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Preface

Contact mechanics has its application in many engineering problems. No one can
walk without frictional contact, and no car would move for the same reason. Hence
contact mechanics has, from an engineering point of view, a long history, beginning
in ancient Egypt with the movement of large stone blocks, over first experimental
contributions from leading scientists like LEONARDO DA VINCI and COULOMB, to
today's computational methods. In the past contact conditions were often modelled in
engineering analysis by more simple boundary conditions since analytical solutions
were not present for real world applications. In such cases, one investigated contact
as a local problem using the stress and strain fields stemming from the analysis which
was performed for the entire structure. With the rapidly increasing power of modern
computers, more and more numerical simulations in engineering can include contact
constraints directly, which make the problems nonlinear.

This book is an account of the modern theory of nonlinear continuum mechanics
and its application to contact problems, as well as of modern simulation techniques
for contact problems using the finite element method. The latter includes a variety
of discretization techniques for small and large deformation contact. Algorithms
play another prominent role when robust and efficient techniques have to be designed
for contact simulations. Finally, adaptive methods based on error controlled finite
element analysis and mesh adaption techniques are of great interest for the reliable
numerical solution of contact problems. Nevertheless, all numerical models need a
strong backup provided by modern continuum mechanics and its constitutive theory,
which is applied in this book to the development of interface laws for normal and
frictional contact.

xiii
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The present text can be viewed as a textbook which is basically self-contained. It
is written for students at graduate level and engineers who have to simulate contact
problems in practical applications and wish to understand the theoretical and algo-
rithmic background of modern finite element systems. The organization of the book
is straightforward. After an introductory chapter which discusses relevant contact
formulations in a simple matter, there follows a chapter which provides the contin-
uum mechanics background. The special geometrical relations needed to set up the
contact constraints and constitutive equations valid at the contact interface are then
discussed in detail without going into a numerical treatment. The topic of compu-
tational contact is then described in depth in the next chapters, providing different
formulations, algorithms and discretization techniques which have been established
so far. Here solid and beam contact is considered, as well as contact of unstable sys-
tems and thermomechanical contact. The algorithmic side includes, besides a broad
range of solution methods, adaptive discretization techniques for contact analysis.
However, it can be concluded for the present that there exists nothing which can be
called the robust method for all different types of contact simulations. This actually
also holds for other simulations, including nonlinearities. However, especially due
to the fact that such a method does not exist, it is necessary to discuss those methods
which are on the market in the light of good or bad behaviour.
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Bob Taylor, Giorgio Zavarise and Tarek Zohdi.
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Introduction

Boundary value problems involving contact are of great importance in industry related
to mechanical and civil engineering, but also in environmental and medical applica-
tions. Virtually all movements on this planet involve contact and friction, like simple
walking or running, driving of cars, riding bicycles or steaming of trains. If friction
were not present (see movement on ice), all these motions would not be possible.
Also, the area in which a foot, a tyre or a wheel interacts with the soil, the road or the
rail is not known a priori, leading to a nonlinear boundary value problem for these
simple everyday tasks.

Due to the nonlinear nature of contact mechanics, such problems in the past were
often approximated by special assumptions within the design process. Due to the
rapid improvement of modern computer technology, one can today apply the tools of
computational mechanics to simulate applications which include contact mechanisms
numerically. This can be done to an accuracy which is sufficient for design purposes.
However, even now most of the standard finite element software is not fully capable
of solving contact problems, including friction, with robust algorithms. Hence there
is still a challenge for the finite element society to design efficient and robust methods
for computational contact mechanics.

The range of application in contact mechanics starts with relatively simple prob-
lems like foundations in civil engineering, where the lift off of the foundation from
the soil due to eccentric forces acting on a building are considered (see Figure I.1).
Furthermore, foundations including piles as supporting members are of interest. Also,
classical bearing problems of steel constructions, the connecting of structural mem-
bers by bolts or screws or the impact of cars against building structures are areas in

xv



xvi INTRODUCTION

Fig. 1.1 Contact problems: foundation.

which contact analysis enters the design process in civil engineering (see Figure 1.2).
Most of these problems can usually be treated by the assumption of small strains,
however due to the nature of contact problems with the a priori unknown contact
area, all applications are nonlinear and need special algorithms.

Applications of contact mechanics in mechanical engineering include the design of
gears and metal forming processes, like sheet metal or bulk forming (see Figure 1.3).
The latter problems depict large deformations within the sheet. Furthermore, drilling
problems, crash analysis of cars, rolling contact of car tyres or railroad wheels are rel-
evant technical applications of contact in mechanical engineering. Other applications
are related to biomechanics where human joints or the implantation of teeth are of
consideration. Here again, large deformation cannot be excluded in the analysis, and
complicated nonlinear material models have to be applied for a successful numerical
simulation.

Due to this variety, contact problems are today combined either with large elas-
tic or inelastic deformations, including time-dependent responses. Hence a modern
formulation within computational mechanics has to account for all these effects, leav-
ing the linear theory as a special case. For most industrial applications, numerical

Fig. 1.2 Contact problems: roller bearing and impact of a lorry.
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Fig. 1.3 Sheet metal forming.

methods have to be applied since the contacting bodies have complex geometries
or undergo large deformations. Today we can distinguish several branches in com-
putational contact mechanics which are applied to solve different classes of contact
problems:

• Finite element methods, applied to problems undergoing small and large de-
formations, as well as in the elastic or inelastic range.

• Discrete element methods, used to compute problems in which up to 108 par-
ticles are coming into contact.

• Multi body systems, based on a description of the bodies as rigid ones. These
systems are generally small, and can be applied to model the dynamic behaviour
of engineering structures in which contact is also allowed.

Thermal coupling might need to be considered within contact analysis, cooling of elec-
tronic devices, heat removal within nuclear power plant vessels or thermal insulation
of astronautic vehicles, where the mechanical response and the thermal conduction
interacts in the contact area. When electronic devices are considered coupling with
electro-magnetic field equations can be of interest. Even stability behaviour has to be
linked to contact, like wrinkling arising in metal forming problems or the shearband
formation in soils (see Figure 1.4). The latter problem is also related to the simulation
of avalanches. Here a contact formulation together with the correct modelling of the
process in continuum mechanics can be used to compute the final position of a part of
the avalanche which has sheared off. All together, Computational Contact Mechanics
(CCM) has to cover topics from tribology, including friction, lubrication, adhesion
and wear. One has to establish weak forms for finite deformation mechanics, cou-
pling to other fields like thermal or electromagnetic fields, and to derive associated
algorithms to solve the nonlinear boundary value problems, which include inequality
constraints. Hence, CCM is an interdisciplinary area which needs input from tribolo-
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Fig. 1.4 Shearband formation and collapse analysis in soils or avalanches.

gists, mathematicians, computer scientists and people from mechanics, together with
people working in other fields like heat conduction or electromagnetism.

Here we will restrict ourselves mainly to finite element techniques for the treatment
of contact problems, despite many other numerical schemes and analytical approaches
which could be discussed as well. However, there are common formulations and
algorithms, and also overlapping of the methods. These will be discussed in related
chapters. Generally, an overview related to modern techniques applied in discrete
element methods can be found in, for example Attig and Esser (1999) and for multi-
body-systems with special relation to contact in Pfeiffer and Glocker (1996).

Before we provide a short summary of the topics covered in this book, a short his-
torical overview on contact mechanics and computational contact mechanics is given.

Historical remarks. Due to this technical importance, a great number of re-
searchers have investigated contact problems. In ancient Egypt people needed to
move large stone blocks to build the pyramids, and thus had to overcome the fric-
tional force associated with it. This is depicted in Figure 1.5, where we can see that
even in ancient Egypt people knew about the process of lubrication. There is a man

Fig. 1.5 Stone block moved by Egyptian worker.
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Fig. 1.6 DA VINCI'S experiments.

standing on the sledge who pours a fluid onto the ground immediately in front of the
sledge. Since friction occurs in many applications which are of technical importance,
famous researchers in the past have investigated frictional contact problems, amongst
them DA VINCI, who in the 15th century measured friction force and had already
considered the influence of the contact area on the friction force using blocks with dif-
ferent contact area but the same weight (see Dowson (1979) and Figure 1.6). He found
that the friction force is proportional to the weight of the blocks, and is independent of
the apparent contact area. Associated results are often attributed to Amontons (1699)
neglecting the contribution of DA VINCI. When putting these findings in a formula
one obtains the classical equation for friction (known as COULOMB'S friction law),
which every student in engineering learns during the first semesters of study:

FT = nN (I.1)

where FT is the friction force, N is the normal force and p the coefficient of friction.
A first analysis from the mathematical point of view was carried out by EULER,

who assumed triangular section asperities for the representation of surface roughness
(Euler (1748b) and Euler (1748a)). His model is depicted in Figure 1.7. He had
already concluded from the solution of the equations of motion for a mass on a slope
that the kinetic coefficient of friction has to be smaller than the static coefficient
of friction. Actually, it was EULER who introduced the symbol // for the friction
coefficient, which is the common symbol nowadays. A comprehensive experimental

Fig. 1.7 EULER'S model for friction.
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Fig. 1.8 COULOMB'S model for rough surfaces.

study of frictional phenomena was later performed by Coulomb (1785); see Figure
1.8. He considered the following facts relating to friction: normal pressure, extent
of surface area, materials and their surface coatings, ambient conditions (humidity,
temperature and vacuum), and time dependency of friction force. These observations
resulted in a formula for the frictional resistance to sliding of a body on a plane

FT = A + ^ , (1.2)

^
where FT is the friction force, N is the normal force and p* the inverse of the
friction coefficient. A represents cohesion, an effect which was already described in
Desaguliers (1725). The second term was attributed to a ploughing action within the
interface. This result, today written as FT — A + p. N, is still acceptable, and is the
basis for many developments of contact interface laws (see e.g. Tabor (1981)). Again
COULOMB found that p, is nearly independent of the normal force, the sliding velocity,
the contact area (see also results from DA VINCI) and from the surface roughness.
However, p, depends strongly upon the material pairing in the contact interface. His
further, remarkable results concerning the influence of the time of repose upon static
friction are discussed in Dowson (1979).

Starting with the classical analytical work of Hertz (1882) the theory of elasticity
was applied in contact mechanics. HERTZ investigated the elastic contact of two
spheres and derived the pressure distribution in the contact area as well as the approach
of the spheres under compression. However very few problems involving contact can
be solved analytically. For an overview one may consult the books of Johnson (1985)
or Timoshenko and Goodier (1970), and the references therein.

The finite element method developed together with the growing power of modern
computers. Hence the first attempts to solve structural problems using finite elements
were published in the late fifties (see Turner et al. (1956) or Argyris (I960)). After
this, the literature grew enormously since there were many problems of industrial im-
portance which could not be solved analytically. It then took another ten years for the
first papers in which methods for the solution of contact problems with finite element
methods appeared. As first contributions we list the work by Wilson and Parsons
(1970) or Chan and Tuba (1971), which contain early treatments of contact using the
geometrically linear theory. However, even at an earlier stage Wilkins (1964) devel-
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oped the explicit HEMP-hydrocode which could deal with large strains, and included
a simple contact model. Following this, the explicit codes DYNA2D and DYNA3D,
as well as the implicit codes NIKE2D and NIKE3D, were developed at the Lawrence
Livermore Laboratory by J. HALLQUIST, beginning in the mid-seventies. For the
first time these codes provided the possibility to solve contact problems undergoing
finite deformations on a large scale in an efficient way.

Point of departure and connection of chapters. The design of robust algorithms
to treat contact problems efficiently within the finite element method needs input from
different sources. These will be considered in the book, which also provides the phys-
ical and tribological background within the contact interface. Hence several chapters
are devoted to theoretical aspects of continuum mechanics, contact kinematics and the
constitutive behaviour in the contact interface. Other chapters contain discretization
techniques for solids, and of course, for the contact interface. Furthermore, solu-
tion algorithms are discussed, as well as adaptive techniques for contact. Chapters
dealing with special contact formulations or topics are also included to complete the
treatment of contact problems. An interaction between the chapters will be denoted
in the following more detailed description of the contents of the different chapters.

In the first introductory chapter, several contact problems and simple discretiza-
tions are treated to present the basic ideas and difficulties of contact mechanics,
including coupled and impact problems. This chapter requires no further background
besides standard engineering knowledge.

The second chapter is of a more general nature, and discusses the underlying
theoretical background for finite deformation solid mechanics, including kinematics,
weak forms, linearizations and simple hyperelastic constitutive equations. This chap-
ter is needed to understand the following chapters regarding the kinematics of large
deformation contact, and the associated weak formulations. It can be skipped if the
reader is familiar with these formulations.

The third chapter discusses contact kinematics from the continuum mechanics
point of view. The formulations stated in this chapter are the basis for the derivations
in later chapters.

The physical background of the constitutive behaviour in the contact interface is
considered in the fourth chapter. This section can be read on its own with a classi-
cal background in engineering. It contains material regarding normal and frictional
contact for different material pairings, as well as basic formulations for lubrication,
adhesion and wear.

The boundary value problem for frictionless and frictional contact is stated in
Chapter 5. This also contains different methods on how the contact constraints can
be incorporated in the weak forms needed for finite element analysis. This chapter is
based on the formulations presented in Chapters 2 and 3. This chapter also contains
a section on the treatment of rolling contact based on an Arbitrary L A G R A N G I A N
EULER.IAN (ALE) formulation for stationary and non-stationary processes.

The discretization of solids in contact is derived in Chapter 6 on the basis of the
theoretical formulations included in Chapter 2. This chapter is only concerned with



XXii INTRODUCTION

the continuum part of the bodies and hence can be skipped if the reader is familiar
with this subject.

The discretization of the contact interfaces is described in Chapters 7 and 8 for
linear and nonlinear geometry, respectively. Here interpolation functions and matrix
formulations are given for two- and three-dimensional applications. Also, smooth
interpolations are introduced to obtain more robust methods for arbitrary contact
geometries. Furthermore, new techniques such as mortar or NITSCHE interpolations
are discussed in Chapter 7 which can be used for non-matching meshes. This chapter
is based on the material derived in Chapters 2, 3, 4 and 6.

Solution methods for contact problems are contained in Chapter 9. Here different
methods of algorithmic treatment are considered for the solution of contact boundary
value problems which are defined in the weak sense in Chapter 5. Furthermore, search
algorithms for contact are discussed for different applications with respect to global
and local search.

In Chapter 10 we treat the coupled thermo-mechanical problem of contact. This
chapter is concerned with the heat transfer at the contact interface, which depends upon
the mechanical response. Furthermore, the associated finite element discretization for
small and finite deformations and the algorithmic treatment of the coupled problem is
considered. The contents of this chapter is based on formulations derived in Chapters
2, 3, 4, 7 and 8.

The contact of beam elements is of interest in, for example, the micro-mechanical
modelling of woven fabrics. Since the formulations do not fit completely into the
general scope, all relevant equations - from the continuous formulation to the finite
element discretization - are developed for the beam contact in Chapter 11. Knowledge
of the background provided in Chapters 3, 5, 6 and 9 is necessary to understand the
derivations.

Adaptive methods for contact problems which are necessary to control the errors
inherited in the finite element method are described in Chapter 12. The objective
of adaptive techniques is to obtain a mesh which is optimal in the sense that the
computational costs involved are minimal under the constraint that the error in the
finite element solution is below a certain limit. In general, adaptive methods rely on
error indicators and error estimators, which can be computed a priori or a posteriori.
In Chapter 12 an overview over different techniques is given, including different error
estimators and indicators. Again, the basic formulations of the solid and the contact
constraints from Chapters 2, 3, 6, 7, 8 and 9 are required.

Stability problems which include contact constraints are discussed in Chapter 13.
These problems arise in, for example, sheet metal forming, but can also occur in
civil engineering applications like the drilling of deep holes. Here the associated
algorithms are stated based on the formulations given in Chapters 5 and 9.
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Introduction to

Contact Mechanics

To introduce the basic methodology and difficulties related to contact mechanics, some
simple contact problems will be discussed in this chapter. These are one-dimensional
examples undergoing static, thermal or dynamic contact.

1 .1 CONTACT IN A MASS SPRING SYSTEM

1.1.1 A variational formulation

Let us consider a contact problem consisting of a point mass m under gravitional load
which is supported by a spring with stiffness k. The deflection of the point mass m is
restricted by a rigid plane, see Figure 1.1. The energy for this system can be written
as

n(u) — - k u~ — mgu .

If we do not place any restriction on the displacement u, then we can compute the
extremum of ( 1 . 1 ) by variation, leading to

6 TL(u) = kudu — mg du — 0 . (1 .2)

Since the second variation of II yields 62 II — k, the extremum of ( 1 .1 ) is a minimum
at u = ^. This is depicted in Figure 1.2, in which the energy of the mass spring
system is plotted.

The restriction of the motion of the mass by a rigid support can be described by

c(u)=h-u>Q, (1.3)

1
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Fig. 1.1 Point mass supported by spring. Fig. 1.2 Energy of the mass spring system.

which excludes penetration as an inequality constraint. For c(u) > 0 one has a gap
between point mass and rigid support. For c(u] = 0 the gap is closed.

Note that the variation Su is restricted at the contact surface; from (1.3) one obtains
Su < 0, which means that the virtual displacement has to fulfil the constraint and can
only point in the upward direction. The use of this variation in the variational form
(1.2) yields an inequality

k u Su — m g Su > 0 (1.4)

in which the greater sign follows from the fact that the force m g is greater than the
spring force k h in the case of contact, and that the variation is Su < 0 at the rigid
support. Equation (1.4) is called a variational inequality. Due to the restriction of
the solution space by the constraint condition (1.3) the solution of (1.1) is not at the
minimum point associated with IImin, but at the point associated with IIC

min, which
denotes the minimal energy within the admissible solution space, see Figure 1.2.

Often, instead of the variation Su, one uses the difference between a test function v
and the solution u: Su = v — u. The test function has to fulfil the condition v — h < 0
at the contact point, as also does the solution u. With the test function v. (1.2) can be
written as

ku (v — u) — mg (v — u) = 0. ( 1 . 5 )

Since mg > kuat the contact point, we have with v — h < 0

k u (v — h) > mg(v — h). (1-6)

In both cases, inequality (1.3) which constrains the displacement u leads to variational
inequalities which characterize the solution of u. These variational inequalities cannot
be directly applied to solve the contact problem. For this one has to construct special
methods. Some frequently used methods are discussed in the following sections.

Once the point mass contacts the rigid surface, a reaction force //? appears. In
classical contact mechanics, we assume that the reaction force between rigid surface
and point mass is negative, hence the contact pressure can only be compression.
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Such assumption excludes adhesion forces in the contact interface and leads to the
restriction

/ R < 0 . (1.7)

This means that either we have a compression state (/ft < 0) or an inactive reaction
force (fR = 0).

Summarizing, one has to distinguish two cases within a contact problem where
the motion is constrained by (1.3):

1. The spring stiffness is sufficiently large enough that the point mass does not
touch the rigid surface. In this case, the following conditions are valid:

c(u) > 0 and fR = 0. (1.8)

2. The data of the system are such that the point mass comes into contact with the
rigid support. In that case conditions

c ( u ) = 0 and fR < 0 (1.9)

hold.

Both cases can be combined in the statement

c(u) > 0, jR < 0 and fR c(u) = 0 (1.10)

which are known as HERTZ-SIGNORINI-MOREAU conditions in contact mechanics.
Such conditions coincide with KUHN-TUCKER complementary conditions in the
theory of optimization.

1.1.2 Lagrange multiplier method

The solution of a contact problem in which the motion is constrained by an inequality
(1.3) can be obtained using the method of LAGRANGE multipliers. For this we assume
that a constraint is active, which means condition (1.9) is fulfilled by the solution.
Therefore, the LAGRANGE multiplier method adds to the energy of the system (1.1)
a term which contains the constraint and yields

U(u , A) = - k u2 - rn g u + X c ( u ) . ( 1 . 1 1 )

A comparison with (1.10) shows that the LAGRANGE multiplier A is equivalent to
the reaction force fR. The variation of (1.11) leads to two equations, since Su and 6X
can be varied independently:

k u Su — m g 8u — A Su — 0 , (1.12)
c(u)6X - 0. (1.13)

The first equation represents the equilibrium for the point mass including the reaction
force when it touches the rigid surface (see also Figure 1.3), and the second equation



INTRODUCTION TO CONTACT MECHANICS

F/</. 7.3 Point mass supported by a spring and free body diagram for the LAG RANGE mul-
tiplier method.

states the fulfillment of the kinematical constraint equation (1.3) for contact: u = h.
Due to that, the variation is no longer restricted, and one can solve for LAGRANGE
multiplier A

X = kh-mg = fR. (1.14)

However condition (1.7) still has to be checked and fulfilled by the solution (1.14).
If this condition is not met, and hence an adhesion force is computed, then the as-
sumption of contact no longer holds. This means the inequality constraint is inactive
and the correct solution can be computed from (1.2) as u = ^; furthermore, the
reaction force or LAGRANGE multiplier is zero.

1.1.3 Penalty method

Another well known method which is often applied in finite element analysis of
contact problems is the penalty approach. Here for an active constraint one adds a
penalty term to the energy (1.1) as follows:

= -ku2 ~ mgu+ -e[c(u)]2 w i t h e > 0 . (1.15)

As can be seen in Figure 1 .4, the penalty parameter c can be interpreted as a spring
stiffness in the contact interface between point mass and rigid support. This is due
to the fact that the energy of the penalty term has the same structure as the potential
energy of a simple spring. The variation of ( 1.15) yields

kuSu — mgSu — cc(u) 6u = 0 ,

from which the solution

u = (mg + eh) / (k + e)

(1-16)

(1.17)
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Fig. 1.4 Point mass supported by a spring and a penalty spring due to the penalty term.

can be derived. The value of the constraint equation is then

kh- m g
c(u\ — h — u = — . (1.18)

Since mg > kh in the case of contact, equation (1.18) means that a penetration
of the point mass into the rigid support occurs, which is physically equivalent to a
compression of the spring, see Figure 1.4. Note that the penetration depends upon the
penalty parameter. The constraint equation is only fulfilled in the limit e -> oo =$•
c(u) —> 0. Hence, in the penalty method we can distinguish two limiting cases:

1. e ->• oc =>• u — h -> 0, which means that one approaches the correct solution
for very large penalty parameters. Intuitively, this is clear since that means the
penalty spring stiffness is very large, and hence only very small penetration
occurs.

2. e -> 0 represents the unconstrained solution, and thus is only valid for inac-
tive constraints. In the case of contact, a solution with a very small penalty
parameter e leads to a high penetration, see (1.18).

The reaction force for a penalty method is computed (see (1.16)) from A = e c(u).
For this example, one arrives with (1.18) at

= fn = e c(u) - (kh — mg}, (1.19)

which in the limit e -» oo yields the correct solution obtained with the LAGRANGE
multiplier method, see (1.14).



6 INTRODUCTION TO CONTACT MECHANICS

I g I

f. 7.5 System of two bars and loading.

1 .2 FINITE ELEMENT ANALYSIS OF THE CONTACT OF TWO BARS

This example shows that even for a system which is built from two simple bars with
geometrically linear and elastic behaviour a nonlinear response curve occurs in the
case of contact. This is due to the change of stiffness within the contact process.

The potential energy of a bar loaded by i point loads is given by

-20)

when distributed forces along the bar are neglected. EA denotes the axial stiffness,
u(x) is the displacement of the bar and F{ describes a point load at point £». The
problem depicted in Figure 1 .5 shows a system consisting of two bars which are
separated by a gap g. When the force F, acting at x = /, is large enough the gap will
close. We assume that a penetration of bar 1 into bar 2 is impossible. Due to Figure
1.5, this yields the constraint equation

ur < g. (1.21)

For ui — ur < g no contact occurs, whereas contact takes place for u/ — ur = g.
This system is discretized using three finite elements, two for the left bar and one

for the right bar. Linear shape functions are chosen (see Figure 1.6) which already
fulfil the boundary conditions at the left and right end of the structure, see also Figure
1.5. The explicit form of the shape functions and their derivatives is given within the

Fig. 1.6 Shape functions.



FINITE ELEMENT ANALYSIS OF THE CONTACT OF TWO BARS

elements as

0 < x

2l<x< 31

u(x) = f ui
u(x) = ( 2 - f
u(x} = (3 - f

u>2 u'(x)

By inserting these interpolations into (1.20), the discretized form of the
energy can then be derived by integration, leading for the bar system to

1 EA r .J , ,0 .- , ,n = - — [ui + (u2 - my + ul ] -

The variation of II yields

fTT EA . ,^j| — —.— ^ Ul ()Wl _j_ ̂ 2 _ Wl j (01*2 ~ 8u\) + u% ous

The constraint condition (1.21) is now given by u2 — MS < g:

i) For u2 — us < g displacement us = 0 and no contact occurs. One
the constraint equation is not active, since the gap is open. In this
solution follows directly from (1.24), which has the matrix form

- F
, 6u2 ., ^r(u-2

EA ,

(1-22)
potential

(1.23)

(1.24)

says that
case, the

(1.25)

leading for arbitrary virtual displacements 8uj to the equation system

EA
I

2 - 1 0

-1 1 0
0 0 1

with the solution
Fl

(1.26)

(1.27)

ii) In case the load is increased such that F > EA |, contact occurs and the
constraint u2 — u3 = g has to be fulfilled. Now the gap is closed, hence
the constraint is active. The solution will be computed using the LAGRANGE
multiplier method. As already shown in Section 1.1.2, one then has to add
the constraint to the potential energy multiplied by the LAGRANGE multiplier.
This yields

Hence, the variation can be written in case of contact with (1.24) as

811LM = ^n + A (8u-A - Su2) + 6X (g + u3 - u2) = 0 . (1.29)



8 INTRODUCTION TO CONTACT MECHANICS

where the second term is associated with the reaction force (LAGRANGE mul-
tiplier) in the gap. The third term denotes the fulfillment of the constraint
equation. The matrix form of (1.29) is given by

^ (2Ul -u2)-F

6\) = 0. (1.30)

leading for arbitrary virtual displacements
multiplier 6\ to the equation system

i and the virtual LAGRANGE

P9 EA

* I
EA

I
0
0

EA
I

EA
I
0
-1

0
0

EA
I
1

0 "
-1
1
0 .

F
0

(1.31)

The solution of this system for u2 and A leads to

(1.32)

Observe that the LAGRANGE multiplier fulfils condition (1.7), since F >
(EAg) /1 when the gap is closed, see also (1.27). From (1.32) one can now
compute the dependency between load F and displacement u2:

(1.33)

Figure 1.7 depicts the nonlinear load-deflection curve for the complete analysis. It is
clear that the stiffness of the bar system increases when contact occurs; this can be
observed from the fact that the load has to be three times as big to obtain the same
increment to the displacement when the gap is closed as in the case when the gap is
open.

9
• •

EA

Fig. 1.7 Finite element discretization and load-deflection curve.
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Condition (1.32) includes, for u2 = g, the limiting case of the initiation of contact
in which A = 0. This case can also be obtained from (1.27).

Implications for numerical methods

• Generally, one can observe that in the case of contact two different states of the
structural system are possible. One is related to the open gap, see (i), the other
to the closed gap, see (ii). Both cases were solved using a different equation
system, which means that the topology of the structure changes due to contact.
This points out one of the difficulties when solving contact problems: the system
matrix changes its size (or non-zero form) with active or inactive constraint
equations. As will be seen in later chapters, this can also include a change
of the topology when one finite element node moves during the deformation
process from one element to another.

• Furthermore, we have the choice between different methods for the treatment
of contact problems, including the LAGRANGE multiplier or the penalty for-
mulation. The former introduces additional variables in the system, but does
fulfil the constraint equation correctly; the latter leads to non-physical pene-
tration, but has no additional variables. So both methods have advantages and
disadvantages, which will be discussed in later chapters in detail, together with
techniques to overcome the problems discussed above.

1.3 THERMO-MECHANICAL CONTACT

Contact can occur in a coupled thermo-mechanical analysis when two bodies have
different temperatures. To show some of the main effects, the following example of
a bar which contacts a rigid wall is investigated.

We can consider a problem as specified in Figure 1.8. The bar is fixed at the left
end and heated at that point with a temperature of $i. On the other side there is a
gap between the end of the bar and the rigid wall which has temperature $2- Hence
we have to distinguish two situations: contact of the bar with the wall ("9(1} = $2),
and the open gap ($(/) = 0). The material properties of the bar are given by the axial
stiffness EA and the coefficient of heat transfer (XT- This system will be analyzed
under the assumption of steady state solution, thus time dependent solutions will not

Fig. 1.8 Contact of a bar due to thermal heating.
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be considered. Furthermore, the mechanical constitutive properties are assumed to
be independent of the temperature. For this we can write the following equations for
the mechanical and thermal problem:

Mechanical problem

du
Kinematics: eei = - -- ar (tf(x) - ^o )

ax
Equilibrium: ^=0 (L34)

ax
Constitutive equation: a = Eeei

with a given reference temperature $Q, the stress cr, and the elastic strain £e/ in the
^-direction and YOUNG'S modulus E.

Heat conduction
da

Heat balance: — — = 0
dl <L35>„ . . . kConstitutive equation: q = — k —

ax

where q is the heat flux, $ is the temperature and A: is the thermal conductivity in
FOURIER'S law. Note that the assumption of steady state solutions has been made,
and no internal heat will be generated in the bar.

The differential equation which governs the mechanical behaviour of the bar results
from equations (1.34):

E~ [^_a T (0(ar ) -0ax L dx

in the same way, from (1.35) one derives

=0.

The mechanical and thermal problems are decoupled in the sense that the heat equation
does not depend upon the mechanical quantities. So one can always solve for the
thermal field fl(x) independently of the mechanical field. Coupling is present in the
case of finite deformations, and when dissipative processes like friction or plasticity
have to be considered. This will be discussed in detail in later chapters.

Within the analysis one has to distinguish two different solution states. In the first
the gap is still open, and in the second the gap is closed. This is the standard situation
when contact is present (see also the previous section).

i) Gap open (inactive constraint): in this situation no contact has been made.
Hence the inequality u < g is valid, together with the fact that no contact
pressure occurs. From ( 1 .37) there follows a constant temperature distribution
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in the bar with $(#) — "d\. Furthermore, the bar is stress free. Thus for
elongation of the bar, the solution yields

u = a T ( t f - i -#0)l- (1-38)

Observe, that the gap closes for a temperature of

i) -tf0+JL (1.39)
&T '

ii) Gap closed (active constraint): for a temperature which is larger than $g the gap
is closed. In that case, from (1.37) one obtains a linear temperature distribution
along the bar $(x) = $1 + ($2 — $i) f when a perfect conductance is assumed
in the contact point. For the displacement the condition u = g holds, and hence
the stress follows with (1.34) from

(1.40)

As long as the second expression is now larger than the first term, a negative
stress occurs in the bar, hence the contact stress is also negative and condition
(1.9) is fulfilled.

However, if the temperature $2 is such that the second term in (1 .40) is smaller than
the first term, then a positive stress occurs, which means that the gap opens up again.
This results in an on-off contact state, since after opening the temperature in the bar
again changes to the constant value $1 , leading to contact. Hence the solution is no
longer stable. Since such a response has never been observed in experiments, one
has to reformulate the problem in such a way that this instability does not occur.
One method which yields a unique solution introduces a pressure-dependent heat
conduction h(a) at the contact point. Such constitutive response can also be derived
from micromechanical observations, e.g. see Section 10.2. A simple relation is given
by

h(a)=hc (1.41)

with the thermal conductivity hc in the contact point, the hardness of the material H
and a positive exponent /3 which has to be determined from experiments. The heat
conduction in the contact interface is then given by

qc = h ( f f ) ( d c - # 2 ) , (1.42)

where $c is the contact temperature. Since qc — -k ^, from (1.41) and (1.42) one
obtains the differential equation

d-d
-k— = h(cr)(^c -0 2 ) , (1-43)

ax
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100

Fig. 1.9 Pressure-dependent contact temperature t?c.

which has the solution

k
-tic}dx (1-44)

Evaluation of this equation at the contact point c by considering the boundary condi-
tion tf(0) = fii yields

771^
77

with 77 =
h(cr)/

(1.45)

which means that there is a jump in the temperature at the contact point, since t?c ^ $1 •
The contact temperature is depicted in Figure 1.9 as a function of the dimensionless
parameter 77 which includes the pressure dependency (large n means a higher contact
pressure). The curve in Figure 1.9 is plotted for the values t?i = l00 K and t^ = 2QK.
The limit cases are 77 = 0 => $c = t?i and TJ ->• oo => t?c -> r?2> as can be
seen in Figure 1 .9. Hence for small contact pressures, almost no heat is conducted
through the surface. Due to the possibility of incorporating a temperature jump at the
boundary, the solution of the thermo-mechanical contact problem is stable. However,
the solution for the contact stress now has to be computed from a nonlinear equation,
which follows from the condition u = g with ( 1 .34) and ( 1 .45):

9 =

(1.46)

where 77 is a function of a defined in (1.45) and (1.41).
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Implications for numerical methods

• In the case of thermo-mechanical contact, in general one has to solve a system of
coupled field equations which leads to algorithms for different problem classes
when non-stationary processes are involved, since the time dependency of the
heat conduction equation is first order, and second order for the equations of
the solid.

• In the contact zone a pressure-dependent constitutive equation is needed to
avoid instability. This means that one has to use a finite element discretization
technique for contact, which yields the contact pressure and not a contact force.

1.4 IMPACT

When two bodies which have different velocities come into contact an impact occurs.
Within an impact analysis one is interested in the velocities of the bodies after impact
and in the impact force as a function of time.

Here a one-dimensional example is discussed in which a bar of length l1 impacts
another bar of length l2, see Figure 1.10. Both bars have the same material properties
EA1 = EA2 = EA and densities p1 = p2 = p. The left bar has an initial velocity
of V01 , whereas the right bar is at rest.

The solution of this problem can be derived from the one-dimensional wave equa-
tion

-?*• <'-47>
Furthermore, one has to fulfil the initial and boundary conditions of the problem
stated in Figure 1.10 and the standard contact conditions (1.10), which describe that
no penetration can occur at the contact point, and also that the contact force has to be
a compression force.

The solution of (1.47) is given by

u(t) = f(x - et) + g(x + et} with c = * — . (1 .48)'

where c denotes the speed of wave travelling in the bars. Function / corresponds
to a wave travelling in the x-direction of the bar, while g is associated with a wave

= 0

Fig. 1.10 Longitudinal impact of two bars.
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travelling in the opposite direction. By differentiation of both sides of (1.48) with
respect to x and t, one derives

du
—
ox
du
—

= f(x-ct)+g'(x + ct

= c[-f'(x~ct)+g'(x

(1-49)

(1.50)

, df , da
with /' = -^- and a' = —-. The identity

ox ox

du du
dt dx

(1.51)

follows by comparing the last two relations. Using (1.51), one can conclude that the
normal stress a in the bar is given by

E du du
(1–52)

which shows that there is a linear relationship between the stress at any point in the
bar and the particle velocity. Hence when a wave travels with speed c along the bar,
there is also a stress pulse which travels with the same velocity. When such a pulse
reaches the free end of the bar, one can compute the behaviour of the pulse from the
condition that the end of the bar has to be stress free. This leads, with (1.50), to the
condition

a = Eu'(t) =Q = E(f (x-ct)+g'(x + et)) Vf , (1.53)

from which a relation between /' and g1 follows for the free ends at x = 0 and
X = li + /2,

f'(x-ct) = -g'(x + ct) V*. (1.54)

Thus a reflection occurs at the free ends with equal amplitude in the stress pulse but
with opposite velocity. Furthermore, the initial conditions can be stated for the impact
of two bars described in Figure 1.10 as:

v =

V =

—

du
~dt

du
~dt

dx

= v0 for <x<ll,
t=0

t-0

t=0

= c [-/'<*) + </{z>] =0 f o r / ! < * < / ! + / 2 : (1.55)

= /'(*) + 9'(x) = 0 for 0 < a: < /i + /2 .

From these conditions follow the initial values of /' and g' as

f ' ( x ) = 0
= for 0
=0 for/!

(1.56)
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The problem stated in Figure 1.10 can be solved with the relations stated above. Since
the left bar has an initial velocity of VQ, one has a distribution of /' and g', as shown
in Figure 1.11 for t = 0. These are associated with two waves, one travelling in the
x-direction and the other in the opposite direction. Several states of the waves are
depicted at certain times in Figure 1.11 for the case in which bar 2 has length l-2 = 2 l 1 .
Figure 1.11 also shows the stress distribution due to the travelling strain waves. The
two bodies remain in contact until time Timp = 411 / c, which corresponds to the
time at which the reflected wave in bar 2 arrives at the contact point. Since the first
bar is stress free, this wave encounters a free end and hence does not enter bar 1, but
reflects due to the stress free boundary condition. After that time, the bars are no
longer in contact. The final velocity of bar 1 after impact is v1 e — 0, and for bar
2 the velocity is then i>2e = ^o / 2. As can be seen in Figure 1.11, there is still an
oscillation due to the travelling stress wave in bar 2, whereas bar 1 is at rest. If one
assumes that both bars are made of steel (E = 2.1 • 108 kN/m2 , p = 7.85 • 1C)3

kg/m3), and that l\ = 1 m, then the wave speed is c — ̂ E/'p = 5172 m/s, and
hence the impact time is Timp = 4 / 5172 = 7.73 • 10~~4 s. If the initial velocity is
chosen to be 5 m / s, a stress amplitude of a = p c v0 / 2 follows from equation (1.52).
This leads in this example to a stress of a = 7.85 • 103 • 5172 • 2.5 = 10.2 • 104 kN
/ m2, which represents 42% of the yield stress (cry = 24 • 104) of a standard steel.

It is interesting to note that the classical impact theory for rigid bodies yields,
under the assumption of an elastic impact, the final velocities v\ e = -VQ / 3 and
v-2 e — 2^0/3, which are different when compared to the wave solution above. This
is due to the oscillations remaining in bar 2 after impact, which is, as also the impact
time, neglected in the case of rigid body impact.

Another possibility to solve the wave equation (1.47) is by separation of variables.
Using

u(x,t) = v(x}r(i} (1.57)

one derives

c2— = -, (1.58)
v r

which has the solution

v(x) — A coskx + B sinkx ,2 _ cj2

/ \ i i 7 • . K -— T~ • (i .5y)r(x) = a cosut + o smujt c2

For the bar system with free ends, one obtains with the boundary conditions cr(0) =
a(3 /i) = 0 the equation sin k(3 /i) =0, which has the eigenvalues kn (3 /i) = n -n
for n — 1,2.3... The related eigenfunctions are

T17T
(pn(x) = C O S — - X , (1.60)

oli

which with (1.59) yield the solution

, \—> I" n TT n TT 1 mr
u(x.t) - y \an cose—rt + bn sine—-t cos-— x, (1.61)
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which has to be adjusted to the initial conditions. These then lead to a FOURIER series
representation of the initial conditions in terms of sin and cos functions. Here details
will be omitted. They can be found in standard textbooks. However, note that there
are two possibilities for solving the impact problem. The latter has the inconvenience
that an overshooting can occur which is a high oscillatory result near the wave fronts.

Implications for numerical methods

• As shown above for impact problems, the impact time is very short and the
stresses generated are high. Hence, the numerical methods to solve impact
problems have to include nonlinear material behaviour and have to be designed
for short time responses.

• Due to the possibility of high oscillatory responses near wave fronts, one has
to be careful when constructing algorithms for impact problems, in the sense
that one should not destroy the wave front characteristics within the numerical
scheme.
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Fig. 1.11 Wave solution for bar impact.
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2
Continuum

Solid Mechanics
and Weak Forms

The deformation of solids is generally described by the kinematic relations, the equa-
tions of balance and the constitutive equations. This chapter summarizes the main
equations which govern the deformation of solids. For a detailed treatment of this
subject the reader should consult the literature, e.g. the standard books of Eringen
(1967), Malvern (1969), Truesdell and Noll (1965), Truesdell and Toupin (1960),
Ogden (1984) or Chadwick (1999).

2.1 KINEMATICS

2.1.1 Motion and deformation gradient

In this section we discuss the motion and deformation of continua. A body & can
be described by a set of points which are in a region of the EUCLIDEAN space E3.
A configuration of B is then a one-to-one mapping (f>\ B —> E3, which places
the particles of B in E3. The position of a particle X of B in the configuration <p
is defined by x = tp (X). The placement of the body B is described by y>(B) =
{ip(X) X E B} and therefore be denoted as configuration y>(B) of body B.

The motion of body B is then a temporally parametric series of configurations <pf:
B —» E3. For the position of the particle X at time t 6 IR+ we have

x = (pt(X) = <p(X,t). (2.1)

This equation describes a curve in E3 for the particle A". X = <pQ (X) defines
the reference configuration of body B, where X is the position of particle X in this
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20 CONTINUUM SOLID MECHANICS AND WEAK FORMS

configuration. With (2. 1 ) we have

(2.2)

REMARK 2.1: Body B does not have to assume the reference configuration at any time.
Since the reference configuration can be chosen in an arbitrary way, it is often selected to coin-
cide with the initial configuration. Later, in the sections regarding finite element discretizations,
it will be advantageous to use a special reference configuration, e.g. for isoparametric ele-
ments, which can be handled in a simple yet somewhat artificial manner.

For practical applications we do not need to differentiate between X and X. This
simplifies the notation, and we can write (2.2) as

x = <p(X, t ) , (2.3)

where X depicts the position of particle X in the reference configuration B. With
this, the positions x and X are described as vectors in E3 with respect to the origin O,
as shown in Figure 2.1. The point X is denoted in the reference configuration by the
position vector X = XA E^. Here E^ defines an orthogonal basis in the reference
configuration with origin O. Therefore (2.3) can be written in components:

Xi=<pi(XA,t). (2.4)

In the following by indices in capital letters we will denote components of vectors
and tensors if these refer to the basis E^ of the reference configuration. XA are
the LAGRANGE coordinates of the particle X. Small letters are used for indices
which refer to the basis Cj of the spatial or current configuration. The quantities x,
denote the spatial coordinates of X. To simplify notation, we employ an orthogonal
Cartesian basis. This coincides with the finite element method, since isoparametric
interpolations are always defined in an orthogonal Cartesian basis. The change to
arbitrary curvilinear coordinates is a purely technical matter.

Fig. 2.1 Configurations of body B.
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The equations of mechanics of continua can be formulated with respect to the
deformed or undeformed configuration of a body B. From the theoretical standpoint,
there is no difference whether the equations refer to the current or .the reference con-
figuration of the body. However, one should consider the implications due to physical
modelling, as in plasticity. When formulating numerical methods for continua, con-
siderable differences in efficiency can occur when the equations are related to either
the spatial or the reference configuration. Thus we will define strain measures with
respect to both configurations. Within this discussion, we denote by small letters
tensors which refer to the current configuration <p(B), and we use capital letters for
the reference configuration B.

To describe the deformation process locally, we introduce the deformation gradient
F which maps tangent vectors of the reference configuration to tangent vectors in the
spatial configuration. It is a tensor which associates to a material line element dX in
B the line element dx in

(2.5)

The components of the deformation gradient follow from the direct notation F
d x / d X as partial derivatives dxi / dXA = xirA • With (2.3) and (2.4) we obtain

F = Gradv?(X,i) =
dXA <

(2.6)

Since the gradient (2.6) is a linear operator, the local transformation (2.5) is also linear.
To preserve the continuous structure in B during the deformation, the mapping (2.5)
has to be one-to-one, i.e. F cannot be singular. This is equivalent to the condition

J = d e t F ^ O , (2.7)

where J defines the J ACOBIAN determinant. Furthermore, to exclude self-penetration
of the body, J has to be greater than 0. Thus its inverse exists, which is denoted by
F~! . With this we can invert equation (2.5):

dX = F~ J dx. (2.8)

The inverse of the deformation gradient has the following form:

F - ^ F M ) - ® * with (FiAr=- = , (2.9)
\oXAJ dxi

where X = y?"1 (x).
It is well known that the deformation gradient F can be decomposed by the polar

decomposition theorem into a stretching and a rotational part, e.g. see Malvern
(1969):

F = RU = VR, FiA = RiBUBA = VikRkA, (2.10)

where U is the right stretch tensor with a basis in the reference configuration, and V
is the left stretch tensor which is an object in the current configuration. The rotation
tensor R is a two-field tensor which connects both configurations.
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Fig. 2.2 Transformation between area and volume elements.

Once the deformation gradient F is known, transformations of area and volume
elements between B and <f(B] can be derived. The transformation of area elements
between B and <p(B) is given by the formula due to NANSON (see e.g. Ogden (1984),
pp. 88):

' = = ' (2.11)da = nda = JF~TNdA = J¥'Td\

In this equation n is the normal to the surface of <p(B) and N denotes the normal to
the surface of B (see Figure 2.2). J is the JACOBI determinant defined in (2.7) and
da (respectively dA) are the surface elements in the associated configuration. For the
transformation of volume elements from the reference to the spatial configuration,
we have

dv = JdV\. (2.12)

With the introduction of a displacement vector u(X, t) as the difference in position
vectors of a point in the reference and current configurations,

-X, (2.13)

we can write for the deformation gradient (2.6)

F = Grad[X + u(X,0] = l + Gradu= 1 + H, (2.14)

where H = Grad u is the displacement gradient with respect to X.

2.1 .2 Strain measures

In this section we describe different strain measures which will be applied later. One
of the most common strain measures is the right CAUCHY-GREEN tensor C, which
refers to the initial configuration B

' ~^ (2-15)
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Since this strain measure is not zero at the initial state (there we have F = 1 => C = 1),
it is convenient to introduce the GREEN LAGRANGIAN strain tensor E which refers
to the initial configuration B

E - i ( F T F - l ) = i ( C - l ) , EAB = ̂ (FlAFiB-6AB] . (2.16)

In (2.16) C = FTF is the positive definite right CAUCHY-GREEN tensor which
expresses the square of the infinitesimal line element dx via the material line element
dX by dx • dx = dX • C dX. Thus the strain E is the difference of the square of the
line elements in B and <p(B}. Furthermore, we have C — U7 U = U2.

The spectral decomposition of C can often be advantageous when hyperelastic
constitutive equations have to be formulated. We have

3
,2A (2.17)

where A; and Nj follow from the eigenvalue problem

( C - A ? ) N t - =0 . (2.18)

Based on the spectral decomposition (2.17), we define more general strain mea-
sures:

i 3 3

Ea - - V (A? -1)N,- ®Nf and ea = - V (A? - 1) n* <g> n t- . (2.19)
a *—' a z—'

?-l i=l

Ea refers to the reference configuration, and eQ has its bases in the current configu-
ration. As special cases we obtain the GREEN-LAGRANGIAN strain tensor

3 1

-V-rV 2

With respect to the current configuration, the ALMANSI strain tensor

e = - (1 - b"1 ), eik = - [6ik ~ (FiArl ( F k A ) - 1 } (2.21)

is often applied. It is defined with the left CAUCHY -GREEN tensor b = F FT. The
ALMANSI strain tensor is connected to the GREEN LAGRANGE strain tenor via the
following transformation:

E ^ F T e F , (2.22)

which can easily be verified with (2.21).
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2.1.3 Transformation of vectors and tensors

Since we know the transformation between differential elements in the reference and
current configuration, we can also transform vectors or tensors from reference to
current configuration, and vice versa. This stems from the fact that the base vectors
can be viewed as differential line elements.

If we transform a quantity from the current to the initial configuration, we call this
transformation a pull back operation, see Marsden and Hughes (1983). A transfor-
mation in the other direction is considered as a push forward operation.

For the gradient of a scalar field G(X) = g(\) = g[(p(X)}, we have

GradC" = FTgrad# «=> —— = —^- —^- , (2.23)

gradp = F~TGradG. (2.24)

In an analogous way, for the gradient of a vector field W(X) = w (x) = w
we obtain

GradW = gradwF <=> gradw = GradWF?-1 (2.25)

An application of these general results is given by the computation of the defor-
mation gradient in terms of the displacement field u [<p(X)j. Using (2.14) and (2.25)
yields

F = 1 + Gradu,
1 = F^+GraduF'1 ,

=>F-1 = 1-gradu. (2.26)

Thus the inverse of the deformation gradient can be computed from the displacements
that refers to the current configuration.

REMARK 2.2: In the case of small deformations, rteGREEN-LAGRANGlAN strain tensor
E can be written in terms of the displacement field. Since the deformation gradient can be
reformulated as F = Gradx = GradX + Gradu = 1 -I- gradu, by neglecting the nonlinear
terms, one obtains from (2.16)

e(u) = ^ ( Gradu + Gradru). (2.27)

2.1.4 Time derivatives

The dependency of the deformation ip (X, t) on the time must be considered in non-
linear problems when either the constitutive relations are time- or history-dependent,
as in the case of friction, or if the complete process is time-dependent, like an impact
problem. Here we compute the time derivatives of kinematical quantities.
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The velocity of a material point in the reference configuration is defined by the
material time derivative

v(X,*) = ^(X,*) = < p ( X , 0 . (2-28)

In the current configuration, we write for the velocity v of a particle, which is a point
x at time t in ip(B),

v (x, t) = v ((p(X, t),t)=v (x, t). (2.29)

In an analogous way, we obtain the acceleration by differentiation of the velocity

a = £ (X. f) = v (X, i). (2.30)

Using this definition, the acceleration with respect to the current configuration yields,
with (2.29) and the chain rule,

(2.31)

The first term is known as the local derivative the second term is the convective part
of the time derivative. The local time derivative is computed by fixing the spatial
position. Time derivative (2.31) must be applied to Eulerian descriptions of motions,
which is mostly the case in fluid mechanics.

The time derivative of the deformation gradient F, with (2.6), (2.28) and (2.25),
yields

F = Grad <p (X, t) - Grad v = grad v F. (2.32)

The spatial velocity gradient in (2.32) is often described by 1. With (2.32) we can
define the spatial velocity gradient by F:

1 = FF~1 . (2.33)

Equation (2.32) can now be applied to compute the time derivative of the GREEN-
LAGRANGIAN strain tensor (2.16):

E = (F F + FT F) (2.34)

The time derivative of E can be rewritten with the last relation in (2.32):

E = FT - (1 + 1T) F = FT dF. (2.35)
^

This equation has a structure similar to (2.22), and hence it denotes a pull back of the
symmetrical spatial velocity gradient

(2.36)
z

to the initial configuration.
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2.2 BALANCE LAWS .

The partial differential equations which represent the local balance laws of continuum
mechanics are summarized in this section. For a detailed derivation, see (Malvern
(1969), Chap. 5) or Marsden and Hughes (1983) for example.

2.2.1 Balance of mass

The balance of mass m of a body is given by the relation

m = / p0 dV = I p dV = const. (2.37)

where p0 is the density in the initial configuration and p the density in the current
configuration. Within the LAGRANGE description of a motion, we can conclude,
assuming sufficient smoothness, that p0 = J p. This equation yields a relation for
the volume elements in the initial and current configurations

dv= — dV = J dV.
P

2.2.2 Local balance of momentum and moments of momentum

(2.38)

The local balance of momentum with respect to a volume element in the current
configuration (£>(B) can be written as

= pvk (2.39)

In this equation cr denotes the CAUCHY stress tensor. In (2.39) p b defines the volume
or body force (e.g. due to gravitation). p v is the inertia force term, which can be
neglected in the case of static analysis. Furthermore, we have the CAUCHY theorem,
which relates the stress vector t to the surface normal vector n by

t = cr n.
(T11 021 031

0"12 022 <?32

0"13 023 <733

(2.40)

This relation has been stated here in direct notation, index and matrix notation.
The local balance of angular of momentum in the absence of micropolar stresses,

which is usually the case in non-magnetic materials (e.g. see Truesdell and Toupin
(1960)), yields

' ~ ' (2.41)(T —

which dictates the symmetry of the CAUCHY stress tensor.
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2.2.3 First law of thermodynamics

A further balance law postulates the conservation of energy of a thermodynamical
process. This is the first law of thermodynamics. This law states that the change of
total energy E is induced by mechanical power P and heat transfer Q into the system:
E = P+Q. Within continuum mechanics, ignoring magnetism, etc., the mechanical
power is defined by

ri r i r
P= — I ~p\-\dv + I a-Adv. (2.42)

dt J 2 J

and thus by the material time derivative of the kinetic energy and the stress power
of the CAUCHY stress tensor and the symmetrical spatial velocity gradient d, cr • d,
which contributes to the internal energy. The heat input into the system

Q = - I q- nda + I p rdv (2.43)

has two sources: the heat transfer through the surface of the body, described by the
heat flux vector q; and the surface normal n, and an internal heat source r. The total
energy consists of the kinetic energy K = J ,g,(B) ~/9v • vdv and the internal energy

U = j (B) pu dv (u is the specific internal energy). Introducing all relations into the

equation E = P + Q yields, after some transformations, the local form of the first
Saw of thermodynamics:

pu — cr • d + pr - div q . pu- aik dik + pr - qi,i . (2.44)

In this equation the term a • d denotes the specific stress power.
In the framework of the constitutive theory, the free HELMHOLTZ energy is often

introduced, which is defined by

<(/; = U ~T)9, (2.45)

where r; is the entropy of the system and B the absolute temperature. With this
transformation the first law of thermodynamics can be written as

p -ij> = cr • d + p r — div q - 77 0 — rj 0 . (2.46)

2.2.4 Transformation to the initial configuration, different stress
tensors

Equations (2.39) and (2.41) refer to the current configuration. Often one needs a for-
mulation of these equations in quantities which are related to the initial configuration
B. For this transformation, also often called pull back, we define more stress tensors,
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which follow from the equivalence of a force which is defined in & am

/ crnda= f c rJF - T NdA= f P N d A . (2.47)

d<f(B) 9B 8B

This relation defines the first PlOLA-KIRCHHOFF stress tensor P. We have the
transformation

' ~ ^ (2.48)P = J c r F -

between the CAUCHY and the first PIOLA-KIRCHHOFF stresses, which are the actual
stresses in terms of the area of the initial configuration. Since in equation (2.48)
the spatial quantity cr is only multiplied on one side by F P, it is a so-called two
field tensor where one base vector lies in 3 and the other in v(B). After some
manipulation, we can now transform the local balance of momentum (2.39) to the
reference configuration

' ~ ' (2.49)

However, when using (2.48) in the balance of angular of momentum (2.41), we see
that the PlOLA-KIRCHHOFF stress tensor is general in nonsymmetric: PFT = FPT.

A symmetric stress tensor which is defined with regard to the reference configura-
tion is the second PIOLA-KIRCHHOFF stress tensor, which follows from the complete
pull back of the CAUCHY stress tensor to the reference configuration B:

S = F–1 P = J F–1 crF–T .

SAB = ( F A i )
- 1 P B i = J ( F A ) - 1 — (FkB)-1

(2.50)

S does not represent an experimentally measurable stress. However, it is an essential
stress measure that plays a prominent role in the constitutive theory. It is "work
conjugated" (duality paired) with the GREEN-LAGRANGIAN strain tensor (2.16).

Besides the CAUCHY stress tensor cr, the KIRCHHOFF stress tensor r is often
employed, which is defined as the push forward of the second PlOLA-KIRCHHOFF
stress tensor S to the current configuration

r = FSFT, T = Jcr. (2.51)

The transformation of the first law of thermodynamics (2.44) to the initial config-
uration yields, with (2.35),

J c r - d = (FSFT) • ( F – T E F - 1 ) = S - E . (2.52)

Furthermore, for (2.38) we have

p0U = (2.53)

where the internal energy, U, the internal heat source, R, and the heat flux, Q, are
referred to the initial configuration. With (2.51) or (2.16) we can also state the stress
power (2.52) as

S - E = S - C = r - d (2.54)
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2.3 WEAK FORM OF BALANCE OF MOMENTUM, VARIATIONAL

PRINCIPLES

For the solution of boundary value problems stemming from the continuum, we
shall employ numerical methods based on variational formulations. Thus we need
associated formulations, which are given in the next sections.

2.3.1 Weak form of balance of momentum in the initial configuration

The principle of virtual work is an equivalent formulation of the balance of momentum
which often - due to its reduced regularity requirements - is called the weak form of
equilibrium. Since no constitutive equations enter a priori the weak form, it is valid
for all problem classes, including plasticity, friction or non-conservative loading. The
derivation of the weak form starts from the local equilibrium equation (Div P+p0 b =
po v), which is multiplied by a vector valued function 17 = {77177 = 0 on <9Bu} -
often called a virtual displacement or test function. Integration over the volume of
the body under consideration yields

Div P • ry dV + / p0 (b - v) • 77 dV = 0 . (2.55)

B 'B

Partial integration of the first term and use of the divergence theorems leads, with the
boundary conditions, to the weak form of

G((p,Tj)= f P • Grad rjdV - [ p0(b - v) • r)dV - f l - r j d A = 0. (2.56)
J J J

B B dBa

The gradient of 77 can also be viewed as a virtual variation 6 F of the deformation
gradient

d
8V - — [F(x + €»?)] . (2.57)

de =0

In (2.56) we can exchange the first PIOLA KIRCHHOFF stress tensor with P = F S
by the second PIOLA-KIRCHHOFF stress tensor:

P • Grad r\ - S • FT Grad77 = S • i (FT Grad77 + GradT7/F) = S • SE, (2.58)
£.1

where the variation of the GREEN-LAGRANGIAN strain tensor, computed according
to (2.57), has been used. Note that SE = | SC. In (2.58) one makes use of the

rri

symmetry of S so that the antisymmetric part of FT Grad 77 disappears in the scalar
product. With (2.58) we can rewrite (2.56) as

(2.59)G(<p,ri)= / S • SE dV - / P0 (b - v) • rj dV - f t • r? dA = 0
J i/ -J
B B
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The first term in (2.59) denotes the virtual internal work or the stress divergence, and
the last two terms contain the virtual work of the external forces. This equation can
be written in index notation as follows:

G(<p ,77) = / SABSEABdV - I p0 (bA -VA)TJA dV - I f A r j A d A = 0.

B B dBa

(2.60)
We note the equivalence of the strong form, (2.49), and the weak form, (2.59),

provided the solution is smooth enough.

2.3.2 Spatial form of the weak formulation

The transformation of the weak form (2.56) to the current configuration follows by
pure geometrical operations. For this purpose we need to transform the associated
tensors by push forward operations to the current configuration (p(B). With the
transformation of the first PIOLA-KIRCHHOFF stress tensor to the CAUCHY stress
tensor (see (2.48)), a = j PFT, and by using (2.25) we derive

P-Grad77 = J c r F – T -Grad rj - J cr -Grad TyF-1 = J cr- grad r?.

Furthermore, as dv = J dV and thus p — p0 J is valid, we can transform the weak
form (2.56) into the current configuration:

#(<p,77)= / cr • grad 77 dv - / p(b - v)-77dv - / t- rjda = 0. (2.61)

In this equation the result from (2.47) has been used to transform the stress vector t
into (p (B ) . Symmetry of the CAUCHY stress tensor enables us to replace the spatial
gradient of 77 by its symmetric part. Hence, with the definition

Vs 77 = - (grad 77 + gradT 7 7 ) , (2.62)

it follows that

<7 ( <p, 77 ) = / cr Vs rj dv -

<,
I

y(B)
P(b - v) rf dv - 1

*(dt

r
t • 77^0 = 0

(2.63)
This relation has exactly the same structure as the principle of virtual work in the
geometrically linear theory. The difference, however, is that all integrals, stresses
and gradients have to be computed with respect to the current coordinates, which
reflects the nonlinearity of (2.63).

2.3.3 Minimum of total potential energy

In the case of a hyperelastic material there exists the strain energy function W (see
Section 2.4.1) which describes the elastic energy stored in a body B. Based on
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this function, the classical minimum principle of the total elastic potential can be
formulated. For this also one has to consider the potential energy of the forces applied.
We assume that these forces are conservative (meaning they are path-independent).
Neglecting dynamical effects, we obtain

(2.64)

Out of all possible deformation states <£>, the one which minimizes II fulfils the
equilibrium equations. The minimum can be computed by a variation of (2.64). It
is related to the weak form (2.59). This can be shown by applying the directional
derivative, which leads to the so-called first variation of IT:

d
SH = DII ((p) • 77 = —— IT (tf> + a rj

B

C)-pob ¥}dV - I
dB

f -f t • (p dA =$• MIN

^^ \^- , ^ » j , . \JL,,\J*J)

da

In explicit form we obtain

)C — po b - r / ] dV — / t - r j d A = G(<p ,77) = 0 . (2.66)
B dBa

The variation of the right CAUCHY-GREEN tensor 6C can easily be expressed in
terms of the GREEN-LAGRANGE strain tensor: 26C = <5E, see also (2.58). The
partial derivative of W with respect to C leads, with IdW / dC = S, to the 2.
PIOLA-KIRCHHOFF stress tensor, see Eq. (2.67) in Section 2.4.1. Hence (2.66) is
equivalent to the weak form (2.59).

The construction of a minimal principle is important in several respects, since it
enables investigations regarding the existence and uniqueness of solutions. Further-
more, special solution methods can be developed on the basis of a minimal principle
which are efficient and reliable.

2.4 CONSTITUTIVE EQUATIONS

Since contact takes place at the interface between bodies, the constitutive laws for the
bodies coming into contact which describe the material behaviour within the bodies
can be arbitrary, and do not affect the main formulation of contact problems. However
it is clear that the physical properties of the surfaces of the bodies are influenced by
the general constitutive behaviour. Thus, to include a nonlinear constitutive equation
valid for large deformations, we discuss finite elasticity. Of course, we can consider
more complicated constitutive relations which can also be of inelastic nature, but this
is not the aim of this book and we refer to Desai and Siriwardane (1984), Lubliner
(1990), Khan and Huang (1995) or Simo and Hughes (1998) for example.
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2.4.1 Hyperelastic response function

Throughout this section we briefly discuss hyperelastic constitutive relations. For
more detailed information, see Ogden (1984) for example. These can be applied to
describe the constitutive behaviour of rubber or foam for instance. In the case of
small deformations, these constitutive equations reduce to the classical HOOKE'S law
of linear elasticity.

The constitutive equation or response function for the second PIOLA-KIRCHHOFF
stress is, in the case of a hyperelastic material, given by the partial derivative of the
strain energy W function with respect to the right CAUCHY-GREEN tensor, e.g.
seeOgden(1984),

ac ' dcAB
(2.67)

This response function represents a constitutive relation which fulfils the require-
ments of frame indifference, and hence is objective. In the case of a homogeneous
material, the strain energy W does not depend upon X. Here we restrict ourselves
to homogeneous isotropic materials. Thereafter, the strain energy function can be
specialized, and is represented by an isotropic tensor function

W ( C ) = W ( I c , I I c , I I I c ) (2.68)

The second PIOLA-KIRCHHOFF stresses now follow with (2.67) by using the chain
rule

(2.69,

Within this equation, the following results for the derivative of invariants with respect
to tensors have been used:

dIc dIIc ,
(2.70)

For the special choice of the strain energy function W, we obtain the simplest pos-
sible response function, which is known as compressible NEO-HOOKIAN material.
We choose

W(IC,J) = g(J) + //(Ic – 3) . (2.71)

For compressible materials, function g(J) in (2.71) has to be convex. Furthermore,
the following growth conditions must hold:

lim W — > oo and lim W — >— oo . (2.72)
J-H-oo J-»0

These conditions are equivalent with the conditions that the stress for a deformed
body whose volume goes to zero has to go to — oo, and for a deformed body whose
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volume goes to +00 the stress also has to go to +00. These growth conditions are
fulfilled when the compressible part g(J) is chosen, according to, Ciarlet (1988), as

g(J) = c(J2 - 1 ) - d ln J – n ln, J with c>0, d>0. (2.73)

The response function of the NEO-HOOKIAN material (2.71) now follows with (2.69),
and for the second PlOLA-KIRCHHOFF stress tensor yields

S = ^ ( J 2 - 1 ) C - 1 + M ( 1 - C " 1 ) ; (2.74)
^

SAB = ^(J2-l}(CABrl+^AB-(CABr1}.,

where the constants c and d have been chosen as c = A / 4 and d — A / 2. The
material constants A and p, are the LAME constants, which have to be determined by
experiments.

Note that with Definition (2.51), the KIRCHHOFF stress can be written in terms
of quantities define in the initial configuration:

oAB

From this form, the KIRCHHOFF stress is given with (2.69) by

Since the invariants of C and b are equal using FC–1 FT = 1 one derives

~\(dW T d W \ . dW ,2 TTT dW 1T = 2\\-*r + Ii> ^TF b ~ 77FT b + IHb T^FFT1 •L V olb al h) olIb ollib J

Comparing this result to (2.69), the KIRCHHOFF stresses can also be derived from

(2.75)
OD

directly in term of spatial quantities.
Equation (2.74) can also be transformed directly into the current configuration

by the standard push forward operations. We note that the CAUCHY stress tensor is
related, via cr = J–1 FSFT, to the second PIOLA-KIRCHHOFF stresses, see (2.50).
With this, after some manipulation we obtain

> - 1), (2.76)

h-, — A-, "l fj 11\Uifa ^'tk f * \£*. t i }
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2.4.2 Incremental constitutive tensor

To derive the incremental constitutive tensor we have to compute the rate of the
response function (2.67). Thus, the response function must be differentiated with
respect to time. This leads to

d2W •
(2.78)

and hence to an incremental relation between the rate of the second PIOLA-KIRCH-
HOFF stress tensor S and the right CAUCHY-GREEN tensor C. With the definition
of a fourth order incremental constitutive tensor

= 4dCdC' VABCD = * (2.79)

for (2.78) we obtain

(2.80)

The push forward of equation (2.80) to the current configuration yields, with the
LIE-derivative of the KIRCHHOFF stress tensor,

( L v T ) i k = F i A S A B F k B , (2.81)

and with the time derivative of the right CAUCHY-GREEN tensors, see (2.16) and
(2.35),

CCD = 2 –FlC dlm FmD (2.82)

the relation
(Lv r)ik = FiA FIC FmD FkB^ABCD dlm . (2.83)

d is the symmetrical spatial velocity gradient, see (2.36). Since in (2.83) each base
vector of the incremental constitutive tensor C is transformed by F, we can define a
spatial incremental constitutive tensor c as

= FiA FIC FmD FkB VABCD • (2.84)

This leads to the compact form of: (2.83)

(Lv r)ik = (C ik lm d l m , Lv r = <c [ d ] . (2.85)

Thereafter, we derive the incremental constitutive tensor for the constitutive equa-
tions (2.74) and its push forward to the current configuration. The response function
(2.74) depends upon the deformation via the inverse of the right CAUCHY-GREEN
tensor and its determinant: J = \fIIIc. Thus for the computation of C using (2.79).
the derivatives of J and C–1 with respect to C have to be computed.
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With (2.63) the derivative of the JACOBIAN is

-4 = -JC~l . (2.86)

The derivative of C–1 follows from relation, 9(?CD [CAM C^B } — 0, as

^CAB = _c-i c-i (2.87)
dCco AC BD'

Since C is symmetric we only need the symmetrical part of (2.87), and introduce the
fourth order tensor IIC–1 which has the index notation

I — (c1"1 c~l 4- ri~l r*"1 ^ o 88"iC-MBCD — 2 \^AC^BD^^AD^BC) ' (2.88)

With these preliminaries the constitutive tensor can be derived. After some algebraic
manipulations, we obtain

- AJ2C7LC r-} ) + [ 2 i i - A ( J 2 - l ) l l [ c - i A B C D . (2.89)

Transformation of the incremental constitutive tensorC to the current configuration
yields, with (2.84) and

the incremental constitutive tensor in (p(B) :

Cikim = AJ2^ i k^ lm + [2/ i - A (J2 - 1) ] I i k l m , (2.90)

where 1 is the second order unit tensor and II is a fourth order unit tensor. Both
tensors are related to the current configuration. Tensor II has, in index notation, the
form

IIiklm = r (fiil fikm + &im &kl ) • (2.91)

For a formulation of the equations of elasticity for numerical treatment within the
method of finite elements, it is preferable to have the matrix representation of equation
(2.85). For this purpose the components of the LIE derivative of the KIRCHHOFF
stresses and the symmetrical spatial velocity gradient dare represented in vector form.
In that case, the incremental constitutive tensor (2.90) is a matrix which can be used
to compute the incremental KIRCHHOFF stresses once d is known,

Lv r = D d , (2.92)
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or explicitly

A J2

A J2

0
0
0

A J2 A J2 0 0 0
2/z + A A J2 0 0 0

2// +A 0 0 0
0 a 0 0
0
0

A J2

0
0
0

0 a 0
0 0 a.

2d23

2d31

with a = p, - A (J2 - 1). (2.93)

The deformation gradient F is equal to 1 in the undeformed initial configuration.
Hence, also C–1 = 1 and J = 1. Thus, when the incremental constitutive tensor in
(2.89) is evaluated at the undeformed state in the initial configuration, we obtain

C0 = A1® 1 + 2//II . (2.94)

This equation also follows directly from (2.90) since for F = 1 the initial and current
configuration coincide. The constitutive tensor Co is identical to the elasticity tensor
of the geometrical linear theory of elasticity. Its matrix form is

cr = D0 e, (2.95)

or explicitly,

022

033

012

023

^ 031

2/i + A A
A 2/i + A

A
A
+ A
0
0
0

0
0
0
»
0
0

0
0
0
0
A*
0

o-
0
0
0
0
/*-

^

' e11 '
^22

€33
2 €12

2 €23

I 2 e31 J

.(2.96)

2.5 LINEARIZATIONS

Different phenomena lead to nonlinearities in continuum mechanics. There are ge-
ometrical nonlinearities, nonlinearities stemming from the constitutive equations, or
nonlinearities due to unilateral boundary conditions, as in contact. Linearization of
the mathematical models is necessary once the associated initial or boundary value
problems have to be solved. Especially for numerical methods like the finite ele-
ment method, it has been proven that NEWTON'S method is a very efficient solution
algorithm for nonlinear continuum problems.

Thus it is necessary to have a mathematical tool which allows us to compute
linearizations of nonlinear continuum problems. The purpose of this section is to
provide these mathematical tools, and to apply them to kinematical relations, to
constitutive equations and to the weak forms. Mathematical details are omitted, but
they can be found for example in Marsden and Hughes (1983).
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L [ f ] a Df(x) • u

x + u

Fig. 2.3 Linearization of f at x.

The idea of the linearization process will first be described by means of an example.
Let us introduce a scalar valued function / which is continuous and has continuous
first derivatives (C1-continuity). Under this assumption it is possible to express / by
a TAYLOR series expansion at x:

D f u + R. (2.97)

In this equation the following notation has been used: f = f(x) and Df = Df(x).
The operator D denotes the derivative of / with respect to x. The "•" is in this case
a simple multiplication, u is an increment and the residual term R = R(u) has
the property limu_>.0 A -» 0. Figure 2.3 depicts the geometrical interpretation of
equation (2.97). With u being the independent variable and x a fixed coordinate in
(2.97), the tangent to the curve described by / at x is

f ( i i \ — f 4- D f • 11 (2.98)J V / — J ' ^^^ J ' \ *"" •* ^)

which touches the curve in ( x . f ) . The linear part of f ( x ) in x = x defines the
linearization

L [ f ] x = x = f ( u ) . (2.99)

This result for the one-dimensional case can be extended to scalar valued functions
in three dimensions. The / is a function of (x). The TAYLOR series expansion is
then

f(x + u) = f + D f - u + R. (2.100)

Here x is a point in three-dimensional space, and u is a vector with its origin in x. We
obtain, with the definitions,

and Df = Df(x) = (2.101)
x=x

where Df denotes the gradient vector of / at x. Equation (2.100) can be written as

/(x + u) = f + Grad f (x) - u + R. (2.102)
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The product "•" in (2.102) is now a scalar product between two vector. Now the
directional derivative of / is computed at x in the direction of u. The directional
derivative is defined by

de «=o

where e is a scalar parameter. Since x + e u is a line in the three-dimensional space,
the directional derivative measures the increment of / in the direction of this line in
x. The computation of the directional derivative follows with the chain rule as

«9 f (x + eu) d(x + eu)] d f ( x ) __
t=o i d* de Je=0 dxde L' ^

A comparison yields that the directional derivative

€=0

is in coincidence with the tangent to / in x. Thus the linear part of / at x is given by
the value of / and the directional derivative at x. The directional derivative is a linear
operator, hence rules for standard derivatives like the product rule apply.

The directional derivative for infinite dimensional function spaces is given by a
formal application of the foregoing results. Hence, one can consider the following
C1 -mapping, G : 8 —> F, where x. u are points in the associated space:

G(x + u) =G + D G u + R. (2.103)

Here now the "•" is the inner product of the elements characterizing the associated
space. Again, the directional derivative is

= D G u. (2.104)

Thus the linear part of the mapping at x is

a. (2.105)

Here elements describing the space under consideration can be scalars, vectors or
tensors.

To simplify notation, the directional derivative D G • u will also be written as AG.
Here the bar denotes the evaluation of G at point x.

Tensors which refer to the current configuration are linearized by first perform-
ing a pull back transformation, see (B.7), to the reference configuration. There the
linearization is computed according to the rules stated above, and then the result is
transformed back to the reference configuration (push forward operation). Note that
the pull back and push forward operations depend upon the description of the tensors,
e.g. a covariant tensor has a different pull back than a contravariant tensor. Thus



LINEARIZATIONS 39

for tensors r which refer to a covariant base (e.g. stress tensors), the directional
derivative has the form

Dr - u = F{D [F–1 r F–T ] • u } FT . (2.106)

In an analogous way, a tensor which refers to a contravariant base like a strain tensor
has the directional derivative

(2.107)

2.5.1 Linearization of kinematicai quantities

The linearization of strain measures is described in this section in detail for strain
measures referring to the initial and the current configuration.

The first strain measure which will be discussed is the GREEN LAGRANGIAN
strain tensor (2.16). The linear part is given with (2.105) as

L [ E ] f = f = E + DE - u = E + AE, (2.108)

where the directional derivative D E • u — AE has to be computed according to
(2.104)

DE-u = - i F T > + e

AE = [F' Gradu + Grad u F ] . (2.109)
£

This result is linear in u and depends upon the deformation at <£>, which is represented
by F. The computation of (2. 109) at y> = X yields the linear strain tensor

L [E]^=x = 0 + - [ Gradu + GradTu ] . (2.110)
jLt

As a next strain measure the ALMANSI strain tensor, e = | (1 — b – 1) , is con-
sidered, which refers to the current configuration. First one has to compute the pull
back of e using (2.22), and then apply the directional derivative. This result is then
pushed forward to the current configuration

D e • u = F– T{D E • u} F–1 = - (Grad u F–1 + F–T GradT u)

_ _ -
= -(grad u + grad u) = V6Au. (2.111)

Comparison of this result with (2.109) shows that

(2.112)

and thus the linearization of the ALMANSI strain tensor leads to the same structure as
shown in equation (2.35) for the time derivative of the GREEN- LAGRANGIAN strain
tensor.
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2.5.2 Linearization of constitutive equations

Linearization of the constitutive equations can be computed for hyperelastic response
functions in an analogous way as that for the time derivatives. For inelastic constitutive
equations, the linearization depends upon the algorithm which is used to integrate
the evolution equations, and thus the linearization can only be computed once the
integration algorithm is known. Here we only consider hyperelastic constitutive
equations.

The hyperelastic constitutive equation (2.67) describes the response function for
the second PIOLA-KIRCHHOFF stress tensor depending on the right CAUCHY-
GREEN tensor. According to (2.105) its linearization yields

= S+H [ D C - u ] . (2.113)

This result can be reformulated with (2.79) and (2.109) as

(2.114)

A comparison with (2.113) yields

AS=C[AE]. (2.115)

Relation (2.115) has the same structure as the incremental constitutive equation (2.80).
Only the time derivatives have to be replaced by the directional derivatives.

2.5.3 Linearization of the weak form

Solution of nonlinear boundary value problems can in general only be obtained by
approximate methods. Many of these methods, like the finite element method, are
based on the variational formulation of the field equations, given for instance by the
weak form or principle of virtual work, hence equations (2.56) or (2.59) provide the
starting point for a numerical method. For the solution of these nonlinear equations
an iterative scheme has to be developed, since the discretization of the weak form
results in a nonlinear system of algebraic equations.

Among many possible iterative algorithms, NEWTON'S method has been proven
to often be the most efficient scheme, since it exhibits quadratic convergence near the
solution point. Within NEWTON'S method a correction of the solution is achieved
by the TAYLOR series expansion of the nonlinear equation set at a point where the
approximated solution is already known. The necessary linearization can be computed
with the aid of the directional derivative.

The linearization of the weak form is first derived with respect to the initial con-
figuration, which is based on equation (2.56). We assume that the linearization is
computed at a deformation state (p at which the body under investigation is in equi-
librium.
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The linear part of the weak form is

L[ G]= = G , » j + DG?(£, 17 - A n .

>, 17) is equal to (2.58), only (f> is exchanged by the state (p. The directional
derivative of G, needed to compute the linearization, has only to be applied to the
first term in (2.58) when the assumption of conservative loading is made

DG(<f>,rj)-Au= /[£>?(<£)• AU] -Grad T? dF; (2.117)

B

all other terms do not depend upon the deformation. The linearization of the first
PIOLA-KIRCHHOFF stress tensor yields, with P = FS,

= / (2.118)

Quantities labelled with a bar have to be evaluated at <p. For linearization of the
second PIOLA-KIRCHHOFF stresses, equation (2.115) can be used. This leads to

D S ( £ ) - A u = C [ A E ] , (2.119)

where the last term is the linearization of the GREEN-LAGRANGIAN strain tensor
E at tp, see (2.109). The incremental elasticity tensor CR which is evaluated with
respect to the reference configuration is given, with (2.79), by

C = 4
dCdC

(2.120)

atip.
Inserting equation (2.120) into (2.118) completes the linearization:

DG(<p,rj)- Au= /{GradAuS + FC[AE]}-Grad?7dF. (2.121)

B

Note that also C has to be computed at (p. By making use of the trace operation and
by considering symmetry of C, a compact form of (2.121) can be obtained:

DG((j>, TI) • Au = j { Grad AuS • Gradrj + 6E -C [AE] } dV (2.122)

Note the symmetry of the linearization with respect to rj and Au. The first term in
(2.122) is the so-called geometrical matrix or initial stress matrix. The second term
contains the initial deformations which occur in the incremental constitutive tensor C,
the variation of the GREEN-LAGRANGIAN strains SE = |(FTGradr7 + GradTr/F)



42 CONTINUUM SOLID MECHANICS AND WEAK FORMS

and its linearization AE = ~ (F Grad Au + GradT Au F). Equation (2.122) is given
in index notation as

DG(<j>,T))AAuA = I {&u A ,BSBcr i A , c+tE A B € A B C D £E C D }dV. (2.123)

B

With the last equations, all relations with respect to the initial and current con-
figurations, are known, which have to applied within an iterative solution procedure,
e.g. NEWTON'S method. Thus the basis for discretization using the finite element
method for nonlinear problems in solid mechanics is known.

The linearization of the weak form, defined in quantities of the current config-
uration, follows by push forward of linearization (2.122) to the already obtained
deformations state <£>. With the push forward Vs Au of the GREEN-LAGRANGIAN
strain tensor, the second term in (2.122) can be re-written as

f V s7j • * [VsAu] dV

The fourth order tensor oc follows fromC by the transformation (2.79).
_ — - —TThe first term in (2.122) can be transformed directly with r = FSF , and thus

expressed in KIRCHHOFF stresses:

Grad Au S • Grad 17 = FGrad Au F r F–1 • Grad rj = gradAu T • gradry . (2.1 24)

With these transformations, the linearization in terms of quantities at the current
configuration state (p is

Dg(ip, r)) • Au = / {gradAu r • gradrj + Vs 77 • <c [Vs Au] } dV . (2.125)

B

With dv — JdV integral (2.125) can be transformed into the current configuration
<£>. For this purpose, we use the CAUCHY stress tensor cr = j r, and define the
incremental constitutive tensor

<c = -=* (2.126)
u

such that the final result

j) • ̂ u= I {gradAu 0 • iracfo? + VSTJ • <E [Vs Au] } dv (2.127)

follows. Equation (2.127) in the literature is also known as the updated Lagrange
formulation e.g. see Bathe et al. (1975), since the deformation state <p is always
updated during the nonlinear incremental solution procedure.

With the last equations all relations with respect to the current configuration are
known. These have to be applied within an iterative solution procedure, e.g. NEW-
TON'S method. Thus the basis for discretization using the finite element method for
nonlinear problems in solid mechanics is known.
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2.5.4 Linearization of a deformation dependent load

The description of a pressure load stemming from gases or fluids without internal
friction leads to a surface load which depends upon the current deformation state.
The stress vector t is then given in terms of the pressure p and the surface normal n
by t = pn. This leads in the weak form (2.63) to the additional term

pn-rjda. (2.128)

For this term the linearization is derived next.
Again, to compute the linearization, it is preferable to perform a pull back operation

and to refer (2.128) to the initial configuration. Two methods are possible. The
first relies on the transformation of the surface normal by (2.11). This yields the
expression JB p JF~TN • 77 dA where linearization is complicated. Simpler is the
second method in which the normal vector n is expressed by the cross product of the
tangent vectors which are tangent to the convective coordinates of the surface of the
body, see Figure 2.4.

The normal unit vector follows with the tangent vectors, as defined in Figure 2.4,

g1 × g2

The tangent vectors can be computed from the deformation state using equation (B.4):
So — V,a- The area element da can be expressed by da = ||g1 × g2||d01 d#2 in terms
of the tangent vectors with respect to the convective coordinates. Based on these
relations, the virtual work for pressure loading is

gp(<p , T?) = p( <p^ × v ,2 ) - n dO1 d92 . (2.129)

(01) (02)

Fig. 2.4 Pressure dependent surface loads.
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With the introduction of the displacement field, the tangent vectors have the form
<p^a = (X + u),a. Hence the linearization of (2.129) yields

,rj) • Au = / / p( Au,1 × v?2 + <p !1 × Au,2) , (2.130)

when p itself is independent of the deformation state. The linearization refers to the
convected coordinates. It can be pushed forward to the current configuration, leading
to

(P 0 + U? , X AU ol2 ' ' ~J~ (2.131)

With this the linearization of a deformation-dependent pressure load, see (2.128), has
been derived. More theoretical considerations with regard to the nonconservative
nature of deformation dependent loads can be found in Sewell (1967), Bufler (1984),
Ogden (1984) or Simo et al. (1991).



3
Contact Kinematics

Many technical contact problems involve large deformations of the bodies that are in
contact. Thus we will formulate all contact relations for finite deformations, so we
look at problems where two or more bodies Ba approach each other during a finite
deformation process and come into contact on parts of their boundaries denoted by Tc,
see Figure 3.1. We observe that two points, X1 and X2, in the initial configuration of
the bodies which are distinct can occupy the same position in the current configuration,
V?(X2) = ^(X1), within the deformation process. Hence contact conditions have to
be formulated with respect to the current configuration. In general, two steps have

Fig. 3.1 Finite deformation contact.

45
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Fig. 3.2 Deformed configuration of bodies BQ, minimum distance.

to be performed to detect whether or not contact takes place. These are the global
search for contact and the set-up of local kinematical relations which are needed to
formulate the contact constraints. Here we focus on the latter; search algorithms will
be discussed in Section 9.1.

In a large deformation, continuum-based formulation of contact kinematics, the
distance between the bodies in contact is minimized, as can be found for the classical
non-penetration condition in Curnier and Alart (1988) for example.

In the case that a small penetration due to the approach of the two bodies in contact
has to be allowed, the contact kinematics are developed in Wriggers and Miehe (1992).
This non-penetration function also plays a significant role for the definition of the
tangential velocity in the contact interface, which is needed to formulate frictional
problems, e.g. see Simo and Laursen (1992), Wriggers and Miehe (1992), Laursen
and Simo (1993b), or Curnier et al. (1995).

Let us consider two elastic bodies Ba,a = 1.2, each occupying the bounded
domain fia C R3. The boundary Fa of a body $a consists of three parts: F£
with prescribed surface loads, F£ with prescribed displacements, and F", where the
two bodies Bl and B2 come into contact. In the contact area, we have to formulate
the constraint equations or the approach function for normal contact, as well as the
kinematical relations for the tangential contact.

3.1 NORMAL CONTACT OF THREE-DIMENSIONAL BODIES

Assume that two bodies come into contact. In that case, the non-penetration condition
is given by

(x2-x1) - n1 > 0; (3.1)
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see Figure 3.2. XQ denotes the coordinates of the current configuration (p(Ba) of
body Ba: xa = Xa + ua, where XQ is related to the initial configuration Ba and ua

is the displacement field, see also Appendix B. The normal vector n1 is associated
with body Bl. By assuming that the contact boundary describes, at least locally, a
convex region, we can relate to every point x2 on F2 a point x1 = x1 (£) on F'1 via
the minimum distance problem

mm
x'cn1

I v"x — (3.2)

see Fig 3.2b for the two-dimensional case. The distance can then be used to define the
gap or penetration between the two bodies. £ = (£1 . £2) denotes the parameterization
of the boundary F1 via convective coordinates, e.g. see Wriggers and Miehe (1992),
Wriggers and Miehe (1994) or Laursen and Sirno (1993b). The point x1 is computed
from the necessary condition for the minimum of the distance function (3.2)

(3.3)

The solution of (3.3) requires orthogonality of the first and second terms. Since
XQ,^1. £2) is the tangent vector a^, the first term must have the same direction as
the normal vector n1 at the minimum point (£1 , £2). Thus we have the condition
—n1 (£1 . £2) • a1.^1. £2) = 0, which means that the current master point x (£l. £2)
is the orthogonal projection of a given slave point x2 onto the current master surface

vfcrj).
Here and in the following, we denote by a bar over a quantity its evaluation at the

minimal distance point (£1. £2), which means that these values denote the solution
point of (3.3). Thus

n1 =
(a} x a.

(3.4)

is the outward unit normal on the current master surface at the master point, where
a are tangent vectors at x
(3.3). The result is

. Note that the normal can also be defined using

(3.5)

The application of this definition is more convenient in special cases; however it can
only be used in relation with the penalty method, and it has the problem that n1 is not
defined for || x2 - x1(̂ 1, f2) ||= 0.

Once the point x1 is known, we can define either the inequality constraint of the
non-penetration condition

gN = (x2 – x1) n1 > 0
or a penetration function

{ (V2 yU
(\ — \ )

0

-n1 if (x2 - x1)
otherwise .

n1 < 0

(3.6)

(3.7)
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The latter defines the magnitude of penetration of one body into the other and has to
be used in conjunction with the penalty method.

REMARK 3.1: It can happen that the distance function is locally non-differentiable. In
such a case the projection point x (£1, £2) is not unique. Examples of points which have a
non-unique projection are shown in Figure 3.3. Usually the discontinuity depicted in Figure
3.3a is not of great influence in practical applications, since in a next iteration step when
the point gets closer to the contact surface, the discontinuity disappears. A criterion which
provides a measure to detect whether the projection (3.3) yields a unique solution or not was
derived in Curnier et al. (1995). Using the transformation of line elements which lie in the
tangent plane of the master and slave surface d x1 = PX d x2, for the area elements on master
and slave surface one obtains

n1 da1 = Px n
2 da2 . (3.8)

The ratio of these area element is now given by (see Curnier et al. (1995)),

,
da2 | 1 — (k1 + k2) gN + k1 k2 g% |'

,3.9,
k1 + k2 «2 gN k1 k2 g

where we can also write j = || Pj_ n2 ||. k1 and k2 describe the principle curvature of the
master surface in point x1 (£1 , £2). The projection is unique when j < oc, which means that
the point x2 should not be located at a point of focus which is the cutting point of two normal
vectors of equal length (see Figure 3.4a) or it should not coincide with the center of curvature
of the master surface. One can show (see Thorpe (1979)) that x1(^1, £2) is associated with
a local minimum if no point of focus lies on the line between x2 and x1(^1, £2). A global
minimum of (3.3) is given for

\9N\< - „ *, i h, (3.10)
max(|/c1|,|/c2|)

which means that the distance between the slave node and master surface is smaller than the
smallest radius of curvature for each point of the master surface. Furthermore, to obtain a
projection (3.8) which is bijective one has to require that j > 0, which means that the condition
— n2 • n1 > 0 holds (see Figure 3.4b) for the normal vectors.

Fig. 3.3 Non-differentiable distance functions.
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Fig. 3.4 Uniqueness and regularity for minimum distance problem.

The case shown in Figure 3.3b is of more practical importance. This is because often, low
order interpolations are applied for the finite element discretization, which use a linear function
within the element to describe the deformed boundary. Hence there is always a discontinuity
in the normal field when point x2 moves from one element to the next. This problem will be
discussed in more detail in Section 9.3.

In the case of geometrically linear kinematics, it is advantageous to write the
inequality constraint as

(u2 - u1) - n1 gX > 0, (3.11)

where ua are the displacements of the bodies Ba. The initial gap g between the two
bodies is given by gX — (X2 — X ) • n1. In view of the penalty formulation which
will be applied to solve the contact problems, we introduce a penetration function as
follows:

(u2 - u1) • n1 + gX if (u2 - u1) • n1 + gX < 0
n , (3.12)
0 otherwise.

Functions gN and uN indicate a penetration of one body into the other, and show in
which parts of Fa the constraint equations, preventing penetration, have to be acti-
vated. Thus (3.7) or (3.12) can be used to determine the contact area F" C Fa.

REMARK 3.2: In the case of contact between a rigid surface and a deformable body,
equations (3.7) and (3.12) also hold. In this case, u1 = 0 holds and n1 is the normal of the
rigid body.

3.2 TANGENTIAL CONTACT OF THREE-DIMENSIONAL BODIES

In the tangential direction of the contact interface one has generally to distinguish two
cases. The first is the so-called 'stick state in which a point which is in contact is not
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allowed to move in a tangential direction. The second case is sliding, which means
that a point moves in a tangential direction in the contact interface. This movement
can of course only be described by the relative deformation in the interface.

3.2.1 Stick condition

In the first case a mathematical condition for stick is needed. Such a condition can
be derived from projection (3.3). It is clear that a point which sticks to another
body does not move in a tangential direction, and hence the computed values for
the convective coordinates (£1 , £2) do not change for this point during the motion

=0. Therefore, the condition

§T = gT Ct aQ = 0 with 9Ta = (x2 -x 1 ) • a i
a (3.13)

can be formulated. Here gT denotes the relative displacement in a tangential direction,
which has to be zero. Note that in the stick case, one does not have to distinguish
between the normal and tangential directions. Thus in case the normal gap is closed,
see (3.6), gN = (x2 — x1) • n1 = 0; then one can instead combine conditions gN = 0
and gT = 0 to the more simple condition

x2 - x1 = 0. (3.14)

The implication of this choice with respect to numerical implementation of contact
is discussed in Remark 5.2 and Section 8.2.

3.2.2 Slip condition

The tangential relative slip between two bodies is related to the change of the point x2

relative to the projection x1. This means that the solution point £ = (f 1, £2) which
has been obtained via the minimal distance problem (3.2) will move on the master
surface. The sketch in Figure 3.5a depicts the path of the point x2 along on the master
surface beginning at t0 and ending at time t. Furthermore, the velocity v of point x2

relative to the master surface is shown at times t1 and t2. Note that the path of a point
x2 on the master surface is not known a priori. It could even cross its own line, as
depicted in Figure 3.5b. Thus, during our calculations we cannot assume anything
regarding the path. Hence in a frictional sliding situation, one has to integrate the

Fig. 3.5 Path of the point x2 relative to the master surface
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Fig. 3.6 Increment of the frictional path.

relative velocities to obtain the path of x2 on the master surface. Details regarding
the continuum formulation are stated below.

First we state the tangential relative displacement of a point x2 on the contact
surface, which is defined in terms of body Bl. We compute the path of point x2 on
T1 from

dgT = i de a = *'«<£*, (3.15)

see Figure 3.6. From (3.15) the length of the frictional path can be computed with
dgT = || dgT || and d£a = iadt as

9T (3.16)

where t is the time which is used to parameterize the path of point x2. For the
evaluation of (3.16), we have to know the time derivative of £a. This can be computed
from the relation

[ x 2 – x - 1 ] - a i : = 0, (3.17)

which is valid at the contact point, since the difference x2 — x-1 is normal to the contact
surface, and a-1 denotes the tangent vector to the surface F1 at the minimal distance
point, see Figure 3.2b. This yields the following result:

T x -d t L

With a

-, £2)] • aj, = [v2 - v1 - 80 £0 ] • ai + [x2 - x1 ] • a^ = 0 . (3.18)

+ x a/g ££* we obtain ^' from (3.18), which leads to the following
system of equations:

a3^=Ra\: (3 .19)
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with

gN x*a3 • n
1

(3.20)

Well known results from differential geometry of surfaces introduce da^ as the metric
tensor and x1

a/3(^
1 . £2) • n1 as the curvature tensor bap, see also (B. 15). Thus we can

rewrite Hap = [ a^p + g^ b a p ] . Denoting Ha& = ( H a p ) - l , we can now explicitly
solve for the relative velocity £ = { £J . £2 },

& = H"* [ (v ' -vM-a i + ̂ n1-^] . (3.21)

Using these results we define as the second important kinematical function the
tangential relative velocity function on the current surface ^(F2.) by setting

(3.22)

Equation (3.22) determines the evolution of the tangential slip gT, which enters as
a local kinematical the constitutive function for the contact tangential stress. In the
following chapter, we will abbreviate the LIE derivative Cv gT, denoting the relative
tangential velocity by the term gT to simplify notation.

REMARK 3.3:

1 . Note that the second terms on the right-hand side of (3.19) depends upon the penetration
gN- Thus in the case of a strong enforcement of the non-penetration condition (gN = 0)
with LAGRANGE multipliers, this term vanishes. The evolution Cv in (3.22) is then given
by the projection of the spatial velocities v2 and v1 (£), evaluated at the contact points
onto the tangential direction of the contact surface at the master point

CvgT - P r f v - v , ^ ) ] , with Pr = § ( g a a . (3.23)

2. If the deformed contact surface is flat, then the curvature tensor bQp is zero. This is
always the case for a surface discretization by three node triangular elements.

3. Note that the (a priori objective) Lie derivative of the tangential vector gr has the rep-

resentation Cv gT = F2{ Jj [F2~ l (gT) ] } = £Q §a based on the deformation gradient
F2 of the master surface defined above. Thus (3.22) represents an evolution equation
for the objective rate CvgT of the tangential vector introduced above.

4. In the case of no relative movement in a tangential direction (stick condition), we have

C*v gT = gT=0
5. In the geometrically linear case, from (3.19) and (3.21) we obtain

{[x1 -x2(^, e)]-\l } = [v1 - v2«fi, ?) - A2,^] ' A2,

which yields
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The terms multiplied by gx can be neglected. Thus £& is given by the projection of
the difference velocity of the two bodies at the contact point on the tangent direction of
the undeformed surface. From the last equation, we can deduce the relative tangential

velocity at the contact point: gT = £^ AQ.

For a penetration QN < 0 we have to take into account the second term in (3.21)
and the scaling factors Ha(3, both consequences of the time dependence of a^.

For the two-dimensional contact we can specify the result in (3.19), which then
yields

1 - * (3-24)

where a\\ = x1,^ (£) • x1,^ (£) describes the metric and b11 = x1,^ (£) • n1 the
curvature of the boundary. The vectors va denote the velocities at xa. Knowing the
change of the coordinate £, we can define the relative tangential velocity as

r, g •=. £ x^ (£) (3 25)

In that case, for the total sliding distance (3.16) we obtain

t £

gT — / U ^ i x ^ l l d t ^ / 1/on d^. (3.26)

to Co

The upper limit £ in this integral still depends upon the deformation, which is clear
from the implicit definition of £ via (3.3). However, one can transform (3.26) into an
integral with fixed limits by introducing a different parameterization, e.g. as in the
case when the isoparametric map is used in a finite element context.

3.3 VARIATION OF THE NORMAL AND TANGENTIAL GAP

The variation of the geometrical contact quantities are needed in the weak forms for
contact. In this section the variation of the gap in the normal contact direction and the
variation of the tangential relative displacement in the contact interface are derived
for the different cases discussed in the previous sections.

3.3.1 Variation of normal gap

The first case discussed is the variation of the gap function in the normal direction for
the contact between three-dimensional solids.

The variation of the normal gap follows from (3.6) as

6gN = < J { [ x 2 - x 1 ( £ 1 , £ 2 ) ] - n 1 (?,?)} - (3.27)

To compute the variation (3.27) explicitly, we have to consider all terms which depend
upon the deformation. In the case of contact, we then have to take into account
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the projection of point x2 onto the master surface parameterized by the convective
coordinates f1 and £2. This leads to

SgN = [r)2 - f)1 - x^ 6£a} • H! 4- [x2 - x1 ] • Sn1 , (3.28)

where we have set rja = 6x.a. Equation (3.28) simplifies due the fact that X-1 • n-1 =0.
Furthermore we have n1 • Sn1 = 0, see Appendix B. With the definition of the normal
(3.5), this eliminates the last term in (3.28). Hence we obtain the result

^11 »i (3.29)

Note, however, that we have to start from (3.28) if we want to derive the linearization
of the variation of the gap function (3.27).

3.3.2 Variation of tangential gap

The variation of the tangential slip can be stated in the same way as the time derivative
(relative tangential slip velocity) was computed in (3.21) and (3.22). We obtain

with the variation of £Q

(3.30)

(3.31)

The latter relation follows simply from (3.21) by replacing the velocities v by the test
function 77 with Ha/3 = [ aag + g^ bQ0 ]-1.

In the two-dimensional case, these equations simplify. The variation of £ can be
computed using (3.24) according to (3.31). This leads to

1

an +
(3.32)
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The design of technical systems depends greatly upon the knowledge of the contact
behaviour in interfaces which connect different parts of the system. Such systems
are very general, examples being cars, printing or copy machines, human joints or
implants, unfolding space structures, robots, micro machines or base isolation systems
for buildings to protect against earthquakes.

Related to the precision which is needed to resolve the mechanical behaviour in
the contact interface, different approaches have been established over the centuries
to model the mechanical behaviour in the contact area.

Two main techniques can be followed to impose contact conditions in the normal
direction. These are the formulation of the non-penetration condition as a purely
geometrical constraint (the normal contact stresses then follow from the constraint
equation), and the development of an elastic or elasto-plastic constitutive laws for the
micromechanical approach within the contact area, which yields a response function
for the normal contact stresses. Such constitutive equations are often derived from
statistical models.

For the tangential direction, one has the same situation as for normal contact when
stick in the contact interface is considered. Again, either a geometrical constraint
equation can be formulated, or a constitutive law for the tangential relative micro
displacements between the contacting bodies can be applied. For tangential sliding
between bodies, one always has to derive a constitutive equation for friction which can
be stated in the form of an evolution equation. Usually the frictional evolution depends
on different parameters, like normal force, relative tangential velocity, temperature
or total slip distance.

55
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4.1 NORMAL CONTACT

The next two sections discuss the formulation of normal contact as a constraint for
non-penetration, or by introducing constitutive equations which describe the approach
of the contacting surfaces. In the case of frictionless contact, one of the models
proposed for normal contact is sufficient within the analysis. In the case of friction,
the tangential stress also has to be considered, see Section 4.2.

4.1.1 Constraint formulation

The formulation which treats normal contact as a unilateral constraint problem is in
general used when it is most essential to enforce the geometrical constraints in a correct
way (one could coin the term "low contact precision" for such a situation). In this case,
it is not necessary to specify constitutive relations in the contact interface. Therefore,
the normal contact pressure cannot be computed from a constitutive equation, but
is then obtained as a reaction in the contact area, and hence can be deduced from
the constraint equations, see Section 5.3.1. This procedure is the classical way to
formulate contact constraints, thus numerous researchers have used this strategy, e.g.
see Johnson (1985) or Kikuchi and Oden (1988).

The mathematical condition for non-penetration is stated as g^ > 0, see (3.6),
which precludes the penetration of body Bl into body B2. Contact takes place when
QN is equal to zero. In this case, the associated normal component p1

N of the stress
vector

t1 = or1 n1 = pl
N n1 + tl

T
0 al

g (4.1)

in the contact interface must be non-zero. The stress vector acts on both surfaces (see
Figure 4.1) obeying the action-reaction principle: t1^1, £2) = —t2 in the contact
point x1. We have PN — pl

N = p2
N < 0, since adhesive stresses will not be allowed

in the contact interface throughout our considerations. Note that the tangential stress
t1

T
3 is zero in the case of frictionless contact. For contact one has the conditions

gN = 0 and PN < 0. If there is a gap between the bodies, then the relations gw > 0

Fig. 4.1 Stresses in the contact interface.
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Fig. 4.2 Contact force versus normal gap.

and PN — 0 hold. This leads to the statements

9N > 0 , < 0 , pN 9N = 0 . (4.2)

which are known as HERTZ-SiGNORiNi- MOREAU conditions for frictionless con-
tact. These conditions provide the basis to treat frictionless contact problems in the
context of constraint optimization. In Moreau (1974) this law is expressed by sub-
gradients (see also Curnier (1999)). In optimization theory such a set of equations
is called a KuHN-TucKER condition (sometimes known as a KuHN-TtiCKER-
KARUSH condition, since it was recently discovered that KARUSH developed them
first in 1938). As can be seen from Figure 4.2, equations (4.2) lead to a non-smooth
contact law for the normal contact pressure.

So far stresses related to the current configuration have been introduced. Hence
CAUCHY'S theorem was formulated in terms of the CAUCHY stresses cr, see Eq.
(4.1). In the same way, one can also introduce the nominal stress or first PIOLA
KIRCHHOFF stress P this leads to two different representations of the stress vector

= crn or PN. (4.3)

With NANSON'S formula (2.11) and the transformation (2.48), one concludes that
TeL4 — tda. Hence by introducing the JACOBIAN for the area j — da / dA, one
obtains

T = j t with j = J|| F - T N| | . (4.4)

The normal and tangential components follow from

t = P t + ( H - P ) t , (4.5)

with the projection tensor P = n1 & n1 and the fourth order unit tensor t = 11 Note
that P has the following properties: P2 = P and P (I - P) = O. With (4.4) and (4.1),
the relations

TN=jpN=jn1-^t and TT - j tT = j (I (4.6)



58 CONSTITUTIVE EQUATIONS FOR CONTACT INTERFACES

hold. Both formulations, using the nominal stresses or the CAUCHY stresses, are
equivalent when the transformations derived above are introduced in a consistent
way into constitutive equations or weak forms.

4.1.2 Constitutive equations for normal contact

There exist several contact problems where knowledge of the micromechanical ap-
proach of the surfaces to each other is essential for a proper treatment of the phys-
ical phenomena. In that case an interface compliance is needed for these problems
with "high contact precision". Constitutive equations which include deformation of
the micro structure can be developed for normal contact by investigating the micro-
mechanical behaviour within the contact surface. Associated models have been devel-
oped based on experiments, e.g. see Greenwood and Williamson (1966) or Kragelsky
et al. (1982). The micromechanical behaviour depends in general upon material pa-
rameters like hardness and on geometrical parameters like surface roughness. How-
ever, depending on the materials of the bodies being in contact other parameters also
have to be considered when all effects stemming from the micromechanics of the
surfaces have to be included. This can be observed from Figure 4.3, which shows the
complex layer structure of a solid at its boundary. It consists for example of a con-
taminant layer (1), an absorbed gas layer (2), an oxide film (3), a work-hardened layer
(4), and finally, the metal substrate (5). Hence the real micromechanical phenomena
are very complex: it is possible to initiate even chemical reactions in the interface by
extremely high local pressures at the asperities stemming from applied mechanical
forces. However, such phenomena will be neglected here.

A micromechanical view of a rough surface is shown in Figure 4.4, which clearly
depicts different randomly distributed asperities. It is obvious that contacting bodies
at the asperities of the rough surfaces come in contact where high local stresses
occur. Thus, early investigations assumed plastic deformations when the interface
laws where derived. This is correct when the loads are only applied once. For repeated
loading one can assume that the surface is flattened due to initial plastic deformations
and hence after this pre-deformation can bear loads elastically, e.g. see Mikic (1971).
Thus the models which are used try only to capture the most important phenomena,

10,000 A

Fig. 4.3 Surface layers on a workpiece; schematic view from Rabinowicz (1995).
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Fig. 4.4 : Scan of a rough micro-mechanical surface geometry.

and assume either an elastic or a plastic deformation of the asperities that are actually
in contact at the interface.

The derivation of constitutive contact equations for the approach of two rough
surfaces involves two main steps. First one has to find a mathematical description of
the surface geometry by statistical, e.g. see Greenwood and Williamson (1966) or
lately also by fractal models e.g. see Majumdar and Bhushan (1990) and Section 4.7.
Secondly a model which describes the mechanical behaviour of one summit of the
rough surface under loading has to be introduced. Such a method leads to a contact
law for normal contact of the form (see Willner and Gaul (1997))

' Kff} dK (4.7)

7 0

Here (,a = z/az is the normalized asperity height, normalized by the rrns-height
<j2, The height z is measured on a regular grid with spacing h (see Greenwood and
Williamson (1966)). The curvature ks stems then from a finite difference approxima-
tion, and yields the mean curvature by Kff = ks / a &, normalized by the rms-curvature
ffk- P((,ff , K^ is the probability distribution of a joint. ^(7) is the normal contact
force related to one summit, with 7 = gN / crz being the gap function normalized
by the rms-height. The contact pressure related to the apparent contact area follows
from equation (4.7), when all input data are known from measurements.
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Fig. 4.5 Physical approach in Fc, undeformed and deformed situations.

In most applications it is sufficient to formulate the constitutive relation for the
apparent contact pressure like

PN = f (d) or d = h (pN) , (4.8)

where f and h are nonlinear functions of the current mean plane distance d or the
contact pressure p^, respectively.

In the case of contact, the current mean plane distance d is related to the geometrical
approach pw, see (3.6), via the relation

(4.9)

£ is the initial mean plane distance in the contact area Fc, which is defined as the
mean plane distance of the two surfaces when the two surfaces just touch each other
in the initial configuration, see Figure 4.5.

Most of the interface laws can be written in the form (4.8). Out of many different
possibilities, two constitutive equations for normal pressure in the contact area will be
stated besides the general relation (4.7). The first was developed in Zavarise (1991)
and Zavarise et al. (1992a), and is based on a statistical model of the micro-geometry
proposed by Song and Yovanovich (1987). This constitutive relation for the approach
of both surfaces yields an exponential law of the form

PN — c 3
e - C 4 • (4.10)

A more detailed description of this interface law shows the dependency of c4 and c4

on the geometrical and material parameters of the surface:

PN =
d (1617646.152^)'

5.5891+0-0711C2 exp
1 +0.0711 c2

(1.363<r)2 (4.11)

c\ and 02 are mechanical constants which express the nonlinear distribution of the
surface hardness, a and m are statistical parameters of the surface profile, represent-
ing the RMS surface roughness and the mean absolute asperity slope. As can be seen,
many constitutive parameters are needed to describe the approach of two rough sur-
faces within the contact area. Thus, these models are only used when really needed,
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Fig. 4.6 Contact compliance law.

like in thermo-mechanical contact where the approach enters the constitutive relation
for the heat flux, see Section 10.2.

Another law for the contact pressure has been given, based on experimental in-
vestigations, by Kragelsky et al. (1982). These authors formulated the following
constitutive equation for the contact pressure:

PN =cN(gN)n (4.12)

in terms of the gap function gN which is defined in (3.6). CN and n are constitutive
parameters which have to be determined by experiments. For metals n is usually in
the range 2 < n < 3.33. Thus the simplest possibility with n — 1 is excluded, which
would coincide with a standard penalty method, see Section 5.3.2.

Both interface laws could be viewed as nonlinear springs (see Figure 4.6) which
yield a regularization of the HERTZ -SiGNORiNi-MoREAU conditions in (4.2).

Often, elasto-plastic deformation has to be considered in a realistic micromechani-
cal model. Hence inelastic behaviour can be applied in the derivation of the statistical
models discussed above. Thereafter, a potential from which the contact pressure
follows via partial derivation with respect to the normal gap cannot be constructed.

The constitutive equations (4.10) and (4.12) represent very high stiffness, since the
approach of both surfaces is very small and limited once all asperities are flattened.
This fact leads to ill-conditioning when numerical solutions have to be obtained with
(4.10) or (4.12), e.g. by the finite element method. A way in which one can treat such
models numerically is described in Section 5.3.8.

4.2 TANGENTIAL CONTACT

The interfacial behaviour related to frictional response is very important in most
technical applications. The science related to this topic is called tribology, which is
mainly concerned with technical systems (e.g. breaks or bearings) where friction is
present. Tribology covers topics like adhesion, friction, wear, lubrication, thermal
contact or electric contact. Also form the economical point of view, tribology is an
important science, hence it can be applied to estimate the time until a mechanical part
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looses its usefulness. Examples for such processes are the wear of oil well drills, the
wear of artificial joints in biomechanics, the wear of metal cutting machines or the
wear of railroad tracks.

Sometimes it is desirable to maximize friction such as for the contact between a car
tyre and the road during braking, or for the foundations of buildings when wind forces
are acting. However, often it is important to reduce friction such as during skiing or
ice-skating. Since friction is directly linked to wear, it is necessary to decrease friction
in production processes, in e.g. the heads of computer disks, in bearings, in all moving
parts of engines, etc.

Despite the fact that friction has been investigated for a long time, starting with
LEONARDO DA VINCI, AMONTONS and COULOMB, many frictional phenomena
have to-date not been completely understood. This is due to the fact that the frictional
behaviour on the surface takes place at the atomic level with, e.g. an interaction
of chemical, electro-magnetic and mechanical processes. Thus, some researchers
tried to formulate a third body in the interface which has a special properties, and is
only present at the moment of the tangential mechanical loading, e.g. see Kragelsky
(1956). Also, the structure of surfaces that are in contact is complicated, since a typical
metallic surface consists of several layers which influence friction. In general, the
friction coefficient depends upon the normal pressure, the relative tangential velocity,
the surface roughness and the temperature, to name but a few of the most relevant
parameters. For a recent extensive overview regarding the physical understanding of
friction see Persson (2000).

We will restrict ourselves to more simple formulations which yield constitutive
equations for frictional contact for dry friction. Lubrication which is essential in
many technical applications since it reduces friction and wear will not be considered
here in detail, however a short introduction is given in section 4.3.

The most frequently used constitutive equation is the classical law of COULOMB.
However, other frictional laws are available which take into account local, micro-
mechanical phenomena within the contact interface,e.g. see Woo and Thomas (1980).
An overview with relation to numerical modelling may be found in Oden and Martins
(1986).

The main governing phenomena for dry friction are adhesion of the surfaces and
ploughing of the asperities. For the physical background, see Tabor (1981). During
the last few years, frictional phenomena have also been considered within the frame-
work of the theory of plasticity. This leads to non-associative slip rules, for which
different relations have been proposed by for instance Bowden and Tabor (1964) and
Michalowski and Mroz (1978). Further discussion on the theory of friction is con-
tained in Curnier (1984). Laws which investigate the non-local character of friction
can be found in Oden and Pires (1983a) and Oden and Pires (1983b). Constitu-
tive equations for friction with respect to metal forming have a long history, and are
discussed in Tabor (1981); modern treatments with respect to micromechanical be-
haviour are present in, for example Anand (1993), Stupkiewicz and Mroz (1999) or
Stupkiewicz (2001). At the contact interface the response in the tangential direction
can be divided into two different actions. In the first, no tangential relative displace-
ment occurs in the contact zone under a loading due to, for example a force F. This
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Fig. 4.7 Stick or slip in the contact area.

behaviour is called stick (see the left part of Figure 4.7). The second action due to the
force F is associated with a relative tangential movement #T in the contact interface,
which denotes the so-called slip (see the right part of Figure 4.7).

4.2.1 Stick as a constraint

Stick is equivalent to the case in which the relative tangential velocity is zero. Hence,
the stick,condition can be obtained from (3.22) as

(4.13)

This condition is formulated in the current configuration, and thus in general imposes
a nonlinear constraint equation on the motion in the contact interface. Associated with
this constraint is a LAGRANGE multiplier, AT, which denotes the reaction due to the
constraint (4.13). There exist many possibilities to enforce the constraint condition
(4.13). These will be discussed in detail in Section 5.3.

4.2.2 Coulomb law

Once the tangential forces are above a certain limit (see Figure 4.8) then the contacting
surfaces no longer stick to each other, but move relative to each other. This relative
tangential movement is called sliding, and classically is described by the law of

8T = 04>%T-~= 0

9T

Fig. 4.8 COULOMB'S friction law.
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COULOMB. It takes the form

tT = -//1 PN if (4.14)

where p, is the sliding friction coefficient. This coefficient is constant in the classical
COULOMB law. It depends upon the material pairing of the solids in contact. Table
4.1 contains some values for different materials.

It can be seen from the bandwidth of the friction coefficient for a specific material
pairing that this coefficient must be influenced by other physical and geometrical
circumstances. In general, the friction coefficient depends upon different parameters
like the surface roughness, the relative sliding velocity gr between the contacting
bodies, the contact normal pressure PN or the temperature 6, e.g. see Section 4.2.7.
If such effects are introduced, one obtains a variant of the COULOMB law with a
variable coefficient // = /z(gT ,/?jv , #)•

One such heuristic friction law which incorporates the relative sliding velocity gT

in the expression for the friction coefficient is given by

It depends upon three constitutive parameters /is, //£> and c. Here for zero sliding
velocity, the friction coefficient assumes the static value ps- For large velocities the
dynamic friction coefficient //£> is approached (see also Figure 4.9). The additional
constitutive parameter c describes how fast the static coefficient approaches the dy-
namic one, see the two different curves in Figure 4.9, which stem form different
values of c.

For many applications in which the surface roughness is not too large or too smooth,
the friction coefficient is independent from the surface roughness and hence from the

Table 4.1 Friction coefficient for different material pairings.

Material pairing Friction coefficient //

concrete-concrete
concrete-sand
concrete-steel
metal-wood
rubber-steel
steel-steel
steel-teflon
steel-concrete
steel-ice
wood-steel
wood-wood

0.5—1.0
0.35 — 0.6
0.2 –0.4
0.3 — 0.65
0.15 — 0.65
0.2 — 0.8
0.04 — 0.06
0.2 — 0.4
0.015 — 0.03
0.5-1.2
0.4—1.0
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Fig. 4.9 Velocity-dependent COULOMB'S friction law.

real contact area in the interface (see below). If, furthermore, also the sliding velocity
is neither too large nor too small, then the friction force is proportional to the normal
force, leading to a constant friction coefficient p.

4.2.3 Regularization of the Coulomb law

Another possibility to formulate tangential constitutive equations in the contact in-
terface is given by a regularization of the stick-slip behaviour. Such a formulation
is used to avoid the non-differentiability of COULOMB'S law at the onset of sliding,
see Figure 4.8. Associated models were introduced by Oden and Pires (1983b); see
also Raous (1999). These are based on a functional form which yields a smooth
transition from stick to slip, as depicted in Figure 4.10. The explicit forms are given
for two-dimensional problems by

tT ?7V (4.16)

t'T

Fig. 4.10 Regularization of COULOMB'S friction law.
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where the function (f>1 describing the smooth transition from sticking to sliding is
defined by:

1 . a square root regularization

(4-17)

2. a hyperbolic tangent regularization

V2 =tanh (92- j . (4.18)

3. or a piecewise polynomial regularization

,if gT<-£
'if -£<9T<e • (4.19)
, if gT > E

The scalar parameter e denotes in all cases, the regularization variable, which for
e — >• 0 as the limit case yields the classical COULOMB law.

These regularized constitutive interface laws physically have the drawback that
they only describe the stick-slip motion in an approximate fashion. For a value of the
parameter e that is too large, such a model might not be able to predict real stick-slip
motions. On the other hand, due to the differentiability of formulations (1) and (2),
these models lead to numerical algorithms which are simpler and more robust. The
piecewise polynomial regularization can be used to construct an algorithm for stick-
slip motion which is similar to well known algorithms from the theory of plasticity
(see also the next section).

4.2.4 Elasto-plastic analogy for friction

COULOMB'S law and other constitutive equations for friction can also be formu-
lated in the framework of elasto-plasticity. This has been investigated by several
authors who developed different constitutive equations for frictional problems, e.g.
see Michalowski and Mroz (1978) or Curnier (1984). A treatment of frictional in-
terface laws in terms of non-associated plasticity has been considered within a finite
element formulation by Wriggers (1987), Giannokopoulos (1989), Wriggers et al.
(1990) or Laursen and Simo (1993b).

The reason to formulate elasto-plastic constitutive relations in the contact interface
stems from two sources. One is associated with the wish to regularize COULOMB'S
law. The other reason has its source in experimental observations, as shown in Fig-
ure 4.1 1. These experiments were carried out by Courtney-Pratt and Eisner (1957)
with metallic surfaces (platinum-to-platinum), and suggest the use of classical elasto-
plastic relations which split the tangential motion into a elastic or adhesive (stick) part
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-0.4 ~

Fig. 4.11 Friction coefficient versus tangential movement; experiments from Courtney-Pratt
and Eisner (1957).

and a plastic or slip part. Experiments for steel and copper are discussed in Anand
(1993) which depict the same behaviour.

As depicted in Figure 4.12, in general one can assume softening (1) as well as
hardening (2) for the constitutive behaviour of friction, once a threshold value IT
is passed. This is also in accordance with experiments (e.g. see Figure 4.11 for
hardening) or it stems from the fact that the sliding coefficient of friction is lower
than the coefficient describing stick, which results in softening.

The key idea of the elasto-plastic approach is a split of the tangential slip gT into
an elastic (stick or adhesive) part g|, and a plastic (slip) part gs

T, see Figure 4.12:

(4.20)

This split can be viewed as a regularization step of the frictional law. However,
one also can find a physical interpretation, in the sense that elastic tangential micro
displacements g^ occur in the contact interface. These stem from the elastic behaviour
of the asperities in the real contact area. Hence, they model an elastic stick behaviour
since the associated deformations vanish once the loading is removed from the system.
The simplest possible model for the elastic part of the tangential contact is an isotropic
linear elastic relation, which yields

tT = cT gr , (4.21)

where CT is the elastic constant. However, one can also think of anisotropic elastic
constitutive behaviour leading to

(4.22)

with the constitutive tensor CT- The directions of anisotropy have to be determined
from experiments by taking into account the micro-structure of the contact surfaces,
see Figure 4.4.
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(2)

9T

Fig. 4.12 Kinematical split of slip and elastic stick.

The plastic frictional tangential slip g? is governed by a constitutive evolution
equation which can be formally derived by using standard concepts of elasto-plasticity
theory. Let us introduce for the derivation of a slip rule, in analogy to the derivation
of a plastic flow rule, the dissipation

V8 = tT • gT > 0

due to the plastic slip. Now consider an elastic domain

E, = { t T elR 2 | f s ( tT)<0}

(4.23)

(4.24)

in the space of the contact tangential stress which is bounded by the function fs. A
simple expression for fs in (4.24) is given by

/.(tT) = | | t r | | - / ipw<0, (4.25)

which is the plastic slip criterion (see figure 4.13(a) for a given contact pressure
PN, and is equivalent to classical COULOMB'S law. The frictional coefficient /z is a
material parameter.

The evolution equation for the plastic slip can now be computed from the maximum
dissipation principle, well known from the theory of plasticity, e.g. see Lubliner
(1985). The derivation is done here assuming the simple slip criterion (4.25), however
the methods also hold for more advanced slip criteria discussed below.

Holding pw fixed, from the so-called maximum dissipation principle one obtains

(tT - VT ) • g^ > 0 V t^ 6 Ef (4.26)

the constitutive evolution equation for the plastic slip

with tr
l l t r l l '

(4.27)
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Fig. 4.13 (a) Coulomb frictional cone (b) more general slip surface.

which denotes the normality rule for fixed contact pressure. The left-hand side of
(4.27) denotes the relative tangential velocity due to slip. Additionally, we have the
loading-unloading conditions in KuHN-TucKER form:

7 > 0, fs(tT) < 0, 7fs A(tr) = 0, (4.28)

which determine the plastic parameter 7.
Another slip criterion has been formulated in Wriggers et al. (1990) which addi-

tionally takes into account the pressure dependency of the tangential response. Here
the form p. = TO / pr + ft proposed by Tabor (1981) for the frictional parameter is
assumed, where T0 and ß are constitutive parameters describing a model with linear
varying shear strength of the interfacial material due to the true contact pressure. The
true pressure pr is related to the true contact area Ar — ]T\ Ari (real contact area
due to the contact of the asperities in the contact interface) whereas the pressure PN
is associated with the nominal contact area Aa, see Figure 4.14.

Woo and Thomas (1980) have formulated a relation for metals between the true
and the nominal area based on experimental observations:

n = I, (4.29)
Aa \AaHJ ' 6

with the hardness H of the material. With these relations one arrives at the following
slip criterion (e.g. see Figure 4.13(b)):

/.(tT, PN ) ) =|| tT || -a | PN |n -ß | pN| < 0, a = a . (4.30)
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Fig. 4.14 Contact interface, micromechanical view.

Note that the choice of one of the slip criteria (4.25) or (4.30) has to be made with
regard to experimental data within the contact interface; of course, other slip criteria
are possible.

Again we assume that the tangential plastic slip gf, is governed by a constitutive
evolution equation which can be derived using standard concepts of the theory of
elasto-plasticity. Within this framework we can formulate a plastic slip criterion

fs(tT, PN -,0,gv) < 0 (4.31)

for a given contact pressure PN with material parameter //, a given temperature and
a hardening/softening variable like the effective slip gv. This slip criterion function
can be specialized as follows:

= ||tr|| - (4.32)

with the special case of classical COULOMB'S model, see (4.25).
Inequality (4.32) can also be expressed in terms of the nominal stresses in the

contact interface. This results, with (4.6), in

It can be seen that when function gs is a homogeneous function of its argument, as in
COULOMB'S law (4.25), then gs = Gs. Thus for COULOMB one can write

f,(tT -,PN) = ||tr|| - < 0 & FS(TT , TN) = ||Tr|| - i TN < 0 . (4.34)

In some applications (see Section 4.2.5) it makes sense to introduce constitutive
equations for friction stresses which depend upon the deformation of the contacting
bodies, and hence on the area JACOBIAN j defined in (4.4).

In all formulations derived so far, the constitutive evolution equation for the plastic
or frictional slip can be stated in a general form of a slip rule for large deformations
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in the contact zone as follows:

• W* - .tkg = 7 — = T HT , with n / -

where equation (4.35) describes the evolution of the effective slip, which is defined
as

. o
7 is a parameter which describes the magnitude of the plastic slip. Also, here we can
set up the KuHN-TucKER conditions, as before, see (4.28).

A generalization of friction models to non-isotropic behaviour is sometimes neces-
sary if the surface in the interface has a special texture. Models for anisotropic friction
can be found in Mroz and Stupkiewicz (1992) or He and Curnier (1993). Mroz and
Stupkiewicz (1992) introduced a model which is an extension of the equations derived
to-date. To simplify the notation they introduced an orthogonal cartesian reference
frame in the tangent plane of the contact interface. With respect to that, it is now
possible to describe the slip function by a super ellipse:

- P N < 0 , (4.36)

where tT x and tT y denote the tangential stresses in the x- and y-directions and n is
a parameter which generates the form of the ellipse. Note that this model assumes
a special case of anisotropic behaviour which has different friction parameters with
respect to the cartesian co-ordinate axes.

According to (4.35), the evolution equation is now given by two equations for the
x- and y-directions,

fr* = iiir-' fr, = ijr- (4J7)
Ot'p x OlT y

Again, the KUHN- TUCKER conditions can be set up to complete the formulation:

7 > 0 , fs(tTx -. try) < 0 , 7 fs(tTx -, t'Ty) = 0 . (4.38)

The dissipation function, which is needed for instance in thermo-mechanical appli-
cations or problems where wear has to be computed, can also be stated; it yields

Vs = tT • §T - tT x 9
8
T x + tr y 9r y • (4.39)

4.2.5 Friction laws for metal forming

In case of metal forming, especially in bulk-forming, the use of COULOMB'S friction
law is very limited. This is because the prediction of the frictional stress related to
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pT Coulomb

k - -

Fig. 4.15 Different possibilities to limit the frictional stress.

sliding is much too high when applying this law. Hence, in most practical applications,
a threshold value is introduced to limit the friction stress, see Figure 4.15.

The simplest approach to account for a limit stress is to change the slip function
(4.25) to

fs.(tr) = ||tT||-h<0, (4.40)

where h is a function which can be described in different ways. Two possible choices
for function h which are relatively simple are stated in the following:

1. COULOMB-OROWAN law:

h = min( |1 pN| , Y0 ), (4.41)

where the constitutive parameter YQ denotes the elastic limit of the material, as
can be seen in Figure 4.15.

2. SHAW law:
h = with ß = Ar/Ac (4.42)

where Ar is the real and Aa the nominal contact area of the contact surface.
This quotient can be computed from (4.29), for example. Thus the parameter 0
describes the flattening of the asperities depending on the normal pressure. The
law of SHAW, compared to the COULOMB-OROWAN law, leads to a smooth
function between the normal pressure and tangential stress. Hence, it is better
suited for numerical purposes.

In the literature, other nonlinear relations are also introduced to describe a smooth
transition from COULOMB'S law to a constant limiting tangential stress for high
contact pressures depending on the sliding stress and normal pressure. Constitutive
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equations which include this feature can be derived from micro-mechanical models
(e.g. see Wanheim et al. (1974), Avitzur and Nakamura (1986) or Anand (1993)). A
commonly used model (see also Stupkiewicz (2001)) is provided by the relation

l . (4.43)
J

Additionally to the friction coefficient p, for low contact pressures, already introduced
in (4.25), two more parameters appear. Y0 is the shear yield stress of the workpiece,
and a can be regarded as another friction coefficient which is valid in the high pressure
range.

Furthermore, there are many applications in metal forming where a coating is used
to improve the sliding conditions in the contact interface. This results in a decreased
frictional resistance, and hence less work is needed to form a workpiece. However, it
can be that the forming process is such that the surface of the workpiece can expand.
Thereafter the coating can break, resulting in a change of the friction behaviour which
cannot be neglected. In this case it is useful to assume that the friction coefficient
u depends on the change of area in the contact interface n — (j), where j is the
JACOBIAN connecting the area elements da = j dA. The formula is equivalent
to equation (2.12), which describes the transformation of volume elements. Using
NANSON'S formula (2.11), one obtains

da = j dA with j = J ||F-T N | | . (4.44)

Now, as shown in Stupkiewicz (2001), one can formulate a relation for COULOMB'S
friction law as follows:

tT = -u(j) | pN | .T with
I I Srl l

-/zi) tanh \J—^\ , (4.45)
- z ~ z 1 3 1

where now four constitutive parameters are introduced. These are the friction coeffi-
cients fjL\ for coating and //2 for broken coating, with ̂  > pi, and the critical surface
extension ji'o, as well as the width of the transition zone j. Further, more advanced
models can be found in Stupkiewicz and Mroz (1999).

4.2.6 Friction laws for rubber and polymers

Many technical components include rubber or polymer sealings. Also, rolling contact
of car tyres on roads or rubber coated cylinders in printing machines have a need for
the analysis of constitutive equations for friction. Since the behaviour of rubber and
polymers is different from that of metals, different friction laws have to be considered.
In general the micro-mechanical mechanism is different; a concise statement of the
interface physics known so far for rubber materials can be found in Persson (2000).

Here only the main effects are considered, leading to a constitutive model which
yields a frictional coefficient depending on the sliding velocity and the normal pres-
sure.
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In polymers the internal friction stemming from the visco-elastic behaviour of the
solids contributes to the sliding friction. Hence the frictional coefficient depends upon
the frequency uj ~ v / r, where v is the sliding velocity and r denotes the diameter of
the real contact area. When uj w 2 / r, where r is the relaxation time of the polymer,
then the friction coefficient is maximal. Thus one can design the polymer such that
one achieves maximum friction by choosing the material so that its relaxation time
is r — 2 / uj, or for small internal friction one has to use a material whose relaxation
time isr > 2 / wor r <£ 2 / u.

Besides the internal friction, adhesion is also a main contributor to the sliding
friction of soft materials like rubber. However, this effect depends strongly upon
the surface properties. If the surface is not completely clean, as in most technical
applications, then this effect is reduced. For other polymers one observes that for
small internal friction the sliding process takes place in a thin contamination layer.
However, for large sliding velocities, melting of the polymer occurs at the surface
due to low thermal conductivity and a low melting point of the polymers. This leads
to a considerable decrease of the friction coefficient with increasing wear.

All considerations result in complex constitutive relations if one wants to take into
account all of the effects. For practical purposes, the following forms for the friction
coefficient are applied.

A velocity- and temperature-dependent form for the frictional coefficient

t*(0,vT) = A / o + c i 0 [ I n u r - l n ( c 2 0 ) ] (4.46)

was proposed in Rieger (1968). This constitutive model for the friction of rubber
depends upon the sliding velocity VT and the temperature 9. It has three parameters
which have to be determined by experiments. If the temperature can be neglected,
such as when only small sliding velocities occur, then the constitutive relation

VT VT
H(VT) = VO(PN) + c1 In -- c2 In — . (4.47)

which can be found in Nackenhorst (2000), can be used for a range of the sliding
velocity from 10-3 to 10 m/s. In this model the parameter p,0, depends upon the
normal pressure pN

IM>(PN)=!*I • (4-48)

Thus, this model needs seven parameters deduced from experiments.
Other frictional interface laws for contact between a road and a tyre were developed

in Kliippel and Heinrich (2000). These authors base their model on the assumptions
that the adhesion in the interface depends upon the surface free energy of the bulk
rubber and the hysteretic energy loss due to the deformation of rubber by surface
asperities. The latter effect is assumed to be the dominant factor of rubber friction
(see also Persson (2000)). To understand the frictional dynamics of rubber stemming
from stochastic excitations during sliding over multiple scale surfaces, the authors
introduce self-affine surfaces and a visco-elastic model for the behaviour of the rubber.
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Fig. 4.16 Profile of an asphalt road track from laser measurement, seeKliippel and Heinrich
(2000).

The self-affine surfaces are described by

sz() = ' A for (4.49)

where £y and £j_ are the normal and tangential correlation lengths of the rough
surface. They denote the maximum length scales for which self-affinity is fulfilled.
H - 3 - D is the HURST coefficient with the fractal dimension D. With (4.49) the
surface is described by the set D, £y and £j_. The values for the correlation lengths
can be obtained from measurements, see Figures 4.16 and 4.17.

This, together with the visco-elastic model, results in a friction coefficient which
depends upon the sliding velocity VT and the real and imaginary elastic moduli, E\

0,1 1
A,/ mm

10 100

Fig. 4.17 Resulting parameters D, i
(2000).

and £j_ describing the surface, seeKliippel and Heinrich



76 CONSTITUTIVE EQUATIONS FOR CONTACT INTERFACES

and

-JJTJ- arctan
-v2)vT (4.50)

where the constants v1 and t2 depend upon the relaxation time and the correlation
lengths. For more details, and the implications of the formulation with respect to
the choice of fillers in the rubber material for the generation of specific friction
coefficients, see Kluppel and Heinrich (2000).

4.2.7 Friction laws for concrete structures on soil

In this section two possible friction laws which describe the interface behaviour of a
concrete structure on soil are discussed. With regard to the soil material, we restrict
ourselves to sand. The phenomenological frictional laws are developed based on
results of experimental shear tests, see Figure 4. 18. The plot shows a dependency
of the frictional force on the relative tangential movement in the interface in a non-
linear way. After a first elastic response, one observes elasto-plastic behaviour with
softening. Also, hysteretic effects are present in the loading/unloading phases of the
experiment.

The first material law to describe frictional behaviour between sand and concrete
is developed following a model which was constructed for micro-sliding between
metals, see Sellgren and Olofsson (1999). This derivation is based on the observation
depicted in Figure 4. 11 for metals which show a similar material behaviour.

No elasto-plastic approach (see section 4.2.4) is used. Here the frictional coef-
ficient is introduced as a function of sliding distance and contact pressure. It thus
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Fig. 4. 18 Results of shear tests, see Reul (2000).
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changes throughout the motion. At each change of direction of motion the parameter
of the frictional coefficient function is actualized, so that the friction law becomes
history dependent. The following constitutive relation is considered for the tangential
stresses:

gr
A* (4.51)

with the normalized contact pressure = pN and the friction coefficient
PN

–u0 + (a1 + 1- 1- a,5
(4.52)

The relative tangential displacement gT defines the direction of the frictional stress in
(4.51),and& = / ||gT||dt denotes the accumulated sliding distance during the loading
process, which is summed over all time increments Ati, leading to 6 = ^ii || gTi||.

At a reversal of the tangential motion the condition gT n+1gT n < 0 holds, where
the subscript n + 1 denotes the current and n the previous time steps. At that stage,
the following parameters are changed:

(4.53)

In this approach a nonlinear dependency of the contact pressure on frictional stresses
is considered in (4.51), which is different from the model proposed by Sellgren and
Olofsson (1999). The model works for two- and three-dimensional problems, and
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Fig. 4.19 Fit of friction law (4.51) to experiments.
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has six constitutive parameters a1 to a6 which have to be determined by experiments.
This task has been performed for the experiments shown in Figure 4. 18 using the
parameter identification procedure described in appendix C. The fit of these data to the
experiments yields the following parameters: a1 = 0.891 kN / m2, a2 = 40m/kN,
a3 = 95.193, a4 = 0.719kN / m2, a5 = 0.226 and a6 = 0.914. The result of
parameter identification using model (4.51) is depicted in Figure 4. 19.

One observes that this model represents the hysteretic effects but not the decrease
of the frictional force with respect to increasing relative tangential displacement.
However, the dependency on the normal pressure is reproduced correctly.

Another formulation for an interface law between soil and concrete can be derived
on the basis of the elasto-plastic approach, which was described in Section 4.2.4. The
material law for the elastic depends upon the contact pressure as follows:

tT = ETta7N ge
T = ETta7 (gT — gT

p (4–54)

Again tN is a normalized contact pressure as introduced in (4.51). In this approach,
the slip criterion fs is described by slip,criterion

2- + a4 arctan(a5w) = ||tT||
+ a3w+ J

(4.55)
This formulation is analogous to the introduction of a hardening function which was
used to describe the constitutive behaviour of sand, see Arslan (1980).

The slip rule is given by

(4.56)

||tT||

rkNi
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Fig. 4.20 Fit of friction law (4.54) to experiments.
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The evolution equation for hardening is described by

w = X (4.57)

with the hardening parameter w.
Again, the parameters were fitted for the experiments shown in Figure 4.18 us-

ing the parameter identification procedure described in Appendix C. This leads to
the following set of parameters: a1 — 16621. kN / m3, a2 = 19817.1 / m, 03 =
19739311 / m2, a4 = 0.4915kN / m2, a5 = 535.71 / m, a6 = 0.89 and a7 = 0.99.

The result of parameter identification using model (4.54) is depicted in Figure 4.20.
Now the hysteretic effects are not represented by this model, but the dependency of the
frictional stress on the relative tangential displacement gT, as well as the dependency
on the normal pressure, is described correctly.

For both models the parameter identification procedure yields good results. This
is not obvious, since the model is highly nonlinear and history-dependent due to
the softening behaviour of the tangential stress with respect to the absolute relative
displacement in the interface.

4.2.8 Friction laws from computational homogenization procedures

Another method to derive contact compliances (see section 4. 1 .2) and friction interface
laws is provided by a computational homogenization procedure. In this case a nu-
merical simulation is performed under homogeneous boundary conditions for a Rep-
resentative Volume Element (RVE). Such an RVE is depicted as a two-dimensional
sketch in Figure 4.21 (a). The RVE has to include the real contact geometry with
known profiles from the micro-mechanical surfaces. It has to be large enough to
resolve the micro- structure of the surface geometries in the contact area. When the
boundary conditions are such that only deformations are applied in the normal direc-
tion, then the computational homogenization procedure yields a homogenized contact
law for the normal pressure PN, see Figure 4.2 l(b). When additionally, relative tan-
gential motions are described, then a friction law for tT can be derived. Note that
all computations have to be performed using three-dimensional models, since a real
micro-geometry is always a two-dimensional surface. To arrive at a statistically rep-
resentative homogenized constitutive equation for the contact interface, several com-

A(

PN

T
A

Fig. 4.21 (a) Micro-structure, (b) homogenized model.
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putations have to be performed with a different distribution of the micro-geometry
until the standard deviation is below a given tolerance.

Still, for the numerical model which includes the micro-geometry, see Figure
4.21 (a), one has to provide a general contact law for the contact stresses in the normal
and tangential directions. In such micro-mechanical computation no friction is as-
sumed here between the solids. The friction law then stems either from a constitutive
relation describing adhesion in the contact area, and/or the elastic-plastic response of
the solid which is related to ploughing.

Using a micro-structure in the contact surface, as depicted in Figure 4.21 (a) (see
also Figure 4. 14) the normal contact stresses on the rough microstructural surface
are computed. These stresses only occur in some parts Fs of the micro-asperities,
see Figure 4.22. The sum over all areas Ts in which contact stresses PNs.nS are
present yields a resultant force on the entire contact surface. The contact stress can
be represented with respect to the basis (am

a.n
m) of the contact mean plane surface

E I pN,nsdT = fN + fT = fN nm + (4.58)

Averaging over the mean plane of the contact surface is then carried out. In the case
depicted in Figure 4.22, the mean plane is straight. Hence the resulting mean contact
stresses have the same direction

PN = T
(4.59)

fine* m _
1T aa — 1 — fa

~ T/T

Initial estimates regarding the structure of a frictional law can be drawn by evaluating
these stresses. Therefore, one can derive a general form for the homogenized friction

Fig. 4.22 Micro-structure of the contact zone.
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Fig. 4.23 Finite element mesh and randomly generated surface.

law; some results of such procedures are reported in Haraldsson and Wriggers (2001)
or Bandeira et al. (2002).

The general procedure to obtain friction laws from such computations is outlined
below. The three steps have to be executed for each of the samples in a statistically
representative set. In general, this means that around 100 different samples have to
be solved:

1. Discretization of two solid blocks with a randomly generated surface with the
mean plane of the contact surface being A. A mesh stemming from such a
procedure is presented for one of the solids in Figure 4.23. The micro-structure
is modelled with b-splines in order to be able to discretize a wavy contact surface
for the solids. In the example depicted in Figure 4.23, 25 b-spline-nodes with
randomly chosen heights were used to generate the asperities of the surface.

2. Application of a homogeneous deformation pattern at the boundary of the
blocks in the normal and tangential directions, see Figure 4.24. To derive
a friction law one has to perform several computations with different constant
normal forces PN A. Hence, a normal deformation UN is first applied to obtain
a certain normal force, which is then fixed throughout the computation. After
that, the relative displacement gT is applied incrementally in the tangential
direction.

3. Incremental solution of the boundary value problem for a fixed normal force,
e.g. fixed normal displacement UN. Due to the applied tangential relative
displacement gT, the tangential stresses tT 1 and tT 2 are computed as reactions.
From this result for normal and tangential reactions, one can then derive the
homogenized contact stresses PN and tT- according to equation (4.59).

This procedure was used to derive a contact law for a concrete-soil interface; for de-
tails see Haraldsson and Wriggers (2001). One then obtains for different numerical
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Fig. 4.24 Movement of the block and resultant stresses tT1 and tT 2 •

experiments a distribution of the tangential stress in relation to normal pressure pN

and total slip gv, see Figure 4.25. Each line with values greater than zero for pN
M

stands for one numerical experiment. For the flat areas in between, no numerical
experiments were performed; such numerical experiments still take some time, since
one has to solve a geometrical and material nonlinear three-dimensional boundary
value problem with many unknowns. However, the effort compared with real ex-
periments is still small. Hence it makes a lot of sense to support experiments by
additional numerical simulations in order to obtain a statistical representative result
for the homogenized law. Also, one can vary the material parameters of the solids
near the contact surface and hence can account additionally for work hardening in the
case of metals. Furthermore the virtual testing procedure allows us to gain insight
into the behaviour within the micro-structure of the contact interface. A view of the

Fig. 4.25 Relation between mean normal pressure pN
M mean tangential stress t™ and slip

gv.
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Fig. 4.26 VON MISES stresses in the micro-structure.

stress distribution in the micro-structure is depicted in Figure 4.26 for the model com-
putation described above. The distribution of the VON MISES stresses shows clearly
that the largest plastic deformations occur at the asperities, which is intuitively clear.

4.3 LUBRICATION

Lubrication is used to reduce friction in tribological systems like bearings, engines,
gears, etc. This phenomenon is produced by, for example, a thin layer of fluid -
the lubricant - between the solids in contact. Lubrication can also appear when a
chemical reaction in the contact interface leads to a layer of contaminants which
reduce friction; also, abrasive wear can decrease the friction force in the interface.

Even before the steam engine was developed, scientists were interested in the
influence of lubrication when the friction between metals had to be reduced. Leibniz
(1706)) investigated already the difference between sliding and rolling friction and
required special technical solutions to reduce friction. Later the industrial revolution
demanded more insight, which finally lead to the formulation of the REYNOLDS
equation for thin film lubrication and the STRIBECK curves, which can be used to
distinguish mixed friction and pure hydrodynamic lubrication, see Figure 4.28. Here
only lubrication due to the elasto-hydrodynamic effects of a fluid in the interface will
be considered; for more detailed descriptions of other phenomena, see Polzer and
Meissner (1983), Rabinowicz (1995) or Persson (2000).

Lubrication only works when there is a certain relative velocity v between the solids
such that the fluid layer does not disappear, see Figure 4.27. Such a process is called
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Fig. 4.27 Solid-fluid interaction in the case of lubrication.

hydrodynamic lubrication. If the velocity is too small, then the fluid will be squeezed
out between the bodies leading to direct contact of the bodies, also called boundary
lubrication. Experiments and theoretical predictions show that the frictional force is
much higher for boundary lubrication than for hydrodynamic lubrication. Another
observation is that the hydrodynamic lubrication depends upon the sliding velocity,
leading to an increase in friction force for increasing velocity, see Figure 4.28.

There are two ways to introduce lubrication: one is the coupled treatment of
the problem; the other is related to the fact that lubrication in general reduces the
coefficient of friction. Hence it can be incorporated into the constitutive relations for
friction, discussed in the previous sections, by a different choice of parameters. These
have to be found from experiments or derived from equations governing lubrication,
e.g. see Khonsari and Booser (2001).

boundary lubrication

mixed lubrication

hydrodynamic
lubrication

Fig. 4.28 Frictional stress versus normalized sliding velocity.
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If lubrication is treated as a coupled problem, one has to state the relevant equations
for the fluid film. These derive from the classical NAVIER-STOKES equations of
fluid dynamics by introducing several simplifications inherent in the problem. It is
well known that the flow in the interface is laminar for most cases, and it is also
incompressible. With the further assumption that the nonlinear convective term in
the NAVIER—STOKES equations can be neglected as well as inertia terms, the general
equations reduce to the REYNOLDS equation,

d _ ( h 3 d p N ) , d (h3
s dpN) (dpN

dx dx dy dy dx
(4.60)

This equation is valid for stationary processes when a constant relative sliding velocity
vx in the ar-direction is present. The other variables are defined in Figure 4.29. hs is
the height of the gap, which can depend upon the deformations of the solids, and which
then leads to a nonlinear coupled problem with the coupling terms being the contact
pressure pN and the deformation-dependent height hs. Note that (4.60) is only valid
for&0 > 0, see Figure 4. 29. denotes the viscosity of the lubricant. This constitutive
parameter depends in general upon the contact pressure pN, the temperature 9 or the
gap height hs. An empirical formula which includes observations from experiments
and takes the change due to hs into account can be defined as

0 < r < 1 (4.61)

Here r and r/s have to be adjusted via experimental data, and hs max follows from
measurements of the problem geometry which can include micromechanical effects.
A pressure-dependent viscosity coefficient follows from the function

rta(pN) =ri0e
T)lpN .. (4.62)

N

Fig. 4.29 Definition of lubrication interface.
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with two constitutive parameters 770 and r/i.
Note that the gap height is usually very small, e.g. ~ 10–5 m. Hence, when the

lubrication interface problem is treated in a coupled manner using the finite element
method, one needs a high accuracy (very fine mesh) in the contact area to resolve
these small deformations of the solid.

4.4 ADHESION

If two clean plates (e.g. made of glass) are pressed together and then the load is
reversed such that one tries to pull the plates apart, one can observe that the plates
seem to be glued together. This effect is due to adhesion. This means that a positive
normal stress has to be admitted in the contact interface (PN> 0). Furthermore, if the
contact stresses are large enough, the adhesion will be broken in the contact interface,
leading to a classical unilateral contact problem as defined in Section 5.1. Applications
in which adhesive forces are present are a model of the micromechanics in contact
interfaces (see the previous section or debonding processes in heterogeneous material,
e.g. Wriggers et al. (1998), Zohdi and Wriggers (2000) or Zohdi and Wriggers
(2001)). Furthermore, the analysis of tape which works due to adhesion can be
mentioned.

Hence adhesion changes the unilateral contact problem and, as a result, a consti-
tutive equation has to be formulated in the contact interface which is able to describe
the transition from total adhesion to unilateral contact. Work in this direction was
extensively pursued by the French school, e.g. see Fremond (1987). This author
formulated adhesion by using a measure for the intensity of adhesion on the interface,
which is similar to a description of damage mechanics by a damage function. Cou-
pling of adhesion to friction was discussed in Raous et al. (2000) and Raous (1999)
who also discussed the thermomechanical background and introduced a numerical
model. However, there are also other models used to investigate the debonding pro-
cesses in between matrix materials and particles, e.g. see Suresh et al. (1993).

We will not go into the details of the derivation of adhesive models, which can be
found in Fremond (1987). Here only the resulting model will be discussed. For this
purpose a condition, similar to (4.2), will be introduced, see Raous (1999),

-pN + CNgN/32 >0, g N > 0 , (-pN + CN g N
B 2 ) g N =0, (4.63)

where gN is the gap function, see (3.6). The value B describes the intensity of
adhesion:

{ 1 total adhesion,
0 < 0 < 1 partial adhesion, (4.64)

0 no adhesion.

Furthermore CN is a constitutive parameter which is associated with the stiffness
in the normal direction of the interface. Still missing in this model is an evolution
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equation for the intensity of adhesion. The evolution equation

i/P
(4.65)

was proposed by Raous (1999). Here, r; describes the viscosity of the adhesive
interface, w is the limit of the debonding energy which acts as a threshold value:
only when the force due to adhesion CN g2

N B is greater than w op is an evolution
of the adhesion intensity possible, h is a given function which can be used to adjust
the constitutive relation to experimental data. If one chooses h((B) — B and p = 1,
(4.65) simplifies to

B = - - ( w – C N g2
N B). (4.66)

This equation is to be solved for the given constitutive parameters. The behaviour
of the constitutive equation defined above is depicted in Figure 4.30. One observes
that the constitutive equations leads to a stress response which is well known from
continuum damage theory.

The incremental form of the adhesion law needed in a finite element algorithmic
treatment is provided in Section 9.5.1.

The extension of the constitutive behaviour defined above to friction will also
include adhesion in the stick/slip phase of the tangential movement. This leads to a
set of equations which basically have the same structure as the adhesion model for
normal contact:

ff = | | tT- CT T B2 || — (pN — CN gN (B2f) < 0 ,

(4.67)

adhesive limit

Fig. 4.30 Adhesive normal stress
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In this set of equations the only new constitutive parameter is CT, which describes
the elastic stiffness in the tangential direction of the adhesive zone. Also, only the
simplified model (4.66) was used, but the model (4.65) can also be applied adequately.

4.5 DECOHESION

Another application, where special constitutive equations have to be formulated in
the contact interface, is debonding. Debonding describes the loss of contact of e.g.
micro-fibres or particles in a matrix material. Special constitutive equations have
to be developed to simulate debonding processes. Out of many different possible
formulations, e.g. see Tvergaard (1990) or Xu and Needleman (1993) a constitutive
equation developed by Needleman (1990) for the two-dimensional case is reported,
see Figure 4.31. Here normal stresses and the tangential stresses follow from an
elastic strain energy function $ which relates the stresses in the interface to the gap
opening gN in the following way:

(4–68)

where the subscript A stands for the direction normal or tangential to the interface.
Using the strain energy function 4> in Needleman (1990), one arrives at

(?N = C [ g N ( g N — I ) 2 + a g 2
T ( g N

— I ) ] ,

aT = aC [ g T ( g N — 1 ) 2 } . (4.69)

In this equation the normalized gap opening gN =gN / $ and the normalized relative
tangential deformation gT = gT / & have been introduced. The length 6 denotes
the maximum gap opening which can be tolerated in the interface before complete
debonding occurs. The constant C is related to the maximum stress carried by the
interface C = 27 / 4crmax. In the case of gT = 0, we obtain at gN = as the
maximum value the stress omax.

Fig. 4.31 Adhesive normal stress for decohesion
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4.6 WEAR

Wear among other events like breakage or corrosion is one of the causes leading to
the fact that a part, an engine or a tool is no longer useful. There are many examples
which underline this statement. One can think of a record player, even if such an
object is almost history, where the record as well as the needle undergoes a wear
process during use, which eventually can be observed easily just by listening to the
quality of the sound. Another simple process from everyday life is writing. What
one sees when using a pencil to write on a piece of paper is just the outcome of a
wearing process. If these processes are connected with wear, then it is clear that
wear means the removal of material from solid surfaces under mechanical action. In
general, wear is related to sliding contact. However, the amount of material which is
removed is quite small thus the wear process is not always easily detected in industrial
applications where wear between metals has to be considered.

If studied in more detail, one observes that wear involves many different disci-
plines, e.g. material science, chemistry and applied mechanics. This is because
besides the geometrical properties of surfaces and the frictional forces in the inter-
face, surface chemistry and the material properties close to the surface also play a
major role.

Basically, there are four different forms of wear mechanisms, which are discussed
below:

• Adhesive wear. Fragments are pulled off one surface and adhere to the other
during a sliding of smooth surfaces. If later these particle come off the surface,
they can form loose wear particles.

• Abrasive wear. When a rough hard surface and a soft surface are in sliding con-
tact, the hard surface ploughs grooves in the soft one. The material stemming
from the grooves then forms the wear particles.

• Corrosive wear. This process occurs in a corrosive environment when a film
protects the surfaces and is removed by a sliding action. In that case, the attack
due to corrosion starts due to sliding contact.

• Surface fatigue wear. This happens if, during repeated sliding or rolling, the
material undergoes many loading/unloading cycles which lead to cracks close
to the surface. These might result in a breakup of the surface, and lead to the
formation of wear particles.

These wear mechanisms cannot be discussed in this monograph in depth; for further
details see Rabinowicz (1995), for example. From all of the above, it can be deduced
that a wear process is complicated and can also involve different mechanisms at
different stages of the process. Wear in general depends upon the properties of the
material surfaces, the surface roughness, the sliding distance, the sliding velocity
and the temperature. If one wants to describe wear mechanism through constitutive
equations and evolution laws, then one has to determine which of the aforementioned
effects play a major role. Depending on the softness of the surfaces and on the material
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data of the particles which are worn off (debris), one might have to consider a third
body (consisting of the debris) which acts in between the contacting interfaces.

The first constitutive equations which can be used to compute the volume of ma-
terial lost by the wear process are very simple. A simple law for adhesive wear was
proposed by Holm (1946) and Archard (1953). This HOLM—ARCHARD law has the
form

Vwear = kad ., (4.70)
n

where kad is the so-called wear coefficient, which depends upon the materials in
contact, and hence can be put in relation to the friction coefficient, see Rabinowicz
(1995). H denotes the hardness of the surface which is worn away. FN is the
normal force and gT the relative sliding distance between the materials. Equation
(4.70) provides a linear relationship between wear volume Vwear and relative sliding
distance gT should the normal force FN be kept constant. The wear coefficient kad

has to be deduced from experimental data; for metals it is in the range of 10–3 to
10–8.

Despite the fact that a completely different mechanism is associated with abrasive
wear, one can apply the same constitutive equation as (4.70) to abrasive wear, see
Rabinowicz (1995). It reads

Vwear = kabr . (4.71)
H

The only change is the abrasive wear coefficient kabr, which physically represents
a value that depends upon the average of the roughness angle, and ranges between
10–2 to 10–5.

Due to the small amount of material which is worn off, no coupled analysis (con-
cerning the change of mass or change of geometry) is needed when wear problems
have to be solved. If laws (4.70) or (4.71) are used within an analysis, one only has
to apply them in a post-processing phase. However, this means that the normal force
is kept constant.

If this is not the case, as in contact problems in which deformation is involved,
then the constitutive equations have to be refined. A thermodynamically consistent
theoretical background for such models was provided by Zmitrowicz (1987a) and
Zmitrowicz (1987b). Constitutive relations leading to evolution equations were also
discussed in Curnier (1984) and application within the finite element method can be
found in Neto et al. (1996), Stromberg et al. (1996), Stromberg (1997) or Agelet de
Saracibar and Chiumenti (1999).

These authors indicated a connection between friction and wear effects. As a result
of that, the mean rate of wear can be assumed to be proportional to the dissipation
rate due to friction, see (4.23) or (4.39). The mean rate of wear itself is characterized
by a function which represents the movement of the contacting surfaces in a normal
direction, since wear removes volume and hence brings the surfaces closer together.
The wear rate V is then given by

Vn = kwear Ds (4.72)
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where kwear is the wear parameter and Ds is the dissipation rate. In general, one has
to assume different wear parameters for both contacting surfaces, which was omitted
here. Using (4.72) leads to an algorithm for wear in which the wear rate is simply
computed in each time or load increment of the frictional analysis.

In a more general situation, the wear parameter can depend upon the sliding
velocity and on the temperature generated in the contact interface due to friction:
kwear — kwear(gT 0). In the latter case, the wear computation needs a coupled
thermo-mechanical treatment, e.g. see Chapter 10.

4.7 FRACTAL CONTACT INTERFACES

Rough contact surfaces can also be modelled by fractals. Here we shall state the
general ideas which lead to such a model. Examples will be given in Section 12.6.3.
Structures involving interfaces with fractal geometry are referred to as sequence of
classical interfaces problems, which result from the consideration of the fractal in-
terfaces as the unique fixed point or the deterministic attractor of a given Iterated
Function System (IFS). On the interface itself, unilateral contact is assumed to hold.

The geometry of a fractal permits the accurate geometrical description of cer-
tain physical forms and of the figures and graphs resulting in physical, chemical
and biomechanical processes, see e.g. Mandelbrot (1982), Takayasu (1990), Scholz
(1989), Barnsley (1988) and Barnsley and Hurd (1993). One could mention here
the forms of clouds and mountains, landscape and coastline geometry, fluvial system
geometry, the distribution of craters in planets, etc.

In structural analysis and applied mechanics, we often have to deal with fractal
domains SI and/or fractal boundaries F. These are, for example, the cases of the crack
interfaces in natural bodies, the free surfaces and interfaces in fractured bones, metals
and rocks, the geometry of metallic interfaces after sandblasting or meteoritic rain,
the crashed interfaces in composite and granular materials, the geometry of fluvial
systems, nervous cells and the geometry of plants, see e.g. Takayasu (1990), Scholz
(1989)or Feder (1988).

The finite element theory on fractal interfaces in contact problems, based on the
approach of Barnsley (1988), was investigated by Panagiotopoulos et al. (1992). He
proposed an inequality fractal formulation under the assumption of the fractal in-
terfaces obeying unilateral contact with friction conditions. The influence of fractal
geometry on the mechanical quantities and on the displacement and stress fields of
deformable bodies was discussed. The reliable numerical applications from rock me-
chanics, bone mechanics and fracture engineering were given. Also, certain methods
for consideration of the fractal geometry in the FEM calculations were exploited, on
the assumption that the fractal geometry does not change during the loading process.
Here we apply this approach to define rough surfaces through fractals, see also Hu
et al. (2000).

An important tool to the theory, which finds many applications to the mechanics
of structure, is the fractal interpolation function. Suppose that in R2, for instance,
we have a set of given data zi = {x i , yi}. i = 0.1..... N, where the maps are affine
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transformations of the special structure

with the restrictions

Wi(zo) = Zi—1, Wi(zN) = zi for i = 1.....N. (4.74)

In (4.73) one parameter is free. Choosing 0 < di < 1, we obtain that

- ( x i — X ( i – l ) )
: •, — ~, :- x0) (XN - x0)

yg-i)) (yN - yo)
(XN — X0) (XN — X0)

( X N — X O )

Thus we have constructed an IFS from a given set of points Zi = {xi.yi}. If .4
denotes the attractor of this IFS, then A is the "fractal graph" of a continuous function
f : [ X 0 . ; X N ] —>R which interpolates the data {xi. yi}, i = 0. 1. .... N. This function
is called a "fractal interpolation function" and it is shown that it can be defined as the
unique fixed point of a contractive transformation T which is defined by the relation

Tf(x) = Cil-
l(x] + d i f ( l i

l ( x ) ) + fi .. (4.76)

where l–1 is the inverse of the linear mapping li(x} = a,ix + ei.
Let us now assume that set A is called the deterministic attractor of IFS. Further-

more, {Rn;wi} is the deterministic fractal of the IFS considered. It can easily be
shown that if the points X 0 . . . . . X N are equidistant, then the dim A, denoted by D, is
given by the formula

N
£

D = 1 + (4.77)
In N

if the points {xi, yi}.i = 0. l....,N do not form a straight line (in this case D = 1),
and if YN

i=1 |di | > 1- If x0 •••-, XN are not equidistant, then / is the real solution of
the equation

N

|di|ai
D-1l = l, (4.78)

1=1

if YN
i=1 |di| > 1- Note that the proper choice of the parameter 4 may make D

very close to 1, i.e. we obtain a line-like fractal, or very close to 2, i.e. we obtain
a surface-like fractal which can be used to describe the rough contact interface. For
more details see Panagiotopoulos et al. (1992) or Hu et al. (2000). An application is
shown in Section 12.6.3.
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For the formulation of the boundary value problem, we only have to discuss the ad-
ditional terms due to contact in detail. The equations describing the behaviour of the
bodies coming into contact do not change, and can be found in Chapter 2. For the
treatment of different material behaviour like elasto-plasticity or visco-elasticity, see
basic textbooks like Lubliner (1990), Malvern (1969), Maugin (1992) or for algo-
rithms related to plasticity and visco-plasticity in combination with finite elements,
see Simo and Hughes (1998).

Since the finite element method will be applied to solve the resulting nonlinear
boundary value problems, weak formulations have to be developed for contact prob-
lems. The main concern of this chapter is the incorporation of the constraint equations
formulated for frictionless contact in Section 3. 1, and of the interface laws related
to stick and sliding in the contact interface. However, one of the major problems
in contact mechanics in the algorithmic treatment, which is associated with the nu-
merical treatment of contact problems, is the non-differentiability of normal contact
and friction terms. To overcome these difficulties, different formulations have been
developed which are discussed in section 5.3.

5.1 FRICTIONLESS CONTACT IN LINEAR ELASTICITY

As an introduction for contact, a solid with a rigid surface is considered in three-
dimensional linear elasticity. Due to the contact constraints a variational inequality
will appear instead of the standard variational equations known from classical solid
mechanics, see also Section 1. 1.

93
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Due to the fact that the motion of the body is constrained from one side by the
rigid surface, the problem is called a unilateral contact problem. The derivation of the
associated variational formulation is the same as for the example in Section 1. 1. One
only has to use the relevant equations for the linear elastic solid in three dimensions
which are stated in Chapter 2.

In the case of linear elasticity, the equilibrium equation (2.39) is given by

—Div<r = f in B, (5.1)

where er is the stress tensor at a point X in the interior of body B. In linear elasticity
the stress can be computed from the linear strain field e, see (2.27),

1 -r
e(u) = -(Grad u + GradT u) (5.2)

via the classical law of HOOKE, see (2.95);

< r (u )=C[e (u ) ] , (5.3)

with the displacement field u and the elasticity tensor C. Let us assume that the
following conditions hold on the boundary (see also Figure 5.1):

1. Displacement boundary conditions, also called DIRICHLET conditions:

u = 0 on Tu . (5.4)

2. Traction boundary conditions, also called NEUMANN conditions:

<n = t on Tff, (5.5)

rc

PN

Fig. 5.1 : Unilateral contact of an elastic solid.
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where n is the outward normal of the surface of the solid and t denotes the
applied traction on Tff.

3. Contact conditions:

UN — 9 < 0,
PN < 0 on Tc, (5.6)

( UN — g) PN = 0,

with the normal component of the displacement field UN — u • n and the
contact pressure PN which is equivalent with the normal component of the
traction vector PN = t • n.

This boundary value problem which yields the displacement field, includes the in-
equalities related to frictionless contact. It is called SIGNORINI'S problem, see Sig-
norini (1933).

For a finite element solution of this system of equations, one needs the variational
formulation of SIGNORINI'S problem. As usual, one can introduce a space V of
vector-valued, real functions defined on B, e.g. see Kikuchi and Oden (1988). It is
assumed that the test function v (which in most of the engineering literature is called
virtual displacement) fulfils the condition v = 0 on F.u and the contact condition
VN — 9 < 0 Vv G V with VN = v • n. Furthermore, let be u the solution of
SIGNORINI'S problem; then one can state the weak form of (5. 1). This is equivalent
to the virtual work produced by the stresses cr and the virtual strains e(u — v) due
to the virtual displacements u — v, as well as the virtual work stemming from the
external loads and body forces:

j o - - £ ( u – v ) d V = [ f ( u — v ) d V + I t . ( u – v ) d T

B B Ya

r
+ P N ( u ) ( U N — v N ) d T . (5.7)

Here cr = <T(U) is a function of the displacement defined via (5.3) and (5.2). fare the
body forces and t denote the boundary tractions. Note that the term which includes
Tu does not enter, since (u — v) satisfies the boundary conditions, see (5.4). The last
term in (5.7) can be reformulated with (5.6)3 as

PN (UN — vN) = PN (UN — VN + g — 9) = PN (VN – 0) > 0 , (5.8)

where the greater equal sign results from (5.6)1,2; see also the discussion in Section
1.1. With this inequality the solution of the SIGNORINI problem defined by (5.1) to
(5.6) has to fulfil

F f- F -
c r - e ( u — v ) d V > / f • (u — v) dV + I t • (u - v) dT . (5.9)

»/ J J
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Thus a variational inequality, stemming from the contact constraint, characterizes
the solution of SIGNORINI'S problem. This is different from the usual situation in
solid mechanics, where the solutions have to fulfil variational equations. Due to the
inequality constraint on the deformation field the contact problem is nonlinear even in
the case of linear elasticity. Special algorithms have thus to be designed for problem
(5.9).

The variational inequality can be recast in an abstract form, often used in theoretical
and mathematical work regarding contact. In a more general situation, one can also
formulate (5.9) for the contact between two deformable bodies. The analysis then
yields the same structure as is inherent in (5.9); only the domain B = Ur2

=1 Br is
the union of both domains of the contacting bodies. Generally, one then defines the
variational inequality by

a (u ,v—u)>/ (v—u) , (5.10)

with

a(u,v) = f e(u) :<E:£(v)dV, (5.11)
B

/(v) = fb-vdV + t - v d T , (5.12)

B ra

where all quantities are defined by previous relations.
The problem is now stated by: find u € K such that (5.10) is fulfilled for all v € K

with
K = {v e V | (v2 — v1) • n1 + go > 0 on Tc} . (5.13)

where V represents the space of test functions.
The variational inequality (5. 10) is stated here for frictionless contact. The prob-

lem is even more complicated when friction is present. In that case, not only are the
inequality constraints in normal direction present, but there is also a special consti-
tutive behaviour in the tangent direction at the contact interface. This is governed by
sudden changes of the solution states such that the solution jumps from a state of stick
(in which the tangential contact stresses follow as reactions from the stick conditions)
to a state of sliding (in which the tangential stresses are computed from a constitutive
equation, see Section 4.2). This special behaviour leads to even more mathematical
difficulties when questions of existence and uniqueness of frictional contact prob-
lems are addressed. The mathematical structure of the variational inequality (5. 10) is
discussed in detail in, e.g., Duvaut and Lions (1976), Cocu (1984), Panagiotopoulos
(1985), Rabier et al. (1986) or Kikuchi and Oden (1988). The latter reference also
includes a mathematical analysis of the finite element method for contact problems.
Special considerations concerning stability can be found in Klarbring (1988). Fur-
thermore, examples for non-uniqueness or non-existence were discussed in Klarbring
(1990) and Martins et al. (1994).

For dynamic contact problems, existence and uniqueness results can be found in
Martins and Oden (1987), for example.
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5.2 FRICTIONLESS CONTACT IN FINITE DEFORMATIONS PROBLEMS

All the equations needed to formulate the problem have already been discussed in
Chapters 2–4. Here these basic equations are combined to obtain the boundary value
problem for frictionless static contact. For this we formulate the local momentum
equation for each body B7, (r = 1.2) in contact, see also (2.49):

DIV P r + F r = 0 (5.14)

where the inertia terms have been neglected. Pr denotes the first PIOLA—KIRCHHOFF
stress tensor acting in the body 7, and fr = p0

r, br are the body forces. Next we
formulate the boundary conditions for the deformation and the stress field

^ = ^ on rj, (5.15)

tr = tr on (5.16)

where v?r and tr are described quantities. Furthermore, we have to account for the
contact condition which is given by equation (3.6) when the bodies can come into
contact. Together with the condition that no adhesion stresses can occur in the contact
interface, we have from (4.2) the KUHN-—TUCKER- KARUSH conditions for contact:

9N > 0 PN < 0 gN PN = 0 on Tc. (5. 17)

Similar relations hold for the case in which constitutive equations are assumed in
the contact interface Fc, and we can apply the relations defined in Section 4. 1.2. In
the case of frictional contact, the geometric relations derived in Section 3.2 and the
constitutive laws given in Section 4.2 have to be used.

The constitutive equations for each body Br have already been discussed in Section
24. For hyperelastic materials we have in general

Pr = P r ( X r , F r , t ) , (5–18)

for details see equations (2.74). Here we apply the equation as a model for nonlinear
constitutive equations of the solid which is valid for finite elasticity. It leads in the
current configuration to a nonlinear response function for the KIRCHHOFF stress r in
terms of the left CAUCHY—GREEN tensor b = FFT: r = f (b) . The KIRCHHOFF
stress is related to the first PIOLA—KIRCHHOFF stress via T = P FT, with F being the
deformation gradient. The simplest example for hyperelasticity is the Neo-Hookian
model, which can be applied, for example to rubber materials undergoing moderately
large strains

r7 = A 7 ( J a — l ) l + b r ( b r – l ) , (5.19)

with the JACOBIAN of the deformation Jr — detF r. The material parameters for
the bodies BJ are the LAME constants Ar and ur.

Of course, it is possible to use more complicated constitutive relations which can
also be of an inelastic nature. However, in such a case, no energy principle can be
formulated.
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For a numerical solution of the nonlinear boundary value problem summarized
above, we will use the finite element method. Thus we need the weak form of the
local field equations. Again, the weak formulation of contact problems leads to
a variational inequality, see Duvaut and Lions (1976), which is stated in the next
section.

Due to the fact that the constraint condition (5. 1 7) is represented by an inequality,
we also obtain a variational inequality which the solution of the contact problem has
to fulfil. The general form can be written, as derived in Section 5. 1 for the linear case.
as

.T r-grad(t r-^)dV > ]T / P-(nr-^7) dV - I
1 7=1

(5.20)
Here the integration is performed with respect to the domain Br occupied by the
body Br in the reference configuration. The stress tensor and the gradient operator
"grad" are evaluated with respect to the current coordinates. Furthermore, f r denotes
the body force of body Br and tr is the surface traction applied on the boundary of
B"1 The KIRCHHOFF stress r7 is defined in the previous section.

We now have to find the deformation (v?1 . <p2} G K such that (5.20) is fulfilled
for all (n1 ,n2) e K with

K = { (n1 , n2) € V | [ n2 - nl (e ., ?) } • n1 > 0 } . (5.21 )

This formulation holds for arbitrary constitutive equations, including inelastic effects.
If the problem can be described by hyperelastic material law, one can formulate

the frictionless contact problem as follows:

2

n = 53 n7 — > MIN (5.22)
7=1

subject to gN > 0 on Fc .

which defines an optimization problem with inequality constraints. Here the energy
function IP for one body is given by (see also Section 2.3.3)

n7 = f W^(C) dV - ! f 7 • <p7 dV - j V • ^ dA , (5.23)

where W r ( C ) describes the strain energy function of the body Br, which is defined
in Section 2.4.1 in detail.

In the case of finite elasticity, the existence of the solution of (5.22) can be proved,
e.g. see Ciarlet ( 1 988) or Curnier et al. ( 1 992).

REMARK 5.1: Mathematical analysis can be found for some cases of the unilateral contact
undergoing large deflections in Kikuchi and Oden (1988) or Ciarlet (1988), for example. The
linear problem has already been stated in Section 5. 1.
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5.3 TREATMENT OF CONTACT CONSTRAINTS

In this section we shall discuss several different formulations that can be applied to
incorporate the contact constraints into the variational formulation. Here frictionless
as well as frictional contact formulations are derived.

Different possibilities exist for the numerical solution of these problems. Among
them are the so-called active set strategies, which are applied in combination with
LAGRANGE multipliers. Furthermore penalty techniques, e.g. see the text books of
Bertsekas (1984) or Luenberger (1984), can be applied to solve contact problems.
All these methods are well known in optimization theory. Other solution schemes are
based on mathematical programming, e.g. see Conry and Seireg (1971) or Klarbring
(1986), who applied this method to frictional contact problems.

Most standard finite element codes which are able to handle contact problems use
either the penalty or the LAGRANGE multiplier method; for an overview and the
mathematical framework, see Kikuchi and Oden (1988). Each of the methods has its
own advantages and disadvantages, which will be discussed in detail in the following.
The methods are designed to fulfil the constraint equations in the normal direction in
the contact interface. For the tangential part we need in general constitutive relations
when stick/slip motion occurs; associated techniques will be discussed in Chapter 9.

Here we concentrate in general on different possibilities to formulate the contact
conditions. For a more simple representation we assume that the contact interface is
known. This will often be the case later when an active set strategy is employed to
solve the inequality (5.20).

Once the contact interface is known we can write the weak form as an equality.
This means that we know the active set of constraints within an incremental solution
step. Hence, equation (5.20) can be written as

gradrj7 dV — I F • nr dV - I V • nr dA \ + Cc = 0 ,

BI (5.24)
where Cc are contact contributions associated with the active constraint set. nr € V
is the so-called test function or virtual displacement, which is zero at the boundary
FJ where the deformations are prescribed.

In the case of hyperelastic materials, the starting point to derive equation (5.24) is
the minimization of the total energy of the two bodies in contact (see Section 2.3.3)

dv – F • 07 dv – r • 07 dA + IIc => MIN

(5.25)
where Wr(C) is the strain energy related to body Br, which is discussed in detail in
Section 2.4.1. <£>7 denotes the deformation of both bodies. The contributions due to
the contact constraints are enclosed in IIC. Note that this formulation is only valid for
contact problems which do not include frictional sliding, since the friction process is
dissipative and hence the solution becomes path-dependent.
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For two bodies in contact we obtain the weak form or the energy related to the
interface by assuming that contact is active at the surface Fc. Several different variants
for the formulation of IIC and Cc are discussed below:

1. The LAGRANGE multiplier method.

2. The penalty method.

3. The method of direct elimination of the geometrical contact constraints.

4. The formulation of constitutive equations in the contact interface.

5. The NITSCHE method, which enforces geometrical constraints in a weak sense.

6. The perturbed LAGRANGE formulation which combines (1) and (2) in a mixed
form.

7. The barrier method.

8. The augmented LAGRANGE method.

9. The cross-constraint method which combines the penalty and barrier methods.

This large variety of formulations also reflects the large number of different algorithms
which have so far been developed to solve contact problems; see also Section 9.3.

Let us note that thermo-mechanical coupling, which is described in Chapter 10, can
be formulated without particular problem using the above-mentioned formulations of
the constraint terms. This is related to the fact that, independent from the method used,
one has to compute the contact pressure and the distance between the mean planes
of the rough contact surfaces from the normal constitutive law. Such evaluations are
not influenced by the strategy adopted to solve the normal contact. However, not all
strategies described below will turn out to be efficient for thermo-mechanical contact
problems (see Chapter 10).

5.3.1 Lagrange multiplier method

A classical method is the use of LAGRANGE multipliers to add constraints to a weak
form. We then formulate for the contact contribution IIC as

nc
LM = (\NgN + X T g T ) d A , (5.26)

rc

where XN and AT are the LAGRANGE multiplier. gN and gT are the normal and
tangential gap functions. The variation of IIC then leads to the constraint formulation

C™ = j (\N 6gN + \T • SgT) dA + (6\N gN + gT • gT) dA. (5.27)

rc rc
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The first integral is associated with the virtual work of the LAGRANGE multipliers
along the variation of the gap functions in normal and tangential directions. The sec-
ond integral describes the enforcement of the constraints. Note that the LAGRANGE
multiplier N can be identified as the contact pressure PN- $gN is the variation of
the normal gap, which is discussed in detail in Section 3.3. The terms AT • gT and
^•Vr • gT are associated with the tangential stick. A slip motion due to friction needs
further consideration. In the case of pure stick the relative tangential slip gT is zero,
which yields a constraint equation from which AT follows as a reaction. In the case
of sliding, a tangential stress vector IT is determined from the constitutive law for
frictional slip (see Section4.2) and thus we should instead write Ay^gr —> ty <5gT,
leading to

,. f f
Cf"'p = I (\N SgN + IT • <%T }dA+ I S\N 9N dA. (5.28)

rc rc

Again, the variation of the tangential slip can be found in Section 3.3. The LA-
GRANGE multiplier formulation is also the basis for the so-called mortar method
used for connection of different non-matching meshes in the domain decomposition
approaches for parallel computing.

REMARK 5.2: When only stick occurs in the contact interface, then we do not have to
distinguish between the normal and tangential directions in the contact interface. Thus the
constraint condition is given directly in terms of the deformation at the slave point; see the
minimum distance problem (3.2)

x2 - x1 () = x2 - x1 = 0 . (5.29)

With this, we obtain a simple expression for the contact contribution:

C^M = I \-(rf - f ) l ) d A + f SX- [x2 -x:(|)] dA. (5.30)
J J
rc rc

Note that the tangential component \]a 6£a, which occurs when taking the variation of x1, can
be neglected in (5.30), since the point x2 sticks at position £, hence the corrective coordinates
£a do not change.

5.3.2 Penalty method

In this formulation a penalty term due to the constraint condition (3.7) is added to II
in (5.25) as follows:

- / (5.31)

CAT and eT represent the penalty parameters. The penalty term Ilf is only added for
active constraints which are defined by the penetration function g^, see (3.7), and
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has to be formulated for normal and tangential contacts, the latter in the case of stick.
The variation of (5.3 1 ) yields

= (5.32)

It can be shown, e.g. see Luenberger (1984), that the solution of the LAGRANGE
multiplier method is recovered from this formulation for CAT — > oo and CT ->• oo;
however, large numbers for CN and CT will lead to an ill-conditioned numerical
problem. As in the LAGRANGE multiplier method, we have to distinguish between
pure stick in the contact interface which yields (5.32), and the slip condition which
leads to

C8
c
lip = I (CN 9N $9N + tr • <*gT ) *A ., eN > 0 . (5.33)

rc

In the latter equation, one of the frictional laws from Section 4.2 has to be applied.

REMARK 5.3: When only stick occurs in the contact interface, then one does not need to
distinguish between the normal and tangential directions and hence can proceed as in REMARK
5.2. In such a case we can choose equal penalty parameters for all directions c = e.v = er-
With this and the constraint equation (5.29), the penalty term yields a simple expression for
the contact contribution

Cstick = e ( x2 _ -!

Again, the tangential component of the variation XX
Q S£a can be neglected (see Section 3.3.2),

since the point sticks at position £, and hence the convective coordinates £a do not change.
For application and for comparison of this formulation to the standard approach, see Section
8.2.

REMARK 5.4: Due to the fact that a high penalty parameter leads to an ill-conditioned
problem, one is restricted in the choice of the penalty parameter for a given problem. The
choice of the penalty parameter affects the solution in different ways. First the constraint
equation is only fulfilled approximately. This of course also results in a deformation field ipf,
which differs from the exact displacement field (f>. One has to show that

H^-^l l— X)

for € — > oc (for details, see e.g. Kikuchi and Oden (1988)). However, in practice a value for e
has to be chosen such that ill-conditioning of the overall system of equations is avoided. In that
case we have to live with the approximate solution y?e. In the case of a structure loaded only
by surface tractions and body forces (see Figure 5.1) this affects only the displacement field
since the loads are transferred through the contact surface by equilibrium, and hence the stress
field is not disturbed too much when compared to the solution with an exact enforcement of
the constraint equations. This situation changes when the structure is loaded by displacement
boundary conditions (see Figure 5.2). In this case, the reactions and stresses depend upon the
prescribed displacements. As an example, we consider the simple truss structure consisting
of two bars of equal length I and equal axial stiffness EA. The system is fixed at the right
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7|2ul

M M »•!
I I

F/flf. 5.2 System loaded by prescribed displacement u.

side and loaded by a prescribed displacement u at the left side (see Figure 5.2). The initial
gap between both bars is assumed to be zero. The contact constraint in this case is given by
(u\ — u?) < 0. The formulation of the problem using the penalty method leads to the matrix
system

" "" +eEA
I

—e

with the solution

77j£ normal force in the left bar is then given by

„ EA, i _, £A /i + ff
M2 - M J = EA - 1 \ U

(5.35)

(5.36)

(5.37)

T/ze limiting cases for e —> 0 and e —> oc can be deduced from (5.37), which yields e —>
0 : N —>• 0 and e —> ex: : N —>• — 5, which is equivalent to the exact enforcement of the
constraint.

2000 4000 6000 8000 10000

F/gf. 5.3 Solution dependency of normal force on the penalty parameter.
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Table 5.1 Deviation of normal force from exact solution

e/EA

1
10

100
1000

N

-3.333
-4.762
-4.975
-4.998

Deviation %

33.33
4.76
0.50
0.04

The normal force N is plotted in Figure 5.3 for different values of the penalty parameter
e when we use for the data EA = 1000, I = 1 and u = 0.01. Observe that low penalty
parameters lead to a large deviation of the normal force from that obtained by the exact
enforcement of the gap condition. This effect is also is shown in Table 5.7.

Note that even in this simple example, one needs a penalty number which is at least 100 times
EA to have a good approximation of the normal force in the bars. Due to this observation, it is
clear that one has to adjust the penalty parameter infinite element approximations of contact
problems. With refined meshes and hence better finite element approximations of the solution
field, the error due to a too small penalty parameter also has to be reduced. This leads to a
choice of the penalty parameter as a function of the mesh size.

5.3.3 Direct constraint elimination

The constraint equations (3.6), (3.13) or (3.14) can be enforced directly in the case
of contact. This leads to a coupling in the virtual work expression (5.24) or in the
total energy (5.25). The number of unknowns thus reduces. However, an efficient
enforcement of the constraint depends heavily upon the discretization. Basically, one
could formulate the inequality constraint (3.6) as an equality constraint

pN = (x 2 -x 1 ) -n 1 =0,

which yields

x2 • n1 = x1 - n1 — > ( X2 + u2 ) • n1 - ( X1 + u1 ) - n1 (5.38)

for the current coordinates and the displacements. This local elimination works well
for node-to-node contact elements, but not for arbitrary discretizations. In such a
case, the point of departure is the LAGRANGE multiplier method. Using

j 8\N 9N dT = t 8\N (x2 - x1) • n1 dT

rc rc

one can project the constraints

t 6\N x2 - n1^ = [ 6XN x1 • n1 oT , (5.39)

rc rc
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and apply this equation to eliminate the unknowns on one side of the contact interface
Fc. Here the choice of the interpolation for the LAGRANGE multiplier is essential for
a stable method. Such methods are discussed in more detail in Section 7.4.2. In total,
the direct elimination of the constraints reduces the problem size by all degrees of
freedoms which are associated with the unknowns on one side of the contact interface
rc. Note that the elimination can be performed so that the positive definite structure
of (5.25) is not destroyed.

5.3.4 Constitutive equation in the interface

In this case the constitutive equations which have been discussed in Sections 4.1 and
4.2 will be applied for the determination of PN and ty. Hence, we do not add a
constraint equation as in the case of the LAGRANGE multiplier or penalty method.
The contact term to be used in the functional (5.24) when the constraint is active is
then given by

Cc= I (PN SgN + tT • <5gT) dA . (5.40)

rc

One can easily see that the introduction of the constitutive equation for the normal
pressure (4.12) can be interpreted as a nonlinear penalty functional for the normal
contact. The standard penalty method can be recovered from relation (4.12) using
n = 1. However, such a choice would be artificial, since the usual range of the
constitutive parameter n, stemming from experiments, is in the range 2 < n < 3.33.

REMARK 5.5: Due to the fact that the constitutive laws which have to be applied for PN in
(5.40) represent very stiff nonlinear springs in the contact interface, the use of this formulation
within the finite element method often leads to ill-conditioned systems of equations. Hence,
methods like the augmented LAGRANGE approach (see Section 5.3.8) are needed to avoid this
numerical problem.

5.3.5 Nitsche method

Another formulation which can be applied to enforce the contact constraints was
derived in Nitsche (1970) and applied within domain decomposition methods with
non-matching grids in Becker and Hansbo (1999). It is based on a different concept in
which, instead of the LAGRANGE multipliers, the stress vector in the contact interface
is computed from the stress field of the bodies. This leads to another set of boundary
terms, which are stated here for the frictionless contact of two bodies:

nf - - I \(P1
N + P*N] 9N dA +\jtN [.9Ar]2 dA, (5.41)

rc rc

where the superscript of the contact pressure p^N is associated with the body B. Note
that in this case, a contribution from both bodies enters the formulation in a mean
sense. The last term in (5.41) represents the standard penalty term of Section 5.3.2. It
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is included only to avoid ill-conditioning of the global equation system resulting from
this formulation. However, since this formulation enforces the constraint exactly, the
penalty term is not active, and hence the solution, contrary to the penalty method,
does not depend on the penalty parameter N, which will be shown in Section 5.4 by
means of an example.

The contact stresses p^N in (5.41) are defined in terms of the displacement field,
which for linear elasticity with CAUCHY'S theorem (2.40) leads to

p^f = t7 n7 = n1 <r(u7) n7 = n7 -<D7[e(u7)] n7 = N7 • Vsu7 , (5.42)

where the last term was introduced to shorten the notation (the structure of the sym-
metrical displacement gradient Vsu is defined in (2.62), and the structure of N7

c will
be defined in Section 7.4.3). The variation of (5.41) can be computed, which yields

C" = - I -(5pN+5p2
N ) g N d A - I -(pl

N +p2
N ) 6gNdA + I CNgN 6gNdA

rc rc rc
(5.43)

with
6p^ = n* -<C7[e(777)] n7 = N? • V V , (5.44)

where rf is the variation related to body Br. Combining (5.42) to (5.44), one finally
obtains

rc

rc

, I -r -,,
' / CAT 9w uQw dA ,

rc

which shows that the NITSCHE method yields a formulation which only depends
upon the primary displacement variables.

A similar formulation can also be stated for the stick case, leading with (5.30) to

/V /" 1, 1 9x , 9 1 x /" , 9 1 v , 9 1 x , .TT/V __ i _ / ji _j_ |2 \ _ / ^2 \l \ dA + / e (x x i • (x x ) d 4 (5 46)
c J 1 J

rc rc

Again, the stress vector (traction vector) tr is computed via CAUCHY'S theorem:

tr = o(u7) n7 =C7[e(u7)] n7 . (5.47)

The variation yields

C? = -J±(6t1+6t>).(x2-x1)dA-J±(tl+tt)-(T,*-nl)dA

rc rc

(x2 - x1) • (rf - f t 1 ) dA, (5.48)

rc
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with the variation of the traction vector

5t7 = cr(r/7) n7 = C7 [e(^7)] n7 . (5.49)

In contrast to the LAGRANGE multiplier method, one does not need to introduce
additional variables, since the stresses have to be inserted into (5.46) or (5.48) using
(5. 47) and (5. 49).

In the nonlinear case the NITSCHE method becomes more complex, since the
variations of the tractions depend upon the type of constitutive equations used to
model the solid. They are thus more difficult to compute than the variations of the
LAGRANGE multipliers in Section 5.3.1.

5.3.6 Perturbed Lagrange formulation

This special formulation can be used to combine both penalty and LAGRANGE mul-
tiplier methods in a mixed formulation, e.g. see Oden (1981) or Simo et al. (1985).
In this case, the following functional can be formulated for two solids coming into
contact:

2
nPL = ]T nQ + nfL , (5.50)

a=l

where ]Ta Ea defines the total energy of the two bodies and II PL is the energy
related to the contact interface. In detail, the last term in (5.50) is given by

\N9N - - A j r + A T - g T - — A T - A T dT . (5.51)

Here the LAGRANGE multiplier term is regularized by the second term in the integral,
which can be viewed as the complementary energy due to the LAGRANGE multiplier.
The variation leads to

/
r / i
A AT $9N + #A./v I 9N -- A A?

I \ €N
rc

+AT • <%T + <$AT • ( gT - — AT J dT . (5.52)
V CT )\

The first and third terms are again associated with the LAGRANGE multiplier formula-
tion, whereas the second and fourth terms yield the "constitutive laws": AJV = CN 9N
and AT = CT gT if evaluated locally. If we insert this result for AJV in the first term of
(5.52), we obtain the standard penalty formulation (5.33). Letting e^ — > oo yields
the classical LAGRANGE multiplier method. However, this formulation is only valid
for the frictionless and the stick cases. In the case of sliding, we have to use an
incremental constitutive equation like COULOMB'S law which cannot be stated in the
form of a complementary energy. In this case one has to use either the LAGRANGE
multiplier or the penalty method.
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We note that equation (5.52) can also be a starting point for special mixed formu-
lations (e.g. in finite element formulations when different interpolation functions are
used for the LAGRANGE multiplier and the displacement field; this is described in
more detail in Chapter 7).

5.3.7 Barrier method

Another technique for problems with inequality constraints is the so-called barrier
method. It adds a constraint functional of the type

H = CjV b(9N+}dT (5.53)

rc

to equation (5.50), which is always active for all possible contact nodes. By g^+
we denote that in this method there are no values of gN allowed which violate (3.6).
The value eN > 0 is the so-called barrier parameter, which has to be chosen in an
appropriate way or changed within the algorithmic treatment of the contact problem.
The barrier function b can be chosen as

b(9N) = ~— or (5.54)
9N

b(9N) = -ln[min{l,-0N}]. (5.55)

The second function is not differentiable because of the expression min{l , — QN+}-
However, one can show that the differentiable function b( g^+ ) = — In [— gN+] also
leads to convergence. Due to the construction of the constraint functional, the solution
always has to stay in the feasible region, which means that no penetration is allowed
in any intermediate iteration step. To ensure this special safeguard algorithms are
needed, e.g. see Bazaraa et al. (1993). The variation of (5.53) yields, for the function
(5.54),

Cf= / ^ - S g f f d T . (5.56)
J 9n
rc

The advantage of this method is that all constraints are always active, and no on-and-
off switch has to be applied to distinguish between active and passive constraints,
as in the LAGRANGE multiplier or penalty methods. A drawback, however, is that
one has to find a feasible starting point which fulfils all constraints. Furthermore,
ill-conditioning as in the penalty method can occur. The barrier method is, due to
these drawbacks, not used very much in computational contact mechanics. However,
there is some recent success in using barrier methods in combination with augmented
LAGRANGE techniques, see Kloosterman et al. (2001). In this work the inequality
constraints gN > 0 are enforced based on the term

Hf = -eN f
J

(5.57)

where A > 0 is the fixed LAGRANGE multiplier and N > 0 the barrier parameter.
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5.3.8 Augmented Lagrange methods

Another method to regularize the non-differentiable normal contact and friction terms
is provided by the augmented LAGRANGE formulation. This technique has been con-
sidered extensively within the context of incompressibility constraints in ,for example,
Glowinski and Le Tallec (1984), and was also applied to contact problems for fric-
tionless contact in Wriggers et al. (1985) and Kikuchi and Oden (1988). Recently, this
approach has been extended successfully to large displacement contact problems in-
cluding friction, see Alart and Curnier (1991) or Laursen and Simo (1993a). The main
idea is to combine either the penalty method or the constitutive interface laws with
LAGRANGE multiplier methods. The augmented LAGRANGE formulation yields a
Cl-differentiable saddle point functional which is described in detail in Pietrzak and
Curnier (1999). In that paper the following augmented LAGRANGE functional is
introduced for normal contact:

nAM ,
N — <

ON + -y 92N) dT for XN < 0.

XN
 2 (IT for XN > 0,

(5.58)

with AJV = AN + EN 9N • The structure of this functional is such that it holds not only
for AJV < 0, but also for XN > 0, where the latter case means that the gap is open.
The variation of (5.58) yields

CAM _
N —

+ dT for AJV < 0.

dT for XN > 0.
(5.59)

In the same way, a similar formulation can be formulated for the classical COULOMB
law. For this purpose we introduce the increment of the relative tangential movement

•-a
by gT = £ a^ dt and the augmented LAGRANGE multiplier AT = AT + ergT.
Using these definitions we can write the following functional, see Pietrzak and Curnier
(1999), for the state of contact (XN < 0):

rtAM __ Jll-r = <

/ - gT ~ gT • gT • ) dT for ||AT|| <

1

2^
||AT||2 - 2ppN \\XT\\ + (//PAT)* dT for ||AT|| >

(5.60)
where fj, is the friction coefficient and PN is the augmented normal contact pressure.
For the state of no contact (Aw > 0), we have analogous to (5.58) the following
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functional:

V A T . (5.61)

Thus the functional also holds in the case of gap opening. This results from a pro-
longation of COULOMB'S cone for positive values of the augmented normal contact
pressure. Note that the functional is continuous at AW = 0 and || AT|| = HPN, which
also ensures that the combined functional (5.25) is globally continuous. The variation
of (5.60) and (5.61) for a closed gap (A/v < 0) yields

XT-6gT-^[\T-^^-}-6XT\dr., | |AT | |>/1PN,
||AT|| er ||Ar|| J

(5.62)
and for the open gap (Ajv > 0)

C4M = / A T - A T ^ T , V AT- (5.63)

A major problem associated with the numerical treatment of the penalty method
and the contact interface laws is the ill-conditioning which arises when the penalty
parameters e^v, eT or the stiffness due to constitutive interface laws are combined with
the stiffness of the bodies within the finite element formulation. A standard method
to overcome the problem of ill-conditioning is based on the augmented LAGRANGE
technique, well known in optimization theory. A simplified variant of (5.58) and
(5.60) is provided by a special assumption put on the LAGRANGE multipliers. This
leads to a double loop algorithm in which the LAGRANGE multiplier \N is held
constant during an iteration loop to solve the weak form in the inner loop. Then
within an outer loop the LAGRANGE multiplier is updated to a new value (see Section
9.3.5). This procedure is known as the USZAWA algorithm.

The formulation leading to the USZAWA algorithm can be derived from the above
equations by keeping the LAGRANGE multipliers constant. Here we shall state the
result only for the frictionless case, which leads to the following contact contribution
in the weak form:

CU
N

Z = j (\N + CAT 9N )6gNdT. (5.64)

rc

Since N is unknown, an update procedure for the LAGRANGE multiplier has to be
constructed within an iteration loop. The simplest update is

^Nnew — AWOM + CN 9NnfW •. (5.65)

which is only of first order accuracy. For other possibilities, see Bertsekas (1984),
for example.
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If constitutive equations are used in the contact interface, Wriggers and Zavarise
(1993a) have developed a special update which fulfils the nonlinear interface law by
the update of the LAGRANGE multiplier \N. For this formulation the geometrical
relation (4.9) has to be adopted. This leads to a reformulation of (5.64)

CNZC = I ( \N + CN [ 9N - C + d (pN) } ) 6gN dT . (5.66)
J

rc

Now the update formula is given by

PNnew = PNold + CN [ 9Nnew - C + d (pNold ) ] , (5.67)

where { ..}old are the known quantities from the previous state. Due to the appearance
of a nonlinear function, the update is related, but different, to the standard update
procedure for the LAGRANGE multipliers, see equation (5.65).

5.3.9 Cross-constraint method

A relatively new method for the solution of contact problems which is a modification
of standard strategies will be presented in this section. Here the idea is to satisfy
the contact constraints by a nonlinear, smooth change of contact stiffness around the
solution. Thus the adopted approach leads to an iterative method which does not
depict numerical instabilities within the solution search process. This fact permits us
to achieve a better convergence rate with respect to standard methods.

The cross-constraint method, whose basic philosophy is outlined in Zavarise and
Wriggers (1996), adopts smooth analytical functions to represent the nonlinear be-
haviour in contact processes. The method can be used to solve contact problems with
constraint equations (3.1), or those based on introducing constitutive laws for contact
surfaces. In the latter case, the formulation permits us to deal with problems where
high precision of the calculated approach is required. To achieve this, the cross-
constraint method has to be enhanced by using as a limit function a stress-penetration
relationship which is constructed on physical bases.

As in the previous sections, the mechanical contact problem is solved by a modi-
fication of the unconstrained potential H((f>)

Ii(<p) + Pi [g((p]] -> extremum , (5.68)

where <?(<£>) < 0 represents the constraint functions set. Standard penalty (P), LA-
GRANGE multiplier (LM), barrier method (B) (see Section 5.3.7) and the new cross-
constraint method (CC) can be obtained by suitable particularizations of Pi
The characteristics of the modification functions are summarized as follows:

pj,(Q) - 0 - 1 P|(0) = unknown (5'69)

B ~B = CC= (5'70)
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where Pi is the modification of the unconstrained potential II and the derivative P[ is
related to the contact force. In the case of the penalty method, a parabolic function is
added; the LAGRANGE multiplier method adds a linear function but introduces new
variables, i.e. the contact forces, and the barrier method adds an hyperbolic function.
Finally, the proposed method adds a function, smooth over the entire domain, which
presents nonzero, finite values at the constraint limit. Both traditional penalty and
barrier methods can be obtained as limit cases of the proposed technique. Exponential
functions of the type

pi (F \
Pc = -^-exp \-£9N\ (5.71)

K \K /

have been successfully used in Zavarise and Wriggers (1996). All methods produce a
shift of the minimum from the unconstrained point to a zone close to the constrained
solution point. The proposed method does not take limit values at the constraint
limit, but takes finite nonzero values, both for the potential and for the contact forces.
Moreover, it does not introduce additional variables.

Values of the cross-constraint method in the satisfaction of constraint equations
are between those for the penalty and barrier methods. The values of F and K
have to be changed according to the characteristics of the problem to obtain a good
approximation for #(x) = 0. An iterative procedure can be designed to fulfil this
condition up to a specified tolerance.

The cross-constraint function (5.71) is close to zero when the gap is open (g > 0);
this minimizes the disturbance of the solution. Furthermore, (5.71) also presents
a smooth transition around the constraints limit. Numerical tests have shown that
the employment of (5.71) yields a contact algorithm which performs well from the
numerical point of view.

If we also want to take into account the physics of the problem, i.e. the microme-
chanics of the contact interface, we have to consider a relationship based on the
microscopical roughness of the contacting surfaces, and determine a pressure versus
mean-plane-distance law. This can be done using constitutive equations for contact,
see Section 4.1.2.

The basic consideration to replace the analytical function (5.71) with a contact
constitutive law is related to the fact that the shape of such a law poses all the charac-
teristics required. The law we use here is based on the microscopical characterization
of the contacting surfaces and a hypothesis of the plastic behaviour of contacting
asperities. Suitable adaptation of the relationship to obtain a form useful for finite
element computations is derived in Zavarise et al. (1992b). The requested contact
law is given by

pN = ASNCe^NE(S-9N> \=f(A,9N), (5.72)

where SNC and SNE are two constants which contain a suitable combination of the
statistical parameters that characterize the contacting surfaces. A is the contact area,
£ is the initial distance of the surfaces and gN denotes the surface approach.

This relationship represents an implicit nonlinear dependence of exponential type
on the contact force and the mean plane distance. The adoption of such a constitu-
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tive law as a limit function of the cross-constraints method keeps the efficiency and
stability of the method and adds also physical insight. This fact will be even more
important when considering frictional or thermal contact behaviour. The law can be
used within the range of physically reasonable values of the contact pressure. Nu-
merical computations may require an extension in the range of high pressure, which
can occur during the iterative solution process. In this case, the extension can be
designed by a linear function with C1 -continuity.

The contact problem is then defined by

6gN dT = 0 , (5.73)

which is solved by iterative (NEWTON-type) methods. Due to the continuity of the
function around the constraint limit, typical numerical instabilities that may take place
when the solution jumps between two states, one characterized by g^ > 0, and the
other characterized by QN = 0, are avoided. Hence the contact law represents a
regularization of the non-smoothness of the standard contact formulation.

5.4 COMPARISON OF DIFFERENT METHODS

We shall illustrate the basic features of methods which lead to a linear system of
equations for a given set of active constraints. These are the LAGRANGE multiplier,
the penalty, the direct elimination and the NITSCHE formulations, which are presented
by means of a simple example. Furthermore, the different methods are compared with
respect to the accuracy of the solutions.

Let us consider the two trusses depicted in Figure 5.4. The length of the left truss
is 31, its axial stiffness EA /l. It is discretized by three truss elements with linear
shape functions. The right truss has an axial stiffness of 2 EA / / and a length of l.
Both trusses are clamped at the ends. The left truss is loaded by a point load F. When
the load increases, the initial gap g between the two trusses closes at a certain value.
This value can be computed from the equation system of the unconstrained system
which already includes the boundary conditions at the left and right end of the bar

1-*-

F _•H 9 H«-

31 I

Fig. 5.4 Truss structure with initial gap.
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system (v{ = v% = 0),

Kn u = f
EA

I

r 2 -i o 01
-1 2 -10
0 - 1 1 0

L 0 0 0 2J

The solution can be expressed in closed form

(5.74)

UT =
Fl
EA

The force to close an assumed gap of g = 0.01 / follows from 2 Fl / EA = 0.01 / as
F — irf • Once me SaP *s closed, we have to formulate the constraint problem by
using one of the methods described in the previous sections.

For all methods used to enforce the contact constraint, we have to formulate the
gap condition and its variation. Since the x-direction is also the normal direction,
from the general formula (3.6) for the gap, we obtain

gN =g-(u\-ul)

and for the variation

(5.75)

(5.76)

In this special case we have only one point in the system (see Figure 5.4) where contact
occurs. Hence for some methods to enforce the constraints we can solve two linear
problems. One which was already defined in (5.74) is related to the unconstrained
problem. The other is associated with the enforcement of the contact constraint con-
dition. For the LAGRANGE multiplier formulation or the penalty method we can
then set up a linear system of equations which directly gives the solution. This is
not possible for the barrier or the augmented LAGRANGE methods, since in these
approaches either a nonlinear constraint is present or an iteration has to be used. In
these cases, a nonlinear system of equations can be formulated and solved iteratively.

Lagrange multiplier method. Using formulation (5.27) one has to add for the
LAGRANGE multiplier approach the terms \N 6gN+6\K g^, which with the explicit
forms the gap function and its variation (5.75) and (5.76) yields the following system
of equations KLM ULM — fiM- This can be written explicitly as

2 I
EA

I
0
0
0

EA
I

2—/
EA

I
0

0

0
EA

I
EA

I
0

-1

0

0

0

2~7~
1

o •
0
-1
1
0 .

<

,1 >» 0
F
0
0
-9

(5.77)

Here we used the fact that the displacements are zero in the first step of the contact
algorithm. Since the problem is geometrically linear, in (5.77) we can use on the right
hand side instead of the gap gx as given in (5.75) just the initial gap g.
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The solution of LAGRANGE multiplier formulation (5.77) can be stated in closed
form as

ULM — 7EA

2 EAg + 3FI
3EAg + Fl

(~EAg + 2 F l ) / 2
(EA (-EAg + 2Fl] / I)

(5.78)

where the last term represents the LAGRANGE multiplier or the reaction force in the
contact interface.

Penalty method. In the case of the penalty method, the constraint is added by
f-N 9N $9N, which leads with (5.75) and (5.76) to the system of equations Kp UP =
fp, or explicitly to

EA EA
I

EA

n EA
o r

0 0

0
EA

I

-CN

0

0

u

0
F

(5.79)

Again, it is possible to find a closed form solution for the linear system of equations.
For the variable u\ we obtain, for example,

2 (3 EAleN g + 2 EAFl + tN Fl2

(5.80)

As discussed in Section 5.3.2, ejv —> oo the penalty solution approaches for the
solution for u\ in (5.78) of the LAGRANGE multiplier method, which can be easily
verified using (5.80).

The displacement u\ is plotted in Figure 5.5 for different values of F when we
select EA — 1000, l = 1 and g = 0.01 for the data. One can see in Figure 5.5 that

0.02

0.015

0.005

no contact
• •+ ' f = 103

-a- c = 104

-o- LM

10 15 20

Fig. 5.5 Comparison of LAGRANGE and penalty methods.
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the stiffness of the system changes once the gap closes for F = 5. The solution using
the penalty method approaches the LAGRANGE Multiplier (LM) solution for large
values of CN, which can be observed from the solutions for eyv = 103 and 104.

It is also clear that the penalty solution is only an approximation of the correct
enforcement of the constraint condition obtained by the LAGRANGE multiplier ap-
proach. It has been shown above that the penalty method yields in the limit CAT —> oc
the exact solution. However, in real computational applications it is not possible to
use very large penalty parameters, since these lead to an ill-conditioning of the system
of equations (5.79), hence the UZAWA scheme related to the augmented LAGRANGE
multiplier method can be applied to improve the solution for a given penalty param-
eter EN. We will not formulate the iterative scheme for the truss structure here, since
this is done in Section 9.3.5.

Direct elimination method. This method was described in (5.3.3) and is based on
the fact that the constraint (5.75) is enforced directly. For this purpose, we construct
a projection matrix P which reduces the displacement variables appearing in the
constraint (5.75) by one

u =
u\
u\
«i

1 0 0 0
0 1 0 0
0 0 1 - 1

= Pu-g. (5.81)

This projection, without g, is also valid for the variations. Hence the matrix system
(5.74) of the unconstraint problem can be pre- and post-multiplied by P, leading to
the reduced system

TKE u = PK0 P u = Pf + g..

or in explicit form,

EA
~T

2 - 1 0
-1 2 -1
0 - 1 3

(5.82)

(5.83)

Note that the symmetric structure of the stiffness matrix is not destroyed. The solution
of this equation system yields

(5.84)2EAg + 3FI

which is equivalent to (5.78). The displacement u\ which was eliminated can be
computed from the constraint equation (5.75)
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which is the exact value also given in ULM • The contact force corresponds to the nor-
mal force in the elements adjacent to the gap (see also next section). More generally,
one can compute AW from (5.77) once the displacements are known. By decomposing
this equation system in

KQu+CXN = f with CT = { 0 , 0 , -1,1)
CTu = -9,

one can solve the first equation for AAT once v is known. By pre-multiplying with
CT this leads to

CTC\N = CTf~CTK0u, (5.85)
rrt _ t

where ti is the same as in (5.74). The multiplication with C is necessary since C~~
does not exist. For this example, we have C C = 2, C f — 0, and hence

EA
r 2 -i

-1 2
0 -1

L 0 0

01
0
0
2J

which is also the result stated in (5.78) for the LAGRANGE multiplier.

Nitsche method. When the NITSCHE method described in Section 5.3.5 is applied
to the problem defined in Figure 5.4, one has to formulate the constraint conditions
via equation (5.43). In this equation the contact pressure pN has to be inserted, which
is computed from (5.44). For the problem at hand, the contact pressure is represented
by the normal force. Hence one has to compute the normal force in the elements
adjacent to the gap

EA
and

2E 4
(0 (5.87)

With this result and the explicit expressions for the gap (5.75) and its variation (5.75),
equation (5.43) can be formulated as

Cv - -T
1 EA
2 /
1 EA

u\ - 2

(8u\ -8u\-18u\ }(u\-u\- g
t,
(u\ -u{ - g}(8u\ -8u\).

This leads to the system of equations KN UN — fjv, or explicitly to

0

(5.88)

,EA
I

EA

0
0

EA
I

EA

EA

EA
21

0
EA
11

EA
'21

f-N
SEA~

(5.89)
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which has the solution

f(2EAg
2 I 2EAg ,_

UN = YEA\ 3EAg + Fl (5

((-EAg + 2Fl)/2

Note that in this solution, the penalty parameter eyv does not occur, which means
that (5.90) is independent of e^. This is due to the fact that the first two constraint
equations in (5.88) lead to an exact enforcement of the contact constraint (5.75).
Hence, the penalty stabilization is not needed here. However, for large equation
systems it is necessary to add the stabilization, since zeros occur in the diagonals of
the stiffness matrix, see (5.89) for e^ = 0. The contact stress can now be computed
from the normal force (5.87)

(5.91)

which is exactly the same result as was obtained for the LAGRANGE multiplier in
(5.78).

5.5 LINEARIZATION OF THE CONTACT CONTRIBUTIONS

For an iterative solution of the nonlinear equation system associated with the weak
form (5.24) and the various contact terms described above, different methods can be
applied. A fast and reliable method is the NEWTON scheme, which is available in
several variants to improve the global convergence properties of the method. These
formulations rely on a linearization of the weak form. For the solids the linearizations
were already derived in Sections 6.2.2 and 6.2.4. Thus, we can concentrate here on
the linearization of the contact contributions.

As has been shown above, these have a different structure. However, the main
ingredients are the same, and we will write here a general form of the contact con-
tribution to see which terms need a detailed derivation for the linearization. For this
purpose we distinguish between the normal and tangential contact terms in (5.24).
Based on this we can write

- / CN( ATV , 9N , &^N , &9N )dT + I CT( XT

rc
(5.92)

where CN and CT are functions of variations and variables, e.g. in the case of fric-
tionless contact within the LAGRANGE multiplier method (see Section 5.3.1),

+ N 9N

or for the penalty method (see Section 5.3.2),

CN = CN 9N &9N •
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Note that, due to the geometrical nonlinearity of the finite deformation problem, the
variations SgN and SgT also contribute to the linearization, often resulting in very
complex terms, see below (this is of course not the case when geometrically linear
problems are formulated). On the contrary, the linearization of the LAGRANGE
parameters AN and AT is zero. However, the variation of the tangential contributions
is more involved, since one has to distinguish between the stick and the slip case
in frictional contact. This is denoted by the dependence on the contact pressure pN

which occurs in the friction law.

5.5.1 Normal contact

The linearization of CAT can be computed from

. . .
+ ApN + j-- Afyyv , (5.93)

on a AN 09 N obgN

where the differentiation with respect to N has been neglected, since this term is
zero. For the LAGRANGE multiplier method we now have

dcN dcN dcN= ogN , - — = $AN and

In the same way, the penalty method yields

dcN dcN dcN—— = 0 , - — = €N dgN and — — = eN gNoAN dgN

Now we have to compute linearizations A#TV and Adg N in terms of the displacement
fields of both bodies in contact. The linearization of A<?JV has the same structure as
the variation of gN. Hence with (3.29), by exchanging rja by Aua, we obtain

A<MT = [ Au2 - Au1 (? , f ) ] • n1 (f1 , f ) . (5.94)

The linearization of the gap in the normal direction A(<5<?/v) has to be computed from
the full variation (3.28), since terms which are zero in (3.28) (see Section 3.3) can
also contribute to the tangent. We start with (3.6) from

x2 - x1 = x2 - x1 (f , I2) = 9N n1 , (5.95)

and obtain the variation in a way which can be used to compute

r/2 - f)1 - xJQ 6^ - 6gN n1 + gN 8nl . (5.96)

This yields Sg^, see (3.29), when multiplied by n1 . Since r/1 is a function of £ which
again depends on the displacement field, a lot of terms arise from this equation.
To shorten the notation we denote values related to the projection point £ by just a
bar, however we have to bear in mind that these terms depend on the deformation
dependent surface coordinates £. Now from (5.96) we obtain the linearization

+ 8gN An1 + AgN Sn1 + gN Mnl , (5.97)
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where Au7 are the increments of x7 = X7 + u7 and A£a denote the increments of
£a. In this equation the quantities A£Q, £fa, A<5fa, An1, 6nl and AJn1 are still
unknown. First we observe that variation and linearization 6£a and A£Q have the
same structure, and hence the linearization Af a can be computed analogous to (3.2 1 )
by interchanging the variations rj7, related to body #7, by the increments Au7:

A^ = H~0 [ ( Au2 - Au1 ) • aQ + gN n1 • Au|Q] . (5.98)

The tensor HaB is exactly the same as given in equation (3.19). By multiplication
with n1 , (5.97) can be solved for

1- gN n • Atfn . (5.99)

Note that several terms disappear due to the identities n1 • Sn1 = 0 and n1 • x*Q = 0.
Thus the only term unknown is n1 • A&n1, which can be rewritten as A( n1 • tin1 ) —
An1 • Sn1 + n1 • A^n1 = 0. From this identity, the last term in (5.99) follows as

-<7Ar n1 • A6S1 = #AT An1 • 6nl .

Now we have to compute the linearization and variation of the normal at the projection
point £. From the orthogonality condition n1 • a^ = 0, where a^ = x*Q is the tangent
vector at the projection point, we compute

6nl • §i = -n1 • 6al
Q . (5.100)

Since n1 - 6nl = 0 we can solve (5. 100) for the variation of the normal vector

Sn1 =-[a l a<8)n1]<5ai = -(n1 -<5ai)a lQ - -(n1 • 6»l
a) a

0"3 »}, , (5.101)

and in the same way derive the linearization of the normal vector

An1 = -[a1 'a®n1]AaJ r = -(n1 • Aajja1'* = -(n1 -Aa^a^a^. (5.102)

The contravariant base vector has been expressed by the covariant tangent vector as
a1 Q = aa®alg. The variation and linearization of the tangent vector are given by

6*l
a = 6u1

t0+?a06t0 and Aa^ = Au1. + x1^ Af3 . (5.103)

Once the linearization of the base vector a^ is expressed by the incremental displace-
ments the linearization of the normal vector is completed. What remains is to insert
these results into (5.99) to derive the linearization of the variation of the gap vector.
The final result is then given after some algebraic manipulations:

-n1 (5.104)

+9N n1 - ( f/;a + X;a/3 6^ ) a*7( Au,1, +

Note that A&JTV is symmetric with respect to variation and linearization. Hence
within the finite element discretization this leads to a symmetric contribution to the
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contact tangent stiffness matrix, see Chapter 8. Equation (5.104) is valid for general
three-dimensional contact problems. For two-dimensional application it reduces sig-
nificantly. In that case, the metric tensor aap is simply one number, an, which is
associated with the length of the tangent vector. Hence we define an = P, and with
£L = £ obtain

n1 (5.105)

a symmetric form in variation rj and linearization Au.

REMARK 5.6

1. In case that the factor QN / I is very small, one could be tempted to neglect the second
term in (5.104) or (5.105) which makes the formulation much simpler. It is clear that
then the property of quadratic convergence in NEWTON'S method is lost. However, the
convergence rate can still be superlinear, and thus he sufficient for many applications.

2. Some discretization techniques are derived on the basis of flat element geometries. In
such a case, equation (5.104) reduces considerably since all terms which include second
derivatives are zero. With this assumption equation (5.104) collapses to

&6gN = -(ri]a A£° + Au*n &;a ) • n1 + gN a"7 (n1 • r^a } ( Au^ • n 1 ) . (5.106)

Note also that the. tensor Hap simplifies in this case, which is due to the fact that the
second term in (3.21) disappears. Hence HaB is equal to metric tensor d a B , and thus
we can use

A^ = aa0 ( ( Au2 - Au1 ) • aQ + cjN n1 • Au^Q ] ,

in (5. 106) instead of (3.21) and (5.98).

3. Furthermore, the associated two-dimensional version of the linearization of the varia-
tion of the gap function (5.105) for flat surfaces has the structure

Atfpjv = -(r^A£ + Au^ (5£) • n1 + ^ ^ • [n1 ® n1 ] Aufg . (5.107)

Here 8^ and A^ are, according to (3.24), given by

.

A^ = 1 [ ( A u ^ A u M - ^ + ^ n ' - A u y .

5.5.2 Tangential contact

The linearization of the tangential contact contribution CT in (5.92) follows from

dc-T t dcr . , dcj * dcr t ,. dcr-^ Au = ̂  AAT + _ AgT + _J_ A^gT + _J_ ApN . (5.108)
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However, here we have to distinguish between the stick and the slip case. We shall
thus rewrite the general form of (5.92) for stick and frictional slip in such a way that we
introduce the tangential stress vector tT. It can be either interpreted as a LAGRANGE
multiplier in the case of stick, or as a stress vector stemming from a constitutive
equation like COULOMB'S friction law. With this we can write in general

CT = t r.<$gT + £t r -g r , (5.109)

where the first term reflects the virtual work of the stress vector along the relative
tangential displacement. This can be either due to a constitutive relation in the in-
terface or due to a LAGRANGE multiplier. The second term appears only in the case
of a LAGRANGE multiplier formulation of the stick part, since in frictional sliding
gT / 0. This equation can be simplified even more by noting that gT = £a al

a.
By now introducing the component form of the stress vector, tr = tra a1 a, the first
term in (5.109) yields

tT-6gT = tTa6^a. (5.110)

With this the linearization of CT in the stick case for a LAGRAXGE multiplier formu-
lation leads to

dcT
-j^ Au = AATa 6£a + \Ta A<5£Q + S\Ta A£a . (5.111)

In the frictional sliding case we have

Au = A*Ta <5fa + tTa A<f£a . (5.112)

In these equations the following quantities have to be derived: Ai^ a, A£a anc
Since the linearization of the tangential part of the stress vector depends heavily on
the constitutive equation in the contact interface (see Section 4.2) we discuss here
only the second and third terms. The linearization of the stress vector Af^a can be
computed once the update formula is known in terms of the displacement variables
(e.g. see Section 9.5.2).

Equations analogous to (5.111) and (5.112) can also be derived for the penalty
formulation. However, the relevant equations will be found in more detail in Chapter
8. This is due to the fact that in this formulation, only knowledge of A£a and A££a

is needed, apart from the penalty terms which are related to the stress vector.
The linearization of fa has already been given in (5.98), thus it remains to compute

A££a. For this purpose we start again from (5.97). This equation is multiplied by a*
which yields

—aa ;

— 1 i A Sal+[6gN An1 + A#N Snl + QN A^n1 ] • a* , (5.1 13)

where terms which cancel out have been omitted. With

} • n1 + 6a\ • An1 + Aa* • Sn1 + a^
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one can rewrite the last term in (5. 1 1 3) as

a7. - A5S1 = -( A<5a* • n1 + tfa} • An1 + Aa* • Sn1 ) . (5.1 14)

Finally, the evaluation of A(5a^ is given by

+ x D (5.115)

With this result all quantities in (5.113) are known. These can be combined for the
final result which obtains a nice structure when the definition of the gap function
gN fi1 = x2 — x1 is used. Combining the fourth and the fifth terms on the right-hand
side of (5.1 1 3) with the last two components in (5.114) yields

An1 + A#AT 5nl - gN ( <5a • An1 + Aa7 •

(5.116)

= ~( rf - f}1 ) • Aa7 - ( Au2 - Au1 ) • <5a7 . + x^£a • Aa7 + x^A^ • Ss^

All results obtained so far can be substituted into (5. 1 13), which after some algebra
and grouping of all terms with A<5£a leads on the left-hand side to an expression for

aj - a,,, - gN n1 • *^0 ) 6? A^
1

u + 4 A D - a J ^ (5.117)

+(Au - Au1 ) - ( ̂ ffl + a7 8? )] .Ha' .

This expression is very complex since, additionally, the quantities S£a and A£a also
have to be inserted as functions of the incremental displacements Aua and the vari-
ations rja, see (3.21) and (5.98). Furthermore, the tensor Hal3 is the inverse of Hap
defined in (5.98).

REMARKS.?

J. The term A<5£Q simplifies for flat geometries which occur when linear interpolations
are applied to discretize the contact terms. One derives from (5.117)

A<$£Q - [ -4 • ( 8? Au1:, + ̂  AC ) - fj V a^ A^ - Au^ • a^ 6£0

+( rf - f}1 ) - Au,^ +(Au2 - Au1 ) • fj]0] aa8 (5. 11 8)

which omits a lot of terms.

2. In the two-dimensional situation, most of the terms in (5. 1 17) remain in the linearization
of the variation of the gap function

+ tf AO - ( a1 • a,1,, - 9N n1 • a
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1 <*£ (5. 1 19)

+(Au2 - Au1 ) • (^ +

3. However, in the two-dimensional flat case a lot of terms drop out. This leads to

A<5£ = [-2 a1 • ( £f Au,5 + 11)5 Af ) (5.120)

+( r,2 - ft1 ) • Au^ +(Au2 - Au1 ) - i>y 1 ,

where the terms A£ and 6£ are computed as in (5. 107).

5.5.3 Special case of stick

When the formulation discussed in Remarks 5.2 and 5.3 is used to enforce the con-
straint condition for stick, then we do not have to distinguish between the normal and
tangential directions in the contact interface, and the constraint equation is given by
(5.29): g = x2 - x1^) = x2 - x1 =0. This leads to the LAGRANGE multiplier
formulation for stick

n^M = / \-3gdA. (5.121)

rc

Since the stick condition requires that point x2 remains at the same position on the
master surface, the convective coordinates does not change: 6£a = const. Hence
the variation of the stick condition (5.29) is simply given by

6g = r f - f i l , (5.122)

where the variation of £a can be neglected. From 11^ M we obtain the associated
weak form

CC
LM = f(S\-g+\-Sg)dA. (5.123)

rc

The linearization of this term is then given by

ACC
LM= /"((5A-Ag + A A - < $ g ) < k l , (5.124)

rc

where AJg = 0 and Ag has the same structure as (5.122):

Ag = Au 2 -Au 1 . (5.125)

All other terms are zero, which is a considerable simplification regarding all compli-
cated expressions in the last two sections.

In the same way, for the penalty formulation in Remark 5.3 from (5.34), we obtain

= / (5.126)

rc
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Also, this expression is very simple, and should be used to formulate stick conditions
within the penalty method.

5.6 ROLLING CONTACT

Rolling contact has its technical application for the interaction between railroad
wheels and train tracks and for the analysis of car or lorry tyres. In both cases
one has to distinguish between stationary and non-stationary loading and response.
Due to the technical importance, many contributions regarding rolling contact can be
found in the literature. Railroad wheels in contact with the track were investigated
in detail in Kalker (1990) using special algorithms and formulations based on linear
elasticity. Finite element treatment based on the ALE-formulation for rolling contact
problems can be found in e.g. Padovan and Zeid (1984), Oden and Lin (1986), Tal-
lec and Rahier (1994), Nackenhorst (2000) or Hu and Wriggers (2002) for general
applications.

Since the ALE-formulation introduces a new reference configuration, all equations
developed so far for contact problems have to be reformulated.

5.6.1 Special reference frames for rolling contact

In the case of rolling contact, it can be useful not to apply the LAGRANGE description
as given before, but to use a special rotating reference frame. From the continuum
point of view, we distinguish between three different configurations of the body, see
Figure 5.6. B denotes the initial configuration of the body. With (f>(B] we describe
the deformed configuration. Finally, tpR(B) is the rotating reference configuration

Fig. 5.6 Reference frames to describe the deformation.
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which rotates with a given angular velocity wR. Thus, for the deformation map we
have

(f> = <f> ®VR (5.127)

where <f> is the deformation relative to the rotation frame. For the line elements -
needed later to define the strain measures - we have

d\ =
dxR = (5.128)

r\ Q— , Q_

with F = -£—, F = — — , FR = -r=-. Hence, from this a multiplicative decomposi-
oX O\R OA

tion of the deformation gradients related to the different configurations follows:

(5. 1 29)

If the reference configuration
can write

with the orthogonal matrix R describing the rotation. Thus

is given by a pure spinning rotation, then we

(5.130)

(5.131)

The velocity is defined by the material time derivative v = ——. Using the special
dt

decomposition of the motion into the rotating frame <f>R and the deformation rel-
ative to this rotating reference configuration <p, see (5.127), with x = ip(X,t) =
(£>((£>R(X, t), t) by the chain rule, one obtains

_

dt dt d<f>R dt

This equation can be rewritten with (5.128), leading to

dt

(5.132)

(5.133)

(pf>
where the velocity v# is defined by VR — — r^. For computation of the acceleration,

dt
the chain rule has to be applied again to (5. 132), which yields

a = 1 2 d(f>R i i
dt2 dt2 ' " d(f>Rdt dt d(p\ [ dt \ d(pR dt2 '

This equation can be shortened using (5.128), which leads to

a = dt2
d

Fv2
fi (5.135)
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where a# is defined by aR = —-~. In the case of a steady state spinning process, (p
at1

is not explicitly time-dependent, which simplifies (5.132) and (5.134) considerably:

v = =Fv*. (5.136)
at

In this case, the reference frame has a constant angular velocity MR with respect to
a given axis. This defines a rigid body motion of the reference frame. Hence, using
(5. 130) for the velocity \R in the reference frame, one derives

r\

(5.137)

with X = R""1 XR = RTXjR and RRT = O/?. The associated acceleration aR is
then computed from

(5.138)

To the skew symmetric tensor H#, one can associate an axial vector such that

V f i - ^ + w f i x x R . (5.139)
ot

The first term disappears for a constant time-independent rotation. Combining (5.1 36)
and (5. 137) yields

(5.140)

Furthermore, equations (5.136) and (5.138) then lead to the acceleration

a- ~P^RxR + FnR O ^ X R . (5.141)

5.6.2 Strain measures

With respect to Section 5.6.1, one has to investigate how the strain measures, devel-
oped in Section 2. 1 .2, are affected by the rotating reference configuration introduced.
For this purpose, (5.128) is applied, which gives F — F R. This result can be used in
(2.15) to compute the right CAUCHY GREEN strains,

C = (FR)TFR = RTFT FR = R T C R . (5.142)

Thus, by the choice of the rotating reference configuration, the strains, C, producing
stresses exclusively stem from the motion relative to the rotating frame. By inserting
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the kinematical relations developed for the rotated reference frame, the GREEN
LAGRANGIAN strains follow from (5.142):

(5.143)

which have the same structure as (5.142).

5.6.3 Weak Form

For numerical simulations the weak form of a contact problem has to be formulated in
such a way that leads to the most efficient solution scheme. In the case of rolling con-
tact a formulation with respect to the rotating reference configuration BR is optimal.
Due to that the weak form (2.59) is transformed to the rotating reference configuration

FRS ^ffS-GradTidV = f

R BR

f (5.144)

BR

where the rotated second PIOLA-KIRCHHOFF stress tensor S has been defined ac-
cording to S = RSRT. Furthermore, the inertia term yields, for a constant spinning
motion,

po\-rjdV = I

- f pR(FnR\R)-(G™drjnR\R}dVR, (5.145)
BR

where the first term denotes the body forces due to spinning. The second term is
associated with the inertia forces due to constant spinning.

Using (5.144) and (5.145) in (2.59), we obtain the weak form with respect to the
rotating frame

BR

- f PR(b-n2
RxR)-rjdVR- f

BR 5Ba

(5.146)
The linearization of the weak form, defined in quantities of the rotated frame,

follows from (5.146). Since R and ftR are constant, we obtain the same result as in
(2.122). However, there is one extra term stemming from the inertia forces, the first
term in (5.146). The linearization of this term is trivial since it is linear in the relevant
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deformation 0. In total,for the linearization at the known state <p we derive:

-Ail = />

BR
r ^__ ___

5.6.4 Constitutive equation

Due to the introduction of the rotating reference frame, a special treatment is needed
for constitutive equations which depend upon history variables, like viscoelastic or
elastoplastic models. The difference between a purely elastic and an inelastic consti-
tutive law in a rotating reference configuration is shown in the next two sections.

Elastic response function. The constitutive equation which represents the hyper-
elastic response of the solid (2.74) can be transformed into the rotated frame which is
applied for rolling contact. With S = RSRT, C = RT C R and CT–1 = RT CT–1 R,
one can write (2.74) directly in terms of the stress S and the strain C as follows:

S= '-(J2-l)t~l+v(\,-t~1} (5.148)

since the rotation tensor multiplies the tensors on both sides of (2.74) in the same
way, and thus cancels out. Hence, no special treatment for the elastic constitutive
equation is needed in the case of rolling contact. This is also true for the incremental
constitutive tensor. One only has to exchange C by C in (2.89) to compute the asso-
ciated incremental constitutive tensor in BR.

Viscoelastic response function. Car tyres, which are often investigated using
rolling contact formulations, are made of rubber which not only responds to defor-
mations like a hyperelastic material, but also shows inelastic behaviour which can
be described by a viscoelastic material model. Here again, one has to investigate
whether a description using the rotated frame does change the constitutive equation
or not (see above). Using a standard viscoelastic model, see Christensen (1980), we
obtain for the second PIOLA-KIRCHHOFF stresses,

/

OTf

e-^—d (5.149)

Here t denotes the time, E is the GREEN-LAGRANGIAN strain tensor, S–e is the hyper-
elastic response function (see last section) and v and r are constitutive parameters.
All quantities in (5.149) refer to the initial configuration B. Transformation with
respect to the rotating reference configuration with S = RSRT and E = RT E R
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yields

t

S(t) = Se[E(t)} + v I <T^ ~ [R(t) RT(s)E(s)R(s) RT(t)} ds . (5.150)
— oc

In this model, the rotation R depends upon the complete motion, and hence its history
has to be known during the whole simulation. However, the rotation only appears as
R(t) RT(s), which means that only the relative rotation between the two times t and
s is involved. Since we assume steady state rotation, the relative rotation is explicitly
given by e ^'~s) . For a more detailed treatment of viscoelastic constitutive equations
for rolling motions, see Tallec and Rahier (1994) or Govindjee and Mihalic (1998).

5.6.5 Contact kinematics

Relations for contact kinematics have to be derived based on the rotating reference
frame. This leads, especially for tangential contact, to different formulations, when
compared to the results presented in Chapter 3.

Normal contact. To formulate the non-penetration condition for rolling contact,
we define a minimum distance problem between the rolling object and the rigid
surface, see Figure 5.7. The reference configuration which is used to define the
contact conditions can be either the rotating frame or the initial configuration. In
cases when we have to distinguish both, we use the reference to B or BR.

For a mathematical description of the problem it is useful to introduce convective
coordinates £ = (£l , £2) on the surface with which the rolling object is in contact,
from now on called the master surface. This leads to the definition of the master
surface, described by the position vector X0 = Xo^1 . £2). Now for every point x
on the deformed boundary of the rolling object we can define the minimum distance
problem:

d=M/JV||x-X0(e1 ,£2) | | . (5.151)

The solution of this problem provides the pair of convective coordinates, £, which
denotes the point on the master surface closest to point x. £ follows from the condition.

Fig. 5.7 (a) Non-penetration, (b) penetration.
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see also (3.3),

d

d?
Fv — Yr./y1 £2M • \n (fl p'2\ — n (*\ is?"*[X AO^C; , c; j j - A . o , a v c ; , c; ; — u, (j.uz.)

which is the closest point projection of point x onto the master surface. Since XQ ,Q —
XQ ,a (C) are the tangent vectors to the convective coordinates of the master surface at
the solution point, |, the vector x — X0(£) points in a direction normal to the master
surface. Hence it can be used to define the non-penetration condition.

With | _
(5.153)

we define the gap function where

x-Xo(J)
|x-Xo(OH
Y~ , (t\ v Y,, n(f\

(5.154)

*•«> =

Both definitions can be used in (5.153), though the first is not well behaved for
gN —> 0. Hence the second condition should be applied in (5.153). Function gN

then describes the state at the interface as follows:

gN > 0 gap opening,
gN = () perfect contact,
SN < 0 penetration.

Thus contact is formulated by the inequality constraint

g y v > 0 - (5-155)

In case of a flat master surface which is often the case when rolling contact is consid-
ered we can simplify the representation of the master surface by cartesian coordinates.
By defining the base vectors of the master surface as EI and E2 we obtain for the
normal N0 = E3. In this case the closest point projection (5.152) yields

[ x - X 0 ( X 1 , X 2 ) ] - E a = 0 (5.156)

with the solution point (X1 ,X2). Furthermore the gap is given by

gN = [x-X 0 (X 1 i ,X 2 ) ] .E 3 . (5.157)

Tangential contact. The kinematical relations for the tangential motion in the
contact area have lead to the definition of the relative tangential velocity. This quantity
can be obtained in the case of rolling contact by the derivative of condition (5.152)
with respect to time. This yields

(v - X0) • X0,Q + (x - Xo) • X0 ) Q - X0^e/3 • X0,a =0. (5.158)
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Here v is the velocity associated with point x. With the metric AQ 0 = XQ ,a • XQ
the components of the relative gap velocity in the tangential direction are

= (v - V0) • Xo,a + (x - XQ) • XQ,Q , (5.159)a0

where we have set VQ = XQ.
In the case of a flat master surface, equation (5.159) simplifies with XQ ,Q =0,

XQ ,a = Ea and Aa 0 = Sa 0 to

Xa = ( v - V o ) - E a , (5.160)

where Xa denotes the change in time of the projection point (X1 , X2) on the master
surface, and thus is the relative tangential velocity in the contact area. With the
projection tensor Pj_ = [Ea ® Ea] we can reformulate (5.160) as

v± = Pj. (v - V0) , (5.161)

with V_L = Xa Ea being the tangential relative velocity vector in Fc.
With these relations we can now formulate the tangential contact conditions. The

first is the non-slip or stick condition

v ± = 0 , (5.162)

and hence imposes a constraint on the relative tangential motion. It means that locally,
the rotating object is rolling and not sliding on the surface.

If the tangential forces exceed a certain limit in Fc, then slip occurs. In that
case, the associated relative tangential velocity follows from a constitutive relation.
Classically Coulomb's law is applied to determine the slip velocity, however more
complicated constitutive equations can also be used to model the frictional behaviour
in the contact interface. These constitutive equations will be considered in the next
section.

Generally slip as well as stick can occur in the contact area. Thus we can subdivide
the contact area Fc into Tslip U Ystick = Fc. Within the numerical method applied
to solve the rolling contact problem, the stick and the slip area have to be computed.

In some cases it might be necessary in the numerical implementation of rolling
contact, e.g. see Nackenhorst (1993), to enforce the stick condition in a weak sense.
Following Nackenhorst (1993) one can use a least square fit

-£v±dF = 0, (5.163)I v^dT-^ MIN=> [

which leads with (5.160) and (5.162) to

P±<5v • P_L (v - V0) dT = 0 , (5. 164)
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and hence yields a system of equations to determine the tangential components of v
in the stick interface Yst ick which fulfil the stick condition (5.162) in the weak sense

(5.165)
I".•stick

Note that if slip occurs in a steady state computation of rolling contact, then the dis-
sipation due to the frictional forces in the slip zone has to be compensated for by a
moment around the spinning axis of the rolling body to preserve stationary motion.

Definition of creepage. For further reference we also define another kinematical
quantity which measures the creepage in the contact interface. Its definition is given
by

(5.166)

The creepage vectors can be decomposed into a part which is related to the flattening
of the rolling body

-

s = X0 -"«
IIXol

x R
'

I IXol l
and a partial slip due to rolling in the contact area

X0- x r
SB = (5.168)

so that we have s = SF +
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6
Discretization of the

Continuum

Discretization of the domain contributions of bodies in contact is not the objective of
this work. For a detailed treatment with respect to the finite element implementations
of boundary-value problems regarding large deformations, see Oden (1972), Crisfield
(1991), Crisfield (1997), Zienkiewicz and Taylor (2000a), Bathe (1996) or Wriggers
(2001) and the references therein. However, in this chapter, the discretization of
continua undergoing large strains using isoparametric elements is discussed briefly
for completeness.

Within the finite element method we have different approximations. These are
geometrical approximations of the domain B on which the boundary value problem
is defined. Furthermore, the associated fields, deformations or stresses have to be ap-
proximated. Also, the integrals are not evaluated exactly, since, as they are evaluated
for the weak form, they have to be computed via numerical integration procedures.
Collectively, these approximations are sources for errors inherent in the finite element
method. The estimation of these errors is the contents of Chapter 12.

In this section a description of the interpolations, which are the basis for a treat-
ment using isoparametric elements, is given. Within this framework, we assume that
the domain B is discretized by ne finite elements, which leads to its geometrical
approximation/?^:

Bh = Q He. (6.1)
e=l

The configuration of one element is Qe C Bh, as shown in Figure 6.1 for a two-
dimensional case. dBh denotes the boundary of the discretization Bh, which is in
general also an approximation of the function describing the real boundary dB.

135



136 DISCRETIZATION OF THE CONTINUUM

Fig. 6.1 Discretization of body B.

6.1 ISOPARAMETRIC CONCEPT

The finite element method requires that the field variables be approximated by a finite
element fie. We write the displacement field u(X) as

N

Uexakt (X) K U* (X) - T N, (X) U/ , (6.2)

where X is the position vector in Sle, NI (X) are interpolation or basis functions
which are defined on tle, and uI denote the unknown nodal variables. Here, uI =
{u1. u2, u3}J are the nodal variables of the displacement field.

During the development of finite element methods, many possibilities for interpo-
lation of the unknown functions within an element have been exploited. Due to its
general applicability, especially when arbitrary geometries have to be discretized, the
isoparametric concept is widely used. On the isoparametric approach, we approx-
imate geometry and field variables by the same interpolation functions, see Figure
6.2:

and (6.3)
7=1 7=1

The interpolation functions in equations (6.3) of the element in Bh have been
represented by interpolation functions NI(£) defined on the reference element ft^,
see Figure 6.2. Thus, for every element fie, there exists a transformation (6.3)1

which relates the coordinates Xe = Xe (£) to the coordinates £ of the reference
element fi^. Hence all computations are performed with respect to the reference
configuration. Only in very special cases do the initial and current configurations
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Fig. 6.2 Isoparametric mapping.

of a finite element coincide. However, this transformation is numerically easy to
handle, and allows transformation of the reference element to arbitrary geometries.
This feature leads to the fact that, in implementing of the method, there is almost no
difference in the formulation of finite elements with respect to the current or initial
configurations.

Figure 6.3 depicts the two possibilities to describe deformation in continuum me-
chanics using the isoparametric concept. It can be seen easily that Figure 6.3 is a
discrete version of Figure 2.1, where additionally we have now introduced the refer-
ence configuration DQ. The kinematical relations within one element are

and Je = det Fe =
detje

det Je
(6.4)

which show that the deformation gradient is uniquely defined by the isoparametric
mapping of OQ onto fie in the initial configuration, or onto <£>(fie) in the current
configuration. In these equations, the gradients je and Je are defined as follows:

e =

J =

x =
dx
— x,

I=1

1=1
(6.5)

Since the derivatives Nj^ are scalar quantities, we can move them in front of the base
vectors Et. This yields

e =
1=1 7=1
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Fig. 6.3 Isoparametric description of deformations.

X =
7=1 7=1

(6.6)

V^ A// is the gradient of the scalar function NI with respect to the coordinates £.
With this, it is simple to compute gradients with respect to the initial or current

configurations. For a vector field this reads as uh,

Grad uh = = u/
7=1

gradu 71 u/ ® VX7V/ . (6.7)
7=1

Analogous to the transformation of the derivatives between different configurations,
see (2.24), we obtain

j = Je
T

or the inverse relations

Vx TV, = J~T

and = jj VXN{ .

, and VXAT/ = j

(6.8)

(6.9)

such that the gradient in (6.7) is completely defined in quantities which are defined
in the reference configuration f&n as

E
rri

ui ® j~ V^A/ ,

n

gradu = = V^ u/ ® j~T V^A/ . (6.10)
7=1
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The only difference in the formulation of both gradients in (6. 10) lies in the exchange
of the gradients je and Je, and therefore this approach is advantageous, especially for
large deformation finite element formulations.

6.1.1 Isoparametric interpolation functions

Within the different possibilities to construct interpolation functions for isoparametric
elements, we here follow the concept of the LAGRANGE interpolation, e.g. see
Zienkiewicz and Taylor (1989). For a LAGRANGE polynomial of power n-1, in the
one-dimensional case we obtain

For two- or three-dimensional interpolations, we choose a product formulation

or Nj(£ ,ri , C) - #/(£) NK(TI) NL(Q , (6.12)

with J — 1, ... ndim and / ,K ,L ~ l , . . .n (dim is the spatial dimension of the
problem). The interpolation or shape functions are defined in the local coordinate
system £ = { f , r/, (,}.

In the next section we specify the isoparametric shape functions for one-, two- and
three-dimensional problems.

6.1 .2 One-dimensional shape functions

Here we briefly discuss one-dimensional shape functions which are C0 -continuous.
These can be found in many places in the literature, and thus only the final equations
which are needed in subsequent sections will be given.

In one-dimensional problems we only have one component of our field variables,
thus we can write with (6.3)

jV/(Ot*/, (6.13)
1=1 1=1

for coordinate X and the associated field variable u. n is the number of shape
functions, and £ E [— 1, 1] is the coordinate in the reference configuration, see Figure
6.4. The shape functions N I (£ ) follow from (6.1 1) and are different with respect to
the choice of the polynomial order. We have

• Constant shape functions
N1(0 = l- (6.14)

• Linear shape functions
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Fig. 6.4 One-dimensional shape functions.

• Quadratic shape functions

JM0 = |£U-1), AMOMl-S 2 ) , ^2 (0 = ^(1+ O-
(6.16)

The isoparametric mapping of function u onto the reference element is obtained with
equation (6.13).

Computation of derivatives. For the computation of strains, its variations or
linearizations, we need the derivatives of the field variable u. Within the isoparametric
concept we have to use the chain rule

for the derivative of u

_
dx

duh
e

~dx

dx

7=1
dX

w/ , (6.17)

dx (6.18)l }

The derivative -jjf is computed with the interpolation for the geometry (6.13),

dx
dX\ =
d£ )

(6.19)

O V"'*

where we have made use of the abbreviation -^f- = Je.
In the special case of linear shape functions (6.15), with the length of an element

(Le = X-2 — X\ ) we obtain

(6.20)
1=1



ISOPARAMETRIC CONCEPT 141

and inserting this into (6.18), the explicit formula

dX Lf
(6.21)

which yields a constant value.

6.1.3 Two-dimensional shape functions

In the two-dimensional case, quadrilateral and triangular finite elements have to be
distinguished. Here we discuss (7°-continuous shape functions which are linear as
well as quadratic.

First triangular elements are considered. The simplest element with linear shape
functions consists of three nodes; an element with quadratic interpolation needs six
nodes to define the fields and geometry within an element. In Figure 6.5 the triangular
element is depicted for the quadratic interpolation. For a linear element only the
vertices 1 to 3 are necessary to define the interpolation. The element is shown in

Fig. 6.5 Three- and six node triangular element.
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Figure 6.5 in its reference configuration fi^, denoted by the £-77 coordinates, and in
its physical space, denoted by the X1-X2 coordinate system.

The shape functions for the linear case are defined by

(6.22)

Here all partial derivatives with respect to £ and 77 are constant.
The shape functions for the quadratic element are

N1=\(2\-l), 7V4

A T 2 = £ ( 2 £ - 1 ) , #5
N3=rj(2ri-l), AT6

(6.23)

with the abbreviation A = 1 — £ — 77.
Next the shape functions for quadrilateral elements are defined. The simplest

quadrilateral has four nodes. The associated interpolation for geometry and field
variables is bilinear. The product formula (6.12), together with the shape functions
(6.15), yields

Ni(t,l) = \ (l + £/o|(l + !? /» / ) , (6-24)

where the coordinates f/ and 777 are associated with the vertices (see Figure 6.6 on
the reference element fi^)

= (1,1) (6.25)

The shape functions for the quadratic nine-node element again follow from the
product formula (6.12) using the quadratic interpolation (6.16). For the nodes (see
Figure 6.6), we obtain

Vertices (I= 1,2,3,4):

(6.26)

-»- 8

Fig. 6.6 Isoparametric quadrilateral elements.
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Mid nodes (I = 5, 6, 7, 8):

tIt)(l-rf) + lrft(rj2 + rIITi)(l-?). (6.27)

• Central node (7 = 9):

tf0(&f7) = (l-£2)(l-V). (6.28)

It should be noted that this is not the only possibility to define these nine shape
functions. Often a hierarchical formulation is used, e.g. see Zienkiewicz and Taylor
(1989) or Bathe (1982).

The derivatives of the shape functions defined in the reference coordinates with
respect to the coordinates in the physical space follow within the isoparametric concept
by the chain rule

u/ , (a = 1 , 2 ) . (6.29)
8*. £

Here the partial derivative of Nj with respect to Xa is computed according to (6.9),

with the JACOBI matrix Je of an Q.e element for the transformation between the
reference and initial configuration,

Xu

with .Yai/3 = NI,P xa i • (6.3 1 )
1=1

This leads to an explicit from which allows us to compute in (6.29) the derivatives
with respect to X:

detJe -XiiTI Xi

6.1.4 Three-dimensional shape functions

Finite elements for three-dimensional problems are either brick or tetrahedron el-
ements. Also, isoparametric interpolations are advantageous here when arbitrary
geometries have to be discretized. Besides bricks and tetrahedrons, more elements
are of course possible, e.g. prismatic elements, which will not be discussed here. For
general shape functions, see Dhatt and Touzot (1985). For the three-dimensional
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V <

*
^

<

/
/

I

>
7/

/o

3

F/flf. 6.7 Isoparametric 8 node brick element.

brick element, shown in Figure 6.7, we have the shape functions

(1+0 /0 ) , (6.33)

which follow from the product formula (6.12) with (6.15). Figure 6.7 depicts the
associated element in its reference configuration, Jt, and the initial configuration,
Jle- Quadratic elements can be designed with (6.12) and (6.16). This yields an
interpolation with 27 nodes per element. However, we will not give the explicit
representation here, which can be found in Zienkiewicz and Taylor (1989) or Dhatt
and Touzot (1985), for example

Shape functions for the tetrahedron elements can be developed analogous to the
two-dimensional case. We obtain

• 4-node tetrahedron (linear interpolation)

tfi=l-f-»?-C, N2=£,

• 10-nodes tetrahedron (quadratic interpolation)

M = A ( 2 A - 1 ) , N6

(6.34)

(6.35)

Mo = 4 17 C

with A = l - - T - -
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Fig. 6.8 Isoparametric tetrahedra elements, local node numbers.

The local node numbers associated with these shape functions are depicted in Figure
6.8.

The derivatives of the shape functions with respect to the coordinates of the initial
or current configuration can be computed using (6.8). For the derivatives with respect
to the coordinates of the initial configuration, we have

(6.36)Nj,n > •

The JACOBI matrix Je of element S7e, which is needed in this derivation, is given by
(6.6) from

1=1
X2

x«
X2
X3

2,C

3,Cj

(6.37)

Within this formula, the components of Je are computed from

% '*,
> / -i • '

1=1

where the partial derivative with respect to k stands for a derivative with respect to £,
r) or C.

6.2 DISCRETIZATION OF THE WEAK FORMS

In general we can now apply the one-, two- or three-dimensional shape functions to
describe the interpolation for the geometry and the field variables within the weak
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forms. In this chapter we do this in a brief form for equations (2.59) and (2.63).
Furthermore, the linearizations of the weak forms are considered. Following Figure
6.1, a domain is subdivided into ne finite elements. This discretization leads to an
approximation of the geometry, which affects the representation of the boundary of
the domain under consideration.

An interpolation as described in (6.3) is chosen for each finite element Qe, which
approximates the displacement field u and the geometry. The integrals of the weak
form can then be written with the isoparametric interpolation as

f(...)dV* f(...)dV=)J
J J —-

(6.38)

The operator U is introduced instead of a sum sign to denote the assembly process
which has to be performed to obtain the set of nonlinear algebraic equations follow-
ing from (6.38). The polynomial shape functions of the isoparametric interpolation
ensures fulfillment of the inter-element continuity conditions, as well as fulfillment
of the boundary conditions within the global system of equations. Since the assem-
bly process is standard and well known, it is not described in detail here (see Bathe
(1982), Zienkiewicz and Taylor (1989), Knothe and Wessels (1991), or Gross et al.
(1999), for example).

6.2.1 FE formulation of the weak form with regard to the initial
configuration

The approximation of the weak form (2.59) requires discretization of the virtual
internal work /^ S • 6 E dV , of the inertia terms fB p^v • r\ dV and of the volume-
and surface loads JB po b • 17 dV + /r t • 77 dA. For the virtual internal work, we need
the variation of the GREEN-LAGRANGIAN strain tensors within the element Oe, see
(6.38). With (2.58) and (6.7), one obtains

(6.39)
7=1

where the same interpolation was used for the deformation tp and the variation 77. In
this equation a finite element approximation of the deformation gradient (2.6) has to
be applied, which can be written with (6.7) within the element He as

n

Fe= (x jc<8>V. Y t f , r ) . (6.40)

For the derivation of the matrix formulation needed within the computer implemen-
tation of finite elements, index notation is necessary. For (6.39) this yields

/ (6.41)
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with components of the deformation gradients FkB
 = Y^j-i xk J ^J,B.

Within the matrix formulation we can consider the symmetry of the GREEN
LAGRANGIAN strain tensor and its variation. Thus, it is possible to introduce only
six components of nine components for the three-dimensional strain tensor instead

SE=

< E 2 2

&E33 'Hi (6.42)
1=1

I 2 SE13 )

which can be approximated as a sum over the element nodes / with the matrices

BLI
F23

NI,2

NI,2

2 NI ,3

F12

NI ,3 + F23

NI,3 + F23

F32 -NI ,3 + F33 NI,2

F 2 3N I , 1 + F33NI,1

(6.43)
The index L in (6.42) depicts that the matrix BLI is linear in the displacements, since
we have Fh = 1 + Grad uh.

The stresses follow from the constitutive equation, which will be specified in the
associated sections. However, note that the stresses have to be computed pointwise
within the element, and result for instance in finite elasticity from a pure function
evaluation of the response function. Since also the second PIOLA— KIRCHHOFF stress
tensor is symmetric, we only need its six independent components which yields the
vector S = { S11 . S22 , S33 .S12 , S23 , S13 }

T- With these preliminaries, the virtual
internal work can be written as

6Eh • Sh dV = U
e=1

n€

= u
e=l

ne

= U

=l 1=1
(6.44)

• —1

BT
L S det Je dU.

The last term in (6.45) already reflects the evaluation of the integrals with respect to
the configuration of the isoparametric reference element. To shorten the notation, we
introduce the vector

(6.45)
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and reformulate the virtual internal work

ne n

6Eh -ShdV = ( I V rjTRI(ue)=riTR(u). (6.46)
V-/ ^.^

e=l 7=1
LJ

In this equation 17 is the test function of virtual displacement and R (u) is the stress
divergence term, also often called the residual force vector, which results from the
assembly of all finite elements to the complete structure. Note, that 6Eh is linear with
respect to the displacement field, whereas the stress tensor Sft can still depend in an
arbitrary nonlinear form upon the displacements.

The inertia term, defined by fB pov • 77 dV, in the weak form (2.59) is computed
with interpolation of the velocity, using standard shape functions NK for the spatial
discretization,

NK(t)vic(t).
K=\

The acceleration is given by derivation of the nodal values v^(i), since the shape
functions NK depend only upon the spatial coordinates,

(6.47)

Inserting this result in the associated inertia term in (2.59), and applying the same
discretization as in (6.39) for the variations 17, leads to

e .

port-vdV = (J / PorjT vdV
B e=1Qe

ne n n »

= U E E *tf /
e=l 1=1 K=l o

By introducing the unit matrix land application to the nodal velocities VK = I VK,
we obtain the mass matrix for a nodal pair / and K of an element fte

MIK = ( NI po NK d$l I, (6.48)

ne

and hence the inertia term for the global system as

B

K=T]1Mv, (6.49)
e=l 7=1 K=l

where M is the mass matrix and v the acceleration vector after assembly of the global
structure.
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Fig. 6.9 Discretization of surface loads.

The loading terms are determined in an analogous way. After inserting the finite
element approximations for the test function rj, it follows

/

« Tig Tl> n

pQrj-bdV + I ri-idA = \J ]T rj] j Po b Nj
e=1 1=1

dtt

r=l 1=1

where nr are the number of loaded element boundaries and TI is the element surface
of an element which is subjected to a surface load defined by the stress vector t, see
Figure 6.9. Observe that for the interpolation function of the surface loads, we can
use a function which is reduced by one dimension. Thus the surface loads in Figure
6.9, which depicts a two-dimensional body, need as an approximation for the test
function along the boundary a one-dimensional function, defined by m surface nodes
(in Figure 6.9 we have m = 2 nodes). Also, here we can simplify by matrix notation,
and with

PI= I NIPbdtt and Ff = f
«/ J

NjtdT (6.50)

obtain the load vectors

e

r,.idA=\J +IJ . (6.51)
e=l /=!

The vector P contains all information with regard to the loads acting on the structure.
The matrix notation in (6.46), (6.49) and (6.51) yields, for the weak form (2.59),

?7T[Mv+R(u) -P] (6.52)
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Due to the fact that the test function r\ is arbitrary, this leads to a nonlinear system of
ordinary differential equations:

M v + R ( u ) - P = 0 VueK" . (6.53)

In (6.53) all quantities are evaluated with respect to the initial configuration. N is the
total number of degrees of freedoms contained in the unknown displacement vector
u. v is the acceleration vector and M denotes the mass matrix.

In case that the inertia forces are zero (M v — 0), from the system of ordinary
differential equations we obtain a nonlinear algebraic system of equations which has
to be solved by an iterative procedure. In general we apply NEWTON'S method, and
hence need the linearization of (6.53), which is discussed in the next section.

6.2.2 Linearization of the weak form in the initial configuration

For an efficient solution of the nonlinear algebraic equation systems (6.53), NEW-
TON'S method is applied which requires the linearization of (6.53). We derive the
linearization in the following by assuming that the inertia terms can be neglected. The
linearization can be obtained by a direct discretization of the continuous formulation
(2.122)

DG(ip, TI) Au = I { Grad Au S • Grad rj + SE • C [AE ] } dV. (6.54)

B

For the first term with

K=\

Gradrj = > 77,<8>VxW/ (6.55)
F ^^^^ f j s* * •> '

I-l

we obtain directly the discretization

- ne n n -

/ Grad AuS-Grad 77 dF = U SS / (

J ^—1 T—1 L' — 1 »
B

which yields, with the rules for the dyadic and scalar products and with A UK • 77/ =

ne n n

(6.56)
/

/•
Grad AuS- Grad rj dV = IJ S S ^M

i r < jv- j •/
B

where the abbreviation

- (VvAT/)T S VXNK (6.57)
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has been used. The matrix form of the scalar product (6.57) can be derived if the
gradients are described as vectors. This leads to

NI,3

S11 S12 S

S21 522 5

5

13

21 22 23

31 S32 S33

(6.58)

Relation (6.56) is independent from the constitutive equation, since only the stress at
configuration (p has to be considered. Hence the matrix which defined by (6.56) is
often called the INITIAL STRESS MATRIX.

The second term in (2.122)

(5E-C[AE]dV

depends upon the incremental constitutive tensor C which has to be evaluated at
configuration <p, and thus is directly connected to the constitutive equation. For
elastic materials this tensor has been given in Section 2.4.2 (e.g. see (2.89)). For
elasto-plastic or other constitutive equations, the associated matrix formulation can
be found in (2.92). Since AE has the same structure as 5E, with (6.39) we can write

1 " r -,
AEft = - V] F; (Au/ <g> Vx N/) + (V* ^7 <8> Au/) Fe . (6.59)

7=1

From this relation, the matrix formulation follows with (6.43)

71

AE=]T J 3 L / A u / . (6.60)
I=1

Introduction of this relation, together with the incremental constitutive tensor D,
yields

ne n n „

(SE-CfAEldV = I I Y^ Y^ riT I BT
T T DBLK dfi Au/^ - (6.61)V-X / ^ /..^r.^j * 1 I JU 1 *-> JV JY v '

LJ S7e

Thus we can summarize, and obtain the discretization

/

Tl e Tt Tl

{GradAuS-Grad»7+(5EC[AEl}dF= I I V V riTKTrff&uK. (6.62)«. ' L J J \̂ /̂ X _j / j ' 1 •* i K 'V V /
1 7=1 K=1

Here matrix KIk denotes the "tangent matrix" because it represents the tangent to
t h e deformation a t f :

(VxNiSVxNK + BjDBLK (Kl. (6.63)
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It is stated for the nodal combination /, K within a finite element 17e . In this notation
the submatrix KTIK has the size n^of x ridof, where ridof is the number of degrees
of freedom for one node within the finite element (in three-dimensional problems
in continuum mechanics we have three degrees of freedom for each point, hence
ndof — 3). Indices / and K are nodes of an element, and thus directly associated with
the discretization. For example, for a ten node tetrahedron we have n = 10, hence the
total size of the tangent matrix Kre for one element is (n-n<fo/)x(n-nd0 /) = 30x30.

Two-dimensional element for St. Venant material. In this section we derive
as an example the matrix formulation for a two-dimensional element with respect
to the initial configuration. As a constitutive relation, St. Venant material is con-
sidered which relates the GREEN-LAGRANGIAN strains and the second PIOLA-
KIRCHHOFF stresses by a linear relation. Furthermore, plain strain is assumed.

For computation of the stress divergence term resulting from the weak form, we
have to specify (6.45). Thus for a displacement formulation we need the stresses as
a function of the strains and the strains field in terms of the displacement gradients.
The ST. VENANT constitutive equation is given by

S = (A1 [E] . (6.64)

This form can be easily converted into a matrix formulation. For the two-dimensional
case, we obtain

A + 20
A
0

A
A + 20

0
(6.65)

Now it remains to compute the GREEN-LAGRANGIAN strain tensor.
The components of the matrix form of the GREEN-LAGRANGIAN strain tensor,

see (6.65), follow from (2.16) with (6.40) in the case of two dimensions for a finite
element fie :

E=i(Fj> e-I)
2V e ' with Fe = *1" Xl" (6.66)

Here the nodal coordinates xa K = Xa K + ua K belong to the current configuration
<£•

The approximation of the virtual strains 5E with (6.42) yields the matrix BL /,
which in the two-dimensional case has the representation

BLI= F12 121,2 (6.67)
F2 1N1 , 1

F227V/,2

i F12 N1,1 + F22 N1,1

We can also express the virtual strain with F = 1 + Gradu different from (6.43) by

(6.68)
I=1



DISCRETIZATION OF THE WEAK FORMS 153

In that case, the matrices B01 and By i have the explicit form

//i 0
B01 0

and

u1,2 u2,2

(6.69)

(6.70)

The derivative ua,B can be computed for each quadrature point analogous to the com-
ponents of the deformation gradient in (6.41). We obtain wtt)/3 = Y^K=I NK^UQ.K,
where the indices a and J3 take values of 1 and 2. Note that the nonlinear part defined
by matrix By / disappears for u = const.

The stress divergence term (6.45) is then obtained with (6.68) for an element Jle

Ri(ue)= f (6.71)

The load vector can be computed using equation (6.50), but we do not want to specify
it here in detail.

Linearization of (6.71) at <£> leads to the tangential stiffness matrix of a finite
element. It is given with (6.68) analogous to (6.63)

KTI K ~ I [ ( BO / 4- By i) D ( BQ K + B\ K ) + GIK I] (6.72)

Note that all quantities with a bar have to be evaluated at <p. Due to the special
ST. VENANT model for elasticity, the incremental constitutive tensor D, defined
in (6.65), is constant. A more compact notation of the tangent matrix follows with
(6.67):

KTIK= [Bi,DBLK+GIKl](Kl. (6.73)

The term GIK is given for the two-dimensional problem by the product

S-21

NK,1 (6.74)

Both equations (6.72) and (6.74) have to be evaluated at <j> at which the linearization
takes place. The stresses in (6.74) are computed via the constitutive relation (6.65),
based on the strains (6.66). The integrals in (6.71) and (6.72) have to be computed
using a numerical quadrature formula. In this case, it is efficient to refer to the
reference element, see (6.45) and Figure 6.10. This yields, with (6.45), a ndof x 1 =
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4

, n

3

2

. 6. 10 Isoparametric transformation and deformed state at (f>.

2 x 1 vector for the stress divergence term which is associated with node /:

R1 (Ue) = /(Bo/ + BVI )TSdtl (6.75)

d e t J .
p=1

For evaluation of the integrals a GAUSS quadrature, with np = 2 x 2 = 4 points,
is sufficient if the element is a four node element with bilinear shape functions. The
coordinates of the GAUSS points £p, nP and the associated weights Wp are given in
Table A.2 in the appendix. For computation of the stresses at a GAUSS point S(£p r/p),
we need the deformation gradient, see (6.66), which has to be evaluated at (£p . r/p )

(6.76)

The stress at a GAUSS quadrature point then follows with the strains (6.66) from
(6.65). Note that in equation (6.76), the summation (Index K) has to include all
nodes, since all interpolation functions have a contribution to the deformation at one
GAUSS quadrature point within the element.

In an analogous way, the numerical integration of the integrals concerning the
tangent matrix (6.72) has to be performed.



DISCRETIZATION OF THE WEAK FORMS 155

The submatrices for the indices I and K are 2 x 2 matrices. Based upon the result
6.73), their explicit form using the GAUSS quadrature follows:

KT,K =l[BlfD BL K + GIK 1} dQ (6.77)

* . ~ r - - r , ,--^r..r, det Je(£j?;??p) '

P=l

The stress divergence vectors, RI, and the submatrices of the tangent matrix, KTIk ,
have to be ordered in the following way to obtain the stress divergent vector and the
tangent matrix for the element fie:

R1

R2Rp —

8x1 .symrn.

(6.78)

8x8

The total size follows from the number of nodes, 4, and the number of degrees of
freedom, 2.

REMARK 6.1

• The order of the nonlinearity of (6.71) depends only upon the constitutive equation. For
the ST. VENANT material used here, (6.71) is a cubic polynomial in u. However,
this no longer holds once a constitutive equation like the NEO-HOOKIAN material, see
(2.74), is used.

• If stresses have to be computed in a design analysis then a transformation of the second
PIOLA-KIRCHHOFF stresses to the CAUCHY stresses must be performed on the basis
of (2.50).

• In the case of the linear theory of small strains and displacements, the terms GIK and
B V I ,B V K disappear in (6.71) and (6.72), thus the resulting equations are linear
in u and represent the equations of the classical linear theory of elasticity. In the
two-dimensional form of (2.95), we then obtain the stiffness matrix

K l T}T n 13 JOIK — / &o r -t-A) -t»o K d\l.
J

n e

6.2.3 FE formulation of the weak form in the current configuration

The derivation of the matrix formulation for the weak form with respect to the current
configuration follows analogous to the derivation of equation (2.59), but we use as a
basic equation (2.61). Within the integrals the push forward of the variation of the
GREEN-LAGRANGIAN strain tensor SE = Vs77 is needed, see (2.62). Hence (2.62)
has to be approximated. With equations (6.7)2, this leads to

i n

V'S *h = o XI [ (Vi ® v* W + (V- N* ® *7/) 1 • <6-79)
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As in the last section, it is advantageous to switch to index notation to derive the
matrix formulation. We obtain

(6.80)
7=1

where now N^m = dNj / dxm is the partial derivative of the shape functions with
respect to the spatial coordinates xm. These derivatives can be computed using (6.9)2

NItk = (6.81)

where {je
 l }ik are the associated components of the inverse of the JACOBI matrix je.

Equation (6.80) yields the components of Vs rjh. Due to symmetry, the components
can be assembled in the vector (V5 rjh)T = [ 771 tl. T^ j2 , % j3 , (771 > 2+7/2,1) , (ifr ,3 +
773,2) •. (n\ ,3 + 7/3,1) ]• With this the approximation of the spatial gradient is given by

h \~^
"H — /

7=1

0

0

^7!
0

0
0

0
3 N1,2

(6.82)

Note that matrix B01 does not contain any displacements, which is indicated by the
index "0".

REMARK 6.2 In contrast to matrix BLI, matrix B01 has a sparse structure. Half of
its entries are zero. It is thus easily concluded that the associated zero components can be
neglected in any multiplication of B01 with vectors or matrices. Thus, the finite element
formulation with regard to the current configuration is much more efficient on the element
level.

Furthermore, we note that the structure of BO1 is exactly the same as the B-matrix of linear
theory, see Zienkiewicz and Taylor (1989). The only difference is that in the linear theory, all
derivatives are with respect to the coordinates X of the initial configuration, while here all
derivatives have to be computed with respect to the coordinates x of the current configuration
according to (6.80) and (6.81).

With these preliminary remarks and the introduction of a vector <r which con-
tains the independent components, a = { a11 . 022 033 •. o~iz •, #23 -. ^13 }r> of the
CAUCHY stress tensor, the internal virtual work in (2.61) can be written as

/ Vsrjh dv
ne f

= (J /
—- J

(Vs rih)T(Th(Lj

6=1 /=1

(6.83)
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= U£»?
e-l 7=1

"U

The last form in (6.84) already contains the reference to the isoparametric base element
fin. A comparison with the associated relation in (6.45) shows that both formulations
distinguish each other by the B-Matrix, the determinant of the isoparametric mapping
(6.5) and, of course, the stress tensor. By introducing

r / ( u e ) = / B^o-du, (6.84)

we can shorten the notation, and for the virtual internal work obtain

ne n

e-l 7=1

With the transformation for the volume elements dv — J dV and the relation
between the CAUCHY stress tensor and the KIRCHHOFF stress tensor, see (2.51),
which yields r = J <r, we can transform the integral representing the virtual internal
work in (6.84) to the reference configuration:

Vs r}h • ah dv = / V5 r]h • rh dV. (6.86)

Discretization with finite elements leads to

/ V5 j]h -rhdV = (J / (Vs rjh)T rh dfi ,
0 e=1ne

ne n „

= U E^ / SoV^fi, (6-87>V-X /.. */ I

e=l 1=1 £

n& n ,.

U \.—^ T I T> rjf I Br. T T det Je au ./ -t '* i U1 K

e=l 1=1 0"
liQ

Hence, in this case the residual vector denoting the stress divergence term is defined
by

r / (u e )= / Bl,rdn. (6.88)

The total internal work follows from (6.85).
The approximation of the inertia terms is performed according to (6.49). In the

same way, (6.51), the load terms are formulated. Thus we can summarize the finite



158 DISCRETIZATION OF THE CONTINUUM

element discretization of the weak form with respect to the current configuration
(2.61):

7 / T [Mv+r (u ) -P] =0, (6.89)

which for arbitrary values of the test function 77 yields the nonlinear ordinary differ-
ential system

Mv+r(u)-P=0. (6.90)

For static problems this system reduces to a nonlinear algebraic system of equations
for the unknown nodal displacements u:

g(u)=r(u)-P =0. (6.91)

The vector representing the stress divergence term r (u) can be computed in equations
(6.90) or (6.91) either by (6.84) or (6.88). Both formulations are equivalent. Note that
the relation (6.85) looks like the formulation in the linear theory, only the quantities
6e and cr are evaluated with respect to the current configuration.

6.2.4 Linearization of the weak form in the current configuration

In the last section we derived two weak forms, equations (6.85) and (6.88), which
differ only in the region of integration, (p(Bh] or Bh. The linearization of these forms
is described in Section 2.5.3, thus we only have to apply the discretization to these
results.

Linearization of the weak form (6.85) follows from equation (2.127) as

j) • Au= I {gradAuo- • gradr; + VST7 • <c[VsAu] }dv. (6.92)

The first term has exactly the same form as the associated term in the formulation with
respect to the initial configuration. Hence the discretization is the same, and can be
directly adopted from the discretization in the initial configuration, see (6.56). Only
the derivatives are now with respect to the coordinates x, of the current configuration

). With the discretization of the gradient

n

gradAu/1 = N ^ Au/^ <g> VX./VK- ,

n

= Y^ rjf (8) VX7V/ , (6.93)
I=1

we obtain the first part of the integrals

ne n n .

I grad Au& • grad77dv = ^J ^ ^ r/f / giKldftAux- (6.94)
J „—1 7—1 IS—1 Je=1 1=1 A"=l
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Within this term, the abbreviation

(6.95)

has been used. The matrix from of the scalar product follows, as in (6.58), as

011 012 013

021 022 023 (6.96)
N1

This equation is independent from the constitutive equation, as is (6.56), since only
the stresses of the configuration (p enter the integral.

The second term in (2.122)

TJ • « [V5Au] dv

<p(B)

depends upon the incremental constitutive tensor <c, evaluated at the current config-
uration <£, and thus directly from the constitutive equation (e.g. see Section 2.4.2,
equation (2.90)). Using the same arguments as for linearization with respect to the
initial configuration and (6.82), we obtain

s[ V A u ] dv
ne n n

[\T YV ,̂/ (f _,/ -/,._—„,/

(6.97)
where all quantities in the integrals have to be evaluated at (p. In summary, we find
the discretization

-

= |J

(6.98)
where matrix KT[K is the tangent matrix with respect to the current configuration,

7xNf)Ta VXNK + Bo,DM BQK] dui. (6.99)/

It is defined for the combination of nodes / , K within the element fJe , see also Section
6.2.2. The discretization of the weak form (6.88) in the current configuration follows
in an analogous way, we just state here the final result:

= U
e=l 7=1 K=l

(6.100)
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where matrix KTlK is the tangent matrix with respect to the current configuration:

dfi. (6.101)

The matrix form D of the incremental constitutive tensor <c can be found for a
- MNEO-HOOKE material, e.g. in (2.92). The associated form for D results from the

transformation with the JACOBI determinant J, as given in (2.126).



7
Discretization, Small
Deformation Contact

In the first applications of finite elements to contact problems of two deformable
bodies only small changes in the geometry were assumed so that the geometrically
linear theory could be applied. In that case it is possible to incorporate the contact
constraints on a purely nodal basis, e.g. see Francavilla and Zienkiewicz (1975).
Later, contact elements were also developed, which resulted from a degenerated solid
element, e.g. see Stadter and Weiss (1979) or the textbook of Kikuchi and Oden
(1988). A mathematical study of these classes of elements which also accounts for
the correct integration rules can be found in Oden (1981) and Kikuchi and Oden
(1988). All of the above-mentioned elements need a discretization in which the
element nodes match each other at the contact interface. For the general case of
nodes being arbitrarily distributed along the possible contact interface between two
bodies, which can occur when automatic meshing is used for two different bodies,
Simo et al. (1985) developed a segment approach to discretize the contact interface for
the two-dimensional case. Also, first attempts have been made to use the hp-version
of finite elements for the discretization of contact problems, see Paczelt et al. (1999).
Recently, such discretizations gained more attention due to automatic meshing tools
and domain decomposition methods for large problems. We refer to mathematical
literature like Belgacem et al. (1997) and Belgacem et al. (1999) for the development
of so-called mortar methods, and to Rebel et al. (2000) or McDevitt and Laursen
(2000) for an engineering treatment of such methods.

In general, in small deformation contact, we do not need search algorithms since
no large slip can occur on the contact surface. Hence when the first discretization
takes into account the contact interface as depicted in Figure 7.1, then the element
sizes coincide at the interface, and one can define contact elements which have nodes

161
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Fig. 7.1 Contact discretization for small deformations.

on the surface of both bodies. These contain pairs {i. k } G Jc which might possibly
come into contact. Note also that in frictional contact problems, the mesh topology
does not change during the loading process, since the slip is infinitesimally small.
Thus in the case of friction, it is also possible to develop contact interface elements
on a nodal basis, which can be simply added in the assembly procedure to the general
stiffness matrix like standard finite elements.

In the following we discuss the case of two deformable bodies being in contact.
The special case of the classical SIGNORINI problem, where a deformable body is
in contact with a rigid obstacle, follows directly from the equations developed by
assuming one body is rigid, and by defining the normal vector on the rigid obstacle.

7.1 GENERAL APPROACH FOR CONTACT DISCRETIZATION

There are different possibilities to formulate (and hence discretize) the contact con-
straint. This was discussed in Section 5.3, leading to the main formulations of LA-
GRANGE multipliers and the penalty approach. Discretization in the framework of
these two methods will be discussed in this section.

In general, for penalty and LAGRANGE multiplier formulations, different dis-
cretizations of Fc are possible which depend on the problem, on the discretization of
the bodies which come into contact, and on the type of constitutive interface law.

7.1.1 Lagrange multiplier method

The LAGRANGE multiplier method (5.27) is a mixed method. This means that the
field of LAGRANGE multipliers AN and the displacement fields ua of both contacting
bodies, which define the gap function g^, as well as its variations like SgN (here
shown for the frictionless case) have to be discretized. This yields for the residual

/
rc

A AT dT Xh
N6gh

NdT (7.1)
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and for the constraint equation

Ajy w dT — 0 (7.2)

The interpolations for A^ and Sg1^ are defined on F'f,: by

and (7.3)

£ is a local, in general, convective coordinate which defines the shape functions N1

and MK on the reference element; see Section 6.1.1 and Figure 7.2. XNK and 6gNI

are the nodal values of the LAGRANGE multiplier and gap functions, respectively.
nc denotes the number of active contact constraints JA G Jc which have to be
determined by the contact algorithm. For evaluation of the integrals in (7.1), it is not
always clear on which side of the interface (body Bl or B2) this integration has to be
carried out. Thus, one has to choose one of the surfaces of the bodies in the contact
interface as the reference or master surface, and then perform the integration in a way
that is consistent with the discretization. In Figure 7.2 the boundary dB1 is chosen as
the master surface. The figure describes this discretization for the two-dimensional
case when linear interpolations are used. In this case, the surface of the bodies coming
into contact is also discretized by linear shape functions. It can also be seen that the
sum in (7.1) has to be applied to add up all contributions of the contact elements
associated with Ff . Using (7.3) in (7.1), one obtains

\NSgNdT S9NI det J NK (7.4)

where det Jr (£) is the transformation of a surface element in F^ to the reference
element FQ. By comparing this result to (6.48), we see that the integral in (7.4) has
the structure of a mass matrix. This is especially true when the same interpolation
functions are used for gap and LAGRANGE multipliers.

Fig. 7.2 Contact discretization, isoparametric formulation.
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rnrrrrn

Fig. 7.3 Non-matching meshes at the contact interface.

Note that the interpolations have to be chosen in such a way that they fulfil the
BABUSKA-BREZZI BB-condition for this mixed formulation (e.g. see Kikuchi and
Oden (1988), Belgacem et al. (1999) or El-Abbasi and Bathe (2001)). This is usually
no problem if the nodes of the contacting bodies assume the same position at the
interface, see Figure 7.2.

However, if the bodies coming into contact are discretized by using different finite
element meshes, then the nodes no longer match each other, see Figure 7.3. In
this case, one has to carefully investigate the discretization in the light of the BB-
condition. An early suggestion for a discretization for non-matching grids can be
found in Simo et al. (1985). Recently, new methods, so-called mortar methods, were
designed for domain decomposition in which unstructured grids are connected within
a parallel finite element solution. These methods are well understood mathematically
(see Bernadi et al. (1994), Tallec and Sassi (1995) or Wohlmuth (2000a)). It is
obvious that one can also apply such a strategy to finite element contact problems
when the nodes in the contact interface do not coincide, as can be seen in, for example,
Figure 8.1. Work along these lines related to contact problems can be found in the
mathematical literature in Belgacem et al. (1999) or Krause and Wohlmuth (2001)
and in the engineering literature in Rebel et al. (2000) or McDevitt and Laursen
(2000). Another approach for non-matching grids in the contact interface is provided
by the NITSCHE method, which only works with the primary displacement variables
as described in Becker and Hansbo (1999). The mortar and NITSCHE methods are
discussed in Section 7.4.

Based on the LAGRANGE multiplier method, the following general matrix formu-
lation can be derived. The discretization of a body #7 has already been discussed in
detail in Chapter 6. We recall these results for the linear elastic case of both bodies,
which leads to the discrete form of the potential energy (5.25),

= -u Ku-u T f , (7.5)

where the displacement vector u includes the nodal displacements of both bodies. In
the same way, the stiffness matrix K is associated with both bodies, and /contains
body forces and surface tractions of both bodies. In more detail, we can write

1
0

Observe that the bodies are not yet coupled. This occurs due to the additional terms
which are derived from (7.1) and (7.2). To obtain a matrix form for these terms we
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introduce for the gap function in each contact element F^

g$r = C?u, (7.7)

where C?; depends upon the choice of discretization. By integration, using (7.4), with
(7.7) we obtain the vector Q. Now the contributions can be assembled into a matrix
which then contains all nc constraints. With

C = [ C i | C f c | . . . |Cnc] (7.8)

we obtain the discrete form of (5.25), together with (5.26):

nL M(u ;A) = i o T K u - u T f + A T C T u . (7.9)
£*i

A is the vector of all LAGRANGE multipliers associated with the nc contact con-
straints. Variation of HLM(u, A) with respect to displacements and LAGRANGE
multipliers yields with 77 = <5u two equations

r]T [ K u - f + C A ] = 0,

< 5 A T f c T u l = 0. (7.10)

By the fundamental theorem of variations, these equations can be arranged in matrix
form " K ci r i i i r?'

CT 0\ \ A / - \ 0

Note that this is a linear system of equations for the given number of nc contact
constraints. In a real contact analysis this number is not known. Thus, we then haves
a nonlinear problem in which, in addition to the displacement field and the LAGRANGE
multipliers, the correct contact zone also has to be determined. Algorithms for this
will be stated in Chapter 9.

In the following sections we shall discuss details for the different discretization
which are only associated with the contact terms in (7.11).

7.1.2 Penalty method

Contrary to the LAGRANGE multiplier method, the penalty method only needs dis-
cretization of the displacement variables. The contribution of contact constraints to
the weak form leads, with (3.7) and (5.32), to

(7.12)
rc

with the interpolation for the gap function and its variation

> _ V- v.f* «..r and SghN = £ N!(^8gNI. (7.13)
7
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But here also one has to be careful when choosing the interpolation for continuous
contact. Since the penalty method is equivalent to a mixed method the BB-condition
plays the same role as for the LAGRANGE multiplier approach (e.g. see Oden (1981)
for a detailed discussion of this matter). Hence, when applying the penalty method
one has to take special care to choose the correct discretization in the case of non-
matching grids, see Figure 7.3.

The matrix form for the penalty method follows from (5.25), together with (5.31).
Again we have to perform the integration in (7.12), which analogous to the definition
(7.8) leads to

u. (7.14)
2 2

Variation of I I p ( u ) with n = Su yields

rjT [Ku – f + 6N CCT u] = 0, (7.15)

which leads to the matrix form

K+Kp]u = f, with Kp = e N C C T (7.16)

Again, this linear system of equations is given for the fixed number of nc contact
constraints. Algorithms to solve this form will be stated in Chapter 9.

In the following we discuss discretizations related to the methods mentioned above,
and to the formulation using constitutive equations for the contact interface. Fur-
thermore, to simplify notation, we will drop the superscript h which denotes the
approximation using finite elements.

7.2 NODE-TO-NODE CONTACT ELEMENT

The simplest formulation for contact is a discretization which establishes constraint
equations and contact interface constitutive equations on a purely nodal basis. Such
a formulation will be called a node-to-node contact. For this discretization the fric-
tionless as well as the frictional contact formulation is developed below.

7.2.1 Frictionless contact

A node-to-node contact can only be applied to geometrically linear problems, since
large relative tangential movement of the nodes is not allowed in the contact area. The
constraint equation for contact can then be formulated directly for each nodal pair,
denoted in Figure 7.4. The geometrical contact constraint condition for the normal
contact was stated in (3.11). It reads in this case for one node pair i

gNi = (u1-ul)-nl+9i>Q. (7.17)

Here u are the displacement vectors of bodies Ba of the nodal pair associated with
i. gi is the initial gap between both nodes.
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Bh1

Fig. 7.4 Node-to-node contact element.

For small strains the change in the normal is neglected within the computations.
Since the initial gap is independent of the displacement field, the variation of (7.17)
is given by

iNi (7.18)

Due to its simplicity, and assuming that the contact constraint is active for nc nodes,
we can express the integral (7.1) for the contact contributions in the weak form by a
sum over all active contact nodes.

Lagrange multiplier formulation. For the LAGRANGE multiplier method this
leads to

A N dF N i
nc

.,• = > A;

i=l

and the weak form of the constraint equation

E uj) -n\

(7.20)
where nc are the active contact nodes in F^. The test functions rjf and the normal
vector n\ are defined for the node i as depicted in Figure 7.4. The product of LA-
GRANGE multiplier XN i and area Ai related to node i is the contact nodal force, and
XNi is equivalent to the contact pressure PN associated with node i. The matrix
form for this discretization can be obtained by introducing two vectors, one for the
variations { rjf , SXi }, and one for the increments of the variables { Auf . AAj } at
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node i:

(7.21)
Inserting this into (7.19) and (7.20) yields the contact residuum

/ (SXN 9N + \N 69N) dT « ]T 7)f G<L with GiL = { XN
T

I^ } At
Jrc ^ I ui ^i )

(7.22)
and

(7.23)

Furthermore from the linearization of (7.22) we obtain the expression

T/fK^Au, (7.24)

with the contact stiffness matrix for one node i,

0 (

Penalty formulation. In the case of the penalty method, we have to discretize
equation (7.19) for AJV = CQN, leading with (7.21) and (7.23) to

eyv 9N 5dN dT — >• /] ew 9N i <$#N i Ai = }^ f/f CTV 9N i C» Ai . (7.26)

Often the area Ai which is associated with the contact point i (see Figure 7.4) is
neglected (or "hidden" in the penalty parameter CAT) in the node-to-node contact
formulation. This means that the contact stress p^i — CAT 9Ni becomes a contact
(nodal) force /yv i = CN Ai g^ i — CAT QN »• An evaluation of a contact interface law
like (4. 1 1) is not possible with this simplifying discretization.

The associated matrix formulation for (7.26) results in the geometrically linear case
for node i to the definition of the contact residual (7£ = rj^G^ p and its associated
tangent matrix K£p. The explicit form can be stated by using the notation defined
in equation (7.23):

iCi, Kfp = eNAiCiC] r. (7.27)

LAGRANGE multiplier and penalty formulation, as given here, are valid for one-,
two- and three-dimensional formulations. One only has to adapt the definition of
the normal ni1, the variations nf and the displacements uf, at the contacting node
i in relation to the spatial dimension of the problem. As examples we state here the
penalty residuals and tangents for the one- and two-dimensional cases.
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One-dimensional case. If contact between one-dimensional structures is con-
sidered, then the normal vector n* is given by the scalar nx = 1. Hence the
matrix C,; is simply Cf = {1, — 1), which yields the residual and tangent

GcP 9Ni
1

-1 and (7,28)

This result can be compared with the formulation used in Section 5.4 to evaluate
different methods to formulate the contact constraints.

Two-dimensional case. For two-dimensional problems the normal vector has
two components (n^)T = {nx , ny}j. Thus the matrix Ci, and hence also the
residual matrix, now have four components. Explicitly, one obtains

G cP _• (7.29)

and

" nx

nx ny

~nl

- ~nx fly

f ix f ly
ny

–n xn y
2–ny

X

–nx ny

n2

nxny

'^X '^"U

–nl
f ix f ly

2
T)fty J

(7.30)

We note that it is not always obvious how to define the normal vector for a given
interpolation of the contact boundary. This is especially true when a linear interpo-
lation, as shown in Figure 7.5, is used. Here it can be seen that there is a jump in
the normal at point i. Thus, the definition of the normal at point i is not unique. A
way out is given by using a normal n1, which is obtained from a smooth interpolation
of the discretized contact surface by, for example, BEZIER or spline functions, as
depicted in Figure 7.5.

The problem of defining the normal at nodal points can also be circumvented by
introducing an isoparametric interpolation for the contact surface, see next section.

Fig. 7.5 Definition of the contact normal.
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7.2.2 Contact with friction

In the case of frictional contact, we have to distinguish between stick and slip motion.
The theoretical background can be found in Section 4.2. Here only the classical law of
COULOMB is applied. The relative tangential movement between the two contacting
nodes is given with respect to (3.23) by

grTi = ( 4 Q ® 4 a ) ( u 2 - u ! ) , (7.31)

where e^a is the unit tangent vector at node i in the direction a = 1, . . . , 2. The
tangent vectors have to be constructed such that they form an orthogonal frame with
the normal vector n] , hence e^ GTB = <W- In the same way, we define the relative
tangential velocity

«r,- = ( 4a® «£o ) ( « « ? - " « • ) • (7.32)

First we consider the stick case. This will be done here using the penalty method,
see Section 5.3.2. Again, the integral in (5.32) is discretized by a sum over the nodes
in contact

»
I CT gT ' <*8T dA

= > [( u? - u{ )T 4-J [(I,? - r,])T el
Ta] At .

i=l

By introducing the matrix

Tai = ( ef a) , (7.34)
I ~eTa )

we can state the matrix formulation for (7.33). This results in the geometrically linear
case for node i to the definition of the contact residual for tangential stick

~JT /~*C St / *7 -5 c \7)i (JT j . (7.35)

rc «=i

The explicit form can be stated by using the notation defined in equation (7.23):

2
(-^ C St 4 '\ ^ rri fi 'lfl\

a=l

with grai = T^i i*i. The associated tangent matrix follows from the lineariza-
tion of (7.36), which only depends in gra t in the geometrical linear case upon the
displacement field. With ApTQ i = T^i Au^ we obtain

(7.37)
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In the case of slip, the virtual work expression for the contact contribution is derived
using an implicit backward EULER integration of (4.27), see Sections 4.2.4 and 9.5.2.
Using these results we obtain

n+1 • SgT dA= npN n+1 n*r
r
n+1 • <5gT dA = r1J Gc

T
s*ip . (7.38)

rc
 i=1

In this equation the residual slip vector G^lp for contact node i is given by

nT«iTai with
a=l

(7.39)
The linearization of (7.38) is now constructed from two terms, since n^n+1 as well
as well as PN n+1 depend upon the displacement field. The linearization of n^n+l yields for
a node i

j.tr i
A ntr A Tn+1 -1 r-i ntr i nir \T~\ \ +tr

1 - n n| Tin+l Tin+l
Tn+l | | lTin+l\\

(7.40)
where the linearization of the tangential nodal force with (7.32) yields

2

A*TP<n+1 =CTAg T in+1 =eT53 (^iAin) 4a. (7.41)
a=l

Combining the last two equations, the contribution to the linearized weak form can
be computed with (7.39) as

2 2

<fe?iA4r
in+1 =cT E E ^ [(•W-n^n^Tail^j Au*. (7.42)

a=l 0=1

For node i the linearization of the normal contact pressure P N n+1 follows with the
matrices introduced for the frictionless case in (7.26),

i = ZN C Aui . (7.43)

This adds

2

%T i ( t* &PN i n+i nT n+l ) = n eN E vfinTa T« i cf Aui (7.44)
a=l

to the linearized weak form. Combining (7.42) and (7.44) yields the tangent matrix
for node i which is in the slip state

<
[/3=1

(7.45)
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Due to the second term, the tangent matrix is non-symmetric. This is because the
COULOMB law of friction can be viewed as a non-associative constitutive equation,
and hence cannot be represented by a positive strain energy function.

Note that the first term in (7.45) is zero in the two-dimensional case. This stems
from the fact that the quantity n^a can then be represented by a signum function,
since tf£n+l / \ tt£n+l \ = Sign( tifn+1 ), which leads to (6a0 - nifQ n^3) = 1 -
Sign( £j^n+i )2 = 0. Thus only the non-symmetric part of (7.45) remains in the
two-dimensional case:

K£f p = neN Sign(#n+1) T< CT with Tif = ( G\i } , (7.46)
I ~GTi )

where e1
 t is the unit tangent vector.

7.3 ISOPARAMETRIC DISCRETIZATION OF THE CONTACT
CONTRIBUTION

Another possibility to discretize the contact surface is given by a direct interpolation
of the surface using the isoparametric formulation. Also, this contact element does
not allow large relative tangential movement in the contact area, and thus is only valid
for geometrically linear applications, as discussed below. Such an element connects
the surfaces dB1 and dB2 at the contact interface,as shown in Figure 7.6.

The gap function g^, stated in (3.11) for geometrically linear analysis, is dis-
cretized by an isoparametric interpolation, also leading to a well defined contact
pressure. For the gap function we obtain its variation and linearization

(7-47)

9N =

i

Fig. 7.6 Isoparametric contact element for three-dimensional problems.
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where / denotes the nodal points of the isoparametric surface elements.
The contact normal used in (7.48) can be constructed directly from the interpola-

tion. This is due to the fact that the tangent vectors to the surface can be obtained
directly from the convective description of the surface by the isoparametric interpo-
lation, see Figure 7.7 and (B.2) in Appendix B. With this we compute the normal
vector to the discretized surface of body Bl:

G1

(7.48)

The tangent vectors are obtained by the partial derivative of the position vector to the
initial configuration of the contact surface, G1 = X*a, with respect to the coordinates
£ and //. Note that all vectors are now defined on dB1, which is denoted by the
superscript 1. Thus, for the contact normal we have

(7.49)

1=1

which leads to the derivatives for its components Xi,

As we apply an isoparametric interpolation, we use the same shape functions for
displacements and coordinates. The position vector X1 is approximated by

(7.50)

(7.51)

(7.52)

I-1

With this we can explicitly evaluate the cross product in (7.49), which yields

Fig. 7,7 Computation of the normal vector.
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The matrix formulation for (7.48) can be derived by introducing the vectors

and *={-#}• <7-53>
This leads to the variation and linearization of the gap function:

(7.54)

Lagrange multiplier formulation. Using LAGRANGE multipliers we have, in
addition to discretization (7.54), to introduce a discretization for the LAGRANGE
multiplier and its variation:

XN = MK(£.,rj)\NK and S\N = MK(^,rf)S\NK • (7.55)
K K

Note that interpolation for the LAGRANGE multiplier has to be chosen in relation
to the interpolation of the displacement field (7.48) such that the BB-condition is
fulfilled, e.g. see Kikuchi and Oden (1988). Here for the moment we use the general
formulation with different interpolations for g^ and A AT, without specifying the shape
functions NI and MK explicitly. With (7.52), for the contact contribution of the weak
form of equilibrium we can write

L \N6gNdT « rgfG^j (7.56)
1=1

+ +
Ud = j fwith

–1 –1

The area element dT in the contact surface F£ can be computed using the refer-
ence configuration FQ, see Figure 7.7. The area element dT is given by dT =
|| X.| xX.J || d£ dr] = || Nl \\ d£ dr]. Note that || JN1 || appears in the denominator of
(7.54), and as a factor in the area element in the reference configuration, hence this
term is cancelled in the weak form (7.56). Furthermore, for the weak form of the
constraint we obtain

S\N gN dT ~ 2. fiX.NKGcK=0 (7.57)
K=1

+1 +1

with
L. JV

-1 -1

+ 1 +1

= I j MK(S,ii)gN(S,ii)\\Nl \\dtdn.
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In matrix form, (7.56) is represented by

XN dgjy dT fa ( r j c l ,..
J^i

and (7.57) yields

8\N QN dT fa {<5Ajvi ; • •

The linearization of (7.56) and (7.57) leads to

AAjY $9N dT fa

G u
cl

Gu
en

(7.58)

'cl

i 8\Nm } (7.59)

J^ ]T Tfifj C/^
1=1 K=l

+ 1 +1

(7.60)

with •,ri)N(t,ri)dtdri,
-i -i

and

SXN V V
~*

1=1 K=1

Cx/ Au/ . (7.61)

with CKI = CjK. Hence, the complete matrix form for the linearization is repre-
sented for one contact element by

{77^ . . . . . r^Tn . 6\Ni ..... XNm) K\•LM Aun

. AAjV

(7.62)

with

K•LM
Jnl

0

(7.63)

where the matrix elements CIK are defined in (7.60). In this expression, the in-
dices for the displacement variables run over the number of nodes used to specify the
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isoparametric interpolation, e.g. n = 4 for bilinear and n = 9 for biquadratic shape
functions. The same holds for the LAGRANGE multipliers, where now m represents
the number of nodes used for the interpolation.

Penalty formulation. The weak form for the penalty method is given in equation
(7.12). With (7.48) we can represent the weak form contribution of one element by
further using (7.52), and introduce the finite element discretization directly to obtain
for (7.12) a compact form

(7.64)
c=l I=1

with

(7.65)

where Unc
c=1 denotes the assembly of nc active contact elements and FE is the contact

surface of the reference element, see Figure 7.7. In (7.64) the contact pressure p^ is
given by PN = ejv #TV(£ , ̂ ) which is defined for every point of the contact element
domain Te

c.
The linearization of contact residual (7.64) yields, with (7.54), the result

/
•*r

(7.66)
K

- f (
J-i J~\

Both, residual vector (7.64) and tangent matrix (7.66)2 have to be evaluated using
numerical integration. For the proper choice of the numerical integration rule, see
Oden (1981), who has discussed this topic in the context of perturbed LAGRANGE
formulations. To avoid locking and pressure oscillations, a reduced GAUSS integra-
tion or an integration based on SIMPSON'S rule works well. This means that, for
instance, a one-point GAUSS integration should be used for a bilinear interpolation.
In the case of the application of SIMPSON'S rule, the integral has to be evaluated at
the four nodal points of the bilinear element.

The isoparametric discretization leads to a contact element which can be applied
in the context with four, nine node quadrilaterals or triangular elements for three-
dimensional continuum problems. Due to the smooth discretization, a good approx-
imation of the contact pressure is obtained.

7.3.1 Examples for isoparametric contact elements

To give a more detailed description of this type of contact discretization, we con-
sider some formulations in more detail. These are mixed formulations based on the
so-called Ql/P0 approximation, and several two-dimensional formulations for the
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LAGRANGE, penalty and perturbed LAGRANGE methods.

Example 1: As a first example we derive the explicit matrix formulation for a
contact element with bilinear interpolation for the displacement field and constant
approximation of the contact pressure in the case of frictionless contact. This is
equivalent to the well known Ql/P0 element used in solid mechanics for incompress-
ible problems. To make the formulation more flexible, we start from the perturbed
LAGRANGE form discussed in Section 5.3.6. In that case, one has to approximate
equation (5.52), which involves LAGRANGE multipliers and a regularization term.
The weak form of the contact contributions is then

p f \ ( 1 M&Cc = I \\N OQN + O\N I itjfjv A/v (iF. (7.67)
JTC I V Cjv J \

Using the bilinear shape function, given explicitly in (6.24), we can discretize (7.67).
Furthermore, the LAGRANGE multiplier XN is approximated by a constant value in
the element represented here by A^r. This interpolation leads, with (7.48), (7.52) and
(7.56), to the weak form contribution to equilibrium of a single contact element:

+1 +1

1 -i -i

Furthermore, for the weak form of the constraint equation we obtain

fx / 1 \ ^
oX]\r I QN — — AJV 1 dT (7.69)

re V e./v /
+1+1

— XN Ae

L-i -i

-o,

where the Ae represents the area of the contact element. This equation represents
a regularization (constitutive equation) for the impenetrability constraint condition
(3.6). It has to be fulfilled in an average sense over the finite element Te

c. In case
the second term is zero, we recover the classical LAGRANGE multiplier method. We
can also obtain a penalty formulation by eliminating the LAGRANGE multiplier using
(7.69). Solving this equation for the LAGRANGE multiplier Ayy yields

€jV / / M 1
ATV = -r- / / 9N(£, I'n) \\N \\ d^dr). (7.70)

-i -i

This result can be inserted into (7.68), which leads to

+1+1

gN \\tf\\dtdrid (7.71)



178 DISCRETIZATION, SMALL DEFORMATION CONTACT

with
+1 +1

C/ = j I N,Ndf,dri. (7.72)

-i -i

Note, however, that in this special formulation a double integration is necessary where
gN, N1, NI and N are functions of £ and 77. With this the LAGRANGE multiplier is
eliminated from the formulation, which is now a penalty formulation with a special
interpolation (Ql/P0: linear for the displacement field and constant for the contact
pressure A^v). The check for penetration has to be performed here for the complete
contact element by evaluation of the integral condition

+1+1
gN < 0 => contact with gN = I I gN(£,,r)} \\Nl\\d£dr). (7.73)

-i -i

The linearization of (7.71) with respect to the unknown displacements only affects
the first integral, which contains gN. Since AgN has the same structure as SgN, we
obtain with (7.72)

dT K Cl (7"74)

K

Example 2: As a second example, we formulate the contact element for two-
dimensional problems. It then reduces to a one-dimensional element, see Figure 7.8.
As in (7.48), for the gap function and its variation we obtain

9N = and 6gN = n (7.75)

where now the isoparametric shape functions can be chosen according to Section
6.1.2. The contact normal can be constructed directly from the interpolation by the
cross product of the tangent vector and the vector £3 perpendicular to the plane, see

E-3

E f vl
3 I -* -̂

Fig. 7.8 Isoparametric contact element for two-dimensional problems.
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Figure 7.8. With this we compute the normal vector to the discretized surface of body
Bl from

x 1

, (7.76)x;
where the tangent vector is computed as in (7.49). Since the line element dS in the
contact line can be computed using the reference configuration FQ of the isoparametric
formulation, we have dS = \\ X^ || d£. Now for the different contact formulations
with (7.76), we can state the weak form contribution of the contact stresses for one
element:

1. LAGRANGE multiplier method:

+1
f 9 1 1XiySgwdF = I Ayv(£) (77 — 77 ) • (E3 x X f ) d £ (7.77)

J '
Tc ~l

+1
f • 1oA/v ^jv "F — I ^"Ajv(0 9Ar(0 I X f d£. (7.78)

J
r? -1

2. Penalty method:

+1

f eNgN69NdT= f eNgN(£) (rj2 - 7?1) - (E3 x X1,) d£ . (7.79)
J J ^ •

3. Perturbed LAGRANGE formulation (see also (7.67)):

+1

/ A^y 6gN dT = f XN($ (rf - rj1} • (E3 x X1,) d^ (7-80)
J J

r i i _ +1

XN QN ~ Ayv dL —

Based on (7.77), (7.79) or (7.80), the finite element discretization is obtained. We here
restrict the matrix formulation to the penalty method and to the perturbed LAGRANGE
formulation.

(a) Penalty method. With the isoparametric interpolation

(7.81)
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and the resulting derivatives for the components of X1

XiA, (7-82)

(7-83)

A= l

the cross product in (7.76) yields

This leads to the discretized form of (7.79)

+1
CTV 9N $9N dF ss / ejv<?yv(£) / ^ -^/(O (^7 ~ ^?j) • N (£)d£. (7.84)

r« -i 7

The linearization of contact residual (7.84) yields, with (7.66),

+1 t

_j / A: II •€ I'

(7.85)
The matrix formulation for (7.84) and (7.85) are then based on definitions (7.53), in
which (7.83) has to be used. For the contact residual, this leads to

+1
r c _ _
/ CN 9N 6gN dT « \J ^ T& G/ , with G/ - /
I c=i 1=1 \

(7.86)
where the integration has to be performed on the reference element, see Figure 7.8.

For the tangent stiffness we obtain with (7.66) the matrix form

/ I I ^ "\ ^ ^ rj~. ^^^

CN A^yv OQN «T « I I y . y . We i CIK&UCK - , (7.87)
c=l 7=1 K=l

with
+1

= / (7.88)

For proper choice of the numerical integration rule, we refer to the remark made for
the three-dimensional contact formulation. It can easily be seen that the contact resid-
ual and tangent changes when using different integration rules. However, since only
polynomials appear in (7.86), an exact integration is also possible for this integral.
For linear shape functions the polynomial order is 2, thus a two-point GAUSS rule is
sufficient. A one-point GAUSS rule then leads to an under integration. For a quadratic
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interpolation the maximal polynomial order is 6. In this case four GAUSS points have
to be used for an exact integration, but also a three-point rule is sufficient.

(b) Perturbed Lagrange formulation. For this formulation the matrix form for a
Ql/P0 interpolation will be developed. This yields matrices which can be evaluated
in closed form, and thus are used to demonstrate in detail the matrix formulation of
the finite element discretization. Note also that in this case the contact interface is
approximated by a piecewise linear interpolation. We start from the weak formulation
(7.80) for one contact element. By using the interpolations for the displacement field,
the coordinates and the LAGRANGE multiplier are

2

/ ( O u / = £ o ( l + ££ / ) " / , <7-89)
7=1

2

X1 - £tf/(OX} = -(l + a / ) X , (7.90)
7=1 7=1 Z

XN = A AT, (7.91)

with £1 = — I and £2 = +1. Using this interpolation, the normal vector IV1 can be
expressed explicitly

{ — Y l • } i f * " 1
A2,£ I _ i J A2i
yl ( — o 1 YlAU J 2 I A12

with the components (X})T = { X1
11 , X\1

12 } and (X1
2)

T = { X1
21 , X

1
22 } of the

position vectors X1
I of the nodal points of the master surface, see also Figure 7.9.

Note that the vector N1 is constant, which is in accordance with the straight geometry
of the contact element. Now we can write, with (7.91) and (7.92) for (7.80),

/
J

+ 1 2

A,v 8gN dT = \N i T tf/foj - 777) ' N1 d{ . (7.93)

Fig. 7.9 Two-node contact element with Ql/PO interpolation.
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Since r// and N1 are constant, we can integrate (7.93) analytically, and obtain with

+1

-1

the matrix form

XNS9NdT = XNfix G^L with C"^ - { ^ > , (7.94)

where the vector 7) which contains the variations rjj has been introduced as

*7T = { */ll » *?12 , *?21 , 7?22 , Till , »7l2 » fil >^22 ^ •

Now the constraint equation (7.80)2 can be evaluated. For the chosen interpolation
this leads to an expression for the LAGRANGE multiplier

(7.95)

The element area Ae is given in the two-dimensional case as the element length Le.
Furthermore, we obtain \\ Nl \\ = \ ^/(X22 - X22)

2 + (X12 - Xn)
2 = Le / 2.

With this, for (7.95) we arrive at a simple expression for the LAGRANGE multiplier:

AJV = — ( QN\ + 9N2 ) • (7.96)

Hence the constant LAGRANGE multiplier depends upon the average gap g^ =
(9Ni + 9N2) / 2, which is also used in this element formulation to establish whether
the gap is closed or not, leading to the contact condition

gN < 0 =» contact. (7.97)

The linearization of the perturbed LAGRANGE formulation can be computed from
(7.80) with (7.95). We then have

DCC • Au= I AA,v $9N dT = AAN / SgNdT (7.98)

rc rc

+1 2 +1 2

= 7^ /E^ /CAuJ -Au}) -^^ f E ^(rtl-ri^-N1^.
e J J-^ J K-\_1 /-I _1 K-l

which with

AUT = { AltJi , Au}2 , Aw^ , A«22 , Au^ , Au^ > ^W21 > ^W22 1^

and (7.94) yields the matrix form of the tangent matrix for one contact element

Au = fl
TKc

PLAu with Kc
PL = €-^-CPL(CPL)T. (7.99)

Le
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7.4 DISCRETIZATION FOR NON-MATCHING MESHES

By using general mesh generators, unstructured meshes can be constructed in which
nodes in the contact interface do not assume the same coordinates, see Figure 7.10.
Then the formulations discussed above can no longer be applied, even in the geomet-
rically linear case.

Methods for connecting finite element domains with non-matching grids (see Fig-
ure 7.10) are frequently used for parallel computations. Such formulations have
different origins, and hence have also received special names. A commonly used
approach is the mortar method. However, other methods like the NlTSCHE method
exist. The formulations are designed in such a way that they fulfil the BB conditions,
also called inf-sup conditions, and hence lead to a stable discretization. For a good lit-
erature overview and the underlying mathematical theory we recommend Wohlmuth
(2000a). The basic difference between the mortar and the NITSCHE methods lies in
the fact that in a mortar discretization, one has to introduce LAGRANGE multipliers,
whereas the formulation due to NITSCHE is purely displacement-based, see Section
5.3.5. There are also approaches which were developed in the engineering litera-
ture, e.g. see Simo et al. (1985) or Papadopoulos and Taylor (1992). Here either a
LAGRANGE or penalty formulation was applied.

All methods will be discussed for the case of frictionless contact. Extensions to
friction can be formulated analogous to Section 7.2.2. Treatments which include
friction can also be found in Krause and Wohlmuth (2001) or McDevitt and Laursen
(2000).

7.4.1 Discretization with contact segments

One idea to discretize the contact interface in the case of non-matching meshes is
based on the introduction of so-called contact segments. The discretization of the
contact interface by segments (see Figure 7.11) was introduced in Simo et al. (1985)
for the geometrically linear case. Based on the definition of contact segments, it is
possible to use different interpolations for the LAGRANGE multipliers and the gap
function in a natural way. Hence, it is appropriate to employ the perturbed LAGRANGE
formulation, see Section 5.3.6. This is true even in the case of a penalty formulation,
since then this formulation gives some freedom in choosing the interpolation spaces
for the displacements and the LAGRANGE multipliers.

Fig. 7.10 Contact discretization for small deformations.
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Fig. 7.11 Contact segments for two-dimensional problems.

Following Simo et al. (1985) we define the contact segment by the geometry of
the adjacent elements of the bodies in contact. Within the segments an intermediate
surface F* is introduced. A typical contact segment is shown in Figure 7.12. It is
defined by two element edges with the nodes x1

2-x
1
1 and x2

2-x
2
1. The superscripts

refer to the body and the subscripts indicate the node number. The contact segment
is now defined by a quadrilateral with four nodes, specified by the points x1, x1

2 , x
2

and x2,. x1 and x2 are the orthogonal projections of the nodes x2, and x\ onto the
opposite element edge, see Figure 7.12. This projection is given by

x7 = ( ! -Q 7 )xJ+ct 7 x^, (7.100)

where 7 € 1,2 refers to the body, and a7 follows from

a1 Ll = (x% - x{) • tl and a2 L2 = (x\ - x?) • t2 , (7.101)

Fig. 7.12 Geometry of the contact segment.
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Fig. 7.13 Special cases for segment definitions.

where the tangent vectors are defined as

ifr — x<2 ~ Xl . (7.102)

Similar to the coordinates of the new nodes x1 and x2, the displacement vector at
these nodes can be stated:

u/ = (I - a1) ul + of ul. (7.103)

REMARK 7.1: Note that the projection used in Figure 7.12 does not work in all cases
(see Figure 7.13a), where the projection is not unique for node i, and furthermore no solution
exists for k , l, m within the segments defining the contact interface. In such situations, one
has to redefine the segments. Possible definitions are stated in Figure 7.13b. However this
definition leads to complex coding, since many special cases have to be checked, especially in
three-dimensional situations where a lot of differently shaped segments can occur.

Within the segment, defined in Figure 7.12, the current coordinates, displacement
fields and variations are interpolated with linear polynomials, and hence are given as
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functions of the local coordinate £ G [0,1]

(7-104)

Depending on the discretization used for the bodies #7, higher order interpolations
could also be applied here. With definitions (7.100) the gaps at the segment edges
are obtained as

gl
N = (x| - x1) n1 , gl = (x\ - x2) • n2 , (7.105)

where the normal vector is given for the plane case by n7 = €3 x fc7.
Now the interpolation for the gap function gN (£) and its variation 6g^ (£) can be

defined according to (7.104)

flv(0 = (l-t)9N+t9N-. fov(0 = (1-S}69N+S69
2
N . (7.106)

These interpolations are applied within a segment which is defined by the edge nodes
x7. and the projections onto the other surface x7, see Figure 7. 1 2. Now we can define
an intermediate contact line in the segment which is Cl -continuous:

2 2

- E ^(0yx + L* E
A=l A=l

where /f^ and HA are the classical HERMITE polynomials

with £ G [0.1]. t7 is already defined in (7. 102) and y7 is the position vector of the
beginning and end of the contact line 7^ (see Figure 7. 1 2):

)x1 +J3\l, y2 = ( l - / 3 ) x j + /?x2. (7.108)

The limiting choices of ß =0 and ß = 1 correspond to selecting one of the contacting
surfaces d&J h as an intermediate contact line. This does not mean, however, that the
intermediate line is equivalent to the interpolation of one surface of the bodies, since
it is still C1 -continuous, which is not true for interpolation (7.104). The length Ls

is defined as the distance between the end points y1 and y2: Ls = \\ y2 - y1 ||. The
actual length of 7^ is computed via

(7-109)

which can be evaluated numerically using a quadrature rule.
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The variational formulation is based on the perturbed LAGRANGE approach, see
(7.80). The contact contributions take the form

XN6gNdr =

c S=1

(9N-— } S X N d T = Y [(9N-— ) S X N d j = Q. (7.1H)

The sum over the segments is carried out for all closed gaps. Depending on the
interpolations, the latter equation can be solved for A AT directly. With the interpola-
tions (7.104), and assuming a constant contact pressure \N = CONST within the
segment, for the segment 7S we obtain

XN6gNdj ~ XN I SgN(£)\\-~ \d£ (7.112)

7., 0

- (7.113)

As has been shown in Simo et al. (1985), the evaluation of these integrals by the
trapezoidal rule yields the simple formulas

i

v(0ll^l|de ~ —(^N + ̂ N)-, (7.114)

XN « - (gh +9N) - ^N9s-, (7.115)

where g^N and 8g^N are the gaps defined in (7.105). Equation (7.1 15) has the inter-
pretation that the constant LAGRANGE multiplier Ajv is given in terms of the average
gap gs in the segment. For a consistent formulation this average gap also has to be
used for the contact check. A geometrical view of the enforcement of the contact
constraints in the contact-segment approach is given in Figure 7.14, which depicts
a fulfillment of the contact constraints in the middle of the left and right segments.
This is equivalent to the fact that the constraint is fulfilled in an average sense, since
the integral (7.113) is zero.

Finally, the evaluation of (7.114) can be combined with (7.115) to eliminate the
LAGRANGE multiplier, and hence yield the contact contribution for the perturbed
LAGRANGE formulation

(7.116)
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Fig. 7. 14 Geometrical interpretation of the average gap.

with 8gs = | ( 6gj^ + 8g2
N ). With (7.104) this equation can now be expressed in

matrix form by introducing

= { x2
1 ; x

2
2 ; x

1
1 ; x

12 } and , r/ , (7.117)

which leads to the contact residual within the perturbed LAGRANGE formulation with
local elimination of the LAGRANGE multiplier

with

C8 (7.118)

(7.119)

In the case of established contact, the segment also contributes to the tangent stiff-
ness. This contribution follows from the linearization of (7.118) with respect to the
displacement variables. Since this term depends only upon the displacements within
the product x^ Cs = (Xs + us)

T Ca, for the tangent stiffness we obtain

r rl
^s t-'s • (7.120)

which completes the discretization for contact segments. For more details, see Simo
et al. (1985), and for its nonlinear extension see Papadopoulos and Taylor (1992).

7.4.2 Mortar method

The mortar method is a special technique to enforce contact constraints in the dis-
cretized system for non-matching meshes. The method is based on a LAGRAXGE
multiplier formulation in which special interpolation functions are used to discretize
the LAGRANGE multiplier in the contact interface. Two methods have been estab-
lished during the last years within the mortar approach. One leads to a non-conforming
method which is based on direct enforcements of the constraints, and hence is equiv-
alent to the direct constraint elimination discussed in Section 5.3.3. This method
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is described in Bernadi et al. (1994) and Wohlmuth (2000a). It leads to a positive
definite system of equations, see also the example in Section 5.4. The other method
is related to the weak enforcement of the constraints by applying the LAGRANGE
multiplier method. The general idea is outlined in Section 5.3.1, however in the
mortar approach different interpolations for the LAGRANGE multipliers are intro-
duced. In general, one can use as ansatz space linear, quadratic or even higher order
interpolation functions. However, due to the weak formulation of the constraints,
mathematical conditions like the inf-sup or BABUSKA—BREZZI condition have to be
fulfilled in order to achieve a stable discretization scheme; for details, see El-Abbasi
and Bathe (2001) for a numerical and Wohlmuth (2000a) for a theoretical approach.
In the following, we discuss two aspects related to discretization schemes based on
the mortar approach. These are the introduction of the reference surfaces and the
choice of the interpolation spaces.

Several techniques can be followed to define the contact surface. One is based on
the use of an intermediate contact surface as the reference surface and to define the
LAGRANGE multipliers on this surface. This intermediate contact surface C defines
the mortar side in the interface, see Figure 7.15. Early formulations can be found in
Simo et al. (1985), as described in Section 7.4.1. Lately mortar discretizations, based
on the intermediate surface, have been developed in McDevitt and Laursen (2000) or
Rebel et al. (2000).

Another choice is made in the mathematical literature, e.g. see Wohlmuth (2000b)
and Krause and Wohlmuth (2001), which is based on the assumption that the mortar
side is one of the surfaces of the bodies in the contact interface which would, for
example, in our notation be the master surface. In Wohlmuth (2000b) it was shown
that such formulation with the appropriate interpolation functions for the LAGRANGE
multipliers fulfils the BB condition. Furthermore, the LAGRANGE multiplier inter-
polation can be constructed in such a way that the locality of the support of the
nodal basis functions is preserved. Hence this formulation leads from a mathematical

Fig. 7.15 Definition of intermediate mortar surface.
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viewpoint to a stable discretization, and yields a good approximation of the contact
stresses. The mortar method will be described here for the frictionless case.

The basic formulation starts from the LAGRANGE multiplier method stated in
Section 5.3.1. From equation (5.26) for the frictionless case one obtains the energy
related to the contact interface

= I \N9NdA. (7.121)

rc

XN is the LAGRANGE multiplier in the normal direction of the contact interface and
#AT measures the gap distance. Fc denotes the contact interface. The variation of this
form leads to

Cc = 6UC = I ( 8\N gN + \N 8gN ) dA . (7.122)

rc

The first term describes the fulfillment of the constraint condition, and the second
term yields the contact pressure (LAGRANGE multiplier) due to the enforcement of
the constraint. Now the first term can be used to construct the non-conforming mortar
scheme.

Non-conforming mortar method. Within the discretization of the first term in
(7.122) one has to interpolate the gap function QN and the LAGRANGE multiplier
A/V. The gap function is defined by the displacement field of the contacting surfaces.
Hence the interpolation functions have to be the same as the interpolations used to
discretize the contacting solids. Thus, the only free choice for the interpolation in
the contact interface can be made for the LAGRANGE multipliers. These have to be
interpolated in such way that the BB condition is fulfilled.

We start by introducing a LAGRANGE multiplier interpolation for the two-dimensional
case

2
(7.123)

with MK being a linear function (see (6.15)), except at the ends of the contact area.
At this end \N is chosen to be constant to achieve a stable discretization, e.g. see
Wohlmuth (2000a). With respect to the non-mortar side, the constraint equation
included in (7. 122) can be written in a weak sense as

c=i i K r; c=i j K
(7.124)

where nc is the number of element sides in contact on the non-mortar side. On
this side T"m and also the shape functions Nf of body B2 are defined; see Figure
7.16 for a linear interpolation. The integration of the right-hand side of (7.1 24) also
has to be performed on F"m, however the shape functions N1

J are defined on B1.
Hence the integration is more involved, since nodes I and J do not coincide. An
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Fig. 7.16 Shape functions for displacements and Lagrange multiplier in contact interface.

exact integration can be performed for the choice of linear shape functions using the
segment definition (7.104) from Section 7.4.1. We observe that the integration along
the non-mortar side yields a mass matrix; for the structure in the continuum case see
(6.48). For a linear interpolation within a contact segment c, this leads to

i
u\

2
U2

= 6\7
Nc M

2 u2 , (7.125)

where M2 is the standard mass matrix of a bar. Assembly of all nc terms on both
sides of (7.124) gives

<5A^(M 2 u 2 -M1 u1) = 0, (7.126)

from which we can eliminate the displacements u2 on the non-mortar side by

u2 = (M2)"1 M1 u1 (7.127)

as discussed in Section 5.3.3.
In (7.126) we have computed matrix M1 segment-wise, e.g. M1 follows from an

integration by dividing a segment c into i and j on the mortar side, see Figure 7.16.
This integration can be performed exactly or by using a quadrature rule. For the linear
interpolation with straight segments, a two-point GAUSS quadrature is sufficient, and
yields an exact integration. For higher order isoparametric interpolations an exact
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Fig. 7.17 Support of the standard LAGRANGE multiplier spaces.

integration is more involved, since the contact surfaces can be curved, which leads to
non-constant JACOBIANS.

Since M2 is not a diagonal matrix the influence of one displacement u1 j is cou-
pled with all displacements u2. This situation is graphically depicted in Figure 7.17,
where the large grey area on the non-mortar side shows the coupling due to M2, and
the small grey zone on the mortar side shows the local distribution of ulj due to M1.
The same is true when the LAGRANGE multipliers are kept within the formulation,
as described in Section 5.3.1. Also, there the locality of the nodal basis function is lost.

Mortar method using dual basis for Lagrange multipliers. Following Wohlmuth
(2000b) a dual LAGRANGE multiplier space is introduced. This yields the shape func-
tions shown in Figure 7.18 for constant and linear interpolations. The condition for
duality can be stated for a segment F"m as follows:

dr. (7.128)
pn,

where Nj are the standard interpolation functions for the displacements on the non-
mortar side, and MK is the dual basis used to interpolate the LAGRANGE multi-
plier. The interpolation functions which are depicted on the right side of Figure 7.18
are stated nexl in terms of local coordinates for the two-dimensional case; see also
Wohlmuth (2000a). For a piecewise constant interpolation, we obtain

for - 1 < £ < 0 and - for 0 < £ < 1 ,

= -- for - 1 < £ < 0 and - for 0 < £ < 1. (7.129)
^ ^

Linear dual base functions are given by

_—_ i , , X

(7.130)
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standard A linear

dual A linear

standard A constant

.TO x

dual A constant

Fig. 7.18 Constant and linear interpolation for the mortar method.

finally, quadratic dual basis functions are defined with (6.16) as

(7.131)

£ ~t Ly.

All these functions fulfil the orthogonality condition (7.128). These functions have
to be inserted as interpolation functions for the LAGRANGE multipliers in (7.122).
Note that no modification of these interpolation functions is needed at the end points,
which has been shown in Wohlmuth (2000a). Due to this orthogonality property,
using the shape functions (7.129) to (7.131), an assembled matrix form of the weak
contact constraint equation is given by

instead of (7.126). Hence the elimination (7.127) can now be expressed as

u2 = M

(7.132)

(7.133)

.2 •where D is a diagonal matrix whose elements follow from (7.128). This leads to a
contact interpolation with a local support; see Figure 7.19, which is computationally
more efficient.

By denoting the displacements of nodes lying on the non-mortar side by un and all
others by u9, we can write the LAGRANGE multiplier equations according to (7.11)
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(7.134)

where D is the diagonal matrix introduced above, and C corresponds to M1 intro-
duced in the last section. Due to the diagonal matrix D, this equation has some features
which can be exploited algorithmically. For example, if we know the displacements
in an iteration step k, then we can directly compute the LAGRANGE multipliers from
the second row of (7.134) by

A* = D-1 (fn - Kng u* - Knn u«n ). (7.135)

Since the inversion of the diagonal is trivial, an efficient two-step algorithm can be
derived using the dual mortar method.

7.4.3 Nitsche method

Another method which can be applied for contact problems with non-matching meshes
is the variational formulation due to NITSCHE. The continuum formulation of this
method is provided in Section 5.3.5. It leads to a weak form of the two bodies in
contact, which is amended by three terms, see Becker and Hansbo (1999). These lead
to a symmetrical global matrix system in the primary displacement variables. The
variational formulations is based on (5.41) which, instead of the LAGRANGE multi-
pliers, includes the contact pressures p*N stemming from the solids and a stabilizing
second term which has the structure of a penalty term, see Section 5.3.2. It is given
as

(7.136)

rc rc

The variation of 11 yields

J
rc

(7.137)



DISCRETIZATION FOR NON-MATCHING MESHES 195

The discretization now starts from the definition of the contact pressures (5.44)

ne

plr = n7 -C7[e(ii7)]n7 = 1STTE7 ^ B] u/. (7.138)
7 = 1

JET is the constitutive matrix of body B7 and BI is defined in (6.82) for the current
configuration, but can also be applied to geometrically linear problems when the
current coordinate is replaced by the coordinate of the reference configuration. The
vector which describes the projection of the stress field at the boundary in the normal
direction N7 is defined by

N7 T = {n\ , n\ , n\ , 2nln2 , 2n2n3 , 2nin3 )
7 . (7.139)

It contains the components of the normal vector n7. Equation (7.138) now has to be
used within the variational formulation to enforce the constraints. Hence we have to
insert this expression into (5.45). In this form an integration over the master surface is
needed, which has to take into account the shape function of both sides on the contact
interface.

We will restrict ourselves here to the two-dimensional case and bilinear interpo-
lation functions for the finite elements at the contact interface, see Figure 7.20. The
numerical integration will be performed using a two-point GAUSS rule for each master
segment which is sufficient for linear shape functions. Hence one only has to evaluate
the integral in (7.137) at two points, as shown in Figure 7.20 for one of the points £q.
For this integration the gap function QN at each GAUSS point £q has to be evaluated.
gN is obtained as the distance between the point x1(q) = (1 - £q] x\ + £9 x| and
the intersection of the normal at £q with the boundary of the slave surface. This leads

Fig. 7.20 Two-dimensional contact discretization for NITSCHE method.
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to the condition

x1^) + 9N n1^) - (1 - CP?) x? + CP* «2 = x2(Cpg) • (7.140)

The multiplication of this equation with the tangent vector related to the master surface
e1

T = x1
2 - x

1
1 yields an equation for the location of the intersection point in terms of

the local coordinate £p9 related to the slave surface.

r vi(c \ V2 1 «l_ [x (£g) - X j j -er
C,Pg — , o - 51 - i - • (

Note that the term with the gap function drops out. In the same way, one obtains the
distance gN,

9NQ = jjJqi [X2(CP9) - x1^) ] • n1 , (7.142)

where, for generality, it is not assumed that n1 is a unit vector. Hence n1 can be
defined simply by n1 = e3 x e1

T in terms of the tangent e1
T- to the master surface.

Now the contact pressures at the GAUSS point £g on the master surface and its
projection C,pq on the slave surface can be defined with (7.138) as

1=1
ne

3.p*N = N" E* ̂ B/(Cp,)u/ = -N' &BPqu\ (7.143)
1=1

The same also follows for the variations of the contact pressures, which yields

1=1

1=1

This result can now be inserted into (7.137), which leads for a two-point GAUSS rule
for one contact segment as defined in Figure 7.20 to

(~<N _

<7=]

- figN

+ €N 9N q &9N q f Jq Wq , (7.145)
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where Jq = det Jr(£g) is the JACOBIAN of the surface transformation from the
global coordinates to the local coordinates evaluated at the GAUSS point £q. g^q is
defined in (7. 142), from which SgNq follows as

SgNq = [(1 - + (Pqril - (1 - 67)17} - 6,772] (7.146)

The quantity Wq in (7.145) denotes the weighting factor for the GAUSS integration
rule (which for two points is unity). Note that in the above equation, one has to
change the notation according to the segment which is defined by the intersection
of the normal at the GAUSS point and the slave surface, see Figure 7.20. Here the
projection from the second GAUSS point may intersect with a different element of
the slave surface.

With the introduction of a matrix form for gN q and 6gw q

9Ng = { U? , 1*2 , uj , U\ ) <
CP,

= u

one can rewrite equation (7.145) as

-. 2

9=1

=ri^1 N^ , (7.147)

JqWq

q=l

This equation can be recast in matrix form, leading to

2

*-cq ~,

(7.148)

(7.149)

with the contact residual
*1T. TvrlIV

( N1 T^ Bj u1 + IV2 TE*B2
pq u

2 )
(7.150)
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The linearization of this linear residual term yields the contact tangent contribution
for each GAUSS point:

E2N2N1
Q

2T

r!2 ivr12T

9 Q

Jq Wq

(7.151)
Note that the stabilization due to the penalty method adds a term on the diagonal of
the matrix.

With these matrices the contact formulation using the NITSCHE method is com-
pleted. The method can also be applied to higher order interpolations. In that case,
one has to iteratively find the intersection of the normal vector at the GAUSS points
with the slave surface. Also, the normal vector is then no longer constant within the
master segment. However, the main approach does not change, and the structure of
the matrices which are obtained at a GAUSS point is the same as in (7.151).

A formulation for three-dimensional problems can be derived in an analogous way.
The integration then has to be performed again with respect to the master surface. In
that case, it is more complicated to compute the intersection of the normal vectors at
the GAUSS points with the discretization of the slave surface. However, this is more
a technical difficulty than a conceptual one.

To show the features of the NITSCHE method, we consider a simple example with
two elastic blocks. The dimension of the blocks are, respectively 2 x 0.25 and 2 x 0.75
units (see Figure 7.21); the meshes of the two blocks do not match in the interface, as
depicted in Figure 7.21. The foundation and the block have been divided, respectively,
into 31 x 3 elements and 81 x 9 elements. The upper and lower sides are clamped
and a downward displacement of 0.02 units is imposed at the upper side. Material
constants are: E = 108 units, v = 0.0. A plane stress model is assumed. Results
are collected in Table 7.1. These show that the NITSCHE method is able to improve
the penetration residual norm. This norm is introduced to monitor the accuracy of

Fig. 7.21 Mesh of two elastic blocks with 31 x 3 and 81 x 9 elements.
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Table 7.1 Residual norm for non-matching meshes with uniform pressure

# Gauss Penalty EN = 1010 NiTSCHE-no-penalty NiTSCHE+Penalty

2
5
20

0.1980206E-03
0.1980199E-03
0.1980198E-03

0.2149006E-04
0.2628065E-05
0.4897944E-06

0.6970404E-06
0.1532591E-06
0.9072227E-08

the solutions by computing a

(7.152)

where nc is the number of active contact points. As can be seen, the best result is
obtained using a non-zero penalty term. The stress field is perfectly uniform, i.e.
no disturbance of the stress field is generated at the interface for all the cases, with
the exception of the case Nitsche-no-penalty with two GAUSS points. Here a small
perturbation (1.03%) of the vertical stress field is produced, as depicted in Figure
7.22.

Next a non-uniform, linearly varying displacement field is applied to the problem
shown in Figure 7.21. In this case, the global performance of the methods is still the
same. However, a small disturbance of the stress field takes place in this case if the
NITSCHE method is used with a zero penalty value, as depicted in Figure 7.23. It
also has to be noticed that the reduction of the residual norm \\gN\\ with a non-zero
penalty value is still remarkable (see Table 7.2). As a general rule, we can say that
the NITSCHE method permits us to achieve a better residual of the penetrations.

A more general example has been developed to check the performance of the
methods. For this purpose, two contacting blocks with curved contact surfaces are

Fig. 7.22 Vertical stresses in both blocks for the NITSCHE-no-penalty case.
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Fig. 7.23 Mesh and vertical normal stress for example with non-uniform loading.

Table 7.2 Residual norm for matching mesh with non-uniform loading

# Gauss Penalty eN = 1010 NlTSCHE-no-penalty NITSCHE+Penalty

2
5
20

0.2289195E-03
0.2289208E-03
0.22892 5E-03

0.3857169E-04
0.5279852E-04
0.5503470E-04

0.1083247E-05
0.91 6695 1E-06
0.9317194E-06

considered. The lower block has been discretized with 31 x 8 elements, and the upper
one with 51 x 24 elements. Due to the parabolic shape of the surfaces, only the first
node on the left is initially in contact, see Figure 7.24. The material data of the upper
block is E = 107 units, v — 0.0, whereas the lower block assumes the same material
parameters as given in the previous example. A downward uniform displacement of
the top side is applied in three time steps such that the active contact zone varies with
the steps.

Fig. 7.24 Two blocks with curved surfaces.
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Table 7.3 Residual norm for example with curved surfaces

STEP Penalty BN = 1010 NiTSCHE-no-penalty NITSCHE + Penalty

1
2
3

0.2055726E-03
0.3957804E-03
0.5856056E-03

no convergence
no convergence
no convergence

0.2064216E-04
0.2428796E-04
0.3814317E-04

Looking at the residual norms collected in Table 7.3, we again find a significant
improvement in the solution achieved also in the previous examples. However, it
should be noted that for this case the NITSCHE method does not converge without
penalty stabilization. This observation was also made in Becker and Hansbo (1999)
for an application of the NITSCHE method to non-matching grids in domain decom-
position methods. The vertical stresses at the first load step are shown in Figure 7.25).
It is also easy to see that the NITSCHE method produces a local disturbance of the

Fig. 7.25 Vertical stresses at first load step.

stress field in the contact zone. Its source can be the projection method which was
used within the derivation of the method, e.g. see Figure 7.20.
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8
Discretization, Large
Deformation Contact

For the general case of contact including large deformations (see Figure 8.1) the active
part of the contact interface Fc, where QN < 0, has to be determined during the solu-
tion process. Currently, in finite deformations, most algorithms rely on discretizations
which are based on nodes on the boundary of the bodies. Thus, the algorithm has to
find the active contact constraints denoted by JA E Jc, where gN = 0 is fulfilled.
Jc are all possible contact nodes on the contact surface. In finite deformations this
task requires an extensive contact search, which is discussed in more detail in Section
9.1.

The most frequently used discretization is the so-called node-to-segment approach.
Here arbitrary sliding of a node over the entire contact area is allowed. Early im-
plementations can be found in Hallquist (1979) or Hughes et al. (1977) and have
been extended to more general cases, Hallquist et al. (1985), Bathe and Chaudhary
(1985) and Wriggers et al. (1990). Now many finite element codes also include self-
contact, e.g. see Hallquist et al. (1992). Also the idea of contact segments proposed
by Simo et al. (1985), has been followed up and applied to problems involving large
deformations, see Papadopoulos and Taylor (1992).

In this section we discuss discretization techniques for large deformation contact,
where sliding of a contacting node or element over several elements of the other body
is also allowed. To describe such a process properly, we introduce the master-slave
concept in the current configuration in which a discrete slave point, denoted by the
subscript s in the following, with coordinate x^ comes into contact with a master
segment, described by x1. The master segment will be a line in two-dimensional
situations and a surface in three-dimensional contact problems. The line or surface
describing the master segment is usually parameterized by convective coordinates

203
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Fig. 8.1 Discretization for large deformation contact.

£; see Appendix B for the definition. This approach is well known from beam or
shell theory. A parameterization of the master segment with convective coordinates,
x1 = x*(£), is also very close to the standard isoparametric formulation, see Chap-
ter 6. However, when we discuss the C1 -continuous approximation of the contact
surface, then the surface parameterization is not identically with the isoparametric
interpolation of the underlying finite elements.

REMARK 8.1: When the discretization of contact surfaces is considered, one has to distin-
guish between the contact of two deformable bodies or the contact of a deformable body with
a rigid obstacle. At first glance, it seems that the latter case is simply a special case of the first
problem, which is true. But due to the fact that the surface description of a rigid obstacle can
be given once and for all by the correct geometrical model, this knowledge can be used within
the discretization process. A formulation based on CAD-surfaces was developed in Hansson
and Klarbring (1990), see also Heegaard and Curnier (1993), which includes applications to
biomechanics. Williams and Pentland (1992) considered so-called superquadrics to specify
the geometry of contacting objects, and Wriggers and Imhof (1993) formulated the contact
problem with a rigid obstacle using splines.

8.1 TWO-DIMENSIONAL NODE-TO-SEGMENT CONTACT
DISCRETIZATION

The first formulation for finite sliding of a slave point over a master surface leads to
a relatively simple element which is commonly included in nonlinear finite element
codes. This discretization is called a node-to-segment (NTS) contact element, and is
widely used in nonlinear finite element simulations of contact problems. Due to its
importance, we consider this contact element in detail.

Kinematics. The kinematical relations can be directly computed using the equa-
tions stated in Chapter 3. We assume that the discrete slave point (s) with coordinate
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Fig. 8.2 Node-to-segment contact element.

Xg comes into contact with the master segment (l)–(2) defined by the nodal coordi-
nates x\ and x| , see Figure 8.2. With the interpolation for the master segment (contact
surface of body Bl based on the introduction of the surface coordinate £ along the
master surface

x1(0=x} + (x£ -«!)£, (8.1)

one can easily compute the tangent vector of the segment leading to

It is connected to a normalized base vector a} by a\ = a\ / /, with I =|| x\ — x} ||
being the current length of the master segment. With the unit tangent vector a\ the
unit normal to the segment (l)–(2) can be defined as n1 = 63 x aj.

£ and QNS are given by the solution of the minimal distance problem, i.e. by the
projection of the slave node xs in (s) onto the master segment (1 )-(2):

£ = y (xj - x}) • a} and gNs = [xj - (1 - 0 x} - f xj ] - n1 . (8.3)

From these equations and the local continuous formulation (3.29), we directly com-
pute the variation of the gap function 6gN on the straight master segment (l)-(2)

89N, = I Vl - (1 - I) rj] - £r,\ ] - n1 . (8.4)

In the case of tangential sliding or stick, we have to distinguish between two differ-
ent states, which are discussed below. For stick we introduce the relative tangential
movement by

£

9Ts= / * # = ( £ - & ) * , (8-5)
</

Co

where £o characterizes the stick point on the master segment and £ is the current
projection defined in (8.3) i. Note that for an exact solution using the LAGRANGE
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multiplier formulation g^s has to be zero, which means £ = £0- In the case of
the penalty method, g^s is the relative tangential motion which is controlled by the
penalty stiffness, see Section 5.3.2. The variation of (8.5) yields the discrete form of
the variation of the tangential gap

8gf. = l8t +(£-&)«. (8.6)

The variation of £ can be obtained using (3.3 1 ). For a straight segment this leads to

#11 = (an + 9 N 8 b 1 1 ) =>• HU = a11 = I2 -.

(8.7)

which leads to

(8.8)

Using these relations the variation of g^s for the NTS-element with 6 1 = [r]\-r]\ ]-a}
and f)1 (0 = j]\ + £ (ryj - TJ\ ) is given by

In the case of slip we no longer remain at the point £Q, and thus compute the relative
tangential velocity from (3.24), and obtain

which differs from (8.9) by the last term. Equations (8.4), (8.9) and (8.10) character-
ize the main kinematical relations of the contact element in Figure 8.2.

REMARK 8.2: A similar approach which was based on pure geometrical considerations
and hence started directly from the right side of (8.5) was applied in Zavarise and Taylor
(1996) and Wriggers (1999); however, these authors use (8.9) instead of (8.10) for slip. It
can be shown that this leads to an incorrect distribution of the tangential force in the contact
interface, and hence the differentiation made in (8.9) and (8.10) is necessary. By using the
definition grs = (£ — £o) I in (8.10), after some algebra one can obtain

which means that the tangential force acts on the master segment at £o and not at £. This
is correct for the stick case, since x^ is not allowed to move in the tangential direction. For
the LAG RANGE multiplier method the projection we obtain is £ = £o.' only in the case of the
penalty approach does the tangential gap depicted here occur. However, for slip the tangential
force has to be acting at the position given by the current position £. Both facts are illustrated
in Figure 8.3 for the node-to-segment element defined in Figure 8.2. The figures show the
distribution of the tangential forces in the node-to-segment contact element for the stick and
slip cases according to (8.11) and (8.10). Note that some forces occur in the normal direction.
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stick

TT,

Fig. 8.3 Distribution of tangential contact forces for slip and stick.

This stems from the fact that the couple (T'rs QNS) due to the gap distance QNS has to be
equilibrated.

It should be observed that the difference in using (8.9) or (8.10) is not significant as long
as the time or load steps in an incremental solution procedure are small.

Contact residual. In what follows we compute the contribution of the node-to-
segment element to the weak form (5 .40). The basic formulation for this discretization
is analogous to the node-to-node element. Thus we assume that we know the normal
force PNS — p^s As and the tangential force TTS = trs As at the discrete contact
point (s) of the contact element under consideration, where As denotes the area of
the contact element. Both forces, P/VS and TTS, can be obtained from the constitutive
relations discussed in Sections 4. 1 and 4.2. This leads to

(8.12)

where we need to distinguish between stick and slip in the second term. In practice
we compute the normal force P/vs either from equation (4.12) or from the penalty
update PJVS = e QNS multiplied by the area of the contact element. For the tangential
force TTS we have to perform an algorithmic update, as we shall discuss in Section
9.5.2.

Thus, the contributions of one contact element take the form

ogTs (8.13)
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for the discrete contact point (s) with the mechanical relative (LiE-type) variations
analogous to (8.4) and (8.9). This equation can now be cast into a matrix formulation.
For the normal part (8.13)i we set for the variation (8.4) of the penetration

ogN* = riTNs. (8.14)

With the same notation we can express the variation (8.9) and (8. 10) of the tangential
gap for stick

St _ nT (rj, . 9N8 jyj. 9Ts ij, \ _ T rwist fQ 1^
—- -- =TI, 1, -. (5.15)

and for slip

r,l T!1 . (8.16)
In these equations the following vectors have been used:

-1 -MT (8.17)

Ns = { -(1 - f) n1 ^ , N08 = I -n1 \ , (8.18)

and

Ts = { -(1 - 0 al V , T0a = { -a} } . (8.19)
I -fa} J8 \ a}/,

Thus, the virtual mechanical work of the contact element can be written in the matrix
formulation rj^Gc

s with the contact element residual

Gc
s = PNsNs+TTsT8, (8.20)

where T8 stands either for stick or slip, see (8.15) or (8.16).
A pure displacement formulation of the contact problem is possible by expressing

PNS either through (4.12) or (4.10), or by the penalty relation PJVS = CN 9Ns- This
is in contrast to the LAGRANGE multiplier technique, where PNS = ^NS- But we
observe that this discretization can be applied to both methods.

REMARK 8.3: In the cose of the USZAWA algorithm (see Section 5.3.8) within the aug-
mented LAGRANGE method, we have to replace PN „ in (8.20) in case offrictionless contact
for the standard update technique by

F new ftold . new /o 01 \
Ns — *Ns ~ t ~ t N f f N s i lo.^l;

and when using a constitutive model according to (5.67) by

P^e
s
w = P%fs + 6N { 9ff™ — [ C ~ ^(.PNS ) ] } i (8.22)

where QN s is given by (8.4).
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Linearization normal contact. Often a NEWTON-RAPHSON iteration is used
to solve the global set of equations. In that case linearization of (8.20) is needed
to achieve quadratic convergence near the solution point. The linearization of the
contact contribution will be discussed here for the case of the L AGRANGE multiplier
and penalty methods. These linearizations were derived first in Wriggers and Simo
(1985). Within the L AGRANGE multiplier approach, the starting equation for the
NTS-element is for frictionless contact

PN» &9NS + $PNS 9NS , (8.23)

where PNS stands for the LAGRANGE multiplier. Linearization of this expression
yields

+ PNs A6gNs + 6PNs &gNs . (8.24)

Since SgNs is given in (8.4) and Ap^a has the same structure as 6gNS,

A0JV. = [ AuJ - (1 - (•) Ail} - f AnJ ] • n1 , (8.25)

we only have to compute A6gNs- The terms which depend upon the displacements
in (8.4) are £ and n1, and we have to compute the linearizations of these quantities.
The linearization of £ is equivalent to <5£, just the variations 77 have to be exchanged
by the displacement increments AU:

Af = y [ AuJ - (1 - I) Au} - £ Ail* ] • a} + 9-f- [AuJ - AuJ ] - n1 . (8.26)

To obtain the linearization of n1 we start from the following expression:

n1 = e3 x a} =» An1 = e3 x AaJ , (8.27)

where 63 is the unit base vector perpendicular to the two-dimensional plane. The
linearization of the unit tangent vector follows from (8.2) by a straightforward com-
putation:

AaJ - A[y (x* -JL\)} = y(Ai4 - AU} ) - i(xj - x{ ) [a} • (AuJ - AuJ )]

a } < g > a } ] ( A u J - A u } ) , (8.28)

where the term [ 1 - a} ® aj; ] can be rewritten with the definition of the unit tensor
1 = a\ 0 a} + n1 <g> n1 . Hence

Aa} = -[n1 eg) n1 ] (Ai4 - Au} ) , (8.29)
i

and with (8.27), we finally obtain

An1 = - y [ a} 0 n1 ] ( AuJ - AuJ ) . (8.30)
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These results can now be used to derive the expression for

(8.31)

- 7 [ »lj - (1 - 0 ri\ - IT& } • aj ( AuJ - AuJ ) - n1 ,

which is symmetric with respect to variation and linearization. Using the matrices in
(8.18), (8.19) and introducing AuJ = { AuJ , Au} , Au^ }, we can state the matrix
form of A<50ATjj

&8gN8 = r]TK±s&us, (8.32)

with

K*6 = - j [N0s TS
T + Ts N0

T
S + ̂  N0s N0

TJ . (8.33)

Using this result, we can establish the matrix form of (8.24) for the LAGRANGE
multiplier method

XP \V s «,;th V s Ns] ,o->A\, oPN, ) Ks < Ap^^ > with Ks = ^T 0 . (8.34)

In the case of the penalty method, equation (8.24) reduces with P^s — CN g^s to

CAT A#ATS 6gNS + CAT gns AdgNs , (8.35)

which yields the matrix form

(8.36)

All matrices in (8.33) to (8.36) are defined in (8.18) and (8.19).

REMARK 8.4

1. Note that in a geometrically linear case, all terms which are multiplied by gss vanish.
This gives the simple matrix K^f p = ejv Ns Nj.

2. When using a LAGRANGE multiplier method for the linear case the term P\s K&&
disappears in (8.34), which also leads to a simple matrix structure.

3. The terms multiplied by GNS may be omitted in (8.36) in nonlinear computations in the
first stages of a NEWTON iteration. This is because quadratic convergence only occurs
in the standard algorithm once the contact area is already known correctly, which results
from the fact of non-differentiability of the gap function. Hence one does not need the
full tangent in the first iterations, especially since the terms containing gxs can become
quite large during the first iteration steps and might even lead to divergence for large
incremental steps.

Linearization for stick. In the same way, the linearizations are obtained for the
tangential stick and slip parts. The point of departure in the case of stick is the same as
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for frictionless contact, only the variables are changed. For the L AGRANGE multiplier
formulation this leads with \TS = ITS to

ATTs Sgf, + TTs Afy£ + 6TTs A$& . (8.37)

Again, the first and last terms contain known quantities where, according to (8.9), the
linearization of the relative tangential gap is given by

A0& = [ AuJ - (1 - £o) Ail} - & AuJ ] - a} + ?jL [Ani - Au{ ] • n1 . (8.38)

The linearization of the variation 6g^s is now obtained after some algebra:

= y [ » £ - ( l - & ) T 7 i - & t / J ] > 1 W ] ( A u J - A i i } )

+ y [ Au^ - (1 - &) All} - & AuJ ] - [n1 (g in 1 ] (^ -77} )

- (»?2 - ^ ) ' [n1 ® n1 ] (Ai4 - Ail} ) (8.39)

& - rjl ) • [n1 <S) a} 4- aj ® n1 ] (Ai4 - AuJ ) ,
9Ns

/2

or in matrix form

with

(8.41)
Here the matrix IV^o has the same structure as IV.S, only the surface coordinate £ in
(8.18) is exchanged by £o-

The matrix form of (8.37) for the LAGRANGE multiplier method is computed
analogous to (8.34), and leads to

'LM f ^Us I with "LM

a j - s ' - s \ & p T T s ~ (Ta)T 0

In the case of the penalty method, equation (8.37) reduces with Pj-s — CT 9TS
 to

6T A^s 6g$a + eT g$8 Mg$8, (8.43)

which yields the matrix form for pure stick:

/ Q yl /I \(8.44)
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Note that the tangent matrices for the L AGRANGE multiplier and the penalty method
are symmetric.

In (8.44) all terms containing QNS and gr8 disappear in a geometrically linear situ-
ation, which yields K^8

/m = CT T8 Tj. Within the L AGRANGE multiplier approach
also, only Ts is used in (8.42) for small deformations; furthermore, the tangent K^
is zero.

Linearization for slip. The slip case starts from a constitutive equation for the
tangential stress. Hence we have to linearize only the term TTS <£<77v wn>ch yields

ATTs 69$, + TTs M0& , (8.45)

where ATr« may be computed according to Section 9.5.2 for a given tangential
contact law of Section 4.2. Here we state the results for classical COULOMB'S
law. For more complex constitutive models in the contact interface, see Section
9.5.2. According to (9.1 18), COULOMB'S law yields the tangential stress TTn+i =
//P/Vn+i signTjTn+1 at time tn+i- The linearization of Trn+i with respect to the
displacement field is given for the penalty method by

ATTn+1 -

1 . (8.46)

where the linearization of the last term in (9. 1 1 8) disappears in a two-dimensional
formulation, since the signum function "sign" is piecewise constant. Using (8. 1 8) the
matrix of the incremental tangential stress is given by

ATTn+1 = jicjv sign7yn+1 JV8n+1 Aus . (8.47)

The linearization of A<50f's is performed analogous to (8.39). It will be stated here
only in matrix form

Afc&^lir&Au., (8.48)

with

KA!I = 7 T0
T

s+2 T0sN0
T

s ) . (8.49)

Kfa = TTs K& + »eN sign Tfn+1 Ts
sl NS

T . (8.50)

Using these results, the matrix form for the slip case can be stated for the contacting
node (s) as

a = Ts »eN n+1

Note that this matrix is unsymmetric, which corresponds to the non-associativity of
COULOMB'S frictional law.

8.2 ALTERNATIVE DISCRETIZATION FOR THE TWO-DIMENSIONAL
NTS-CONTACT

In Remark 5.3 an alternative formulation was proposed which can be applied for
frictional contact. It yields, for stick and slip, a matrix form which has fewer terms
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and hence can be implemented in a more efficient way. The new formulation includes
frictionless contact as a limiting case, which will be shown at the end of this section.

The main idea will be presented here for COULOMB'S law, which is commonly
applied for frictional contact. Instead of using the return mapping procedure applied
in the previous section, we base the formulation on the following observation:

I . The slave node lies within the friction cone in the case of stick. Mathematically
this is described by the slip function

fa tT VPN

2. The slave node moves on the boundary of the friction cone when sliding, which
leads to the equation

/* - II Ml -VPN = 0-

This feature is depicted in Figure 8.4, where the friction cone is drawn at time steps
tn and tn+i for a sliding condition.

Stick case. The discretization is based on the NTS discussed in the last section.
Following (5.34) the weak contribution for one slave node s is given for stick by

C t (8.51)

where t = e (x2
s - x^0) is the total contact force, x^ and x^0 = x^(£0) are the

current positions of the slave and master node, respectively, see Figure 8.5. We let £0

denote the position of the first contact of the slave node with the master surface or the
last position after sliding at time tn: £0 = £n- This position is fixed with respect to the
surface coordinate, and thus the coordinate £ does not change during the deformation
as long as stick conditions are present. The master node X^Q is related to the first

Fig. 8.4 Moving friction cone.
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gN > 0 => no contact

Fig. 8.5 Alternative form of node-to-segment contact element.

contact in this segment, before any sliding appears: X^Q = xj,,(£n). This position
does not change on the master surface. Hence the force due to stick is given for the
time step tn+1 by

— e x — xm0 n = e \ — n x (8.52)

e = CTV = CT is the penalty parameter used to enforce the constraint conditions for
normal contact and stick. We note that the penalty parameter cannot be viewed as a
constitutive parameter in this case, see also Section 4.2.4. This results from the fact
that the same parameter is also chosen for the approach of the contact surfaces in
the normal direction, and the constitutive laws for normal and tangential contact are
usually not the same.

Inserting (8.52) into (8.5 1 ) leads to the virtual mechanical work of the NTS-contact
element for stick. It can be written in the matrix formulation ri^G8* with the contact
element residual

Gf - Bsn tn+l with Bsn = -(I - £„) 1 (8.53)

where r/s is defined in (8.17), and 1 is a 2 x 2 unit matrix. Since in stick conditions
only the tangential force depends upon the current position vectors and the fixed
coordinate £n, the linearization of the discrete weak contribution rj^Gc

s of the slave
node yields a simple expression for the tangent matrix:

KTs - (8.54)

Note the K^s is symmetric1. When comparing this result with formulation (8.44) of
the previous section, it is immediately clear that formulation (8.54) is much simpler.
It is interesting to note that one can show the equivalence of formulation (8.54) and
(8.44) together with (8.36). One only has to choose CAT = cr = c in (8.36) and (8.44).

'in three dimensions the formulation is identical with (8.53) and (8.54), only 1 is a 3 x 3 matrix.
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Slip case. In the case of frictional sliding, the COULOMB slip condition fs, see
(4.25), has to be evaluated. This is performed by computing the normal and tangential
components of t from the stick (trial) state

if2
*sn+l

leading to

ttrlTn+l

T n+i

(1 ttrfn+l) ln+l •>,)t!
ttrln+l n

(8.55)

(8.56)

(8.57)

These values are now inserted in to the slip condition

f i < 0 . (8.58)

In case this inequality is fulfilled, the slave node s remains in stick condition and
hence within the slip cone related to £n in Figure 8.4.

For fgT > 0 sliding occurs, and the unknown position xm(£n+i) has to be com-
puted from the condition that xs now lies on the boundary of the slip cone. For a
geometric description see Figure 8.6.

One can see for COULOMB'S law that xm(£n+i) results from the solution of

( XL+1 - xm [ C al n+i + 0 (8.59)

with xj^n+i) = (1 - £n+i) x} + £n+i xj. C = sign (t£n+1) is the value (C = ±1)
of the signum function depending on the slip direction. C has to be introduced to
acknowledge that the slave node lies on different boundaries of the cone for the
two slip directions, which also changes the orthogonality condition (8.59). As the
solution point £n+i moves with the friction cone, this approach is called the moving
cone algorithm.

Since (8.59) is linear in £, it can be solved directly, leading to

1
126 n+l

(Xs n+l Xl n+l) ' (C ai n- (8.60)

Fig. 8.6 Geometry in the case of friction for moving-cone NTS-element.
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with /2+1 = ajn+1 • ajn+1 and a\n+l = xjn+1 - x}^. This result can be
introduced into (8.55), which yields the total force due to frictional sliding (including
the component for the normal pressure):

tn+l = e[Xsn+l "" (1 - fn+l ) X ln+l - £„+! X2n+1 ] . (8.61)

Inserting this result into (8.53) yields the discrete contribution to the weak formulation
for a slave node in sliding contact. The weak form for frictional sliding is now

Cf = tn+l • [rfs ~ (1 - £n+l) TjJ - £n+l fjj ] , (8.62)

where the variation now has to be evaluated at the current point £n+i- The matrix
form of the contact residual can be stated according to (8.53) as

G:' - Bsn+l tn+1 with Bsn+1 = <-(!- £n+i) 1 } . (8.63)

The differences to the stick case in (8.53) are that one has to use the force (8.61) and
evaluate the matrix B,, at the current position £n+i.

The linearization of the residual involves linearization of the force (8.61) and
linearization of £n+i in the variation

AC? = Atn+i • [rj2
s - (1 - £n+l) Tl\ - £n+l J]\ ] - tn+i ' ( 1)\ ~ T/{ ) A£n+1 .

(8.64)
Since the surface coordinate depends upon the deformation, one obtains

Atn+t =e[Au2n + 1-(l-& l + 1)Au!n + 1-£n + 1Auin + 1-ajn + 1A£]. (8.65)

Contrary to the classical formulation, one has to derive the linearization of £, which
yields

/2

(8.66)

In this equation the subscript n + 1 has been omitted for a more compact presen-
tation; note that all variables and vectors have to be evaluated with respect to tn+i.
Furthermore, the definitions Aa} = Au2 - Au{ and An1 = e3 x AaJ were used.
To implement this formulation in a finite element code a matrix representation of
equations (8.65) and (8.66) is needed. For this purpose the following matrices are
introduced:

° (8.67)
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and

M = C 1 + n EN
m1 = C,a\+nnl (8.68)

gs = xs - ( l -£)xi -£x-2

with

E » = [ ? -J], (8.69,

where the matrix EN represents the cross product needed to compute the normal n.
Introducing the last definitions in (8.65) finally yields a matrix expression for the

incremental stress due to sliding:

An,
n+l

(8.70)
where A u is defined in the same manner as the variation 77. Note that all matrices have
to be evaluated at time tn+\ . This result can now be introduced into the linearization
of the weak form (8.64), which yields the non-symmetric matrix

_1
~^ ^ ',„+!

Also, the matrix in (8.71) is far less complex than the matrix used in the standard
NTS-element (see last section). All matrices [•] in (8.71) are 2x2 matrices while the
5-matrices Bs and BC have size 2 x 6 .

Frictionless case. By setting the friction coefficient in (8.59) to zero, from (8.60)
as the limit case with £ = 1, one obtains

ff — •*• /Y2 _ „! \ . „! (o 79^
Sn+1 ~~ /2 Vxsn+l * ln+l / dl n+l : \O.I£)

ln+l

which is equivalent to (8.3). Inserting this result into (8.61) leads to the total force,
which has only components in the normal direction,

* __ , I" *r2 __ f-t _ ff \ „! ff „! "I (Q 77^

and to the weak form for frictionless sliding for the node s

where the variation has to be evaluated at the current point £r{+i • The matrix form of
the contact residual

( 1 )
G? - Bsn+l tn+l with Bsn+l = { -(1 - Cn+i) 3 > (8.75)

I -£+1l J
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is equivalent to (8.63), hence the same formulation can be used; only the projection
stemming from (8.59) is different.

The linearization of the residual follows from (8.74) with (8.73) as

AC - Atn+1 - rf. - (1 - +l)ri\ - +1 rjl
2 - tn+l

(8.76)
Again, we can use the results (8.65) and (8.66) for £ = 1 and p. = 0 to obtain the
final tangent as

Kf
Ts = eBs l -IaJaH BS

T (8.77)

/2

All quantities have to be evaluated at time tn+i. The matrix in (8.77) is not more
complex than the tangent (8.36) which is used in the standard NTS-element (see the
last section). Note, that the first linear term in (8.77) only depends on the normal
direction, since in the two-dimensional case one can write for the unit tensor 1 =
p- (aj <8> aj + n1 <8> n1), and hence (1 — -p a\ a\T) = ^ n1 nlT. The term I appears
here in the denominator since a} and n1 are not unit vectors. By using the tangent
Kj-s, no switch to the standard formulation has to be made in the frictionless case
when the moving cone approach is applied. Equation (8.77) can also be obtained
directly from (8.71) with C — 1 and p, = 0. Finally, we note that the tangent in (8.77)
is symmetric.

8.3 THREE-DIMENSIONAL CONTACT DISCRETIZATION

Discretizations for the contact of three-dimensional objects were first developed for
explicit finite element codes like DYNA3D. The derivation of implicit formulations is
more recent, especially the consistent linearization foruse within NEWTON'S method.
The matrix form for the frictionless three-dimensional case of node-to-surface dis-
cretizations was developed in Parisch (1989). A formulation for the case including
friction was presented in Peric and Owen (1992), which relied on an approximation of
the tangent matrix. A fully consistent linearization for a continuum-based approach
to contact problems was derived in Laursen and Simo (1993b) and also in Parisch and
Liibbing (1997). The formulation for friction was extended for large slip in Agelet
deSaracibar(1997).

We should like to state the discrete form here based on the continuous formulation
given in Section 5.3. The matrices are developed for three and four node master
segments. In this section we denote by a superscript1 the quantities belonging to the
master surface of body Bl. Furthermore, quantities related to the slave node which
comes into contact with the master surface are denoted by the superscript2, body &2.

During finite deformations within the contact surface, a node of the contacting
body (slave-node) eventually slides over several elements of the other body (master
surface). We thus have to consider three different possible geometrical situations:
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1. Slave-node contacts the surface of the master element (NTS).

2. Slave-node contacts an edge of the master element (NTE).

3. Slave-node contacts a vertex (node) of the master element (NTV).

These situations are depicted in Figure 8.7. For (NTS) situations we develop the asso-
ciated contact residuals and tangent stiffness matrices for frictional contact. Matrices
for the (NTE) and (NTV) cases are only derived for frictionless contact.

8.3.1 Node-to-surface contact element

Many discretizations of solids are based on hexahedral elements. Within such a finite
element model the master segment is given by a four-node isoparametric surface
element which comes into contact with one slave node x2, see Figure 8.8. Thus,
we can also denote this contact discretization as a five-node contact element. The
interpolation of the master surface yields

with the standard interpolation functions, see also (6.24),

(8.78)

(8.79)

The gap function is given by equation (3.6). In this equation we have to compute the
convective coordinates £* and £2 to obtain the minimum distance defining the gap
9N

„ l"-*,-^ ,,-1 /**T- £"2 \"] ~ 1 / O O A \gN — [x -x (£ ,£ jj -n . (8.80)

Since in general the deformed master surface is not flat (it is a hyperbolic surface in
the case of the four-node isoparametric interpolation), the coordinates £ = (O-1 . £2)
cannot be computed from a closed form expression. To find the minimum distance
point related to the slave node, an iterative process has to be applied. To do that, the

Fig. 8.7 NTS, NTE and NTV contact.
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Fig. 8.8 Geometry of the five-node contact element.

following nonlinear system of equations for f: and £2 will be solved locally for each
slave node x2:

k = 0 . (8.81)
K=l

Using as a starting value the solution for a flat surface, one can apply NEWTON'S
method. The associated linearization leads to a linear system of equations for an
iteration step i for A£f+1 = %f+1 - ff:

E [ E E
/3=l |_/=lJ=l

2

L=\
«+l

= x -
M=l / JV=1

(8.82)
where all shape functions Nj and their derivatives have to be evaluated at £f , known
from the previous step. The solution of (8.81) yields the closest point £ of the slave
node to the master surface. With these coordinates the gap function (8.80) has to be
evaluated. In the case of contact (g^ < 0) the slave node contributes to the weak
form.

Again we have to distinguish between frictionless contact and slip and stick in the
tangential direction. We start here with the stick part, which is derived according to
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Section 8.2, since this leads to the most simple and efficient formulation. Here the
total gap function gs,

g.-x'-x1^), (8.83)

is used which is evaluated at the fixed stick point £0. The coordinates £0 are obtained
from (8.8 1 ) when node s contacts the master surface for the first time. Otherwise, £0

follows from the previous time step £0 = £n. The variation of gs is given by

and we can compute the weak form

/> nc

C? = t • SgdA = t - 6gs A A G
8=1 8=1

with

(8-84)

(8.85)

(8.86)

The vector 77 s denotes the variations of the displacements related to the contact nodes
of the sth contact element, where s stands for the slave node xs and m for the four
nodes describing the master element x\, ..., x^. Furthermore, the vector G** can be
expressed in matrix form as

Gf* = BK t with BK

o) 1 J

(8.87)

where 1 is a 3 x 3 unit matrix. Again the linearization is simple, since £0 is fixed
and hence does not depend upon the displacement field. Analogous to Section 8.2,
the linearization is given for the penalty formulation as

AC - with K?=eB.B?.
8=1 8=1

(8.88)
In the case of sliding we could either apply the alternative form, developed in Section
8.2, or the classical approach which split the contributions in the contact interface
into normal and tangential parts. For more generality concerning the frictional laws,
we use the second possibility. With that we start from the weak form

Cc (tN 6gN

8=1

(8.89)
see also (5.28). As is the surface associated with the slave nodes. It is determined by
a projection procedure from the current master surface Tc. In index notation, for the
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tangential part we obtain trs • 6g,TS(£) = *T« a fi£Q- The variations ^N(^) an
can be found in (3.29) and (3.30) together with (3.22).

Based on that, we obtain the discretization for the five-node contact element:

**rj
s=l

The vector Rs depends only upon the contact contribution. It is given by

s a

with the vectors

and

where

1n

(8.90)

(8.91)

(8.92)

(8.93)

(8.94)

and Hal3 = [Hap ]~l with Ha/3 = aa/3 + gNsba0- To derive this result one has to
use | = (C1, £2) from (8.82) and ££a from (3.19), see also (3.30).

For the contact pressure t^s in (8.91) we can either use the L AGRANGE multiplier
ATV or the pressure related to the penalty method,

tNs = en 9Ns-

The factional stresses tTa follow from (9.113) and (9.118):

ftrlTa for ft < 0
for /f > 0

(8.95)

(8.96)

with the components of the trial tangential stresses ti-fa within time step n+ I

,^+i with A£f+1 = $L! - £f . (8.97)

With this the residual vector is determined. For a finite element solution where the
NEWTON-RAPHSON method is used, we also need the linearizations of the contact
contribution. These are derived in Section 3.3, 5.5 for the relative deformations in
the contact interface. These results can be applied to linearize the contact stresses, as
shown in Sections 8.1 and 8.2.
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Based on these results, we can state the discretization of the tangent matrix for the
contact contribution in the case of slip as follows:

! / (x ,T7)-Au«;£A.fo , ) T K/ 'Au 8 .
8=1

(8.98)

The terms Aus denote the increments of the contact node displacements related to
slave node s

Auf = {Au2 , Au\ , Ai4 , Au]
3 , Aua

4 ). (8.99)

Now we have to define some vectors and matrices to state the matrix form of the
contact tangent:

0

,(3 Q

-Ar4,/3 aQ ^

0

-N2l
-N31

= <

(8.100)

(8.101)

With this the contact tangent matrix Ks
s
l for the three-dimensional node-to-segment

(slave to master) element yields, according to (8.98),

K-jTsl
(8.102)

The part due to normal contact can be formulated as

(8.103)
The tangent matrix due to frictional contact for slip is described by two parts: (K|/9l)
and (Kj/s2). For the first matrix we obtain

(a,, • a/3^ + a/3 • ar/;7 4- ar/,/3 • a7 + .gjvn1 • a f / j /g7)

r?/3

(8.104)

and for the second part we have

Jjrr->

+
H4 r l l 1141

,/3T
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+eT

/Q in<:\(8.105)

eT

With this the matrix form of the five-node contact element is given for frictional
contact. The formulation is quite complicated, which stems from the necessity to use
convective coordinates for the description of contact.

8.4 THREE-NODE MASTER SEGMENT FOR FRICTIONLESS CONTACT

The discretization of the master surface by three-node elements yields simpler equa-
tions, since the surface is always flat. The geometric description of such an element
is depicted in Figure 8.9. The tangent vectors can be defined as

ai = xj - xj

a2 = xj - xl

and

and 82 =

xA-

«3-» l
Ix1 - x1
Xo — Al

(8.106)

aa are unit vectors. Note that the tangent vectors do not depend upon £ when defined
in this way. This also means that a closed form expression can be derived for the
closest point projection (3.2) when using (8.81):

x'-x'
1=1

(8.107)

Fig. 8.9 NTS-contact element, definition of contact normal.



THREE-NODE MASTER SEGMENT FOR FRICTIONLESS CONTACT 225

These two equations can be solved directly for £x and £2 when the isoparametric shape
functions (6.22) are applied for the interpolation. This yields the equation system

(8.108)
a2 ai a 2 - a 2 | 1^ J I ( x - - x j j - a 2 •

We should like to state here the formulation related to the penalty method. A three-
node frictionless contact element using the LAGRANGE multiplier method can be
developed according to the general formulation in Section 5.3.1 and the discretization
techniques in 7.2 and 7.3. Let us recall that for frictionless contact the penalty method
is given by (5.33) as

Cc = I €NgN6gNdA, (8.109)

rc

with the local gap function (3.7) g^s = [x2 — x1 (£) ] • n1 and its variation, see (3.29)

SgNa = [rj'2 -f /HO] n1 • (8.110)

The linearization of the contact contribution yields (see Section 5.5)

= eN I SgNs + gNs &6gNs) dA (8.111)

with
A(<fov.) = -^a • A£a + [rf - f

where the differentiation of the variation fj1 with respect to £a yields, for the inter-
polation (6.22),

fyij = nl - rj{ and f)J2 = 77^ - rj| .

The normal of the master surface is perpendicular to the tangent vectors, hence we
derive

An1 = A Hl X a 2 , , = -aaa
a/3(M0 •n1) = -aa? [aa ® n1 ]Aa3 . (8.113)

ai x a2||

Furthermore, the linearization of the tangent vectors aQ yields

A§i = Au2 — Aui and Aa2 = Aus — Aui .

Note that aa>^ - nj which represents the curvature is zero, since the surface of the
three-node element is flat. Using these results, the linearization of the gap variation
follows:

AOfojv.) - -AC f^a • n
1 - aQ/3 (r;2 - fj1) • [aa 0 n1 ]Aa^ (8.114)

for the three-node master surface discretization. The linearization of £a can be com-
puted from (3.19). For the flat three-node master surface we have 6a/3 = 0, and for
the linearization of £a we obtain

Af* - oa/3 [ (Au2 - Au1) - *0 + gusli1 • Aa^ ] . (8.115)
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Combining (8.114) and (8.115) finally yields the linearization of the contact contri-
bution:

A<7C =feN {(rf - f)1) • [n1 <g> n1 ] (Au2 - Au1)

- 9Ns [fl1,* • (n1 ® a") • (Au2 - Au1) + fa2 - f,1) • (a* ® n1) • u1,]

(8.116)
Here the contravariant base vectors a^ da/3 = aa were introduced to shorten notation.
Note that (8.116) is symmetric in Au and rj.

The residual vector and the tangent stiffness matrix for the three-node frictionless
contact element can be stated using the following matrices:

0 ] ( a"
-Ni a n 1 ! I -Ari aa

'2 n- j I -N2,a n1 [ ' a ~ I -N2 aa

n1 J [ -N3.an
l } ( -JV3fia

and
r/2 ^ f Au2

1,. = ̂  J L A U S J ^| >. (8.1,8)
^2 I ^U2

nl ) ( ^
Then the contact in the normal direction contributes to the residual by

TI^RS (8.H9)
s=l

with the contact force
NSNS. (8.120)

It is assumed that the parameter £M = £/\r A8 contains the area A8 surrounding
the slave node. Thus /AT = t^ A8 = ENA 9Ns represents the reaction force of the
slave-node due to penetration.

Finally, the contribution of the contact element to the tangent stiffness matrix is
given by

A<7C «2^Tj; K sAu s ; (8.121)

with the tangent matrix related to one slave-node

K,=eNA \NSN? - 9Ns [N! TJT + AT2T2
T + T! N? + T2N2

T

(8.122)

+9Ns (anNiN? + al2(NiJV2
T -I- N2NL

T) + a22N2N2
rj 11 .
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The tangential stiffness matrix for normal contact Ks is symmetric. It has the same
structure as the tangent matrix (8.36) in the two-dimensional case for frictionless
contact.

8.4.1 Matrices for Node-To-Edge (NTE) elements

In certain situations, when the slave node x8 slides from one master element to the next
during the deformation process, it comes in contact with the edge lying between the
master elements. The discretization needed in such a case differs from the previous
sections. This is mainly due to the fact that the cross product of the two base vectors
cannot be used to define the normal on the edge, since the edge lies between two
surfaces which have different tangents. Therefore, we compute the normal from the
penetration function, see (3.2),

x1 - x2 1
n = 11*1 - v2|| = ^ + ~ ^ X "X )' (8.123)l lx x II 9N

with the gap function g^ := (jx1 — x2|| and x1 = (1 — £) x\ + £x\. This is shown
graphically in Figure 8.10. Based on these definitions, we derive the variation of the
gap function pj,

6g+ - 4- (xl - x" ) ' (i?1 + ̂  ^ - ^ ) • (8-124)
fl'jv

The term containing 6£. disappears in this result, since the first term in the scalar
product is the normal vector, see (8.123). This result has to be inserted into the weak
form of the contact contribution for ne edge elements. It leads in the case of the
penalty method to

n,

x 1 ~ x 2 ) . ( f / 1 - T 7 2 ) , (8.125)

Fig. 8.10 NTE-contact element, definition of contact normal.
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which can be stated in matrix form as

Rs with R8 = CNA Xs , (8. 1 26)

and

s=l

with the vectors

where 1 is a 2 x 2 matrix.
The linearization of (8. 125) yields

s-l

(x1 - x2) • ( fj^ A£ + Au*4 ̂  + x)K <5f A£ + x^ A<$O ] . (8. 1 27)

In this equation the term x1^ is zero for a straight edge; furthermore, (x1 — x2) shows
in the direction of the normal vector hence (x1 — x2) • x^ = 0. With these results
the last two terms in (8.127) disappear. Once 6£ and A£ are known, the matrix form
of the linearization can be stated. Both result from the condition x^ • (x1 — x2) = 0.
The variation or linearization of this expression yields

A£ - -i [ (Au ' -Au^-a + C x ' - x ^ - A Q ^ ] ,

K = --^[tf-^-a + tf-x2)-^]. (8.128)

To derive the final form of the linearizations the last two equations have to be combined

s=l

-^{[(x'-xV^ + ̂ -r,2)-*] (8.129)

[(x1 - x2) • Au^ + (Au1 - Au2) • a]} .

By introducing the matrices

( -1} ( -a ] f 01
ls = { Niffi 1 } , Ts = { Ntffi a L Xm = { M({) (x1 - x2) }

( N2({) 1 } ( JV2(|) a J [ JV2(0 (x1 -x2) J

and

a compact form of the tangent stiffness for NTE-contact can be stated:

Kg = ENA \ Is 18 ~ 77 ( Ts + Xm ) (Ts + Xm ) . (8.130)
L /z J
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8.4.2 Matrices for Node-To-Node (NTV) elements

If a slave node is close to a vertex node of the master surface then it might be algo-
rithmically useful to formulate the contact as a node-to-node contact. In that case,
the contact normal n1 is given by (see Figure 8.11)

x1 - x2

77—i -TFT (8.131)

as in the node-to-edge case. Note, however, that one does not have to distinguish
between x1 and x1, since the projection (8.107) returns to the vertex node xm. The
gap function and its variation can be stated as for the note-to-edge element:

9% - l l ^ - x 2 ! ) ,
69+ = - I C x ' - x ^ - C V - T / 2 ) . (8.132)

SN

Thus; the residual vector for nv vertices being in contact has the same form as for the
NTE element, see (8.125),

Cc « £ CNA (x1 - x2 ) • (rj1 - r/2 ) . (8.133)
s=1

The matrix form can thus be computed:

nv

Cc^^ril Rs with Rs = eNA Xs, (8.1 34)
8=1

with
f 772X / j I '/

s = i 2\ ( s(X1 -X 2 ) J 's [1J

Fig. 8.11 NTV-contact element, definition of contact normal.
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The linearization of the residuum follows according to equation (8.127) by setting

f Ks us, (8.135)

with US
T = {Au2 . Au1). Thus the tangential stiffness has the simple form

K8=eNAl,l?.. with 1S = (-1,1)T, (8.136)

where 1T = (1,1,1).

8.5 SMOOTH CONTACT DISCRETIZATION

Contact problems undergoing finite deformations are often associated with a large
amount of sliding within the contact interface. If the discretizations, discussed in
the sections above, are applied, then from one segment to the adjacent one there is
no continuity in the normal vector. Thus in the corner between two segments the
normal is not uniquely defined, which needs special algorithmic treatment (see also
the last two sections). Furthermore, this jump in the normal directions might lead
to convergence problems, especially when parts of the master surface change their
curvature drastically. These cases often appear in forming tools, for example, see
Figure 8.12. In such cases the discretization yields sharp corners. Hence it can be
that the movement of the upper body locks in a corner, which then yields incorrect
results or a non-convergent solution.

Undefined or not uniquely defined normal vectors can be locally treated as special
cases, as in Heegaard and Curnier (1993) and Bittencourt and Creus (1998). Further-

Fig. 8.12 Non-smooth and smooth surface interpolations.
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more, the normal can be averaged as in Papadopoulos and Taylor (1992) and Wang
and Nakamachi (1999). Also, as described in Liu et al. (1999), a continuous normal
change with the normal vector that is not perpendicular to the contact surface can be
introduced.

To overcome the above-mentioned problems, discretizations have recently been
derived which allow for a smooth sliding of contacting nodes on the master surface.
This leads to discretizations in which higher order interpolations are used to describe
the master surface of the contacting bodies. Treatment of 2D- and 3D-smooth con-
tact between deformable bodies can be found for special discretizations in Eterovic
and Bathe (1991), Pietrzak (1997), Padmanabhan and Laursen (2001) or Wriggers
et al. (2001), for example. Within this approach, a Hermitian, Spline or BEZIER
interpolation is used to discretize the master surface. This leads to a Cl or even C2

continuous interpolation of the surface. The latter is not needed for a smooth normal
field, but might be important when the contact problem involves dynamics, and thus
accelerations are present which can jump at the segment interfaces if the interpolation
is not C2 continuous. Let us note that these interpolations lead in general to a more
robust behaviour of the iterative solution algorithms for contact.

The special case of the contact of a body with a rigid obstacle is treated in Wriggers
and Imhof (1993) or Heegaard and Curnier (1993). In such a case, various C1 surfaces
can be defined resulting directly from CAD models; see also Heege and Alart (1996)
or Hansson and Klarbring (1990).

Disretizations which lead to smooth node-to-segment contact elements are dis-
cussed below. There are different possibilities to derive such contact elements which
depend upon the choice of interpolation of the master surface. We concentrate first
on two-dimensional interpolations using Hermitian, Spline and BEZIER polynomi-
als. Also, to make the derivations clearer, only the frictionless case is discussed first
for Hermite and BEZIER interpolations. For these discretizations all matrices are
derived explicitly. After that, frictional contact is considered, though the matrices are
not stated explicitly. They have been automatically coded by a Mathematica package
AceGen designed by J. Korelc, e.g. see Korelc and Wriggers (1997) or Wriggers et al.
(1999).

8.5.1 Hermite interpolation for frictionless contact

Again, we consider the contact of one slave node xs with a master segment x1 (f).
However, this time the master segment is C1 continuous. In this section a cubic
Hermitian interpolation is chosen to interpolate the master surface following Taylor
and Wriggers (1999). When applying a cubic Hermitian polynomial, then four nodes
are necessary for the interpolation, see Figure 8.13. Using the penalty method, the
energy related to a contact constraint, see (5.31), is enforced for each slave node

-9N.A,- (8.137)
s—l
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Fig. 8.13 Smooth node-to-segment contact element.

Here nc is the number of active constraints and A8 is an area related to the contact
node s. Note that the penalty term can be written as

nc

n ~ V^ — -1 • -1 A
* TT^ 2 * a

S-l

n-
£N fv2 v-h fv2 v-h A at \w\— (Xs — X ; - (\s — X ) A8 ; (.0.1 36)

where now the normal no longer appears. The variation of this expression yields

C ~ V^ r*T (n2 — ft1 — Y1 /if} . (-v2 — vM 4 (R 1 ^Q^Op r^> / & N \'ls — * — £ >/ v s — ) s ' \o.U")

s-1

Again, since (x^ — x1) = gNa n
1, the third term in the first bracket disappears, and

for the variation of FL we have

3-1

Cc «
 £N hi - 31) ' (*; - *JM. • (8.140)
s=l

The linearization ACC starts from (8.139), and leads to the symmetric form
nc

ACC « "^ eN As [ (rf8 -f,1- x1^ SO • ( Au^ - Au1 - u1^ A^)
s=l

- (xj - x1) • (Af)1 + fjl A^ + Au1^ S£ + x1^ • n1 S^^ ) ] (8.141)

where the term A?)1 results from the special Hermitian interpolation, see below.
Expression (8.141) can be put into a mixed form by using vector notation. After
collecting terms, we arrive at

ACC -
I -I -x1

-XJ

{ Au1

I Ae
(8.142)
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Fig. 8.14 C1 continuous interpolation of contact surface.

where the abbreviations

- gNs n
1

have been used. Since the variation (8.140) does not depend upon <5£, we can use a
static condensation to eliminate A£ in (8.142). This yields

ACC-
s=l

where the matrix

-I + H:

(8.143)

(8.144)

has been introduced.
Now we have to discretize the master surface of body Bl, which then yields the

matrix form for the smooth contact element. An interpolation which provides a normal
field that does not have jumps when going from one segment to the next has to be C1

continuous. This is provided by the Hermitian interpolation. For the cubic Hermitian
polynomials we need four nodal points on the master surface (see Figure 8.14) to
define the interpolation. This interpolation will be defined on the master segment
between the nodes x1 and x2. To obtain continuous tangents from one segment to
the next we define the tangent vectors t1 = x2 — X0 and t2 — X3 — x1.

Let us further introduce a tangent and a normal vector. Both form the local frame,
for the segment under consideration:

= X2 — x1 and (8.145)
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where e3 is the unit base vector perpendicular to the plane; thus, the cross product
can be expressed by the skew matrix T

T= [_; J] . (8.146)

Based on these definitions, we can introduce the surface interpolation as a linear
interpolation between nodes 1 and 2 and a cubic Hermitian interpolation with respect
to the local frame

x1^ WO*i+WOx2 + «;(Oiio, (8.147)

where the cubic interpolation is given by w(£) = //i(0 BI + H<z(£) £?2- Wa(f)
being the standard linear shape functions and Ha (f) are the Hermitian polynomials,
defined as

WO - ^(1-0, WO = 5(1 + 0,

The value Ba is given in terms of the tangent vectors ta as

£Q = i%^, (8.149)

and denotes the angle between the tangent ta and the local frame defined by (to , n0)-
Now we can summarize the interpolation of the surface within the segment between
nodes 1 and 2 as

2

x1 (£) = T^ f NQ (£) XQ + Ha (£) Ba HQ] . (8.150)

Based on this interpolation, the closest point projection of the slave node x^ onto the
master surface can be computed, which yields x1 = x 1 ) , and is needed to define
the gap function. Contrary to the linear node-to-segment element in Section 8.1, here
one has to solve the following nonlinear equation:

x!c(0=0. (8.151)

Equation (8.151) is a polynomial of fifth order in £ which is solved using NEWTON'S
method, as described for the three-dimensional case in (8.82). For this algorithm,
the derivative of x(0 with respect to the surface coordinate £ is needed, and is hence
given next:

! 2

x'CO,^ 2(x2-*i) + Z ffa.«(0£ano. (8-152)
Q=l
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A good starting value for (8.151) is obtained by the projection of the slave node onto
to, which can be computed explicitly:

= -2 [ 2 xs - (x2 + xi) ] • ( x2 with I'2 = ( x2 - x.i ) • ( x2 - *i ) .

Now we have to express the variation and linearization of the gap associated with
one slave node xs. The variation of x1 (£) yields

(8.153)

1
By exploiting the structure of 6Ba = - 6 • ^

\ '
we arrive at the final form:

")6ta] . (8.154)

2 ~ Vt'i 'W

— (4-T rrT p ..T \ rj. i f " / ' _ p
~ o J.TJ. Vco -1 -"a ca / OC0 -r V«Q -°

2t«*o L

Now we write the variation of Ba in matrix form. For this we define

7T_
T t — R f 1i l-rv J~f f\ l^rv 1 *

n0

and obtain
r n(

Q) ^
<5Ba = ( < 5 t b , « 5 t a > ^ PL} V .

Ip2 J

(8.155)

(8.156)

Since dt0 = »72 - *h and with (8.153), (8.154) and (8.155), the variation (r^ - fj1)
needed in (8.140) can be expressed in matrix form as (rfs —fj1) = 77 f Bs(^), where

I
- # i (0 Q T

T - p(a) nl

D(l) nT
P2 "0

(2) T
P2 n()

(8.157)

with 77^ = {77S, 77i , 7?2 5 ^^i 5 <^2 )• Thus, the matrix form of the variation of the
penalty energy IIe in (8.137) of all contact contributions for the active contact con-
straints in (8.140) is finally given by

(8.158)
s=l

The linearization follows with (8.157) from (8.143), as

A - x (8.159)
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where AuJ = {Aus , Aui , Aii2 , At i , At2 )• The last term has to be derived as a
function of the unknown variables. Note that in (8.159) the linearization

A(xJ - x1) = (Au^ - Au1) = Bj(f) Aus

has been used according to (8.157).
The last term in (8.159) results from the linearization of the variation (8.153) with

regard to the variables. This yields

2

(xj - x1)71 A?)1 = (xj - x1)T Y^ Ha(£) [ &6BQ no + ABa 6no + ^BQ Ano] .

(8.160)
In this expression, the term SBa is already known and ABa has the same structure.
Thus, the term which has to be investigated in detail is

- [(tT-BQt)Sto + (n-BQ)Sta . (8.161)
ta t0 )

Using the results already obtained in (8.156), and by defining the matrices

(a) _ Ha rTf tT , f tTTT-9R t tT]
'"ll ~ 0,T 4. \- ± ta la + la la L * °a 'a 'a J '

*ta t0

m = J[notZ-totZTT-2BQt0tZ}, (8.162)

we arrive at

Ha &6BQ = (6t0, 6tQ ) MQ . (8.163)

In this expression the matrix Ma has the structure

M<a) =
1

(8.164)
Furthermore, let us define with (8. 155) the 2 x 2 matrices which are needed to describe
the last two terms in (8.160):

Pa = T ( x ; - x 1 ) j a . (8.165)

Now all terms have been derived, and the final matrix form of the linearization can
be stated:

f A t 0 ]
(x-xl)T&rt = (6t0,6t1,t2)M A^ . (8.166)
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Here the matrix M is given, with (8.164) and (8.165), as

M — (l)J

0

A4? 0
(8.167)

Finally, we have to express the vectors to -, *>i and £2 in terms of the nodal values
XQ . Xi . X2 and x%. For this we define the transformation

"n8 ^

Jfc

0 0 - 1 1 0
0 -I 0 I 0
0 0 -I 0 I

(8.168)

where r)s has been added for completeness since it is already used in (8.159). This
transformation can now be applied in (8.166), and together with (8.167) yields the
final matrix form for the linearization of the normal gap in (8.159).

8.5.2 Bezier interpolation for frictionless contact

In the next discretization we use, the contact constraint is enforced for each slave
node and the master surface is discretized using BEZIER polynomials. Note that the
derivation of the residual and tangent again follows the derivations performed in the
previous chapters. These can be applied within any kind of surface interpolation for
the segment. Thus, we can also use such formulations for C1 and for C2 continuous
interpolations.

The BEZIER polynomials which are introduced here to obtain a continuous normal
field are cubic functions. As the Hermitian functions these are defined by four points
on the master surface, though in a different manner, see Figure 8.15. The BEZIER
interpolation for the segment described by nodes 1 and 2 yields

(8.169)

(8.170)

where the BEZIER interpolation functions are defined as

Observe that the interpolation lies in the convex hull spanned by the nodes X 1 ,X 2 + X2 _
and X2, see Figure 8.15.

Our main requirement for the interpolation is that the tangent vectors of adjacent
segments have to be equal to maintain Cl continuity over segment boundaries. This
condition can be applied to compute the interior points of the segment x1+.x2-. By
defining the tangent vectors at nodes 1 and 2 as in the previous section, we obtain

and (8.171)
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Now we take the derivative of (8.169) and evaluate this at the end points f = — 1 and
£ = +1. By setting this equal to the tangent vectors ta, we obtain

Xl ~ "9
a

x2_ = (8.172)

The parameter a specifies how far nodes xi+ and x2_ are away from nodes x1 and
x2, respectively. For different a the shape of the surface interpolation changes. In the
limit for a —>• 0 we obtain an almost flat segment, however the corner region between
adjacent segments is still C1 continuous. Since the shape of the surface changes
during the finite deformation process, a might be adapted within the calculation.
However, a good choice for a is a =1/3, see also Pietrzak (1997).

With (8.172) we can rewrite the interpolation (8.169). This leads to

(8.173)

with

i=0

(8.174)

x2_

Fig. 8.15 C1 continuous BEZIER interpolation of contact surface.



SMOOTH CONTACT DISCRETIZATION 239

Now we compute the first and second derivatives of x1 (£) with respect to the surface
coordinate £ for later use:

(8.175)

The expression for the variation of the gap (3.29) using this interpolation is now

(8.176)

which is easily expressed in matrix form as
1n

-Bo (On1

-B!(()nJ

-BafOn1

(8.177)

Thus the residuum connected with the smooth BEZIER formulation can be stated.
For frictionless contact based on (8.12) for the penalty method, it yields

(8.178)

The linearization of (8.178) is derived next. Let us recall that it is given by

nc

eN A8 (SgNs AgNs + gNs &5gNs). (8.179)

In this expression the linearization of the variation of the gap function is needed. It
can be derived from (5.105):

(8.180)

+9N n1 - ( f)^ + x^ 6£ ) a11 ( Au^ + xf n1 .

To specify this for the BEZIER interpolation, we have to express 6£, see (3.21), and
A£, see (5.98), in matrix form as well as fj1^ and Au1^. All these quantities were
derived in Section 5.5. 1 . Let us first compute the normal component of the variation:

0
MOn1

. (8.181)
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Note that the same structure can be used for computation of the normal component of
Au1^. Furthermore, we define the matrix form of (r/^ — f)1) • x1^, which is needed
to compute 6£, see (3.32):

faj-

(8.182)
The matrix form of the variation of the surface coordinate follows with (8.182) and
(8.181) from (3.32):

(8.183)

where H^1 = (x1, • x1^ — g^3 n1 • x1^ )-1. Again, the same structure can be used
for the linearization A£.

The matrix form of the linearization of the gap function (8.180) can be expressed
with (8.181) and (8.183). Thus, for (8.179) with b1^ = x1^ • n1, we finally obtain

s=l

~ Bn,d&T+ blsBd&Bd£)T (8.184)
T

C « T

] }Aus ,
,^

which denotes the tangent matrix of the smooth BEZIER formulation for frictionless
contact. Observe that the formulation for the BEZIER contact element is much sim-
pler than that for the Hermitian element, which needs special treatment of the rotation
Ba within the linearization.

Example. As an example of both formulations, the rotation of a shaft in a cylindri-
cal bearing is considered. The geometry is shown in Figure 8.16. The shaft is mod-
elled by an elastic constitutive equation with modulus of compression K = 1.75 • 105

MPa and shear modulus G = 8.08 • 104 MPa. The cylindrical tube is characterized
by an elastic constitutive equation as well, with the same material data. The radius
of the cylindrical shaft is RC = 70 mm. The tube is defined by the radii RTI = 70.1
mmand.RT2 — 100mm. The load is applied in two steps. First a radial displacement
6 is prescribed at the outer boundary of the tube such that contact between the tube
and the shaft occurs. After that, the shaft is rotated for (f> = 360°. The finite element
mesh is depicted in Figure 8.17.

For this problem a non-smooth interpolation yields unsatisfactory results; since
the reaction, here the angular moment is used, oscillates very much, it is not shown
here. Even when the Hermitian or BEZIER interpolations are used, an oscillation



SMOOTH CONTACT DISCRETIZATION 241

Fig. 8.16 Cylindrical bearing.

Fig. 8,17 Finite element mesh of rotating shaft.

occurs which is depicted in Figure 8.18 (here the value a = 1 — a was used to
describe the position of the points x1+ and X2-). This oscillation stems from the
choice of parameter a in (8.172), only for a = | = a = | the same good solution
is obtained as for the Hermitian interpolation. The reason for this is that a influences
the geometrical description of the surface. It is smooth for any value of a, though the
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Fig. 8.18 Angular moment for smooth (SNTS) interpolation with different values of a.

best approximation for a constant curvature which is associated with a circular shaft
is only obtained for a special value of a.

8.5.3 Bezier interpolation for frictional contact

To show that there is a certain variety in choosing the boundary discretization for
continuous contact formulations, we introduce for the frictional C1 interpolation
another discretization. It is based only on two segments, as described in Wriggers
et al. (1999), instead of the three used in the previous section, see Figure 8.19. This

Fig. 8.19 Contact discretization using a three-node master element.
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leads to a description of the master surface by only three nodes, which then results in
a four-node contact element when the slave node is added. The bandwidth associated
with the smooth four-node contact element is smaller than for the five-node contact
element in Section 8.5.2, which yields smaller global equation systems for contact
problems.

The geometric description of the contact surfaces is different for four and five node
contact elements. When the four-node element is constructed following Figure 8.19,
then the surface lies inside the polygon spanned by the straight segments. Hence, not
all nodes describing the boundary of the finite element mesh are part of the surface
used to establish the contact constraints; see node X2 in Figures 8.19 and 8.20. In
the case of the five-node discretization, all nodes are part of the contact surface, see
Figures 8.14 or 8.15. We note that in the limit case, for contact elements with le -4 0,
both discretizations converge to the correct surface.

To develop the matrix formulation for the four node contact element, we define two
interpolating polynomials (see Figure 8.21) by two mid-nodes (mid point between two
master surface nodes) and two tangent vectors. Mid-nodes mi2 and m23 represent
end-points of the polynomial while the tangent vectors, X2 — xi and KS — x2 are
defined by a line between master surface nodes. The so defined geometry, when
also applied in the same way for the neighbouring segments, ensures C1 continuity
between adjacent contact segments, and hence C1 continuity on the entire master
contact surface. For each active contact segment, two interpolations are evaluated
(in Figure 8.21 this would be the interpolation defined by m12 and m23 and the
interpolation defined by 11123 and 11134). The polynomial which has the minimum
distance to the slave node xs has to be chosen as the active one. It is used for
calculation of the contact residual and the associated tangent matrix. For simplicity,
we suppose that the first polynomial defined by mi2 and m23 is closer to the slave
node, thus all vectors and matrices are described with respect to this interpolation.
Evaluation of all quantities for the second interpolation is similar as for the first one.
According to Figure 8.21, active segment nodes are represented by indices 2 and 3,
while neighbouring segment nodes are represented by indices 1 and 4. The slave node

Fig. 8.20 Finite element discretization using the four-node smooth contact element.
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Fig. 8.21 Description of the "active segment", nodal coordinates and nodal displacements.

xs is represented in the following derivations by index 5. With this notation we can
define the nodal displacement vector for a single two-dimensional contact element as

u = {u 1 1 ,u 2 1 ;u 1 2 ,u 2 2 ,u 1 3 , u 2 3 :u 1 4 ,u 2 4 ;u 1 5 ;u 2 5 } . (8.185)

where the first index describes the direction with respect to a cartesian coordinate
system { e1 . e2 . e3 }. The second index is the nodal number. With the nodal dis-
placement vector we obtain a relation between the current configuration x and the
initial configuration X of a body, i.e. x = X + u.

Now two C1 cubic BEZIER curves x1 (f ) can be stated in terms of Bernstein
polynomials:

(l-0m-i i = 0 , . . . , m , (8.186)

where m is the order of the polynomial. For the case m = 3, the surface is parame-
terized by

x1 (0 = b0 B
3
0 (0 + b! Bl (0 + b2 B\ (0 + b3 B\ (0 , (8. 1 87)

where the explicit form of the polynomials is given by (8.170). Vectors b; are the
BEZIER points that define the polygon. The BEZIER curve is always lying inside the
polygon. This property is called the convex hull property of BEZIER curves, e.g. see
Farm (1993), which ensures numerical stability of the interpolation.

When interpolation (8.187) is applied to discretize the contact segments, the end
points b0 and b3 are defined by the mid-nodes (see Figure 8.22). The BEZIER points
b1 and b2 have to be positioned on the tangents x2 — x1 and x3 — x2, respectively.
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However, the distance from the end points bo and bs is still arbitrary and can vary.
The choice of this distance plays an important role in the description of rolling contact,
and will be discussed in detail at the end of this section; see also the example in the
last section.

For simplicity, let points b1 and b2 be defined by quarter-nodes, i.e. the points
between nodes and mid-nodes. This choice ensures Cl -continuity, see Farin (1993).

In the case of rolling contact of cylindrical objects we have to consider circular
cross-sections which move on a given surface, such as wheels or tyres. Smoothing
of the contact discretization is then absolutely necessary, since sliding and rolling of
such bodies are significantly influenced by the contact surface geometry. The element
based on the cubic BEZIER interpolation shows a strong sensitivity with respect to the
location of the second b1 and the third b2 BEZIER point (quarter-nodes; see Figure
8.22). To obtain an optimal surface discretization, for the moment we define the
positions of these BEZIER points as variable (see Figure 8.23) using the parameter
a € [0,1]:

bi - bo + (x 2 -b 0 )a , (8.188)

b2 = x2 + (b 3 -x 2 ) ( l -a) . (8.189)

For a circular cross-section, when only a small number of elements is used, special
care has to be taken when choosing a, since otherwise the circular geometry might
be very poorly represented, see also Figure 8.18. Different possibilities can be ex-
plored to obtain a better approximation of the geometry in the case of the BEZIER
interpolation:

1. When all master segments have the same length, the parameter a can be com-
puted from the requirement that the point x1 (£ = 1/2) for a Bezier interpola-
tion should be the same as the point x1 (£ = 1/2) for a Hermite interpolation.
This results in parameter a — 2/3, which is completely independent from the
problem geometry. It is easy to see that in this case, BEZIER and Hermitian

Fig. 8.22 BEZIER interpolation and points.
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F. 8.23 Definition of the parameter a for variable Bezier points.

interpolation coincide. Note, however, that this is only valid for the case of
master segments with equal length.

2. Another way of computing the parameter a is based on the requirement that
the radius, defined as the distance from the circle centre C to the point on
the polynomial (Figure 8.23), has to be the same for points x (£ = 0) and
x (£ = 1/2). This approximates the curvature of the interpolation pointwise.
It yields a BEZIER interpolation which is closer to the ideal arc shape than
the interpolation with a = 2/3. In this formulation, in comparison with the
previous one, the parameter a depends upon the geometry, and has to be re-
calculated for different surface geometries. This is especially inconvenient,
hence in finite deformation problems the geometry description has to be defined
based on the current configuration.

3. Finally, one can approximate the curvature of the contact element by an aver-
age procedure. This means that the average curvature of the contact segment
interpolation has to be equal to the radius of curvature l/R given by the real
geometry. This yields the integral

i/ ^||rfT, (8.190)

r,

where x1^ is the second derivative of the BEZIER interpolation with respect to
the path parameter f, and 5 denotes the length of the segment. The evaluation
of this integral using an interpolation with (8.188) and (8.189) yields, for each
contact segment, a value for a. Again, a depends upon the current geometry.
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The significance of smoothing the circular geometry, as well as the correct choice of
parameter a, is demonstrated further by means of the examples below.

Now we derive the residual vector and the tangent matrix associated with the
contact element described. The normal gap function is defined in (3.6). For the
tangential gap we have to distinguish between the stick and slip phases with the
relative tangential displacements given in (3.14) and (3.22). The stick condition was
stated in (8.5) for the node-to-segment element with linear segment geometry which
cannot be used here in this form. Instead, we have to compute the path on the surface,
see Figure 8.24. As the cubic BEZIER polynomial is defined explicitly, the path length
given with (3.26) by

(8.191)

where x\ represents the ith component of the vector x1 (£). There is no explicit
analytical solution of the integral (8.191), hence numerical (e.g. GAUSS) integration
has to be applied. This leads to the definition of the relative tangential gap function:

Ad6'* — f fit £ : ,} — off \ } Si^ (£ : , \ (%. 1 Q?\^STn+l — L*vsn+U *vvnJ j " V s n + 1 / - \o.\y£)

Considering the fact that the tangential stress vector is a function of the displacement
un+1 and the parameter £n+1, one has to use the chain rule to derive the expression
for ith component of the residual vector related to the displacement Ui n+1 • For stick
with a tangential contact stress computed from the elastic part (see (4.21)) this yields

& 9Nn+l 9 9Nn+l—. _|_ _

+ , (8.193)

where index i has the range i = 1 , . . . , 10. One can show, based on the expression for
QN in (3.7), that dgw / d£ is equal to zero, and hence it can be neglected in (8.193).

Fig. 8.24 Sliding path of the slave node on the master surface.
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However from a formal point of view, the latter result is not known a priori. Hence it
was included when we used the Mathematica package AceGen Korelc (1997) for the
automatic derivation of matrix formulae. The partial derivative of the path parameter
with respect to the displacements is given by

— /d | l r "+i te"+i) l l . (8.194)
duin+i duin+i dfn+i

The tangent matrix is obtained by the linearization of the residual vector

dujn+1 0£n+1 dujn
(8.195)

+l

where index j = 1,..., 10. In the finite element code, when calculating the contact
contribution of a single slave node, the residual vector is calculated for every iteration
within the current time interval.

When sliding occurs, the residual vector is obtained by inserting the tangential
stress stemming from the time integration of COULOMB'S law, (9.118), into (5.33):

9N n+l

dgN n+1 + —=-

+tsi
Tn+1

dUin+i

+ ~- ""'•' n+1 . (8.196)

The tangent matrix then follows as

d tR8J,,}. dtRsJ.A. tif ..
(8.197)

;n+l du.

For COULOMB'S frictional law the relative tangential gap follows from (9.119) for
the slip case, and is given by

gTn+l = §Tn + — ( II t n+1 II ~ VPNn+1 ) n$n+l ,CT

which has to be inserted into (8.196). Equations (8.193), (8.195), (8.196) and (8.197)
provide the basis for the automatic code generation using AceGen.

Continuity of history variables between adjacent segments in the slip case. For
both polynomial formulations described in the previous sections, Cl continuity of
adjacent interpolations is ensured. In the frictionless case, where no history variables
are needed, there is no influence on the residual vector and the tangent matrix if sliding
occurs over several adjacent interpolations and segments. For frictional problems,
where path length and traction vector are history variables, extra considerations are
needed when sliding of the slave node over adjacent segments and interpolations
occurs.
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Fig. 8.25 Description of the path length modification.

According to Figure 8.25, let an interpolation which is defined between nodes xi
and X3 be called theirs* interpolation. Furthermore, an interpolation which is defined
between x-2 and X4 is called the second interpolation. For both interpolations the path
length is calculated via the integral from zero to £n+1. Let the path length for the first
interpolation be denoted by the symbol sIn+1 (£n+1), and me Path length for the sec-
ond interpolation by the symbol sI

n
I
+l (£n+1). These values are calculated according

to equation (8.191) for each iteration, and saved as a variable which describes the
history of the sliding path of the slave node.

The history variable sn (£n) that represents the path length for the last converged
state is constant during the iterations within a time increment. If, within the same
active segment, the slave node slides from the first interpolation to the second, or vice
versa, then the path length sn+1 (£n+1)

 used in equation (8.192) has to be modified.
The following possibilities have to be considered when updating the history variable
describing the path length:

1. If sliding from the first to the second interpolation occurs, then sn+1 (£n+1),
used for calculation of (sn+i (£n+i) ~ sn (£«))»* s modified according to

«n+l (?n+i) - 4+1 (fn+l) + 4+1 (&+1 = 1) - (8.198)

2. If, within the same active segment, the slave node slides from the second to
the first interpolation, then the path length sn+1 (£n+1) has to be modified
according to

*„+! (?n+1) - 4+1 (fn+l) - 4+1 (£n+l - 1) - (8-199)
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3. If there is no sliding between interpolations of the same active segment, then
for the first interpolation we set

n + i = * + i ( n + l ) , (8.200)

or for the second interpolation,

«n+i(fn + i)=«i!n(?B + i) - (8.201)

4. If the slave node slides between two adjacent segments, there is no need for a
modification of the current path length sn+1 (£n+1 ) . Hence equations (8.200)
and (8.201) are used. For such a case, procedures described by (8.198) and
(8. 199) could be activated unnecessarily. This can happen, for example, when
an interpolation that was the second one for the active segment changes to the
first interpolation, and vice versa. To suppress the use of procedures (8. 198) and
(8. 199) in such a case, another additional history variable (switch) is introduced
to monitor whether an active master segment number has changed or not.

As mentioned before, history variables which need to be used in the next time steps
are not influenced by modifications (8.198) and (8.199).

8.5.4 Three-dimensional contact discretization

In the last few years, several groups have worked on the design of three-dimensional
finite contact elements based on smooth surface interpolations. It is a well known fact
from finite element formulations based on KIRCHHOFF plate theory that elements
which fulfil Cl continuity are very hard to design. This is also true for triangular as
well as for quadrilateral elements. Hence, the generation of Cl smooth surfaces is
not as straightforward as in two-dimensional applications (see the previous sections).
However, there are different possibilities to construct Cl continuous surface approx-
imations; some will be discussed in the following. Before doing so, we stress that
these approximations discretize contact surfaces in the current configuration which
are not known a priori, since we want to allow for finite deformations and sliding.
For rigid surfaces it is much simpler to develop a smooth surface interpolation. Here
all CAD tools can be applied immediately; for such interpolations, see Wriggers and
Imhof ( 1 993), Heegaard and Curnier ( 1993), Heege and Alart ( 1996) or Hansson and
Klarbring(1990).

For the Cl interpolation of the current surface geometry, the approaches were
developed for triangular and hexahedral surface meshes.

Interpolations based on hexahedral elements were developed in, for example,
Pietrzak (1997), Pietrzak and Curnier (1997) and Dalrymple (1999). Basically, a
tensor product representation of one-dimensional BEZIER or HERMITE polynomials
is used to interpolate the master surfaces in the contact interface. In that case, a
three-dimensional quadrilateral BEZIER surface of the order m is defined in explicit
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Fig. 8.26 Eight neighbouring surfaces for brick elements,

form, see Farin (1993), as

B™ (£*) anc* Bf (C2) are the BERNSTEIN polynomials which depend upon the con-
vective surface coordinates £x and £2. They have already been defined in equation
(8.186) for one-dimensional applications. This definition needs a discretization in
which the quadrilateral contact surface has to be surrounded by eight neighbour-
ing quadrilateral contact surfaces, as shown in Figure 8.26. Hence a structured
mesh must be provided for the contact analysis. Thus, smoothing of hexahedral

Fig. 8.27 Interpolation with less than eight neighbouring surfaces.
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Fig. 8.28 Triangular contact surfaces for the tetrahedral element.

elements by (8.202) has a limitation since automatic mesh generation for arbitrary
three-dimensional bodies does not lead to such a regular form of the mesh.

Hence this approach cannot easily handle a case related to an unstructured mesh,
as shown in Figure 8.27. For such cases, a smooth interpolation could be developed,
but this would lead in general to a special treatment of different patches with, for
example, 5, 6, 7 or 8 adjacent elements, and therefore would lead to very complex
coding.

The use of the tetrahedral elements (Figure 8.28) in the finite element analysis of
bodies with complex geometry has a significant advantage that more robust automatic
mesh generators exist. This is also true for re-meshing when compared with programs
for hexahedral elements. The interpolation of the contact surface for triangular el-
ements is based in Krstulovic-Opara et al. (2002) on the three adjacent elements,
as shown in Figure 8.29. The C1 continuous discretization presented is based on a
smoothing of the active triangular contact surface (i.e. master surface where contact

Fig. 8.29 Tetrahedral contact element.
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occurs) by using six quartic BEZIER surfaces. All six quartic BEZIER surfaces are
Cl continuous with respect to each other, thus there are no jumps in surface normal
field between these surfaces. However, directly at the vertices of the element the Cl

continuity is lost pointwise.
The formulation of the sliding path for the frictional problems becomes complex

for such surfaces. To overcome this problem, a mapping of the current solution in
the last converged configuration is used in Krstulovic-Opara et al. (2002). In the last
converged configuration a cubic curve is introduced as an approximation of the path
length. Such a definition of sliding, which was first developed in Agelet de Saracibar
(1997), enables the description of sliding for the cases of large steps, i.e. sliding of a
slave node over several segments during one loading step.

Due to the high order interpolation of the surface by quartic BEZIER interpolations,
the variations and linearizations of geometrical quantities like the normal and relative
tangential gap are very complicated. Thus, a general symbolic description of all the
relations needed to derive the contact element was applied. It was used in Krstulovic-
Opara et al. (2002) to be able to introduce the linearization of the contact residual
on a high abstract mathematical level. For this task a computer algebra system
for symbolic derivation, automatic differentiation and code generation was used to
numerically generate the proposed element routines. The system consists of two
major components: () the Mathematica package AceGen that automatically derives
formulae and generated general code, see Korelc (1997) and Korelc (2000a)), and (b)
the Mathematica package Computational Templates Korelc (2000b), with prearranged
modules for creation of the finite element codes. For a detailed treatment of these
subjects the reader should consult the references cited.

In conclusion, research work for a better and simpler way to represent smooth sur-
faces is still needed. Some ideas, based on patchwise formulations and subdivisions
which were proposed in Cirak et al. (2000) for thin shells, could be a step in the right
direction for contact analysis with smooth surface interpolations.

8.6 NUMERICAL EXAMPLES

The interpolations derived above have been implemented in the current version of the
finite element analysis program FEAP, see Zienkiewicz and Taylor (1989). To show
the performance of the two different smooth contact discretizations, we compare the
smooth approach with the node-to-segment contact formulation developed in Section
8.1 for straight segments.

8.6.1 The sheet/plate rolling simulation

The advantage of the smooth contact elements is evident when this discretization is
applied within sheet/plate metal forming simulations using a LAGRANGE formula-
tion. This is particularly true when deformations and stresses of the roller are not of
primary interest. In such a situation, smoothing of the cylindrical roller, here defined
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as the master surface, enables a reduction in the required number of elements needed
for discretization of the roller. In Figure 8.30 the geometry of a sheet/plate forming

Fig. 8.30 Problem description.

process is shown. A displacement is applied on the horizontal plate. The fixed steel
roller of diameter 140 mm rotates around its axis. The plate has a size of 478 x 85
mm. It is supported in the vertical direction on its lower edge. Since we only want
to show the usefulness of the smooth contact discretization, both parts are modelled
by a hyperelastic constitutive law of the neo-HoOKE type. The material behaviour
of the roller is modelled with a bulk modulus of K = 1.75 • 105 MPa and a shear
modulus of G = 8.08 • 104 MPa. The plate is characterized by a bulk modulus of
K = 55.6 MPa and a shear modulus of G = 3.4 MPa. The cylinder is discretized
by the relatively coarse mesh, as depicted in Figure 8.31. The overlapping between
roller and plate is assumed to be approximately A « 5 mm.

The contact is modelled using the simple node-to-segment (NTS), the Hermite
node-to-segment, and the Bezier node-to-segment contact element, with the parameter
a = 0.65444. This parameter is evaluated from the requirement for the same distance
between the circle's centre and the pointsn+1x (n+1£ = 0) and n + 1 x (n+1£ = 1/2).

Note that there is a difference in the master surface geometry between the standard
and smooth node-to-segment elements due to the different surface approximations
(see Figures 8.2 and 8.22). Hence, when the reactions for the central cylinder node
are computed, there is a difference in the reaction forces due to the differences in the

Fig. 8.31 Finite-element-model.
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Fig. 8.32 Horizontal reactions for the central node.

master surface geometry of both approaches. Thus, we only compare the horizontal
reaction at the central node of the roller, which has to be zero in the case of rolling.

Figure 8.32 shows the horizontal reaction force. We observe that the solution
of using smooth discretization is much better than that obtained with the standard
node-to-segment element.

8.6.2 Simulation of a sliding and rolling wheel

This example of a disk which is put on a plane with a given contact initial velocity in
the horizontal direction is suggested as a benchmark test for two-dimensional contact
elements with friction. It has the advantage that the analytical solution is known.

Here a disk with radius r, density p, COULOMB friction coefficient /^, and elasticity
parameters for a neo-HOOKE material is put on a flat surface under gravity loading.
When the initial velocity vo for all points of the disk is applied, the disk starts to slide
without rolling. Within the sliding process the disk starts to roll until finally pure
rolling occurs, see Figure 8.33.

The analytical solution yields the time tR and distance lR after pure rolling starts:

—-
-, D18 p g

(8.203)
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Fig. 8.33 Description of the rolling wheel problem.

With a frictional coefficient of // = 0.3, the gravitational acceleration g = 9.81 m/s,
and an initial velocity of V0 = 1 m/s, it follows from equation (8.203) that the length
and time, when pure rolling starts, are lR = 0.094 m and tR = 0.113 s.

The FE simulation of the sliding/rolling disk is performed for a steel disk with
radius r = 0.04 m, density p = 7850 kg/m3, frictional coefficient p, = 0.3 and
elasticity parameters K = 1.75 105 MPa, G = 8.08 104 MPa. The dynamical

Fig. 8.34 FE simulation of rolling disk with contact.
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Fig. 8.35 Straight node-to-segment (NTS) frictional contact element.

problem is solved using the NEWMARK method (see Section 9.2.2) with parameters
0 = 0.25 and 7 = 0.5. Figure 8.34 shows the discretization for the disk and the
plane surface, and different stages of the sliding/rolling motion of the disk.

Figures 8.35 and 8.36 show the horizontal velocities of the master nodes at the
surface and the central nodes of the disk. The time when pure rolling starts can
be detected from these diagrams by comparison with the results of the analytical
solution. Once the horizontal velocity of a master node is zero, while the velocity of
the opposite master node (here plotted with the same grey scale) is as twice as big as
the velocity of the central node (dashed line), pure rolling starts. From Figure 8.35 we
obtain the result that pure rolling occurs at the distance lR = 0.124 m for the straight
NTS contact. The overall solution behaviour for this discretization is characterized
by jumps and non-physical separations from the base surface.

Figure 8.36 depicts the response for smooth discretization using HERMITE and
BEZIER interpolations, the latter with a = 2/3. In these simulations pure rolling
started at lR = 0.099 m which is close to the analytical solution in (8.203).

As can be observed by comparing Figures 8.35 and 8.36, the straight contact
element discretization leads to erroneous results, whereas the smooth interpolation
yields better results, close to the analytical solution.

Fig. 8.36 Smooth HERMITE and BEZIER (a = 2/3) frictional contact elements.
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Both examples presented demonstrate the importance of contact surface smooth-
ing in certain applications. Sudden normal changes, that are common for the standard
node-to-segment contact formulations, introduce significant errors in the finite ele-
ment discretization of contact phenomena, especially when rolling is concerned.

In comparison with the HERMITE interpolation in Section 8.5.1, the BEZIER
approach in Section 8.5.2 is simpler. However, one has to bear in mind that the
parameter a has to be chosen within the BEZIER approach for special cases, as
discussed in Section 8.5.3.



9
Solution Algorithms

In this chapter we consider algorithms which are essential for the treatment of contact
problems. These are applied to the discretized problem, which are derived using the
formulations in Chapters 5, 6 and 7.

The algorithms for detecting contact are of utmost importance, since in complex
engineering applications like a car crash or fragmentation of brittle materials, contact
occurs at non-predictable places on the surfaces of the bodies involved. In such situ-
ations, contact search has to be performed in every time or load step of the numerical
simulation. Additionally, when fractured materials are considered, many new contact
surfaces are generated due to the splitting of elements into pieces once fracture occurs.
All together, these simulations require complex software which has to be designed to
be most efficient. This is necessary since the number of operations needed to check
O(N) surfaces of a discretized domain is O(N2). If such a check has to be carried
out at each iteration step, then the search will dominate the overall time for the com-
putation. Hence algorithms have to be developed which reduce the frequency of the
search and its complexity.

In general, we have to distinguish between global and local algorithms:

• global algorithms

1. contact search

2. solution of the variational inequalities

• local algorithms

1. contact detection

2. update of constitutive equations and stresses.

259
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The global algorithms are related to purely geometrical considerations when the con-
tact search has to be done. There are many different approaches for contact detection
which will be discussed in section 9.1.

In Sections 9.2 and 9.3 solution methods for non-constraint and constraint problems
are discussed. Here, several aspects related to the design of solution methods have to
be considered. These are associated with

• the existence of solutions in the domain of interest, and

• the number of solutions in that domain.

The theoretical analysis can be found in the mathematical literature. For general re-
sults regarding unconstraint problems, see Vainberg (1964) or Ortega and Rheinboldt
(1970). Associated results for contact problems are reported in Hlavacek et al. (1988),
Kikuchi and Oden (1988) or Curnier et al. (1992).

The approximation of the solution has to be computed by using adequate algo-
rithms. A direct solution of the equation system resulting from the finite element
discretization G(u) = 0 under the inequality constraints C(u) > 0 due to contact is
not possible, due to the nonlinearity of the problem. Hence, iterative algorithms are
needed which can be distinguished in the following manner:

• methods based on linearizations,

• minimization methods, or

• reduction methods which yield simpler nonlinear equations.

Before one chooses an algorithm, one has to check the following questions in order
to obtain a fast, efficient and robust scheme:

• Does the algorithm converge to the solution?

• How fast is convergence? Does the rate of convergence depend upon the prob-
lem size?

• How efficient is the algorithm?

- number of operations within an iteration,

- total number of iterations, and

- memory used.

The first question is related to the global convergence properties of the algorithm. It is
essential for the user of such a scheme, since he needs a robust and reliable tool for the
solution of his problem. In contact mechanics this is a not completely solved problem,
especially when implicit methods are applied to friction problems. However, the other
questions raised are essential, in the sense that most of the engineering problems are
represented by a three-dimensional discretization which leads to very large number
of unknowns. In this respect, the memory used is relevant to keep the process in the
CPU, and hence avoid time consuming access to the hard disk. Furthermore, one
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should apply solution methods which only need O(N] operations in order to keep the
solution times to a minimum. All these aspects define a vivid research field in which
new fast algorithms are constructed based on different mathematical approaches and
computer architectures. One cannot, therefore, conclude that an optimal solution
procedure exists at the moment for contact problems.

The bandwidth of global algorithms for the solution of variational inequalities
is very broad. We should like to mention the simplex method, mathematical pro-
gramming, active set strategies using LAGRANGE multipliers, sequential quadratic
programming, penalty and augmented LAGRANGE techniques, as well as barrier
methods. The basis for these different methods with regard to continuum mechanics
has been given in Chapter 5. All these techniques have advantages and disadvantages
concerning efficiency, accuracy or robustness, and thus have to be applied according
to the problem at hand. In Section 9.2 we discuss methods to solve unconstraint
problems or problems with equality constraints which are applied within the global
algorithms for the solution of variational inequalities. Thereafter, in Section 9.3, we
sketch some of the global algorithms which are mainly applied to contact problems.

Local algorithms have to be employed once the global contact search has found
possible contact partners. A more accurate local search has to be carried out in order
to find the correct faces and elements in contact, and in the case of contact, the correct
projection of nodes onto the surface of the contacting partner has to be determined.
The latter algorithms have already been described in Chapter 7. The local contact
search will be discussed in Section 9.1.2. The update algorithms for the contact
stresses, especially the tangential stresses due to friction, have been settled. In this
case, the so-called projection methods or return mapping schemes yield the most
efficient and robust treatment. Due to the fact that an algorithmic tangent operator
can be constructed, this technique can be incorporated into a NEWTON—RAPHSON
scheme; see Section 9.5 for further details.

Furthermore, algorithms also have to be devised for coupled problems, which may
be necessary in the case of thermo-mechanical coupling or for fluid-structure inter-
action problems. Algorithms for coupled problems, like staggered schemes, depend
upon the type of coupling, and thus have to be designed with special care regarding
robustness and efficiency. Algorithms for thermo-mechanical contact problems can
be found in Section 10.5.

9.1 CONTACT SEARCH

One of the biggest problems in computational contact mechanics is the search for
contact between solids. This is especially true when the problem is such that the
solids can break, and hence during the solution process several thousands of discrete
elements will originate from the initial set up. Examples for these types of dynamic
and impact problems can be found in Munjiza and Owen (1993), Munjiza et al. (1995),
Camacho and Ortiz (1996) or Kane et al. (1999). In such cases, as also in discrete
element or rigid body simulations, most of the computing time has to be devoted to
the search, since these computations are usually based on explicit techniques. Thus,



262 SOLUTION ALGORITHMS

fast algorithms for the detection of contact are needed. The most recent methods
are presented in the overview paper by Williams and O'Connor (1999), see also the
references therein.

Static contact problems with large deformations also need fast and reliable search
algorithms, since contact areas are not known a priori and can change within a load
step considerably. Furthermore, self-contact has to be included, too. The search for
an active set of contact constraints is not trivial in this case, since a surface point of a
body may contact any portion of the surface of another body. Such a point can even
come into contact with a part of the surface of its own body. Thus the search for
the correct contact location eventually needs considerable effort, depending on the
problem. An implementation where each node of a surface is checked against each
element surface in the mesh is too exhaustive and computationally inefficient, thus
refined algorithms have to be constructed. This is especially true when the contact
of more then two bodies has to be considered, or when self-contact is possible. A
relatively simple situation is depicted in Figure 9.1 (a), where four different finite
element discretizations might come into contact. One can immediately observe that
it does not make sense to check the contact of one node against each node on the
surface of the other discretizations. This effect is even more pronounced in the set
of spheres shown in Figure 9.1 (b). Here the possible contact partners of the black
sphere have to be found. It is clear that only the spheres in the vicinity of the black
sphere should be checked. One thus has to search for the neighbouring objects first,
and then perform the local search for real contact.

Thus, in general, contact search has to be split into two phases:

(I) the spatial search for objects/finite elements which might possibly come into
contact; and

(II) the determination of pairs of objects/finite elements which actually intersect
and hence are in contact (contact detection).

oQ

o

Fig. 9.1 (a) Discrete contact FEM, (b) Discrete contact spheres.
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Fig. 9.2 Bounding box and surrounding sphere of an object.

In phase (I) one orders the finite elements lying on the surface of the solid by a sorting
algorithm. As discussed in Williams and O'Connor (1995) it is sufficient in this phase
to represent the objects by a course description, e.g. bounding boxes or surrounding
spheres, see Figure 9.2. The main point when using such simple descriptions is that
one can use these to design fast and inexpensive (computationally efficient) sort and
search routines. Within the global search a hierarchical structure can be set up to find
out which bodies, part of the bodies, surfaces or parts of the surfaces are able to come
into contact within a given time step or displacement increment, e.g. see Zhong and
Nilsson (1989), Zhong (1993) or Williams and O'Connor (1995).

One of the first implementations, applied within the finite element method to find
solutions to large deformation contact problems, see Benson and Hallquist (1990),
was called the bucket search. The space is subdivided into cells or buckets, as shown
in Figure 9.3. Only the grey bucket is searched, which leads with careful coding to a
scheme with O(N) operations.

Up to now, several different methods have been developed, and applied to deter-
mine the possible contact partners. Recently, a considerable impact has come from
discrete finite element methods where several thousand particles have to be included
in the contact search. Methods like space cell decomposition have been considered by
Belytschko and Neal (1991); a combination with the binary tree search can be found
in Munjiza et al. (1995); whereas Williams and O'Connor (1995) rely on heapsort
algorithms for the global search. More advanced algorithms are the NBS algorithm,

Fig. 9.3 Bucket search for contact.
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see Munjiza and Andrews (1998), the alternating digital tree method from Bonnet
and Peraire (1991), a space filling curve technique, see Diekmann et al. (2000), or the
Double-Ended Spatial Sorting (DESS) algorithm constructed in Perkins and Williams
(1995).

In phase (II) the intersection of the objects is checked, and when intersection occurs
the actual contact point, the associated penetration and the local slip are determined
using equations (3.3), (3.7) and (3.19). In the special case of contact between a
deformable and a rigid body, the rigid body can be described by implicit functions
such as superquadrics, see Williams and Pentland (1992). This leads to a simple and
efficient contact check for points lying on the surface of the deformable body. For
the special case of cylinders or ellipses, see also Hallquist et al. (1992). However,
the evaluation of functions describing the superquadrics involves the computation
of trigonometric or exponential functions, and is thus expensive. Other represen-
tations have therefore been constructed which are based on discrete functions, see
Williams and O'Connor (1999). Other methods are the node-to-segment algorithm,
see Hallquist (1979), or the pinball technique by Belytschko and Neal (1991).

Now we discuss some techniques which can be applied for the spatial search in
phase (I) and the contact detection in phase (II).

9.1.1 Spatial search, phase (I)

In the spatial search we have to distinguish between problems in which the evaluation
of the deformation is slow or predictable, and cases where arbitrary deformations
occur. In the first problem class, we distinguish for finite elements the cases of small
deformations and large deformations:

• The problem involves only small deformations. Hence, the position of the
solids does not change much, and we can use a linear description for the contact
kinematics and assume that the topology of the system is fixed, see Figure 7.1.
Therefore, all possible connections and neighbouring pairs are known, and only
contact detection is necessary, which itself can be evaluated in an efficient way.

• Large deformation occurs with a smooth movement of a contact point over
adjacent elements of the contacting body. In that case (see Figure 9.4) we have
to use spatial search to locate the neighbouring segment to a slave node s which
has changed during the iteration from segment / to K.

" ^

Fig. 9.4 Large sliding of a node over a surface.
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In the second problem class we always have to check possible contact for the present
deformation state; see the simple situation depicted in Figure 9.4. This means every
object/finite element has to be checked against every other object/finite element.
When the contact problem is discretized by N finite elements, the order of contact
checks is N2. Associated algorithms result, even for not too large numbers of N, in
very slow algorithms, and thus are called exhaustive algorithms. Hence one has to
construct fast algorithms for this task. The following schemes have been developed
to date:

• Grid cell algorithms, based on a subdivision of the space which contains the
discrete solids (simulation space) into uniform cells, see Figure 9.5(a). This
algorithm type works well when the elements are equally distributed within the
cells. If clustering of the elements in a few cells occurs, then this algorithm

(a) Grid cells (b) Quadtree, binary tree

(c) Adaptive grid (d) Body-based cells

O
Fig. 9.5 Different sorting strategies.



266 SOLUTION ALGORITHMS

has no advantages. A variant of this algorithm is to use adaptive grids which
accounts for the heterogeneity of the element distribution in space, see Figure
9.5(c). However, in this scheme, the cost of computing the adaptive grid is not
negligible.

• A fast method for spatial search is the octree method, which again is based on
a grid of rectilinear cells, see Figure 9.5(b), but in this case only cells which
contain finite elements are kept in the structure of the tree. As pointed out
in Williams and O'Connor (1999), the time for search depends upon the first
construction of the octree. With special techniques like balancing the tree
branches and minimization of the octree depth, one can reduce the search time,
see e.g. Knuth (1973). The time to create such an octree is O(N log N)
operation, and its evaluation time is of the same order.

• Another method developed by Williams and O'Connor (1995) is the spatial
heapsort algorithm, in which a list of the elements is sorted by increasing
co-ordinates along the axes of the simulation space. This algorithm is often
combined with body-based cells, see Figure 9.5(d). It has a performance in
time of the order O(N log N) when it is used to sort an unordered set of N
elements. The advantages of this algorithm are that no special data structure is
required, it is insensitive to the spatial distribution of the object/elements, and
it only needs an array of O(N) elements to store the necessary data. Thus, it
requires about 10 times less storage than the octree method, and less effort is
needed to implement it.

• Recently, algorithms have been developed in Perkins and Williams (1995)
which are insensitive to the object size. These algorithms are thus very well
suited for discrete finite element analysis in which the size of the finite element
chunk broken off is not predictable beforehand. The associated algorithm has
a performance of O(N log N), where N defines the number of objects which
can come into contact.

9.1.2 Contact detection, phase (II)

Several cases have to be distinguished when algorithms for contact detection are
constructed. These include contact between rigid bodies, between a rigid body and
deformable bodies, and between deformable bodies. Since geometrical contact con-
ditions have to be formulated with respect to the current configuration (see Chapter 3)
different algorithms apply to the cases mentioned. Here the case of contact between
rigid bodies will not be considered; associated formulations may be found in Pfeiffer
and Glocker( 1996).

Contact between rigid and deformable bodies. In this case, one has to find
a mathematical model for the rigid body. This body then also defines the contact
normal, hence it will be used as master body or reference body. One possibility to
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describe rigid objects is given by an implicit function as introduced below:

Some cases of bodies resulting from (9.1) are shown in Figure 9.6 for n1 = n2 =
n3 — n and R1 = R2 = R3 = 1. Observe that quite a variety of different shapes
can be created. Due to the construction of the implicit function (9.1), the local contact
check as to whether a point (slave node) xs = { xs, ys, za }

T is inside or outside of
the rigid body just follows from a pure function evaluation: f ( x s , ys, zs). Point
xs is outside the rigid body for / > 0 and inside for / < 0. In the case / = 0,
the contacting point lies on the surface of the rigid body. The normal related to the
surface of the rigid body is easily obtained by

(9.2)
I grad/

It can be used to define the local components of the contact stresses in the contact
interface for the point xs by evaluating n at xs.

Another implicit superquadric for the description of rigid bodies is presented in
Hogue (1998). In that paper a generalization is also provided which allows the repre-
sentation of arbitrary geometries by a discrete function representation. In the general
situation the surface of a body is discretized into a grid of nodes. In between the nodes
superquadrics are applied to describe the surface, which leads to a representation that
is both discrete and analytical.

Contact between deformable bodies. We assume that the global search was
successful, and lead to two neighbouring finite element meshes fi1 and iY2. Now
situations, as depicted in Figure 9.7 for the two-dimensional case, have to be investi-
gated in which two bodies can possibly be in contact but it is not clear which slave

Fig. 9.6 Representation of bodies by superquadrics for different exponents n.
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node contacts which master segment. There are several possibilities to deal with this
problem. One approach which also works in the two- and three-dimensional case is
described in Benson and Hallquist (1990). It splits the detection of local contact for
a given slave node xs (see Figure 9.7) into three different phases, which consist of

1. Identification of the closest master node xl
k for xs. This can be performed

locally by searching for the minimum distance of master nodes x1
k on surface

dft1 to the slave node xs as mink=1,...,c+1 || xs — xl
k ||. In Figure 9.7 the result

of this search for all nodes x1
k of the master surface is node x1

i

2. Check all finite elements which are adjacent to x1
i and determine the element

face which contains the projection x-1, see (3.3). In the case depicted we obtain
the side defined by a1

i.

3. Compute the convective coordinates £ of the projection using the algorithms
stated in Chapter 8 for different discretizations.

Details of actual implementations can be found in Benson and Hallquist (1990). Note
that determination of the closest master node and search for the associated elements
in phases 1 and 2 is local in nature when appropriately implemented. Hence the
algorithms are of the O(N)-type. The effort which one has to spend in phase 3
depends upon the contact discretization. For the node-to-segment discretization in
two dimensions, a closed form solution is obtained, see (8.3). The same also holds
for three dimensions when the master surface is interpolated using linear triangles,
see (8.107). In all other cases, a NEWTON iteration has to be applied to find £, e.g.
see (8.82).

Note that in phase 2 of the procedure stated above, we can have situations in which
the projection onto the master surface is not uniquely defined, see also Remark 3.1.
Such a situation is depicted in Figure 9.8, where a projection of the slave node xs

onto two master surfaces, X1
i —X1

i -1or x|+: —xf, is possible. This yields two different
values of the gap function: #i_i and gi+i. In cases like that, one has to decide within

Fig. 9.7 Contact detection for the two-dimensional case
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Fig. 9.8 Non-unique projection to master surface.

the algorithm which master segment is the correct one. This can be done by trial
and error methods, or by smoothing of the local segment geometry by a C1 function,
as described in Section 8.5. Another sound way to tackle this problem is to apply
strategies known from optimization theory which have already been successfully used
in multi-surface plasticity, e.g. see Laursen and Govindjee (1994).

A different method for the detection of penetration is described in Kane et al.
(1999) for finite element discretizations using a triangulation of the bodies. The idea
is based on the fact that the interiors of two deformed boundary segments intersect in
case of penetration. This observation can be cast for two-dimensional problems into
a mathematical formulation by computing the area of the boundary pairs. This area
check results in negative areas when penetration occurs. Hence, the contact constraint
(3.6) can be put in the form

A8>Q. (9.3)

In the case of a linear segment, defined in Section 8. 1 , the area can be computed for
a counter-clockwise numbering of surface nodes by

A —s —

Xfc) X (Xfc+l

X X
1
k+l

where x2
i, x

2
i+1, x

1
k and x1

k+l are the coordinates describing the deformed configu-
ration of the intersection segments, see Figure 9.9. The segments which have to be
tested are again found by methods derived for the spatial search, see Section 9.1.1.
We note that the area can also be used as a constraint function, as has been proposed
in Kane et al. (1999), since As > 0 excludes possible penetrations. Since the de-
nominator of (9.4) is always positive, the authors noted that the polynomial constraint
function

gAs. = [(x2i - x1
k) x (x2

i - x2
i+1)] • [(x1

k+1 - 4) x (x1
k+1 – x2

i+1)] (9.5)

could be employed instead of (9.4), which yields much simpler constraint equations,
and hence is algorithmically advantageous.
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Fig. 9.9 Detection of local contact by area check.

In the case of three-dimensional applications, the intersection of boundary faces
has to be considered, which leads to a volume check. Explicit formulas for this check
can be found in Kane et al. (1999) who also use the inequality constraint Vs > 0 for
three-dimensional contact problems.

REMARK 9.1: In some applications it is possible that a body comes into contact with itself.
This is depicted in Figure 9.10, where the straight line is bent over, and hence the last node
x1

N in the deformed configuration comes into contact with the segment associated with node
x*. Thus we have a master node which in the deformed configuration has to be treated like
a slave node. Such behaviour, which is called self-contact, often occurs in crash simulations
or in large deformation analysis of rubber bearings. In that case, the global search has to be
extended such that contact of one surface with itself can be detected. This is more complicated
than the standard contact detection between two different bodies. Associated algorithms can
be found in Benson and Hallquist (1990).

9.2 SOLUTION METHODS FOR UNCONSTRAINED NONLINEAR
PROBLEMS

Some of the contact formulations stated in Chapter 5 reduce the variational inequali-
ties to variational equations. This means that within an iterative step of the solution of
the variational inequality, one can apply solution methods which were developed for
unconstrained problems. These are discussed in this section. Since most applications
in engineering also require the consideration of nonlinear effects such as finite de-
formations or nonlinear constitutive relations, one needs solution methods which can
cope with these different phenomena. In case finite element discretizations are used
to approximate the physical problem, the discretization process leads to a discrete
system of nonlinear equations, see (6.53). In the following, we distinguish between
time-independent and time-dependent problems.
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In the following we discuss several algorithmic aspects for unconstraint problems,
which are often also basis for the solution of constraint problems.

9.2.1 Algorithms for time-independent problems

Finite element approximations using the interpolations described in Chapter 6 lead to
the above-mentioned system of nonlinear equations. For the construction of nonlinear
solution algorithms, we rewrite (6.53):

=R(u) —kP= 0, ,N (9.6)

The scaling factor K, also known as the load parameter, was introduced to be able to
apply the load stepwise. Usually, the scaling factor is a problem given quantity, but it
can also be useful to view K as additional variable when special algorithms are used
to follow a highly nonlinear load path.

To solve (9.6) by an iterative method, the following standard schemes for uncon-
strained problems can be applied:

- fix point method,

- NEWTON—RAPHSON method,

- Quasi-NEWTON methods, and

- arc-length methods.

From the list of algorithms, given above, we only state the NEWTON—RAPHSON
method. The other methods are discussed in detail in the literature, e.g. see Matthies

I I I I I I I I I !1
Undeformed geometry

:TTTT
Deformed geometry

Fig. 9.10 Self-contact of a line.
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and Strang (1979), Luenberger (1984) or Bazaraa et al. (1993) for quasi-NEWTON
methods, and Riks (1972), Keller (1977), Ramm (1981), Crisfield (1981), Riks (1984),
Schweizerhof and Wriggers (1986), Wagner and Wriggers (1988), Wagner (1991) or
Crisfield and Shi (1991) for the arc-length methods. Overviews are given in Bathe
(1996) or Crisfield (1997).

In all algorithms a sequence of linear equation systems has to be solved within the
iterations. Hence equation solvers have a major contribution to the efficiency of the
algorithms. While classical direct methods are still sufficient for two-dimensional
problems, one has to apply iterative solvers like conjugate gradient schemes, multi-
grid techniques or refined sparse-direct solvers for large three-dimensional problems,
e.g. see Hackbusch (1991), Schwetlick and Kretschmar (1991), Axelsson (1994),
Duff et al. (1989), Kickinger (1996), Boersma and Wriggers (1997), Wriggers and
Boersma (1998) and Davis and Duff (1999).

The method which is used most frequently for the solution of nonlinear systems
of equations is the NEWTON—RAPHSON method. It starts from a TAYLOR series
expansion of (9.6) at a known state uk,

G(uk + Au, K) = G(u k , K) + DG(uk, k)Au + r(uk, K) . (9.7)

The load parameter K reflects the load level for which the solution has to be computed.
DG • Au is the directional derivative which is obtained by linearization of G at uk;
for details see Chapters 6 or 8. The linearization of G yields a matrix, also known as
a HESSE, JACOBI or tangent matrix. It will be abbreviated by KT (see Chapter 6).
By neglecting the second order term defined by vector r in (9.7), one can derive the
iterative algorithms, stated in Box 1, to solve (9.6) for a given load increment at level
K = K.

The algorithm is graphically described in Figure 9.11 for the simplified equation
R(u) — k = 0. The convergence rate of this method is characterized by the inequality
|| uk+1 — u|| < C||uk — u||2, where u is solution of (9.6), e.g. see (Isaacson
and Keller (1966). This behaviour manifests the quadratical convergence rate of the
NEWTON—RAPHSON method in the vicinity of the solution. Since the quadratic

Initialize algorithm: set u0 = uk

LOOP over iterations : i = 0.... convergence

Solve: KT(u i)Au i + 1 = — G(u i ,K)

update displacements: ui+1 = ui + Aui+1

Check for convergence: || G(u i+1,k) || < TOL => STOP

END LOOP

Box 1. NEWTON—RAPHSON algorithm.
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Fig. 9.11 NEWTON—RAPHSON method.

rate of convergence is obtained only locally, one has to enhance the algorithms so
that they also becomes globally convergent. However, this cannot be achieved in all
cases. Possible methods which yield globally convergent schemes are line search
techniques, e.g. see Luenberger (1984), Crisfield (1991) or Crisfield (1997), or the
arc-length approach, which was discussed above.

9.2.2 Algorithms for time-dependent problems

The discrete form of equations of motion for a solid were derived in Chapter 6, leading
to

Mu(t)+R[u(t),t] = P(t), (9.8)

where M is the mass matrix, Ru(t), t] represents the stress divergence term and
P(t) contains the time-dependent applied loads. u(t) is the time-dependent solution.
To simplify notation, we omit the reference to time dependency in the following
equations.

By also including damping (for the background see e.g. Hughes (1987), Bathe
(1996) or Zienkiewicz and Taylor (2000a)) the discrete equations of motions are given
by

Mu+ Cu + R(u) = P. (9.9)

This equation can be transformed into a first order algebraic differential equation by
introducing as independent variables ii = v and ii = v. This leads to

v,
= M–1 [ P – C v – R ( u ) ] . (9.10)

To describe the algorithms we introduce the letter a for accelerations ii and the letter
v for velocities u. With this the balance of momentum (9.9) has the discrete form at
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Man+1 + Cvn+1 + R(un+1) = Pn+l . (9.11)

The subscript (..)n+1 means that the quantity has to be evaluated at time tn+1 .
For the final definition of an initial value problem, we need to introduce the initial

conditions for displacements and velocities 0 and v, respectively, at time t = t0

(often we assume t0 = 0):

0 = 0,

v0 = v. (9.12)

The choice of the time integration procedure to determine the motion of a body
u(t) depends upon the problem at hand. These are explicit and implicit methods.
They have the following general properties:

• Explicit time integration methods are easy to implement, since the solution
at time tn+1 depends only upon known variables at tn. These methods are
extremely efficient when the mass matrix in (9.8) is approximated by a lumped
mass matrix which is diagonal. Explicit methods are conditionally stable,
which means that the time step size is governed by the COURANT criterion.

• Implicit time integration schemes approximate time derivatives by quantities
which also depend upon the last time step tn and upon the still unknown values
at time tn+a . These methods require a solution of a nonlinear equation at each
time step. They are much more expensive, since they have to be combined
with, for example, the NEWTON—RAPHSON procedures discussed in the last
section. However, implicit schemes can be constructed so that they are un-
conditionally stable, and hence can be applied with a far bigger time step than
explicit schemes.

The time step size depends strongly upon the physical process which is simulated.
In case shock waves are present (e.g. in car-crash or penetration simulations) then a
small time step is necessary. This naturally leads to the use of explicit codes. Large
time steps are sufficient when the response of a structure is governed by the low fre-
quency modes, like standard vibration problems.

Explicit time integration. In finite element analysis of time-dependent problems,
the central difference scheme is mostly applied. In this algorithm the velocities v and
the accelerations a at time tn are approximated by

_V ~
2 A*

Un+1- 2 Un

Insertion of this value into (9.9) at time tn yields, with

M(un+1 - 2 Un + U n_i) + -^ C("n+l - «n_i) + (At)2R(lln) = (At)2 Pn ,

(9.14)
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a system of equations for the unknown displacements un+1 at time tn+1 :

(M+ ~ C] un+l = (At)2 [Pn - R(un)] + ̂ Cun_! + M(2 iin - un^) .
\ 2 ) 2.

(9.15)
In this system M and C do not change, and hence can be computed once and for
all at the beginning of the simulation. Also, the triangularization of the coefficient
matrix M + ^ C has to be calculated only once. All nonlinearities only enter via
the vector R(un) on the right-hand side. In case M and C are diagonal matrices,
the factorization of M + ^ C is trivial. Hence, only vector operations are needed
to evaluate (9.15).

The definition of the starting values for explicit schemes requires special treatment
since at time to values for u_i are needed which have to be determined from the initial
conditions UQ and VQ. By using a TAYLOR series expansion at time t-1, we obtain

(At)2

u_i = u0 - At v0 + ^—L- a0 . (9. 16)
£

Here the accelerations at t0 follow from (9. 1 1 ):

ao-M"1 [-Cv0-R(uo) + Po] • (9.17)

A variation of the explicit scheme can be found in Wood (1990). The following
approximations for displacements and velocities are used:

(At)2

un+i = un + At vn + — — - an

vn+i = vn + - At ( an + an+i ) , (9.18)

together with equation (9.11) to determine the accelerations. This leads to the equation
system

— ̂ CJ an+1 =Pn+i -R (un + A*vn + i-J-an ) - — Can .Z J \ 2 / L
(9.19)

Its right-hand side depends, besides the known loading function P, only upon vectors
which have to be evaluated at time tn. Thus the initial conditions (9.12) can be applied
directly when starting the algorithm. Displacements and velocities follow after the
solution of (9.19) from (9.18). In (9.19) the same coefficient matrix appears as in
(9.15).

For linear problems the following estimate is valid for the critical time step size
(COURANT criterion):

T
At < — . (9.20)

7T

The value TN characterizes the smallest period of the finite element discretization
which can be estimated on an element basis, e.g. see Bathe (1982). For nonlin-
ear problems an estimation for the critical time step can be found in, for example,
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Belytschko et al. (1976):

A * < ( 5 — . (9.21)
~ CL

This estimate depends upon the characteristic length of the smallest element h, the
wave speed of a compression wave in the solid CL (in a linear elastic medium we
have CL — 3^|^~^ with modulus of compression K, POISSON ratio v and density
p). The constant 6 (0.2 < 8 < 0.9) is a reduction factor which has to be chosen
empirically for the problem.

Implicit time integration. Among many integration schemes the NEWMARK
method is the most well known to solve the equation of motion (9.9), see Newmark
(1959). It is based on the following approximations of displacements and velocities
attime£n+i:

un+i = un + A* vn - z
vn+i = vn + A* [ (1 - 7) an + 7 an+i ] . (9.22)

Here the displacements and velocities depend upon values at time tn, but also on
the accelerations at time £n+i- The parameters 0 and 7 are constants which could
be chosen freely. However, they determine the order and accuracy of the method,
and thus have to be chosen with care. The intervals from which one can choose the
parameters are 0 < /3 < 0.5 and 0 < 7 < 1 , e.g. see Hughes (1987). Note that the
explicit central difference scheme (9.18) follows for the parameter set 7 = 0.5 and
/3 = 0.

The accelerations an+i follow from (9.11) when the approximations of displace-
ments un+i and velocities vn+1 (see (9.22)) are inserted. This leads to a nonlinear
algebraic system of equations for an+i:

(M+7 A* C) an+1 +R(an+1 , un , vn ,an) = Pn+i -G(un , vn ,an). (9.23)

All terms which result from inserting (9.22) into (9.11) are combined in G. Equation
(9.23) can now be solved with, for example, the NEWTON-RAPHSON scheme. Once
the accelerations are known, the displacements and velocities follow from (9.22).

Often the NEWMARK method is formulated with displacements as primary vari-
ables. Solving (9.22) for an+\ and vn+i yields

an+i = «i ( "n+i - «n) - c*2 vn - 0:3 an .
vn+i = 0:4 ( un+i — un) + 015 vn + Q6 an , (9.24)

with the following definition of the constants:

1 1 1-2/3

,y / „, \ / ~, \ (9.25)
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Inserting (9.24) into the balance of momentum (9.11) leads to a nonlinear algebraic
equation for the unknown displacements un+\:

G(un+i) = M[ai(un+i-un)-a-2Vn-a3an}

+ C [0:4 ( un+i — un) + 0:5 vn + a$ an] (9.26)

+ R(un+i) — Pn+i —0-

When using NEWTON'S method to solve this equation for the displacements at time
tn+i, by introducing the tangential stiffness matrix

(9.27)KT«+1)-

one can state the following algorithm (see also Box 1):

[a1M+a4C+KT(u; i + 1)] A <+\ - -G(<+i),

u;+_\ = u?'l+1 + A <+\ • (9.28)

This iteration has to be performed with respect to index i in each time step tn+i. As
the initial value for the next time step the converged displacement from the previous
time step u°n+1 — un is used. The iteration is stopped when the criterion stated in
Box 1 is fulfilled.

For linear problems one can analyse the NEWMARK method with respect to ac-
curacy and stability; results can be found in Hughes (1987) or Wood (1990). For
parameters 7 < 0.5, the accuracy of NEWMARK'S method is of the order O(A£2).
Often one wishes to damp out higher frequency responses. This can be done using
parameters 7 > 0.5, however this leads to a reduction of the order of accuracy. Hence
methods have been developed which retain the order but have the damping properties,
see e.g. Hilber et al. (1977) or Wood et al. (1981). The latter method changes the
momentum equation (9.11) as follows:

( l -a )Ma n + i+aMa n + Cvn + i+R(un + 1) – Pn+1 =0, ' (9.29)

while retaining the approximations for displacements and velocities (9.22).
The method in Hilber et al. (1977) was developed for linear elasto-dynamical

problems. It introduces a different momentum equation in which the displacements
are weighted. Its nonlinear extension yields, instead of (9.29),

i + (l-a)[Cvn+1-Pn+i]+a[Cvn-Pn]+R[(l-a)un+i+Qun)] = 0.
(9.30)

Again, the displacements and velocities are computed at time £n+i according to
(9.22). However, this method requires an evaluation of the residual vector R at the
intermediate time tn+a = (1 — a) tn+i + atn. This turns out to be nontrivial when
complex nonlinear constitutive equations are considered. The method damps high
frequencies for 0.5 < a < 1.
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From a continuum mechanics point of view, all integration schemes should be con-
structed such that they fulfil the basic laws, e.g. momentum, moments of momentum
and conservation of energy. However, this is not the case for all schemes. Due to the
fact that considerable effort has been put into the development of integration schemes
which preserve the above-mentioned conservation laws. Formulations can be found
in Simo and Tarnow (1992), Crisfield (1997), Sansour et al. (1997) or Betsch and
Steinmann (2000), for instance.

9.3 GLOBAL SOLUTION ALGORITHMS FOR CONTACT

The efficient and robust solution of contact problems mainly relies on, besides a good
discretization of the contact interface, the algorithmic part. Here a wide diversity
of possible methods can be applied which have advantages and disadvantages with
respect to different problems.

Algorithms which are applied in many standard finite element programs are related
either to the penalty method or to the LAGRANGE multiplier method; see also Sections
5.3.2 and 5.3.1, respectively. Often the first approach is implemented mainly due to
its simplicity. When proper estimates for the penalty parameters are known, see
e.g. Nour-Omid and Wriggers (1987) or update formulas provided in Bertsekas
(1984), then penalty schemes provide robust algorithms for many applications. The
penalty method is mostly combined with an active set strategy. The global set of
equations is given in (8.20) and (8.36). However, often the LAGRANGE multiplier
method provides better and more stable results in confined situations when a process
is deformation driven; see also Remark 5.4.

Algorithms for solving variational inequalities are given by mathematical pro-
gramming, active set strategies or sequential quadratic programming methods, to
name only a few. Each of these methods is well known from optimization theory, e.g.
see Luenberger (1984), Bertsekas (1984) or Bazaraa et al. (1993). The application
of mathematical programming for the solution of contact problems can be found in
Conry and Seireg (1971), Panagiotopoulos (1975), Klarbring (1986), Klarbring and
Bjorkman (1988) or Holmberg (1990), for example. The sequential quadratic pro-
gramming approach has been considered by Barthold and Bischoff (1988), and with
application to large strain elasticity by Bjorkman et al. (1995), recently also within
contact-impact analysis, see Raous (1999) or Kane et al. (1999).

New algorithms which are based on iterative methods that can be applied in a
parallel computing environment are currently in development. Iterative methods for
single processor computers based on multi-grid techniques can be found in Belsky
(1993), Hoppe and Kornhuber (1994) or Kornhuber (1997), for instance. Other meth-
ods which apply conjugated gradient type iterative solvers are discussed in Heinstein
and Laursen (1999). Several contact algorithms were developed for multi-processor
machines using multi-grid techniques, e.g. see Schoberl (1998) or Kornhuber and
Krause (2000). Another approach is pursued in Wohlmuth (2000a) and Krause and
Wohlmuth (2001), who apply a DIRICHLET-NEUMANN solver for contact problems
in combination with mortar techniques.
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In the following sections, different global solution algorithms for contact problems
will be discussed, starting with the most common ones for frictionless contact.

9.3.1 Basic notation

For the discussion of different algorithms the following matrix notation is introduced.
As derived before, the weak form of the equilibrium equations for the solid coming
into contact is given by

SuT G(u) = 6uT[R(u)-P] = Q, (9.31)

where u is the global displacement vector and 6u denotes a vector containing the
variations. Note that we do not distinguish between the two or more different bodies
which come into contact to shorten the notation. R(u) is the matrix form of the stress
divergence term, and vector P contains the loading terms, where we have assumed
that the loads are conservative and hence do not depend upon the deformation. This
scalar equation yields, for arbitrary variations <5u, the vector form

G(u) = R(u)-P=0. (9.32)

The linearization of (9.31) at a given deformation state u leads to the expression

6uT G(u) + SuT KT(U) &u (9.33)

with the tangential stiffness matrix KT', for details see Chapter 6.
Since the algorithms have to be designed for contact problems, the contact con-

straints also have to be expressed in a general form depending on the formulation
stated in Section 5.3. A detailed description of how contact constraints are incorpo-
rated into finite element discretization schemes can be found in Chapters 7 and 8 for
small and large deformations, respectively. Here a matrix formulation is stated which
will stand for the contact constraints, and which has to be specialized according to the
derivations in Chapters 7 and 8 for specific discretizations. Jc denotes all possible
contact contributions which can be special segments, nodes or elements in the con-
tact interface. For these different cases, a general equation describing the constraint
inequality for normal contact will be introduced according to Chapter 8 as follows:

G s
c ( u ) > 0 , V s e J c - (9.34)

The single contributions for nodes or segments s are all combined in the matrix C? (u).
Note that this constraint equation is nonlinear with respect to the deformation. In the
case of a linear dependence on the displacement field, we can express (9.34) for
normal contact as

Gc
s
L(u) = Nsu + gx > 0 Vs € Jc , (9.35)

where Ns stands for the normal vector associated with the node or segment s.
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The contact problem can now be stated as follows. Find the correct deformation
u and the number of active contact constraints s 6 JA such that

R(u) - P = 0 and Gs
c(u) > 0 (9.36)

is fulfilled.
Any continuum problem with hyperelastic material can be formulated as a mini-

mization problem. This is based on the fact that the total potential energy assumes a
minimum at the solution point

U(u)^MIN. (9.37)

In general, the solution has to be computed for a given set of equality constraints
which represent the boundary conditions. In the case of contact the minimization is
restricted by the contact constraints (9.34); see also Sections 1.1 or 5.1. Hence, we
have the problem

Minimize II(u)
(9.38)

subject to Gc(u) > 0.

As already described in previous chapters, one can now incorporate the constraint
equations using the LAGRANGE multiplier or penalty methods, see (5.26) and (5.31),
respectively. This leads in matrix notation to the formulation of a saddle point problem

ULM(u, A) = II(u) + AT Gc(u) ->• STAT, (9.39)

together with the KuHN-TuCKER-KARUSH conditions

G c ( u ) > 0 , A < 0 , G c (u)A = 0 (9.40)

in the case of the LAGRANGE multiplier method. For the penalty formulation a
minimization problem

IIp(u) = H(u) + I Gc(u)T Gc(u) ->• MIN (9.41)

can be stated. In the latter case it was assumed that a known set of active constraint
JA is given which fulfil (9.34). This choice of a set of active constraints is used later
in the iterative algorithm to solve (9.38).

The variation of (9.39) yields

6ULM = 6tt + 6\TGc(u) + 8uTCc(u)T A = 0, (9.42)

where Cc(u) 6u is the matrix form of SGc(u), since the variation of a nonlinear
constraint is always linear in 6u. For details on how the matrix Cc(u) is constructed
for different discretizations, see Chapter 8. From (9.42) the nonlinear equation system

G(u) + Cc(u)TA = 0
Gc(u) = 0 (9.43)
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follows for arbitrary variations. In the same notation, for the penalty formulation
(9.41) we obtain

SUP = SH + €SuTCc(u)T Gc(u) =0. (9.44)

Here the nonlinear equation system

G(u) + eC c(u)TG c(u) = 0 (9.45)

results, which can be applied to obtain a solution for a given set of active constraints.
Linearizations of both formulations are needed in the following algorithms. Using

the notation of the previous chapters, we can derive the linearization at a fixed state
(u. A) for the LAGRANGE multiplier method

A [5t t L M (u , A)] = A [<5II(u) ] + SATCc(u) Au + SuTCc(u)T AA

+<5uTK£(u. A) Au. (9.46)

For arbitrary du and <5A, equation (9.46) yields the linearized system of equations
according to (9.33):

Kr(u)4-K£(u.A) Cc(u)Tl f Au 1 _ f G(u) + Cc(u)T A
Cc(u) 0 ] \ A A J - \ Gc(u)

(9.47)
All matrices have already been defined in this section besides the matrix Kj.(u, A),
which stems from the linearization of the last term in (9.42) with respect to the
displacement field; for details see Chapter 8. Note that for a linear problem, equation
(9.47) reduces to

\KT JvH rui _ r P i
[N o J \ A / ~ \GcL(u)j' (VA*>

where the linear constraints are given in (9.35).
By introducing w — { u. A }T, equation (9.47) can be recast as

K£M(W) Aw = -GLM(w), (9.49)

which simplifies the notation.
For the discretized weak form (9.44), stemming from the penalty method, the

linearization leads to

A[(5np(u)] = [ S H ( u ) ] + eSuT Cc(u)T Cc(u] + K^p(u] Au, (9.50)

which results in the linearized equation system at the known displacement state u:

Cc(u)TCc(u) Au = - [G(0) + Cc(u)TGc (u)] .
(9.51)
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Again, the matrix K£P(Q), which stems from the linearization of C(u) in (9.44),
disappears in linear problems. Furthermore, we can combine all matrices and vectors
in (9.51) to simplify notation:

Kf(u)Au = -Gp(u). (9.52)

The structures of the matrices introduced in (9.47) and (9.51) are presented for
different discretizations in Chapter 6 for solids and in Chapter 8 for contact contribu-
tions.

In many applications the contact region is small compared to the domain of the
structure. This fact can be used within contact algorithms to reduce the computational
effort. Here we wish to state the reduction for linear analysis. In such cases the
equilibrium equation (9.48) can be rearranged as

(9.53)
KIC 0

KI

0 N 0
IC

where C € Jc denotes all possible contact nodes and / are the remaining nodes of
the finite element discretization. The displacements u/ depend only indirectly upon
A, hence they can be eliminated from (9.53) by static condensation, which yields a
full but smaller system of equations

7VT

rv i i ~<- i i * c i (9.54)

with

IX" IX" If T IS"— 1 TS~
S^CC — -*V7C ~ "-1C -**77 "-1C •,

The SCHUR complement KCC is obtained at an intermediate step of the GAUSS elim-
ination process when solving (9.53). Therefore its evaluation requires no additional
computational effort. The advantage of static condensation is that a smaller system
of equations has to be solved during the contact iteration. This static condensation
process, here applied for the LAGRANGE multiplier method, can also be used within
the penalty approach.

9.3.2 Dual formulation

There are many algorithms known in optimization which start from a dual formulation
of the minimization problem (9.38). To develop the dual form we start from the
LAGRANGE multiplier formulation with the assumption of a linear problem. By
assuming that the LAGRANGE multipliers are known, one can solve (9.48), which
then reduces to the problem that the gradient of (9.43) has to vanish:

KTu + JVTA = P. (9.55)
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Then a dual problem can now be defined as

Maximize \ uTKT u-PTu +AT(Nu - Gx)
r. ' (9.56)

subject to KT u + NJ A = P and A < 0.

Now (9.55) can be pre-multiplied by u which yields

-uTKT u = ATNu - PT u. (9.57)

This result can be inserted into (9.56) to simplify the maximization problem:

Maximize — | u1 KT u— GXA
(9.58)

subject to KT u + N A = P and A < 0.

In standard applications the stiffness matrix KT is positive definite. Then we can
solve (9.55) for u,

u = - K f 1 ( N T A - P ) , (9.59)

and introduce this result into (9.58), leading to the dual problem

Maximize -| ATDA + AT d - |

subject to A < 0.
(9.60)

The definitions of matrix D and vector d are as follows:

D = NK^N7", (9.61)

d = Gx-NKrlP. (9.62)

Note that the last term in (9.60) is constant, and hence can be neglected in many cases.
The same procedure can now be applied to the incremental form (9.47) stemming

from the nonlinear problem. By assuming that the LAGRANGE multipliers are known,
one can solve (9.47) at a fixed state ( u, A):

[Kr(u) + KT.(u, A)] Au+ Cc(u)T AA 4- [G(u) + Cc(u)T A] = 0, (9.63)

and with KT(u) = KT(u)+KT.(u,A) andG(u. A) = G(u) 4- Cc(u)T A obtain
the dual problem

Maximize | AuT KT(u, A) Au + G(u, A) TAu + AAT Cc(u)

subjectto K r ( u , A ) A u + C c ( u ) T A A = -G(u,A) (9'64)

and (A + A A ) < 0 .

which yields, by using the same manipulation which leads to (9.57), the incremental
maximization problem:

Maximize — | Au1 'KT(U. A) Au

subject to K T ( u , A ) A u + C c ( u ) T A A = -G(u,A) (9'65)

and ' (A + A A ) < 0 .
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The solution of (9.63) with respect to the incremental displacements yields

Au = -KT(u , A)"1 [ Cc(u)T AA + G(u , A) ] . (9.66)

This result can be inserted into (9.65), which then yields the incremental dual problem

Maximize -\ AATD(Q, A) AA + AA rd(u, A)
-iG(u,A)TKT(u !A)-1 G(0,A) (9.67)

subject to A + A A < 0 .

Here the definition of the matrix D( u , A) and the vector d( u . A) , which now depend
upon the state u, have been used:

D(0,A) - Cc(0)Kr(0,A)-1Cc(u)T, (9.68)

d(u,A) = -Cc(u)KT(0,A)-1G(05A). (9.69)

Hence for a given state (u . A) we can set up an incremental dual problem which uses
the tangent matrix evaluated at u . A. Note that the constant last term in (9.68) can be
omitted in most algorithms. The dual problem yields LAGRANGE multipliers which
can then be used to compute the associated incremental displacements from (9.66).
This result can be applied within an iterative algorithm to solve the fully nonlinear
problem. Algorithms based on the primal and dual formulations are discussed in the
following sections.

9.3.3 Penalty method

The most widely used method to solve contact problems is the penalty method. This
is because only the primal displacement variables enter the formulation; see Sec-
tion 5.3.2 for the continuum formulation and Chapters 7 and 8 for the associated
discretization techniques.

The algorithm for the penalty method can be summarized for frictionless contact in
Box 2. Usually, the solution of Gc(u) = 0 is performed by a NEWTON-RAPHSON
iteration, leading to

1 - -Gp(u?) (9.70)

where Kp(uf ) is the tangent matrix resulting from the linearization of Gp(u*).
The iteration index k is related to the NEWTON loop to solve GP(UJ) = 0 in Box
2. Often the active set strategy, stated in Box 2, is accelerated in such a way that the
update of the active set of contact constraints is performed within each step in the
NEWTON iteration. In this case the iteration (9.71) yields

Kf(ui)Au i+i = -Gp(ui) (9.71)

t i i i = u; + Au;+i ,
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which is considerably faster.

REMARK 9.2

1. Both procedures might not converge for all cases, and thus have to be applied with care.
The problem which occurs is called jamming in the optimization literature. Jamming,
also known as zig-zagging, means that the algorithm jumps in consecutive iterations
between two values. One possibility to avoid this is to keep a contact constraint active
as long as the new active set is not a subset of the old active set. This will be changed
once the new active set is a subset of the old active set, or the increment Allj+i is zero
for the active set; see also the quadratic programming algorithm in Box 9.

2. Within the algorithm of Box 2 an increase of the penalty parameter is necessary when
the final result shows visible penetration, and thus does not fulfil the constraint equation
gN = 0 in a correct way; see the example in Section 5.4, Figure 5.5. On the other hand,
a penalty parameter which has been chosen too large can lead to ill-conditioning of the
equation system, and thus has to be reduced to avoid this. One possibility for the choice
ofe,\ is to relate the penalty parameter to the bulk modulus of the contacting bodies.
Ill-conditioning can be so bad that it affects the direct solver, but it is even worse when
the solution of the incremental equation system in Box 2 is performed by an iterative
solution method in which the condition number of the tangent matrix might change
drastically during the solution process. In such a case, special pre-conditioners have
to be applied, e.g. see Schoberl (1997b), Klawonn (1998) or Dostal (1999). However,
since it is quite hard to estimate the penalty parameter for all cases, it makes sense to
apply the augmented LAGRANGE technique.

One estimate for the choice of the penalty parameter was reported in Nour-Omid and
Wriggers (1987), which relies on an error analysis taking into account roundoff errors
as well as errors due to the penalty approach. It leads to the simple formula for finite
element discretizations of continuum problems:

(9.72)

Initialize algorithm: set uj = 0, CN = f-o

LOOP over iterations : i — 1,.., convergence

Check for contact: g^8 i < 0 -> active node, segment or element

Solve: Gp(ui] = G(Ui) + CN Cc'(ui)
JGc\m) = 0

Check for convergence: ||Gp(u?:)|| < TOL => STOP

END LOOP

Eventually update penalty parameter: CAT

Box 2. Contact algorithm using the penalty method.
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where N is the number of unknowns of the equation system, fcmm is the smallest stiffness
coefficient in the tangent matrix which is modified by ejv, and t represents the roundoff
error which is ~ 10~ir for double precision analysis.

3. In the case of fractional contact problems, the algorithm works as described in Box 2.
The only difference is that the local algorithm to integrate the constitutive behaviour
due to friction is applied within the NEWTON loop to obtain GP(UI) = Ofor a given
set of active constraints.

9.3.4 Lagrange multiplier method

Another method which is applied to solve contact problems is the LAGRANGE mul-
tiplier method. This method fulfils the contact constraints exactly, but by introducing
additional variables, the LAGRANGE multipliers (see Section 5.3. 1 for the continuum
formulation, and again Chapters 7 and 8 for associated discretization techniques).

One algorithm for the LAGRANGE multiplier method is stated in Box 3 for fric-
tionless contact, where the notation introduced in (9.49) was used. The solution of
GLM(w) = 0 is obtained by the NEWTON-RAPHSON iteration, leading to

(9.73)

where the structure of the tangent matrix JC (w£) can be found in (9.47). The
iteration index k is related to the NEWTON loop to solve GLM(w,) = 0 in Box 3.
An acceleration of the solution procedure can be obtained by the following iteration
in Box 3:

l = -GLM(wt) (9.74)

Initialize algorithm: set wi = 0

LOOP over iterations : i = 1,.., convergence

Check gap: g^si < 0 —>• active node, segment or element

Check pressure: \NSi > 0 -> node, segment or element not active

Solve: GLM(wi) = 0

Check for convergence: ||GLM(w;)|| < TOL => STOP

END LOOP

Box 3. Contact algorithm for the LAGRANGE multiplier approach.
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which at each iteration step includes the change of constraints and hence is faster than
the basic algorithm in Box 3. Remarks 9.2.1 and 9.2.3 also apply here. One should
note, however, that this procedure does not guarantee convergence of the method. A
more reliable but slower algorithm is discussed in Section 9.3.8, see Box 9.

REMARK 9.3: When using the LAGRANGE multiplier approach, one has to take special
care for rigid body modes which can occur in one or more contacting bodies. In such cases
the following procedures can be employed to side-step this difficulty, which leads to singular
tangent matrices:

1. Introduction of as many springs in the finite element model as there are rigid body
modes. The spring stiffness has to be as soft as possible to avoid an influence of the
stiffness on the overall solution.

2. Solve the problem using specified displacements instead of applied forces. This approach
only works if the force is applied on the body with rigid body modes.

3. Replace zero diagonal elements in D which appear during the factorization ofKr in
LDL by a small number of the order of required accuracy for the problem. This, in
fact, removes the rigid body modes.

9.3.5 Augmented Lagrange method, Uszawa algorithm

A combination of the penalty and the LAGRANGE multiplier techniques leads to the
so-called augmented LAGRANGE methods, which try to combine the merits of both
approaches. A general discussion of these techniques can be found in Glowinski and
Le Tallec (1984), and with special attention also to inequality constraints in Bertsekas
( 1 984) and Pietrzak and Curnier ( 1 999). A matrix formulation for frictionless contact
follows from the augmented functional (5.58) in Section 5.3.8:

rr4M(u) = n(u) + AT G C (U) + ^ GC(U)T G C (U) - -L AT A, (9.75)
2 2 e;v

where A contains all contributions related to contact nodes fulfilling Xs m+1 = XSm +
CN 9Ns < 0, and A is related to the nodes with As m+i > 0. As discussed in Section
5.3.8, this mixture with the perturbed LAGRANGE method ensures C1 differentiability
of the functional (9.75).

Its variation with respect to displacements and LAGRANGE multipliers yields the
nonlinear equation system

G(u)+ATCc(u)+tNCc(u)T G c (u) - 0

G c(u) = 0 (9.76)

-J-A = 0.
(N

As in the previous sections, we can employ NEWTON'S method to solve (9.76), which
leads to the incremental equation system at the state ( um , ATO ) :

€NCcTCc CcT 0
Cc 0 0
0 0 --i-

Aul ( G ]
AA V = - < Gc > - (9.77)

__!_ \
tN A
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Here all dependencies of the matrix elements with respect to u and A have been
omitted to shorten notation. This system of equations can, together with (9.76), be
used within a NEWTON type algorithm, as discussed in Box 3. It can be seen from
(9.77) that the last term in (9.75) affects the LAGRANGE multiplier A so that it is zero
in the next iteration step when \8 m+\ > 0 was detected.

Augmented LAGRANGE techniques are usually applied together with USZAWA
type algorithms, see Bertsekas (1984), Glowinski and Le Tallec (1984), which lead
to an inner loop for the contact and an outer loop for the update of the LAGRANGE
parameters. This iteration procedure increases the total number of iterations, but
yields an algorithm which can be implemented easily. For applications of augmented
LAGRANGE techniques to contact problems within the finite element method, see
Wriggers et al. (1985) and Simo and Laursen (1992), or for a symmetrical treatment
of the frictional part Laursen and Simo (1993a) or Zavarise et al. (1995). In the case
of "high contact precision", when constitutive interface laws are employed, special
augmented LAGRANGE techniques are needed, since often ill-conditioning of the
problem may occur, see Wriggers and Zavarise (1993a).

The matrix formulation of the USZAWA algorithm for frictionless contact prob-
lems starts from the augmented LAGRANGE functional with constant LAGRANGE
multipliers A

UUA(u) = II(u) + AT Gc(u) + ^ Gc(u)T Gc(u) ->• MIN. (9.78)

The new LAGRANGE multiplier is computed at the solution point of UUA(u, A*)
within the augmentation loop over the loop index k (see also Box 4) using the first
order update formula

sk+i = (9.79)

which is written for the LAGRANGE parameter of the contact nodes or contact seg-
ments s. This update is visualized in Figure 9.12. Here the update process for the

correct multiplier

9Nk 9Nl 9N0

Fig. 9.12 Schematic update process of LAGRANGE multiplier.
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LAGRANGE multiplier in the normal direction is considered. One can observe that
XN k approaches the correct value of the LAGRANGE multiplier for QN k —> 0 in the
updating procedure. Note that the slope of the linear relation between QN and AJV is
CAT. From this, it is clear that the convergence behaviour of the outer augmentation
loop in Box 4 does strongly depend upon the penalty parameter.

The variation of (9.78) only needs to be performed with respect to displacements

GUA(u, A) = G(u) + Ar Cc(u) + eN Cc(uf Gc(u) = 0 . (9.80)

For a known fixed LAGRANGE multiplier A, NEWTON'S method is used to solve the
nonlinear problem (9.80). This results after linearization in the equation system at
the state ( t i ? . A)

^^ r r A __

A i i H - i = - G ' ( u i , A ) . (9.81)

The global augmented LAGRANGE algorithm is shown in Box 4. Here we again use
the discrete formulation (8.20) and (8.36), which has to be adjusted to incorporate the
fixed LAGRANGE parameters AJVS; see (8.13) for the node-to-segment discretization.
Hence, the vector G UA contains all contributions of the active contact element s.

Let us note that it is standard practice in augmented LAGRANGE iterations to
update the penalty number CAT in order to obtain good convergence, see Bertsekas
(1984). This is due to the fact that a small penalty parameter leads to very slow
convergence, since the update formula (9.79) is of first order and the contact forces

Initialize algorithm: set UQ = 0. AQ = 0, CAT = eNO

LOOP over augmentations: k = 1.... convergence

LOOP over iterations : i = 1.... convergence

Solve: G^(ui,A f c) = 0
Check for convergence: \GUA(ui)\\ < TOL =4> END LOOP

END LOOP

LOOP over contact nodes : s — 1.... nc

Update: Xsk+i according to (9.79)
Update: CTV^+I according to (9.82)
Check for convergence: \\gNs(ui)\\ < TOL => STOP

END LOOP

END LOOP

Box 4. USZAWA algorithm.
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due to a small penalty number are small. Thus, it makes sense to increase the penalty
parameter within a contact element s according to an update scheme, see Bertsekas
( 1 984). The update scheme with a starting value for e ̂  o being computed from (9.72),
for example, yields

for |07v(un+i) | > -\gN(un)\
Nn+l

In relation (9.82) a stopping criterion for the update of the penalty parameter has also
been introduced to avoid ill-conditioning of the equation system (9.81 ).

9.3.6 Partitioning method

Since the number of displacement unknowns is usually much higher than the un-
knowns related to the LAGRANGE multipliers, it is advantageous to reformulate con-
tact problems such that the unknowns are only the LAGRANGE multipliers. This
can be achieved easily for geometrically linear elasticity problems by a substructur-
ing method, see Section 9.3.2. However, when a numerical simulation of contact
problems involving large strains and inelastic materials has to be considered, only an
incremental dual formulation can be established, since the matrix from the SCHUR
complement depends upon the deformation.

When the LAGRANGE multiplier method in Section 9.3.4 is used, special care
has to be taken during the factorization due to zero elements on the diagonal of the
coefficient matrix. Furthermore, since the contact problem is nonlinear, the iteration
in Box 3 has to be applied and the factorization has to be carried out in each NEWTON
step. Here a method will be stated which takes advantage of the fact that the part
of the coefficient matrix associated with the degrees of freedom that do not come
into contact remains unchanged during the iteration process. This is, of course, only
true for elastic structures with small deformations which will be considered first.
However, a nonlinear version of this approach can also be developed.

From the dual formulation in (9.60) a system of equations for the unknown LA-
GRANGE multipliers can be derived:

. (9.83)

Furthermore, from (9.59) we obtain an equation for the unknown displacements u

u = K^1 (P - NT A ) , (9.84)

which still depends upon the LAGRANGE multipliers.
The matrix NK^1 NT in (9.83) is symmetric, positive definite and full. The size

of this matrix depends upon the number of nodes s € JA that are actually in contact,
which is in general much smaller than the total number of degrees of freedom AT.
The system of equations (9.83) may be solved using direct procedures. However,
this approach requires the evaluation of the coefficient matrix which is not known
explicitly. Therefore, an iterative method was advocated in Wriggers and Nour-Omid
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Initialize algorithm: use initial approximation for A0 and compute

Po = r0 = NKf (P - Nr A ) - Gx

po = r0
T r0

LOOP for k = 0, 1, .., until convergence

ak = pkl (dj Pk)

A/t+i = A.k + ak pk

rfr+i = rk - ak dk

Pk+i = rk+1 rk+i

Check for convergence: pk+1 < TOL => END LOOP

pk+i = rk+i + pk+i I Pk Pk

END LOOP

Box 5. cg-algorithm for evaluating the contact forces.

(1984), which does not need computation of the elements of the coefficient matrix.
Since the matrix is positive definite, the conjugate gradient method (cg-method) can
be employed, which is described in Box 5. The step where d^ is computed is the most
costly one. Here a triangular factorization KT = LDLT can be used together with
the static condensation procedure in (9.54) to minimize the number of operations.

The contact algorithm is now designed in such a way that an inner and an outer
iteration are performed. It is thus possible to solve a general problem with material
and geometrical nonlinearities. In the inner iteration the set of active contact con-
straints and the LAGRANGE multipliers are determined based on the dual formulation.
This task is performed for a given state of the outer iteration with displacements u,
LAGRANGE multipliers A, and a set of contact constraints N. The inner iteration
scheme is described in Box 6, where the solution of the equation system in the inner
iteration is obtained with the cg-method. This iteration yields, with Nj, the contact
conditions and the LAGRANGE multipliers A which have to be enforced in the next
NEWTON step in the outer iteration. Note that, in the case of a geometrically nonlin-
ear problem, we have to exchange equation (9.35) by (9.34), and to use the tangent
matrix KT evaluated at the current state of the outer iteration.

Vector Ni depends upon the normal vectors of the master surfaces at the projection
points of the slave nodes. In large deformation problems, the change of these normal
vectors has to be considered. However, since the state within a NEWTON step is fixed
we can neglect the change of the normals in the inner iteration in Box 6.
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Let u, A, N and set

u0 = 0 and N0 = N

LOOP for i = 0,1,.., until convergence

Determine all active contact constraints from (9.35)

Pi = -Gx + NiUi
If llPill < TOL ||po|| =» END LOOP

Solve: Ni K^ N? Ai+1 = Pi

If and element of Aj+i is positive reset it to zero

Aiii+i = jq;1 N?" Ai+1

Uj+i = UQ + Au;+i

END LOOP

u <- iii, A <- AJ, N 4- NI

Box 6. Inner contact iteration.

Start from the initial approximation UQ, A0 and NO

LOOP for m = 0,1,.., until convergence

Compute residual force Gm = R(um) — Pin (9.36)

If ||Gm + Nm Am|| < TOL||G0|| => END LOOP

Solve: KT(um) Aum+i = -Gm - NmAm

um+i = um + Aum+i

Perform inner iteration, see Box 6.

END LOOP

Box 7. Outer contact iteration.

The outer iteration considers all nonlinearities related to material and/or geometry
within a modified NEWTON scheme which incorporates the inner iteration. Hence,
the outer iteration is not needed for a geometrically linear elastic problem. In that
case, the iteration terminates in the first loop for m = 0. The outer contact iteration is
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stated in Box 7. In case rigid body motions of one of the contacting bodies is possible,
we refer to the methods discussed in Remark 9.3.

Note that the inner-outer iteration does not require more triangular factorizations
than the standard NEWTON method. In many practical cases, the algorithm described
in Boxes 6 and 7 will need fewer factorizations of the tangent matrix.

The following example shows the performance of the inner-outer iteration when
compared with the standard penalty approach in Section 9.3.3. Figure 9.13 depicts a
finite element mesh of a thick circular beam which is discretized by 120 plane stress
finite elements. The modulus of elasticity is chosen as E — 1000 and POISSON'S
ratio is v — 0.3. In the undeformed configuration the beam is in contact at its centre
with the rigid surface. A displacement of u — 0.8 is applied at both ends of the model.
The contact area therefore changes from the middle of the beam, where we observe
uplifting, to its ends. The algorithm has to capture this behaviour. The problem is
solved using the partitioning method with one outer and six inner iterations. Only
one outer iteration is needed, since the problem is geometrically linear. Also, the
penalty method was applied to analyse this problem. Table 9.1 shows the number
of iterations and the gaps computed for different penalty parameters. The optimal
penalty parameter, obtained from equation (9.72), is CAT = 108. Here optimality refers
to accuracy in fulfillment of the constraint equation; see the last column in Table 9.1.
For applications where a lower accuracy may be sufficient, a smaller penalty number
can translate into fewer iterations; see the second column in Table 9.1.

Fig. 9.13 Finite-element-model of contact problem.

Table 9.1 Influence of penalty parameter on convergence

Penalty Parameter

101

102

103

104

106

108

Iterations

4
5
6
8
8
8

Max. Penetration

5.27 x 10-2

2.73 x 10~2

7.09 x 10~3

9.24 x 10"4

9.28 x 10~6

9.29 x 10~8
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9.3.7 SQP method

Successive quadratic programming methods employ NEWTON'S method or quasi-
NEWTON methods to solve the KUHN-TUCKER conditions of a contact problem.
These methods are also known as sequential or recursive quadratic programming
(SQP methods).

In the process of the successive quadratic programming, a subproblem is solved
which can be stated as the minimization of a quadratic approximation of the nonlinear
contact problem

minn(u) subject to gNs > 0 Vs e Jc , (9.85)

where a linear approximation of the constraints is used. The method can thus be
described as a projected LAGRANGE approach. The algorithm is constructed so that
a series of quadratic programming subproblems is solved successively. Hence, this
algorithm relies on fast and robust methods for generating solutions for the quadratic
program, see Goldfarb and Idnani (1983). The sequential quadratic programming
approach was derived in Spellucci (1985). Other variants of SQP-algorithms may be
found in e.g. Schittkowski (1992).

Based on the derivation in Section 9.3.2, the quadratic approximation of (9.85)
yields the quadratic program

QP(Q,A) : Minimize \ AuTKT(u ; A) AU + G(u, A)TAu + FI(Q)

subject to Gc(u) + Cc(u)Au >0.
(9.86)

where all matrices and vectors are defined according to equation (9.64). The values
(u. A) represent a known state within the iterative solution procedure. Au is the
increment of the displacement. Since this problem represents a second order approx-
imation of the LAGRANGE function H(u) + Gc(u)TA, quadratic convergence can
be expected when the iteration starts close to the solution point.

With these preliminary remarks, the SQP algorithm can be derived. It is stated in
Box 8. Here the fact is used that if Aum+i solves QP(um . Am) with the LAGRANGE
multipliers Am+1 and if Aum+1 = 0, then the computed displacements and LA-
GRANGE multipliers fulfil the KUHN-TUCKER conditions of the original problem
(9.85).

Several variants of the SQP method are used in applications. The first is to ap-
proximate the tangent matrix KT(U.A) by a quasi-NEWTON scheme like the BFGS
update, e.g. see Matthies and Strang (1979), Luenberger (1984) or Bertsekas (1984).
This avoids costly computations of the tangent matrix which have to be performed in
the algorithm in Box 8 m-times. However, it is well known that the convergence of
the algorithm is only superlinear. Other variants were developed for sparse matrices,
see Bartholomew-Biggs and Hernandez (1995) or see the overview paper by Murray
(1997). Versions with respect to contact analysis can also be found in Bjorkman et al.
(1995), who employed special diagonalization methods to obtain separable subprob-
lems for the dual problem.
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Start from the initial approximation u0, A0

LOOP for rn = 0.1.... until convergence

Solve: QP(um . Am) -> AuTO+1 and Am+]

If ||Aum+i|| < TOL =» END LOOP

Box 8. Basic SQP-algorithm.

A possible disadvantage of the SQP method in the version stated in Box 8 is the fact
that convergence is only guaranteed when the algorithm starts close to the solution
point. Often this condition is not matched in practical applications. To obtain a more
robust method one can introduce a merit function. One choice of this function could
be

M(u) = minll(ii) + ^ min[0, gNs}. (9.87)
S-l

The merit function is then applied to find the scalar parameter jm > 0 in the update of
the displacements UTO+I = um + 7m Aum+1 in Box 8 by minimization of M(um +
7m Aum+1). This procedure is called line search. It is also used for nonlinear un-
constraint problems like (9.6) to obtain a global convergence of, for example, the
NEWTON method. Here the line search has to be performed with respect to a non-
differentiable function, hence only methods which do not need derivatives like the
Golden Section Method or FIBONACCI search can be employed, e.g. see Luenberger
(1984)or Bazaraa et al. (1993).

9.3.8 Active set method for quadratic program

The quadratic program in (9.86) with inequality constraints is solved by an active set
method. In most applications the tangent matrix KT is positive definite, which then
leads to a relatively simple solution strategy. This method will be described next. We
assume that in iteration m a deformation state um is given that satisfies all contact
constraints of the active set of contact nodes s e J™ (feasible solution). Hence
Gc(um) is zero in the linearized contact constraint equation in (9.86). The quadratic
program is then defined by

Minimize | Au£+1 KT(um , Am) Aum+1 + G(um . Am) TAum+i

subject to Cc(u77l)Aum+i = 0, Vs e J7""
(9.88)

f .
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Start with a feasible solution UQ and a working set J%

LOOP for m = 0.1.... until convergence

1. Solve (9.89). If Aum+i = 0 then go to 5.

>> r t • [i G>m)-[C8
c(um)]Tum1

2. Compute: 7m+i = mm 1, ' *
*e^r L [Cs

c(um)]TAum J

3. If 7m+1 < 1 then J% -> J"^+1

4. Set um+1 = um + 7m+1 Aum+1 -> END LOOP

5. Compute: Amax = max (Ams),

If Amax < 0 -> STOP else Jf ->

END LOOP

Box 9. Active set strategy for quadratic programming.

which has only equality constraints. The vector Cc (um) contains equality constraints
associated with the active contact nodes s; see also (9.34). The solution of this problem
is obtained from the linear system

[KT(um;Am) C>m)T] /Aum + 1 l __ f G ( u m , A m ) l R Q

[ Cc(um) 0 \ 1 Am+1 / - \ 0 / ' (*-W)

which can be solved using an efficient linear solver for this type of problem.
The active set strategy is described in Box 9. If in step 3 of the algorithm a new

inequality constraint is satisfied, then the node associated with this constraint has to
be added to the working set of contact constraints. This defines the new working
set i7J^+1- The same procedure is used in step 5, where the contact node associated
with the maximum LAGRANGE multiplier lmax is deleted form the old working set,
leading to J£+1.

It can be shown that the algorithm terminates within a finite number of iteration
steps since there is only a finite number of working sets, e.g. the maximum number
of contact nodes. This also means that, for three-dimensional problems with a large
number of possible contact nodes, many iterations might be needed to solve the
problem. Thus special algorithms for solving (9.89) are needed which avoid the
computation of the inverse of the system matrix in (9.89), or its factorization. More
refined versions for the solution of quadratic programming methods based on the
above formulation can be found in Stoer (1971), Gill and Murray (1978), or in the
overview by Spellucci (1993). A method which starts from the dual formulation of
the quadratic programming problem (for the derivation see Section 9.3.2) is described
in Goldfarb and Idnani (1983).
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9.3.9 Linear complementary problem

Other methods which are well known in optimization theory are based on the for-
mulation of contact with and without friction as a Linear Complementary Problem
(LCP), e.g. see Luenberger (1984) or Bazaraa et al. (1993). Applications to contact
problems can be found in Bjorkman (1991) or Bjorkman et al. (1995). Its theoretical
framework for contact mechanics is provided in Klarbring (1999).

The method is based on solving the KARUSH-KUHN- TUCKER optimality con-
ditions of the dual problem. For a linear elasticity problem we depart from (9.60),
whereas a general nonlinear problem relies on the dual formulation (9.68). The latter
is defined on the tangent space at the known solution point (u ,A) . Hence, for the
general nonlinear case we have to use the LCP algorithm within an iterative method,
which leads to a similar structure used in the SQP method, where the QP problem is
solved successively. Due to this structure, we will describe the LCP method only for
the linear case, since the nonlinear case based on (9.68) is straightforward.

Let us recall the dual problem (9.60)

TT(A) = - 7 A7 D A - AT d , (9.90)

where the sign for the L AGRANGE multiplier has been changed for convenience. This
also changes the direction of the inequality: A > 0. The optimality conditions for
(9.90) can be stated as

DA + d > 0,

A > 0, (9.91)

AT [DA + d] = 0.

This set of equations is now recast in the form of a linear complementary problem,

0, A > 0 , wTA = 0. (9.92)

The new variable w which is introduced to convert the inequalities to equalities is
called a slack variable. Solution of (9.92) can be obtained with standard algorithms.
Here we should like to mention the principal pivot algorithm by Cottle and Dantzig
(1968) and LEMKE'S method, e.g. see Cottle et al. (1992).

9.3.10 Contact algorithm of Dirichlet-Neumann type

Domain decomposition methods are increasingly being applied to the numerical sim-
ulation of large engineering problems which do not fit on single processor computers,
and hence have to be solved in a parallel computing environment. Parallel computers
need data exchange between the processors. Since the contact area changes during an
incremental solution procedure, the data structure for the exchange of data also has
to be modified. It can thus be advantageous to construct an algorithm which employs
a strategy in which the bodies coming into contact are treated separately. Such an
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Set initial values: v0 = 0, t0 = 0

Choose damping parameters: up e ] 0,1 ] and UN e ] 0,1 ]

LOOP for m = 0,1,.., until convergence

Solve NP: K1 u^+1 = P1 - tm

Transfer displacement: vm+1 = (1 — UD) vm + UJD Qu1
m+l

Solve contact problem: %u%+iK2 u£+1 - u^,^ P2 ->• M/AT

subject to N1(vm+1) u£+1 + Gx(vm+i) > 0

Compute residual: R^+i = ̂  um+i ~~ ^

Transfer boundary tractions: tm+1 = (1 — UN) tm+u)x QT R2
n+l

END LOOP

Box 10. DIRICHLET-NEUMANN contact algorithm with different iteration stages.

algorithm was developed in Krause and Wohlmuth (2001). It is based on a nonlinear
block GAUSS-SEIDEL method as an iterative solver. From the engineering point of
view, it can be interpreted as a DIRICHLET-NEUMANN algorithm for the nonlinear
contact problem.

With the notation in Section 9.3.1, we derive the algorithm. The basic idea is that
one applies on body B1 the surface tractions which were computed from a contact
problem for body B2 with a fixed deformed state of body B1. This algorithm is de-
scribed in Box 10 for the case of a linear elasticity problem with constant stiffness
matrices Kl and K2 and given load vectors P1 and P2 for bodies B1 and B2, respec-
tively. The constraint condition N1(Vm+1) u2

n+l + G^(vm+i) > 0 is formulated
with respect to the deformed surface of body B1. This reflects the dependency of the
matrix containing the normal vectors Nl and the initial gap vector G y on the current
displacement vm+i.

The matrix Q is introduced into the algorithm to transfer the boundary displace-
ments and surface tractions of the finite element mesh of body B1 to the mesh of body
B2 in case these meshes do not match at the contact interface. The structure of matrix
Q depends upon the applied discretization scheme. The associated formulations can
be found, for example, for the node-to-segment contact in Section 8.1, and for mortar
techniques in Section 7.4.2.

The iterative behaviour is depicted in Figure 9.14. Note that for UJD = 1, a choice
of UK = 1 does not lead to a convergent scheme, since the solution iterates between
the first two solutions. Numerical tests in Krause and Wohlmuth (2001) show that
UN = UJD =0.7 yields an algorithm with good convergence behaviour. A more
refined algorithm of this type can be found in Wohlmuth and Krause (2002).
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\u//
0 < UN < I

Fig. 9.14 Contact algorithm using a DIRICHLET-NEUM ANN technique.

This algorithm can also be applied to frictional contact problems. The only change
is that the one-sided contact problem in Box 10 has to be solved for frictional contact.
For that task the algorithms described in Section 9.4 can be applied.

9.3.11 Algorithm for dynamic contact

Dynamical contact problems are often associated with short process times of only
several microseconds, as in the case of care impacts or fragmentation of solids due
to blast loading. In such cases, it is advisable to use explicit integration schemes.
However, there are also time-dependent engineering problems which require implicit
algorithmic schemes, such as earthquake analysis or the vibration of machines. In
general, we can state the equations of motions as

R ( u ) - P + G c ( u ) = 0. (9.93)

All terms have been defined previously, e.g. see (9.8) and Section 9.3.1.
Algorithms for frictionless and frictional contact-impact have been developed re-

cently in e.g. Laursen and Chawla (1997), Armero and Petocz (1998), Armero and
Petocz (1999) and Laursen and Love (2002) using implicit time integration schemes.
But explicit methods are also well established for contact-impact analysis, and have
a long history, starting with the HEMP-hydrocode. Associated algorithms have been
implemented in explicit finite element codes such as DYNA3D or PRONTO3D. For
the theoretical background and numerous applications see Hallquist et al. (1985),
Benson and Hallquist (1990), Hallquist et al. (1992) or Heinstein et al. (2000).

Here we should like to state in more detail an algorithm which has been developed
recently by Kane et al. (1999). It relies on geometric arguments and employs the
relation of contact algorithms to the well known radial return algorithms used in
elastoplastic finite element analysis. Hence, these authors advocate a scheme which
treats the contact force system in an implicit manner while using either implicit or
explicit approximations for the terms in the equation of motions which are not affected
by contact. Hence the algorithm can be viewed as an explicit/implicit one.
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The accelerations are therefore split into two parts, reflecting the contact and
internal forces,

a = aint + acon . (9.94)

Using (9.93), we can define these two accelerations as

aint = M-I [p_R ( u )J ?

l Gc(u) . (9.95)

The approximations (9.22) can now be modified slightly by accounting for the split
(9.94) as

un+1 = un + A* vn + (A*)2 [ (1 - 2 0) a™* + (3 a^ ] + ̂ - a^

vn+i - vn + A* [ (1 - 7) <n* + 7 aJSj ] + A< a^ . (9.96)

By using the abbreviation

un+i = un + A* vn + (At)2 (1-2/9) a^nt, (9.97)

evaluated at tn, (9.96)i can be written as

un+1 = iin+1 + (A*)2 /9 ajj ! + a£3\ , (9.98)

which then yields, together with (9.93) and (9.95), a nonlinear algebraic system of
equations for the unknown displacements un+i :

M( nn+1 - un+1 ) + (A*)2 13 [RCiin+i) - P] + ~- Gc(un+l) = 0. (9.99)

The solution of this problem has to be computed by taking into account the contact
constraints. Hence any of the methods discussed in the previous sections can be
applied. Note that, once un+\ is known, we can compute the accelerations related
to the internal forces from (9.95) and the acceleration due to contact from (9.98).
Finally, the velocities follow from (9.96).

In Kane et al. (1999), the variational structure of equation (9.99) is investigated.
By introducing the functional

n(un+1) -

(9.100)
with the strain energy W(un+i) (see (2.68)), one can write the nonlinear constraint
minimization problem:

min II(un+1) subjectto # N S > 0 . (9.101)

It can be solved using a sequential quadratic programming technique, as described in
Section 9.3.7.
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Fig. 9. 15 Decoupling of minimization problems for lumped mass matrices

In the case of an explicit solution of the dynamic problem, the functional (9. 100)
simplifies to

Un+l - Un+1 ) . (9.102)

which leads to a reduction of the complexity of the task (9.101) to the solution of a
quadratic programming problem.

A considerable simplification of the constraint minimization problems occurs for
diagonal mass matrices. In that case, the coupling of all degrees of freedom vanishes,
which leads to a number of local optimization problems. These can be set up on the
basis of the global/local search algorithms. As can be seen in Figure 9.15, one has
to look for disjoint groups of intersecting segments which define the local problem.
These problems only consist of a few unknowns, and can be solved separately with
great efficiency.

9.4 GLOBAL ALGORITHMS FOR FRICTION

Many algorithm have been devised in the last twenty years for the solution of con-
tact problems with friction. This is due to the practical importance of friction when
engineering structures have to be designed. Engineering finite element models are
becoming increasingly refined, which means that fewer simplifications in the me-
chanical modelling are made and thus inequality constraints are included. Hence,
good algorithms for friction are today even more important.

One of the major difficulties in the numerical simulation of contact problems with
friction lies in the fact that the constitutive equations for frictional contact are non-
smooth and hence not differentiable at all points. Therefore, non-standard methods
have to be applied for contact with friction. Basically, we can distinguish methods
which rely on so-called trial-and-error methods, methods developed by engineers
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which stem from algorithms used in the theory of plasticity and mathematical pro-
gramming methods from optimization. We note that the last two approaches are based
on mathematical principles.

In early treatments, often the trial-and-error methods were applied together with
small deformation assumptions. Due to the fact that solutions of frictional contact
can exhibit features such as non-uniqueness and even non-existence of the solution
the trial-and-error methods are not reliable for a broad class of frictional problems.
However successful applications can be found in the literature, e.g. see Fredriksson
(1976) or Valliappan et al. (1984), who used an explicit technique for computation of
the frictional forces in finite element applications.

The major break through in terms of convergence behaviour and reliability of
the solution algorithms came with the application of the return mapping schemes -
known from elasto-plasticity, see Simo and Taylor (1985), — to frictional problems.
Its first application can be found in Wriggers (1987) or Giannokopoulos (1989) for
geometrically linear problems. This approach provides the possibility to develop al-
gorithmic tangent matrices which are needed to achieve quadratic convergence within
NEWTON-type iterative schemes. Due to the non-associativity of the frictional slip
these matrices are non-symmetrical. For the case of large deformations, associated
formulations have been developed in Ju and Taylor (1988) for a regularized COULOM B
friction law, and in Wriggers et al. (1990) for different frictional laws formulated in
terms of non-associated plasticity. A three-dimensional formulation can be found
in Laursen and Simo (1993b) who also developed an algorithmic symmetrization
Laursen and Simo (1993a), see also Zavarise et al. (1995). However, other meth-
ods like yield-limited LAGRANGE multiplier formulations were employed also for
frictional contact, see Jones and Papadopoulos (2000).

Mathematical programming methods were applied in Alart and Curnier (1991)
within the augmented LAGRANGE multiplier technique; see also Section 5.3.8 for
the theoretical background. The idea is here to construct a method which is still C1

differentiate to be able to use NEWTON'S method. Related augmented LAGRANGE
methods were also developed independently by De Saxe and Feng (1991), Simo and
Laursen (1992) and Zavarise et al. (1995). Another closely related approach was
introduced by Pang (1990), with the construction of NEWTON methods for so-called
B-differentiable equation systems. In Christensen et al. (1998) it is shown that the fric-
tional contact problem is B-differentiable, and hence the system of equations can be
solved by an extended NEWTON method. An iterative algorithm based on a GAUSS-
SEIDEL scheme can be found in Jourdan et al. (1998). Other possible approaches
like interior point methods or barrier methods were investigated in Kloosterman et al.
(2001) and Christensen et al. (1998).

Here we describe an algorithm which is implemented in many standard finite
element codes for the solution of frictional contact problems. The formulation for
frictional contact problems can be found in different sections. Section 3.2 contains the
definition of the relative sliding and stick from the geometry point of view. Section 4.2
includes the constitutive equations for friction, and Section 5.3.2 summarizes different
weak formulations with regard to solution methods. Discretizations for contact with
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frictions are presented in Section 7.2 for the geometrical linear case, and in Sections
8.1 and 8.3.1 for finite deformations.

For a generalization of contact with friction, the following notation is introduced
which is based on the matrices introduced in Section 9.3.1. In the case of friction, two
different states have to be considered. In the stick case the tangential traction forces
follow as reactions from the constraint equations of no tangential slip at the contact
interface. Contrary, in slip mode the tangential frictional forces have to be obtained
from the constitutive law for frictional slip. Therefore we have to distinguish two
different states. Let us introduce two sets, one in which contact nodes s in sliding
conditions are contained, Tsl, and another one which holds the contact nodes s being
in stick, Fst • Note that we have the condition Tsl fl Fst — 0- Both sets together form
the total set of all active nodes being in contact Tsl U Fst — JA •

With this notation we can introduce the weak form of equilibrium for all nodes
s € JA which are in frictional contact:

Gf(u) = G(u) + e Cc(u}T Gc(u) + $(u) CT(u) = 0, (9.103)

where £T(U) is the vector of friction forces which contains s £ JA elements. The
sth component depends upon the stick or slip state at time tn+1 as follows:

e£* forstick,
6 F8i for slip;

see the algorithm in Box 13 in Section 9.5.2. The linearization of (9.103) at a given
state u yields, according to (9.50), the tangent matrix

(9.105)

in which KJ-- contains the contributions stemming from the linearization of Cc (u)
and CT(u) in (9.103); for details of the derivation, see Section 5.5 and Chapter 8.

The vector F(u) contains the linearizations of the tangential stresses in (9.104).
For the stick case this leads, together with CT(U), to a symmetric contribution to the
tangent stiffness matrix, whereas for the slip state a nonsymmetric matrix is obtained,
e.g. see Section 8.1. The latter situation requires a non-symmetric equation solver
for frictional contact.

Now we can state an iterative algorithm which is based on the penalty method
given in Section 9.3.3; see also Box 2. The algorithm is summarized in Box 11 for
a load increment within the global solution. This algorithm can also be devised for
the LAGRANGE multiplier method. In that case, the LAGRANGE multiplier method
is often only formulated for the normal direction whereas in the tangential direction
the treatment of the interface law as introduced in (9.104) is applied.

We note that the algorithm in Box 11 works quite efficiently, as has been shown
in Laursen and Simo (1993b) or Agelet de Saracibar (1997). One problem in this
approach is that the friction forces in stick depend upon the regularization parameter
or penalty value CT, see (9.104). The effect of too small a number for that parameter
can be the determination of a stick instead of a sliding state. This behaviour can
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Initialize algorithm: set u1 = 0

LOOP over iterations : i = 1.... convergence

Check for contact: gNsi < 0 -» active node, segment or element

IF i = 1, set all active nodes to state stick Tst = JA-

ELSE update frictional forces, using (9.104) or Box 13.

Solve: Gf(ui] = 0 using NEWTON'S method

Check for convergence: ||Gf(ui)|| < TOL => STOP

END LOOP

Box 11. Frictional contact algorithm using the penalty method.

eventually lead to results which are physically questionable, as in problems where
stick-slip effects occur in the contact interface. One way to solve this modelling
problem is the use of a large number for the tangential stiffness (penalty parameter
CT)- However, often a large number cannot be chosen for CT» since then the problem
becomes ill-conditioned or the robustness of the iterative procedure in Box 11 is lost.

To overcome this problem an UszAWA-type algorithm can be applied in which
a LAGRANGE multiplier in tangential direction is introduced, e.g. see Alart and
Curnier (1991), Laursen and Simo (1993a), Zavarise et al. (1995) or Pietrzak and
Curnier (1997). In this formulation the following change of the weak form in (9.103)
is made:

GfA(u) = G(u) + [ AN + e Cc(u)T] Gc(u) + [ AT + t?(u) ] CT(u) = 0.
(9.106)

Here the new variables AN and AT are the fixed LAGRANGE multipliers in the normal
and tangential directions, respectively, as introduced in Sections 5.3.8 and 9.3.5. The
global iteration procedure with an inner NEWTON and outer augmentation loop is
described in Box 12. Due to the fact that in the inner NEWTON loop the update
formulas for the frictional forces from Box 13 are used, the tangent matrix is non-
symmetric, as in the penalty method given in Box 11.

The update of the normal LAGRANGE multipliers AN in Box 12 is performed
as described in Section 9.3.5, see (9.79). Special care has to be taken when the
tangential LAGRANGE multiplier update is performed, since the update has to fulfil
the KARUSH-KUHN-TUCKER conditions (4.28), and with this the slip rule (4.25)
in the case of COULOMB friction or (4.30) in more general cases, respectively. Using
the update algorithm derived in Section 9.5.2, the LAGRANGE multipliers in the
tangential direction are given with (9.113)1 and (9.115)1 by

+6T(AgT n + 1 - AnJ+VJ (9.107)
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1 _ -1

Initialize algorithm: set ui = 0, A.N = AT = 0

LOOP over augmentations :k = 1,.., convergence

LOOP over iterations : i = 1,.., convergence

Check for contact: gN S i < 0 —> active node, segment.
IF i — 1, set all active nodes to state stick Fst = JA

ELSE update frictional forces, using (9.104) or Box 13.

Solve: G f A ( u i , A^ , A£) = 0 using NEWTON'S method

Convergence: | GfA(ui, A^ , A£)|| < TOL =» STOP

END LOOP

Update LAGRANGE multipliers

A k + 1 = < A j r + e N G c ( u i ) )
— k_+_1 — k
AT <= A£, see (9.107)

END LOOP

Box 12. Frictional contact algorithm using the USZAWA algorithm.

for the time step tn+1. The parameter A describes the slip increment and nk +1
n+1 the

slip direction.
A variant of this algorithm which was developed in Laursen and Simo (1993a)

yields a symmetrical tangent matrix. It can be derived by using the LAGRANGE
multipliers A^ in the update of the local friction forces in Box 13, instead of the
actual normal force tk

N — (A^ + CAT gk
N}. Since kN is constant during the iteration

in the inner NEWTON loop, it does not contribute to the linearization. But it is
this term, as shown for example in Section 8.1 (see (8.47)) which is responsible for
the non-symmetric tangent. Hence the tangent matrix becomes symmetrical. This
approach is numerically more efficient, though in some cases it is not as robust as the
scheme described in Box 12.

9.5 LOCAL INTEGRATION OF CONSTITUTIVE EQUATIONS IN THE
CONTACT AREA

In general, we have to distinguish three cases of constitutive equations in the contact
interface. These are related to the normal and the tangential behaviour. For the normal
contact a mere function evaluation - as for finite elasticity - can be used to obtain
the contact pressure for a given approach. Even if the micromechanical derivation of
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the contact compliance involves plastic deformations, the constitutive equations for
the normal pressure require only a pure function evaluation in terms of the approach;
see (4.10) or (4.12) . This is theoretically not satisfactory, but up to now - due to
the extremely complex behaviour in the contact interface - it is the only reasonable
method for the macroscopic description of normal contact compliance.

In the following sections we discuss the integration of the local constitutive equa-
tions at the contact interface for adhesion and friction.

9.5.1 Evolution of adhesion

A different situation occurs when adhesion is present in the interface. In such cases,
the constitutive behaviour is given by, for example, (4.63) and (4.66); see Section 4.4.
Hence the evolution equation

P = -±(W-CN9N0) (9.108)
V

has to be integrated in the case of w — CN g*N 0 < 0. A EULER backward algorithm
leads, within the time step Atn+1 = tn+1 — tn, to

- CNg2
Nnl 0n+l). (9.109)

This equation can be solved for the new adhesion intensity ftn+1,

-1 A

(9.110)

To compute the normal contact stress tN in the adhesive zone, the current value of
the adhesion intensity has to be used in (4.63), which yields

(9 .111)

This represents a nonlinear function of the normal gap, and hence needs to be lin-
earized.

9.5.2 Friction laws

The situation is again different for friction. Here one has to solve an evolution equation
for the frictional slip (see Section 4.2.4), which is coupled with the slip condition fs,
and hence coupled with an inequality. This constitutive formulation needs special
algorithms. In early finite element applications, explicit schemes were often applied
which might not converge in some cases. Another method which is now standard
for numerical simulations involving friction is related to the possibility to recast the
frictional interface laws in terms of non-associated plasticity.
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The algorithmic update of the tangential stress Tn+1 and dissipation D>s
n+l is

performed by the return algorithm based on an objective (backward EULER) inte-
gration of the evolution equation for the plastic slip, e.g. see Wriggers (1987), Ju
and Taylor (1988), Giannokopoulos (1989), Wriggers et al. (1990). The results can
be summarized as follows: integration of (3.22) gives the increment of the total slip
within the time step Atn+1:

AgT n+1 = (£a — £ a )aan+1- (9.112)

The total slip gT n+1 = gTn + AgT n+1 has to be decomposed into an elastic and a
plastic part, see (5.64). From this we can compute the elastic trial state from (4.22)
and evaluate the slip criterion (4.25) at time tn+1

itr _ / „ „&' \ * I ,, A „
tT n+ , .= CT ( gT n+1 ~ §T n ) = 1T n + f-T AgT n+1 .
•ftr I ttr || ,, _. (9.113)
/sn+1 := I iTn+1 ~~ VPNn+1 • (9.113)+l •= •n+1

Here the vector tj n — CT (gr n ~ §T n) is the tangent traction vector of the last
increment at tn. A value of the slip criterion which fulfils (fgr

n+i < 0) indicates
stick. Hence no friction takes place, and we have to use the elastic relation (4.21).
For fgr

n+i > 0 sliding occurs in the tangential direction, and a return mapping of the
trial tractions to the slip surface has to be performed. This return mapping procedure
is derived from the time integration algorithm. In case the implicit EULER scheme
is applied to approximate (4.27), we obtain

gTn+l = gTn + ^nTn+l with OTn+l =
H lTn+l| |

ffvn+1 = P t=n + A. (9.114)

With the standard arguments regarding the projection schemes, e.g. see Simo and
Taylor (1985) or Wriggers (1987), we obtain

TT \

ft~T~ 1 _/ 71 "T~ 1 -* 1 f i t~ 1- >

HTn+1 = nTn+l WJtn nTn+l =

lTn+l

The multiplication of (9.115) by n/m+1 yields the condition from which A can be
computed:

«(A) = ||t*T
r
n+1 \-ga(pNn+i ,9,gvn+i)-cTX = 0, (9.116)

where gs is in general a nonlinear function of A. Thus we need an iterative scheme to
solve K(\). In such circumstances, NEWTON'S method is usually applied. Knowing
A, the stress update follows from (9.115) and the frictional slip from (9.114).

In the case of COULOMB'S model, gs — pp^ n+i does not depend upon A, and
one can solve (9.116) directly for A,

(9.117)
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ttrLTn+1

tTn+1

- VPNn+l)

9T

9Tn+l

Fig. 9.16 Projection of trial stress onto the slip surface.

The projection of the trial stresses t^ n+1 which do not fulfil the slip condition (9.116)
is graphically depicted in Figure 9.16 for the two-dimensional case. As can be seen,
the quantity of t^n+1 which overshoots the tangent stress that is allowed according to
COULOMB'S law, p,p^ n+i, is used to correct the stresses leading to IT n+i • Further-
more, the increase of the slip (inelastic) part of the relative tangential motion gf n+1

is shown graphically. The role of the stick (elastic) part is obvious from Figure 9.16.
Once A is known, the frictional stresses follow from (9.115) and the total frictional

slip from (9.114), which yields the explicit results for COULOMB'S model:

tTn+1 =

§Tn+l =

(9.118)

(9.119)

This update completes the local integration algorithm for the frictional interface law.
For COULOMB'S law an alternative update procedure which is based on geometric

arguments was proposed in Section 8.2 for large sliding within large deformation
processes. This so-called moving cone algorithm, which directly computes the total
force at the contact interface, can be efficiently applied instead of the algorithm stated
in Box 13. However, at present it is only advantageous to use the moving cone method
for the classical law of COULOMB.

The dissipation due to the plastic slip follows from (4.23) as

= tTn+1 -gT«/+l :

where the relative tangential slip has to be approximated by the implicit EULER
scheme

i -grJ - (9-120)
i+l
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This approximation for the relative tangential slip velocity yields, with (9.114)i, in
general

n fr»r ftrial .
V ror Jsn+1
tT n+i • (A / Ain+i) n^jfL otherwise,

and for COULOMB'S law with (9.119)2

0 fnr firial < 0u ior/sn+1 <.u,
' ;

frrn+i • (t^ji - tTn+i )/CT Atn+i otherwise.

The general algorithm which was derived above can be summarized as in Box 13.
This algorithm has to be applied within the general solution algorithm in Box 1 1 to
obtain the friction forces for the new time increment at time tn+1 . Furthermore, the
tangent matrices associated with the implicit integration scheme have to be derived.
For the node-to-surface contact elements, the associated tangents can be found in
Sections 7.2, 8.1 and 8.3.1.

As an explicit example of how to treat the more general form (9.116), the constitu-
tive equation for friction between soil and concrete is considered. The friction law is
defined in (4.54) and (4.55). Again the return mapping algorithm is used to fulfil the
inequality restriction for the slip surface fs < 0, and an implicit Eulerian integration

Starting values: gTn+1 , gf n , pjvn+i

Compute trial state: t£n+1 = CT (gTn+1 - gf,n)

Check:/fn+1 = ||t^r
n+1|| - ppNn+l

I f /J r
n + 1 <OSTOP

Else if fsr
n+i > 0 perform return mapping

Solve for A: ||t£n+1|| - gs(pNn+1 ,0 ,gvn+\) - cr A = 0

Update slip state: g^n+1 = gs
Tn + AnT n+i

9vn+l — 9vn + A

Compute new friction force: tTn+i = CT (gTn+i ~ grn+i

Box 13. Local integration of friction law.
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for the time discretization. Time discretization of (4.54) and (4.55) yields

*Tn+l = CTP^7
n+1 (gTn+1 - gTn+1)

gTn+1 = &Tn + Ttt+1 ||tT" + 1||

Wn+l = Wn+7n+l (9-123>

fsn+l = l | tTn+l| | -p$n+1//(tyn+i),

For calculation of the tangential stresses tm+i, first the elastic rria/-stresses are
calculated, assuming stick,

J_£j"* flj / D \ j [ Q1^ / \

^Tn+1 — ^T P/v n-(-l V&Tn-j-l &Tn — ^ n ~"~ ^ PN n-f-1 \STn+l BTn^ •
(9.124)

Inserting this result into the slip function (4.55) yields

For fgr < 0 no sliding occurs, hence the assumed stick condition is valid and no
further computations are needed. For sliding (/*r > 0) a projection on the slip surface

fs — 0 has to be performed. Evaluation of (9.123) and (9.124) using \&\[ — \\J'-\\
leads to

+ _ A r r 1 1 , PNn+l
LTn+l —

Tn+l

fsn+l = H t T n + l l l ~ tT PN n+i(Wn+l ~ Wn) - p^ n+ln(wn + l) =0.

with
0,4 arctan(a5w;) ,v "a3w (9.127)

1 (gTn+1 -gTn) .

can now be calculated iteratively using (9. 1262). Inserting «;„-)- 1 into(9.126i)
leads to the tangential stresses tm+i at the current time tn+\ .



10
Thermo-mechanical

Contact

In the case of thermo-mechanical contact problems two fields - deformation and
temperature - interact, and thus have to be considered within the formulation. In
the general setting these fields are coupled, since the constitutive parameters depend
upon the temperature. Furthermore, the evolution of the thermal field is related to the
deformation, and heat can be generated by dissipative mechanisms like plastic defor-
mations or frictional forces. Applications of thermo-mechanical coupled processes
include the cooling of electronic devices, shrink fitting problems, screw connections
under temperature loading, and frictional heating in rubber or hot metal forming prob-
lems. The technical importance of these models has recently raised interest in these
phenomena, thus many contributions can be found in the literature.

Let us note that the movement of skis or skates on snow or ice is also related
to thermo-mechanical contact. There a thin water film occurs during motion, and
as a lubricant reduces the frictional coefficient considerably between skates and ice.
This effect stems from frictional heating due to dissipation. Since this mechanism no
longer works at a temperature range below minus 35° Celsius, one then observes a
high coefficient of friction, like sand, and skis no longer glide with the usual ease.

In this chapter only research which is directly related to the numerical treatment
of contact problems within the finite element method is discussed. In cases where
thermo-mechanical contact has to be considered, a "high contact precision" formu-
lation must be applied to account correctly for the pressure dependency of the heat
conduction in the contact area. This is due to the fact that the heat conduction depends
upon the approach of the two rough surfaces being in contact, see Section 3.3. In
this context, models have been discussed for the constitutive behaviour in the normal
direction on the basis of statistical methods, e.g. see Cooper et al. (1969) or Song

311
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and Yovanovich (1987). A finite element treatment for thermo-mechanical contact
problems can be found in Zavarise (1991), Zavarise et al. (1992b) or Wriggers and
Zavarise (1993b), and in combination with frictional heating in Wriggers and Miehe
(1992) or , Zavarise et al. (1995). Also, other contact phenomena like wear, e.g.
see Johannson and Klarbring (1993), need special constitutive laws which have to be
developed in the interface.

From the algorithmic side, a global iterative procedure is used for a stationary
thermo-mechanical process. These so-called monolithic schemes can also be applied
in transient processes. Here, however, staggered schemes, which treat the deformation
and temperature fields separately, can also be computationally more advantageous,
see Wriggers and Miehe (1992) or Agelet de Saracibar (1998) for thermo-mechanical
contact, and Simo and Miehe (1992) for thermo-mechanical problems without contact.

10.1 EQUATIONS FOR THE CONTINUUM

For the description of the continuum we need kinematical relations, equilibrium and
constitutive equations. All these are well known, hence we only state the equations
which are needed to analyse bodies which are subjected to thermo-elastic deforma-
tions.

10.1.1 Kinematical relations, multiplicative split

Let B C M3 be the reference configuration of the body of interest. Denote by tp the
deformation map, and let F = Grad (f> be the deformation gradient. For the thermo-
mechanical problem a multiplicative split of the deformation gradient (2.6) is made,

F = FeF0, (10.1)

where the indices e and 6 indicate the elastic and the purely thermal part of the local
deformation, respectively. This general split can be specified moreby the introduction
of a split of the deformation gradient F in a volume preserving F and a volumetric
part Js 1, which yields

F = J5F; with detF= l. (10.2)

With the classical assumptions of pure volumetric thermal deformations, F# = 1, the
following multiplicative split is derived, which is basis for the subsequent derivations,

J = JeJ0, F = Fe, (10.3)

where t t

Fe = J/Fe, Fg = J/l. (10.4)

The right CAUCHY-GREEN tensor associated with thermoelastic deformations is
then defined by

C = FT
F= (J eJ0)^FTF. (10.5)
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Alternatively, the left CAUCHY-GREEN tensor in the current configuration is given

b = FFT = (Je J#)^FF . (10.6)

10.1.2 Thermoelastic constitutive law

Constitutive equations for both bodies which come into contact have to be defined.
These describe the material behaviour for the mechanical response and the thermal
conductivity. The constitutive equations can be different for each of the contacting
bodies. In this section only hyperelastic response functions are considered. Since
they are assumed to have the same structure for each of the materials, one can drop
the superscript a which is a pointer to body Ba to simplify notation. More advanced
material descriptions which include finite strain plasticity or visco-elasticity can be
found in Simo and Miehe (1992) or Reese (2001).

As a model equation for nonlinear constitutive behaviour isotropic finite elasticity
is used. It leads to a nonlinear response function for the stresses, and can be derived
from a strain energy function W(b), see Section 2.4.1. The simplest example for hy-
perelasticity is the compressible Neo-Hookian model which can be applied for rubber
materials undergoing moderately large strains, for instance. A possible extension of
the associated free HELMHOLTZ energy for the thermo-elastic case yields (see Miehe
(1988) or Wriggers et al. (1992))

^ 1 1
W( Je. be. 0) = — [L (I-;- — 3) + — K (In Je) + T(u). (10.7)

2 e 2

Based on equation (2.75) from (10.7) one obtains a constitutive equation for the
KIRCHHOFF stresses r and the thermo-elastic entropy r?e,

dW ~ dW
r = 2be —— = Kin Je 1 + //devbe and r?e = --^- - (10.8)

c/be 0(7

K is the bulk modulus and fj, the shear modulus.
Following Lu and Pister (1975) and Miehe (1988), the volumetric thermal contri-

bution to the total deformation can be written as

J0=e3at(<)-00) _ ( I Q 9 )

Here at stands for the linear thermal expansion coefficient, and & — 0$ is the in-
crease of the absolute temperature from a given reference temperature 00. Using
this constitutive equation, the elastic volume change can be computed via equation
(10.3)i:

Je = Je-3at(e-0°). (10.10)

KIRCHHOFF stresses in (10.8) can be related to second PIOLA-KIRCHHOFF stresses
via S = F–1 rF–T. Furthermore, the connection to the first PiOLA-KiRCHHOFF
stress which enters the local equilibrium equation, when formulated with respect to
the reference configuration, can be made via P = FS.
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To describe the heat conduction within the solid body, the classical law of FOURIER
is assumed for isotropy. It relates the KIRCHHOFF heat flux vector q, defined in the
current configuration, to the temperature gradient as follows:

q = -A;grad0; (10.11)

where k > 0 is the heat conduction coefficient. With respect to the undeformed
configuration, we obtain Q = — k Grad 0.

10.2 CONSTITUTIVE EQUATIONS FOR THERMO-MECHANICAL
CONTACT

For mechanical contact all relations which were developed in Chapter 3 for the contact
geometry can be used as well as the contact weak formulation and discretization in
Sections 5.3 and 7.

The temperatures of the two surfaces Fa are assumed to be given as functions
of placement and time in the spatial configuration: 9a = 9a(\a , t). In the contact
interface one can then use the geometrical relation (3.6) which defines the projection
of a point on surface F2 onto F1 to find the location x1, at which O1 is given.

The heat flux in the contact zone also needs a constitutive equation for its deter-
mination. In cases where thermo-mechanical contact has to be considered, a "high
contact precision" formulation must be applied to correctly account for the pressure
dependency of the heat conduction in the contact area. We assume the following
structure for the constitutive equation for the heat flux, see Figure 10.1:

qN = qN(01.,02,pN) = h(01.,e\,PN)(02-01)., (10.12)

where Oa are the temperatures of both contact surfaces. Ol is defined by the closest
point projection used for the static normal contact; see above and equation (3.2).

The heat transfer coefficient h (9l .O2.piv) depends upon the surface temperatures
and the contact pressure. The latter is needed for stability reasons, e.g. see Section
1.3. Thus we have to find a pressure-dependent model which describes the heat flux
in the contact interface. From a micromechanical viewpoint, the heat conduction
depends upon the approach of the two rough surfaces in contact. In this context,
models have been discussed for the constitutive behaviour in the normal direction on
the basis of statistical methods, e.g. see Cooper et al. (1969) or Song and Yovanovich
(1987).

Due to the technical impossibility of obtaining perfectly plane surfaces, the real
contact area is always limited and corresponds to a series of spots (see Figure 10.3).
Determination of the true contact area is fundamental for the modelling of mechanical

' and thermal phenomena. In detail, it is necessary to determine the number of spots in
contact, their distribution and their medium size. All these parameters depend upon
the applied apparent contact pressure.

The problem can be represented using correlation formulae generated by the fitting
of experimental data, or using a theoretical approach. Here a microscopic plastic
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Fig. 10.1 Heat flux in the contact interface.

model by Song and Yovanovich (1987) has been adapted for the development of
the macroscopic thermal contact law. Different techniques for computation of the
thermal contact resistance, taking into account the dependence on various parameters
have been proposed. The resistance is mainly due to the low percentage of surface
area which is really in contact. The presence of a reduced set of spots surrounded
by micro-cavities characterizes the contact zone, hence heat exchange is possible by
heat conduction through the spots, heat conduction through the gas contained in the
cavities and radiation between micro-cavity surfaces.

All these results yield a homogenized constitutive relation for the thermo-mechanical
behaviour in the contact interface, see Figure 10.2. The assumption that the mentioned
mechanisms act in parallel is well accepted, which leads to the following relationship
for the thermal contact resistance R of a representative area element Aa:

1 1 1 1
R Rspots Rf. '.ation

or in terms of the conductivity h,

h= h0 + hr

(10.13)

(10.14)

The constitutive relations for heat conductance all depend upon variables which
change during the analysis. A nonlinear dependence with regard to the pressure

PN

B2

01

Fig. 10.2 Homogenization of the constitutive data.
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PN and the surface temperatures Oa has to be considered. Thus, in general, we can
write for the contact conductivity

h = hc(PN,Ol , (10.15)

10.2.1 Heat conductance through spots

Considering the contribution of i spots with area Asi (see Figure 10.4 (a)), the ther-
mal resistance of a representative area Aa is first analysed (see Figure 10.4 (b)); the
knowledge of the number of spots then permits us to compose these resistances in
parallel. Around each spot a heat flux tube having a narrowing in the contact zone
is considered (see Fig 10.4 (b)). The solution of the heat conduction equation
involves some difficulties, thus auxiliary hypotheses are used, and the solution is de-
termined using series expansion. Various shapes of narrowing have been studied and
comparisons with experimental tests Shai and Santo (1982) show the best correspon-
dence for the flat disk narrowing model, see Figure 10.4 (b). This model is now well

u PN

Fig. 10.3 Conductance through spots in the contact interface.

Fig. 10.4 (a) Statistical model, (b) Spot resistance model.
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accepted. By combining a mechanical contact model, like (4.10), which gives the
representative inner and outer radii of the spots, with the thermal resistance model, a
complicated relationship has been obtained in Cooper et al. (1969) by averaging over
the area Aa. Since the relationship involves integrals of exponential functions, no
closed form solution is available. This leads to the development of a simpler model
see Yovanovich (1981).

The additional effect of taking into account the hardness variation with the mean
planes approach has been suggested in Song and Yovanovich (1987), which yields

1.25fc*m PN 1.6177- (10.16)

where c\ and c-2 are experimental constants governing the hardness variation, and
k* = 2 ki k-2/(ki + k-2) is the harmonic mean thermal conductivity, which depends
upon the conductivities k\ and ki of the materials in contact. Two geometric constants
are involved; ra, the mean absolute asperity slope, and a the rms surface roughness.
These constants have to be extrapolated from experimental data. Finally, PN is the
apparent mechanical contact pressure. We note that the interface laws thus derived
are obtained from a curve fitting of a sophisticated theoretical model. Hence, it is not
just a simple curve fitting of some particular experimental results.

A simplified model for a pressure-dependent heat conduction through the spots in
the contact interface can be given in terms of the VICKERS hardness Hv, the thermal
resistance coefficient hSQ and an exponents:

\ uJ

~ • (10.17)

This relation only depends upon three parameters which follow from experiments.

10.2.2 Heat conductance through gas

As far as the contribution of the gas, contained in the micro-cavities, to the heat
conductance is concerned, interesting reviews of the proposed models are available
in Madhusudana and Fletcher (1981). Due to the reduced height of the cavities,
convective movements are strongly limited, and thermal exchange takes place mainly
by conduction, like in solid materials. Hence thermal conductance can be calculated
as

hg = - ^—. (10.18)
d+ g1+g2

where kg is the gas conductivity, and d is the effective height of the cavity which cor-
responds to the mean plane distance. Terms g1 and g2 are introduced to reproduce the
nonlinear surface effect and the temperature surface discontinuity. These additional
distances can be obtained by employing the kinetic theory of gases, e.g. see Kennard
(1938). We obtain

Tgg1+ g2 = Gp c-?-. (10.19)
P<J
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Fig. 10.5 Conductance through gas in the contact interface.

Here Gpc is a constant collecting various fixed parameters describing the physical
properties of the gas, Tg is the current gas temperature and pg denotes the current gas
pressure. The explicit expression for the constant Gpc is given below:

f2-ai ,
91+92= -- 1

V c*i a2 - )^T^A 0 M (|0.20)/ 7 + 1 Pr T0

where ai and a2 are experimental coefficients related to the surfaces F1 and F2,
respectively. 7 = ^ indicates the specific heat ratio, Pr is the PRANDTL number,
and A0 is the mean free path calculated at reference temperature T0 and reference gas
pressure pg0.

The basic relation (10.19) is adopted by a great number of authors, who propose
different techniques to calculate the effective height d of the cavity. However, only
a few models account for the reduction of cavity height under increasing contact
pressure which is included in (10.18). According to the mechanical model previously
considered, see Cooper et al. (1969), the dependence of the effective height from the
mechanical pressure is given in Yovanovich (1981), and yields

d= 1.363cr |-In (5.589^)I
HeJ\

0.5

(10.21)

where He is the micro hardness distribution. Again, the relationship (10.21) is a high
precision curve fitting of the original theoretical equation. Thus (10.19) and (10.21)
complete the derivation of a thermal conductance for the gas, and can be inserted into
(10.18).

Within this approach the mechanical stiffness and thermal contact conductivities
have been calculated based on the assumption that the contacting asperities undergo
plastic deformations. Relations that consider pure elastic deformations of the con-
tacting asperities have also been formulated, e.g. see Greenwood and Williamson
(1966), and a wide class of problems characterized by smooth surfaces can be studied
within that hypothesis.
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10.2.3 Heat conductance by radiation

Another way to transmit heat from one surface to the other is by electromagnetic
radiation. This works in a vacuum as well as in a medium. However, when this
medium is a liquid the amount of heat transferred by radiation is often negligible.
When the medium is a gas then radiation can be of importance. Hence this effect
also has to be considered within the contact interface when a general relation for heat
conduction should be established. As shown in Figure 10.6, both surfaces generate
radiation waves. The basic relation for the heat flux due to radiation is given in terms
of the STEFAN BOLTZMANN law

Tp _ f /a'2\4 fnl \4 "I (10.22)

where F12 is the mutual radiation factor of the surfaces F1 and F2 on both sides of
the contact interface, an is the STEFAN–BOLTZMANN constant and 9a represent the
temperatures of the two surfaces, e.g. see Boley and Weiner (1997). This leads, with
the form of the heat conductance equation for radiation (10.12)

to the heat conductance coefficient for radiation

hr = Fl2(rn [ ( 9 2 } 2 + ( 9 1 ) 2 ] (9 (10.23)

which depends in a nonlinear way upon the surface temperatures.
Usually, one has to compute view factors according to the geometry of the surface.

Here the assumption has been made that the surfaces are flat and parallel, which is
sufficient when the aspect ratio of the asperities is not too high, or when this relation
is used as a regularization of the thermal contact conductivity.

Often the radiation effects between the surfaces of the micro-cavities can be ne-
glected, because the small difference of temperature greatly reduces this effect. How-
ever the radiation effect might be important to regularize the jump in the thermal
resistance between status gap open and status gap closed, e.g. see Wriggers and
Zavarise (1993b). Disregarding the radiation effect can lead to an unstable algorithm
when the contact pressure is very small.

PN

Fig. 10.6 Conductance through gas in the contact interface.
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10.3 INITIAL VALUE PROBLEM FOR THERMO-MECHANICAL
CONTACT

In the previous sections we have discussed contact geometry and constitutive equa-
tions associated with the contact interface. Let us now formulate the initial-boundary-
value problem for nonlinear thermoelasticity combined with thermo-mechanical fric-
tional contact for two bodies. For a more simple presentation, all relations are formu-
lated with respect to the initial configuration of the contacting bodies. Furthermore,
to obtain a compact structure we introduce locally at the material point Xy of body
#7 a vector of primary variables at time t,

IV (XV) 1
Z^(\\t} = V7(X7 ,f) , (10.24)

which contains the configuration y>7, the material velocity V7 and the material tem-
perature 07. The superscript 7 = 1, 2 is characterizes the body Bl or B2.

Locally at points Xy 6 F of the contact surfaces a vector of history variables

0} (10.25)

is defined, which contains the plastic tangential slip gT-. Other internal variables
in the domains #7 do not appear, since only thermoelastic constitutive response is
considered.

The thermo-mechanical initial-boundary-value problem is governed by the local
field equations in the domains #7:

I"7 °
Q 1 -I

V7 = ^7DIVP7 + -Tb + 0 (10.26)
dt pi pi

-|07 = 0 - loiVQ-' + .l^,
dt tf c^

which represent the definition of the material velocity, see (2.28), the balance of linear
momentum, see (2.49), and the balance of internal energy in form of the temperature
evolution equation following from (2.53). P7 is the first PlOLA-KlRCHHOFF stress
tensor, Q7 denotes the material heat flux vector and 57 is a heat source which describes
in the framework of thermoelasticity the GouGH-JouLE coupling effect. The field
equations (10.26) form a coupled first order evolution system for the primary variable
vector Z7 introduced above. Hence one can write in short notation

^Z7 - A 7 ( 2 7 ) , (10.27)
ot

where the nonlinear evolution operator A represents the right-hand side of (10.26).
In this equation one has to introduce the thermoelastic constitutive equations in the
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domains B7, which describe the dependency of stress, heat flux and the heat source
on £T:

P7 = P7 ( £7 ) ,

Q7 = Q 7 (Z 7 ) : (10.28)

S7 - S7 (£7).

Note that usually, instead of stating a constitutive equation for the first PIOLA-
KIRCHHOFF stress P7, one introduces a constitutive equation for the second PIOLA-
KIRCHHOFF stress S7, which is related to P7 via P7 = F7 S7.

Next initial conditions for the primary and history variables are given for a time
interval [tn.t]:

Z7(X7
;£n) - 27(X7) and ?T(XVn) = ^n(x7)- (10.29)

Boundary conditions for the deformation are given on F7 C <9$7 and for the
temperature on FQ C dBJ:

¥>7(XV) = £7(XV) onF 7 ,

6>7(XV) = 07(XV) onF 7 . (10.30)

For the traction vector, boundary conditions are prescribed on F7 C <9B7, and for the
:

; t ) = t 7 (X 7 ,O onF 7 ,

heat flux vector on F7. C

, , , , . .

The initial-boundary-value problem is completed by the thermo-mechanical con-
stitutive equations on the current slave contact surface <pl (F^):

pN = pN ( Zl>2, U, )

tr = tT ( Z1'2, U. )

qN = qN (Z1*, U, )

Vs = Vs (Z1'2, U, ), (10.32)

for the contact pressure pN, the contact tangential stress ty, the contact heat flux
QN and the frictional dissipation Vs . Z1'2 is introduced here to point out that at the
contact surface, fields of both bodies interact, and thus have an input to the associated
constitutive relation. Furthermore, we have the evolution equation for the plastic slip,
see (4.27), with the structure

8 3f
—U = A £ ( Zia, U ) with E = ~^- , (10.33)
ot otrr

which is constrained by the KUHN^TUCKER loading-unloading conditions

A > 0 ; fs (Z1^, U} <0; A fa ( Z1'2, U } = 0 . (10.34)
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Finally, the contact conditions for the normal contact, see (4.2),

(10.35)

completes the formulation of a coupled thermo-mechanical initial-boundary-value
problem.

For formulation of the weak form of a pure mechanical and thermo-mechanical
contact problem, we have to discuss only the additional terms due to contact in detail.
The equations describing the behaviour of the bodies coming into contact do not
change. For completeness, the weak forms for the bodies coming into contact are
stated next.

10.4 WEAK FORMS IN THERMO-MECHANICAL ANALYSIS

In the case of thermo-mechanical contact problems, two fields - deformation and
temperature - interact, and thus have to be considered within the formulation. In the
general setting these fields are coupled because the constitutive parameters depend
upon the temperature; the evolution of the thermal field is related to the deformation
and heat can be generated by dissipative mechanisms like plastic deformations or
frictional forces.

In the coupled thermo-mechanical analysis one has to extend the weak form (5.20)
for mechanical contact to the coupled case. The weak forms are stated here for a
known active set, so that instead of an inequality we can write an equality for the
weak form. This yields, in analogy to (5.24), two weak forms in which mechanical
and thermal variables are coupled:

f r^ -Vsr?d\r - /
7 = 1

= 0. (10.36)/

rf1 denotes the mechanical test function defined on the current configuration, also
known as the virtual displacement. The second term in (10.36) describes the con-
tributions due to contact with the variations of the normal gap, see (3.29), and the
variations of the relative tangential displacement in the contact interface, see (3.30).
The first term in (10.36) contains the standard domain contributions with the KIRCH-
HOFF stress tensor r7. It is integrated with respect to the initial configuration, whereas
the integration of the contact terms has to be performed with respect to the current
configuration.

The weak form of the thermal contribution takes the form
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I { ViT q7 - tf7 (S7 - c7 07 ) } dV - / tf7 g7 da
'

= O.(10.37)

Here $7 denotes the thermal test function defined on the current configuration, also
called the virtual temperature. In the integral concerned with the contact interface,
one can see two contributions. The first is due to the heat conduction in the contact
area. The second term stems from the frictional heating which is generated by the
frictional dissipation, e.g. see (4.23). In a finite element computation, the dissipation
can be computed together with the stress update of the tangential stresses, see Section
9.5.

1 0.5 ALGORITHMIC TREATMENT

The main solution strategies for coupled problems are monolithic schemes where
equations (10.36) and (10.37) are solved together as a coupled system for the different
variables (here deformation and temperature). In large three-dimensional problems
this is related to the large number of variables, which is not very efficient. Thus,
other strategies known as staggered schemes were developed in which the different
variables are computed separately within a given time step (see Wood (1990) for an
overview).

Global solution algorithms for coupled thermo-mechanical analysis have been
formulated in Argyris and Doltsinis (1981), Miehe (1988), Doltsinis (1990), Simo
and Miehe (1992), Agelet de Saracibar (1998) or Lewis and Schrefler (2000), among
others. In what follows, the staggered scheme proposed in Simo and Miehe ( 1 992)
and for contact in Wriggers and Miehe (1994) is adopted. This scheme is based
on an operator split of the global thermo-mechanical evolution operator discussed
in Section 10.3. Such a strategy yields an algorithmic decoupling of the thermo-
mechanical equations within a time step on the basis of subproblems which are in the
frictionless case both symmetric.

A -y

The central idea is a split of the evolution operator A into its natural mechanical
and thermal parts, as indicated in equation (10.26):

A7(27) = A.l4(Z
r) + AT(Z^) . (10.38)

Within the time step Atn+] := tn+i - tn, this split defines two subproblems:

(M): —Z = \M(Z) and (T): -J27 - A7) ; (10.39)

a purely mechanical subproblem (M) at frozen temperature along with the mechani-
cal initial and boundary conditions in (10.30)-( 10.31) followed by a purely thermal
subproblem (T) at frozen configuration along with the thermal initial and boundary
conditions in ( 10.30)-(10.3 1 ). Both subproblems are constrained by the evolution of
the plastic variables (10.32). We consider the quasistatic problem and integrate both
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phases (10.39) with the backward Euler algorithm. Hence, the algorithmic counter-
part ALGOM for the mechanical subproblem (M) takes the form

^+1;^) = 0 and vn+1 = (^1 - ^) (10.40)

in #7 at frozen thermal primary variable 9%.
The thermal subproblem (T) obtains the algorithmic form ALGOr

^+1;^+1) + (^+1;^+1,v;+1) (10.41)

in #7 at frozen mechanical primary variables v^+i , v^+1 .
Thus, we first solve within a time step A£n+i the mechanical problem (10.40)

for the actual configuration field v^+i- Next we compute the actual temperature
field 0n+i by solving the thermal problem (10.41). The overall global thermo-
mechanical solution algorithm within a typical time step can be regarded as a com-
position ALGOrM = ALGOr ° ALGO\f of the two subalgorithms ALGOr and
ALGOM- Thus, the operator split algorithm results in an algorithmic decoupling of
the coupled thermo-mechanical equations within the time interval. The split (10.39)
was proposed as a coupling algorithm by Argyris and Doltsinis (1981), and applied
for thermo-mechanical contact by Wriggers and Miehe (1994). It is characterized by
an isothermal deformation predictor followed by a heat conduction corrector. Within
the work of Argyris and Doltsinis (1981), this algorithm has been interpreted as a
one-pass GAUSS-SEIDEL scheme in terms of the variables (f> and 9.

This algorithm now has to be incorporated in the weak forms (10.36) and (10.37),
which are the basis for the finite element method. Since this is again a standard
procedure, we do not derive this here explicitly.

10.6 DISCRETIZATION TECHNIQUES

Here we discuss two discretizations for thermo-mechanical contact. The first formu-
lation is for frictionless problems with small deformations, hence the linear theory
is valid and a node-to-node discretization, as already discussed in Section 7.2 can
be applied. The associated finite element formulation can be found in Wriggers and
Zavarise (1993b). For the case of large slip in the contact interface, as can be ob-
served in tyre contact or in metal forming processes, one has to use a discretization
for large slip as presented in Section 8.1. Furthermore, friction has to be included in
the analysis.

10.6.1 Node-to-node contact element

In the case of a node-to-node contact discretization, the constraint equation for contact
is formulated for each nodal pair, see Figure 7.4.

The geometrical contact constraint condition for the normal contact (3.1) can be
formulated for one finite element nodal pair / as

9NI = x]k - x]k = (Xjk + r4) - (Xl
lk + u}k) > 0, (10.42)
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where k is the local direction of the normal in the contact interface (xf • n\ = £/*)•
This has been introduced to simplify notation. xa refers to the current and Xa to the
initial configuration.

The temperature jump in the contact interface at node / is given by

991 = (10.43)

with the current temperature 9a at the two bodies Ba. The temperature of the gas
inside the rnicro-cavities is computed as the mean temperature of both surfaces,

The variation of (10.42) is simply

(10.44)

(10.45)

In the same way one derives the variations of go / and Tg /

Sge i - tf/ - $},

(10.46)

Due to its simplicity, and assuming that the contact constraint is active for nc nodes,
we can express the integrals (10.36) and (10.37) for the contact contributions in the
weak form by a sum over all active contact nodes.

Since the normal contact has to be expressed in the case of thermo-mechanical
contact by a constitutive equation, one has to use the formulation of Section 5.3.4.
With this one approximates equations (10.36) and (10.37), leading for the contact

Bhi

Fig. 10.7 Node-to-node thermal contact element.
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part to

f V^G\* — I fifjNpN da —> y PN / SON / Aj . (10.47)
J i ,rc

 /=1

/

nc

($2 — fil ) qivda —> > OAT / Sag / Aj . (10.48)

rc £i

The area Ai is associated with the contact point i, see Figure 7.4. For computation of
the approach due to a mechanical applied pressure in the contact interface, equation
(4.12) will be used. This yields a nonlinear relation between the contact pressure and
geometrical approach defined in (4.9):

PN=CN ( 9 N ) . (10.49)

Note that the constitutive equation for the contact pressure does not depend upon the
temperature in the case of frictionless contact.

The heat flux qN in the contact interface is assumed to be governed by equa-
tions (10.16) for the spot conductance and (10.18) for the gas conductance, leading
to the general form of (10.15) for the heat conductance in the contact interface:
hc(9

l ,92 ,pN). Hence, with (10.12) one obtains

qN = hc(9
l ,92 ,pN}(92 -9l} = hc(T9,pN] (92 - 01) • (10.50)

Since the heat conduction in the contact interface depends upon the contact pressure,
coupling of thermal and mechanical variables is present.

Now, to complete the formulation for the thermo-mechanical contact element, the
matrices

( .32 ^ ( ^2 ^ ( i ^ ( i ^
(10.51)

are introduced (see also Section 7.2 for the purely mechanical case). With this the
weak form of the contact contributions follows from (10.48), together with (10.49)
and (10.50), as

(10.52)
7=1
nc '

GC
T = •&]hc(9

l,92,PN}(92 -9l}dA,. (10.53)T

7=1

These terms are nonlinear in the geometrical approach g^ and the temperatures Oa.
The linearization of (10.53) yields the tangent operator which has to be used within
a NEWTON type solution procedure, see Section 9.3. For the linearization around a
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state QN and Oa, one derives

.D G M ' Ajt/w — nJ
I-l

7=1
nc

A/C/Cf Au/

dhf Au/

D GT • A/9
1=1

c, c\ + -

with the increments of the displacements and temperatures

(10.54)

A! A0/ .

(10.55)

The combination of all contributions from (10.55) then results in the tangent matrix
for contact within the thermo-mechanical analysis using node-to-node elements

(10.56)

with the explicit form of the tangent matrix

dhf

9 (10.57)
Note that this matrix is not symmetric. Hence a solver for a non-symmetric matrix
system has to be applied, even in the case of frictionless heat transfer.

REMARKS 10.1:

1. A linear constitutive relation for the contact pressure as used in the standard penalty
formulation, see Section 5.3.2, the term OCN / dgn yields the penalty parameter and
one recovers the penalty formulation, see also (7.27).

2. If no gas is contained in the micro cavities, or if the dependence of the conductivity
through the gas is negligible, then the heat conductance in the interface only depends
upon the contact pressure hc(0

a ,pjv) —> hs(9N). For this case, the last submatrix
in (10.57) becomes symmetric and takes the form hc CI CTj.

3. When a staggered scheme is applied in which one first solves the mechanical and then the
thermal part, as discussed in Section 10.5, then the coupling term in (10.57) vanishes,
since the pressure is fixed when solving the thermal part of the coupled problem.

10.6.2 Node-to-segment contact element

Node-to-segment contact elements are used for large deformation contact. For thermo-
mechanical contact such elements have been developed by Zavarise (1991), Zavarise
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et al. (1992b) or Wriggers and Miehe (1994) for different constitutive equations in
the contact interface. In this section only the contributions due to the thermal and
coupled thermo-mechanical parts of the contact will be considered, since the purely
mechanical NTS-element has been stated in Section 8.1.

Again, the projection of the slave node x2
s onto the master segment (1)–(2) is

needed, see Figure 10.8. The coordinates denoting the surface of the master segment
are given by a linear interpolation x* (£) = x{ + £ (x^ — x} ). The evaluation of (8.3)
yields the surface coordinate £n+i , which denotes the minimum distance point on the
master segment.

In the same way, the interpolation for the temperature on the master element surface
yields

with the the nodal values 9\ and 9\ .
In what follows we formulate the constitutive relationships for the normal force

PN , tangential force TT, the discrete heat flux QN and the discrete dissipation Dp

at the discrete slave node of the contact element under consideration. Assume that
£n+i and gjv n+i are known from the exploitation of (8.3).

With this one can compute analogous to (4. 1 2), the normal force at the slave node

PNsn+i=CN(gNn+l)
m. (10.59)

The algorithmic update of the tangential force is performed by the return algorithm
as described in Section 9.5. Note that only one component appears in the two-
dimensional case. The return algorithm then leads for COULOMB'S friction law, with
(9. 11 8), to

Fig. 10.8 Node-to-segment thermal contact element.



DISCRETIZATION TECHNIQUES 329

Using (9.121), the frictional dissipation is obtained by

{ ft for ftrial < nU I0r/sn+l S U, 0 fin

TTn+i (T^1-Trn+1)/C'TAtn+1 otherwise, UU'°U

where CT denotes the tangential stiffness in the contact interface.
Finally, the discrete heat flux takes the form analogous to (10. 17)

Nn+l/ln+l /-•
(L

H

(10.62)
Here ln+i is the current length of the master segment (ln+i = \\ ^2 n+i ~ xi n+i ID-

The contributions of the thermo-mechanical contact in the mechanical and thermal
weak forms (10.36) and (10.37) take the form

T n + l , (10.63)

GT - Sgn+iQNn+i - 6gr> n+i T%i , (10.64)

for the discrete slave node with the mechanical variations analogous to (8.4) and (8.9)
and thermal variations (see interpolation (10.58))

SgQn+1 = [0 ; - ( l -£H- i )0} - fn+ i0£ ] , (10.65)
2 1/2- (10.66)

These equations can now be cast into a matrix formulation. For the mechanical part,
this is given in (8.14) and (8.15). Thus, the virtual mechanical work of the contact
element (10.63) can be written in the matrix formulation GC

M — ur • R-Mn+
the mechanical contact element residual

bMn+l : — -nVn+1 (10.67)

In this equation the contact normal force P/vn+i follows from (10.59), whereas
the tangential force Tm+i is given by the return algorithm (10.60). Due to this
approach, a pure displacement formulation of the contact problem is possible, which
is in contrast to the LAGRANGIAN multiplier technique which is often used to enforce
the non-penetration condition. For a global algorithmic treatment using NEWTON'S
method, we have to linearize equation (10.67). The associated formulation for this
discretization can be found in Wriggers et al. (1990).

The matrix formulation of the thermal part (10.64) is similar to the mechanical
part. As a consequence of the global operator split algorithm discussed in Section
10.5, and the assumed simplified constitutive equation, the thermal part is linear.

A formulation completely analogous to that of the mechanical part yields the
matrix representation Gc

T = $ • R^n+i for the virtual thermal work (10.64), with
the thermal contact element residual

(10.68
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Here we have introduced the matrices

and

r ! _ i i f 1.1
(10.69)

for the matrix formulation of the thermal variations (10.65) and (10.66). In (10.68) the
discrete contact heat flux QNn+1 follows from (10.62), whereas the frictional dissi-
pation Dp

n+1 is given by the return algorithm (10.61). The nodal contact contribution
(10.67) and (10.68) have to be added to the global system of equations.

Which terms of the contact contributions have to be linearized now depends upon
the global algorithm used to solve the thermo-mechanical contact problem.

10.7 EXAMPLES

Two examples are discussed here to show the performance of the node-to-segment
contact formulation for thermo-mechanical problems. Both problems exhibit finite
deformations which are modelled by assuming the thermo-elastic constitutive equa-
tion based on the HELMHOLTZ energy (10.7) and FOURIER'S law (10.11). For the
analysis two different strategies could be followed: the fully coupled or the staggered
schemes. The latter are based on the operator split technique, described in detail in
Section 10.5. In the fully coupled analysis, all coupling terms are taken into account
implicitly, whereas the staggered scheme takes care of the coupling terms explicitly.
Here fully coupled treatment is used for both examples. The time integration which
is necessary to solve the non-stationary second example is performed by an implicit
EULER scheme.

All examples are solved using the finite element software FEAP, see Zienkiewicz
and Taylor (2000a). In this code all extensions related to thermo-mechanical con-
tact analysis, which were discussed in the previous chapters, are implemented. The
meshes are generated by the software tool DOMESH developed by Rank et al. (1993).

10.7.1 Heat transfer at finite deformations

The first example discusses heat transfer through a changing contact surface when
finite deformations are present. The problem is depicted in Figure 10.9, which consists
of a ring and a foundation. The contact is assumed to be frictionless. During the
analysis steady state conditions are assumed for the different loading steps. The
material parameters for the mechanical part are E = 1000, v — 0.3. For the thermal
part the heat conductivity coefficient is given with k = 100, and the heat capacity is
c — 1. The thermal expansion coefficient has the value a = 0.0001. The reference
temperature is zero.
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Fig. 10.9 Elastic ring in contact with a foundation.

In the contact interface we assume frictionless contact. The parameters in the
pressure-dependent interface law for the heat conductance (10.17) are given as thermal
resistance coefficient hc0 = 1.0, VICKERS hardness Hv = 3.0, and w = 1.5. A
temperature T and a displacement u are prescribed at the top of the ring. Eighty
load steps were performed with a prescribed displacement of u = 0.5, see Figure
10.9. In Figure 10.10 the resulting heat flux in the contact interface is plotted versus
the total contact force. The heat flux increases in a nonlinear way with respect
to the normal contact force. This is related to the change in the contact surface
from one contact area in the middle of the ring to two different contact areas at its
sides. Furthermore, the contact pressure increases due to the loading process, which
increases the prescribed displacement. As a result, a temperature distribution occurs
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Fig. 10.10 Normal heat flux versus contact force.
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Fig. 10.11 Elastic ring in contact with a foundation.

in ring and foundation which depends heavily on the contact pressure at the contact
interface and the deformed configuration of the ring, see Figure 10.11.

10.7.2 Frictional heating at finite deformations

In the next example the frictional contact of a tyre section with a road is investigated.
This is a problem in which the temperature field, generated by friction, depends upon
the time, leading to non-stationary heat conduction problem. However, we assume
that the process is slow enough that no inertia forces have to be included in the
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mechanical part of the weak forms. Again, finite deformations are assumed. The
analysis is performed in different steps. First the gas pressure in the tyre is increased
up to a certain value (inflation of the tyre). Then the tyre is pressed against the road
surface, and finally, the tyre is moved with a prescribed velocity at its top horizontally
across the road.

The mesh is shown in Figure 10.12 in the undeformed configuration. The mechan-
ical material properties for the tyre are E — 1000 and v = 0.3. The heat conductivity
coefficient is k — 5 and the heat capacity is chosen as c = 1. The thermal coefficient
is a — 0.0001 and the reference temperature is zero. The road material has only a
different modulus of elasticity E = 10000.

In the contact interface we assume frictional contact with COULOMB'S law and a
friction coefficient of /x = 0.5. The parameters in the pressure-dependent interface
law for the heat conductance (10.17) are given as thermal resistance coefficient hc0 —
1.0, VICKERS hardness Hv = 3.0, and a; = 1.5. The internal pressure in the tyre is
P = 0.1. The prescribed horizontal velocity at the top has a value of 7.

During the deformation process, which was computed using 1500 time steps,
frictional sliding occurs in the contact interface, leading to frictional heating. Thus a
heat flux is generated in the contact interface.

Fig. 10.12 Elastic tyre in contact with a road.
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Fig. 10.13 Heat flux at point P versus time.

To show the general behaviour of the heat transfer mechanism in this problem, the
local heat flux qP

N is measured in point P denoted in Figure 10.12. This quantity is
plotted versus the process time in Figure 10.13.

It can be seen that no heat flux occurs in the initial phase (0 < t < 50) when the
tyre is pressed onto the road surface.

During the tangential movement, a positive heat flux with decreasing tendency is
observed within 50 < t < 300, which means the heat flows into the road surface.
This can also be observed in the first two Figures 10.14, which depict the deformed
configurations of the tyre and the temperature distributions at time t = 150 and
t = 250, respectively.

At time t = 300 the horizontal movement is stopped, which leads to a jump in
the heat flux. Now heat flows back from the road into the tyre (see the last two
temperature states at t = 350 and t = 400 in Figure 10.14).

At t = 700 steady state conditions are reached, and hence the heat flux at point P
tends to zero.
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Fig. 10.14 Temperature distribution in road and tyre due to frictional heating.
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11
Beam Contact

Many engineering problems involve contact of beams undergoing large displace-
ment. These include robot parts, woven fabrics or racquet strings. In such cases the
beams are either already in contact in the initial configuration, like woven fabrics,
or they come into contact during the motion which can happen when parts of robots
are moving. The contact formulations discussed in the previous chapters are usu-
ally developed for two- or three-dimensional solids. However, the contact between
beams has some specialities which are related to the description of the beam as a
one-dimensional curve in space. Thus, the formulation of the kinematical contact
conditions is different, and hence will be derived in this chapter in detail.

Since the underlying theories for beams in three-dimensional space are very com-
plex we will not describe these here. The interested reader should consult Simo
(1985), Simo and Vu-Quoc (1986), Crisfield (1990) or Gruttmann et al. (2000) for
finite element formulations of beams undergoing large deflections and rotations.

11.1 KINEMATICS

In this section we describe the kinematical relations which have to be used when
contact between two beams occurs. The beams are mathematically described by
curves in the three-dimensional space. Therefore, we have to consider basically the
contact between two curves. This leads locally to one contact point as long as the
beams are not parallel and have a smooth convex cross-section. We now derive the
kinematical relations for the contact of two curves in space. Most of the formulation is
based on Wriggers and Zavarise (1997), Zavarise and Wriggers (2000) and Litewka
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and Wriggers (2002a), which consider the contact of beams in three-dimensional
space for the frictionless and frictional cases.

11.1.1 Normal contact

Figure 11.1 depicts the geometrical situation of two crossing beams in space. We
parameterize the reference curve (beam axis) of beams B$ and B$ by the convective
coordinates £ and £• For simplicity, we assume that the beams have a circular cross-
section with radii r^ and r^ . A more advanced treatment in which rectangular cross-
sections are considered can be found in Litewka and Wriggers (2002a), however the
general formulation does not change because of that. Thus we proceed here with the
more simple case of circular cross-sections. The geometrical setup for rectangular
beams is discussed in Remark 11.1. With the notation introduced, the position of a
point of the beam axis is given in the deformed configuration by

and v?(B)c : x<(0 - (11.1)

The contact condition for normal contact can be computed similar to the minimum
distance problem (3.2). However, now we search for the minimum distance between
the two beams. Thus, we do not fix a point at one beam as in Section 3. 1 , but search
the minimum distance regarding both parameters £ and C as variables. This leads to

d(C, C) =min||x*(0 -x<(OII - 11^(0-^(011 = II*4 -*C||, (11.2)

where £ and £ denote the position of points on the two beam axes which have a
minimum distance, see Figure 11.2. Since the contact occurs on the beam surface.
we can introduce the gap function

9N = (11.3)

Fig. 11.1 Geometry of contacting beams.
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Fig. 11.2 Minimum distance of contacting beams.

to measure the minimum distance where the radii of the cross-sections have to be
subtracted from the distance function d. Penetration takes place for negative values
of gN. Hence, the contact condition for the beams can be written analogous to (3.6)
as

9N>0- (11.4)

The minimum problem (11.2) is in general for arbitrary curves a nonlinear problem.
The minimum distance is computed from the two conditions

d

(11.5)

which represent a nonlinear system of equations for the two unknown positions £ and
C, see Figure 11.2. The solution of this system of equations is provided by NEWTON'S
method leading to the incremental system of equations

AC

with

—X
,€ AC

(11.6)

(11.7)

The nonlinear system (11.5) might have several or no solutions. Here we assume that a
unique solution of (11.5) exists. Hence the multiple solution cases are not considered
here, although one has to take these into account in the algorithmic treatment within
the finite element program.
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For straight beams the curvature terms x^c and x^, disappear, and the tangent

vectors x^ and x^ are constant. Then (11.5) reduces to two linear equations for £
and £, which can be solved directly. This solution can also be used as a starting point
when NEWTON'S method (see (11.6)) has to be applied for curved beams.

Note that (11.6) can also be applied to compute the variations and linearizations
of £ and C which will be needed in later sections for derivation of the weak form and
its linearization.

Once the solution of (11.5) is known, we can define the normal vector by

(11.8)

which is normal to both beams at the minimum distance point (f. £). In the later
sections concerning beam contact, we assume that the beams are straight to avoid too
complex derivations. This assumption also goes well with the finite element method,
since there beams for large deformation problems are in most cases based on straight
elements. Thus, locally the assumption is then valid.

REMARK 11.1: In the case of rectangular beams the definition of the gap Junction is more
elaborate, since contact can occur at different edges of the beam cross-section. This is depicted
in Figure 11.3 for the case of edge to edge contact. Contrary to the contact of beams with a
circular cross-section, the normal contact force is eccentric with respect to the beam axes r1
and r2, and hence a torsional moment is generated by the normal contact force with respect to
rc1 and rC2- This is also the case for a force due to friction, which leads to additional bending
moments in the beam around rc1 and rC2-

However, as shown in Figure 11.4, the situation can become even more complex in the case
of the contact of beams with rectangular cross-sections, since besides the pointwise contact,

x\

Fig. 11.3 Gap definition for beams with rectangular cross-sections.
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edge to 1 edge 1 edge to 2 edges

2 edges to 2 edges
2 edges to 3 edges
not admitted

Fig. 11.4 Gap definition for beams with rectangular cross-sections.

described in Figure 11.4.1, other configurations can occur. These are a line contact of one edge
to a surface on the beam, see Figure 11.4.2, and an area contact of the surface of one beam
to the surface of the other beam, see Figure 11.4.3. Within the contact analysis we assume,
according to classical beam theory, that cross-sections of contacting beams do not undergo
any deformation, i.e. they remain plane rectangles, although not necessarily perpendicular to
the respective beam axes as the shear deformation is allowed within a beam element. We can
exclude the fourth configuration in Figure 11.4.4, since this would involve large finite strains
in the beam model. Such a model will not be pursued here, based on the fact that for such
cases a fully three-dimensional discretization is more adequate.

11.1.2 Tangential contact

In the case of the tangential contact, we have to consider the fact that the contact point
also slides on beam B$ as well as on beam B^, in general. Again, we can compute the
sliding distance from the integral (3.16); this leads to two integrals which describe
the total sliding distance for beam Bf and for B^ in the current configuration:

dt and

i.
0C _ [ ||f=<
9r ~ I MS, x,< dt

to to

(11.9)

Here we have to integrate with respect to the time, see also Section 3.2. Again, for
straight beams the tangent vectors are constant, and the integrals in (11.9) can be
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evaluated exactly. We obtain in this case

and Sr = [C(0-C(*o)] ' , (11.10)

where /^ and ft denote the beam length of <£>(#)^ and ip(B)^, respectively.
The relative velocity of the contact point is now given with respect to both beams

as £ x^: and C x*V. This means that both beams slide relative to each other.

11 .2 VARIATION OF THE GAP IN NORMAL AND TANGENTIAL
DIRECTIONS

The normal gap for two beams in contact was given with (11.2) and (11.3) by

9N = 9N - (r€ + rc ) = ||rf(tf - x<(C)|| - (r€ + rc ) . (11 .11)

The variation of the normal gap follows with this definition as

Using the definition of the normal, see (1 1.8), we obtain a similar result as for the
continuum case, see (3.29):

(11.12)

For a straight beam the tangential gap was formulated in ( 1 1 . 10), leading to

9%> = [W)-tM]fi and <£

The variation of these two equations yields

In these equations the variations of the convective coordinates £ and £ are missing.
Also, we have to compute the variation of lengths /* and /<». The latter task can be
accomplished by assuming that both lengths / are given for a straight beam by

where xf and \1 are the end points of both beams (in a finite element discretization
these will, for example, be the element nodes), see Figure 11.5. With these definitions
we compute

£ -**i2 AJ

*<-*<
Sl< = t < - ( - f , ) with t<= 2 \ (11.16)
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Fig. 1 1.5 Two straight beams with initial gap.

The derivation of 6£, and 6(^ is more complex. For this we start from the condition
that the gap vector is orthogonal to the beam tangents at the closest point, see (11.5):

The variation of the first equation yields

1 S 1 S 5 S

0,

0.

k,« = 0.

The same relation can be written down for the second equation above. This then leads
to a system of equations for both variations,

~ 9N
= -b, (11.17)

with

— n

n • jc (11.18)

Here definitions (11.11) and (11.8) have been used. The right-hand side in (11.17) is
given by

+ x
(11.19)

fjC _ fj€ )

For the contact of straight beams, as shown in Figure 11.5, several terms in (11.18)
and (11.19) disappear. These are the second derivatives of the position vectors with
respect to the parameters £ and (,. Furthermore, the first derivative yields a constant
vector, leading to

775 — r)\ and 77^ — 772 — fj\ . (11.20)
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Using this, for the coefficients of A we obtain

and (11.21)

where the definition t^ = t^ • t^ with the unit tangent vectors from (11.16) was used.
Furthermore, for the right hand-side of (11.17) with definitions (11.11) and (11.8),
we obtain

b = /« 0
o /c (11.22)

With these relations for straight beams, equation (11.17) can now be solved for
a n d S :

« *2 I 1
C£C

(11.23)

We observe that this system of equations does not have a solution for t* • t*> = 1,
which means that both beams are parallel. This case has to be excluded here, and
needs special treatment. On the other hand, the equation system (11.23) decouples
for t^> = 0, which is equivalent to a perpendicular position of the beams.

Finally, we can insert this result together with (11.16) into (11.14), and obtain for
the variations of the tangential gap

(11.24)

Note that relation (11.23) can also be used to compute the time derivatives f and
£. One only has to exchange the variations f/^ and 77** by the velocities v^ and v^,
respectively.

11.3 CONTACT CONTRIBUTION TO WEAK FORM

Within the finite element analysis the weak form expression for the beam contact
is needed. Since contact takes place at only one point, as described in the previous
section, the contribution of contact to the general weak forms of a beam is given by

Gf = FN 6gN + FT (11.25)

where FN is the normal contact force and FT is the force in tangential direction of the
contacting beam axes. The weak contribution of the beams, GB

j, is not considered
here in detail; associated formulations can be found in Bathe and Bolourchi (1979),
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Simo (1985), Simo and Vu-Quoc (1986), Crisfield (1990) or Gruttmann et al. (2000)
for large deflections and rotations. The normal force FN is either computed using
the LAGRANGE multiplier method or approximated by the penalty approach. The
variation of the gap gN follows from (11.12). The force vector in the tangential
direction of the beams has the two components, FT = FT t^ + Fj- t^, with the unit
base vectors defined in (11.16). Since the tangent force acts in reality on the surface
of the beam, with this definition we have neglected the bending moments due to
the eccentricity of the tangent force with respect to the beam axis. Such terms are
considered in Litewka and Wriggers (2002b). The variation of the tangential gap 5gT

is given by (1 1 .24), such that the scalar product in (1 1 .25) can be written as

FT • <5gT = F| $9T + 4 <%T • ( ] 1 -26)

The tangential force FT follows in the case of friction from a constitutive relation in
the contact interface; see Section 4.2 for different possibilities. Here for simplicity
we use COULOMB'S law. However, other models for friction can also be applied in
the same way.

Let us assume that the normal force F/v is given by either a LAGRANGE multiplier
method F/v = ATV or by the penalty method F/v = ^N QN- Using the relations derived
in Section 9.5.2 for COULOMB friction, the following expressions are obtained for
the frictional forces FT and FJ-. :

stick: Ffa=eTg^ slip: F£/a - f,FN sign(Ff^+1) . (11.27)

The superscript a stands here either for £ or for £. The trial values F^+l for the
tangential forces are computed from

rria tr _ , ,.st a. _ r a _s/ a \ /it OQ\
^T n+1 = €T 9T = f'( 9T n+l ~ 9T n ) ; ( ' l -28)

with the total relative tangential deformation g^n+i at ^me ^n+i and the relative
tangential slip g^ at time tn.

For the application of NEWTON'S method, the linearization of the weak form
(11 .25) is necessary. This leads to

AG = AFjv 6gN + FN MgN + AFT • <5gT + FT • A<JgT +
 AG> • 0

In this equation one has to linearize the force components and also the variation of
normal and tangential gaps. The linearization of the normal force yields

AF/v = e/v A#JV with A^ = ( Au^ - Auc ) • n . (11 .30)

where the linearization of the normal gap is computed in the same way as the variation,
see (11.12). For the tangential force one has to distinguish between the stick and slip
phases. In the stick phase the linearization leads to

st Q _ A st a / 1 1 1 1 \= CT A#T . (11.31)
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Again, the linearization of the tangential gap has to be computed in the same way as
for its variation, see (11.24). In the slip phase, (11.27) has to be linearized

_ . , + i ) . (11-32)

Note that the linearization of the second term is zero.
The linearization of the variation of normal, A&jyv, and tangential gap, A<JgT,

is straightforward, though quite involved, and hence leads to complex expressions
which will not be reproduced here. The associated formulas can be found for the
normal gap in Wriggers and Zavarise (1997), and for the tangential gap in Zavarise
and Wriggers (2000).

11.4 FINITE ELEMENT FORMULATION

The weak form now has to be derived in matrix form for discretization of the contact
contribution. Assuming straight beam elements which are formulated using the TIM-
OSHENKO beam theory, one can simply use linear shape functions for all variables.
The simplest approximation, adopted here, is the assumption of a linear function of
the current coordinates in the deformed beam element. This leads to

2 1

xa = X a + u a = ^ Nf(a)xa with JV/(a) = -(1 + a/a) . (11.33)
7=1

where again, a stands for £ or £. The same ansatz is made for the variations rj^ and

Now the matrix form of the variation of the normal and tangential gaps has to be
derived to discretize (11.25). From (11.12), with 77* = \ (1 - f) rf{ + \ (1 + f) j]\

and 77^ = \ (1 — C) »7i + \ (1 + C) *72> we obtain the contribution of the normal force
F/v in nc contact points to the weak form:

(11.34)

with

c=l

a n d G N C = ? , (11-35)

where £ and (, are the convected coordinates which define the contact point c in the
beams.
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For the contribution of the tangential forces to the weak form, the matrices follow
from (11.24) and (11.26). By introducing

rjp 1
(11.36)

1 n _ f} fC _ 9N_
^v1 Z) L ,£

i(l + £)t* + ££
1 n _ /'w^

""2V-1 Sj 3c

-5(1
-5(1

i(l-C)

i(i + C)

- o *c

+ 0 tc

tC 57V n

tC _ M n

(11.37)

and

- (C-Co)t«
(11.38)

for the pair of contact points, c, the weak form for the tangential contact force can be
stated as

GT - GT c FT c with GT c = Ac Tc + Bc (11.39)

The tangential contact force is here defined as the vector F^ = (Fj-. .Fj-.), and ?7C is
the variation of the nodal point values of both beams, as defined in (11.35).

The matrix form of the linearization of the fully nonlinear case will not be reported
here. It can be found for the frictionless case in Wriggers and Zavarise (1997), and
for the case with friction in Zavarise and Wriggers (2000), for a beam with circular
cross-sections. The complete matrix formulation for rectangular cross-sections is
provided in Litewka and Wriggers (2002a) and Litewka and Wriggers (2002b) for
frictionless and frictional contact, respectively.

In the case of a small deformation response, one can disregard the contribution of
the linearization of the gap function A&jyv and A5gT and the dependency of As on
the normal gap g^. In this case, the tangent matrix for normal contact can be stated
for the penalty method with (11.30) as follows:

KTc G-! (11.40)

For the tangential contributions one has to distinguish the stick phase, which yields
a symmetric matrix, and the slip phase, resulting in a non-symmetric matrix. The
tangent matrix for stick follows from (11.31):

K stick
Tc = ^7'

r7:c (11.41)
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where in GT c the gap distance gN has to be set to zero. In the slip case one has
to start from (11.32), which is stated for only one component of the friction force.
Furthermore, we have to distinguish between sliding in the f direction and stick in £,
sliding in the £ direction and stick in £, or sliding in both directions. The latter case
leads to the non-symmetric tangent matrix

Tc Sc GC , (1 1.42)

with the diagonal matrix

sign(FT

11 .5 CONTACT SEARCH FOR BEAMS

The search for contact in the beam is different from the contact search routines used
for two- and three-dimensional solid problems. This stems from the fact that the
typical distinction in slave and master elements is not needed. The search is based
on the following assumptions:

• contact between beams is pointwise (this excludes beams in parallel contact),

• cross-sections of the contacting beams do not deform, and

• contact occurs along the edges of beams; for special cases see Remark 11.1.

The first step of contact search is to find the pair of finite beam elements which is
closest to each other. This step is carried out by considering the mid points \{c and
\2C of the beams (see Figure 1 1.6) in the current configuration. The mid points are
defined by

*{C = \ ( x{ + *{+1 ) , xf = l- ( 4 + x2
J+1 ) . (11 .44)

Now the pair of beams which fulfils dmin = min/,j || \{ c — x? || is selected as
possible contact pair. This preliminary search yields a rough location of the contact
point. However, it does not necessarily mean that the actual contact point will be
associated with the determined elements.

A complete search which takes into account the local conditions (1 1.2) is only
performed if

Lt}, (11.45)

where !/> = min(/^ .(f»)andZ^ = min(/^ .d£) are the minimum of beam lengths 1C
and JC, see definition (11.15), and the maximal diagonal of the beam cross-sections:
d*> and d^. This condition means that an imaginary sphere has been drawn around the
mid point of the elements, and only if the two spheres of the beams intersect then a
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Beam No. 1

Beam No. 2 J-2

Fig. 11.6 First stage of contact search - a pair of closest elements.

local search makes sense. Such a search strategy is similar to the pin-ball algorithm
for solids, discussed in Belytschko and Neal (1991).

If (11.45) is fulfilled, then one has to compute the minimum distance in the next
step using the local conditions (11.2). In case (11.2) yields a pair of coordinates (£, £)
with — 1 < £ < 1 and — 1 < £ < 1, see definition (11.33), then the correct element
pair in which contact takes place has been found. Otherwise, the local condition
(11.2) has to be investigated for the neighbouring elements.

REMARK 11,2: For large incremental steps, one has to take care that the beams do not
cross each other without contact having been detected. To prevent such cases, the following
procedure can be used in which two distance vectors are introduced:

dn = and (11.46)

where n + 1 denotes the current and n the previous time step in the incremental loading process.
One can now distinguish the following cases:

dn • dn+i > 0 =

dn • dn+i < 0 =

dn • dn-f i = 0 =

=>• axes did not cross

=> axes have crossed

=> 90° rotation.

This procedure works for incremental steps in which the beams do not rotate more than 90
degrees. However, the latter case is quite unusual, and if it occurs a reduction of the incremental
step has to be used.
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11.6 EXAMPLES

Two examples are discussed which also include a comparison with three-dimensional
discretizations of beam contact. In the first example, frictionless contact of three
beams is considered, whereas the second example shows the behaviour of beams
in frictional contact. These examples are also discussed in Litewka and Wriggers
(2002a) and Litewka and Wriggers (2002b), and involve the contact of beams with
rectangular cross-sections.

11.6.1 Three beams in frictionless contact

We consider three beams which come into contact during the deformation process.
The beams have an initial configuration as shown in Figure 11.7. One beam is fixed
at its upper and lower end, and is moved by a prescribed displacement in a negative
X-direction between the other two crossed beams (crossing angle 11.5°) which are
clamped at their ends. Furthermore, the tips of the crossed beams undergo prescribed
displacements in the Z-direction, as shown in Figure 11.7. The beam elements are
described in Litewka and Wriggers (2002a), and the references therein.

Fig. 11.7 Initial configuration of the contacting beams.
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The beams are discretized using 10 beam elements each. All beams have the same
data concerning the constitutive behaviour which are stated in the following. Modulus
of elasticity: E = 2 × 104, POISSON ratio: v — 0.3, beam length: L = 100, and
width of the quadratic cross section b = 5. The initial gap between the crossed beams
is gN 0 = 1. The penalty method is applied with a penalty parameter of e = 2.4 • 103

between the crossed beams and £ = 1.25 • 104 between the "free" beam and the other
ones. The choice of the penalty parameters was dictated by the requirement that the
penetration due to the penalty method should be kept under 1 % of the size of the
beam cross-section. The prescribed displacement of A1 = A2 = 100 for both ends
of the "free" beam and A3 = A4 = 10 for the tip deflection of the crossed beams is
applied within 80 loading steps of AT = 0.0125. Contact between "free" beam and
crossed ones starts at T = 0.3625, which is marked by the dot in the load-deflection
curve shown in Figure 11.8. An increase of the reaction force associated with the
upper end of the "free" beam occurs at the end of the process. This is reflected
in the deformation of the beams; see Figure 11.9, which depicts the deformation
process by showing four stages of the deformation process. One can observe that the
beams undergo large displacements and rotations. Within all increments, quadratic
convergence is achieved leading to an average of three iterations per step.

11.6.2 Two beams in contact with friction

Two beams as shown in Figure 11.10 are considered to compare the frictional response
computed with beams to the same analysis based on a three-dimensional contact

Fig. 11.8 Load deflection curve for frictionless beam contact.
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Fig. 11.9 Deformed configuration at four stages of the deformation process.

analysis using solid elements. Beam 2 is a cantilever beam which is clamped at the
right end. Beam 1 has constrained rotations about the Y-axis at its ends, as well
as the constraints resulting from the symmetry with respect to plane X — Z. The
following data are used: dimensions of Beam 1: (5 × 5 × 100), dimensions of Beam
2: (10 x 10 x 100), YOUNG'S moduli: EI = E2 = 3 • 104, POISSON'S ratios:
v1 — v2 — 0.17, initial gap: gN0 = 0.5, penalty parameters: SN = 2.5 • 104 and
CT = 2.5 • 102. Both beams are discretized using 10 elements. The vertical and
horizontal displacements of both ends of Beam 1 are applied in 50 increments using
At = 0.02. The analysis is performed for the frictionless case and two frictional
cases with a COULOMB friction coefficient of // = 0.5 and /x = 1.0.

Table 11.1 presents the convergence rates and friction status for four selected
stages of the process. These stages are also depicted in Figure 11.10. The solution
shows in a clear way the influence of friction, which is reflected in the deformation of
Beam 1. This beam sticks at first and then starts to slide along Beam 2. All cases are
characterized by very good convergence rate with 3 – 5 iterations per step, which is an
outcome of the application of NEWTON 's method with a consistent linearization of the
residual term in Section 11.4. The results were compared to a full three-dimensional
contact analysis using solid elements. To this end, the program ABAQUS was used.
The 8-node brick elements C3D8 were chosen to discretize beam 2 with a 2 x 2 x 20
element mesh. For Beam 1 the number of elements was doubled in the X direction,
leading to a discretization with 2 x 2 x 40 brick elements.
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Fig. 11.10 Initial and deformed configuration at four stages of the deformation process for
different values of the friction coefficient.

Table 11.1 Convergence study and friction status

T 0.25 0.5 0.75 1.00

= 0.0 Status of beam 2 slip slip slip slip
Status of beam 1 slip slip slip slip
Number of iterations 3 3 3 3

= 0.5 Status of beam 2 slip slip slip slip
Status of beam 1 stick stick stick stick
Number of iterations 3 3 3 3

= 1.0 Status of beam 2 stick slip slip slip
Status of beam 1 stick stick stick stick
Number of iterations 5 5 3 3

The lower surface of Beam 1, which has the finer mesh, was taken as the slave
surface. Comparison of the displacement components ux and uz at the centre point
B of Beam 1 is depicted in Figure 11.11 for the frictionless case and for the case
with frictional coefficient p, = 1.0. The comparison shows excellent results for the
frictionless case where the difference between both models does not exceed 0.6% for
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Fig. 11.11 Comparison of beam to three-dimensional analysis for p. = 0 and /i = 1.0.

the calculated displacements. The results for friction depict discrepancies. However,
in our opinion a maximum of 10% difference in the case of large friction (p. = 1.0)
can be considered as evidence of very good performance of the beam model when
compared with full three-dimensional analysis. Note the change in the character of
the behaviour of displacement component ux. For the frictionless case it is practically
linear, while for the increasing friction its nonlinearity becomes more pronounced as
the sliding is increasingly limited by increasing frictional force.



12
Adaptive Finite Element

Methods for Contact
Problems

In this chapter we focus on a relatively new method in the area of finite element
techniques which ensures a successive improvement of the numerical solution via an
adaptive mesh refinement. The main idea is depicted in Figure 12.1. It shows the basic
ingredients of an adaptive method for contact problems. Part 1 is the determination
of the contact, part 2 a solution of the problem with a given mesh, and finally, the
adaptive process in part 3 leads to an automatic mesh refinement of the discretization.
Thus the objective of adaptive techniques is to obtain a mesh which is optimal, in the
sense that the computational costs involved are minimal under the constraint that the
error in the finite element solution is beyond a certain limit. Since the computational
effort can somehow be linked to the number of unknowns of the finite element mesh,
the task is to find a mesh with a minimum number of unknowns or nodes for a given
error tolerance.

The adaptive finite element method will be formulated here first for frictionless
contact problems in linear elasticity. For this class of problem it is still possible to
develop mathematically sound error estimators. Since standard contact applications
often include friction, we will also derive an error indicator for frictional contact, and
discuss its extension in the case of large deformations. Error measures for thermo-
mechanical contact problems have not been established so far, and hence will not be
discussed here.

Basically, one has two different possibilities to derive error estimators which can
be applied within adaptive methods to refine the finite element mesh. These are the
residual-based error estimators and projection or defect correction methods, which
rely on super convergence properties. Both techniques will be discussed first for
geometrically linear problems, and then in the presence of large deformations.

355
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Fig. 12.1 Adaptive process for contact problems.

Let u denote the exact solution and let uh be the discrete finite element solution.
Now we can define the error in the displacement field by

eu = u - uh. (12.1)

In the same way, the error in the stress field can be defined as

ea = (T - crh • (12.2)

During the last ten years, research activities have been focused on adaptive tech-
niques that provide a discretization which is accurate and reliable. Adaptive tech-
niques rely on indicators and/or estimators which are able to predict the error given in
(12.1) or (12.2). These quantities display the error distribution of the finite element
solution (e.g. see Johnson (1987) and references therein). Based on the error distri-
bution, a new refined mesh can then be constructed which yields a better approximate
solution.

The methods rely on error estimators which have been developed so far in different
versions. Estimators which are most frequently used for elastic problems in solid
mechanics are residual-based error estimators, e.g. see Babuska and Rheinboldt
(1978) or Johnson and Hansbo (1992), or error estimators which use superconvergence
properties, e.g. see Zienkiewicz and Zhu (1987).

For frictionless contact problems, a priori error estimators have been derived for
linear elastic bodies, e.g. see Kikuchi and Oden (1988)or Hlavacek et al. (1988). An
adaptive method for problems with unilateral constraints has been developed by Lee
et al. (1991) who treated as an example a free surface flow problem. In Wriggers et al.
(1994), a residual-based error estimator has been developed following an approach
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pursued by Johnson and Hansbo (1992) for unilateral membrane problems. However,
as shown in Wriggers and Scherf (1998), the Z2 error indicators, due to Zienkiewicz
and Zhu (1991), can also be applied to contact problems. The advantages and dis-
advantages of residual-based error estimators and Z2 indicators have been discussed
in Wriggers and Scherf (1998) for frictionless contact. Due to this discussion, we
give here an overview including residual-based error estimators, projection based er-
ror indicators and error indicators based on dual methods. The residual-based error
measures will be also employed as indicators for contact with friction.

12.1 CONTACT PROBLEM AND DISCRETIZATION

Assume that two bodies come into contact. In that case, the non-penetration condition
is given by (3.6) as gN > 0. Let us recall the variational inequality (5.10)

a(u. v — u) > f(v — u).

which describes the frictionless contact problem in the case of small deformations.
The problem (P) is now to find u e K such that (5.10) is fulfilled for all v e K with

K = {v <= V | (v2 - v1) • n1 + GN > 0 on Tc}

where V is the space of variations or test functions. Due to the inequality constraint
on the displacement field, this problem is nonlinear.

Different solution techniques can be applied to solve this problem; we just men-
tion here the LAGRANGE multiplier approach, the penalty method or augmented
LAGRANGE techniques. For the rest of the section we focus on the penalty method
for the solution of (P); its mathematical background is described in Luenberger
(1984). This technique replaces (P) by an unconstraint problem (Pe) with regard to
the contact constraint (3.1) as follows: Find u£ G V such that

a(ue;v) + c"(ue,v) = /(v) V v e V, (12.3)

where V, a (u£. v) and f (v) are defined as above, and

cT(u e ,v)= feu-NvNdr. (12.4)

rc

u~N has already been defined in (3.12) and VN = v • n1. The penalty parameter e is
a positive constant. It can be shown, see Kikuchi and Oden (1988), that the solution
of (Pe) will converge to the solution of (P) as e tends to infinity.

To discretize (P£), we divide fi into non-overlapping finite elements T of diameter
hT, and introduce a standard finite element space

V
h = {v € V | v € C((f t ) , v|T e [P(T)]2, V T} , (12.5)

where P(T) is a space of polynomials of degree PT on T, and pT is a positive integer.
The discrete finite element problem (Ph for (P£) is now: Find uh G Vh such that

a(uh,v) +c-(uh ,v) = f(v) Vv € Vh . (12.6)
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12.2 RESIDUAL BASED ERROR ESTIMATOR FOR FRICTIONLESS
CONTACT

Error estimators have been derived for frictionless contact problems of linear elastic
bodies, e.g. see Kikuchi and Oden (1988) or Hlavacek et al. (1988). In this section,
we follow the approach which was developed in Johnson (1991) for the unilateral
membrane problem, and extend it to the case of elastic bodies, see Carstensen et al.
(1999). For this purpose a penalty regularization is used to approximate the constraint
problem by an unconstrained one. Thereafter, an error estimator is formulated which
is an extension of the error estimator in Babuska and Miller (1987).

Let u£ and uh denote the exact penalty solution of (Pf ) and the discrete finite
element solution of (Ph), respectively. With

e = u, -uh (12.7)

we define an error measure as follows:

r = a||Ve||i2(n) + c~(e,e) , a > 0 . (12.8)

Due to the ellipticity of a(e. e), e.g. see Johnson and Hansbo (1992), we can estimate

r <a(e, e )+c – (e , e) . (12.9)

By subtracting (12.6) from (12.3), we derive the condition

a(e, v ) + c – ( e , v) = 0 V v e Vh. (12.10)

Adding (12.10) with v = uh — w to the right side of (12.9), we obtain

r < a(e. ue - w) + c– (e, lie - w) . (12.11)

Inserting (12.7) and rearranging terms provides

r < a(u£,u£ - w) + c –(u £ ,u £ - w) - a(uh, ue - w) -c–(uh .u£ - w) . (12.12)

The first two terms on the right side of inequality (12.12) are, according to (12.3),
equal to f(u£ - w).

Next we choose w = IhuUe, where Ih is a projection onto Vh (the nodal interpo-
lation if u£ is smooth), and find that u£ — w = e - Ihe. Elementwise integration by
parts of the third term under consideration of the constitutive equation then leads to

J

/

(e - Ihe) dT

) • (e - Ihe) dT
u± 9T

£u^h(e-Ihe)NdT. (12.13)
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The last part denotes the contribution due to the penalization of the contact con-
straint equation. Here we have defined the normal projection (e — Ihe)N = (e —
Ihe) n–1

We now introduce 1i as the set of faces of elements which are not contained in T.
Thus we can write

+ dfl

E dl + E * -

(e - Ihe)N dT . (12.14)

The square brackets denote the jump of a function over the element interfaces. Using
the symmetry of the inner product (e — Ihe)N , (12.14) can be rewritten as

+ (t - ahn) - (e - Ihe) dT

(12.15)

The right side of (12.15) can be estimated with the absolute value, and therefore

r

T ,

9T

arcr,

(e - Ihe) d

(t - Ohn) • (e - Ihe) dT

f (^hn
1 + ffhn) • (e - Ihe) dT . (12.16)

+

Using the CAUCHY-SCHWARZ inequality and an estimate for the interpolation
error (e — Ihe), we obtain

E
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l |Ve|L2(o) , (12.17)

where C is a positive constant. Division of (12.17) by ||Ve||L2(n) provides the error
estimator

"HVe|U2(n) + < C £ 4 l|div<% + 6||i2(T)

+ 53 /*HI|[flM>]|li2(OT') + 53

+ 53 MkuLsl

arcrc

Inequality (12.18) yields an upper bound for the error, which consists of two parts:
an error in the strain components; and an error resulting from the not exactly fulfilled
contact constraint (3.6).

The error is bounded by the deviation of the discrete solution from equilibrium
and the element size. The first and the third terms of the right-hand side contribute
to the error bound if local equilibrium is violated. Further, the term — £ u h Nn 1 can
be interpreted as the contact pressure on Fc. Therefore, the second and fourth terms
also correspond to a deviation from the equilibrium condition.

REMARK 12.1: There are different constants which are related to each of the contributions
in (12.17). Thus, using only one constant is not optimal for error control. However, a good
estimation of these different constants needs additional effort. Two different techniques have
to be mentioned in this context. The first is related to the computation of eigenvalue problems
to estimate C, e.g. see Johnson and Hansbo (1992). The second approach uses the sequence
of meshes which is generated within the adaptive refinement process. In this case, the last
generated meshes can be used to estimate the constant C.

So far we have estimated the error in the displacement field. However, it is also
interesting to find an error measure for the stresses. According to Johnson and Hansbo
(1992) the following residual-based error estimator for linear elastic problems can be
found in for the stresses:

Ik - <rh Hl-i <\\hd fli(«rh) ||ia(n) + \\hC2 R2(<rh} ||a(n) , (12.19)

where the quantities are defined on the finite element as follows:

b| onT (12.20)

R2(trh) = max sup — — [[cr^ns] ! on#T (12.21)
S£oT 5

or R2(crh) = - ^ - ( t - < r f t n ) on dT n IV . (12.22)
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Here f2 denotes the discretized region, hT is a characteristic length of an element, T
is the area of a finite element and dT its surface. The norm || • ||E-1 in (12.19) is the
complementary energy norm (written in stress space)

f -i
cr — cr/, ||p-i = I (er — e r / t ) - C g " ' [<r — tr/j ] d(7 . (12.23)

In Wriggers et al. (1994) an additional term for the error associated with contact has
been introduced

Rz((Th-, u) = I 6A! gyy_ n1 — t/j | on dT n Fc, (12.24)

where the term on the right side corresponds to the local equilibrium in the contact
interface. The term CN gN_ nq can be interpreted as the contact pressure on Tc.

Adding (12.24) to equation (12.19) leads for the linear elastic contact problem to
the following a posteriori error estimate:

\\cr-crh\\l^ < \\hCk R k ( < r h ) \ \ 3 ( f t ) . (12.25)
k=1

A thorough mathematical derivation of the a posteriori error estimator can be
found in Carstensen et al. (1999). Within the finite element discretization, equation
(12.25) has to be evaluated on the element domain, which yields

(12.26)
T

ET can be computed for each element in the finite element mesh as follows:

ET = 4 / |divcrh + b|2dtt + hT /l\[th}\2dT (12.27)
J J '•£
T 9Ti~iO

+ hT f \t-thf dT + hT I ejvgjv-n1 -tht|
2 dT . (12.28)

Inequality (12.26) yields an upper bound for the error which is bounded by the devia-
tion of the discrete solution from equilibrium and the element size. The first and third
terms on the right-hand side contribute to the error bound if the local equilibrium and
the traction boundary conditions, respectively, are violated. In (12.28) we have intro-
duced the stress vector th = cr h n. Local equilibrium requires that [th] = 0, which is
associated with the second term where [th] describes the jumps of the tractions over
the interface. The fourth term has already been discussed above.

The error estimator described above yields a measure between the exact penalty
solution of (12.3) and its finite element approximation (12.6). What is really needed
is the error between the exact solution of (5.10) and the approximate finite element
solution (12.6). So far there are no computable error bounds for contact problems in
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elasticity. But we can make use of a result derived by Kikuchi and Oden (1988) to
change the penalty parameter in such a way that an optimal convergence rate of the
method is achieved. To this purpose, we state the result of Kikuchi and Oden (1988)
which was derived for a perturbed LAGRANGE formulation of the contact problem

|| u - ueh ||1 + |pN - PNeh |* < C3 h + C4 eN^ h–1/2. (12.29)

From this equation it is clear that an optimal convergence rate can be obtained for
EN ~ h–3/2, h being the characteristic length of an element. According to this
relation, we develop now the following update at iteration k + 1 for the penalty
parameter in the contact interface:

,
V h0 /

where e^N0 and h0 are the starting values at the beginning of the adaptive iteration.

12.3 ERROR INDICATOR FOR CONTACT BASED ON PROJECTION

Another possibility to derive an error estimator for elastic contact problems starts
directly from the complementary elastic energy norm (12.23). A simple, but in many
cases efficient, error estimator is now provided by the superconvergent-stress-recovery
technique which is due to Zienkiewicz and Zhu (1987). The equivalence of such error
measures with the residual-based error estimators of the last section has been shown
in Verfurth (1996). The idea to derive these error estimators is based on the fact
that many finite element meshes have superconvergence properties, which means that
there are points in which the stresses are approximated with higher accuracy. By using
a projection procedure, the stresses a* can be computed from the superconvergent
points. It should be noted in passing that the stress-recovery error estimators also
work well if the sampling points are not superconvergence points, see Babuska et al.
(1994). An especially efficient projection technique is provided by the lumped L2

projection, which is described in detail in Zienkiewicz and Taylor (1989). In general,
the projection procedures assume that the projected stresses do not have jumps, which
needs some special considerations in the contact interface (see below). Denoting by
P a projection operator, from cr* we obtain

3[o-* - (Th]dft = 0, (12.30)

a

and can then compute an approximation of the error using (12.23):

||<r-*h ||E–1 < (°* ~ °h ) -Co [** - <Th] d$l. (12.31)
Q

This error estimator can be evaluated in an efficient way, and has been shown to
be robust, see Babuska et al. (1994). Equation (12.31) does not include special
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boundary terms for the contact contributions. The estimate for the contact area is
included in this case implicitly, since the evaluation of the integral in (12.31) has to
be done with respect to fJ = fi1 U I)2, and thus also includes the contact interface.
However, a special projection has to be performed, since it makes sense to treat
normal and tangential stress components in the contact interface differently. Hence
in the frictionless contact the normal component, given by pN — n1 • cr n1, has to
be projected using all elements connected to a point in the contact interface, e.g.
from both bodies. Since we deal here with frictionless contact, we can neglect the
tangential stresses for the moment. Thus, this special projection scheme first has to
be used and then the normal components of the stresses are transformed back to cr*.

Since the normal stress is continuous over Fc, in the frictionless case it is given by
pN = n1 • cr n1. We can refer to pN as the principal stress on the interface, since all
tangential components of the stress tensor are zero in the frictionless case. A simple
procedure which yields a projected and a normal field is as follows. We define a patch
u}ma associated with node ma (a — 1, 2) on the master surface (see Figure 12.2)
by all elements belonging to the node (for m1 these are fim_1 and Om here). Now a
projection procedure like Z2 or another, which is more accurate for boundary nodes
can be applied, e.g. see Zienkiewicz and Taylor (1991). It yields the stress tensor at
the node ma

cr (12.32)

The normal and tangential components of the stress vector can be computed from
the stresses cr*ma via CAUCHY'S theorem by using the normal and tangential vectors
defined following (8.2) for the two-dimensional case (see Figure 12.2):

tfrTa

n1) • n1 ,
•a .

(12.33)

(12.34)

Fig. 12.2 Element patches for stress projection on Fc.
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In the case of frictionless contact, we are only interested in the normal stress, and can
now define with p*N a a linear interpolation of the normal contact stress:

As in (12.31), this result can now be applied to compute the error associated with the
contact stresses. This leads to the additional error in dW n Fc = ^T dTr\rc:

(12.36)

with the error related to the segment m1–m2:

\ 2

(12.37)

where pN h is obtained according to (8.13) for the slave s node which is in contact
with the master surface m1–m2, see Figure 12.2.

The error within the whole domain is then computed by the sum over all elements
T, with ft being the union of all elements. Thus we have

e||r, (12.38)
T

with

'-Co1 • (<r*-<rh)dT. (12.39)

Equation (12.37) provides the additional term due to contact which has to be included
in case the element includes a contact interface:

(12.40)

REMARK 12.2:

1. In the stick case a penalty stiffness is used to prevent relative tangential movements in
the contact area. Thus we can derive an error measure for stick using interpolation
(12.35), together with (12.34) t*T(£) = (1 - £) t'T l + £ t'T 2, which yields

which has to be added to (12.40); tT h follows from (8.13).

2. If the penalty parameter eyN has a very large value compared to the elasticity constants
of the bodies in contact, then terms (12.38) and (12.41) are small compared to (12.31).
In this case it makes sense to scale the penalty parameter such that it has the same
magnitude as the elasticity constants in (12.31) of the bodies in contact.
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3. So far the error estimators have been developed for small elastic deformations. In the
case of large elastic strains, there is no mathematically sound basis. However, it should
be noted that existence results exist for polyconvex materials, e.g. see the overview in
Ciarlet (1988). These results have been extended to contact problems in Ciarlet (1988),
Kikuchi and Oden (1988) and Curnier et al. (1992). Thus there is at least an existence
result available for contact problems. The question of uniqueness, also needed for the
derivation of error estimators, can of course not be solved, since problems undergoing
large elastic deformations may also exhibit material as geometrical instabilities (e.g.
limit points or bifurcations).

If we now formulate all equations associated with the variational inequality in the
tangent space of a given deformation map, and exclude within this configuration insta-
bilities, then the information from these incremental equations can be used for an error
estimate within the incremental step. This means that we can exchange the stresses in
(12.31) by the appropriate nonlinear stress measures when using the residual-based
error estimator. If we employ the error estimator based on the superconvergent recov-
ery technique, then additionally the incremental constitutive tensors have to be used in
(12.31) and (12.37) to compute the error (12.40).

12.4 ERROR ESTIMATORS BASED ON DUAL PRINCIPLES

The adaptive mesh refinement strategies described in the previous sections are based
on a posteriori error estimates in the global energy or L2 norm involving local resid-
uals or postprocessed stresses of the computed solution. However, for practical pur-
poses, the energy or L2 norm may be of minor importance. In general, the variables of
interest are displacements or stresses at some particular points. Recently procedures
for the estimation of various kinds of local error functionals have been introduced in
a general framework by Becker and Rannacher (1996) or Rannacher and Suttmeier
(1997). This approach is developed here for contact problems involving large elastic
strains. The error estimator is evaluated by solving the set of equations for an addi-
tional right-hand side, and applying the classical error estimators (based on residuals
or superconvergent patch recovery). The combination of the discretization errors for
the initial and the dual problems gives the desired error quantity. The formal approach
is given in the following.

12.4.1 Displacement error control

As for residual norm error estimators, the starting point is again the differential equa-
tion for the discretization error e = u — uh:

Lx (u - uh) = Lxe = b - Lxuh := R1 , (12.42)

with the formal differential operator L and the element internal residuals R1 .
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With TJ denoting the test functions and a( . ) as defined above, we obtain the weak
form

rj-.1
 T

(12.43)
The first integral represents the virtual work done by element internal residuals
whereas the second term represents the virtual work done by jumps in the tractions
at the force boundaries.

For edges apart from the structure boundaries, the jumps in the tractions of both
neighbouring elements are the edge residuals represented in the third term. The jumps
are split by a factor of 1/2 into the two elements sharing the edge considered.

For simplicity, we use R1 and R2 containing internal and jump residuals, respec-
tively:

a(e,Tj) = Y, {(R1, f)oT + (R-2,r/)rT} , (12.44)
T

To estimate the error of a specific displacement in the component i at point x = x,
we additionally consider the following dual problem:

div r(G) + <5,-(x) = 0, (12.45)

or in weak form
a(G,i7) = ( t f £ , T 7 ) , (12.46)

where 6i is the DIRAC delta (unit point load vector) in the direction i, and G denotes
the Green's function.

Applying the principle of BETTI-MAXWELL to the error problem (12.44) and the
dual problem (12.46) yields the following relation:

(R2,G)rT} . (12.47)

The term on the left-hand side is the work of a unit load with the error function e and
is equal to the error ei(x) of the ith component of the displacement at point x.

Now inserting G in equation (12.44) instead of the test function 17, the local error
can be expressed by the bilinear form

ei(x) = a(e, G). (12.48)

Of course, the solution of the dual problem is not known, but it can also be computed
numerically based on the same discretization. It is simply another load case.

Using the GALERKIN orthogonality with Gh as the finite element approximation
of G

ei(x) = a(e,G – Gh) (12.49)
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and applying the CAUCHY-SCHWARZ inequality, the local error is estimated by the
error energy a(e,e) of the primal problem (12.44) weighted by the error energy
a(G - Gh; G - Gh) of the dual problem (12.46):

e?(x) < a(e, e)a(G - Gh.G - Gh . (12.50)

The second term serves as the weighting function and filters out the influence of the
overall residuals over the displacement error of interest. Inequality (12.50) can be
computed element wise, applying the estimators (residual-based or post-processed)
described in the previous sections on the primal and dual problems, respectively:

e2(x) < ]T a(e,e)Ta(G – Gh ,G – Gh)T. (12.51)
T

For instance, a(e, e)T and a(G — Gh; G — Gh)T are computed by applying the
stress-recovery error estimator:

a(e,e)T = / (T (uh) — T(uh ) -C–1 [T (uh) — T(–uh) ] d (12.52)

QT

and

a(G - Gh,G - Gh)T = J (r*(Gh) - r(Gh)) -C
-1 [r*(Gh) - r(Gh)]<Kl .

(12.53)
With the same arguments as in the previous section, the stresses required to evaluate

(12.52), (12.53) are obtained from the solution of the corresponding linear problems.
Therefore, we compute T((ph) and r*(<ph) from the increase of displacements

of a perturbed loading state A + eA in the vicinity of the current equilibrium point

In the same way, r(Gh) and r*(Gh) are obtained from the increase of displace-
ments by applying Si as an additional small load on the current loading state. Since,
for a small load, we will not observe any change in the size of the contact area, this
procedure is also consistent with the assumption that the contact area Fh does not
change when 8i is applied.

REMARK 12.3: Although the internal energy of an elastic structure loaded by point loads
is infinite, the error for the displacement of a specific finite element node can be computed
simply by applying a nodal force in the dual problem. The smearing effect of elements with
finite length leads to the simplest way of regularization bounding the energy.

12.4.2 Stress error control

Errors for stress variables at a specific point x can be estimated in a straightforward
manner using the same concept as in the previous section. In contrast to the local
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Fig. 12.3 Dual problem for contact pressure.

displacement error control, a discontinuity on the related displacement variable must
be applied in the dual problem:

(12.54)

Applying again the reciprocal theorem, and subsequently the GALERKIN orthogonal-
ity, the error in the displacement gradient or respective stress value can be computed
by

= a(e, z – z h ) . (12.55)

To apply a discontinuity to an individual displacement in two or three dimensions,
some sort of regularization must be applied. The simplest way in the finite element
method is to substitute the displacement jump by equilibrated forces acting at two
neighbouring nodes to point x.

The above described concept for local quantities can easily be extended to arbitrary
integral variables like reaction forces or pressure quantities on a contact interface. In
order to estimate the error in boundary reactions, the displacement discontinuity can
be imitated by a line load in the vicinity of the boundary (see Figure 12.3).

12.5 ADAPTIVE MESH REFINEMENT STRATEGY

Based on knowledge of the error distribution, a refined mesh can be constructed which
yields a better approximate solution. In general, there are several possibilities to obtain
refined meshes. One approach is called the hierarchial method, where elements of an
existing mesh are subdivided at parts where the error measure indicates it. Another
method is to define an error density function and to use this for the generation of a
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completely new refined mesh. To obtain an optimal mesh, which means we want the
error to be of the same order in all mesh parts, it is desirable to design the mesh such
that the error contributions of the elements are equi-distributed over the mesh.

The object of an adaptive algorithm is usually stated as a nonlinear optimization
problem: construct a mesh such that the associated FEM-solution satisfies

< TOL , (12.56)

with TOL being a given tolerance. Furthermore, the expense to compute
should be nearly minimal. The measure ET can be either

or

ET1

ET2

ET from equation (12.28),

||e||£ from equation (12.40), or

e2?(x) from equation (12.51).

(12.57)

(12.58)

(12.59)

As a measure of computational work, the total number of degrees of freedom is chosen.
Since the exact solution u is not known, we demand that the error contributions of all
elements yields

^E'Tk <TOL, (12.60)
T

which guarantees that (12.56) is fulfilled, k being 1, 2 or 3, depending on the choice
of error estimator. Here the constant C appearing in (12.26) has been included in
TOL for convenience when the error measure ET1 is used. Equation (12.60) serves
as a stopping criterion in the adaptive process. To minimize the number of degrees
of freedom during refinement, we require that the mesh is an optimal mesh, i.e. that
the error E2j, is equally distributed between elements (see Figure 12.4). Ideally, we

Fig. 12.4 Equi-distributed error in finite element mesh.
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then have for the elements I, J K

EI = EJ = EK. (12.61)

With this requirement, for the error contribution of all elements we can write

(12.62)

N denotes the number of elements in the mesh, and £7 the error which is now
associated with all elements according to (12.61). Finally, (12.60) together with
(12.56) yields the refinement criterion,

Now we state the overall algorithm of the h-adaptive method for contact problems.
The algorithm includes the following steps:

1 . Set initial values: / = 0, A0 = 0, AA, i = 0

2. Generation of start mesh: .Mi

3. Loop over load increments : Al+1 = Al 4- AA

(a) IF l+1 > \max => STOP

(b) Iteration loop to solve contact problem

(c) Mesh optimization

• Compute EJ-

• IF Y. Erk < TOL => GOTO 3.
• IF E\k > TOL / N =*> refine element T
• Set i = i + 1
• Generate new mesh Mi

- Delaunay triangularization
- Smoothing, if necessary

• Interpolate displacement and history variables of the new mesh
• GOTO 3 (b)

The new mesh is assumed to be generated by a DELAUNAY triangularization, but
different generation techniques like the advancing front method or others can also be
applied (see Sloan (1993) or Rank et al. (1993) for two-dimensional mesh generation
or Schoberl (1997a) for a three-dimensional meshing tool).

A meshing procedure which combines the DELAUNAY triangularization and a
subdivision techniques for the generation of meshes consisting of quadrilateral ele-
ments is described next. This approach was also used to generate the meshes of the
examples in Sections 10.7.
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In the proposed procedure the recursive region splitting is applied for mesh gener-
ation (Figure 12.5). The region which has to be discretized is subdivided recursively.
Within the procedure the nodes are positioned based on a density function. This de-
fines the local element size on the basis of the error indication. The element generation
then follows by a DELAUNAY-triangularization, e.g. see Sloan (1993).

The triangular mesh can now be transformed into a mesh consisting completely
of quadrilaterals. To achieve this goal, two neighbouring triangles are combined and

Fig. 12.5 Recursive region splitting.

Fig. 12.6 Conversion: triangular to a quadrilateral mesh.
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subdivided into four quadrilaterals. The left over single triangles are then subdivided
into three quadrilaterals, as depicted in Figure 12.6.

It should be noted that when a background density function is applied to define the
local element size, distorted element geometries cannot be avoided. To avoid this, a
relaxation of the nodes can be applied to improve the shape of the elements; see Rank
et al. (1993) for details.

12.6 NUMERICAL EXAMPLES

In this section we discuss two examples in which different error indicators and es-
timators are compared. Furthermore, an example which exhibits large strains is
considered. All computations were performed by using the finite element program
FEAP, which is described in Zienkiewicz and Taylor (1989). The adaptive meshes
for quadrilaterals were constructed with mesh generators developed in Bank (1990)
and Rank et al. (1993). Mesh refinements for triangular elements are based on the
algorithm described in Sloan (1993). The three-dimensional meshes were created
using the mesh generator described in Schoberl (1997a).

12.6.1 Hertzian contact problem

In this example we apply all error estimation procedures, described within the previous
section, to solve the well known Hertzian problem of an elastic cylinder (Young's
modulus E = 7000, Poisson's ratio v — 0.3) contacting a planar rigid surface. The
cylinder has a radius of r = 1, and is loaded by an overall load of F = 100.

For this problem an exact solution for the contact pressure can be obtained analyt-
ically:

Pmax — \ _ _
(1 +v) (1 – v) '

Hence we compare the results computed by the adaptive methods directly to the exact
solution. To omit problems related to a point load in elasticity, the load is distributed
over a small surface on top of the cylinder. In order to simulate the rigid surface we
set Young's modulus to E = 100000 and Poisson's ratio to v = 0.45 in the finite
element model. The initial mesh is depicted in Figure 12.7a.

As the locally controlled error quantity we use the maximum contact pressure
within the method based on duality. Hence, equilibrated vertical forces are applied
centrally on the contact interface.

Three different error measures were applied to perform the adaptive computation.
These are the residual-based error estimator due to Johnson and Hansbo (1992) (see
Section 12.2), the Z2 indicator of Zienkiewicz and Zhu (1987) (see Section 12.3),
and a local error estimator developed in Rannacher and Suttmeier (1997) (see Section
12.4). All error measures have been enhanced to include contact, see Wriggers et al.
(2000). For the local error estimator, the error measure chosen was the maximal
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Fig. 12.7 (a) Starting mesh: 258 elements, (b) and mesh refinement: local error estimator.
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Fig. 12.8 Convergence behaviour.

contact pressure. Due to (12.55), we then have to apply to equilibrated force systems
in the contact interface.

Pictures 12.7(b) and 12.9 to 12.10 show meshes which were obtained using the
different error measures. The final mesh refinement belongs to the converged solution.

The maximum contact pressure is depicted in Figure 12.8 for the different adaptive
strategies. It is compared with the analytical solution of pmax = 494,83. It is clearly
visible that the local error estimator leads a solution which converges very fast, since
it only needs half the number of elements than the other methods. One can also see
that this error estimator, by design, yields only a refinement where needed, whereas
the other two error measures take the complete solution into account and also refine
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Fig. 12.9 Mesh refinement: Z2 error indicator.

Fig. 12.10 Mesh refinement: residual-based error estimator.

close to the concentrated load at the top of the disk. Thus if only the pressure is of
interest, the local error estimator provides the most efficient method. However, if
one does not know where maximal values will appear in the structure then one has
to look for a method which takes all errors in the domain into account. Hence the
residual-based or the Z2 -indicator are preferable.

12.6.2 Crossing tubes

In this example we consider two crossing rubber tubes (see Figure 12.11) with the
material data E = 3000 and v = 0.3. Each tube has a length of L = 100 mm, an
outer radius of r0 = 50 mm and an inner radius of ri = 30 mm. Due to symmetry.
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Fig. 12.11 Initial geometry.

Fig. 12.12 One fourth of the model, initial mesh.

a one fourth model is used. The tube is fixed at one end and loaded so that both
tubes come into contact. The undeformed state is depicted in Figure 12.11. The
deformed state can be found in Figure 12.12. The mesh adaption is performed with
respect to the global error energy norm and with a prescribed relative error tolerance
of j]err — 15 %. It leads at the given deformation state to the adapted mesh shown
in Figure 12.13. We see a very fine mesh developed in the contact zone. That this
refinement is necessary can be observed from the stress field. The principal stresses
are reported for the initial mesh and the adapted rnesh in Figures 12.14 and 12.15.

12.6.3 Fractal interface

The approximations of the fractal interfaces are combined with a penalty regulariza-
tion based on the minimization of the potential energy after some appropriate trans-
formations are performed. For this type of contact problem, there are often asperities
with corners on the interfaces which lead to possible stress concentrations. Further-
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Fig. 12.13 Adapted mesh.

Fig. 12.14 <r/, initial mesh.

Fig. 12.15 eri, adapted mesh.
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P = 1300 x 31 = 40300kN

V W v W. V

Rigid body

Fig. 12.16 Finite elasticity with a fractal interface.

more, the convergence of a finite element solution under a sufficient discretization
cannot be determined from the outset.

An adaptive finite element strategy appears to be suitable for such a kind of contact
problem, in that it possesses the properties of automatically adjusting the mesh sizes
both in the interior of bodies and at the contact zone. Here we use the residual-
based error estimator for adaptive analysis. An in-depth treatment of the underlying
mathematical structure can be found in Hu et al. (2000).

Let us consider the structure of Figure 12.16 with a fractal boundary. This example
was first proposed in Panagiotopoulos et al. (1992), although the solution did not
include adaptive mesh refinement. The system is subjected to a gravity load in its
plane. Large traction loads on the upper boundary enforce the fractal part to be
in contact with the rigid support AB. The body has been discretized by triangular
elements. Finite elasticity, using a Neo-Hookian constitutive equation (see Section 2)
and geometrical nonlinearity are assumed. The modulus of elasticity is E = 2.1 x 109

N/m2 and the Poisson's ratio v = 0.33. The thickness of the plate is taken to be 0.05
m. We study the planfication of the fractal surface and the corresponding variations
of stress and displacement fields.

The fractal boundary is defined to be the attractor of the Iterated Function System
IFS (see also Section 4.7) {R2; w1, w2}, where

0.40 0.0
-0.04 0.60

and

w22

0.60
0.04

0.0
0.80

1.0
-0.1y } L U-U4 U'8U J I V

We must note here that the above relations describe the IFS on the assumption that
the coordinates of the point C are (x. y} = (0.0,0.0). With this IPS we calculate the
approximations of the fractal interfaces. Note that the stress and displacements fields
of the fractal interface become insignificant after the fifth iteration. This is because
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Fig. 12.17 Initial mesh.

Fig. 12.18 Second mesh refinement.

Fig. 12.19 Stress 0-33 distribution for the initial mesh.

the HAUSDORFF distance between the approximation f5 and the attractor f is very
small, i.e. the approximation f5 sufficiently approximates the attractor /.

The load is applied in one increment on the initial mesh shown in Figure 12.17.
After that, the load is kept constant during the refinement stages. Figure 12.18 depicts
the mesh of the second refinement, which shows a concentration of the discretization
along the fractal contact surface. The vertical stresses are reported in Figures 12.19
and 12.20 for the initial and refined mesh, respectively.
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Fig. 12.20 Stress 0-33 distribution for the second mesh refinement.

The whole algorithm proved to be stable, although the complicated interfaces in-
troduced by the approximation of the fractal interface do not offer an ideal framework
for a unilateral contact problem. The complexity of the higher order approximations
of the fractal interface caused an increase in the computing time. It is also important to
note that the approximation of the fractal contact boundary Fc does not considerably
affect the stress and displacement fields inside the body. Of course, this is compatible
with ST. VENANT'S principle of classical elastostatics, which actually holds for
classical boundaries and for bilateral boundary conditions. The numerical results are
quite reliable concerning the consideration of possible stress concentration, which
can be seen by comparing Figures 12.19 and 12.20. Indeed, the action of external and
re-entrant corners in each approximation has been appropriately taken into account
by increasing the number of elements around the singular point.

12.7 ERROR INDICATOR FOR FRICTIONAL PROBLEMS

In the previous section, additional terms for the error associated with normal contact
have been introduced for frictionless contact. Now we want to establish the same
sort of error indicators for contact with friction. Here the mathematical theory is not
developed in so much detail, e.g. see Hlavacek et al. (1988), although several attempts
to estimate the errors a posteriori, e.g. see Lee and Oden (1994). However, for general
applications, involving finite deformations, error estimators are still missing. Thus,
in the case of frictional contact we use error measures which indicate the error in
the contact interface. Again, we can base the error computations on either residual
error measures or error indicators based on superconvergence properties. Both will
be developed in the following.

Let us recall the residual error estimator for frictionless contact for geometrical
linear problems (12.24):

R3(ah,uh) = >N h on dT n (12.64)
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which corresponds to the local equilibrium in the contact interface. The term cjv gNh n1

can be interpreted as the contact pressure on Fc. The stress vector is given by
th =rhn

l.
According to (12.24), we can now introduce an error measure for the frictional

part of the contact in the same way:

R4((rh,uh) = | tTn+1 h - th| on 3T n Tc . (12.65)

In this relation, the frictional stress tTn+1 h is computed via the update formula (9. 13)
or (9. 114).

Adding (12.24) and (12.65) to equation (12.25) yields the following error indicator
for the contact problem:

\\<r-0h III-! <||hC1
fc=2

Within the finite element discretization, equation (12.66) has to be evaluated on the
element domain, which yields

\\tr-ffh\\l-i <C^[ET(hT luh lbT)]2 . (12.67)
T

ET can be computed for each element in the finite element mesh as follows (see
(12.28) in Section 12.2 and Wriggers et al. (1994)):

Jf, = HT | divr/j + b | 2 d f t + hT - \ [U] |2rfT (12.68)

/,.-
T

+hT \-th\dT + hT

Since frictional processes are path-, and with this, time-dependent, an estimation for
the magnitude of the time step used to integrate the frictional constitutive equations
(9. 112) to (9. 114) is still missing. In this study we neglect this fact, and prescribe the
time steps from outside the adaptive algorithm.

Now we also state the error indicator which can be derived using the supercon-
vergence properties of the projected stress values at the boundary. As before, we can
define the projected stresses by any procedure at the nodes, see Figure 12.2. With
this we obtain the stress tensor at the node ma, see (12.32):

The normal and tangential components of the stress vector then follow from (12.34).
As in the case of frictionless contact, we can now define with p*N a and tT a linear
interpolation of the contact stresses:

TTT
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As in (12.38), this result can now be applied to compute the error associated with
the contact stresses, and we arrive at an expression for the additional contact error in
arnrc = ]rT 8Tnrc:

|e||C^]Ti|e||^+£||e||^, (12.70)
T T

with the error related to the segment m1-m2:

(12-71)

where pNh is obtained according to (8.13) for the slave s node which is in contact with
the master surface m1-m2 see Figure 12.2. The tangential stress tTn+1 H follows
from the algorithmic update formula (9.1 18).

The error within the whole domain including contact is computed from the sum
over all elements T, with fi being the union of all elements. Thus with (12.39) we
have

\\cr- ah\\E-i =]£ l|e| |r. (12.72)
T

Equation (12.70) provides the additional term due to normal and tangential contact
stress which has to be included (12.72) in case the element includes a contact interface.

(12.73)

12.7,1 Adaptive strategies

As discussed before, we state the adaptive method as a nonlinear optimization prob-
lem: construct a mesh such that the associated FEM solution satisfies

|er| = | | T - T h | | E - I = | u - uft ||E < C ̂  E2
T < TOL , (12.74)

T

with TOL being a given tolerance. Furthermore, the expense of computing u/, or r ^
should be minimal. The measure ET in (12.74) can be defined according to (12.68)
or (12.73).

Since the optimal mesh changes with the deformation, the data of the current state
of the structure has to be transferred from one mesh to the other in order to achieve
an optimal usage of the computational resources.

In the last section, mesh refinement techniques were applied which are based on
evolving meshes during deformation. As a criterion for re-meshing, the relative error



382 ADAPTIVE FINITE ELEMENT METHODS FOR CONTACT PROBLEMS

can be introduced. The error control now works so that this relative error has to be
limited to a prescribed tolerance T) tol- To obtain a mesh fulfilling the required tolerance
f] < Tltoi, the element size is locally predicted, leading to an equally distributed error
in the finite element mesh. The element sizes hnew are then computed from

hnew = h^ld-^, (12-76)

with

In contact problems with friction the history variables are present, such as the
plastic slip (e.g. see the algorithm in Box 13) which have to be transferred to the new
mesh. Thus we have to use special strategies within a nonlinear adaptive process.

If history independent problems are considered, the transfer can be done without
problems by projecting the deformation to the new mesh and iterating the nodal values
to equilibrium. If history dependent problems, like frictional contact or inelasticity,
are considered, internal variables have to be transferred. Such a process, described
in Section 12.7.2, cannot be performed without loss of accuracy.

To avoid such a new source of error due to the transfer of state variables, a second
strategy can be proposed in which no transfer of variables is needed. Here, for every
re-meshing the computation starts again from the first load step. The density of the
elements for a new mesh can be defined by the smallest local element size which is
obtained during computation over all load steps k = 1,.... kmax:

he = min {he
k} . (12.78)

k=l ...kmal

The procedure ends if the finite element solution for the adapted mesh is below the
prescribed tolerance at all load steps regarding nk* < r/<0/,V/r. This refinement strategy
ensures that the local element size is smaller every load step than the element size
defined by the average error of a single load step em. Obviously, (12.78) does not
lead to optimal meshes, in the sense that the local element size is as small for an actual
load step within the complete process.

12.7.2 Transfer of history variables

If an adaptive procedure of evolving meshes is considered, the variables of the finite
element formulation have to be transmitted to the new mesh. These are the nodal u
and internal variables in the solid, like plastic strains, or at the contact surface, like
frictional slip, i = (Ep, g^) which have to be updated in each load step. Note that
the transfer of the available data u, Ep , g f - , . . . leads in general to an inconsistent
dependence of these data on each other in the new mesh.

Several procedures for the history data transfer are possible, e.g. see Ortiz and
Quigley (1991) and Lee and Bathe (1994). The procedure which is applied here for
the transfer of the inner variables is described in Figure 12.21. The internal variables
are projected via the procedures discussed in Section 12.3 onto the nodes in the old
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Fig. 12.21 Transfer of history variables.

mesh (left picture in Figure 12.21). Nodal and internal variables are then transmitted
to the nodes in the new mesh (middle picture in Figure 12.21). Finally, the internal
variables are interpolated to the GAUSS points (see right picture in Figure 12.21). This
procedure is also applied at the contact interface. In that case we have to interpolate
data related to a curve in two-dimensional, and related a surface in three-dimensional,
problems. The displacements at the contact interface can be obtained by interpolating
the displacements from the element nodes. This is usually achieved by isoparametric
interpolations of the adjacent finite elements. However, an improved interpolation can
be obtained using higher order polynomials, e.g. HERMITE polynomials as discussed
in Section 8.5.1. In contact formulations, like the node-to-segment elements, the
constitutive data related to the contact interface are stored as nodal values. In that
case, the first step in Figure 12.21 can be omitted within the history transfer.

Independent of the choice of transfer procedure, an error in the transferred data
cannot be avoided. This error stems from two sources: the transfer error itself, and
from the fact that the data in the old mesh are already affected by the discretization
error. Therefore, after transfer the discrete weak form of equilibrium is in general
violated Gh+1(u t rana, itrans) jL 0. By iterating the nodal variables u to equilibrium
with the NEWTON- RAPHSON scheme for a fixed set of active contact constraints,

G/l+1(u/l+1,i*ro"*) = 0. (12.79)

the current state in the new mesh is obtained. It should be mentioned here that
the tangential stiffness matrix KT computed with these transferred values can be
badly conditioned, especially in the case of large strains. In addition, we may also
have a large residuum, hence the solution of (12.79) is not easy to achieve, and may
require considerably more iterations than usual. Particularly for sheet metal forming
simulations, this can be a severe problem. In this context, the transfer of the current
state makes the iteration to equilibrium even more difficult.

In the numerical equilibrium state of the new mesh (12.79), the strains differ in
general from those of the old mesh, whereas the internal variables itrans remain fixed
after transformation to the new mesh. As a consequence, smaller strains can occur in
the new mesh, and hence the stresses can also be reduced considerably.



384 ADAPTIVE FINITE ELEMENT METHODS FOR CONTACT PROBLEMS

12.7.3 Numerical examples

In this section two different problems are discussed. The first is associated with
frictional contact, and the second considers finite inelastic strains with contact. Both
computations were performed using a version of FEAP which included adaptive finite
element analysis.

Rubber sealing. We consider the problem of a sealing which is in frictional contact
with a rigid part. The sealing consists of an elastic block which is pressed into two
almost rigid parts, fixed at the straight edges. The block is driven into the rigid parts
by a prescribed displacement at the bottom. The problem and its initial mesh are
depicted in Figure 12.22. The error due to the time history is not considered here.
Thus, error indication is based on the error measure given in (12.68) for stationary
problems. Error computation is only performed at specific load steps in the complete
load history, which are chosen heuristically from engineering observations of the

Fig. 12.22 Problem with initial mesh.

Fig. 12.23 (a) First refined mesh, (b) Second refined mesh.
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Fig. 12.24 Third refined mesh.

stress fields. As can be seen from Figure 12.26 by the jumps of the displacements
in the 1-direction, the mesh is refined at times t = 0.5, t = 0.6, t = 0.8, t = 0.9
and t = 1.0. Refined meshes which are obtained at t = 0.9 are depicted in Figures
12.23 and 12.24. These show clearly that the main refinement takes place close to
the contact interface, hence the last term in (12.68) governs the error indication.

Figure 12.25 shows the contribution of the tangential stress. This has been con-
firmed by a reference solution using a uniformly refined mesh with over 16,000
degrees of freedom. We see that the adaptive method is more efficient, since it needs
only about 5000 degrees of freedom, and hence fewer unknowns, to arrive at the same
result. This is also confirmed by Figure 12.26, which shows the evolution of a char-
acteristic displacement in the contact area. Note that the displacements depict jumps
from one mesh to the next, which move the new displacements close to the reference

Fig. 12.25 Tangential stress in contact zone,
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o = Reference mesh
A = Adaptive computation

0.8

t

Fig. 12.26 Evolution of vertical displacement.

Fig. 12.27 Deep drawing of a sheet.

solution. Such behaviour is not observed when finite deformadons of elasto-plastic
solids are treated.

Deep drawing of a sheet. The process of deep drawing of a sheet is simulated as
illustrated in Figure 12.27, where the grey sheet is located between a punch and a die.
The sheet is discretized by shell elements for finite strain plasticity as described in
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Fig. 12.28 NURBS-description of the tools.
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Fig. 12.29 Vertical applied contact force and relative error 77* of the deep drawing of the
sheet.

Wriggers et al. (1996) and Eberlein and Wriggers (1999). The following geometrical
data describe the geometry of the problem (see Figure 12.27): the thickness of the
sheet which is t = 0.7, and the length and height of the sheet which are assumed to
be L = 160 and H = 140. The material data of the sheet are YOUNG'S modulus
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Fig. 12.30 Last mesh in the final configuration with TOL = 10%.

E = 110000, POISSON'S v = 0.3, yield stress aY = 200 and linear hardening
parameter h = 1200.

The rigid tools, punch, blank holder and die are described with special smooth
BEZIER interpolation, leading to NURBS-surfaces, see Figure 12.28. The contact
is formulated using a frictionless penalty method. The discretization was derived in
Section 8.3.1.

In the simulation, the die and blank holder are positioned near each other with a
distance of d = 0.1. The punch is pushed after the first touch towards the sheet in
intervals of Aw = 0.05, until it has reached the final position of w = 50.0.

The adaptive procedure for this type of contact problem was developed in Han
and Wriggers (2002). Large plastic strains occur in the deformation process, and
hence large errors due to transfer of the current state are expected, see Section 12.7.2.
Therefore, the strategy without transfer is preferable, which computed the errors
within a complete computation of the entire load history based on a fixed mesh. After
that, the whole process is recalculated using a refined mesh based on the previous
error computation.

The adaptive simulations are performed such that the error is limited by 15% and
10% for the relative measure given in (12.75). Again, meshes are chosen within
the adaptive procedure which fulfil the tolerance in the first load. The sum over the
vertical contact forces of the die, and the relative error of the simulations with respect
to 77 are plotted against the total punch displacement u in Figure 12.29. Two adaptive
re-meshing steps for the sheet were needed to limit the error within the prescribed
tolerances of 15% and 10%, respectively. In Figure 12.30 the last mesh of the final
configuration which fulfils the prescribed tolerance of 10% is shown.



13
Computation of Critical

Points with Contact
Constraints

The postcritical behaviour of contact problems cannot be studied in general by using
standard path-following methods like the arc-length schemes given by Riks (1972)
and others. These methods work well for applications where pure snap-through ap-
pears, even if contact takes place during the deformation process, e.g. see Simo et al.
(1986). Besides the snap-through behaviour of structures, bifurcation can dominate
the response, especially for shell structures. In the case of bifurcation, special algo-
rithms like branch-switching or related techniques have to be employed if secondary
branches have to be computed, e.g. see Riks (1984) or Wagner and Wriggers (1988).

An example for bifurcation within a contact problem is given by the buckling of
a EULER beam which can come into contact with rigid obstacles, see Figure 13.1.
In this case, path-following algorithms with branch-switching and contact formu-
lations have to be modified since several post-critical solutions are possible due to
different active contact constraints. These lead to solutions which are associated with
different branches. In general, constraints associated with contact are inequalities.
Thus, special techniques have to be used to incorporate contact constraints into the
formulation.

An interesting aspect is the computation of critical points of a structure when con-
tact constraints are present. In Simo et al. (1986) results of a buckling analysis with
unilateral contact using arc-length procedures are published. Due to the emerging
inequality constraints, the underlying mathematics is rather complex. Related lit-
erature is restricted mainly to unilateral contact problems with rigid obstacles, see
Huy and Werner (1986), Endo et al. (1984) or Klarbring and Bjorkman (1992). In
those papers, the mathematics of path following and critical points with inequality
constraints originating from unilateral contact problems is studied. Klarbring and
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Fig. 13.1 Buckling of a beam under the presence of contact constraints.

Bjorkman (1992) describe the occurrence of end points in these cases, where the
equilibrium path ends. Those points are not real critical points, in the sense that the
stiffness matrix is not singular.

13.1 INEQUALITY CONSTRAINTS FOR CONTACT

Let us assume that the structure is already discretized. In this case the constraint
equations are given by nodal values. In this context (see Chapter 3) the gap or
penetration gs associated with a typical slave node s is indicated by the inequality

g, = (x2
8-x\)-n1 >0; Vs€Jc- (13.1)

n1 denotes the normal to a master segment as defined in Chapter 7, x^ defines the
current position of the slave node, and x-1

1 defines the projection of the slave node x^
onto the current position of the master segment. Inequality (13.1) has to be checked
for all candidate contact nodes s which are contained in the finite set Jc of possible
contact nodes. In general, this set of nodes is given by all nodes lying on the surface
of the contacting bodies. For gs < 0 the constraint equation for a node s becomes
active (s G JA], otherwise the constraint is inactive (s e J/) with Jc = JA U Ji
and JAnJi= 0.

It should be noted that equation (13.1) is valid for the general contact of two or
more bodies; see Section 3.1 for a detailed description. Here and in the following,
only the case of frictionless contact is considered. The standard penalty method can
be applied to enforce constraint (13.1), and the following term has to be appended
to the discretized form of total potential energy functional II (e.g. see Section 5.3.2
equation (5.32)):

= f JT 9s-. VseJx , (13.2)

with the penalty parameter e —)• oo and nc being the number of slave nodes in
contact. It should be noted that only the active constraints are incorporated in (13.2).
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The variation of (13.2) yields an additional term to the residual vector R

nc

Rc = ̂ g8N8, VseJA- (13.3)
8=1

Here, NS denotes the distribution of the reaction forces in the master element; see
Chapter 7 for details. Thus the replacement of inequality (13.1) by the penalty term
(13.3) yields the discretized weak form for frictionless contact:

Gc(u.A) =R(u) + Rc- \P = 0, (13.4)

which is basis for the following study of stability problems with contact.

13.2 CALCULATION OF STABILITY POINTS

In this chapter special algorithms for the detection of bifurcation or limit points are
summarized. A criterion for stability is that the second derivative of the potential
energy II becomes zero. This is equivalent to saying det Kn = 0, where in the

f>(~^discrete case Kr-i — ^f *s tne HESSIAN or tangent matrix at a known state u,.
i

For det KTI > 0 the equilibrium path is stable, and for det KTI < 0 it is unstable.
From the mathematical standpoint, different possibilities exist to calculate singular

points G(v. A) — 0. One can, for example, use the system

f G(u,A) ]
G(u.X.(f>) = < KT(v.A)0 > = 0. (13.5)

I U0)-l J

This extended system has been introduced by Werner and Spence (1984) for the
calculation of limit and symmetrical bifurcation points, for instance. In equation
(13.5), I denotes some normalizing functional which prevents the trivial solution
0=0. Extended systems like (13.5) are associated with 2 n unknowns, which seem
to considerably increase the numerical effort.

The treatment of bifurcation problems, especially the calculation of secondary
branches, requires additional considerations. Near stability points the associated
eigenvalue problem has to be solved in order to calculate the number of existing
branches.

Since the contact constraints are represented by inequalities, we have to solve an
inequality eigenvalue problem, which here is represented by the linearized eigenvalue
problem contained in (13.5),

K r ( u ) 0 > c j 0 Vu. 0 e V , (13.6)

where V = { u\ gs(u) > 0. Vs e Jc}- To solve this linearized eigenvalue
problem we make use of a result obtained by Huy and Werner (1986) for linear
variational eigenvalue inequalities.
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Each eigensolution (u. w) of the eigenvalue inequality (13.6) is a solution of the
eigenvalue equality

(K T (u ) -u ; l )0 = 0 V u , 0 e W , (13.7)

where W = { ti| gs(u) = 0, Vs e JA} is a subspace of V being defined by the
active constraints.

1 3.3 EXTENDED SYSTEM WITH CONTACT CONSTRAINTS

To compute singular points in the presence of contact constraints when frictionless
contact is assumed, one can apply algorithms which are based on the idea of the
extended system. These are described in detail in Wriggers et al. (1988) and Wriggers
and Simo (1990), for example. Applying the extended system procedure for the
system defined in (13.5) yields, with the tangent matrix KTC = KT + Kc:

0 -P

0J £ 0

r AII ) r Gs(u) + Gc(u) )
. = -{ Krc(u)0 }

( \m -1 J
(13.8)

Here Kc is the matrix notation for the derivatives of the contact terms Gc with respect
to the displacements (Kc = ^^). The penalty method was chosen to incorporate
the contact inequality constraints in the equation system G. The vector Gc consists
of penalty terms that are subjected to the changes in the active set as described in
the previous sections. It can be thought of as two strategies for the choice of the
active set. The first is a constant verification and reorganization of the active set after
each iteration step. The second possibility is a change of the active set only after
convergence has been achieved. The first time a constraint becomes active the active
set is formed and held fixed until the iteration converges. Thereafter, the active set
is verified and changes are made accordingly. The whole process is repeated until
the final convergence, where no changes in the active set are necessary. Compared to
the first strategy, this means a higher computational effort caused by the additional
iteration loop. On the other hand, the iteration process might become more stable by
this second approach as changes in the active set occur less frequently.

The partitioning algorithm can be used without major difficulties for the solution of
equation system (13.8); see Box 14. The numerical derivative that is used to compute
the vectors hi and h2 deserves special attention:

-[KTc(u + e</>) Aup-P] ,

+ Gc(ii)]. (13.9)

The tangent matrices Kc(u) and Kc(u + e</>) in (13.9) can differ substantially if the
displacement values u and u 4- €0 cause a change in the active set. The result is that
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Solve:

[Krc(v<)]Au«+1 = P

[KTc (u*)] Aii*1 = - 65(11') - Gc(u')(u«

Compute:

14

Solve:

[KTc(v*)]A0i+1 = -hi

Compute increments:

AA^+i = Z_^

Aui+1 = AAi+1 Au5+]- + Au^-t1

Update:

A*+1 = A* + AA*+1

ui+1 = ul + Aum ,

Box 14 Partitioning algorithm for the extended system with contact.

the structure of the matrix Kc is no longer the same. To prevent this, the assembly
of Kc(u + e0) is made based on the active set used for Kc(u). In other words,
when the numerical derivative is computed, no new search for the closest master
segment of each slave node is performed. The active set is not changed either. The
disadvantage is that penetration can occur, or that adhesive forces are applied for a
degree of freedom in the active set whose gap was closed but now becomes open.
But taking into account the order of magnitude of e0 with e = 10-7, these effects
are negligible.



394 COMPUTATION OF CRITICAL POINTS WITH CONTACT CONSTRAINTS

13.4 EXAMPLES

In this section only the extended system will be studied for various continuum me-
chanical contact problems. All the examples of this section were computed with the
finite element program FEAP, where the contact algorithm of Section 9.3.3 and the
extended system procedure of Section 13.3 were implemented.

13.4.1 Block pressing on arch

A block pressing on an arch is the next example with contact. The geometrical and
material data are to be seen in Figure 13.2. The block is loaded with a unit load in
all the nodes, except for the corner nodes, where half of the load is specified. The
block is located on top of the arch. The discretization of the arch is 20 layers with 400
elements each, and the block has 11 layers with 300 elements each. Besides the arch
in Figure 13.2 that is clamped, the example was also computed with a hinged arch.
A sideways movement of the block is prevented by fixating the x-displacements of
the upper corner nodes of the block.

Figure 13.3 shows the equilibrium path and the typical behaviour of a clamped arch
with two limit points. The extended system yields for the given discretization the exact
coordinates with L1 : (w y ;A) = (-35.35; 12.54) and L2 : (wy ;A) = (-80.95:9.46).
The symmetric deformation of the arch is given in the smaller pictures.

The one step predictions in Figure 13.4 are quite good; the curve goes through
both points. A comparison of one step prediction with Figure 13.4 confirms the
convergence radius of the extended system computations.

R;= 1200

40

Fig. 13.2 Block pressing on clamped arch.
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Fig. 13.3 Equilibrium path for the block pressing on a clamped arch.

15

10

one step prediction

equilibrium path

20 40 60 100

Displacement -u of centre node

Fig. 13.4 One step predictions for the block pressing on a clamped arch.

Changing the boundary conditions for the arch in such a way that the ends are
hinged enables bifurcation of the equilibrium path, see Figure 13.5. The extended sys-
tem has no problem in locating the bifurcation point B1 : (uy; X) = (—23.88; 11.11)
and the limit point LI : (uy;X) — (—38.69; 123.05). The scaled up secondary
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path deformation associated with the eigenvector in B\ can be seen in Figure 13.5.
The good results of the one step prediction (Figure 13.6) are in accordance with the
convergence radius of the extended system.

Fig. 13.5 Equilibrium path for the block pressing on a hinged arch.

o

one step prediction

equilibrium path

10 20 30 40 50 60
Displacement -IL, of centre node

70

Fig. 13.6 One step predictions for the block pressing on a hinged arch.
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A further interesting load case of this example is the hinged arch with the block
on top of it and a unit displacement prescribed in the upper centre node of the block.
The equilibrium path in Figure 13.7 has no limit point, only the bifurcation point
B1: (uy; Fy) — (—25.78; —3435) is left. Fy is the reaction force in the upper centre
node of the block. In Figure 13.8, the one step prediction for this load case is given.

4000

3500 -•

• 3000 -

•So
C 2500 -

S 2000 -

C 1500
O

1000

500

0

2. path

20 30 40 50
Displacement -IL, of centre node

60

Fig. 13.7 Equilibrium path for the hinged arch with displacement boundary conditions

50

45
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35 -

t- 30 -
O

1 25

O 20 -

15 -

10 -

5 -

0

equilibrium path

one step prediction

0 10 15 20 25 30 35 40 45

Displacement -u of centre node
50

Fig. 13.8 One step predictions for the hinged arch with displacement boundary conditions
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13.4.2 Two arches

The next example is the structure of Figure 13.9 with two arches. The lower arch is
clamped, and the sideways movement (^-direction) of the upper arch is prevented by
the boundary conditions in the corner nodes, where the unit loads are applied.

Since only four node elements with linear shape functions are used, the question
arises as to whether the elimination chosen is sufficient for a proper computation of the
structure. Therefore, a convergence test with different discretizations is carried out
to see how many elements are necessary. Figure 13.10 shows the results for the three
discretizations with 1800,14,000 and 30,000 elements. The curves demonstrate that

Fig. 13.9 Outline of the two arches.

300

250

^ 200

o

j? 150

o
1-1 100

50

1800 elements

14000 elements

30000 elements

10 20 30 40 50 60
Displacement -IL, of centre node

Fig. 13.10 Equilibrium path of the two arches structure for different discretizations.
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there is practically no difference between the 14.000 and the 30; 000 element curve,
so 14.000 elements can be considered as sufficient for this example.

120

100

80
* B,

10 20 30 40 50 60
Displacement -u of centre node

Fig. 13.11 Equilibrium path with critical points.
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Displacement -u of centre node

Fig. 13.12 One step prediction for the two arches structure.
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Looking in detail at the equilibrium path of Figure 13.11 reveals four critical points.
Two bifurcation points with B1 : (uy;X) = (-0.85; 17.21) and B2 : («j/;A) =
(-4.77; 75.94); and two limit load points with L1 : (uy\ A) = (-12.94; 108.83) and
L2 : (wy; A) = (-47.73; 42.14) are found. The deformed arches and the secondary
path deformation, respectively, are depicted in the small pictures next to each critical
point.

A comparison of these results with the one step prediction in Figure 13.12 clearly
demonstrates the switching of the prediction from one critical point to another. Again,
the similarity of convergence radius of the extended system and the one step prediction
curve is apparent.



Appendix A
Gauss integration rules

In finite element computations we always have to evaluated integrals, e.g. the weak
form or the tangent matrices. These integrations can be performed on the element
level. Since isoparametric elements are usually employed for the discretization, an
exact integration is no longer possible. Thus we need numerical integrations. These
are usually performed on the reference element Jl^, see Chapter 6. Here we focus
especially on contact problems, hence the integration rules are only stated up to two
dimensions. These are needed in Chapter 7. For three-dimensional rules applied for
three-dimensional solids we refer to Zienkiewicz and Taylor (2000b) or Dhatt and
Touzot (1985).

A.1 ONE-DIMENSIONAL INTEGRATION

Since integration is carried out in finite element analysis in the reference configuration,
£ € [— 1, +1], all values have to be transformed to this configuration:

+1 +1

/

/* dx r
g(X) dX = J g(t) -jg<%= j

(X) -1 -1

<?(£) is the function which has to be integrated and Je is the JACOBIAN of the transfor-

401
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Table A.1 One-dimensional GAUSS integration

np

1
2

3

P

1

1

2

1

2
3

£P

0

l/x/3

0
+ V/375

WP

2 °

1

5/9

8/9 °* f ' »°
5/9

mation to the reference configuration which can be computed using the isoparametric
map defined in section 6.1. The integration will be done numerically, since g(£) Je (£)
is in general no longer a polynomial. Hence, the integral (A. 1) will be approximated
by the sum

+1/ ^(^) ^e(0 d£ w ̂  ^(^p) Je(^p) Wp . (A.2)
P=i

Wp are weighting factors and fp denote the coordinates of the evaluation points. The
locations £p and the weighting factors Wp are stated in Table A.1 up to the order of
np = 3 for a GAUSS integration.

Polynomials of order p = 2 np — 1 are integrated exactly by np evaluation points.
These rules can be used for two-dimensional contact elements, e.g. see Section 7.3.

A.2 TWO-DIMENSIONAL INTEGRATION

For evaluation of the weak form in (2.59) which is valid for two-dimensional problems,
or for evaluation of the contact element (7.60) or (7.65), we need an integration of
the interpolation functions and its derivatives over the element domain fie. For this
purpose, it is advantageous to transform the integral to the £-n coordinate system in
the reference element fi^:

+1 +1

j g(\) dA = I g(£) det Je(O dO = j j g(£., rj) det Je d^drj. (A.3)
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Integration over fi^ is performed by a numerical quadrature formula, since the product
det Je(£) does in general not yield a polynomial. Thus, we obtain

+1 +1

det p ,rh] Wp . (A.4)

The weighting factors Wp and the coordinates of the quadrature points £p and % are
contained in Table A.2 for a GAUSS quadrature up to a number of np — 3 × 3 points.
These integration rules are exact for polynomials up to the order i + k < m. We
note that the integration rules follow from the one-dimensional integration rules via
a product formula. Usually, GAUSS rules are applied in finite element computations
due to their accuracy. Thus we do not discuss other rules here. More quadrature rules
can be found in Dhatt and Touzot (1985), for example.

Table A.2 Two-dimensional GAUSS quadrature for rectangular elements

m np p Wp Position of points

1 1 1

3 4 1
2

3
4

5 9 1
2
3
4
5
6
7
8
9

0

-1/V3

-1/V3

-V/375
0

+ V/3/5

0
+ V/375
-V/3/5

0

0

-l/x/3
-i /VS
+1/V3
+1/V5

-V/375

0
0
0

4

1
<i

1
1

t

25/81
40/81
25 / 81
40/81
64/81
40/81
25 / 81
40/81
25 / 81

• £

, " 1
• 4 1 *

• • •
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The transformation to the reference element is different for triangular elements.
In general, we obtain the following relation:

g(X) dA = I j g(S , TJ) det Je drj <%, (A.5)

(Qe) 0 0

which again can be evaluated using the quadrature rule (A.4). Table A.3 contains the
associated quadrature points and weighting factors for an element with side length 1.
The formulas are exact for polynomials f * rf up to the order m (with m > k + I).
Again, different quadrature rules with different quadrature points or higher accuracy
can be found in Zienkiewicz and Taylor (1989) or Dhatt and Touzot (1985), for
example.

Table A.3 Two-dimensional GAUSS quadrature for triangular elements

m np p £p Tp Wp Position of points

1 1 1 1/3 1/3 1/2

1 1/3 1/3 -27/96
2 1/5 1/5 25/96

3 3/5 1/5 25/96
4 1/5 3/5 25/96

2 3 1
2
3

2 3 1
2
3

1/2
0

1/2

1/6
2 /3
1/6

1/2
1/2

0

1/6
1/6
2/3

1/6
1/6
1/6 '

k\
> 11

" "

1/6
1/6
1/6

<

k

• .\£



Appendix B
Connective Coordinates

Frequently, in computational solid mechanics a special parameterization of the bodies
under investigation is performed using convective coordinates. This is also convenient
to formulate the contact constraint equations for finite deformations, see Chapter 3.
This is because the deformed surface of a body which has to be considered for the set
up of contact constraints can be described best by convective coordinates.

The three-dimensional as well as two-dimensional formulation of a surface will be
stated here using convective coordinates. These can be viewed as coordinates which
are attached to the body, and thus deform with the body, as shown in Figure B.1. In
general, the idea is to write the cartesian coordinates {XA} and {xi} as functions of
the convective coordinates {&}, j = 1,2,3,

XA=XA(Ql,Q'2,Q3), xi=xi(Q
1,Q2,Q3), (B.1)

which can then be applied to formulate the equation for a solid in convective coordi-
nates. In compact form we state X — X (0J) and x — x (@J). If we want to describe
a surface using such coordinates, then only two coordinates are necessary, as will be
shown later.

A tangent vector to the coordinate lines in a point X in B is computed via

(B.2)

405
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Fig. B. 1 Convective coordinates in B and p(B).

Using the chain rule, together with (B.2) and (B.3),

d(p(X,t) dX

Assuming sufficient smoothness, the same holds for a point which is described by
¥ > ( X , t ) in y(B):

d(f> (X. t)
*, = - = f • (B3)

(B.4)

follows. This means that the tangent vectors have the same transformation rule as
the line elements dx and dX, see equation (2.5). With (B.4) we obtain the following
form of the deformation gradient:

F = & g> Gi. (B.5)

The tangent vectors are covariant vectors which are connected to the contravariant
vectors via gi • gk = 6k

i. Using equation (B.4), we observe

FGi . AGk = 6i
F–T

(B.6)

with the transformation tensor A = F–T for the contravariant base vectors.
Hence, it is relatively easy to apply the pull back operation and the push forward

in the convective setting. The four possible transformations are

= FGi

— F–T Gi G i =F T g i . (B.7)

Since covariant and contravariant base vectors denote the base for vectors and tensors,
equations (B.7) can be applied for pull back and push forward operations. As an
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example, we consider the push forward GREEN LAGRANGIAN strain tensor, which
yields the transformation (2.22)

E = 1/2 (gik – G i k )G i ®G k (B.8)

F.

For contact one has to describe the surface S of the bodies in contact. This can
be done by introducing a position vector of a point on the surface in the current
configuration by

(B.9)

where £a, the Greek index a has values of 1 and 2, are the convective coordinates,
and ps describes the deformed surface of a solid. The same procedure also holds for
the initial or reference configuration:

The covariant base vectors with regard to the surface description in the initial config-
uration introduced above are (B.2)

3\
Aa(^^2 ,*) = - = X S i a , (B . l l )

where Aa are vectors tangent to the surface M. These can be used to compute the
normal vector

1 ?,$
- (BJ2)

In the current configuration, the tangent vectors follow from (B.9) in the same way
as in (B.11):

MCS^)- = ̂ - (B.13)
The normal vector is defined by the cross product

nf,i , 2 r t _ ai(e',f . t ) x . .
11(5 '? ' ( ) - | | a 1 « ' ,^ , ( )x a 2 t t . ,^ , t ) | | - (B.14)

Now one can define the metric tensor aap and the curvature tensor ba$ of the deformed
surface as follows:

aa0 — 3a • 3/3 ,
bali = -aa • n)/3 = aft %a • n . (B.15)

Using the metric tensor, one can introduce the contravariant base vectors

aa0 a^ = $a _ (B.16)
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A vector v which lies in the tangent plane can be stated either with respect to the
covariant or contravariant base,

v = va aa = vaaa with vaa
a0=v0. (B.17)

For an arbitrary three-dimensional vector w, one has the representation

w = wa aa + w3 n = wa a
a + w3 n, (B.18)

where w3 = w3 and {a1, a2 , n} are the base vectors.
The derivative of a vector w with respect to the convective coordinates yields

dw
— = w,p = wa

p aa + wa aa p + w3
,P n + w3 n,p . (B.19)

The derivatives of the base vectors {a1, a2 , n} with respect to the convective coordi-
nates have to be considered here, since the base vectors are not constant on arbitrary
surfaces. The derivation of the base vectors can be expressed using the CHRISTOFFEL
tensors, T s

a B , and the metric and curvature tensors from (B.15):

*a,0 = rj^aj + fea/jn with r6
a/3 = aQ.0-a

s, (B.20)

na = -b?*0 with bP=aa*b60. (B.21)

However, as we usually approximate the surfaces in this book either by the isopara-
metric formulation or by other functions (e.g. BEZIER polynomials; see Section 8.5),
we can compute the derivatives in (B.19) directly in the finite element discretiza-
tion process. Hence, the CHRISTOFFEL tensors Ts

af3 do not have to be computed
explicitly; for details see Eringen (1962).

When using the convective description, the following conditions can be applied to
simplify the formulations:

aa • n = 0,

[n.n] = n . n = 0, (B.22)

dt[aa . a0] = aa .a0+aa .a0 = 0. (B.23)

To model the frictional response, one has to introduce the differential of the arc-
length ds of a curve @a (t) (the sliding distance) on the surface. It is given by

ds = ^/aa0 Qa GP dt. (B.24)

The arc-length s between two parameter values to and t1 follows from

ti

s= f ^aa0Q<*&dt. (B.25)

to



Appendix C
Parameter Identification

for Friction Materials

A parameter identification is needed when experimental data of friction tests have to
be fitted to an existing constitutive relation for friction.

The identification of the friction material parameters is based on the minimization
of a least squares functional. For this purpose, the following optimization problem is
regarded:

(CD

with the experimental results tTi and the tangential stresses tT i evaluated using the
new frictional law depending on the material parameters aj .

A requirement for a minimum of this functional is

=°- (C.2)

To evaluate (C.2), it is necessary to calculate the frictional stresses as well as their
derivatives with respect to the material parameters. Depending on the type of problem,
(C.2) leads either to a linear system of equations for the unknown parameter values
or to a nonlinear one. In the latter case, a NEWTON type procedure has to be applied
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to solve this equation. The necessary ingredients for the case of frictional contact are
provided next.

To obtain the frictional stresses and their derivatives, the following frictional law
in a general form, including hardening (here only the two-dimensional case is con-
sidered), is used:

linear elastic (stick) law: tT = CT <?f = (T ( 9r — 9j- )
slip rule gp

T = A|£ (C 3)

hardening w = X r ( t T , w )
Kuhn-Tucker conditions fs < 0, A > 0. fs\ = 0.

In this set of equations the slip function fs and the hardening function r ( t T , w) still
have to be specified; for examples see Section 4.2. Here, for demonstration purposes,
a special choice is made for the slip function:

fs = |tT | - tN — - — - - + a4 arctan(a5w) , (C.4)
[ 1 + a2w + a3w

2 J

and the hardening function
r = 1 , (C.5)

leading to
slip rule S/T = Af£ = Asi§n(^) (C6)

hardening w = Xr(tT,w) = X.

To solve the parameter identification problem, a time discretization, according to
Section 9.5, first has to be carried out:

7 = AA* (C.7)

tTn+l = er(pTn+l -^Tn+l)

3Tn+l = 9Tn+1n+l§& (C.8)

Wn+i = Wn+ "fn+1 r(tT, U)) .

This result can be transformed into a nonlinear system of equations with three un-
knowns tTn+1, wn+1 and n+1:

fsn+l 1
-wn+i +wn+~tn+lr(tT,w} 1 = 0 . (C.9)

For the special choice of the slip function (C.4), this yields

{ fsn+l

-Wn+l + Wn + 7n+l

To obtain the frictional stress tT, R = 0 is solved with NEWTON'S method:
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with R from (C.9) or (C.10) and

0 =

The tangent matrix H is given by

(C.12)

H
dtr

or
I 9tT

' dt
df.
8tT

(C.13)

for R from (C.9), and results in

H -1

0

0

1
sign

(C.14)

for R from (C.10).
Now the derivatives of the frictional stresses with respect to the material parameters

ai of the frictional law have to be calculated.
The total differentiation of R with respect to the material parameters yields

OH

d(f)n

d~R
(C.15)

Here d(j) / daj are the sensitivities of the variables <j) (C. 12) from the frictional law.
Note that the sensitivities of the last time step have to be taken into account in (C. 15),
because of the history dependence of the frictional law.

(C.15) yields an equation system for the derivatives of the frictional stresses with
respect to the material parameters d(j)n+l / daj:

with

j n +1

j n +1

d(j)n

dcf)n
(C.16)

(C.17)
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Abrasive wear, 90
Accelerations, 273
Accumulated sliding distance, 77
Active constraints, 390
Active set strategy, 99
Adaptive methods, 355

dual error estimators, 365
friction, 379
mesh refinement, 369
projection methods, 362
residual-based error measures, 358
transfer of history variables, 382

Adhesion, 86, 306
algorithm, 306
friction, 87
normal contact, 86
time integration, 306
viscosity, 87

Approach of two bodies, 60
Arc-length, 408
Asperities, 58
Augmented Lagrange method, 109, 288
Barrier method, 108
Beam contact, 338

tangential gap, 344
weak form, 344
contact condition, 339
contact search, 348
Coulomb friction, 345
discretization, 346

gap function, 338
normal vector, 340
slip path, 341
tangent matrix, 347
variation, 342

Bezier interpolation, 237
BFGS update, 294
Bifurcation, 389
Block Gauss-Seidel method

nonlinear, 298
Body force, 26
Boundary lubrication, 84
Bounding box, 263
Bucket search, 263
Cauchy stress, 33, 57
Cauchy theorem, 26
Central difference scheme, 274
Christoffel tensor, 408
Closest point projection, 205, 220, 234
Coating, 73
Condition for stick, 50
Contact-impact, 299
Contact algorithms

active set method, 295
Dirichlet-Neumann method, 298
dynamic contact, 299
Lagrange multiplier method, 286
linear complementary problem, 297
partitioning method, 290
penalty method, 284, 303
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SQP method, 294
Uszawa method, 288, 304

Contact conductivity, 316
Contact constraints, 162

continuous, 47
discrete, 166, 172, 178, 186, 269, 279

Contact discretization
large deformation, 204
small deformation, 162

Contact element
Bezier interpolation, 237
Hermitian interpolation, 233
node-to-edge, 227
node-to-node, 166, 229, 324
node-to-segment, 328
node-to-surface, 219, 224
segment-to-segment, 183
smooth interpolation, 231
surface-to-surface, 172

Contact interface
fractal surface, 91
gas conductance, 317
heat conduction, 314
micromechanical approach, 58
radiation, 319
spot conductance, 316

Contact normal, 47
Contact search, 261–262

beam contact, 348
area check, 269
bounding box, 263
grid cell algorithm, 266
heapsort algorithm, 266
node-to-segment, 268
non-uniqueness, 269
octree method, 266
spatial search, 264
superquadrics, 267

Contact segments, 183
intermediate line, 186
residual, 188
tangent matrix, 188

Contact
bars, 6
bifurcation, 389
finite strains, 98

Continuum element
three-dimensional, 146, 155
two-dimensional, 152

Contravariant basis, 407
Contravariant vectors, 406
Convective coordinates, 405, 407
Coulomb-Orowan friction law, 72
Coulomb friction, 64, 107, 170, 215, 248, 333, 345

dynamic law, 64
integration, 307

regularization, 65
Courant criterion, 274–275
Covariant vectors. 406
Critical points

contact, 389
extended system, 391

Cross-constraint method, 111
Curvature tensor. 52. 407
Debonding, 87
Deformation gradient. 21, 146, 312
Delaunay triangularization, 370
Density, 26
Direct constraint elimination, 104. 188
Direct elimination method. 116
Directional derivative. 38

Contravariant basis. 39
covariant basis, 39

Discretized equations
dynamics. 150

Dissipation rate, 90
Distance function, 47
Dual formulation. 282
Dynamic friction coefficient, 64
Eigenvalue problem, 391
Elasto-hydrodynamic. 83
Equation of motions. 273
Error estimators

dual principles, 365
residual-based, 358

Error indicators
friction, 379
superconvergence. 362. 380

Euler backward scheme
friction. 307

Existence, 96, 98
Explicit time integration, 274
Extended system, 391
Feasible solution, 295
Fourier law, 314
Fractal contact interface, 91. 377
Fractal graph, 92
Fractal interpolation function, 91–92
Friction coefficient, 64. 75. 77

material pairings. 64
Friction

augmented Lagrange method. 109
anisotropic law. 71
bench mark test, 255
Coulomb-Orowan law. 72
dissipation, 68, 308
elastic-plastic approach. 67
homogenization. 79
metal-forming, 72
moving cone. 213. 308
path, 51
penalty method, 303
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polymer, 73
rubber, 73
Shaw law, 72
slip increment, 307
soil, 76
symmetric treatment, 305
time integration, 302
time integration for soil, 310
uniqueness, 96
Uszawa algorithm, 304

Frictionless contact, 57, 224, 227, 229, 231, 237,
391

Frictionless
augmented Lagrange method, 109

Gap, 2, 47, 390
Gap function, 47, 162, 166, 172, 186, 195,205,

219
Gap

non penetration condition, 47
penetration function, 48

Gas, 318
Gauss integration, 195

one-dimensional, 402
two-dimensional, 403

Grid cell algorithm, 266
Heapsort algorithm, 266
Heat conductance, 326
Heat conduction

gas, 317
radiation, 319
spots, 316

Heat flux, 314
Heat flux vector, 320
Hertz-Signorini-Moreau conditions, 57
High contact precision, 58, 288
History data transfer, 382
History dependent problems, 382
Holm-Archard law, 90
Homogenization, 79
Hyperelastic material, 32, 129

Neo-Hookian, 32
rate form, 34

Ill-conditioning, 288
augmented Lagrange method, 110

Impact, 13
Implicit time integration, 274

friction, 307
Incremental elasticity tensor, 41
Incremental hyperelastic constitutive equation, 34
Initial stress, 41
Initial value problem

thermo-mechanical contact, 320
Intersection check, 264
Isoparametric elements, 136

computation of gradients, 138
deformations, 137

one-dimensional shape functions, 139
quadrilateral elements, 142
three-dimensional interpolation, 143
triangular elements, 141
two-dimensional shape functions, 141

Iterated function system, 91
Jamming, 285
Kuhn-Tucker-Karush conditions, 3, 57
Lagrange multiplier method, 100, 114, 163. 280
Lagrange multiplier

algorithm, 286
Lagrange multipliers, 3
Lame constants, 33
Large deformation

contact, 204
Large sliding, 204
Line search, 295
Linear Complementary Problem, 297
Linearization, 118

constitutive equations, 40
contact terms, 118
normal gap, 120
normal vector, 120
stick case, 124
strain measures, 39
surface coordinate, 120
tangential part, 123
variation of gap function, 225
weak form, 40, 281

Load parameter, 271
Local balance of momentum, 28, 97
Low contact precision, 56
Lubrication, 62, 83
Lubrication

viscosity coefficient, 85
Mass matrix, 148, 163, 273
Mathematical programming, 99
Mean plane distance, 60, 112
Merit function, 295
Metric tensor, 52, 407
Micromechanical approach, 58
Minimization problem, 280
Minimum distance, 47, 205, 220, 234
Mortar method, 164, 188,298
Moving cone algorithm, 215, 308
Moving friction cone, 213
Newmark method, 276
Newton method, 36, 150, 272, 274, 302, 307, 327,

339,410
linearization, 40

Nitsche method, 117, 164, 194
Node-to-edge element, 227
Node-to-node element 166, 229, 324

friction, 170
frictionless, 166
Lagrange multipliers, 167
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penalty method, 168
thermo-mechanical contact, 326

Node-to-segment element, 204, 213, 231, 298, 328
Bezier, 237
friction, 207, 242
Hermite, 231
Lagrange multiplier, 210–211
linearization, 210
penalty method, 210
variation, 205

Node-to-surface element
quad, 219
triangle, 225

Nominal stress, 57
Non-matching grids, 164, 183
Non-penetration condition, 47
Normal contact

constitutive equation, 60, 111
non penetration condition, 57
statistical model, 60

Normal vector, 47, 407
Numerical derivative, 392
Octree method, 266
Operator split algorithm, 324
Operator split

thermo-mechanical contact, 323
Parallel computers, 297
Parameter identification, 78-79, 409
Penalty method, 4, 102, 115, 166, 225, 232, 239,

280, 284, 390
Penalty parameter, 101, 285

estimation, 285
Penetration, 47, 390
Penetration function, 47, 101
Perturbed Lagrange formulation, 107, 179, 183
Ploughing, 62
Polymer

friction, 73
friction coefficient, 76

Potential energy, 31
contact, 99

Projection tensor, 57
Quadratic program, 294–295
Radiation, 319
Rate of wear, 90
Recursive region splitting, 371
Reference configuration, 20
Relative error, 382
Relative tangential velocity, 52, 69, 170
Representative Volume Element, 79
Residual

current configuration, 157
initial configuration, 148

Return mapping, 213, 261, 307
Reynolds equation, 85
Rolling contact, 130

creepage, 133
gap definition, 131
non-penetration condition, 131
tangential relative gap velocity, 132
weak stick condition, 132

Rotated frame
acceleration, 126
Green strains, 128
velocity, 126

Rotating reference frame, 125
Rubber

friction, 73
Schur complement, 282
Self-affine surfaces, 74
Self-contact, 270
Sequential quadratic programming, 294
Shaw friction law, 72
Signorini problem, 95
Slack variable, 297
Slip, 50

criterion, 68–70, 78, 307
linearization, 212
moving cone, 215
tangential gap, 208
velocity, 52

Smooth contact discretization, 231
Bezier, 237
friction, 242
frictionless, 231
Hermite, 231
rigid surface, 250
three-dimensional, 252

Snap-through, 389
Spatial configuration, 20
Spatial search, 262, 264
Spot, 316
SQP method, 294
Stability, 391
Static condensation, 282
Statistical contact laws, 59
Stick, 50

alternative description, 213
condition, 63
linearization, 211
tangential gap, 208

Strain energy, 30, 32, 99
Strain tensors

Almansi strains, 23, 39
Green-Lagrangian strains, 23, 29, 39, 146
left Cauchy-Green tensor, 23, 313
right Cauchy-Green tensor, 22-23, 40, 312

Stress divergence, 148
Stress power, 27–28
Stress tensor

1. Piola-Kirchhoff stresses. 28
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2. Piola-Kirchhoff stresses, 28-29, 33, 40–4],
147

Cauchy stresses, 26
Kirchhoff stresses, 28, 33, 42, 313

Surface-to-surface element, 172
isoparametric interpolation, 173
Lagrange multipliers, 174
penalty method, 176
perturbed Lagrange, 177

Surface hardness, 60
Surface loads, 149
Surface roughness, 58
Surrounding spheres, 263
Tangent matrix

beam contact, 347
node-to-node element, 171
contact segments, 188
current configuration, 159
extended system, 392
frictionless, 218, 240
initial configuration, 152
initial stress matrix, 159
initial stresses, 151
penalty method, 168
slip, 212, 217, 223, 248
stick, 211,214, 248
thermo-mechanical contact, 327

Tangent vector, 47, 405, 407
Tangential micro displacements, 67
Tangential relative displacement, 51
Tangential relative velocity, 52
Thermal contact resistance, 315
Thermal expansion coefficient, 313
Thermo-elastic ity

Helmholtz energy, 313
kinematical split, 312

Thermo-mechanical contact, 9,311
node-to-node element, 324
node-to-segment element, 328
gas conductance, 317
heat conduction, 314

initial value problem, 320
multiplicative split, 312
operator split, 323
radiation, 319
spot conductance, 316
weak form, 322

Time integration, 273
explicit, 274
contact, 299
implicit, 276

Total sliding distance, 53
Transfer of history variables, 382
Transfer of state variables, 382
Tribology, xvii, 61
Uniqueness, 96
Unstructured meshes, 183
Uszawa algorithm, 110, 288, 304

symmetric version, 305
update formula, 111, 288

Variation
deformation gradient, 29
gap, 53
gap function, 205, 225
Green-Lagrange strain, 29, 147
normal gap, 54, 239, 342
surface coordinate, 54, 235
tangential gap, 54, 206, 344

Variational inequality, 2, 96, 98, 261, 365
Velocities, 273
Viscoelastic material, 129
Weak form, 40

beam contact, 344
contact, 99
thermo-mechanical contact, 322
contact, 98

Wear, 89
Wear coefficient, 90
Wear

surface fatigue, 89
abrasive, 89
adhesive, 89
corrosive, 89




