as the virtnal work stemming from the
external loads and body forces:

‘a-s(u~v)dV = f-(u—v)dv + .i-(u—v)dI’

/ [romme]
+ / py(@)(uny —vn)dl. (5.7)
r.

Here o = o (u) is a function of the displacement defined via (5.3) and (5.2). f are the
body forces and t denote the boundary tractions. Note that the term which includes
I",, does not enter, since (u — v) satisfies the boundary conditions, see (5.4). The last
term in (5.7) can be reformulated with (5.6)3 as

pv{unv —vN) =pN(un —vn +9—g) =pn(vn —g) 20, (5.8)

where the greater equal sign results from (5.6)1 2; see also the discussion in Section
1.1. With this inequality the solution of the SIGNORINI problem defined by (5.1) to
(5.6) has to fulfil

/a’-e(u~v)dV2 /f-(u—v)det/f-(u—v)dI‘. (5.9)

B B ry
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Thus a variational inequality, stemming from the contact constraint, characterizes
the solution of SIGNORINI’S problem. This is different from the usual situation in
solid mechanics, where the solutions have to fulfil variational equations. Due to the
inequality constraint on the deformation field the contact problem is nonlinear even in
the case of linear elasticity. Special algorithms have thus to be designed for problem
5.9).

The variational inequality can be recast in an abstract form, often used in theoretical
and mathematical work regarding contact. In a more general situation, one can also
formulate (5.9) for the contact between two deformable bodies. The analysis then
yields the same structure as is inherent in (5.9); only the domain B = ngl B is
the union of both domains of the contacting bodies. Generally, one then defines the
variational inequality by

a(u,v—u) > f(v—-u), (5.10)
with
a(w,v) = /e(u) :C : e(v)dV, (5.11)
B
flv) = /B-vdV—f—/i-vdF, (5.12)
B T,

where all quantities are defined by previous relations.
The problem is now stated by: find u € K such that (5.10) is fulfilled forall v € K
with
K={veV|(v?-¥)-il +go>00nT.}. (5.13)

where V represents the space of test functions.

The variational inequality (5.10) is stated here for frictionless contact. The prob-
lem is even more complicated when friction is present. In that case, not only are the
inequality constraints in normal direction present, but there is also a special consti-
tutive behaviour in the tangent direction at the contact interface. This is governed by
sudden changes of the solution states such that the solution jumps from a state of stick
(in which the tangential contact stresses follow as reactions from the stick conditions)
to a state of sliding (in which the tangential stresses are computed from a constitutive
equation, see Section 4.2). This special behaviour leads to even more mathematical
difficulties when questions of existence and uniqueness of frictional contact prob-
lems are addressed. The mathematical structure of the variational inequality (5.10) is
discussed in detail in, e.g., Duvaut and Lions (1976), Cocu (1984), Panagiotopoulos
(1985), Rabier et al. (1986) or Kikuchi and Oden (1988). The latter reference also
includes a mathematical analysis of the finite element method for contact problems.
Special considerations concerning stability can be found in Klarbring (1988). Fur-
thermore, examples for non-uniqueness or non-existence were discussed in Klarbring
(1990) and Martins et al. (1994).

For dynamic contact problems, existence and uniqueness results can be found in
Martins and Oden (1987), for example.
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5.2 FRICTIONLESS CONTACT IN FINITE DEFORMATIONS PROBLEMS

All the equations needed to formulate the problem have already been discussed in
Chapters 2-4. Here these basic equations are combined to obtain the boundary value
problem for frictionless static contact. For this we formulate the local momentum
equation for each body B7, (v = 1, 2) in contact, see also (2.49):

DIVPY +f" =0, (5.14)

where the inertia terms have been neglected. P” denotes the first PIOLA-KIRCHHOFF
stress tensor acting in the body v, and £ = o b’ are the body forces. Next we
formulate the boundary conditions for the deformation and the stress field

@' = @ on T/, (5.15)
= t” on I}, (5.16)

where @7 and t” are described quantities. Furthermore, we have to account for the
contact condition which is given by equation (3.6) when the bodies can come into
contact. Together with the condition that no adhesion stresses can occur in the contact
interface, we have from (4.2) the KUHN-TUCKER-K ARUSH conditions for contact:

gy >0 pn <0 gnpn =0 on [,. (5.17)

Similar relations hold for the case in which constitutive equations are assumed in
the contact interface I';, and we can apply the relations defined in Section 4.1.2. In
the case of frictional contact, the geometric relations derived in Section 3.2 and the
constitutive laws given in Section 4.2 have to be used.

The constitutive equations for each body B” have already been discussed in Section
2.4. For hyperelastic materials we have in general

P"=P (X".F".1), (5.18)

for details see equations (2.74). Here we apply the equation as a model for nonlinear
constitutive equations of the solid which is valid for finite elasticity. It leads in the
current configuration to a nonlinear response function for the KIRCHHOFF stress 7 in
terms of the left CAUCHY-GREEN tensorb = FFT : 7 = f(b). The KIRCHHOFF
stress is related to the first PIOLA-KIRCHHOFF stress viaT = PFT, with F being the
deformation gradient. The simplest example for hyperelasticity is the Neo-Hookian
model, which can be applied, for example to rubber materials undergoing moderately
large strains

TV =A"(J=1)1+p" (b 1), (5.19)

with the JACOBIAN of the deformation J” = detF”. The material parameters for
the bodies B are the LAME constants A” and p”.

Of course, it is possible to use more complicated constitutive relations which can
also be of an inelastic nature. However, in such a case, no energy principle can be
formulated.
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For a numerical solution of the nonlinear boundary value problem summarized
above, we will use the finite element method. Thus we need the weak form of the
local field equations. Again, the weak formulation of contact problems leads to
a variational inequality, see Duvaut and Lions (1976), which is stated in the next
section.

Due to the fact that the constraint condition (5.17) is represented by an inequality,
we also obtain a variational inequality which the solution of the contact problem has
to fulfil. The general form can be written, as derived in Section 5.1 for the linear case.
as

Z/r"grad(n-—cp dV>Z/f (n"—¢") d‘“/t (" —¢7) d:

=1 gy =1 gy r,”
(5.20)

Here the integration is performed with respect to the domain B” occupied by the
body B” in the reference configuration. The stress tensor and the gradient operator
“grad” are evaluated with respect to the current coordinates. Furthermore, f” denotes
the body force of body B” and t” is the surface traction applied on the boundary of
B7. The KIRCHHOFF stress 7" is defined in the previous section.

We now have to find the deformation (¢! , p?) € K such that (5.20) is fulfilled
forall (n!,7n?) € K with

K={(m".n*)eV|[n* -7, €)] -am >0}. (5.21)

This formulation holds for arbitrary constitutive equations, including inelastic effects.
If the problem can be described by hyperelastic material law, one can formulate
the frictionless contact problem as follows:

2
> 0" — MIN (5.22)
v=1

subjectto gy >0 onT,,

which defines an optimization problem with inequality constraints. Here the energy
function IT” for one body is given by (see also Section 2.3.3)

o = / W(C)dV — / 7 prdv - / 17 p7dA, (5.23)
B~ B~

| g

where W7(C) describes the strain energy function of the body B, which is defined
in Section 2.4.1 in detail.

In the case of finite elasticity, the existence of the solution of (5.22) can be proved,
e.g. see Ciarlet (1988) or Curnier et al. (1992).

REMARK 5.1: Mathematical analysis can be found for some cases of the unilateral contact
undergoing large deflections in Kikuchi and Oden (1988) or Ciarlet (1988), for example. The
linear problem has already been stated in Section 5.1.
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5.3 TREATMENT OF CONTACT CONSTRAINTS

In this section we shall discuss several different formulations that can be applied to
incorpbrate the contact constraints into the variational formulation. Here frictionless
as well as frictional contact formulations are derived.

Different possibilities exist for the numerical solution of these problems. Among
them are the so-called active set strategies, which are applied in combination with
LAGRANGE multipliers. Furthermore penalty techniques, e.g. see the text books of
Bertsekas (1984) or Luenberger (1984), can be applied to solve contact problems.
All these methods are well known in optimization theory. Other solution schemes are
based on mathematical programming, e.g. see Conry and Seireg (1971) or Klarbring
(1986), who applied this method to frictional contact problems.

Most standard finite element codes which are able to handle contact problems use
either the penalty or the LAGRANGE multiplier method; for an overview and the
mathematical framework, see Kikuchi and Oden (1988). Each of the methods has its
own advantages and disadvantages, which will be discussed in detail in the following.
The methods are designed to fulfil the constraint equations in the normal direction in
the contact interface. For the tangential part we need in general constitutive relations
when stick/slip motion occurs; associated techniques will be discussed in Chapter 9.

Here we concentrate in general on different possibilities to formulate the contact
conditions. For a more simple representation we assume that the contact interface is
known. This will often be the case later when an active set strategy is employed to
solve the inequality (5.20).

Once the contact interface is known we can write the weak form as an equality.
This means that we know the active set of constraints within an incremental solution
step. Hence, equation (5.20) can be written as

2

> /T"f-gradn“fdv-—/f”-n"*dv— / - dA  +C. =0,
B '

v=1 By P

(5.24)

where C,. are contact contributions associated with the active constraint set. 7 € V

is the so-called test function or virtual displacement, which is zero at the boundary
I'7, where the deformations are prescribed.

In the case of hyperelastic materials, the starting point to derive equation (5.24) is

the minimization of the total energy of the two bodies in contact (see Section 2.3.3)

Z / WY(C)dV — / -9 dV - / t"-¢"dA p +11, = MIN
=B B~ o

(5.25)
where W7(C) is the strain energy related to body B, which is discussed in detail in
Section 2.4.1. ¢” denotes the deformation of both bodies. The contributions due to
the contact constraints are enclosed in II.. Note that this formulation is only valid for
contact problems which do not include frictional sliding, since the friction process is
dissipative and hence the solution becomes path-dependent.
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For two bodies in contact we obtain the weak form or the energy related to the
interface by assuming that contact is active at the surface I'.. Several different variants
for the formulation of I1, and C,, are discussed below:

1. The LAGRANGE multiplier method.

2. The penalty method.

3. The method of direct elimination of the geometrical contact constraints.

4. The formulation of constitutive equations in the contact interface.

5. The NITSCHE method, which enforces geometrical constraints in a weak sense.

6. The perturbed LAGRANGE formulation which combines (1) and (2) in a mixed
form.

7. The barrier method.
8. The augmented LAGRANGE method.
9. The cross-constraint method which combines the penalty and barrier methods.

This large variety of formulations also reflects the large number of different algorithms
which have so far been developed to solve contact problems; see also Section 9.3.

Letus note that thermo-mechanical coupling, which is described in Chapter 10, can
be formulated without particular problem using the above-mentioned formulations of
the constraint terms. This is related to the fact that, independent from the method used,
one has to compute the contact pressure and the distance between the mean planes
of the rough contact surfaces from the normal constitutive law. Such evaluations are
not influenced by the strategy adopted to solve the normal contact. However, not all
strategies described below will turn out to be efficient for thermo-mechanical contact
problems (see Chapter 10).

5.3.1 Lagrange multiplier method

A classical method is the use of LAGRANGE multipliers to add constraints to a weak
form. We then formulate for the contact contribution I1. as

M = / (Awgn + Ar-gr) dA, (5.26)
r.

where Ay and Ar are the LAGRANGE multiplier. gn and gy are the normal and
tangential gap functions. The variation of II. then leads to the constraint formulation

CCLM=/(/\NégN+AT'6gT)dA+/(6AN9N+(5AT'gT)dA' (5.27)
re

¢
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The first integral is associated with the virtual work of the LAGRANGE multipliers
along the variation of the gap functions in normal and tangential directions. The sec-
ond integral describes the enforcement of the constraints. Note that the LAGRANGE
multiplier Ay can be identified as the contact pressure py. dgn is the variation of
the normal gap, which is discussed in detail in Section 3.3. The terms Ar - g4 and
AT - g are associated with the tangential stick. A slip motion due to friction needs
further consideration. In the case of pure stick the relative tangential slip g is zero,
which yields a constraint equation from which A follows as a reaction. In the case
of sliding, a tangential stress vector tr is determined from the constitutive law for
frictional slip (see Section 4.2) and thus we should instead write Az -dg — tr-0gr,
leading to

C'f“p=/(AN(59N+tT'6gT)dA+/6’\NgNdA' (5.28)
Ie Fe

Again, the variation of the tangential slip can be found in Section 3.3. The La-
GRANGE multiplier formulation is also the basis for the so-called mortar method
used for connection of different non-matching meshes in the domain decomposition
approaches for parallel computing.

REMARK 5.2: When only stick occurs in the contact interface, then we do not have to
distinguish between the normal and tangential directions in the contact interface. Thus the
constraint condition is given directly in terms of the deformation at the slave point; see the
minimum distance problem (3.2)

X —x (&) =x"-%"=0. (5.29)

With this, we obtain a simple expression for the contact contribution:

CEM = f A-(P =7t )dA+ [ oA [x* —x'(€)] dA. (5.30)
e T

Note that the tangential component i}a 8&%, which occurs when taking the variation of X*, can
be neglected in (5.30), since the point X* sticks at position €, hence the convective coordinates
£% do not change.

5.3.2 Penalty method

In this formulation a penalty term due to the constraint condition (3.7) is added to I1
in (5.25) as follows:

Hf:§ /(CN (g;])Q-I-ETgT-gT)dA, en e > 0. (5.31)
r.

en and e represent the penalty parameters. The penalty term IT1Z is only added for
active constraints which are defined by the penetration function g, see (3.7), and
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has to be formulated for normal and tangential contacts, the latter in the case of stick.
The variation of (5.31) yields

Cf:/(eNg,;ag,—v+eTgT-5gT)dA, en.er>0.  (532)
r.

It can be shown, e.g. see Luenberger (1984), that the solution of the LAGRANGE
multiplier method is recovered from this formulation for ey — oo and e — o0;
however, large numbers for e and er will lead to an ill-conditioned numerical
problem. As in the LAGRANGE multiplier method, we have to distinguish between
pure stick in the contact interface which yields (5.32), and the slip condition which
leads to

C'"® = [ (engnOgn +tr-0gr)dA, en >0. (5.33)
T.
In the latter equation, one of the frictional laws from Section 4.2 has to be applied.

REMARK 5.3: When only stick occurs in the contact interface, then one does not need to
distinguish between the normal and tangential directions and hence can proceed as in REMARK
5.2. In such a case we can choose equal penalty parameters for all directions € = ex = er.
With this and the constraint equation (5.29), the penalty term vields a simple expression for
the contact contribution

Cz”c’c=/6(X2—il)'(n2_f,l)d’4' (5.34)

Ce

Again, the tangential component of the variation X', §¢ can be neglected (see Section 3.3.2),
since the point sticks at position €, and hence the convective coordinates £€* do not change.
For application and for comparison of this formulation to the standard approach, see Section
8.2.

REMARK 5.4: Due to the fact that a high penalty parameter leads to an ill-conditioned
problem, one is restricted in the choice of the penalty parameter for a given problem. The
choice of the penalty parameter affects the solution in different ways. First the constraint
equation is only fulfilled approximately. This of course also results in a deformation field @,
which differs from the exact displacement field . One has to show that

e -l —0

for € = oc (for details, see e.g. Kikuchi and Oden (1988)). However, in practice a value for e
has to be chosen such that ill-conditioning of the overall system of equations is avoided. In that
case we have to live with the approximate solution .. In the case of a structure loaded only
by surface tractions and body forces (see Figure 5.1) this affects only the displacement field
since the loads are transferred through the contact surface by equilibrium, and hence the stress
field is not disturbed too much when compared to the solution with an exact enforcement of
the constraint equations. This situation changes when the structure is loaded by displacement
boundary conditions (see Figure 5.2). In this case, the reactions and stresses depend upon the
prescribed displacements. As an example, we consider the simple truss structure consisting
of two bars of equal length | and equal axial stiffness EA. The system is fixed at the right
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012
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e

Fig. 5.2 System loaded by prescribed displacement .

side and loaded by a prescribed displacement u at the left side (see Figure 5.2). The initial
gap between both bars is assumed to be zero. The contact constraint in this case is given by
(uy — u}) < 0. The formulation of the problem using the penalty method leads to the matrix

system
EA 1 EA -
== +e€ —€ u == u
1 2L
[ —€ EzA +5] {“{} { 0 } ' 639

1 5 EA
Uz _ w 1+‘ﬁ \
{u%}—2+—?f { 1 } (30

The normal force in the left bar is then given by

EA, ., _. EA [1+%2 _
N:—(uQvu):——( L —1]a. (5.37)
l { 2+ &4

with the solution

The limiting cases for e — 0 and € — oc can be deduced from (5.37), which yields ¢ —
0: N —=0ande = oc: N — —b, which is equivalent to the exact enforcement of the
constraint.

Fig. 5.3 Solution dependency of normal force on the penalty parameter.
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Table 5.1 Deviation of normal force from exact solution

e/EA N Deviation %
1 -3.333 33.33

10 -4.762 4.76

100 -4.975 0.50
1000 -4.998 0.04

The normal force N is plotted in Figure 5.3 for different values of the penalty parameter
€ when we use for the data EA = 1000, | = 1 and w = 0.01. Observe that low penalty
parameters lead to a large deviation of the normal force from that obtained by the exact
enforcement of the gap condition. This effect is also is shown in Table 5.1.

Note that even in this simple example, one needs a penalty number which is at least 100 times
E A 10 have a good approximation of the normal force in the bars. Due to this observation, it is
clear that one has to adjust the penalty parameter in finite element approximations of contact
problems. With refined meshes and hence better finite element approximations of the solution
field, the error due to a too small penalty parameter also has to be reduced. This leads to a
choice of the penalty parameter as a function of the mesh size.

5.3.3 Direct constraint elimination

The constraint equations (3.6), (3.13) or (3.14) can be enforced directly in the case
of contact. This leads to a coupling in the virtual work expression (5.24) or in the
total energy (5.25). The number of unknowns thus reduces. However, an efficient
enforcement of the constraint depends heavily upon the discretization. Basically, one
could formulate the inequality constraint (3.6) as an equality constraint

gn=(x*-x!)-n' =0,
which yields
x2-n'=x'n' — (X>+u?) -0 =(X'+id')-n (5.38)

for the current coordinates and the displacements. This local elimination works well
for node-to-node contact elements, but not for arbitrary discretizations. In such a
case, the point of departure is the LAGRANGE multiplier method. Using

/JANgNdF=/6/\N(x2—i1)-nldF
T e

one can project the constraints

/JANxz-nldrzfa,\Ni‘ -n'dl, (5.39)
I'c Tc
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and apply this equation to eliminate the unknowns on one side of the contact interface
['.. Here the choice of the interpolation for the LAGRANGE multiplier is essential for
a stable method. Such methods are discussed in more detail in Section 7.4.2. In total,
the direct elimination of the constraints reduces the problem size by all degrees of
freedoms which are associated with the unknowns on one side of the contact interface
T'.. Note that the elimination can be performed so that the positive definite structure
of (5.25) is not destroyed.

5.3.4 Constitutive equation in the interface

In this case the constitutive equations which have been discussed in Sections 4.1 and
4.2 will be applied for the determination of px and ty. Hence, we do not add a
constraint equation as in the case of the LAGRANGE multiplier or penalty method.
The contact term to be used in the functional (5.24) when the constraint is active is
then given by

C. = / (pN dgn +tr - 5gT)dA . (5.40)
r

One can easily see that the introduction of the constitutive equation for the normal
pressure (4.12) can be interpreted as a nonlinear penalty functional for the normal
contact. The standard penalty method can be recovered from relation (4.12) using
n = 1. However, such a choice would be artificial, since the usual range of the
constitutive parameter n, stemming from experiments, is in the range 2 < n < 3.33.

REMARK 5.5: Due to the fact that the constitutive laws which have to be applied for pn in
(5.40) represent very stiff nonlinear springs in the contact interface, the use of this formulation
within the finite element method often leads to ill-conditioned systems of equations. Hence,
methods like the augmented LAGRANGE approach (see Section 5.3.8) are needed to avoid this
numerical problem.

5.3.5 Nitsche method

Another formulation which can be applied to enforce the contact constraints was
derived in Nitsche (1970) and applied within domain decomposition methods with
non-matching grids in Becker and Hansbo (1999). It is based on a different concept in
which, instead of the LAGRANGE multipliers, the stress vector in the contact interface
is computed from the stress field of the bodies. This leads to another set of boundary
terms, which are stated here for the frictionless contact of two bodies:

, 1 1 .
oy = —/ §(p}v+p§)gwd/l+~2~/ en [gn]? dA, (5.41)
e

<

where the superscript of the contact pressure p}; is associated with the body B”. Note
that in this case, a contribution from both bodies enters the formulation in a mean
sense. The last termin (5.41) represents the standard penalty term of Section 5.3.2. It
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is included only to avoid ill-conditioning of the global equation system resulting from
this formulation. However, since this formulation enforces the constraint exactly, the
penalty term is not active, and hence the solution, contrary to the penalty method,
does not depend on the penalty parameter €y, which will be shown in Section 5.4 by
means of an example.

The contact stresses p;’\, in (5.41) are defined in terms of the displacement field,
which for linear elasticity with CAUCHY’S theorem (2.40) leads to

py=t" -0 =i o@)n =i -C[e)]n” =N) - Vu", (5.42)

where the last term was introduced to shorten the notation (the structure of the sym-
metrical displacement gradient V*u is defined in (2.62), and the structure of N} will
be defined in Section 7.4.3). The variation of (5.41) can be computed, which yields

1 1
Civz—/ 5(5p}v+5p?v)9NdA—/ i(P}v'*'p?V)‘sgNdA"‘/ngNégNdA
. .

c

(5.43)
with
dpy =0 -C’[e(n")|n* =N} - V°n", (5.44)
where 77” is the variation related to body B”. Combining (5.42) to (5.44), one finally
obtains

1
cN = —/§(N§-Vsnl+Nf-Vsn2)gNdA
r.
—/ %(Ni-v3u1+Nﬁ-v5u2)5gN dA (5.45)
rc
+/6Ng;,69;,d‘4,
.

which shows that the NITSCHE method yields a formulation which only depends
upon the primary displacement variables.
A similar formulation can also be stated for the stick case, leading with (5.30) to

Hf:—/ %(tl+t2)-(x2—i1)dA+/e(x2—i1)~(x2—i1)d.~l. (5.46)

Again, the stress vector (traction vector) t” is computed via CAUCHY’S theorem:

" =c(@W)n” =C"[e(u”)]n”. (5.47)
The variation yields
cN = —/ %(6t1+5t2)-(x2—i‘)dA—/ %(t1+t2)-(n2—1‘7‘)d‘4
< I‘C
+/e(x2~i1)~(n2-ﬁ1)dA, (5.48)

re
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with the variation of the traction vector
5t =a(n”)n” =C"[e(n”)]n". (5.49)

In contrast to the LAGRANGE multiplier method, one does not need to introduce
additional variables, since the stresses have to be inserted into (5.46) or (5.48) using
(5.47) and (5.49).

In the nonlinear case the NITSCHE method becomes more complex, since the
variations of the tractions depend upon the type of constitutive equations used to
model the solid. They are thus more difficult to compute than the variations of the
LAGRANGE multipliers in Section 5.3.1.

5.3.6 Perturbed Lagrange formulation

This special formulation can be used to combine both penalty and LAGRANGE mul-
tiplier methods in a mixed formulation, e.g. see Oden (1981) or Simo et al. (1985).
In this case, the following functional can be formulated for two solids coming into
contact:

2
met =3 me+ (5.50)

a=1

where 3 II* defines the total energy of the two bodies and 7L is the energy
related to the contact interface. In detail, the last term in (5.50) is given by

1. 1
mre :/ {)\NgN —2—/\‘,2V+AT-gT —»—-,\/,--)\;,} dr. (5.51)
. EN €r

Ue

Here the LAGRANGE multiplier term is regularized by the second term in the integral,
which can be viewed as the complementary energy due to the LAGRANGE multiplier.
The variation leads to

. 1
cht = / [)\N dgN + AN (91\1 - E*;/\N)
7

c

1
+A71 - 08y + OAT - (gT — ;; AT)] dr. (5.52)

The first and third terms are again associated with the LAGRANGE multiplier formula-
tion, whereas the second and fourth terms yield the “constitutive laws”: Ay = en gn
and A1 = ep gy if evaluated locally. If we insert this result for Ay in the first term of
(5.52), we obtain the standard penalty formulation (5.33). Letting ey — o0 yields
the classical LAGRANGE multiplier method. However, this formulation is only valid
for the frictionless and the stick cases. In the case of sliding, we have to use an
incremental constitutive equation like COULOMB’S law which cannot be stated in the
form of a complementary energy. In this case one has to use either the LAGRANGE
multiplier or the penalty method.
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We note that equation (5.52) can also be a starting point for special mixed formu-
lations (e.g. in finite element formulations when different interpolation functions are
used for the LAGRANGE multiplier and the displacement field; this is described in
more detail in Chapter 7).

5.3.7 Barrier method

Another technique for problems with inequality constraints is the so-called barrier
method. It adds a constraint functional of the type

n? =en / b(gn+) dT (5.53)
r

c

to equation (5.50), which is always active for all possible contact nodes. By gy
we denote that in this method there are no values of gy allowed which violate (3.6).
The value ey > 0 is the so-called barrier parameter, which has to be chosen in an
appropriate way or changed within the algorithmic treatment of the contact problem.
The barrier function b can be chosen as

1
b{gn) = —— or (5.54)
gn
b(gn) = —In[min{l,—gn}]. (5.55)
The second function is not differentiable because of the expression min{1, —gn}.
However, one can show that the differentiable function b(gn+ ) = — In[—gn 4] also

leads to convergence. Due to the construction of the constraint functional, the solution
always has to stay in the feasible region, which means that no penetration is allowed
in any intermediate iteration step. To ensure this special safeguard algorithms are
needed, e.g. see Bazaraa et al. (1993). The variation of (5.53) yields, for the function
(5.54),

cB :/ N Sgw dT. (5.56)
r IN

The advantage of this method is that all constraints are always active, and no on-and-
off switch has to be applied to distinguish between active and passive constraints,
as in the LAGRANGE multiplier or penalty methods. A drawback, however, is that
one has to find a feasible starting point which fulfils all constraints. Furthermore,
ill-conditioning as in the penalty method can occur. The barrier method is, due to
these drawbacks, not used very much in computational contact mechanics. However,
there is some recent success in using barrier methods in combination with augmented
LAGRANGE techniques, see Kloosterman et al. (2001). In this work the inequality
constraints gy > 0 are enforced based on the term

Hfz—eN//_\ln(1+g£i)dF, (5.57)
N

c

where X > 0 is the fixed LAGRANGE multiplier and e > 0 the barrier parameter.
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5.3.8 Augmented Lagrange methods

Another method to regularize the non-differentiable normal contact and friction terms
is provided by the augmented LAGRANGE formulation. This technique has been con-
sidered extensively within the context of incompressibility constraints in ,for example,
Glowinski and Le Tallec (1984), and was also applied to contact problems for fric-
tionless contact in Wriggers et al. (1985) and Kikuchi and Oden (1988). Recently, this
approach has been extended successfully to large displacement contact problems in-
cluding friction, see Alart and Curnier (1991) or Laursen and Simo (1993a). The main
idea is to combine either the penalty method or the constitutive interface laws with
LAGRANGE multiplier methods. The augmented LAGRANGE formulation yields a
C'-differentiable saddle point functional which is described in detail in Pietrzak and
Curnier (1999). In that paper the following augmented LAGRANGE functional is
introduced for normal contact:

/(/\Ng,err%g}z\r)dF for An <0,

mM =<t ) (5.58)
/——~———|)\N]2df for Axy >0,
2en

e
withﬂ ;\N = AN +ENGN. The structure of this functional is such that it holds not only

for Ay < 0, but also for Ay > 0, where the latter case means that the gap is open.
The variation of (5.58) yields

/(:\ngN-%-é/\NgN)dl“ for :\N <0,

cM =< A (5.59)
/ —— AN OANn dD for Ay > 0.
EN
FC

In the same way, a similar formulation can be formulated for the classical COULOMB
law. For th1s S purpose we introduce the increment of the relative tangential movement

by g = 5 a1 dt and the augmented LAGRANGE multiplier Ar = A1 + €7 8-
Using these definitions we can write the following functional, see Pietrzak and Curnier
(1999), for the state of contact (Ax < 0):

[Or e+ Tar g for il < i
AM __ ) Te
nz" = 1 ,
5o [Nl = 21w 1Aell + (upw)? | dD for [Acl] >
I'e
(5.60)

where 4 is the friction coefficient and py is the augmented normal contact pressure.
For the state of no contact (Ax > 0), we have analogous to (5.58) the following
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functional:

1 ~
mAM :/_?T”)\Tu‘*’dr VAir. (561

Thus the functional also holds in the case of gap opening. This results from a pro-
longation of COULOMB’S cone for positive values of the augmented normal contact
pressure. Note that the functional is continuous at Ay = 0 and || Ar|| = g pn, which
also ensures that the combined functional (5.25) is globally continuous. The variation
of (5.60) and (5.61) for a closed gap (;\N < 0) yields

[ O bgr + 630 -y ar . U <
opm = T
S g2 1 A < .
/ ("”” 788 — —[Ap - PENAT) 5y ) dr, |Arll > ppn
AT || €T A7
) (5.62)
and for the open gap (Any > 0)
1 ~
oM = / ——Ar-Ardl, Y Ar. (5.63)
T
rc

A major problem associated with the numerical treatment of the penalty method
and the contact interface laws is the ill-conditioning which arises when the penalty
parameters €, e or the stiffness due to constitutive interface laws are combined with
the stiffness of the bodies within the finite element formulation. A standard method
to overcome the problem of ill-conditioning is based on the augmented LAGRANGE
technique, well known in optimization theory. A simplified variant of (5.58) and
(5.60) is provided by a special assumption put on the LAGRANGE multipliers. This
leads to a double loop algorithm in which the LAGRANGE multiplier Ay is held
constant during an iteration loop to solve the weak form in the inner loop. Then
within an outer loop the LAGRANGE multiplier is updated to a new value (see Section
9.3.5). This procedure is known as the USZAWA algorithm.

The formulation leading to the UszAwaA algorithm can be derived from the above
equations by keeping the LAGRANGE multipliers constant. Here we shall state the
result only for the frictionless case, which leads to the following contact contribution
in the weak form:

:/(;\N+€NgN)JgNdr. (5.64)

Since Ay is unknown, an update procedure for the LAGRANGE multiplier has to be
constructed within an iteration loop. The simplest update is

ANmew = ANora + EN GNpor 5 (5.65)

which is only of first order accuracy. For other possibilities, see Bertsekas (1984),
for example.
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If constitutive equations are used in the contact interface, Wriggers and Zavarise
(1993a) have developed a special update which fulfils the nonlinear interface law by
the update of the LAGRANGE multiplier Ax. For this formulation the geometrical
relation (4.9) has to be adopted. This leads to a reformulation of (5.64)

C,:L\JLZC = / (/_\N +env gy — ¢+ d(Pn) ]) dgn dl. (5.66)
T.

Now the update formula is given by
PNpew = PNoa TEN [ONwew = CHd(PN) ] (5.67)

where {..} 14 are the known quantities from the previous state. Due to the appearance
of a nonlinear function, the update is related, but different, to the standard update
procedure for the LAGRANGE multipliers, see equation (5.65).

5.3.9 Cross-constraint method

A relatively new method for the solution of contact problems which is a modification
of standard strategies will be presented in this section. Here the idea is to satisfy
the contact constraints by a nonlinear, smooth change of contact stiffness around the
solution. Thus the adopted approach leads to an iterative method which does not
depict numerical instabilities within the solution search process. This fact permits us
to achieve a better convergence rate with respect to standard methods.

The cross-constraint method, whose basic philosophy is outlined in Zavarise and
Wriggers (1996), adopts smooth analytical functions to represent the nonlinear be-
haviour in contact processes. The method can be used to solve contact problems with
constraint equations (3.1), or those based on introducing constitutive laws for contact
surfaces. In the latter case, the formulation permits us to deal with problems where
high precision of the calculated approach is required. To achieve this, the cross-
constraint method has to be enhanced by using as a limit function a stress-penetration
relationship which is constructed on physical bases.

As in the previous sections, the mechanical contact problem is solved by a modi-
fication of the unconstrained potential II(y)

II(¢) + P [g(e)] — extremum, (5.68)

where g(@) < O represents the constraint functions set. Standard penalty (P), La-
GRANGE multiplier (L M), barrier method (B) (see Section 5.3.7) and the new cross-
constraint method (C'C') can be obtained by suitable particularizations of P; [ g(¢)].
The characteristics of the modification functions are summarized as follows:

= PP(O) =0 T = PL(O) =0

"e { Pp(0) =0 Hr= { Py (0) = unknown (5.69)
A _ [ Po)=P

b= {P,’;(o) =c CCF {P({,v,(o) = F, (5.70)
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where P; is the modification of the unconstrained potential II and the derivative P is
related to the contact force. In the case of the penalty method, a parabolic function is
added; the LAGRANGE multiplier method adds a linear function but introduces new
variables, 1.e. the contact forces, and the barrier method adds an hyperbolic function.
Finally, the proposed method adds a function, smooth over the entire domain, which
presents nonzero, finite values at the constraint limit. Both traditional penalty and
barrier methods can be obtained as limit cases of the proposed technique. Exponential

functions of the type
P. = b e F (CNAY

have been successfully used in Zavarise and Wriggers (1996). All methods produce a
shift of the minimum from the unconstrained point to a zone close to the constrained
solution point. The proposed method does not take limit values at the constraint
limit, but takes finite nonzero values, both for the potential and for the contact forces.
Moreover, it does not introduce additional variables.

Values of the cross-constraint method in the satisfaction of constraint equations
are between those for the penalty and barrier methods. The values of Fand K
have to be changed according to the characteristics of the problem to obtain a good
approximation for g(x) = 0. An iterative procedure can be designed to fulfil this
condition up to a specified tolerance.

The cross-constraint function (5.71) is close to zero when the gap is open (g > 0);
this minimizes the disturbance of the solution. Furthermore, (5.71) also presents
a smooth transition around the constraints limit. Numerical tests have shown that
the employment of (5.71) yields a contact algorithm which performs well from the
numerical point of view.

If we also want to take into account the physics of the problem, i.e. the microme-
chanics of the contact interface, we have to consider a relationship based on the
microscopical roughness of the contacting surfaces, and determine a pressure versus
mean-plane-distance law. This can be done using constitutive equations for contact,
see Section 4.1.2.

The basic consideration to replace the analytical function (5.71) with a contact
constitutive law is related to the fact that the shape of such a law poses all the charac-
teristics required. The law we use here is based on the microscopical characterization
of the contacting surfaces and a hypothesis of the plastic behaviour of contacting
asperities. Suitable adaptation of the relationship to obtain a form useful for finite
element computations is derived in Zavarise et al. (1992b). The requested contact
law is given by

pn = ASncelSveE9an’] = £(4 gn) (5.72)

where Sy ¢ and Sy g are two constants which contain a suitable combination of the
statistical parameters that characterize the contacting surfaces. A is the contact area,
£ is the initial distance of the surfaces and gn denotes the surface approach.

This relationship represents an implicit nonlinear dependence of exponential type
on the contact force and the mean plane distance. The adoption of such a constitu-
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tive law as a limit function of the cross-constraints method keeps the efficiency and
stability of the method and adds also physical insight. This fact will be even more
important when considering frictional or thermal contact behaviour. The law can be
used within the range of physically reasonable values of the contact pressure. Nu-
merical computations may require an extension in the range of high pressure, which
can occur during the iterative solution process. In this case, the extension can be
designed by a linear function with C"*-continuity.
The contact problem is then defined by

STL(p) + /Asme[smﬁ—ymz} Sgndl =0, (5.73)
T,

c

which is solved by iterative (NEWTON-type) methods. Due to the continuity of the
function around the constraint limit, typical numerical instabilities that may take place
when the solution jumps between two states, one characterized by gx > 0, and the
other characterized by gy = 0, are avoided. Hence the contact law represents a
regularization of the non-smoothness of the standard contact formulation.

5.4 COMPARISON OF DIFFERENT METHODS

We shall illustrate the basic features of methods which lead to a linear system of
equations for a given set of active constraints. These are the LAGRANGE multiplier,
the penalty, the direct elimination and the NITSCHE formulations, which are presented
by means of a simple example. Furthermore, the different methods are compared with
respect to the accuracy of the solutions.

Let us consider the two trusses depicted in Figure 5.4. The length of the left truss
is 3l, its axial stiffness F£.A /. It is discretized by three truss elements with linear
shape functions. The right truss has an axial stiffness of 2 EA /! and a length of [.
Both trusses are clamped at the ends. The left truss is loaded by a point load F'. When
the load increases, the initial gap g between the two trusses closes at a certain value.
This value can be computed from the equation system of the unconstrained system
which already includes the boundary conditions at the left and right end of the bar

| Fm g e [
@ ——e o

| = = o - '

w o U

| |
31 l

Fig. 5.4 Truss structure with initial gap.
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system (v] = v2 = 0),

2 -1 0 0 ul 0
_ EA|-1 2 -1 0 u} F
Kou=f—="143 1 1 o[ (=)0 (5.74)
0 0 o0 2 u? 0
The solution can be expressed in closed form

Fl

T T

=—1{1,2,2,

EA {1,2,2.0}

The force to close an assumed gap of g = 0.011 follows from2 Fl / EA = 0.011 as
F = %A 4. Once the gap is closed, we have to formulate the constraint problem by
using one of the methods described in the previous sections.

For all methods used to enforce the contact constraint, we have to formulate the
gap condition and its variation. Since the z-direction is also the normal direction,
from the general formula (3.6) for the gap, we obtain

gn =g — (uj —ui) (5.75)

and for the variation
Sgn = —0uy + du?. (5.76)

In this special case we have only one point in the system (see Figure 5.4) where contact
occurs. Hence for some methods to enforce the constraints we can solve two linear
problems. One which was already defined in (5.74) is related to the unconstrained
problem. The other is associated with the enforcement of the contact constraint con-
dition. For the LAGRANGE multiplier formulation or the penalty method we can
then set up a linear system of equations which directly gives the solution. This is
not possible for the barrier or the augmented LAGRANGE methods, since in these
approaches either a nonlinear constraint is present or an iteration has to be used. In
these cases, a nonlinear system of equations can be formulated and solved iteratively.

Lagrange multiplier method. Using formulation (5.27) one has to add for the
LAGRANGE multiplier approach the terms An dgn + AN gn, which with the explicit
forms the gap function and its variation (5.75) and (5.76) yields the following system
of equations Ky ar uyar = frar. This can be written explicitly as

284 _EA 0 0 ul 0

—EA 2B4A _EA o 0 ul F
0 -4 EA o ul p=¢X0 (5.77)
0 0 0 28B4 4 uf 0
0 0 -1 1 0 AN -9

Here we used the fact that the displacements are zero in the first step of the contact
algorithm. Since the problem is geometrically linear, in (5.77) we can use on the right
hand side instead of the gap gn as given in (5.75) just the initial gap g.
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The solution of LAGRANGE multiplier formulation (5.77) can be stated in closed

form as ]
(2EAg+3Fl)/2

2FEAg+ 3F1
3EAg+ Fl . (5.78)
(~EAg+2Fl)/2
EA(-FEAg+2Fl) /1
where the last term represents the LAGRANGE multiplier or the reaction force in the
contact interface.

2
UM = 57

Penalty method. In the case of the penalty method, the constraint is added by
en gn 0gn, which leads with (5.75) and (5.76) to the system of equations Kp up =
fp, or explicitly to

2&_11_ _%ﬁ 0 | 0 ud 0

__%_1 2¥ _&l 0 uy | _ F (5.79)
0 —EA EAio e ug () eng [T
00—y 2EA4ey ui NG

Again, it is possible to find a closed form solution for the linear system of equations.
For the variable ui we obtain, for example,

2(3EAleng+2EAFl + ey FlI?)

i 5.80)
2(EA) 1 Ten EAI (-50)

1
Uy =

As discussed in Section 5.3.2, ex — oo the penalty solution approaches for the
solution for u} in (5.78) of the LAGRANGE multiplier method, which can be easily
verified using (5.80).

The displacement v} is plotted in Figure 5.5 for different values of F' when we
select EA = 1000,! = 1 and g = 0.01 for the data. One can see in Figure 5.5 that

0.02 r . ,
_.+‘
0.015 | -9
ezt
e PPY -l
e
. -
001 F e o §
no contact
e e = 10°
0.005 -a- ¢ =104 -
— - LM
L 1 1
& 5 10 5 20

Fig. 5.5 Comparison of LAGRANGE and penalty methods.
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the stiffness of the system changes once the gap closes for F' = 5. The solution using
the penalty method approaches the LAGRANGE Multiplier (LM) solution for large
values of €, which can be observed from the solutions for ey = 103 and 10%.

It is also clear that the penalty solution is only an approximation of the correct
enforcement of the constraint condition obtained by the LAGRANGE multiplier ap-
proach. Ithas been shown above that the penalty method yields in the limitey — oc
the exact solution. However, in real computational applications it is not possible to
use very large penalty parameters, since these lead to an ill-conditioning of the system
of equations (5.79), hence the UzZAwA scheme related to the augmented LAGRANGE
multiplier method can be applied to improve the solution for a given penalty param-
eter e;. We will not formulate the iterative scheme for the truss structure here, since
this is done in Section 9.3.5.

Direct elimination method. This method was described in (5.3.3) and is based on
the fact that the constraint (5.75) is enforced directly. For this purpose, we construct
a projection matrix P which reduces the displacement variables appearing in the
constraint (5.75) by one

) 1 00 0O 1 0
a=qul =101 0 0 334+¢ 0 }=Pu-—g. (5.81)
i 001 -1 3 -9

This projection, without g, is also valid for the variations. Hence the matrix system
(5.74) of the unconstraint problem can be pre- and post-multiplied by P, leading to
the reduced system

KEﬁzPKOPT‘ =Pf+ gg, (5.82)
or in explicit form,
2 -1 0 ul 0
ETA -1 2 -1 ul b= F . (5.83)
0 -1 3 ul bag

Note that the symmetric structure of the stiffness matrix is not destroyed. The solution
of this equation system yields

, [(2EAg+3F1)/2
u= m 2FEAg + 3Fl . (5.84)
SEAg+ Fl

which is equivalent to (5.78). The displacement u? which was eliminated can be
computed from the constraint equation (5.75)
2 2 2

1
ulzui—gzm(3EAg+Fl)—g:m (—§E.4g+Fl) .
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which is the exact value also given in uy, ps. The contact force corresponds to the nor-
mal force in the elements adjacent to the gap (see also next section). More generally,
one can compute Ay from (5.77) once the displacements are known. By decomposing
this equation system in

I

Kou+ Chy f with T =(0,0,-1,1)
CTu = -g,

one can solve the first equation for Ay once v is known. By pre-multiplying with
C” this leads to '
CTCixv=C"f-C"Kyu, (5.85)

where u is the same as in (5.74). The multiplication with C Tis necessary since c!
does not exist. For this example, we have cTCc =2 C7Tf=0,and hence

2 1 0 07 (ul
FA|l-1 2 -1 0 ul __4F 2 EAg
o -1 1 o Yul

0 0 0 2 u?

1
= — = {( -1.1 =
/\N 9 ( 0 1 O y 3 ) 7 7 l
(5.86)
which is also the result stated in (5.78) for the LAGRANGE multiplier.

Nitsche method. When the N1TSCHE method described in Section 5.3.5 is applied
to the problem defined in Figure 5.4, one has to formulate the constraint conditions
via equation (5.43). In this equation the contact pressure p?v has to be inserted, which
is computed from (5.44). For the problem at hand, the contact pressure is represented
by the normal force. Hence one has to compute the normal force in the elements
adjacent to the gap

2EA

N3 = =—(uj —u3) and Nj= 7

(0—ul). (5.87)

With this result and the explicit expressions for the gap (5.75) and its variation (5.75),
equation (5.43) can be formulated as

1 EA

cyN o= ~5 7 (uj —uj —2u?) (dul — dui)
1 EA . . ;
~§T((5u},—6u§—2(5uf)(u};—'Uf—g) (5.88)

ten (uh —u? — g)(uj — su?).

This leads to the system of equations Ky uy = f, or explicitly to

A0 0w ;
—EA oEA _EA _EA 1 EAg
i 2 E{‘l 2] spA 20 ulg _ F+ %4,4 (5.89)
= e Y 9 g
0 T EN S5 T EN u% fN.(]—‘WQ
EA 3EA e oA
0 =3 S5f-ev €N G Bds _ g
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which has the solution

(2EAg+3Fl)/2
B 2 EAg + 3F]
UN = 7EA 3EAg+ Fl (590

(~-EAg+2Fl)/2

Note that in this solution, the penalty parameter ey does not occur, which means
that (5.90) is independent of €. This is due to the fact that the first two constraint
equations in (5.88) lead to an exact enforcement of the contact constraint (5.75).
Hence, the penalty stabilization is not needed here. However, for large equation
systems it is necessary to add the stabilization, since zeros occur in the diagonals of
the stiffness matrix, see (5.89) for e; = 0. The contact stress can now be computed
from the normal force (5.87)
Ne=pya=nN=Z8 iy dp 2B49 4y
l 7 71
which is exactly the same result as was obtained for the LAGRANGE multiplier in
(5.78).

5.5 LINEARIZATION OF THE CONTACT CONTRIBUTIONS

For an iterative solution of the nonlinear equation system associated with the weak
form (5.24) and the various contact terms described above, different methods can be
applied. A fast and reliable method is the NEWTON scheme, which is available in
several variants to improve the global convergence properties of the method. These
formulations rely on a linearization of the weak form. For the solids the linearizations
were already derived in Sections 6.2.2 and 6.2.4. Thus, we can concentrate here on
the linearization of the contact contributions.

As has been shown above, these have a different structure. However, the main
ingredients are the same, and we will write here a general form of the contact con-
tribution to see which terms need a detailed derivation for the linearization. For this
purpose we distinguish between the normal and tangential contact terms in (5.24).
Based on this we can write

Cf;=/CN(z\N,gN,6/\N,59N)dF+/CT(»\T,gTsfsf\Tafsgr;pN)dI\

T. r.
(5.92)

where ¢y and cr are functions of variations and variables, e.g. in the case of fric-
tionless contact within the LAGRANGE multiplier method (see Section 5.3.1),

cN = AN OGN + AN gN
or for the penalty method (see Section 5.3.2),

CN = €N gN OGN -
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Note that, due to the geometrical nonlinearity of the finite deformation problem, the
variations dgn and dg also contribute to the linearization, often resulting in very
complex terms, see below (this is of course not the case when geometrically linear
problems are formulated). On the contrary, the linearization of the LAGRANGE
parameters A and A is zero. However, the variation of the tangential contributions
is more involved, since one has to distinguish between the stick and the slip case
in frictional contact. This is denoted by the dependence on the contact pressure py
which occurs in the friction law.

5.5.1 Normal contact

The linearization of ¢ can be computed from

den den den den

— Au = — Ay + — Agn + =—— Adgn, 5.93)

Bu " T aan N T Bgn SN T Bagy SO (593
where the differentiation with respect to A x has been neglected, since this term is
zero. For the LAGRANGE multiplier method we now have

den . Ocn Jden

— =4 — =4 and ——— =
By 0INy gy T 0w and

In the same way, the penalty method yields

AN .

5/\N_ s 3gN_ NOgN 8(SgN—"NgN'

Now we have to compute linearizations Agy and Adgy in terms of the displacement
fields of both bodies in contact. The linearization of Agx has the same structure as
the variation of gn. Hence with (3.29), by exchanging < by Au?, we obtain

Agn = [Au? — Aul (¢! €%)] -n'(€, 7). (5.94)

The linearization of the gap in the normal direction A(dgx ) has to be computed from
the full variation (3.28), since terms which are zero in (3.28) (see Section 3.3) can
also contribute to the tangent. We start with (3.6) from

x> —x! =x? —x!(',8%) =gn i, (5.95)
and obtain the variation in a way which can be used to compute Adgy:
n* —n' —x!, 06 = sgn ' + gy on'. (5.96)

This yields dgp, see (3.29), when multiplied by i’ Since n' is a function of € which
again depends on the displacement field, a lot of terms arise from this equation.
To shorten the notation we denote values related to the projection point £ by just a
bar, however we have to bear in mind that these terms depend on the deformation
dependent surface coordinates £&. Now from (5.96) we obtain the linearization

—[0' AL + Aul, 6% + X', 5 ALP €™ + %!, ASE* ]
= A(dgn) ! + Sgn An® + Agy on! + gn AdR', (5.97)
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where Au” are the increments of X = X" + u” and A£? denote the increments of
£>. In this equation the quantities AE®, §6%, AdE*, Anl, 6! and Adi! are still
unknown. First we observe that variation and linearization 66> and A£° have the
same structure, and hence the linearization A{* can be computed analogous to (3.21)
by interchanging the variations 17, related to body B, by the increments Au”:

AE® = H  [(Au® ~ Aw') -a, + gy’ - Adl] . (5.98)

The tensor ﬂaB is exactly the same as given in equation (3.19). By multiplication
with i, (5.97) can be solved for Adgn:

A(bgn) = — (7', AL + AR, 66° + X!, 5 AP 66%) — gn ' - ASR! . (5.99)

Note that several terms disappear due to the identities i’ - 60’ = 0 and i’ - X, = 0.
Thus the only term unknown is ii! - Adn!, which can be rewritten as A(n! - én! ) =
An! - il +n! - Ada! = 0. From this identity, the last term in (5.99) follows as

—gn ' - Adi' = gy An' - i’ .

Now we have to compute the linearization and variation of the normal at the projection
point £. From the orthogonality condition i! -a, = 0, where @}, = x! is the tangent
vector at the projection point, we compute

on' -al = —n'-éal. (5.100)
Since n! - dn! = 0 we can solve (5.100) for the variation of the normal vector
oi' = —[a'*®n']éal = —(a'-dal)a'® = —(a'-dal)a*?a}, (5.101)
and in the same way derive the linearization of the normal vector
AR! = —[al*®@n']Aal = —(d' - Aal)a"® = —(a' - Aal)a*?a). (5.102)

The contravariant base vector has been expressed by the covariant tangent vector as
a'® = a*5a}. The variation and linearization of the tangent vector are given by

sal = dul, +x,50¢° and Aal = Aul, +x,5A8°. (5.103)

Once the linearization of the base vector a), is expressed by the incremental displace-
ments the linearization of the normal vector is completed. What remains is to insert
these results into (5.99) to derive the linearization of the variation of the gap vector.
The final result is then given after some algebraic manipulations:

A(sgN = _( ﬁ,laAéa + Al—l,la 660 + i,laﬁ AfB 660 ) : ﬁl (5104)
+oN B - (Mg + Ko 067) a7 (AR +%1,066°) 0"

Note that Adgy is symmetric with respect to variation and linearization. Hence
within the finite element discretization this leads to a symmetric contribution to the
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contact tangent stiffness matrix, see Chapter 8. Equation (5.104) is valid for general
three-dimensional contact problems. For two-dimensional application it reduces sig-
nificantly. In that case, the metric tensor @, is simply one number, @;1, which is
associated with the length of the tangent vector. Hence we define @11 = I2, and with
&4 = ¢ obtain

Abgn = — (N AL+ Al 66 + Xl ACSE) - R (5.105)
F O (Al R 06) - [ 0 8] (AW + R 66

a symmetric form in variation 77 and linearization Au.

REMARK 5.6

1. In case that the factor gn [ 1% is very small, one could be tempted to neglect the second
term in (5.104) or (5.105) which makes the formulation much simpler. It is clear that
then the property of quadratic convergence in NEWTON'’S method is lost. However, the
convergence rate can still be superlinear, and thus be sufficient for many applications.

2. Some discretization techniques are derived on the basis of flat element geometries. In
such a case, equation (5.104) reduces considerably since all terms which include second
derivatives are zero. With this assumption equation (5.104) collapses to

Adgn = —(NLAE" + Al 66%) -0 +gva™ (' -7, ) (AL, -R'). (5.106)

Note also that the tensor H,g simplifies in this case, which is due 1o the fact that the
second term in (3.21) disappears. Hence Hp is equal to metric tensor a3, and thus
we can use
5 = a’[(n"-n')-aa+gvn' -0, ]
A = @ [(Av’ - Ad') a, +gvia'-AdL ],
in (5.106) instead of (3.21) and (5.98).

3. Furthermore, the associated two-dimensional version of the linearization of the varia-
tion of the gap function (5.105) for flat surfaces has the structure

Abgn = —(7' A6+ A 66) - -"lg 7 (A @dt]Ad. (5107

Here 6¢ and A€ are, according to (3.24), given by
5 = [(n* =7") % +gyn' - 0]

At =

B = W =

[(Au® —Ad') & +gyn' - Adk] .

5.5.2 Tangential contact
The linearization of the tangential contact contribution ¢y in (5.92) follows from

aCT BCT dcr d(:[ Jc T
Fu U= gy A+ Par Agp + ——— Fig - Adgy + g AP (5108)
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However, here we have to distinguish between the stick and the slip case. We shall
thus rewrite the general form of (5.92) for stick and frictional slip in such a way that we
introduce the tangential stress vector tr. It can be either interpreted as a LAGRANGE
multiplier in the case of stick, or as a stress vector stemming from a constitutive
equation like COULOMB'’S friction law. With this we can write in general

where the first term reflects the virtual work of the stress vector along the relative
tangential displacement. This can be either due to a constitutive relation in the in-
terface or due to a LAGRANGE multiplier. The second term appears only in the case
of a LAGRANGE multiplier formulation of the stick part, since in frictional sliding
gr # 0. This equation can be simplified even more by noting that §g, = 66> a’ .
By now introducing the component form of the stress vector, tr = t7, a' ©, the first
term in (5.109) yields

tT-dgthTarSf“. (5.110)

With this the linearization of ¢r in the stick case fora LAGRANGE multiplier formu-
lation leads to

%Au:A,\TQ¢5§°+,\TQA65°+6,\TQA§°. (5.111)

In the frictional sliding case we have

%L:AuzAtTQJ§°+tTQA6£". (5.112)
In these equations the following quantities have to be derived: Atr,, AL* and AdE>.
Since the linearization of the tangential part of the stress vector depends heavily on
the constitutive equation in the contact interface (see Section 4.2) we discuss here
only the second and third terms. The linearization of the stress vector At , can be
computed once the update formula is known in terms of the displacement variables
(e.g. see Section 9.5.2).

Equations analogous to (5.111) and (5.112) can also be derived for the penalty
formulation. However, the relevant equations will be found in more detail in Chapter
8. This is due to the fact that in this formulation, only knowledge of A£* and AJ&
is needed, apart from the penalty terms which are related to the stress vector.

The linearization of £ has already been given in (5.98), thus it remains to compute
ASEe. For this purpose we start again from (5.97). This equation is multiplied by a!
which yields

—al  ASE* = (@', AE* + Aul, 66> +x!, 53 A7 6] - a)
+[6gn AR’ + Agn S0’ + gy AdR'] -2}, (5.113)
where terms which cancel out have been omitted. With
Alé@)-a')] = Af[éal-n'+al- én']
= Adal -i' +dal - AR’ + Aal - 6n' +al - Adn’,
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one can rewrite the last term in (5.113) as
al - Adn' = —(Adal -n' +46a) - An' + Aa) i’ ). (5.114)
Finally, the evaluation of Adal is given by

Asal = A(pl, +xl,0%) (5.115)

Nl ALY + Anl 66 + %L, 506% A% + %L A
With this result all quantities in (5.113) are known. These can be combined for the
final result which obtains a nice structure when the definition of the gap function

gy ' = x* — X! is used. Combining the fourth and the fifth terms on the right-hand
side of (5.113) with the last two components in (5.114) yields

Sgn AR' + Agy dR' — gy (6a) - An' + Aal -6’ )
= —[8(gnn')-Aa, +A(gyn')-da,] (5.116)
= —[8(x*-x")-Aa, +A(x* —x')-da,]
= —(n*-n') Aa, - (Au® - Ad')-da, . +x,66% - Aa, +xLAE™ - da,
All results obtained so far can be substituted into (5.113), which after some algebra

and grouping of all terms with AJE™ leads on the left-hand side to an expression for
the linearization of the variation of £:

ASE™ = [—aly- (687 ARL + 7' AEY) — (a5 -a) g — gy B -8f ) 667 AE
+on (5,087 + Ady 667) -0
—(7l5 + 85,067 ) - ag AL’ — (Auly +ah, A7) a5 (5.117)
+(n* =) (A, +ah ALY)
+(Auw? — AW ) - (nl, +ab 667)] HY.
This expression is very complex since, additionally, the quantities 56 and AL* also
have to be inserted as functions of the incremental displacements Au® and the vari-

ations %, see (3.21) and (5.98). Furthermore, the tensor H? is the inverse of H 3
defined in (5.98).

REMARK 5.7

1. The term ASE™ simplifies for flar geometries which occur when linear interpolations
are applied to discretize the contact terms. One derives from (5.117)

NS = [—a- (S€7Au, +0 AL ) — 05 - a5 A8’ — Al - 8y 5¢°
+Hn® — 7' Auly +HAw - Aa') - 7ly) @ (5.118)

which omits a lot of terms.

2. Inthe two-dimensional situation, most of the terms in (5.117) remain in the linearization
of the variation of the gap function

AdE = [—a' - (€Al + ) AL) — (8" -al — gy R’ -8l ) SEAE
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+9n (Mlee AE + Al 6¢) - !
— (7 +8% 86)-a' Af — (Au +ak A)-a' 8¢ (5.119)
+(n® = 0') - (Ad +ak AE) +(Au? — Aw') - (7' +366)] A
3. However, in the two-dimensional flat case a lot of terms drop out. This leads 1o
AdE = [~2a' - (86Au) + 7 AE) (5.120)
+(n? - 7') - Al +H(Au® - AG') - 7] li2 ,

where the terms A€ and §¢ are computed as in (5.107).

5.5.3 Special case of stick

When the formulation discussed in Remarks 5.2 and 5.3 is used to enforce the con-
straint condition for stick, then we do not have to distinguish between the normal and
tangential directions in the contact interface, and the constraint equation is given by
(5.29): g = x%2 — x!(€) = x2 — x! = 0. This leads to the LAGRANGE multiplier
formulation for stick
Hf”:/A-gdA. (5.121)
re

Since the stick condition requires that point x> remains at the same position on the
master surface, the convective coordinates does not change: 66> = const. Hence
the variation of the stick condition (5.29) is simply given by

sg=n"—-7", (5.122)

where the variation of £% can be neglected. From IT£M we obtain the associated
weak form

CCLM:/(J,\~g+/\-6g)dA‘ (5.123)
l—‘c

The linearization of this term is then given by

ACCLM—_—/(J,\-Ag+A,\~6g)dA, (5.124)
Fc

where Adg = 0 and Ag has the same structure as (5.122):
Ag = Auv® — A’ . (5.125)

All other terms are zero, which is a considerable simplification regarding all compli-
cated expressions in the last two sections.
In the same way, for the penalty formulation in Remark 5.3 from (5.34), we obtain

ACt = / e(Av’ —A') - (n® - 7' )dd. (5.126)
T
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Also, this expression is very simple, and should be used to formulate stick conditions
within the penalty method.

5.6 ROLLING CONTACT

Rolling contact has its technical application for the interaction between railroad
wheels and train tracks and for the analysis of car or lorry tyres. In both cases
one has to distinguish between stationary and non-stationary loading and response.
Due to the technical importance, many contributions regarding rolling contact can be
found in the literature. Railroad wheels in contact with the track were investigated
in detail in Kalker (1990) using special algorithms and formulations based on linear
elasticity. Finite element treatment based on the ALE-formulation for rolling contact
problems can be found in e.g. Padovan and Zeid (1984), Oden and Lin (1986), Tal-
lec and Rahier (1994), Nackenhorst (2000) or Hu and Wriggers (2002) for general
applications.

Since the ALE-formulation introduces a new reference configuration, all equations
developed so far for contact problems have to be reformulated.

5.6.1 Special reference frames for rolling contact

In the case of rolling contact, it can be useful not to apply the LAGRANGE description
as given before, but to use a special rotating reference frame. From the continuum
point of view, we distinguish between three different configurations of the body, see
Figure 5.6. B denotes the initial configuration of the body. With ¢(B) we describe
the deformed configuration. Finally, @ (B) is the rotating reference configuration

o, F

//—\ .

Fig. 5.6 Reference frames to describe the deformation.

¥R, Fr
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which rotates with a given angular velocity wg. Thus, for the deformation map we
have
P=PRpp (5.127)

where ¢ is the deformation relative to the rotation frame. For the line elements —
needed later to define the strain measures — we have

dx = FdX=Fdxgp
dxg = FgrdX (5.128)

. Ox ox . S .
with F = X’ F= oxn’ Fr = 6—;. Hence, from this a multiplicative decomposi-
tion of the deformation gradients related to the different configurations follows:

dx = FFrdX|. (5.129)

If the reference configuration pg(B) is given by a pure spinning rotation, then we
can write

xr = RX, (5.130)

with the orthogonal matrix R describing the rotation. Thus

dx =FRdX|. (5.131)

d
The velocity is defined by the material time derivative v = e Using the special
decomposition of the motion into the rotating frame 5 and the deformation rel-
ative to this rotating reference configuration ¢, see (5.127), with x = (X ,t) =
P(pp(X,t),t) by the chain rule, one obtains

dp _0¢ 94 dep
-2¢ . 132
it~ ot T opn dt (5.132)

This equation can be rewritten with (5.128), leading to

_de 00 g (5.133)

d .
where the velocity vy is definedby vg = Z9r For computation of the acceleration,
the chain rule has to be applied again to (5.132), which yields

2 2 2.4 2 2 2 P
:dz‘z”zaf+2 0°¢ dep af [d"’”] o¢ dg“’;‘. (5.134)
dt ot Oppdt dt 0%, | dt Opg dt

This equation can be shortened using (5.128), which leads to

2 A

d ¢ 1o}
a= 62 +2FVR+aFVR+FaR s (5135)
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d? o R
where apg, is defined by ag = —Zi%ﬁ In the case of a steady state spinning process, ¢

is not explicitly time-dependent, which simplifies (5.132) and (5.134) considerably:

8(,5 d(pR -~ .
L TR _Fyg, 5.136
v Bor di VR ( )
¢ [deg ’ 0 d’pp O &oo g
P - == F F .
? dph | dt ] dpp  dt? Opr VAR

In this case, the reference frame has a constant angular velocity w g with respect to
a given axis. This defines a rigid body motion of the reference frame. Hence, using
(5.130) for the velocity vg in the reference frame, one derives

ox
VR = 8F+QIgXR, (5.137)

with X = R™'xp = RT xg and RR?T = Qp. The associated acceleration ap is
then computed from
. 82)(}{ 8x[{

=240 Qp [ =2+ . 5.138
ar = 5 T URXR T R(at + RXR> | ( )

To the skew symmetric tensor §2 i, one can associate an axial vector such that

Ix
vR:Eﬁ’inxxR‘ (5.139)

The first term disappears for a constant time-independent rotation. Combining (5.136)
and (5.137) yields
v=FQgxg. (5.140)

Furthermore, equations (5.136) and (5.138) then lead to the acceleration

a= (iFQRXR+FQR) Qrxg. (5.141)
dpp

5.6.2 Strain measures

With respect to Section 5.6.1, one has to investigate how the strain measures, devel-
oped in Section 2.1.2, are affected by the rotating reference configuration introduced.
For this purpose, (5.128) is applied, which gives F = FR. This result can be used in
(2.15) to compute the right CAUCHY GREEN strains,

C=(FRTFR=R"F FR=RTCR. (5.142)

Thus, by the choice of the rotating reference configuration, the strains, C, producing
stresses exclusively stem from the motion relative to the rotating frame. By inserting
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the kinematical relations developed for the rotated reference frame, the GREEN—
LAGRANGIAN strains follow from (5.142):

1 . 1 - .
E:Q(RTCR—I):RT§(C—1)R=RTER, (5.143)

which have the same structure as (5.142).

5.6.3 Weak Form

For numerical simulations the weak form of a contact problem has to be formulated in
such a way that leads to the most efficient solution scheme. In the case of rolling con-
tact a formulation with respect to the rotating reference configuration By, is optimal.
Due to that the weak form (2.59) is transformed to the rotating reference configuration

/FS-GradndV = /FRS-G’rEdquVR

BR BR
/ﬁé-@anR, (5.144)
Br

where the rotated second PioLA-KIRCHHOFF stress tensor S has been defined ac-
cording to S = RSR”. Furthermore, the inertia term yields, for a constant spinning
motion,

/pov-ndv = /pRQ%xR-ndVR
B Br
- /pR (FQrxg) - (Gradn Qrxp)dVe, (5.145)
Br
where the first term denotes the body forces due to spinning. The second term is
associated with the inertia forces due to constant spinning.

Using (5.144) and (5.145) in (2.59), we obtain the weak form with respect to the
rotating frame

G(p,m) = —f[pR<meR) (Gradn Qgxg) — FS - Gradn] dVi
— pr(b 92 Xgr) -ndVg — f t-ndAr =0
3B, p,
(5.146)

The linearization of the weak form, defined in quantities of the rotated frame,
follows from (5.146). Since R and Q are constant, we obtain the same result as in
(2.122). However, there is one extra term stemming from the inertia forces, the first
term in (5.146). The linearization of this term is trivial since it is linear in the relevant
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deformation ¢3. In total.for the linearization at the known state ¢ we derive:

DG(@.m) - Bu = /{&EdAué-(ia‘dnwﬁ-é[Aﬁ}}dm

Br
- / pr (GradAu Qg xg) - (Grad Qpxg) dVa . (5.147)
Br

5.6.4 Constitutive equation

Due to the introduction of the rotating reference frame, a special treatment is needed
for constitutive equations which depend upon history variables, like viscoelastic or
elastoplastic models. The difference between a purely elastic and an inelastic consti-
tutive law in a rotating reference configuration is shown in the next two sections.

Elastic response function. The constitutive equation which represents the hyper-
elastic response of the solid (2.74) can be transformed into the rotated frame which is
applied for rolling contact. With S=RSR”,C = RYCR and C:l =RT C_l R.
one can write (2.74) directly in terms of the stress S and the strain C as follows:

. A - .
S=S(2-1)€C +u(1,-€") (5.148)

since the rotation tensor multiplies the tensors on both sides of (2.74) in the same
way, and thus cancels out. Hence, no special treatment for the elastic constitutive
equation is needed in the case of rolling contact. This is also true for the incremental
constitutive tensor. One only has to exchange C by Cin (2.89) to compute the asso-
ciated incremental constitutive tensor in Bp.

Viscoelastic response function. Car tyres, which are often investigated using
rolling contact formulations, are made of rubber which not only responds to defor-
mations like a hyperelastic material, but also shows inelastic behaviour which can
be described by a viscoelastic material model. Here again, one has to investigate
whether a description using the rotated frame does change the constitutive equation
or not (see above). Using a standard viscoelastic model, see Christensen (1980), we
obtain for the second P1OLA-KIRCHHOFF stresses,

t
S(t) = S°[E(t)] + v /e ~—ds. (5.149)

Here ¢ denotes the time, E is the GREEN~LAGRANGIAN strain tensor, S° is the hyper-
elastic response function (see last section) and v and T are constitutive parameters.
All quantities in (5.149) refer to the initial configuration B. Transformation with
respect to the rotating reference configuration with S = RSRT andE = RTER
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yields

t
¢

§(t) = SCB()] + v / _ 7'5;[R(t)RT(s)E(s)R(s)RT(t)]ds. (5.150)

—0oC

In this model, the rotation R depends upon the complete motion, and hence its history
has to be known during the whole simulation. However, the rotation only appears as
R(t) R¥(s), which means that only the relative rotation between the two times ¢ and
s is involved. Since we assume steady state rotation, the relative rotation is explicitly
given by eS¥t=3) For a more detailed treatment of viscoelastic constitutive equations
for rolling motions, see Tallec and Rahier (1994) or Govindjee and Mihalic (1998).

5.6.5 Contact kinematics

Relations for contact kinematics have to be derived based on the rotating reference
frame. This leads, especially for tangential contact, to different formulations, when
compared to the results presented in Chapter 3.

Normal contact. To formulate the non-penetration condition for rolling contact,
we define a minimum distance problem between the rolling object and the rigid
surface, see Figure 5.7. The reference configuration which is used to define the
contact conditions can be either the rotating frame or the initial configuration. In
cases when we have to distinguish both, we use the reference to B or Bp.

For a mathematical description of the problem it is useful to introduce convective
coordinates & = (£!, £2) on the surface with which the rolling object is in contact,
from now on called the master surface. This leads to the definition of the master
surface, described by the position vector Xo = Xo(£! ,£?). Now for every point r
on the deformed boundary of the rolling object we can define the minimum distance

problem:
d= MIN ||x — Xo(€',€?)]|. (5.151)

The solution of this problem provides the pair of convective coordinates, €, which
denotes the point on the master surface closest to point x. £ follows from the condition,

Fig. 5.7 (a) Non-penetration, (b) penetration.
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see also (3.3),

S
g™ [lx = Xo (€, &2l

which is the closest point projection of point x onto the master surface. Since XO o =
). G ) are the tangent vectors to the convective coordinates of the master surface at
the solution point, &, the vector x — X (&) points in a direction normal to the master
surface. Hence it can be used to define the non-penetration condition.

With

X — Xo(6h,€9)] - Xo o€, =0,  (5.152)

]gN :[X—XO(E)]'NU(E)J (5.153)
we define the gap function where
— % _ X — XO( )
AU S A
Xo.1(€) x Xo ,2(5)
1Ko 1(8) x Ko 2(E)] 5154

Both definitions can be used in (5.153), though the first is not well behaved for
gy — 0. Hence the second condition should be applied in (5.153). Function g,
then describes the state at the interface as follows:

gy >0 gap opening,

gy =0 perfect contact,

gy <0 penetration.
Thus contact is formulated by the inequality constraint

gy > 0. (5.155)

In case of a flat master surface which is often the case when rolling contact is consid-
ered we can simplify the representation of the master surface by cartesian coordinates.
By defining the base vectors of the master surface as E; and E; we obtain for the
normal Ng = Ej3. In this case the closest point projection (5.152) yields

X - Xo(X1, X5)] Ea =0 (5.156)
with the solution point (X, , X5). Furthermore the gap is given by
gy =[x~ Xo(X1, X)) Es. (5.157)

Tangential contact. The kinematical relations for the tangential motion in the
contact area have lead to the definition of the relative tangential velocity. This quantity
can be obtained in the case of rolling contact by the derivative of condition (5.152)
with respect to time. This yields

(v— in) X0 0 + (x—Xo) ‘io a Xo €7 Xo.0=0. (5.158)



132 CONTACT BOUNDARY VALUE PROBLEM AND WEAK FORM

Here v is the velocity associated with point z. With the metric /10 3= Xo L X, 3
the components of the relative gap velocity in the tangential direction are

Ay =(v-Vo) Xoa+(x-Xo) - Xo.a, (5.159)

where we have set Vo = X. _
B In the case of a flat master surface, equation (5.159) simplifies with Xo a =0,
Xo,a =Eqand Ay =6, to

Xo = (v—Vo) E,, (5.160)

where X, denotes the change in time of the projection point (X; , X,) on the master
surface, and thus is the relative tangential velocity in the contact area. With the
projection tensor P, = [E, ® E,] we can reformulate (5.160) as

VLZPJ_(V—V()), (5]61)

withv, = Xo Eq being the tangential relative velocity vector in I',.
With these relations we can now formulate the tangential contact conditions. The
first is the non-slip or stick condition

v, =0, (5.162)

and hence imposes a constraint on the relative tangential motion. It means that locally,
the rotating object is rolling and not sliding on the surface.

If the tangential forces exceed a certain limit in I, then slip occurs. In that
case, the associated relative tangential velocity follows from a constitutive relation.
Classically Coulomb’s law is applied to determine the slip velocity, however more
complicated constitutive equations can also be used to model the frictional behaviour
in the contact interface. These constitutive equations will be considered in the next
section.

Generally slip as well as stick can occur in the contact area. Thus we can subdivide
the contact area I, into '#!% U I'%*ik = T'.. Within the numerical method applied
to solve the rolling contact problem, the stick and the slip area have to be computed.

In some cases it might be necessary in the numerical implementation of rolling
contact, e.g. see Nackenhorst (1993), to enforce the stick condition in a weak sense.
Following Nackenhorst (1993) one can use a least square fit

/ vidl - MIN = / v, -6v,dl =0, (5.163)
[atick [atick
which leads with (5.160) and (5.162) to

P_L(SV'P_L(V—‘_’())dI‘:O, (5164)

tick
raté
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and hence yields a system of equations to determine the tangential components of v
in the stick interface th“’k which fulfil the stick condition (5.162) in the weak sense

ov-P vdl' = / dv-P Vodl. (5.165)

stick stick
I: rs

Note that if slip occurs in a steady state computation of rolling contact, then the dis-
sipation due to the frictional forces in the slip zone has to be compensated for by a
moment around the spinning axis of the rolling body to preserve stationary motion.

Definition of creepage. For further reference we also define another kinematical
quantity which measures the creepage in the contact interface. Its definition is given
by

X, — R
s— Xo-wr xR

. (5.166)
I1Xol|

The creepage vector s can be decomposed into a part which is related to the flattening
of the rolling body

o= Orx R (5.167)
1 Xol|

and a partial slip due to rolling in the contact area

g5 = SO _WRXE (5.168)
[1Xol|

so that we have s = sy + sg.
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Discretization of the
Continuum

Discretization of the domain contributions of bodies in contact is not the objective of
this work. For a detailed treatment with respect to the finite element implementations
of boundary-value problems regarding large deformations, see Oden (1972), Crisfield
(1991), Crisfield (1997), Zienkiewicz and Taylor (2000a), Bathe (1996) or Wriggers
(2001) and the references therein. However, in this chapter, the discretization of
continua undergoing large strains using isoparametric elements is discussed briefly
for completeness.

Within the finite element method we have different approximations. These are
geometrical approximations of the domain B on which the boundary value problem
is defined. Furthermore, the associated fields, deformations or stresses have to be ap-
proximated. Also, the integrals are not evaluated exactly, since, as they are evaluated
for the weak form, they have to be computed via numerical integration procedures.
Collectively, these approximations are sources for errors inherent in the finite element
method. The estimation of these errors is the contents of Chapter 12.

In this section a description of the interpolations, which are the basis for a treat-
ment using isoparametric elements, is given. Within this framework, we assume that
the domain B is discretized by n. finite elements, which leads to its geometrical
approximation B":

Eth:U Q,. (6.1)

The configuration of one element is Q, C B", as shown in Figure 6.1 for a two-
dimensional case. dB" denotes the boundary of the discretization B”, which is in
general also an approximation of the function describing the real boundary 0B.

135
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Fig. 6.1 Discretization of body B.

6.1 ISOPARAMETRIC CONCEPT

The finite element method requires that the field variables be approximated by a finite
element §2.. We write the displacement field u(X) as

N
Uezakt (X) 2" (X) =D Ny (X) uy, 6.2)
I=1

where X is the position vector in ¥., Ny (X) are interpolation or basis functions
which are defined on (., and u; denote the unknown nodal variables. Here, u; =
{u1, us, U3}f are the nodal variables of the displacement field.

During the development of finite element methods, many possibilities for interpo-
lation of the unknown functions within an element have been exploited. Due to its
general applicability, especially when arbitrary geometries have to be discretized, the
isoparametric concept is widely used. On the isoparametric approach, we approx-
imate geometry and field variables by the same interpolation functions, see Figure
6.2:

XP=Y"N(&)X;, and ut=) Ni(&u. (6.3)

I=1 I=1

The interpolation functions in equations (6.3) of the element in B" have been
represented by interpolation functions N; (&) defined on the reference element Qr,
see Figure 6.2. Thus, for every element 2., there exists a transformation (6.3),;
which relates the coordinates X, = X, (§) to the coordinates £ of the reference
element . Hence all computations are performed with respect to the reference
configuration. Only in very special cases do the initial and current configurations
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UN

X

Fig. 6.2 Isoparametric mapping.

of a finite element coincide. However, this transformation is numerically easy to
handle, and allows transformation of the reference element to arbitrary geometries.
This feature leads to the fact that, in implementing of the method, there is almost no
difference in the formulation of finite elements with respect to the current or initial
configurations.

Figure 6.3 depicts the two possibilities to describe deformation in continuum me-
chanics using the isoparametric concept. It can be seen easily that Figure 6.3 is a
discrete version of Figure 2.1, where additionally we have now introduced the refer-
ence configuration 2. The kinematical relations within one element are

det j,

detJ.’ 6.4

F.=j.J7' and J.=detF. =
which show that the deformation gradient is uniquely defined by the isoparametric
mapping of Q0 onto ). in the initial configuration, or onto (f2,) in the current
configuration. In these equations, the gradients j, and J. are defined as follows:

)

n
Gradg x = gg = Z Nie(€) xr @ Eg,
=1

1

Je

J. = Grad;X = %% =" Nie(€) X 9 Ee. (6.5)
I=1

Since the derivatives [N ¢ are scalar quantities, we can move them in front of the base
vectors E¢. This yields

n n
j(, = Z Xr ®NI,§(§)E£ = Z Xy ®V5N[ ,
I=1 I1=1
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Fig. 6.3 Isoparametric description of deformations.

n n
Jo = D Xi®Nig(&)Ec =) X;@VNy. (6.6)
I=1 I=1
V¢ Ny is the gradient of the scalar function N; with respect to the coordinates &.
With this, it is simple to compute gradients with respect to the initial or current

configurations. For a vector field this reads as ut,

n
Gradu" = = Z u; ® Vx Ny,
I=1
n
gradu" = = Z u; Vo Ny. (6.7)
I=1

Analogous to the transformation of the derivatives between different configurations,
see (2.24), we obtain

VeNy =JTVxN; and VeN; =TV, Ny, (6.8)
or the inverse relations
VxNy=J TVeNy, and V. Ny =j T VN, (6.9)

such that the gradient in (6.7) is completely defined in quantities which are defined
in the reference configuration Q2 as

Gradu = = Z u &I T VN,
I=1
n
gradu = = Z uy ®je_T VeNy. (6.10)

I=1
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The only difference in the formulation of both gradients in (6.10) lies in the exchange
of the gradients j, and J., and therefore this approach is advantageous, especially for
large deformation finite element formulations.

6.1.1 Isoparametric interpolation functions

Within the different possibilities to construct interpolation functions for isoparametric
elements, we here follow the concept of the LAGRANGE interpolation, e.g. see
Zienkiewicz and Taylor (1989). For a LAGRANGE polynomial of power n-1, in the
one-dimensional case we obtain

n

Ni(€) = E —.———((é’ :é)) : (6.11)
J#I

For two- or three-dimensional interpolations, we choose a product formulation

Ny(€,m = Ni(§) Nx(m) or Ny(§,n,0) = Ni(§) Ne(m) NL(¢),  (6.12)

with J = 1,..n%™ and I ,K ,L = 1,...n (dim is the spatial dimension of the
problem). The interpolation or shape functions are defined in the local coordinate
system € = { &, 9, ( }.

In the next section we specify the isoparametric shape functions for one-, two- and
three-dimensional problems.

6.1.2 One-dimensional shape functions

Here we briefly discuss one-dimensional shape functions which are C°-continuous.
These can be found in many places in the literature, and thus only the final equations
which are needed in subsequent sections will be given.

In one-dimensional problems we only have one component of our field variables,
thus we can write with (6.3)

n

XP=3 N(©X;,  ul=d Ni(©ur, (6.13)
[=1

I=1

for coordinate X and the associated field variable u. n is the number of shape
functions, and £ € [—1, 1] is the coordinate in the reference configuration, see Figure
6.4. The shape functions Ny (€) follow from (6.11) and are different with respect to
the choice of the polynomial order. We have

» Constant shape functions
Ni(§)=1. (6.14)

o Linear shape functions

(1+€). (6.15)

BN =

N1(£)=%(1~£), Ny (6) =
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Fig. 6.4 One-dimensional shape functions.

o Quadratic shape functions
1 1
N1(5)=§€(§‘1)7 N3 (€)= (1-¢€%), N2(f)=§f(1+§)-
(6.16)
The isoparametric mapping of function u onto the reference element is obtained with

equation (6.13).

Computation of derivatives. For the computation of strains, its variations or
linearizations, we need the derivatives of the field variable u. Within the isoparametric
concept we have to use the chain rule

dul 3N1(f)

aX 2« ax ©.17
I=1
for the derivative of u
ouh  ouh 8¢ 8N1(§ ¢
W—Tgﬁ—(z 5x €18

The derivative g)g(_ is computed with the interpolation for the geometry (6.13),

g}% - (?9_);) (Z oM (&) 1) =J(O)7", (6.19)

where we have made use of the abbreviation 38 = Je.
In the special case of linear shape functions (6.15), with the length of an element
(Le = X5 — X ) we obtain

Z aN’(O S (X - Xy) = 1 , (6.20)
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and inserting this into (6.18), the explicit formula

5’(1.2 _ U — Uy

= 2D
o0X L. (621)

which yields a constant value.

6.1.3 Two-dimensional shape functions

In the two-dimensional case, quadrilateral and triangular finite elements have to be
distinguished. Here we discuss C-continuous shape functions which are linear as
well as quadratic.

First triangular elements are considered. The simplest element with linear shape
functions consists of three nodes; an element with quadratic interpolation needs six
nodes to define the fields and geometry within an element. In Figure 6.5 the triangular
element is depicted for the quadratic interpolation. For a linear element only the
vertices 1 to 3 are necessary to define the interpolation. The element is shown in

3
Xo3
Q 2
X .
1
1
Xo
|- f X1 X3 X Xy
1
n X, A 2
_ . 4

Fig. 6.5 Three- and six node triangular element.
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Figure 6.5 in its reference configuration {2, denoted by the £-7) coordinates, and in
its physical space, denoted by the X;-X, coordinate system.
The shape functions for the linear case are defined by

Nl‘—‘l-—of—n, Nng, N3:T]. (622)

Here all partial derivatives with respect to £ and 7 are constant.
The shape functions for the quadratic element are

N1 =/\(2A-— 1), N4 =4€)\,
N2 =€(2€-1). Ns=4¢n, (6.23)
Ns=n(2n—-1), Ne=4nA
with the abbreviation A =1 — £ — 7.
Next the shape functions for quadrilateral elements are defined. The simplest
quadrilateral has four nodes. The associated interpolation for geometry and field

variables is bilinear. The product formula (6.12), together with the shape functions
(6.15), yields

1 1
Nl(f:n):'2’(1+£I£)§(1+77177): (6.24)

where the coordinates £; and 1y are associated with the vertices (see Figure 6.6 on
the reference element Q)

51 = (_1: —1) 52 = (17 -1) 63 = (1= 1) 64 = (_lz 1) (625)

The shape functions for the quadratic nine-node element again follow from the
" product formula (6.12) using the quadratic interpolation (6.16). For the nodes (see
Figure 6.6), we obtain

e Vertices(I =1,2,3,4):

1
Ny(&m) = Z(£2+&£)(n2+mn), (6.26)
7 A n A
4 3 4 7 3
i 8e 5-—-
9 6
I ) 1 5 2

Fig. 6.6 Isoparametric quadrilateral elements.
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e Mid nodes (I =5, 6,7, 8):
1 S 1. -
Ni(&m) = 56?(52 +&r&) (L=n)+ 5nfm* +nn) (1 —£%). (6.27)

e Central node (/ = 9):

No(€.m)=(1-)1-7n). (6.28)

It should be noted that this is not the only possibility to define these nine shape
functions. Often a hierarchical formulation is used, e.g. see Zienkiewicz and Taylor
(1989) or Bathe (1982).

The derivatives of the shape functions defined in the reference coordinates with
respect to the coordinates in the physical space follow within the isoparametric concept
by the chain rule

ouh I~ ON; (&) — ’
6‘,(&_; ax. (a=1,2). (6.29)

Here the partial derivative of N; with respect to X, is computed according to (6.9),

. SN | _ -1 | Nig »
VxNi= {NI,2 } =J; {Nl,n R (6.30)

with the JACOBI matrix J,. of an 2, element for the transformation between the
reference and initial configuration,

n n T

‘Yll {NI&} {)(15 Xl }
JP - X VeNr = ' ’ = ) B .
[z:; 1® VelNy 12::1 {Au} Nig, Xog Xopl’

n
with Xos=_ NigXor. (6.31)
=1

This leads to an explicit from which allows us to compute in (6.29) the derivatives
with respect to X:

Nia 1 Xoy —Xog Nig
{Nl,z } det J, [—le X ¢ Ni, (6.32)

6.1.4 Three-dimensional shape functions

Finite elements for three-dimensional problems are either brick or tetrahedron el-
ements. Also, isoparametric interpolations are advantageous here when arbitrary
geometries have to be discretized. Besides bricks and tetrahedrons, more elements
are of course possible, e.g. prismatic elements, which will not be discussed here. For
general shape functions, see Dhatt and Touzot (1985). For the three-dimensional
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Y

Fig. 6.7 Isoparametric 8 node brick element.

brick element, shown in Figure 6.7, we have the shape functions

Ni=3(1+&€) 5 (1+mn) 5 (1+619). (633
which follow from the product formula (6.12) with (6.15). Figure 6.7 depicts the
associated element in its reference configuration, S, and the initial configuration,
.. Quadratic elements can be designed with (6.12) and (6.16). This yields an
interpolation with 27 nodes per element. However, we will not give the explicit
representation here, which can be found in Zienkiewicz and Taylor (1989) or Dhatt
and Touzot (1985), for example

Shape functions for the tetrahedron elements can be developed analogous to the
two-dimensional case. We obtain

e 4-node tetrahedron (linear interpolation)

Ni=1-€¢-n-(, No=§¢, N3=n, Ny=¢(. (6.34)

o 10-nodes tetrahedron (quadratic interpolation)

NIZA(2A_1) N6:4€7"
Ny =€(26~1), Nyp=4n),

Ny =n(29-1), Ng=4CA, (6.35)
Ny =((2¢~-1), No=4&(,
N5=4EA, N10=477€=

withA=1-¢—-n-C
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Fig. 6.8 Isoparametric tetrahedra elements, local node numbers.

The local node numbers associated with these shape functions are depicted in Figure
6.8.

The derivatives of the shape functions with respect to the coordinates of the initial
or current configuration can be computed using (6.8). For the derivatives with respect
to the coordinates of the initial configuration, we have

NI,I ]VI,E
VxNi={ Nys p=J"T Ny 3 (6.36)
Nrg Nic

The JACOBI matrix J, of element )., which is needed in this derivation, is given by
(6.6) from

n -X’l,g xX:l,n Xl,( )
Je — Z X;® VENI = 2,6 ‘ngn ng( . (6.37)
I=1 Xze Xazq X3¢

Within this formula, the components of J, are computed from
n
er‘k = Z ]\rl,k X‘ITLI7
I=1

where the partial derivative with respect to & stands for a derivative with respect to &,
nor (.

6.2 DISCRETIZATION OF THE WEAK FORMS

In general we can now apply the one-, two- or three-dimensional shape functions to
describe the interpolation for the geometry and the field variables within the weak
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forms. In this chapter we do this in a brief form for equations (2.59) and (2.63).
Furthermore, the linearizations of the weak forms are considered. Following Figure
6.1, a domain is subdivided into n,. finite elements. This discretization leads to an
approximation of the geometry, which affects the representation of the boundary of
the domain under consideration.

An interpolation as described in (6.3) is chosen for each finite element €2, which
approximates the displacement field u and the geometry. The integrals of the weak
form can then be written with the isoparametric interpolation as

e

/(...)de/(...)dV:O/(...)dﬂ:U /(...)d[]. (6.38)
B By, e=1q,

e:lQD

The operator U is introduced instead of a sum sign to denote the assembly process
which has to be performed to obtain the set of nonlinear algebraic equations follow-
ing from (6.38). The polynomial shape functions of the isoparametric interpolation
ensures fulfillment of the inter-element continuity conditions, as well as fulfillment
of the boundary conditions within the global system of equations. Since the assem-
bly process is standard and well known, it is not described in detail here (see Bathe
(1982), Zienkiewicz and Taylor (1989), Knothe and Wessels (1991), or Gross et al.
(1999), for example).

6.2.1 FE formulation of the weak form with regard to the initial
configuration

The approximation of the weak form (2.59) requires discretization of the virtual
internal work [, S - §EdV, of the inertia terms [ poV - ndV and of the volume-
and surface loads f,; po b-1dV + [.t-1dA. For the virtual internal work, we need
the variation of the GREEN—~LAGRANGIAN strain tensors within the element 2., see
(6.38). With (2.58) and (6.7), one obtains

SEP =

DO | =t

> [FeT(m®Vx Np)+(Vx N:®n,)Fe] , (6.39)
I=1

where the same interpolation was used for the deformation ¢ and the variation 7. In
this equation a finite element approximation of the deformation gradient (2.6) has to
be applied, which can be written with (6.7) within the element €2, as

n

F, = Z(XK ®Vx Ngk). (6.40)
K=1

For the derivation of the matrix formulation needed within the computer implemen-
tation of finite elements, index notation is necessary. For (6.39) this yields

1 n
SEhp = 3 > [FeaNip+ NiaFep) mei (6.41)
I=1
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with components of the deformation gradients Fip = 23:1 zrg NyB.

Within the matrix formulation we can consider the symmetry of the GREEN-
LLAGRANGIAN strain tensor and its variation. Thus, it is possible to introduce only
six components of nine components for the three-dimensional strain tensor instead

0Eq,
0F; .
_ ) OEss | _ 2
0E = 25E,s ——[Z:] B;n;. (6.42)
268E93 B
20Eq3

which can be approximated as a sum over the element nodes I with the matrices

Fy Ny Fy Ny F51 Npja
Fi2 Ny Fyy Ny o F32 Ny
Fi3Ny3 Fy3 Ny 3 F33 Np 3

By = .
L1 FiuNra+ FiaNpy Foy Npg+ Faa Npgo F3 Ny + Fza Nig

FiaNis+Fi3Nis FoaNyz+FouzNpa Fza Nps+ Fy3 Npo
FiyNrg+FisNiy Foy Nys+ Fos Npgo Fzy Npg+ Fa3 Ny
(6.43)
The index L in (6.42) depicts that the matrix By ; is linear in the displacements, since
we have F* = 1 4 Gradu”.

The stresses follow from the constitutive equation, which will be specified in the
associated sections. However, note that the stresses have to be computed pointwise
within the element, and result for instance in finite elasticity from a pure function
evaluation of the response function. Since also the second P10LA-KIRCHHOFF stress
tensor is symmetric, we only need its six independent components which yields the
vector 8 = { S1;, 522,533,512, 523, S13 }7. With these preliminaries, the virtual
internal work can be written as

" MNe
/ SE"-s*av = | / SET Sd0
B e=lg.

n n

U ot /B{,SdQ (6.44)

e=1 I=1 g},

U Z ni / B, S det J. dO.
e=]1 J=1

Qr

The last term in (6.45) already reflects the evaluation of the integrals with respect to
the configuration of the isoparametric reference element. To shorten the notation, we
introduce the vector

Ry (u.) = / B, Sd, (6.45)

Qe
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and reformulate the virtual internal work

/JE" .Shdv = U > T Ry (u) =n" R(u). (6.46)

e=1 I=1

In this equation 7 is the test function of virtual displacement and R (u) is the stress
divergence term, also often called the residual force vector, which results from the
assembly of all finite elements to the complete structure. Note, that SE! is linear with
respect to the displacement field, whereas the stress tensor S* can still depend in an
arbitrary nonlinear form upon the displacements.

The inertia term, defined by fB poV - dV, in the weak form (2.59) is computed
with interpolation of the velocity, using standard shape functions N for the spatial
discretization,

v(X.t) = Y Nk(&) v(t).
K=1

The acceleration is given by derivation of the nodal values v (t), since the shape
functions N depend only upon the spatial coordinates,

V(X,t) = Y Nk(§) vk (6.47)

K=1

Inserting this result in the associated inertia term in (2.59), and applying the same
discretization as in (6.39) for the variations 7, leads to

/pon-VdV = U/pon'vdV
B

eIQ

U Z Z 7 /szoNk de Vi .

e=1 I=1 K=1

By introducing the unit matrix I and application to the nodal velocities v = I v,
we obtain the mass matrix for a nodal pair I and K of an element 2,

Mix = [ NipoNido T, (6.48)
Qe
and hence the inertia term for the global system as
/m v =] 33 0 Mixco =" My, (649)
e=1 I=1 K=1

where M is the mass matrix and v the acceleration vector after assembly of the global
structure.
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Fig. 6.9 Discretization of surface loads.

The loading terms are determined in an analogous way. After inserting the finite
element approximations for the test function 7, it follows

Ne n

/pon-l_)dV+/n~fdA = U ol /pOBNIdQ

B I, e=1 I=1
Ty

+ Zn, /N,tdr

rz=l I=1

where n, are the number of loaded element boundaries and I'; is the element surface
of an element which is subjected to a surface load defined by the stress vector t, see
Figure 6.9. Observe that for the interpolation function of the surface loads, we can
use a function which is reduced by one dimension. Thus the surface loads in Figure
6.9, which depicts a two-dimensional body, need as an approximation for the test
function along the boundary a one-dimensional function, defined by m surface nodes
(in Figure 6.9 we have m = 2 nodes). Also, here we can simplify by matrix notation,
and with

P[:/N[pl_)dﬂ and PgI/N[EdF (6.50)

obtain the load vectors

Ny n

/pn‘f)dV /77 tdA = U anP1+U Zn, =T P. (6.51)

B e=1 =1 r=1 I=1

The vector P contains all information with regard to the loads acting on the structure.
The matrix notation in (6.46), (6.49) and (6.51) yields, for the weak form (2.59),

TIMv+R(u)-P]=0. (6.52)
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Due to the fact that the test function 7} is arbitrary, this leads to a nonlinear system of
ordinary differential equations:

Mv+R(u-P=0 VueRV. (6.53)

In (6.53) all quantities are evaluated with respect to the initial configuration. N is the
total number of degrees of freedoms contained in the unknown displacement vector
u. v is the acceleration vector and M denotes the mass matrix.

In case that the inertia forces are zero (M v = 0), from the system of ordinary
differential equations we obtain a nonlinear algebraic system of equations which has
to be solved by an iterative procedure. In general we apply NEWTON’s method, and
hence need the linearization of (6.53), which is discussed in the next section.

6.2.2 Linearization of the weak form in the initial configuration

For an efficient solution of the nonlinear algebraic equation systems (6.53), NEW-
TON’s method is applied which requires the linearization of (6.53). We derive the
linearization in the following by assuming that the inertia terms can be neglected. The
linearization can be obtained by a direct discretization of the continuous formulation
(2.122)

DG(p,n) - Au = / { Grad AuS - Gradn + 0E -C [AE] } dV.. (6.54)
B

For the first term with

Grad Au® = ZAuK®VxNK,
K=1
Gradn = » m;,®VxN (6.55)
I=1

we obtain directly the discretization

/GradAuS -GradndV = U z Z /(AuK®VxNK)S (n; @V xNy)dQ,

e=1I=1K=1(
which yields, with the rules for the dyadic and scalar products and with Aug -n; =
n? Aug = n}' IAug,

n

/GradAuS GradndV = U > Z 0} /G,K IdQAuk,  (6.56)

B e=1 I=1 K=1

where the abbreviation

Gik = (Vx]V’[)T S VxNg (6.57)
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has been used. The matrix form of the scalar product (6.57) can be derived if the
gradients are described as vectors. This leads to

) Syt S Sis| [ Nka
Gik =[Nrnp Nrz Nigl|Sa S Sws|{ Nk o - (6.58)
S31 Ss2 Ssz| | Nks

Relation (6.56) is independent from the constitutive equation, since only the stress at
configuration @ has to be considered. Hence the matrix which defined by (6.56) is
often called the INITIAL STRESS MATRIX.
The second term in (2.122)
/ E-€[AE]d
B

depends upon the incremental constitutive tensor € which has to be evaluated at
configuration @, and thus is directly connected to the constitutive equation. For
elastic materials this tensor has been given in Section 2.4.2 (e.g. see (2.89)). For
elasto-plastic or other constitutive equations, the associated matrix formulation can
be found in (2.92). Since AE has the same structure as E, with (6.39) we can write

n
AEM = [FeT (Au;® Vx Np)+ (Vx Ny ® Auy) F] L (6.59)

I=1

Do)

From this relation, the matrix formulation follows with (6.43)
AEZZ By Au;. (6.60)
I=1
Introduction of this relation, together with the incremental constitutive tensor D.
yields
/ SE-C[AE]dV = UZ Z n? / Bl DBLxdQAug.  (661)
e=11=1 K=1
Thus we can summarize, and obtain the discretization
n - o B Ne n i
/{GradAuS-Gradn+§EC[AE]}dV =U > > nl KnpAuk . (6.62)

e==1 J=1 K=1

Here matrix Kk denotes the “tangent matrix” because it represents the tangent to
the deformation at ¢:

KTIK :/ [(V‘)(NI)TSVX]VK-FB'{[DBLK] . (6.63)
Q.
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It is stated for the nodal combination I, K within a finite element 2,.. In this notation
the submatrix RT, x has the size ngo; X ngos, where ngoy is the number of degrees
of freedom for one node within the finite element (in three-dimensional problems
in continuum mechanics we have three degrees of freedom for each point, hence
N4o; = 3). Indices I and K are nodes of an element, and thus directly associated with
the discretization. For example, for a ten node tetrahedron we have n = 10, hence the
total size of the tangent matrix Kr, forone elementis (n-ng4of) X (n*ndos) = 30x 30.

Two-dimensional element for St. Venant material. In this section we derive
as an example the matrix formulation for a two-dimensional element with respect
to the initial configuration. As a constitutive relation, St. Venant material is con-
sidered which relates the GREEN-LAGRANGIAN strains and the second PioLa-
KIRCHHOFF stresses by a linear relation. Furthermore, plain strain is assumed.

For computation of the stress divergence term resulting from the weak form, we
have to specify (6.45). Thus for a displacement formulation we need the stresses as
a function of the strains and the strains field in terms of the displacement gradients.
The ST. VENANT constitutive equation is given by

S=(A1®1+2ul) [E]. (6.64)

This form can be easily converted into a matrix formulation. For the two-dimensional
case, we obtain

Sll A + 2[1 A 0 E11
S=DE={ Sy } = A A+ 2n 0 Ey . (6.65)
512 0 0 H 2 E12

Now it remains to compute the GREEN-LAGRANGIAN strain tensor.

The components of the matrix form of the GREEN-LAGRANGIAN strain tensor,
see (6.65), follow from (2.16) with (6.40) in the case of two dimensions for a finite
element Q.:

1, o , ~ [zix N1 Zik Nk
_1 _ th F.= , “ . 6.66
E 2(Fe F.—1I) wi e ](Z_—_l [IJQKNK‘I Tox Nk.2 ( )

Here the nodal coordinates z, ¥ = X4 K + U, k belong to the current configuration

@.
The approximation of the virtual strains  E with (6.42) yields the matrix By,

which in the two-dimensional case has the representation

Fi1 Npy F3; Npa
Brr = Fia Np» Fy, Npo . (6.67)
FiuNr2+ FiaNpy FoyNpa+ Foa Npy

We can also express the virtual strain with F = 1 + Gradu different from (6.43) by

4
SE=) [Bos+ By (u)]n;. (6.68)
I=1
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In that case, the matrices By and By ; have the explicit form

Nja 0
Bos=| 0 N, (6.69)
Nro Npg
and
uy,1 Nig uz,1 Ny
By = uy2 Nio uz2 Nyo . (6.70)

upa Nrog+u1pNra usa Ny +ug 1 Nia

The derivative u,, g can be computed for each quadrature point analogous to the com-
ponents of the deformation gradientin (6.41). We obtainu, g = 21»31 Nk sgUak,
where the indices « and j take values of 1 and 2. Note that the nonlinear part defined
by matrix By ; disappears for u = const.

The stress divergence term (6.45) is then obtained with (6.68) for an element €2,

Ry (u,) = /(Bof—i—BVI)TSdQ. (6.71)
Q

The load vector can be computed using equation (6.50), but we do not want to specify
it here in detail.

Linearization of (6.71) at ¢ leads to the tangential stiffness matrix of a finite
element. It is given with (6.68) analogous to (6.63)

Ky = /[(Boz+Bv;)"’D(BOK+BVK)+GIK I]dQ. (6.72)

Q.

Note that all quantities with a bar have to be evaluated at @. Due to the special
ST. VENANT model for elasticity, the incremental constitutive tensor D, defined
in (6.65), is constant. A more compact notation of the tangent matrix follows with
(6.67):

Kiyy = / [BY, DBk + Grx I]d0. 6.73)
Qe

The term Gy ¢ is given for the two-dimensional problem by the product

A i . Sin Si2| | Nk

Grx = []\[,1 1\1,2] |:5,21 5—,2211 { Nis } . (6.74)
Both equations (6.72) and (6.74) have to be evaluated at ( at which the linearization
takes place. The stresses in (6.74) are computed via the constitutive relation (6.65),
based on the strains (6.66). The integrals in (6.71) and (6.72) have to be computed
using a numerical quadrature formula. In this case, it is efficient to refer to the
reference element, see (6.45) and Figure 6.10. This yields, with (6.45), ang, Fx1l=
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y

3
Fig. 6.10 Isoparametric transformation and deformed state at ¢.

2 x 1 vector for the stress divergence term which is associated with node I:

R;(u) = /(Bg; + By )T8d0 (6.75)
Q

€

~ Z va [Bﬂl(gp : np) + BVI(fp :77p) ]T S(fp s np) det Je(fp :np) :

p=1

For evaluation of the integrals a GAUSS quadrature, with n, = 2 x 2 = 4 points,
is sufficient if the element is a four node element with bilinear shape functions. The
coordinates of the GAUSS points &, 7, and the associated weights W, are given in
Table A.2 in the appendix. For computation of the stresses ata GAUSS point S(&, 1),
we need the deformation gradient, see (6.66), which has to be evaluated at (&, , np)

Fo(y 1) = Z [1711{ Nk1(&.mp) 1k Nk2(&p 5 7p) (6.76)

£ %2k Nea(§p2mp) T2k Nk 2(§pmp) |

The stress at a GAUSS quadrature point then follows with the strains (6.66) from
(6.65). Note that in equation (6.76), the summation (Index K) has to include all
nodes, since all interpolation functions have a contribution to the deformation at one
G AUSS quadrature point within the element.

In an analogous way, the numerical integration of the integrals concerning the
tangent matrix (6.72) has to be performed.
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The submatrices for the indices I and K are 2 X 2 matrices. Based upon the resuit
6.73), their explicit form using the GAUSS quadrature follows:

KT,K:/ [Br{[DBLK + C?]K I] da 6.77)

np

=3 [ BL (& mp)D Bk (§p.m) + G (6 1) T det Je(Epmy)

The stress divergence vectors, Ry, and the submatrices of the tangent matrix, Kr, . .
have to be ordered in the following way to obtain the stress divergent vector and the
tangent matrix for the element (2,:

R, KTH KTl‘e K[m KTlfl
_J Re P Kr,, K, Km,
R, = R, Ky = K5, K, . (6.78)
Ry,J ., symin. K, dgys

The total size follows from the number of nodes, 4, and the number of degrees of
freedom, 2

REMARK 6.1

o The order of the nonlinearity of (6.71) depends only upon the constitutive equation. For
the ST. VENANT material used here, (6.71) is a cubic polynomial in w. However,
this no longer holds once a constitutive equation like the NEO-HOOKIAN material, see
(2.74), is used.

o [fstresses have to be computed in a design analysis then a transformation of the second
P1oLA-KIRCHHOFF stresses to the CAUCHY stresses must be performed on the basis
of (2.50).

o In the case of the linear theory of small strains and displacements, the terms Grx and
By 1, By x disappear in (6.71) and (6.72), thus the resulting equations are linear
in w and represent the equations of the classical linear theory of elasticity. In the
two-dimensional form of (2.95), we then obtain the stiffness matrix

Kix = / BT, Do Box d.

Qe

6.2.3 FE formulation of the weak form in the current configuration

The derivation of the matrix formulation for the weak form with respect to the current
configuration follows analogous to the derivation of equation (2.59), but we use as a
basic equation (2.61). Within the integrals the push forward of the variation of the
GREEN-LAGRANGIAN strain tensor 0E = V77 is needed, see (2.62). Hence (2.62)
has to be approximated. With equations (6.7), this leads to

§ 1 «— ) . .
Vigh =2 S U ®Va N+ (VaNr®m)] . (6.79)
I=1
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As in the last section, it is advantageous to switch to index notation to derive the
matrix formulation. We obtain

1 n
(VEm)h, = 2 > [mir Nex+ Nramer] (6.80)
I=1

where now Np,, = ON| [ Oz, is the partial derivative of the shape functions with
respect to the spatial coordinates z,,,. These derivatives can be computed using (6.9),

Nrg={3""he Nrg + {5, Yo Nip + {5 Yax Nic (6.81)

where {j.! } .« are the associated components of the inverse of the JACOBI matrix j,.
Equation (6.80) yields the components of V° n". Due to symmetry, the components
can be assembled in the vector (V5 "7h)T =[muy.n22.m3,(m2+m1).(n3+
73.2) . (M 3 +13,1)]. With this the approximation of the spatial gradient is given by

Nip 0 0
0 Nz 0
~l 0o 0o N iy :
vinh = 03 = : 6.82
n I}; Ni» N 0| ;301771 (6.82)

0 Nis Njpp )
Nrz 0 Npa

Note that matrix Bg ; does not contain any displacements, which is indicated by the
index “0”.

REMARK 6.2 In contrast to matrix By 1, matrix Bo1 has a sparse structure. Half of
its entries are zero. It is thus easily concluded that the associated zero components can be
neglected in any multiplication of Bo | with vectors or matrices. Thus, the finite element
formulation with regard to the current configuration is much more efficient on the element
level.

Furthermore, we note that the structure of Bo 1 is exactly the same as the B-matrix of linear
theory, see Zienkiewicz and Taylor (1989). The only difference is that in the linear theory, all
derivatives are with respect to the coordinates X of the initial configuration, while here all
derivatives have to be computed with respect to the coordinates x of the current configuration
according to (6.80) and (6.81).

With these preliminary remarks and the introduction of a vector o which con-
tains the independent components, ¢ = {011 ,022,033.012,023.013 }7, of the
CAUCHY stress tensor, the internal virtual work in (2.61) can be written as

/ VS ,”h. . U'h dv = U / (VS ﬂh)Tﬂ'hdld
¥(B) T e(90)

= Dijnf / B, odw (6.83)

e=tI=1
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= D Yﬁn}“ / B, o det j, dO.

e==1 J=1 o

The last form in (6.84) already contains the reference to the isoparametric base element
Q. A comparison with the associated relation in (6.45) shows that both formulations
distinguish each other by the B-Matrix, the determinant of the isoparametric mapping
(6.5) and, of course, the stress tensor. By introducing

ry(u.) = / B()T,a'dw, (6.84)

»(Qe)

we can shorten the notation, and for the virtual internal work obtain

e N

/' Vit otdv=|J Y niri(u)=n"r(u). (6.85)

o(B) e=1 I=1
@

With the transformation for the volume elements dv = JdV and the relation
between the CAUCHY stress tensor and the KIRCHHOFF stress tensor, see (2.51),
which yields 7 = J &, we can transform the integral representing the virtual internal
work in (6.84) to the reference configuration:

/ VSqt o dv = / vEnh . rhav. (6.86)
@(B) B

Discretization with finite elements leads to

/vsnh-rhdl/ = U /(vf”n")Trth,
B e:lQe
= U> n’}‘/Bg",rdQ, (6.87)
e=1 I=1 Q.

e

= U ijqﬁ / B, 7 det J.dO).
Qn

e=1 =1

Hence, in this case the residual vector denoting the stress divergence term is defined
by
ri(u,) = / B, rdO. (6.88)
Qn

The total internal work follows from (6.85).
The approximation of the inertia terms is performed according to (6.49). In the
same way, (6.51), the load terms are formulated. Thus we can summarize the finite
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element discretization of the weak form with respect to the current configuration
(2.61):
n" [MV+r(u)—P]=0, (6.89)

which for arbitrary values of the test function 77 yields the nonlinear ordinary differ-
ential system
Mv+r(u—P=0. (6.90)

For static problems this system reduces to a nonlinear algebraic system of equations
for the unknown nodal displacements u:

g(u)y=r(u)-P =0. (6.91)

The vector representing the stress divergence term r (u) can be computed in equations
(6.90) or (6.91) either by (6.84) or (6.88). Both formulations are equivalent. Note that
the relation (6.85) looks like the formulation in the linear theory, only the quantities
de and o are evaluated with respect to the current configuration.

6.2.4 Linearization of the weak form in the current configuration

In the last section we derived two weak forms, equations (6.85) and (6.88), which
differ only in the region of integration, (B") or B". The linearization of these forms
is described in Section 2.5.3, thus we only have to apply the discretization to these
results.

Linearization of the weak form (6.85) follows from equation (2.127) as

Dg(@,m) - Au = / (gradAu & - gradn + V5n - & [V5Au]}dv.  (6.92)
#(B)

The first term has exactly the same form as the associated term in the formulation with
respect to the initial configuration. Hence the discretization is the same, and can be
directly adopted from the discretization in the initial configuration, see (6.56). Only
the derivatives are now with respect to the coordinates Z; of the current configuration

(B). With the discretization of the gradient

n
grad Au® = Z Aug ® V. Nk ,
K=1
n oy
gradn® = Z ;& V Ny, (6.93)
I=1

we obtain the first part of the integrals

/gTaEAu&-ErZHndvzu ny / Gix IdQ Aug . (6.94)

2(B) e=1 I=1 K=1 2(Q.)



DISCRETIZATION OF THE WEAK FORMS 159

Within this term, the abbreviation
gix = (Vo.NN' 6 V, Nk (6.95)

has been used. The matrix from of the scalar product follows, as in (6.58), as

) ) ) o 012 03| [ Nka
gik =[Nr1 Nrao Nypgl| 821 G92 093 Nga o . (6.96)
G31 032 033 Nk3

This equation is independent from the constitutive equation, as is (6.56), since only
the stresses of the configuration { enter the integral.
The second term in (2.122)

/ Ven - & [VSAuldv
#(B)

depends upon the incremental constitutive tensor «, evaluated at the current config-
uration @, and thus directly from the constitutive equation (e.g. see Section 2.4.2,
equation (2.90)). Using the same arguments as for linearization with respect to the
initial configuration and (6.82), we obtain

/ vsn~é[vSAuldU: UZ Z anr / BZWIDMBOKdQAUI\'a
e=l1=1 K=1 5 )

#(8)

(6.97)

where all quantities in the integrals have to be evaluated at . In summary, we find
the discretization

Ne n n

/ {gradAue - gradn + V- @ [VSau] o= |J Y 3 o Kt Aug,
3(B) e=1 11 K=1
(6.98)

=M. I . .
where matrix K7,  is the tangent matrix with respect to the current configuration,

= M = _ e =T =M = .
Ky, = / [(V;ENI)TGV,NK + B,; D BOK] dw . (6.99)
2(2.)
It is defined for the combination of nodes I , K within the element €., see also Section

6.2.2. The discretization of the weak form (6.88) in the current configuration follows
in an analogous way, we just state here the final result:

/{gradAui- -gradn + Vo9 - @ [V5Au] }dv = U E E nT I_{%fAuKT
,B e=1 =1 K=1
(6.100)
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where matrix I_(%f is the tangent matrix with respect to the current configuration:
KME =/ [(VN))T# 9. Nic + By D" Boc | do. (6.101)
Qe

The matrix form DMR of the incremental constitutive tensor @ can be found for a
NEO-HOOKE material, e.g. in (2.92). The associated form for D™ results from the
transformation with the JACOBI determinant J, as given in (2.126).



Discretization, Small
Deformation Contact

In the first applications of finite elements to contact problems of two deformable
bodies only small changes in the geometry were assumed so that the geometrically
linear theory could be applied. In that case it is possible to incorporate the contact
constraints on a purely nodal basis, e.g. see Francavilla and Zienkiewicz (1975).
Later, contact elements were also developed, which resulted from a degenerated solid
element, e.g. see Stadter and Weiss (1979) or the textbook of Kikuchi and Oden
(1988). A mathematical study of these classes of elements which also accounts for
the correct integration rules can be found in Oden (1981) and Kikuchi and Oden
(1988). All of the above-mentioned elements need a discretization in which the
element nodes match each other at the contact interface. For the general case of
nodes being arbitrarily distributed along the possible contact interface between two
bodies, which can occur when automatic meshing is used for two different bodies,
Simo et al. (1985) developed a segment approach to discretize the contact interface for
the two-dimensional case. Also, first attempts have been made to use the hp-version
of finite elements for the discretization of contact problems, see Paczelt et al. (1999).
Recently, such discretizations gained more attention due to automatic meshing tools
and domain decomposition methods for large problems. We refer to mathematical
literature like Belgacem et al. (1997) and Belgacem et al. (1999) for the development
of so-called mortar methods, and to Rebel et al. (2000) or McDevitt and Laursen
(2000) for an engineering treatment of such methods.

In general, in small deformation contact, we do not need search algorithms since
no large slip can occur on the contact surface. Hence when the first discretization
takes into account the contact interface as depicted in Figure 7.1, then the element
sizes coincide at the interface, and one can define contact elements which have nodes

161
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Fig. 7.1 Contact discretization for small deformations.

on the surface of both bodies. These contain pairs { i , k } € J¢ which might possibly
come into contact. Note also that in frictional contact problems, the mesh topology
does not change during the loading process, since the slip is infinitesimally small.
Thus in the case of friction, it is also possible to develop contact interface elements
on a nodal basis, which can be simply added in the assembly procedure to the general
stiffness matrix like standard finite elements.

In the following we discuss the case of two deformable bodies being in contact.
The special case of the classical SIGNORINI problem, where a deformable body is
in contact with a rigid obstacle, follows directly from the equations developed by
assuming one body is rigid, and by defining the normal vector on the rigid obstacle.

7.1 GENERAL APPROACH FOR CONTACT DISCRETIZATION

There are different possibilities to formulate (and hence discretize) the contact con-
straint. This was discussed in Section 5.3, leading to the main formulations of LA-
GRANGE multipliers and the penalty approach. Discretization in the framework of
these two methods will be discussed in this section.

In general, for penalty and LAGRANGE multiplier formulations, different dis-
cretizations of I'. are possible which depend on the problem, on the discretization of
the bodies which come into contact, and on the type of constitutive interface law.

7.1.1 Lagrange multiplier method

The LAGRANGE multiplier method (5.27) is a mixed method. This means that the
field of LAGRANGE multipliers A 5 and the displacement fields u® of both contacting
bodies, which define the gap function gy, as well as its variations like dgn (here
shown for the frictionless case) have to be discretized. This yields for the residual

//\N(SgNdT‘—)Z/ A',{,(Sg}‘vdl“., (7.1)
: rh
r. i=1 i
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and for the constraint equation

n. .

/ Angndl =0 — Z / ()/\'Q gf{, dl' = 0. (7.2)
- im1 JT7

I,

The interpolations for A%, and dg”% are defined on T'”; by

M= Mg(& vk and i =Y Ni(€)dgn- (7.3)

K I

£ is a local, in general, convective coordinate which defines the shape functions Ny
and Mg on the reference element; see Section 6.1.1 and Figure 7.2. An g and dgn s
are the nodal values of the LAGRANGE multiplier and gap functions, respectively.
n. denotes the number of active contact constraints 74 € J¢ which have to be
determined by the contact algorithm. For evaluation of the integrals in (7.1), it is not
always clear on which side of the interface (body B! or 3?) this integration has to be
carried out. Thus, one has to choose one of the surfaces of the bodies in the contact
interface as the reference or master surface, and then perform the integration in a way
that is consistent with the discretization. In Figure 7.2 the boundary B! is chosen as
the master surface. The figure describes this discretization for the two-dimensional
case when linear interpolations are used. In this case, the surface of the bodies coming
into contact is also discretized by linear shape functions. It can also be seen that the
sum in (7.1) has to be applied to add up all contributions of the contact elements
associated with I‘f‘ Using (7.3) in (7.1), one obtains

Ne

[ Awdaxdt — 3575 o [ Nit€) Mi() derJr(€) de A, (74)
e K

=1 (&)
where det Jr(£) is the transformation of a surface element in Fi’ to the reference
element I'. By comparing this result to (6.48), we see that the integral in (7.4) has

the structure of a mass matrix. This is especially true when the same interpolation
functions are used for gap and LAGRANGE multipliers.

Fig. 7.2 Contact discretization, isoparametric formulation.
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— —

1l

Fig. 7.3 Non-matching meshes at the contact interface.

Note that the interpolations have to be chosen in such a way that they fulfil the
BABUSKA-BREZZ1 BB-condition for this mixed formulation (e.g. see Kikuchi and
Oden (1988), Belgacem et al. (1999) or El-Abbasi and Bathe (2001)). This is usually
no problem if the nodes of the contacting bodies assume the same position at the
interface, see Figure 7.2.

However, if the bodies coming into contact are discretized by using different finite
element meshes, then the nodes no longer match each other, see Figure 7.3. In
this case, one has to carefully investigate the discretization in the light of the BB-
condition. An early suggestion for a discretization for non-matching grids can be
found in Simo et al. (1985). Recently, new methods, so-called mortar methods, were
designed for domain decomposition in which unstructured grids are connected within
a parallel finite element solution. These methods are well understood mathematically
(see Bernadi et al. (1994), Tallec and Sassi (1995) or Wohlmuth (2000a)). It is
obvious that one can also apply such a strategy to finite element contact problems
when the nodes in the contact interface do not coincide, as can be seen in, for example,
Figure 8.1. Work along these lines related to contact problems can be found in the
mathematical literature in Belgacem et al. (1999) or Krause and Wohlmuth (2001)
and in the engineering literature in Rebel et al. (2000) or McDevitt and Laursen
(2000). Another approach for non-matching grids in the contact interface is provided
by the NITSCHE method, which only works with the primary displacement variables
as described in Becker and Hansbo (1999). The mortar and NITSCHE methods are
discussed in Section 7.4.

Based on the LAGRANGE multiplier method, the following general matrix formu-
lation can be derived. The discretization of a body B has already been discussed in
detail in Chapter 6. We recall these results for the linear elastic case of both bodies,
which leads to the discrete form of the potential energy (5.25),

1 -
I(u) = EuTKu— u’ f, (7.5)
where the displacement vector u includes the nodal displacements of both bodies. In
the same way, the stiffness matrix K is associated with both bodies, and fcontains

body forces and surface tractions of both bodies. In more detail, we can write

_1,. ., L5 [K' o0 u! Loy [T
nw =yt [N @] {L} e {L}. ae
Observe that the bodies are not yet coupled. This occurs due to the additional terms
which are derived from (7.1) and (7.2). To obtain a matrix form for these terms we
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introduce for the gap function in each contact element I'?
~T
gh=C, u, (1.7

where &- depends upon the choice of discretization. By integration, using (7.4), with
(7.7) we obtain the vector C;. Now the contributions can be assembled into a matrix
which then contains all n, constraints. With

C=[Ci|Cyf... |Cn] (7.8)

we obtain the discrete form of (5.25), together with (5.26):
1 5 = .
HLM(u;A):éuFKu~—qu+ATC’ru. (7.9)

A is the vector of all LAGRANGE multipliers associated with the n. contact con-
straints. Variation of TIXM (u, A) with respect to displacements and LAGRANGE
multipliers yields with n = du two equations

nT[Ku—?-f—CA] = 0,
MT’[CTu] = 0. (7.10)

By the fundamental theorem of variations, these equations can be arranged in matrix

form . _
& Slx-(0)

Note that this is a linear system of equations for the given number of n. contact
constraints. In a real contact analysis this number is not known. Thus, we then haves
anonlinear problem in which, in addition to the displacement field and the LAGRANGE
multipliers, the correct contact zone also has to be determined. Algorithms for this
will be stated in Chapter 9.

In the following sections we shall discuss details for the different discretization
which are only associated with the contact terms in (7.11).

7.1.2 Penalty method

Contrary to the LAGRANGE multiplier method, the penalty method only needs dis-
cretization of the displacement variables. The contribution of contact constraints to
the weak form leads, with (3.7) and (5.32), to

J

with the interpolation for the gap function and its variation

gk =Y Ni©)gnr and gk = Ni(€)dgns - (7.13)
I I

o

en gn 09y dT — / en gr 8gh dl (7.12)
r(,‘
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But here also one has to be careful when choosing the interpolation for continuous
contact. Since the penalty method is equivalent to a mixed method the BB-condition
plays the same role as for the LAGRANGE multiplier approach (e.g. see Oden (1981)
for a detailed discussion of this matter). Hence, when applying the penalty method
one has to take special care to choose the correct discretization in the case of non-
matching grids, see Figure 7.3.

The matrix form for the penalty method follows from (5.25), together with (5.31).
Again we have to perform the integration in (7.12), which analogous to the definition
(7.8) leads to

P (u) = %UTKU—UT?+%UTCCTU. (1.14)
Variation of IT1¥ (u) with n = du yields
nT [Ku—'f+eNCCTu] -0, (1.15)
which leads to the matrix form
|K+K"|u=F wihK’=eyCCT. (7.16)

Again, this linear system of equations is given for the fixed number of n. contact
constraints. Algorithms to solve this form will be stated in Chapter 9.

In the following we discuss discretizations related to the methods mentioned above,
and to the formulation using constitutive equations for the contact interface. Fur-
thermore, to simplify notation, we will drop the superscript * which denotes the
approximation using finite elements.

7.2 NODE-TO-NODE CONTACT ELEMENT

The simplest formulation for contact is a discretization which establishes constraint
equations and contact interface constitutive equations on a purely nodal basis. Such
a formulation will be called a node-to-node contact. For this discretization the fric-
tionless as well as the frictional contact formulation is developed below.

7.2.1 Frictionless contact

A node-to-node contact can only be applied to geometrically linear problems, since
large relative tangential movement of the nodes is not allowed in the contact area. The
constraint equation for contact can then be formulated directly for each nodal pair,
denoted in Figure 7.4. The geometrical contact constraint condition for the normal
contact was stated in (3.11). It reads in this case for one node pair ¢

gni=(u} —uj)-mj +g; >0. (7.17)

Here u¥ are the displacement vectors of bodies B¢ of the nodal pair associated with
1. g; is the initial gap between both nodes.
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Bh2

T
| ]

Bhl

Fig. 7.4 Node-to-node contact element.

For small strains the change in the normal is neglected within the computations.
Since the initial gap is independent of the displacement field, the variation of (7.17)
is given by

Sgni = (m; —m})-m; (7.18)

Due to its simplicity, and assuming that the contact constraint is active for n, nodes,
we can express the integral (7.1) for the contact contributions in the weak form by a
sum over all active contact nodes.

Lagrange multiplier formulation. For the LAGRANGE multiplier method this
leads to

Ne

/)\Néfmdr—)z)w 591\241’—2)\1\17 (m; —mn})-nt4;, (7.19
b =1

and the weak form of the constraint equation

Ne

/‘ OAN quF—)Z(S/\NzngLA _26/\1\”[“ ~u) n +gl]4 =0,
i=1 =1

(7.20)
where n. are the active contact nodes in F?. The test functions 77 and the normal
vector n} are defined for the node 4 as depicted in Figure 7.4. The product of LA-
GRANGE multiplier Ax ; and area A; related to node i is the contact nodal force, and
An; 1s equivalent to the contact pressure py ; associated with node 7. The matrix
form for this discretization can be obtained by introducing two vectors, one for the
variations { 9§ ,d); }, and one for the increments of the variables { Au® , A); } at
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node ¢:
R . [ Au; . n? Au?
17,.—{6/\:} , Aui—{A)\:} with n,-:{n:!} and Aui:{Aué .

Inserting this into (7.19) and (7.20) yields the contact residuum

ne
[ Gwon+avdonar~ Y al et win 65t = { %G

i=1

(7.22)
and
n; w
C; = —pl and u; = u (- (7.23)
Furthermore from the linearization of (7.22) we obtain the expression
Ay KAy, (1.24)
with the contact stiffness matrix for one node i,
0 C;
Kb = [C? 0’] 4. (1.25)

Penalty formulation. In the case of the penalty method, we have to discretize
equation (7.19) for Ay = € gn, leading with (7.21) and (7.23) to

Ne Nne
/ engnOgndl — Y engnidgniAi=)_ nl engniCidi.  (1.26)
Te i=1

i=1

Often the area A; which is associated with the contact point i (see Figure 7.4) is
neglected (or “hidden” in the penalty parameter €y ) in the node-to-node contact
formulation. This means that the contact stress py; = €nx gn : becomes a contact
(nodal) force fn; = en A; gni = €n gn i- An evaluation of a contact interface law
like (4.11) is not possible with this simplifying discretization.

The associated matrix formulation for (7.26) results in the geometrically linear case
for node i to the definition of the contact residual G§ = n7 G¢F and its associated
tangent matrix K P The explicit form can be stated by using the notation defined
in equation (7.23):

GiFP=engniAiCi, KF=eyA,CiCT. 727

LAGRANGE multiplier and penalty formulation, as given here, are valid for one-,
two- and three-dimensional formulations. One only has to adapt the definition of
the normal n}, the variations & and the displacements ug, at the contacting node
7 in relation to the spatial dimension of the problem. As examples we state here the
penalty residuals and tangents for the one- and two-dimensional cases.
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¢ One-dimensional case. If contact between one-dimensional structures is con-
sidered, then the normal vector n} is given by the scalar n, = 1. Hence the
matrix C; is simply CT = (1, —1), which yields the residual and tangent

1 -1

GEP:ENQN,'A,‘ {_i} and KiCPZGNAi [_1 1

} . (7.28)
This result can be compared with the formulation used in Section 5.4 to evaluate
different methods to formulate the contact constraints.

o Two-dimensional case. For two-dimensional problems the normal vector has
two components (n})” = (n, ,n, );. Thus the matrix C;, and hence also the
residual matrix, now have four components. Explicitly, one obtains

Ty
c P n
G;" =engniA; v (7.29)
—n,
Ny J
and
n? Ng N n2
'z z Ty Ty g Ty
2 2
Ngn n —~Ngy N -n
KV =enA; | 79 v 2 vl (730
Ny TNy ?y Ny Ty ;‘y
—Ngn, -y Ny Ny n; ;

We note that it is not always obvious how to define the normal vector for a given
interpolation of the contact boundary. This is especially true when a linear interpo-
lation, as shown in Figure 7.5, is used. Here it can be seen that there is a jump in
the normal at point i. Thus, the definition of the normal at point 7 is not unique. A
way out is given by using a normal n}, which is obtained from a smooth interpolation
of the discretized contact surface by, for example, BEZIER or spline functions, as
depicted in Figure 7.5.

The problem of defining the normal at nodal points can also be circumvented by
introducing an isoparametric interpolation for the contact surface, see next section.

Fig. 7.5 Definition of the contact normal.
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7.2.2 Contact with friction

In the case of frictional contact, we have to distinguish between stick and slip motion.
The theoretical background can be found in Section 4.2. Here only the classical law of
CouLoMB is applied. The relative tangential movement between the two contacting
nodes is given with respect to (3.23) by

gTi:(e'lTa®e'll"a)(u12_ull')’ (731)

where e}, is the unit tangent vector at node i in the direction a = 1,...,2. The
tangent vectors have to be constructed such that they form an orthogonal frame with
the normal vector nj, hence €%, e} 5 = do3. In the same way, we define the relative
tangential velocity

gTi:(e’lTa®e’lTo)(i‘12_i‘1!)‘ (7.32)

First we consider the stick case. This will be done here using the penalty method,
see Section 5.3.2. Again, the integral in (5.32) is discretized by a sum over the nodes
in contact

/ €T gT - JgT dA — Z €T 6g;:, 8T Ai (733)

r i=1

Ne

= ZGT[(U —ul )TeTa][(n'_nz)TeTa]4
i=1

By introducing the matrix
Ty = { eTa} : (7.34)

—el
Ta
we can state the matrix formulation for (7.33). This results in the geometrically linear
case for node i to the definition of the contact residual for tangential stick

/ETg'I (ngd4. Z n, GCSt . (7.35)
T

The explicit form can be stated by using the notation defined in equation (7.23):

2
Gt =er A; Z 97ai Tai, (7.36)

a=1

with grqi = Tgi u;. The associated tangent matrix follows from the lineariza-
tion of (7.36), which only depends in gr, ; in the geometrical linear case upon the
displacement field. With Agr,; = T, Au; we obtain

K§% = er A; Z To: TE,. (1.37)
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In the case of slip, the virtual work expression for the contact contribution is derived
using an implicit backward EULER integration of (4.27), see Sections 4.2.4 and 9.5.2.
Using these results we obtain

e

[ trnes - dgrda = / HPN i W g dA = 3 mf G5 (7.38)

T" =1

In this equation the residual slip vector G sl for contact node i is given by

csli : tr . tr T _1
GI; V= = UPNin+1 4 E nI i Toi with Nrai = (nTn—;Ll) €ra-

a=1
(7.39)
The linearization of (7.38) is now constructed from two terms, since n¥,,_ , as well
as PN n+1 depend upon the displacement field. The linearization of n ., yields for
anode ¢

‘ 1
T +
ArIT n+1 = A el = ttr [1 nTzn—H (H’I zn—l—l) ] AtTi,n+]
167l Nl
(7.40)
where the linearization of the tangential nodal force with (7.32) yields
2

At inp1 = €7 Agripy1 = €r Z (TL Aui) erq- (7.41)

a=1

Combining the last two equations, the contribution to the linearized weak form can
be computed with (7.39) as

Sgh ALY, =er Z Z n! [ ap — N i ) Ta Tgi] Au;. (7.42)
8=1

For node ¢ the linearization of the normal contact pressure pp 4.1 follows with the
matrices introduced for the frictionless case in (7.26),

ApNin+l = (‘NAg,Ni = €N C,!’ Aui . (743)
This adds
) 2
58’%;‘ (HAPNint1 DT nt1 ) = fLEN Z ng ntTTa Ty CiT Au; (7.44)
a=1

to the linearized weak form. Combining (7.42) and (7.44) yields the tangent matrix
for node ¢ which is in the slip state

2

K —e 1Y (a5 = nlf o 1l ) Tas T, | + pew nif, Tas €T
a=1 AB=1
(7.45)
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Due to the second term, the tangent matrix is non-symmetric. This is because the
CoULOMB law of friction can be viewed as a non-associative constitutive equation,
and hence cannot be represented by a positive strain energy function.

Note that the first term in (7.45) is zero in the two-dimensional case. This stems
from the fact that the quantity n%7, can then be represented by a signum function,
since 5, /|t 1| = Sign(tf, ., ), which leads to (8a3 — n¥f nif;) =1 -
Sign(t%,.,,)?> = 0. Thus only the non-symmetric part of (7.45) remains in the
two-dimensional case:

X 1
K§3' = pew Sign(tf 1) Ti €7 with T,-={_§;f}, (7.46)
1

where el is the unit tangent vector.

7.3 ISOPARAMETRIC DISCRETIZATION OF THE CONTACT
CONTRIBUTION

Another possibility to discretize the contact surface is given by a direct interpolation
of the surface using the isoparametric formulation. Also, this contact element does
not allow large relative tangential movement in the contact area, and thus is only valid
for geometrically linear applications, as discussed below. Such an element connects
the surfaces B! and OB? at the contact interface,as shown in Figure 7.6.

The gap function gu, stated in (3.11) for geometrically linear analysis, is dis-
cretized by an isoparametric interpolation, also leading to a well defined contact
pressure. For the gap function we obtain its variation and linearization

D Ni(€,m)gnr,
1

aN

dgn Z Ni(€,n) (0} —nj) -0, (7.47)
I

Fig. 7.6 Isoparametric contact element for three-dimensional problems.
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Agn = Y Ni(€,n) (Auf — Aup) -0,
I

where I denotes the nodal points of the isoparametric surface elements.

The contact normal used in (7.48) can be constructed directly from the interpola-
tion. This is due to the fact that the tangent vectors to the surface can be obtained
directly from the convective description of the surface by the isoparametric interpo-
lation, see Figure 7.7 and (B.2) in Appendix B. With this we compute the normal
vector to the discretized surface of body B*:

1 1
= G1xG (7.48)
|Gy x Gy ||
The tangent vectors are obtained by the partial derivative of the position vector to the
initial configuration of the contact surface, G, = Xla with respect to the coordinates
£ and 7. Note that all vectors are now defined on B!, which is denoted by the
superscript 1. Thus, for the contact normal we have

X, xX,,
CIXEXXL

1

n (7.49)

As we apply an isoparametric interpolation, we use the same shape functions for
displacements and coordinates. The position vector X' is approximated by

T
X' =Y Ni(& X, (7.50)
I=1
which leads to the derivatives for its components X;,
Xla=Y_ Ni&.n)aXi. (1.51)
=1

With this we can explicitly evaluate the cross product in (7.49), which yields
Xoe X3, — X3 X3,
NY(¢.m) =X xX=¢ Xi X!~ X! X} . (7.52)
X,lyg X;W - Xi& X}

L

Fig. 7.7 Computation of the normal vector.
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The matrix formulation for (7.48) can be derived by introducing the vectors

2 2 1
K _J Auy e N
n”_{n}}, AUCI—{AU}} and N_{_Nl}. (7.53)

This leads to the variation and linearization of the gap function:

Il

Sgn > T INi(€.n)NE.n) /NI,
I

Agn [ Mgy NE. )" /IN' [l Aue (1.54)
I

Lagrange multiplier formulation. Using LAGRANGE multipliers we have, in
addition to discretization (7.54), to introduce a discretization for the LAGRANGE
multiplier and its variation:

AN =) Mg(€.m)Avk and SN =) Mg(E,m)oAnk. (155
K K

Note that interpolation for the LAGRANGE multiplier has to be chosen in relation
to the interpolation of the displacement field (7.48) such that the BB-condition is
fulfilled, e.g. see Kikuchi and Oden (1988). Here for the moment we use the general
formulation with different interpolations for g, and A, without specifying the shape
functions Ny and M explicitly. With (7.52), for the contact contribution of the weak
form of equilibrium we can write

ri I=1
+1 +1
with ’;,=//AN(g,n)Nz(g,n)ﬁ(s.,n)dfdn.

-1 -1

The area element dI" in the contact surface I'S can be computed using the refer-
ence configuration I', see Figure 7.7. The area element dI" is given by dI' =
| X.g xX.p |l d€dn = || N || d€ dn. Note that || N' || appears in the denominator of
(7.54), and as a factor in the area element in the reference configuration, hence this
term is cancelled in the weak form (7.56). Furthermore, for the weak form of the
constraint we obtain

SANgNdT ~ ) SANKGlg =0 (7.57)
re K=1
+1 +1

with G = / / M (€.m) gn (€, 1) | N* || d€ dn.

-1 ~1



ISOPARAMETRIC DISCRETIZATION OF THE CONTACT CONTRIBUTION 175

In matrix form, (7.56) is represented by

u

cl
Avdgndl =~ (nl ... i) : \ (7.58)
v G,
and (7.57) yields
G
AN GN AL = (JAN1 .. s 0ANm ) . (7.59)
rg YA
The linearization of (7.56) and (7.57) leads to
n m
AAyOgndD ~ Y Y nl; Cix Ak (7.60)
JTe I=1 K=1
+1 41
with  Ciw= [ [ Micl€.m) Nit€. ) NGg.m) de .
S5
and
7" m
/ AN Agndl ~ Y Y 6Ank CkiAuy, (7.61)
e I=1 K=1

with Cx; = CJy. Hence, the complete matrix form for the linearization is repre-
sented for one contact element by

( Aul 3
: 2 Au,
<Tlcll :-~-:773rn 75/\[\1’1 :"’:AIVTﬂ) Kg M < A/\}\tl (762)
. A/\Nm /
with
r Cl 1 C]m, 7]
0 :
CTL T
KfM = Cf1 o C,Tl : Crm (7.63)
: : : 0
T 1
-~tm Cim -

where the matrix elements Cyg are defined in (7.60). In this expression, the in-
dices for the displacement variables run over the number of nodes used to specify the
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isoparametric interpolation, e.g. n = 4 for bilinear and n = 9 for biquadratic shape
functions. The same holds for the LAGRANGE multipliers, where now m represents
the number of nodes used for the interpolation.

Penalty formulation. The weak form for the penalty method is given in equation
(7.12). With (7.48) we can represent the weak form contribution of one element by
further using (7.52), and introduce the finite element discretization directly to obtain
for (7.12) a compact form

/ engnogndl ~ | ) ) 0l Gj, (7.64)
r. e=1 I=1
with
i = [ enan(e.n Nite.n) Nagan, (7.65)
I'g

where | J[< | denotes the assembly of n. active contact elements and I'- is the contact
surface of the reference element, see Figure 7.7. In (7.64) the contact pressure py is
given by py = en gn (€, 1) which is defined for every point of the contact element
domain I'¢.

The linearization of contact residual (7.64) yields, with (7.54), the result

/ enOgn Agn dl = ZZT);F,K,PKAUCK (7.66)
re I K

<

+1 pl o T
with K5 =/ / en Ni(€,m) Ni(€,n) NN" /|| N'[| de d.
-1 J-1

Both, residual vector (7.64) and tangent matrix (7.66)2 have to be evaluated using
numerical integration. For the proper choice of the numerical integration rule, see
Oden (1981), who has discussed this topic in the context of perturbed LAGRANGE
formulations. To avoid locking and pressure oscillations, a reduced GAUSS integra-
tion or an integration based on SIMPSON’S rule works well. This means that, for
instance, a one-point GAUSS integration should be used for a bilinear interpolation.
In the case of the application of SIMPSON’S rule, the integral has to be evaluated at
the four nodal points of the bilinear element.

The isoparametric discretization leads to a contact element which can be applied
in the context with four, nine node quadrilaterals or triangular elements for three-
dimensional continuum problems. Due to the smooth discretization, a good approx-
imation of the contact pressure is obtained.

7.3.1 Examples for isoparametric contact elements

To give a more detailed description of this type of contact discretization, we con-
sider some formulations in more detail. These are mixed formulations based on the
so-called Q1/P0 approximation, and several two-dimensional formulations for the
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LAGRANGE, penalty and perturbed LAGRANGE methods.

Example 1: As a first example we derive the explicit matrix formulation for a
contact element with bilinear interpolation for the displacement field and constant
approximation of the contact pressure in the case of frictionless contact. This is
equivalent to the well known Q1/P0 element used in solid mechanics for incompress-
ible problems. To make the formulation more flexible, we start from the perturbed
LAGRANGE form discussed in Section 5.3.6. In that case, one has to approximate
equation (5.52), which involves LAGRANGE multipliers and a regularization term.
The weak form of the contact contributions is then

sCF = /
re

Using the bilinear shape function, given explicitly in (6.24), we can discretize (7.67).
Furthermore, the LAGRANGE multiplier Ay is approximated by a constant value in
the element represented here by Ay . This interpolation leads, with (7.48), (7.52) and
(7.56), to the weak form contribution to equilibrium of a single contact element:

AN Ogn + 0N (gN - F—;—)\N)] dar. (7.67)

+1 41
[ awdanar~an Saf [ [ N Nagan. ao
Jre 7

S5

Furthermore, for the weak form of the constraint equation we obtain

1 .
/ OAN <gN — ”“)\N) dar (7.69)
re €N
+1+1 1
~ S //gN<§,n) IN"ldgdn - — Aw A.| =0,
S151

where the A, represents the area of the contact element. This equation represents
a regularization (constitutive equation) for the impenetrability constraint condition
(3.6). It has to be fulfilled in an average sense over the finite element I'S. In case
the second term is zero, we recover the classical LAGRANGE multiplier method. We
can also obtain a penalty formulation by eliminating the LAGRANGE multiplier using
(7.69). Solving this equation for the LAGRANGE multiplier Ay yields

+1+1

S =S [ [ anten) N dean. (7.70)

—1 -1
This result can be inserted into (7.68), which leads to

+1+1
€N

/ v bgndl ~ = > ] / / gn |IN'| d€ dn C; (7.71)
re ‘o

—1 -1
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with
+1+1

C = // Ny Ndtdn. (7.72)

S1-1
Note, however, that in this special formulation a double integration is necessary where
gn, N', Ny and N are functions of £ and 77. With this the LAGRANGE multiplier is
eliminated from the formulation, which is now a penalty formulation with a special
interpolation (Q1/P0: linear for the displacement field and constant for the contact

pressure Ay ). The check for penetration has to be performed here for the complete
contact element by evaluation of the integral condition

+1+1

gn < 0 => contact with gy = / / gn (&, ) INY || dédn. (7.73)
S1-1

The linearization of (7.71) with respect to the unknown displacements only affects

the first integral, which contains g . Since Agy has the same structure as dgy, we
obtain with (7.72)

€ .
/ Adydgndl~ 2= 3" S #j Cr Ck Aug. (7.74)
fe ¢ 1 K
Example 2: As a second example, we formulate the contact element for two-

dimensional problems. It then reduces to a one-dimensional element, see Figure 7.8.
As in (7.48), for the gap function and its variation we obtain

gv =Y Ni(€)gns and gy = Ni(€)(nj—mn})-n', (7.75)
1 1

where now the isoparametric shape functions can be chosen according to Section
6.1.2. The contact normal can be constructed directly from the interpolation by the
cross product of the tangent vector and the vector E3 perpendicular to the plane, see

2
X \
re o
X3 \ Te
I VS I'o
X} 3 ¢
h f— 2
Ez[# X%
S .
E; E; X!

Fig. 7.8 Isoparametric contact element for two-dimensional problems.
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Figure 7.8. With this we compute the normal vector to the discretized surface of body
B! from
E; X )(1
n'= 2 (7.76)
| X |l
where the tangent vector is computed as in (7.49). Since the line element dS in the
contact line can be computed usin g the reference configuration I'- of the isoparametric
formulation, we have dS = || X ¢ || d€. Now for the different contact formulations
with (7.76), we can state the weak form contribution of the contact stresses for one
element:

1. LAGRANGE multiplier method:

/ANagNdr /me (7 — ') (Bs x X dE (1.77)
) +1
/ SAnvgydl = / N GINGIRALS (7.78)

—~1

«

2. Penalty method:

1

+
/6N9N59Ndf— /61\ gn(E) (n° —n') - (Bs x X e (7.79)
Te 21

3. Perturbed LAGRANGE formulation (see also (7.67)):

//\NagNdr = //\N(g) (m° —n") - (Es x X)) d¢  (7.80)

+1

/m [ N——AN] ar = [ o {gN@)——AN | 1XL|1de.

-1

Based on (7.77), (7.79) or (7.80), the finite element discretization is obtained. We here
restrict the matrix formulation to the penalty method and to the perturbed LAGRANGE
formulation.

(a) Penalty method. With the isoparametric interpolation

m

X'= )" Na(e) X} (781}
A=1
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and the resulting derivatives for the components of X!

Xie = Z Na(®) e X4 (7.82)

the cross product in (7.76) yields

1 1 _X2l
N (¢) =E3 xX, :{ le}. (7.83)
This leads to the discretized form of (7.79)
+1
/ ewowSandrw [ engn(©) Y Ni(©) o —n}) N} de.  (.84)
re 21 1

The linearization of contact residual (7.84) yields, with (7.66),

Nl
Il X} H
(7.85)

The matrix formulation for (7.84) and (7.85) are then based on definitions (7.53), in
which (7.83) has to be used. For the contact residual, this leads to

+1
/ en 0gn Agn dTl =~ / en Y Ni(mj-n})-N' Y N(Auj-Aup)———
) 1

re K

+1

ne m
[ exonbowdr =) 3" nfi Gi with G = [ enan(© Ni(e) N,
e c=1 I=1 -1
(7.86)
where the integration has to be performed on the reference element, see Figure 7.8.

For the tangent stiffness we obtain with (7.66) the matrix form

/EN Ag]v 6gNdI“x U Z Z T]Z} C]KAUCK, (7.87)
fe e=1 I=1 K=1
with
+1 )
~ ~T
Crx = [ e Ni(© N O NN 1 de (7.88)

-1

For proper choice of the numerical integration rule, we refer to the remark made for
the three-dimensional contact formulation. It can easily be seen that the contact resid-
ual and tangent changes when using different integration rules. However, since only
polynomials appear in (7.86), an exact integration is also possible for this integral.
For linear shape functions the polynomial order is 2, thus a two-point GAUSS rule is
sufficient. A one-point GAUSS rule then leads to an under integration. For a quadratic
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interpolation the maximal polynomial order is 6. In this case four GAUSS points have
to be used for an exact integration, but also a three-point rule is sufficient.

(b) Perturbed Lagrange formulation. For this formulation the matrix form for a
Q1/P0 interpolation will be developed. This yields matrices which can be evaluated
in closed form, and thus are used to demonstrate in detail the matrix formulation of
the finite element discretization. Note also that in this case the contact interface is
approximated by a piecewise linear interpolation. We start from the weak formulation
(7.80) for one contact element. By using the interpolations for the displacement field,
the coordinates and the LAGRANGE multiplier are

2

ut = Z Ni(§uf =3 l(1+E£1)u‘}, (7.89)
! 21
X = Y N©X=Y La+eenX), (7.90)
I=1 I=1
AN = A (7.91)
with & = —1 and & = +1. Using this interpolation, the normal vector N* can be

expressed explicitly

~X, 1 [ x} - X!
t= 28\ = — 21 22
N { X| . } 2 { xL - x1, } , (71.92)

with the components (XDT = {X},XL} and (X3)T = { X1, X1} of the
position vectors X} 1 of the nodal points of the master surface, see also Figure 7.9.
Note that the vector N'! is constant, which is in accordance with the straight geometry
of the contact element. Now we can write, with (7.91) and (7.92) for (7.80),

+1 9
/ A Sgn dT = Ay / S Ni(n? - i) N de. (7.93)
I I=1
X3
xz
1 :)(:12
—1 +1
e
1 £ 2

Fig. 7.9 Two-node contact element with Q1/P0 interpolation.
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Since 0§ and N are constant, we can integrate (7.93) analytically, and obtain with
+1 .

/ 3 (1+&8de=1

the matrix form

/ AvOgndl = An AT GPL with CFl = (7.94)
Fe

where the vector ) which contains the variations 77¢ has been introduced as

T _ (.1 .1 .1 1 .2 .2 .2 2T
N = {M1,M2,M21,M22,M01,M2,M1 122} -

Now the constraint equation (7.80) can be evaluated. For the chosen interpolation
this leads to an expression for the LAGRANGE multiplier

+1

2
v == ST N g [N de (7.95)

I=1

N

3]

-1

The element area A, is given in the two-dimensional case as the element length L..

Furthermore, we obtain || N' || = 1 /(X2 — X22)2 + (X12 — X11)? = L. /2.
With this, for (7.95) we arrive at a simple expression for the LAGRANGE multiplier:
< €
An = ?N (gn1 +gn2)- (7.96)

Hence the constant LAGRANGE multiplier depends upon the average gap gn =
(gn1+gn2) /2, which is also used in this element formulation to establish whether
the gap is closed or not, leading to the contact condition

gn < 0 = contact. (7.97)

The linearization of the perturbed LAGRANGE formulation can be computed from
(7.80) with (7.95). We then have

DC, - AHZ/A/\NtsgNaT:A/_\N/(SgNdF (7.98)
T. r.
o e +1 o, ‘ 1
= X[ Y Niaui - Au) Ndg [ 30 Nitrk k) N'de.
€ I=1 2 K=1
which with

~T 1 1 1 1 2 2 A2 2 T
A’ = {Auyy, Aupy, Auyy , Auyy , Ay, Augy , Augy , Aug, }
and (7.94) yields the matrix form of the tangent matrix for one contact element

DC.-Au=7T KFPL Ai with KPL = %"— cPL(cPH)T.  (199)
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7.4 DISCRETIZATION FOR NON-MATCHING MESHES

By using general mesh generators, unstructured meshes can be constructed in which
nodes in the contact interface do not assume the same coordinates, see Figure 7.10.
Then the formulations discussed above can no longer be applied, even in the geomet-
rically linear case.

Methods for connecting finite element domains with non-matching grids (see Fig-
ure 7.10) are frequently used for parallel computations. Such formulations have
different origins, and hence have also received special names. A commonly used
approach is the mortar method. However, other methods like the NITSCHE method
exist. The formulations are designed in such a way that they fulfil the BB conditions,
also called inf-sup conditions, and hence lead to a stable discretization. For a good lit-
erature overview and the underlying mathematical theory we recommend Wohlmuth
(2000a). The basic difference between the mortar and the NITSCHE methods lies in
the fact that in a mortar discretization, one has to introduce LAGRANGE multipliers,
whereas the formulation due to NITSCHE is purely displacement-based, see Section
5.3.5. There are also approaches which were developed in the engineering litera-
ture, e.g. see Simo et al. (1985) or Papadopoulos and Taylor (1992). Here either a
LAGRANGE or penalty formulation was applied.

All methods will be discussed for the case of frictionless contact. Extensions to
friction can be formulated analogous to Section 7.2.2. Treatments which include
friction can also be found in Krause and Wohlmuth (2001) or McDevitt and Laursen
(2000).

7.4.1 Discretization with contact segments

One idea to discretize the contact interface in the case of non-matching meshes is
based on the introduction of so-called contact segments. The discretization of the
contact interface by segments (see Figure 7.11) was introduced in Simo et al. (1985)
for the geometrically linear case. Based on the definition of contact segments, it is
possible to use different interpolations for the LAGRANGE multipliers and the gap
function in a natural way. Hence, itis appropriate to employ the perturbed LAGRANGE
formulation, see Section 5.3.6. This is true even in the case of a penalty formulation,
since then this formulation gives some freedom in choosing the interpolation spaces
for the displacements and the LAGRANGE multipliers.

Fig. 7.10 Contact discretization for small deformations.
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Fig. 7.11 Contact segments for two-dimensional problems.

Following Simo et al. (1985) we define the contact segment by the geometry of
the adjacent elements of the bodies in contact. Within the segments an intermediate
surface I'] is introduced. A typical contact segment is shown in Figure 7.12. It is
defined by two element edges with the nodes x3-x! and x2—x?. The superscripts
refer to the body and the subscripts indicate the node number. The contact segment
is now defined by a quadrilateral with four nodes, specified by the points x! , x} , X
and x2. X' and X? are the orthogonal projections of the nodes x3 and x5 onto the
opposite element edge, see Figure 7.12. This projection is given by

X"=(1-a")x] +a" x;, (7.100)
where v € 1, 2 refers to the body, and o follows from

A L= -x3)-t8 and ®L?=(x}-x3)-¢*, (7.101)

Fig. 7.12 Geometry of the contact segment.
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no
solutions a)
onI'h

b)

Fig. 7.13 Special cases for segment definitions.

where the tangent vectors are defined as

P Xl (7.102)
“X2 - X1 I

1

Similar to the coordinates of the new nodes X' and x?, the displacement vector at

these nodes can be stated:
=(1-a"u +a"uj. (7.103)

REMARK 7.1: Note that the projection used in Figure 7.12 does not work in all cases
(see Figure 7.13a), where the projection is not unique for node i, and furthermore no solution
exists for k ,1, m within the segments defining the contact interface. In such situations, one
has to redefine the segments. Possible definitions are stated in Figure 7.13b. However this
definition leads to complex coding, since many special cases have to be checked, especially in
three-dimensional situations where a lot of differently shaped segments can occur.

Within the segment, defined in Figure 7.12, the current coordinates, displacement
fields and variations are interpolated with linear polynomials, and hence are given as
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functions of the local coordinate £ € [0,1]

x'(€) = 1-x +&x3, X =EX+(1-0x5,

u'() = (1-9ua'+fuy, (=60 +(1-&uf. (7.104)

@) = 1-On+&m, (O =Eni+(1-6n;.
Depending on the discretization used for the bodies B, higher order interpolations

could also be applied here. With definitions (7.100) the gaps at the segment edges
are obtained as

gv=03-%')-n', g} =(x3-%) 0%, (7.105)

where the normal vector is given for the plane case by n” = e3 x t7.
Now the interpolation for the gap function gy (&) and its variation dgx (£€) can be
defined according to (7.104)

N =(1-8gn+Egk.  Sgn(O) =(1—&)bgn +Edg% . (7.106)

These interpolations are applied within a segment which is defined by the edge nodes
x, and the projections onto the other surface x?, see Figure 7.12. Now we can define
an intermediate contact line in the segment which is C'!-continuous:

2 2
() =Y Ha(©y*+L, Y Ha(Ot", (7.107)
A=1

A=1
where H 4 and H 4 are the classical HERMITE polynomials

Hi(§) = 1-36+26  Hy(€) =€ (3-2¢)
H© = €(1-¢) Hy (&) =€ (1-¢).

with £ € [0,1]. t7 is already defined in (7.102) and y” is the position vector of the
beginning and end of the contact line ¢ (see Figure 7.12):

yi=(1-8)%+8x2, y'=(1-8)xi+8%. (7.108)

The limiting choices of 5 = 0 and § = 1 correspond to selecting one of the contacting
surfaces B " as an intermediate contact line. This does not mean, however, that the
intermediate line is equivalent to the interpolation of one surface of the bodies, since
it is still C*-continuous, which is not true for interpolation (7.104). The length L,

is defined as the distance between the end points y! and y2: L, = ||y? — y!||. The
actual length of ¢ is computed via

1

d c
Ls:/ I dzs || de (7.109)

0

which can be evaluated numerically using a quadrature rule.
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The variational formulation is based on the perturbed LAGRANGE approach, see
(7.80). The contact contributions take the form

/AngNdF = Z / AN dgn dy (7.110)
r, s=1 5,

Il

' A ;

/(qw——)éAh dr’ Z /(g]\r**—d—)(S/\Nd’)’:O. (7.111)
EN

. T s
The sum over the segments is carried out for all closed gaps. Depending on the
interpolations, the latter equation can be solved for Ay directly. With the interpola-
tions (7.104), and assuming a constant contact pressure Ay = CON ST within the
segment, for the segment -, we obtain

il

/ An Ogn dy

Vs

1
- d
AN/(SgN Gl ‘“lld& (7.112)
Q

I

" A
/ (gn — “X) 6An dy
EN

Vs

1
0= Ay = —Liv—/ G]
Q

As has been shown in Simo et al. (1985), the evaluation of these integrals by the
trapezoidal rule yields the simple formulas

1
5\/()9
0

2

—g(ﬁg}\r—i—dg%), (7.114)

- EN
AN

X

(91\ +on) = enGs, (7.115)

where g3, and dg}, are the gaps defined in (7.105). Equation (7.115) has the inter-
pretation that the constant LAGRANGE multiplier Ay is given in terms of the average
gap g, in the segment. For a consistent formulation this average gap also has to be
used for the contact check. A geometrical view of the enforcement of the contact
constraints in the contact-segment approach is given in Figure 7.14, which depicts
a fulfillment of the contact constraints in the middle of the left and right segments.
This is equivalent to the fact that the constraint is fulfilled in an average sense, since
the integral (7.113) is zero.

Finally, the evaluation of (7.114) can be combined with (7.115) to eliminate the
LAGRANGE multiplier, and hence yield the contact contribution for the perturbed
LAGRANGE formulation

1

< d
AN/ome)H Y| dg ~ e Ly G4 07 (7.116)
4]
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Fig. 7.14 Geometrical interpretation of the average gap.

with g, = 3 (dgk + g% ). With (7.104) this equation can now be expressed in
matrix form by introducing

_< X2) and Uzz(ﬂ%-ﬂgn%-ﬂé) (7]]7)

which leads to the contact residual within the perturbed LAGRANGE formulation with
local elimination of the LAGRANGE multiplier

€N Gs I—'ségs = €N Es (XZ Cs)ﬂf Cs. (7.118)
with 1 2 2
1_(2_’1111 _22)1:.)
— 2 -
C, = _% l—a)n . (7.119)

3 (n*—a'n')

In the case of established contact, the segment also contributes to the tangent stiff-
ness. This contribution follows from the linearization of (7.118) with respect to the
displacement variables. Since this term depends only upon the displacements within
the product xI' C,; = (X + u;)T C;, for the tangent stiffness we obtain

K,=exnL,C,CT, (7.120)

which completes the discretization for contact segments. For more details, see Simo
et al. (1985), and for its nonlinear extension see Papadopoulos and Taylor (1992).

7.4.2 Mortar method

The mortar method is a special technique to enforce contact constraints in the dis-
cretized system for non-matching meshes. The method is based on a LAGRANGE
multiplier formulation in which special interpolation functions are used to discretize
the LAGRANGE multiplier in the contact interface. Two methods have been estab-
lished during the last years within the mortar approach. One leads to anon-conforming
method which is based on direct enforcements of the constraints, and hence is equiv-
alent to the direct constraint elimination discussed in Section 5.3.3. This method
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is described in Bernadi et al. (1994) and Wohlmuth (2000a). It leads to a positive
definite system of equations, see also the example in Section 5.4. The other method
is related to the weak enforcement of the constraints by applying the LAGRANGE
multiplier method. The general idea is outlined in Section 5.3.1, however in the
mortar approach different interpolations for the LAGRANGE multipliers are intro-
duced. In general, one can use as ansatz space linear, quadratic or even higher order
interpolation functions. However, due to the weak formulation of the constraints,
mathematical conditions like the inf-sup or BABUSKA~BREZZI condition have to be
fulfilled in order to achieve a stable discretization scheme; for details, see El-Abbasi
and Bathe (2001) for a numerical and Wohlmuth (2000a) for a theoretical approach.
In the following, we discuss two aspects related to discretization schemes based on
the mortar approach. These are the introduction of the reference surfaces and the
choice of the interpolation spaces.

Several techniques can be followed to define the contact surface. One is based on
the use of an intermediate contact surface as the reference surface and to define the
L.AGRANGE multipliers on this surface. This intermediate contact surface C defines
the mortar side in the interface, see Figure 7.15. Early formulations can be found in
Simo et al. (1985), as described in Section 7.4.1. Lately mortar discretizations, based
on the intermediate surface, have been developed in McDevitt and Laursen (2000) or
Rebel et al. (2000).

Another choice is made in the mathematical literature, e.g. see Wohlmuth (2000b)
and Krause and Wohlmuth (2001), which is based on the assumption that the mortar
side is one of the surfaces of the bodies in the contact interface which would, for
example, in our notation be the master surface. In Wohlmuth (2000b) it was shown
that such formulation with the appropriate interpolation functions for the LAGRANGE
multipliers fulfils the BB condition. Furthermore, the LAGRANGE multiplier inter-
polation can be constructed in such a way that the locality of the support of the
nodal basis functions is preserved. Hence this formulation leads from a mathematical

Fig. 7.15 Definition of intermediate mortar surface.
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viewpoint to a stable discretization, and yields a good approximation of the contact
stresses. The mortar method will be described here for the frictionless case.

The basic formulation starts from the LAGRANGE multiplier method stated in
Section 5.3.1. From equation (5.26) for the frictionless case one obtains the energy
related to the contact interface

Hc://\NgNdA. (7.121)
I‘C

An is the LAGRANGE multiplier in the normal direction of the contact interface and
gn measures the gap distance. I'. denotes the contact interface. The variation of this
form leads to

C.=40II, = /(6/\]\/!}]\[ + Anvdgn ) dA. (7.122)
I

The first term describes the fulfillment of the constraint condition, and the second
term yields the contact pressure (LAGRANGE multiplier) due to the enforcement of
the constraint. Now the first term can be used to construct the non-conforming mortar
scheme.

Non-conforming mortar method. Within the discretization of the first term in
(7.122) one has to interpolate the gap function gn and the LAGRANGE multiplier
An. The gap function is defined by the displacement field of the contacting surfaces.
Hence the interpolation functions have to be the same as the interpolations used to
discretize the contacting solids. Thus, the only free choice for the interpolation in
the contact interface can be made for the LAGRANGE multipliers. These have to be
interpolated in such way that the BB condition is fulfilled.

We start by introducing a LAGRANGE multiplier interpolation for the two-dimensional
case

2
AN(E) = Y Mk(€) Ank (7.123)
K=1
with Mg being a linear function (see (6.15)), except at the ends of the contact area.
At this end Ay is chosen to be constant to achieve a stable discretization, e.g. see
Wohlmuth (2000a). With respect to the non-mortar side, the constraint equation
included in (7.122) can be written in a weak sense as

Ne ne

Z Z Z 6/\NK / MKNI?dFIﬁ =Z Z Z 5/\NK / MKN}dFub.

e=1 I K Lrm c=1 J K ram

’ (7.124)

where n. is the number of element sides in contact on the non-mortar side. On
this side I'?™ and also the shape functions N7 of body B? are defined; see Figure
7.16 for a linear interpolation. The integration of the right-hand side of (7.124) also
has to be performed on I'*™, however the shape functions N} are defined on B!.
Hence the integration is more involved, since nodes I and J do not coincide. An
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oy
gl J+1

Fig. 7.16 Shape functions for displacements and Lagrange multiplier in contact interface.

exact integration can be performed for the choice of linear shape functions using the
segment definition (7.104) from Section 7.4.1. We observe that the integration along
the non-mortar side yields a mass matrix; for the structure in the continuum case see
(6.48). For a linear interpolation within a contact segment ¢, this leads to

1
9 [ ]2 1 2
¥ s [Me@N@dewt = owowag |3 3] {4
I K 4 e VT e
= AN .M2u?, (7.125)

where M is the standard mass matrix of a bar. Assembly of all n, terms on both
sides of (7.124) gives

AL (M?u?-M'u')=0, (7.126)
from which we can eliminate the displacements u* on the non-mortar side by
u’ = (M?) 7 M'u’ (7.127)

as discussed in Section 5.3.3.

In (7.126) we have computed matrix M* segment-wise, e.g. M follows from an
integration by dividing a segment c into i and j on the mortar side, see Figure 7.16.
This integration can be performed exactly or by using a quadrature rule. For the linear
interpolation with straight segments, a two-point G AUSS quadrature is sufficient, and
yields an exact integration. For higher order isoparametric interpolations an exact
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Fig. 7.17 Support of the standard LAGRANGE multiplier spaces.

integration is more involved, since the contact surfaces can be curved, which leads to
non-constant JACOBIANS.

Since M? is not a diagonal matrix the influence of one displacement u} is cou-
pled with all displacements u?. This situation is graphically depicted in Figure 7.17,
where the large grey area on the non-mortar side shows the coupling due to M 2 and
the small grey zone on the mortar side shows the local distribution of u}, due to M !
The same is true when the LAGRANGE multipliers are kept within the formulation,
asdescribed in Section 5.3.1. Also, there the locality of the nodal basis function is lost.

Mortar method using dual basis for Lagrange multipliers. Following Wohlmuth
(2000b) a dual LAGRANGE multiplier space is introduced. This yields the shape func-
tions shown in Figure 7.18 for constant and linear interpolations. The condition for
duality can be stated for a segment ['™ as follows:

/N?(ﬁ)Mx(é)dI‘=61Kcl / [N?(©)]° dar, (7.128)

nm nm
rc rC

where N7 are the standard interpolation functions for the displacements on the non-
mortar side, and My is the dual basis used to interpolate the LAGRANGE multi-
plier. The interpolation functions which are depicted on the right side of Figure 7.18
are stated next in terms of local coordinates for the two-dimensional case; see also
Wohlmuth (2000a). For a piecewise constant interpolation, we obtain

1
gfor—lsfgﬂ and —5f0r0<§51,

M?(€)

M3(8)

1 3

—Efor—lgfgﬂ and 5f0r0<£§1. (7.129)
Linear dual base functions are given by

— 1 1

MU = F@IE-1-1E+1]),

M;(€)

%(2|£+1|—I£—1I); (7.130)
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Fig. 7.18 Constant and linear interpolation for the mortar method.

finally, quadratic dual basis functions are defined with (6.16) as

MO = - NyO+Ni© = (58 ~26-1),
Q) = 143 Ny©)=5(3-5€), .13
MO = 3 Ny©+Nae) = 1 (58 +2E-1).

All these functions fulfil the orthogonality condition (7.128). These functions have
to be inserted as interpolation functions for the LAGRANGE multipliers in (7.122).
Note that no modification of these interpolation functions is needed at the end points,
which has been shown in Wohlmuth (2000a). Due to this orthogonality property,
using the shape functions (7.129) to (7.131), an assembled matrix form of the weak
contact constraint equation is given by

AL (D?*u?-M'u')=0, (7.132)
instead of (7.126). Hence the elimination (7.127) can now be expressed as
u’>= (D%~ M'u', (7.133)

where D? is a diagonal matrix whose elements follow from (7.128). This leads to a
contact interpolation with a local support; see Figure 7.19, which is computationally
more efficient.

By denoting the displacements of nodes lying on the non-mortar side by u,, and all
others by u,, we can write the LAGRANGE multiplier equations according to (7.11)
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Fig. 7.19 Support of the dual LAGRANGE multiplier spaces.

Ky Kopn C u, L
K,, K., D u, p=<X £, ;, (7.134)
cT DT o A 0

where D is the diagonal matrix introduced above, and C corresponds to M ! intro-
duced in the last section. Due to the diagonal matrix D, this equation has some features
which can be exploited algorithmically. For example, if we know the displacements
in an iteration step k, then we can directly compute the LAGRANGE multipliers from
the second row of (7.134) by

A =D (£, - Knguf — Kpnutl). (7.135)

Since the inversion of the diagonal is trivial, an efficient two-step algorithm can be
derived using the dual mortar method.

7.4.3 Nitsche method

Another method which can be applied for contact problems with non-matching meshes
is the variational formulation due to NITSCHE. The continuum formulation of this
method is provided in Section 5.3.5. It leads to a weak form of the two bodies in
contact, which is amended by three terms, see Becker and Hansbo (1999). These lead
to a symmetrical global matrix system in the primary displacement variables. The
variational formulations is based on (5.41) which, instead of the LAGRANGE multi-
pliers, includes the contact pressures py, stemming from the solids and a stabilizing
second term which has the structure of a penalty term, see Section 5.3.2. It is given
as

1
nf:-/ 5(p}V +pfv)gNdA+/eNg?VdA. (7.136)
rc

c

The variation of IIY yields

1
Cﬁ":—/ 5 (9PN + 0P} ) gn + (P +P12v)59N]dA+/€N9N59NdA-

T Fe
(7.137)
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The discretization now starts from the definition of the contact pressures (5.44)

py =0 -Ce@)n”=N""E" > Bju. (7.138)
I=1

E’ is the constitutive matrix of body B” and B] is defined in (6.82) for the current
configuration, but can also be applied to geometrically linear problems when the
current coordinate is replaced by the coordinate of the reference configuration. The
vector which describes the projection of the stress field at the boundary in the normal
direction N7 is defined by

Nt = (nf ,ng .n% ,2n1ne , 2nang , 2nyng )7 . (7.139)

It contains the components of the normal vector n”. Equation (7.138) now has to be
used within the variational formulation to enforce the constraints. Hence we have to
insert this expression into (5.45). In this form an integration over the master surface is
needed, which has to take into account the shape function of both sides on the contact
interface.

We will restrict ourselves here to the two-dimensional case and bilinear interpo-
lation functions for the finite elements at the contact interface, see Figure 7.20. The
numerical integration will be performed using a two-point G AUSS rule for each master
segment which is sufficient for linear shape functions. Hence one only has to evaluate
the integral in (