

Modern Industrial Automation
Sofhvare Design

Principles and Real- World Applications

Lingfeng Wang

Kay Chen Tan

IEEE
IEEE PRESS

A JOHN WILEY & SONS, INC., PUBLICATION

This Page Intentionally Left Blank

Modern Industrial Automation
Sof iare Design

IEEE Press
445 Hoes Lane

Piscataway, NJ 08854

IEEE Press Editorial Board
Mohamed E. El-Hawary, Editor in Chief

M. Akay T. G. Croda M. S. Newman
J. B. Anderson R.J. Herrick F. M. B. Pereira
R. J. Baker S. V. Kartalopoulos C. Singh
J. E. Brewer M. Montrose G. Zobrist

Kenneth Moore, Director of IEEE Book and Information Services (BIS)
Catherine Faduska, Acquisitions Editor, IEEE Press

Jeanne Audino, Project Editor, IEEE Press

Modern Industrial Automation
Sofhvare Design

Principles and Real- World Applications

Lingfeng Wang

Kay Chen Tan

IEEE
IEEE PRESS

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright 0 2006 by The Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
he addressed to the Permissions Department, John Wiley & Sons, Inc., 1 11 River Street, Hoboken, NJ
07030, (201) 748-601 I , fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic format. For information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Catuloging-in-Publication Data is avuilable.

ISBN-I3 978-0-471-68373-5
ISBN- 10 0-47 1-68373-6

Printed in the United States of America.

1 0 9 8 7 6 5 4 3 2 1

Contents

Preface xxi

Aclcnow ledgments xxiii

Acronyms xxv

Part I Design Principles of Modern Industrial Automation
Systems

1 Introduction 1
1.1 Developmental Trends 2
1.2 Classifications and Existing Products 3
1.3 Functionality of Industrial Automation Systems 5
1.4 About the Book 7

2 Virtual Instrumentation 9
2.1 Introduction 9

2.3 VXI Plug&Play (VPP) Specification 14
2.2 Characteristics of VXI Instruments 13

2.4 Virtual Instrument Software Architecture (VISA) 16
V

v; CONTENTS

2.4.1 VISA model structure
2.4.2 VISA characteristics

2.5.1 Textual programming
2.5.2 Visual programming
2.5.3 Graphical programming
Liquefied Petroleum Gas Network (PLPGN)
Monitoring
2.6.1 Overall structure design

2.7 Hardware and Software Design
2.7.1 Development requirements
2.7.2 Development environment
2.7.3

2.8 Summary

2.5 Programming platforms

2.6

Configurations of system hardware and
software

3 Component-Based Measurement Systems
3.1 Introduction
3.2 Component Technology
3.3 Component-Based Industrial Automation

Software
3.4 Writing Component
3.5 Case Study 1
3.6 Case Study 2

3.6.1
3.6.2

3.7 Summary

Definition of base class of instruments
UI base class of VIs

4 Object- Oriented Software Engineering
4.1 Software Development Models
4.2 0 bject Orientation

4.2.1 OOA/OOD
4.2.2 Advantages

5 Graphical User Interface Design

6 Database Management
6.1 Database Systems
6.2 Relational Database

17
18
19
20
20
21

23
24
26
26
27

27
29

31
31
32

35
36
36
38
39
40
41

43
44
48
48
51

53

59
60
61

CONTENTS vii

6.3 Structured Query Language (SQL)
6.4 Open Database Connectivity (ODBC)

7 Software Testing
7.1 Software and Industrial Automation
7.2 Software Testing Strategies

7.2.1 Black- box testing
7.2.2 White-box testing
Software Testing Processes and Steps
7.3.1 Unit testing
7.3.2 Integration testing
7.3.3 Verification testing
7.3.4 System testing
7.3.5 Validation

7.4 Software Performance Testing
7.4.1 Availability testing
7.4.2 Reliability testing
7.4.3 Survivability testing
7.4.4 Flexibility testing
7.4.5 Stress testing
7.4.6 Security testing
74.7 Usability testing
7.4.8 Maintainability testing

7.3

7.5 Software Maintenance
7.6 Summary

Part 11 Real- World Applications

8 Overview

9 An Object-Oriented Reconfigurable Software
9.1 Introduction

9.2 Design Requirements, Development Environments,
9.1.1 Evolution of reconfigurable software

and Methodologies
9.2.1 Design requirements
9.2.2 Development environments
9.2.3 Development methodologies

64
66

69
69
71
72
73
73
75
76
78
78
79
79
80
81
81
81
82
82
82
83

85
84

91

93
94
94

105
105
106
107

viii CON TENTS

9.3 IMC System Structure and Software Design
9.3.1 Overall structure of IMC systems
9.3.2 Configuration- based IMC software
9.3.3 Reconfigurable IMC software design
9.3.4 Development tool selection
9.3.5 Object-oriented methodology
9.3.6 Windows programming
9.3.7 Database technologies
9.3.8 Relational database model
9.3.9 Database management system (DBMS)
9.3.10 Database application
9.3.1 1 Delphi database functionality

9.4.1 Data acquisition module
9.4.2 Data processing module
9.4.3 Data browsing module

9.5.1 User configuration
9.5.2 Running status indications
9.5.3 Alarm management
9.5.4 Data exchange
9.5.5 Visual database query
9.5.6 Remote communication

9.4 RSFIMC Architecture

9.5 RSFIMC Functions

9.6 Summary

10 Flexible Measurement Point Management
10.1 Introduction
10.2 System Architecture

10.2.1 Overall architecture
10.2.2 Interfaces with other modules

10.3 Development Platform and Environment
10.4 Measurement Point Management

10.4.1 MP configuration
10.4.2 Task eonfiguration
10.4.3 Dynamic configuration of MPs and tasks
10.4.4 System running

10.5 An Illustrative Example on a Serial Port Driver
10.5.1 Serial port hardware driver

108
108
111
112
113
115
118
118
119
119
120
122
122
124
1 24
125
126
126
133

135
1 34

140
142
144

151
152
153

157
157
158
158
159
160
161
167
168

1 54

CONTENTS ix

10.5.2 Serial port system driver 170
10.5.3 DIT maintenance for serial port system

driver 171
10.5.4 Hardware simulation terminal 172

10.6 Summary 172

11 A Blending System Using Multithreaded Programming
11.1 Introduction
11.2 Overall Blending System Configuration

11.2.1 Hardware configuration
11.2.2 Software configuration
11.2.3 Multithread- based communication

11.3 The Overall Software Design
11.3.1 Design requirements
11.3.2 Software structure
11.3.3 VxD
11.3.4 Front-end software
11.3.5 Device management module
11.3.6 User management
11.3. 7 Database management

11.4 Field Experience and Summary
11.4.1 Field experience
11.4.2 Summary

179
179
181
181
183
183
185
186
188
189
189
190
190
190
190
191
191

12 A Flexible Automatic Test System for Rotating Turbine
Machinery 197

12.2 Design Goals of FATSFTM 199
12.3 Design Strategies of FATSFTM 201

12.3.1 Hardware design strategy 201
12.3.2 Software design strategy 202

12.1 Introduction 198

12.4 Test Software Development Process 206
12.4.1 Requirements capture 207
12.4.2 Analysis 207

12.4.4 Programming 21 9
12.4.3 Design 21 2

12.4.5 Testing 220
12.5 Function of FATSFTM 221

12.5.1 Initialization and self-examination 221

x CONTENTS

12.5.2 Data acquisition
12.5.3 User configuration
12.5.4 Running status indication and real-

time/historical data analysis
12.5.5 Alarm management and post-fault

diagnosis
12.5.6 Remote test
12.5.7 Other system functions

12.6.1 On-site implementation and field

12.6.2 System benefits

12.6 Implementation and Field Experience

experience

12.7 Summary

222
222

223

224
227
228
229

229
230
232

System
13.1 Introduction
13.2 Problem Description

13.2.1 Field data acquisition devices
13.2.2 Field data acquisition workstation
13.2.3 System servers
13.2.4 Remote browsers

13.3.1 Data acquisition workstation software
13.3.2 Analysis (diagnosis) and management

13.3 Requirements Capture and Elicitation

workstation software
13.4 Analysis

13.4.1 Data-flow model
13.4.2 Entity-relationship model
13.4.3 Event-response model

13.5.1 Choice of development strategies
13.5.2 Choice of development environment and

13.5 Transition to Design

programming tool
13.6 Overall Design

13.6.1 Database design
13.6.2 Overall design of DAQ workstation

software
13.6.3 Overall design of the A & M workstation

software

13 An Internet-Based Online Real- T ime Condition Monitoring
239
239
241
24 1
24 2
24 3
24 3
244
24 5

24 5
246
246
24 9
250
251
252

254
259
260

263

2 79

CONTENTS xi

13.6.4 Design of Web server CGI application
13.7 Detailed System Design and Implementation

13.7.1 Implementation of DAQ module
13.7.2 Implementation of data management

13.7.3 Communication module
13.7.4 Multitasking coordination
13.7.5 Implementation of Web server

module

13.8 Field Experience
13.9 Summary

14 Epilog
14.1 Middlware
14.2 Unified Modeling Language (UML)
14.3 Agent- based software development
14.4 Agile methodologies
14.5 Summary

282
282
282

285
287
291
293
295
298

303
303

305
308
309

304

Index 31 0

This Page Intentionally Left Blank

1.1

2.1

2.2

2.3

2.4

3.1

3.2

4.1

4.2

6.1

7.1

7.2

7.3

List of Figures

A typical industrial automation system.

Basic framework of automated measurement
system based o n virtual instruments.

The structure of PLPGN monitoring system.

Hardware configuration of the PLPGN
monitoring system.

Software functions of the P L P G N monitoring
system.

Delphi’s VCL object hierarchy.

Virtual instrument object.

Phase tasks in the software life cycle.

Incremental software development model.

The generic O D B C architecture.

Software testing stages.

Software testing steps.

Test sequence in top-down integration testing.

2

24

25

28

29

36

38

45

47

74
75

77

67

xiii

xiv LIST OF FIGURES

7.4 Test sequence in bottom-up testing. 78

7.5 Real-tame monitoring and control system. 80

7.6 Software maintenance. 84

9.2 Basic architecture of I M C system. 109

9.3 Database software system constitution. 120

9.1 Reconfigurable software in I M C system. 103

9.4 Delphi database system structure. 123

9.5 Overall structure of the RSFIMC. 123

9.6 Data processing in RSFIMC. 1 24

9.7 M P configuration interface. 127

9.8 Task configuration interface. 127

9.9 Structure of the data processing module. 128

9.10 New variable calculation process. 131

9.11 New variable calculation data Bow. 132

9.12 Screenshot of new variable calculation interface. 133

9.13 Screenshot of status indication interface. 1 34

9.14 Message handling an Windows applications. 135

9.15 Information Bow of the real-time alarm system. 136

9.16 API interfaces in MS Excel. 137

9.1 7 Screenshot of OLE Automation interface. 1-41

143

9.19 Screenshot of visual database query interface. 143

supervision software. 1 54

9.18 Process of visual database query.

10.1 Overall structure of industrial reconfigurable

10.2 The architecture of MP management module. 156

10.3 Running module architecture f o r M P management. 163

10.4 Driver loading process in the MP management
module. 165

LIST OF FIGURES xv

10.5 Task scanning mechanism. 166

10.6 Task priority management mechanism. 166

10.7 Snapshot of the G UI- based operational panel. 168

10.8 Schematic diagram of the serial driver testing. 172

10.9 Communication mechanism in RS232Dru. 173

10.1 0 Communication mechanism in the hardware

11 .l Flowchart of the automated blending system. 182

11.2 The hardware setup. 182

11.3 The overall software structure. 183

11.4 Package formats for communication between

11.5 P L C communication mechanism. 186

11.6 Data flowchart of the communication sub-thread. 187

11.7 The data flow between VxD and front-end software. 188

11.8 Snapshot of working status for the blending system.188

simulation terminal. 1 74

ICPC and PLC. 184

12.1 The framework of FATSFTM. 199

12.2 Hardware architecture of FATSFTM. 201

12.3 OOA model structure. 204

12.4 OOD model structure.

12.5 Software structure of FATSFTM.

205

206

12.6 Data-flow diagram. 208

12.7 Entity-relationship diagram (ERD). 209

12.8 State transition diagram (STD). 209

12.9 Whole-part relationship based on physical
containment. 21 3

12.10 Whole-part relationship based on physical
association. 21 3

12.11 Generalization-specialization relationship. 21 3

xvi LIST OF FIGURES

12.12Subject layer in the OOA model.

12.13 Class structure in DAQ.
12.14 Directory structure of FATSFTM.

12.15 An overview of FATSFTM functions.

12.16 IMP for distributed data acquisition.

12.17Screen capture of Bode chart in the running

12.18 Mechanism of alarm management module.

12.19 Architecture of fault diagnosis module.

12.20 Plant layout.

12.21 Number of machine defects detected in test
process at diflerent stages.

12.22 Average monthly test cost at diflerent project
stages.

13.1 Configuration of the Internet-based online
condition monitoring system.

13.2 Data-flow diagram of overall distributed condition
monitoring software.

13.3 Data-flow diagram of data acquisition workstation
module 1.

FATSFTM.

214
21 6

21 8

221

222

225

226

228

229

231

232

241

24 7

248
13.4 Data-flow diagram of data processing module 1.1. 248
13.5 Data-flow diagram of data acquisition module 1.2. 249

13.6 System entity-relationship diagram. 250

13.7 Module structure of the data acquisition
workstation. 270

13.8 Module structure of the A&M workstation software.280

13.9 Data flowchart of the in-house developed DAQ
driver. 285

13.10 Basic ODBC architecture. 286

13.11 Datagram-socket- based communication. 290

13.12 Stream-socket- based communication. 290

13.13 CGI- based communication mechanism.

13.14 Screen capture of real-time waveforms in spectral
294

analysis. 298

List of Tables

3.1

9.1 Language evolution

9.2

9.3

9.4

9.5

9.6

9.7

9.8 Formula database structure

10.1 Performance comparison between the earlier
manual system and the automatic supervision
system

11.1 Event-response relationships f o r the automatic
blending system

11.2 User management f o r the automatic blending
system

Main properties and methods in VI base class

Structure of the real-time database

Structure of the original historical database

Structure of the medium-term database

Structure of the processed database

Structure of the alarm configuration database

Structure of the alarm record database

39

121

128

129

129

130

130

130

133

175

1 94

195

xvii

xviii LIST OF TABLES

11.3 Database management fo r the automatic blending

12.1 System state list

12.2 Event-response model

12.3 Partial OOA/OOD working table

12.4 OOA Model

12.5 Databases in FATSFTM

13.1 System event-response model

13.2 System database

13.3 Workstation configuration table

13.4 Machine configuration table

13.5 M P configuration table

13.6 Historical data record strategy selection table

13.7 Vibration variable channel configuration table

13.8 Process variable channel configuration table

13.9 Report format selection table

13.10 Record strategy definition table

13.11 Server and A&M workstation properties table

13.12 Vibration variable real-time data table

13.13 Process variable real-time data table

13.14 Switch variable real-time data table

13.15 Medium-term historical database table fo r

13.16 Detailed composition of variables

13.17 Record configuration (cluster)

13.18 Report configuration

13.19 Current machine alarm channel table

13.20 Back-end processing software status

system

vibration variables

195

21 0

21 1

21 2

236

237

251

261

262

263

264

264

265

265

266

266

267

267

268

268

269

2 70

2 71

271

272

2 72

LISTOF TABLES xix

13.21 Startup/shutdown status

13.22 Server properties

13.23 Server properties

13.24 Workstation communication properties (array)

13.25 Major modules of A&M workstation software

13.26 Measurement range

13.27 Frequency response

13.28 A / D resolution

13.29 Input impedance

13.30 Measurement accuracy

13.31 Priorities of some major system modules

272

272

280

281

281

283

283

284

284

284

298

This Page Intentionally Left Blank

Preface

This book contains significant results from our research on industrial automa-
tion software conducted in previous years. Industrial automation software
can be used in a wide variety of industrial fields such as condition monitor-
ing and fault diagnosis for rotating machinery, public utilities monitoring,
plant process supervision, intelligent building management, and many others.
With the fast development of computer technology in recent years, a number
of emerging software technologies can be adopted to build more powerful in-
dustrial automation software. These innovative technologies include modern
software engineering, object-oriented methodology, visual/graphical program-
ming platform, graphical user interface, virtual instrumentation, component-
based system, systematic database management, dynamic data exchange, and
so forth. All these technologies provide new opportunities to develop more
comprehensive and reliable software artifacts than before. Thus the demand
for new books in this field arises as the field continues to keep evolving, and
both practicing engineers and academic people are simultaneously challenged
by how to develop industrial automation software in a more effective and
efficient manner.

This book is intended to address how the industrial automation software
can be developed in a purposeful and disciplined fashion. Broadly speaking,
the whole book is divided into two parts. The first part provides the reader
with an overview of this field and a variety of fundamental design principles.
Chapter 1 introduces the modern industrial automation systems, virtual in-
strumentation technology is discussed in Chapter 2, and the development of

xxii PREFACE

component-based measurement systems is addressed in Chapter 3. Chapter
4 introduces the object-oriented software engineering. User interface design
is discussed in Chapter 5. Database management is presented in Chapter
6 . Software testing is fleshed out in Chapter 7. In the second part of this
book, first an overview on the five typical applications in real-world industrial
automation software design is given in Chapter 8. All of these case studies
are highly representative so that they can serve as useful references when the
reader wants to construct their own software systems. Chapter 9 represents an
ob ject-oriented reconfigurable software for industrial measurement and con-
trol. Because the reconfiguration concept is used throughout the software de-
velopment process, the obtained software turns out to be highly flexible and
able to accommodate different industrial application requirements. Chapter
10 focuses on the flexible measurement point management in the industrial
measurement and control system. It provides the basis for building industrial
automation systems with high configuration capability. A VxD-based auto-
matic blending system is discussed in Chapter 11. To meet the communication
speed in the presence of a large volume of data, multithreaded programming
technique is used to avoid the data transmission bottleneck. Rotating turbine
machinery is widely used in various industrial environments, and its design
quality is of particular importance. Thus in Chapter 12, an automatic test
system for turbine machinery is discussed, which is developed for ensuring
the machine quality by automatic testing. Networked industrial systems are
the development trend for different industry applications. In Chapter 13, an
Internet-based online real-time condition monitoring system is discussed. It is
developed based on the concept of modular design and functional decomposi-
tion. In the final chapter, the emerging technologies for building more power-
ful industrial automation software are introduced, which include middleware,
Unified Modeling Language (UML), agent-based software development, and
agile methodologies.

The authors welcome all the comments and suggestions regarding this book.
All the correspondence may be addressed to the first author at 1.f.wangQieee.org.
Thank you for reading the book, and I look forward to hearing from you.

L. F. WANG

College Station, Tezas

K. C. TAN

NUS, Singapore

Acknowledgments

We would like to thank the many wonderful people who helped us research and
complete this book. First, our sincere thanks go to all at Wiley-IEEE Press
who interacted with us during advance marketing for their time and effort.
We are especially grateful to Anthony VenGraitis (Project Editor) , Lisa Van
Horn (Managing Editor), and Bob Golden (Copy Editor) for making amazing
progress with the manuscript and for smoothing out the rough edges. Their
effort and patience made possible an enjoyable and wonderful journey through
various steps in production. Thanks are also due to the anonymous reviewers,
whose constructive and useful comments have helped us greatly improve the
quality of the book.

We owe immense gratitude to Dr. L. Y. Wang, Dr. X. X. Chen, Dr. H.
Zhou, Dr. C. G. Geng, Dr. Y. Z. Wang, Dr. L. Liu, Dr. X. L. Chen, Dr.
Y. C . Ma, X. D. Jiang, Y . B. Chen, S. L. Liao, P. F. Yu, J . T. Huang, H.
Chen, J. H. Chen, H. X. Wu, and Amy Ton for their useful help and beneficial
discussions throughout this endeavor. In particular, some chapters included
in this book are the joint work with many other excellent researchers: Chapter
3 (H. Chen), Chapter 4 (J. T. Huang), Chapter 11 (Y. B. Chen), Chapter 12
(Y. B. Chen and X. D. Jiang), Chapter 13 (X. D. Jiang), and Chapter 14 (S.
L. Liao). Without their help, this study could not have occurred.

We also would like to thank our families, who endured our extended time
leave and gave us endless spiritual support.

L. F. W. and K. C. T.

This Page Intentionally Left Blank

3GL
3VM
4GL
ADRE
A&M
AM
API
ASD
ATS
BDE
BSD
BU

C4ISR
c/s

CAN
CAS

Acronyms

Third-Generation Language
3-View Modeling
Fourth-Generation Language
Automated Diagnostics for Rotating Equipment
Analysis & Management
Agile Modeling
Application Programming Interface
Adaptive Software Development
Automatic Test System
Borland Database Engine
Berkeley Software Distribution
Butt om- Up
Client/Server
Command, Control, Communications, Computers,
Intelligence, Surveillance, and Reconnaissance
Controller Area Network
Complex Adaptive System

XXV

xxvi Acronyms

CASE
CBS
CBSD
CIMS
CIN
CM
COM
CORBA
COTS
CP
CPU
DAIU
DAQ
DBD
DBMS
DCB
DCE
DCL
DCOM
DCS
DDE
DDL
DFA
DFD
DIT
DLL
DMC
DML
DNA
DSDM
DSS
EAD
EAI
EIS

Computer-Aided Software Engineering
Component -B ased System
Component-Based Software Development
Computer Integrated Manufacturing System
Code Interface Node
Condition Monitoring
Component Object Model
Common Object Request Broker Architecture
Commer cial-0 ff- t he-S helf
Control Package
Central Processing Unit
Data Acquisition Interface Unit
Data Acquisition
Database Desktop
Database Management System
Device Control Block
Distributed Computing Environment
Data Control Language
Distributed Component Object Model
Distributed Control System
Dynamic Data Exchange
Data Definition Language
Dat a-Flow Analysis
Data-Flow Diagram
Driver Image Table
Dynamic Link Library
Database Management Component
Data Manipulation Language
Distributed Network Architecture
Dynamic Systems Development Method
Decision Support System
Enterprise Application Development
Enterprise Application Integration
Enterprise Information Systems

Acronyms m i ;

ERD Entity-Relationship Diagram
FATSFTM Flexible Automatic Test System for Turbine

FDD
FFT
GPIB

GQS
GUI
HIC
HMI
HTML

ICPC
IDE
IMC
IPC
ISDN
ITS
JAD

I/O

Machinery
Feature-Driven Development
Fast Fourier Transform
General-Purpose Interface Bus
Generic Query System
Graphical User Interface
Human Interaction Component
Human-Machine Interaction
HyperText Markup Language
Input /Output
Industrial Control Personal Computer
Integrated Development Environment
Industrial Measurement and Control
Inter-Process Communication
Integrated Services Digital Network
Integrated Transaction Server
Joint Application Development

LabVIEW Laboratory Virtual Instrument Engineering

LAN
LD
LIA
MDI
MEMS
MMI
MP
MS
MTS
NCS
NDI
OA
ODBC

Workbench
Local Area Network
Lean Development
Linguistic-based Information Analysis
Multiple Document Interface
Microelectromechanical Systems
Man-Machine Inter face
Measurement/Measuring Point
Microsoft
Microsoft Transaction Server
Networked Control System
Non-Developmental Item
Object Adapter
Open DataBase Connectivity

m i i i Acronyms

OLE
OMG
OMT
00
OOA
OOD
OOP
OOSE
OPC
ORB
0s
oss
P2P
PCI
PCM
PDC
PFA
PLPGN
PLC
PP
PTP
Pub/Sub
PXI
PZT

QP
RAD
RDBMS
RMI
RPC
RSFIMC

RUP
SAC
SBC

Object Linking and Embedding
Object Management Group
Object Modeling Technique
Object- Orient at ion
Object-Oriented Analysis
Object-Orient ed Design
Ob ject-Oriented Programming
Object-Oriented Software Engineering
OLE for Process Control
Object Request Broker
Operating System
Open Source Software
Peer- t o-Peer
Peripheral Component Interconnection
Pulse Code Modulation
Problem Domain Component
Phrase Frequency Analysis
Pipeline Liquefied Petroleum Gas Network
Programmable Logic Controller
Pragmatic Programming
Point-To-Point
Publisher / Subscr i b er
PCI extensions for Instrumentation
Piezoelectric
Query Package
Rapid Application Development
Relational Database Management System
Remote Method Invocation
Remote Procedure Call
Reconfigurable Software for Industrial Measurement
and Control
Rational Unified Process
Scan, Alarm, and Control
Single-Board Controller

SCADA
SCMC
SD
SDI
SICL
SOC
SP
SPX/IPX

SQA
SQL
STD
TCP/IP
TD
TMC
UDP
UDT
UML
URL
VBX
VCL
VI
VISA
VME
VMS
VPP
VxD
VXI
WAN

Acronyms

Supervisory Control And Data Acquisition
Single-Chip Micro-Controller
Structured Design
Single Document Interface
Standard Instrument Control Library
S yst em-On-a- C hip
Structured Programming
Sequenced Packet Exchange/Internetwor
Exchange
Software Quality Assurance
Structured Query Language
State Transition Diagram

Pac

X X i X

<et

Transmission Control Protocol/Internet Protocol
Top-Down
Task Management Component
User Datagram Protocol
Uniform Data Transfer
Unified Modeling Language
Unified Resource Location
Visual Basic extension
Visual Component Library
Virtual Instrument/Instrumentation
Virtual Instrument Software Architecture
VersaModul Eurocard
Virtual Memory System
VXI Plug&Play
Virtual X Device Driver
VME extensions for Instrumentation
Wide Area Network

WYWIWYT What You Write Is What You Think
WinSock Windows Socket
XML extensible Markup Language
XP extreme Programming
Y2K Year 2000

This Page Intentionally Left Blank

Part I
-

Design Principles of
Modern Industrial

Automation Systems

This Page Intentionally Left Blank

In t rod u c t i o n

In the past years before the personal computer (PC) was widely incorporated
into industrial automation systems, all the faults that occurred in industrial
processes were checked and dealt with by trained or experienced operators.
For example, in the condition monitoring systems for the natural gas pipeline
network, all operations were handled in a manual or semiautomatic manner,
which, however, had some major drawbacks. For instance, the operator had
to do the majority of the work by hand, the abnormal conditions could not
be monitored and handled in real time, the remote measurement parameters
could not be effectively monitored, and operators were prone to make mistakes
in recording and manipulating a large amount of data. Therefore, it is highly
necessary to automate the measurement operations as well as to improve the
operating efficiency.

In recent decades, this picture has been dramatically changed due to the
wide adoption of industrial PC in a wide range of industrial applications. A
typical industrial automation system, as illustrated in Fig. 1.1, is usually
made up of the physical system, transducers, device drivers and data I/O,
host computer, network server, and remote computers.

Information technologies have been rapidly developed in recent years, and
they have provided sufficient technical support for building modern industrial
automation systems with more open architecture with respect to the previ-
ous ones. It turns out that the computerized real-time monitoring analysis

Modern Industrial Automation Software Design, By L. Wang and K. C. Tan
Copyright 2006 the Institute of Electrical and Electronics Engineers, Inc.

1

2 INTRODUCTION

Hmt Computer WWW Server R m t e Computers

fig. 1.1 A typical industrial automation system.

and automated technologies can realize the full automation of an industrial
measurement system. The combination of emerging information technologies
with traditional condition monitoring systems allows for the continuous run-
ning status monitoring for essential equipment as well as comprehensive data
processing and centralized resource management. It will significantly enhance
the working efficiency of system operators and decision-makers. As a result,
developing such systems with the aforementioned characteristics for achieving
full industrial automation has a positive practical significance in both economy
and technology perspectives.

1.1 DEVELOPMENTAL TRENDS

Considering the state of the art in industrial measurement and control fields
nowadays, we can see that modern industrial automation systems have the
following two evident developmental trends:

One direction is to carry out industrial measurement and control us-
ing miniaturized, portable, and universalized instruments. This type
of small handheld instrument allows workers on the floor to collect sig-
nals from the plant floor and to perform certain simple computation
using the general-purpose software burned in the system itself. Then,
through the general instrument buses, like IEEE488 and RS-232, the
instrument is connected to a personal computer for further data pro-
cessing by fully utilizing the more powerful computing capability. This
type of instrument is being developed very rapidly.

Another direction is to develop continuous, online, real-time measure-
ment and control systems. The functions of such systems are more
comprehensive as compared with the handheld-instrument-based mea-
surement, but the cost is much higher. And such systems are generally
more suited for monitoring the key plant equipment. The existing prod-
ucts primarily include the following several components:

- Devices have the powerful capability for data acquisition and signal
preprocessing using electrical circuits such as operational amplifiers
and filters. This part of electric circuits must ensure that the gath-

CLASSIFICATIONS AND EXISTING PRODUCTS 3

ered data can truly reflect the running status of various complex
and ever-varying plant operating conditions.

- Dedicated signal analyzers are employed to perform the real-time
signal processing for the data collected from factory floor. For
instance, the widespread application of Fast Fourier Transform
(FFT) technique enables easy and fast analysis of signal charac-
teristics. Furthermore, more and more novel algorithms are being
invented for more effective signal processing.

- The advantages provided by Internet or Intranet can be fully ex-
ploited by building the networked industrial automation systems.
The master computer, which is the system heart, is primarily re-
sponsible for collecting data transmitted through the network. The
master computer also conducts data manipulation and analysis
tasks using its installed software in order to facilitate the appropri-
ate decision-making. In the 1980s, many companies and colleges
began developing the measurement and control software. But the
majority of the developed software was based on the DOS platform
or the earlier 16-bit Windows platforms, and their functions are far
from satisfying user’s ever-changing requests.

In this book, only the latter measurement and control systems are ad-
dressed. In an information-rich world, the tighter integration of various dis-
ciplines is the trend for modern industrial automation systems. The trend
is the convergence of communication, computing, and control technologies.
For instance, the well-known CBSR (command, control, communications,
computers, intelligence, surveillance, and reconnaissance) is one of its typi-
cal applications. The future industrial automation system will involve more
interactions among system components as well as with the physical environ-
ment.

1.2 CLASSIFICATIONS AND EXISTING PRODUCTS

From the technical perspective, the application of industrial automation soft-
ware can be classified into the following categories:

0 Industrial measurement and control

0 Remote measurement, communication, and control

0 Monitoring and alarming of industrial process parameters

0 Industrial parameters acquisition, processing, presentation, search, and

From the perspective of application domains, industrial automation soft-

network sharing

ware can be applied to the following fields:

4 lNTRODUCTlON

0 Measurement and control of process parameters in industrial production

0 Parameter monitoring for public utilities such as city LPG pipeline,
power transmission, and water supply

0 Integrated management system for intelligent buildings such as building
equipment monitoring and security management

0 Power management in telecommunication systems

0 Environment monitoring and protection

0 Condition monitoring for large rotating machinery

0 Products quality testing and analysis

0 Supervision of food and beverage assembly

0 Safety-critical aerospace applications

In recent years, some industrial automation software packages have been
successfully developed and are being used in various industrial application
fields. At the time of writing, the major software packages commercially
available in global market include Intouch of Wonderware, Fix of Intellution,
Genesis of Iconics, WIZCON of PCSOFT, Cimplicity of GE, and so forth.
According to their developers, these software packages can be classified into
three types, namely, the software which is developed by the professional soft-
ware companies, hardware/system companies, and industrial manufacturing
companies, respectively.

0 The industrial automation software developed by professional software
companies occupies the majority of the global industrial automation
software market. The typical software products are listed as follows:

- Intouch of Wonderware (U.S.A.): Wonderware Intouch is a Mi-
crosoft Windows-based, object-oriented, graphical human-machine
interface (HMI) application generator for industrial automation,
process control, and supervisory monitoring. Types of applica-
tion include discrete, process, DCS (Distributed Control System),
SCADA (Supervisory Control and Data Acquisition), and other
industrial environments.

- Fix of Intellution (U.S.A.): FIX Dynamics provides automated,
fully integrated industrial solutions that combine together plant-
floor and business data. It is designed based on industry standards
for integration, interface, and communications technologies.

- Genesis of Iconics (U.S.A.): Genesis32 offers a totally nonpropri-
etary set of open and scalable automation tools. It is suited for
many applications requiring supervisory control, data acquisition,

FUNCTIONALITY OF INDUSTRIAL AUTOMATION SYSTEMS 5

advanced alarming, report, visualization, and much more. It also
seamlessly integrates with other commonly used software products
such as MS SQL and MS Office.

- Other commercial software packages developed by professional soft-
ware companies include ONSPEC of Heuristics (U.S.A.), PARAGON
of IntecControl (U.S.A.), Citech of CiT (Australia), AIMAX of T.
A. Engineering (U.S.A.), FactoryLink of U.S. Data (U.S.A.), WIZ-
CON of PCSOFT (Israel), and so on.

0 In the recent years, some hardware/system manufactures also began to
develop their industrial automation software products. The represen-
tative products primarily include Cimplicity of GE (U.S.A.), RSView
of AB (U.S.A.), WinCC of Siemens (Germany), and so on. Some DCS
manufactures such as Rosemount and Honeywell also developed pow-
erful industrial automation software for their advanced control systems
and field-bus products.

0 Products of industrial automation software developed by industrial man-
ufacturing companies have occupied more and more market portions in
recent years. The main reason is that the expensive software packages
are apparently not suited for the numerous small and medium-sized
companies worldwide, where software cost is their major concern. In
practice, these companies are not able to afford to study, take courses,
and buy consultation for building and maintaining the complex large-
scale software for long periods of time. Furthermore, the software that
they need should be especially suitable for the field environments in spe-
cific practical applications so that the software can be easily operated
even by common technicians. Therefore, it is believed that develop-
ing such a software package can help those companies to develop their
projects in a cost-effective fashion as well as provide complete plug-and-
solve functionality for the new plant. The major theme of this book is
concerned with the development of such software packages for different
industrial applications in a cost-effective fashion.

1.3 FUNCTIONALITY OF INDUSTRIAL AUTOMATION SYSTEMS

Modern industrial automation systems should be capable of conducting real-
time online data acquisition and manipulation, centralized system resource
management, and networked data sharing. It must have the flexible config-
uration capability. It should be capable of flexibly setting up general local
area network (LAN) and wide area network (WAN) to meet specific indus-
trial measurement and control requirements. It should also be able to build
comprehensive monitoring network integrating various functions such as data
collection, condition monitoring, fault diagnosis, resource management, and

6 INTRODUCTION

decision-making. Such an industrial automation system should be suitable for
operation and management at different levels such as workshop, branch fac-
tory, and corporation. Basic requirements for such an industrial automation
system are listed as follows:

0 It should be able to effectively conduct the desired measurement and
control tasks in order to ensure the proper operations of industrial pro-
cess. By uninterrupted system monitoring and recording, the database
stores gathered information on plant operation status. These data can
be used later on for further analysis and diagnosis of plant conditions.

0 It should be able to effectively utilize various signal processing tech-
niques to analyze the gathered data from different measurement points
(channels). Moreover, appropriate and effective data processing algo-
rithms need to be incorporated into the industrial automation software
so as to fully exploit the merits of computation resources provided by
modern computers as well as satisfy real-time constraints on data ma-
nipulation. By doing so, real-time measurement and thorough data
analysis can be effectively accomplished.

0 It should be able to increase the software versatility by allowing for
flexible configuration of a variety of system parameters. The principles
and main functions of industrial automation software may remain un-
changed for different industrial applications. However, the details for
any specific application can be redefined by modifying the configuration
database according to any specific user requirement. Finally, by com-
bining configuration database with the fixed system modules, system
configuration for the specific application is accomplished and thus the
industrial automation software with desired functionality is built.

0 Human-machine interfaces (HMIs) should be designed according to the
current popular development trends. User-friendly graphical user inter-
faces (GUIs) are always beneficial to improve software quality because
they make user operations more convenient and pleasant. For instance,
using the multimedia provided by the modern computer technology, all
of the plant statuses can displayed in an animated form as their corre-
sponding industrial parameters are updated in real time.

0 It should have comprehensive alarming and reporting capability. The
alarm module in the industrial automation software compares the gath-
ered data with the user-set parameters. Audiovisual alarms and ex-
ception reports are generated for immediate remedial action if the data
levels detected exceed the preset parameters. The alarming function
should be able to provide various alarming patterns in order to promptly
inform the corresponding technical and management personnel in the
presence of emergent situations. These flexible alarming modes include
vivid screen indicator, speaker, automatic telephone dialing, beeper,

ABOUT THE BOOK 7

e-mail, fax, and so on. Emails can be sent to the cell phones of corre-
sponding people in the form of SMS messages, informing them of plant
emergencies in a timely manner, which cuts machine downtime. All of
these functions can be made available without needing extra prohibitive
telemetry investments.

0 It should be able to directly perform various measurement and con-
trol tasks using commonly used Web browsers. Previously, the special-
purpose industrial automation software package had to be installed on
the industrial computer beforehand in order to conduct the tasks. The
networked system provides the network server, which allows the user
to accomplish industrial measurement and control in the global scope
through the network Web browser (for example, Internet Explorer or
Netscape). It avoids the installation of any special-purpose software.
Thus, software maintenance becomes more convenient, and such systems
should be more economically priced. Using the network technologies, an
industrial automation system is no longer an “island of automation” and
only confined to a stand-alone local or dedicated network. The remote
management activity allows operators anywhere to access the real-time
data from the factory floor. Internet-enabled industrial automation sys-
tems also allow for automatic software upgrades and remote mainte-
nance.

1.4 ABOUT THE BOOK

A modern industrial automation system is made up of a variety of indepen-
dently functioning but interacting modules. It opens a new window of op-
portunity to increase productivity and management effectiveness of industrial
processes. The wider use of distributed supervisory control and data acqui-
sition across a factory floor turns out to be able to enhance the productivity
and profitability significantly. Future trends in this field include improving
the industrial automation system reliability/availability, responsiveness, scal-
ability, expandability, flexibility, interoperability, and so on. To achieve these
objectives, we believe that next-generation industrial automation systems will
be based on a few key design principles:

0 Virtual instrumentation

0 Component technology

0 Object-oriented software engineering

0 Graphical user interface

0 Database management

8 /NTRODUCT/ON

0 Systematic software testing

0 Other emerging technologies

In the subsequent chapters of the book, first some of the key design princi-
ples are introduced (some other design principles are discussed throughout the
case studies of practical industrial automation system designs). And then five
representative real-world applications are discussed in great detail. Applica-
tion engineers seeking to develop similar applications will find these practical
design cases of interest.

0 In Chapter 10, an object-oriented reconfigurable software for industrial
measurement and control is presented since the capacity of highly flexi-
ble reconfiguration is crucial for modern industrial automation software.
The developed software turns out to be able to work a wide range of
industrial application scenarios.

0 In Chapter 11, a flexible measurement point management scheme is im-
plemented in an industrial measurement and control system. It provides
a solid basis for constructing modern industrial automation systems with
high configuration capability.

0 In Chapter 12, a VxD-based automatic blending system is detailed. To
satisfy the system communication requirements in the presence of a large
volume of data, a multithreaded programming technique is adopted to
avoid the data transmission bottleneck.

0 In Chapter 13, an automatic test system for large rotating turbine ma-
chinery is discussed. It is used to ensure the machine quality by fully
automating its testing procedure. Rotating turbine machinery is now
being used in a variety of industrial processes, and its design quality is
of particular importance. Thus, such an automatic test system is highly
desired.

0 In Chapter 14, a networked online real-time condition monitoring system
is discussed because Internet-based industrial automation systems are
the developmental trend for different industry applications. This system
is also developed based on the concept of modular design and functional
decomposition.

In the final chapter, emerging technologies which are being or may be used
for building more powerful industrial automation software are introduced,
which include middleware, Unified Modeling Language (UML), agent-based
software development , and agile methodologies.

2
Virtual Instrumentation

This chapter first discusses the virtual instrumentation first and then presents
a Pipeline Liquefied Petroleum Gas Network (PLPGN) monitoring system
based upon the virtual instrument architecture. Starting from the introduc-
tion of development requirements and environment for the monitoring system,
this chapter discusses its hardware configuration and software functionalities
in detail. Practical application has demonstrated that the virtual-instrument-
based structure is very effective and the obtained monitoring system is highly
flexible.

2.1 INTRODUCTION

The rapid development of microprocessor and VLSI technologies has a rev-
olutionary impact on the field of electronic industrial measurement and in-
strumentation. In the industrial measurement system, the requirements on
instrument intelligence become higher than ever in order to satisfying more
and more demanding user requirements. As the microprocessor plays a more
important role in the industrial measurement system, the modern instrument
system behaves like a microprocessor system in many regards. Furthermore,
with the widespread use of microprocessors and intelligent instruments, there
are more and more redundant components in an industrial measurement sys-

Modern Industrial Automation Software Design, By L. Wang and K. C. Tan
Copyright 2006 the Institute of Electrical and Electronics Engineers, Inc.

9

10 VIRTUAL /NSTRUM€NTAT/ON

tem, but unfortunately they lack the capability of fault tolerance. Therefore,
it is highly necessary to systematically consider the relationship between the
instrument and computer. As a result, the modular instruments used together
with personal computer appeared in the early 1980s.

Distinguished from the traditional instruments, modular instruments do
not contain instrument control panels; instead, they are provided with the
graphical environment and other functionality supported by a personal com-
puter to build the graphical virtual instrument panels. The most significant
difference between a virtual instrument and a traditional instrument is that
a personal computer is used in the virtual instrument for all of user interac-
tions and operations. Most traditional instruments do not have sufficiently
powerful computational capability to deal with the demanding applications
in modern industrial measurement systems. On the contrary, in the virtual
instruments, personal computer is an integral part of the instrumentation sys-
tem, so its strong computational and control capabilities can be applied to
deal with various industrial measurement tasks. In addition, the graphical
front panels provided by the computer can markedly ease the user operations.

Traditionally, for different industrial measurement purposes, several stand-
alone instruments are chosen and connected to each other for constructing
the desired measurement systems. Because such instrument systems normally
have no powerful computation capability, the operators have to do most of
the calculation work manually, which is, however, not desired in the hostile
and stressful industrial field environments. The stressed engineers may be
required to do too much work within a short period such that they are more
prone to make mistakes. Furthermore, whenever the measurement purpose or
target changes, a new measurement system has to be constructed from scratch
in order to meet the new measurement requirements. Fortunately, the con-
cept of virtual instrumentation has resulted in a completely innovative type
of measurement system, by which the engineers are able to deal with different
measurement targets and demands in a more efficient and cost-effective fash-
ion. The virtual instrument system comprises a set of measurement devices
with strong data acquisition capability together with the analysis software
with powerful computation and presentation capabilities. Virtual instrument
systems are able to automate the whole measurement process including data
acquisition, analysis, and presentation. As the measurement equipment is
tightly integrated with the measuring and controlling software which runs
in the computer, the rich resources provided by the personal computer can
be fully utilized, which include comprehensive data manipulation functions,
multimedia display, networked control, real-time communication, and many
others.

“Islands of automation” is a typical weakness in the traditional industrial
measurement systems. Such a system can only fulfill the measurement require-
ments for a specific application. In order to meet the ever-changing demands
of industrial measurement systems, some standards such as VXI Plug&Plug
(VPP) specification are proposed to unify heterogeneous measurement devices

lNTRODUCTlON 11

in the current market into a single framework. As a result, for the VXI-based
virtual instrument system, the system can be readily modified or expanded
when new technologies need to be added to the existing system or the current
measurement requirements change. A VXI system has an open architecture
by combining a variety of industry standards.

Virtual instrumentation also makes use of network technology to publish
and share data, which was, however, unable to be achieved in the conven-
tional propriety instrument systems. The engineers are therefore able to con-
veniently publish data via Internet and read data from the plant field in a
timely manner. The managers who are out of town can access the plant
field data to check the real-time production information. In this way, the
strong decision-making support is provided. Furthermore, the knowledge and
experiences from various domain experts can be easily shared across global en-
terprises. For instance, in the virtual-instrument-based condition monitoring
and fault diagnosis system, whenever any machine fault occurs, the experts
around the world can simultaneously diagnose the faulty machinery to recover
it as promptly as possible.

Rapid technological advancements of computer technologies have greatly
enhanced virtual instrumentation. The migration of operating systems from
DOS to Windows 3.1 made the graphical user interface feasible, which is a
key merit of virtual instruments. The migration to Windows 95/NT or up-
per versions made 32-bit software available for building virtual instruments.
And advances in processor performance supplied the horsepower needed to
bring new applications within the scope of virtual instrumentation. Faster
bus architectures, such as PCI, have eliminated the data transfer bottleneck
problem in the conventional buses, such as ISA and NuBus: The bus mas-
tering featured on advanced plug-in data acquisition (DAQ) hardware pushes
data transfers into the 20-Mps range, which until recently was the realm of
benchtop instruments. The promise of virtual instrumentation is closely as-
sociated with the development of computer technologies, because computer
technologies provide the major technical support to the virtual instrumenta-
tion such as attractive graphical user interface, data processing and analysis
capabilities, and Internet-based communications. These features embody the
advantages of virtual instrument which are lacked in the stand-alone instru-
ment system.

In the traditional ISA- or NuBus-based instrument system, the high-speed
data processing cannot be effectively implemented when the data volume is
large. It is not a problem anymore in the virtual-instrument-based system
due to the occurrence of high-speed buses including VXI, PCI, and so on.
These bus standards make virtual instrumentation a suitable platform for in-
dustrial automation applications with tight time constraints. These buses are
capable of keeping pace with the fast CPU operations in PC. Virtual instru-
ment has excellent scalability so it can be used across a variety of hardware
configurations. Virtual-instrument-based applications can be ported between
different bus structures including PCI, DAQ boards, and VXI. Whenever any

12 VlRTUAL /NSTRUM€NTAJ/ON

innovative bus occurs, the developer only needs to migrate the legacy virtual
instrumentation system into the new bus framework.

Numerous applications of a virtual instrument in a wide variety of in-
dustrial instrument fields have verified the effectiveness of integration of in-
strument and computer technologies. As compared with the traditional in-
strument solutions, a considerable amount of development time and cost is
saved. The advancement of both instrument and computer technologies will
benefit the virtual-instrument-based industrial measurement systems. It is
expected that virtual-instrument-based systems will become the mainstream
instrument products in the industrial measurement arena in the coming years.
They can be used for instrument control, data analysis, and multimode dis-
play. Virtual instrument represents a promising technology. It has now been
applied to a wide variety of automation fields such as aerospace, military, plant
measurement and control, laboratory automation, and so forth. As compared
with the traditional instrument, the virtual instrument has the following ma-
jor characteristics:

0 The hardware and software in the virtual instrument offer outstanding
features such as open structure, modularity, reusability, interoperabil-
ity, and so on. The user can easily add or change an instrument module
for the special industrial application without needing to purchase a new
industrial measurement system, which is usually very expensive. Thus,
the expandability of an industrial measurement system is significantly
increased.

0 Users are able to define the instrument functionality by themselves.
Because the instrument functions can be created at the user level, the
instrument functions are not defined beforehand by the manufacture
anymore. Instead, based on the real measurement requirements, the
user can replenish new instrument functions by modifying the existing
software instead of purchasing a new instrument.

0 Only one data module is sufficient to measure all of the input signal
characteristics (e.g., voltage, frequency, etc.). Therefore, the measure-
ment speed is markedly improved as the simultaneous measurement of
field signals becomes feasible using virtual instrument.

0 The occurrence of embedded data processor allows for the construction
of certain math models such as FFT and digital filters. The measure-
ment accuracy and repeatability can be ensured without needing the
troublesome periodic calibration. Furthermore, the VI measurement
will not be affected by external factors such as cable length, impedance,
coefficient difference, and so on.

With the increasing weight of software in the entire instrument system,
the concept of virtual instrument is expanded accordingly. All the indepen-
dent modules in the industrial measurement system can be seen as virtual

CHARACTERISTICS OF VXI INSTRUMENTS 13

instruments or sub-virtual instruments, which include various procedures and
functions for data acquisition, analysis, computation, display, and so on. The
layered virtual instrument architecture makes it feasible to construct complex
virtual instrument systems.

The concept of virtual instrument system is a breakthrough for the tra-
ditional instrument concept, and it has resulted from the combination of
computer system and instrument technology. Using the powerful functions
of computer systems and combining the corresponding hardware, the virtual
instrument makes a breakthrough in the limitations on data processing, dis-
plays, transmission, and storage for the traditional instruments. And users
conduct instrument maintenance, expansion, and upgrades in a more conve-
nient manner. The main functions for traditional instruments and virtual
instruments are identical in essence, i.e., data acquisition, data manipulation
and analysis, and data presentation. The main difference lies in the measure-
ment flexibility the instrument system is able to offer. Virtual instrument
is flexibly defined by the user. And this means that the user can flexibly
combine a variety of computer platforms, hardware, software, and other sup-
porting equipment needed to accomplish the specific application system. Such
flexibility cannot be achieved in the traditional instrument system, where the
instrument functionality is defined by the individual instrument provider be-
forehand. In the software structure of virtual instrument system, the top layer
of the software framework is the end-user application software. This software
framework reflects the principle of higher system flexibility and openness.

The foundation of virtual instrument technology is the computer system,
and its core task is software development. The famous slogan proposed by
NI, “Software is the instrument,” indicates the importance of software devel-
opment in the virtual instrument system. LabVIEW and LabWindows/CVI
are two of their representative products for the visual programming of virtual
instrument, which can be used for the high-efficiency data acquisition, mea-
surement, and data analysis. HP VEE is the product of HP company, whose
strong ability for data acquisition, processing, and presentation is also well-
received. Other virtual instrument software packages in the current market
include Visual Designer, DIAdem, DASYLab, TestPoint, ICONNECT, Genie,
and so forth.

2.2 CHARACTERISTICS OF VXI INSTRUMENTS

VXI instrument is a type of modular instrument, which has no conventional
operating panel as the computer is responsible for all of the panel operations
and displays. It is evident that all of the VXI instruments fall in the virtual
instrument category because they feature all the characteristics of virtual in-
struments. The VXI-bus-based system architecture supplies an ideal platform
for the virtual instrument system development. The major characteristics of
VXI instruments are listed in the following:

14 VIRTUAL INS JRUMfN JATION

0 Open standard: VXI is a truly open standard supported by a number
of instrument manufactures worldwide. Consequently, users can select
the intended instrument modules freely according to their specific ap-
plications. The choice range is sufficiently wide in integrating various
virtual instrument systems.

0 High measurement system throughout: The back-board data transmis-
sion bottleneck in traditional instrument systems is not a problem any-
more when using VXI-based instrumentation systems. VXI bus has the
potential to develop distributed intelligence. It is able to communicate
with multiple processors of the back-board with the shared data stor-
age structure. Through the data transmission in back-board, the data
bandwidth is higher than any individual electronic device. Strict inter-
rupt handling is also supported by the mechanism of multilevel interrupt
priorities.

0 Modular structure: Modular structure is used in the VXI-based instru-
ment system. The design measures such as shared power source and
cooling equipment, panel elimination, and highly compacted structure
design significantly reduce the instrument dimensions. The system re-
dundancy is also reduced by selecting the desired measurement modules
and having less CPU management, etc. Consequently, as compared
with the conventional instrument system, both dimension and cost are
dramatically decreased in the virtual instrument system.

0 More convenient integration with other instruments: IEEE 488-VXI
bus interface is defined in the VXI bus specification. Therefore, IEEE
488.2 (GPIB) language and software can be ported to control the VXI-
bus-based industrial measurement system. Intelligent interpreter in the
interface component can accomplish the interpretation of protocol com-
mands. As a result, the measurement system based on the VXI bus not
only can run individually, but also can be connected to the IEEE 488
(GPIB) measurement system for building larger measurement systems.

0 Easier implementation of networked control: VXI bus specification de-
fines the connection between instrument system and computer network.
By closely relating the instrument system to computer network technol-
ogy, networked monitoring and control can be realized in a more effective
manner.

2.3 VXI PLUG&PLAY (VPP) SPECIFICATION

The VPP specification is initially designed for the purpose of resolving the
interoperability and usability problem of the VXI systems developed by differ-
ent manufactures. It is also intended to provide the end user with capability

VXI PLUG&PLAY (VPP) SPEClFlCATlON 15

of convenient system maintenance and expansion. The instrument module de-
fined in VPP specification refers to all types of instruments which tally with
the specification. The VPP specification has the following merits:

Systematic design: VPP specification focuses not only on the design of
VXI instrument modules (including both hardware and software mod-
ules), but also on the design of the overall virtual instrument system
guided by the structured and modular principles.

Various instrument modules constitute the hardware structure of the
virtual instrument system. These instrument modules may include VXI
control module, VXI instrument module, GPIB instrument module, se-
rial instrument module, message-based instrument, register-based in-
strument, and so forth. 1/0 interface software resides in the computer
system to execute certain special functions of virtual instrument buses.
It serves as the connectivity software layer between the computer and
instrument. It can be thought of as a callable operation functions set.
Each instrument module has its own instrument driver, which is a set of
software programs able to accomplish the particular instrument control
and communication tasks. And it is the bridge for the application to
realize the instrument control. The application program directly inter-
acts with the user. It provides gratifying user interfaces, together with
comprehensive data analysis and manipulation, to accomplish the au-
tomatic measurement tasks in various industrial application fields. 1/0
interface software, instrument drivers, and application constitute the
software structure of virtual instrument system.

0 Openness: VPP specification is open to both instrument manufacturers
and users, which is used for the design and implementation of generic
virtual instrument systems. It puts emphasis on reducing the imple-
mentation and maintenance complexity of instrument system in order
to reduce the end-user burden. Furthermore, the user can be an inti-
mate participant for the development and maintenance of instrument
systems.

Compatibility: The compatibility in VPP system refers not only to
the compatibility between the same types of instruments from different
manufactures, but also to the compatibility between various instrument
types. To realize the new measurement requirements, when constructing
the new VPP system, the legacy measurement system will not be thrown
away due to the high system compatibility. Hence, the user investment
can be ensured.

0 Universality: The heart of VPP system is the unified 1/0 VISA specifi-
cation, which provides the foundation for different software components
executing on the same platform. The instrument drivers and soft panels
designed based on VISA become the standard modules using the same

16 VlRTUAL lN5TRUMENTATlON

format. Thus, the interoperability between various instruments can be
achieved.

The establishment of VPP specification provides the explicit technical guide-
lines for constructing the virtual instrument system. It makes the construction
of unified and open virtual instrument system feasible. The establishment of
VPP is a result of the continuous development of standards on heterogeneous
instrument buses. Also, it provides strong theoretical and technical support
to novel instrument system development and integration.

2.4 VIRTUAL INSTRUMENT SOFTWARE ARCHITECTURE (VISA)

With the continued development of virtual instrumentation, the modulariza-
tion and standardization of 1/0 interface software becomes more imperative
than ever. 1/0 interface software lies in the computer system, and it is the
medium for transmitting commands and data between the computer system
and instrument. Many instrument manufactures nowadays provided 1/0 in-
terface software when selling their hardware interface circuits. Some of them
are only designed for a special type of instruments (e.g., the NI-488 for con-
trolling GPIB instruments, and the NI-VXI for controlling VXI instruments).
Others were being developed toward standards such as the Standard Instru-
ment Control Library (SICL) from HP.

Usually the top-down design model is used to design the 1/0 interface
software. First, all of the instruments to be controlled by the 1 / 0 inter-
face software are listed. Then, all the functions in various instruments are
described. Finally, the same operational functions among various listed in-
strument control functions are merged into a unified format. The unified
instrument functions are called core instrument functions. For instance, the
instrument read/write function in the GPIB instrument and that in the RS232
serial instrument can be merged into a single instrument read/write function.
All the unified core instrument functions, together with the remaining oper-
ational functions related to the specific instrument, constitute the top-down
1 / 0 interface software for realizing the interoperability and compatibility be-
tween various instruments. However, such software construction methodology
is only suitable for accomplishing the interoperability between message-based
devices, e.g., message reading/writing, software triggering, status capture,
asynchronous event handling, etc. For the specific device operations such as
interrupt handling, memory mapping, interface configuration, and hardware
triggering, no unified core functions can be obtained. Consequently, the core
functions set is only a small subset in the entire 1 / 0 interface software, while
the specific operational functions set is the large subset. However, this is not
our intention in unifying the instrument functions. Here, the top-down 1/0 in-
terface software design is just the simple addition of various instruments, and
they are unable to truly unify the interface software. As a result, message-

VlRTUAL INSTRUMENT SOFTWARE ARCHITECTURE (VISA) 17

and register-based devices cannot be unified in the top-down 1/0 interface
software design method. To resolve the problem, a bottom-up interface soft-
ware design model is proposed, which is termed as VISA (Virtual Instrument
Software Architecture).

2.4.1 VISA model structure

In a nutshell, VISA refers to the 1/0 interface software and its specification.
As mentioned previously, the construction of VISA is based on the bottom-up
model structure. Unlike the top-down design approach, in the VISA imple-
mentation, the resources for managing all the resources are defined first. This
type of resources is called VISA resource manager, which is responsible for
managing, controlling, and allocating the operational functions of VISA re-
sources. The major operational functions include:

0 Resource addressing

0 Resource creation and deletion

0 Reading and modification of resource attributes

0 Operation activation

0 Event report

0 Concurrency and write/read control

0 Default value settings

Then, based on the resource manager, the operational functions for various
instrument types are listed, and the operational functions are merged based on
their common properties. The implemented resources may include operations
in different formats. For instance, the operation of “read resource” includes
the “read” operation on message- and register-based devices, together with
synchronous and asynchronous reading. Each resource here is actually a set of
different operations. In the VISA, this type of resources refers to the instru-
ment control resources. The resources containing various instrument opera-
tions are called general resources, and the remaining resources which cannot
be merged with other resources are called specific instrument resources. Fi-
nally, a type of resources implemented by Application Programming Interface
(API) should be defined and created. It provides users with a unified method
for controlling all of the VISA instrument control resources.

Different from the top-down construction method, the VISA model con-
struction starts with the unification of instrument operations. The unification
process goes deeply into the functional operations instead of staying at the
level of instrument types. In the VISA structure, the difference between in-
strument types is embodied by the choice of operations in the resources with
the unified format. For the VISA user, format and usage are unified. As a

18 VIRTUAL INSTRUMENTATION

result, VISA provides a general-purpose and unified platform for the virtual
instrument system software by using the bottom-up design method. The in-
struments provided by different vendors are able to work in harmony in a
single platform.

In the VISA structure model, the bottom layer is the resource manager,
and its upper modules include I/O-level resources, instrument-level resources,
and user-defined resources set. It should be noted that the definition of user-
defined resources set is not specified in the VISA specification. This is an X
factor in the VISA model, and it makes high expandability and flexibility of
VISA feasible. The top layer of VISA model is the user application, which is
implemented by the user through utilizing VISA resources. It does not belong
to any category of VISA resources.

2.4.2 VISA characteristics

Compared with other existing 1/0 interface software, VISA has the following
distinctive features:

0 The 1/0 control functions in VISA are suitable for various instrument
types including VXI, GPIB, and RS232 serial instrument, together with
message-based and register-based devices, and so on. They have the
unified operational mode.

0 The 1/0 control functions in VISA are suitable for various types of
instrument hardware interfaces. The instrument operation functions
are identical regardless of the logic address of VXI instrument in the
entire system address space.

0 The 1 / 0 control functions in VISA are suitable for uni-processor system
structure as well as multi-processor or distributed network structure.

0 The 1/0 control functions in VISA well fit with different network mech-
anisms. Thus, the instrument operations for different virtual instrument
systems are identical to one another.

0 The source code in 1/0 software library in VISA is uniform, because
it is independent of operating systems and application programming
languages. It can also provide different API files.

Because the VISA structure takes into account the compatibility between
various instrument types and heterogeneous network mechanisms, the virtual
instrument system based on VISA 1 / 0 interface software can be seamlessly
integrated into the legacy instrument system (e.g., GPIB or serial instrument
system). Also, the instrument system configuration can be transformed from
centralized to distributed structure. The compatibility and interoperability
of VISA ensure that the new instrument system can be seamlessly integrated
into the existing virtual instrument system without much effort. The legacy

PROGRAMMING PLATFORMS 19

instrument system will not be jettisoned whenever it needs further modifica-
tion or upgrade. Therefore, the investment on the legacy instrument system
can be fully preserved. Furthermore, the choice of instrument types will not
be restricted by any system integration rules anymore, and users can select
the most suitable instruments for their instrument systems.

For the development of the virtual instrument driver, which adheres to the
VPP specification, usually the 1/0 interface software in the bottom layer needs
to call the VISA functions to accomplish certain tasks. Some applications can
also directly call the desired VISA functions without relying on the virtual
instrument driver. In addition, VISA software is not the only 1/0 interface
software type in the virtual instrument system software. In actuality, the
Windows API also acts as the 1/0 interface software in the computer system.
The operations on computer resources can be performed by directly calling
the desired API functions. The purpose of virtual instrument system software
architecture is to provide the most convenient operations to the end users, so
it is quite flexible and has no any rigid form.

2.5 P R 0 G RAM M I N G PLATFORMS

The primary mission of industrial automation software is to supervise the sys-
tem operating condition in a real-time fashion and carry out other auxiliary
functions such as data processing, statistical analysis, report generation and
printing, real-time alarming, and so on. Each part complements one another
to accomplish the overall system functionality. In general, industrial automa-
tion software is supposed to have some essential common features, which are
listed as follows.

0 Versatility: The designer of industrial automation software should com-
prehensively consider design requests from various fields such as petroleum,
chemical industry, metallurgy, electric power, electric machinery, spin-
ning and weaving, and so on. And it should be capable of satisfying
various requirements as well as offering widespread applications.

0 Comprehensive functions: Industrial monitoring software should provide
various basic and high-level functions, which include graphic monitoring
display, trend analysis, report generation and printing, automatic data
gathering, automatic memory/restore, real-time alarming, and so on.

0 System Openness: Openness is reflected by flexible communications,
ability to support many types of networks and different types of equip-
ment interconnection, open control strategies, permission to add user-
defined control strategies, flexible representation and printing modes,
and effective interfaces for database communication with other systems.
Thus it allows the user to deal with the information according to their
own needs.

20 VIRTUAL INSTRUMENTATION

User-oriented carefree configuration: The software should not impose
the user any fixed or rigid configuration patterns, but should allow for
flexible configuration based on the true user demands through the con-
figuration tool provided by the built-in configuration system.

0 Man-machine interface: MMI mainly includes making full use of ad-
vanced graph tools to provide high-quality graph displays: Improve user
interface operation flexibility; complete the function with the most suc-
cinct and intuitive modes; use the multimedia technologies to improve
user interface quality; increase the capacity of real-time interactive in-
formation communication.

2.5.1 Textual programming

Usually textual (syntactical) programming languages need a long learning
time to grasp since they normally require substantial programmer expertise.
The experienced and well-trained programmers can accomplish considerable
work with the well-crafted code. But in actuality, most industrial automation
engineers are not necessarily expert programmers, so they are more willing
to turn to other programming languages such as visual and graphical pro-
gramming languages. Using these programming languages, it is much easier
to make a program work properly without considerable programming effort
and skills.

2.5.2 Visual programming

Visual programming was a hot spot in the 1990s. With the rise of the graphi-
cal user interface, a great deal of attention has been paid to the user interface
design in software design. To expedite the development of the graphical user
interface, Windows provides API (Application Programming Interface), which
contains a huge number of functions. However, a large amount of function
parameters and constants make the Windows API-based software develop-
ment still very difficult. Object Windows provides a large amount of default
standard handling functions, which significantly reduce the work of applica-
tion development. However, there is still a heavy burden for the developer to
understand and grasp it. To resolve this, a collection of visual development
tools is developed based on the Windows APIs or Object Windows of Borland
C++. In the visual development environment, the developer can operate on
the interface elements, and the application software is automatically generated
by the visual development tool. This type of software is usually event-based.
For each event, the system generates appropriate messages and passes them
to their corresponding message handling functions. These message handling
functions are automatically loaded by the visual development tool in building
the software.

PROGRAMMING PLATFORMS 21

2.5.3 Graphical programming

Unlike textual programming languages such as C++, Fortran, or Basic and
their visual variants, a graphical programming language is composed of many
“nodes” which are connected together for accomplishing the specific task. In
graphical programming languages, the program developer is able to imme-
diately check the data flow after inserting a segment of code. All the skills
that the developer should have is the fundamental logical processes in prc-
gram coding, which include arrays, loops, strings, and so on. The mainstay
products for graphical programming are introduced as follows:

2.5.3.1 LabVlEW LabVIEW can be seen as a suite of revolutionary graph-
ical environment specially designed for data acquisition, device control, data
analysis, and data representation. It can be easily grasped and used while
still offering high flexibility. In the LabVIEW development environment, the
user can control systems as well as present test results through interactive
graphical panels. As the same time, it supports multiple platforms includ-
ing Windows 9X/NT/2K/XP, Mac OS, Sun, HP-UX, and Concurrent Power
MAX operating systems. I t can acquire data via heterogeneous devices such
as GPIB, VXI, PXI, serial devices, PLC, and other Plug&Play data acqui-
sition cards. Moreover, it can also share data through Internet or certain
other interactive communication techniques such as ActiveX, DDE, and SQL.
The flexibility provided by LabVIEW-based open development environment
enables embedding ActiveX objects, calling LabVIEW code in other develop-
ment environments, calling DLL in Windows platforms, and calling sharing
database in other platforms. Once the data are acquired, the powerful data
analysis and visualization capability of LabVIEW can be utilized to trans-
form the raw data into the desired results. In summary, LabVIEW is able to
simplify the system development process and shorten the system development
cycle. Its primary benefits are listed as follows:

0 Standard functions for comprehensive signal processing: Many standard
functions in the LabVIEW are concerned with signal processing, includ-
ing spectral analysis, window functions, filters, signal sources, and many
others. They can greatly reduce the burden of programming task for
numerical computation in the test and analysis software development.

0 Rich and vivid user interface elements: Standard user controls in Lab-
VIEW include a large amount of stick graphs, buttons, pots, hygrom-
eters, round/sector dial plates, waveform displays (e.g., chart, graph,
and X-Y graph), and so on. As a result, dynamic and attractive virtual
instruments can be displayed on the PC screen.

0 Graphical programming: The graphical programming environment in
LabVIEW is easy to understand and grasp by even novice programmers.
Its data-flow-oriented style makes the programming as a natural think-
ing process. In addition, debugging in LabVIEW is very convenient.

22 VIRTUAL INSTRUMENTATION

Therefore, the time and cost for developer training are significantly re-
duced.

Simple and effective multitasking process mechanism: LabVIEW is able
to make use of the preemptive multitasking mechanism as well as provide
the capability of coordinating various VIs in the cooperative multitask-
ing environment. Therefore, it greatly simplifies the implementation of
complex tasks.

Expandability: LabVIEW provides the mechanism for expanding itself
by other programming languages such as Visual C++. When some
tasks cannot be accomplished by LabVIEW itself, these functions can
be coded by other languages in the form of Code Interface Node (CIN)
or Dynamic Link Library (DLL). By doing so, LabVIEW can use them
as its own standard functions.

2.5.3.2 LabWindows/CVI LabWindows/CVI is NI's other suite of virtual
instrument programming tools, which can be used for building applications of
automatic test, measurement and control, data acquisition, process monitor-
ing, laboratory automation, and many others. It primarily has the following
features:

LabWindows/CVI provides intuitive and clear graphic editor for build-
ing GUIs.

LabWindows/CVI uses ANSI C programming language to set up the
interactive development environment for practical instrumentation sys-
tems. Because the event-driven handling and functions calling mecha-
nisms are widely used, the programming method is easy to learn for the
Windows programmers. It integrates C language programming tool and
includes 32-bit C compiler, linker, debugger, and code generator.

LabVIEW/CVI provides a function panel for each function such that
the user can enter the necessary function parameters via function panel
in an interactive fashion. Function operations can be executed in the
function panel even if it is disconnected from the main program. The
functional statements can be conveniently embedded into the C source
code.

A large amount of library functions are provided by LabWindows/CVI
for the applications of industrial automation systems, e.g., ANSI C
library functions, advanced data analysis library functions, hardware
driver function library, DDE, and TCP/IP network library functions.

LabWindows/CVI provides variable tracing windows, and meanwhile
it supports single-step execution, interrupt execution, process tracking,
parameters checking, memory checking at runtime, and so forth.

LIQUEFIED PETROLEUM GAS NETWORK (PLPGN) MONITORING 23

2.5.3.3 HP V€€ HP VEE is a graphical programming platform proposed
by HP Company. It is especially suitable for building GUI-based industrial
measurement and control systems. It has the following main features:

0 HP VEE significantly increases the application development efficiency.
It is estimated that about 80 percent of the overall development time can
be reduced. It has its own compiler and advanced instrument control
capability.

0 HP VEE can be applied to extensive industrial applications including
function tests, design calibration, together with data acquisition and
control.

0 ActiveX Automation and Controls are adopted in HP VEE, which can
be used to control other applications such as MS Word, Excel, and
Access for report generation, data analysis, and data presentation.

0 HP VEE supports a large number of panel drivers (i.e., instrument
drivers) provided by different vendors and drivers conforming to the
VPP specifications.

0 HP VEE supports remote industrial process monitoring, where the in-
strument control commands can be sent to the standard interface (e.g.,
HP-IB, PCI, GPIB, RS232, VXI, and DAQ boards, etc.) via its direct
1/0 icons.

0 HP VEE is closely integrated with traditional programming languages
such as C/C++, Visual Basic, Pascal, and Fortran, etc.

In next section, a case study is presented on the application of virtual instru-
mentation concept in building a gas pipeline network monitoring system.

2.6 LIQUEFIED PETROLEUM GAS NETWORK (PLPGN)
MONITORING

The traditional Pipeline Liquefied Petroleum Gas Network (PLPGN) moni-
toring is based upon manual operations by qualified people. However, it has
the following principal disadvantages: The operator has to do the majority
of the work; the abnormal conditions cannot be monitored and handled in
real time; the remote measurement variables cannot be monitored effectively;
and operators may make mistakes in data manipulation and storage. After
the introduction of personal computer into the measurement and control sys-
tems, this situation radically changed [2]. More recently, the technology of
virtual instruments has been applied to a variety of fields such as industrial
automation, manufacturing, automobile, aerospace, biology, and so on [3, 5 ,
71. The advanced graphic features of the computer-based instrument allow

24 VIRTUAL INSTRUMENTATION

for implementing more efficient condition monitoring and fault diagnosis. In
the research reported in this chapter, a novel PLPGN monitoring system
based upon the virtual instrument system architecture has been successfully
designed and implemented, which is especially suitable for the continuous
condition monitoring for the gas supply network in urban districts and towns.
Practical application has also demonstrated that the virtual-instrument-based
structure is very effective and the obtained monitoring system is highly flexi-
ble.

2.6.1 Overall structure design

The emergence of virtual instrument system has greatly changed the frame-
work of the automated measurement and monitoring system. It is able to
accommodate broad instrument types such as VXI (VME extensions for In-
strumentation), GPIB (General-Purpose Interface Bus), PXI (PCI extensions
for Instrumentation), serial instruments, and so on. [9, lo]. The basic frame-
work of the virtual instruments system is depicted in Fig. 2.1.

fig. 2.1 Basic framework of automated measurement system based on virtual instru-
ments.

As shown in Fig. 2.1, the configuration of a virtual instrument system
can be divided into instruments module, instruments hardware interface, 1/0
interface, instrument drivers, and system application program. Based upon
the basic configuration of virtual instrument system, the PLPGN monitoring
system can be abstracted into a model shown in Fig. 2.2.

As shown in Fig. 2.2, the system hardware includes data acquisition equip-
ment and RS-232 interface used for serial communication. The system soft-
ware comprises Windows API (Application Programming 1nterface)Application
programming interface, instrument drivers, and monitoring software. Below
are the components in the monitoring system:

LIQUEFlED PETROLEUM GAS NETWORK (PLPGN) MONITORING 25

Fig. 2.2 The structure of PLPGN monitoring system.

0 Instrument module: This layer communicates with the monitored sys-
tem directly, which is the base of the whole monitoring system. The
instrument module is primarily responsible for the data acquisition. In
our monitoring system some serial instruments are adopted, which in-
clude PLC (Programmable Logic Controller) and broadcasting station.
Inputs to this module are sensor-based process signals such as gas pres-
sure, flux, and some digital variables.

0 Hardware interface: Data communication between system hardware and
software is achieved by this layer, i.e., RS-232 interface in our applica-
tion.

1/0 interface: Since RS-232 interface is used in the hardware interface
layer, API functions dedicated to the RS-232 interface are used in the
1/0 interface layer.

0 Instrument drivers: This layer is responsible for driving the instrument
module. Through the 1/0 interface, the layer is able to communicate
with the hardware and drive the hardware to perform certain tasks such
as data acquisition and trigger alarms.

System monitoring software: This layer can operate on the hardware
via instrument drivers and 1/0 interface. It is also responsible for other

26 VIRTUAL lNSTRUMENTATlON

indispensable functions such as data processing, data display, alarm
management, and so on. Therefore, a user-friendly GUI (Graphical
User Interface) is highly necessary in this layer.

By introducing the concept of virtual instrument, the monitoring system is
clearly structured. Each layer in the monitoring system is responsible for cer-
tain dedicated functions and the communications among layers are achieved by
predetermined protocols. The transparency and independency among mod-
ules in monitoring system are very useful to system developers, which enable
them to reconfigure each layer while keeping its interface to other modules
unchanged.

2.7 HARDWARE AND SOFTWARE DESIGN

2.7.1 Development requirements

The monitoring system should cater to the diversity of requirements with
the most comprehensive tools so that users can quickly and effectively view,
analyze, and report on the PLPGN working conditions. The following re-
quirements were set for such a system:

0 It must be able to continuously assess real-time PLPGN conditions. A
large-capacity LPG supply system is very complex, comprising various
subsystems. All of these subsystems must run properly to gain proper
overall performance. So real-time supervision of the whole system poses
a challenging task to monitoring system designers.

0 It must have the functionality of fault alarming and handling. Fault
alarming and handling is one of the key characteristics in any monitoring
system. But the ever-increasing capacity of data acquisition units makes
it infeasible for the operator to digest all the poorly understood raw
information in real-time. Poor alarm management may cause an alarm
avalanche. Therefore, a solution to this problem should be offered by
the monitoring system to reduce operators’ burden.

0 It must include real-time/historical access, trending, and reporting. The
objectives of a PLPGN monitoring system are to improve the efficiency
of gas supply, guarantee the safety of gas supply, and preserve the capital
investment of the gas station. It is not possible to achieve these objec-
tives without real-time and historical information about the PLPGN
running status. Most of the information should be best served with
easy-to-use and intuitive interfaces that hide the complexity of the data
structures.

0 It must have high scalability with low cost of ownership. Especially
for most small and medium-sized companies, the low software price is
highly attractive since financial matter is their main concern.

HARDWARE AND SOFTWARE DESIGN 27

2.7.2 Development environment

Microsoft’s Windows-based Operating System (0s) has become the fastest-
growing 0s in the fields of measurement and control for the past several years.
Meanwhile, we also noticed that more recently Linux was developing at a
blindingly fast speed and more and more software developers are employing
it as their development platform due to its open source merit. But even
up to now, for most operation and management personnel in most small or
middle-sized companies, they are more accustomed to operating the software
in Windows platform. Especially in the harsh and strict environments such
as industrial measurement and control, they prefer the more friendly and
more familiar Windows interfaces. Therefore, the Windows 0s is adopted
to develop the monitoring system although we also admit that Linux is very
promising in these fields and it has many advantages that the Windows-based
OSs lack.

Object orientation is used throughout the software development (1, 4, 61.
Coding for the monitoring software is based upon the Borland Delphi language
to attain multitasking functions and elegant GUIs (e.g., simulation map, wave
display, and alarm lists). Delphi makes Windows development easy with drag-
and-drop visual programming and a Visual Component Library (VCL) with a
variety of reusable components. It is an event-based programming language,
which makes the monitoring system responsive to various alarms occurred.
It also gets full support for industry standards including Microsoft Windows
9X/NT/2000, the Win32 API, COM, ActiveX, and OLE Automation (81. In
addition, in the programming we use Visual C++ to write the codes for the
instrument drivers (DLL, Dynamic Link Library) and Borland Delphi to call
the DLL. As a result, the communication is efficiently implemented.

2.7.3

Figure 2.3 illustrates the hardware configuration of the PLPGN monitoring
system.

Data acquisition is the most important part among functionalities in system
hardware. It can be grouped into two types: gas station data acquisition
and network data acquisition, which are implemented by PLC and remote
measurement station in different sites, respectively.

Configurations of system hardware and software

0 Gas station data acquisition: Data acquisition hardware at the gas sta-
tion is made up of various sensors, security gate, PLC, and serial com-
munication port. Various process and status variables are collected by
the PLC. The PLC output controls the simulation screen and the alarm
speaker. The data format for communication is ASCII and the baud
rate is set to 9600 bits/sec.

0 Network data acquisition: To monitor the whole LPG supply network,
it is imperative to supervise the key process parameters such as pipeline

28 VIRTUAL INSTRUMENTATION

Fig. 2.3 Hardware configuration of the PLPGN monitoring system.

pressure, flux, temperature in the gas supply network remotely. PCM
(Pulse Code Modulation) technology is used to transfer the acquired
information to local industrial control computers.

Figure 2.4 depicts the basic functions of the monitoring software. The pri-
mary function of the monitoring software is the quick and reliable access to
useful information. The state-sensitive graphical environment for system op-
erators provides several software functions such as user-configurable alert and
alarm functions, data management, and fault analysis. Status overview, wave
display, visual database query, and alarm window are designed to describe the
network status from four different aspects in real time. Status overview uses
images, each representing certain parts of the whole LPG supply network, to
give the operator an intuitive and dynamic description of its working condi-
tion. This graphical display provides a mimic diagram of the overall PLPGN
and a real-time display of many key parameters. The tendency curve presents
the overall trend of the supervised variable. By means of visual database
query, the operator knows the statistic results of analog quantities and the
states of all digital signals. The operator can also browse and query the real-
time database and alarm events database in real-time using this tool. The
alarm window provides a simple tabular format display of the faults found.
The current PLGPN working conditions can be organized and printed by the
function of report and printing in real time.

As discussed in an earlier section, the data acquisition task in our monitor-
ing system is accomplished by the PLC and the remote measurement station
at different sites, i.e., the gas station data acquisition is based upon the PLC,

SUMMARY 29

Fig. 2.4 Software functions of the PLPGN monitoring system.

which communicates with local industrial control computers via serial cable;
the LPG supply network data acquisition is based upon the data acquisi-
tion equipment and the communication controller in the remote measurement
station capable of communicating with the industrial control computer via
wireless FM station. Therefore, it is mandatory to set up efficient data com-
munication between the remote measurement station and the local industrial
control station. In our monitoring system, the remote communication is real-
ized by the UHF/VHF FM broadcasting station.

2.8 SUMMARY

In this research the simplicity and clarity of the monitoring system struc-
ture. are achieved using virtual instruments technologies. The communication
among various layers is realized by predetermined protocols, and the general-
purpose hardware and software interfaces are provided for future system up-
grading. Therefore, the obtained monitoring system has high maintainability
and expandability. The monitoring system has been successfully implemented
in a local LPG supply company for several years, and the practical application
shows that all the design objectives have been fully met.

30 VIRTUAL INSTRUMENTATION

REFERENCES

1. Jaaksi, A. (1998). A method for your first object-oriented project, JOOP,
Jan., pp. 17-25.

2. Bowman, James C. (1996). PC-Based Automation in the Pipeline Indus-
try, Advances in Instrumentation Pipeline Conference.

3. Wang, C., and Gaol R. X. (2000). A virtual instrumentation system for
integrated bearing condition monitoring, I E E E Transactions on Instru-
mentation F3 Measurement, Vol. 49, No. 2, pp. 325-332.

4. Cockbum, A. R. (1994). In search of methodology, Object Magazine,
Jul./Aug. Vol. 4, NO. 4, pp. 52-76.

5. Spoelder, Hans J. W. (1999). Virtual instrumentation and virtual envi-
ronments, I E E E Instrumentation €4 Measurement Magazine, Sept., pp.
14-19.

6. Henderson-Sellers, B., and Edwards,- J . M. (1994). Identifying three levels
of 00 methodologies, ROAD, Vol. 1, No. 2, Jul./Aug., pp. 25-28.

7. Cristaldi, L., Ferrero, A., and Piuri, V. (1999). Programmable instru-
ments, virtual instruments, and distributed measurement systems: What
is really useful, innovative and technical sound? IEEE Instrumentation F3
Measurement Magazine, Sept., pp. 20-27.

8. Rubenking, N. (1995). First looks: Delphi combines visual programming
and local code compiler, P C Magazine, No. 9.

9. VXIPlugF3Play System Alliance. (1 996). VPP-2: System frameworks
Specification, Revision 4.0.

10. VXIPlugF3Play System Alliance. (1994). VPP-4.1: VISA-1 Virtual In-
strument Software Architecture Main Specification.

3
Component-Based

Measurement Systems

The development of component technology brings a great revolution to the
fields of automated test and measurement. It accelerates the integration of
measurement systems and promotes instruments’ standardization, modular-
ization, and generalization. Graphical measurement platform is one of the
most important applications in automation arena, and it provides users with
an intuitive and friendly programming environment. Instrument components
development is the key part of such graphical measurement platforms. This
chapter explains on how to make full use of the advantages of objected orienta-
tion methodology to develop the visual instrument components for a graphical
measurement platform.

3.1 INTRODUCTION

The concept of the virtual instrument (VIs) [8, 91 was introduced to indus-
trial systems at the beginning of 199Os, and it is now widely applied in var-
ious fields of industrial productions such as test and measurement, process
control and factory automation, machine monitoring and control, and many
others. It accelerates the standardization, modularization, and generalization
of measurement systems. Graphical programming platform is the kernel of
virtual instrument technology, and it provides users with an intuitive and

Modern Industrial Automation Software Design, By L. Wang and K. C. Tan
Copyright 2006 the Institute of Electrical and Electronics Engineers, Inc.

31

32 COMPONENT-BASED MEASUREMENT SYSTEMS

friendly programming environment. The main goal of the graphical program-
ming platform is to provide a user-friendly support to implement and execute
the industrial tasks such as measurement, control, test, monitoring, and so on.
Among the commercially available graphical programming software nowadays,
LabVIEW and HP-VEE are the representative products [4, 71. In graphical
programming languages, data and operations are represented by components
and they can be connected by data flow [l]. Therefore, the Visual Component
Library (VCL) is the key part of such graphical programming platforms. The
aim of this chapter is to address this issue in detail.

Compared to traditional hardware-based instruments, the key feature of
VIs is its convenience and user-friendliness provided by the graphical pro-
gramming environment, which presents a clear, intuitive, and logical overview
of the inner working mechanism of the entire program by linking block dia-
grams according to the data flow. Therefore, people who are not familiar
with the traditional text-based programming languages such as C/C++, Ba-
sic, and Pascal can build their applications efficiently by assembling icons.
For this purpose, a graphical programming platform has been designed and
implemented using Borland Delphi/Visual C++. An important aspect of
this research is the development of a powerful yet easy-to-use VCL for this
platform by employing the Object Orientation (00) methodology, which is
detailed in the chapter.

3.2 COMPONENT TECHNOLOGY

Traditionally, people were trying to increase the software development effi-
ciency by speeding up the code writing and improving the software engineer-
ing management. Unfortunately, whenever there is a new need for improving
software functionality or any technical change for the developed software, the
existing code should be revised or the new code has to be written to accom-
plish the new requirements. However, source code revision is very costly for
the software development because the various segments of source code in the
software are highly related to each other. Any change in a segment of source
code will inevitably have an impact on the other modules, even though the
change may be trivial. In that the modification on source code is not viable,
people began to think about the possibility of reusing executable code. Each
executable code can be packaged as a component, and the components are
independent of each other. Consequently, any change in a component will not
affect other components in the software. The internal design of components
can be either 00 or other approaches as the component-based software devel-
opment focuses on the black box reusage. In the component-based software,
the software maintainability is significantly improved as the code needing
maintenance is markedly reduced. The maintainer can pay more attention to
the interactions between components. Also the software can be more easily re-
vised and upgraded when any change is needed. Source code reusability in the

COMPONENT TECHNOLOGY 33

component-based development improves the software development efficiency
and therefore reduces the development cost.

Component-based software is proposed to improve the software produc-
tivity by utilizing the reusable components to construct new software sys-
tems. Essentially, any function in the traditional software applications can
be thought of as a component. The function can adapt t o different require-
ments through its parameters adjustment. However, due to the restrictions
of traditional software structure and procedure-based functional modules, it
is usually very hard to expand and reuse the developed software using tradi-
tional methodologies. The occurrence of object-oriented technology opened
new windows for the component-based software development because it is a
data-centered design method. The encapsulation and inheritance dramati-
cally increase the class expandability, flexibility, and reusability. Compared
with the traditional functional module, the object has the following merits:

It is easy to understand because it has complete semantic features.

It is easy to expand and modify due to its high generality and adapt-
ability.

0 It is easy to be integrated with other objects as it has standard external
interface .

In the component-based software engineering, the existing reusable com-
ponents are assembled into a system which is capable of accomplishing the
desired task. Usually these components are loosely coupled and all the in-
teractions between components are realized through a set of public compo-
nent interfaces. The implementation details of the component are hidden
from other components in the system, so any change in its implementation
details will not affect other components. This characteristic has markedly
enhanced the maintainability of the software system. The components used
to implement a system are completely independent of each other and only
their interfaces are visible to other components. The developer may replace
the obsolete functional component with the innovative component for better
software performance without needing to rewrite and re-compile the source
code.

The software complexity is continuously increasing and the competition in
the software market is becoming more intensive than ever. Therefore, it is cru-
cial to improve the software quality and, meanwhile, minimize the software
development cost and reduce the software delivering time in order to gain
competition advantages. Recently, Component-Based Software Development
(CBSD) was proposed and has now been applied in various applications as a
possible way to achieve this goal. Component-Based System (CBS) combines
a variety of traditional and emerging technologies including software reusabil-
ity, Distributed Object Computing (DOC), Computer-Aided Software Engi-
neering (CASE), Enterprise Application Integration (EAI) , and many others.

34 COMPONENT-BASED MEASUREMENT SYSTEMS

As verified by numerous practical applications in different fields, CBSD is able
to increase the software development productivity as well as improve software
quality. Although CBSD is also concerned with all aspects of software devel-
opment, its key problems are closely associated with the software component
and software architecture. The following questions need to be addressed in
the component-based software development:

0 What is the component?

0 How do the components interact with each other?

0 How can a variety of components be integrated into a whole application?

0 How can we acquire, understand, describe, classify, search, and manage
software components and software architecture?

0 How can we merge the component technology into the mainstream soft-
ware development technologies?

Component model and software architecture are the foundation for the
component-based software development. In practice, a large amount of reusable
components is needed for user selection during software development. In the
current market, there are ever-increasing heterogeneous components such as
GUI-based components, VBX for database and network, ActiveX components,
JavaBean components, Delphi VCL components, DLL interfaces, Windows
APIs, and so on. As demonstrated by a number of practical applications,
these components significantly increase the efficiency of software development.
There are several primary ways to obtain the components:

0 COTS components: COTS components can be purchased from vari-
ous professional software vendors (e.g., built-in components in certain
software development environments such as ActiveX components and
Delphi VCL components).

0 Non-Developmental Item (NDI) components: The NDI components are
developed by project contractors or partners.

The reusable components identified and refined from the existing appli-
cations in engineering or re-engineering projects.

0 The components developed from scratch for accommodating new re-
quirements and incorporating emerging technologies.

It should be noted that no matter how the components are acquired, they
all need to be thoroughly tested before storing them into the component
library for unified management.

COMPONENT-BASED INDUSTRIAL AUTOMATION SOFWARE 35

3.3 COMPONENT-BASED INDUSTRIAL AUTOMATION
SOFTWARE

Component-based software engineering is a natural way to develop the modern
industrial automation software. Many functions are commonly used in various
industrial automation fields, which include Fast Fourier Transform (FFT),
PID controller, fuzzy classifier, virtual instrument based data processing and
display units, and many others. They can all be treated as the routines and
wrapped into the reusable components. The merits of applying component
technology into the industrial automation field can be summarized as follows:

0 Improved software maintainability: As mentioned earlier, the compo-
nent independence greatly enhances the software maintainability, be-
cause the overall software can be revised or upgraded at the component
level without re-compiling the entire source code as in the traditional
software engineering. This nice feature will result in less maintenance
cost, which usually occupies the greatest portion of cost in the entire
software life cycle.

0 Increased software reliability: As each component is thoroughly tested
before it can be used in building the component-based software, the
software reliability is increased. The commercially available components
have normally been tested in various real-world applications and they
are still being improved based on the user feedback.

0 Rapid software development: In the component-based software engi-
neering, the overall software is built at the component level. System
integration becomes the major task in the software development pro-
cess instead of conducting expensive work of writing source code from
scratch. The focus is moved from the low-level code writing to higher-
level system integration and testing. Therefore, the software develop-
ment cycle is shortened and the delivery time to market is reduced.

0 Rational task separation: Tasks in the development phases of industrial
automation software can be more explicitly separated. Each component
can be seen as a function and is assigned to the most suitable devel-
oper. By doing so, the development efficiency can be improved. With
more explicit function separation, the system can be built with clearer
system structure, which is beneficial to the future system maintenance
and upgrades.

0 Faster adaptation: In the industrial automation arena, user require-
ments may be ever-changing. Therefore, the software-intensive system
should be able to adapt to the external changing demands by altering
its own functionality. In the component-based software system, this
problem is well-solved as its building blocks are the loosely coupled ex-
ecutable software units (i.e., components).

36 COMPONENT-BASED MEASUREMENT SYSTEMS

3.4 WRITING COMPONENT

Object-oriented programming makes writing the component easier, which in-
volves three basic principles: encapsulation, inheritance, and polymorphism
[a]. Encapsulation combines the data and behavior into one package. In-
heritance makes the new object inherit all the properties and functions of
its parent. Polymorphism causes different types of objects derived from the
same parent object to be able to behave differently when instructed to per-
form a same-named method with a different implementation [2, 31. The VCL
in Delphi is a collection of very easy-to-use components designed to make the
developers construct their specific applications in an intuitive way. While the
VCL in Delphi is already very rich, we can develop the new components for
our specialized applications [2, 5, 61. For example, in the research reported
in this chapter, we developed various virtual instruments (components) for
the graphical programming platform. In writing our own components, the
relevant classes from Delphi’s VCL are used as the parent classes. Figure 3.1
illustrates the class hierarchy in Delphi’s VCL. As shown in the figure, every
class from the VCL is derived from the TObject root. The class to be used in
this research is TcustomControl, which is a combination of a TGraphicsCon-
trol and a TwinControl [2, 31.

fig. 3.1 Delphi’s VCL object hierarchy.

3.5 CASE STUDY 1

Building custom-made components is quite attractive in application develop-
ment; however, it is also a challenging task. The well-designed components

CASE STUDY 1 37

can improve the code reusability, and the application may become more sim-
plified and efficient. In addition, malfunciton possibility of the application
can be reduced by using the component-based software structure. The devel-
oper may derive their new components from both existing components and
abstraction components. Here we developed a label component (TAnimated-
Label) in house based on the TLabel component in the Delphi environment,
which has animation effect desirable for many practical applications. It can be
used for beautifying graphical user interface and thus enhancing the interface
user-friendliness.

unit MoveLabel;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms.
Dialogs, StdCtrls, ExtCtrls;
type
TDirection=(drNone .drLeft , drRight ,drDown ,drUp) ;
TMoveLabel = class(TLabe1)
private
Private declarations
iWidth. iHeight: integer;
FTimer: TTimer;
FPlay: Boolean;
FInterval: integer;
FDistance: integer;
FDirection: TDirection;
procedure LedOnTimer(Sender: TObject);
procedure SetIntervalWalue: integer);
protected

public
Protected declarations

Public declarations
Constructor Create(Aowner: TComponent); override;
Destructor Destroy; override;
published
Published declarations
property Direction: TDirection read FDirection
write FDirection;
property Distance:
default 2;
property Interval:
default 1000;
property Play:

integer read FDistance write FDistance

integer read FInterval write SetInterval

Boolean read FPlay write FPlay default False;
end ;
Constructor TMoveLabel.Create(A0wner: TComponent);
begin
inherited Create(AOwner1;
FInterval:= 1000;
FDistance : = 2 ;
FDirection:= drLeft;
FPlay:= False;
FTimer:= TTimer.Create(self);
FTimer.OnTimer:= LedOnTimer;
FTimer.Interval:= 1000;
iWidth:=TForm(AOwner).ClientWidth;

38 COMPONENT-BASED MEASUREMENT SYSTEMS

1

iHeight:=TFonn(AOvner).ClientHeight;
end;
Destructor TMoveLabel.Destroy;
begin
FTimer.Free;
inherited Destroy;

end;
procedure TMoveLabel.LedOnTimer(Sender: TObject);
begin

end ;
procedure TMoveLabel.SetInterval(Va1ue: Integer);
begin
if FIntervalOValue then

FInterval:= Value;
FTimer.Interval:= Value;

...

begin

end ;
end;
end.

Thebdeveloped component can be used as follows:
procedure TFormi.FormCreate(Sender: TObject);
begin
MoveLabeli.Caption:=’Moving Label! ’;
MoveLabeli.Direction:=drleft;
MoveLabell.Interval:=500;
MoveLabell.Distance:=iO;
MoveLabell.Play:=true;
end :

1 1

L1 I1
1

3.6 CASE STUDY 2

All the VI objects can be divided into three parts: User Interface (UI), Input
Terminal (IT), and Output Terminal (OT). Figure 3.2 illustrates the general
VI object. After carefully analyzing the common properties and methods of
these objects, we establish the basic templates for all the VI components.

Fig. 3.2 Virtual instrument object.

CASE STUDY 2 39

3.6.1

3.6.1.1 Main properties and methods of the VI base class We define a basic
VI class named TVIBase which is derived from the TPanel class in Delphi’s
VCL. TVIBase includes the basic functions of VIs. All the specific VIs are
derived from this base class. Table 3.1 summarizes the main properties and
methods in VI base class.

Definition of base class of instruments

Table 3.1 Main properties and methods in VI base class

Property or method Description

V I l D
Runmaincreated

InputTerminalList/OutputTerminalList

UpFlowTerminal/DownFlowTerminal
VIStatus
Execute
CanBe-Executed

Activate-Terminal

CreateTerminals
AddIT, DeleteIT
AddOT, DeleteOT
Get Data-FromTerm/SetData-ToTerm
Creat -DesignMain

CreatJtunMain

DesignPadResize/RunPadResize
ValidateInput Data
Save-To-File, Load3omEi le

VI identifier (String type)
Determine if VI appears in the runtime
panel (Boolean type)
Input/output terminal list (String list

Flow control input/output terminal
VI status (Enumeration type)
Realization of VI functions
Indicate whether the VI can be
executed (Boolean type)
Activate the data terminal and
implement data transfer
Initialization of input/output terminals
Add/ delete input terminals
Add/delete output terminals
Read/write terminal data
Establish flow chart interface for the
test system
Establish runtime interface for the test
system
VI size management
Validation of the input data
VI information storage/load

type)

3.6.1.2 Pseudo code of the main VI methods The main methods in the VI
base class are illustrated as follows:

Method of CanBeXxecuted:
then the return value is TRUE, or else the value is FALSE.{

If the VI can be executed,

function CanEeExecuted: Boolean;
begin
Result := TRUE;
If (input terminal is connected) and (the input is ready) then
Return FALSE;
For I := 0 to (number of input terminals - 1) do
begin
If (input terminal has been connected) and (the input is not ready)

40 COMPONENT-BASED MEASUREMENT SYSTEMS

then
Return FALSE;
End ;
End ;

1
Method of Activate-Terminals:
It activates the terminals to realize the data transfer.{
Procedure Activate-Terminals;
Begin
For I := 0 to (number of output terminals - 1) do begin
Case (status of the output status) of
tsNull: do nothing;
tsconnected. tsUpdate: begin

and find corresponding IT;
Set the status of located VIs to vsllpdated;
Transfer the OT data to IT;
Set the property of DataReady in IT to TRUE;
End ;
End ;
End ;
End ;

{Locate VIs which are connected with the OT

1
Method of Execute: if the VI is properly executed,
then return TRUE, or else return FALSE.}
Function Execute: Boolean;
Begin
If (the VI can execute properly)

and (the VI has not executed) then begin
Execute VI function;
Activate data terminals to transfer data;
VI status := vsExecuted;
Result := True;
End
Else

Result := False;
End; }

3.6.2

We defined a user interface class named TUIBase, which is derived from the
TCustomControl class in Delphi’s VCL. The rough definition of TUIBase is
illustrated as follows:

UI base class of Vls

TUIBase = Class(TcustomContro1)
Private

Protected
...,

// Restrict the drag of VI title
Procedure WMNcHitTest (Var Message:TWMNcHitTest);

Message WMJCHITTEST;
// Launch the property dialog when the VI title is doubly clicked

Procedure WMLButtonDblClk (var Message:TWMLButtonDblClk);

SUMMARY 41

Message WMLBUTTONDBLCLK;
// Select VIs

Procedure WMLButtonDown (var Message:Tmessage);
Message WMLBUTTONDOWN;

// Restrict the size of user interface
Procedure WMGetMinMaxInfo (var Message: TUMGetMinMaxInfo);

Message WM-GETMINMAXINFO;
. . .
Public

Published
...

Property Titlecolor; // VI title color
Property Caption; // VI name

After establishment of the above two templates, various virtual instruments
for the graphical measurement platform can be efficiently developed, which
include tanks, meters, gauges, thermometers, oscilloscopes, charts, graphs,
and more. This means that the components library can be easily maintained
and extended using the idea of object-orientation. Further, by making use
of the VCL, we can rapidly construct a variety of measurement systems for
different user requirements and application environments.

3.7 SUMMARY

This chapter explains on how to make full use of the advantages of 00
methodology to develop the visual VI components for a graphical program-
ming platform. By setting up two base classes for all the VI components,
various components can be efficiently implemented. It is believed that the
graphical programming approach will be applied in more and more indus-
trial measurement and control systems, because the intuitive components it
provides is a natural design notation for scientists and engineers.

REFERENCES

1. Baroth, E., Hartsough, C., and Wells, G. (1997). A review of component-
works, Evaluation Engineering, Vol. 36, No. 4, pp. 18-22.

2. Swart, B. (1999). How to Write Components, the document is available
a t http://www.drbob42.com/delphi/componen.htm/.

3. Cornell, G. (1996). Delphi Nuts & Bolts: For Experienced Programmers,
2nd ed., Osborne MaGraw-Hill Press, New York.

4. Information about LabVIEW is available at: http://www.ni.com/labview/.

5. Konopka, R. (2001). Component Building for the Professional, the docu-
ment is available a t http://cornmunity.borland.com/article/.

42 COMPONENT-BASED MEASUREMENT SYSTEMS

6. Konopka, R. (2000). Introduction to Component Building, the document
is available at http://community.borland.com/article/.

7. Helsel, R. (1997). Visual Programming for HP-VEE, 2nd ed., Prentice
Hall Professional Technical Reference, Englewood Cliffs, NJ.

8. VXIPlug&Play System Alliance. (1994). VPP-4.1: VISA-1 Vzrtual In-
strument Software Architecture Main Specification.

9. VXIPlug&Play System Alliance. (1995). VPP-5: VXI Component KnowZ-
edge Base Speczfication, Revision 3.0.

4
Obiect-Oriented Software

h’ngzneerzng

In general, most modern industrial automation systems are large-scale and
software-intensive systems, which may be applied to a wide variety of indus-
trial process monitoring in chemical plants, distributed parameters monitoring
of gas and water supply, power transmission, city transportation management,
comprehensive monitoring management in intelligent buildings, power source
monitoring in telecommunication systems, environmental monitoring, moni-
toring automation for large rotating machinery, and many others. It is infea-
sible for an individual to successfully design and develop such large-sized soft-
ware without effective cooperation with other people. Software development
is usually fairly complex and challenging. Therefore, it is highly necessary to
develop a discipline to scientifically and systematically manage and control
the software development process, which is called software engineering. I t is
now widely adopted in various software application development. Such com-
mercial software systems should be developed by the well-trained development
team under the guidance of systematic and strict software engineering in each
phase of the software development process.

Object-oriented methodology is a breakthrough in software technology, and
therefore it has a great impact on the software development. With the ap-
plication of OOP thought process in system analysis and design, the object-
oriented software design approach named OMT (Object Modeling Technique)
is finally formed by combining both bottom-up and top-down software devel-

Modern Industrial Automation Software Design, By L. Wang and K. C. Tan
Copyright 2006 the Institute of Electrical and Electronics Engineers, Inc.

43

44 OBJE CT-ORIEN TED SOFTWARE ENGINEERING

opment approaches together. Because they are based on system modeling,
data structures of both software input/output and all the objects are in-
cluded. As a result, 00 methodology is capable of overcoming the drawbacks
of traditional software development approaches in terms of maintainability,
portability, and reliability.

4.1 SOFTWARE DEVELOPMENT MODELS

Software is a type of abstract and logic product that is made up of both
programs and documentation developed throughout the software life cycle.
Therefore, software development does not refer to only the source code writing.
All the software development should abide by a set of scientific design mech-
anism and methodology. Traditional software development methods mainly
include waterfall model, incremental model, and spiral model. To engineer
the software development process scientifically, the whole software life cycle
can be divided into six phases as shown in Fig. 4.1:

0 Software planning: Prior to specifying the software design tasks, it is
highly necessary to do some research (e.g., feasibility study) on the work
scope and cost, together with the software development planning.

0 Software requirements analysis: In this phase, the user requirements are
carefully analyzed, and software requirements specification is formulated
to serve as the agreement between the end user and software developer.

0 Software design: In this phase, the system module structure is deter-
mined and the call relationships between various modules are presented.
The data communications between software modules and the function-
ality description of each module are also spelled out.

0 Software coding: Each module is coded using the suitable programming
language(s) according to the software design requirements.

0 Software testing: Its task is to detect and fix the software defects. The
deliverable is obtained only after careful software testing. Software test-
ing will be fleshed out in Chapter 7.

0 Software maintenance: The tested software may still have hidden de-
fects after the software testing phase. Furthermore, user requests and
software operating environment may also change with time. As a result,
software maintenance is highly needed for the delivered software, which
includes defects identification, defects repair, and software expansion.
The overall software life cycle can be divided into six phases, which pro-
vide a framework for the systematic software development. However,
quite often, the process of practical software design and development is
not straightforward but very iterative. The developer needs to return to

SOFTWARE DEVELOPMENT MODELS 45

Feasibility
Study

Pbnning

Requirements
Specification Requirements

AMlysis

Design
Documents Detign

W i n g

Maimtenace

Fig. 4.1 Phase tasks in the software life cycle.

the earlier phases from time to time when any problem in the previous
phases is identified.

The earlier five phases in the software life cycle, i.e., planning, analysis, design,
coding, and testing, are called the software development phases. The final
phase is the software maintenance phase. In the software development, the
work of software testing is the most massive one and it occupies about 40
percent of the whole work in the software development phases. In the whole
software life cycle, the duration of software maintenance is the longest and
its work is very important to keep the software adaptive to the changing
requirements.

The target of software development is to develop high-quality software ac-
cording to user requirements within the specified project budget and schedule.
Software engineering guides the systematic software design and development,
which is invaluable for the prosperity of modern software industry. Overall,
there are principally three types of software development models, i.e., water-
fall model, incremental model, and spiral model.

The main benefit of adopting the waterfall model lies in the fact that the
opportunities for feedback within it are very many, and thus the propagation of
faults can be largely prevented by timely detection and verification activities
in each phase. Waterfall software development model abides by the strict
division of software life cycle. Each phase includes different tasks which have
been explicitly stated. After accomplishing the task in the upstream phase,
the developed document is inherited by the downstream phase. The next
phase can be started only when its previous phase has been completed. In
this organizational approach for software development, different groups are
involved in every phase. A large amount of documents is needed in order to
enable the downstream phase to take over the upstream phase work smoothly.

46 OBJECT-ORIENTED SOFTWARE ENGINEERING

The solution is fixed too early in this model such that the timely upgrades of
software are restricted.

Figure 4.2 shows the incremental software development process. In the in-
cremental software development method, no complete requirements definition
is needed at the initial stage of the project. In most cases, the end users them-
selves have no explicit software requirements or the requirements are hard to
be spelled out. Starting from the partial requirements analysis, the incom-
plete software is first built. By running and testing the obtained incomplete
software, both developers and end users can obtain experience and feedback,
which are beneficial to understand the requirements more deeply and to help
to figure out the exact design requirements in a gradual manner. The process
is repeated until both software developer and end user are satisfied with the
software system obtained thus far. Since the incremental software model is
incrementally completed step by step, the overall software structure is not as
clear and easy-to-understand as the waterfall software model. However, in
the incremental software development model, the software is developed under
the participation of both software developer and ender user. Consequently,
any discrepancy between the developing software and user anticipation can
be cured in a timely manner. Consequently, the developed software can meet
the user requirements more easily. It should be noted that the software docu-
mentation developed in the incremental software development model cannot
be divided strictly based on the software life cycle as the waterfall model can.
The software documentation is developed gradually throughout the software
development process. At the time the software is accomplished, the software
documentation is also completed. Software documentation normally includes
software requirements specification, and software design description, together
with the software user manual.

The incremental software development model is especially suited for the
knowledge-based software systems. For such types of software, the user re-
quirements cannot be easily formulated and they are continuously modified
and replenished using the newly acquired knowledge. So, for some research
software, it is a good choice. However, this approach is not good at dealing
with the large-sized commercial software. When the software size is increased
to a certain extent, its structure is hard to alter. The concept of incremental
software development model is contrary to the generality rule of commercial
software. A new software requirement proposed by an end user may be op-
posed by others, which may make the software development infeasible. Thus,
although this method turns out to be effective in the small and medium-sized
software development, it is not very suited for the construction of the large-
scale commercial software.

The spiral software development model is proposed by Boehm. Distin-
guished from other software development processes, in the spiral model the
software process is represented as a spiral. Each loop in the spiral indicates a
software process phase. Therefore, the innermost loop can be the feasibility
phase, and its subsequent loop may be associated with requirements capture

SOFTWARE DEVELOPMENT MODELS 47

Requirements
Analysis

Design and
Coding

Satisfactory? +
1.e.

Software Release

Fig. 4.2 Incremental software development model.

and elicitation, and the like. There are normally four sectors in each loop,
which are fleshed out as follows:

0 Objective setting: The objectives for the phase are specified, which in-
clude functionality and performance, etc. Constraints on them are iden-
tified and the management plan is figured out. The possible strategies
may be proposed after risk evaluation.

0 Risk assessment and reduction: In this sector, the identified risks are
carefully accessed and appropriate measures should be taken to mitigate
the project risks, if necessary.

0 Development and validation: The software development model is chosen
in this phase. According to the results of risk assessment, the most
appropriate model should be selected for the software development. The
software development is carried out after careful risk assessment.

0 Planning: In this sector, the decision is made on whether or not to
proceed to the next loop of spiral. If yes, the planning activity for the
next phase is conducted.

48 OBJECT-ORIENTED SOFTWARE ENGlNEERlNG

4.2 OBJECT ORIENTATION

All of the object-oriented approaches are able to support the three basic ac-
tivities, i.e., identification of classes and objects, description of relationships
among objects and classes, and definition of object behaviors through describ-
ing functionality of each class. In order to identify objects and classes, the
developer needs to seek key terms and phrases in the documents resulting
from requirements analysis and system analysis which include the tangible
things, actors, events, interactions, and many others. Identifying key objects
and their responsibilities in different system scenarios is a very crucial task at
the initial stage of OOA and OOD. When the important objects are identi-
fied, the relationships between classes together with object behaviors can be
represented in detail by a set of associated models. These models describe
the software structure from four different facets, i.e., , dynamic logic, static
physics, and dynamic physics.

Static logic model is also called object model. It describes the relationships
between classes such as instantiation (class member relations), association,
aggregation, generalization, and so forth.

0 Identify the classes and class objects in each abstraction layer

0 Identify the semantics of the objects and classes.

0 Identify the relationships among the classes and objects.

0 Implement the classes and objects.

These four activities are not the simple sequential steps, but instead the
iterative and incremental development process of continuously refining the
logic and physical views of the system. The identification of classes and class
objects includes discovering the key abstractions in problem domain as well as
important mechanism for generating dynamic behaviors. The developer can
find the key abstractions by studying the problem domain descriptions. The
semantics identification is mainly responsible for defining the meanings of the
classes and objects, which are identified in its previous phase. In the rela-
tionship identification stage, the models for static and dynamic relationships
are described. These relationships include usage, instantiation, inheritance,
association, aggregation, and so on. In the implementation phase of these
classes and objects, the language needed to be employed should be carefully
considered. Also the developer needs to consider how to organize the classes
and objects into different modules.

4.2.1 00A/OOD

00A/OOD is not only able to meet the current user requirements which are
influenced by the project budget and schedule restrictions, but also able to

OBJECT ORlENTATlON 49

accommodate the requirements for long-term objectives of software system
development and upgrades. Prior to the occurrence of object-oriented tech-
nology, these objectives are very hard to achieve. Fortunately, 00A/OOD
provides a viable solution. For instance, due to the inheritance of object-
oriented technology, the necessary model revision caused by minor plant flow
changes becomes much simpler. The work of programmer is only limited to a
certain range of code as the change in a code segment has little impact on the
overall system. Therefore, system robustness can be ensured. Furthermore,
thanks to the inheritance and overloading characteristics in 00, when the
plant model has more significant changes, the software system can be quickly
upgraded through the operations of inheritance and overloading on the exist-
ing classes. Message analysis is very important for the creation of OOA model,
because message is the key element which represents the dynamic relation-
ships between various objects. It is also an important means of information
hiding. In the sequential system, message refers to the service request sent to
other objects or systems. In the parallel system, a message is the transferred
information in object interactions. In the client/server system, data request
sent from client to server is the message between parallel threads. However,
in the single-computer database system, the user data request is normally the
message of sequential threads. The following questions should be addressed:
What is the message receiver? What kind of service is requested? Is syn-
chronization needed between message sender and receiver? Is the message
unidirectional or broadcasting type? How can we deal with the message when
receiving it? How does the message sender treat the result of message han-
dling? What is the condition for sending out the message? Is the message
passed between threads or within a thread? Are the properties of attributes
and services public, protected, or private? These properties have a great im-
pact on the encapsulation performance. Furthermore, the relationships and
associations between classes and objects should also be comprehensively con-
sidered. The relationships between classes and objects include whole/part
and generation/specialization, etc. The associations between classes and ob-
jects include instance connection and message connection, etc. All of the
above questions should be carefully considered when adopting the message
mechanism in software design.

Here the most widely used 00 approach, termed the Coad/Yourdon ap-
proach, is introduced. In Coad and Yourdon’s Object-Oriented Analysis and
Object-Oriented Design (OOA and OOD), analysis is carried out in five stages,
which are listed in the following:

0 Subjects: Subjects are fairly similar to the layers in the data flow dia-
gram, and each of them normally contains multiple objects.

0 Objects: Object classes are defined in this stage.

0 Structures: Structures can be classified into classification structures and
composition structures. The former corresponds to the inheritance re-

50 OBJECT-ORIENTED SOFTWARE ENGINEERING

lationship between classes, and the latter specifies the remaining types
of relationships between classes.

0 Attributes: Similar to dealing with relational analysis, attributes can be
defined and manipulated.

0 Services: In other software development methodologies, they are referred
to as methods or operations.

This method strictly distinguishes the OOA from OOD phase. It utilizes
activities in the five layers to define and record system behavior as well as
input and output. The activities include:

0 Identify classes and objects: Identify classes and objects from the appli-
cation domain to form the basis of the overall application. Then system
responsibilities are analyzed.

0 Identify structure: In this phase, generation-specification structures are
identified, which capture the layered structure of the identified classes.
Second, whole-part structures also need to be identified, which indicate
how an object can become a part of another object and how multiple
objects are assembled into a larger object.

0 Define subject: Subject is made up of a group of classes and objects. It
classifies classes and objects model into a larger unit.

0 Define attributes: Attributes of the classes and objects are defined. It
also defines the instance connections between objects.

0 Define services: Services of classes and objects are defined. It also defines
the message connections between objects.

In the objected-oriented analysis phase, the analysis result is obtained using
the 5-layer activities in the problem domain model, which includes subject,
class and object, structure, attribute, and service. The sequence of the 5-layer
activities is not important. The aforementioned five activities are refined into
four components in the design. OOD needs to further distinguish these four
components:

0 Problem Domain Component (PDC): Classes that handle the problem
domain are defined. The results obtained from OOA can be used by
this component directly.

0 Human Interaction Component (HIC): The user-interface-related classes
are defined. The activities in this component include user classification,
description of scenarios for human machine interaction, structure de-
sign for command layer, detailed interaction design, generation of user
interface prototypes, and definition of HIC classes.

OBJECT ORlENTATlON 51

0 Task Management Component (TMC): System management classes are
defined. The activities in TMC include identification of tasks (pro-
cesses), services provided by tasks, task priorities, event-driven/clock-
driven events, and communications among tasks and external environ-
ments.

0 Database Management Component (DMC): Database management meth-
ods such as database access classes are defined. This component is
closely associated with the data storage technologies, which primarily
include flat file system, relational database management system, object-
oriented database management system, and so forth.

4.2.2 Advantages

In the traditional structured software development approach, the reusability
of the developed software is very poor. The main reason for the low reusability
is that in the structured approach, the system is constructed based on pro-
cesses and operations, which are, however, not stable. On the contrary, in the
object-oriented software development approach, the system is constructed by
identifying the real-world entities and creating conceptual model of the real
world. Therefore, because the system model is built based on the stable
objects, it is also stable and therefore is able to adapt to the changing re-
quirements. Normally, the system developed by object-oriented approach has
high maintainability, expandability, and reusability.

00 technology is significantly different from the traditional software en-
gineering. It is based on objects and embodies a novel thought process on
software development. It is now applied to a variety of fields including com-
puter programming languages, software development, project management,
operating systems, artificial intelligence, real-time database, human-machine
interface, and even hardware design. In the 00 approach, the real world is
composed of various “objects.” Everything in the real world can be viewed
as an object, and each object has its own state and dynamics. Meanwhile,
each object is an element of a certain object class. The complicated object is
made up of simpler objects. These objects are organized based on practical
requirements, and they interact with each other. By analogy, the similari-
ties among a variety of objects can be identified. Such similarities are the
common attributes among objects and can be used to form the object class.
These object classes form the layered tree structure based on the concepts of
class, subclass, and superclass. The object class in the lower layer can inherit
the object attributes of its upper layers. For each object, a set of methods
can be defined to illustrate the object functionality. The interactions between
objects can be realized through message transmission, which is used to notify
the object to execute a certain operation. The detail on how to conduct this
operation is encapsulated in the object definition, which is unknown to the
outside.

52 OBJECT-OREN TED SOF TWARE ENGlNEERlNG

00 approach differs from the traditional software engineering because its
thought process is performed in terms of objects instead of processes. Object
is the capsule of data and operations. Each object is the instance of a certain
object class. Essentially, a class defines an object class and describes the
characteristics of all objects of this type. The 00 approach has the following
major merits:

0 00 approach realizes the separation of data and operations, which is,
however, absent in traditional software development approaches, and
thus the true data abstraction is realized.

The feature of inheritance in 00 approach embodies the concept on
separation and abstraction. In the object inheritance structure, the
object in the lower layer can inherit the object characteristics in its upper
layers including attributes and operations. Therefore, 00 approach
enables faster software evolution as well as more convenient incremental
expansion.

0 In the 00 approach, objects are dynamically associated with each other
by messages passing. Distinguished from the traditional methods for
module calling, the flexible message transmission scheme is used in the
00 approach. Therefore, it is able to better indicate the parallel and
distributed structure in both conceptual and practical aspects.

0 Information hiding is also an important feature in the 00 approach. Be-
cause the implementation details are hidden inside the object, neither
expansion of object functionality nor modification of object implemen-
tation has an impact outside of the object. Consequently, reusability
and maintainability of the developed software can be ensured.

In the real-world applications discussed in Part 11, the object-oriented
thought process is applied throughout all the design stages. In actuality,
object-orientation is now the most fundamental principle which guides the
design and implementation of modern industrial automation software. All
the practical design details based on object orientation can be found in Part
11.

5
Graphical User Interface

Design

With the advent of Graphical User Interface (GUI) at the Xerox Palo Alto
Research Center, user interface design enters a new era. GUI design is espe-
cially important to modern industrial automation software since elegant GUIs
can prevent operators from making mistakes in the stressful and harsh indus-
trial environments. There are primarily six principles which can be used as
the guidelines for user interface design [l]:

0 User familiarity: In the earlier era of the computer, users are required
to adapt to the limited computer technologies. However, this situation
has been dramatically changed due to the rapid development of various
computer technologies. Modern computer applications need to adapt to
the ever-demanding user demands. Therefore, for the effective user in-
terface, it should be capable of providing the users with less constraints
in interface manipulations. All the terms and descriptions displayed in
the user interface should be familiar to the end users. Furthermore, the
user interface implementation details such as data structure and algo-
rithms should be hidden from the users. The lesser the implementation
details, the clearer the user interface.

0 Consistency: Consistency is an important feature in the user interface
design. High UI consistency can make users become productive in a

Modem Industrial Automation Software Design, By L. Wang and K. C. Tan
Copyright 2006 the Institute of Electrical and Electronics Engineers, Inc.

53

54 GRAPHICAL USER INTERFACE DESlGN

short time, because the skills learned from one operatibn can be easily
applied to other user interface operations.

0 Minimal surprise: In a nutshell, minimal surprise means that the com-
parable operations should incur the comparable results. If this does not
happen, the users will become confused and frustrated, and even raise
the doubt on the software design quality. Especially, in some cases, the
comparable actions may not result in comparable results if the software
is being operated in different modes. For instance, in the reconfigurable
industrial automation software elaborated in Chapter 14, there are two
modes existing in the software operations, i.e., configuration mode and
execution mode. The comparable actions may have totally distinctive
meanings in different operating modes. Therefore, it is highly neces-
sary to indicate the software operating mode in the corresponding user
interface design.

Recoverability: The principle of recoverability is concerned with the
fault-tolerance capability in user interface design. The users cannot be
completely refrained from making mistakes in operating the user inter-
face; therefore a certain degree of recoverability in the presence of user
errors should be incorporated into the user interface design. For exam-
ple, interface facilities such as confirmation, undo, and checkpointing
should be provided for preventing the potentially damaging operations.

User guidance: A well-designed online help system is also highly neces-
sary. It had better be incorporated and become a built-in component of
the overall system. Also, comprehensive search and index tools should
be provided to make the user query more convenient.

User diversity: Due to the diversity of users, the system should provide
comprehensive style of user interface to different users. For instance, the
novice user and experienced user should be supplied with different user
interface styles. The novice user needs detailed guidance for operating
the system, while the experienced user prefers more shorts to expedite
the user interface operations. In addition, for the user with special
operation requirements, corresponding operation facility should also be
provided. However, due to the significant user difference, a compromise
should be made among different operating styles.

User Interface (UI) design is an iterative process, and a good UI can only
be evolved after a certain number of iterations. The design process of user
interface can be divided into six phases, i.e., Requirements Analysis, Concep-
tual Design, Logical Design, Physical Design, Construction, and Evaluation
phases. Below each phase is fleshed out one by one.

0 The Requirements analysis phase: In this phase, the user requirements
on the user interface design are determined. Prior to the design process,

GRAPHICAL USER INTERFACE DESIGN 55

user requirements should be carefully analyzed via task analysis, focus
group, user trials, user interviews and observations, ethnography, and so
on. The stakeholders should be intimately involved in the user interface
design at the very beginning. Their suggestions and comments should
be acquired for designing their desired user interface. A broad customer
poll will result in the user interface which can be more easily accepted,
because the representative ideas on what the customers want are used
to guide the design process. The close user involvement will help to
capture the correct user requirements, or else no matter how well the
user interface is designed, it is not the desired one. As users are in-
volved in this activity, normally natural language is adopted to describe
the user activities. This phase helps to develop the understanding of
the intended software system functionality, the user concerns on the UI
design, and the design constraints. In this phase, the software computer
jargon is withheld from use due to the wide diversity of people involved
in this phase who have different levels of understanding. All the user
analysis techniques should be used together to capture the exact user
requirements in order to achieve the effective and appropriate UI design.

0 The Conceptual design phase: In this phase, the underlying business
is modeled and no implementation issues are considered in this phase.
User interface considerations are not addressed either. Typically, the
conceptual design is divided into three models, i.e., Data Model, Busi-
ness Function, and Communications Model. Data Model uncovers data
entities and defines the relationships between them. Business Func-
tion Model defines the component business functions. Communications
Model is used to map the interactions between component business func-
tions and data entities.

0 Logical design: In the Logical Design phase, the user interface proto-
typing process is initiated. By specifying the possible client events, the
logical processes are designed. When the technology for implementing
them is determined, we can look into more details about the user inter-
face design. Early determination of the implementation technology is
beneficial to the logical design. The purpose of interface prototyping is
to let the users have an intuitive experience with the user interface. It is
not easy for the users to express what they like or dislike in an abstract
way. Only if they see the real artifact which is visible and tangible,
they can more precisely point out what they want and what they do
not want. There are normally two major types of interface prototyping,
i.e., paper prototyping and software (or automated) prototyping. Paper
prototyping is very effective and easy to obtain, and it can be used for
capturing the initial user reaction toward the user interface design.

0 Physical design: In the Physical Design phase, the issues on how to
implement the logical design are examined. Before the Physical Design

56 GRAPHICAL USER INTERFACE DESIGN

phase, the technology used for developing the application should be
decided. In most cases, this phase has no direct impact on the user
interface design.

0 Construction: It the construction phase, the design is converted into
software code via appropriate programming languages. It is highly ben-
eficial to the better UI design by delivering the tangible and functional
interfaces to users in order to obtain feedback in a timely manner. The
redesign cost is lesser if the change can be made at the early stage of the
UI construction. When the software prototype of user interface becomes
more complete, it can be tested in the interface evaluation phase in a
more thorough and formal manner.

Evaluation: By observing users when they are operating the developed
interface, interface evaluation is to validate the user interface design and
identify the places which need further refinement. Interface evaluation
is also an integral part of modern software engineering. By knowing
what the testers are thinking about the operations on user interface,
the developers can figure out where the testers have difficulty in compre-
hending and operating the user interface. The usability of user interface
design primarily includes the attributes such as learnability, operation
efficiency, adaptability, fault tolerance, and so forth.

- : Learnability of the user interface is an important criterion for
measuring the design quality of user interface. To test the learn-
ability, the users who have never operated the developed user in-
terface should be selected and only the necessary guidance is given
to them. The observers should look for the user interfaces where
the testers have difficulty to understand.

- Operation efficiency: The operation efficiency of user interface in-
dicates the system responsiveness to user’s operations on user in-
terface. For instance, after the user configures the necessary pa-
rameters through the designed user interface, it is desired that the
system can respond to such user practice in a timely manner. A
carefully designed user interface can enhance the system depend-
ability and reliability because it can prevent the invalid inputs and
remind users of the real software working conditions. Such user
interface makes the inner software more transparent to users so
they can operate the software with more confidence and fewer mis-
takes. Furthermore, in the presence of user errors, the user interface
should be able to identify the errors and give out the error reasons
as well as possible remedial measures. This type of user interface
not only significantly improves the software quality, but also pro-
vides the users with a sense of operation security. Such a sense is
of particular importance for the UI operations in the hostile and
stressful industrial production fields.

GRAPHICAL USER INTERFACE DESIGN 57

- Fault tolerance: Fault tolerance is an indispensable property for
any software system these days, from industrial process monitor-
ing software to embedded flight control software. The fault-tolerant
design of user interface is an important part for accomplishing the
robust software artifacts with high survivability in the presence of
user errors such as maloperations and invalid inputs. Especially
in the presence of alarm flooding in the industrial automation sys-
tem, the operators will be highly stressed. In such circumstances,
the appropriate user interface design is highly necessary, which
may ease the operator nervousness and reduce the possible oper-
ational errors. In addition, the user interface design should also
consider the individual difference between a diversity of potential
operators. For instance, it is possible that a small portion of the
operators are colorblind. In this case, it is very possible that the
alarm information will be ignored by such operators as the com-
monly used red-color visual alarms will not attract much of their
attention. Therefore, in order to prevent it from happening, other
alarm signals should also be incorporated in order to enhance the
alarm signals. This is also a kind of fault-tolerant design as such
measures prevent the possible user errors.

Usability testing is not a part of the design process, but it is an indispens-
able component for ensuring the UI design quality. Its main purpose is
to validate and refine the UI design. The more testers that are involved
in the exercise, the more representative the testing results are. If most
testers encounter the same problem in the testing process, there should
be something inappropriate in the user interface design, which needs to
be improved based on the feedback from the testers. Interface evaluation
is usually a very costly process, which is unrealistic for the small and
medium-sized software companies. Fortunately, there are still several
cheaper while effective approaches which can be employed to conduct
the interface evaluation. For instance, the well-designed questionnaire
is a good way to gather the users’ thought after using the designed user
interface. Observation on how the user is trying to use the interface can
also give some clues on the user reactions. No user interface design is
able to fit with all the processes, because every software system has its
own specific design demands. Therefore, in the Requirements Analysis
Phase, it is highly necessary to formulate these design requirements in
an explicit manner.

REFERENCES

1. Sommerville, I. (2004). Software Engineering, 7th ed., Addison-Wesley,
Reading, MA.

This Page Intentionally Left Blank

6
Database Management

Large-scale computer applications require rapid access to a large amount of
data. Thus, database technology has become a significant and rapidly grow-
ing domain in modern software industry. The database products from several
American companies such as IBM Corporation, Oracle Corporation, Microsoft
Corporation, Informix Corporation, Sybase Incorporated, and Teradata Cor-
poration are the most popular ones in the current world market. Relational
databases are still the mainstream commercial products in the database field
nowadays. This chapter is intended to provide a discussion on the relational
database management systems, which are now being widely used in a variety
of software-intensive industrial automation systems.

The real-world industrial applications have many demanding requirements
on gathering, organizing, sorting, querying, managing, and reporting a large
amount of real-time and historical data, which contains the running condi-
tions in the shop floor. With the rapid development of modern computer
technology, the database management technology is also fully computerized.
A number of data management technologies have emerged to accomplish the
effective and efficient data access, management, and control. By doing so,
the data quality is assured and the system privacy is guaranteed in a sys-
tematic manner. Therefore, it is highly necessary for the developer to have
a deep understanding on the inner working of database systems. However,
at the moment, most industrial automation software developers do not have

Modem Industrial Automation Software Design, By L. Wang and K. C. Tan
Copyright 2006 the Institute of Electrical and Electronics Engineers, Inc.

59

60 DATABASE MANAGEMENT

a solid theoretical background on databases. Usually they put the database
issues aside in the analysis and design phases and they are only considered
in the implementation phase. It is true that small-scale databases can be
easily designed with a little database knowledge. However, for the large-scale
database, the lack of knowledge on database working mechanism will very
possibly lead to poor system performance or even the failure of the overall
software system. Anyway, data is the central component in any industrial au-
tomation system. Without scientific and systematic database management,
the design objective will never be successfully achieved. In this section, the
general knowledge on database management is introduced. The detailed im-
plementation of database technologies on industrial automation systems will
be fleshed out in the specific application in Part I1 of this book.

6.1 DATABASE SYSTEMS

A database can be thought of as a collection of associated files, and their
connection style is determined by the database model used [l]. Two repre-
sentative database models used in the early database systems are hierarchical
model and network model. In the hierarchical model, files are associated with
one another based on the parent/child structure. In the network model, files
are connected based on the relationships between owners and members. After
the 1970s, the relational database model was proposed and it soon became
the most commonly used database model in practical applications. In the
relational database model, files are related to each other through a common
field. which provides high flexibility to the database model. Although in re-
cent years certain emerging database models were proposed, the most widely
used database model nowadays is still the relational database system. Its
representative products include SQL Server, DB2, Oracle, Sybase, Informix,
and so on.

0 User interface: In the flat files, the file storage format and record struc-
ture should be known prior to accessing the data. In the database
system, these details are taken care of by the database system so that
users do not need to know about the exact file storage format and record
structure in database operations. The user only needs to provide the
nonprocedural SQL clauses, which state what kind of data the user
wants to query. The database operations are conducted through the
Database Management System (DBMS).

Concurrency control: Flat file does not support concurrency operations,
which tremendously restricts the effective utilization of system resources.
Database systems offer the concurrency mechanism. Therefore, multiple
users can access the database simultaneously.

RELATIONAL DATABASE 61

0 Data integrity constraints: As the data in the database are persistent
and shared, the data correctness is of great importance. For instance, in
the industrial automation software systems, nearly all of the monitored
variables are physical parameters so they may have different units. In
the database system, their data types and units can be explicitly defined
and managed in a unified manner to avoid the possible errors.

6.2 RELATIONAL DATABASE

The relational database model was developed by E. F. Codd in 1970, which
is an effective means to store and manage data. It is able to eliminate redun-
dant data representation, which is, however, absent in the previous database
models. Also it is able to organize data logically and represent logical hier-
archies clearly. A RDBMS is capable of effectively declaring and maintaining
the relationship between various related tables through its distinctive working
mechanisms. With the fast development of hardware and computer technolo-
gies, even the sophisticated relational database management systems can run
well in today’s most basic computer. Furthermore, SQL commonly used in
the relational database is fairly easy to grasp. A novice developer can learn
how to perform a majority of operations on a relational database in a short
time. The simplicity of relational database management system is also an
important factor contributing to the prominent uses of relational databases
in various real-world database applications nowadays. Below are the funda-
mental concepts and terms in any relational database:

0 A database is a collection of persistent data, and a relational database is
a collection of related tables. The relational database has two outstand-
ing features; i.e., data are stored in form of tables, which are related to
one another via common fields. The data presentation in form of tables
is a logical construct so it has nothing to do with the details on how the
data is physically stored.

0 A table (a.k.a. an entity or a relation) is a collection of rows and
columns.

0 Records (a.k.a. tuples) are the horizontal rows in the table. A record
represents a collection of information on an individual item.

0 Fields (a.k.a. attributes) are the vertical columns in the table. A field
represents a specific characteristic of an item. Field types include char-
acter, numerical, Boolean, datetime, and others. A field is said to be
null when it contains nothing.

0 Domain (a.k.a. field specification) means the possible values that the
field can accept.

62 DATABASE MANAGEMENT

0 A key is used for the logic access to database tables. It can be used to
locate the target records as well as traverse the relationships between
tables. The key can be any field or the combination of multiple fields,
which is able to uniquely identify a record. A key able to identify unique
record in a particular table is referred to a primary key. A relationship
between two tables is created by choosing a common field, termed for-
eign keys, between them. The common field must be a primary key to
one table. Foreign keys ensure the referential integrity and allow for
cascading deletion and updates.

0 An index is used to improve the database performance. It should be
noted that indexes are part of the physical instead of logical structure.

0 A view is a virtual table composed of a subset of the overall real tables.
Views are a structure allowing users to access data, and they do not
contain any data by themselves. They can be used to achieve the security
objectives. When the user needs to access only a certain portion of
a table, the remaining portion of a table is hidden from viewing and
manipulating.

0 A relationship in the relational database refers to a logical link between
two tables. In the one-to-one relationship, each instance of table A
corresponds to only one instance of table B, and vice versa. In the
one-to-many relationship, for each instance of table A, there are many
instances of table B, but for each instance of table B, there is only one
instance of table A. In the many-to-many relationship, for each instance
of table A, there are many instances of table B, and for each instance
of table B, there are many instances of table A.

0 Data integrity refers to the accuracy, validity, and consistency of data.
For instance, a record’s name should be stored identically in multiple
different places.

0 The technique of database normalization is used to prevent data anoma-
lies and improve data integrity.

0 A relational database management system (RDBMS) is responsible for
relating the information among different tables.

The relational database model is firmly based on the mathematical theory
of relational algebra and calculus. Twelve rules are defined that a database
management system (DBMS) must adhere to in order to be considered as a
relational database. Below are Codd’s 12 Rules for the relational database:

0 Data are presented in tables: A table is a logical grouping of related
data in form of rows and columns. A set of related tables constitutes
a database. Each row describes an item, and each column describes
a single characteristic about an item. Each value is defined by the

RELATIONAL DATABASE 63

intersection of a row and column, and these values are atomic. There
are no physical relationships among tables since the relationships are
purely logical.

Data are logically accessible: A relational database does not refer data
by its physical location. Instead, each piece of data must be logically
accessed through reference of a table, a key value, or a column.

Nulls are treated uniformly as unknown: The null value in the table
must always be seen as an unknown value. Nulls might cause confusion
and errors in the database if not dealt with correctly.

Database is self-describing: In a RDBMS, there are normally two types
of tables. Except for the user tables including the working data, there
are also system tables indicating the database structure. For instance,
metadata are used to describe the database structure as well as various
object definitions together with their associations. These two types of
tables can be accessed in the same way.

A single language is used to communicate with the database manage-
ment system (DBMS): There must exist a unified language capable of
tackling all communications with the DBMS by providing various rela-
tional operations including data definition, modification, and adminis-
tration. Structured Query Language (SQL) is a common standard for a
relational database language, which is a nonprocedural and declarative
language. It is a type of “fourth-generation language,” because it allows
users to express their intended operation without specifying the details
on how to implement it.

Provides alternatives for viewing data: A relational database must not
be limited to source tables when presenting data to the user. Views are
the abstractions of source tables. Views allow the creation of custom
tables that are tailored to special user needs.

0 Supports set-based or relational operations: Rows in a database are
viewed as sets for various data manipulation operations. A relational
database must support fundamental relational algebra operations as well
as set operations. It should be noted that a database only able to
support navigational operations does not fulfill the requirement, and
therefore it does not fall into the relational database domain.

Physical data independence: Changes in the physical structure should
not affect the applications which are accessing the data in a relational
database. Meanwhile, the application does not need to know exactly
how the data are physically stored in disk and how they are accessed.

Logical data independence: Logical data independence means that the
relationships between tables can change without affecting application

64 DATABASE MANAGEMENT

functionality and queries, The database schema or table structures and
logical relationships can change without having to re-create the database
or the applications that use it.

0 Data integrity is a function of the DBMS: Data integrity must be incor-
porated as an intrinsic property in DBMS instead of an external tool.
It refers to the data consistency and accuracy in the database. There
are primarily three types of data integrity: entity, domain, and referen-
tial integrity. Data integrity cannot be fully ensured without effective
database management.

0 Supports distributed operations: Data in a relational database can be
stored and operated in a centralized or distributed manner. Users should
be allowed to conduct database operations on data from tables on mul-
tiple servers located at different places as well as from heterogeneous
relational databases. Data integrity should be guaranteed during such
database operations.

0 Data integrity cannot be subverted: There should not be other paths
to the database that may subvert data integrity. The DBMS must keep
data from being illegally altered.

A relational database management system (RDBMS) allows users to gen-
erate, refresh, and manage a relational database. Most commercial RDBMS’s
support Structured Query Language (SQL) to access the database. The
prominent RDBMS products in the current market include Oracle’s Oracle,
IBM’s DB2, and Microsoft’s SQL Server. Although nowadays many inn@
vative database management systems have been created or are being devel-
oped, the mainstream database management systems in most corporations
are still RDBMS. With the more powerful functions and heterogeneous rela-
tional databases, relational database has now been applied into numerous
industrial and business domains such as Decision Support System (DSS),
Data Warehouse, Data Mart, and many others. Other emerging databases
such as object-oriented database systems are all extended from the relational
database.

6.3 STRUCTURED QUERY LANGUAGE (SQL)

In the database management, it is highly necessary to have one consistent lan-
guage in which users can express their operation requests at will. In database-
speak, a request submitted to a database is referred to a query. Such a lan-
guage used for user database query is defined as a query language. Among
a variety of query languages, Structured Query Language (SQL) is the most
widely used one [2, 3). The formal pronunciation for SQL is “es queue el,”
though it is often pronounced as sequel. SQL was originally created by IBM,

STRUCTURED QUERY LANGUAGE (SQL) 65

and it has some variants such as Oracle Corporation’s PL/SQL or Sybase
and Microsoft’s Transact-SQL. SQL has become the data query standard
which is widely adopted in various database management systems. ODBC
defines a standard SQL grammars, which is based on the previous X/Open
SQL CAE specification. Applications can submit SQL statements through
ODBC. SQL can be classified into several major sub-languages: Data Query
Language (DQL), Data Manipulation Language (DML), Data Definition Lan-
guage (DDL), and Data Control Language (DCL). Distinguished from other
procedural languages such as C or Pascal, SQL is a set-based programming
language. Certain SQL variants such as PL/SQL are developed to tackle this
by adding procedural elements into SQL while keeping SQL’s original merits.
Another approach is to embed SQL statements into the procedural language
code so as to interact with the database. For instance, embedded SQL is
supported by the Oracle pre-compilers. The Oracle pre-compilers interpret
embedded SQL statements and translate them into statements that can be
understood by procedural language compilers. Some commonly used com-
mands used in Data Manipulation Language, Data Definition Language, and
Data Control Language are introduced in the following.

0 Data Manipulation Language (DML): DML is a subset of SQL used
for querying a database as well as adding, updating, and deleting data.
DML is used to retrieve, insert, and modify database information. These
commands can be used by all database users during the routine opera-
tions of database.

- SELECT: Specify a query as a description of the desired result set.

- INSERT: Add a row to a table.

- UPDATE: Change the data values in a table row.

- DELETE: Remove rows from a table.

- BEGIN WORK: Mark the start point of a database transaction.

- COMMIT: Make the data changes that crop up in a transaction

- ROLLBACK: Discard the data changes after the last COMMIT or

permanent.

ROLLBACK operation.

Data Definition Language (DDL): DDL allows the user to define new
tables and associated elements. DDL contains the commands used to
create and destroy databases and database objects. The most funda-
mental DDL commands are CREATE and DROP. After the database
structure is defined using DDL, database administrators and users can
utilize the Data Manipulation Language (DML) to retrieve, insert, and
modify the data contained within it. The Data Definition Language
(DDL) commands are primarily used by database administrators for
generating and eliminating databases or database objects. Below are
the two basic DDL commands:

66 DATABASE MANAGEMENT

- CREATE: Create an object in the database.

- DROP: Delete an existing object in the database.

0 Data Control Language (DCL): DCL is used to deal with data access
authorization and user privilege management. Below are two of its com-
mands:

- GRANT: Offer the user privilege for performing certain database

- REVOKE: Cancel/restrict the user privilege for performing certain

operations.

database operations.

SQL defines how to generate and manipulate relational databases on the
major platforms including DB2, Ingres, Informix, InterBase, Micrmoft SQL
Server, MySQL, Oracle, SQLite, Sybase, and so forth. SQL can benefit the
users at different levels such as application programmers, database adminis-
trators, management, and end users. SQL is able to provide an interface to the
relational database, and all SQL statements are instructions to the database.
SQL accomplishes all the database operations using a single language. As all
major relational database management systems support SQL, the user can
transfer the experiences and skills that they have learned from one database
to another. In addition, all programs written in SQL can be ported from one
database to another without much effort.

6.4 OPEN DATABASE CONNECTIVITY (ODBC)

Open Database Connectivity (ODBC) is an Application programming inter-
faceApplication Programming Interface (API) for abstracting a program from
a database. ODBC provides a way for client applications to access a wide vari-
ety of databases or data sources. ODBC is used when database independence
or simultaneous access to different data sources is required. When developing
code used for interacting with a database, the developer normally needs to
write program used to interact with this particular database. This method
is fairly troublesome and lacks sufficient efficiency since the written code for
accessing a database cannot be ported to other databases. When attempting
to communicate with ODBC, the developer can only use the ODBC language,
which is a standardized API by combining ODBC API function calls and SQL.
It is an open standard application programming interface (API) for access-
ing a database. By doing so, the access to different databases using a single
program becomes feasible. It should be noted that in addition to the ODBC
software, the ODBC drivers for each database to be accessed should have been
installed beforehand. By using ODBC statements in a program, the user can
access files in heterogeneous databases such as MS SQL Server, Access, Excel,
Paradox, dBase, DB2, Informix, and many others. ODBC enables the user

OPEN DATABASE CONNECTIVIW (ODBC) 67

to use SQL statements to access various databases without having to know
about the exact database interfaces. ODBC is responsible for coping with the
SQL statements by converting them into a database query understandable to
a particular database system.

The ODBC interface is a widely used API for database access. SQL is used
to access and manipulate database. ODBC is designed for enabling a single
application to access heterogeneous database management systems with the
same source code. Database applications call functions in the ODBC inter-
face, which are implemented in drivers. The drivers separates applications
from database-specific behavior. Because drivers are loaded at run time, the
developer only needs to add a new driver to access a new database manage-
ment system without having to recompile the application. Since ODBC is
independent of DBMS, it can be used to generate the cross-database func-
tionality. As shown in Fig. 6.1, the ODBC architecture normally consists of
the following four components:

npplication Prwrarn

Source
...

Fig. 6.1 The generic ODBC architecture.

Application: The application performs database processing and trans-
lates the database calls into the ODBC API calls.

Driver manager: The driver manager is responsible for loading/unloading
database drivers. It also processes ODBC function calls or passes them
to a driver.

Driver: The driver is responsible for processing ODBC function calls,
transferring SQL requests to a specific data source, and returning results

68 DATABASE MANAGEMENT

to the application. The driver may translate or revise the application's
demand to make it abide by the syntax of the target database.

0 Data source: The data source comprises the desired data coupled with
its corresponding operating system, database management system, and
network mechanism.

The implementation of database management technologies in some rep-
resentative industrial automation systems will be detailed by the practical
applications later on.

REFERENCES

1. Date, C. J. (1994). A n Introduction to Database Systems, 6th ed., Addison-
Wesley, Reading, MA.

2. Date, C. J., and Darwen, H. (1992). A Guide to the SQL Standard, 3rd
ed., Addison-Wesley, Reading, MA.

3. Melton, J., and Simon, R. A. (1992). Understanding the New SQL: A
Complete Guide, Morgan Kaufmann Publishers, San Francisco.

7
Software Testing

Software quality indicates how well the software product complies with the
user requirements. Safety-critical applications in industrial automation such
as industrial measurement and instrument software pose unique concerns for
software quality due to its demanding requirements on system performance.
Effective software testing can ensure the software quality, as well as help the
developer garner customer kudos for high software quality. In this chapter,
various issues on industrial measurement and instrument software testing are
discussed. (Code inspections and audits are complementary activities to soft-
ware testing and very effective. This section addresses only testing; it will not
address code inspections and review.)

The software testing comprises both functional and performance testing.
The former includes conventional black-box and white-box testing, while the
latter is made up of testing for software availability, reliability, survivability,
flexibility, durability, security, reusability, and maintainability.

7.1 SOFTWARE AND INDUSTRIAL AUTOMATION

Modern safety-critical software-intensive industrial automation systems com-
prise computers and communication networks, and are becoming more and

Modern Industrial Automation Software Design, By L. Wang and K. C. Tan
Copyright 2006 the Institute of Electrical and Electronics Engineers, Inc.

69

70 SOFTWARE JESTING

more complicated with the rapid development of technology (31. In such sys-
tems, system reliability depends on many factors including system configu-
ration, controller structure, and communication links. Therefore, the possi-
bility for malfunction of complicated industrial automation software becomes
much greater than the traditional one in the “island of automation.” A mi-
nor defective component can have major adverse impact if the software is not
thoroughly tested prior to its implementation. Embedded measurement and
control systems intended for use in life-critical systems pose unique concerns
for system safety and reliability. Therefore, systematic and effective software
testing and maintenance are essential to ensure the quality of the software.

Large-scale software development normally experiences three major phases:
requirements analysis, software design, and coding. In the recent decades,
software researchers have proposed a variety of methods, which can be used
to guide developers to improve the software quality and avoid making mis-
takes during these three phases 112-17). Unfortunately, complete avoidance of
human mistakes during software development is not realistic. The probability
of error for a well-trained and experienced programmer in software code is
about 1 percent; i.e., there is an error in every 100 statements written. For
a novice or unqualified programmer, there are definitely many more errors in
the code, particularly for modern large-scale software. On the other hand, any
error in the software system is fatal to the real-world applications of indus-
trial automation software, because even a seemingly trivial error may bring
disasters to factory property or even loss of life.

Software testing is an indispensable phase in the modern software life cycle.
It is the process of revealing software defects and evaluating software quality
by executing the software [2, 4, 7-11]. A well-designed test case may reveal
previously undetected software defects. Software testing, defects repair, and
software reliability are closely related to one another. Thorough software test-
ing can ensure the software quality by reexamining the requirements analysis,
design, and coding after the software has been created.

Good process in software development uses top-down techniques. In the
software design phase, people analyze and define the problem domain. Then
they perform analysis of the software requirements to build the data domain
functions, quality requirements constraints, and validation standards. In the
software development phase, they turn the concept of software design into
source code using suitable programming language(s). For software developers,
software testing is the inverse process of software development in some sense.
Prior to the software testing phase in the software life cycle, people usually
construct the real software from abstract concepts, whereas at the software
testing phase, people usually want to design a set of representative test cases in
order to ‘Ldeconstructll the developed software by detecting the flaws injected
during the various software development phases. Some basic testing principles
are listed as follows:

SOFTWARE TESTlNG STRATEGlES 71

0 Present the expected testing results when designing test cases. A design
case should have two parts, i.e., the precise descriptions of both input
data and their correct consequences. A good test case should have a
higher chance to reveal the hidden defects.

0 Separate software testing team from software development team, since
the philosophies of the two teams are different. The former is “intention-
ally destructive’’ while the latter is “constructive.” Therefore, software
testing should be performed by the trained testers, who are not in the
software development group.

0 Design invalid test cases. A program should be capable of running
properly in different operation situations. For instance, it should work
well in the presence of invalid inputs, which are injected intentionally or
unintentionally. The program should be able to reject the invalid inputs
and give out the error information on possible reasons, together with
corresponding remedial measures.

0 Perform regression testing each time the software-under-test is revised,
as new defects may be brought up by the software modification. In re-
gression testing, the tester may find the newly incurred software defects
using previous test cases.

0 The tester should concentrate on the error-prone program segments. It
has been demonstrated that the more defects you reveal in a program
segment, the more chances you can find other software defects in this
segment. Generally speaking, the existence of additional defects in a
special chunk of software code is proportional to the detected number
of software defects in that segment.

7.2 SOFTWARE TESTING STRATEGIES

Big-bang testing and incremental testing are two different testing strategies in
software testing. In the big-bang testing, the developed software is tested as a
whole. Conversely, in the incremental testing, the software is tested piece by
piece; first, each software module unit is tested, and then the tested modules
are integrated into the larger subsystem for integration testing; finally, the
entire software system is built for system testing. For small-scale software, big-
bang testing may be used. Also, due to the timetable and budget limitations,
certain medium-sized software may also use big-bang testing. As compared
with incremental testing, big-bang testing is both rough and not rigorous.
Especially for large-scale software testing, it is not possible to test the complex
software as a whole so that incremental testing is preferable.

There are two approaches to testing software products. First, if the func-
tionality of the software is known, we can test the software to see if all of its

72 SOFTWARE TESTlNG

intended functionality meets the expectation. Second, if the inner behavior of
the software is known, we can test its inner behavior to check if all the design
requirements are satisfied. The former method is called black-box testing and
the latter one is called white-box testing.

7.2.1 Black-box testing

Black-box testing focuses on the functional testing of the program. The tester
views the program to be tested as a black box while not caring about its
inner structure and characteristics. The objective of black-box testing is to
examine whether the program has all the anticipated functionality and desired
performance. It carries out interface testing so as to find if the software is
able to meet all the design demands, properly accept and process inputs, and
correctly maintain the data integrity during execution. As a result, black-box
testing must use all possible inputs to meticulously inspect the corresponding
program outputs.

The description of behavior or functionality for the software-under-test
must be explicitly addressed in the formal specification. The tester provides
the specified inputs to the software-under-test, runs the test, and then de-
termines if the outputs produced are equivalent to those in the specification.
Because the black-box approach only considers software behavior and func-
tionality, it is often called functional, or specification-based testing. Obviously,
the black-box testing itself cannot perform a complete software testing, be-
cause it is normally not feasible to test the software using all the possible input
cases. The methods usually adopted in the black-box testing include equiva-
lence class partitioning, boundary value analysis, cause-and-effect graph, and
error guessing.

Since it is not feasible to provide a complete set of test cases for exhaustive
testing, a representative set of test cases often needs to be selected, i.e., a
set of test cases capable of representing a large number of other test cases.
Furthermore, the program is more prone to be out of service in dealing with
boundary values, so it is essential t o design test cases for checking the software
performance in the boundary value conditions. The major drawback of both
equivalence class partitioning and boundary value analysis is that they do
not use the combinations of various input conditions. The cause-and-effect
graphing approach focuses on the examination of various input conditions
and design test cases for testing software functionality by plotting the cause-
and-effect graph. Also it is possible to infer certain potential software defects
via experiences and intuition, based on which the test cases are designed for
detecting such possible faults. This method is called error guessing.

SOFWARE TESTING PROCESSES AND STEPS 73

7.2.2 White-box testing

White-box testing, sometimes called glass-box or clear-box testing, is differ-
ent from the black-box testing, since the tester in this approach regards the
software-under-test as a transparent box. It does not scan all the paths and
branches; therefore, it does not exhaustively test the software.

The white-box approach focuses on the inner structure of the software-
under-test; thus it is also called structural testing. To design test cases using
this strategy, the tester must have a knowledge of that structure. The tester
selects test cases to exercise specific internal structural elements to determine
if they are working properly. For example, test cases are often designed to
exercise all statements or true/false branches that occur in a module. White-
box testing methods are especially useful for revealing software flaws in design
and code-based control, logic and sequence, initialization, and data flow. To
measure the coverage of software testing, it is necessary to set up certain
standards such as statement coverage, decision coverage, condition coverage,
decision/condition coverage, and condition combination coverage.

This method regards the test target as an open box. Based on the inner
logic structure of the software, the tester designs and selects suitable test cases
to examine as many logic paths as possible during the testing. Any indepen-
dent execution path in the program module should be tested at least once in
white-box testing. Also, any logic condition and True/False conditions should
be tested at least once, as should both loop testing and verification/validation
testing of inner data structure.

In practical applications, the tester often combines black-box testing and
white-box testing to conduct more thorough testing of the software. Software
testing highlights and tests certain critical logic paths and inspects the validity
of important data structures. Doing so can ensure the correctness of both
interfaces and inner functions to a certain level.

7.3 SOFTWARE TESTING PROCESSES A N D STEPS

Figure 7.1 illustrates the software testing process. It includes test method-
ology, test planning, test design, and test implementation. Software testing
performs these processes sequentially.

There are two types of inputs in software testing. One input is the software-
under-test. It includes documents such as software requirements specification,
software design description, and source code. Another input is the software
test configuration; it comprises test plan, test cases, test procedure, and ex-
pected outputs. The software strategy includes not only the input data (test
cases), but also the target functions and expected outputs. The output at the
testing phase should include the actual testing outputs as well as debugging
information. The latter should not be ignored and should be included in the
testing configuration base.

74 SOFTWARE TfST/NG

Fig. 7.1 Software testing stages.

Revealing software defects is not the final target. The actual objective for
conducting software testing is to diagnose and modify software defects when
identified. Doing this, improves the software quality and therefore satisfies the
expected design requirements. The task of software revision and optimization
is always an integral part in software testing. For instance, in most software
development for modern industrial automation applications, the work on soft-
ware testing and optimization occupies about 50 percent of the overall work
in the software life cycle.

The evaluation of test results compares the test results with the expected
software outputs. Debugging locates the errors and revises them accordingly.
Debugging is normally accomplished by the programmer. After software test-
ing, you should evaluate whether the software functionality and quality meet
the expectations. The various steps in software testing mainly include unit
testing, integration testing, validation testing, and user testing. In practical
applications, these steps are highly interactive during the software develop
ment process. By carefully recording and evaluating the testing results, the
tester can know how well the software performs. If there are some periodic
and intolerable defects, the software quality and reliability are doubtful, and
further software testing is needed to determine the severity of the defects.
On the other hand, provided that the software-under-test performs well in
various testing conditions and the defects uncovered can be readily revised,
the software quality and reliability may be acceptable, or the software test-
ing is not sufficiently capable of finding any software errors. For instance, if
the software testing cannot identify any software defect, it is highly possible

SOFTWARE TEST/NG PROCESSES AND STEPS 75

that the test cases used are not well-designed, because there is no error-free
software in practice.

Figure 7.2 shows four steps in software testing: unit, integration, verifi-
cation, and system. (System testing often contains a fifth type of testing:
validation of user intent and desires for the system operation.) The first step
is the unit testing, which examines each program unit realized by source code
to see if each program module can properly perform the specified functionality.
Then the tested modules are integrated to form a subsystem for integration
testing, which primarily tests the software structure. The objective of vali-
dation testing is to examine whether all the specified requirements have been
met and whether the software configuration is properly defined. The final step
in the software testing is system testing, where the software is incorporated
into the real environment by integrating it with other system components
(including both external hardware and software). The software testing is an
indispensable phase to ensure that the developed software is useful and can
run properly in the real-world applications.

~~~ ~ + - - - - - )  
Validation occurs in various stages 

Fig. 7.2 Software testing steps. 

7.3.1 Unit testing 

In unit testing, the tester needs to know the detailed description of the soft- 
ware design and the source code, together with the module logic structure 
of 1/0 conditions. White-box test cases are primarily used in unit testing, 
and black-box test cases may be used in certain occasions for more thorpugh 
testing. The software is tested by inspecting its outputs corresponding to a 
set of valid and invalid input data. The software testing performed in this 



76 SOFTWARE TfSTlNG 

phase includes module interfaces testing, local data structure testing, path 
testing, exception handling testing, and boundary value testing. 

Unit testing examines the basic unit of the software design, the software 
module. The unit testing can only find the coding errors and algorithm de- 
fects. Very often, both the black-box testing and white-box testing are used 
to test each developed software module. Five basic properties of a module 
need to  be thoroughly tested at the level of unit testing: 

0 Module interface: Test the module interface to ensure the proper data 
input and output. Do this first before other testing. 

0 Local data structure: Detect the improper use of statements variables, 
and functions, wrong initialization and default values settings, data over- 
flow, and address exceptions with a suite of test cases. 

0 Crucial execution paths: Carefully test the execution path including 
driver connections, hardware initialization, hardware readingfwriting, 
hardware disconnection, and driver release. 

0 Exception handling: Deliberately enter invalid data to  determine the 
software’s capability for handling faults and exceptions. It should dif- 
ferentiate whether the error information given by the software is correct 
and complete, and whether it is useful for locating the corresponding 
software defects. 

0 Boundary value testing: Software errors normally occur in the extreme 
conditions. Therefore, using some boundary data and data flow may 
reveal the hidden software defects, which are not readily detected by 
normal values and data flows. 

The software development team must test each module after it has been pro- 
grammed. A tester might write simple driving or linking routines for unit 
testing. 

7.3.2 Integration testing 

Integration testing exercises the subsystem, which is made up of various mod- 
ules after unit testing. The main approach used at  this level of testing is black- 
box testing. Bottom-up and top-down testing strategies are often adopted for 
system integration and integration testing. For both strategies, testers gen- 
erally add only one module is added to the growing subsystem at  a time for 
integration testing in both cases. Low-level hardware drivers can be realized 
by simulation in this step. 

Top-down integration testing approach Figure 7.3 illustrates a test 
sequence in an example of top-down integration. The integration sequence 
starts from the root node module and then moves to  lower-level modules. 
First, the main control module serves as the driver module and stubs (place 



SOFTWARE T€ST/NG PROCESSES AND STEPS 77 

holders for modules yet to be coded) substitute for all of its directly linked, 
subordinate modules. By doing so, the main control module can be tested 
independently. Second, depending on depth-first or breadth-first search, stubs 
are substituted by actual modules, which form a new subsystem with the 
tested modules. Next, the subordinate modules directly connected to  this 
subsystem are replaced by the stub for the new subsystem testing. Regression 
testing is then used to make sure that no new errors are incurred during the 
integration process. Finally, the tester needs to  check if all of the modules 
have been integrated as a whole system for termination of the integration 
testing. 

Fig. 7.3 Test sequence in topdown integration testing. 

Bottom-up integration testing approach Figure 7.4 illustrates an ex- 
ample of a test sequence in bottom-up testing. In this integration approach, 
the lowest-level modules are first tested and the upper module is then inte- 
grated to  form a subsystem. Then you test the newly formed subsystem. You 
iterate the process until the whole system is integrated and tested. First, par- 
allel testing is conducted for the lowest-level modules using a driver module 
written for the test. Then, the actual module replaces the driver module and 
forms a subsystem with the directly subordinate modules. The newly formed 
subsystem is again tested by integrating a driver module. Finally, the tester 
determines if the integration has reached the root node module before ending 
the integration testing. 



78 SOFTWARE TESTING 

Fig. 7.4 Test sequence in bottom-up testing. 

7.3.3 Verification testing 

Verification is an objective measure of whether the metrics in the require- 
ments are met. Verification testing uses black-box testing to  determine if the 
software functionality fulfills the user requirements; it occurs after the integra- 
tion testing. Often verification combines software and hardware into a single 
target system. Usually the requirements specify those standards that are the 
basis for verification testing. Moreover, the completeness, software scalabil- 
ity, fault-tolerant capability, and maintainability should also be verified. After 
verification, testers should issue a software defects report. These defects need 
to be resolved through discussion and cooperation with the users. 

7.3.4 System testing 

System testing ensues after verification testing. The developed software is 
a component of the overall computer-based systerfi, hardware and software. 
The objective of system testing is to  find the discrepancies between the actual 
software performance and its expected performance by comparison with the 
requirements. The test cases for system testing are designed based on the re- 
quirements analysis description and should be run in real-world environments. 

For instance, software testing in most industrial automation must exercise 
three different modules (data acquisition, data processing, and data presen- 
tation modules), which different software developers usually develop. After 
unit testing each module, the three modules are integrated through either the 
top-down or bottom-up approach for integration testing. Then, independent 
testers provide verification testing and feedback the detected defects to  the 
corresponding developers for repair. Finally, the software is installed with 
other equipment on the factory floor for system testing. After thorough on- 



SOFTWARE PERFORMANCE TESTING 79 

site testing, the customer decides whether the software can be accepted and 
officially released. 

7.3.5 Validation 

Validation is a form of system testing that is more subjective than the other 
types of testing just described. Validation helps determine whether the system 
fulfills the desires and intent of the customer. It tries to  answer the question, 
“Does the system do what the customer expects it to  do?” 

Validation uses focus groups or extended meetings with the customer and 
users to  determine what their expectations are and if the system is meeting 
them. Validation also does not fit neatly into one time period or test activity. 
Various components, e.g. the human interface or GUI or output actuations, 
may be presented to  users for their comment during early development. Later 
in development, field tests of the entire system or a usable subset of the system 
functions also help you to determine if it meets customer expectations. 

Though often confused, verification and validation are two different activi- 
ties with different goals. Verification is an objective measure and comparison 
of metrics to  requirements. Validation is a subjective measure of intent and 
fulfillment. 

7.4 SOFTWARE PERFORMANCE TESTING 

Software systems are becoming increasingly complex. In the arena of real- 
time measurement and control, the software may be distributed, embedded, 
and highly responsive. The software is usually made up of a large amount of 
in-house developed components, commercial-off-the-shelf (COTS) component, 
and newly developed components. This trend makes the integrated software 
rather complicated and more prone to be out of service. As a result, the pro- 
cess of verification and validation for such software-intensive systems requires 
a larger number of test cases and more meticulous testing than conventional 
automation software systems. 

Embedded systems are involved in almost every facet of modern life and 
they are playing an ever-increasing role in the monitoring and control of poten- 
tially dangerous industrial applications [5, 61. Figure 7.5 illustrates the basic 
structure of a real-time monitoring and control system. In a basic embedded 
measurement and control loop, a sensor measures the monitored variables, a 
microprocessor-based controller determines how the error between the actual 
and target measurements could be corrected, and an actuator executes the 
command to  drive the controlled variables close to the target values. Such 
operations are repetitious when the system runs. In this basic control loop, 
there are at least three types of faults that may occur during the system op- 
erations. One commonly encountered fault is component malfunction, such 



80 SOFTWARE TESTING 

as sensor or actuator faults. Also in the embedded measurement and control 
system, the limited system resources such as CPU, memory, and bandwidth 
should be properly allocated for each task. Otherwise, sampling jitter and con- 
trol delay may occur. F’urthermore, control delay and packet loss during data 
transmission should also be taken into account in networked and embedded 
control system designs. As a result, the testing regarding software availability, 
reliability, survivability, flexibility, durability, security, reusability, and main- 
tainability is essential for the safety-critical, real-time automation system. 

Fig. 7.5 Real-time monitoring and control system 

There are several factors that make testing of distributed and embedded 
real-time software difficult. The first reason is complexity. The large number 
of potential test paths overwhelms software testing even for a small network, 
let alone the testing for large-scale distributed systems. For such software 
testing, only a small number of paths can be examined. Therefore, the thor- 
oughness of software testing cannot be ensured. Second, the real-time con- 
straints exacerbate the software testing, because the software-under-test of- 
ten demands a complex test environment to accurately evaluate the software 
performance in different implementation scenarios. F’urthermore, in object- 
oriented software, defects caused by encapsulation, inheritance, and polymor- 
phism must be carefully detected [l]. 

7.4.1 Availability testing 

Availability is important in time-critical, online, real-time applications such as 
industrial measurement and control, where responsiveness is a high priority. 
Missing a deadline for responding to an operation is deemed a failure in real- 
time applications, because it may incur system malfunction just as any other 
type of error might cause. Alarm management software for a chemical plant, 



SOFTWARE PERFORMANCE TESTING 81 

for example, should immediately trigger an alarm or a siren for any abnormal 
process parameter. If it cannot perform the alarm operation in a timely 
manner, but responds to the over limit value in several minutes, it becomes 
meaningless in most cases; a production incident or even a disaster may follow 
from the sluggish reaction. Therefore real-time software needs to be designed 
carefully so as to meet the time constraints. In recent years, control and 
scheduling co-design has attracted much attention from the real-time software 
developers. In such designs, control correctness and real-time restrictions are 
considered simultaneously in the software design process. 

7.4.2 Reliability testing 

Reliability measures the likelihood for failure-free software operations, which 
reflects the product’s ability to consistently operate free of failure, in the 
environment for which it was designed. For the safety-critical applications, 
low-reliability software may destroy factory equipment or even incur loss of 
life. Moreover, if the industrial monitoring software performs poorly and 
cannot capture the abnormal status, the quality of the manufactured products 
cannot be guaranteed. As a result, the reputation of the company may be 
spoiled. 

7.4.3 Survivability testing 

The system should have a specified level of fault-tolerant capability. In the 
harsh industrial measurement and control environments, the software may fail 
from memory leakage, illegal operations, and unusual environments. A system 
with high survivability can recover from transient faults and resume proper 
operations without much performance loss. In such conditions, the distributed 
and embedded real-time software system should be able to recover from the 
degraded performance using the remaining nodes in an adaptive and real- 
time manner. Fault-tolerant control algorithms should be incorporated into 
the software design to maintain the software performance in the presence of 
component failures. 

7.4.4 Flexibility testing 

Flexibility means that the system adapts to different user requirements and 
operating environments. In the industrial automation area, the software needs 
to work with heterogeneous hardware drivers and software components pro- 
vided by different manufactures and vendors. Reconfiguration capability is a 
good criterion for flexibility. Nowadays, open architecture-based software is 
gradually replacing traditional, proprietary software architecture; this trend 
opens new opportunities for flexible software design in modern industrial au- 
tomation arena. 



82 SOFTWARE TESTING 

7.4.5 Stress testing 

Stress testing tests the software by pushing the system to its limits. The hid- 
den software defects can be more easily exposed under the extreme operating 
conditions. The well-known Y2K (Year 2000) problem is an interesting test 
case: “Can the system tell whether the year “00” is actually later than “99.” 
For the safety-critical industrial automation systems, the tester may test the 
system performance by using all the measurement points (channels) or even an 
excessive number. The software system may also be required to run continu- 
ously for a certain period of time. Such stress testing may find both hardware 
and software defects. It should be noted that no matter how carefully the 
software is developed and tested, it may break under operating conditions 
that far exceed the required operating scenario. Therefore, the stress testing 
scenarios should also be selected based on the actual user requirements. Stress 
testing can be used to examine what types of system failures will occur when 
the system is heavily overloaded. Based on the observation, the designer can 
figure out the redundancy needed in the system design. 

7.4.6 Security testing 

Security is an increasingly important issue in industrial automation software 
systems, especially with the proliferation of Internet-based industrial applica- 
tions. System security needs to be meticulously considered during all phases 
of software life cycle. For instance, hackers and malicious attackers may il- 
legally log into a company’s central database to destroy or distort the data. 
If such illegal operations are not detected in a timely fashion, disasters may 
occur because improper data may be used for the company’s daily operations. 
Disgruntled employees may also damage a company’s data management. In 
such conditions, the system should be able to identify any illegal operations or 
even trigger alarms to attract the attention of other employers in the company. 
Other common situations are natural disasters such as thunderstorm-induced 
blackouts during system operations. If such events happen, the current state 
of the system and its data should be correctly recorded in the database, and 
all the equipment controlled should be guaranteed to cease working in a con- 
trolled manner. Viruses also threaten industrial automation software systems; 
therefore, support software such as up-to-date anti-virus packages should be 
installed in the software system to avoid any possible infection. 

7.4.7 Usability testing 

Usability tests how well the user operates the software system and likes do- 
ing so. Even for novice operators, the software should be easy to operate. 
Operators of industrial automation software systems normally work under 
stressful environments and are prone to mistakes operations are poorly de- 
signed. Therefore, it is crucial to design the software with high usability, 



SOFTWARE PERFORMANCE JESTING 83 

which makes the software operations a pleasant experience even in the stressed 
and hostile factory floor conditions. Graphical User Interface (GUI) design is 
an important component in system usability. Ease-of-use and friendly GUI 
can increase the efficiency and reduce the possibility of invalid operations. 
Currently, Windows like GUIs are most widely accepted and used by plant 
operators, both in on-site operation and in management departments. The 
user interface design principles include user familiarity, consistency, minimal 
surprise, recoverability, user guidance, and user diversity [15]. 

7.4.8 Maintainability testing 

The released software often needs to be revised and upgraded during its life 
cycle. Therefore it is highly desirable that the software can be easily main- 
tained. High maintainability enables the released software to be revised in 
the presence of errors/deficiencies during system operations, and it  makes the 
software expansion and change easy for new applications. The maintenance 
team is often different from the development team, and without high main- 
tainability, it is hard for the maintainers to modify and update the software. 
Unfortunately, maintainability is usually neglected by software developers. 
Maintainability should be considered from the very start of the life cycle. For 
complex software, high maintainability becomes more necessary, because it is 
hard to identify the faulty lines of code without well-written documentation. 
The issues on software maintenance are detailed in the next section. 

The software must be extensively tested against the documented specifica- 
tions, which include all normal operating conditions and boundary working 
conditions. A verification results document must be produced to demonstrate 
all the test results including a coverage analysis. For most safety-critical soft- 
ware, the coverage analysis should show that every conditional statement has 
been tested for both the true and false conditions. Every loop must be shown 
to have a fixed number of iterations, or an exit condition can never result 
in the failure to leave the loop. If the coverage analysis determines that the 
coverage is incomplete, additional tests must be performed to complete the 
testing. Test plans and test procedures must also be documented, based di- 
rectly on the requirements document. Besides, every function must be tested 
for every conceivable combination of inputs and states, and procedures must 
be defined for every test. 

After executing the tests, the testing process must be analyzed for its level 
of coverage. For the most critical software, every line of code must be ex- 
ecuted during the test, and every decision must be tested for all possible 
conditions. For loops with a computed termination condition, every termi- 
nation condition of the loop must be tested. If any lines of the codes were 
not covered, additional requirements or tests must be constructed to ensure 
complete coverage. 



84 SOFTWARE TESTlNG 

Fig. 7.6 Software maintenance. 

7.5 SOFTWARE MAINTENANCE 

There are usually four phases experienced by the released software: enhance- 
ment, maturity, obsolescence, and termination [12]. The distinction between 
any adjacent phases is not strict and could be rather blurred in the phase 
transition. Given that software systems often need to  be changed to accom- 
modate the changing environments, it is important to establish a safe and 
well-controlled mechanism for modification and update. In practice, software 
maintenance often consumes the most time in the software life cycle. 

Figure 7.6 shows that software maintenance continues throughout the soft- 
ware life cycle. The cost of software maintenance can occupy 40 to  70 per- 
cent of the total software expenditure (121. Software maintenance has two 
main tasks: Identify the unexposed defects after the software has been in- 
stalled on the customer site, and adapt to various operating conditions and 
ever-changing user requests. It can be regarded as the iteration of software 
development and testing whenever any new defects are found or certain parts 
of the software needs to  be updated to fulfill the new requirements. There are 
four types of software maintenance [12]: 

The first type of software maintenance is corrective maintenance. After 
installation at  the user sites, the latent software defects appear, and 
therefore revision is needed to ensure the proper running of the software. 
This is of critical importance for software quality assurance and can be 
viewed as a type of software testing. 



SUMMARY 85 

0 The second type of software maintenance is adaptive maintenance. It 
ascertains that the released software can adapt to new requirements, 
which were not in the previous design specification. Both changing user 
requirements and operating platform make the adaptive maintenance 
necessary. 

0 The third type of software maintenance is perfective maintenance. New 
technologies need to be incorporated into the existing software to im- 
prove its performance. In the software development phases, it is possible 
that the desired technology has not been available, or the technology 
employed then is not the best for the application. In such cases, end 
users may often want the software to be upgraded using novel tech- 
nology. For example, in the early industrial automation software, data 
exchange among different applications was realized by the traditional 
clipboard. Later, the occurrence of Dynamic Data Exchange (DDE) 
technology made the data exchange more powerful for industrial au- 
tomation software. More recently, the concept of Object Linking and 
Embedding (OLE) Automation made data communication among dif- 
ferent applications in a software system easier and more flexible. Hence, 
whenever a newer or more suitable technology is available, the software 
may need to  be modified to incorporate any new developments to meet 
the often changing and tougher requirements. 

0 The last type of software maintenance is preventive maintenance. It 
involves making changes to the software that in themselves improve 
neither correctness nor performance, but make future maintenance ac- 
tivities easier to be carried out. 

7.6 SUMMARY 

This chapter addresses some issues on the testing of safety-critical, real-time 
software. The purpose of software testing is to uncover bugs for removal 
and ensure the software’s compliance with user requirements. In the mission- 
critical or life-critical systems such as networked and embedded real-time soft- 
ware, testing is an indispensable phase in the software life cycle. Unit testing 
for each program module helps to eliminate the inner errors and defects in 
logic and functionality. Integration testing is then conducted to  detect and 
repair the structure errors in subsystems. Verification examines the software’s 
adherence to the design requirements. Finally, system testing and validation 
examines whether the overall system meets the user expectations. In the test- 
ing of industrial automation software systems, performance, flexibility, relia- 
bility, survivability, and usability should also be tested thoroughly. Industrial 
automation software should be able to deliver the required functional features, 
as well as to demonstrate correct behavior so as to ensure the attainment of 
software quality goals, which are much tougher than non-real-time software. 



86 SOFTWARE T€ST/NG 

The objective of software testing is good quality. All the tests described in 
this section contribute to measuring that quality. Software tests comprise but 
one set of tools in the quality toolbox; code inspections and reviews, which 
were not discussed in this section, are also important. All considered, “The 
customer is the ultimate judge of product quality” 191. 

REFERENCES 

1. Ambler, S. W. (2004). The Object Primer: Agile Model-Driven Develop- 
ment With UML 2.0, Cambridge University Press, Cambridge, UK. 

2. Ben-Menachem, M., and Marliss, G. S. (1997). Software Quality: Produc- 
ing Practical, Consistent Software, Slaying the Software Dragon Series, 
International Thomson Computer Press, Boston, MA. 

3. Budden, T., 2003. Why safety-critical software development processes 
make sense even if not required, COTS Journal, September, pp. 19-24. 

4.  Burnstein, I. (2003). Practical Software Testing: A Process-Oriented Ap-  
proach, Springer, Berlin. 

5. Douglass, B. P. (2000). Real-Time UML: Developing Eficient Objects for 
Embedded Systems, 2nd ed., Addison-Wesley, Reading, MA. 

6. Douglass, C. (2003). Safety-critical software certification: Open source 
operating systems less suitable than proprietary? C O T S  Journal, Septem- 
ber, pp. 54-59. 

7. Galin, D. (2004). Software Quality Assurance: From Theory to Imple- 
mentation, Pearson/Addison-Wesley, Reading, MA. 

8. Gao, J. Z. ,  Tsao, H.-S. J., and Wu., Y. (2003). Testing and Quality Assur- 
ance f o r  Component-Based Software, Artech House Publishers, Norwood, 
MA. 

9. Ginac, F. P. (1998). Customer Oriented Software Quality Assurance, 
Prentice Hall PTR, Upper Saddle River, NJ. 

10. Horch, J .  W. (2003). Practical Guide to Software Quality Management, 
2nd ed., Artech House Publishers, Norwood, MA. 

11. Myers, G. (1979). The Art of Software Testing, John Wiley & Sons, New 
York. 

12. Norris, M., and Rigby, P. (1992). Software Engineering Explained, John 
Wiley & Sons, Chichester, England. 



SUMMARY 87 

13. Schach, S. R. (1993). Software Engineering, 2nd ed., Richard D. Irwin, 
Inc., and Aksen Associates, Inc. 

14. Sigfried, S. (1996). Understanding Object-Oriented Software Engineering, 
IEEE Press, New York. 

15. Sommerville, I. (2001). Software Engineering, 6th ed., Addison-Wesley, 
Reading, MA. 

16. Weisfeld, M. (2004). The Object-Oriented Thought Process, 2nd ed., Sams 
Publishing, Indianapolis, IN. 

17. Younessi, H. (2002). Object-Oriented Defect Management of Software, 
Prentice Hall PTR, Upper Saddle River, NJ. 



This Page Intentionally Left Blank



Part 11 

Real- World Applications 



This Page Intentionally Left Blank



8 
Overview 

Practice is the best of all instructors. In Part 11, we present the develop- 
ment of a collection of industrial automation systems for various practical 
industrial applications. By studying these real-world applications, the reader 
learns the cutting-edge technologies used to build modern industrial automa- 
tion systems and, most importantly, learns the philosophy for constructing 
different industrial automation systems to satisfy the ever-tighter industrial 
requirements in a variety of real-world production and manufacturing scenar- 
ios. Nowadays, the concept of automation does not refer only to the conven- 
tional plant automation anymore. It has been widely extended to the higher 
levels of enterprise decision support systems such as optimal production man- 
agement, robotic online negotiation, and so on. Part I1 discusses a bunch 
of industrial applications ranging from industrial measurement, supervision, 
and control systems to advanced decision support systems in modern enter- 
prises. These industrial automation systems turn out to be highly effective 
in their respective real-world applications. In Chapter 9, an object-oriented 
industrial measurement and control system is discussed; it is built based on 
the reconfiguration concept. Therefore, it turns out to be highly flexible and 
can be applied to a wide range of application situations. Chapter 10 presents 
the flexible measurement points management in the industrial supervision 
systems. The measurement points management scheme is able to make the 
software more flexible by enabling it to accommodate a variety of hardware 
devices from different vendors. It lays the solid foundation to construct a 
flexible industrial system as data collection is its most bottom layer. Then in 
Chapter 11, a VxD-based blending system is built with the major components 
of industrial computer and programmable logic controller. To avoid the data 

91 



92 OVERVIEW 

transmission bottleneck, in the presence of a large volume of real-time data, 
the multithreaded programming technique is used. A flexible automatic test 
system is reported in Chapter 12, which is used to ensure the reliable oper- 
ations of rotating turbine machinery. The system integration mechanism is 
illustrated in this application. With the wide acceptance of Internet technol- 
ogy, networked industrial automation system has become a trend in different 
industrial applications. In Chapter 13, an Internet-based online real-time 
condition monitoring system is discussed, which is able to provide continu- 
ous supervision of large-scale rotating machinery. Although it is not possible 
to report all the applications in the Part 11, the readers may be able to de- 
velop their own industrial automation systems for their specific requirements 
by utilizing the design philosophy discussed in the following chapters. Also, 
this book ends with an introduction of some emerging technologies which are 
being adopted or may be adopted to improve the developmental efficiency as 
well as the functionality of modern industrial automation software. 



9 
An Object- Oriented 

Reconfigurable Software 
for Industrial 

Measurement and 
Control 

Condition monitoring is a significant domain in modern industrial measure- 
ment and control. Hazardous accidents and machine failures always result in 
defective products, equipment breakdown, environment pollution, and even 
human life loss. As a result, machine failures and production accidents are 
highly undesirable because they reduce plant productivity as well as enterprise 
profits. In this chapter, a generic Reconfigurable Software for Industrial Mea- 
surement and Control (RSFIMC) is discussed. The software consists of three 
individual modules: data acquisition, data processing, and data browsing. It 
integrates different software development technologies such as reconfiguration, 
object orientation, database management, core Windows programming, and 
data exchange. The reconfigurable condition monitoring software has been 
successfully installed and operated in a large petrochemical plant, which turns 
out to be very capable of providing continuous condition monitoring to aid 
the operation personnel in dealing with various field operational situations. 

Modern Industrial Automation Software Design, By L. Wang and K. C. Tan 
Copyright 2006 the Institute of Electrical and Electronics Engineers, Inc. 

93 



94 AN OBJECT-ORIENTED RECONFIGURABLE SOFTWARE 

9.1 INTRODUCTION 

Condition monitoring for industrial processes is to provide an effective way 
to prevent incipient failures in the plant equipment. It enables the preventive 
maintenance possible before the equipment failure really happens [37]. Fur- 
thermore, remedial measures can be taken in a timely manner to reduce the 
possible production losses. So far, many industrial measurement and control 
systems have been developed for different industrial application. However, 
these systems are usually very expensive and inflexible. For instance, such 
condition monitoring systems are mostly designed for the specific industrial 
application environment. When the hardware of the measurement and con- 
trol system needs to be altered or upgraded, its software must have to be 
redesigned and rebuilt accordingly. In recent years, the concept of recon- 
figuration has attracted much attention from a wide variety of real-world 
industrial applications (4, 7, 9, 13, 14, 20, 31-34, 391. Reconfiguration is 
the key issue to achieve flexible industrial measurement and control systems. 
Without needing the additional custom coding, which is often necessary for 
traditional condition monitoring systems, the reconfigurable system is able to 
handle internal and external system uncertainties in a cost-effective manner. 
Therefore, developing such a reconfigurable and flexible software for various 
condition monitoring environments is highly necessary and beneficial to mod- 
ern industrial applications. This chapter discusses such an object-oriented 
reconfigurable software for industrial measurement and control. The software 
is efficiently developed due to the systematic software engineering adopted. 
Practical applications of the developed reconfigurable software turns out to 
be highly effective in performing real-time condition monitoring and assisting 
in fault diagnosis. 

9.1.1 Evolution of reconfigurable software 

“Reconfiguration” was known by the industrial technical people with the oc- 
currence of Distributed control systemDistributed Control System (DCS). The 
first generation of DCS appeared as the result of proliferation of modern mi- 
croprocessor technology. The rapid development of network communication 
technology and computer software technologies enabled the DCS to be widely 
used in various industrial sectors worldwide. With the increasing micropro- 
cessor technologies, both hardware cost and control equipment size have been 
significantly reduced. Because each DCS has its generic control system, it 
can be applied to a variety of industrial domains. In order to enable users 
to create their own application systems, which are capable of meeting the 
practical requirements without extra coding tasks, most DCS manufactures 
provide the built-in system software and application software in their DCS 
products. In actuality, the application software in it is essentially the recon- 
figurable software, though no explicit concept of reconfigurable software was 



defined at that time. The process of constructing the application software 
into the target application is called “Configuration.” 

Even up until now, the reconfigurable software in each DCS vendor is 
hardware-related, and they cannot be substituted with each other. The con- 
tinuous shrinking of MS-DOS users and the widespread use of Windows oper- 
ating systems opened up new opportunities for developing PC-based condition 
monitoring systems. Intouch is the first commercial reconfigurable software 
released by America’s Wonderware company at the end of the 1980s. After 
that, reconfigurable systems have been rapidly developed and well received 
worldwide in various industrial sectors. It is believed that with the continu- 
ous development of information technologies, reconfigurable software will play 
an even more vital role in the industrial automation arena, and its market oc- 
cupation will also become larger than ever. 

Reconfigurable condition monitoring systems were developed along with 
the rapid development of computer technologies. In the 1960s, although the 
computer began to be applied to the field of industrial process control, it was 
not well accepted by most industrial sectors because most computer tech- 
nical staffs lacked the knowledge on factory instruments and industrial pro- 
cesses. Later, the occurrence of microprocessors accelerated the maturation 
of computer-based control. The occurrence of microprocessors not only in- 
creased the computation capability, but also markedly reduced the computer 
hardware cost as well as the size of computer. As a result, a number of compa- 
nies previously working on instruments and industrial control computers be- 
gan to develop their new control systems by incorporating the microprocessor 
technology. The representative products at that time include the TDC-2000, 
which is the first set of DCS in the world released by America’s Honeywell in 
1975. In the subsequent two decades, DCS and computer control technologies 
became more mature and they were widely used in industry. The DCS has 
already contained somewhat rich software types including operating system 
software, reconfigurable software, control software, operation workstation soft- 
ware, communication software, and so forth. At this stage, although the DCS 
technology and its market were developing very quickly, the software itself is 
still special-purpose and proprietary in essence and the software functionality 
needs to be enhanced. As a result, the cost for implementing DCS in small 
and medium-sized plants is still unacceptably high. With the widespread use 
of personal computers and the prevalence of open system concept, PC-based 
industrial condition monitoring systems occurred and kept growing rapidly 
thereafter. Reconfigurable software is the most important component in the 
PC-based IMC system. It has a larger room for further development and ex- 
tension than the hardware system in PC-based condition monitoring systems. 
As the PC-based IMC system significantly reduces the system cost and can 
be widely used, its market is expanded at a blindly fast speed. A variety of 
intelligent instruments, regulators, controllers, and PC-based equipment can 
be easily connected to the reconfigurable software to construct a comprehen- 
sive low-cost IMC system. Furthermore, with the occurrence of heterogeneous 



96 AN OBJECT-ORIENTED RECONFIGURABLE SOFTWARE 

embedded devices and field buses, reconfigurable software finally becomes the 
trend for developing modern industrial automation systems. 

0 Unmanned remote monitoring: Burglar alarming, natural disaster mon- 
itoring, environmental monitoring and protection, telecommunication 
line supervision, city transportation monitoring, power transmission 
monitoring, mine alarming, etc. 

0 Data acquisition and measurement: Automatic reading and recording 
of gas and water meters; railway signal acquisition and recording, etc. 

0 Data analysis: Automated automobile/vehicle tests; machine/equipment 
parameters tests; real-time data acquisition of medical test instruments; 
virtual instruments; quality test in the assembly line; etc. 

Process control: Supervision and control of life-critical systems such as 
chemical reaction monitoring and nuclear plant monitoring, etc. 

DCS is a type of multilevel computer system and it can be divided into pro- 
cess control level and process monitoring level, which are connected by com- 
munication networks. Its basic principles can be summarized as distributed 
control, centralized operations, multilevel management, and flexible configu- 
ration. 

0 High reliability: The control functions in the DCS are implemented in 
different computers in a distributed manner and fault-tolerance-based 
system structure is adopted. Therefore, any fault in a single computer 
will not incur the loss of other system functions. Furthermore, because 
each computer in DCS is responsible for lesser system functions as com- 
pared with the centralized control system, dedicated system structure 
and software can be used for the specialized function in each computer. 
As a result, the reliability of each computer is improved in DCS. 

0 Openness: Open, modular, standardized, and systematic design prin- 
ciples are used in DCS. Each computer in DCS can communicate with 
other computers via networks (LAN and Internet). When any modi- 
fication or expansion of system functions is needed, the corresponding 
computer can be conveniently connected to  or disconnected from the 
system communication network. And it has little impact on the opera- 
tions of other computers. 

0 High flexibility: Based on different application objectives, software and 
hardware configurations can be accomplished through reconfigurable 
software. To build the desired monitoring and control system, the basic 
measurement and control signals and their interrelationships need to be 
determined. Control laws also need to be selected from the control algo- 
rithms library. F'urthermore, suitable graphs are chosen from the graphs 



library in order to construct various monitoring and alarm graphs for 
animated displays. 

0 System harmony: Communication networks are used for data transmis- 
sion between various workstations. Meaningful information is shared in 
the entire system, and each system component is responsible for a speci- 
fied function in order to accomplish the overall system functionality and 
implement processing optimization. 

0 Comprehensive control algorithms: Rich control algorithms; integra- 
tion of continuous control, sequential control, and batch processing; 
advanced control algorithms such as classical controls including feed- 
forward, feedback, adaptive, robust, and predictive control, as well as 
knowledge-based controls including neural control, fuzzy control, and 
stochastic search based controls. 

The composition of DCS is quite flexible. It can be composed of dedi- 
cated management workstation, operator workstation, engineer workstation, 
recording workstation, field control workstation, data acquisition workstation, 
etc. It can also be made up of the general-purpose server, industrial control 
computer, and programmable logic controller. The process control level in the 
bottom layer implements on-site data acquisition and control via distributed 
field control workstations and data acquisition workstations, etc. And it also 
sends the necessary data to computers in the production monitoring level via 
communication networks. The computer in the production monitoring level 
conducts centralized operation and management for the data from the pro- 
cess control level, e.g., various optimization computation, statistical reports, 
alarm displays, fault diagnosis, and so forth. With the development of com- 
puter technology, some other more advanced enterprise operations can also 
be incorporated into DCS, which include production planning and schedul- 
ing, inventory control, resources management, etc. 

CIMS is a complex and comprehensive automation system in flow industry, 
and it is concerned with all the production activities in the entire enterprise. 
DCS has great impact on the basic control and real-time data acquisition in 
CIMS. Compared with the centralized management, DCS is able to provide 
more reliable production data and therefore enables the management to make 
globally optimal decisions. The CIMS functions such as production automa- 
tion, dynamic monitoring, and online quality control can all be implemented 
in DCS. With the layered CIMS structure, DCS is primarily responsible for 
process control and optimization. Sometimes, certain tasks such as production 
scheduling and management can also be implemented in DCS. 

Meanwhile, emerging technologies such as distributed control, flexible sys- 
tem framework, graphical user interface, embedded digital instruments, and 
PLC all increase the system adaptability to various control requirements. The 
developed monitoring system normally has a certain degree of self-diagnostics 
and self-recovery capability, coupled with high responsiveness and reliability. 



98 AN OBJECT-ORIENTED RECONFIGURABLE SOFTWARE 

Moreover, software engineering method is used to increase the software quality 
and pave the way for future project expansion and perfection. 

In recent years, PC  operating systems are becoming more reliable than ever. 
Its capability for real-time data processing is enhanced significantly. Further- 
more, the prices are not prohibitively high anymore. The rich resources in the 
personal computer can be used to develop the more powerful reconfigurable 
software, shorten the development cycle, and smooth out the difficulties in 
software upgrade and maintenance. Most of the current reconfigurable soft- 
ware are developed on the Windows operating systems, and some others can 
run in the OS/2 or Unix/Linux environment. Suitable execution environments 
for reconfigurable software include Windows NT and Windows 2000, etc. As 
the kernels of these operating systems are the variants of VMS (Virtual Mem- 
ory System), their reliability and responsiveness are higher than Windows 
9X. The processing capability of multitasking, real time, and networking in 
Unix is better than that in Win NT. However, its capability in graphical user 
interfaces, plug&play, and number of 1/0 device drivers is weaker than Win 
NT. After the 199Os, these drawbacks were significantly improved and modern 
Unix graphical interface (i.e., X Window) and the Unix variant (i.e., Linux) 
have much better graphical environments than before. 

The development and growth of reconfigurable software are closely asso- 
ciated with the continuous development of network technology. Previously, 
the bottom-layer network from each DCS vendor is designed for the specific 
use. The adoption of international standards greatly stimulates the wider ap- 
plications of reconfigurable software in various industrial fields. For instance, 
in the large-scale oil field monitoring, the network of transducers and sen- 
sors may spread over a very large area. The distributed measurement points 
can be easily connected via network nowadays so that the real-time data can 
be instantaneously sent back to the central control console via TCP/IP. It 
would not have been possible to accomplish such a distributed real-time on- 
line monitoring without the strong network transmission support. Field Bus 
is a special-purpose network technology, which is primarily used for industrial 
applications. Like other types of network, Field Bus also has 7-layer protocols 
as in OSI. Therefore, in some sense, we can say that field bus has the proper- 
ties identical to those of normal network systems. However, the types of field 
bus equipment are fairly diverse and no unified form has been specified yet. 
It is believed that in the coming years, field bus equipment will bring more 
opportunities to reconfigurable software. 

It can be predicted that the monopolization of Microsoft Company in the 
operating system market will be broken sooner or later. Future industrial 
reconfigurable software should be able to work in multiple operating system 
platforms; e.g., it should at least be compatible with Win NT and Linux/Unix. 
Unix is the earliest program development environment for computer software. 
The overall Unix system can be roughly divided into three layers. The inner 
layer is a multiprocess operating system kernel, which is connected to the 
hardware. The middle layer is the programmable Shell (i.e., the command 



lNTRODUC77ON 99 

interpretation program), which is the interface between user and system ker- 
nel. And it is also the tool for flexibly using and expanding various software 
tools. The outer layer is the user’s practical tools, which include multiple 
programming languages, database management system, and a series of tools 
used for application development. Unix primarily has the following outstand- 
ing features: 

0 Rich practical software development tools. 

0 Comprehensive functions, flexible operations, and programmable com- 
mand interpretation language Shell. 

0 The system kernel used to support the overall development environment 
is very compact, and has strong functionality and efficiency. 

0 The overall system is not restricted to a specified hardware, and it has 
high portability. 

0 Its real-time control function is being continuously improved. 

0 It is able to adapt to different system sizes. 

It is expected that more and more manufactures and users will select Unix 
considering its high portability and rapid hardware development. 

CIMS (Computer Integrated Manufacturing System) is a crucial concept 
in the industrial automation arena. Production steps in an enterprise are 
closely related to each other, and they need to be effectively and efficiently 
planned and coordinated. The essence of factory production process is to 
collect, transmit, process, and handle the collected production information. 
CIMS automates and controls the factory management, production, opera- 
tions, and services, improves the impact of human, resource, information on 
factory production, improves enterprise operation efficiency, increases mar- 
ket adaptability, and reduces the production cost. Plant automation is the 
foundation for CIMS, so most plants nowadays have paid much attention to 
the plant automation systems. The distributed measurement and control sys- 
tems are usually built using DCS/PLC or PC-bus based industrial control 
computer. However, in practice, these plant automation systems are all dis- 
tributed across the entire enterprise and they lack effective communications 
between each other. The production information cannot be shared in real 
time throughout the entire enterprise such that the CIMS cannot be effec- 
tively implemented as expected. 

Previously, most enterprises only paid attention to the investment on key 
plant equipment while not taking much care of other issues such as energy 
management, production planning, product quality testing, measurement and 
analysis, and so forth. As a result, the discrepancy of automation levels be- 
tween different components in the whole enterprise inevitably hinders the 



100 AN OBJECT-ORIENTED RECONFIGURABLE SOFTWARE 

CIMS implementation and hurts the enterprise benefits. Reconfigurable soft- 
ware is able to play an important role in implementing the low-cost and high- 
efficiency information technologies because it can serve as the operation work- 
station software in DCS/PLC. Since the reconfigurable software has rich 1/0 
device interfaces, it can be connected to a variety of control equipment. It has 
distributed real-time database and can connect various separated “islands of 
automation” together, and therefore i t  significantly saves the investment on 
CIMS construction. With the widespread use of CIMS technologies, the size 
of reconfigurable software is becoming larger since it also contains other s u p  
porting software such as advanced control package and data analysis package. 

The most distinctive characteristic of modern industrial reconfigurable soft- 
ware is its feature of real-time multitasking execution. Multiple tasks can be 
simultaneously conducted in a single computer, which may include data acqui- 
sition and output, data processing algorithm implementation, graphical data 
displays, human-machine interaction, real-time data storage, database query 
management, real-time communication, and so forth. The primary objective 
of reconfigurable software design is to enable users to generate their desired 
practical applications without needing to modify the program source code. 
Therefore, in designing the reconfigurable software, the developer should thor- 
oughly understand the system requirements and extract the common proper- 
ties from various real-world applications in different industrial sectors. The 
main issues in reconfigurable software design are listed in the following: 

0 How to conduct data exchange with data acquisition and control devices. 

0 Associate the data collected from hardware devices with the elements 
in the computer graphic menus; 

0 Process data alarm and system alarm. 

0 Store historical data and support historical data query. 

0 Generate and print various types of reports. 

0 Provide the user with flexible and versatile configuration tools in order 
to adapt to the volatile requirements in different fields. 

0 The finally obtained system should be able to run in a reliable manner. 

0 The interface with the third-party software should be provided for data 
exchanging and sharing. 

The operator only needs to fill out the necessary parameters in the pre- 
designed windows according to  the practical IMC requirements, and then it 
vividly draws the monitored objects using the graph toolbox such as reaction 
tank, thermometer, boiler, trend curve, reports, etc. The properties of the 
monitored object are logically connected with the real-time data in 1/0 de- 
vices. Therefore, during system operations, the status of the monitored object 
also changes whenever the corresponding 1/0 device data changes. 



As we can see, industrial configurable software has the remarkable features 
of real-time multitasking execution, open interfaces, flexible operations, com- 
prehensive functions, reliable execution, and so forth. In the single-task oper- 
ating system (e.g., MS-DOS), interrupt mechanism has to be used to achieve 
the hard real-time system. However, such software is difficult to program so 
that the MS-DOS-based reconfigurable software has exited the current mar- 
ket. Under the multitasking environment, as the operating system supports 
multiple tasks to run simultaneously, the functionality of the reconfigurable 
software is greatly enhanced. Such reconfigurable software is usually com- 
posed of a number of components. Nowadays, the number of components 
is still increasing and the component functions are also being continuously 
enhanced. 

A generic industrial reconfigurable software is normally composed of graph- 
ical user interface, real-time database, interface to the third-party applica- 
tions, and control components. Real-time database is of critical importance 
in the industrial configurable software. Because the PC has powerful data 
processing capability, the real-time database fully embodies the advantages 
of reconfigurable software. Practical experiences show that we cannot know 
exactly what type of data is needed in the future, so the best way to prevent 
information loss is to store all of the current data as the data can be used for 
retrospective analysis. GUIs should support real-time alarm notification and 
acknowledgment, reports reconfiguration and printing, historical data query 
and displays, and so forth. The data sources of various alarms, reports, and 
trend can be specified in the configuration process based on the practical ap- 
plication requirements. There is also no limit to the objects number in each 
graph. Many kinds of reconfigurable software provide script languages to 
build graphical user interfaces. The program written by script language can 
be executed based on the event- or time-triggered mechanism, and it is closely 
related to objects in GUI. For instance, when a button in the GUI is clicked, 
a specified script language may be executed to accomplish a specific task. Or 
when the value of a specific variable falls below or exceeds a preset threshold, 
the script will be triggered. The system openness can be partially reflected 
by the system capability of communicating with the third-party program and 
allowing for remote data accessing. It has the following major functions: 

It can be used in the dual-machine redundancy system for the commu- 
nication between master and slave machines. 

0 It can be used for the multimachine communication in constructing 
HMI/SCADA applications. 

0 It can be used to implement communications in various Internet-based 

It should be noted that in the communication component, some functions 
are independent programs and can run individually, while other functions are 
dependent on other programs and cannot be run independently. 

applications. 



102 AN OBJECT-ORIENTED RECONNGURABLE SOFTWARE 

With the unceasing development of computer technology, the computation 
speed has become much faster than ten years ago. Personal computer has now 
been widely used in all industry sectors, and it is also playing an inestimable 
role in modern safety-critical systems such as industrial manufacturing sys- 
tems. Its introduction significantly raises the automation level of factory pro- 
cesses and provides high-quality products and resources utilization, together 
with the drastically improved factory automation management. Essentially, 
the development of modern computerized industrial automation systems falls 
into the system integration domain in essence. In the hardware aspect, STD, 
PC, other types of industrial buses (e.g., VME, and MULTIBUS), indus- 
trial control computer, multi-loop regulators, programmable logic controllers 
(PLCs), industrial field buses, and distributed control systems (DCSs) have 
already achieved widespread use. The developer only needs to choose these 
hardware components from the hardware library and then implement the 
system hardware function through some simple system integration work. The 
user can construct the desired software functions through the simple graphical 
configuration tool. Obviously, these built-in building blocks enable the system 
development to be much simpler and clearer. In addition, because the system 
is constituted by reliable components, the system success probability as well as 
system reliability are also greatly enhanced. Moreover, the off-the-shelf com- 
ponents have high competitive advantage in price, and it eliminates the extra 
expenditures incurred by repetitive software development. These expenditures 
are often latent and cannot be foreseen. The net profit of a commercial indus- 
trial software is significantly influenced by this portion of expenditures. As a 
result, this type of system development pattern receives more and more atten- 
tion from various industrial sectors in the recent years. It is expected that re- 
configurable systems would become the mainstream product for computerized 
monitoring and control systems in the next generation. Among various indus- 
try monitoring and control systems, many software functions are extremely 
similar. But in the past, these functions are often developed from scratch over 
and over again in different IMC systems. Such types of software usually do 
not have the desired versatility, reliability, and expandability. Moreover, the 
development task is normally cumbersome as the development cycle is rather 
long. Reconfigurable software is used to resolve these problems because it is 
able to adapt to the ever-changing needs from real-world industry monitoring 
and control. In short, reconfigurable software is an effective system develop- 
ment tool, based on which we can efficiently develop IMC systems suited to 
satisfy a variety of measurement purposes, by only changing the first layer 
actuation. Software development with the reconfigurable concept not only 
greatly enhances the software development efficiency, but also guarantees the 
software maturation, integrity, reliability, and maintenance. The term “re- 
configurable,” in the software domain, means that the operator composes the 
user application software according to the practical industrial monitoring and 
control requirement. In brief, reconfigurable software is essentially an “ap- 
plication program generator.” In industrial monitoring and control systems, 



IN JRODUC JlON 103 

there are a variety of uncertain factors such as user demands, measurement 
objects, and hardware compositions. Coping with various uncertainties while 
sticking to a fundamental principle or policy for industrial measurement and 
control is the nutshell of the industrial reconfigurable software. 

Figure 9.1 illustrates the functions of reconfigurable software in industrial 
measurement and control system, where RSFIMC stands for the Reconfig- 
urable Software for Industrial Measurement and Control. As shown in the di- 
agram, there are a bunch of variable factors in an industrial measurement and 
control system, which include the ever-changing user requirements, different 
measurement objects, various hardware compositions, etc. But the reconfig- 
urable software keeps unchanged no matter whether its related subsystems 
are changed or not. Therefore, the reconfigurable software is of particular 
importance in the industrial measurement and control system. 

Fig. 9.1 Rcconfigurable software in IMC system. 

In recent years, some industrial reconfigurable software packages have been 
successfully developed and widely used in various industrial fields. At the 
time of writing, the major software packages commercially available in global 
market include Intouch of Wonderware, Fix of Intellution, Genesis of Iconics, 
WIZCON of PCSOFT, Cimplicity of GE, and so on. According to their devel- 
opment companies, these software packages can be classified into three types, 
namely, the software which is developed by the professional software compa- 
nies, hardware/system companies, and industrial manufacturing companies, 
respectively. 

0 The reconfigurable software developed by professional software compa- 
nies occupies the majority of the global IMC software market. The 
typical software products are listed as follows: 



104 AN OBJECT-ORIENTED RECONNGURABLE SOFTWARE 

- Intouch of Wonderware (U.S.A.): Wonderware Intouch is a Mi- 
crosoft Windows-based, 32-bit object-oriented, graphical human- 
machine interface (HMI) application generator for industrial au- 
tomation, process control and supervisory monitoring. Types of 
application include discrete, process, DCS (Distributed Control 
System), SCADA (Supervisory Control And Data Acquisition) and 
other types of manufacturing environments. 

- Fix of Intellution (U.S.A.): FIX Dynamics provides automated, 
fully integrated component object solutions that tie together plant- 
floor and business data. It is designed around industry standards 
for integration, interface, and communications technologies. 

- Genesis of Iconics (U.S.A.): Genesis32 offers a totally nonpro- 
prietary set of open and scalable automation tools. It is suited 
for many applications requiring visualization, supervisory control, 
data acquisition, advanced alarming, SPC/SQC, report and recipe 
management, and much more. It also seamlessly integrates with 
other commonly used software products such as MS SQL and MS 
Office. 

- Other commercial software packages developed by professional soft- 
ware companies are ONSPEC of Heuristics (U.S.A.), PARAGON of 
IntecControl (U.S.A.), Citech of CiT (Australia), AIMAX of T. A. 
Engineering (U.S.A.), WIZCON of PCSOFT (Israel), FactoryLink 
of U S .  Data (U.S.A.), and so on. 

In the recent years, some hardware/system manufactures also began 
to develop their reconfigurable software products. The representative 
products primarily include Cimplicity of GE (U.S.A.), RSView of AB 
(U.S.A.), WinCC of Siemens (Germany), and so on. Some DCS system 
manufactures such as Rosemount and Honeywell also developed power- 
ful reconfigurable software for their advanced control systems and field 
bus products. 

Products of reconfigurable software developed by industrial manufac- 
turing companies have occupied more and more market portions in the 
recent years. Especially, the expensive software packages are apparently 
not suited for the numerous small and medium-sized companies world- 
wide. In practice, these companies are not able to afford to study, take 
courses, and buy consultation for the complex large-scale software for 
long periods of time. Moreover, the software that they need should be 
especially suitable for the field environments in developing countries so 
that the software can be easily operated even by common technicians. 
Therefore, it is believed that developing such a software package can 
help those companies to develop their projects in a cost-effective man- 
ner as well as provide complete plug-and-solve functionality for the new 
plant. 



DESIGN REQUIREMENTS, DEVELOPMENT ENVIRONMENTS, AND METHODOLOGIES 105 

The aim of the research reported in this chapter is to  support the develop- 
ment of a Reconfigurable Software For Industrial Measurement and Control 
(RSFIMC) that is truly flexible and, consequently, less expensive, since they 
can be used in many industrial production environments and for a long time, 
adopting to changes in the production environment. Starting with the intro- 
duction of its design requirements, overall structure, and developing environ- 
ment, the remainder of the chapter describes the main functions and their 
implementations such as user configuration, system status indication, alarm 
management, data exchanging, remote communication, and so forth. Finally, 
i t  concludes with the field experience of RSFIMC in the practical industrial 
application. Future research on RSFIMC is also suggested. 

9.2 DESIGN REQUIREMENTS, DEVELOPMENT ENVIRONMENTS, 
AND M ETH ODOLOG I ES 

9.2.1 Design requirements 

RSFIMC should support the diversity of requirements with the most com- 
prehensive tools to allow users to quickly and effectively view, analyze, and 
report on the running status of the plant. The following requirements were 
specified for such a system: 

0 It must be able to continuously assess real-time plant conditions. Large- 
capacity industrial plants are very large and complex, comprising various 
subsystems, such as large rotating machinery and its auxiliary equip- 
ment, control and protect, cooling, and power source. All of these sub- 
systems must run properly and coordinate with each other to  achieve 
proper overall performance. So real-time supervision of the entire sys- 
tem throughout the machine operations poses a challenging task. 

0 It must provide powerful and user-friendly configuration tools. The con- 
figuration task is global in nature; i.e., it defines a set of parameters that 
will determine what monitors, and with what settings, will be executed 
during the condition monitoring phase. Easy-to-configure applications 
mean shorter development cycles and lower development costs. 

0 It must have the function of fault alarming and handling. Fault alarming 
and handling is one of the key characters in any condition monitoring 
system. But the powerful data acquisition devices nowadays make it 
impossible for the operator to  absorb all of the raw information in a 
timely manner. Especially when a fault occurs, the operator may be- 
come less effective in such duress and prone to making mistakes during 
operations. Therefore, a solution to  this problem should be offered by 
RSFIMC to reduce the operator’s burden. 



106 AN OBJECT-ORIENTED RECONFIGURABLE SOFTWARE 

0 It must be able to remotely monitor and control operations in field 
production and plant units. Internet technologies have eased the job 
of disseminating information via corporate networks to a multiplicity 
of platforms. Using Transmission Control Protocol/Internet Protocol 
(TCP/IP), hypertext markup language (HTML), ActiveX controls, and 
other innovative technologies, decision-makers throughout an enterprise 
can have real-time access to process data information. 

0 It must include real-time/historical data access, trending, reporting, and 
printing. The objectives of industrial measurement and control system 
are to improve product quality, improve production efficiency, and pre- 
serve capital investment in the plant. It is not possible to achieve these 
objectives without real-time and historical information about the run- 
ning status of plant. The majority of these information requirements 
should be best served with ease-to-use, focused applications that hide 
the complexity of data structures and interfaces to the data. 

0 It must be able to accommodate “best of breed” third-party software 
applications to aid key business improvement decisions in process con- 
trol, operation, and maintenance. The company will be able to link 
plant-floor applications with other modules in the enterprise, improving 
internal data distribution and retrieval as well as external communica- 
tion with suppliers and customers. 

0 It must have high scalability with low cost of ownership. Especially 
for the numerous small and medium-sized companies worldwide, the 
software price is the key factor which may determine their investment. 

9.2.2 Development environments 

Only a few years ago, it is impossible to meet the aforementioned require- 
ments in practice. However, as both hardware and software products have 
evolved from proprietary to open architectures, such IMC requirements can 
be completely achieved if the system is appropriately designed and integrated. 
Microsoft’s Windows operating systems have become the fastest-growing de- 
velopment platform in the fields of industrial measurement and control in the 
past several years. Also we noticed that Linux was developing at a blind- 
ingly fast speed and more and more software developers employed it as their 
development platform, especially for the development of embedded real-time 
industrial applications. But even up until now, for most operation and man- 
agement personnel in small and medium-sized companies, they are more ac- 
customed to operating the software in Windows platforms. Especially in the 
harsh and stressful environments such as the industrial measurement and con- 
trol field, they prefer the more friendly and more familiar Windows interfaces. 
Therefore, the Windows operating system is adopted to develop the RSFIMC, 



DESIGN REQUIREMENTS. DEVELOPMENT ENVIRONMENTS, AND METHODOLOGIES 107 

although we also admit that Linux is very promising and it has many merits 
that the Windows-based operating systems cannot offer. 

Borland Delphi language is used to code the RSFIMC software in order to 
obtain multitasking functions (e.g., simultaneous execution of data analysis 
on the stage and data acquisition on the background) and intuitive graphi- 
cal user interfaces (e.g., simulation map, waveform displays, and alarms list). 
Delphi makes Windows development easy with drag-and-drop visual program- 
ming, and a comprehensive Visual Component Library (VCL) with a number 
of reusable components. It is able to create, debug, and deploy Windows ap- 
plications in an efficient manner. It is also fully supported by a wide variety 
of industry standards such as Win32 API, COM, ActiveX, and many others 
[28, 381. 

9.2.3 Development methodologies 

All excellent industrial reconfigurable software have certain common merits, 
which include capacities of flexible system configuration, friendly user inter- 
face, reliable database management, etc. To obtain such a software, most 
software engineers employ the object-oriented software development method- 
ology. When engineers begin to design the industrial measurement and con- 
trol software, most of them would abide by the subsequent analysis and design 
steps for efficient software development: 

rn What is the system to be measured and control? 

rn What is the production process of the target system? What is its related 
equipment? 

rn What are the steps during the production process? And what are their 

rn Which parameters should be measured? Which parameters should be 

interrelationships? 

controlled? 

What are the design strategies? 

rn Build the measurement and control system. 

rn Simulation and running. 

When the measured target or its production process get changed, the steps 
mentioned above should be repeated until the final reconfigurable software 
meets the design requirements. From these steps, we can conclude that the 
measured target, measurement and control strategies, and related equipment 
are the key elements in the software development process. 

Aiming at improving the reconfiguration capability of the industrial mea- 
surement and control software, the method of object orientation (00) men- 
tioned above is employed to develop the system software. The 00 method- 
ology is able to offer the possibility to structure a set of information and to 



108 AN OBJECT-ORIENTED RECONFIGURABLE SOFTWARE 

arrange it in an clear manner [5, 12, 15, 22, 261. It is primarily made up of 
the following steps: 

Define the domain problem to be solved. 

Decompose the target domain problem into a set of objects. 

0 Specify each object’s attributes. 

0 Specify each object’s services. 

0 Specify interfaces between classes. 

Specify the hierarchy structure of classes. 

0 Specify the inheritance relationships between classes. 

Specify message connections between objects. 

0 Implement the classes using programming languages. 

0 Software testing. 

The object-oriented approach to  system design significantly reduces the 
coupling of design and makes the design more flexible. The process of soft- 
ware development is divided into five primary phases: requirement capture 
and elicitation, analysis, design, programming, and testing [18, 29, 301. Re- 
quirements capture and elicitation gathers user requirements for the target 
system under development. In the analysis phase, system modeling is con- 
ducted and the system operations are analyzed. The design phase aims at  
transforming the analysis results into the implementable form. Design illus- 
trates how the objects form structures, what their interfaces are, and how 
they collaborate with each other. In the programming phase, the coding work 
is done. And at  the end of this phase, the executable software artifact should 
be produced. Finally, the test phase tests the system against the documented 
user requirements. In the system design, we adopt a compact and pragmatic 
approach proposed by Ari Jaaksi to  construct this object-oriented application 
instead of using complicated commercial object-oriented solutions [8, 191. The 
successful practical application demonstrates that the adopted object-oriented 
method is effective in IMC software development. 

9.3 I M C  SYSTEM STRUCTURE A N D  SOFTWARE DESIGN 

9.3.1 Overall structure of I M C  systems 

9.3.1.1 Structure diagram of IMC systems The basic goal of industry mon- 
itoring and control system is to  ensure secure and reliable operations of the 
entire system under supervision. It should be capable of accomplishing the 



IMC SYSTEM STRUCTURE AND SOFTWARE DESIGN 109 

following functions: Monitor each equipment status and process parameter of 
the entire system in real time; in the presence of system breakdown or emer- 
gency, alarm is promptly triggered and corresponding remedial measures are 
taken; continuously record, preserve historical data related to system working 
condition; completely record all equipment parameters when system malfunc- 
tion or breakdown occurs in order to keep the essential data for retrospective 
analysis. The inner working of industrial monitoring and control systems can 
be depicted using the diagram as shown in Fig. 9.2. 

Fig. 9.2 Basic architecture of IMC system. 

The data processing module in industrial monitoring and control software 
is closely related to other system modules such as statistical analysis, controls 
and alarms, database, and actuation. 

9.3.1.2 Statistical and analysis module The statistics and analysis module is 
primarily responsible for data analysis and evaluation, database inquiry, trend 
curve drawing, and report generation. The function of data analysis and eval- 
uation is primarily to evaluate the sampled data and transmit it to the alarm 
execution module if it satisfies alarm condition. Otherwise, corresponding 
operations such as data storage are conducted directly. Our reconfigurable 
monitoring and control system includes a large amount of physical variables 
to be measured. Moreover, with the system expansion, the number of variables 
to be measured may also keep increasing. In order to  effectively monitor the 
running status of the overall system, we establish alarming conditions such as 
maximum and minimum variable values for each analog variable. Data analy- 
sis and assessment are carried out according to these conditions. Data inquiry 
and trend curve can help the system management personnel to understand 
the system status more deeply. Data statistics and analysis module will be 
detailed in the fifth section. 



1 10 AN OBJE CT-OR/€ N T E  D RE CON F/GURA BL E SOFTWARE 

9.3.1.3 
of computer multimedia technology, it is now also used for effective system 
alarming, which may use sound, light, and color changes on screen to attract 
the attention of control supervisor. Other new multimedia technologies can be 
also used to enhance the alarm effect. For instance, alarms may be reported 
to the operating personnel through automatic messenger call. The control 
execution module affects the controlled object to  achieve certain control goals 
by adjusting control signals. 

Execution modules for controls and alarms With the unceasing progress 

9.3.1.4 Database system Generally speaking, database system is primar- 
ily composed of three major parts: database management system (DBMS), 
database application, and database [23]. DBMS is responsible for organizing 
and managing data messages. Database application enables the user to ac- 
cess, display, and update the data saved by DBMS. Database is a data set 
organized according to  certain data structures. In general, both DBMS and 
database application operate on the same computer, and very often they are 
integrated in a single application. However, with the development of DBMS 
technology, current database systems are usually based on the client/server 
architecture (31. The client/server database separates DBMS from database 
application and enhances the capability of database processing. The quan- 
tity of the monitored parameters is normally very large in most industrial 
automation systems, and therefore the volume of historical data, say, in a 
year, is quite massive. Furthermore, to have a better understanding of the 
running condition of industrial system, we not only need to  conduct analy- 
sis and statistics on the historical data, but also need to continuously record 
the events occurred during system operations such as system malfunction and 
breakdown. Consequently, in practical applications, we not only need the 
primitive historical data file, but also need some statistical data documents 
and alarm event records. Obviously, in the industrial monitoring and con- 
trol system, the data volume needed to preserve is very massive. Effective 
management of these data can greatly enhance the overall system efficiency 
and performance. Therefore, we apply database technology to systematically 
manage the massive data in the industrial monitoring system, which has a 
couple of quite remarkable characteristics: 

Data independency: Data independency is the index between the defi- 
nition and the data relationships and the procedure process statement 
separates. 

0 Data sharing: Database allows for data sharing among many users, 
and it effectively avoids duplicated data storage in order to reduce data 
redundancy. 

0 Data integrity: The aforementioned data sharing property in database 
reduces data redundancy and significantly avoids data nonuniformity in 
data storage; thus it is able to guarantee the data integrity. At the same 



IMC SYSTEM STRUCTURE AND SOFTWARE DESIGN 111 

time, data validity checking during data updating also contributes much 
to the improvement of data integrity. 

0 Data security: Data security is to guarantee that the data are only 
provided to authorized persons with diffexent privileges in order to avoid 
invalid data accessing and manipulation. 

In the industrial monitoring and control system, we usually do not directly 
employ the general commercial off-the-shelf database management software, 
considering that data management in industry monitoring and control soft- 
ware is somehow different from the general-purpose database system. It has 
its own particularities as listed below: 

0 Data are automatically gathered instead of manually entered. 

Although the data quantity is massive, the data types, definitions, and 
their interrelationships are not very complex. Therefore, the database 
structure in the industrial monitoring and control system is not very 
complicated. 

The way to store and retrieve data is simple. The field of time is usually 
taken as the index for data retrieval. 

0 Data are also used for other system functions such as data representation 
and statistical analysis. 

In view of the above analysis, in the industrial monitoring and control 
system, we use the corresponding database principle, method, and technology, 
combined with specific process characteristics and monitoring requirements, 
to develop a practical data processing method for the reconfigurable IMC 
system. 

9.3.2 Configuration-based I M C  software 

Outstanding reconfigurable software for industrial monitoring and control has 
many common features. For example, they are easy to use and have the capac- 
ity of flexible configuration, and so on. The core design idea of these software 
is based on the object-oriented (00) technology. The thinking process of en- 
gineers who design the industrial monitoring and control software normally 
follow the similar steps: Which objects are to be monitored and controlled? 
+ What is the technological process of the object? Which equipment is the 
object related to? + How about the interrelationships between objects? =+- 
Which parameters should be measured? Which parameters should be con- 
trolled? + What is the monitoring and control strategy? =+- Establishment 
of measurement and control system + Practical operations. When the object 
or process changes, we still have to repeat the above steps. The monitored 
object, the monitoring and control strategy, and external equipment are all 



112 AN OBJECT-ORIENTED RECONFIGURABLE SOFTWARE 

changeable. Based on the idea of object-oriented analysis and design, the 
way the engineers conceive the industrial reconfigurable software design can 
be formulated and the reconfigurable software satisfying certain industrial 
monitoring needs can be developed. 

9.3.3 Reconfigurable IMC software design 

Because the reconfigurable software integrates functions of industrial mea- 
surement, control, and management , the design primarily contains five parts: 
system configuration, graph configuration, data processing configuration, real- 
time database, and MMI (man-machine interface). System configuration in- 
cludes system settings, 1/0 configuration, loading of external device drivers 
(e.g., DLLs), and so on. 1/0 configuration may also be seen as an indepen- 
dent component, which includes analog variables, status variables, Boolean 
variables, and so on. The graphics configuration is an important feature in 
industrial reconfigurable software, which includes the standard graphs (e.g., 
overall working condition diagram, real-time/historical tendency chart, and 
alarm chart) and data flow chart, etc. Among them, the graph toolbox is 
necessary, which can be used to draw both basic graphs and graphs of com- 
monly used equipment. More importantly, it also must have the dynamic 
link, it causes the static chart to become animated in order t o  build the vivid 
and intuitive simulation of the actual data flow, like liquid level fluctuation, 
switch start/close, and so on. The data processing configuration in the in- 
dustrial monitoring and control software is a very important characteristic. 
The data reflect the working situation of the monitoring and control object. 
The capacity of conducting flexible data configuration based on the true user 
intention may determine the success or failure of the entire reconfigurable soft- 
ware. The timely and accurate data processing can help the user analyze the 
running status and the accident reason of industrial monitoring and control 
system. By doing so, the user can acquire experiences as well as learn lessons 
by analyzing the obtained data so as to  promptly adjust the monitoring and 
control strategy. When designing the reconfigurable software, we have to  care- 
fully consider the real-time database and MMI (Man-Machine Interface). The 
real-time database is the cornerstone of the entire reconfigurable software. I t  
is different from the general-purpose relational database considering it has its 
own specific characteristics; e.g., it is simplified, exquisite, and time-critical. 

MMI is the most intuitive component in the developed reconfigurable soft- 
ware, thus it is directly associated with users’ first impression on the software 
quality. Nowadays MMI has developed into a new era; i.e., it has evolved 
from “human has to  adapt to computer” to “computer needs to  meet hu- 
man’s needs.” With the development of a variety of computer multimedia 
technologies and the progress of man-machine interaction [lo], modern in- 
dustrial reconfigurable software has changed the traditional software man- 
machine interfaces significantly. 



IMC SYSTEM STRUCTURE AND SOFTWARE DESIGN 113 

9.3.4 Development tool selection 

After choosing the operating system, we need to choose the development tool 
for the target software. The selection principle is that the tool should be able 
to provide a robust, fast, and efficient development environment. Under such 
a principle, we selected Borland Delphi, a visible programming platform, to 
develop the IMC software. Delphi has the following major merits: 

0 Its visual programming characteristic enables the programming effi- 
ciency to be higher than that in the conventional Windows application 
development languages such as C/C++, which may greatly shorten the 
software development cycle. 

0 Delphi is a suitable programming platform for industrial monitoring and 
control system development. For instance, its true 32-bit compiler is able 
to generate the high-speed executable. Therefore, the speed demand on 
the IMC software can be fully satisfied. 

0 Delphi is fully object-oriented, so it is able to support all of the 00 
implementations such as encapsulation, inheritance, polymorphism, dy- 
namic binding, and so on. 

0 Delphi is able to  conveniently call the Windows API functions, so it can 
be used together with other languages such as assembly and C/C++ to 
accomplish a particular task. This feature is very vital to the develop- 
ment of industrial monitoring software as software functions may have 
to be implemented using different languages. 

0 Delphi offers powerful database access and manipulation capability, as 
well as high component reusability and expandability. 

0 Delphi provides a large amount of components, and it also allows users 
to develop their own components. Once the home-made components 
have been properly installed and registered, they can be equally used 
by different applications as the built-in Delphi components. 

Of course, Delphi is not merely an editor or a compiler, it also contains var- 
ious outstanding characteristics, which made it a comprehensive application 
development environment. It turns out to be able to make the development 
much simpler because it has the following remarkable characteristics: 

0 Customizable development environment: For many years, people kept 
working on the traditional integrated development tools, e.g., the edi- 
tor, compiler, and debugger. The Windows development environment 
establishes user interfaces and automatically generates the support code. 
Delphi inherits and extends these characteristics and features. The open 
tool API permits supporting tools to be seamlessly incorporated into 
Delphi’s integrated development environment (IDE). 



114 AN OBJECT-ORIENTED RECONFlGURABLE SOFTWARE 

0 Object orientation: Delphi is truly object-oriented, so it permits the 
programmer to merge the data and code into a class (i.e., encapsulation), 
establish new inherited class (i.e., inheritance), and take the derived 
class as the parents class (i.e., polymorphism). 

Component library and template: The screen elements of various Win- 
dows applications are extremely similar. For instance, the standard 
button is a gray rectangular button, and the text on its surface is used 
to demonstrate its function. Delphi implements the function of this 
kind of buttons by enabling them to respond to mouse operations as 
well as text display. Delphi has a comprehensive visual component li- 
brary (VCL), which contains various kinds of objects to be used for 
establishing Win32 applications. The invention of templates makes the 
programming much simpler. Delphi has defined four types of templates, 
i.e., the window, application, component, and code templates. The first 
three templates allow users to use a custom-made object set unlimited 
times in different applications, or use them as the basis for the new 
application development. The code template significantly reduces the 
repetitive programming work. 

0 Complete compilation: Many Windows development environments use 
an incompletely compiled or pseudo code. The pseudo code cannot be 
directly executed by the machine. It must be translated into the ex- 
ecutable code at runtime. As a result, this disadvantage enormously 
reduces the software execution speed and therefore the system perfor- 
mance. On the contrary, Delphi uses the complete compiler and linker 
so that it is able to produce pure locally executable code. Another 
advantage for complete code compilation is that it may establish the 
dynamic link library containing any component from the component li- 
brary. This type of dynamic link library can be used to expand the 
Delphi application, or provide services to the application developed by 
the simpler tool. 

Powerful application: Delphi uses the concept of Exception to handle the 
operation errors. Unlike the previous error handling techniques, which 
suppose the program to make mistakes in each execution step, Delphi 
presumes that each statement in the user program is correct. In the 
presence of any fault, Delphi activates an Exception and then forwards 
it to the corresponding exception handler. This strategy enables the 
program to restore from faulty conditions very quickly and reliably. 

Data accessing: Delphi has the powerful database management ability. 
Because a majority of user applications inevitably have to deal with 
a massive volume of data, Delphi takes data handling as the heart of 
application development, which primarily includes data collection, pro- 
cessing, and presentation. This is also an advantage of incorporating 



IMC SYSTEM STRUCTURE AND SOFTWARE DESIGN 115 

computer technologies into the IMC software design. The objects and 
components provided by Delphi enormously simplify the database a p  
plication development. 

Due to the above reasons, we chose Delphi as our main development tool. 
The practical application demonstrates that using Delphi can markedly reduce 
the system development burden and thus enable the developer to focus on the 
optimization of system functionality. 

9.3.5 Object-oriented methodology 

We can say that object-oriented programming (OOP) is a kind of program- 
ming science and art, where the program can be seen as a set of objects. These 
objects know how to interact with each other to  achieve the application de- 
sign goal (1 11. The traditional procedural programming methods transform 
the realistic problem into the corresponding computer terminology to support 
the program coding. In OOP, the major difference as compared with the 
traditional methods is that it imitates the real world to design the program. 
OOP pays great attention to problem domain analysis as well as reasonable 
system design. Below are the three most fundamental terms in OOP: 

Object: Object is the instance of class at runtime. 

Method: Method is contained in the member function of the object. 

Message: Message is the direct call of method. 

The benefits brought up by OOP include the significant enhancement of 
code reusability and expandability, which makes the application modification 
and upgrading no longer a cumbersome task. Thus, more robust programs 
can be built using less resources including development cycle, budget, and 
human. Certainly, the benefits of adopting OOP can be reflected in a more 
obvious manner in the large and complex programming plan. For our IMC 
software with a number of functions and tight timing constraints, choosing 
OOP is pretty natural. 

9.3.5.1 Main concept in object-oriented methods 

Data abstraction: Data abstraction is the basic characteristic in the 
object-oriented software development methodology. It establishes a su- 
per class by extracting some generic attributes from a variety of more 
special classes or objects. In other words, it is the process of extracting 
some common characteristics of the objects. Classes are the abstraction 
of some concepts and problems, and objects are the instances of these 
classes. 

Encapsulation: Encapsulation is another crucial characteristic in the 
object-oriented software development methodology. Encapsulation is to 



116 AN OBJECT-ORIENTED RECONFlCURABLE SOFTWARE 

package the methods and data in a single object. By doing so, data ac- 
cessing can be accomplished through the methods defined by the object, 
and interaction between objects can be realized through the message 
mechanism. 

0 Inheritance: Inheritance is a unique basic characteristic of object-oriented 
programming. A class may inherit all of the data members and member 
functions in another class. Moreover, this class may also define its own 
data members and member functions. According to this method, the 
program uses class objects to accomplish certain specific tasks, and uses 
the functions provided by base class to  implement some more general 
tasks. 

0 Polymorphism: Polymorphism refers t o  the capability of interpreting the 
identical message received by the different objects into different mean- 
ings. It has a close relationship with the inheritance characteristic of 
class. Using a polymorphism mechanism, the user may accomplish dif- 
ferent implementation objectives by sending a unified message, because 
the message can be transformed into different implementation details by 
each receiver. 

0 Dynamic binding: Dynamic binding refers to the process of connecting 
different parts of the program through inheritance and polymorphism. 
When the object-oriented program runs, it sends out some basic mes- 
sages, which are received by different class objects. Usually, the base 
class of these classes has defined the method of general (basic) message 
processing. In the derived classes, the special message handling is spec- 
ified. When the message needs to be processed, the processing method 
can be dynamically located in the class that receives the message. In 
this way, dynamic binding at runtime is implemented. 

9.3.5.2 Merits of object-oriented programming 

0 Traditional structured programming builds systems based on processes 
and operations, and it is process-oriented. But processes and operations 
are volatile. For instance, if the system hardware, user demand, and pro- 
gramming environment (e.g., compiler and operating system) change, it 
is very possible that the processing system structure also should be al- 
tered to  meet the new design requirements. As a result, the cost t o  port 
or upgrade such a system is prohibitively high. The object-oriented pro- 
gramming approach carries out the modeling of problem domain based 
on objects and data structure. As  a result, the software system structure 
is relatively stable and the thought results may be reused easily. 

0 Encapsulation and data hiding are the essential mechanisms in object- 
oriented programming. It ties up the data and related processes as a 
single parcel and defines it as an entity (namely object). The process of 



IMC SYSTEM STRUCTURE AND SOFTWARE DESIGN 117 

data operations, the working domain of functions, and the invisibility 
are limited in the partial code region. Changes in the data structure 
and algorithm are only restricted to the code region used for the class 
implementation and they will not cause any system change. This feature 
provides significant convenience to the program maintenance. 

0 The abstraction characteristic of class provides the modular system 
structure, and the class interface indicates the service that it provides. 
The class user does not need to care about the implementation detail 
of these services. The classes after thorough testing can be stored in 
the class library. When establishing the new application software, the 
developer only needs to find the desired classes from the class library 
built previously, or through class inheritance to adapt to changes in the 
problem domain. This feature significantly increases the code reusabil- 
ity. 

The major principles in the object-oriented approach are listed in the fol- 
lowing: 

0 The program design concentrates on the data to be processed instead 
of the process itself. 

The software structure is represented as a set of classes. The behavior 
of each class is described by the method interface. The implementation 
details are not necessarily known to the upper layer design. 

The object-oriented approach emphasizes on modularity in the software 
development process. Classes in OOP naturally imitate both physical 
and logic entities in the practical problem domain, together with the 
relationships between them. Therefore, classes provide guidelines for 
modular modeling, which is beneficial to form an effective modular de- 
composition scheme. 

Reusability is also emphasized in the object-oriented approach. The con- 
cept encapsulated in a class is provided to the user in the form of method 
interface. Without needing to take care of its implementation details, 
users only need to understand the behavior of class object defined in 
the method interface. We can say that the method implementation is 
hidden in a blackbox, which is invisible to the end user. 

Maintainability is also quite important in the object-oriented approach. 
In the implementation of data structures and algorithms (i.e., the class 
implementation code), the change that crops up in the development 
process is restricted within only the portion of code that is used for the 
class implementation. It does not affect the code outside of the target 
class code. 



118 AN OBJECT-ORIENTED RECONFIGURABLE SOFTWARE 

9.3.6 Windows programming 

Windows is a type of message-triggered (or event-triggered) operating sys- 
tem, where different applications can communicate with each other through 
the message passing mechanism. Events are created to respond to the mes- 
sages transmitted among different windows as well as respond to the inter- 
action between operating system and applications. One of the major tasks 
in Windows programming is to  define message handlers, which respond to a 
variety of internal or external events. The Windows application is completely 
different from the event-driven model in procedural programming. The appli- 
cation must establish variables and structures as well as accomplish various 
initialization tasks. Then, the Windows application waits for the user input 
(e.g., mouse and keyboard). Once the user provides the input, the associated 
event takes place and the application takes the corresponding action. The 
Windows application and operating system are very closely related to  each 
other. The application needs to obtain the message through Windows, which 
also defines many message mapping macros and their corresponding handling 
prototypes. Of course, the programmer may also define his own messages and 
their corresponding message handlers. 

9.3.7 Database technologies 

Migration of computer applications from scientific computation to data pro- 
cessing is a significant transition. Data processing refers to a series of activ- 
ities on data collection, storage, manipulation, and dissemination. Its goal 
is to extract and derive meaningful and useful information from the massive 
primitive data, which can be used as the decision-making basis. Database 
technology is invented for storing and managing the complex data in a more 
scientific and systematic manner in order to fully exploit the data resources. 
A crucial problem in data processing is how to perform the data management. 
Data management refers to  the classification, organization, coding, storage, 
retrieval, optimization, and maintenance of data, and it is also quickly being 
developed with the tremendous advancement of modern computer hardware 
and software technologies. Three primary stages have been experienced in 
the last several decades in data management technology, i.e., manual man- 
agement stage, flat file system stage, and database system stage. Database 
system stage is the latest one, and certainly it is also the most effective data 
management method so far. Database provides a method of data storage, 
and database tools provide corresponding mechanism for database access and 
manipulations. If the programmer does not use the database, then each time 
when the high-efficiency data processing requirement is needed, the program- 
mer can not but write the complex program to handle it. Very often, such a 
tough task cannot be accomplished satisfactorily. The database system has 
provided an alternative to aggregating the closely related data in a unified 
form, and meanwhile, it also stores and maintains these information in a sys- 



IMC SYSTEM STRUCTURE AND SOFTWARE DESIGN 119 

tematic manner. The database system is normally composed of three major 
closely associated components, i.e., database, database management system, 
and database application. Database is the data set organized according to a 
certain form of data structure. Database management system is especially de- 
signed for organizing and managing data in an effective fashion. The database 
application enables the user to retrieve, display, and update the data saved 
by DBMS. 

9.3.8 Relational database model 

There are primarily four types of database management system (DBMS) as 
of today, namely, file management system, hierachical database system, mesh 
database system, and relational database system. At present, the relational 
database system-based database application is widely used. Here we have a 
brief discussion on the relational database management system and several key 
concepts are introduced. The relational database is to process database data 
using mathematical methods. The systematic and strict relational model was 
proposed by American IBM Corporation’s E. F. Codd. He laid the relational 
database foundation in the 1970s. A relational database is composed of some 
tables. For certain database systems such as dBASE, FoxPro, and Paradox, 
the database corresponds to a subdirectory, where each table is an independent 
file. For some other databases such as MS Access and Btrieve, all tables 
aggregate in a single database file. 

Table: A group of related data is arranged in a row, and many such 
rows form a table. 

Field: In the table, each column is called a field. Each field includes its 
corresponding description information, like data type, data length, and 
so on. 

Record: In the database table, each row is called a record. 

Index: In order to speed up the operations of database access and ma- 
nipulation, index is used by many types of databases to improve the 
operational efficiency. 

9.3.9 Database management system (DBMS) 

As shown in Fig. 9.3, from the perspective of software system constitution, 
DBMS is a set of software situated between the user and operating system. 
It is used to implement the effective organization, management, and storage 
of the shared data. DBMS is the software for describing, managing, and 
maintaining database, and it is the core component in the database system. 
It is closely related to the operating system, and is responsible for the unified 
database management and control. Its major functions include: 



120 AN OBJECT-ORIENTED RECONNGURABLE SOFTWARE 

Operating System 

DBMS & Compiler 

Application Development Software 

Application System 

Fig. 9.3 Database software system constitution. 

0 Database definition/description: It describes database’s logic organiza- 
tion, storage structure, semantics, security requirements, and so on. 

0 Data access: By providing the user with various data manipulation 
functions, various database operations such as data retrieval, insertion, 
deletion, and revision can be accomplished. A capable DBMS should 
provide the user with easy-tuuse data manipulation language, conve- 
nient operating mode, and high data access efficiency. 

0 Database execution management: Control the execution of the entire 
database system; control the concurrent database access under the multi- 
user environment; examine the data security and integrity. 

0 Database maintenance: Load the initial data into database; operation 
log; monitor database performance; revise and update database; reor- 
ganize database; restore the faulty database. 

0 Other functions: Communication between DBMS and other software 
systems in the network; data transmission; data conversion between 
DBMSs; and so on. 

9.3.10 Database application 

DBMS stores a large amount of data information, and its goal is to provide 
the user with data services. Database application is able to communicate 
with DBMS and visit the data in DBMS. It is the only way for DBMS to 
provide external data services. Put briefly, the database application is a com- 
puter program which allows for database operations such as insertion, revision, 



IMC SYSTEM STRUCTURE AND SOFTWARE DESIGN 121 

deletion, and report. The languages used to produce database applications 
can be broadly divided into three major types: 

Procedural language: Standard computer programming languages like 
Pascal, Basic, and C are all procedural languages. These languages may 
build database applications via certain “application programming interfaces 
(APIs)”. This type of API is composed of a group of standard functions 
(or calls). These functions expand the language function by enabling it to  
visit the database. The above procedural languages are generally used for 
the non-database applications. They are usually called “the third-generation 
language” (3GL). Also there are some other procedural programming lan- 
guages, which are used by certain specific DBMS. These languages are gener- 
ally called “the fourth-generation language” (4GL), namely, special-purpose 
database language. Commonly used database procedural languages include 
dBASE, PAL for Paradox database, and so on. Table 9.1 shows the language 
evolution. 

Table 9.1 Language evolution 

Language Generations Characteristics 

First generation 
Second generation 
Third generation 
Fourth generation 
Fifth generation 

Machine codes 
Assembly 
Procedural, declarative, and object-oriented 
Data-based 
A1 and parallel processing based 

Structured query language (SQL): Structured Query Language is 
a database query language based on the relational model, and it is a non- 
procedural programming language. The developer does not need to write 
program statements on how to solve the problem. Instead, he only needs 
to specify what he wants to operate on the database using SQL statements. 
The language statements can be regarded as a question, which is called “a 
query” in database-speak. The program executes the query and returns the 
corresponding query result. SQL can be thought of as a sublanguage, because 
it does not have any screen processing or user input/output capabilities as 
other procedural languages do. Its major goal is to  provide a standard ap- 
proach to accessing and manipulating database, disregarding the languages 
used in other parts of the database application. It can be used in the interac- 
tive database query (a.k.a. dynamic SQL) as well as in database application 
coded by the procedural language (a.k.a. embedded SQL). 

Other languages: To develop database applications, we may also employ 
the most commonly used OOP languages nowadays such as C++ and Object 
Pascal, etc. OOP represents a distinctive programming method as compared 
with the traditional programming languages. In this programming method, 
operations are defined in the “object” instead of as a set of procedures. The 



122 AN OBJECT-ORIENTED RECONFIGURABLE SOFTWARE 

implementation of OOP languages in database processing is continuously in- 
creasing in different applications. Other database development languages in- 
clude “Macro” languages, “Query-By-Example” languages, and so on. 

9.3.11 Delphi database functionality 

Delphi can be used to build robust database applications in an efficient and 
effective manner. The Delphi database application is able to work with many 
kinds of desktop databases, such as Paradox, Foxpro, Informix, MS Access, 
dBase, MS SQL, SysBase, Oracle, and DB2. The client program in Delphi can 
be adjusted freely between client/server database and local database in the 
same machine. The Delphi database is primarily composed of the following 
several parts: 

0 Database access components: They are used to storelretrieve database 

Data control components: They provide appropriate user interfaces for 

and data tables, etc. 

database accessing. 

0 Database desktop (DBD): It is used to establish, modify, and query 
database tables or database. 

Borland database engine (BDE): It is used to retrieve data from both 
local database and remote database. 

Local InterBase server and InterBase SQL Link: This local InterBase 
server provides a single user and multiple instances desktop SQL server. 
InterBase SQL Link connects the Delphi application and the InterBase 
server driver. 

The Delphi database application normally needs to use the database de- 
velopment tool, data access components, and data-aware components. The 
developer may configure the component properties during either design or 
execution process. Usually, the database components communicate with the 
Borland database engine (BDE) first, and then the database engine commu- 
nicates with the database. Data accessing components are mainly used to 
demonstrate the related database information, and the data control compo- 
nents are used to browse and display the database. Through providing rich 
built-in database components, Delphi can be used to build database applica- 
tions rapidly. Figure 9.4 shows the structure of Delphi database system. 

9.4 RSFIMC ARCHITECTURE 

The purpose of industrial measurement and control is to guarantee the smooth 
production of the measured systems. As shown in Fig. 9.2, the basic archi- 
tecture of industrial measurement and control system is made up of modules 



RSFIMC ARCHITECTURE 123 

Fig. 9.4 Delphi database system structure. 

of data acquisition, data analysis, database processing, alarm management, 
and control execution. Our RSFIMC also consists of these basic components. 
The issues on system modularization, standardization, and automatic duty 
balancing are carefully considered throughout the software development pro- 
cess. RSFIMC can be divided into three major modules: data acquisition, 
data processing, and data browsing. The design of all modules is based on 
the reconfiguration concept. Therefore, RSFIMC is highly flexible and can be 
commonly used. By adopting the modularization design method, RSFIMC 
is clearly structured. Each module is responsible for an independent task. 
They can be run either individually or as a whole. Moreover, the reliability of 
RSFIMC is greatly improved by using database as the interface of the three 
modules. Figure 9.5 depicts the overall system architecture of RSFIMC. 

fig. 9.5 Overall structure of the RSFIMC. 



124 AN OBJECT-ORIENTED RECONNGURABLE SOFTWARE 

9.4.1 Data acquisition module 

The data acquisition module is in charge of raw data collection, data output, 
and task balancing during system operations [27]. Its major tasks are listed 
as follows: 

0 Define equipment drivers and parameters for each monitored variable: 
Instrument drivers allow users to control GPIB, VXI, serial, and computer- 
based instruments from the IMC software [16,17,21]. RSFIMC provides 
a rich driver library to meet the diverse IMC demands. 

0 Define tasks and task drive events: Tasks can be time-driven or event- 
driven [2]. For the real-time IMC software, event-driven tasks are more 
frequently occurred. Delphi is an event-driven programming language. 
This is an important feature for building the software-intensive system 
with time constraints, because diverse applications must run in harmony 
in a single IMC system. 

Raw data acquisition and real-time database generation: Data acqui- 
sition is the basic function in the industrial measurement and control 
system since all of the subsequent work is based on the acquired raw 
data. The RSFIMC polls for the process data and information flow from 
the data acquisition equipment at frequent periodic time intervals. The 
data are then written into records in the real-time database. 

9.4.2 Data processing module 

As shown in Fig. 9.6, the data processing module is in charge of the statistical 
processing for real-time data provided by the data acquisition module. Its 
major tasks are as follows: 

Fig. 9.6 Data processing in RSFIMC. 



RSFIMC ARCHITECTURE 125 

0 Define various statistical operations for monitored variables: RSFIMC 
features powerful, comprehensive analysis libraries that rival those of 
dedicated analysis packages. These libraries provide a variety of analyt- 
ical tools such as statistics, evaluations, regressions, and many others. 

0 Historical database generation: As previously mentioned, the real-time 
data is stored in the real-time database. The real-time database is 
scanned and periodically downloaded in the historical database. Nor- 
mally, the intervals between scans are around 30 s. A data processing 
program takes these real-time data from the real-time database every 
30 s. It then employs the knowledge base to deal with the data and 
variables. So far, the system can handle 150 process variables at a time. 

0 Define and evaluate alarm events, and generate alarm record database: 
Alarm handling is a key function in any condition monitoring system. 
The alarm handling program allows the operators to respond to the 
early warning alarms quickly and efficiently. The users can define the 
alarm events according to the different monitoring demands. The moni- 
tored alarm information is stored in the alarm record database for later 
analysis. 

0 Real-time and historical trend analysis: Trend analysis is an intuitive 
way to describe the running status of the plant. It helps operators plan 
the future productions. 

0 Data exchange with familiar office applications: Our RSFIMC should 
have an open architecture so that it can communicate with other Win- 
dows applications such as Microsoft Excel and Microsoft Word. 

0 Report generation: Report is an important way to provide the enhanced 
data and information to operation and management personnel. Users 
can define various reports through the report configuration tool that the 
RSFIMC provides. 

9.4.3 Data browsing module 

The data browsing module is in charge of the local and remote data access. 
Its major tasks are as follows: 

0 Build graphics toolbox: The graphics toolbox is made up of various 
“process graphics imps” such as meters, gauges, thermometers, tanks, 
LEDs, charts, graphs, and more. By dragging and dropping the selected 
“imps”, the user can draw industrial process state diagrams easily. 

0 Animation link: The selected “imps” are all static unless they are acti- 
vated by animation links. By linking various icons on host computer’s 



126 AN OBJECT-ORIENTED RECONFIGURABLE SOFTWARE 

screen, operators can enable users to observe the running status of in- 
dustrial field such as fluctuations of liquid level and variations of liquid 
temperature in a graphical form. 

0 Multimedia alarm: Audiovisual alarm devices are employed in RSFIMC 
to enhance alarm effects. Operators can manually switch off the alarms 
which are nuisance or not important. 

0 View real-time/historical data: The objectives of industrial measure- 
ment and control are to improve production quality and efficiency, as 
well as preserve capital investment in the plant. It is impossible to 
achieve these objectives without real-time and historical information 
about the plant. Therefore, tools should also be provided to enable the 
user to view and query data in a convenient fashion. 

0 Provide network service which supports TCP/IP protocol: TCP/IP pro- 
tocol is a commonly used protocol for remote communication, through 
which the remote browsers can monitor the running states in the indus- 
trial field. 

9.5 RSFIMC FUNCTIONS 

Since industrial measurement and control systems are highly information- 
intensive, it is very important that the information should be acquired, pro- 
cessed, and presented in a suitable manner. The main realized functions in 
RSFIMC are fleshed out in this section. 

9.5.1 User configuration 

In industrial monitoring systems, each monitored machinery can be quantified 
as a set of Measuring Points (MPs), which indicates its running states. There- 
fore, MP is regarded as the basic measurement unit which can be classified 
as analog MPs, switch MPs, and integer MPs in RSFIMC. User configuration 
includes MP configuration, task configuration, alarm configuration, graphics 
configuration, calculated variable configuration, and so on. All parameters 
can be configured via man-machine interface. 

MP configuration: MP configuration means the transducers and measure- 
ment equipment configuration for each MP, which has the following main 
parameters: MP name, MP type (analog, switch, and integer), MP descrip- 
tion, driver, initial value, MP address, unit, transformation formula, possible 
maximum value, possible minimum value, and alarm flag. Figure 9.7 depicts 
the MP configuration panel. 

Task configuration: Task configuration is responsible for duty balancing 
in the monitoring process. Task parameters include MP name, trigger mode 
(e.g., time-based processing and exception-based processing), task description, 



RSFIMC FUNCTIONS 127 

Fig. 9.7 MP configuration interface. 

task type (e.g., CallRead and Callwrite), task priority, trip interval, trip 
condition, and trip precision, which can all be defined via task configuration 
panel. Figure 9.8 depicts the task configuration panel. 

fig. 9.8 Task configuration interface. 

Alarm configuration: To make the data structures of RSFIMC clearer, we 
separate the alarm configuration from MP configuration. Alarm parameters 
such as upper limits, lower limits, alarm delay flag, and alarm delay time can 
be defined by the operator through the alarm configuration panel. 



128 AN OBJECT-ORIENTED RECONFIGURABLE SOFTWARE 

fig. 9.9 Structure of the data processing module. 

Graphics configuration: RSFIMC provides the function of object-oriented 
graphics configuration so that users can describe the running status graph- 
ically by drawing various charts such as simulation map and data flow dia- 
gram. Objects (icons) and groups of objects can be moved, sized and animated 
quickly and easily. Object-oriented design tools make the user easy to conduct 
various operations on objects. 

Calculated variable configuration: The real-time data is stored in the real- 
time database and periodically downloaded into the historical database. Real- 
time database stores the current values of the monitored variables and it 
includes the up-to-date information on the monitored variables. Its structure 
is shown in Table 9.2. The Data processing module polls for the raw data 
from data acquisition module at frequent periodic time intervals. Figure 9.9 
depicts the structure of the data processing module. 

The overall structure can be classified into five layers, i.e., configuration 
operations, configuration database, real-time database, processed database, 

Table 9.2 Structure of the real-time database 

Field name Paradox field type Description 

Variable ID Long Integer ID of the monitored variable 
Variable name Alpha (20) Name of the acquired variable 
Current value Number Value of the acquired variable 
Acquisition time Timestamp Time when the variable is acquired 



RSNMC FUNCTIONS 129 

and realized functions. The real-time database is the most important element 
in the data processing module because it is the data source for other data 
handling modules. The resultant database can be classified into four types. 

Original database: The original database is also known as the primitive 
historical database, which stores the raw data retrieved from the real- 
time database. The original historical database is the periodic storage 
of the real-time data, and it is the basis for further data processing. 
The structure of the original historical database is different from the 
real-time database because its record is added one by one during system 
operations. Its structure is shown in Table 9.3. 

Table 9.3 Structure of the original historical database 

Field name Paradox field type Description 

Saving time Timestamp Time instant when the variable is stored 

Variable name Alpha (20) Name of the acquired variable 
Value Number Value of the acquired variable 

into the database. 

Medium-term database: Middle database stores the most basic statisti- 
cal results such as day summation and month average value. Its struc- 
ture is shown in Table 9.4. 

Table 9.4 Structure of the medium-term database 

Field name Paradox field type Description 

Statistic time interval Alpha (12) 

Variable name Alpha (12) Name of the statistical variable 
Maximum value Number Maximum value of the statistical 

Minimum value Number Minimum value of the statistical 

Average value Number Average value of the statistical 

Sum value Number Sum value of the statistical variable 
Records number Number Records number in the statistics 

The time interval for the statistical 
operation 

variable 

variable 

variable 

Processed database: Processed database stores the most results of data 
processing. Its structure is shown in Table 9.5. 

Alarm database: Alarm database stores the abnormal information the 
monitoring software detected such as alarm value, alarm time, alarm 



130 AN OBJECT-ORIENTED RECONFIGURABLE SOFTWARE 

Table 9.5 Structure of the processed database 

Field name Paradox field type Description 

Time Timestamp Acquisition time 
New variable 1 (User-defined) Newly defined variable 1 
... ... 
New variable n (User-defined) 

. . .  
Newly defined variable n 

duration, alarm types, and  alarm variables information, etc. Table 9.6 
and  Table 9.7 show t h e  structures of the  alarm configuration database 
and the alarm record database, respectively. 

Table 9.6 Structure of the alarm configuration database 

Field name Paradox field type Description 

Alarm variable name 
Alarm variable type 

Switch alarm 
Buffer time 

Low value 
Low low value 
High value 
High high value 
Deviation 
Target value 

Alpha (20) 
Alpha (12) 

Logical 
Number 

Number 
Number 
Number 
Number 
Number 
Number 

The defined alarm variable name 
It  indicates if it is a analog or switch 
alarm variable 
Alarm status of switch alarm variable 
Alarm delay time for the buffered 
alarm variable 
Threshold of low value alarm 
Threshold of low low value alarm 
Threshold of high value alarm 
Threshold of high high value alarm 
Threshold of deviation alarm 
Target value of the alarm variable 

Table 9.7 Structure of the alarm record database 

Field name Paradox field type Description 

Alarm variable name Alpha (10) Name of the alarm MP 
Alarm time TimeSt amp Data and time of the alarm 
Alarm value Number Alarm variable value when the alarm 

Alarm type Alpha (12) Property of the alarm event 
happens. 

T h e  architectures of other two modules will not be detailed here because 
their configurations are quite similar to tha t  of the  data processing module. 

Here, a type of data processing operation is fleshed out  as an example. 
Some variables are determined by other measurable values because they  can- 



RSFIMC FUNCT/ONS 131 

not be captured directly with current instrumentation technology. Therefore, 
RSFIMC provides new variable definition tools so that users can define the 
new variables conveniently by keying in the necessary parameters. A calcula- 
tion handler software process is activated periodically to  perform calculation 
on the updated data. The database display is refreshed at intervals. To illus- 
trate, part of the source code is presented in Code 9.1. The code demonstrates 
the message-based programming on Windows platform using Delphi. Figures 
9.10 and 9.11 show the mechanism and the data flow of the new variable cal- 
culation process, respectively. Furthermore, the realized interface for the new 
variable calculation is shown in Fig. 9.12. 

fig. 9.10 New variable calculation process. 

// Definitions: 
// OrigionDB: Original database; 
// FormulaDB: Formula database (One of the processing 
// configuration database); 
// ProcessDB: Processed database; 
// Calculator: A user-defined calculation component. 

a user-defined message to the data processing window. 
procedure TdatabaseDM.OrigionDB.AfterPost(DataSet:TDataSet); 
begin 
SendMessage(ProcessMain.Hand1e.WM-User.0.0); 
end ; 
// The message handler dealing with the message sent by 
0rigionDB.AfterPost event: 
procedure TProcessMain.MsgProcess(var Msg:TMessage); 
begin 
Initialize all the related database 
ProcessMain.OrigionDB.Open; 
ProcessMain.0rigionDB.Last; 

Processmain.ProcessDB.FieldByName(DataAcquisitionTime).Value 
:=ProcessMain.OrigionDB.Fieldbyname(DataAcquisitionTime).value; 
//Assign value to the time field in processing database 
while not ProcessMain.Formu1aDB.EOF do 
//Scan the formula database and calculate the new variables 
begin 

Transfer all the necessary parameters to the calculator component 
and execute calculations 

// When a record is posted to the original database, the program sends 

... 

. . .  

... 



132 AN OBJECT-ORIENTED RECONFIGURABLE SOFTWARE 

Fig. 9.11 New variable calculation data flow. 

end; 
processMain.ProcessDB.Edit; 
Processmain.ProcessDB.Fieldbyname(ProcessMain.0rigionDB. 
Fieldbyname(fieldname):=ProcessMain.Calcutor.Besult; 
//Write the calculation result to the processing database 
ProcessMain.ProcessDB.Post; 
ProcessMain.Formu1aDB.Next; 
//Turn the record pointer of formula database to the next records 
end ; 

end ; 

Code. 9.1 New variable calculation using message-based programming (in 

It should also be noted that the structure of the formula database is as 
Borland Delphi) 

shown in Table 9.8. 



RSFIMC FUNCTIONS 133 

Fig. 9.12 Screenshot of new qariable calculation interface. 

Table 9.8 Formula database structure 

Field name Paradox field type Description 

The newly defined field name 

Computation formula Alpha (40) Formula for computing the 

Alpha (10) Name of new variable 
configured by the user. 

new variable. 

9.5.2 Running status indications 

Another key function of RSFIMC is its quick and reliable access to meaning- 
ful and useful information. In RSFIMC, plant operators are provided with 
a machine-state sensitive graphical interface. The password-protected graph- 
ical environment for the analyst provides comprehensive software functions 
such as user-configurable alert and alarm functions, data management, and 
a wide range of advanced analytical displays with which to assess machine 
conditions and diagnose encountered problems. Simulation map, waveform 
display, visual database query and current alarm list are designed to describe 
the running status in real time from four different perspectives. A simulation 
map uses images, each representing certain parts of the entire plant, to  give 
the operator an intuitive description of its working condition. The wave dis- 
play traces the changes of analog signals with a line chart. By means of visual 
database query, the operator can know the statistical results of analog quan- 
tities and the states of all digital signals. An operator can browse and query 
the real-time database and alarm events database in real time by this tool. 
A current alarm list provides a simple tabular format display of the faults 
found on the current diagnostic loop. Any faults displayed on it are being 



134 AN OBJECT-0 RlEN TED RECO N FlGU RA B LE SOFTWARE 

detected at the current time. The current running state can be organized and 
printed in real time. Other tools, such as an instantaneous spectral analysis 
and a real-time trend plot, are also provided for the operator to probe into 
the plant’s immanent behavior. Figure 9.13 shows the screen capture of the 
status indication interface. 

Fig. 9.13 Screenshot of status indication interface. 

9.5.3 Alarm management 

Alarm handling can be seen as the real-time and online transformation of raw 
input alarm messages into a more digestible form for the operator. And then 
plant operators take proper actions based on these more easily understood 
and meaningful alarm messages to  avoid any possible machine malfunction 
or production upset. The alarm-handling program first interprets alarming 
information from real-time data acquisition activities. It then processes and 
evaluates raw alarms in its reasoning engine based on rules, which are pre- 
defined by the operator. Finally, the summarized message is presented to 
operators in a vivid form, such as launching alarm windows and producing 
various audiovisual alarming effects. Raw alarms and results of alarm process- 
ing will meanwhile be written into the alarm database for post-fault diagnosis 
and non-real-time retrospection. In our condition monitoring system, alarm 
group, and alarm priority are adopted by the operator to balance its vari- 
ous duties and guarantee timely handling of high-priority alarming events. 
The operator can manually switch off the alarms which are nuisance or not 
important in the presence of alarm flooding, if necessary (361. 

To guarantee the real-time performance of the alarm system, the message 
handling mechanism in Windows platform is used. Its principle is illustrated 



RSNMC FUNCTlONS 135 

in Fig. 9.14. Therefore, the developed alarm handling system allows the op- 
erators to respond to the early warning alarms quickly and efficiently. To 
explain the alarm handling system in detail, Fig. 9.15 shows the informa- 
tion flow of the system. As shown in the figure, when an alarm is detected, 
the alarm information will be written into the alarm database. The process 
operators can navigate the selected alarm file to find the relevant alarm infor- 
mation on the possible alarming causes, related components, variable value, 
threshold, and procedure for removing the alarm. 

fig. 9.14 Message handling in Windows applications. 

9.5.4 Data exchange 

To implement the data exchange among various applications, the traditional 
method is to share the disk files or database. More recently, to meet the more 
demanding system requirements, three other data exchange technologies are 
provided in the Windows applications, i.e., Clipboard, DDE, and OLE. 

Clipboard: The inner working of the Clipboard is stated as follows. Be- 
fore the application passes the data to Clipboard, the data are formatted 
first. Then the handle of the middle data region is passed to the Clipboard, 
which then changes the property of this region immediately. This region is 
shared by all applications. When an application accesses the handle of this 
region, the operating system finishes other operations regardless of whether 
the handle will be released. If an application needs to paste the Clipboard 



136 AN OBJECT-ORIENTED RECONFIGURABLE SOFTWARE 

fig. 9.15 Information flow of the real-time alarm system. 

data into other applications, Windows passes it the global region handle of 
the application that the Clipboard content belongs to. The application then 
duplicates a copy of the Clipboard content to its own global section or local 
stack. Clipboard can be seen as a shared resource manager. Any running 
application in Windows can store data in it or reads the formatted data from 
it. Except for the Clipboard, there are two major dynamic data exchange 
protocols used by Microsoft’s Windows products to  exchange data between 
Microsoft Windows applications: Dynamic Data Exchange (DDE) and Object 
Linking and Embedding (OLE). DDE allows one Microsoft Windows program 
to transparently exchange data with another. 

Dynamic Data Exchange (DDE): To resolve the Inter-Process Com- 
munication (IPC) problem, dynamic data exchange technology is adopted in 
the Windows operating system. DDE is an open, language-independent, and 
message-based protocol, and it allows for real-time data or commands commu- 
nication among multiple application programs. DDE is a form of inter-process 
communication among application programs through memory sharing. The 
link set up by DDE among applications can be used for data transmission. 
Furthermore, when the data are updated, automatic data exchange can be ac- 



RSFIMC FUNCTlONS 137 

Fig. 9.16 API interfaces in MS Excel. 

complished by the DDE link without any user interference. Most importantly, 
to implement the DDE protocol, application programs only need to interface 
with the operating system, and no interfaces are needed among application 
programs. This flexibility makes DDE a widely supported interface protocol 
by Windows applications such as MS Word, Access, Excel, and so forth. 

Object Linking and Embedding (OLE): Very often, users need to 
connect some application programs together in Windows operating system. 
For instance, Clipboard and DDE are commonly used for data exchanging 
and sharing among different applications. In the recent years, more and more 
applications provide one or multiple OLE Automation interfaces for commu- 
nicating with other applications. These interfaces are the “neural system” of 
languages, through which the developer is able to drive the OLE Automation 
server via Delphi, C++, Visual Basic, or Macro languages without needing 
to consider the programming language used in the application. Here, we dis- 



138 AN OBJECT-ORIENTED RECONFIGURABLE SOFTWARE 

cuss how to apply the OLE Automation mechanism in the Delphi database 
application. Since the application is concerned with database processing, Mi- 
crosoft Excel is selected as the OLE Automation Server, which is a popular 
office automation application with comprehensive data processing and pre- 
sentation capability. Seamless integration with the familiar Excel processing 
environment enables the user to work in a more efficient and effective fashion. 
For instance, by using the MS Excel, some routine and complex data manip- 
ulation operations can be easily accomplished. Also, professional reports and 
charts can be automatically generated. Therefore, the programming burden is 
significantly reduced by avoiding implementing too complex and cumbersome 
data processing and presentation functions. 

OLE is a data exchange technology developed after DDE. It allows a Win- 
dows application to control another Windows application via Exposed Ob- 
jects. Especially, the user can access the methods and attributes of these 
objects instead of their original data. Therefore, OLE Automation is able to 
work beyond the boundaries of applications and languages. For instance, the 
OLE Automation object coded in Delphi can be used in the C++ or Visual 
Basic environment, and on the contrary, the automation object written by 
Visual Basic or C++ can also be applied in the Delphi environment. h r -  
ther, Distributed Component Object Model (DCOM) is used to extend these 
functions to networked machines. Different from DDE where the data is ex- 
changed, in OLE, the complete object is exchanged. There are two methods 
of operating the OLE object: linking and embedding. The object embedded 
in the document will be a physical part of the client application document, 
while the object linked with the document is still separated from the client 
application. The concept of object discussed here is as same as that in the 
object-oriented language. It can be the application itself, the document in 
the application, or an entity in the document. Each object has its own at- 
tributes and methods. The attributes describe the object characteristics, and 
the methods depict operations that the object can perform. Let’s examine a 
simple but quite typical example on automating the MS Word object: 

uses ComObj; 
procedure Tforml.ButtonlClick(Sender:Tobject); 
V a T  

begin 
//Create the Automation object 

V:=CreateOleObject(’Word.Basic’); 
//Use the object method 
V.Insert(‘My Ole Program!’); 
end ; 

V: Olevariant ; 

Code 9.2. Illustration of automating the Word object. From the above 

code, we can see that three elements are needed for OLE Automation in the 
Delphi development environment. First, the ComObj unit is referred using 
the user statement, which is the key code for the Delphi application to handle 



RSFIMC FUNCTIONS 139 

Automation. Second, the variable Vis used whose type is Olevariant. It is 
introduced into the Delphi as Variant is widely used in the Automation-based 
code by Microsoft. Delphi assigns the OLE object to variable V through the 
CreateOleObject function. Finally, the Word Basic Insert method is referred. 
Insert is neither a method/function in Object Pascal nor a part of Win API. 
It is a method of Word Basic. Due to the OLE Automation technology, it can 
be directly called by the Delphi application. 

In short, OLE Automation allows program developers to expose certain 
program components (or objects) so that these components or objects can 
be manipulated by users to create large custom applications that consist of 
a variety of smaller, third-party applications (each of which is accessed via 
these exposed objects). RSFIMC offers the function to retrieve data into Mi- 
crosoft Excel and Microsoft Word for further data analysis and report through 
OLE Automation. Data in one application (called the container-a spreadsheet 
or word processor, for example) are linked (sometimes called a live-link) to 
another (the client-a database, for example) so that if the original data are 
changed, the data in the container application are automatically changed. In 
our monitoring software, Microsoft Excel and Word are the container and the 
selected database is the client. Figure 9.16 shows the API interfaces in MS 
Excel. Part of the source code is presented in Code 9.3, which demonstrates 
the integration of RSFIMC and Microsoft Excel using OLE Automation. The 
implemented OLE Automation interface is shown in Fig. 9.17. 

1)Open Microsoft Excel: 
procedure TOLEForm.OpenBtnClick(Sender: TObject); 
begin 
try 
//Create OLE Automation object varExcel with the type of Variant 
varExcel : =CreateOleOb ject ( ’Excel. Application ) ; 
varExcel.Visible:=True;// Open Excel 
if not VarIsEmpty(varExce1) then 
begin 
varExcel.workbooks.Add; //Add a workbook including three sheets 
varExcel.workbooks[1].worksheets[l].name:~’Database information’; 
//configure the name of spreadsheet 1 
Caption:=’Page number of current spreadsheet= 
+IntToStr (varExce1. sheets. count) ; 
//Display page number 
PrintBtn.enabled:=true;// Activate transmission button 
application.BringToFront; 
end ; 

except 
showmessage(’Cannot find Microsoft Excel’); 
end ; 
end; 

2)Transmit the database data to Microsoft Excel: 
procedure TOLEForm. PrintBtnClickC3ender: TObject) ; 

i , j : integer; 
bookmark:Tbookmark; 

var 



140 AN OBJECT-ORIENTED RECONFIGURABLE SOFTWARE 

begin 
tablel.DisableContro1s; //Cut the link between Tablel data controls 
//Fill the field name into the database table to the first line 

begin 
of the Excel spreadsheet 

for i:=O to tablel.fie1dcount-1 do 
varExcel. workbooks 111 .worksheets El] .cells [l ,i+l] .value 
:=tablel.fields Ci] .DisplayLabel; 

end; 

bookmark:=tablel.CetBookmark; // Save current position 

//Scan database and send its data to the Excel spreadsheet 

try 

try 

tablel .first ; 
j:=2; 
while not tablel.eof do 

begin 
for i:sO to tablel.fie1dcount-1 do 
begin 
varhcel .workbooks 111 .worksheets C11 . cells [j , i+11 .value 

end; 
tablel.next; 

:=table1 .fields[il .asstring; 

j :=j+i; 
end; 
finally 
// Return bookmark and release it 
tablel.GotoBookmark(bookmark); 
tablel .FreeBookmark(bookmark) ; 
end ; 

tablel.EnableContro1s; 
finally 

// Recover the link between Tablel and data controls 
end ; 

end ; 

3) Close the application 
procedure TOLEForm.FormClose(Sender:TObject; var Action:TCloseAction); 
begin 
if not VarIsEmpty(varExce1) then 
begin 
varExcel.DisplayAlerts:=False; // Exit without enquiry 
varExcel.Quit; 
end; 
end ; 

Code 9.3. Demonstration of OLE Automation with Microsoft Excel (in 
Borland Delphi). 

9.5.5 Visual database query 

The objective of constructing a database system is to store and query the 
collected data in a more convenient and effective manner. Therefore, building 
a high-efficiency database query module is one of the major goals in designing 



RSFlMC FUNCTlONS 141 

Fig. 9.17 Screenshot of OLE Automation interface. 

database application systems. Currently, the query language used in most of 
the relational database is industry standard-based SQL. As a general-purpose 
structured query language for relational database management system, SQL 
has been widely adopted by diverse DBMS’s. For instance, ORACLE, Sybase, 
Informix DBMSs all support SQL. Delphi is compatible with DBMS’s that 
support SQL. Thus, in developing database applications using Delphi, SQL 
is a reasonable choice. Supporting SQL is an important characteristic of 
Delphi and it is also an important indicator showing that Delphi is a powerful 
database application development tool. The wide acceptance of SQL has 
demonstrated its merits in database applications. It can benefit all of the 
users including application programmers, DBA administrators, and end users 
because it has the following major features: 

0 Nonprocedural language: SQL is a nonprocedural language because it 
processes a record at a time and provides data with automatic navi- 
gation. SQL allows users to operate in the high-level data structure 
without operating on a single record. The users can also operate the 
records set. 

0 Unified language: SQL can be used in all the user activities in handling 
database, which include system administrator, application programmer, 
decision-maker, and many other end users. It is easy to learn and can be 
grasped in a short time. SQL provides various commands for database 
operations, which are listed as follows: 

- Query data. 

- Insert, revise, and delete records. 



142 AN OBJECJ-ORIENTED RECONNGURABLE SOFTWARE 

- Build, revise, and delete data objects. 

- Control the storage and retrieval of data and data objects. 

- Ensure database coherence and integrity. 

The previous DBMSs provide an individual type of language for each of 
the above database operations. On the contrary, SQL unifies all of the 
operations in a single language. 

0 Common language of all relational database: SQL is the common (or 
unified) language for all of the primary relational DBMS’s, because they 
all support SQL. Users can apply SQL techniques used in a RDBMS to 
another one: The programs written in SQL are highly portable. 

There are two methods of writing and using SQL statements in Delphi 
applications: static and dynamic SQL statements. For static SQL statements, 
SQL commands are set as the SQL attributes of the TQuery component at the 
stage of program design. However, in the dynamic SQL programming, SQL 
includes a series of parameters and their values can be changed during program 
execution. In other words, the parameter values in the SQL statements can be 
dynamically assigned. The visual combination database query tool is designed 
based on the following steps: 

0 Interfaces in dialog-box style are used for intuitive user query operations. 

0 The user query requirements are transformed into standard SQL state- 
ments by the intrinsic mechanism in the database query tool. 

0 DMBS executes the user-specified SQL statements and returns corre- 
sponding query results. 

In the large-scale database system development, the quality of the database 
query module may determine the success or failure of an application. In the 
database query module design, we need to provide intuitive and clear user 
interfaces to obtain user query requirements, i.e., the records, fields, and se- 
quence of the desired data. Furthermore, the data from different databases 
can be queried and displayed for some more demanding and complicated user 
query requirements. In developing the database application for the IMC sys- 
tem, we designed a visual combination query module. Its inner working is 
shown in Fig. 9.18 and the realized interface is shown in Fig. 9.19. 

9.5.6 Remote communication 

The convergence of communication and computing technologies has opened 
many new opportunities and uses for personal computers and workstations 
across every real-world application area (1, 61. We can perform important 
functions across the Internet/Intranet, such as gathering, publishing, and dis- 
playing data. Therefore, Web-based IMC system is the development trend 



RSFIMC FUNCTIONS 143 

Fig. 9.18 Process of visual database query. 

Fig. 9.19 Screenshot of visual database query interface. 

for industrial measurement and control, and an advanced condition moni- 
toring system should be able to support remote monitoring [24]. Based on 
careful analysis of all of the data requests from the remote computers, the 
developed IMC system provides a general-purpose network interface which 
supports TCP/IP so that any remote computer (such as the computers in 



144 AN OBJECT-ORIENTED RECONFIGURABLE SOFTWARE 

the management department) can connect to  the factory floor via the stan- 
dard network connection. Experience has shown that the data communication 
works well and the network speed is quite satisfactory even in the presence of 
user requests for a large volume of data. 

9.6 SUMMARY 

Abnormal situations or faults occur in chemical processes due to  sensor drifts, 
equipment failures, or changes in process parameters. Due to  the highly com- 
plex and integrated nature of chemical processes, these abnormalities have 
significant safety and environment impact. An estimated 20 billion USD per 
year is lost by the petrochemical industry in the United States only due to  the 
unqualified condition monitoring [25,35]. Therefore, it is highly necessary and 
beneficial to install the condition monitoring system in petrochemical plants. 
The chapter discusses the design of an industrial reconfigurable software, espe- 
cially the details on data processing. The developed industrial reconfigurable 
software combines a variety of technologies including system reconfiguration, 
object orientation, database management, network communication, human 
machine interface, and so forth. The system is able to effectively monitor the 
operation conditions in the industrial field including continuous monitoring 
of process parameters and certain vital components. Continuous supervision, 
measurement, control, and management can be achieved by using this system 
such that it is an important measure to ensure the secure operations in the 
practical industrial field. 

Data processing is of critical importance in the industrial reconfigurable 
software; in some sense, it can even determine the success or failure of the over- 
all software system. Therefore, throughout the software development process, 
we should pay much attention to  its design. The developed data processing 
module mainly includes the following nice features: 

It makes full use of the advantage of Win95 message mechanism such 
that the system is highly responsive and is able to  react to  any event 
or emergency in a timely manner. For instance, both real-time alarm 
signaling and real-time new variable calculation are triggered according 
to the data variance in the real-time database. 

0 As a visual programming tool, the Delphi development environment 
is used for system development, both the rich built-in components in 
library and in-house developed components can be used to beautify the 
user interface. As a result, the obtained graphical user interface is very 
clear and attractive. 

The data processing module reasonably describes the user intention. 
The user can configure his desired industrial measurement system based 



SUMMARY 145 

on the specific practical requirements. The user-friendly interface gives 
useful operation hints during the system configuration process. 

0 Data processing module provides the interface to other applications us- 
ing the OLE Automation mechanism. Therefore, users can forward the 
complex task to certain dedicated software systems for better task han- 
dling. 

0 The visual database query tool provided by the data processing module 
is actually a generic query system (GQS), where the user can implement 
complex database query via simple mouse clicks. Furthermore, the query 
statements and query results can be stored for future decision-making 
purpose. 

0 Data processing module is an relatively independent and general-purpose 
module. Therefore, it has high practicability and can also be applied to 
other applications. 

RSFIMC employs the object-oriented and modular software development 
approaches. The software structure is fairly simple and the arrangement of 
various modules is rather explicit. The responsibility of each module is also 
explicitly classified. The communication among modules is realized through 
database sharing coupled with Windows message mechanism. Meanwhile, 
both hardware and software interfaces are reserved for future system expan- 
sion. In summary, the obtained software primarily has the following outstand- 
ing features: 

0 Generality and expandability: Because the reconfiguration concept is 
adopted in the system design, the system structure can be flexibly con- 
figured, and the system design mode can be significantly changed. In 
addition, due to the modular and object-oriented software development 
methodology adopted, the system can be configured according to differ- 
ent user requirements. Meanwhile, system expansion can be realized by 
hardware and software interfaces. 

0 High responsiveness: High responsiveness is an quite important measure 
in the industrial measurement and control software. RSFIMC is devel- 
oped based on the multitasking Windows platform. Both Windows mes- 
sage mechanism and multithreaded technology are appropriately used to 
ensure the timely manipulation of a large amount of concurrent events. 

Comprehensive functions: RSFIMC has very comprehensive functions. 
Its primary functions include continuous real-time monitoring of various 
process parameters and equipment status, real-time alarming, automatic 
data acquisition and storage, visual query of database records, reports 
printing, real-time data analysis, real-time/historical trend curves, data 
exchange with other applications, and so forth. 



146 AN OBJECT-ORIENTED RECONNGURABLE SOFTWARE 

High reliability: Due to the particularity of industrial automation soft- 
ware, throughout the design process, we treat high system reliability as 
the key objective in industrial reconfigurable software design. The three 
modules (i.e., device drive, data processing, and data browsing) are 
interfaced with each other using database sharing mechanism, so the 
data can be stored and retrieved in a secure way. In addition, some 
other mature technologies such as message transmission mechanism, 
SQL database query, and object-oriented approaches can all enhance 
the software reliability. 

0 High usability: The IMC system provides gratifying user interface. Panel 
operators can operate the software via mouse click or keyboard input. 
Multiple monitoring modes are offered so that the user can select their 
preferred operation mode in different system operating conditions. 

The developed RSFIMC has been successfully installed in a local Petro- 
chemical plant. For several years since its installation in the industrial field 
environment, RSFIMC ran properly and provided continuous process moni- 
toring as an operational backup to  aid the operation personnel in dealing with 
various field operational situations. The positive feedback from the company 
demonstrated that the savings in loss product, costs, and environmental issues 
were in significant amount of money. The implemented RSFIMC puts em- 
phasis on measurement and monitoring. Currently it is lack of strong control 
capacity. Therefore our main future work is to develop stronger control units. 
Moreover, the function of fault diagnosis should also be promoted. As an 
innovative software design tool for industrial measurement and control which 
integrates functions of MMI and SCADA, industrial reconfigurable software 
is a shortcut leading to reliable and complicated measurement and control 
systems. It is believed that industrial reconfigurable software will be applied 
to much wider industrial fields. 

REFERENCES 

1. Alessandro, F. and Vincenzo, P. (1998). Simulation tool for virtual lab- 
oratory experiments in a WWW environment, IEEE Proceedings of In- 
strumentation and Measurement Conference, IEEE, Piscataway, NJ, pp. 
102-1 07. 

2. Atlee, J. M. and Gannon, J. (1993). State-based model checking of event- 
driven system requirements. IEEE Transactions on Software Engineering, 
Vol. 19, NO. 1, pp. 24-40. 

3. Berson, A. (1992). Client/Server Architecture, McGraw-Hill, New York. 



SUMMARY 147 

4. Birla, S. K., and Shin, K. G. (1998). Reconfigurable software for servo- 
controlled motion, Dynamic Systems and Control Division American So- 
ciety of Mechanical Engineers, Vol. 64, pp. 495-502. 

5. Booch, G. (1986). Object-oriented development. IEEE Transactions on 
Software Engineering, Vol. 12, No. 2, pp. 211-221. 

6. Caldara, S., Nuccio, S., and Spataro, C. (1998). A virtual instrument 
for measurement of flicker, I E E E  Transactions on Instrumentation and 
Measurement, Vol. 47, No. 5. 

7. Chen, 1.-M. (1996). On optimal configuration of modular reconfigurable 
robots, Proceedings of the 4th International Conference o n  Control, Au- 
tomation, Robotics and Vision, Singapore. 

8. Cockbum, A. R. (1994). In search of methodology, Object Magazine, Vol. 
4, NO. 4, pp. 52-76. 

9. Cole, R., and Schlichting, R. (eds.). (1998). Proceedings of the 4 th  Bian- 
nual International Conference on  Conjigurable Distributed Systems, IEE 
Proceedings: Software, Vol. 145, No. 5, IEE, Stevenage, England, pp. 
129-188. 

10. Fayad, C. A. and Turazzi, R. (1998). HMI as a maintenance tool, I S A  
TECH/EXPO Technology Update Conference Proceedings, Vol. 2, No. 1, 
pp. 119-134. 

11. Ford, W. and Topp, W. (1996). Data Structures with C++, Prentice Hall, 
Englewood Cliffs, NJ. 

12. Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995), Design 
Patterns: Elements of Reusable Object-Oriented Design, Addison-Wesley, 
Reading, MA. 

13. Garcia, H. E., and Ray, A., et al. (1995). A reconfigurable hybrid system 
and its application to power plant control, I E E E  Transactions on  Control 
Systems Technology, Vol. 3, No. 2. 

14. Gertz, M. , Stewart, D. B. , and Khosla, P. (1993). A software architecture- 
based human-machine interface for reconfigurable sensor-based control 
systems, Proceedings of the 8th IEEE International Symposium on  In- 
telligent Control, August. 

15. Henderson-Sellers, B., and Edwards, J .  M. (1994). Identifying three levels 
of 00 methodologies, ROAD,  Vol. 1, No. 2, pp. 25-28. 

16. Hewlett Packard (1998). Controlling Instruments with H P  VEE. 

17. Hewlett Packard (1998). H P  V I S A  (Version 1.1) User’s Guide. 



148 AN OBJECT-ORIENTED RECONNGURABLE SOFTWARE 

18. Humphrey, W. S. (1990). Managing the Software Process, The SEI Series 
in Software Engineering, Addison-Wesley, Reading, MA. 

19. Jaaksi, A. (1998). A method for your first object-oriented project, JOOP, 
Jan. 

20. Jiang, J., and Zhao, Q. (1998). Fault tolerant control system synthe- 
sis using imprecise fault identification and reconfigurable control, IEEE 
Proceedings of the International Symposium on  Intelligent Control, pp. 
169-174. 

21. Johnson, G. W. (1997). Lab V I E W  Graphical Programming, McGraw-Hill, 
New York. 

22. Khoshafian, S. and Abnous, R. (1995). Object Orientation: Concepts, 
Analysis and Design, Languages, Databases, Graphical User Interfaces, 
Standards, 2nd ed., John Wiley & Sons, New York. 

23. Kroenke, D. M. (1995). Database Processing: Fundamentals, Design, and 
Implementation, Prentice Hall, Englewood Cliffs, NJ. 

24. Liao, S. L., and Wang, L. F .  (2000). Design and implementation of dis- 
tributed real-time online monitoring software based on Internet, IEEE 
Proceedings of the Third World Congress on  Intelligent Control and Au-  
tomation, Hefei, China, June, pp. 3623-3627. 

25. Nimmo, I. Adequately address abnormal situation operations, Chemical 
Engineering Progress, Vol. 91, No. 9, pp. 36-45. 

26. Norman, R. J. (1996). Object-Oriented System Analysis and Design, Pren- 
tice Hall, Englewood Cliffs, NJ. 

27. Park, J., and Mackay, S. (2003). Practical Data Acquisition fo r  Instru- 
mentation and Control Systems, Newnes, Burlington, MA. 

28. Rubenking, N. (1995). First looks: Delphi combines visual programming 
and local code compiler, P C  Magazine, No. 9. 

29. Shaw, M. and Garlan, D. (1996). Software Architecture: Perspectives on  
an Emerging Discipline, Prentice Hall, Englewood Cliffs, NJ. 

30. Sommerville, I. (1989). Software Edgineering, 3rd ed., Addison-Wesley, 
Reading, MA. 

31. Stewart, D. B., Volpe, R. A., and Khosla, P. K. (1997). Design of dynam- 
ically reconfigurable real-time software using port-based objects. IEEE 
Transactions on  Software Engineering, Vol. 23, No. 12. 

32. Stewart, D. B., Volpe, R. A., and Khosla, P. K. (1993). A Software 
Framework for Reconfigurable Robotic and Automation Systems, Techni- 
cal Report CMU-RI-TR-93-11, Department of Electrical and Computer 



SUMMARY 149 

Engineering and the Robotics Institute, Carnegie Mellon University, Pitts- 
burgh, PA. 

33. Valdes, M. D., Moure, M. J., Rodriguez, L., and Mandado, E. (1998). 
Rapid prototyping and implementation of configurable interfaces oriented 
to microprocessor-based control systems, IEEE Proceedings of the S ICE 
Annual Conference, pp. 1105-1108. 

34. van der Hoek, Andre (1999). Configurable software architecture in sup- 
port of configuration management and software deployment, I E E E / A  CM 
SIGSOFT Proceedings of International Conference on  Software Engineer- 
ing, pp. 732-733. 

35. Venkatasubramanian, V., Kavuri, S. N., and Rengaswamy, R. (1995). 
Process Fault Diagnosis-An Overview, CIPAC Technical Report , Purdue 
University. 

36. Wang, L. F., Chen, X. X., Wang, L. Y., and Wu, H. X. (2000). Design 
and implementation of the alarming system in industrial measurement 
and control software (in Chinese), Journal of Measurement and Control 
Technology, China, Vol. 19, No. 2, pp. 17-20. 

37. Wang, L. F., Tan, K. C., Jiang, X. D., and Chen, Y. B. (2005). A flex- 
ible automatic test system for turbine machinery, IEEE Transactions on  
Automation Science and Engineering, Vol. 2, No. 2, pp. 1-18. 

38. Wiener, R., and Wiatrowski, C. (1996). Visual Object-Oriented Program- 
ming Using Delphi, SIGS Books & Multimedia, New York. 

39. Wu, N. E., and Chen, T. (1996). Feedback Design in Reconfigurable 
Control Systems, International Journal of Robust and Nonlinear Control, 
Vol. 6. 



This Page Intentionally Left Blank



I0  
Flexible Measurement 

Point Management in an 
Industrial Automatic 

Supervision System 

Industrial automatic supervision system gives us a significantly better view 
of the process condition and provides operators with tighter control as well. 
The chapter primarily discusses the measurement point (MP) management 
in an industrial automatic supervision system based on the reconfiguration 
concept using object-oriented software engineering methodology. The overall 
architecture of the automatic supervision system is introduced. The crucial 
issues regarding MP management, such as MP configuration, task configu- 
ration, dynamic configuration of MPs and tasks, and system execution, etc., 
are discussed in detail. An illustrative example on the design and testing of a 
serial port driver is also presented. The design strategy for MP management 
turns out to  be successful, since the automatic supervision system has re- 
sulted in more efficient use of system resources and therefore greater operator 
productivity. 

Modern Industrial Automation Software Design, By L. Wang and K. C. Tan 
Copyright 2006 the Institute of Electrical and Electronics Engineers, Inc. 

151 



152 FLEXIBLE MEASUREMENT POINT MANAGEMENT 

10.1 INTRODUCTION 

Industrial automatic supervision technologies are recognized as a useful means 
of preventing anticipated incipient failures occurred in plant equipment. The 
technologies allow for preventive maintenance such that remedial actions may 
be scheduled in advance to  minimize the loss caused by production upset. 
Thus far, many industrial supervision systems have been developed for such 
a purpose (2, 4, 5, 12-15, 18, 20, 251. These systems have demonstrated that 
they can bring significant benefits and profits to  various industries. How- 
ever, oftentimes they are not only expensive, but also inflexible. For instance, 
those systems are usually designed for specific industrial supervision tasks. 
Each time when new hardware is added to  the existing supervision system, 
its software must be more or less re-implemented to  satisfy the new hardware 
demands. Furthermore, the supervision system should meet the ever-changing 
user requirements. Reconfiguration and flexibility are the main concerns in 
designing such flexible industrial supervision systems, which are capable of 
adapting to  the varying customer needs and incorporating new hardware 
without needing extensive extra investment. Moreover, the time and cost 
of implementing and maintaining traditional solutions are eliminated because 
no custom coding is necessary anymore. Therefore, the development of such 
reconfigurable and flexible software for various industrial supervision environ- 
ments is very beneficial. One of the features of the state-of-the-art industrial 
control and supervision systems is a growing degree of functional and hard- 
ware integration. Effective implementation and organization of inexpensive 
but reliable data acquisition, processing, and presentation is a highly challeng- 
ing task in building flexible industrial supervision systems. More recently, the 
concept of reconfiguration has been introduced into the fields of industrial 
measurement, supervision, and control [3, 6, 7, 10, 21-23, 271. A conspicuous 
feature of such configurable systems with their modular expandable hardware 
and software components is their suitability for small-, medium-, and large- 
scale system integration. 

In general, industrial reconfigurable supervision software is used to realize 
the industry parameter monitoring and control, large-scale telemetering, re- 
mote communication, remote control, remote image monitoring, data process- 
ing, search and query, network sharing, and so on. Configurable industrial su- 
pervision software normally has the following application domains: large-scale 
parameter monitoring for public city facilities, such as gas and water supply, 
electric power, and transportation; comprehensive monitoring management 
system in intelligent buildings, which includes building data gathering and 
security monitoring, etc; power monitoring and environmental monitoring in 
telecommunication systems; automated large rotating machinery monitoring; 
and factory product testing and analysis. 

Measurement point (MP) is the basic measurement unit in an industrial su- 
pervision system. Field devices are reliable distributed modules, which allow 
for acquiring the needed information and providing action on smart actuators. 



SYSTEM ARCHITECTURE 153 

The data acquisition module interfaces the physical variables of the industrial 
process by means of analog and digital 1 /0  signals. Data should be gathered 
according to user needs, and it also should be ensured that data obtained is 
reliable and accurate. Data acquired must also be preferably presented to the 
user in both textual and graphical formats [16]. The data acquisition approach 
should be cost-effective, scalable, and capable of applying to a variety of plat- 
forms. Computer-based data acquisition has been researched in the past, and 
considerable work has been conducted [l, 9, 111. For instance, recent efforts 
have been paid toward major developments in instrumentation to meet de- 
mands created by measurement and automation applications in the industrial 
world. Furthermore, instruments have evolved from analog systems, measur- 
ing and controlling a modest number of plant parameters, to digital systems 
with a large number of input and output (I/O) quantities. Sharing data is 
an important requirement of today's measurement applications, not only for 
operators at the factory floor, but also for decision-makers in the management 
department. In this chapter, the design and implementation of an effective 
measurement point management is presented, which is capable of managing 
a large number of data 1/0 points in an industrial supervision system and 
therefore bringing more reliable and powerful system measurements. 

The remainder of the chapter is organized as follows. Section 10.2 presents 
the overall system architecture including hardware-related components, sys- 
tem configuration, data I/O, and system drivers. Section 10.3 gives out the 
development platform and environment. The measurement point module, 
which includes MP configuration, task configuration, dynamic configurations, 
system running, driver management in data I/O, and task management in 
data I/O, is detailed in Section 10.4. Section 10.5 presents an illustrative ex- 
ample on the design and testing of a serial port driver. Section 10.6 presents 
a conclusion and discusses future work. 

10.2 SYSTEM ARCHITECTURE 

The following functions are required for a flexible industrial automatic super- 
vision system: (1) Automatically record the process parameters from each of 
the measurement points; (2) raise alarms in case of an emergency; (3) reli- 
able, around the clock operation, unattended during the nights; (4) perform 
as a highly flexible system that can be reconfigured and reprogrammed easily 
for monitoring different cycle profiles and different alarm conditions; (5) offer 
remote access to the entire monitoring system across the Web. Different appli- 
cations can be benefited from the flexibility, easy networking capabilities, and 
standardization provided by such a Windows PC-based monitoring system. 
In this section, we will present some hardware and software issues, which are 
closely associated with the design and implementation of the reconfigurable 
industrial supervision system. 



154 FLEXIBLE MEASUREMENT POlNT MANAGEMENT 

10.2.1 Overall architecture 

As shown in Fig. 10.1, the overall automatic supervision software comprises 
three modules: measurement point (MP) management, data processing, and 
data presentation. MP management module is responsible for data acquisition 
from the supervised object. Data processing module provides more easily un- 
derstood information for the decision-makers, and data presentation provides 
the data in the graphical format which is more intuitive and friendly to operat- 
ing personnel. In this chapter, we will focus on the design and implementation 
of the MP management module, which is based on the reconfiguration con- 
cept and therefore enables the supervision system to accommodate different 
system hardware and meet ever-changing measurement requirements. 

Fig. 10.1 Overall structure of industrial reconfigurable supervision software. 

As shown in Fig. 10.2, the overall structure of the measurement point 
management module can be classified into four parts: hardware-related com- 
ponents, system configuration, data I/O, and system drivers. 



SYSTEM ARCHITECTURE 155 

0 Hardware-related components are categorized as supervised object, su- 
pervision device, and hardware driver. They constitute the hardware 
basis for the supervision system. Supervised object is the process (plant) 
to be monitored by the developed supervision software. For instance, 
in the natural gas pipeline supervision, the pipelined gas flow is the 
supervised object. To monitor the natural gas transmission condition, 
data acquisition devices such as various transducers and data acquisi- 
tion cards are needed to measure the gas pressure and temperature, etc. 
Certain criteria will be used to determine if the gas transmission meets 
the desired requirements. In the supervision scenarios with control de- 
mands, actuators are also needed to execute the control tasks. Hardware 
driver refers to a set of functions for the hardware device, and it is nor- 
mally coded into the .dll file format (or occasionally in the .obj form). 
Hardware from different vendors often has different formats, and this 
heterogeneity conceived the concept of reconfiguration-based software 
in industrial process supervision. 

0 System configuration includes MP configuration, task configuration, sys- 
tem parameter configuration, etc. MP configuration is used to provide a 
general-purpose interface to various hardware devices. Every MP is r e p  
resented by a single variable, and it can be classified into analog, state, 
and integer types. Each variable carries information on MP driver name, 
maximum and minimum values, unit, security level, etc. Task configura- 
tion is mainly used for the effective management of both data acquisition 
and control tasks. The task trigger mechanisms can be classified into 
two types: time-based processing and exception-based processing. In 
the time-based processing, software executes certain tasks, such as data 
collection and manipulation, in a periodic manner. This requires the 
operator to appropriately configure various types of data (e.g., the data 
acquired with short and long sampling intervals) so as to balance the 
system resource allocation. However, in complex large-scale industry 
production systems, the emergencies should also be handled in an ef- 
fective and timely manner in order to guarantee the proper and safe 
system operations. Therefore, exception-based mechanism is proposed 
as an attractive replenishment to the time-based mechanism. System 
parameter configuration includes poll time, update rate, database name, 
etc. 

0 Data 1/0 is the core of the entire MP management module. It accom- 
plishes the data acquisition task by utilizing information on the config- 
ured MPs and tasks, utilizing a system parameter configuration, and 
calling hardware drivers via system drivers. Data 1/0 manages a vari- 
ety of system drivers via driver manager, and hardware drivers are used 
to control heterogeneous devices. Flexible configuration capability is 
achieved via such coordinated functions. The configured measurement 
tasks are accomplished via task management. 



156 FLEXIBLE MEASUREMENT POlNT MANAGEMENT 

System driver is the interface between supervision system and hardware 
equipment. A system driver operates the hardware by calling drivers, 
which are normally provided by hardware vendors. The operations in- 
clude initialization, self-examination, version query, error checking, clo- 
sure, etc. System driver reads data from the hardware 1/0 equipment 
and transmits data to the corresponding address in the driver image 
table (DIT). Data 1/0 retrieves data from the DIT and stores it in the 
real-time database. At the same time, the commands from high-level 
modules are written into the DIT so that the hardware can execute the 
command in real time. As a result, bi-directional data communication 
can be achieved. In addition, the high-level scan, alarm, and control 
(SAC) program retrieves data from the real-time database, which is 
maintained by data I/O, and then stores the manipulated data into the 
process database. 

fk. 10.2 The architecture of MP management module. 



DEVELOPMENT PLATFORM AND ENVlRONMENT 157 

10.2.2 Interfaces with other modules 

The MP management module interacts with two other modules and devices 
in the following three ways: 

0 M P  configuration: MP variables are configured according to the physical 
MPs of the measurement and control devices. 

0 System drivers: The tasks are executed through system drivers. Usually 
system drivers are programmed as Dynamic Link Library (DLL) and 
controlled by data I/O. 

0 Real-time database: Real-time database is created by data 1/0 and 
keeps updated throughout the supervision process. The data processing 
module uses the raw data for further manipulation and alarm events 
recording, and the data presentation module uses the real-time data to 
update its graphical displays as well as generate vivid alarm signals. 

According to data characteristics, the MP management module can be clas- 
sified into two parts: system configuration (static data) and system running 
(dynamic data). The system configuration part comprises MP variable con- 
figuration, MP task configuration, system parameter settings, static loading 
of system drivers, etc. The system running part executes tasks according to 
the information provided in the configuration process, and it is essentially the 
dynamic realization of system configuration. These two parts are connected 
through data I/O. Data 1/0 retrieves the desired information from MP con- 
figuration database, task configuration database, and system parameter file 
to activate the driver manager and connect to the system driver so as to 
accomplish the real-time data acquisition and data transmission. 

10.3 DEVELOPMENT PLATFORM AND ENVIRONMENT 

In general, modern industrial automation software is a type of large-scale soft- 
ware system, which can be applied to process monitoring in chemical plants, 
distributed parameters monitoring for gas supply, water supply, power s u p  
ply, and transportation in big cities, comprehensive monitoring management 
in intelligent buildings, power source monitoring in telecommunication sys- 
tems, environmental monitoring, monitoring automation for large rotating 
machinery, and many others. It is infeasible for an individual to design and 
develop such a large-sized software successfully without effective cooperation 
with other people. Such mission-critical software systems should be developed 
under the guidance of pragmatic and systematic software engineering in each 
phase of software development process [3, 8, 13, 17, 261. 



158 FLEXIBLE MEASUREMENT POINT MANAGEMENT 

10.4 MEASUREMENT POINT MANAGEMENT 

MP is the basic measurement unit in any industrial automatic supervision 
system. The MP management (or device drive) module is responsible for the 
raw data acquisition, data output, and task coordination in the monitoring 
process. The user may define the source of each physical variable based on 
actual system requirements and hardware configuration. Also the event-driven 
monitoring tasks should be flexibly defined. 

0 For each physical variable, the module defines the device drivers associ- 
ated with system 1 / 0  and the parameters necessary for 1 /0  operations. 

0 Define various system tasks and the driven events for task execution, 
which may be clock-driven or event-driven. 

0 Task management. Activate task execution of a task when it meets 
certain conditions by rapidly scanning various tasks. 

0 Define range and transform formula for each physical parameter. 

0 Acquisition of raw data of physical variables and generation of real-time 
database. 

In this section, the measurement point management module is detailed, which 
includes MP configuration, task configuration, dynamic configuration of MPs 
and tasks, and system running. 

10.4.1 M P  configuration 

The physical variables to be measured and controlled, such as temperature, 
pressure, and flow rate, indicate certain crucial process behaviors of the su- 
pervised manufacturing system. These variables are normally collected by 
their corresponding sensors. MP configuration panel defines device drivers 
and parameters for each monitored variable. Instrument drivers allow users 
to control GPIB, VXI, serial, and computer-based instruments from the su- 
pervisory software. The device driver software is typically supplied by the 
hardware vendor. If the measurement device is designed in house, the driver 
software design should also be based on the modular concept so that it can be 
easily integrated to heterogeneous applications. The flexible supervision soft- 
ware developed in this study provides the rich drivers library to meet diverse 
shop floor supervision demands. 

The MP configuration primarily includes: 

0 MP variable: It is a unique character string corresponding to  each MP. 

0 Variable type: It can be categorized into analog, state, and integer 
variables. 



MEASUREMENT POINT MANAGEMENT 159 

0 Descriptions: It is the textual information, mainly on the MP physical 
significance. 

0 Driver: The system driver name which corresponds to this MP. 

0 Starting value: Default value of the variable. 

0 Variable address: Address reference of the MP variable in DIT. 

0 Unit: Physical unit of the variable. 

0 Transformation formula: It defines how to convert the acquired raw 
variable value into the desired MP variable value. 

0 Maximum value: Possible maximum value of the variable. 

0 Minimum value: Possible minimum value of the variable. 

0 Record flag: It indicates whether or not the real-time value of the MP 
variable needs to be stored into the real-time database. 

The system driver (.dll) path and filename of the chosen driver can also be 
designated by the user. Variable is named based on the principle of easy oper- 
ation and clear significance. Users may define their own naming conventions; 
for instance, the name of temperature MP begins with T and the pressure 
name begins with P. 

10.4.2 Task configuration 

Tasks in a general industrial supervision system can be classified as time- 
driven and event-driven. Normally, event-driven tasks occur more frequently 
than time-driven tasks. It is beneficial to adopt event-driven programming 
language to develop such supervisory systems, since diverse applications must 
run in harmony in a single monitoring system. Task configuration primarily 
includes the following items: 

0 MP name: It must be in the MP configuration database; i.e., it should 
have been defined during MP configuration. 

0 Trigger modes: The task trigger mechanism mainly has two types: a 
time-based processing and exception-based (or event-based) process- 
ing. Event-based processing ensures that the application software is 
able to process data in a more timely manner after certain emergent 
events occur, for example, in the case of changing an MP or closing a 
coil. Moreover, since each equipment has processes for initialization and 
shutdown, two kinds of trigger modes, i.e., OnStart and OnClose, are 
added to carry out some routine tasks in the initialization and closure 
processes, respectively. 



160 FLEXIBLE MEASUREMENT POINT MANAGEMENT 

0 Description: It explains physical meaning of the task. 

Task: The tasks mainly include CallRead and Callwri te .  CallRead is 
used to  gather data and Callwrite is used for data transmission. How- 
ever, the actual task execution for data gathering and transmission in- 
volves much more functions such as initialization, self-checking, version 
query, error checking, closure, and so on. When implementing these 
functions, the different hardware has different function name and differ- 
ent supplementary parameters. In order to enable the system to accom- 
modate diverse hardware, all tasks are abstracted into two functions, 
that is, CallRead and Callwri te .  CallRead and Cal lwr i te  do not need 
any parameter, and they only indicate that the current task is data gath- 
ering or transmission, respectively. This property makes them suited for 
all types of hardware. Any particular function is realized by the system 
driver based on the actual hardware driver. 

Priority: Priority indicates the importance level of the task, and it is 
expressed as an integer. The bigger the integer, the higher the priority. 

Poll time: It is only used in time-based processing tasks, and this time 
value is the MP execution interval in milliseconds. 

Poll condition: It is only used in event-based processing tasks, and the 
condition is a logical computation expression. Events may be triggered 
by a faulty MP value, an abnormal condition, an alarm event, and so 
on. Poll condition expression may contain the following elements: 

- Numerical numbers: Integer and floating numbers. 

- Mathematical operations: + - * / MOD, DIV. 

- Trigonometrical functions: SIN(), COS(), TGO, CTG(), etc. 

- Comparison operations: > < 2 5 =, <>. 
- Logic operations: NOT(), AND, OR, XOR. 

- Other mathematics functions. 

Variable: The variable can be a constant or a database record value, 
which may come from real-time, alarm, and configuration databases. 

Precision: It is the smallest interval that the task execution can achieve. 
This is used for the effective use of system resources by avoiding too fast 
sampling speed. 

10.4.3 

Dynamic configuration is required in the industrial supervision system, which 
allows for reconfiguration of the current settings without interrupting the plant 
production. Therefore, it is highly necessary to guarantee the integrality of 

Dynamic configuration of MPs and tasks 



MEASUREMENT POINT MANAGEMENT 161 

the current settings. That is, before the current settings become valid, all the 
information in the configuration database should be sufficiently precise and 
complete. In our supervision software development, the cached updates tech- 
nique provided by Borland Delphi BDE (Borland Database Engine) is adopted 
to  prevent any invalid record from being added to  the configuration database. 
By setting the CachedUpdates property in the configuration database to  be 
True, the records in database can be manipulated as follows: 

0 ApplyUpdates  is called to  submit all the updated records as well as those 
appended after the CachedUpdates property is set to  be True. This 
mechanism is similar to  a Session submission. 

a CancelUpdates is called to  cancel all the updating operations. 

a RevertRecord is called to  locate the current record. 

In this industrial supervision system design, M P  configuration database 
is modified via the device driver module, and only local database is mostly 
concerned. Therefore, it is much simpler and more efficient to use cached 
updates mechanism than to use TI-ansactions mechanism. In addition, the 
task configuration database also uses cached updates technique to ensure the 
data integrality during record storage. 

10.4.4 System running 

System running is the real-time implementation of system Configuration. It is 
the full combination of task management, driver management, real-time data 
acquisition, together with other industrial processes. Since the automatic 
supervision system should be highly responsive, multi-threaded programming 
technology is also used to ensure the prompt system response to  any urgent 
task, production emergency, and operation fault. 

10.4.4.1 Description Using the object-oriented software engineering approach 
[8, 17, 19, 271, the subthread base class for the data 1 / 0  is built as follows: 

TFtunIO=class (lThread) 
private 
DriverList:TDriverList; // Drivers list 
SubSect:TCriticalSection; // Critical section 
procedure Showstatus; 
function TaskTest(Var1D:integer;Str:string):Boolean; 
/ /  Check if the task should be triggered 
procedure ThrdInit; // Thread initialization 
function ThrdC1ose:Boolean; // Thread exit 

protected 
public 
constructor Create(State:Boolean); 
destructor Destroy;override; 
procedure Execute;override; // Thread execution 

// Display running states 

end ; 



162 FLEXIBLE MEASUREMENT POINT MANAGEMENT 

Thread is a lightweight unit of program execution. Process is a heavyweight 
unit consisting primarily of a distinct address space, within which one or 
more threads execute. It is highly necessary to prevent multiple threads from 
accessing the same data and system resources simultaneously. For instance, 
in a safety-critical system, memory should be treated as a hard currency and 
allocated carefully. Thus, synchronization of different threads is highly needed 
in multithreaded programming [24]. One solution is to  create a critical section, 
which is a protected data section. This method can prevent other threads from 
operating on this data section, which is occupied by a thread. The technique 
can be implemented in the following form: 

EnterCriticalSection(SubSect); 
... 
LeaveCriticalSection(SubSect); 

// Add the data to be protected here 

SubSecet is the critical section variable defined previously. 
Another solution to thread synchronization is to use the mutex (mutual 

exclusion) mechanism. Mutex is similar to the critical section approach, but 
it is capable of working in both single and multiple processes. At any time 
instant, only one thread can occupy the mutex such that all the threads work 
in a mutually exclusive fashion. The method can be used in the following 
format: 

WaitForSingleObject(hMutex.INFIN1TE); 
... 
ReleaseHutex(hMutex); 

// Add the system resources to be synchronized here. 

HMutex is the handle of Mutex. The second parameter in WaitForSin- 
gleObejct function indicates the waiting time prior to function return in mil- 
liseconds, and INFINITE means that the function can be returned only if 
Mutex is flagged. 

10.4.4.2 System driver specification As shown in Fig. 10.3, system driver 
bridges the data 1/0 and hardware equipment. Its functions are briefly intro- 
duced here. 

Calllnit is used to initialize the hardware. It obtains DllHandle (the 
hardware driver handle) and HardwareHandle (the hardware handle), 
and then it stores them into DIT for calls from other functions. 

CallRead has two parameters, i.e., Addr and Get Value. Addr is the index 
address of MP variable in the system driver DIT, and Get Value is the 
value read from DIT by CallRead. Since the value can be any data type, 
the GetValue type is set as Variant. 

CallWrite also has two parameters, i.e., Addr and Sendvalue, where 
Addris similar to the one in CallRead and Send Value is the value written 
to DIT by CallWrite. Its data type is also Variant. 

CallClose is used to close the hardware and release the link to the hard- 
ware driver. 



MEASUREMENT POINT MANAGEMENT 163 

The Booleans returned from Callinit, CallRead, Call Write, and CallClose 
indicate whether or not the desired operations are properly conducted. For 
instance, if the Boolean returned by CallRead function is True, data 1/0 will 
store the value of GetValue to the real-time database. Similarly, the Call- 
Write will transfer data to DIT if the returned Boolean value is True. Tasks 
such as Callhit, CallRead, Call Write, and CallClose are executed by system 
drivers. System drivers read data from the 1/0 devices via hardware drivers 
(I/O drivers), and transfer data to the Driver Image Table (DIT) addresses. 
Sensors and actuators send data to the registers in process hardware such as 
programmable logic controllers (PLCs), and the 1/0 drivers read data from 
these registers. DIT can be viewed as a mailbox, which has two data updating 
modes, namely, time-based and event-based data updates. 

Fig. 10.3 Running module architecture for MP management. 

The prototypes of Callinit, CallRead, Call Write, and CallClose are defined 
as follows: 

Callhit prototype:TInitFunc=function:Boolean; 
CallRead prototype: 

CallWrite prototype: 

CallClose prototype:TCloseFunc=function:Boolean. 

TReadFunc=function(Addr:integer;var CetVa1ue:variant):Boolean; 

TWriteFunc=function(Addr:integer;SendValue:variant):Boolean; 

In the system driver, hardware driver (I/O driver) reads data from the 1/0 
equipment and sends data to the corresponding address in DIT. The sensor 
or controller sends data to PLC or other process hardware registers. The 1/0 
driver reads out data from the register. The high-performance 1 / 0  driver 
has many functions, such as automatic communication error detection, signal 
adjustment, report, recovery, and redundant communication. The 1 / 0  driver 
is a tool used to visit data from the hardware register. Once the related 



164 FLEXIBLE MEASUREMENT POINT MANAGEMENT 

hardware information is provided, 1/0 driver can establish and maintain the 
DIT. The DIT may be imagined as a mailbox, and each mailbox can lock an 
MP or some neighboring regions. To add a poll record, the actual address 
and length must be assigned. The actual address tells the 1/0 driver where 
the data starts in the process hardware, and the length tells the 1/0 driver 
how many neighboring points should be retrieved. 

10.4.4.3 Since data 1/0 can be linked to 
multiple drivers, it is necessary to build a coordination mechanism to manage 
diverse drivers. Two closely related classes named TDriver and TDriverlast 
are created for such a purpose, and they are illustrated by the following class 
structure. 

Driver management in data l/O 

PDriver = ?'Driver; // Tdriver pointer type 
TDriver = class(T0bject) 
private 

DllPath:string;//Path of the system driver 
DllName:string;//System driver name 
DllPChar:PChar;// System driver pointer 
DllActive:Boolean;// Flag indicating if the system 
driver is in active state 
DllHandle:THandle;// Driver handle 
Next:PDriver;// Point to next driver 

protected 
public 

Call1nit:TInitFunc; 
Cal1Read:TReadFunc; 
Cal1Write:TWriteFunc; 
CallC1ose:TCloseFunc; 
constructor Create(PathStr,NameStr:string); 
destructor Destroy;override; 
function LoadLib:Boolean;// Load DLL 
procedure CloseD11;// Close DLL 

end ; 
TDriverList = class (TList) 
private 

FirstDriver.CurDriver,NextDriver,LastDriver:PDriver; 

CurIndex:integer;// Current driver index 
// Driver pointer 

protected 
public 

DriverCount:integer;// Driver number 
constructor Create; 
destructor Destr0y;override; 
procedure FindFirst;// Find the first driver 
procedure FindNext;// Find the next driver 
procedure FindLast;// Find the last driver 
function Prior(N0d:PDriver):PDriver; 

procedure AddDriver(NeuDriver:TDriver);// Add a driver 
procedure DeleteDriver(DriverStr:string);// Delete a driver 
function FindDriver(DriverName:string; 

// Find the previous driver 

var FoundDriver: PDriver): Boolean; 
// Check if the driver exists 



MEASUREMENT POINT MANAGEMENT 165 

function LoadAll:Boolean;// Load all the drivers 
procedure FreeAll;// Release all the drivers 

end; 

&l New Driver? 

I No 

Last Record? @ 
Execute Task 

Fig. 10.4 Driver loading process in the MP management module. 

Figure 10.4 depicts the driver loading mechanism in the MP manage- 
ment module. TDriver defines the basic operations and properties of system 
driver, which include driver path, name, current status, and the basic out- 
put functions of driver such as Calllnit, CallRead, Callwrite, and CallClose. 
In addition, it also defines the dynamic link and release of system drivers. 
TDriverList class is the link structure of TDriver class and it is designed for 
effective management of the TDriver object through operations such as driver 
addition, deletion, and query, etc. The data 1/0 is then dynamically linked to  
drivers, and commands such as Calllnit, CallRead, Call Write, and CallClose 
are called according to the configuration information. 

10.4.4.4 Task management in data I/O Task management is a crucial com- 
ponent in achieving effective reconfiguration, and it is realized by scanning 
the configuration database. As depicted in Fig. 10.5, firstly the system ini- 
tialization is activated and the Onstart task is executed, and then the task 
configuration database is scanned in order to find priority of the desired task. 



166 FLEXIBLE MEASUREMENT POINT MANAGEMENT 

Initializa(an 

I 
1 

Onstart Task 

Sort the Tmks According to 
PWrities 

End DnCbse 
Task 

No 

The F h t  Task 0 
Execut. Task 0 

me Next Taak 6 

fig. 10.5 Task scanning mechanism. 

I , Basic Poll Time 

I I Maximum Poll Time 

TaskA 0 C D 

T k , B , C , D ,  - - - ~  N UIII____ u 
Nonnal Condition Basic Poll Time 

TaskA €3 C TaskA 0 C 

I 
Exception Maximum Pdl Time 

Fig. 10.6 Task priority management mechanism. 

Figure 10.6 illustrates the task priority management mechanism in our 
industrial supervision system. In normal operating conditions, the data ac- 
quisition is conducted based on the basic poll time. If poll time of an MP 
exceeds its maximum acceptable value, the next task will be ignored and the 
task with the highest priority will be executed first. 



AN ILLUSTRATIVE EXAMPLE ON A SERIAL PORT DRIVER 167 

10.4.4.5 Exception handling To effectively deal with the unusual situations 
occurred in system operations such as errors in driver loading and hardware 
initialization, an effective exception handling mechanism must be established 
to avoid the entire system collapse when an exception appears. For instance, 
certain types of system exception in driver loading process are defined as 
follows: 

EDllOverFlow=class(Eception); // Driver overflow 
FDllLoadError=class(Exception); // Driver load error 
EDllFuncError=class(Exception); // Driver function call error 
EHDInitError=class(Exception); // Hardware initialization error 

These exceptions can be transferred to their corresponding exception han- 
dlers via message mechanism to trigger a series of activities including faults 
report, record, storage, and so forth. Furthermore, provided that an excep- 
tion is not defined in the system, a default exception handler will capture 
this exception after the exception is triggered during system operations. A 
window will pop out in order to describe the exception to the user. Then the 
program resumes its proper operations. By doing so, the supervision system 
will not freeze or even crash in the presence of certain faulty operations and 
configuration settings. 

10.4.4.6 Real-time data acquisition and update After the driver is dynam- 
ically connected, data 1/0 can acquire data in real-time and transfer data 
according to the configuration database. The data obtained from the Cull- 
Read function are stored in the real-time database, which has four fields: MP 
variable ID ( Vurcld), MP variable name ( VurNume), real-time value ( Value), 
acquiring time (AcqTzme). Historical database is the accumulation of real- 
time database with time; that is, the data in real-time database are preserved 
at every certain time instant. Establishment and maintenance of the config- 
uration, real-time, and historical databases are the goal of MP management 
module. Other modules obtain the system information and data through vis- 
iting these databases, and then they carry out corresponding data processing 
and presentation tasks. Figure 10.7 is a GUI-based operational panel showing 
real-time and historical data updates. 

10.5 A N  ILLUSTRATIVE EXAMPLE ON A SERIAL PORT DRIVER 

With the development of modern information technology as well as the wide 
spread use of computer networks, the computer communication technology has 
become very stable and mature already. However, the serial communication 
technique, which is fairly convenient and reliable, still serves as an effective 
means of data communication and is widely applied in industry supervision 
and control fields. In the industrial production practice, PC is usually used 
to implement real-time monitoring, and various functions, such as data gath- 
ering, data processing, and control signal generation, are required. Therefore, 



168 FLEXIBLE MEASUREMENT POINT MANAGEMENT 

Fig. 10.7 Snapshot of the GUI-based operational panel. 

PC needs to establish connections to various real-time process control signals, 
and the direct operation on PC serial port is highly desired. In order to real- 
ize data transfer in Windows platform, Win32 communication API (Win32C) 
can be used. Although Win32C is not restricted in the serial data transfer 
only, it is basically a serial port API. RS232Drv discussed in this section is 
a serial port driver, and any instrument based on RS232 serial port can be 
integrated into our supervision software via this driver easily. 

10.5.1 Serial port hardware driver 

The mechanism of Windows operating systems prohibits the direct operations 
on computer hardware by Windows applications, but a library for standard 
API functions is provided to exempt the programmer from tedious hardware 
debugging. In Windows platform, each communication device is allocated 
a user-defined buffer. Data 1/0 communication is accomplished backend by 
the operating system and the application only needs to read/write the buffer. 
DCB (Device Control Block) structure is crucial to communication manipu- 
lation, which records reconfigurable serial parameters. The commonly used 
serial communication operation functions in this industrial supervision system 
are listed as follows. 

a CreatFale is used to open the serial communication port, which can be 
used to open existing files, new files, and devices such as serial and 
parallel ports. It can be called in the following way: 

EXISTINC,FILEATTRIBUTEJIORMAL,NULL); 



AN ILLUSTRATIVE EXAMPLE ON A SERIAL PORT DRIVER 169 

0 CloseHandle is used to close the serial port. The handle returned from 
CreatFile is used as the only parameter by CloseHandle to close the 
serial port. It can be called in the following way: 

CloseHandle(hComm) ; 

0 SetupComm is used to set the buffer size for the communication. After 
opening the serial port, Windows allocates a default size buffer and 
initializes the serial port. To ensure the desired buffer size, this function 
can be called in the following way: 

SetupComm(hComm, dwRxBufferSize. dwTXBuffersize); 

0 ReadFile is used to read serial communication operations. It is able to 
read data from both files and port. It can be called in the following way: 

ReadFile(hComm. inbuff, nBytes,&nBytesRead,&overlapped); 

0 WriteFile is used for writing serial communication operations. It is 
similar to ReadFile and can be called in the following way: 

WriteFile(hComm, outbuff, nToWrite. BnActualWrite. &overlapped); 

As discussed earlier, multithreaded programming technique is used for se- 
rial communication in the Windows platform. Thread is the execution path in 
process. Concurrent execution of multiple threads inevitably incurs conflicts 
when they access the shared system resources simultaneously during system 
operations. In order to avoid this problem, synchronization of these threads is 
desired to coordinate their privileges to accessing the shared system resources. 
Windows operating system provides several synchronization methods such as 
critical section and mutual exclusion techniques. Multiple threads can be syn- 
chronized through event objects. CreateEventO can be used for event object 
creation, and SetEventO and PulseEvent() are used to set the event objects as 
signal synchronization. In applications, WaitSingleObject() function is used 
to wait for a triggered event. 

To emulate the hardware device driver, RS232.dll is created for the serial 
port. RS232.dll outputs four functions including RS-init, RS-read, RS-write, 
and RS-close for opening, reading, sending, and closing the serial port. They 
can be realized by calling the APIs as follows: 

Initialize Function 
function RS-init(comp0rt:integer; baudrate:integer; 

parity:integer; bytesize:integer; st0pbits:integer; 
var CommHandle: integer1:integer; 

Write Function 
function RS-write(CommHand1e:integer;var WriteB1ock:Byte; 

Read Function 
function RSiead (CommHand1e:integer;var ReadB1ock:Byte; 

Close Function 
function RSxlose(CommHand1e:integer):integer; 

nToWrite:LongInt;var nByteWritten:integer):integer; 

nToRead:DWORD;var nByteRead:longint):integer; 



170 FLEXIBLE MEASUREMENT POlNT MANAGEMENT 

It should be noted that RS232.dll and RS232Drv.dll are not the same DLL 
files. RS232.dll is designed for hardware, and it accompanies the instrument 
as 1/0 device driver. It is normally provided by hardware manufactures. 
RS232Drv.dll is the system driver file designed specially for this reconfig- 
urable industrial supervision system. It bridges data 1/0 and hardware driver 
(RS232.dll), and it is normally provided by system integrators. 

10.5.2 Serial port system driver 

System driver is used to setup a DIT, which serves as the data source in data 
I/O. A chunk of memory is carved off for the DIT. The data structure is built 
as 

TDataBuff = record 
RS232Handle:THandle; 
RS232DrvHandle:THandle; 
ReadData:array[O. .MaxReadNum-I] of byte; 
ReadDataFlag:array[O..MaxReadNum-11 of Boolean; 

//True: Unread, new data; False: Read, old data 
WriteData:arrayCO..MaxWriteNum-11 of byte; 
WriteDataFlag:array[O..MaxWriteNum-11 of Boolean; 

//True: Unwritten, new data; False: Written, old data; 

RS232Handle is the handle of serial port in use while RS232DrvHandle is 
the handle for calling RS232.dll. ReadData and WriteData are storage regions 
for the acquired data and data to be sent, respectively. ReadDataFlag and 
WrzteDataFlag are the flags for data updating. “True” flag indicates that the 
data is new and valid, and “False” flag indicates the invalid data. Prior to 
driver initialization, a chunk of memory is applied to build the driver DIT 
and the memory size equals to TdataBuff .  

end; 

num:=sizeof(TDataBuff); 
hMem : = ClobalAlloc(gmemJ4OVEABLE and gmemDDEShare .nu) ; 
if hMem = 0 then 

MessagaDlg(’Cou1d not allocate memory! ’ .mtWarning, CmbOKl , O )  ; 

The functions such as Cal lh i t ,  CallRead, Call Write,  and CallClose can be 
realized after the DIT is built. 

Callhit 
// The function is used to initialize the hardware 
// and obtain RS232DrvHandle 
(the hardware driver handle) and RS232Handle (the hardware handle). 

if DataBuffer <> nil then begin 
DataBuffer := GlobalLock(hMem); // Lock global memory 

DataBuffer.RS232Handle := Handle; // Hardware handle 
DataBuffer.RS232DrvHandle:=dll; // Hardware driver handle 
GlobalUnlock(hMem); // Unlock global memory 

end 
else / /  locking memory error 

Libname:=’..\RS232.dl11; 
/ /  The dll value is the handle when dynamically 

MessageDlg(’Cou1d not lock memory block!’,mtWarning,CmbOK],O); 



AN ILLUSTRATIVE EXAMPLE ON A SERIAL PORT DRIVER 171 

// loading the RS232.dll. 

// The serial handle is returned by RSinit calling. 
RS-init(comport,baudrate,parity. 

dll := LoadLibrary(PChar(LibName)); 

bytesize,stopbits.Handle); 
CallRead 

// CallRead is used to read data from DIT address. 
DataBuffer := GlobalLock(hMem); // Lock global memory 
if DataBuffer <> nil then begin 
if DataBuffer.ReadDataFlag[Addr-l]=l then begin 
GetValue:=DataBuffer.ReadDataCAddr-11; // Read data 
DataBuffer.ReadDataFlag[Addr-I] :=False; // Clear data flag 
Result:=True; 

end 
else Result:=False; 
GlobalUnlock(hMem); // Unlock global memory 
end 
else // Locking memory error 
MessageDlg(’Cou1d not lock memory block! ’ .mtWarning. [mbOKI ,O) ; 

/ /  Callwrite is similar to CallRead but is used to write data to DIT. 
DataBuffer := GlobalLock(hMem); // Lock global memory 
if DataBuffer <> nil then begin 

Callwrite 

DataBuffer.WriteData[Addr-I]:= Sendvalue; // Write data 
DataBuffer.WriteDataFlag[Addr-il:=True; / /  Set flag 
GlobalUnlock(hMem); // Unlock global memory 
end 
else // Locking memory error 

MessageDlg( ’Could not lock memory block ! ’ ,mtWarning, CmbOKI ,O) ; 
CallClose 

// Callclose is used to close hardware and release the hardware 
driver link. 
DataBuffer := ClobalLock(hMem); // Lock global memory 
if DataBuffer <> nil then begin 
dll:=DataBuffer.RS232DrvHandle; // Get driver handle 
HDHandle:=DataBuffer.RS232Handle; // Get hardware handle 
ClobalUnlock(hMem); // Unlock global memory 
end 

MessageDlg(’Cou1d not lock memory block!’,mtWarning,~mbOK~,O); 
RSxlose(HDHand1e); // Close hardware handle 
FreeLibrary(dl1); 

else // Locking memory error 

// Release hardware driver handle 

10.5.3 

As mentioned earlier, there are two ways to update the DIT: time-based and 
trigger-based updates. Time-based update is used here by assuming that 
the MPs under test have similar measurement intervals. A precise multime- 
dia timer is introduced into RS232Drv such that the supervision software is 
able to automatically communicate with the hardware simulation program 
according to  the preset poll time. A handshaking mechanism is built for the 
communication between hardware simulation terminal and system driver, the 

DIT maintenance for serial port system driver 



172 FLEXIBLE MEASUREMENT POINT MANAGEMENT 

I 
I 
I 

Parameter 
Settings 

MP and Task Graphical 
Configuration Display 

Hardware Simulation Reconfigurable Software 

*+ Simulation 

fig. 10.8 Schematic diagram of the serial driver testing. 

I 

TCMate 
Communication I RS232 *+ 

Sub-Thread - Driver 

I .  

former of which is normally in the waiting status during system operations. 
When any data are sent to  the hardware simulation terminal, the data are 
handled and the processed data is returned to  RS232Dm, so the hardware 
simulation terminal works in a passive manner. Schematic diagram and com- 
munication mechanism of the serial driver testing are illustrated in Fig. 10.8 
and Fig. 10.9, respectively. 

Control Data 
Panel Generation 

10.5.4 Hardware simulation terminal 

Control 
Alporilhms 

I 

I 
I 

A PC is used to  simulate a device connected to  the supervision software 
via RS232. The actual working conditions are primarily simulated by four 
signals: continuous, random, resonant, and disturbance signals. In addition, 
a condition named NULL is introduced for simulating a working exception 
where no data is properly acquired. Data communication mechanism in the 
hardware simulation terminal is shown in Fig. 10.10. Hardware terminal 
creates a data array similar to  the hardware buffer and continuously updates 
the data. 

10.6 SUMMARY 

An industrial supervision system that respects a wide spread standard is ex- 
tremely advantageous, because it makes the system open, modular, and inte- 
grable with other commercial devices. This architecture provides modularity 
and flexibility: The system can grow and expand as the application needs 
change. The flexibility of the proposed system allows its use in different set- 
tings. The entire industrial supervision software was developed efficiently 
within three months. Each software module was developed independently 
by a field engineer. After the three modules were accomplished, one month 
was spent to integrate them together and simulate various plant production 



SUMMARY 173 

Command 

Update and 

Command 

Command 

Update and 
Process Data 

I I 

Wait 

I 

S 

fig. 10.9 Communication mechanism in RS232Drv. 

scenarios in computer for bug hunting. The main reason for such efficient 
software development may be contributed to the methodical object-oriented 
software engineering used. In addition, the supervision system is also devel- 
oped based on the modular concept. The overall system is divided into three 
modules, i.e., MP management, data processing, and data presentation. The 
three modules are independent of each other and connected through database. 
Therefore, the supervision system has a clear structure, which is highly bene- 
ficial to system troubleshooting, as well as for system expansion and upgrade 
later on. Some mature and reliable techniques such as object-oriented pro- 
gramming, multithreaded programming, dynamic link library, SQL database, 
and message-driven mechanism are adopted to  develop a responsive and re- 
liable supervision system. In addition, the data caching technique is used 
to  guarantee the secure data storage and retrieving. System driver specifica- 



174 FLEXIBLE MEASUREMENT POlNT MANAGEMENT 

Initialization L 

Update and 
Process Data 

Retrieve 

Send Data 0 
Fig. 10.10 Communication mechanism in the hardware simulation terminal. 

tion is also defined to enable the system to accommodate diverse hardware 
from different vendors and therefore to achieve a more general-purpose and 
expandable supervision system. 

After two months’ on-site testing, the automatic supervision system ran 
properly in in-plant applications. Therefore, its developmental cost is very 
low as compared to large commercial software. This merit makes it suitable 
for numerous small and medium-sized companies worldwide, since the finan- 
cial issue is one of their major concerns. The automatic supervision system 
was successfully installed in a local petrochemical plant. Several expansions 
and upgrades were performed thereafter to meet the more demanding user re- 
quirements. After several years since its installation in the field environment, 
the automatic supervision system ran properly and could monitor the entire 
plant from a single, centralized control room and enabled users to implement 
solutions that are perfectly tailored to their specific applications with signif- 
icantly lower costs and greatly increased the efficiency of their operations. 



SUMMARY 175 

Table 10.1 illustrates the performance comparison between earlier manual 
system and the automatic supervision system. The MP management design 
in our application turned out to be successful, since all the MPs were fully 
manageable and reconfigurable using the proposed approach. The supervision 
system can be easily expanded and upgraded, thanks to the achieved flexible 
MP management for accommodating different hardware and ever-changing 
user requirements. In this way, the total cost of the supervision system can 
be reduced, and it becomes easier and faster to implement future expansions. 
Future work for this automatic supervision software is to pay equal attention 
to the system control function so as to enhance its control ability, which is 
limited in the current form. 

Table 10.1 
tomatic supervision system 

Comparison Earlier manual system Automatic supervision 
parameter system 

Performance comparison between the earlier manual system and the au- 

~~ ~ ~ ~~ ~ 

Productivity Staffs required all the Fully automatic monitoring 
and cost time to supervise and record 

plant parameters 

Reliability Cannot guarantee integrity Reliable data collection; 
and security of manually gathered data; supervision system ensures 

no effective safety 
mechanisms provided 

secure plant operations 

Easiness to retrieve System status updated only Continuous real-time access 
system status once every 45 min without 

access to real-time data 
to all the process states 
from different places 

REFERENCES 

1. Apippi, C., Ferrari, S., Piuri, V., Sami, M., and Scotti, F. (1999). New 
trends in intelligent system design for embedded and measurement ap- 
plications, IEEE Instrumentation and Measurement Magazine, June, pp. 
36-44. 

2. Augusiak, A.,  and Kamrat, W. (2002). Automated network control and 
supervision, IEEE Computer Applications in Power, January, pp. 14-19. 

3. Birla, S. K., and Shin, K. G .  (1998). Reconfigurable software for servo- 
controlled motion, Dynamic Systems and Control Division, American So- 
ciety of Mechanical Engineers, Vol. 64, pp. 495-502. 



176 FLEXlBLE MEASUREMENT POlNT MANAGEMENT 

4. Bucci, G., and Landi, C. (2003). A distributed measurement architecture 
for industrial applications, IEEE Transactions on  Instrumentation and 
Measurement, Vol. 52, No. 1, pp. 165-174. 

5. Bucci, G., Fiorucci, E., and Landi, C. (2003). Digital measurement station 
for power quality analysis in distributed environments, I E E E  Transactions 
on  Instrumentation and Measurement, Vol. 52, No. 1, pp. 75-84. 

6. Choi, J .  W., Lee, D. Y., and Lee, M. H. (1998). Reconfigurable control via 
eigenstructure assignment, I E E E  Proceedings of the SICE Annual Confer- 
ence, Society of Instrument and Control Engineers (SICE), pp. 1041-1045. 

7. Cole, R., and Schlichting, R. (eds.), (1998). Proceedings of the 4th Bian- 
nual International Conference on Configurable Distributed Systems, CDS, 
I E E  Proceedings: Software, Vol. 145, No. 5, Stevenage, England, pp. 
129-188. 

8. Eaton, T. V., and Gatian, A. W. (1996). Organizational impacts of 
moving to  object-oriented technology, Journal of Systems Management, 
March/April, pp. 18-24. 

9. Fowler, K. (2001). Giving meaning to  measurement, IEEE Instrumenta- 
tion and Measurement Magazine, Vol. 4, No. 3, pp. 41-45. 

10. Jiang, J., and Zhao, Q., (1998). Fault tolerant control system synthesis 
using imprecise fault identification and reconfigurable control, IEEE Pro- 
ceeding of International Symposium on  Intelligent Control, pp. 169-174. 

11. Kumar, B. R., Sridharan, K., and Srinivasam, K. (2002). The design and 
development of a Web-based data acquisition system, I E E E  Transactions 
on  Instrumentation and Measurement, Vol. 51, No. 3, pp. 427-432. 

12. Lee, K. B. and Schneeman, R. D. (1999). Internet-based distributed mea- 
surement and control applications, IEEE Instrumentation and Measure- 
ment Magazine, pp. 23-27. 

13. Liu, J., Lim, K. W., Ho, W. K., Tan, K. C., Srinivasan, R., and Tay, A. 
(2003). The intelligent alarm management system, IEEE Software, Vol. 
20, NO. 2, pp. 66-71. 

14. Qui, B., Gooi, H. B., Liu, Y., and Chan, E. K. (2002). Internet-based 
SCADA display system, IEEE Computer Applications in Power, pp. 20- 
23. 

15. Rao, M., Yang, H. -B., and Yang, H. -a. (1998). Integrated distributed in- 
telligent system architecture for incidents monitoring and diagnosis, Com- 
puters in Industry, Vol. 37, pp. 143-151. 

16. Rich, D. W. (2002). Relational Management and Display of Site Environ- 
mental Data, Lewis Publishers, A CRC Press Company. 



SUMMARY 177 

17. Norman, Ronald J .  (1996). Object-Oriented System Analysis and Design, 
Prentice Hall, Englewood Cliffs, NJ. 

18. Shen, L. -C., and Hsu, P. -L. (1999). An intelligent supervisory system for 
ion implantation in IC fabrication processes, Control Engineering Prac- 
tice, 7, pp. 241-247. 

19. Sommerville, I. (1989). Software Engineering, 3rd ed., Addison-Wesley, 
Reading, MA. 

20. Tian, G. Y. (2001). Design and implementation of distributed measure- 
ment systems using fieldbus-based intelligent sensors, IEEE Transactions 
o n  Instrumentation and Measurement, Vol. 50, No. 5, pp. 1197-1202. 

21. Valdes, M. D., Moure, M. J., Rodriguez, L., and Mandado, E. (1998). 
Rapid prototyping and implementation of configurable interfaces oriented 
to microprocessor-based control systems, IEEE Proceedings of the S ICE 
Annual Conference, pp. 1105-1108. 

22. van der Hoek, Andre (1999). Configurable software architecture in sup- 
port of configuration management and software deployment, IEEE/A  CM 
SIGSOFT Proceedings of the International Conference on  Software Engi- 
neering, pp. 732-733. 

23. Wang, L. F., and Wu, H. X. (2000). A reconfigurable software for in- 
dustrial measurement and control, Proceeding of the 4th World Multicon- 
ference on  Systemics, Cybernetics, and Informatics, Orlando, USA, pp. 
296-301. 

24. Wang, L. F., Chen, Y. B., Jiang, X. D., and Tan, K. C. (2004). A VxD- 
based automatic blending system using multi-threaded programming, I S A  
Transactions, Vol. 43, pp. 99-109. 

25. Winiecki, W. and Karkowski, M. (2002). A new Java-based software 
environment for distributed measuring systems design, IEEE Transactions 
on  Instrumentation and Measurement, Vol. 51, No. 6, pp. 1340-1346. 

26. Yourdon, E. (1994). Object-Oriented Systems Design, Prentice-Hall, En- 
glewood Cliffs, NJ. 

27. Yurcik, W., and DOSS, D. (2001). Achieving fault-tolerant software with 
rejuvenation and reconfiguration, IEEE Software, July/August, pp. 48- 
52. 



This Page Intentionally Left Blank



A VxD-Based Automatic 
Blending System Using 

Multithread ed 
Programming 

This chapter discusses the object-oriented software design for an automatic 
blending system. By combining the advantages of Programmable Logic Con- 
troller (PLC) and Industrial Control PC (ICPC), an automatic blending con- 
trol system is developed for a chemical plant. The system structure and multi- 
thread-based communication approach are first presented in this chapter. The 
overall software design issues, such as system requirements and functionalities, 
are then discussed in detail. Furthermore, by replacing the conventional Dy- 
namic Link Library (DLL) with Virtual X Device drivers (VxD), a practical 
and cost-effective solution is provided to improve the robustness of Windows 
platform-based automatic blending system in small and medium-sized plants. 

11.1 I NTRO D U CTI  0 N 

Blending is a key component in manufacturing processes, which is used in 
diverse applications such as chemical, metallurgical, and cement industries [2, 
3, 5, 8, 131. In traditional blending systems, nearly all blending operations 
are manually conducted by trained or experienced operators. To achieve an 

Modern Industrial Automation Software Design, By L. Wang and K. C.  Tan 
Copyright 2006 the Institute of Electrical and Electronics Engineers, Inc. 

179 



180 A BLENDING SYSTEM USING MULTITHREADED PROGRAMMING 

accurate and real-time blending process, it is not advisable for operators to 
control the blending process manually on site, due to the reasons associated 
with harsh worksite environment, long production line, and complex control 
process. Although single-chip micro-controller (SCMC) has been used as the 
master-control device in a blending system, the SCMC-based blending system 
is hard to be programmed and is not sufficiently stable and reliable during 
system operations. 

With the rapid development of industrial electronics technology, an in- 
evitably programmable logic controller (PLC) was introduced into the blend- 
ing systems, which is more stable and reliable as compared to SCMC. The 
PLC’s intuitive ladder programming enables it to be easily understood and 
programmed by nonprofessional personnel. It features strong anti-interference 
capability that is beneficial in a harsh manufacturing environment. By adopt- 
ing a modularized structure, the PLC is highly scalable and thus is able to 
cater for different measurement and control requirements. However, the PLC 
is known to be poor for designing user-friendly interface and generating good 
statistical reports. To overcome these difficulties, the personal computer (PC) 
was introduced into the PLC-based blending systems. In such automatic 
blending systems, the units of signal acquisition, ingredient mixing, recipe 
configuration, production process monitoring, report generation, etc. are fully 
automated. In addition, the functions of measurement, control, and manage- 
ment are all integrated into a single automated blending system. Blending 
system capabilities are also enhanced by exploiting the abilities that the mod- 
ern computer operating systems offer to the application software development. 
For instance, to  ensure the real-time performance of blending system, multi- 
threaded programming technique for Windows platform can be employed to 
improve the data communication efficiency and accuracy by minimizing the 
control delay when system runs [lo]. 

For numerous small and medium-sized plants, especially for those in devel- 
oping countries, financial cost is often an important issue for software devel- 
opment. For instance, the software developed in earlier Windows operating 
systems often need to be upgraded to meet the ever-increasing production 
requirements. However, it is difficult to upgrade the entire software and its 
associated hardware equipment in a short period due to the high upgrading 
cost incurred. Hence, as an alternative, only the most crucial features are 
usually upgraded using low cost solutions. Traditional blending systems often 
include the front-end software and DLL. However, the DLL’s close involvement 
in certain low-level interrupt operations may lead to system unreliability. For 
instance, a production interruption caused by such a system fault occurred 
prior to  the adoption of VxD incurred USD 210,000 loss as reported from fault 
diagnosis department in the chemical plant. Therefore, it is highly necessary 
to upgrade the DLL to VxD for a more reliable system. 

In this study, an automatic blending system is developed using an object- 
oriented software engineering approach. To guarantee reliable and real-time 
process operations, a multithread-based communication protocol is developed. 



OVERALL BLENDING SYSTEM CONFIGURATION 181 

Furthermore, the Virtual X Device driver (VxD) is designed to  replace the 
traditional Dynamic Link Library (DLL) in order to  obtain a more robust 
and reliable system. The effectiveness of the developed blending system is 
demonstrated by our field experience in a chemical plant implementation. 

11.2 OVERALL BLENDING SYSTEM CONFIGURATION 

In this section, the overall system hardware and software architectures are dis- 
cussed, and the multithreaded programming-based communication protocol is 
described. 

11.2.1 Hardware configuration 

Figure 11.1 illustrates the process flow of a typical automated blending system 
commonly used in chemical plants. It is primarily made up of feeder tanks, 
an electronic-weighing system, and feeding valves. The feeder tanks S1 to  
S5 are responsible for feeding solid ingredients, and L1 to  L5 are in charge 
of feeding liquid ingredients. The raw mill (Ma), vessel, mixing boiler (Mb), 
and homogenization boiler (Mc) work together as the mixing and blending 
devices. The blending process is divided into four stages: weighing wait, 
weighing, feeding wait, and feeding. At the weighing stage, 10 ingredients 
are fed into the raw mill in proportions according to  the required quality of 
the final product. The feeding process continues until the desired material 
proportion is fulfilled. At the ingredient feeding stage, the feeding valves 
are switched on and raw mill starts so that the raw materials are pre-mixed 
before proceeding to  the next process. The purpose of stages for weighing 
wait and feeding wait is t o  ensure the synchronization of processes so as to  
improve the production. Considering the high reliability of PLC, the medium 
PLC is adopted to manipulate 10 weighing assemblies and a mixing assembly 
for controlling the blending unit. The full automation of blending processes 
includes the computerization of weighing, feeding, mixing processes, as well 
as other functions such as graphical user interfaces and comprehensive data 
manipulation. 

Figure 11.2 depicts the hardware configuration of the automated blending 
system. The system mainly comprises Industrial Control PC (ICPC), commu- 
nication card, PLC, electronic weighing system, valves, mixers, and printer. 
The data transfer between ICPC and PLC is achieved via the embedded RS485 
communication card. The blending process can be conducted automatically 
or manually. In the automatic operation mode, the PLC runs continuously 
to  accomplish the desired production target. In the manual operation mode, 
all control operations, such as valve switch control, are accomplished by panel 
operators via the intuitive GUIs in ICPC software. 



182 A BLENDING SYSTEM USING MULTITHREADED PROGRAMMING 

077 
077 

ICPC n 3 I l  

Inputt Input2 lrpln 5 Input6 Input7 Input 10 

Raw Mill 

Homogenization Boiler 

-Weighing System 

Valve 

- Mixer 

Fig. 11.1 Flowchart of the automated blending system. 

Printer - 
I 

Operation Panel la 

Fig. 11.2 The hardware setup. 

For the sake of blending system reliability, all the control tasks are con- 
ducted by PLC. The ICPC is responsible for human-machine interaction, data 
handling, and report generation. When any fault occurs in ICPC, the PLC 
will accomplish the desired production task automatically. Furthermore, the 
PLC is equipped with batteries and records all the system configuration pa- 
rameters and field data. The ICPC also maintains interface data for real-time 
presentation and historical data for retrospective analysis. When the system 
is running, the PLC continuously communicates with ICPC in a timely fash- 
ion to ensure that the displayed interface data is kept up-tedate with the 



OVERALL BLENDING SYSTEM CONFIGURATION 183 

I 
I 
I 
I I I I 

bh 
.Lcq- 

I 

ICPC PLC 

Main Program 

Fig. 11.3 The overall software structure. 

I 
Main 

I 
I 

llrud 
+-+ subhud 

field data, and the commands and parameter settings from the panel operator 
are sent to the PLC without any delay. 

I 
I 
I 

I 
I 

11.2.2 Software configuration 

The software in the automated blending system can be classified into ICPC 
and PLC parts, which are programmed individually, and a communication 
protocol is built for data exchange between the two parts. Figure 11.3 depicts 
the overall software structure of the automated blending system. As can be 
seen, the communication between ICPC and PLC is implemented using the 
communication subthread and communication interrupt subthread via the 
embedded RS485 serial bus. 

I 
culw 

u o o n h  

11.2.3 Multithread-based communication 

Figure 11.4 illustrates two data formats for communication between ICPC 
and PLC: Control Package (CP) and Query Package (QP). As shown in Fig. 
11.4A, the CP comprises multiple bits. The first bit of CP is zero, and all 
the control information such as recipe settings and interrupt flag is stored 
in the following bits. The QP consists of only one bit with the value of 1, 
which is shown in Fig. 11.4B. The PLC receives data packages from ICPC 
via interrupts. If an QP is detected, then the current control parameters 
will be sent to ICPC. If an CP is found, then the control parameters will 
not be sent to ICPC until it has been properly executed. In addition, when 
any fault occurs during the communication process, the PLC will switch to 
work in an offline manner and the ICPC is responsible for recovering the data 
communication. 

The software in ICPC is programmed under Windows 9X/NT/2000/XP o p  
erating system using Visual C++/Borland Delphi programming language [15, 
161 to attain multitasking functions and elegant graphical user interfaces. In 



184 A BLENDING SYSTEM USING MULTITHREADED PROGRAMMING 

1 2 3  128 

A Control Package B aery Package 

Fig. 11.4 Package formats for communication between ICPC and PLC. 

addition, the methods of object-oriented analysis (OOA) and object-oriented 
development (OOD) are adopted in our software development [l, 4, 6, 9, 11, 
121. In the area of automated blending, a complex plant, a mixing unit, a dis- 
play device, a valve, or a message can all be viewed as a net of objects. The 
software in ICPC consists of a few modules, such as the main program, recipe 
configuration, parameter settings, simulation control, statistical reports, and 
data communication. The user-friendly interface of the automated blending 
system allows the panel operator to view the working status of various de- 
vices, to receive alarms and system warnings, to display flow rates and data, 
and to view the complete operation and maintenance instructions. 

The ICPC and PLC constitute a master-slave architecture for the blend- 
ing system. The PLC handles queries or control commands from ICPC via 
interrupt mechanism, and it executes them before sending back the results to 
ICPC. If there is any fault in the communication, (e.g., no data are returned 
from PLC after a command has been sent out for a long time or the PLC 
receives invalid data,) the PLC will switch to the working mode of receiving 
data and the ICPC will work to restore the communication. 

To guarantee a real-time and reliable data communication between ICPC 
and PLC, the multithreaded programming technique is employed in the au- 
tomated blending system, and the serial communication occupies a single 
thread. The tasks of main thread and communication subthread are as fol- 
lows: The main thread configures the system and sends control commands 
from the operation personnel; the communication subthread sends the con- 
trol commands to PLC in a timely manner and updates data and commands 
of the main thread. Furthermore, three communication modes, (i.e., data 
memory sharing, command manager, and message dispatching) are designed 
for communication between the threads: 

Data memory sharing: The threads readlwrite the data section based 
on the mutual exclusion mechanism. 

0 Command manager: It is used by the main thread to  send commands 
to the subthread. Since the communication subthread runs at the back- 
end and cannot receive messages, the command manager is designed 
to emulate the messaging mechanism in a 32-bits Windows platform. 
When the operator sends a control command, the main thread adds 
this command to  the command manager, while the subthread reads 
the command repeatedly and sends the deciphered command to the 



THE OVERALL SOFTWARE DESlGN 185 

PLC. Furthermore, the subthread also checks if the sent command is 
properly executed. After the command is properly executed by PLC, it 
is erased from the command manager. Otherwise, the command will be 
repeatedly sent to  the PLC until it has been properly executed. 

Message dispatching: It is used by the subthread to send certain mes- 
sages to  the main thread, such as message for exception handling in serial 
communication. To ensure the synchronization of both threads, critical 
section object is used for the threads to  visit the data memory sharing 
and commands manager based on the mutual exclusion mechanism such 
that only one thread can operate a t  a time. 

Figure 11.5 shows the PLC communication mechanism. The PLC runs 
the main program iteratively and communicates with ICPC via an interrupt 
mechanism. The interrupt has the highest priority such that any commands 
from ICPC can be handled immediately. For our real-time blending sys- 
tem, the most important factor of Delphi is its event-driven programming 
mechanism. It is highly desirable to  dispatch the internal or external events 
properly within the operating system such that diverse functions can run in 
harmony. Event-driven Windows programming is a natural environment for 
object-oriented programming. 

The data flowchart of the communication subthread is shown in Fig. 11.6, 
which bridges the control interface and PLC. By reading/writing the RS485 
serial port, the communication subthread sends the control commands from 
ICPC to PLC and retrieves the PLC data for the control interface. 

To ensure that all control packages are properly sent to  PLC, the system 
checks if there are any remaining commands in the command manager or if the 
current status is in query mode before the software quits; i.e., all remaining 
control packages will be sent out before exiting the system. This approach 
guarantees the communication speed and execution efficiency, since the QP 
only consists of one bit while the C P  is made up of 128 bits or more, which 
reduces the communication burden significantly. In addition, the CP  adopts 
an identical format for different control purposes such that the communication 
protocol can be simplified. 

Due to the use of the multithreaded programming-based communication 
protocol in the blending software, the control algorithms for each device are 
executed without delay such that the accuracy of control algorithm calculation 
is guaranteed. Therefore, the fault operations incurred by control delay are 
eliminated (as compared with the 3 percent of fault operations caused by 
control delay in previous blending system without this technique). 

11.3 THE OVERALL SOFTWARE DESIGN 

To improve the reconfiguration capability of industrial blending system and to  
increase the system development efficiency, the approach of object orientation 



186 A BLENDING SYSTEM USING MULTITHREADED PROGRAMMING 

- 

Initialization 

SendData 4 

L 

Control 
omman NO 

Finish? 

fig. 11.5 PLC communication mechanism. 

(00) is employed in our software design, which offers the advantage of struc- 
turing a set of information clearly. The VtoolsD for Windows [14] and Visual 
C++ 6.0 are used for the VxD implementation, and the Borland Delphi 6.0 
is employed for the front-end software development. The remainder of this 
section is dedicated to the overall software design for the automatic blending 
system, and the main software modules and functionalities are discussed in 
detail. 

11.3.1 Design requirements 

In general, the automatic blending system should meet the following design 
requirements: 

Device management, data acquisition, real-time computation, and run- 
ning control. 



THE OVERALL SOFTWARE DESIGN 187 

send Query 

send ouery 

I I 

Process Data 

fig. 11.6 Data flowchart of the communication sub-thread. 

0 Recipe management including recipe addition, removal, and modifica- 
tion. 

0 Report generation and printing. 

0 Communication signal validation. 

0 Shift management. 

0 Operation privilege definition. 

Table 11.1 (page 194) illustrates the detailed event-response model in our 
automatic blending system by explicitly listing external events and their cor- 
responding system responses. 



188 A BLENDING SYSTEM USING MULTITHREADED PROGRAMMING 

COM 
’ 

Interface +j+ 

11.3.2 Software structure 

Due to  the difficulty in VxD testing and debugging, only the most time-critical 
tasks in the blending system are assigned to  the VxD. Figure 11.7 illustrates 
the data flow between cD and front-end software. As can be seen, the 
front-end program and the VxD are coded separately and a communication 
protocol is built for data communication between them. The GUIs for the 
running status of the blending automation system is shown in Fig. 11.8. The 
simulation indicates the blending process using animated graphics, which is 
dynamically updated by the “live” field data. The panel operator can click 
the buttons on the GUIs for sending commands to  the PLC, as necessary. 

Fmntend 

Fig. 11.7 The data flow between VxD and front-end software. 

Fig. 11.8 Snapshot of working status for the blending system. 



THE OVERALL SOFTWARE DESIGN 189 

11.3.3 VxD 

The VxD refers to  the Virtual X Device driver which executes a variety of 
low-level tasks. It conducts real-time operations for data acquisition and com- 
putation, and thus it is highly associated with the front-end program. Due to  
the VxD drivers instead of DLL libraries are used in the application software, 
the blending system faults associated with low level operating systems are 
eliminated. To achieve an efficient device management, two basic classes are 
designed: TEW (the electronic weighing system class) and TMP (the mea- 
surement pump class). In addition, five TEW instances and TMP instances 
are created in the system. The front-end software configures the instance pa- 
rameters after running the program and interrupts are activated as necessary. 

11.3.4 Front-end software 

According to  the system requirements, most of the system functions are im- 
plemented in the front-end software. The Object-Oriented Analysis and De- 
sign (OOA and OOD) are adopted to  divide the overall system into four 
modules: problem domain, data management, user interface, and task man- 
agement. The problem domain is a key step for the entire system design 
where certain crucial classes are implemented, such as system management, 
device management, recipe management, printing management, VxD inter- 
face, and communication interface. The data management primarily deals 
with the data manipulation and storage, and the user interface handles inter- 
actions between the system and users. The task management is responsible 
for certain low-level operations, such as interrupt handling and low-level data 
reading/writing, which are associated with specific operating platforms. 

The idea of object-oriented software engineering is used throughout the 
blending system development. The process of software development can be 
divided into five main phases: requirement capture, analysis, design, program- 
ming, and testing (7). Requirements capture collects all user requirements that 
are for the system to be developed. The analysis phase provides a detailed 
system description by transforming the objects in problem domain and sys- 
tem operations into a form that can be programmed. Design provides the 
blueprint for implementation by constructing various relationships among ob- 
jects. The programming phase produces the code. Finally, the test phase tests 
the system against the requirements. In this study, we implement the applica- 
tion in Object Pascal using Borland Delphi programming environment where 
each window, dialogue box, menu, and other controls are all implemented 
as objects. Delphi provides object-oriented component architecture and li- 
brary, scalable database, and message mechanism. Especially its powerful 
object-oriented Visual Component Library (VCL) allows for rapid objects as- 
sembling to realize the desired functions. For instance, in the blending system 
each device is implemented as an object such that the devices are conveniently 
managed, and the message mechanism is easily implemented to  guarantee the 



190 A BLENDING SYSTEM USING MULTITHREADED PROGRAMMING 

real-time system behavior. To achieve an efficient device management, two ba- 
sic classes are designed, namely, TEW (the electronic weighing system class) 
and TMP (the measurement pump class). In addition, five TEW instances 
and TMP instances are created for the blending system. 

11.3.5 Device management module 

During the system operation, it is desirable to enable the blending system 
to configure itself dynamically with the ever-changing user requirements. To 
achieve this goal, the device management is implemented as a linked list in 
the front-end program. Each node in the linked list represents a device; thus 
devices can be added or deleted conveniently by amending the linked list. 
The VxD is responsible for real-time computation for the devices while other 
less time-critical functions, such as control, display, printing, and storage, 
are accomplished by the front-end program. There are about 40 interface 
functions communicating with one another in the blending system. Since 
the communication data are relatively massive and variable, it is important 
to maintain data consistency and integrality during the communication. A 
viable and economic solution is to design the front-end program capable of 
configuring VxD parameters for certain operations, such as addition, removal, 
and modification of devices, and executing the necessary computation in a 
real-time manner. 

11.3.6 User management 

Table 11.2 (page 195) shows the user management for the automatic blending 
system. There are three types of users involved in operating the blending 
system: super users, administrators, and operators. 

11.3.7 Database management 

According to the system requirements described previously, five types of man- 
ufacturing information need to be included in the database: information on 
operators, operations, recipes, historical shift production, and historical pro- 
duction. Table 11.3 (page 195) illustrates the main database used for the 
automatic blending system. 

11.4 FIELD EXPERIENCE AND SUMMARY 

The upgraded automatic blending system has been successfully installed and 
implemented in a chemical plant. For over two years since its installation 
in the field environment, it has been running continuously and provided 24 



FIELD EXPERIENCE AND SUMMARY 191 

hourslday automatic blending, besides acting as an operational enhancement 
to assist personnel in noticing and handling operational situations. 

11.4.1 Field experience 

The multithreaded software design and the use of the VxD drivers result to 
a faster, reliable and cost-effective blending system. For instance, the control 
algorithm in the upgraded blending system is executed in a real-time fashion. 
Normally the time consumed from control commands sending to  execution 
for valve control is less than 1 ms even in high traffic conditions due to the 
multithread-based communication protocol, while in the previous blending 
software it may reach 15 ms or even worse, which inevitably causes the p r e  
duction interruption. The positive feedback from field experience indicated 
that the savings in loss product, cost, and environmental issues are significant. 
In summary, the main benefits include: 

0 Operators with minimum training can take advantage of the technology 
to ease their maintenance and process problems. Therefore the plant is 
less reliant on specialists. 

0 It has enabled the equipment maintenance outages to be significantly 
slashed, cutting 10 hours off the maintenance time with substantial sav- 
ings. 

0 Manpower requirements have been reduced. Prior to the installation of 
the automatic blending system, six workers were usually needed in each 
workshop. However, two operators are sufficient to handle the various 
operational conditions after implementing the system. 

0 Other issues such as safer work environment and more effective pollution 
control have reduced the production cost of the plant. The successful 
application has thus demonstrated that an investment to implement the 
automatic blending system in industrial manufacturing plants should 
expect a quick payback. 

11.4.2 Summary 

By adopting multithreaded programming techniques between the communica- 
tion of ICPC and PLC, the communication burden has been reduced and the 
speed has been improved, and therefore the accuracy for control algorithm cal- 
culation of the blending system has been guaranteed. The designed automatic 
blending system also offered various comprehensive capabilities for data col- 
lecting, recording, processing, and reporting. In this work, the DLL has been 
replaced by VxD due to its close association with certain low-level operations. 
The developed blending system has included comprehensive functions such as 
data acquisition, processing, analysis, storage, and printing. The GUIs are in- 
tuitive and can be conveniently operated even by non-professional personnel. 



192 A BLENDlNG SYSTEM USlNG MULTlTHREADED PROGRAMMlNG 

The field experience of the automatic blending system has demonstrated its 
effectiveness. In addition, the designed blending system can also be applied 
to other manufacturing environments, such as pharmaceutical, textile, food 
and beverage industries. 

REFERENCES 

1. Auslander, D. M., Ridgely, J .  R., Ringgenberg, J. D. (2002). Control 
Software for Mechanical Systems: Object- Oriented Design in a Real- T ime 
World, Prentice Hall PTR, Upper Saddle River, NJ. 

2. Banyasz, Cs, Keviczky, L., Vajk, I. (2003). A novel adaptive control sys- 
tem for raw material blending, I E E E  Control Systems Magazine, Febru- 
ary, pp. 87-96. 

3. Bond, J. M., Coursaux, R., and Worthington, R. L. (2000). Blending sys- 
tems and control technologies for cement raw materials, I E E E  Industrial 
Applications Magazine, November/December, pp. 49-59. 

4. Booch, G. (1991). Object-Oriented Design with Applications, Benjamin 
Cummings, San Francisco. 

5. Chang, D.-M., Yu, C.-C., and Chien, 1.-L. (1998). Coordinated control 
of blending systems, I E E E  Transactions on  Control Systems Technology, 
Vol. 6, No. 4, pp. 495-506. 

6. Crnkovic, I., and Larsson, M. (2002). Building Reliable Component-Based 
Software Systems, Artech House, Norwood, MA. 

7. Jaaksi, A. (1998). A method for your first object-oriented project, Journal 
of Object-Oriented Programming (JOOP), Jan. 

8. Jiang, X. Wang, L., and Chen, Y. (2002). An automatic detergent blend- 
ing system based on Virtual X Device driver, I E E E  Proceedings of the 
International Conference on  Industrial Technology, Bangkok, Thailand, 
pp. 810-814. 

9. Khoshafian, S., and Abnous, R. (1995). Object Orientation: Concepts, 
Analysis i3 Design, Languages, Databases, Graphical User Interfaces, Stan- 
dards, 2nd ed., John Wiley & Sons, New York. 

10. Kleiman, S., Shah, D., and Smaalders, B. (1996). Programming with 
Threads, SunSoft Press/Prentice Hall, Englewood Cliffs, NJ. 

11. Rada R., and Craparo J. (2000). Standardizing Software Projects, Com- 
munications of the ACM,  Vol. 43, No. 12, pp. 21-25. 



FIELD EXPERIENCE AND SUMMARY 193 

12. Sommerville, I. (1989). Software Engineering, 3rd ed., Addison-Wesley, 
Reading, MA. 

13. Swain, A. K. (1995). Material mix control in cement plant automation, 
I E E E  Control Systems Magazine, Vol. 15, pp. 23-27. 

14. Vireo Software Inc. (1998). VtoolsD Windows Device Driver Development 
Kit, Version 3.0, May. 

15. Wiener, R., and Wiatrowski, C. (1996). Visual Object-Oriented Program- 
ming Using Delphi, SIGS Books & Multimedia, New York. 

16. Williams, M., Bennett, D., et al. (2000). Visual C++ 6 Unleashed, Sams 
Publishing, Indianapolis, IN. 



194 A BLENDING SYSTEM USING MULTITHREADED PROGRAMMING 

Table 11.1 Event-response relationships for the automatic blending system 

Event Response 

1. Start software 

2. DateTime 
OnTimer 
(1000 ms) 

3. Timer routine 

4. Shift 

5. ControlTimer 
(250 ms) 

6. CommTimer 
7. RxdTimer 
(1500 ms) 

8. Begin running 

9. Stop running 

10. Exit the 
system 

A. 0 en the configuration file and configure the corresponding 
var iahes . 
B. Create system mana ement object; read the system settings 
from the configuration Ble. 
C. Create shift object; read the shifts time from the 
configuration file. 
D. Create devices management ob'ect create devices according 
to the configuration file and initialize them. 
E. Create reci e management object; initialize the recipe list 
according to tge configuration file. 
F. Create printing mana ement object; read printing settings 
from the confi uration fife. 
G. Create V x 6  interface object; read the ISA base address 
from the configuration file; upload VxD. 
H. Create serial port object; read the serial port settings 
from configuration files; open and initialize the serial port. 
A. Display date and time. 
B. Update the indicator display (if PLC interrupt time is at 
zero, then set it as RED alarm, or else set it as the GREEN 
normal color). 
C. Display system information. 
D. Set the CommTimer DroDertv (Enabled. Interval). 

I \  

E. Timer routine (See eGent'3). 
F. Send SAVED Rae to PLC. 
A. Display the device information. 
B. System exception handling. 
C. Automatic system status recording. 
D. Automatic shift (see event 4). 
E. Automatic printing of current production reports. 
A. If the current shift is valid, then save its production. 
B. Configure and update shifts (morning, middle, and night 
shifts). 
C. Operators input shift teams (e.g. A, B, and C groups). 
D. Shift operations in device management. 
E. Update the shift information display. 
A. Each device executes its related control algorithms. 
B. Each device executes its related computation and 
statistics. 
The default value is 3000 ms; Send out current status data. 
A. Read the incoming data, analyze data, and send the 
command. 
B. Execute the command (Run or Stop . 
by control algorithms in other devices. 
Set the runnin flag as False, which 
will be checkecfby control algorithms in other devices. 
A. Terminate the interrupts in VxD. 
B. Save the system configuration parameters. 
C. Close the serial ports. 
D. Release shift object: Save the system configuration 

arameters and save the current shift production. E . Release the recipe management objects: Save the 
and release the linked list. 
object and save the 

Terminate interrupts and 

Set the running flag as True, which wil r' be checked 

save s stem configuration parameters. 
H. Rerease serial port object: Close the serial port 
and save system configuration parameters. 



FIELD EXPERIENCE AND SUMMARY 195 

Table 11.2 User management for the automatic blending system 

User Remarks Level Privileges 

Super users Commercial users 0 (ulSuper) The highest privilege 
Administrators Administrators 1 (ulManager) As compared to 

in client operators’ privilege, 
companies there are three other 

functions in this level: 
(1) Device definition 
(2) Device property 
modification 
(3) Calibration 

Operators 2 (doperator) Only limited system 

companies such as shift selection, 
in client operations are permitted, 

flux settings, system 
startupfshutdown. 

Operators 

Table 11.3 Database management for the automatic blending system 

Table Description Remarks 
_________~_____ 

0perator.db Operator registration Operator’s information. 
0peration.db Operation records At most 1000 records, 

otherwise dump the oldest 
records automatically. 

index. 

production 
(i.e., 3 x 365 x 10 records). 

(i.e., one year’s records if 
data are saved every an hour) 

( N  is the device number). 

Recipe.db Recipes 8 recipes; recipe name is the 

ShiftProduct.db Historical shift production Record at most 10 years’ 

Status-Master.db Brief historical production At most 24x365 records 

Status-Detail.db Detailed historical production Include 2 4 x 3 6 5 ~  N records 



This Page Intentionally Left Blank



12 
A Flexible Automatic 

Test System for Rotating 
Turbine Machinery 

The widespread applications of rotating machines such as turbine machin- 
ery in both industry and commercial life require advanced technologies to 
efficiently and effectively test their operational status before they begin their 
practical productions in the plant. This chapter discusses the development of a 
general flexible automatic test system for turbine machinery. In order to  meet 
the demanding test requirements for a large and diverse community of turbine 
machinery, the proposed automatic test system has a contemporary windows 
interface and a graphical interaction and can be easily configured to include 
functions required by current and emerging test demands. The design and 
implementation of such a test system is approached from an object-oriented 
(00) software engineering point-of-view for ease of extension, expansion, and 
maintenance. Practical implementation upon a real industrial plant shows 
the validity and effectiveness of the implemented automatic test system for 
improving the performance and quality of turbine machinery. The obtained 
test system delivers the performance to meet all rigorous test throughput 
requirements. 

Modern Indwtrial Automation Software Design, By L. Wang and K. C. Tan 
Copyright 2006 the Institute of Electrical and Electronics Engineers, Inc. 

197 



198 A FLEXIBLE AUTOMATIC TEST SYSTEM FOR ROTAT/NG TURBINE MACHINERY 

12.1 INTRODUCTION 

Turbine machinery is a type of common equipment for industrial plants. 
Maintenance costs associated with unprogrammed shutdown of machines like 
turbo-compressors or generators are normally high, which often demands 
interruption of the entire production. Moreover, hazardous accidents and 
equipment failures always result in environmental pollution and poor product 
quality, and they jeopardize the safety of equipment and human resources. 
Therefore, a performance test of the turbine machinery must be carried out 
thoroughly before the machines leave the factory to  ensure their safe and re- 
liable operation in future. Furthermore, the early detection of the mechanical 
deficiencies in a machine also allows the machine developers to re-examine 
the principle and design of turbine machinery so that its performance can be 
improved in a timely manner. 

So far, a variety of automatic test systems (ATS) have been developed to  
test the performance of turbine machinery [l]. The systems of such kind have 
shown that they can bring significant benefits to industries. However, those 
systems are mostly designed for certain specific turbine types. The source 
codes of the test system have to  be revised if any changes of system config- 
urations and functions are needed. In other words, such systems are lack of 
generality and flexibility, which are not able to  meet the current and emerg- 
ing test demands for an increasingly large and diverse community of turbine 
machinery types. The lack of general-purpose software has been the primary 
barrier for low-cost and easy-to-use ATS [l]. Despite the power of modern 
software engineering, it still remains a rather large customization process for 
any specific test applications. Therefore, there is a result of developing a flex- 
ible test software to accommodate various test applications. The expected 
end results are lower ATS costs with more power and rapid inclusion of inno- 
vations. 

Consequently, today’s automatic test applications place demanding require- 
ments on software; therefore the proposed automatic test system should pro- 
vide customers with the diverse capabilities to  handle even the most sophisti- 
cated applications. This chapter thus presents an effective Flexible Automatic 
Test System for Turbine Machinery (FATSFTM). The software in our test sys- 
tem builds on a variety of latest standard technologies such as reconfiguration 
technology, database management, virtual instruments (VIs), object-oriented 
software engineering, ActiveX Automation, and the Internet so as to provide 
an open test platform delivering ease of use, power, and flexibility. The de- 
sign goals and design strategies for FATSFTM are presented in Section 12.2 
and Section 12.3, respectively. The detailed development process of the test 
system is discussed in Section 12.4. Section 12.5 discusses functions of FATS- 
FTM. On-site implementation and field experience are presented in Section 
12.6. Finally, conclusions are drawn in Section 12.7. 



DESlGN GOALS OF FATSFTM 199 

12.2 DESIGN GOALS OF FATSFTM 

What cannot be measured cannot be managed (21. An important function 
of any industrial automation system is integrating real-time running informa- 
tion from factory-floor devices together with the Human-Machine Interface 
(HMI). In the process of trial run, the running conditions of turbine machinery 
should be monitored online to get the necessary running parameters, while the 
performance analysis is also needed in order to evaluate the machine status 
and find the possible machine faults. Generally the data acquisition, condi- 
tion monitoring, and fault diagnosis are a series of activities in an automatic 
test system. A measurement sensor system is often installed in a piece of 
machinery or a production line for real-time data collection. This sensor data 
is transferred to a computer-based monitoring system, and those meaningful 
data and information are graphically displayed on the operator consoles in a 
control room. The data are also stored in a historical database for perfor- 
mance analysis. Under an abnormal situation, the operator has to interpret 
the abnormal conditions to prevent an incident, determine what kind of ac- 
tions need to  be taken, and resume the process to normal conditions. For 
a turbine designer, he often has to find reasons of equipment malfunctions 
based on the abnormal conditions for the scheduling of a redesign plan. Ac- 
cording to the information provided by operators and designers, a manager 
will then arrange for a plant-wide production plan. As depicted in Fig. 12.1, 
the FATSFTM discussed in this chapter is such an automatic test system for 
turbine machinery operations. 

Turbine 
machinery 2 

Turbine Measurement Senron mhinety 3 + device 4 

._... 

Fig. 12.1 The framework of FATSFTM. 

Generally, a FATSFTM should provide real-time supervision, intelligent 
alarm management, post-fault diagnosis, and ease-of-use graphical user inter- 
face (GUI). The main design goals of FATSFTM are as follows: 

0 Continuous monitoring of turbine machinery’s important industrial pro- 
cess parameters (e.g., pressure, temperature, flow, and electric power) 
and vibration parameters (e.g., rotating speed and shaft vibration). 
Ways should be provided for developers and users to keep abreast of the 
running states of turbine machinery. Furthermore, some real-time ana- 



200 A FLEXIBLE AUTOMATIC TEST SYSTEM FOR ROTATING TURBINE MACHINERY 

lyzing tools such as real-time trend analysis and instantaneous spectral 
analysis are required to probe into the turbine machineries’ immanent 
behavior. 

0 Flexible system configuration capability. A convenient and general- 
purpose configuration tool should be provided. Reconfiguration and 
flexibility are key issues to achieve flexible automatic test systems that 
can adapt to  the ever-changing customer needs and incorporate new 
hardware without extensive investment in time and money. In addi- 
tion, the time and costs of implementing and maintaining traditional 
solutions are eliminated because no custom coding is necessary. 

0 Multiple display modes for the monitored parameters. FATSFTM is 
an information-intensive system, so developers and operators should be 
provided with an intuitive and comprehensive description of its running 
states. The summarized message is presented to panel operators in an 
intuitive fashion so that plant operators are expected to take proper 
actions according to these easily understood messages. 

0 Automatic fault alarming and proper alarm handling for the abnormal 
conditions. Nowadays the ever-increasing capacity of data acquisition 
equipment makes it almost impossible for the operator to digest all 
of the information, which is especially true when a fault occurs. A 
solution to this problem can be offered by the FATSFTM, with its alarm 
handling function, to filter the vast quantities of collected data and 
supply the operator with the most important alarming information in a 
more comprehensive manner. 

0 Comprehensive and complete post-fault analysis. The tested turbine 
machinery should be exempt from failure in the long run. FATSFTM 
should integrate post-fault analysis so that the turbine designer does not 
only re-examine the principle and design, but also to locate the faulted 
element in order to restore it as soon as possible; 

0 Remote condition monitoring and fault diagnosis. FATSFTM should 
integrate with the network and database to eliminate islands of automa- 
tion; i.e., it should be capable of supervising and diagnosing the device 
in the central monitoring room far away from where it is installed. 

Data exchange with the third-party software. FATSFTM should be able 
to integrate with the third-party software applications for specific needs 
such as data processing. For example, users can move data into familiar 
MS Office applications for further analysis. 

0 Other functions for turbine machinery tests such as operation log, histor- 
ical data retrospect, and system simulation, which enable the FATSFTM 
to meet various test needs. 



DESIGN STRATEGIES OF FATSFTM 201 

12.3 DESIGN STRATEGIES OF FATSFTM 

Acting as the information-managing center, FATSFTM acquires and stores 
data from the tested turbine machinery and analyzes them to determine 
whether or not the machinery is working properly. Meanwhile, the analy- 
sis results are presented to operators in an intuitive and comprehensive way. 
FATSFTM also serves as the communication relay station, exchanging data 
with the remote monitoring and diagnosis units. The system design should 
maximally support the flexible system configuration capability. Therefore, 
both overall system design and specific hardware/software designs should be 
based on this principle. In this section, the design strategies on both hardware 
and software structures are discussed. 

12.3.1 Hardware design strategy 

Since the area of supervision is relatively small, an essentially centralized sys- 
tem is adequate and naturally economical. Figure 12.2 illustrates the hard- 
ware configuration of the proposed FATSFTM. 

As shown in the figure, input signals fall into two groups: the industrial 
process variables and the vibration variables. Industrial process variables are 
monitored by Isolated Measurement Pods (IMP), which is a novel distributed 
data acquisition device [3-51. The vibration variables are collected by ADRE 
(Automated Diagnostics for Rotating Equipment) and the 208 DAIU/208-P 
DAIU (Data Acquisition Interface Unit), an integrated vibration monitoring 

Fig. 12.2 Hardware architecture of FATSFTM. 



202 A FLEXIBLE AUTOMATIC TEST SYSTEM FOR ROTATING TURBINE MACHINERY 

and analysis system. The procedure for data acquisition will be discussed in 
more details later. To implement the remote monitoring and diagnosis, the 
local host computer is connected to the network. In this way, any computers 
with the authorized software and the access privilege to the diagnosis net- 
work can communicate with the local FATSFTM to  monitor or diagnose the 
machinery remotely. 

A special-purpose interface board named 35954A is used to connect IMPS 
with the monitoring computer. This interface board can be directly inserted 
into the extendable slot in the monitoring computer so that mutual commu- 
nications between them can be realized via S-Net. 35954A interface board 
allows for 30 IMP boards connection simultaneously. The communication 
cable length is about 1.5 km, and therefore it can cover the whole machine 
test plant. The data from 1000 channels can be transferred simultaneously 
within a second. Provided that an IMP board is out of work during system 
operations, other IMP boards can still work properly as they are connected 
in a parallel manner. Consequently, such IMP characteristics make system 
reconfiguration and expansion very convenient. IMP has many types includ- 
ing 35951A, 35951B, 35951C, 35951D, 35951F, 35952A, etc. There are 10-32 
measurement channels in each IMP board, and their measurement modes can 
be set individually. IMP supports various types of input variables such as 
current, voltage, piezoelectric signals, digital variables, and so on. It is able 
to sufficiently meet the test demands for a variety of measurement points in 
turbine machinery tests. The flexibility of IMP system provides the hardware 
foundation for our flexible test system. 

12.3.2 Software design strategy 

With the development of integrated circuits, hardware design for the a u t e  
matic test system is becoming more systematic and thereby simpler than ever. 
As a result, software design becomes the primary task in the system design. 
Fortunately, in tackling the large-scale and complex software system, object- 
oriented technology turns out to be able to provide an effective and efficient 
approach. 

operating systems, the Visual C++/Borland Delphi languages to attain mul- 
titasking functions (e.g., simultaneous execution of front-end information pre- 
sentation with a powerful GUI and back-end data acquisition via data acqui- 
sition devices and instrument drivers), and an elegant graphical user interface 
(e.g., turbine overview, waveform display, and alarm lists). In the software 
development, methods of object-oriented analysis (OOA) and object-oriented 
design (OOD) are adopted [6-111. The object-oriented technology offers the 
possibility of structuring a set of information as well as to manage it in an ex- 
plicit fashion. The most fundamental advantage of object-oriented techniques, 
compared to traditional structured techniques, is in creating a more modular 
approach to the analysis, design and implementation of software systems so 

The FATSFTM software was developed based upon Windows NT/9X/2K/XP 



DESlGN STRATEGIES OF FATSFTM 203 

that it minimizes the coupling of the design and makes the design more re- 
silient to changes [12]. Since our project size is not very large, we adopt a 
compact and pragmatic approach proposed by Jaaksi to  construct this object- 
oriented application instead of using complicated commercial object-oriented 
methods [13-161. Although the method is simple, it covers all phases from 
collecting customer requirements to  testing the code. In this simplified object- 
oriented method, the process of software development can be divided into five 
main phases: requirement capture, analysis, design, programming, and test- 
ing. Requirements capture collects all user requirements that are necessary 
to  develop the system. The analysis phase aims at  modeling the concepts, 
i.e., the objects of the problem domain, as well as analyzing the operations 
of the system. In the design phase, the results of the analysis phase are 
transformed into a form that can be programmed. Design illustrates how the 
objects form the structures, what their interfaces are, and how they collabo- 
rate. The programming phase produces the code and typically concentrates 
on one class at a time. Finally, the test phase tests the system against the 
requirements. By adopting this simplified method, the FATSFTM software is 
developed efficiently. 

In the object-oriented approach we adopted, the OOA model is divided 
into 5 layers and 5 views, which allow for viewing the somehow complex OOA 
model from different perspectives. Therefore, this approach can effectively 
deal with the large-scale OOA model. The 5 layers in the OOA model are 
listed as follows: 

Object-&-Class layer 

0 Attribute layer 

0 Service layer 

0 Structure layer 

0 Subject layer 

Here, we briefly discuss such layers. Object-&-Class layer represents the basic 
structure module of the intended system. Objects are the abstraction of 
application domain concepts in the real world. This layer is the basis for the 
overall OOA model, and the model building can be seen as the core of OOA 
approach. Figure 12.3 shows the OOA model structure. In OOA, the problem 
is to  determine how to create the abstraction representation of “real-world 
things.” We need to know about how to create the basic components of target 
system, because the overall system is built by such fundamental building 
blocks. System modeling is the process of obtaining the basic structure in 
application domain by capturing and abstracting information from real world. 
It is the most basic and important activity in the OOA method. In traditional 
software development methods, the process of system modeling is hidden from 
the software development process. In constructing any software system, it 



204 A FLEXIBLE AUTOMATIC TEST SYSTEM FOR ROTATING TURBINE MACHINERY 

4--- Class -8- object 
layer 

Attribute layer + 

Service layer f- 

Structure layer - 
Subject layer e- 

Class boundary 

+- Instance bwndary 

Instance 

' Attribute 

Sehce \ Message 

h 

Subject 0 
Fig. 12.3 OOA model structure. 

is crucial to  understand its application domain. In object-oriented method, 
system modeling is a standardized and systematic process for understanding 
the problem. In OOA, the data stored (or contained) in the object is called 
object attributes, and the operations that the object can perform are called 
services or methods. It is common that the class instances are restrained from 
each other, because they need to  abide by certain limitation conditions or 
transaction principles in the application domain. Such constraints are called 
instance connections. In actuality, the attributes and instances constitute the 
attribute layer of OOA model. The object Services, coupled with messages 
connections between object instances, constitute the service layer in the OOA 
model. The structure layer in the OOA model is responsible for capturing the 
structure relationships in the specific application domain. Because the OOA 
model is normally large and complex, quite often it is difficult to  deal with 
such a large amount of objects without appropriate classification. Thus, we 
need to classify a variety of objects into corresponding subjects. Each subject 
can be viewed as a submodule or subsystem, and they constitute the subject 
layer of the OOA model. 

In the software engineering environment, the basic system behaviors are 
derived at the system analysis phase. And at  the design phase, the system 
blueprint is constructed, which includes various commands, guidelines, sug- 
gestions, agreements, principles, and so forth. Based on this blueprint, the 
system can be implemented in the specified environment. As shown in Fig. 



DESIGN STRATEGIES OF FATSFTM 205 

PDC 

Class -8- object 
layer 

Amibute !ayw 

Service layer 

Structure layer 

Subject layer 

HlC 
Class boundary 

Instance 
t Instame bwndary 

Fig. 12.4 OOD model structure 

12.4, the OOD model is obtained by extending the OOA model. By doing so, 
it is beneficial to smoothly transit from analysis phase to design phase (some- 
times the transition process is quite burdensome if no systematic approach is 
used). The OOD model also includes 5 layers, which are as same as those in 
the OOA model, and in addition, it has other 4 components: 

0 Problem Domain Component (PDC) 

0 Human Interaction Component (HIC) 

Task Management Component (TMC) 

0 Data Management Component (DMC) 

The Human Interaction Component (HIC) determines the specific inter- 
face technology used in the system. It is a typical example about transaction 
separation principle in the object-oriented method, where the details on in- 
terface technology are utterly independent of the system functionality. The 
Task Management Component (TMC) determines the necessary operating 
system functionality in building the system. The Data Management Com- 
ponent (DMC) determines the objects used to interface with the database 
technology. Similar to  HIC, DMC can also be regarded as an example of 
transaction separation principle, as the details on database technology are 
separated from the system functionality. The basic principle of this OOD a p  
proach lies in its technology independency; therefore high-reusability can be 



206 A FLEXIBLE AUTOMATIC TEST SYSTEM FOR ROTATING TURBINE MACHINERY 

fig. 12.5 Software structure of FATSFTM. 

realized in this approach. For instance, when upgrading a given application 
from GUIs to voice response interfaces, only the HIC needs to be revised or 
replaced, while other system parts may keep intact. Put simply, the changes 
in GUI technology are transparent to other system parts. 

12.5, which 
depicts local and remote software that are installed in the local and remote 
computers respectively. It should be noted that the only difference between 
local and remote FATSFTM software is that the remote software does not 
include the data acquisition function. 

The software configuration of FATSFTM is shown in Fig. 

12.4 TEST SOFTWARE DEVELOPMENT PROCESS 

As mentioned earlier, the process of software development for the automatic 
test system can be divided into five main phases: requirement capture, analy- 
sis, design, programming, and testing. Requirements capture collects all user 
requirements that are for the system to be developed. The analysis phase aims 
at modeling the concepts, i.e., the objects of the problem domain, as well as 
analyzing the operations of the system. In the design phase, the results of the 
analysis phase are transformed into a form that can be programmed. Design 
illustrates how the objects form structures, what their interfaces are, and how 
they collaborate. The programming phase produces the code and typically 



TEST SOFTWARE DEVELOPMENT PROCESS 207 

concentrates on one class at a time. Finally, the testing phase tests the system 
against the requirements t o  examine if the developed system satisfies all of the 
user demands. In this section, the systematic software development process 
is fleshed out. 

12.4.1 Requirements capture 

Capturing the system requirements is the first phase in software development. 
In this phase, developers need to communicate with end users to  collect user 
requirements. If possible, the customer should participate in the writing of the 
use cases. In any event, the use cases are written so that the customer can un- 
derstand them and make comments. After the use cases and other functional 
and nonfunctional user requirements have been systematically documented 
through communicating with users, they form the basis for the later phases of 
the automatic test system development, which may, however, change through- 
out the whole development process. In each step, the obtained results must 
be checked against the previously specified user cases as well as other system 
requirements. Furthermore, the developed use cases can also serve as the basic 
test case set for final system testing. The user requirements for the automatic 
test system have been comprehensively formulated in Section 12.2. 

12.4.2 Analysis 

At the analysis phase, the developer needs to  understand the problem domain 
and the concepts related to  the system under development. This phase is 
based on the previously acquired requirements and use cases, and it includes 
the tasks of object analysis and behavior analysis. The object analysis task 
aims at specifying all of the key concepts for system development, and it 
produces a variety of class diagrams and sequence diagrams that documents 
the concepts of the problem domain. Behavior analysis defines the operations 
that the system needs to  perform. It treats the system to be developed as 
a black box, and only the external functionality of the system is considered. 
The final system should support the performance of all operations in the list. 

In the analysis phase of the automatic test system development, we strictly 
abode by the pragmatic but systematic software engineering principles. First, 
some traditional system analysis tools are crucial in identifying objects. For 
instance, the data flow diagram (DFD), the entity-relationship diagram (ERD), 
and the state-transition diagram (STD) are three commonly used analysis 
tools. These tools describe the target system characteristics from three differ- 
ent and independent aspects: process flow, data, and control. They are also 
used to analyze the software system and are usually called 3-View Modeling 
(3VM) in software industry. Furthermore, in software system analysis, peo- 
ple often process the concepts based on natural languages, in either written 
or oral forms. Up until now, some successes have been achieved by apply- 



208 A FLEXIBLE AUTOMATIC TEST SYSTEM FOR ROTATING TURBINE MACHINERY 

ing certain language processing principles to  software system analysis. Such 
processing methods are normally called Linguistic-based Information Analysis 
(LIA). We now use the aforementioned four tools to conduct system analysis 
for our automatic test system. 

12.4.2.1 3-View Modeling (3VM) refers to the ap- 
plication of data flow diagram (or its variants), entity-relationship diagram 
(or its variants), and state transition diagram (or its variants such as event- 
response diagram) to  identify system objects. It describes the target system 
from three different perspectives. In this section, these three models are pre- 
sented for the object-oriented analysis of the automatic test system. 

Figure 12.6 is the data-flow diagram (DFD) of the automatic test system, 
which illustrates the system hardware, software, together with the informa- 
tion flow among different system modules. During system execution, various 
machine parameters are collected using corresponding sensors. Then the sen- 
sor signals are transformed by IMPS, and then transferred to  the monitoring 
system via S-Net and interface card. Furthermore, performance analysis soft- 
ware is used to  examine the behavior of the machines-under-test in order to 
find the possible defects of machine design or manufacturing. 

Figure 12.7 shows the entity-relationship model of the automatic test sys- 
tem. This model is used to  describe the basic entities in the test system 
and the relationships between them. It also describes the system database 
structure as well as indicates the system requirements for data storage. 

State transition diagram (STD) is used to model the behavior of a system 
in response to internal or external events. It shows system states and events 
which cause transitions from one state t o  another. This type of model is 
particularly beneficial for modeling time-critical systems like the automatic 
test system, as they are often driven by the internal and external stimuli. 
When a stimulus is received, this may trigger a transition to  a different state. 
Figure 12.8 shows the STD of the automatic test system. Table 12.1 lists 
the system states, and the system event-response model is depicted in Table 
12.2. All of the external events and their corresponding system responses are 
explicitly listed. 

3-View Modeling (3VM) 

IMP 1 

IMP 3 Software Sonware 

Turbine 
Machinery 

-l p IMPn 

Measu rernent 
Sensor n Equipment 

Fig. 12.6 Data-flow diagram. 



TEST SOFTWARE DEVELOPMENT PROCESS 209 

fig. 12.7 Entity-relationship diagram (ERD). 

Power off 

Idle 

A 
3 9 

- 5 -  7 - b 
Surge 6 Poll Emergency 

~ 

Fig. 12.8 State transition diagram (STD). 

12.4.2.2 Linguistic-based Information Analysis (LIA) Phrase Frequency Anal- 
ysis (PFA) is a Linguistic-based Information Analysis (LIA) technique, which 
can be used to identify all of the concepts in problem domain as well as the 
relationships among them. 00A/OOD provides a systematic approach to  
examining a long PFA list and identifying the initial set of OOA and OOD 
elements. For illustration purpose, here in Table 12.3, a partial 00A/OOD 
working table for the automatic test system is given, which is built based on 
the PFA in LIA. 



210 A FLEXIBLE AUTOMATIC TEST SYSTEM FOR ROTATING TURBINE MACHINERY 

Table 12.1 System state list 

State Description 

Power off 

Idle 
Ready 
Poll 
Surge 
Emergency 

System power is turned off. It cannot work unless it is turned on 
again. 
System is idle. Channels have not been configured. 
System is ready. IMP and channels have not been configured. 
System is in poll state. IMP acquires data automatically. 
System is surging. IMP acquires data in rapid speed mode. 
System is in emergency state. IMP acquires data in normal speed 
mode. 

Notes: (1) Possible object-&-class. (2) Possible part of subclass/superclass, 
including generalization-specialization structure and whole-part structure. 
(3) It may describe attributes or instances of the object. (4) It may describe 
the services of the object. 

12.4.2.3 OOA model 3VM and LIA discussed above are the precursors of 
OOA, and the results obtained from 3VM and LIA can be seamlessly incor- 
porated into the OOA model. Guided by the developed 00A/OOD working 
table and compared with the components identified by the 3VM, the concepts 
in the problem domain can be thoroughly examined and identified. From the 
previous discussion, it is obvious that any object should be able to  identify an 
event or respond to  an event. Provided that an object can neither identify an 
event nor participate in any activity in responding to  an event, we can safely 
say that the object does not belong to this system. It should be pointed out 
that the generation of OOA model is also an iterative process. Although 3VM 
and LIA are extremely instrumental in creating the OOA model, the OOA 
model still needs to  be verified and validated according to the user require- 
ments, which may keep changing throughout the system development. During 
this process, certain existing objects may be deleted and new objects may be 
added. Table 12.4 (page 236) illustrates the OOA model after detailed analy- 
sis. In the table, uppercase characters are used to  indicate the object classes 
in the intended automatic test system. 

12.4.2.4 Identifying structure layer In the object structure of the automatic 
test system, a typical example on the whole-part relationship is that between 
objects in the data acquisition module (DAQ), which is shown in Fig. 12.9 and 
12.10. In Fig. 12.9, the association between superclass and subclass (i.e., DAQ 
and MACHINE, and DAQ and DAQHARDWARE) is one-to-one, and their 
relationship is based on physical containment. In Fig. 12.10, the association 
between superclass and subclass (i.e., IMP and IMP CHANNEL) is one-to- 
many, and their relationship is based on physical association. Figure 12.11 



TEST SOFTWARE DEVELOPMENT PROCESS 211 

Table 12.2 Event-response model 

Event Response 

[l] IMP connection 

[2] IMP configuration 

(31 Start polling 

[4] Poll time 

[5] Start surge test 

IS] Stop surge test 

[7] Save all of the data 
[8] Save part of the data 
[9] Stop polling 
[lo] Unload IMP 

A. S-net connection 
B. IMP initialization 
C. Check and register each IMP. 
A. Check if the IMP used in the system conforms to 
the actual IMP connection. If not, system triggers an 
alarm and then quits. 
B. Configure IMPS and channels. 
A. Create machine objects. 
B. Create MP objects. 
C. Create sensor objects. 
D. Create IMP objects. 
E. Activate poll timer. 
A. Read IMP data. 
B. Calculate input value. 
C. Assign data to each MP. 
D. Determine if data storage is needed. If yes, save the 
data. 
E. Data display 
A. Set surge state flag. 
B. Set the poll interval for surge test. 
A. Cancel surge flag. 
B. Recover the original poll interval. 
Set the storage flag. 
Cancel the storage flag. 
Stop poll timer. 
A. Stop poll timer. 
B. Release IMP objects. 
C. Release sensor objects. 
D. Release MP objects. 

illustrates the generalization-specialization relationship between superclass 
and subclass in the test system. 

12.4.2.5 Identifying subject layer Figure 12.12 illustrates the subject layer of 
the target test system, where it is divided into two subjects. One is the data 
acquisition hardware management, which is primarily used for hardware con- 
trol. The other is test management including machine management, display 
management, and performance analysis, which is responsible for detecting 
events as well as coordinating the data acquisition hardware. 

In this section, the main steps in OOA are discussed. However, in the 
standard OOA, we also need to identify attributes, instance connections, ser- 
vices, message connections, and so on. Considering objects and object classes 



212 A FLEXIBLE AUTOMATIC TEST SYSTEM FOR ROTATING TURBINE MACHINERY 

Table 12.3 Partial 00A/OOD working table 

Items 
~~~~ ~ ~~ 

(1) (2) (3) (4) Description

Machine
Turbine machinery
Running

Static variables
Dynamic variables
Performance
computation

Data storage

Data management

Data printing

Oxygen turbine
compressor

Air blower

Turbine machinery, MP

Manual MP
IMP
System
DAQ
Special-purpose
interface board 35954A
35951A
35952A
IMP, MP channels
Data display
Display modes

J

J

J

J

J

J

J

J

J

J

J
J

J

J

J

J

J

J

J

J
J

J

J
J
J
J
J

J

Class
Subclass of machine class
Property of machine
(status value)
Subclass of process parameters
Subclass of process parameters

It can be a class or service of
system class
It can be a class or service of
system class
It can be a class or service of
system class
It can be a class or service of
system class

It can be a class or subclass of
the machine class
It can be a class or a subclass of
the machine class
Class, partially associated with
Machine
Subclass of MP
A part of DAQ hardware
Possible class
System service

A part of DAQ hardware
Subclass of IMP
Subclass of IMP
A part of IMP
A part of system
Property of data display

obtained in this phase still need to be adjusted and refined, such steps are
incorporated into the design phase.

12.4.3 Design

The object-oriented analysis described above is to provide a detailed descrip
tion of the target system using object-oriented notation, concepts, and prin-
ciples. The concentration is on the what. The object-oriented design, on the

TEST SOFTWARE DEVELOPMENT PROCESS 213

Fig. 12.9 Wholepart relationship based on physical containment.

Fig. 12.10 Whole-part relationship based on physical association.

fig. 12.1 1 Generalization-specialization relationship.

other hand, focuses on the how. The objective of design is to transform the
results obtained from the analysis phase into a form that can be implemented
using a programming language. The objects and object classes used in OOD
are identical t o those in the OOA model. Based on these defined objects
and classes, some other objects and classes can be added to deal with the
activities associated with implementation issues such as task management,

214 A FLEXIBLE AUTOMATIC TEST SYSTEM FOR ROTATING TURBINE MACHINERY

w a y

Fig. 12.12 Subject layer in the OOA model.

data management, and human interaction. In traditional software develop
ment approaches, the analysis model is discarded and a new design model is
built from scratch in the design phase. While in OOD, the OOA model is its
primitive framework and they can be seamlessly integrated. In actuality, the
smooth transition from analysis to design is one of the most advantageous fea-
tures in the object-oriented analysis and design. As mentioned earlier, there
are primarily four additional components in the OOD, which are listed in the
following.

JESTSOFTWARE DEVELOPMENT PROCESS 215

0 Problem domain component: In the object-oriented design, the objects
set obtained from object-oriented analysis is adjusted and refined. First,
considering that IMP measurement channels are highly associated with
sensors, we eliminated the previously intended sensors class and merged
it with the IMP channel object. Next, since the structure and function-
ality of various IMPs are fairly similar, only one IMP class is reserved.
Furthermore, in MP management, since the manual MPs are sufficiently
simple, they are implemented using the struct type. IMP MPs are imple-
mented using their corresponding classes, and thus the “MP” abstract
class is eliminated.

0 User interaction component: In our automatic test system design, the
multi-window user interface is adopted to enable the functionality of
flexible configuration. The user can flexibly define the desired measure-
ment points to be displayed, together with their trend graphs, real-time
waveforms, and so forth. For trend graphs and real-time waveforms, to
make the configuration process more explicit, every measurement point
occupies a sub-window.

0 Task management component: Task management is responsible for han-
dling certain problems occurred between task handling modules and
specific operating system platform. The problems include synchroniza-
tion, interrupt, scheduling, collaboration, and so forth. Furthermore,
data acquisition, which is of particular importance in the automatic
test system, is also managed by this component. In Windows operat-
ing systems, time-aware functionality can be accomplished by means of
system timer, multithreaded programming, and interrupts mechanisms.
All of these three techniques are employed in our automatic test sys-
tem development to ensure the timely task execution, because system
responsiveness is very important for our automatic test system.

0 Data management component: Generally speaking, data can be stored
in two forms: flat data file and database. In this automatic test sys-
tem, we use IN1 system file to store certain configuration information,
and we use Paradox database to store most of the system configuration
and historical data. Some classes such as TDataModule class provided
by Borland Delphi can be used to realize data management separation.
Data management in the data acquisition module of automatic test sys-
tem, which will be fleshed out later, is the basis for the overall test
system.

12.4.3.1 Data acquisition module The main tasks in data acquisition module
(DAQ) include data acquisition and data storage. At the beginning of data
acquisition operation, all of the employed IMPs are initialized according to
the configuration database, which is generated by system configuration mod-
ule. After the initialization is accomplished, corresponding data acquisition

216 A FLEXIBLE AUTOMATIC TEST SYSTEM FOR ROTATING TURBINE MACHINERY

Fig. 12.13 Class structure in DAQ.

commands are sent out for gathering data. All of the MPs (primarily IMP
MPs) are polled based on the preset sampling interval. The collected electrical
variables are then transformed into their corresponding physical values using
correct mathematical formulas. Data storage is to generate the historical
database based on the MPs in configuration database. It saves the acquired
data using the storage mode set by the user. There are primarily three dif-
ferent storage modes in the test system including normal storage, emergency
storage, and manual storage. The user can select suitable data storage mode
for different system operation purposes.

According to the principles of object-oriented design, data acquisition mod-
ule can be divided into three prime parts: machine (data acquisition target),
data acquisition hardware, and data storage. Three classes are thus designed
accordingly. Machine class (TMachine) records the description of various ma-
chines, manual MPs, and IMP MPs. Data acquisition hardware class (THard-
ware) includes interface card and IMPS. As mentioned earlier, because IMP
and sensors are highly related to each other, we set the sensors as an at-
tribute in both machine class and data acquisition hardware class. Storage
class (TStorage) provides three storage modes and saves data according to
user selection. As a result, the class structure in data acquisition module can
be illustrated in Fig. 12.13.

In the class structure of data acquisition module, the primary data ex-
change between TMachine and THardware classes includes:

0 The IMP MP in TMachine reads data from the IMP in THardware,
and then it transforms the electrical parameter to actual physical pa-
rameter via predefined mathematical formula. TMachine retrieves the
transformed data and saves it to the memory buffer.

TEST SOFTWARE DEVELOPMENT PROCESS 21 7

0 TMachine compares the retrieved data with corresponding alarm condi-
tions. If any alarm condition is met, it notifies the THardware to trigger
the alarm signals; at the same time, it indicates the animated alarm in-
formation in the main interface in order to attract the user attention in
a timely manner.

In system execution, data acquisition module reads configuration database as
well as reads/writes real-time/historical database. It also provides real-time
data to both data display and performance analysis modules. In addition,
system exceptions such as IMP connection errors are handled in this module.

12.4.3.2 Data configuration module In the automatic test system, except
for the automatic MPs measured by IMPs, there are also some manual MPs.
The configurations and descriptions of manual and automatic MPs are distinct
from each other. The manual MPs include certain status variables such as
atmosphere humidity and temperature. The information on these manual
MPs is composed of name, ID, type, unit, and value. The MP values are
manually input into the system database by the user during the process of
system configuration or data acquisition. The configuration process for IMP
MPs is made up of the following three parts:

0 IMP configuration: IMP board and the measurement channel used for
each MP.

0 Sensor configuration: Sensor information such as its ID and measure-
ment range for each MP.

0 Alarm configuration: Alarm variable flag, upper limit, and lower limit.

The process of IMP MPs configuration can be divided into two steps. First,
at the level of IMP, IMPs can be added or deleted, and their types are set
according to the practical test requirements. Second, channel configuration
is conducted for each IMP board. A system configuration database can be
created from scratch or by revising the existing configuration database. A
knowledge base is constructed for providing an automatic configuration mech-
anism. For instance, the system knowledge base includes an IMPs knowledge
base and a sensors knowledge base. In the configuration process, the system
provides default values as well as selectable items for user selection. As a re-
sult, the user can accomplish all of the configuration work by simply clicking
mouse. Furthermore, validation checking is also conducted for ensuring valid
user inputs.

12.4.3.3 Database design As we have witnessed, recent rapid developments
in database management technologies are well underway in the industrial au-
tomation arena, which incur unprecedented integration of enterprise and plant
databases with test systems and production floor devices. As shown in Fig.

218 A FLEXIBLE AUTOMATIC TEST SYSTEM FOR ROTATING TURBINE MACHlNERY

0 Turbine Test
6.0 . . History
: . . !-m Nitrogen Turbine 40576

Oxygen Turbine 20372

. .

fig. 12.14 Directory structure of FATSFTM.

12.3, database management takes up the prodigious proportion in the pro-
posed test system because system operations such as user configuration, data
acquisition, data processing, and data browsing are all highly associated with
it. The databases in FATSFTM can be classified into knowledge base, con-
figuration database, and real-time/historical database. The knowledge base
stores the information on miscellaneous IMPS, sensors, and MPs, which are
frequently used in the test system. It can be used as a reference library when
configuring the automatic test system for various test purposes. The configu-
ration database stores the configuration information for each test, which can
also be used as the reference for future tests. Real-time/historical database
records both raw data and results of data processing. Table 12.5 (page 237)
illustrates the database types in FATSFTM.

The test data (including both configuration data and real-time/historical
data) of each test is saved in separate subfolders named by the operator.
As shown in Fig. 12.14, for example, Nitrogen Turbine 40576 and Oxygen
Turbine 20372 are two subfolders, which store the complete test data for two
different turbine machinery, respectively.

12.4.3.4 Data analysis module Data analysis module mainly includes perfor-
mance analysis and machine surge analysis. The performance analysis sub-
module is in charge of generating test data files, whose format is revisable for
users. The input to this module is the data from the data acquisition module
for real-time analysis or historical data for retrospective analysis. Surge is
the important phenomena in turbine machinery, and it indicates certain pos-
sible machine design defects and is highly detrimental to the machine health.
Therefore, the test system should be able to collect sufficient data in its rapid
data acquisition mode so as to find the surge point by careful analysis. The
functionality of surge analysis module includes surge setting, test , and retro-
spective analysis. Data acquisition (poll) interval is set by the user based on
practical application requirements, and the fastest sampling rate can reach 8-
9 times per second. The poll results are automatically stored in the historical
database. The input to this module is test configuration data, and its output

TEST SOFTWARE DEVELOPMENT PROCESS 219

is historical test data. In system operations, surge analysis module calls some
relevant functions in data acquisition module and data display module. The
surge analysis module needs to be configured first, and then the surge test as
well as retrospective analysis can be conducted. Because the surge test is nor-
mally performed throughout multiple phases, to support retrospective surge
analysis the surge test results are stored in the Surge.ini file, which includes
the overall number of test phases, the measurement points in each test phase,
and the corresponding test number for each test, together with the starting
and end time of each test.

12.4.3.5 Data display module The data display module is divided into two
parts, namely, display configuration and display mode. Display mode includes
animated machine overview, data list, histograms (e.g., humidity, tempera-
ture, pressure, etc.), real-time waveforms, trend graphs, and so on. The data
sources of this module include both real-time database and historical database.
In each display mode, the desired MPs and their properties such as axis scale,
color, etc., can be set by the user. Provided that there are too many MPs to be
displayed in a single display window, the MPs can be displayed using multiple
windows. And each window can be configured according to user requirements.
Like the data acquisition module, the basic display unit in the data display
module is also MP. In the test, the user may display the related MPs in a single
window via flexible display configuration. In doing so, certain operations such
as observation and comparison become more convenient. No matter whether
the system is in data acquisition status or not, the data display mode can be
configured online dynamically, if necessary. The configuration information on
the animated machine overview is stored in MachineModel.ini file, and the
configuration data for data list, histograms, real-time waveforms, and trends
are recorded in DispSetup.ini file.

12.4.3.6 Report module Data output includes reports printing and data files
output. The former is used to print the system configuration report and the
acquired data report in their specified formats. Data files also provide raw
data to the machine design departments.

12.4.4 Programming

The purpose of programming is to transform the design class diagram and
the sequence diagrams obtained in the previous phases into programming
language. Design has already derived all the necessary system classes and
communication between class instances. A successful development project
must be delivered to spec on time and on budget. It must be robust, easy to
use, and built in a way that is easy to modify and extend. Basic design rules,
such as those on how to manage user interfaces and how to handle databases,
are typically dictated by the selected tools. In this study, we are going to im-
plement the application in Object Pascal by using Borland’s Delphi program-

220 A FLEXIBLE AUTOMATIC TEST SYSTEM FOR ROTATING TURBINE MACHINERY

ming environment. Delphi provides a combination of visual tools, fast native
code compiler, object-oriented component architecture and library, scalable
database architecture, and a full complement of advanced development tools.
A powerful object-oriented Visual Component Library (VCL) for rapidly as-
sembling different applications is particularly beneficial to the development
of our automatic test system. Sophisticated database facilities are used for
accessing, displaying, and processing data. For our time-critical test system,
the most important feature of Delphi is its event-driven programming mecha-
nism. The advent of the modern graphical user interface created standardized
events, events of numerous types, and sometimes events of great complexity.
In the Delphi environment, the user interface will be implemented within the
user interface classes. Typically, each window or dialogue box is an object.
Push buttons, menus, and other controls are objects, too, and they are object
members of windows and dialogues. Other objects of the application work to-
gether with the user interface objects, thus allowing communication with the
end user and providing the functionality of the application. Since events were
now standardized among applications, it became possible and highly desirable
to dispatch those user interface events within the operating system in a way
analogous to that used for events in time-critical systems. This standardized
dispatching is even more important when the operating system is multitask-
ing and diverse applications must run in harmony. Event-driven Windows
programming is a natural environment for object-oriented programming.

12.4.5 Testing

The purpose of testing is to find the latent errors and ensure that the system
functions as desired. Therefore, testing is performed against the requirements.
Similar to other engineering products, there are two approaches to testing the
software products. First, if the software functionality is known, we can test
the software to see if its functionality meets the expectations. Second, if the
inner behavior of the software is known, we can test its inner behavior to see
if all of the design requirements are satisfied. The former method is called
black box testing and the latter one is called white box-testing. In testing,
each use case obtained in both requirements capture phase and throughout
the development process is run and tested on the target system, and every
nonfunctional requirement is also checked. Various testing tools can improve
the quality of testing by providing views into the implemented code. Still,
the most important task in testing is to run each use case and compare the
obtained results against all of the use cases. Except for the routine functional
testing, for mission-critical applications such as our automatic test system,
the performance testing is also of great importance. The performance testing
for the automatic test system is detailed in Section 12.6.

FUNCTlON OF FATSFTM 221

12.5 FUNCTION OF FATSFTM

The automatic testing of turbine machinery involves several main steps: con-
figuration, test, and reporting. All of these functions are performed in a
user-friendly windows environment. Figure 12.15 gives an overview of the
implemented FATSFTM functionality, which is detailed in this section.

12.5.1 Initialization and self-examination

Practical turbine machinery comprises various elements, which must behave
properly and coordinate with each other to attain the proper overall per-
formance. Therefore, the startup and shutdown of turbine machinery must
follow a strict procedure. In this function, FATSFTM first makes sure that
all of the preconditions for startup and shutdown are satisfied; after that, it
initializes all necessary parameters and supplies operators with concise and
comprehensive instructions when needed.

Fig. 12.15 An overview of FATSFTM functions.

222 A FLEXIBLE AUTOMATIC TEST SYSTEM FOR ROTATING TURBINE MACHINERY

12.5.2 Data acquisition

Data acquisition is the key function of FATSFTM. Advances in a number of
data acquisition technologies promise improvements in measurement system
performance, and the potential for reduced costs [17]. In our test system,
two types of data acquisition devices are adopted, which are responsible for
capturing process and vibration signals, respectively.

ADRE (Automated Diagnostics for Rotating Equipment) along with the
208 DAIU/208-P DAIU (Data Acquisition Interface Unit) comprise a portable
system for multichannel machinery data acquisition. It is highly configurable
to provide support for virtually all standard and nonstandard input types in-
cluding both dynamic transducer signals (e.g., signals from proximity probes,
velocity transducers, accelerometers, and dynamic pressure sensors) and static
signals (e.g., process variables from transmitters). The system also supports
multiple triggering modes for automated data acquisition, allowing it to be
used as a data or event logger without an operator present.

Isolated Measurement Pods (IMP) is an intelligent data acquisition termi-
nal. It has the following main advantages: (1) ability to work in the most
extreme of industrial environments; (2) high measurement precision; (3) si-
multaneous collection of static and dynamic process parameters; (4) flexible
configuration capability; (5) low energy consumption; (6) convenient installa-
tion and operation. Figure 12.16 shows the connection between IMP boards
and the monitoring computer via S-Net, which is a proprietary protocol in
IMP system for local communications.

Fig. 12.16 IMP for distributed data acquisition.

12.5.3 User configuration

In machine tests, each turbine machinery under test can be quantified as a set
of Measurement Points (MPs), which indicates the running states of the tur-
bine machinery. MP is regarded as the basic measurement unit in FATSFTM,
which can be classified into manual MPs and automatic MPs. Manual MPs
such as atmosphere humidity and pressure are observed by operators through
measurement instruments, and the observed values are keyed into the test

FUNCTlON OF FATSFTM 223

system database manually. Most MPs are automatic MPs, values of which
are collected by IMPS. We only address automatic MPs in this chapter.

The configuration task is global in nature; i.e., it defines a set of parameters
that will determine what tests, and with what settings, will be executed dur-
ing the automatic test phase. In FATSFTM, user configuration includes MP
configuration and system parameter configuration. MP configuration means
the transducers and measurement equipment configuration for each MP and
parameter configuration refers to the required running parameters configu-
rations via man-machine interface. The IMP configuration is the first step
in MP configuration in FATSFTM. As a distributed data acquisition device,
IMP can be configured conveniently to accommodate the diversity of test de-
mands since each IMP board can be easily connected to/disconnected from
the S-Net according to different test demands. After A/D transforming and
signals conditioning, the collected signals can be sent to the monitoring com-
puter via S-Net. In IMP configuration, first the operator selects appropriate
IMP type for the MP and then configures each channel for the selected IMP
type through the GUI. In addition, in this configuration panel, the alarm pa-
rameters such as upper limits and lower limits can be configured for alarm
variables.

Administrators and operators may define the required system parameters
through the gratifying GUI according to specific requirements for each testing
mission. System parameters mainly include the running parameters such as
modes of data acquisition, data storage, data display, and data output. All
of these can be configured online or offline. For example, panel operators
can select the appropriate data storage modes (e.g., manual storage, periodic
automatic storage or emergent storage) via the specific configuration panel.

12.5.4

Another main function of FATSFTM is the quick and reliable access to useful
information. Virtual instruments (VIs) technology has been introduced into
the measurement and monitoring systems in recent years [18-201. In FATS-
FTM, plant operators are provided with a machine-state-sensitive graphi-
cal interface. The password-protected graphical environment for the analyst
provides several software functions such as user-configurable alert and alarm
functions, data management, and a wide range of advanced analytical dis-
plays for assessing the machine condition and diagnosing problems. Turbine
overview, wave display, visual database query, and current alarm list are de-
signed to describe the running status from four different aspects in real time.
Turbine overview uses images, each representing certain parts of the whole
turbine machinery, to give the operator an intuitive description of its working
condition. This graphical display provides a mimic diagram of the turbine
and a real-time display of many key parameters. The wave display traces the
changes of analog signals with a line chart. By means of visual database query,
the operator can know the statistic results of analog quantities and the states

Running status indication and real-time/historical data analysis

224 A FLEXIBLE AUTOMATIC TEST SYSTEM FOR ROTATING TURBINE MACHINERY

of all digital signals. The operator can also browse and query the real-time
database and alarm events database in real time by this tool. The current
alarm list provides a simple tabular format display of the faults found on the
current diagnostic loop. If the system is performing a diagnosis every second,
then this display will refresh every second. Any faults displayed on it are
being detected at the current time. The faults will automatically be cleared
if it is no longer being detected. The current running status can be organized
and printed by the function of report and printing in real time. Useful tools,
such as instantaneous spectral analysis, real-time trend plot, and surge anal-
ysis, are also provided for the panel operator to probe into the tested turbine
machinery’s immanent behavior.

Besides the above commonly used display modes, the following plot types
are also supported by FATSFTM to describe the behavior of important pro-
cess variables from different perspectives, which are complete with statistics,
evaluations, regressions, linear algebra, signal generation algorithms, time and
frequency-domain algorithms, windowing routines, and digital filters. They
are listed as follows: (1) rotating speed; (2) machine train diagram; (3) trend
(historical/fast/high resolution/multivariable trend); (4) orbit; (5) shaft aver-
age centerline; (6) spectrum/full spectrum; (7) historical alarm list; (8) system
event list; (9) waterfall/full waterfall; (10) Bode; (11) polar; (12) cascade/full
cascade; (13) plus orbits and plus spectrums; (14) Nyquist; (15) FFT; (16)
axes position; (17) axes track; (18) correlation analysis, etc. These plots re-
move unwanted information, providing an uncluttered display and allowing
analysts to focus clearly on specific machine problems. Furthermore, they
can also highlight hidden relationships between seemingly unrelated plant pa-
rameters, such as interactions between turbines and their auxiliary devices.
The data processing module of the system is now being replenished with new
data processing ideas such as soft computing techniques for more complicated
data manipulation and analysis [21]. Figure 12.17 shows the Bode chart in
the running FATSFTM.

FATSFTM also provides the function of retrieving data into Microsoft Ex-
cel and Microsoft Word for further data analysis and report through ActiveX
Automation. Data in one application (called the container-a spreadsheet or
word processor, for example) are linked (sometimes called a live-link) to an-
other (the client-a real-time database, for example) so that if the original data
are changed, the data in the container application are automatically changed.
In our monitoring software, Microsoft Excel and Microsoft Word are the con-
tainer and the selected database is the client.

12.5.5

The vast volume of data from acquisition units and the complexity of turbine
machinery’s behavior make it hard for panel operators to digest the collected
information in a timely manner and make an accurate judgment when a fault
occurs. Therefore, an intelligent approach to alarm handling and fault diag-

Alarm management and post-fault diagnosis

FUNCTlON OF FATSFTM 225

Fig. 12.17 Screen capture of Bode chart in the running FATSFTM.

nosis to reduce the operator’s burden and find the failure causes of the device
quickly is necessary.

Alarm handling can essentially be described as the real-time and online
transformation of raw input alarm messages into a more digestible form for
the operators. Plant operators are expected to take proper actions according
to these easily understood alarm messages to avoid or rectify any disturbances
to the plant. The alarm-handling program first interprets alarming informa-
tion from the real-time data acquisition activities and processes/evaluates raw
alarms in its reasoning engine based on rules, which can be defined by the op-
erator via a user configuration panel. Finally, the summarized message is
presented to the operators via optional and flexible alarm notification using
multimedia alarm technology, such as animated alarm windows and high-
quality voice annunciation. Raw alarms and results of alarm processing will
meanwhile be written into the alarm message database for post-fault diagno-
sis and non-real-time retrospection. The operator can manually switch off the
alarms which are nuisance or not important, if necessary.

Because a turbine plant is usually complex and noisy, a massive number
of alarms are often generated from the test system, especially during test
shutdown, startup operation, or abnormal situation. Since some of these
alarms are often nuisance or unimportant to plant operators, the numerous
alarm messages may result in an alarm-flooding problem that could mask off
the important alarms and subsequently cause operators t o overlook critical
alarms of the plant. In our intelligent alarm system, alarm variables are clas-
sified into different groups so that all the alarm events can be managed in an
orderly way. Moreover, each alarm variable has an alarm priority, which can
be configured by the operator via MMI according to its importance. When
two or more alarm events occur simultaneously, the event with the highest
alarm priority will be handled first. These measures have demonstrated to

226 A FLEXIBLE AUTOMATIC TEST SYSTEM FOR ROTATING TURBINE MACHINERY

be effective in suppressing the number of nuisance alarms for a local turbine
plant [22]. Figure 12.18 illustrates the mechanism of event-driven alarm man-
agement module in our test system. After the data acquisition process begins,
whenever a new record is added to the real-time database, a message is sent
to the alarm window. Then the alarm configuration database is scanned to
examine if the newly acquired variable is an alarm variable. If not, no alarm
handling action is taken. If yes, its value is compared with the current preset
alarm condition in the alarm configuration database to check if it meets the
alarm condition. If yes, alarm actions are taken, which include alarm record-
ing, alarm signaling, and alarm report printing. If no, the record pointer of
the alarm configuration database is moved to the next alarm condition. The
process is repeated until all of the alarm conditions defined in the alarm config-
uration database have been scanned. Because this alarm management scheme
is based on the event-driven mechanism, the obtained system turns out to be
highly responsive and able to respond to emergent events very quickly.

Fig. 12.18 Mechanism of alarm management module.

FUNCTlON OF FATSFTM 227

As mentioned earlier, the key to the highly real-time performance of our au-
tomatic test system is its event-driven approach. Individual thread generates
events during test process, which normally occur as Windows messages from
an 1 / 0 device, user input, or a timed event. Based on the message mechanism
on Windows platform, all of the events are handled by their corresponding
event processing programs. When an event occurs, its related processing pro-
grams awaken to perform their functions, returning to their inactive status
on completion. Thus, all of the operations are in real time so the obtained
system is highly responsive.

Unlike the alarm handling, fault diagnosis runs online or offline, in real
time or ex post facto. It involves faults location, maloperations identification,
and countermeasures provision. The fault diagnosis unit is an interactive
module, which can aid the user in analyzing the defect in the machinery or
process. When a fault has been diagnosed, it suggests the corrective actions
and instructions to improve the turbine machine quality, as well as provides
a maintenance plan to handle the problem safely and economically. Recently,
many novel fault diagnosis methodologies were proposed for more effective
fault diagnosis [23, 241. To accommodate the diversity of turbine types, the
COTS post-fault diagnosis software is incorporated into FATSFTM. In our
test system, Bently performance analysis software is employed as the fault
diagnosis analysis tool. To implement this function, FATSFTM provides the
performance analysis software with raw data and results of data processing
for further fault diagnosis via a general-purpose data exchange interface.

Figure 12.19 shows the essential elements in the diagnostic process of FATS-
FTM. The preprocessing and feature extraction module takes raw sampled
data from a machine and converts it to a form suitable for reasoning by the
inference engine. It incorporates filtering of noise from raw data and extrac-
tion of features from the filtered data. Feature extraction intends to extricate
the most important characteristics from the filtered data. The sensor signals
include both real-time data and historical data in the test system. Knowledge-
based reasoning approaches such as fuzzy logic and artificial neural network
classifier are used to identify the fault components and figure out possible rea-
sons. The knowledge base can be developed from user experience, simulation
results, experimental data, and so on. A variety of rules can be formulated as
an expert system, which can be used in aiding the inference process of fault
diagnosis. As a result, various failure modes are obtained at this step. Next,
corrective actions for improving the machine quality are suggested.

12.5.6 Remote test

By integrating the distributed system architecture and the general industrial
measurement and control system via virtual instruments, industrial measure-
ment and control system with more open structure has been achieved [25-291.
Inevitably, automatic test fields are also strongly influenced by this innova-
tion, and a network-enabled test system is the development trend for future

228 A FLEXIBLE AUTOMATIC TEST SYSTEM FOR ROTATING TURBINE MACHINERY

Fig. 12.19 Architecture of fault diagnosis module.

automatic test [30, 311. An Internet-based system not only allows the viewing
of display information but also provides for security, data entry, and real-time
interaction with the application. Real-time communications with factory floor
information is provided in the FATSFTM via a standard network connection
using TCP/IP protocol. By integrating the test system with commonly used
browsers to perform remote and low-cost monitoring of key process variables,
users can view over the Internet or Intranet traditional real-time displays
with animation, live data trends, reports, and alarms. As discussed in pre-
vious sections, the remote FATSFTM has no acquisition unit. It acquires
data via communications with the local FATSFTM. Based on careful analysis
of all of the data requests of the remote FATSFTM, a general-purpose net-
work interface is successfully implemented in our automatic test system. Any
remote computer (such as the computers in the design department), which
has the authorized FATSFTM software installed, can dial and connect to the
factory floor via a standard network connection. Experience has shown that
the network service works well and the real-time network communication is
guaranteed.

12.5.7 Other system functions

It should be noted that apart from the above functions, there are also a few
other functions in FATSFTM, which include operation log, print and report,

/MPLEMENTAT/ON AND NELD EXPERENCE 229

historical data retrospect, and system simulation for better performance and
usefulness of the automatic test system.

12.6 IMPLEMENTATION AND FIELD EXPERIENCE

The developed testing system needs to be implemented in real-world appli-
cations to verify its effectiveness. Thorough testing is indispensable in such
a mission-critical system for ensuring high software quality as well as overall
system performance. In this section, the real-world implementation of the
automatic test system is presented. The latent problem in the automatic test
system is found and a viable solution is proposed. In addition, system benefits
are evaluated.

12.6.1

The layout of plant floor is shown in Fig. 12.20. The plant area is about
120 mx50 m. The size of each testbed is around 15 mx8 m x 5 m and the
distance between adjacent testbeds is 20 m. There is some minor structure
difference among the four testbeds designed for different turbine machinery
types. The four testbeds from left to right as shown in the figure were designed
for automatic testing of an oxygen turbine compressor, a nitrogen turbine
compressor, an air turbine compressor, and an air blower, respectively.

Here we show how the test system can be configured to meet different test
demands by fleshing out the IMP MPs configuration. As mentioned earlier,
IMP MPs configuration can be conducted in two steps: IMP configuration and
channel configuration. First, according to the practical test requirements, a

On-site implementation and field experience

Teslbed L Teslbed Q w 3
Testbed

I
I Testbed I

Monitoring Monitoring Monitoring Monitoring

Central
Monitoring 1 Room I

Fig. 12.20 Plant layout.

230 A FLEXIBLE AUTOMATIC TEST SYSTEM FOR ROTATING TURBINE MACHINERY

suitable number of IMP boards need to be selected. After completing the IMP
configuration, the next step is to select the appropriate sensor for each MP.
In the sensor knowledge base, the operator should define sensor parameters
including ID, measurement range, and signal transformation formula for each
MP. In the industrial automatic test system, sensors are exposed to a very
hostile environment. Wear and natural phenomena, such as surface coating,
can cause the measurement precision to drift off normal range. Moreover, due
to the different test requirements, sensors in industrial field may be replaced
regularly. Therefore, dynamic sensors configuration would be very useful. To
realize the dynamic configuration of sensors, an additional database is set
up, which includes two extendable tables, i.e., the table storing whole sensor
types and the table storing existing sensor types. Both tables can be defined,
modified, and checked by operators through a man-machine interface. The
previous table stores the information on all of the sensor types that may be
adopted in FATSFTM. The latter table stores the information of adopted
sensors in FATSFTM. The two tables have a common database field: sensor
type, which can be used as the index between the two tables. Operators can
add/delete records to/from the sensor type table conveniently. Such opera-
tions can dynamically model the real configuration of sensors in an industrial
test field. Once the sensor model knowledge base is built, the operator can
simply select a sensor type and then define its parameters, such as measure-
ment range and transformation coefficient. After that, the sensor should work
properly in the newly configured test system.

During system installation, all of the available IMPS are connected to the
S-Net. By doing this, for each machine testing, the user only needs to connect
the selected transducers to the suitable IMP channels and then conduct the
corresponding system configuration. Therefore, the automatic test system re-
duces the user burden markedly as compared with traditional special-purpose
test systems. It is also well received by users due to its reliable performance,
convenient operations, and user-friendly interfaces. For the turbine machin-
ery manufactures, the developed test system can be used to detect the design
defects before the machine leaves the factory. For the turbine machinery
users, the test system can be used for real-time condition monitoring, data
recording, trend analysis, and fault diagnosis. One main significant feature of
the automatic test system is its flexible configuration capability for tackling
different test purposes; therefore, it can be applied to other test environments.

12.6.2 System benefits

According to the feedback from the plant, the main benefits of the auto-
matic test system are summarized as follows: (1) It reduces test cost such
as power consumption; (2) it reduces the manpower to perform the test; (3)
it reduces test time and increase test productions; (4) it has a more reliable
fault detection and countermeasures provision; (5) it is easy to operate due
to more intuitive and friendly user interfaces; (6) No turbine quality problem

IMPLEMENTATION AND FIELD EXPERIENCE 231

was reported from the customers of the turbine plant after such thorough
machine tests; (7) Hazardous accidents and environmental pollution are thus
minimized significantly.

The project course of the test system can be roughly classified into four
st ages:

0 Stage 1 - Before project.

0 Stage 2 - During FATSFTM development and before testing.

0 Stage 3 - During FATSFTM testing and before the incorporation of
multi-threaded communication mechanism.

0 Stage 4 - After the incorporation of multi-threaded communication mech-
anism.

By testing a batch of sample turbine machinery, we compare the major
and minor quality defects found in the test during the course of the project,
which are shown in Fig. 12.21. In the figure, Series 1 and Series 2 denote
the major and minor machine defects detected in test, respectively. It can
be obviously seen that the developed turbine machinery test system is able
to identify more hidden defects and conduct more complete quality test, and
thus ensure the product quality. For instance, in stage 4, the multithreaded
programming based data processing was implemented in the test system. As
compared with its previous stage, it is evident that the test system works in a
more effective manner in detecting latent machine defects, which were, how-
ever, previously neglected by the test system as the real-time data processing
cannot be ensured without incorporating the multithreaded communication
mechanism.

Machine Defects Detected In Test

20

0
1 2 3 4

Project Stages

fig. 12.21 Number of machine defects detected in test process at different stages.

232 A FLEXIBLE AUTOMATIC TEST SYSTEM FOR ROTATING TURBINE MACHINERY

FATSFTM has been widely accepted and welcomed by factory floor oper-
ators as well as managerial personnel, and it has been continuously running
online for several years in a local turbine machinery plant. It is being well
maintained by a trained maintenance team and being upgraded about every
half a year. With FATSFTM running, the routine test cost has been sig-
nificantly reduced. It has been shown that the FATSFTM made operator’s
work easier and improved the test effectiveness, which has both financial and
safety implications. The overall test costs were significantly decreased due
to the adoption of the automatic test system, which include less defective
products, employee cost, energy consumption, and so forth. The comparison
of test costs at different project stages is shown in Fig. 12.22. It should be
noted that these data only show the visible benefits the automatic test system
brought up. Furthermore, such an automatic test system can help to prevent
incident from occurring or minimize the consequences after the initial event.
Although it is difficult to give an exact cost saved, because incidents tend to
be unique, random and unpredictable events, FATSFTM played an impor-
tant role in the prevention of potential incidents and economic loss and had
a positive impact on the safety of plant.

12.7 SUMMARY

This chapter has presented a general-purpose flexible automatic test system
to provide real-time supervision and intelligent alarm management with post-
fault diagnosis for turbine machinery. Both the hardware and software ar-
chitecture of the FATSFTM are described, which are designed with the ca-
pability of remote condition monitoring and fault diagnosis based upon the
object-oriented approach. The developed FATSFTM has been successfully

fig. 12.22 Average monthly test cost at different project stages.

SUMMARY 233

installed and is running properly in a local turbine machinery plant for over
5 years. The system works as expected and responds correctly to various
kinds of alarms and fault cases, which shows the validity and effectiveness of
FATSFTM in assisting machine designers to improve the performance of tur-
bine machinery. Therefore, the potential savings in loss product, costs, and
environmental issues involve a significant amount of money. An investment
to implement such an automatic test system in turbine machinery plant is
expected to have the potential for very quick payback and high rate of return
on the investment.

REFERENCES

1. Simpson, William R., and Sheppard, John W. (1994). System Test and
Diagnosis, Kluwer Academic Publishers, Boston.

2. Yurko, Allen M. (2000). Measurement and control in the Dot.com world,
Journal of Measurement and Control, Vol. 33, pp. 292-295.

3. 3595 Series Isolated Measurement Pods, Installation Guide, Schlumberger
Technologies, Instruments Division, Issue PA, December 1992.

4. I M P Driver for Windows NT/95 Programmer’s Guide, Schlumberger Tech-
nologies, Instruments Division.

5. SI35951F and G Vibration IMPS, Programmer’s Manual, Solartron, Issue
CAI November 1996.

6 . Coad, P., and Yourdon, E. (1990). Object-Oriented Analysis, Yourdon
Press, Prentice Hall, Englewood Cliffs, NJ .

7. Coad, P., and Yourdon, E. (1991). Object-Oriented Design, Yourdon
Press, Prentice Hall, Englewood Cliffs, NJ.

8. Booch, G. (1994). Object-Oriented Analysis And Design with Applica-
tions, 2nd ed. , Benjamin/Cummings, Redwood City, CA.

9. Booch, G . (1991). Object-oriented Design with Applications, Benjamin
Cummings, Redwood City, CA.

10. Sommerville, I. (1989). Software Engineering, 3rd ed., Addison-Wesley,
Reading, MA.

11. Khoshafian, S., and Abnous, R. (1995). Object Orientation: Concepts,
Analysis and Design, Languages, Databases, Graphical User Interfaces,
Standards, 2nd ed., John Wiley & Sons, New York.

12. Wilkie, G. (1993). Object-Oriented Software Engineering: The Profes-
sional Developer’s Guide, Addison-Wesley, Reading, MA.

234 A FLEXIBLE AUTOMATIC TEST SYSTEM FOR ROTATING TURBINE MACHINERY

13. Jaaksi, A. (1998). A method for your first object-oriented project, JOOP,
Jan.

14. Cockbum, A. R. (1994). In search of methodology, Object Magazine, Vol.
4, NO. 4, pp. 52-76.

15. Henderson-Sellers, B., and Edwards, J . M. (1994). Identifying three levels
of 00 methodologies, ROAD, Vol. 1, No. 2, pp. 25-28.

16. Wang, L. F. (2000). Using object-orientation in developing a flexible auto-
matic test system, IEEE Proceedings of the 36th International Conference
o n Technology of Object Oriented Languages and Systems, Xi’an, China,
IEEE Computer Society Press, pp. 65-72.

17. Figueroa, F., Griffin, S., Roemer, L., and Schmalzel, J. (1999). A look
into the future of data acquisition, IEEE Instrumentation & Measurement
Magazine, pp. 23-34.

18. Wang, C., and Gao, R. X. (2000). A virtual instrumentation system for
integrated bearing condition monitoring, I E E E Transactions on Instru-
mentation and Measurement, Vol. 49, No. 2, pp. 325-332.

19. Spoelder, Hans J. W. (1999). Virtual instrumentation and virtual envi-
ronments, IEEE Instrumentation €4 Measurement Magazine, Sept., pp.
14-19.

20. Cristaldi, L., Ferrero, A., and Piuri, V. (1999). Programmable instru-
ments, virtual instruments, and distributed measurement systems: What
is really useful, innovative and technical sound? IEEE Instrumentation &
Measurement Magazine, Sept., pp. 20-27.

21. Alippi, C., Ferrari, S., Piuri, V., Sami, M., and Scotti, F. (1999). New
trends in intelligent system design for embedded and measurement ap-
plications, IEEE Instrumentation €4 Measurement Magazine, June, pp.
36-44.

22. Wang, L. F., and Chen, X. X., et al. (2000). Design and implementation
of alarming system in industrial measurement and control software, (in
Chinese), Journal of Measurement and Control Technology, China, Vol.
19, pp. 17-20.

23. Betta, G., and Pietrosanto, A. (2000). Instrument fault detection and
isolation: State of the art and new research trends, IEEE Transactions
on Instrumentation and Measurement, Vol. 49, No. 1, pp. 100-107.

24. Marcal, Rui F. M., Negreiros, M., Susin, Altamiro A., and Kovales, Joao
L. (2000). Detecting faults in rotating machines, IEEE Instrumentation
€4 Measurement Magazine, Dec., pp. 24-26.

SUMMARY 235

25. Young, Chung-Ping, Juang, Wei-Lun, and Devaney, Michael J. (2000).
Real-time Intranet-controlled virtual instrument multiple-circuit power
monitoring, I E E E Transactions on Instrumentation and Measurement,
Vol. 49, NO. 3, pp. 579-584.

26. Lee, Kang B., and Schneeman, Richard D. (1999). Internet-based dis-
tributed measurement and control applications, I E E E Instrumentation t4
Measurement Magazine, June, pp. 23-27.

27. Benetazzo, L., Bertocco, M., Ferraris, F., Ferrero, A., Offelli, C., Parvis,
M., and Piuri, V. (2000). A Web-Based distributed virtual educational
laboratory, I E E E Transactions on Instrumentation and Measurement, Vol.
49, NO. 2, 2000, pp. 349-356.

28. Arpaia, P., Baccigalupi, A., Cennamo, F., and Daponte, P. (2000). A mea-
surement laboratory on geographic network for remote test experiments,
IEEE Transactions on Instrumentation and Measurement, Vol. 49, No.
5, pp. 992-997.

29. Wang, L. F., and Wu, H. X. (2000). A reconfigurable software for indus-
trial measurement and control, Proceeding of the 4th World Multiconfer-
ence o n Systemics, Cybernetics and Informatics, Florida, USA, July, pp.
296-301.

30. Wang, L. F., and Liao, S. L. (2000). Research on networked condition
monitoring system for large rotating machinery, Proceedings of the 1st
International Conference on Mechanical Engineering (CD-ROM Version),
Shanghai, China, November.

31. Liao, S. L. and Wang, L. F. (2000). Design and implementation of dis-
tributed real-time online monitoring software based on Internet, (in Chi-
nese), I E E E Proceedings of the Third World Congress on Intelligent Con-
trol and Automation, Hefei, China, June, pp. 3623-3627.

236 A FLEXIBLE AUTOMATIC TEST SYSTEM FOR ROTATING TURBINE MACHINERY

Table 12.4 OOA Model

Items Descriptions

MACHINE (Machine)
TURBINEMACHINE (Turbine machinery)
STATUS-VAR (Status parameters)
STATIC-VAR (Static variable)
DYNAMIC-VAR (Dynamic variable)
DATAJMANAGEMENT (Data management)
MEASUREPOINT (MP)

DAQHARDWARE (DAQ hardware)
MANUAL-MEASUREPOINT (Manual MP)
PERFORMANCEANALYSIS
(Performance analysis)
DATAEILE (Data file)
IMP (Isolated Measurement Pod)

INTERFACE-CARD

(Special-purpose interface board 35954A)
35951A (IMP type)
35951B (IMP type)
35951C (IMP type)
35951D (IMP type)
359511;' (IMP type)
35952A (IMP type)
IMP-CHANNEL (Measurement channel)
TESTSYSTEM (Test system)
AUTOMATICMEASUREPOINT
(Automatic MP)

MANUAL-MEASUREPOINT (Manual MP)

DATAACQUISITON-SYSTEM (DAQ module)
DATADISPLAY (Data display)
REALTIMEDATA-LIST (Real-time data list)
TREND-GRAPH (Trend graph)
DATASTORAGE (Data storage)
SURGEANALYSIS (Surge analysis)
SURGEJLEPORT (Surge report)

Class
Subclass of MACHINE
Class
Subclass of STATUS-VAR
Subclass of STATUS-VAR
Class
Class, partially associated with
MACHINE
Class
Subclass of MEASUREPOINT

Class
Class
Generalization class, a part of
DAQJIARDWARE
Class, a part of
DAQHARDWARE

Specialization class of IMP
Specialization class of IMP
Specialization class of IMP
Specialization class of IMP
Specialization class of IMP
Specialization class of IMP
Class, a part of IMP
Class

Specialization class of
MEASUREPOINT
Specialization class of
MEASUREPOINT
Class
Class
Class
Class
Class
Class
Class

SUMMARY 237

Table 12.5 Databases in FATSFTM

Database Database Table
name description Table name description

Knowledge Specifications of 1mpType.db
base IMPs, sensors, and 1nstrumentList.db

MPs frequently
used in 1mpMeasMode.db
FATSFTM

Sensor.db
ParaType.db
MPName.db
DataFileTemplet .db

IMP types
Registration of all
sensors
IMP measurement
modes
Sensors information
MP types
MP names
Formats of test data
file

Configuration Configuration UsedImps.db IMPs used in trial
database information of run

every trial run Configuration.db MP configuration
information

ManualMP.db Manual MPs
DataFileformat.db Formats of test data

file

Real-time and Raw data and TestData.db Real-t ime/Historical
historical processed data test data
database

This Page Intentionally Left Blank

13
An Internet-Based
Online Real- Time

Condition Monitorina
Systerii

The chapter primarily discusses the systematic development of an Internet-
based real-time online system for condition monitoring and fault diagnosis
of large-scale rotating machinery. The design method is based on functional
decomposition and modular design concepts. First the system architecture,
software design, and data flow analysis of the overall condition monitoring
system are described, and then the design strategies are discussed in detail.
By integrating a variety of technologies including Internet, real-time moni-
toring, and centralized management, a comprehensive networked condition
monitoring system is developed. The system is also designed based on the
reconfiguration concept so that it is highly flexible. Furthermore, the field
experiences are presented and system benefits are evaluated.

'

13.1 INTRODUCTION

Large-scale rotating machinery is widely used in various industrial fields. How-
ever, they may fail to perform their intended functions in a satisfactory man-
ner during system operations. Unpredictable failures cost the plant a lot of

Modern Industrial Automation Software Design, By L. Wang and K. C. Tan
Copyright 2006 the Institute of Electrical and Electronics Engineers, Inc.

239

240 AN INTERNET-BASED ONLINE REAL-TIME CONDlTlON MONITORING SYSTEM

money and spoil its reputation in the increasingly competitive world market
(21. Significant and rapid progress made in the field of hardware and software
technology has made it highly possible to develop efficient and cost-effective
strategies to monitor, diagnose, control, and manage a number of real-life in-
dustrial processes 17, 9, 13, 15-18, 20, 22, 25, 28-30, 32, 331. Traditionally,
condition monitoring has been carried out using offline data acquisition and
analysis. The technology is well established and has been applied to a variety
of industrial applications. There are, however, many shortcomings in offline
condition monitoring systems, which need to be overcome for achieving better
system performance. The two major drawbacks are listed as follows:

0 Offline condition monitoring is labor-intensive. Operation and mainte-
nance personnel must be employed to acquire data and upload it into
the computer manually for subsequent analysis.

0 Offline condition monitoring is only suitable for slowly developing fail-
ures since the frequency of data collection is limited by system resources
and the number of measurement points.

The continual decline in the cost of electronic hardware and microproces-
sors coupled with the availability of standard off-the-shelf data acquisition
products in recent years has made the development of online condition mon-
itoring systems more viable. Online condition monitoring can go a long way
to overcoming some of the limitations in offline condition monitoring systems.
Meanwhile, the technology of the Internet has opened many new opportuni-
ties and uses for personal computers and workstations across every industry
application area. By taking advantage of the Internet, we can easily incor-
porate a variety of electronic communications capabilities into our condition
monitoring applications [6, 12, 15, 21, 251. Consequently, by integrating on-
line condition monitoring and network together through virtual instruments,
we can perform important condition monitoring functions across the Inter-
net/Intranet, such as gathering data, displaying data, and publishing measure-
ment conclusions, which have made the development of open systems possible.
Evolved from the traditional proprietary corporate network infrastructures,
more and more remote and distributed applications have been developed in
the industrial automation arena that are built upon modern Internet tech-
nologies. The aim of the research reported in this chapter is to support the
development of such a networked industrial application. An Internet-based
online condition monitoring for large rotating machinery is presented. The
study is to integrate real-time online intelligent measurement, remote moni-
toring, centralized management, and Web together. The system should fea-
ture the capability of reconfiguration, which enables easier construction of
condition monitoring and fault diagnosis LAN, WAN, and other comprehen-
sive networked systems. These large-scale online condition monitoring system
normally encompasses machine measurement , diagnosis, management, and de-
cision, which are suited for different levels of applications such as individuals,
workshops, plants, and enterprises.

PROBLEM DESCRlPTlON 241

13.2 PROBLEM DESCRIPTION

The architecture of our Internet-based online condition monitoring system
can be classified into four levels: data acquisition equipment, data acquisi-
tion workstation and database server, analysis (diagnosis) and management
workstation, and remote browser. Figure 13.1 depicts the configuration of
the Internet-based online condition monitoring system, which is fleshed out
in this section.

13.2.1 Field data acquisition devices

Data acquisition devices are primarily responsible for data acquisition and
signal preprocessing, and it provides data acquisition workstation with the
raw real-time data. In the data acquisition process, the data is collected
continuously and stored in a global array. When data are needed, the acqui-
sition process accesses the latest data in its buffer. Other processes running
in parallel to the acquisition process access the global data when needed.
For example, the display process accesses the global sensor data and control
status information to update the user interface. LabVIEW has rich built-in
libraries for controlling GPIB, VXI, serial instruments, and other data acqui-
sition products. In addition, we can control the third-party hardware, such

Fig. 13.1 Configuration of the Internet-based online condition monitoring system.

242 AN INTERNET-BASED ONLINE REAL-TIME CONDITION MONITORING SYSTEM

as programmable logic controllers (PLCs), through standard dynamic link
libraries (DLL’s) or shared libraries.

Field data acquisition device is essentially a single-board controller (SBC)
application system. Each data acquisition device collects the data from sev-
eral measurement points and each measurement point corresponds to a sen-
sor. Each machine is assigned with one or several data acquisition devices
because it may have multiple measurement points. Data acquisition devices
for vibration variables (i.e., fast changing variables) are inserted into the ex-
tendable slot of the data acquisition workstation (a Pentium computer). Data
acquisition devices are responsible for the simultaneous field data acquisition
and preprocessing of the acquired raw data. The preprocessed data are then
provided to the data acquisition workstation. Data acquisition devices for
the process variables (i.e., slowly changing variables) and switch variables
(i.e., digital variables) are commercial-off-the-shelf (COTS) products. They
communicate with the main computer via the RS-232 interface. Meanwhile,
certain specified interfaces should be reserved for possible future hardware
upgrades.

13.2.2 Field data acquisition workstation

Data acquisition workstation acquires and processes the most important pro-
cess parameters such as liquefied gas pressure and liquid flow, reactor temper-
ature, and separator pressure. It also implements automated data backup and
data purging at regular intervals. Data acquisition workstation can be seen as
an independent condition monitoring system, which can continuously super-
vise the running status of the plant. Database server stores the configuration
data and the historical data of the condition monitoring system.

Each workstation is an independent condition monitoring system and it
manages one or several machines. Field data acquisition workstation should
be able to continuously conduct online real-time condition monitoring for the
field machines. The monitored signals include shaft vibration, shaft displace-
ment, rotating speed, temperature, pressure, flux, and many others. It should
be capable of conducting automatic data record (select multiple record strate-
gies based on record configuration), judgment of startup/shutdown status
(generate startup/shutdown data), determination of alarms (generate alarm
events and blackbox data), printing of shift and day reports, and response
to user commands from the control panel (e.g., machine settings and MP pa-
rameters, backup, replay, real-time analysis, retrospective analysis of various
data). Also, it should be able to run in the networked industrial application
scenarios (e.g., send real-time data to the network users and write data to
the networked database). Furthermore, it should provide users with a variety
of parameters reflecting the true machine running status by comprehensively
analyzing all types of machine status data. As a result, i t should be able to
provide the machine management and maintenance personnel with measures
for fault diagnosis and preventive analysis of the large rotating machinery.

PROBLEM DESCRIPTION 243

13.2.3 System servers

From the functionality perspective, the servers in the online condition moni-
toring system can be classified into database server, Web server, and manage-
ment server, together with analysis and diagnosis server. In order to balance
the data-flow distribution, the practical hardware platform is made up of
one to three servers, i.e., a database server used for building networked SQL
database, a Web server, and an analysis (diagnosis) and management (abbre-
viated as A&M) server. It is also possible to install two or three of them in a
single computer.

A database server stores the historical files of machine running status
for alarm database, startup/shutdown database, short-, medium-, and
long-term historical databases. They can be accessed by online users for
machine monitoring and status analysis.

A Web server provides data access interface used to look up the machine
running parameters by Internet or Intranet users.

A management server is used to accomplish the management, data rep-
resentation, and alarm forwarding tasks for all of the workstations and
machines in the condition monitoring network, e.g., machine configura-
tion and parameter settings of various monitoring channels.

An analysis and diagnosis server is responsible for providing analysis and
diagnosis approaches for various real-time or historical machine running
parameters.

In the monitoring network servers, system provides users with diverse anal-
ysis methods for precise real-time online condition monitoring and fault di-
agnosis. Meanwhile, the networked database in servers provides convenient
and reliable storage and management of machine running parameters for the
long-term machine running. By accumulating the running data and exploring
the machine running principles, the reliability of machine trains can be sig-
nificantly increased. Like the servers, all of the field monitoring workstations
can represent various monitoring results of field machines in real-time. These
results can be used by the field technicians for fault analysis and machine
running guidance. The analysis methods can be used to deal with all of the
real-time, historical, startup/shutdown, and alarm data. Analysis (diagnosis)
and management workstation performs further data analysis for the data ac-
quired from the data acquisition workstation and database server. LabVIEW
features comprehensive analysis libraries, which can help the user conduct
more advanced data analysis. These libraries include statistics, evaluations,
regressions, linear algebra, signal generation algorithms, time and frequency-
domain algorithms, digital filters, and many others.

13.2.4 Remote browsers

244 AN INTERNET-BASED ONLINE REAL-TIME CONDITION MONITORING SYSTEM

Browsers can be used to check the current and historical running conditions
of various machinery trains through Internet or Intranet connection. The
data browsing efficiency is influenced by the network transmission speed. It
enables PCs in the company Intranet to access the analysis results (e.g., var-
ious waveforms, spectrums, and reports, etc.) via commonly used browsers
such as Internet Explorer or Netscape. In addition, data sharing worldwide
in Internet can be achieved via the gateway. Thus, decision-makers can learn
the updated status of each measurement point in every machine, even if they
are not in the plant area (e.g., they are on errands sometimes). By doing so,
decisions can be made in a timely fashion by comprehensively considering the
actual machine running conditions.

By using the rich Internet resources, remote fault diagnosis can be im-
plemented for the plant machinery. When any fault occurs, management
immediately notifies it to the relevant manufactures as well as domestic and
foreign domain experts. The people worldwide can diagnose the faulty plant
machines remotely by online real-time communications and discussions. By
doing so, the machine fault may be located and fixed very quickly. As a
result, the time for fault diagnosis is reduced and the plant productivity is
improved. Of course, all of the above functions are realized through the Web
server. Web server provides remote users with a data access interface. Any
remote computer (e.g., the computers in the management department), which
has the authorized software installed, can connect to the factory floor via a
standard network connection. This allows multiple parties to view the live
data from its source regardless of their locations. Experience has shown that
the network service works well and the network speed is rather satisfactory.

13.3 REQUIREMENTS CAPTURE A N D ELICITATION

Systematic description of a system is sometimes more important than the
solution itself in some sense. Before embarking on resolving the intended
problem, we need to truly understand the problem first. Requirements cap-
ture is a crucial step in the software definition phase and its basic task is to
properly answer what the system should do (i.e., the system functionality).
In the phase of feasibility study, user requirements are roughly understood by
the developer, and some feasible solutions may have been proposed. However,
the objective of feasibility study is to examine if there is any feasible solution
to the target problem in a short period of time. Therefore, many details are
omitted in this phase. However, as no minor details can be neglected in the
final system design. A feasibility study cannot replace the formal require-
ments capture because it does not clearly answer what the system should do.
Because traditional condition monitoring software is often developed for a spe-
cific real-time application, any hardware design change or update can require
a complete code rewriting. With the condition monitoring software based on
the reconfiguration concept, we can scale the application to various condition

REQUIREMENTS CAPTURE AND ELICITATION 245

monitoring environments. The Internet-based condition monitoring system
that we developed works across multiple measurement options, platforms,
performance, and more to meet diverse real-time monitoring requirements
without sacrificing the ease of expansion for the future. The data acquisition
workstation is the heart of our Internet-based online condition monitoring
system. From the perspective of system structure, the analysis (diagnosis)
and management workstation is only its client terminal. Therefore, in the
following subsections, we put emphasis on the design and development of the
data acquisition workstation software.

13.3.1 Data acquisition workstation software

According to systems functions, the modules in the Web-based online condi-
tion monitoring software can be classified into three categories: data acquisi-
tion, data processing, and data presentation. All the modules are based on
the reconfiguration concept. Therefore, the condition monitoring software is
highly flexible and can be commonly used. By adopting the modular design
method, the condition monitoring system is clearly structured. Each module
is responsible for independent system functionality and tasks.

13.3.2

The analysis (diagnosis) and management workstation is a client terminal
of data acquisition workstation. It has no data acquisition units (i.e., data
acquisition hardware and software) and it acquires data through communicat-
ing with the data acquisition workstation. The online condition monitoring
system can run either on the operator workstation (interfaced to the data
acquisition hardware) or anywhere on the network. The operator worksta-
tion is configured as a TCP/IP server so that any TCP/IP client can extract
real-time and historical data for display. The networked client application can
automatically configure communications with the server based on its TCP/IP
address. Any remote computer with the corresponding privilege can take
over the supervisor workstation via a modem or high-speed network. The
main functions of the Web server include:

Analysis (diagnosis) and management workstation software

0 View static snapshots of virtual instruments through standard Web
browsers.

0 View animated virtual instruments through standard Web browsers.

Specify update rates for animated displays.

0 Allow for multiple client connections.

0 Control client access to the condition monitoring system through the
Web.

246 AN INTERNET-BASED ONLINE REAL-TIME CONDlTION MONlTORING SYSTEM

13.4 ANALYSIS

The task of requirement capture and elicitation is to specify what the system
needs to do as well as propose complete, correct, and concrete requirements
of the target system. The software requirements description using natural
language cannot serve as the agreement between the software developer and
end user due to the following reasons:

0 The software developer and end user normally have different background
and experiences, so they may have distinct understanding toward the
terminology and contents described by the natural language.

0 The unstructured characteristic of natural language cannot clearly re-
flect the software system structure.

The interfaces among various functional blocks of natural language are
not explicitly divided such that a partial modification may incur global
changes of requirements definition.

As a result, formal language is desired in defining software requirements.
Serving as the explicit and unambiguous representation of software require-
ments definition, the objective of the software requirements analysis is to form
software requirements specifications. Three system analysis tools are com-
monly used, namely data-flow model, entity-relationship model, and event-
response model. They are associated with three different and independent
system descriptions, i.e., process procedure, data, and control. In this sec-
tion, we mainly discuss how to use these three analysis tools to analyze the
networked condition monitoring system.

13.4.1 Data-flow model

Data-flow analysis (DFA) is a simple but effective analysis method for require-
ments capture and elicication. It is especially suited to analyze information
control and data processing systems. It employs the decomposition strat-
egy to simplify a complicated and hard-to-solve problem as some simpler and
smaller problems. By doing so, a large and complex system can be decom-
posed into easy-teunderstand subsystems, which can be implemented in an
easier manner. The Data-Flow Diagram (DFD) only describes the logic model
of the system. There is no any concrete physical element in the diagram and
it only illustrates how the information flows and how it is processed in the
system. Because DFD is the graphical representation of a logic system, i t
can be easily comprehended by even noncomputer people. Therefore, it is an
effective communication tool in system analysis. Furthermore, in designing
DFD, only the basic logic functions should be considered without needing to
take care of their implementation issues. As a result, DFD can be used as
a good starting point in software design. DFD has four basic symbols; e.g.,

ANALYSIS 247

a rectangle block denotes the data source and destination, a circle block de-
notes data processing, two parallel lines represent data storage, and an arrow
denotes data flow. A process does not necessarily mean a single program
because it may represent a collection of programs or a program module. It
can even represent a manual operation such as inspection of data validity. A
data storage frame is not equivalent to a file, because it can represent a file, a
part of the file, database elements, or a part of the record, and so forth. Data
can be stored in memory, external storage devices, and even human brain.
Both data storage and data flow are concerned with data in different status.
Data storage is associated with static data, while data flow is concerned with
dynamic data, which can be used as function parameters or dynamic global
variables. Normally, the exceptions handling is omitted in the DFD, and it
also does not include certain system operations such as opening and closing
files. The basic gist of DFD is to describe “what to do” instead of “how to
do.”

The DFD elements are extracted from the problem description, which are
shown in Fig. 13.2. In the basic system model, Process 1 and Process 4 are
the core of this study. From the user perspective, there is no big difference
between a DAQ workstation and an A&M workstation. In actuality, the only
difference between them lies in how the real-time data on machine running
status is collected by their respective back-end programs. Based on the data
acquisition configuration, a DAQ workstation acquires and obtains the real-

Fig. 13.2 Data-flow diagram of overall distributed condition monitoring software.

248 AN INTERNET-BASED ONLlNE REAL-TIME CONDITION MONITORING SYSTEM

f
%

1 1

Fig. 13.3 Data-flow diagram of data acquisition workstation module 1.

time data of machine running status after some manipulations, which include
vibration variables, process variables, switch variables, startup/shutdown sta-
tus, and current alarm channel table. On the contrary, A&M workstation
retrieves these data directly from the DAQ workstation. Furthermore, the
back-end program in the DAQ workstation generates large amounts of histor-
ical data as well as sends alarm data. The back-end program in the A&M
workstation provides functions for DAQ workstation selection and alarm mon-
itoring. Figure 13.3 illustrates the data-flow diagram of the first-layer module
in the data acquisition workstation while Fig. 13.4 and Fig. 13.5 show the
data-flow diagrams of the second-layer modules.

Vibration signal acquisition configumh
/I

fig. 13.4 Data-flow diagram of data processing module 1.1.

ANALYSIS 249

m -Alarm wnfiguratan

Start@shu!dorm s p e d

---Real limedata

-R~ecwdwnftguraian

Fig. 13.5 Data-flow diagram of data acquisition module 1.2.

0 Process 2 is the networked database server. It has its own DBMS, and
the developer only needs to design and manage the database.

0 Process 3 is the Web server. Because the development tool nowadays
also provides Web server, what we need to do is to design a common
gateway interface (CGI) application and create relevant homepages ac-
cording to the user requirements.

0 Process 5 is the Web browser. It is available in most computers and is
out of the scope of this study.

13.4.2 Entity-relationship model

In order to explicitly represent the user requirements, a system analyst of-
ten needs to build a conceptual data model. It is a problem-oriented data
model which describes the data flow from the user perspective. It has nothing
to do with the implementation approach for the software system. The most
commonly used approach to representing the conceptual data model is the
Entity-Relationship Diagram (ERD). ERD fits well in the human thinking
habits and it can be used as the communication tool between the end user
and system analyst. The Entity-relationship model includes three basic ele-
ments: entity, relationship, and attributes. An entity can be concrete objects

250 AN INTERNET-BASED ONLINE REAL-TIME CONDITION MONlTORlNG SYSTEM

Wxhinss

Fig. 13.6 System entity-relationship diagram.

or abstract concepts. For instance, in our networked condition monitoring sys-
tem, machines and measurement points (channels) can all be seen as entities.
In an ERD, a rectangle is used to denote the entity in the ERD. Relationship
refers to the associations among the real-world objects. The associations can
be classified into three types, namely, one-to-one association, one-to-many
association, and many-to-many association. The diamond connecting the en-
tities is used to denote the association between them in the ERD. Attributes
are the properties of entities and associations. In general, both an entity and
association can be represented by several attributes. The ellipse is used to
denote the attributes of an entity or a relationship. Figure 13.6 depicts the
entity-relationship diagram of the target system.

13.4.3 Event-response model

Event-response model refers to the events list of the intended system. It
identifies every event that the system must recognize as well as the expected
system response to each event. An event-response model is very beneficial to
the system refinement process. In many aspects, a complete event-response
model comprehensively defines the system characteristics. In other words, if
we can figure out the events and their corresponding responses, the intended
system has been fully interpreted. Generally speaking, the events used in
system analysis should satisfy the following three conditions:

0 The event which happens at a particular time instant.

0 The event which can be identified by the system.

0 The system should be able to respond to such an event.

The events and their corresponding responses in the networked condition
monitoring system are listed in Table 13.1.

TRANSITION TO DESlGN 251

Table 13.1 System event-response model

Event Response

1. Poll all of
the channel data

A. Determine the startup/shutdown status and update
Startup/shutdown status table.
B. Startup/shutdown processing.
C. Alarm judgment and processing.
D. Send out data acquisition success signal.

A. Wait for acquisition success signal.
B. Generate short-term historical data for each channel.

2. Short-term
historical
data record

3. Medium-term
historical
data record channel.

4. Long-term
historical
data record

A. Wait for acquisition success signal.
B. Generate medium-term historical data for each

A. Wait for acquisition success signal.
B. Generate long-term historical data for each channel.

5 . Startup/shutdown
status configuration.

A. Generate startup/shutdown status data based on

7. Alarm A. Generate alarm events record;
B. Send the current alarm channel table to the specified
management workstation.

8. Network client
request the actual connection number.

A. Send individual client service program according to

13.5 TRANSITION T O DESIGN

The basic objective of overall design is to figure out how to realize the whole
system. It is also called a preliminary or abstract design. In this phase, physi-
cal elements of the overall system are classified, which may include programs,
files, databases, manual processes, documents, and so forth. Each physical
element in this phase can be seen as a black box, and its detailed contents
will be specified in the later phase. Another important task in the overall
design phase is to design the software and database structures, which defines
system modules as well as their interrelationships.

In the overall system design process, the analyst needs first to seek differ-
ent solutions to implementing the target system. Data-flow diagrams obtained
from the requirements capture phase can serve as the basis for possible so-
lutions. After doing this, analysts then select several reasonable solutions
from the available ones and prepare for a system flowchart for each solu-
tion. All of the physical elements making up of the system should be listed

252 AN INTERNET-BASED ONLlNE REAL-TIME CONDlTlON MONITORING SYSTEM

for cost/benefit analysis. The progress plan for each solution should also be
prepared. By carefully comparing various feasible system implementation so-
lutions and software structures, an optimal implementation solution and the
most suitable software structure are determined for the target software sys-
tem. The principle for solution choice is to build the higher-quality software
system using lower development cost.

13.5.1 Choice of development strategies

Software requirements analysis and software design are closely related to each
other. Software requirements analysis is the basis for software design. In the
process of formulating the software requirements specification, the division
of software modules needs to be carefully considered. On the other hand,
when there is any problem found during the software design process, the
problem should be immediately fed back to relevant personnel and corrective
measures should be taken to modify the original software requirements. These
two activities are closely interacted with each other throughout the software
development process.

Currently, there exist several principal software design approaches, namely,
structured software design, object-oriented software design, data structure
based software design, process-model-based software design, etc. All of these
methods have their own specific analysis technologies. Here only the struc-
tured software design and object-oriented software design are addressed. Both
methods conduct the software design by decomposing the complex large-scale
software into a certain amount of smaller and solvable functional modules.
These two methods have deep impacts on the design and development of our
networked condition monitoring software.

Generally speaking, structured software design is based on the functional
decomposition. It is based on the process of functional implementation and
data is transmitted between modules through module interfaces. Object-
oriented software design is based on data abstraction [8, 11, 191. Its module
decomposition abides by information hiding, and data operations serve as the
module interface. The structured design method is normally used together
with data-flow analysis (DFA). DFA obtains the requirements specification de-
scribed by data-flow diagram and data dictionary. Structured design method
is to obtain the software module structure based on data-flow diagrams. This
method is sufficiently simple so that it can be easily understood and grasped
even by beginners. Thus, it is widely used in the development of small and
medium-sized software systems. However, this software development process
is concerned with a large number of documentation. Once the software needs
to be revised or upgraded, we have to redo most of the work on documenta-
tion, design, and testing. For the large-scale and complex software-intensive
systems, its productivity, reusability, and maintainability cannot well meet
the user requirements.

TRANSlTlON TO DESlGN 253

Based on the above discussion, the traditional structured software design
method is selected to perform module decomposition, as our networked condi-
tion monitoring system is not a very large-scale software project. Meanwhile,
object-oriented design techniques are used as often as possible in order to
increase the system reliability and maintainability. In the design, the overall
system is divided into four components, namely, problem domain, data man-
agement, human interaction, and task management, which are discussed in
the following.

0 Problem Domain Component (PDC): The complete data-flow models
are the initial PDC because they indicate the basic user requirements.
They are only concerned with the data that the user cares about, e.g.,
the seven events and their corresponding responses in the event-response
model. This part is normally the most complex, basic, and stable part
of a software-intensive system.

0 Human Interaction Component (HIC): This component is responsible
for processing the interaction between human and computer in a soft-
ware system. That is, it enables user operations of the software system.
It includes actual displays (e.g., screen displays and reports) and the
data needed for human-machine interactions. It is the most intuitive
feature to end users in a software system.

0 Data Management Component (DMC): This component is responsible
for accessing and managing the long-term data generated by the system.
These data will be used in designing other components of the software
system such as HIC. DMC separates the database technology from other
components in the system.

0 Task Management Component (TMC): This component primarily deals
with the operations associated with hardware and operating system.
For instance, in our condition monitoring system, the data acquisition
module falls into TMC because it is closely related to system hardware.

The above classification of the four components is based on the transaction
separation principle in software design. It is obvious that such a classifica-
tion is beneficial to improving system reliability and maintainability. PDC
is the heart of the overall system. It does not care about the external world
since what it should take care of is only the user requirements. No matter
how significantly the software technologies change over time, this component
is relatively stable. HIC, DMC, and TMC enable convenient operations on
user interface update as well as system database and hardware upgrades. In
addition, since the target system is a real-time condition monitoring system,
it can be viewed as an overall task, which can be decomposed into a number
of concurrent subtasks. This method is basically derived from the philosophy
of process-based software design.

254 AN INTERNET-BASED ONLINE REAL-TIME CONDITION MONITORlNG SYSTEM

13.5.2

The Internet-based condition monitoring system should provide real-time su-
pervision, intelligent alarm management, post-fault diagnosis, and an ease-
teuse graphical user interface (GUI). Therefore, an effective and efficient de-
velopment environment should be provided to meet the above requirements.
Because systems suppliers have been evolving their products from propri-
etary architecture to open platforms, developing an open-architecture-based
monitoring system has become feasible. Furthermore, coding for the con-
dition monitoring software is based on the graphical programming software
LabVIEW in the popular Windows environment to implement multitasking
functions and elegant graphical user interfaces.

Choice of development environment and programming tool

13.5.2.1 Choice of operating system Operating system is the indispensable
support platform in running any applications [26]. Microsoft Windows oper-
ating systems are very popular in the industrial automation arena. In this
application development, we select Windows as the developmental platform of
our networked condition monitoring system due to the subsequent two major
reasons:

0 Using the popular Windows support platform, users can master the
system operations very quickly, because most of them have already been
familiar with the routine operations in Windows operating systems. As
a result, staff training costs are markedly reduced.

0 Windows operating systems have comprehensive system resource man-
agement capability, and therefore the networked condition monitoring
system can get tremendous benefits by appropriately assigning system
resources.

Choice of workstation operating system: Most of the current software-
intensive systems in the industrial automation field are developed in Windows
platforms primarily due to the subsequent merits:

0 Operationability has become an important criterion in designing any
industrial automation software. The popularity of Windows operating
system has demonstrated their wide acceptance in various industrial
sectors. Because people who are familiar with the Windows operations
are able to learn the software operations very quickly without needing to
learn the operating system itself from scratch, the operation efficiency
can be improved a lot.

Windows operating systems have their legacy advantages in graphical
interfaces, multitasking implementation, dynamic data exchange, mem-
ory management, and so on. Moreover, they have greatly improved
device management, network communication, multimedia support, and
so on, which are very beneficial t o implementing industrial automation
systems.

TRANSITlON TO DESIGN 255

Choice of server operating system: Just as with the operating system
for a computer, a computer network also needs its corresponding network op-
erating system. The network operating system serves as the bridge between
the user and network, and network resources sharing can be realized through
it. As a result, generality, flexibility, and usability can be guaranteed when
the user uses the system resource in networks. At the time of the project
design and implementation, the mainstream server-based network operating
systems include Netware by Novell, Windows NT by Microsoft, Macintosh
System by Apple, and so forth. Network operating system should be able to
support various communication protocols and transmission protocols includ-
ing TCP/IP and SPX/IPX, etc. We selected Windows NT as the network
operating system in the system server. It is easy to install, use, and manage,
and it can also be flexibly configured in the distributed network computing
environment. Furthermore, it also supports the server which uses the popular
operating systems. In our networked system, workstations communicate with
servers via the commonly used TCP/IP protocol.

13.5.2.2 Choice of database server Database selection is an important issue
in the design and implementation of industrial automation systems [14, 27).
Due to the heterogeneous databases and their complex structures, the whole
system cannot perform well or has no high expandability if the database sys-
tem is not properly selected. The design of database structure in our condition
monitoring system is based on the relational database. Relational database
originated very early, and the structured query language (SQL) proposed by
IBM is also based on relational database. Relational database concentrates
on organizing certain specific information into a whole part. In the design of
database systems, two primary objectives are sought, namely how to classify
and store data as well as how to use these data. In the intended condition
monitoring and fault diagnosis system for large-scale rotating machinery, it
is highly important to select the appropriate database since the system is
required to process and analyze a large amount of data in real time. The
selection of database for such a system directly affects the data correctness
and system execution speed. After careful consideration and comparison, we
selected Microsoft SQL Server for our system due to the following two major
reasons:

0 The data volume to be processed is very large, and the requirement on
database security is fairly high. Web server also requires that the back-
end database should be a large-scale networked database for convenience
of future system expansion.

The database being currently used in the company is Microsoft SQL
Server, so the new database type had better be identical to the legacy
one to save investment.

SQL Server is a type of networked database based on the Client/Server
structure, which is used for cooperative processing. In practical applications,

256 AN INTERNET-BASED ONLINE REAL-TIME CONDITION MONITORING SYSTEM

Client/Server means the interactions between the user workstation and central
server. The application executing on the workstation can query and update
the data stored in the database server. This model has two fundamental
characteristics:

0 The client process and server process may be connected through LAN

0 SQL is used as the basic language for the data communication between

The SQL server has a single-process and multithreaded database engine;
i.e., it is able to schedule applications for CPU by itself without depending
on the multi-tasking operating system. The self-processing capability of the
database engine provides higher portability, because the database itself is
capable of managing the scheduling of various tasks as well as accessing mem-
ory and magnetic disks. The multithreaded system is of particular use to the
given hardware platform. For a multi-process database, every user connection
needs to consume 500 kB-l MB memory. However, in its multithreaded coun-
terpart, only 50 kB-100 kB RAM is needed. Furthermore, as the database
executive itself is able to manage these multiple threads, the user does not
need to arduously figure out the complex inter process communication mech-
anism. The database engine specifies the operations to be conducted, and it
sends them to the operating system during system execution. In this method,
different operations are assigned to different threads by the database engine.
At an appropriate time, the user commands in these threads are sent to the
operating system. By doing so, the database uses only a limited working ele-
ment (e.g., a thread) instead of multiprocess DBMS for a variety of operations
such as user command, data sheet lock, disk I/O, buffer I/O, etc.

SQL supports any network protocols supported by the operating system
where the SQL Server runs. Microsoft Windows N T enhances the network
interoperability. It implements intrinsic interoperability among the client and
server of IPX/SPX and Novel1 NetWare via networking various subsystems.
Windows NT has its intrinsic TCP/IP support mechanism as well as sup-
port mechanisms for other communication protocols such as DECNet Sockets,
Banyan WINES, and Apple Datastream. Since an SQL Server is developed as
a Win32-based application, it can also utilize these protocols. At the time of
writing, SQL Server supports all of the protocols supported by WinNT, and
therefore i t has high network adaptability.

Microsoft SQL Server is a comprehensive database management system
(DBMS). It is able to manage a large volume of files, locate the valid data,
and ensure the correctness of data input. Because most DBMSs currently
in use are relational databases, sometimes such types of DBMS are also
called RDBMS. Except for the complete database control, it also provides
the directory-style management as well as the capability of connecting to a
large number of databases. In general, it should be able to provide three major
functions, namely, data definition, data manipulation, and data control.

or WAN, and they may execute in a same computer.

Client and Server.

TRANSITION TO DESlGN 257

13.5.2.3 Choice of program compiler After understanding what we need to
do, we should consider how to do it and which tool should be employed to
accomplish the task. The principle of selecting a program compiler is to check
if it is good at accomplishing our desired system functionality and the capa-
bility for future software upgrades and maintenance. Many factors may have
impacts on the compiler selection, which include application requirements,
computer hardware, operating system, device hardware, and many others.
The selected software should have a certain degree of generality such that it
can be seamlessly connected to different computer architectures and hetero-
geneous data acquisition equipment. The application software at least should
have the capability of data acquisition, data analysis, and data presentation.
Meanwhile, if the target system has GPIB or RS-232 interfaces, a device
driver library is indispensable. Other system requirements include high-speed
system execution, sufficient measurement channels, real-time data processing,
and so forth. All of these factors need to be carefully considered and balanced
before the final decision on selecting a suitable program compiler is made.

In developing the Windows interface style software, two popular tools are
currently used: visual and graphical programming tools. Visual programming
tool includes programming languages such as Visual Basic, Visual C++, Del-
phi, and the like. For developers, they are required to have strong program-
ming ability as well as good mastery of device hardware. Therefore, the devel-
opmental cycle is a bit long, especially for the large-scale system. Graphical
programming tool provides the user with a variety of functional icons (target
modules). The user only needs to configure the necessary parameters in an
interactive manner and then construct the suitable flow diagram according
to the practical task requirements. Graphical user interface-based software
development environment is the developmental trend for modern application
software. Two representative products in the current market are HP VEE
and NI LabVIEW.

Graphical programming is distinguished from the traditional textual pro-
gramming environment because it builds programs via creating and connect-
ing various diagrams. Therefore, as compared with the textual programming
environment, it is more intuitive and easier to understand and debug by the
programmer. Each diagram denotes an object capable of accomplishing a
specific task, and sometimes it can also be called a “function.” Diagrams in-
clude displays, switches, generators, mathematical functions, GPIB devices,
A/D boards, and many others. The functional module is connected with
each other via “lines,” which are called as data channels or “flow.” Diagrams
and lines can be viewed as the code. The difference here is that the code is
made up of diagrams instead of texts. Graphical programming offers many
advantages over the traditional textual programming such as high program-
ming efficiency, flexible modification, comprehensive functions, rapid design
of operational and display interfaces, convenient task control, and so forth.
Consequently, it significantly improves the plant productivity and reduces the
developmental cycle of industrial automation systems.

258 AN INTERNET-BASED ONLINE REAL-TIME CONDITION MONITORING SYSTEM

“Software is the future battlefield.” “The future of test instruments lies in
software.” “Software is instruments.” All of the above popular slogans in the
industrial automation arena nowadays demonstrate the extremely important
role of software in various industrial automation fields. Currently, graphical
programming platforms for industrial automation are being rapidly developed.
Except for the aforementioned mainstream software products, there are other
products such as NI’s LabWinodws/CVI and ComponentWorks, Tektronix’s
TekTMS, HEM’S Snap-Master, Capital Equipment’s TestPoint, WaveTek’s
WaveTest, Iotech’s VisualLab, Intelligent Instrumentation’s Visual Designer,
KEITHLEY’s VTX, and many others.

LabVIEW (Laboratory Virtual Instrument Engineering Workbench) is the
development environment based on graphical programming language G [lo].
It is able to accomplish all of the functions for GPIB, VXI, PXI, RS-232, RS-
485, and data acquisition (DAQ) card communications. Furthermore, it has
various built-in library functions used for implementing various software stan-
dards such as TCP/IP, ActiveX, and so forth. LabVIEW is a software tool
for the development of virtual instruments. With the wider use of computers
and their lower prices, the concept of virtual instrument is being widely ac-
cepted by more and more practitioners in different industry application fields.
Virtual instrument refers to the capability of constructing the user instru-
mentation system by equipping the standard computer with high-efficiency
hardware. Software is the core of such systems so that the user can make full
use of the powerful computer capability for computation, representation, and
connectivity to flexibly defined instrument functionality. By combining data
acquisition, instrument control hardware, and legacy instrument equipment,
the desired virtual instrument system can be conveniently built [3-5, 23, 311.
The networked condition monitoring system discussed in this study essentially
falls in the virtual instrument domain. By integrating LabVIEW with a sig-
nal conditioning board and a data acquisition card, etc., the time and budget
for developing a networked condition monitoring system can be significantly
reduced. In addition, because LabVIEW can be used to rapidly construct the
overall system framework in the development process, more time and human
resources can be used to conduct the comprehensive system testing. Con-
sequently, the product quality can be improved and the software upgrading
duration is shortened.

The 32-bit compilation program can be generated in the LabVIEW envi-
ronment, which enables the high-speed execution of various data acquisition,
test, and measurement solutions. Because LabVIEW is a true 32-bit compiler,
the written program can be compiled as an independent executable. The idea
of “Software is Instruments” proposed by NI company deepens the concept
of virtual instrument in various industrial sectors. The basis of virtual in-
strument software in NI is device driver programs; e.g., NI-488.3 for GPIB
and NI-VXI/VISA for VXI hardware. Using appropriate device drivers, the
user can program and control various hardware devices through programming
languages such as C and certain application software packages. Each device

OVERALL DESIGN 259

driver is designed for elevating programming flexibility and increasing data
throughput. More importantly, there is a common application programming
interface (API) for user programming. As a result, the developed application
is highly portable regardless of different computer types and operating sys-
tems. The top layer of software framework is the application software coded
by LabVIEW, which is built based on device drivers. Like device drivers, it
can also be ported among different operating systems. Quite often, people use
powerful while cost-effective PC as the execution platform, and optimize the
LabVIEW-based application software to construct their industrial automa-
tion systems by also fulfilling the practical price and timetable restrictions
and performance demands.

From the above discussion, we finally select LabVIEW as the development
environment of our networked condition monitoring system. Below are some
of its benefits:

With LabVIEW, we have the ability to rapidly prototype, design, and
modify systems in a short amount of time. Personal computers combined
with LabVIEW application software and plug-in boards provide a very
cost-effective and versatile solution for condition monitoring systems.
Graphical programming makes it easy to learn so that the training time
and cost are significantly reduced. Data-flow-oriented programming re-
alizes programmers’ dream of WYWIWYT (What You Write Is What
You Think).

Extensive data acquisition, analysis, and presentation capabilities are
available within a single LabVIEW package, so users can seamlessly cre-
ate their own solutions to meet various plant monitoring requirements.
It provides powerful digital signal processing capability as well as rich
and intuitive GUI elements. LabVIEW can not only use the preemptive
multitasking programming, but also make multiple VIs properly run in
the multitasking environment.

LabVIEW provides expansion mechanism using the other programming
languages such as Visual C++. Any task which cannot be implemented
by LabVIEW can be abstracted into a Code Interface Node (CIN) or
Dynamic Linked Library (DLL), which can be called a standard function
by LabVIEW.

13.6 OVERALL DESIGN

In the last section, the system design strategy is determined; i.e., the software
structure is divided into four independent components including problem do-
main component, user interaction component, data management component,
and task management component. The main task in the overall software de-
sign is to determine the general interfaces among the four components and

260 AN INTERNET-BASED ONLINE REAL-TIME CONDlTION MONITORING SYSTEM

some global physical elements such as database structure, file structure, global
variables, software module decomposition, and so forth. The detailed design
for each module will be discussed in the detailed design phase. Of course, it is
fairly necessary to redefine the DFD and make the physical elements in each
data flow more explicit prior to the actual system design.

13.6.1 Database design

In this subsection, the database design for the networked condition monitoring
system is fleshed out.

13.6.1.1 Data requirements To expedite the software development progress
and simplify the software design, all the information is stored in the form of
database. The data requirement of the target system is derived from the data
dictionary of ERD and DFD. As shown in Table 13.2, databases in the overall
system are primarily made up of the five data types.

13.6.1.2 All the system data are stored in a variety
of databases in the form of database tables. Two ODBC data sources are
set in the condition monitoring system, which point to both local and net-
worked databases at different locations, respectively. The local database is
primarily used to save the short-term data in the presence of network fail-
ures. The actual database system is implemented using relational database
management system (DBMS). The database implementation system employed
has the compatible modes of both MS-SQL Server (networked database) and
ACCESS (local database). Both data standardization and storage efficiency
should be carefully considered in designing database tables. It is an iterative
design process, and the final results obtained are discussed in the following.

(1) Configuration data: Table 13.3 to Table 13.10 list the major config-
uration databases in the target system.

Notes:

Database tables design

0 U8 and 18 denote &bit unsigned and signed integers, respectively.

The primary key of the workstation configuration table is “workstation
ID,” and it is also the foreign key of machine configuration table. Their
interrelationship falls into the one-to-many association.

0 The primary key of machine configuration table is “Workstation ID +
Machine ID,” and it is also the foreign key of MP configuration table.
Their interrelationship is also the one-to-many association.

0 The primary key of the MP Configuration Table is “Workstation ID
+ Machine ID + Channel ID’, and it is also the foreign key of the
vibration variable channel configuration table, process variable channel
configuration table, and digital variable channel configuration table.

OVERALL DESlGN 261

Table 13.2 System database

Data type Description

Configuration
data

The configuration parameters for the whole system.
Users may enter the configuration from scratch or modify
the existing configuration in any password-protected
workstation. The network database stores all of the system
configurations and every workstation stores local configuration.

Short-term
FIFO data

It belongs to dynamic data, which is continuously generated by
the historical data generation module in the data acquisition
workstation. It records the short-term information on machine
working conditions for analysis and diagnosis. It is stored in
network database.

Medium-term
historical
data

To reduce the data storage volume, the machine running
conditions are stored as medium-term historical data after
features extraction. It is continuously generated by the historical
data generation module in the data acquisition workstation and
stored in network database.

Long-term
historical recording strategy.
data

Startup or
shutdown
data

It is identical to the medium-term historical data except for the

It is generated by the startup/shutdown processing module in the
data acquisition workstation. It records the machine running
status during system startup/shutdown and is stored in network
database.

B lack-box
data

It is generated by the alarm module in the data acquisition
workstation. It records the machine running status before, during,
and after the alarm event. It is stored in network database.

The record strategy definition table and the historical data record strategy
selection table specify the generation modes of the historical database in each
workstation. The report format definition table specifies the report formats.
The server and A&M workstation properties table stores the information on
networked A&M workstation and Web server, which are illustrated in Table
13.11.

(2) Short-term FIFO data: It includes three database tables, which are
illustrated in Table 13.12 to Table 13.14.

The primary keys of the above three tables are all “Workstation ID +
Machine ID + Channel ID + Record Time.” These tables record the real-
time data during a certain period of time, and the data are automatically
updated by the system.

262 AN INTERNET-BASED ONLlNE REAL-TIME CONDITION MONlTORlNG SYSTEM

Table 13.3 Workstation configuration table

Field Data type

Workstation name
Workstation ID
Workstation IP address
TCP port
Port for sending broadcasting data
Port for receiving broadcasting data
Network connection mode
Password
Automatic back-end program startup
Time modification
ODBC data source 2
FIFO data capacity per day
Medium-term historical data capacity per day
Long-term historical data capacity per day
Workstation description

varchar(40)
tinyint (30)
varchar(20)
U16 smallint
U16
U16
Bit[O/l]
char(8)
bit
Datetime
varchar(20)
U8
U16
U16
varchar(40)

(3) Medium-term historical data: Table 13.15 depicts the medium-
term historical database table for vibration variables. The other two database
tables are designed for the process variables and switch variables, respectively.

All of the three historical database tables for three types of historical data
are generated by historical data generation module and their primary keys
are all “Workstation ID + Machine ID + Channel ID + Record Time.” They
record the historical data in a certain period of time and are updated period-
ically by the system.

(4) Long-term historical data: Its components and functionality are
identical to those in the medium-term historical database tables.

(5) Startup/shutdown real-time data: There are also three types of
database tables corresponding to three types of startup/shutdown real-time
data. The primary keys of these three database tables are all “Workstation
ID + Machine ID + Channel ID + Record Time + Sampling ID.” The data
is generated by the startup/shutdown processing module.

(6) Black-box data (i.e., alarm analysis data and alarm events):
Alarm analysis data are created from short-term FIFO data by the alarm
judgment module. They are the status data when the machine is in alarm
mode but not in startup/shutdown status. The alarm events table is generated
by the alarm processing module, and it records the alarm events in non-
startup/shutdown conditions. Each time only the data set in the current
alarm module is recorded, which is the index for machine alarm status data.

OVERALL DESIGN 263

Table 13.4 Machine configuration table

Field Data type

Workstation ID
Machine ID
Machine name
Startup/shutdown mode selection
Initial rotating speed in startup/shutdown
End rotating speed in startup/shutdown
Sampling rotating speed interval in startup/shutdown
Alarm rotating speed interval in startup/shutdown
Startup/shutdown sampling time interval
Normal sampling time interval
Record time before alarm
Record time after alarm
Medium- and short-term data generation interval
Long-term data generation interval
Shift report enabled
Day report enabled
Shift report time 1
Shift report time 2
Shift report time 3
Day report time
Alarm print
Report format
Alarm judgment mode
FIFO data full flag
Machine description

tinyint
tinyint
varchar(40)
varchar(10)
U16
U 16
U16
U16
mininut U16
mininut U16
mininut U16
mininut U16
U16
U16
bit[O/l]
bit [0/1]
char6
char6
char6
char6
Bit
tinyint
U8
bit[O/l]
varchar (40)

13.6.2

In this subsection, the overall design of the DAQ workstation software is
fleshed out. First the software design steps are introduced and then the overall
design of software modules is discussed. Finally the modules are described
one by one.

Overall design of DAQ workstation software

13.6.2.1 S o h a r e structure The process of structured design method is the
process of obtaining software modules based on data-flow diagrams. Starting
with the data flow diagrams, it normally experiences seven steps in building
system structure, which are listed in the following.

0 Reexamine the basic system model: Its objective is t o check if there is
any omitted system input and output. Any omission may incur serious
problems in the future design.

264 AN INTERNET-BASED ONLINE REAL-TIME CONDIT/ON MONITORING SYSTEM

Table 13.5 MP configuration table

Field Data type

Workstation ID
Machine ID
Channel ID
M P name
Channel type
Driver name
Open port
Close port
Channel mask bit
Alarm mask bit

tinyint
tinyint
smallint
varchar(20)
varchar(10) [vibration/process/switch]
varchar (30)
varbinar y (4)
varbinary (4)
bit(Y/N)
bit (Y/N)

Table 13.6 Historical data record strategy selection table

Field Data type

Workstation ID tinyint
Medium- and short-term historical data selection tinyint
long-term historical data selection tinyint

0 Reexamine and refine the DFD: To ensure the system correctness, it is
highly necessary to examine the DFD once more so that the DFD may
be refined. It should be noted that such model refinement should not
bring any new faults to the DFD.

0 Determine the DFD type: Normally, a DFD is the hybrid of transform
and transaction types. This step is to determine the type of the overall
DFD.

0 Map the DFD to the software module structure and design the upper
two layers of the module structure.

Based on DFD, decompose the module structure in upper layers step
by step, and design the middle and bottom layers.

0 Refine the software module structure so as to obtain a more suitable
software structure.

0 Describe module interfaces.

Based on the above design principles, the DAQ workstation is divided into
several modules as shown in Fig. 13.7.

OVERALL DESlGN 265

Table 13.7 Vibration variable channel configuration table

Field Data type

Workstation ID
Machine ID
Channel ID
Sensitivity coefficient
Range selection
Sampling length
Sampling cycle
Sampling mode
Self-examination mode
Filter selection
Operational amplifier selection
Positive direction pre-alarm threshold of pulse-pulse value
Positive direction primary alarm threshold of pulse-pulse value
Unit

tinyint
tinyint
smallint
U16
tinyint
U16
U16
binary(2)
binary(2)
varchar(4)
varchar(4)
U16
U16
varchar(10)

Table 13.8 Process variable channel configuration table

Field Data type

Workstation ID
Machine ID
Channel ID
Sensitivity coefficient
Filter selection
Operational amplifier selection
Positive direction pre-alarm threshold
Positive direction primary alarm threshold
Negative direction pre-alarm threshold
Negative direction primary alarm threshold
Average sampling number
Unit

tinyint
tinyint
smallint
U16
varchar(4)
varchar(4)
U16
U16
U16
U16
U16
varchar(10)

13.6.2.2 Overall design of software modules The variables used in the DAQ
software are introduced in the following.

(1) Global variable design: Global variables reflect the interrelationships
of various program modules, and they are used to ensure that all the modules
can coordinate with each other and work in harmony. Considering that the
user interfaces in the A&M workstation and data acquisition workstation are
utterly identical, we should be aware at the very beginning of design that
most user interface programs are reusable. Because the user interfaces in
this system are primarily used to display (or output) a variety of dynamic or

266 AN INTERNET-BASED ONLINE REAL-TIME CONDITION MONITORING SYSTEM

Table 13.9 Report format selection table

Field Data type

Workstation ID
Machine ID
MP ID
Channel type
Process variable value
GAP voltage
Pulse-pulse value
x l Amplitude
x l Phase
Rotating speed
Switch status
Unit

bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit
bit

Table 13.10 Record strategy definition table

Field Data type

Record strategy ID
Record strategy description

tinyint
varchar(100)

historical information, the global variables are divided into static variables,
dynamic variables, and control variables. Static variables mainly refer to
the configuration data, and most of them are read from the database by the
initialization program. Dynamic variables are primarily updated by back-end
modules. In the data acquisition workstation, such variables are the status
data of current machine generated by the modules for data acquisition and
alarm processing in the problem domain. In the analysis and management
workstation, they are collected by the communication module from the data
acquisition workstation and updated cyclically. Static and dynamic variables
are indispensable global variables in any application with front-end analysis
function. Control variables are primarily used to coordinate the inner program
modules such as alarm and recording modules. The detailed composition of
these variables is listed in Table 13.16.

(2) Static global variables

0 Workstation properties including communication configuration (cluster)

0 Sampling configuration (cluster array)

0 Alarm configuration (cluster array)

Record configuration (cluster): Its composition is shown in Table 13.17.

OVERALL DESIGN 267

Table 13.11 Server and A&M workstation properties table

Field Data type

Sever ID
Company name
Server IP address
Alarm UDP port
Alarm phone 1
Alarm phone 2
Alarm phone 3
Alarm fax
Alarm Email
Phone alarm enabled
Fax alarm enabled
Email alarm enabled
Siren alarm enabled

U8
Varchar(50)
Varchar(20)
U16
Varchar (20)
Varchar(20)
Varchar(20)
Varchar(20)
Varchar(40)
bit
bit
bit
bit

Table 13.12 Vibration variable real-time data table

Field Data type

Sampling ID
Workstation ID
Machine ID
Channel ID
Record time
GAP voltage
Pulse-pulse value
x 1 Amplitude
x l Phase
Rotating speed
Waveform data
Filter selection
Unit

U32
tinyint
tinyint
smallint
datetime
116
116
116
116
116
text
varchar(4)
varchar(l0)

0 Report configuration (cluster): Its composition is shown in Table 13.18.

Local ODBC data source (string control)

(3) Dynamic global variables

0 Current real-time data (three-cluster array)

0 Current machine alarm channel table (cluster array): Its composition is
shown in Table 13.19.

268 AN INTERNET-BASED ONLINE REAL-TIME CONDITION MONITORING SYSTEM

Table 13.13 Process variable real-time data table

Field Data type

Sampling ID
Workstation ID
Machine ID
Channel ID
Record time
Process variable value
Unit

U 32
tinyint
tinyint
srnallint
datetime
I16
varchar(l0)

Table 13.14 Switch variable real-time data table

Field Data type

Sampling ID
Workshtion ID
iliIachine ID
Channel ID
Record time
Switch variable status

U32
tinyint
tinyint
smallint
datetime
bit

0 Back-end processing softwa.re status (cluster): Its composition is shown
in Table 13.20.

(4) Control and other global variables

0 Startup/shutdown status (cluster): Save the machine current startup or
shutdown status in the workstation, which is written by the DAQ mod-
ule and read by both start,up/shuttlown processing module and alarm
processing module. Its composition is shown in Table 13.21.

0 Server properties (cluster array): Server properties are read from the
“Get configuration table modiile,” and it is the UDP destination in the
presence of alarms. The item is used only when the network connection
mode is set as “ I” . Its composition is shown in Table 13.22.

(5) Global queues (cluster): 16 queues are set to serve as the buffer
between the problem domain component and data management coniponent.
Each queue in the first 15 queues corresponding to a data table in the database,
and the last queue is machine alarm time used by the alarm data forwarding
module. The problem domain component is responsible for generating data
and inserting them into the queue. The data management component is in
charge of retrieving data from the queue and appending it to the database
table. There are primarily three benefits by doing so. First,, the portability
of these two rnodules is markedly increased. Next, it simplifies tlie system

OVERALL DESIGN 269

Table 13.15 Medium-term historical database table for vibration variables

Field Data type

Sampling ID
Workstation ID
Machine ID
Channel ID
Record time
Maximum GAP voltage
Average GAP voltage
Minimum GAP voltage
Maximum pulse-pulse value
Average pulse-pulse value
Minimum pulse-pulse value
Maximum x l amplitude
Average x 1 amplitude
Minimum x 1 amplitude
Maximum x l phase
Average x l phase
Minimum x l phase
Maximum rotating speed
Average rotating speed
Minimum rotating speed
Unit
Most recent waveform data

U32
tinyint
tinyint
smallint
datetime
I16
I16
I16
I16
I16
I16
I16
I16
I16
I16
I16
I16
I16
I16
116
varchar(10)
text

task in automatically dealing with network database failures. Finally, dy-
namic SQL language can be used by the data management component in
writing database, which significantly improves the CPU processing efficiency.
All of the queue names are listed as follows: vibration variable real-time data;
process variable real-time data; switch variable real-time data; vibration vari-
able medium-term data; process variable medium-term data; switch variable
medium-term data; vibration variable long-term data; process variable long-
term data; switch variable long-term data; startup/shutdown vibration vari-
able data; startup/shutdown process variable data; startup/shutdown switch
variable data; vibration variable alarm event; process variable alarm event;
switch variable alarm event; machine alarm time.

13.6.2.3 Modules description Since the condition monitoring system is de-
signed based the modular decomposition method, it is highly necessary to
discuss how the system modules are divided and which task is assigned to
each of them. Several primary program modules are described in the follow-
ing.

(1) Module 0.0 description

270 AN INTERNET-BASED ONLINE REAL-TIME CONDlTlON MONlTORlNG SYSTEM

I n"

Fig. 13.7 Module structure of the data acquisition workstation.

Table 13.16 Detailed composition of variables

Variable type Description

Configuration data The configuration parameters in the data acquisition
workstation including sampling configuration, alarm
configuration, reports configuration, record configuration,
workstation properties configuration, etc. They are
static data.
Dynamic data. They are continuously refreshed by the
data acquisition workstation for retrieving by other
modules.
Dynamic data. They are updated by the alarm module
in the data acquisition workstation.
The global variables are defined for synchronization
of various modules in the program.

Current real-time data

Alarm event data

Control and flag data

Module name: Front-end main control module

- ID: 0.0

- Functions: Start or stop the back-end program after reading the
configuration table. Initialize the front-end software status data
and receive user commands.

Procedure: call 1.0

C a l l 1.1
do {

OVERALL DESlGN 271

Table 13.1 7 Record configuration (cluster)

Field Data type

Workstation ID
Machine ID
Startup/shutdown mode selection
Initial rotating speed in startup/shutdown
End rotating speed in startup/shutdown
Sampling rotating speed interval in startup/shutdown
Alarm rotating speed interval in startup/shutdown
Startup/shutdown sampling time interval
Norm$ sampling time interval
Medium- and short-term data generation interval
Long-term data generation interval
Alarm determination mode
Record time before alarm
Record time after alarm

U8
U8
string
U16
U16
U16
U16
mininut U16
mininut U16
U16
U16
U8
mininut U16
mininut U16

Table 13.18 Report configuration

Field Data type

Workstation ID
Machine ID
Machine name
Shift report enabled
Day report enabled
Shift report time 1
Shift report time 2
Shift report time 3
Day report time
Alarm print
Report format (it is generated by report selection table)

U8
U8
string
Bit(O/l]
Bit[O/l]
string6
string6
string6
char6
Bit
U8

Call 1 . 2
CASE (select one)
Call 1 . 3
Call 1 . 4
Call 1 . 5
ENDCASE}
while ! Exit the system

(2) Module 1.x Description

0 Module name: Get configuration table and initialization

- ID: 1.0

272 AN INTERNET-BASED ONLINE REAL-TIME CONDITION MONITORING SYSTEM

Table 13.19 Current machine alarm channel table

Field Data type

Workstation ID ~

Machine ID
Alarm channel ID
MP name
Channel alarm status
Machine alarm status

U8
U8
U16
string
U8 [O/1/2] [no/preliminary/primary]
U8 [O/1/2] [no/preliminary/primary]

Table 13.20 Back-end processing software status

Field Data type

Back-end program switch
Data acquisition program correctness
Data record program correctness
Networked database server correctness
Remaining capacity of local database (M)
Broadcasting data
Exit system
Notifier
Alarm validation bit

bool[Y/N]
bool[Y/N]
bool[Y /N]
bool[Y /N]
U 16
bool
bit
refnum
bool

Table 13.21 Startup/shutdown status

Field Data type
~~ ~ ~~

Workstation ID
Machine ID
Startup/shutdown status
Previous startup/shutdown status

U8
U8
Bool
Bool

Table 13.22 Server properties

Field Data type

Server IP address Varchar(20)
Alarm UDP port U16

- Output: Record configuration, alarm configuration, sampling con-
figuration, workstation properties, reports configuration, and global
queues.

OVERALL DESIGN 273

- Functions: Read the configuration table from the default database
and assign it to the specified global variable. The record strategy
selection table is used to generate medium-term and long-term data
record modes. Reports format selection table is used to generate
report formats. Initialize all of the global variables.

0 Module name: Back-end program main module

- ID: 1.1

- Input: Back-end program switch and workstation properties.

- Functions: Accomplish data acquisition, processing, and recording;
process server communication; output back-end program status.

Procedure: do{
while(Back-end program switch)

call 2.0, 2.1, 2.2 // The three modules are concurrent

delay
while(!Exit the system)}

{

1

0 Module name: Get user commands

- ID: 1.2

- Output: User commands.

- Function: Get user requirements.

0 Module name: Display system status

- ID: 1.3

- Input: Back-end processing software status and machine current

- Functions: Display if the back-end processing software is properly

alarm channel table.

running as well as the status of machines and alarm channels.
.

0 Module name: Data analysis

- ID: 1.4

- Input: Data analysis commands.

- Functions: Real-time and historical analyses of various data.

Procedure: case
Call 2.3
Call 2.4
Call 2.5
endcase

274 AN INTERNET-BASED ONLINE REAL-TIME CONDITION MONlTORlNG SYSTEM

0 Module name: Workstation configuration management

- ID: 1.5

- Input: Configuration management commands.

- Functions: Execute workstation configuration management com-
mands (review and revision) from the user and classify them.

Procedure: case
Call 2.6
Call 2.7
Call 2.8
Call 2.9
Call 2.10
endcase

0 Module name: Help

- ID: 1.6

- Input: Help command.

- Function: Start the Help module.

(3) Module 2.x description

0 Module name: Data acquisition

- ID: 2.0

- Input: Sampling configuration.

- Output: Current real-time data, correctness of data acquisition
program (a global variable).

- Functions: (a) Based on the sampling configuration, it calls the
hardware drivers t o collect data as rapidly as possible; (b) Use
Notifier to synchronize various modules; (c) If sampling exceeds
the maximum sampling interval, it displays corresponding error
information; (d) Determine the startup/shutdown status; (e) Au-
tomatically exit when the back-end program switch is set as 0. The
module identifies the event 1 listed in the system event-response ta-
ble and responds to the processing of event 1. In addition, it also
identifies event 5 and uses Notifier to notify other relevant modules
to respond to the event.

0 Module name: Problem domain

- ID: 2.1

- Functions: Accomplish the most basic system functions such as
alarm signaling, startup and shutdown processing, communications
with network clients, etc. But i t does not care about the details on

OVERALL DfSlGN 275

where the data are from and where they will go, because it is only
responsible for putting the generated data to the specified queue.

Procedure: C a l l modules 3.5, 3.6, 3.7, 3.8 (The four modules are
paral le l) .

0 Module name: Data management

- ID: 2.2

- Functions: Add the dynamic data in the queue to database; main-
tain the database FIFO table by deleting the out-of-date data;
when the network connection status is set as 1, automatically re-
solve the network connection status (ODBC source 2) ; show the
connection status of network database; show the remaining capac-
ity of local database for different data sources.

0 Module name: Stable state analysis

- ID: 2.3

- Input: Machine current alarm channel table, current real-time
data, short-, medium-, and long-term FIFO data.

0 Module name: Startup/shutdown analysis

- ID: 2.4

- Function: Conduct various analyses in Module 2.3 for the startup
and shutdown data in the database.

0 Module name: Alarm analysis

- ID: 2.5

- Function: Conduct various analyses provided by Module 2.3 for
the black-box data in the database.

0 Module name: Workstation management

- ID: 2.6

- Input: Workstation configuration table

- Output: Workstation configuration table

- Function: Display and edit the workstation configuration table.
When the network connection mode is 1, write it to the local or
networked database after completing modification.

0 Module name: Machine management

- ID: 2.7

276 AN INTERNET-BASED ONLINE REAL-TIME CONDITION MONITORING SYSTEM

- Input: Machine configuration table and historical data record strat-
egy selection table.

- Output: Machine configuration table and historical data record
strategy selection table

- Function: Display and edit the machine configuration table, and
write the revised configuration to the local and networked database.

0 Module name: MP management

- ID: 2.8

- Input: MP configuration table, vibration variable channel config-
uration table, process variable channel configuration table, and
switch variable channel configuration table.

- Output: MP configuration table, and vibration variable channel
configuration table, process variable channel configuration table,
switch variable channel configuration table.

- Functions: Display and edit the MP configuration, and save the
revised MP configuration into the local or networked database.

0 Module name: Reports management

- ID: 2.9

- Input: Machine configuration table and report format selection
table.

- Output: Machine configuration table and report format selection
table.

- Functions: Modify report configuration, specify report format, and
write them into the local or networked database.

0 Module name: Database management

- ID: 2.10

- Functions: Conduct review, backup, and deletion operations on
FIFO real-time data, startup/shutdown data, alarm analysis real-
time data, medium-term historical data, and long-term historical
data. Also it should be able to display the database capacity and
recover the backup data.

4) Module 3.x description

0 Module name: Vibration variable acquisition

- ID: 3.1

- Input: Vibration variable acquisition configuration.

OVERALL DESIGN 277

- Output: Current real-time data of vibration variable and acquisi-

- Functions: Collect and generate real-time data of vibration variable

tion success flag.

based on vibration variable acquisition configuration.

rn Module name: Process variable acquisition

- ID: 3.2

- Input: Process variable acquisition configuration.

- Output: Process variable current real-time data and acquisition

- Functions: Collect and generate process variable real-time data

success flag.

based on process variable acquisition configuration.

rn Module name: Digital variable acquisition

- ID: 3.3

- Input: Switch variable acquisition configuration.

- Output: Switch variable current real-time data and acquisition

- Functions: Collect and generate switch variable real-time data

success flag.

based on switch variable acquisition configuration.

a Module name: Startup/shutdown determination

- ID: 3.4

- Input: Record configuration and real-time data of vibration vari-

- Output: Current machine startup/shutdown status.

- Functions: Determine the machine startup/shutdown status based
on the conditions in record configuration; update the machine
startup/shutdown status; identify event 5, i.e., “startup/shutdown
status.”

able.

rn Module name: Startup/shutdown processing

- ID: 3.5

- Input: Record configuration, real-time data of vibration, process,

- Output: Startup/shutdown data

- Functions: The module processes the response to event 5, i.e.,
“Startup/shutdown status.” The startup/shutdown data are gen-
erated based on the record mode in record configuration and is
then put to the specified queue.

and digital variables, and startup/shutdown status.

278 AN INTERNET-BASED ONLINE REAL-TIME CONDITION MONITORING SYSTEM

0 Module name: Alarm judgment and processing

- ID: 3.6

- Input: Current real-time data, alarm configuration, back-end pro-
gram status, FIFO real-time data, and machine startup/shutdown
status.

- Output: Machine current alarm channel table, real-time data for
alarm analysis.

- Functions: The module identifies the event 7 and responds to its
processing. For the real-time data in non-startup/shutdown status,
it examines the three types of real-time data according to the alarm
configuration. When an alarm occurs, according to primary alarm
and pre-alarm, both the machine current alarm channel table and
alarm event table are updated; insert the alarm ID and alarm time
into the specified queue; generate alarm event table and assign it
to the specified queues; send the current alarm channel table to the
specified Web server or A&M workstation via UDP.

0 Module name: Historical data generation

- ID: 3.7

- Input: Workstation properties, record configuration, and current

- Output: FIFO real-time data, medium-term historical data, and
long-term historical data.

- Functions: The module identifies events 2, 3, 4, and processes their
responses. According to record configuration, examine the current
real-time data and automatically select the record modes for each
database; generate FIFO real-time data, medium-term historical
data, and long-term historical data; in addition, it also puts these
three types of data into the specified queue.

real-time data.

0 Module name: Communication module

- ID: 3.8

- Functions: Identify event 8 “Network client request”; monitor the
specified TCP port and accept user requests; provide individual
service to each client; able to automatically exit using the Notifier
synchronization mechanism when the back-end program status is
0.

Procedure: Open the monitoring port
while(Back-end program switch)

case Server request

OVERALL DESIGN 279

uhile(connnect1d) queue is not empty

Call 4.1

endcase
1

1
(5) Module 4.x Description

0 Module name: Alarm sending channel table (UDP)

- ID: 4.0

- Functions: This module sends the alarm sending channel table gen-
erated by the alarm processing module to the specified analysis and
management workstation and Web server via UDP protocol. By
doing so, the upstream computers can obtain the alarm informa-
tion from the alarm data acquisition workstation without active
queries.

0 Module name: single-client communication

- ID: 4.1

- Functions: The module processes the response to event 8 “Network
Client Request .” It provides corresponding services to the network
clients by analyzing their requests.

Procedure: Case
Call 5.0;
Call 5.1;
Call 5.2;

Endcase

13.6.3

After accomplishing the overall design of DAQ workstation software, the over-
all design of A&M workstation becomes much easier. Most functions in the
front-end software of A&M workstation are identical to those in the DAQ
workstation. Furthermore, at the very beginning of DAQ software design,
the module reusability has been comprehensively considered. As a result, the
overall design of A&M workstation software can be promptly accomplished
by following the previous design steps.

Overall design of the A&M workstation software

13.6.3.1 Module structure The module structure of the A&M workstation
software is shown in Fig. 13.8.

13.6.3.2 The global variables in the analysis and man-
agement workstation software can also be classified into three types, i.e., static

Global variable design

280 AN INTERNET-BASED ONLINE REAL-TIME CONDlTION MONITORING SYSTEM

Fig. 13.8 Module structure of the A&M workstation software

variables, dynamic variables, and other variables. The first two types of vari-
ables are identical t o those in the data acquisition workstation. The last type
is different from that in the data acquisition workstation.

0 Server properties: Its composition is shown in Table 13.23.

0 Workstation communication configuration (cluster array): The above
two items are the database contents and can be retrieved by the “Get
configuration table module.” Its composition is shown in Table 13.24.

Table 13.23 Server properties

Field Data type

Server IP address Varchar(20)
Company name Varchar (50)
Alarm UDP port U 16
Alarm call 1 Varchar(20)
Alarm call 2 Varchar(20)
Alarm fax Varchar(20)
Alarm Email Varchar (40)
Phone alarm enabled bit
Fax alarm enabled bit
Email alarm enabled bit
Siren alarm enabled bit

OVERALL DESIGN 281

Table 13.24 Workstation communication properties (array)

Field Data type

Workstation name
Workstation ID
Workstation IP address
TCP port
Broadcasting data receiving port
Password
Workstation description

varchar(40)
tinyint (30)
varchar(20)
UlG(smal1int)
U1G
char (8)
varchar (40)

Table 13.25 Major modules of A&M workstation software

ID Name Input Output Functionality
~ ~~

0.0 Main
control
module

1.1 Selection
of data
acquisition
workstation

Initialize the static
global variables
according to the
selected data
acquisition workstation.

1.3 Alarm Server Current Receive UDP
monitoring properties alarm alarm data and

machine generate corresponding
table actions (e.g., alarm forwarding)

1.4 Periodic Workstation Periodically send
time communication standard time to
calibration configuration various workstations.

2.0 Retrieve Retrieve the updated
current
machine
status
data

machine status data
from the selected data
acquisition workstation.

0 Back-end processing program status (cluster): Control variables in the
back-end software.

13.6.3.3 Modules description Here only the modules different from those in
the data acquisition workstation software are described. They are listed in
Table 13.25.

282 AN INTERNET-BASED ONLINE REAL-TIME CONDITION MONITORING SYSTEM

13.6.4

The essence of WWW service is to make suitable homepages. The objective
of this module is to enable the user to view information in the A&M worksta-
tion via browsers. The information includes graphs generated by the specific
real-time and historical data analysis. To reduce the programming task, in
the LabVIEW development environment, first a specific graph is created in
the specified window, and then it is embedded into homepage using the Snap
function provided by the G Web Server. Of course, the information trans-
mission is accomplished via the CGI application. The CGI application reads
the user request, retrieves the data by calling the communication program,
creates graphs using analysis program, and sends out the generated home-
page. As the G Web Server is able to insert VI (i.e., LabVIEW application)
windows into the homepage, the structure of CGI program is quite similar to
that of A&M workstation. Put simply, it generates the desired information
in the program window and sends the information to the homepage via G
Web Server. The drawback of this approach is the extra network overhead
incurred. However, the big benefit is that the code developed for the A&M
workstation can be reused, and therefore the development time is markedly
reduced. From practical applications, the network speed is quite satisfactory
in the 10 M-100 Mbs LAN.

Design of Web server CGI application

13.7 DETAILED SYSTEM DESIGN AND IMPLEMENTATION

Up to now, the system framework has been constructed. The remaining work
focuses on design details. In analogy to a civil construction project, the high
building has now been built and the work left is to decorate the walls and win-
dows. At this time, except for the complex module algorithms to be discussed,
most modules can be programmed simultaneously according to the specified
design documents. In this section, several key and hard-to-understand parts
in system implementation are detailed, which include a data acquisition mod-
ule, a communication module, a data management module, and a Web server,
together with the design and implementation on how to coordinate multiple
concurrent tasks.

13.7.1 Implementation of DAQ module

Data acquisition is the fundamental of the overall condition monitoring sys-
tem. The implementation issues of DAQ module in the networked condition
monitoring is fleshed out in this subsection.

13.7.1.1 DAQ for vibration variables (1) Mechanism of DAQ card for vi-
bration variables: The developed data acquisition card is an 8031 single-
board controller (SBC) application system, which communicates with the PC

DETAILED SYSTEM DESIGN AND IMPLEMENTATION 283

through sharing the specified memory. The PC is in charge of switching
the control privilege of the shared memory between PC and SBC by sending
commands to the specified communication port. After PC writes the sam-
pling command parameters into the shared memory, the control privilege is
transferred to SBC. SBC reads out the sampling configuration command and
conducts certain manipulations on the sensory signals including signal amplifi-
cation, conditioning, filtering, sampling, A/D transform, and scale transform.
Then the sampled four-channel vibration signals are written into the shared
memory and the flag indicating new data is set. PC keeps querying the data
flag. When there is new data flag detected, PC reads and displays the new
data in the shared memory and the flag for indicating the old data is set. P C
is primarily responsible for human machine interfaces and the control over
SBC.

LabVIEW provides functions for port operations but does not provide func-
tions for accessing the physical memory. Fortunately, LabVIEW provides CIN
(Code Interface Node) to allow users to expand LabVIEW functions by using
traditional languages such as C and Assembly. Here Visual C is used to write
CIN functions for accessing the physical address memory. To implement the
communication between PC and 8031 SBC in the data acquisition card, three
CIN functions are designed to read a byte from the specified memory, write
a byte into the specified memory, and read a specified length of byte array
from the memory, respectively. Through these three CIN functions, all of the
communication tasks between PC and SBC can be accomplished. The per-
formance specifications of the vibration variable DAQ card are shown from
Table 13.26 to Table 13.30:

Table 13.26 Measurement range

Radial vibration
Shaft displacement
Rotating speed
Pressure, temperature, and flux
Acceleration

0-5OOp m (P-P)
1 mm
1000-18,000 rpm
1-5 V or 4-20 mA
0.01-20 g

Table 13.27 Frequency response

Radial vibration
Pressure, temperature, and flux
Acceleration
Speed

0-2 kHz
0-100 Hz
1-10 kHz
10 Hz-1 kHz

(2) Driver implementation: Figure 13.9 shows the data flow of the data
acquisition card driver developed in house.

284 A N IN JERNEJ-BASED ONLINE REAL- TIME C O N D l JION MONl JORING SYS J E M

Table 13.28 AID resolution

Radial vibration
Pressure, temperature, and flux
Acceleration

8 bits (with OP-AMP)
12 bits
12 bits

Table 13.29 Input impedance

Radial vibration
Pressure, temperature, and flux
Acceleration and speed

> 500 K
> 200 K
> 500 K

Table 13.30 Measurement accuracy

Radial vibration
Pressure, temperature, and flux
Rotating speed
Acceleration

< 2%
5 1%
5 0.02%
< 2%

(3) Implementation of vibration variable DAQ module.
Based on the mapping between the specified channel ID in vibration vari-

able acquisition configuration and port address, the work of vibration variable
DAQ module continuously collects data by calling the DAQ card driver. If
data acquisition succeeds, the real-time data of vibration variable is gener-
ated in the channel with the mask bit 0. In addition, after polling all of the
channels, the rotating speed of the first channel in each machine is set as a
reference, which is used to determine the system startup/shutdown status.

13.7.1.2 Process variable and switch variable acquisition The DAQ hardware
for process and switch variables are COTS 1-7017 Newton module. It is a
controllable remote data acquisition module (in actuality it is an 8-channel
A/D microprocessor application system). It uses RS-485 and other 1-7000
series products to form a distributed measurement and control network. RS-
485 interface can be transformed to RS-232 interface via 1-7520/R module
for communication with PC. LabVIEW driver is provided by the hardware
manufacture. The performance specifications of the 1-7017 Newton Module
are listed as follows: The module implementation is basically identical to that
in the DAQ module for vibration variables. The only difference is that it
needs to conduct scale transform for different monitored variables. For the
switch variable, a threshold value should be preset so that only two statuses
are generated.

DETAILED SYSTEM DESIGN AND IMPLEMENTATION 285

t
Initialization

7
Close channel

i

Set aampring
parameten

I & ew data in sha

Read data

Sel flag of old data

Return dab and

Close channel

Fig. 13.9 Data flowchart of the in-house developed DAQ driver.

13.7.2

In the previous section, the main tasks in the data management module are
discussed, which include writing the data generated in the problem domain
to database and making decisions based on the database status. To adapt
to different database implementation systems, ODBC standard is used in our
system to accomplish the task.

Implementation of data management module

13.7.2.1 ODBC ODBC API is the most widely used database interface in
Windows applications, which provides a standard interface to different data
resources. Data resources may range from the simple texts to the fully devel-
oped database systems. The basic ODBC architecture is composed of three
layers as shown in Fig. 13.10.

286 AN INTERNET-BASED ONLINE REAL-TIME CONDITION MONITORING SYSTEM

ODBC Driver

ACCESS SOL Server ORACLE
ODBC Driver ODBC Driver ODBC Driver

t t t fjj ACCESS fJB Database

Fig. 13.10 Basic ODBC architecture.

0 Application layer: It connects to the data source by calling ODBC API
functions, passing SQL statements, and querying results. The layer is
made up of a variety of application modules, which provide parameters
to certain ODBC functions.

0 ODBC driver management layer: It loads and unloads ODBC drivers,
and it passes API commands to the suitable driver.

0 ODBC driver layer: It manipulates ODBC API calls, sends SQL re-
quests to the specified database, and returns results to the application.
It is the most important and complicated part in the ODBC architec-
ture.

LabVIEW provides basic functions for simplifying ODBC API operations.

13.7.2.2 Program implementation From the logic perspective, the module
process is fairly simple because it only writes queue data to the networked
database. A flag variable is set to indicate if the database currently in use is
networked or local database. When it indicates the status of writing networked
database, all the local data should be purged into the networked database and
then the local data is deleted. When there is something wrong with the net-
worked database, it turns to the status of writing local database. Meanwhile,
it periodically checks whether or not the networked database has recovered to
work properly. As soon as the networked database resumes its normal oper-

DETAILED SYSTEM DESIGN AND IMPLEMENTATION 287

ations, it changes to the status of writing networked database. At the same
time, for the FIFO tables, it executes the parallel task of deleting records
prior to a certain time instant. The difficulty in implementing this module
lies in the cumbersome work and the skills needed for achieving the capability
of masking faulty database operations.

13.7.3 Communication module

As the applications in the two communication parties (DAQ workstation and
A&M workstation, DAQ workstation and Web server) are developed, it is very
natural to employ the Socket technology in the TCP (or UDP)/IP protocol
family. Windows Socket (Winsock) API is extended from the BSD (Berkeley
Software Distribution)-based Socket for Windows platforms. It provides a
standard programming interface for the program design in network commu-
nications. Furthermore, WinSock dynamic link library (DLL) includes a rich
function library supporting TCP (or UDP)/IP protocol. Using these library
functions, without needing to know about the details of TCP/IP, users may
develop their own flexible and reliable communication programs for internal
network communication or communications between network nodes.

13.7.3.1 Socket Socket is an abstraction of communication nodes and it
provides a mechanism for efficiently sending and receiving data. In Windows
Socket, it has two forms, namely, the datagram socket and the stream socket.

The datagram socket provides an unreliable and connectionless packet
communication mode. Here the unreliability means that a packet sent
can neither be guaranteed to be received by the destination nor reach the
destination in the sequence that the datagrams are sent. In actuality,
the datagrams in the same group may be sent out for more than once.
Datagram socket also provides the capability of broadcasting packets to
multiple destination addresses. For the implementation of TCP/IP of
WinSock, Datagram Socket employs User Datagram Protocol (UDP). In
our system, datagram socket is used to send the current alarm channel
table from DAQ workstation to A&M workstation.

The stream socket provides a reliable and connection-oriented data trans-
mission method. For both the single datagram and the data packet, the
stream socket provides a stream-like data transmission by using TCP.
When the user wants to send a large amount of data or needs the data
to be sent to the destination without duplication, the stream socket
is highly preferred. In addition, if the connection is cut during data
transmission, application will receive notification on the disconnection.
When transmitting various real-time data and calibrating time, this type
of data communication is the primary mode for communication between
the DAQ workstation and the A&M workstation.

288 AN INTERNET-BASED ONLINE REAL-TIME CONDITION MONITORING SYSTEM

LabVIEW provides some standard functions for simplifying the WinSock
programming. In the data processing domain nowadays, more attention has
been paid to the Client/Server (sometimes abbreviated as C/S) architecture
and it has become the mainstream network computation architecture. The
main mode based on TCP/IP network communication also falls into the C/S
structure. Client/Server is not a type of physical architecture, instead, it
refers to two communicating tasks (e.g., a pair of communication nodes, and
a pair of sockets, etc.). Client and server are not necessarily two machines,
and instead, they can also be two communicating tasks in a single machine
(e.g., threads and processes). Furthermore, the roles of client and server
can be exchanged. For instance, a task serving as a client in a communication
activity can be a client in another communication activity. Of course, different
roles should use different sockets.

In a communication activity, initially the server process gets ready for the
communication while the client sends the request to the server process. The
server process responds to the client request and generates corresponding re-
sults. Generally speaking, the server process accomplishes some general or
specific manipulations; for instance, some complex computations and large-
scale database queries, etc. A client can pass some specific applications to
the server process so that it can concentrate on other work such as trans-
action processing and human-machine interaction. It is obvious that in the
client/server mode, the client is the active party (i.e., the requester) and
the server is the passive party (i.e., receiver). Numerous practical applica-
tions demonstrate that the client/server mode is one of the most effective
approaches to implementing network resources sharing.

13.7.3.2 Basicsocket programming functions WinSock provides over 100 com-
munication functions. The frequently used functions in building TCP/IP ap-
plications are listed in the following:

0 Socket(): By calling the Socket() function, a new socket needs to be
built prior to setting up the communication. The called parameters
should specify the protocol family, name, or type (i.e., stream socket or
datagram socket). For a socket using the Internet protocol family, its
protocol or service type determines if TCP or UDP is used.

0 Bind(): It specifies the communication object for the socket built. In
creating a socket, it has no knowledge on port address because no local
and remote addresses have been assigned. The application calls function
Bind() in order to specify the local port address for a socket. For the
TCP, it includes an IP address and a protocol port number. The client
mainly uses Bind() to specify the port number, and it will wait for the
connection to this port.

0 Connect(): It is used to request for connection. After creating a socket,
the client program calls Connect() to enable the remote server to set up

DETAILED SYSTEM DESIGN AND IMPLEMENTATION 289

an active connection. One parameter in the Connect() function allows
the client to specify a remote terminal, which includes IP address of the
remote machine and protocol port number. Once the connection is set
up, the client is able to transmit data via it.

0 Listen(): It is used to configure the connection status. For the server
program, after the socket is created and the communication object is set
as INADDRANY, it should wait for the request from a client program
for connection. Listen() is such a function used to set a socket into this
status.

0 Accept(): It is used to receive the connection request. For the stream
socket, the server is set to the monitoring mode by calling Listen(), and
then Accept() is called so as to get the client connection request. When
there is no connection request, it keeps staying in the waiting mode until
a new request arrives. After Accept() receives the connection request,
a new socket will be built, which is used to communicate with the client.
The newly built socket has the same characteristics as the original one
such as the port number. The original socket is used to accept other
connection requests. The parameters returned by Accept() specify the
socket information (e.g., address) of the connected client.

0 Send()/Recv(): Send/Receive data. These two functions are used in
the communication of stream socket.

0 Sendto()/Recvfrom(): They are used to send and receive data in the
datagram socket communication mode. When there is no a priori con-
nection, Connect() can be skipped because these two functions can be
directly used. Their parameters include address information.

0 Closesocket(): Close the specified socket. When the communication for
a specific socket ends, this function is called to close the socket.

LabVIEW provides the equivalent functions for the above WinSock func-
tions but the parameter settings become somehow simplified.

13.7.3.3 Using Datagram Socket The communication process in applications
based on datagram socket is shown in Fig. 13.11. In our networked con-
dition monitoring system, this communication mode is employed when the
current alarm channel table is sent from DAQ workstation to A&M worksta-
tion. Here DAQ workstation is the client and A&M workstation is the server.
After receiving the alarm, A&M workstation immediately triggers the alarm
forwarding module to handle the alarm task.

13.7.3.4 Using Stream Socket The stream-socket-based communication pro-
cess in applications can be illustrated in Fig. 13.12. The main communication
modes in the DAQ workstation, the A&M workstation, and the Web server

290 AN INTERNET-BASED ONLINE REAL-TIME CONDITION MONITORING SYSTEM

Socket() Socket()

Bind() Bind()

Listen()

Connect() setup -nn=l in

Accept()

SeNice requaat

Sawice rq)onee

Send ()

R e w O t

Closesocket() Closesocket()

Client

Socket()

(Newly built Socket)

' I Recv ()

Send ()

'I Closesocket()

Server
Socket()

Bind() Bind()

Sendto() b Recvfrom()

Recvfrom() 4 Sendto()

Service request

Service response

Closesocket() C I osesoc ket ()

fig. 13.11 Datagram-socket-based communication.

fig. 13.12 Stream-socket-based communication.

such as transferring various real-time data, configuration, and standard time
are implemented using a flow-based socket. Here the DAQ workstation is the
server, and the A&M workstation and the Web server are the clients. The
communication module in the DAQ workstation includes two parallel tasks.
One is used to monitor user connection, and the other one is used to pro-
cess each client request. Based on the request type, different services are
provided, which include sending real-time data, configuring the DAQ work-
station, setting standard time, and so forth. To expedite the transmission

DETAlLED SYSTEM DESlGN AND lMPLEMENTATlON 291

speed of real-time data, the server sets “sending real-time data” as its default
service.

13.7.4 Multitasking coordination

Below the multitasking coordination mechanism in the networked condition
monitoring system is discussed.

13.7.4.1 Reentrant Execution in VI In the VI Setup dialog box, the prior-
ity and execution system during VI execution can be specified. In addition,
there is another important option, namely, Reentrant Execution. While VI
is marked as the non-reentrant execution and there are several sub-VIs at-
tempting to call it, the later calling Sub-VI has to wait until its previous
Sub-VIs have completed execution. That is, only a set of environmental vari-
ables is prepared by the VI execution system. For the Sub-VI responsible
for displaying panels, it makes sense. However, for most Sub-VIs responsible
for mathematical computation instead of panel display, the system execution
speed will be inevitably slowed down. On the contrary, when the VI is tagged
as reentrant, a set of environmental variables is assigned to each VI call.
Therefore, various calls can be simultaneously and independently conducted.
Of course, such VIs are not able to display graphical panels.

13.7.4.2 Synchronization of concurrent Vls Generally speaking, the concur-
rent subtasks of an overall task are not completely independent of each other.
If there is no any coordination mechanism, it is very possible that the sys-
tem cannot achieve the expected performance due to the inappropriate task
execution sequence. The subsequent techniques are provided for coordinating
the execution of concurrent VIs.

0 Semaphore: It is used to restrict the number of tasks which access the
shared resources (e.g., Sub-VI or global variables, etc.) simultaneously.
A Semaphore is created for the resource to be protected, and meanwhile
the Semaphore size should be specified. Whenever a task accesses the
shared resources under protection, it applies for a Semaphore.

Occurrence: When the user needs to execute a VI or the different parts
of a diagram after the completion of a task, Occurrence can be used
to synchronize the involved VIs. It can replace the query operation on
global variables and therefore reduce the extra system overhead.

0 Notification: Notification can be used to send data to a single task or
multiple concurrent tasks. It is especially suitable for the synchroniza-
tion of a task with multiple concurrent tasks. Notification is distinct
from Queue to be discussed in the next item. However, when there is
no waiting task when the data are sent by Notification, the content of
Notification will be lost.

292 AN INTERNET-BASED ONLINE REAL-TIME CONDITlON MONITORING SYSTEM

0 Queue: Just like a pipeline, Queue can associate the two concurrent
tasks involved. Data are continuously filled in by one task, and the other
task continuously reads data based on the FIFO principle. Provided that
the incoming data cannot be retrieved in a timely manner, it will not
be lost before the Queue is released. Therefore, Queue can be viewed
as a data buffer.

0 Rendezvous: Rendezvous can synchronize more than two concurrent
tasks in a specific execution point. The tasks first reaching the aggre-
gation point need to wait for other predefined tasks before they resume
execution.

13.7.4.3 Multitasking coordination in DAQ workstation software From the d i s
cussion in the previous sections, we have known the tasks to be accomplished
by the DAQ workstation. Here such tasks are classified into a collection of
concurrent subtasks in order to achieve easier implementation, improved effi-
ciency, and full utilization of the LabVIEW concurrency mechanism.

0 Human interaction (front-end) module and back-end modules (e.g., data
acquisition and data recording, etc.) run simultaneously. The front-end
module includes subtasks such as data analysis and configuration man-
agement. At any single time instant, only a single module is running;
i.e., there is no need to set concurrent subtasks. It only operates on
databases and some global variables. However, certain front-end pr-
grams such as real-time data analysis are concerned with large amounts
of numerical computation (e.g., spectral analysis) and complex drawing
work; therefore they consume a lot of CPU time.

0 The back-end module (module 1.1 and its submodules) is continuously
running after obtaining configuration table and initialization. Module
2.0 (data acquisition), module 2.1 (problem domain), and module 2.2
(data management) can be viewed as three concurrent subtasks. By
doing so, the programming task can be simplified since it is decomposed
into assembly-line-like operations. Modules 2.1 and 2.2 conduct further
system operations based on the results generated by module 2.0, i.e.,
the current real-time data.

0 Module 2.1 (problem domain) can be classified into four subtasks, i.e.,
module 3.5 (startup and shutdown processing), module 3.6 (alarm judg-
ment and processing), module 3.7 (historical data generation), and mod-
ule 3.8 (communication module). They are concurrent tasks and inde-
pendent of each other.

0 Data management module only performs the operation of writing database.
Each operation on each table can be regarded as a subtask. For instance,
one subtask adds records to the database periodically and the other sub-

DETAILED SYSTEM DESlGN AND IMPLEMENTATION 293

task periodically deletes the out-of-date database records. In doing so,
the merits of dynamic SQL can also be fully utilized.

0 The system needs to deal with three types of physical variables, i.e., vi-
bration, process, and switch variables. Therefore, for each subtask in the
data acquisition module and submodules in problem domain (except for
the communication module), it can be expanded into three concurrent
subtasks.

As mentioned earlier, the communication module can be divided into
two concurrent subtasks, i.e., one is used to monitor client connections
and the other is used for handling client requests.

13.7.5 Implementation of Web server

In the implementation of Web Server, CGI application is used to read the
user request, call the communication program to retrieve data, call the anal-
ysis program to create graphs, and send out the generated homepage. Here
a special function of G Web Server is used, i.e., snapping the VI (a.k.a. Lab-
VIEW application) window and embedding it in the homepage. By doing so,
the structure of the CGI program is similar to that of the A&M workstation.
The user’s desired information can be generated in the program window and
the information is sent to homepage via G Web Server. It is evident that the
key technology here is the G Web Server. Below the G Web Server and its
technical issues are discussed.

13.7.5.1 G Web sewer (1) Merits of G Web Server: The commonly used
Web servers such as Microsoft IIS, Apache, and Netscape FastTrack can also
be used to publish VIs on Internet in order to implement the Web-based VI.
However, just as using traditional textual languages to develop VI, it is not ef-
ficient to use the traditional Web server to publish VI. First, if the traditional
Web server is adopted, the developer needs to know about the Web Server, its
CGI programming, and its mechanism for calling external programs. Next,
the used VI development platform, its network interface, and its response to
a Web Server call all need to be thoroughly understood. Furthermore, the
developer needs to be very familiar with making a Web homepage, apply-
ing a dynamic database in the Web, and displaying VI panels using suitable
images and graphs. As a result, the development cycle is very long and the
consumed human resources are tremendous if the general-purpose Web Server
is used to develop Web-based virtual instruments. Fortunately, the special-
purpose Web Server and its corresponding CGI programming tool significantly
ease such development tasks. For instance, the Internet Developers Toolkit
in NI LabVIEW development platform is a representative of such software
packages. The G Web Server provided by Internet Developers Toolkit is a
special-purpose Web Server used to publish the specific VI in the Internet. In
LabVIEW, we can use HTTP Server Control VI to control and test the server

294 AN INTERNET-BASED ONLlNE REAL-TIME CONDITION MONlTORING SYSTEM

status remotely as well as load, unload, start, and stop the G Web Server.
The functions provided by the G Web Server are listed as follows:

0 Easy Web publishing of VI: Both static and real-time VI graphs can be
published in the Internet without any modifications.

0 Simple CGI call of external VI: Through the CGI VI templates, it is
very easy to call the external VIs.

0 Server-push-based dynamic Web function: It enables the website to be
more vivid and attractive.

0 Platform-independency: It works properly in both Unix and Windows
platforms.

0 High security: It restricts the access privilege to certain directories, files,
and certain IP addresses.

(2) CGI application program (or VI): CGI is a standard method for imple-
menting the communication between HTTP server and server programs. The
program, which exchanges data with the server via CGI standard, is the CGI
application (in the G Web Server, it is called CGI VI). In WWW, when the
URL in the user request defines a CGI application, the server interprets this
request and loads the CGI application for calling execution. Then the CGI
application returns results to the server for displaying results to users. The
procedure is depicted in Fig. 13.13. Homepages can be dynamically gener-
ated using CGI. When homepages need to be dynamically changed with the
user requirements, such a processing mechanism is highly useful. The G Web
Server can be used to either passively monitor the running VI according to
the remote user request or actively execute the CGI VI.

(3) Observe the running VI: The VI front-end in the memory (i.e., the
window that is visible to the user) can be released in the Web via the G Web
Server. For this purpose, we just need to point the URL (Unite Resource
Location) of the image units in the HTML file to G Web Server and VI name,
or image parameters. For instance,

0 http://web.server.addr/.snap?VImame

0 http://web.server.addr/.monitor?VIname

URL locales a CGI Execute CGI

Results

fig. 13.13 CGI-based communication mechanism.

The previous method (Snap method) is used to display the static graph of the
specified VI panel in the graph position, and the latter one (Monitor method)
displays the dynamic graph of the specified VI panel in the graph position.
Here the specified VI should be stored in the memory. Both methods use
URL query character string to send data from client to server, and the G
Web Server calls the received gateway program (Snap or Monitor program).
The characters following the ‘?’ in the above URLs (query character string)
are parameters to be passed to the gateway program, and they specify the
image types (e.g., JPEG or PNG) as well as the update rate of dynamic
images. It should be noted that the Snap and Monitor programs are only in
the G Web Server.

The G Web Server uses server-push method to implement the graph anima-
tion function, where the server sends data several times for each user request
until the user demand changes. The browsers supporting this type of trans-
mission can view the dynamic graphs. To enable the G Web Server to treat
VI as a CGI application, the command ScriptAlias should be used to spec-
ify the VI directory as the CGI directory in the configuration file for the G
Web Server. The G Web Server uses CGI (Common Gateway Interface) to
exchange data with these CGI VIs. CGI application can be used to dynam-
ically create corresponding documents (mainly refer to homepages) , process
queries, and form requests. The two aforementioned approaches are primarily
used in the Web server of our networked condition monitoring system. After
receiving the user request, the CGI VI starts certain support programs (most
of them are the analysis programs in the A&M workstation) to obtain the
real-time data or search data in the database server. Then the desired graph
is generated. Finally, the homepage is dynamically created and displayed to
the user.

13.8 FIELD EXPERIENCE

System faults may frequently occur in chemical processes due to the high
complexity in chemical processes. These abnormal situations have damaging
effects on safety and environment issues. It is estimated that annual loss in
the petrochemical industry in the USA due to poor condition monitoring is
around 20 billion USD [29]. Therefore, it is highly necessary and beneficial to
install an effective condition monitoring system in petrochemical plants. The
networked condition monitoring system discussed in the chapter was efficiently
developed within five months. The major reason for such efficient software
development may be contributed to the systematic modular design and the ex-
cellent developmental tools adopted. Furthermore, after two months’ on-site
testing, the condition monitoring system ran properly in in-plant applications.
Therefore, as compared to the largescale commercial software, its develop-
mental cost is very low, which is highly desirable for small and medium-sized
plants worldwide. The networked condition monitoring system was success-

296 AN INTERNET-BASED ONLlNE REAL-TIME CONDlTlON MONlTORlNG SYSTEM

fully installed in a large local petrochemical plant. For several years since
its installation in the industrial field environment, the condition monitoring
system ran properly and provided full-day condition monitoring to help the
operation and management personnel to cope with various operational sit-
uations. Figure 13.14 shows the screen capture of real-time waveforms in
spectral analysis. The condition monitoring system enables users to imple-
ment solutions that are perfectly tailored to their specific applications with
significantly lower costs. The positive feedback from the plant showed that
the savings in loss product, costs, and environmental issues were significant
amounts of money. To sum up, the overall benefits of our networked condition
monitoring system are listed as follows:

0 The developed condition monitoring system is easy to use. Operators
with minimum training can take advantage of the technology to ease
their maintenance and process problems. Therefore, the plant is less
reliant on specialists.

0 The disasters are reduced greatly. Before the networked condition moni-
toring system was installed in the plant, the equipment failures appeared
frequently. For example, in March 1999, an incident of shaft crack hap-
pened which resulted in the stop of production for two weeks, and the
financial loss was considerable. For over four years after the condition
monitoring system was installed in the plant field, such events were fore-
casted and proper measures were taken so that the production loss was
reduced significantly. Although it is hard to map the improvements in
plant safety to the exact money saving, it is obvious that more significant
safety features can reduce the possibility of disaster incident occurrences
for sure.

0 One of the most important benefits that the condition monitoring sys-
tem can bring is the ready availability of meaningful data in an immedi-
ately usable format. This allows operators to resolve problems encoun-
tered in a short time by enabling them to just concentrate on the likely.
This property of troubleshooting decision support has reduced analysis
time by some 80 percent after an event occur.

0 Since the networked condition monitoring system provides full-day pro-
cess monitoring to assist the operation personnel in tackling a variety of
online field situations, it has enabled the equipment maintenance out-
ages to be slashed, cutting 10 hours off maintenance time and saving
about 90,000 USD per week.

Manpower requirements are reduced. Before installation of the net-
worked condition monitoring system, normally 6 workers were needed
in each workshop. But now only 2 operators are sufficient to handle all
of the online operational conditions.

FIELD EXPERIENCE 297

0 Other issues such as safer work environment and more effective pollution
control also reduced production costs and brought great profits to the
plant.

Only five months are offered by the investor to design, develop, test, and
implement such a software-intensive system. We completed the final system
on time and within budget. Two important factors have contributed signifi-
cantly to the success of this software development. First, a thorough problem
domain discussion before embarking on actual coding enables the software to
be developed in an efficient and effective manner [l, 24,341. During the entire
software development process, software engineering principles are rigorously
abode by. Second, a key to this solution is the flexibility of LabVIEW as
a development environment in interfacing, programming, GUI development,
and so on.

In the software development process, the responsiveness of the condition
monitoring system is a major concern throughout the software design and
development process. Here are some experiences in improving the system
execution speed. In the condition monitoring system, the record module and
alarm module write data to databases. Since the speed of writing data to hard
disks is much slower than that to memories, tasks associated with the hard
disk writing are classified into two parallel subtasks: one subtask generates
records and inserts them to the queue, and the other subtask reads data from
the queue and writes them to the database. In this way, the data dropout
problem is eliminated during system startup and shutdown. Except for the
back-end main module, the subtasks for front-end historical data analysis and
configuration management can only operate on databases and partial global
variables. Since real-time data analysis is associated with a large number
of numerical computations (e.g., spectral analysis) and complicated plotting
tasks, it is quite time-consuming. However, there is only a single module
running at any time instant in the front-end program. Table 13.31 lists the
priorities for the major system modules.

Back-end tasks are the basis for the reliable execution of the overall con-
dition monitoring system. Front-end tasks are used for user interface, whose
response should be prompt enough to satisfy the user requirements on system
responsiveness. The real-time objective could not have been achieved if no
measures were taken to coordinate these tasks during system operations. At
first we only abstract these tasks into various threads, which, however, results
in intolerable response time of front-end tasks. After careful adjustments, a
tradeoff is made to better coordinate these tasks:

0 The priorities of front-end tasks are increased and those of the back-end
tasks are decreased.

A notification is set up for coordinating the execution of various mod-
ules. Only if the notification is received from the data acquisition module
at each poll, the modules for record, alarm, communication, report, and

298 AN INTERNET-BASED ONLINE REAL-TIME CONDITION MONITORING SYSTEM

Table 13.31 Priorities of some major system modules

Module name Priority Execution system

Data acquisition module Normal priority Data acquisition
Data management module Normal priority Instrument I/Os
Problem domain module High priority Standard
F’ront-end module Above normal priority User interface
Top main module Normal priority User interface
Other modules Normal priority Same as the caller

Fig. 13.14 Screen capture of real-time waveforms in spectral analysis.

real-time analysis can manipulate the real-time data. Or else, it has to
keep waiting, i.e., exit CPU execution.

13.9 SUMMARY

The implemented Internet-based online condition monitoring system has proved
to be highly effective in assisting the operation and management personnel
supervising the operational status of large-scale rotating machinery. The po-
tential savings in loss production, defective products, repair and maintenance
costs, and environmental issues are significant. An investment to implement
such a distributed online condition monitoring system in a large rotating ma-
chinery plant turns out to be highly worthwhile. The online condition mon-
itoring system was intended to reduce machinery accidents and maintenance
in demanding industrial fields. The topology of system components is quite

SUMMARY 299

clear and the system can run either in a single machine or across the network.
From the practical field experience, we found that the developed system can
be expanded along at least two dimensions in order to meet the stricter re-
quirements of industrial applications. One the one hand, for various data
recorded by the system, supporting software for fault prediction and analysis
can be developed. On the other hand, the system can be developed from a
pure condition monitoring system of the current version to a comprehensive
monitoring and control platform. The current version of the implemented
software focuses on industrial measurement and monitoring. Currently, its
control capacity is not sufficiently strong to fulfill the ever-demanding control
demands. Control modules can be added so that the system can be applied in
much wider industrial fields. Therefore, one of our principal tasks for future
work is to develop more powerful control units. Moreover, the function of fault
diagnosis should also be upgraded. As an effective software design tool for
industrial measurement and control, which integrates both functions of MMI
and SCADA, industrial networked condition monitoring software is a short-
cut leading to reliable and effective measurement and control systems. It is
believed that such a networked online condition monitoring software-intensive
system would be applied to wider industrial fields in the upcoming years.

REFERENCES

1. Atlee, J. M., and Gannon, J. (1993). State-based model checking of event-
driven system requirements. IEEE Transactions on Software Engineering,
Vol. 19, NO. 1, pp. 24-40.

2. Bowen, J. (2000). The ethics of safety-critical systems, Communications
of the ACM, Vol. 43, No. 4, pp. 91-97.

3. Caldara, S., Nuccio, S., and Spataro, C. (1998). A virtual instrument
for measurement of flicker, IEEE Transactions on Instrumentation and
Measurement, Vol. 47, No. 5.

4. David, P., and John, M. (1997). Software metrics for non-textual pro-
gramming languages, IEEE Proceedings of Systems Readiness Technology
Conference (AUTOTESTCON). IEEE, Piscataway, NJ, pp. 198-203.

5. Doug, R., and John, M. (1997). Applying software process to virtual in-
strument based test program set development, IEEE Proceedings of Sys-
tems Readiness Technology Conference (A UTOTESTCON), IEEE, Pis-
cataway, NJ , pp. 194-197.

6. Eads, R. (2000). Web-style intranet speeds design flow, IEEE Spectrum,
Vol. 37, NO. 6, pp. 75-79.

300 AN INTERNET-BASED ONLINE REAL-TIME CONDITION MONITORING SYSTEM

7. Doebelin, Ernest 0. (1990). Measurement Systems, Application and De-
sign, McGraw-Hill, New York.

8. Gamma, E., Helm, R., Johnson, R., and Vlissides, J . (1995), Design
Patterns: Elements of Reusable Object-Oriented Design, Addison-Wesley,
Reading, MA.

9. Hyde, T. R. (1995). On-line Condition Monitoring Technology and Ap-
plications: Final Report, Electronic System Division, ERA Technology
Limited, England.

10. Johnson, G. W. (1997). Lab V I E W Graphical Programming, McGraw-Hill,
New York.

11. Johnson, R. A. (2000). The ups and downs of object-oriented systems
development, Communications of the A C M , Vol. 43, No. 10, pp. 69-73.

12. Kambil, A., Kamis, A., and Koufaris, M., et al. (2000). Influence on the
corporate adoption of Web technology, Communications of the A C M , pp.
264-269.

13. Klein, M. H., Ralya, T., Polak, B., Obenza, R., and Harobur, M. G.
(1993). A Practitioner’s Handbook f o r Real-Time Analysis: Guide to Rate
Monotonic Analysis f o r Real- Time Systems, Kluwer Academic Publishers,
Cambridge, England.

14. Kroenke, D. M. (1995). Database Processing: Fundamentals, Design, and
Implementation, Prentice Hall, Englewood Cliffs, NJ.

15. Liao, S. L., and Wang, L. F. (2000). Design and implementation of dis-
tributed real-time online monitoring software based on Internet, IEEE
Proceedings of the Third World Congress on Intelligent Control and Au-
tomation, Hefei, China, June, pp. 3623-3627.

16. Mackay, S., Wright, E., Park, J., et al., Practical Industrial Data Net-
works: Design, Installation and Troubleshooting, Newnes, Burlington,
MA.

17. Manders, E. J., and Dawant B. M. (1996). Data acquisition for an in-
telligent bedside monitoring system, Proceedings of Annual International
Conference of the I E E E Engineering in Medicine and Biology, IEEE, Pis-
cataway, NJ, pp. 1987-1988.

18. Naraghi, M. (1997). Remote data acquisition systems for multi-year-on-
site continuous gas consumption characterization, Proceedings of the In-
ternational Symposium Instrumentation in the Aerospace Industry.

19. Norman, R. J . (1996). Object-Oriented System Analysis and Design, Pren-
tice Hall, Englewood Cliffs, NJ.

SUMMARY 301

20. Park, J., and Mackay, S. (2003). Practical Data Acquisition for Instru-
mentation and Control Systems, Newnes, Burlington, MA.

21. Ragowsky, A., Ahituv, N., and Neumann, S. (2000). The benefits of using
information systems, Communications of the ACM, pp. 303-311.

22. Rao, B. K. N. (1993). Profitable Condition Monitoring, Kluwer Academic
Publishers, Cambridge, England.

23. Sasdelli R., Muscas C., and Peretto L. (1998). VI-Based measurement
system for sharing the customer and supply responsibility for harmonic
distortion, I E E E Transactions on Instrumentation and Measurement, Vol.
47, No. 5.

24. Shaw, M., and Garlan, D. (1996). Software Architecture: Perspectives o n
an Emerging Discipline, Prentice Hall, Englewood Cliffs, NJ.

25. Szymaszek, J., Laurentowski, A., and Zielinski, K. (1997). Instrumenta-
tion of CORBA-compliant Applications for Monitoring Purposes. Pro-
ceedings of the European Research Seminar on Advances in Distributed
Systems, Zinal, Switzerland, March.

26. Tanenbaum, A. S. and Woodhull, A. S. (1997). Operating Systems: De-
sign and Implementation, Prentice Hall.

27. Ullman, J . D. and Widow, J . (1997). A First Course in Database systems,
Prentice Hall, Inc.

28. van der Hoek, Andre (1999). Configurable software architecture in sup-
port of configuration management and software deployment, IEEE/A CM
SIGSOFT Proceedings of International Conference on Software Engineer-
ing. pp. 732-733.

29. Venkatasubramanian, V., Kavuri, S. N., and Rengaswamy, R. (1995).
Process Fault Diagnosis-An Overview, CIPAC Technical Report, Purdue
University.

30. Waheed, A., Diane T . R., Hollingsworth, Jeffrey K. (1996). Modeling and
evaluating design alternatives for an on-line instrumentation system: A
case study, IEEE Transactions on Software Engineering, Vol. 24, No. 6.

31. Wahidabanu R. S. D., and Panneer Selvam, M. A., Udaya Kumar K.
(1997). Virtual instrumentation with graphical programming for enhanced
detection & monitoring of partial discharges, Proceedings of the Electri-
cal/Electronics Insulation Conference, Piscataway, NJ , pp. 291-296.

32. Wang, L. F., Tan, K. C., Jiang, X. D., and Chen, Y. B. (2005). A flex-
ible automatic test system for turbine machinery, IEEE Transactions on
Automation Science and Engineering, Vol. 2, No. 2, pp. 1-18.

302 AN INTERNET-BASED ONLlNE REAL-TIME CONDIT/ON MONlTORlNG SYSTEM

33. Wang, L. F. and Wu, H. X. (2000). A reconfigurable software for industrial
measurement and control, Proceedings of the 4th World Multiconference
o n Systemics, Cybernetics and Informatics, Orlando, FL, pp. 296-301.

34. Wasserman, A. (1989). Principles of Systematic Data Design and Imple-
mentation, Software Design Techniques, 3rd ed., IEEE Computer Society
Press, pp. 287-293.

Epilog

There are many emerging technologies which are being or may be adopted
to improve the development efficiency as well as the quality of industrial au-
tomation software. The typical such technologies include middleware, Uni-
fied Modeling Language (UML), agent-based software development, and agile
methodologies, which are introduced in this chapter.

14.1 MIDDLWARE

Modern industrial automation systems are made up of diverse devices inter-
connected by a network. Each device interacts with both real-world and other
devices in the network. Middleware (also known as plumbing) is a connectivity
software layer comprising a set of enabling services that provides communi-
cation across heterogeneous platforms with different programming languages,
operating systems, and network mechanisms. It is the intermediary software
layer serving as the glue between two disconnected applications. The typical
middleware products include Object Management Group’s Common Object
Request Broker Architecture (CORBA), Microsoft’s COM/DCOM, and Open
Software Foundation’s Distributed Computing Environment (DCE). Middle-
ware services are sets of distributed software that exist between the applica-

Modern Industrial Automation Software Design, By L. Wang and K. C. Tan
Copyright 2006 the Institute of Electrical and Electronics Engineers, Inc.

303

304 EPILOG

tion and the operating system and network services on a system node in the
network. Typically, middleware programs provide messaging services so that
different applications can communicate with each other.

In a distributed computing system, middleware is defined as the software
layer that lies between the operating system and the applications. They cover
a wide range of software systems, which include distributed objects and com-
ponents, message-oriented communication, and mobile application support.
Companies and organizations are now building enterprise-wide information
systems by integrating previously independent legacy applications together
with new developments. These intermediate software layers provide common
programming abstractions, by hiding the heterogeneity and distribution of the
underlying hardware and operating systems as well as programming details.
Essentially, middleware is the software that connects multiple applications,
allowing them to exchange data. It is a middle layer residing between front-
end client and back-end server. It accepts the client request, conducts corre-
sponding manipulations on the request, passes it to the back-end server, and
finally returns the processing results to the client. With the widespread use of
client/server architecture, the middleware technology began to be accepted by
more and more practitioners in various industrial and business applications.
In the client/server environment, middleware is usually located between the
client and server, and thus may “cut the weight” of the client server. Fur-
thermore, middleware can also be put in the multilayered application server
between the client and server.

In the modern industrial automation systems, due to a large amount of
communications among heterogeneous system components as well as the in-
tensive interactions with physical world, it is highly necessary to have a “vir-
tual machine” in the software for appropriately allocating system resource and
coordinating various tasks. Middleware is a promising technology which can
be used to accomplish these tasks. In the coming years, it is expected more
industrial automation systems will adopt middleware technology.

14.2 UNIFIED MODELING LANGUAGE (UML)

The software development process is like carving a craftwork from abstract
thought to concrete implementation and from coarse design to final refine-
ment. It is well known that with the rapid development of computer tech-
nologies, the software complexity is increasing continuously. Because the size
of source code has become much larger than before, the failure chance of the
overall software is also increased significantly. Numerous practical experiences
have demonstrated that building an accurate and concise representation of the
system model is the key to mastering the characteristics of the complex target
system. Model is an abstraction of the real-world system. Very often, to un-
derstand the target system, people initially build its simplified model, which is
used for capturing the essential system elements. The trivial and non-essential

AGEN T-BASED SOFTWARE DEVELOPMENT 305

elements are not considered at this time. System modeling can help people to
grasp the essentials of the system and the relationships between system com-
ponents. Also, it can prevent people from delving into the module details too
early. Therefore, 00A/OOD also starts from the system modeling. Develop-
ing a model for a software system before its construction is as necessary as
having a blueprint prior to building a large skyscraper. A well-designed model
can help to achieve effective communication between members in the project
team. Especially for the large and complex software-intensive system, the sys-
tematic and rigorous system modeling language becomes very important for
the success of the project. By building the model, the people involved in the
software development project might feel more settled that the most intended
functionality has been defined. Modeling is an effective way to make the de-
sign visible and tangible. And it can be used to check the design against user
requirements prior to the real coding. Unified Modeling Language (UML)
from OMG is intended to help the developer to define, visualize, and docu-
ment software-intensive system models including both structures and designs.
Using the 12 standard diagrams in UML, various applications can be mod-
eled, which may be developed based on different hardware, operating systems,
programming languages, and network mechanisms. UML is designed for pro-
viding users with a unified visual modeling language for model development
and exchange.

Most real-world applications are very large and complex, and people need
to examine them from different perspectives in order to thoroughly under-
stand them. To support this, unified modeling language defines 5 broad types
of modeling diagrams, which can be subtyped into 10 diagrams totally. The
commonly used diagrams in UML include Use Case Diagram, Collaboration
Diagram, Activity Diagram, Sequence Diagram, Deployment Diagram, Com-
ponent Diagram, Class Diagram, and Statechart Diagram. A UML diagram
is a graphical representation of the model, which has its textual equivalents in
the object-oriented programming languages. In the coding phase, these graph-
ical representations are converted into executable programming languages.
For complicated large-scale industrial automation software, such an analyti-
cal language will improve the software development efficiency.

14.3 AGENT-BASED SOFTWARE DEVELOPMENT

Enabling the component to independently respond to the changing environ-
ment without user intervention is highly desired in certain applications. The
component should have some degree of intelligence, which enables it to make
decisions by itself. This type of intelligent component is called the agent,
which is capable of autonomously tackling the real situation in the dynamic
environment without needing external command and control. As compared
with the object discussed previously, the agent is a higher level of abstraction
of real-world entities. The object is a passive component, because it starts

306 EPlLOG

to conduct operations only when the other objects invoke it. Conversely, the
agent is an active component, and it is able to decide if there is any need to
participate in an activity according to the real circumstance. The intelligent
behavior distinguishes the agent from the object. An agent is able to monitor
the environment and respond to the changes quickly and intelligently.

Agent-Oriented Programming (AOP) is an extension of Object-Oriented
Programming (OOP). In this approach, the complex software is programmed
as a set of interacting software entities (i.e., software agents). The agent
is able to sense the outside world, communicate with other agents, make
independent decisions, and take corresponding actions. The agent is able to
perform self-decision without external control, and it makes decisions based
on its mental or cognitive capabilities including intentions, desires, beliefs,
goals, knowledge, and habits. Below are the three commonly encountered
agents in the agent-based systems.

Software agent: A software agent is the software entity residing or work-
ing in the software system. Based on its functionality, it can be classi-
fied into task agent, resource agent, interface agent, collaborative agent,
negotiation agent, data mining agent, etc. For instance, in the com-
puter games such as Quake, the various artificial players are software
agents. In the electronic commerce systems, the components responsible
for trading and auction are also software agents.

Hardware agent: A hardware agent is the hardware entity residing or
working in the hardware system; e.g., the robots moving in the robot
soccer field, and the robot for autonomous navigation in the extreme
and hostile factory production environment.

Web agent: A Web agent refers to the entities moving or residing in
the network, which include mobile agent, search agent, communication
agent, intrusion detection agent, etc. For instance, the search engine
in Google is essentially an intelligent Web agent used for improving the
search efficiency.

Overall, the evolution of software engineering for program design methods
can be classified into four generations: the process-oriented design method,
the module-oriented design method, the object-oriented design method, and
the agent-oriented design method.

Process-oriented design method: This method includes software sys-
tem oriented information flow diagram, process-oriented language, or
procedure-oriented language such as COBOL and Fortran. This method
is suited for the specific small-scale software development. However, the
software generality, reusability, and expandability are not that satisfac-
tory in most cases.

AGENT-BASED SOFTWARE DEVELOPMENT 307

0 Module-oriented design method: In the module-oriented design method,
procedures of a common functionality are grouped together into sepa-
rate modules. By doing so, the whole program is divided into several
smaller procedures. Procedure calls are used to accomplish the interac-
tions between them. The main program is responsible for coordinating
procedure calls in separate modules and allocating corresponding pa-
rameters. Each module can have its own data. This allows each module
to manage the internal state, which can be modified by calling proce-
dures of this module.

0 Object-oriented design method: Object refers to the entity with certain
structures, attributes, and functions. In this approach, it uses objects,
object classes, and messages to describe everything in the world as well
as the relationships between them. As a result, the real-world model
with hierarchical structure can be built based on objects and messages.
Object-oriented programming is based on the object-oriented real-world
model. And the object-oriented system is normally implemented by
object-oriented languages such as C++, Object Pascal, and Smalltalk.
Object-oriented program design methodology is now being widely used
in the large-scale software system design of various domains. It turns out
to be able to increase the software reusability, expandability, portability,
and so forth.

0 Agent-oriented design method: Agent-oriented programming is inher-
ited and extended from the object-oriented programming method. How-
ever, agent is more advanced than object, because it has certain intelli-
gent behaviors such as autonomy, activity, mobility, etc. Agent-oriented
programming inherits the merits of both module- and object-oriented
programming methods, so it has some nice features such as generality,
modularity, reusability, expandability, portability, etc. Furthermore, it
also extends these two methods by improving system intelligence, in-
teroperability, and flexibility, and it increases efficiency and automation
level in the programming process.

Up until now, the agent technology has been applied to a variety of fields
such as grid computing, autonomous robotics, ambient intelligence, electronic
business, entertainment simulations, and many others. There are several com-
mon properties for both agent and object:

0 Both agent and object are real-world entities.

Both agent and object have their structures and attributes.

0 Both agent and object can communicate with each other.

Below are several major differences between the agent and object:

0 An agent offers intelligent behaviors, but an object normally has no
intelligence.

308 EPllOG

0 An agent acts in an active manner, but an object is normally passive.

0 An agent is normally autonomous, but an object is not able to make
decisions independently.

Therefore, an agent can be seen as an intelligent object with autonomy and
activity. In the modern industrial automation field, the automation range
has spanned from the low-level plant automation to the high-level enterprise
decision-making automation. Electronic commerce is a representative appli-
cation in the overall modern enterprise supply chain. Full supply chain inte-
gration is the target of future industrial automation systems, which include
plant manufacturing, management, negotiation, and trading.

14.4 AGILE METHODOLOGIES

Traditional development methodologies such as the waterfall model are lin-
ear, sequential, and heavyweight. However, currently, the user requirements
on these software-intensive systems become become more volatile than ever,
so it is harder to handle the software project development using these old and
proprietary methodologies. To seek new solutions, the developers are turning
to nonlinear, iterative, and lightweight methodologies to expedite the software
development without compromising software quality and user satisfaction.
Especially in the modern business software world, the user requirements are
highly unpredictable and such agile software development methodologies have
demonstrated their effectiveness. All of these agile methodologies deem that
software development is a human activity and that more attention should
be paid to the human factors in the software construction process. Also,
these lean-and-mean development methodologies are being used in small and
medium-scale software for many industrial sectors nowadays. The existing ag-
ile methodologies include Extreme Programming (XP) , Scrum, Crystal Family
methodology, Feature Driven Development (FDD) , Dynamic Systems Devel-
opment Methodology (DSDM), Adaptive Software Development (ASD), Lean
Development (LD) , agile instantiations of Rational Unified Process (RUP) ,
Open Source Software (OSS), Pragmatic Programming (PP), and so forth.

Is the agile method suited for the development of modern industrial au-
tomation software? Actually it is a hard problem to address and its suit-
ability can only be determined by the requirements and constraints in each
individual project. The sizes of projects in the industrial automation arena
vary from small-scale software with limited specific functionality to large-scale
software system with comprehensive functionality and rigorous requirements.
The former includes the back-end software such as retrospective data manage-
ment and reports, and the latter includes the mission-critical, time-critical,
and life-critical industrial field monitoring and control software systems. For
the small-scale and non-mission critical software, agile methodologies are vi-
able solutions to speed up the development efficiency. A number of agilists

SUMMARY 309

are seeking ways to expand the use of agile methodologies for efficient de-
velopment of larger software-intensive projects and effective management of
distributed development teams. However, for the safety-critical industrial au-
tomation software development, caution should be paid when employing such
agile methodologies, because the detailed analysis of each software elements
is needed and the system may have intense interactions with other software
and hardware systems.

14.5 SUMMARY

Modern industrial automation systems have turned out to be very beneficial
to plant development and management. Especially for long life cycle projects,
the benefit is more evident. Therefore, modern industrial automation sys-
tems discussed in this book should be a key step toward profits generation.
Although many achievements have been obtained in real-world applications of
modern industrial automation systems, some issues are still remaining open
such as system reliability and open architecture. It is a challenging prob-
lem to design a highly reliable industrial automation system which keeping
its architecture really open. To obtain more powerful, more flexible, and
more trustable industrial automation systems, there is a spectrum of research
ahead.

It is believed that the proliferation of modern information technologies will
still be of great benefit to the development of industrial automation software in
the coming decades. In the information-rich world, the industrial automation
software obtained will be more powerful, more efficient, and more user-friendly
to meet the ever-demanding user requirements.

Index

3-view modeling, 208
Agent-based software development, 305
Agent-oriented programming, 306
Agile methodologies, 308
Alarm configuration, 217
Alarm

alarm flooding, 134
alarm handling, 200, 224
alarming and reporting, 6

Analysis and management workstation, 245
Animation link, 125
API functions, 19
Application programming interface, 20, 24,

Artificial neural network classifier, 227
Automatic blending, I79
Automatic duty balancing, 123
Automatic supervision software, 153
Automatic test system, 197-198
Back-end tasks, 297
Bottom-up model, 17
Cached updates mechanism, 161
Channel configuration, 229
Client/server, 288
Clipboard, 135
Coad/Yourdon approach

66, 121

attributes, 50
objects, 49
services, 50
subjects, 49

310

Code interface node, 283
Command manager, 184
Commercial-off-the-shelf component, 79
Common gateway interface, 295
Communication protocol, 188
Compatibility, 15-16
Component-based software

component-based software development,

component-based software engineering,
32-33

33
Component technology, 31
Computer-based control, 95
Computer integrated manufacturing

Condition monitoring, 1, 5, 93, 240
Control delay, 180
Control packages, 185
Data-flow analysis, 246
Data-flow diagram, 208
Data acquisition, 5, 11, 152, 216

data acquisition devices, 241
data acquisition module, 210
data acquisition workstation, 242

system, 99

Data analysis, 218
Data collection, 5
Data communication, 167
Data configuration, 217
Data display, 219
Data I/O, 155

INDEX 311

Data management component, 215
Data memory sharing, 184
Data processing, 118
Data storage, 14
Database components, 122
Database management, 217
Database management system, 62, 64,

119, 256, 260
Database model

hierarchical model, 60
network model, 60

Database selection, 255
Database technology, 118
Decision-making, 6
Design process of user interface

conceptual design, 55
construction, 56
evaluation, 56
logical design, 55
physical design, 55
requirements analysis, 54

Device management, 190
Distributed control system, 94
Distributed intelligence, 14
Drag-and-drop, 27
Driver image table, 163
Driver loading process, 167
Driver testing, 172
Dynamic configuration, 160
Dynamic data exchange, 85, 136
Dynamic link library, 181
Embedded data processor, 12
Entity-relationship diagram, 249
Entity-relationship model, 208
Event-response model, 250
Event-driven approach, 227
Event-driven programming, 220
Event-driven tasks, 159
Event-response model, 187
Exception handler, 167
Expandability, 7, 12, 18
Factory automation, 31
Fault diagnosis, 5, 224
Feasibility study, 244
Flexibility, 7
Fuzzy logic, 227
G Web server, 293
Generalization, 31
Generic query system, 145
GPIB instruments, 16
Graphical measurement platform, 31
Graphical programming, 21, 257
Graphical user interfaces, 6
Handheld instrument, 2
Handshaking mechanism, 171
Hardware driver, 163

Hardware simulation terminal, 171
Homogenization boiler, 181
Human-machine interaction, 182
Human-machine interface, 198, 6
1/0 interface, 16, 19, 25
IMP configuration, 217, 229
Industrial automation systems, 1, 309
Industrial measurement and control, 27, 94,

Information technologies, 309
Instrument components, 31
Instrument drivers, 24-25
Integrated development environment, 113
Inter-process communication, 136
Interoperability, 7, 12, 14, 16, 18
Interrupt mechanism, 185
Island of automation, 7
Isolated measurement pods, 201
LabVIEW, 21, 258
Largescale database system, 142
Largescale rotating machinery, 239
Linguistic-based information analysis, 209
Local area network, 5
Low-level tasks, 189
Machine monitoring and control, 31
Man-machine interface, 20, 112
Measurement and control, 2
Measurement device, 10
Measurement point, 6, 151
Measurement point management, 154
Measurement sensor system, 199
Memory, 162
Message dispatching, 185
Message passing mechanism, 118
Middleware, 303
Modular instrument, 10, 13
Modular structure, 14
Modularity, 12
Modularization, 16, 31
Module-oriented design, 306
Monitoring software, 24
Multi-thread-based communication, 179
Multimedia display, 10
Multimedia timer, 171
Multitasking coordination mechanism, 291
Multithreaded programming, 169, 184
Mutex mechanism, 162
Networked control, 10, 14
Networked data sharing, 5
Networked system, 7
Non-real-time retrospection, 134
Object-&-class layer, 203
Object-oriented design

110,

122

database management component, 51
human interaction component, 50
problem domain component, 50

312 INDEX

task management component, 50
Object-oriented method

data abstraction, 115
dynamic binding, 116
encapsulation, 115
inheritance, 116
polymorphism, 116

Object-oriented programming, 115
Object-oriented software engineering, 189
Object linking and embedding, 85, 137
Object orientation

encapsulation, 36
inheritance, 36
polymorphism, 36

Open architecture, 309
Open database connectivity

application, 67
data source, 68
driver, 67
driver manager, 67

Open structure, 12
Phrase frequency analysis, 208
Post-fault analysis, 200
Post-fault diagnosis, 227
Problem domain component, 214
Process-oriented design, 306
Process, 161
Process control, 31
Programmable logic controller, 163, 180
Real-time communication, 10, 228
Real-time constraints, 6
Real-time database, 28, 129, 157
Reconfigurable software, 11 1
Reconfigurable supervision, 152
Reconfigurable systems, 95
Reconfiguration, 94, 107
Relational database system

concurrency control, 60
data integrity constraints, 60
user interface, 60

Reliability, 309
Remote browsers, 243
Remote communication, 142
Requirement capture and elicitation, 46,

Requirements capture, 207, 244
Resource management, 5
Resource manager, 17
Responsiveness, 7
Reusability, 12
Rotating machine, 197
Safety-critical system, 162
Scalability, 7, 11
Sensor configuration, 217
Serial communication, 24, 167
Serial port driver, 168

108, 246

Signal processing, 6
Single-board controller, 282
Single-chip micro-controller, 180
Socket, 287
Software-intensive systems, 43
Software agent, 306
Software development model

incremental model, 45
spiral model, 45
waterfall model, 45

Software engineering
software coding, 44
software design, 44
software maintenance, 44
software planning, 44
software requirements analysis.
software testing, 44

Software maintenance
adaptive maintenance, 85
corrective maintenance, 84
perfective maintenance, 85
preventive maintenance, 85

Software performance testing
availability, 80
flexibility, 81
maintainability, 83
seliability, 81
security, 82
stress testing, 82
survivability, 81
usability, 82

Software structure
dynamic logic, 48
dynamic physics, 48
static logic, 48
static physics, 48

Software testing approach
black-box testing, 72
white-box testing, 72

Software testing phase
integration testing, 76
system testing, 78
unit testing, 75
validation, 79
verification testing, 78

Software testing strategy
big-bang testing, 71
incremental testing, 71

SQL server, 255
Standardization, 16, 31, 123
State transition diagram, 208
Static logic model

aggregation, 48
association, 48
generalization, 48
instantiation, 48

lNDEX 313

Statistics and analysis module, 109
Status overview, 28
Structured query language

data control language, 65
data definition language, 65
data manipulation language, 65
data query language, 65

System analysis, 207
System configuration, 6, 155
System driver, 155, 159, 163
System modularization, 123
System openness, 19
System servers, 243
Task configuration, 126
Task management, 165
Task management component, 215
Task trigger mechanism, 159
Test and measurement, 31
Textual programming, 21, 257
Third-party software, 200
Thread, 161
Time-driven tasks, 159
Turbine machinery, 197
Unified modeling language, 304
Unprogrammed shutdown, 197
Usability of user interface

fault tolerance, 57
learnability, 56
operation efficiency, 56

User configuration, 222

User interaction component, 215
User interface design

consistency, 53
minimal surprise, 54
recoverability, 54
user diversity, 54
user familiarity, 53
user guidance, 54

User management, 190
Verification, 79
Versatility, 19
Vibration variable, 284
Virtual instrument

virtual instrument driver, 19
virtual instrument software architecture,

17
Virtual instrumentation, 9-10
Virtual X Device driver, 181
VISA specification, 15
Visual component library, 27, 107, 114, 189,

Visual database query, 28, 140
Visual programming, 27
V P P specification, 19
VXI instrument, 13

Wave display, 28
Whole-part relationship, 210
Wide area network, 5
Win95 message mechanism, 144
WinSock programming, 288

220

VXI Plug&Plug, 10

This Page Intentionally Left Blank

