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Preface

It is just over thirty years since The Finite Element Method in Structural and
Continuum Mechanics was first published. This book, which was the first dealing
with the finite element method, provided the base from which many further develop-
ments occurred. The expanding research and field of application of finite elements led
to the second edition in 1971, the third in 1977 and the fourth in 1989 and 1991. The
size of each of these volumes expanded geometrically (from 272 pages in 1967 to the
fourth edition of 1455 pages in two volumes). This was necessary to do justice to a
rapidly expanding field of professional application and research. Even so, much filter-
ing of the contents was necessary to keep these editions within reasonable bounds.

It seems that a new edition is necessary every decade as the subject is expanding and
many important developments are continuously occurring. The present fifth edition is
indeed motivated by several important developments which have occurred in the 90s.
These include such subjects as adaptive error control, meshless and point based
methods, new approaches to fluid dynamics, etc. However, we feel it is important
not to increase further the overall size of the book and we therefore have eliminated
some redundant material.

Further, the reader will notice the present subdivision into three volumes, in which the
first volume provides the general basis applicable to linear problems in many fields whilst
the second and third volumes are devoted to more advanced topics in solid and fluid
mechanics, respectively. This arrangement will allow a general student to study
Volume 1 whilst a specialist can approach their topics with the help of Volumes 2 and
3. Volumes 2 and 3 are much smaller in size and addressed to more specialized readers.

It is hoped that Volume 1 will help to introduce postgraduate students, researchers
and practitioners to the modern concepts of finite element methods. In Volume 1 we
stress the relationship between the finite element method and the more classic finite
difference and boundary solution methods. We show that all methods of numerical
approximation can be cast in the same format and that their individual advantages
can thus be retained.

Although Volume 1 is not written as a course text book, it is nevertheless directed at
students of postgraduate level and we hope these will find it to be of wide use. Math-
ematical concepts are stressed throughout and precision is maintained, although little
use is made of modern mathematical symbols to ensure wider understanding amongst
engineers and physical scientists.
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Preface

In Volumes 1, 2 and 3 the chapters on computational methods are much reduced by
transferring the computer source programs to a web site.! This has the very substan-
tial advantage of not only eliminating errors in copying the programs but also in
ensuring that the reader has the benefit of the most recent set of programs available
to him or her at all times as it is our intention from time to time to update and expand
the available programs.

The authors are particularly indebted to the International Center of Numerical
Methods in Engineering (CIMNE) in Barcelona who have allowed their pre- and
post-processing code (GiD) to be accessed from the publisher’s web site. This
allows such difficult tasks as mesh generation and graphic output to be dealt with
efficiently. The authors are also grateful to Dr J.Z. Zhu for his careful scrutiny and
help in drafting Chapters 14 and 15. These deal with error estimation and adaptivity,
a subject to which Dr Zhu has extensively contributed. Finally, we thank Peter and
Jackie Bettess for writing the general subject index.

OCZ and RLT

! Complete source code for all programs in the three volumes may be obtained at no cost from the
publisher’s web page: http://www.bh.com/companions/fem



Some preliminaries: the standard
discrete system

1.1 Introduction

The limitations of the human mind are such that it cannot grasp the behaviour of its
complex surroundings and creations in one operation. Thus the process of sub-
dividing all systems into their individual components or ‘elements’, whose behaviour
is readily understood, and then rebuilding the original system from such components
to study its behaviour is a natural way in which the engineer, the scientist, or even the
economist proceeds.

In many situations an adequate model is obtained using a finite number of well-
defined components. We shall term such problems discrete. In others the subdivision
is continued indefinitely and the problem can only be defined using the mathematical
fiction of an infinitesimal. This leads to differential equations or equivalent statements
which imply an infinite number of elements. We shall term such systems continuous.

With the advent of digital computers, discrete problems can generally be solved
readily even if the number of elements is very large. As the capacity of all computers
is finite, continuous problems can only be solved exactly by mathematical manipula-
tion. Here, the available mathematical techniques usually limit the possibilities to
oversimplified situations.

To overcome the intractability of realistic types of continuum problems, various
methods of discretization have from time to time been proposed both by engineers
and mathematicians. All involve an approximation which, hopefully, approaches
in the limit the true continuum solution as the number of discrete variables
increases.

The discretization of continuous problems has been approached differently by
mathematicians and engineers. Mathematicians have developed general techniques
applicable directly to differential equations governing the problem, such as finite dif-
ference approximations,'? various weighted residual procedures,** or approximate
techniques for determining the stationarity of properly defined ‘functionals’. The
engineer, on the other hand, often approaches the problem more intuitively by creat-
ing an analogy between real discrete elements and finite portions of a continuum
domain. For instance, in the field of solid mechanics M(:Henry,5 Hrenikoff,°
Newmark’, and indeed Southwell’ in the 1940s, showed that reasonably good solu-
tions to an elastic continuum problem can be obtained by replacing small portions
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of the continuum by an arrangement of simple elastic bars. Later, in the same context,
Argyris® and Turner er al.” showed that a more direct, but no less intuitive, substitu-
tion of properties can be made much more effectively by considering that small
portions or ‘elements’ in a continuum behave in a simplified manner.

It is from the engineering ‘direct analogy’ view that the term ‘finite element’ was
born. Clough'® appears to be the first to use this term, which implies in it a direct
use of a standard methodology applicable to discrete systems. Both conceptually and
from the computational viewpoint, this is of the utmost importance. The first
allows an improved understanding to be obtained; the second offers a unified
approach to the variety of problems and the development of standard computational
procedures.

Since the early 1960s much progress has been made, and today the purely mathe-
matical and ‘analogy’ approaches are fully reconciled. It is the object of this text to
present a view of the finite element method as a general discretization procedure of con-
tinuum problems posed by mathematically defined statements.

In the analysis of problems of a discrete nature, a standard methodology has been
developed over the years. The civil engineer, dealing with structures, first calculates
force—displacement relationships for each element of the structure and then proceeds
to assemble the whole by following a well-defined procedure of establishing local
equilibrium at each ‘node’ or connecting point of the structure. The resulting equa-
tions can be solved for the unknown displacements. Similarly, the electrical or
hydraulic engineer, dealing with a network of electrical components (resistors, capa-
citances, etc.) or hydraulic conduits, first establishes a relationship between currents
(flows) and potentials for individual elements and then proceeds to assemble the
system by ensuring continuity of flows.

All such analyses follow a standard pattern which is universally adaptable to dis-
crete systems. It is thus possible to define a standard discrete system, and this chapter
will be primarily concerned with establishing the processes applicable to such systems.
Much of what is presented here will be known to engineers, but some reiteration at
this stage is advisable. As the treatment of elastic solid structures has been the
most developed area of activity this will be introduced first, followed by examples
from other fields, before attempting a complete generalization.

The existence of a unified treatment of ‘standard discrete problems’ leads us to the
first definition of the finite element process as a method of approximation to con-
tinuum problems such that

(a) the continuum is divided into a finite number of parts (eclements), the behaviour of
which is specified by a finite number of parameters, and

(b) the solution of the complete system as an assembly of its elements follows pre-
cisely the same rules as those applicable to standard discrete problems.

It will be found that most classical mathematical approximation procedures as well
as the various direct approximations used in engineering fall into this category. It is
thus difficult to determine the origins of the finite element method and the precise
moment of its invention.

Table 1.1 shows the process of evolution which led to the present-day concepts of
finite element analysis. Chapter 3 will give, in more detail, the mathematical basis
which emerged from these classical ideas.'' ™%



Table 1.1

Structural
analogue
substitution

Hrenikoff 1941°
McHenry 1943°
Newmark 1949’

~a

ENGINEERING MATHEMATICS
Trial Finite
functions differences

Direct
continuum
elements

Argyris 1955°
Turner et al. 1956°

Variational
methods

Rayleigh 1870
Ritz 1909'?

S

S

Piecewise
continuous
trial functions

Courant 1943"
Prager—Synge 1947 14
Zienkiewicz 1964%'

Weighted
residuals

Gauss 1795
Galerkin 1915"

Biezeno—Koch 19232

/

PRESENT-DAY

FINITE ELEMENT METHOD

Richardson 1910"
Liebman 1918'°
Southwell 1946

Variational
finite
differences

Varga 19627
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1.2 The structural element and the structural system

2

Nodes

X
A typical element (1)

Fig. 1.1 A typical structure built up from interconnected elements.

To introduce the reader to the general concept of discrete systems we shall first
consider a structural engineering example of linear elasticity.

Figure 1.1 represents a two-dimensional structure assembled from individual
components and interconnected at the nodes numbered 1 to 6. The joints at the
nodes, in this case, are pinned so that moments cannot be transmitted.

As a starting point it will be assumed that by separate calculation, or for that matter
from the results of an experiment, the characteristics of each element are precisely
known. Thus, if a typical element labelled (1) and associated with nodes 1, 2, 3 is
examined, the forces acting at the nodes are uniquely defined by the displacements
of these nodes, the distributed loading acting on the element (p), and its initial
strain. The last may be due to temperature, shrinkage, or simply an initial ‘lack of
fit’. The forces and the corresponding displacements are defined by appropriate com-
ponents (U, V and u, v) in a common coordinate system.

Listing the forces acting on all the nodes (three in the case illustrated) of the element
(1) as a matrixf we have

1

q

Uy

d=day ad={ )k e (1.1)
1 Vi

q3

T A limited knowledge of matrix algebra will be assumed throughout this book. This is necessary for
reasonable conciseness and forms a convenient book-keeping form. For readers not familiar with the subject
a brief appendix (Appendix A) is included in which sufficient principles of matrix algebra are given to follow
the development intelligently. Matrices (and vectors) will be distinguished by bold print throughout.
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and for the corresponding nodal displacements

)
u
al = a, a; = { ] }, etc. (1.2)
U1
a3
Assuming linear elastic behaviour of the element, the characteristic relationship will
always be of the form

q' =K'a' +1f, +f] (1.3)

in which f represents the nodal forces required to balance any distributed loads acting
on the element and f! ¢, the nodal forces required to balance any initial strains such as
may be caused by temperature change if the nodes are not subject to any displacement.
The first of the terms represents the forces induced by displacement of the nodes.
Similarly, a preliminary analysis or experiment will permit a unique definition of
stresses or internal reactions at any specified point or points of the element in
terms of the nodal displacements. Defining such stresses by a matrix ¢' a relationship
of the form
¢ =Q'a' +o! (1.4)

<0

is obtained in which the two term gives the stresses due to the initial strains when no
nodal displacement occurs.

The matrix K¢ is known as the element stiffness matrix and the matrix Q° as the
element stress matrix for an element (e).

Relationships in Eqs (1.3) and (1.4) have been illustrated by an example of an cle-
ment with three nodes and with the interconnection points capable of transmitting
only two components of force. Clearly, the same arguments and definitions will
apply generally. An element (2) of the hypothetical structure will possess only two
points of interconnection; others may have quite a large number of such points. Simi-
larly, if the joints were considered as rigid, three components of generalized force and
of generalized displacement would have to be considered, the last of these correspond-
ing to a moment and a rotation respectively. For a rigidly jointed, three-dimensional
structure the number of individual nodal components would be six. Quite generally,
therefore,

q )
5 a
q = q_2 and a’ = .2 (1.5)
qfﬂ aﬂ‘l

with each qf and a; possessing the same number of components or degrees of freedom.
These quantities are conjugate to each other.
The stiffness matrices of the element will clearly always be square and of the form
K¢ = : (1.6)
K:m oo K;vn
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Fig. 1.2 A pin-ended bar.

in which K, etc., are submatrices which are again square and of the size / x /, where /
is the number of force components to be considered at each node.

As an example, the reader can consider a pin-ended bar of uniform section 4 and
modulus E in a two-dimensional problem shown in Fig. 1.2. The bar is subject to a
uniform lateral load p and a uniform thermal expansion strain

E():OéT

where « is the coefficient of linear expansion and 7T is the temperature change.
If the ends of the bar are defined by the coordinates x;, y; and x,, y, its length can be
calculated as

L= /l06 = x>+ (s — 7))
and its inclination from the horizontal as

—1Vn =i
=tan ——
/8 xn — x,'

Only two components of force and displacement have to be considered at the

nodes.
The nodal forces due to the lateral load are clearly
U; —sin 3
o Vi _ cos @ pL
’ U, —sing [ 2
Val, cos 3

and represent the appropriate components of simple reactions, pL/2. Similarly, to
restrain the thermal expansion ¢, an axial force (EaT4) is needed, which gives the
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components
U; —cos 3
V; —sin
e = =— b (EaTA)
U, cos 3
Vi) 2 sin 8

Finally, the element displacements

will cause an elongation (u, — u;)cos 8+ (v, — v;) sin 8. This, when multiplied by
EA/L, gives the axial force whose components can again be found. Rearranging
these in the standard form gives

Ui
e,e V[
Ka" =
U,
Vn 6
cos’ 3 sin 3 cos 3 : —cos? 3 —sin 3 cos 3 U;
EA sin B cos 3 sin’ 3 I —sinfcosf —sin’ v;
e e o o __.
L 2 : I 2 .
—cos” 3 —sinfBcos 3 cos” 3 sin 3 cos 3 u,
—sin3cos 3 —sin 2ﬁ : sin 3 cos 3 sin’ I] Uy,

The components of the general equation (1.3) have thus been established for the
elementary case discussed. It is again quite simple to find the stresses at any section
of the element in the form of relation (1.4). For instance, if attention is focused on
the mid-section C of the bar the average stress determined from the axial tension
to the element can be shown to be

o’ ~o= % [—cos (3, —sin 3, cos (3, sin 3]a® — EaT
where all the bending effects of the lateral load p have been ignored.

For more complex elements more sophisticated procedures of analysis are required
but the results are of the same form. The engineer will readily recognize that the so-
called ‘slope—deflection’ relations used in analysis of rigid frames are only a special
case of the general relations.

It may perhaps be remarked, in passing, that the complete stiffness matrix obtained
for the simple element in tension turns out to be symmetric (as indeed was the case
with some submatrices). This is by no means fortuitous but follows from the principle
of energy conservation and from its corollary, the well-known Maxwell-Betti
reciprocal theorem.
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The element properties were assumed to follow a simple linear relationship. In
principle, similar relationships could be established for non-linear materials, but
discussion of such problems will be held over at this stage.

The calculation of the stiffness coefficients of the bar which we have given here will
be found in many textbooks. Perhaps it is worthwhile mentioning here that the first
use of bar assemblies for large structures was made as early as 1935 when Southwell
proposed his classical relaxation method.

1.3 Assembly and analysis of a structure

Consider again the hypothetical structure of Fig. 1.1. To obtain a complete solution
the two conditions of

(a) displacement compatibility and
(b) equilibrium

have to be satisfied throughout.
Any system of nodal displacements a:

a;
a=( ! (1.7)
aﬂ

listed now for the whole structure in which all the elements participate, automatically
satisfies the first condition.

As the conditions of overall equilibrium have already been satisfied within an ele-
ment, all that is necessary is to establish equilibrium conditions at the nodes of the
structure. The resulting equations will contain the displacements as unknowns, and
once these have been solved the structural problem is determined. The internal
forces in elements, or the stresses, can easily be found by using the characteristics
established a priori for each element by Eq. (1.4).

Consider the structure to be loaded by external forces r:

r

.,
|

(1.8)

r,

applied at the nodes in addition to the distributed loads applied to the individual
elements. Again, any one of the forces r; must have the same number of components
as that of the element reactions considered. In the example in question

ri:{/‘;ﬁ} (1.9)

as the joints were assumed pinned, but at this stage the general case of an arbitrary
number of components will be assumed.

If now the equilibrium conditions of a typical node, i, are to be established, each
component of r; has, in turn, to be equated to the sum of the component forces
contributed by the elements meeting at the node. Thus, considering al/l the force
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components we have

i qQ +q+ (1.10)

in which q! is the force contributed to node i by element 1, g> by element 2, etc.
Clearly, only the elements which include point i will contribute non-zero forces,
but for tidiness all the elements are included in the summation.

Substituting the forces contributing to node i from the definition (1.3) and noting
that nodal variables a; are common (thus omitting the superscript ¢), we have

m m m
rl.:(ZK§1>31+(ZK72>32+~~-+fo (L.11)

e=1 e=1 e=1
where
__ge e
f¢ =f, +f,

The summation again only concerns the elements which contribute to node 7. If all
such equations are assembled we have simply

Ka=r—f (1.12)

in which the submatrices are
(1.13)

with summations including all elements. This simple rule for assembly is very
convenient because as soon as a coefficient for a particular element is found it can
be put immediately into the appropriate ‘location’ specified in the computer. This
general assembly process can be found to be the common and fundamental feature of
all finite element calculations and should be well understood by the reader.

If different types of structural elements are used and are to be coupled it must be
remembered that the rules of matrix summation permit this to be done only if
these are of identical size. The individual submatrices to be added have therefore to
be built up of the same number of individual components of force or displacement.
Thus, for example, if a member capable of transmitting moments to a node is to be
coupled at that node to one which in fact is hinged, it is necessary to complete the
stiffness matrix of the latter by insertion of appropriate (zero) coefficients in the
rotation or moment positions.

1.4 The boundary conditions

The system of equations resulting from Eq. (1.12) can be solved once the
prescribed support displacements have been substituted. In the example of Fig. 1.1,
where both components of displacement of nodes 1 and 6 are zero, this will mean
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0
A — ag = 0

which is equivalent to reducing the number of equilibrium equations (in this instance
12) by deleting the first and last pairs and thus reducing the total number of unknown
displacement components to eight. It is, nevertheless, always convenient to assemble
the equation according to relation (1.12) so as to include all the nodes.

Clearly, without substitution of a minimum number of prescribed displacements to
prevent rigid body movements of the structure, it is impossible to solve this system,
because the displacements cannot be uniquely determined by the forces in such a
situation. This physically obvious fact will be interpreted mathematically as the
matrix K being singular, i.e., not possessing an inverse. The prescription of appropri-
ate displacements after the assembly stage will permit a unique solution to be
obtained by deleting appropriate rows and columns of the various matrices.

If all the equations of a system are assembled, their form is

the substitution of

Kllal +K1232+"' =TI 7f1
K2131+K2232+~--:r2—f2 (114)
etc.

and it will be noted that if any displacement, such as a; = a;, is prescribed then the
external ‘force’ r; cannot be simultaneously specified and remains unknown. The
first equation could then be deleted and substitution of known values of a; made in
the remaining equations. This process is computationally cumbersome and the
same objective is served by adding a large number, al, to the coefficient K;; and
replacing the right-hand side, r; — f;, by a;a. If « is very much larger than other
stiffness coefficients this alteration effectively replaces the first equation by the equa-
tion

aag 2042_11 (115)

that is, the required prescribed condition, but the whole system remains symmetric
and minimal changes are necessary in the computation sequence. A similar procedure
will apply to any other prescribed displacement. The above artifice was introduced by
Payne and Irons.”® An alternative procedure avoiding the assembly of equations
corresponding to nodes with prescribed boundary values will be presented in
Chapter 20.

When all the boundary conditions are inserted the equations of the system can be
solved for the unknown displacements and stresses, and the internal forces in each ele-
ment obtained.

1.5 Electrical and fluid networks

Identical principles of deriving element characteristics and of assembly will be found
in many non-structural fields. Consider, for instance, the assembly of electrical
resistances shown in Fig. 1.3.



Electrical and fluid networks

Fig. 1.3 A network of electrical resistances.

If a typical resistance element, ij, is isolated from the system we can write, by Ohm’s law,
the relation between the currents entering the element at the ends and the end voltages as

1
Ji==Vi=V)

€

-

1
I === V)

J re

{J?}l[ 1 —1HV,}
JiJ orl-1 1]y

which in our standard form is simply
J¢ =KV¢ (1.16)

This form clearly corresponds to the stiffness relationship (1.3); indeed if an exter-
nal current were supplied along the length of the element the element ‘force’ terms
could also be found.

To assemble the whole network the continuity of the potential () at the nodes is
assumed and a current balance imposed there. If P; now stands for the external input
of current at node i we must have, with complete analogy to Eq. (1.11),

or in matrix form

n m

Pi=> > KV (1.17)

j=1 e=1
where the second summation is over all ‘elements’, and once again for all the nodes
P =KV (1.18)

in which

m

K=Y Kj
e=1

11
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Matrix notation in the above has been dropped since the quantities such as voltage
and current, and hence also the coefficients of the ‘stiffness” matrix, are scalars.

If the resistances were replaced by fluid-carrying pipes in which a laminar regime
pertained, an identical formulation would once again result, with V' standing for
the hydraulic head and J for the flow.

For pipe networks that are usually encountered, however, the linear laws are in
general not valid. Typically the flow—head relationship is of a form

Ji=c(V,— V) (1.19)

where the index + lies between 0.5 and 0.7. Even now it would still be possible to write
relationships in the form (1.16) noting, however, that the matrices K¢ are no longer
arrays of constants but are known functions of V. The final equations can once
again be assembled but their form will be non-linear and in general iterative techniques
of solution will be needed.

Finally it is perhaps of interest to mention the more general form of an electrical
network subject to an alternating current. It is customary to write the relationships
between the current and voltage in complex form with the resistance being replaced
by complex impedance. Once again the standard forms of (1.16)—(1.18) will be
obtained but with each quantity divided into real and imaginary parts.

Identical solution procedures can be used if the equality of the real and imaginary
quantities is considered at each stage. Indeed with modern digital computers it is
possible to use standard programming practice, making use of facilities available
for dealing with complex numbers. Reference to some problems of this class will be
made in the chapter dealing with vibration problems in Chapter 17.

1.6 The general pattern

An example will be considered to consolidate the concepts discussed in this chapter.
This is shown in Fig. 1.4(a) where five discrete elements are interconnected. These
may be of structural, electrical, or any other linear type. In the solution:

The first step is the determination of element properties from the geometric material
and loading data. For each element the ‘stiffness matrix’ as well as the correspond-
ing ‘nodal loads’ are found in the form of Eq. (1.3). Each element has its own iden-
tifying number and specified nodal connection. For example:

element 1 connection 1 3 4
2 1 4 2
3 2 5
4 3 6 7 4
5 4 7 8 5

Assuming that properties are found in global coordinates we can enter each ‘stiff-
ness’ or ‘force’ component in its position of the global matrix as shown in Fig.
1.4(b), Each shaded square represents a single coefficient or a submatrix of type
K;; if more than one quantity is being considered at the nodes. Here the separate
contribution of each element is shown and the reader can verify the position of
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@ 7 "e
1 2 3 4 5
a mE R
+ + H+ H + [ a
= # ﬂ
N N N\
= + - + -
(b)
{f}
©

Fig. 1.4 The general pattern.

the coefficients. Note that the various types of ‘elements’ considered here present no
difficulty in specification. (All ‘forces’, including nodal ones, are here associated
with elements for simplicity.)

The second step is the assembly of the final equations of the type given by Eq. (1.12).
This is accomplished according to the rule of Eq. (1.13) by simple addition of all
numbers in the appropriate space of the global matrix. The result is shown in
Fig. 1.4(c) where the non-zero coefficients are indicated by shading.

As the matrices are symmetric only the half above the diagonal shown needs, in
fact, to be found.

All the non-zero coefficients are confined within a band or profile which can be
calculated a priori for the nodal connections. Thus in computer programs only
the storage of the elements within the upper half of the profile is necessary, as
shown in Fig. 1.4(c).

The third step is the insertion of prescribed boundary conditions into the final
assembled matrix, as discussed in Sec. 1.3. This is followed by the final step.

The final step solves the resulting equation system. Here many different methods
can be employed, some of which will be discussed in Chapter 20. The general
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subject of equation solving, though extremely important, is in general beyond the
scope of this book.

The final step discussed above can be followed by substitution to obtain stresses,
currents, or other desired output quantities.

All operations involved in structural or other network analysis are thus of an
extremely simple and repetitive kind.

We can now define the standard discrete system as one in which such conditions
prevail.

1.7 The standard discrete system

In the standard discrete system, whether it is structural or of any other kind, we find
that:

1. A set of discrete parameters, say a;, can be identified which describes simulta-
neously the behaviour of each element, e, and of the whole system. We shall call
these the system parameters.

2. For each element a set of quantities qf can be computed in terms of the system
parameters a;. The general function relationship can be non-linear

q =qi(a) (1.20)
but in many cases a linear form exists giving
q; = Kjja; +Kpay + - + 1] (1.21)
3. The system equations are obtained by a simple addition
= Z q (1.22)
e=1

where r; are system quantities (often prescribed as zero).
In the linear case this results in a system of equations

Ka+f=r (1.23)
such that

m m
K,=> Kj fi=)fi (1.24)
e=1 e=1
from which the solution for the system variables a can be found after imposing
necessary boundary conditions.

The reader will observe that this definition includes the structural, hydraulic, and
electrical examples already discussed. However, it is broader. In general neither
linearity nor symmetry of matrices need exist — although in many problems this
will arise naturally. Further, the narrowness of interconnections existing in usual
elements is not essential.

While much further detail could be discussed (we refer the reader to specific books
for more exhaustive studies in the structural context®*2°), we feel that the general
exposé given here should suffice for further study of this book.
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Only one further matter relating to the change of discrete parameters need be
mentioned here. The process of so-called transformation of coordinates is vital in
many contexts and must be fully understood.

1.8 Transformation of coordinates

It is often convenient to establish the characteristics of an individual element in a
coordinate system which is different from that in which the external forces and
displacements of the assembled structure or system will be measured. A different
coordinate system may, in fact, be used for every element, to ease the computation.
It is a simple matter to transform the coordinates of the displacement and force
components of Eq. (1.3) to any other coordinate system. Clearly, it is necessary to
do so before an assembly of the structure can be attempted.

Let the local coordinate system in which the element properties have been evalu-
ated be denoted by a prime suffix and the common coordinate system necessary for
assembly have no embellishment. The displacement components can be transformed
by a suitable matrix of direction cosines L as

a' =La (1.25)

As the corresponding force components must perform the same amount of work in
either systemf

q'a=q"a (1.26)
On inserting (1.25) we have
q'a=q"La
or
q=L"¢ (1.27)

The set of transformations given by (1.25) and (1.27) is called contravariant.
To transform ‘stiffnesses’ which may be available in local coordinates to global
ones note that if we write

q =Ka (1.28)
then by (1.27), (1.28), and (1.25)
q=L"K'La
or in global coordinates
K =L'K'L (1.29)

The reader can verify the usefulness of the above transformations by reworking
the sample example of the pin-ended bar, first establishing its stiffness in its length
coordinates.

+With ()T standing for the transpose of the matrix.

15
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In many complex problems an external constraint of some kind may be imagined,
enforcing the requirement (1.25) with the number of degrees of freedom of a and a’
being quite different. Even in such instances the relations (1.26) and (1.27) continue
to be valid.

An alternative and more general argument can be applied to many other situations
of discrete analysis. We wish to replace a set of parameters a in which the system
equations have been written by another one related to it by a transformation

matrix T as
a=Tb (1.30)
In the linear case the system equations are of the form
Ka=r—f (1.31)
and on the substitution we have
KTb=r—f (1.32)

The new system can be premultiplied simply by TT, yielding
(T'KT)b = T'r — T'f (1.33)

which will preserve the symmetry of equations if the matrix K is symmetric. However,
occasionally the matrix T is not square and expression (1.30) represents in fact an
approximation in which a larger number of parameters a is constrained. Clearly the
system of equations (1.32) gives more equations than are necessary for a solution
of the reduced set of parameters b, and the final expression (1.33) presents a reduced
system which in some sense approximates the original one.

We have thus introduced the basic idea of approximation, which will be the subject
of subsequent chapters where infinite sets of quantities are reduced to finite sets.

A historical development of the subject of finite element methods has been pre-
sented by the author.?’?®
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A direct approach to problems
in elasticity

2.1 Introduction

The process of approximating the behaviour of a continuum by ‘finite elements’
which behave in a manner similar to the real, ‘discrete’, elements described in the
previous chapter can be introduced through the medium of particular physical appli-
cations or as a general mathematical concept. We have chosen here to follow the first
path, narrowing our view to a set of problems associated with structural mechanics
which historically were the first to which the finite element method was applied. In
Chapter 3 we shall generalize the concepts and show that the basic ideas are widely
applicable.

In many phases of engineering the solution of stress and strain distributions in
elastic continua is required. Special cases of such problems may range from two-
dimensional plane stress or strain distributions, axisymmetric solids, plate bending,
and shells, to fully three-dimensional solids. In all cases the number of inter-
connections between any ‘finite element’ isolated by some imaginary boundaries
and the neighbouring elements is infinite. It is therefore difficult to see at first
glance how such problems may be discretized in the same manner as was described
in the preceding chapter for simpler structures. The difficulty can be overcome (and
the approximation made) in the following manner:

1. The continuum is separated by imaginary lines or surfaces into a number of “finite
elements’.

2. The elements are assumed to be interconnected at a discrete number of nodal
points situated on their boundaries and occasionally in their interior. In
Chapter 6 we shall show that this limitation is not necessary. The displacements
of these nodal points will be the basic unknown parameters of the problem, just
as in simple, discrete, structural analysis.

3. A set of functions is chosen to define uniquely the state of displacement within each
“finite element’ and on its boundaries in terms of its nodal displacements.

4. The displacement functions now define uniquely the state of strain within an
element in terms of the nodal displacements. These strains, together with any
initial strains and the constitutive properties of the material, will define the state
of stress throughout the element and, hence, also on its boundaries.



Direct formulation of finite element characteristics

5. A system of ‘forces’ concentrated at the nodes and equilibrating the boundary
stresses and any distributed loads is determined, resulting in a stiffness relationship
of the form of Eq. (1.3).

Once this stage has been reached the solution procedure can follow the standard dis-
crete system pattern described earlier.

Clearly a series of approximations has been introduced. Firstly, it is not always easy
to ensure that the chosen displacement functions will satisfy the requirement of dis-
placement continuity between adjacent elements. Thus, the compatibility condition
on such lines may be violated (though within each element it is obviously satisfied
due to the uniqueness of displacements implied in their continuous representation).
Secondly, by concentrating the equivalent forces at the nodes, equilibrium conditions
are satisfied in the overall sense only. Local violation of equilibrium conditions within
each element and on its boundaries will usually arise.

The choice of element shape and of the form of the displacement function for
specific cases leaves many opportunities for the ingenuity and skill of the engineer
to be employed, and obviously the degree of approximation which can be achieved
will strongly depend on these factors.

The approach outlined here is known as the displacement formulation."

So far, the process described is justified only intuitively, but what in fact has been
suggested is equivalent to the minimization of the total potential energy of the system
in terms of a prescribed displacement field. If this displacement field is defined in a
suitable way, then convergence to the correct result must occur. The process is then
equivalent to the well-known Rayleigh—Ritz procedure. This equivalence will be
proved in a later section of this chapter where also a discussion of the necessary con-
vergence criteria will be presented.

The recognition of the equivalence of the finite element method to a minimization
process was late.>* However, Courant in 19434]L and Prager and Synge’ in 1947 pro-
posed methods that are in essence identical.

This broader basis of the finite element method allows it to be extended to other con-
tinuum problems where a variational formulation is possible. Indeed, general procedures
are now available for a finite element discretization of any problem defined by a properly
constituted set of differential equations. Such generalizations will be discussed in Chapter
3, and throughout the book application to non-structural problems will be made. It will
be found that the processes described in this chapter are essentially an application of trial-
function and Galerkin-type approximations to a particular case of solid mechanics.

2

2.2 Direct formulation of finite element characteristics

The “prescriptions’ for deriving the characteristics of a ‘finite element’ of a continuum,
which were outlined in general terms, will now be presented in more detailed
mathematical form.

 Itappears that Courant had anticipated the essence of the finite element method in general, and of a triangular
element in particular, as early as 1923 in a paper entitled ‘On a convergence principle in the calculus of varia-
tions.” Kon. Gesellschaft der Wissenschaften zu Géttingen, Nachrichten, Berlin, 1923. He states: “‘We imagine a
mesh of triangles covering the domain . . . the convergence principles remain valid for each triangular domain.’

19
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Fig. 2.1 A plane stress region divided into finite elements.

It is desirable to obtain results in a general form applicable to any situation, but
to avoid introducing conceptual difficulties the general relations will be illustrated
with a very simple example of plane stress analysis of a thin slice. In this a division
of the region into triangular-shaped elements is used as shown in Fig. 2.1. Relation-
ships of general validity will be placed in a box. Again, matrix notation will be
implied.

2.2.1 Displacement function

A typical finite element, e, is defined by nodes, i, j, m, etc., and straight line boundaries.
Let the displacements u at any point within the element be approximated as a column
vector, i

a,-e

umi=>» Nai=[N,N,. . ]85 =Na (2.1)
k

in which the components of N are prescribed functions of position and a° represents a
listing of nodal displacements for a particular element.
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e

Fig. 2.2 Shape function N; for one element.

In the case of plane stress, for instance,

o=}

represents horizontal and vertical movements of a typical point within the element

and
a. =
Ui

the corresponding displacements of a node i.

The functions N;, N;, N,, have to be chosen so as to give appropriate nodal
displacements when the coordinates of the corresponding nodes are inserted in
Eq. (2.1). Clearly, in general,

N;(x;,y;) =1 (identity matrix)
while
Ni(iji) = Ni(xmaym) = 07 etc.

which is simply satisfied by suitable linear functions of x and y.
If both the components of displacement are specified in an identical manner then
we can write

Nf == NII

and obtain N; from Eq. (2.1) by noting that N; =1 at x;, y; but zero at other
vertices.

The most obvious linear function in the case of a triangle will yield the shape of N;
of the form shown in Fig. 2.2. Detailed expressions for such a linear interpolation are
given in Chapter 4, but at this stage can be readily derived by the reader.

The functions N will be called shape functions and will be seen later to play a para-
mount role in finite element analysis.

2.2.2 Strains

With displacements known at all points within the element the ‘strains’ at any point
can be determined. These will always result in a relationship that can be written in
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22 A direct approach to problems in elasticity

matrix notation asf

‘ g~ &= Su ‘ (2'2)

where S is a suitable linear operator. Using Eq. (2.1), the above equation can be
approximated as

‘ e~ ¢&=Ba ‘ (2.3)

with

o

For the plane stress case the relevant strains of interest are those occurring in the
plane and are defined in terms of the displacements by well-known relations® which
define the operator S:

ou ro 7
ox a0
EY
I R 4l —lo 9| fu
YY) @ (] |\
R RT3 B )
dy Ox Loy’ 0Ox]

With the shape functions N;, N;, and N,, already determined, the matrix B can
easily be obtained. If the linear form of these functions is adopted then, in fact, the
strains will be constant throughout the element.

2.2.3 Stresses

In general, the material within the element boundaries may be subjected to initial
strains such as may be due to temperature changes, shrinkage, crystal growth,
and so on. If such strains are denoted by g, then the stresses will be caused by the
difference between the actual and initial strains.

In addition it is convenient to assume that at the outset of the analysis the body is
stressed by some known system of initial residual stresses 6, which, for instance, could
be measured, but the prediction of which is impossible without the full knowledge of
the material’s history. These stresses can simply be added on to the general definition.
Thus, assuming general linear elastic behaviour, the relationship between stresses and
strains will be linear and of the form

‘ 6 =D(e—g)+ 6 ‘ (2.5)

where D is an elasticity matrix containing the appropriate material properties.

It is known that strain is a second-rank tensor by its transformation properties; however, in this book
we will normally represent quantities using matrix (Voigt) notation. The interested reader is encouraged
to consult Appendix B for the relations between tensor forms and matrix quantities.
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Again, for the particular case of plane stress three components of stress correspond-
ing to the strains already defined have to be considered. These are, in familiar notation

and the D matrix may be simply obtained from the usual isotropic stress—strain
relationship®

1 v
Ex — (ex)() E Oy — E ay
v 1
51 — (E},)O —EO'X +EO'J,
2(1 +v
Vxy (’ny)O ( E ) Txy
i.e., on solving,
£ 1 v 0
D= s|v 1 0
1 —v
0 0 (Il-v)/2
2.2.4 Equivalent nodal forces
Let
q;
=<9

define the nodal forces which are statically equivalent to the boundary stresses and
distributed body forces on the element. Each of the forces qf must contain the
same number of components as the corresponding nodal displacement a; and be
ordered in the appropriate, corresponding directions.

The distributed body forces b are defined as those acting on a unit volume of
material within the element with directions corresponding to those of the displace-
ments u at that point.

In the particular case of plane stress the nodal forces are, for instance,

e __ Ui ¢
q; = v,

with components U and V' corresponding to the directions of u and v displacements,
and the distributed body forces are
b
=)
by

in which b, and b, are the ‘body force’ components.
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24 A direct approach to problems in elasticity

To make the nodal forces statically equivalent to the actual boundary stresses and
distributed body forces, the simplest procedure is to impose an arbitrary (virtual)
nodal displacement and to equate the external and internal work done by the various
forces and stresses during that displacement.

Let such a virtual displacement be §a® at the nodes. This results, by Eqgs (2.1) and
(2.2), in displacements and strains within the element equal to

bu=N¢da° and &e=Béda’ (2.6)

respectively.
The work done by the nodal forces is equal to the sum of the products of the indi-
vidual force components and corresponding displacements, i.e., in matrix language

62 (2.7)

Similarly, the internal work per unit volume done by the stresses and distributed
body forces is

6e'c —6u'b (2.8)
ort
sa" (B'e — N'b) (2.9)

Equating the external work with the total internal work obtained by integrating
over the volume of the element, V¢, we have

6aTq¢ = 5aL’T<J B¢ d(vol) — J N'b d(V01)> (2.10)
V(’ VA)

As this relation is valid for any value of the virtual displacement, the multipliers
must be equal. Thus

qe — J BTO' d(vo]) — J NTb d(VOl)
y . (2.11)

This statement is valid quite generally for any stress—strain relation. With the linear
law of Eq. (2.5) we can write Eq. (2.11) as

q° =K’ +1° (2.12)
where
K¢ = J B'DB d(vol)
ve (2.13a)
and
<= — J NTbd(vol) — J B'Dg, d(vol) + J B' 6 d(vol)
ye Ve Ve (213b)

1 Note that by the rules of matrix algebra for the transpose of products

(AB)T = BTAT
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In the last equation the three terms represent forces due to body forces, initial
strain, and initial stress respectively. The relations have the characteristics of the
discrete structural elements described in Chapter 1.

If the initial stress system is self-equilibrating, as must be the case with normal
residual stresses, then the forces given by the initial stress term of Eq. (2.13b) are
identically zero after assembly. Thus frequent evaluation of this force component is
omitted. However, if for instance a machine part is manufactured out of a block in
which residual stresses are present or if an excavation is made in rock where
known tectonic stresses exist a removal of material will cause a force imbalance
which results from the above term.

For the particular example of the plane stress triangular element these characteris-
tics will be obtained by appropriate substitution. It has already been noted that the B
matrix in that example was not dependent on the coordinates; hence the integration
will become particularly simple.

The interconnection and solution of the whole assembly of elements follows the
simple structural procedures outlined in Chapter 1. In general, external concentrated
forces may exist at the nodes and the matrix

I

r= (2.14)

will be added to the consideration of equilibrium at the nodes.

A note should be added here concerning elements near the boundary. If, at the
boundary, displacements are specified, no special problem arises as these can be satis-
fied by specifying some of the nodal parameters a. Consider, however, the boundary
as subject to a distributed external loading, say t per unit area. A loading term on the
nodes of the element which has a boundary face 4° will now have to be added. By the
virtual work consideration, this will simply result in

f¢= —J )Nde(area)

(2.15)

with the integration taken over the boundary area of the element. It will be noted
that t must have the same number of components as u for the above expression to
be valid.

Such a boundary element is shown again for the special case of plane stress
in Fig. 2.1. An integration of this type is sometimes not carried out explicitly.
Often by ‘physical intuition’ the analyst will consider the boundary loading to be
represented simply by concentrated loads acting on the boundary nodes and calculate
these by direct static procedures. In the particular case discussed the results will be
identical.

Once the nodal displacements have been determined by solution of the overall
‘structural’ type equations, the stresses at any point of the element can be found
from the relations in Eqgs (2.3) and (2.5), giving

0o = DBae — DSO =+ 0'0 (216)
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26 A direct approach to problems in elasticity

in which the typical terms of the relationship of Eq. (1.4) will be immediately
recognized, the element stress matrix being

Q°=DB (2.17)
To this the stresses
6., =—Dg, and ¢ (2.18)
have to be added.

2.2.5 Generalized nature of displacements, strains, and stresses

The meaning of displacements, strains, and stresses in the illustrative case of plane
stress was obvious. In many other applications, shown later in this book, this termi-
nology may be applied to other, less obvious, quantities. For example, in considering
plate elements the ‘displacement’ may be characterized by the lateral deflection and
the slopes of the plate at a particular point. The ‘strains’ will then be defined as the
curvatures of the middle surface and the ‘stresses’ as the corresponding internal
bending moments (see Volume 2).

All the expressions derived here are generally valid provided the sum product of
displacement and corresponding load components truly represents the external
work done, while that of the ‘strain’ and corresponding ‘stress’ components results
in the total internal work.

2.3 Generalization to the whole region — internal nodal
force concept abandoned

In the preceding section the virtual work principle was applied to a single element and
the concept of equivalent nodal force was retained. The assembly principle thus
followed the conventional, direct equilibrium, approach.

The idea of nodal forces contributed by elements replacing the continuous
interaction of stresses between elements presents a conceptual difficulty. However,
it has a considerable appeal to ‘practical’ engineers and does at times allow an inter-
pretation which otherwise would not be obvious to the more rigorous mathematician.
There is, however, no need to consider each element individually and the reasoning of
the previous section may be applied directly to the whole continuum.

Equation (2.1) can be interpreted as applying to the whole structure, that is,

u=Na (2.19)
in which a lists all the nodal points and
N; = N¢ (2.20)

when the point concerned is within a particular element ¢ and 7 is a point associated
with that element. If point i does not occur within the element (see Fig. 2.3)

N; =0 (2.21)
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<Y

Fig. 2.3. A ‘global’ shape function - N;

Matrix B can be similarly defined and we shall drop the bar superscript, considering
simply that the shape functions, etc., are always defined over the whole region V.

For any virtual displacement éa we can now write the sum of internal and external
work for the whole region as

—ba'r = J su'bdV + J Su'tdd — J selodV (2.22)
14 A V

In the above equation éa, éu, and é¢ can be completely arbitrary, providing they
stem from a continuous displacement assumption. If for convenience we assume
they are simply variations linked by the relations (2.19) and (2.3) we obtain, on sub-
stitution of the constitutive relation (2.5), a system of algebraic equations

where
K= J B'DBdV
4 (2.24a)
and
f= ,J NTbdy — J NTtd4 — J BTDsOdVJrJ B'o,dV
4 A 4 4 (2.24b)

The integrals are taken over the whole volume ¥ and over the whole surface area 4
on which the tractions are given.
It is immediately obvious from the above that

Ki=D Kj =) 1 (2.25)

by virtue of the property of definite integrals requiring that the total be the sum of the
parts:

JV( )dV:ZJ ()dv (2.26)

Ve



28 A direct approach to problems in elasticity

The same is obviously true for the surface integrals in Eq. (2.25). We thus see that the
‘secret’ of the approximation possessing the required behaviour of a ‘standard dis-
crete system of Chapter 1° lies simply in the requirement of writing the relationships
in integral form.

The assembly rule as well as the whole derivation has been achieved without
involving the concept of ‘interelement forces’ (i.e., q°). In the remainder of this
book the element superscript will be dropped unless specifically needed. Also no
differentiation between element and system shape functions will be made.

However, an important point arises immediately. In considering the virtual work
for the whole system [Eq. (2.22)] and equating this to the sum of the element
contributions it is implicitly assumed that no discontinuity in displacement between
adjacent elements develops. If such a discontinuity developed, a contribution equal
to the work done by the stresses in the separations would have to be added.

‘Smoothing’ zone

du\'\\

dx : “.
d2U E \
o ME

Fig. 2.4 Differentiation of a function with slope discontinuity (C, continuous).
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Put in other words, we require that the terms integrated in Eq. (2.26) be finite.
These terms arise from the shape functions N; used in defining the displacement u
[by Eq. (2.19)] and its derivatives associated with the definition of strain [viz. Eq.
(2.3)]. If, for instance, the ‘strains’ are defined by first derivatives of the functions
N, the displacements must be continuous. In Fig. 2.4 we see how first derivatives of
continuous functions may involve a ‘jump’ but are still finite, while second derivatives
may become infinite. Such functions we call Cy continuous.

In some problems the ‘strain’ in a generalized sense may be defined by second
derivatives. In such cases we shall obviously require that both the function N and
its slope (first derivative) be continuous. Such functions are more difficult to derive
but we shall make use of them in plate and shell problems (see Volume 2). The
continuity involved now is called C; continuity.

2.4 Displacement approach as a minimization of total
potential energy

The principle of virtual displacements used in the previous sections ensured satis-
faction of equilibrium conditions within the limits prescribed by the assumed
displacement pattern. Only if the virtual work equality for all, arbitrary, variations
of displacement was ensured would the equilibrium be complete.

As the number of parameters of a which prescribes the displacement increases with-
out limit then ever closer approximation of all equilibrium conditions can be ensured.

The virtual work principle as written in Eq. (2.22) can be restated in a different form
if the virtual quantities 6a, éu, and dg are considered as variations of the real quantities.

Thus, for instance, we can write

(5(aTr +J udeV—&—J uTtdA) = W (2.27)
vV A

for the first three terms of Eq. (2.22), where W is the potential energy of the external
loads. The above is certainly true if r, b, and t are conservative (or independent of
displacement).

The last term of Eq. (2.22) can, for elastic materials, be written as

6U = J seodV (2.28)
V

where U is the ‘strain energy’ of the system. For the elastic, linear material described
by Eq. (2.5) the reader can verify that

1
U:—J sTDadV—J aTDaOdV—i—J gloydV (2.29)
2y 14 v

will, after differentiation, yield the correct expression providing D is a symmetric
matrix. (This is indeed a necessary condition for a single-valued U to exist.)
Thus instead of Eq. (2.22) we can write simply

S(U+W)=681)=0 (2.30)

in which the quantity IT is called the total potential energy.
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The above statement means that for equilibrium to be ensured the total potential
energy must be stationary for variations of admissible displacements. The finite ele-
ment equations derived in the previous section [Eqs (2.23)—(2.25)] are simply the
statements of this variation with respect to displacements constrained to a finite
number of parameters a and could be written as

o
o | O™
=0 oY (2.31)
Oa 832

It can be shown that in stable elastic situations the total potential energy is not only
stationary but is a minimum.” Thus the finite element process seeks such a minimum
within the constraint of an assumed displacement pattern.

The greater the degrees of freedom, the more closely will the solution approximate
the true one, ensuring complete equilibrium, providing the true displacement can, in
the limit, be represented. The necessary convergence conditions for the finite element
process could thus be derived. Discussion of these will, however, be deferred to
subsequent sections.

It is of interest to note that if true equilibrium requires an absolute minimum of the
total potential energy, II, a finite element solution by the displacement approach will
always provide an approximate II greater than the correct one. Thus a bound on the
value of the total potential energy is always achieved.

If the functional II could be specified, a priori, then the finite element equations
could be derived directly by the differentiation specified by Eq. (2.31).

The well-known Rayleigh®—Ritz’ process of approximation frequently used in
elastic analysis uses precisely this approach. The total potential energy expression
is formulated and the displacement pattern is assumed to vary with a finite set of
undetermined parameters. A set of simultaneous equations minimizing the total
potential energy with respect to these parameters is set up. Thus the finite element
process as described so far can be considered to be the Rayleigh—Ritz procedure.
The difference is only in the manner in which the assumed displacements are
prescribed. In the Ritz process traditionally used these are usually given by
expressions valid throughout the whole region, thus leading to simultaneous
equations in which no banding occurs and the coefficient matrix is full. In the finite
element process this specification is usually piecewise, each nodal parameter
influencing only adjacent elements, and thus a sparse and usually banded matrix of
coefficients is found.

By its nature the conventional Ritz process is limited to relatively simple geo-
metrical shapes of the total region while this limitation only occurs in finite element
analysis in the element itself. Thus complex, realistic, configurations can be assembled
from relatively simple element shapes.

A further difference in kind is in the usual association of the undetermined param-
eter with a particular nodal displacement. This allows a simple physical interpretation
invaluable to an engineer. Doubtless much of the popularity of the finite element
process is due to this fact.
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2.5 Convergence criteria

The assumed shape functions limit the infinite degrees of freedom of the system, and
the true minimum of the energy may never be reached, irrespective of the fineness of
subdivision. To ensure convergence to the correct result certain simple requirements
must be satisfied. Obviously, for instance, the displacement function should be able to
represent the true displacement distribution as closely as desired. It will be found that
this is not so if the chosen functions are such that straining is possible when the
element is subjected to rigid body displacements. Thus, the first criterion that the
displacement function must obey is as follows:

Criterion 1. The displacement function chosen should be such that it does not
permit straining of an element to occur when the nodal displacements are caused
by a rigid body motion.

This self-evident condition can be violated easily if certain types of function are used;
care must therefore be taken in the choice of displacement functions.

A second criterion stems from similar requirements. Clearly, as clements get
smaller nearly constant strain conditions will prevail in them. If, in fact, constant
strain conditions exist, it is most desirable for good accuracy that a finite size element
is able to reproduce these exactly. It is possible to formulate functions that satisfy the
first criterion but at the same time require a strain variation throughout the element
when the nodal displacements are compatible with a constant strain solution. Such
functions will, in general, not show good convergence to an accurate solution and
cannot, even in the limit, represent the true strain distribution. The second criterion
can therefore be formulated as follows:

Criterion 2. The displacement function has to be of such a form that if nodal
displacements are compatible with a constant strain condition such constant
strain will in fact be obtained. (In this context again a generalized ‘strain’ definition
is implied.)

It will be observed that Criterion 2 in fact incorporates the requirement of Criterion 1,
as rigid body displacements are a particular case of constant strain — with a value of
zero. This criterion was first stated by Bazeley et al.'’ in 1965. Strictly, both criteria
need only be satisfied in the limit as the size of the element tends to zero. However,
the imposition of these criteria on elements of finite size leads to improved accuracy,
although in certain situations (such as illustrated by the axisymmetric analysis of
Chapter 5) the imposition of the second one is not possible or essential.

Lastly, as already mentioned in Sec. 2.3, it is implicitly assumed in this derivation
that no contribution to the virtual work arises at element interfaces. It therefore
appears necessary that the following criterion be included:

Criterion 3. The displacement functions should be chosen such that the strains at
the interface between elements are finite (even though they may be discontinuous).

This criterion implies a certain continuity of displacements between elements. In
the case of strains being defined by first derivatives, as in the plane stress example
quoted here, the displacements only have to be continuous. If, however, as in the
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plate and shell problems, the ‘strains’ are defined by second derivatives of deflections,
first derivatives of these have also to be continuous.’

The above criteria are included mathematically in a statement of ‘functional com-
pleteness’ and the reader is referred elsewhere for full mathematical discussion.'' ¢
The ‘heuristic’ proof of the convergence requirements given here is sufficient for
practical purposes in all but the most pathological cases and we shall generalize all
of the above criteria in Section 3.6 and more fully in Chapter 10, where we shall
present a universal test which justifies convergence even if some of the above criteria
are violated.

2.6 Discretization error and convergence rate

In the foregoing sections we have assumed that the approximation to the displace-
ment as represented by Eq. (2.1) will yield the exact solution in the limit as the size
h of elements decreases. The arguments for this are simple: if the expansion is capable,
in the limit, of exactly reproducing any displacement form conceivable in the
continuum, then as the solution of each approximation is unique it must approach,
in the limit of 27 — 0, the unique exact solution. In some cases the exact solution is
indeed obtained with a finite number of subdivisions (or even with one element
only) if the polynomial expansion is used in that element and if this can fit exactly
the correct solution. Thus, for instance, if the exact solution is of the form of a
quadratic polynomial and the shape functions include all the polynomials of that
order, the approximation will yield the exact answer.

The last argument helps in determining the order of convergence of the finite
element procedure as the exact solution can always be expanded in the vicinity of
any point (or node) i as a polynomial:

u=u+ (%)i(x—xwr <g—;>i(y—yf)+--- (2.32)

If within an element of ‘size’ 4 a polynomial expansion of degree p is employed, this
can fit locally the Taylor expansion up to that degree and, as x — x; and y — y; are of
the order of magnitude A, the error in u will be of the order O(h”™"). Thus, for
instance, in the case of the plane elasticity problem discussed, we used a linear expan-
sion and p = 1. We should therefore expect a convergence rate of order O(h*), i.e., the
error in displacement being reduced to % for a halving of the mesh spacing.

By a similar argument the strains (or stresses) which are given by the mth deriva-
tives of displacement should converge with an error of O(h”*'=™), i.e., as O(h) in
the example quoted, where m = 1. The strain energy, being given by the square of
the stresses, will show an error of O(F*?*+!=™) or O(h?) in the plane stress example.

The arguments given here are perhaps a trifle ‘heuristic’ from a mathematical view-
point — they are, however, true'>'® and correctly give the orders of convergence,
which can be expected to be achieved asymptotically as the element size tends to
zero and if the exact solution does not contain singularities. Such singularities may
result in infinite values of the coefficients in terms omitted in the Taylor expansion
of Eq. (2.32) and invalidate the arguments. However, in many well-behaved problems
the mere determination of the order of convergence often suffices to extrapolate the
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solution to the correct result. Thus, for instance, if the displacement converges at
O(h*) and we have two approximate solutions u' and u* obtained with meshes of
size h and h/2, we can write, with u being the exact solution,

u' —u B Oo(h?) B
w—u  O(h)2)?

From the above an (almost) exact solution u can be predicted. This type of extrapola-
tion was first introduced by Richardson'” and is of use if convergence is monotonic
and nearly asymptotic.

We shall return to the important question of estimating errors due to the dis-
cretization process in Chapter 14 and will show that much more precise methods
than those arising from convergence rate considerations are possible today. Indeed
automatic mesh refinement processes are being introduced so that the specified
accuracy can be achieved (viz. Chapter 15).

Discretization error is not the only error possible in a finite element computation.
In addition to obvious mistakes which can occur when using computers, errors due to
round-off are always possible. With the computer operating on numbers rounded off
to a finite number of digits, a reduction of accuracy occurs every time differences
between ‘like’ numbers are being formed. In the process of equation solving many
subtractions are necessary and accuracy decreases. Problems of matrix conditioning,
etc., enter here and the user of the finite element method must at all times be aware of
accuracy limitations which simply do not allow the exact solution ever to be obtained.
Fortunately in many computations, by using modern machines which carry a large
number of significant digits, these errors are often small.

The question of errors arising from the algebraic processes will be stressed in
Chapter 20 dealing with computation procedures.

(2.33)

2.7 Displacement functions with discontinuity between
elements — non-conforming elements and the patch
test

In some cases considerable difficulty is experienced in finding displacement functions
for an element which will automatically be continuous along the whole interface
between adjacent elements.

As already pointed out, the discontinuity of displacement will cause infinite strains
at the interfaces, a factor ignored in this formulation because the energy contribution
is limited to the elements themselves.

However, if, in the limit, as the size of the subdivision decreases continuity is
restored, then the formulation already obtained will still tend to the correct answer.
This condition is always reached if

(a) a constant strain condition automatically ensures displacement continuity and
(b) the constant strain criterion of the previous section is satisfied.

To test that such continuity is achieved for any mesh configuration when using
such non-conforming elements it is necessary to impose, on an arbitrary patch of

elements, nodal displacements corresponding to any state of constant strain. If
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nodal equilibrium is simultaneously achieved without the imposition of external, nodal,
forces and if a state of constant stress is obtained, then clearly no external work has been
lost through interelement discontinuity.

Elements which pass such a patch test will converge, and indeed at times non-
conforming elements will show a superior performance to conforming elements.

The patch test was first introduced by Irons'® and has since been demonstrated to
give a sufficient condition for convergence.'®!®~?* The concept of the patch test can be
generalized to give information on the rate of convergence which can be expected
from a given element.

We shall return to this problem in detail in Chapter 10 where the test will be fully
discussed.

2.8 Bound on strain energy in a displacement
formulation

While the approximation obtained by the finite element displacement approach
always overestimates the true value of I1, the total potential energy (the absolute mini-
mum corresponding to the exact solution), this is not directly useful in practice. It is,
however, possible to obtain a more useful limit in special cases.

Consider in particular the problem in which no ‘initial’ strains or initial stresses
exist. Now by the principle of energy conservation the strain energy will be equal
to the work done by the external loads which increase uniformly from zero.? This
work done is equal to —% W where W is the potential energy of the loads.

Thus

U+iw =0 (2.34)
or
O=U+W=-U (2.35)

whether an exact or approximate displacement field is assumed.

Thus in the above case the approximate solution always underestimates the value of
U and a displacement solution is frequently referred to as the lower bound solution.

If only one external concentrated load R is present the strain energy bound imme-
diately informs us that the deflection under this load has been underestimated (as
U= —% W = %rTa). In more complex loading cases the usefulness of this bound is
limited as neither local deflections nor stresses, i.c., the quantities of real engineering
interest, can be bounded.

It is important to remember that this bound on strain energy is only valid in the
absence of any initial stresses or strains.

The expression for U in this case can be obtained from Eq. (2.29) as

U= %J ¢'Ded(vol) (2.36)
v
which becomes by Eq. (2.2) simply
U=1a" “V B'DB d(vol)] a=1a"Ka (2.37)

a ‘quadratic’ matrix form in which K is the ‘stiffness’ matrix previously discussed.
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The above energy expression is always positive from physical considerations. It fol-
lows therefore that the matrix K occurring in all the finite element assemblies is not
only symmetric but is ‘positive definite’ (a property defined in fact by the requirements
that the quadratic form should always be greater than or equal to zero).

This feature is of importance when the numerical solution of the simultaneous
equations involved is considered, as simplifications arise in the case of ‘symmetric
positive definite’ equations.

2.9 Direct minimization

The fact that the finite element approximation reduces to the problem of minimizing
the total potential energy II defined in terms of a finite number of nodal parameters
led us to the formulation of the simultaneous set of equations given symbolically by
Eq. (2.31). This is the most usual and convenient approach, especially in linear solu-
tions, but other search procedures, now well developed in the field of optimization,
could be used to estimate the lowest value of II. In this text we shall continue with
the simultaneous equation process but the interested reader could well bear the alter-
native possibilities in mind.***

2.10 An example

The concepts discussed and the general formulation cited are a little abstract and
readers may at this stage seek to test their grasp of the nature of the approximations
derived. While detailed computations of a two-dimensional element system are per-
formed using the computer, we can perform a simple hand calculation on a one-
dimensional finite element of a beam. Indeed, this example will allow us to introduce
the concept of generalized stresses and strains in a simple manner.

Consider the beam shown in Fig. 2.5. The generalized ‘strain’ here is the curvature.
Thus we have

d*w
dx?
where w is the deflection, which is the basic unknown. The generalized stress (in the

absence of shear deformation) will be the bending moment M, which is related to the
‘strain’ as

€

K=—

d*w
c=M=—-El—
dx?
Thus immediately we have, using the general notation of previous sections,

D =EI
If the displacement w is discretized we can write
w = Na

for the whole system or, for an individual element, ij.
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Fig. 2.5 A beam element and its shape functions.

In this example the strains are expressed as the second derivatives of displacement
and it is necessary to ensure that both w and its slope
dw
wy=—=20
X d.x
be continuous between elements. This is easily accomplished if the nodal parameters
are taken as the values of w and the slope, 6. Thus,

a, =4
1~ 01

The shape functions will now be derived. If we accept that in an element two nodes
(i.e., four variables) define the deflected shape we can assume this to be given by a cubic

w=aq + s+ oz3s2 + s’ where s =

S~ =

This will define the shape functions corresponding to w; and 6; by taking for each a
cubic giving unity for the appropriate points (x =0, L or s =0,1) and zero for
other quantities, as shown in Fig. 2.5.

The expressions for the shape functions can be written for the element shown as

N;=[1—3s% +25 L(s — 25 +5°)]
N; = [3s% = 257, L(—s* + 5)]

Immediately we can write

’N;, 1

Bi = — dle = F[6 — 12S, L<4 — 65)]
N, 1

Bi=— Y= [—6+125,L(2 — 69)]

dx? - L?
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and the stiffness matrices for the element can be written as

12 6L —-12 6L

e [For EI'| 6L 4L> —6L 27
I 1) : L¥|—-12 —6L 12 —6L

6L 2L°> —6L 4I?

We shall leave the detailed calculation of this and the ‘forces’ corresponding to a
uniformly distributed load p (assumed constant on ij and zero elsewhere) to the
reader. It will be observed that the final assembled equations for a node i are of the
form linking three nodal displacements i,j, k. Explicitly these equations are for

elements of equal length L:
—12/L%, —6/L* ) 24/, 0 y
al e o i beEl {0
6/L%,  2/L 1 bk 0, 8/Lll0

3 2
+El{ 12/L°, +6/L HWJ}J“{ pL2/2 } o
—6/1%,  2/L 1Y —pL?/12
It is of interest to compare these with the exact form represented by the so-called
‘slope—deflection’ equations which can be found in standard texts on structural
analysis.
Here it will be found that the finite element approximation has achieved the exact

solution at nodes for a uniform load. We show in Chapter 3 and in Appendix H
reasons for this unexpected result.

2.11 Concluding remarks

The ‘displacement’ approach to the analysis of elastic solids is still undoubtedly the
most popular and easily understood procedure. In many of the following chapters
we shall use the general formulae developed here in the context of linear elastic
analysis (Chapters 4, 5, and 6). These are also applicable in the context of non-
linear analysis, the main variants being the definitions of the stresses, generalized
strains, and other associated quantities. It is thus convenient to summarize the
essential formulae, and this is done in Appendix C.

In Chapter 3 we shall show that the procedures developed here are but a particular
case of finite element discretization applied to the governing equilibrium equations
written in terms of displacements.26 Clearly, alternative starting points are possible.
Some of these will be mentioned in Chapters 11 and 12.

References

1. R.W. Clough. The finite element in plane stress analysis. Proc. 2nd ASCE Conf. on
Electronic Computation. Pittsburgh, Pa., Sept. 1960.

2. R.W. Clough. The finite element method in structural mechanics. Chapter 7 of Stress
Analysis (eds O.C. Zienkiewicz and G.S. Holister), Wiley, 1965.

37



38 A direct approach to problems in elasticity

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

J. Szmelter. The energy method of networks of arbitrary shape in problems of the theory of
elasticity. Proc. IUTAM Symposium on Non-Homogeneity in Elasticity and Plasticity (ed.
W. Olszak), Pergamon Press, 1959.

. R. Courant. Variational methods for the solution of problems of equilibrium and vibra-

tion. Bull. Am. Math. Soc., 49, 1-23, 1943.

. W. Prager and J.L. Synge. Approximation in elasticity based on the concept of function

space. Quart. Appl. Math., S, 241-69, 1947.

. S. Timoshenko and J.N. Goodier. Theory of Elasticity. 2nd ed., McGraw-Hill, 1951.
. K. Washizu. Variational Methods in Elasticity and Plasticity. 2nd ed., Pergamon Press,

1975.

. J.W. Strutt (Lord Rayleigh). On the theory of resonance. Trans. Roy. Soc. (London), A161,

77-118, 1870.

. W. Ritz. Uber eine neue Methode zur Lésung gewissen Variations — Probleme der

mathematischen Physik. J. Reine angew. Math., 135, 1-61, 1909.

G.P. Bazeley, Y.K. Cheung, B.M. Irons, and O.C. Zienkiewicz. Triangular elements in
bending — conforming and non-conforming solutions. Proc. Conf. Matrix Methods in
Structural Mechanics. Air Force Inst. Tech., Wright-Patterson AF Base, Ohio, 1965.
S.C. Mikhlin. The Problem of the Minimum of a Quadratic Functional. Holden-Day, 1966.
M.W. Johnson and R.W. McLay. Convergence of the finite element method in the theory
of elasticity. J. Appl. Mech.. Trans. Am. Soc. Mech. Eng., 274-8, 1968.

P.G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, Amster-
dam, 1978.

T.H.H. Pian and Ping Tong. The convergence of finite element method in solving linear
elastic problems. Int. J. Solids Struct., 3, 865-80, 1967.

E.R. de Arrantes Oliveira. Theoretical foundations of the finite element method. Int.
J. Solids Struct., 4, 929-52, 1968.

G. Strang and G.J. Fix. An Analysis of the Finite Element Method. p. 106, Prentice-Hall,
1973.

L.F. Richardson. The approximate arithmetical solution by finite differences of physical
problems. Trans. Roy. Soc. (London), A210, 307-57, 1910.

B. N. Irons and A. Razzaque. Experience with the patch test, in Mathematical Foundations
of the Finite Element Method (ed. A.R. Aziz), pp. 557-87, Academic Press, 1972.

B. Fraeijs de Veubeke. Variational principles and the patch test. Int. J. Num. Meth. Eng., 8,
783-801, 1974.

R.L. Taylor, O.C. Zienkiewicz, J.C. Simo, and A.H.C. Chan. The patch test — a condition
for assessing FEM convergence. Int. J. Numer. Methods Engrg., 22, 39—62, 1986.

0O.C. Zienkiewicz, S. Qu, R.L. Taylor, and S. Nakazawa. The patch test for mixed formu-
lations. Int. J. Numer. Methods Engrg., 23, 1873—83, 1986.

0O.C. Zienkiewicz and R.L. Taylor. The finite element patch test revisited. A computer test
for convergence, validation and error estimates. Comp. Meth. Appl. Mech. and Engrg., 149,
223-54, 1997.

B. Fraeijs de Veubeke. Displacement and equilibrium models in the finite element method.
Chapter 9 of Stress Analysis (eds O.C. Zienkiewicz and G.S. Holister), Wiley, 1965.

R.L. Fox and E.L. Stanton. Developments in structural analysis by direct energy minimi-
zation. JAIAA. 6, 1036—44, 1968.

F.K. Bogner, R.H. Mallett, M.D. Minich, and L.A. Schmit. Development and evaluation
of energy search methods in non-linear structural analysis. Proc. Conf. Matrix Methods in
Structural Mechanics. Air Force Inst. Tech., Wright-Patterson AF Base, Ohio, 1965.
0O.C. Zienkiewicz and K. Morgan. Finite Elements and Approximation. Wiley, 1983.



Generalization of the finite element
concepts. Galerkin-weighted
residual and variational approaches

3.1 Introduction

We have so far dealt with one possible approach to the approximate solution of the
particular problem of linear elasticity. Many other continuum problems arise in
engineering and physics and usually these problems are posed by appropriate differ-
ential equations and boundary conditions to be imposed on the unknown function or
functions. It is the object of this chapter to show that all such problems can be dealt
with by the finite element method.

Posing the problem to be solved in its most general terms we find that we seek an
unknown function u such that it satisfies a certain differential equation set

A (u)
Afu) = Ax(uw) 5 =0 (3.1)

in a ‘domain’ (volume, area, etc.)  (Fig. 3.1), together with certain boundary
conditions

B(u) = ¢ Bx(w) 3 =0 (32)

on the boundaries I" of the domain (Fig. 3.1).

The function sought may be a scalar quantity or may represent a vector of several
variables. Similarly, the differential equation may be a single one or a set of simulta-
neous equations and does not need to be linear. It is for this reason that we have
resorted to matrix notation in the above.

The finite element process, being one of approximation, will seek the solution in the
approximate form

uxi=>» Na =Na (3.3)

i=1
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re
y B(u)=0
A
Subdomain Q¢
(element)
r
>» X

Fig. 3.1 Problem domain 2 and boundary T..

where N; are shape functions prescribed in terms of independent variables (such as the
coordinates x, y, etc.) and all or most of the parameters a; are unknown.

We have seen that precisely the same form of approximation was used in the
displacement approach to elasticity problems in the previous chapter. We also
noted there that (a) the shape functions were usually defined locally for elements or
subdomains and (b) the properties of discrete systems were recovered if the
approximating eqations were cast in an integral form [viz. Eqs (2.22)—(2.26)].

With this object in mind we shall seek to cast the equation from which the unknown
parameters a; are to be obtained in the integral form

J G_,-(ﬁ)dQ—l—J g(@dl'=0 j=1lton (3.4)
Q T

in which G; and g; prescribe known functions or operators.

These integral forms will permit the approximation to be obtained element by
element and an assembly to be achieved by the use of the procedures developed for
standard discrete systems in Chapter 1, since, providing the functions G; and g; are
integrable, we have

G; dQ AdIlN = G dQ dl ) =0 3.5
Jﬂ / +Jrg" Z(Jﬂf ! +Jr<’gj ) (33)

e=1

where Q° is the domain of each element and I' its part of the boundary.

Two distinct procedures are available for obtaining the approximation in such
integral forms. The first is the method of weighted residuals (known alternatively as
the Galerkin procedure); the second is the determination of variational functionals
for which stationarity is sought. We shall deal with both approaches in turn.

If the differential equations are linear, i.c., if we can write (3.1) and (3.2) as

Aw)=Lu+p=0 inQ (3.6)
Buy=Mu+t=0 onT (3.7
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then the approximating equation system (3.4) will yield a set of linear equations of the
form

Ka+f=0 (3.8)

with
m

K; =) K; f= iff (3.9)
po

e=1

The reader not used to abstraction may well now be confused about the meaning of
the various terms. We shall introduce here some typical sets of differential equations
for which we will seek solutions (and which will make the problems a little more
definite).

Example 1. Steady-state heat conduction equations in a two-dimensional domain:

4(0) = a;«( gﬁ)Jray( Z¢)+Q_O

B(¢)=¢p—¢=0 onT, (3.10)

or B(¢) = k?—kq—O onT

q

where u = ¢ indicates temperature, k is the conductivity, Q is a heat source, ¢ and §
are the prescribed values of temperature and heat flow on the boundaries and » is the
direction normal to I'.

In the above problem k and Q can be functions of position and, if the problem is
non-linear, of ¢ or its derivatives.

Example 2. Steady-state heat conduction—convection equation in two dimensions:

00 9 06, 9
A¢) = ax( 8x>+3y(8>+ux8 gy + Q=0 (3.11)

with boundary conditions as in the first example. Here u, and u,, are known functions
of position and represent velocities of an incompressible fluid in which heat transfer
occurs.

Example 3. A system of three first order equations equivalent to Example 1:

dq, | 94,
ox * Qy

Aw={ g k22 L0 (3.12)
26
dy

+0

qy + k=
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in  and
Buy=¢—¢=0 only,
=q,—q=0 onT,

where ¢, is the flux normal to the boundary.
Here the unknown function vector u corresponds to the set

¢

This last example is typical of a so-called mixed formulation. In such problems the
number of dependent unknowns can always be reduced in the governing equations by
suitable algebraic operations, still leaving a solvable problem [e.g., obtaining Eq.
(3.10) from (3.12) by eliminating ¢, and g,].

If this cannot be done [viz. Eq. (3.10)] we have an irreducible formulation.

Problems of mixed form present certain complexities in their solution which we
shall discuss in Chapters 11-13.

In Chapter 7 we shall return to detailed examples of the above field problems, and
other examples will be introduced throughout the book. The three sets of problems
will, however, be useful in their full form or reduced to one dimension (by suppressing
the y variable) to illustrate the various approaches used in this chapter.

Weighted residual methods

3.2 Integral or ‘weak’ statements equivalent to the
differential equations

As the set of differential equations (3.1) has to be zero at each point of the domain €2,
it follows that

JQ viA(n)dQ = L[lel(u) + vady(u) +---]dQ =0 (3.13)
where
U1
vV=14( ¥ (3.14)

is a set of arbitrary functions equal in number to the number of equations (or compo-
nents of u) involved.

The statement is, however, more powerful. We can assert that if (3.13) is satisfied for
all v then the differential equations (3.1) must be satisfied at all points of the domain. The
proof of the validity of this statement is obvious if we consider the possibility that
A(u) # 0 at any point or part of the domain. Immediately, a function v can be
found which makes the integral of (3.13) non-zero, and hence the point is proved.
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If the boundary conditions (3.12) are to be simultaneously satisfied, then we require
that

JF VIB(u)dl' = L[TJIBI (u) + BB (u) +--]dI' =0 (3.15)

for any set of functions V.
Indeed, the integral statement that

J viA(u)dQ + J vIB(u)dl' =0 (3.16)
Q T

is satisfied for all v and v is equivalent to the satisfaction of the differential equations
(3.1) and their boundary conditions (3.2).

In the above discussion it was implicitly assumed that integrals such as those in Eq.
(3.16) are capable of being evaluated. This places certain restrictions on the possible
families to which the functions v or u must belong. In general we shall seek to avoid
functions which result in any term in the integrals becoming infinite.

Thus, in Eq. (3.16) we generally limit the choice of v and v to bounded functions
without restricting the validity of previous statements.

What restrictions need to be placed on the functions? The answer obviously
depends on the order of differentiation implied in the equations A(u) [or B(u)].
Consider, for instance, a function u which is continuous but has a discontinuous
slope in the x-direction, as shown in Fig. 3.2 which is identical to Fig. 2.4 but is repro-
duced here for clarity. We imagine this discontinuity to be replaced by a continuous
variation in a very small distance A (a process known as ‘molification’) and study the
behaviour of the derivatives. It is easy to see that although the first derivative is not
defined here, it has finite value and can be integrated easily but the second derivative
tends to infinity. This therefore presents difficulties if integrals are to be evaluated
numerically by simple means, even though the integral is finite. If such derivatives
are multiplied by each other the integral does not exist and the function is known
as non-square integrable. Such a function is said to be C, continuous.

In a similar way it is easy to see that if nth-order derivatives occur in any term of A
or B then the function has to be such that its n — 1 derivatives are continuous (C,_
continuity).

On many occasions it is possible to perform an integration by parts on Eq. (3.16)
and replace it by an alternative statement of the form

J C(v)"D(u) dQ +J E(¥)"F(u)dl'=0 (3.17)
Q T

In this the operators C to F usually contain lower order derivatives than those occur-
ring in operators A or B. Now a lower order of continuity is required in the choice of
the u function at a price of higher continuity for v and v.

The statement (3.17) is now more ‘permissive’ than the original problem posed by
Eqs (3.1), (3.2), or (3.16) and is called a weak form of these equations. It is a somewhat
surprising fact that often this weak form is more realistic physically than the original
differential equation which implied an excessive ‘smoothness’ of the true solution.

Integral statements of the form of (3.16) and (3.17) will form the basis of finite
element approximations, and we shall discuss them later in fuller detail. Before
doing so we shall apply the new formulation to an example.

43
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‘Smoothing’ zone

\\!
du I\

dx E Y

e
@ T
dx2 ;

Fig. 3.2 Differentiation of function with slope discontinuity (C, continuous).

Example. Weak form of the heat conduction equation — forced and natural boundary
conditions. Consider now the integral form of Eq. (3.10). We can write the statement
(3.16) as

(. ¢ [, ¢ |, 09 _
sz[a—x<ka>+8—y<ka—y>+Q}dxdy+qu{k%+q}dF_0 (3.18)

noting that v and v are scalar functions and presuming that one of the boundary
conditions, i.e.,

6—6=0
is automatically satisfied by the choice of the functions ¢ on I'y.
Equation (3.18) can now be integrated by parts to obtain a weak form similar to

Eq. (3.17). We shall make use here of general formulae for such integration (Green’s
formulae) which we derive in Appendix G and which on many occasions will be
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useful, i.e.

0p ov [ O¢ 0p
J Vas <k8 >dxd __Lzﬁx<k8x>dXdy+£v<k8x>nxdF

(3.19)
o (, 0 o [, 0 99
— =—| — — |n,dT’
J 8y<k8 )dxdy JQ@ (ka )dxdy+§>rv<kay n,d
We have thus in place of Eq. (3.18)
Op Ov, 0¢ i; 0¢ 0¢
—k—+—k—— b — — r
J (8xk8x a k vQ) dxdy + ka(axnx—i-ayny d
[, 00 _
k— dr = 3.2
JrJqu{ anJrq} 0 (3.20)
Noting that the derivative along the normal is given as
0p_0¢ . 0
o ax x Tt 8y (3.21)
and, further, making
U= —v onTl (3.22)
without loss of generality (as both functions are arbitrary), we can write Eq. (3.20) as
J VTkangdQ—JdeQ—J quI‘—J k2% ar — o (3.23)
Q Q r, r,  on

where the operator V is simply

We note that

(a) the variable ¢ has disappeared from the integrals taken along the boundary I',
and that the boundary condition

_ 99, - _

on that boundary is automatically satisfied — such a condition is known as a
natural boundary condition — and

(b) if the choice of ¢ is restricted so as to satisfy the forced boundary conditions
¢ — ¢ =0, we can omit the last term of Eq. (3.23) by restricting the choice of v
to functions which give v =0 on I';.

The form of Eq. (3.23) is the weak form of the heat conduction statement equivalent
to Eq. (3.17). It admits discontinuous conductivity coefficients k and temperature ¢
which show discontinuous first derivatives, a real possibility not admitted in the
differential form.
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3.3 Approximation to integral formulations: the
weighted residual Galerkin method

If the unknown function u is approximated by the expansion (3.3), i.e.,

i N;a; = Na
i=1

then it is clearly impossible to satisfy both the differential equation and the boundary
conditions in the general case. The integral statements (3.16) or (3.17) allow an
approximation to be made if, in place of any function v, we put a finite set of approx-
imate functions

u=xu

j=1 j=1
in which éa; are arbitrary parameters and 7 is the number of unknowns entering the
problem.
Inserting the above approximations into Eq. (3.16) we have

o) Hﬂ w/ A(Na) dQ + L w, B(Na) dr} =0

and since 0a; is arbitrary we have a set of equations which is sufficient to determine the
parameters a; as

J w A(Na)dQ + J w,B(Na)d' =0 j=1ton (3.25)
Q T

or, from Eq. (3.17),

JQ C(w,)"D(Na)dQ + L E(W,)'F(Na)dlL =0 j=1ton (3.26)

If we note that A(Na) represents the residual or error obtained by substitution of
the approximation into the differential equation [and B(Na), the residual of the
boundary conditions], then Eq. (3.25) is a weighted integral of such residuals. The
approximation may thus be called the method of weighted residuals.

In its classical sense it was first described by Crandall,! who points out the various
forms used since the end of the last century. More recently a very full exposé of the
method has been given by Finlayson.2 Clearly, almost any set of independent func-
tions w; could be used for the purpose of weighting and, according to the choice of
function, a different name can be attached to each process. Thus the various
common choices are:

1. Point collocation.? w; = d;, where §; is such that for x # x;; y # y;, w; = 0 but
Jow;dQ =T (unit matrix). This procedure is equivalent to simply making the
residual zero at n points within the domain and integration is ‘nominal’ (inciden-
tally although w; defined here does not satisfy all the criteria of Sec. 3.2, it is never-
theless admissible in view of its properties).

2. Subdomain collocation.* w; = Lin ; and zero elsewhere. This essentially makes the
integral of the error zero over the specified subdomains.
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3. The Galerkin method (Bubnov—Galerkin).>% w; = N;. Here simply the original
shape (or basis) functions are used as weighting. This method, as we shall see,
frequently (but by no means always) leads to symmetric matrices and for this
and other reasons will be adopted in our finite element work almost exclusively.

The name of ‘weighted residuals’ is clearly much older than that of the ‘finite element
method’. The latter uses mainly locally based (element) functions in the expansion of
Eq. (3.3) but the general procedures are identical. As the process always leads to equa-
tions which, being of integral form, can be obtained by summation of contributions
from various subdomains, we choose to embrace all weighted residual approximations
under the name of generalized finite element method. Frequently, simultaneous use of
both local and ‘global’ trial functions will be found to be useful.

In the literature the names of Petrov and Galerkin® are often associated with the
use of weighting functions such that w; # N;. It is important to remark that the
well-known finite difference method of approximation is a particular case of colloca-
tion with locally defined basis functions and is thus a case of a Petrov—Galerkin
scheme. We shall return to such unorthodox definitions in more detail in Chapter 16.

To illustrate the procedure of weighted residual approximation and its relation to
the finite element process let us consider some specific examples.

Example 1. One-dimensional equation of heat conduction (Fig. 3.3). The problem here
will be a one-dimensional representation of the heat conduction equation [Eq. (3.10)]
with unit conductivity. (This problem could equally well represent many other
physical situations, e.g., deformation of a loaded string.) Here we have
d*¢
Ap)=—=5+0=0 (0<x<IL) (3.27)
dx
with Q = Q(x) givenby Q =1 (0 < x < L/2)and Q =0 (L/2 < x < L). The bound-
ary conditions assumed will be simply ¢ =0 at x =0 and x = L.
In the first case we shall consider a one- or two-term approximation of the Fourier
series form, i.e.,

(bz(ﬁ:Zaisinﬂ-Txi N,-:sin%xi (3.28)

with i =1 and i = 1 and 2. These satisfy the boundary conditions exactly and are
continuous throughout the domain. We can thus use either Eq. (3.16) or Eq. (3.17)
for the approximation with equal validity. We shall use the former, which allows
various weighting functions to be adopted. In Fig. 3.3 we present the problem and
its solution using point collocation, subdomain collocation, and the Galerkin method.}

As the chosen expansion satisfies a priori the boundary conditions there is no need
to introduce them into the formulation, which is given simply by

L d2
The full working out of this problem is left as an exercise to the reader.

1In the case of point collocation using i = 1 (x; = L/2) a difficulty arises about the value of Q (as this is
either zero or one). The value of % was therefore used for the example.
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Fig. 3.3 One-dimensional heat conduction. (a) One-term solution using different weighting procedures.
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Fig. 3.3 (cont.) (b) Two-term solutions using different weighting procedures.
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Of more interest to the standard finite element field is the use of piecewise defined
(locally based) functions in place of the global functions of Eq. (3.28). Here, to avoid
imposing slope continuity, we shall use the equivalent of Eq. (3.17) obtained by
integrating Eq. (3.29) by parts. This yields

LT dw; dn;
Jo { d‘ij (Z dx “z‘) - WjQ} dx=0 (3.30)

i

The boundary terms disappear identically if w; = 0 at the two ends.
The above equations can be written as

Ka+f=0 (3.31)
where for each ‘element’ of length L°,

L dw; dN.
K= J 14
7 Jo dx dx O

. (3.32)
L
fi=- Jo w;Qdx

with the usual rules of addition pertaining, i.c.,

Ki=> Ki =31 (3.33)

In the computation we shall use the Galerkin procedure, i.e. w; = N;, and the reader
will observe that the matrix K is then symmetric, i.e., K;; = Kj;.

As the shape functions need only be of C,, continuity, a piecewise linear approxima-
tion is conveniently used, as shown in Fig. 3.4. Considering a typical element if shown,
we can write (moving the origin of x to point i)

X L’ —x
Ni=7: Ni=—F (3.34)
giving, for a typical element,
1
Ki=Kj=1:=—Ki=—Kjy
Lf ' ' (3.35)

fi=—-0L2=f;

where Q° is the value for element e.

Assembly of a typical equation at a node i is left to the reader, who is well advised to
carry out the calculations leading to the results shown in Fig. 3.4 for a two- and four-
element subdivision.

Some points of interest immediately arise if the results of Figs 3.3 and 3.4 are
compared. With smooth global shape functions the Galerkin method gives better
overall results than those achieved for the same number of unknown parameters a
with locally based functions. This we shall find to be the general case with higher
order approximations, yielding better accuracy. Further, it will be observed that
the linear approximation has given the exact answers at the interelement nodal
points. This is a property of the particular equation being solved and unfortunately
does not carry over to general problems.” (See also Appendix H.) Lastly, the
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Fig. 3.4 Galerkin finite element solution of problem of Fig. 3.3 using linear locally based shaped functions.

reader will observe how easy it is to create equations with any degree of subdivision
once the element properties [Eq. (3.35)] have been derived. This is not the case with
global approximation where new integrations have to be carried out for each new
parameter introduced. It is this repeatability feature that is one of the advantages
of the finite element method.

Example 2. Steady-state heat conduction—convection in two dimensions. The Galerkin
formulation. We have already introduced the problem in Sec. 3.1 and defined it by
Eq. (3.11) with appropriate boundary conditions. The equation differs only in the
convective terms from that of simple heat conduction for which the weak form has
already been obtained in Eq. (3.23). We can write the weighted residual equation
immediately from this, substituting v = w;éq; and adding the convective terms.
Thus we have

. ¢ B _
T . ‘ _ . _ ‘ _
JQ V wikV¢dQ JQ w; (ux o +u, 8}/) dQ JQ w;0dQ JF,/ w;gdl’ =0 (3.36)
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with ¢ = 3" N,a; being such that the prescribed values of ¢ are given on the boundary
I'y and that éa; = 0 on that boundary (ignoring that term in (3.36)).

Specializing to the Galerkin approximation, i.e., putting w; = N;, we have
immediately a set of equations of the form

Ka+f=0 (3.37)

with

N, N,
VINkVN,dQ — J(Mm%;+N%a’)M2
o\

J J7y ay
aN, 8N L ON; N,
- [ (B GG ) e
ON, N,
__L<N)Va~+Mlév)dQ (3.38a)
fi= 7J NdeQ—J N,gdr (3.38b)
Q

q

Once again the components Kj; and f; can be evaluated for a typical element or sub-
domain and systems of equations built up by standard methods.

At this point it is important to mention that to satisfy the boundary conditions
some of the parameters a; have to be prescribed and the number of approximation
equations must be equal to the number of unknown parameters. It is nevertheless
often convenient to form all equations for all parameters and prescribe the fixed
values at the end using precisely the same techniques as we have described in
Chapter 1 for the insertion of prescribed boundary conditions in standard discrete
problems.

A further point concerning the coefficients of the matrix K should be noted here.
The first part, corresponding to the pure heat conduction equation, is symmetric
(K;j = Kj;) but the second is not and thus a system of non-symmetric equations
needs to be solved. There is a basic reason for such non-symmetries which will be
discussed in Sec. 3.9.

To make the problem concrete consider the domain €2 to be divided into regular
square elements of side /4 (Fig. 3.5). To preserve C, continuity with nodes placed at
corners, shape functions given as the product of the linear expansions can be written.
For instance, for node 7, as shown in Fig. 3.5,

xy
N =
" hh
and for node j,
_(h=x)y
N, = 7 7 s etc.

With these shape functions the reader is invited to evaluate typical element con-
tributions and to assemble the equations for point 1 of the mesh numbered as
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Fig. 3.5 A linear square element of C, continuity. (a) Shape functions for a square element. (b) ‘Connected’
equation for node 1.

shown in Fig. 3.5. The result will be (if no boundary of type I, is present and Q is

assumed to be constant)
8y (L wh uh L uh Louh uh
37\ 3k 6k 37 12k 12k 376k 3k )™
1+uxh uy,h l+uxh uyh 1 uh+uh
3 12k 12k 3 3k 6k 12k 12k
1 udh ulh 1 u.h u}h 2
N <3 6k 3k> (3 ok 1ok )P O (3:39)
This equation is similar to those that would be obtained by using finite difference
approximations to the same equations in a fairly standard manner.®® In the example
discussed some difficulties arise when the convective terms are large. In such cases the

Galerkin weighting is not acceptable and other forms have to be used. This is
discussed in detail in Chapter 2 of the third volume.

3.4 Virtual work as the ‘weak form’ of equilibrium
equations for analysis of solids or fluids

In Chapter 2 we introduced a finite element by way of an application to the
solid mechanics problem of linear elasticity. The integral statement necessary for

53
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formulation in terms of the finite element approximation was supplied via the
principle of virtual work, which was assumed to be so basic as not to merit proof.
Indeed, to many this is so, and the virtual work principle is considered as a statement
of mechanics more fundamental than the traditional equilibrium conditions of
Newton’s laws of motion. Others will argue with this view and will point out that
all work statements are derived from the classical laws pertaining to the equilibrium
of the particle. We shall therefore show in this section that the virtual work statement
is simply a ‘weak form’ of equilibrium equations.

In a general three-dimensional continuum the equilibrium equations of an elemen-
tary volume can be written in terms of the components of the symmetric cartesian
stress tensor as'’

do, Oty N o7
Ox dy 0z
A oo, Or, O e
A2 _ Oy + Txy + Tyz + bv =0 (340)
dy Ox 0z ;
As b,
802 87—,‘(: aTy:
0z  Ox dy

where b" = [by,b,,b.] stands for the body forces acting per unit volume (which may
well include acceleration effects).

In solid mechanics the six stress components will be some general functions of the
components of the displacement

u=[uuv,w" (3.41)

and in fluid mechanics of the velocity vector u, which has identical components. Thus
Eq. (3.40) can be considered as a general equation of the form Eq. (3.1),i.e., A(u) = 0.
To obtain a weak form we shall proceed as before, introducing an arbitrary weighting
function vector, defined as

v = 6u = [6u, 6v, 6w]" (3.42)

We can now write the integral statement of Eq. (3.13) as

T _ 80-)6 aTxy 87—)62 ,
JQ Su A(u)dV = JO [6u< T 9y 5, + b, ) +6v(A4y) + ow(A43)| dQ (3.43)

where V, the volume, is the problem domain.
Integrating each term by parts and rearranging we can write this as

0 0 9]
— JQ [O’Ya (6u) + 1y, <8_y (bu) + Ix (61})) + o —bub, — bvb, — 6wbz} dQ e

+ J [6M(O'xl’lx + Txylly + sznz) + 6”( : ) + 6W(' ’ )] dI' =0
r )

where I is the surface area of the solid (here again Green’s formulae of Appendix G
are used).
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In the first set of bracketed terms we can recognize immediately the small strain
operators acting on éu, which can be termed a virtual displacement (or virtual
velocity). We can therefore introduce a virtual strain (or strain rate) defined as

0

9 (o)
se=24 Oy =Séu (3.45)

0
% (6w)

where the strain operators are defined as in Chapter 2 [Eqgs (2.2)—(2.4)].
Similarly, the terms in the second integral will be recognized as forces t:

t= [txa tyv t:]T (346)

acting per unit area of the surface 4. Arranging the six stress components in a vector ¢
and similarly the six virtual strain (or rate of virtual strain) components in a vector 8¢,
we can write Eq. (3.44) simply as

J belodQ — J su'bdQ — J Su'tdl =0 (3.47)
Q Q r

which is the three dimensional equivalent virtual work statement used in Eqs (2.10)
and (2.22) of Chapter 2.

We see from the above that the virtual work statement is precisely the weak form of
the equilibrium equations and is valid for non-linear as well as linear stress—strain (or
stress—rate of strain) relations.

The finite element approximation which we have derived in Chapter 2 is in fact a
Galerkin formulation of the weighted residual process applied to the equilibrium equa-
tion. Thus, if we take éu as the shape function times arbitrary parameters

6u=Néa (3.48)

where the displacement field is discretized, i.e.,

u=> Na (3.49)

together with the constitutive relation of Eq. (2.5), we shall determine once again all
the basic expressions of Chapter 2 which are so essential to the solution of elasticity
problems.

Similar expressions are vital to the formulation of equivalent fluid mechanics
problems as discussed further in the third volume.

3.5 Partial discretization

In the approximation to the problem of solving the differential equation (3.1) by
an expression of the standard form of Eq. (3.3), we have assumed that the
shape functions N included in them are a/l independent coordinates of the problem
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and that a was simply a set of constants. The final approximation equations were
thus always of an algebraic form, from which a unique set of parameters could be
determined.

In some problems it is convenient to proceed differently. Thus, for instance, if the
independent variables are x, y and z we could allow the parameters a to be functions
of z and do the approximate expansion only in the domain of x, y, say Q. Thus, in
place of Eq. (3.3) we would have

u = Na
N =N(x,») (3.50)
a=a(z)

Clearly the derivatives of a with respect to z will remain in the final discretization and
the result will be a set of ordinary differential equations with z as the independent
variable. In linear problems such a set will have the appearance

Kat+Cat---+f=0 (3.51)
where a = da/dz, etc.

Such a partial discretization can obviously be used in different ways, but is particu-
larly useful when the domain  is not dependent on z, i.e., when the problem is
prismatic. In such a case the coefficient matrices of the ordinary differential equations,
(3.51), are independent of z and the solution of the system can frequently be carried
out efficiently by standard analytical methods.

This type of partial discretization has been applied extensively by Kantorovitch'!
and is frequently known by his name. In the second volume we shall discuss such
semi-analytical treatments in the context of prismatic solids where the final solution
is obtained in terms of Fourier series. However, the most frequently encountered
‘prismatic’ problem is one involving the time variable, where the space domain  is
not subject to change. We shall address such problems in Chapter 17 of this
volume. It is convenient by way of illustration to consider here heat conduction in
a two-dimensional equation in its transient state. This is obtained from Eq. (3.10)
by addition of the heat storage term ¢(J0¢/0t), where ¢ is the specific heat per unit
volume. We now have a problem posed in a domain §2(x, y, f) in which the following

equation holds:
0 0¢ 0 0¢ dp

with boundary conditions identical to those of Eq. (3.10) and the temperature is zero
at time zero. Taking

¢~ b=> Na (3.53)

with a; = a;(¢) and N; = N;(x,y) and using the Galerkin weighting procedure we
follow precisely the steps outlined in Eqs (3.36)—(3.38) and arrive at a system of
ordinary differential equations

da

Ka+Cdt

+f=0 (3.54)
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Here the expression for K;; is identical with that of Eq. (3.38a) (convective terms
neglected), f; identical to Eq. (3.38b), and the reader can verify that the matrix C is
defined by

Once again the matrix C can be assembled from its element contributions. Various
analytical and numerical procedures can be applied simply to the solution of such
transient, ordinary, differential equations which, again, we shall discuss in detail in
Chapters 17 and 18. However, to illustrate the detail and the possible advantage of
the process of partial discretization, we shall consider a very simple problem.

Example. Consider a square prism of size L in which the transient heat conduction
equation (3.52) applies and assume that the rate of heat generation varies with time as

0 =0Qpe™ (3.56)

(this approximates a problem of heat development due to hydration of concrete).
We assume that at 1 =0, ¢ =0 throughout. Further, we shall take ¢ =0 on all
boundaries throughout all times.
As a first approximation a shape function for a one-parameter solution is taken:
¢ = Nia
X Ty
Ny = — cos— 3.57
| = Ccos—-cos— (3.57)

with x and y measured from the centre (Fig. 3.6). Evaluating the coefficients, we have

L2 (L)2 ON, \2 ON, 2k
K, = k| — | +k| — | |dxdy = —
R L/z{<(9X> <8y” )
L/2 L)2 L3¢
Cy = Cledxdy:—L (3.58)
12 )12 4
L/2 ¢L/2 . 4Q L2 .
_fl — ]\/v1 QO e vt dx dy — 02 78
J-L/2J)-L)2 s

Thus leads to an ordinary differential equation with one parameter a;:

d
%+K“a1 +f] =0 (359)

with ¢; = 0 when 7 = 0. The exact solution of this is easy to obtain, as is shown in
Fig. 3.6 for specific values of the parameters o and k/ch.
On the same figure we show a two-parameter solution with

Cl]

3mx 3wy
N, = cos cos—— 3.60
= cos T cos ™ (3.60)
which readers can pursue to test their grasp of the problem. The second component of
the Fourier series is here omitted due to the required symmetry of solution.

The remarkable accuracy of the one-term approximation in this example should be

noted.
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Fig. 3.6 Two-dimensional transient heat development in a square prism: plot of temperature at centre.

3.6 Convergence

In the previous sections we have discussed how approximate solutions can be
obtained by use of an expansion of the unknown function in terms of trial or shape
functions. Further, we have stated the necessary conditions that such functions
have to fulfil in order that the various integrals can be evaluated over the domain.
Thus if various integrals contain only the values of N or its first derivatives then N
has to be C; continuous. If second derivatives are involved, C; continuity is
needed, etc. The problem to which we have not yet addressed ourselves consists of
the questions of just how good the approximation is and how it can be systematically
improved to approach the exact answer. The first question is more difficult to
answer and presumes knowledge of the exact solution (see Chapter 14). The second
is more rational and can be answered if we consider some systematic way in which

the number of parameters a in the standard expansion of Eq. (3.3),

n
ﬁ = E N,-a,-
1

is presumed to increase.

In some of the examples we have assumed, in effect, a trigonometric Fourier-type
series limited to a finite number of terms with a single form of trial function assumed
over the whole domain. Here addition of new terms would be simply an extension of
the number of terms in the series included in the analysis, and as the Fourier series is
known to be able to represent any function within any accuracy desired as the number
of terms increases, we can talk about convergence of the approximation to the true

solution as the number of terms increases.
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In other examples of this chapter we have used locally based functions which are
fundamental in the finite element analysis. Here we have tacitly assumed that conver-
gence occurs as the size of elements decreases and, hence, the number of a parameters
specified at nodes increases. It is with such convergence that we need to be concerned
and we have already discussed this in the context of the analysis of elastic solids in
Chapter 2 (Sec. 2.6).

We have now to determine

(a) that, as the number of elements increases, the unknown functions can be approxi-
mated as closely as required, and

(b) how the error decreases with the size, /4, of the element subdivisions (4 is here
some typical dimension of an element).

The first problem is that of completeness of the expansion and we shall here assume
that all trial functions are polynomials (or at least include certain terms of a poly-
nomial expansion).

Clearly, as the approximation discussed here is to the weak, integral form typified
by Eqs (3.13) or (3.17) it is necessary that every term occurring under the integral be in
the limit capable of being approximated as nearly as possible and, in particular, giving
a single constant value over an infinitesimal part of the domain €.

If a derivative of order m exists in any such term, then it is obviously necessary for
the local polynomial to be at least of the order m so that, in the limit, such a constant
value can be obtained.

We will thus state that a necessary condition for the expansion to be covergent is
the criterion of completeness: that a constant value of the mth derivative be attainable
in the element domain (if mth derivatives occur in the integral form) when the size of
any element tends to zero.

This criterion is automatically ensured if the polynomials used in the shape
function N are complete to mth order. This criterion is also equivalent to the one
of constant strain postulated in Chapter 2 (Sec. 2.5). This, however, has to be satisfied
only in the limit 2 — 0.

If the actual order of a complete polynomial used in the finite element expansion is
p = m, then the order of convergence can be ascertained by seeing how closely such a
polynomial can follow the local Taylor expansion of the unknown u. Clearly the order
of error will be simply O(h?* 1) since only terms of order p can be rendered correctly.

Knowledge of the order of convergence helps in ascertaining how good the approx-
imation is if studies on several decreasing mesh sizes are conducted. Though, in
Chapter 15, we shall see this asymptotic convergence rate is seldom reached if singu-
larities occur in the problem. Once again we have reestablished some of the conditions
discussed in Chapter 2.

We shall not discuss, at this stage, approximations which do not satisfy the
postulated continuity requirements except to remark that once again, in many
cases, convergence and indeed improved results can be obtained (see Chapter 10).

In the above we have referred to the convergence of a given element type as its size
is reduced. This is sometimes referred to as /i convergence.

On the other hand, it is possible to consider a subdivision into elements of a given
size and to obtain convergence to the exact solution by increasing the polynomial
order p of each element. This is referred to as p convergence, which is obviously
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assured. In general p convergence is more rapid per degree of freedom introduced. We
shall discuss both types further in Chapter 15.

Variational principles

3.7 What are ‘variational principles’?

What are variational principles and how can they be useful in the approximation to
continuum problems? It is to these questions that the following sections are addressed.

First a definition: a ‘variational principle’ specifies a scalar quantity (functional) IT,
which is defined by an integral form

Ou Ju

in which u is the unknown function and F and E are specified differential operators.
The solution to the continuum problem is a function u which makes I1 szationary with
respect to arbitrary changes éu. Thus, for a solution to the continuum problem, the
‘variation’ is

oIl =0 (3.62)

for any du, which defines the condition of stationarity.'?

If a “variational principle’ can be found, then means are immediately established for
obtaining approximate solutions in the standard, integral form suitable for finite
element analysis.

Assuming a trial function expansion in the usual form [Eq. (3.3)]

n
uru= E N,«a,-
1

we can insert this into Eq. (3.61) and write
ol ol oIl

6H:8—aléal+8—32632+m+8_anéa":0 (3.63)
This being true for any variations a yields a set of equations
oIl
oIl o2
a = : =0 (3.64)
oIl
Oa,

from which parameters a; are found. The equations are of an integral form necessary
for the finite element approximation as the original specification of II was given in
terms of domain and boundary integrals.

The process of finding stationarity with respect to trial function parameters a is an
old one and is associated with the names of Rayleigh!® and Ritz."* It has become
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extremely important in finite element analysis which, to many investigators, is typified
as a ‘variational process’.

If the functional II is ‘quadratic’, i.e., if the function u and its derivatives occur in
powers not exceeding 2, then Eq. (3.64) reduces to a standard linear form similar to
Eq. (3.8), i.e.,

oIl
—=Ka+f=0 3.65
A (3.65)

It is easy to show that the matrix K will now always be symmetric. To do this let us

consider a linearization of the vector 0I/0a. This we can write as

i(a_r[)m i(@)m
A(%—H>: Oay \Oa; )~ Vo \0a; )T | =Ky Aa (3.66)
a .

in which Ky is generally known as the tangent matrix, of significance in non-linear
analysis, and Aa; are small incremental changes to a. Now it is easy to see that

Ol
——— =Kr; (3.67)

Hence Kt is symmetric.

For a quadratic functional we have, from Eq. (3.65),

A(8H> =KAa or K=K (3.68)
Oa
and hence symmetry must exist.

The fact that symmetric matrices will arise whenever a variational principle exists is
one of the most important merits of variational approaches for discretization. However,
symmetric forms will frequently arise directly from the Galerkin process. In such
cases we simply conclude that the variational principle exists but we shall not need
to use it directly.

How then do ‘variational principles’ arise and is it always possible to construct
these for continuous problems?

To answer the first part of the question we note that frequently the physical aspects
of the problem can be stated directly in a variational principle form. Theorems such as
minimization of total potential energy to achieve equilibrium in mechanical systems,
least energy dissipation principles in viscous flow, etc., may be known to the reader
and are considered by many as the basis of the formulation. We have already referred
to the first of these in Sec. 2.4 of Chapter 2.

Variational principles of this kind are ‘natural’ ones but unfortunately they do not
exist for all continuum problems for which well-defined differential equations may be
formulated.

However, there is another category of variational principles which we may call
‘contrived’. Such contrived principles can always be constructed for any differentially
specified problems either by extending the number of unknown functions u by
additional variables known as Lagrange multipliers, or by procedures imposing a
higher degree of continuity requirements such as least square problems. In subsequent
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sections we shall discuss, respectively, such ‘natural’ and ‘contrived’ variational
principles.

Before proceeding further it is worth noting that, in addition to symmetry occurring
in equations derived by variational means, sometimes further motivation arises. When
‘natural’ variational principles exist the quantity IT may be of specific interest itself. If
this arises a variational approach possesses the merit of easy evaluation of this
functional.

The reader will observe that if the functional is ‘quadratic’ and yields Eq. (3.65),
then we can write the approximate ‘functional’ IT simply as

II=1la"Ka+a'f (3.69)
By simple differentiation
S =16(a")Ka+1a"Kéa+oa'f
As K is symmetric,
ba"Ka=a"Koéa
Hence
6L = ba" (Ka +f) = 0

which is true for all a and hence
Ka+f=0

3.8 'Natural’ variational principles and their relation to
governing differential equations

3.8.1 Euler equations

If we consider the definitions of Eqgs (3.61) and (3.62) we observe that for stationarity
we can write, after performing some differentiations,

OI1 = J su" A(u) dQ + J su'B(u)dl' =0 (3.70)
Q T

As the above has to be true for any variations éu, we must have

Au)=0 in Q
and (3.71)
B(u) =0 onTl

If A corresponds precisely to the differential equations governing the problem and B
to its boundary conditions, then the variational principle is a natural one. Equations
(3.71) are known as the Euler differential equations corresponding to the variational
principle requiring the stationarity of II. It is easy to show that for any variational
principle a corresponding set of Euler equations can be established. The reverse is
unfortunately not true, i.e., only certain forms of differential equations are Euler
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equations of a variational functional. In the next section we shall consider the con-
ditions necessary for the existence of variational principles and give a prescription
for the establishment of II from a set of suitable linear differential equations. In
this section we shall continue to assume that the form of the variational principle is
known.

To illustrate the process let us now consider a specific example. Suppose we specify
the problem by requiring the stationarity of a functional

[ [ (92 ¢ i
H_JQ[§k<ax> +2k(ay) Q¢}d9 quqﬁdF (3.72)

in which k and Q depend only on position and é¢ is defined such that 6¢ = 0 on I'y,
where I';, and ', bound the domdm Q

We now perform the variation.'” This can be written following the rules of
differentiation as

9 (09 0¢ (0¢ )
6H:L2 {kaé(a>+k8y6<a > Q‘S‘b} dQ — Lq(q&ﬁ)dr (3.73)

(Zﬁ) 2 (50 (3.74)

we can integrate by parts (as in Sec. 3.3) and, noting that 6¢ = 0 on I, obtain

- o[305) 5 () o

+J 5¢<k@—q) dr=0 (3.75a)

This is of the form of Eq. (3.70) and we immediately observe that the Euler

equations are
d¢ d¢ .
A(o) = Bx(kay)+8y(k8y)+Q in

B(¢p)=k——-g=0 onTl

(3.75b)
q

If ¢ is prescribed so that ¢ = ¢ on 'y, and ¢ =0 on that boundary, then the
problem is precisely the one we have already discussed in Sec. 3.2 and the functional
(3.72) specifies the two-dimensional heat conduction problem in an alternative way.

In this case we have ‘guessed’ the functional but the reader will observe that the
variation operation could have been carried out for any functional specified and
corresponding Euler equations could have been established.

Let us continue the process to obtain an approximate solution of the linear heat
conduction problem. Taking, as usual,

¢~d=> Na =Na (3.76)
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we substitute this approximation into the expression for the functional IT [Eq. (3.72)]

and obtain
1 ON; \* 1 ON; \?
— N;a; dQ) — q N;a;dT’ 3.77
J,eX-vado—| g3 Na 6.7

On differentiation with respect to a typical parameter ¢; we have
oIl ON; \ ON; ON; \ ON;
—= | k —a; )| =L dQ Jk —a; )| =L dQ
da; JQ (Z Ox a,) Ox + Z Ay “ Ay

—J QN,-dQ—J gN, dr (3.78)
o - r,o

q

and a system of equations for the solution of the problem is

Ka+£f=0 (3.79)
with
. ON; . ON;
K :Kj'i:J kaN' —"dQ—FJ kaN’ —1d0
’ o Ox Ox o OJy Oy
(3.80)

P R g
0 r,

The reader will observe that the approximation equations are here identical with

those obtained in Sec. 3.5 for the same problem using the Galerkin process. No special

advantage accrues to the variational formulation here, and indeed we can predict now

that Galerkin and variational procedures must give the same answer for cases where

natural variational principles exist.

3.8.2 Relation of the Galerkin method to approximation via
variational principles

In the preceding example we have observed that the approximation obtained by the
use of a natural variational principle and by the use of the Galerkin weighting process
proved identical. That this is the case follows directly from Eq. (3.70), in which the
variation was derived in terms of the original differential equations and the associated
boundary conditions.

If we consider the usual trial function expansion [Eq. (3.3)]

u~u=Na
we can write the variation of this approximation as

S0 = Néa (3.81)
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and inserting the above into (3.70) yields
OI1 = 6aTJ NTA(Na)dQ + 6aTJ N'B(Na)dI' =0 (3.82)
Q T

The above form, being true for all éa, requires that the expression under the
integrals should be zero. The reader will immediately recognize this as simply the
Galerkin form of the weighted residual statement discussed earlier [Eq. (3.25)], and
identity is hereby proved.

We need to underline, however, that this is only true if the Euler equations of the
variational principle coincide with the governing equations of the original problem.
The Galerkin process thus retains its greater range of applicability.

At this stage another point must be made, however. If we consider a system of
governing equations [Eq. (3.1)]

A;(u)

with @ = Na, the Galerkin weighted residual equation becomes (disregarding the
boundary conditions)

J NTA@)dQ =0 (3.83)
Q

This form is not unique as the system of equations A can be ordered in a number of
ways. Only one such ordering will correspond precisely with the Euler equations of a
variational principle (if this exists) and the reader can verify that for an equation
system weighted in the Galerkin manner at best only one arrangement of the
vector A results in a symmetric set of equations.

As an example, consider, for instance, the one-dimensional heat conduction
problem (Example 1, Sec. 3.3) redefined as an equation system with two unknowns,
¢ being the temperature and ¢ the heat flow. Disregarding at this stage the boundary
conditions we can write these equations as

_d¢
AW =14 dx L 9 (3.84)
ate
or as a linear equation system,
A(luy=Lu+b=0
in which

d

1. =
’ dx [0 N

4d4a b_{Q} u_{¢} (3.85)

dx’

Writing the trial function in which a different interpolation is used for each function

N0
u:ZN,-a,- Ni:[o’ N?}

=
Il



66 Generalization of the finite element concepts

and applying the Galerkin process, we arrive at the usual linear equation system with

2
NIn! N} dn;
i4Vjio i
K, = J NTLN; dx = J 1 dx | gy (3.86)
Q ' Q| ,dN;
N2
1 dx i
After integration by parts, this form yields a symmetric equationf system and
K; = K; (3.87)
If the order of equations were simply reversed, i.e., using
d
a2
Aw)= | = .
(u) do 0 (3.88)
dx

application of the Galerkin process would now lead to non-symmetric equations quite
different from those arising using the variational principle. The second type of
Galerkin approximation would clearly be less desirable due to loss of symmetry in
the final equations. It is easy to show that the first system corresponds precisely to
the Euler equations of the variational functional deduced in the next section.

3.9 Establishment of natural variational principles for
linear, self-adjoint differential equations

3.9.1 General theorems

General rules for deriving natural variational principles from non-linear differential
equations are complicated and even the tests necessary to establish the existence of
such variational principles are not simple. Much mathematical work has been
done, however, in this context by Vainberg,15 Tonti,'® Oden,'” and others.

For linear differential equations the situation is much simpler and a thorough study
is available in the works of Mikhlin,"®" and in this section a brief presentation of
such rules is given.

We shall consider here only the establishment of variational principles for a linear
system of equations with forced boundary conditions, implying only variation of
functions which yield éu = 0 on their boundaries. The extension to include natural
boundary conditions is simple and will be omitted.

Writing a linear system of differential equations as

A(u)=Lu+b=0 (3.89)

T As

dN? 1
JN,-I d—x’ dx = - Jdé\i[ N,2 dx + boundary terms
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in which L is a linear differential operator it can be shown that natural variational
principles require that the operator L be such that

J v (Ly)dQ = J v (Ly)dQ +b.t. (3.90)
Q Q

for any two function sets y and y. In the above, ‘b.t.” stands for boundary terms which
we disregard in the present context. The property required in the above operator is
called that of self-adjointness or symmetry.

If the operator L is self-adjoint, the variational principle can be written

immediately as

= J Lu"Lu+ u'b]dQ + bt. (3.91)
Q

To prove the veracity of the last statement a variation needs to be considered. We

thus write

STT — J [Lou"Lu+ Lu"8(Lu) + éu'b]dQ + b.t. (3.92)
Q

Noting that for any linear operator

§(Lu) = Léu (3.93)

and that u and éu can be treated as any two independent functions, by identity (3.90)
we can write Eq. (3.92) as

511 = J Su”[Lu + b] dQ + b.t. (3.94)
Q

We observe immediately that the term in the brackets, i.e. the Euler equation of the
functional, is identical with the original equation postulated, and therefore the
variational principle is verified.

The above gives a very simple test and a prescription for the establishment of

natural variational principles for differential equations of the problem.

Consider, for instance, two examples.

Example 1. This is a problem governed by the differential equation similar to the heat
conduction equation, e.g.,

Vo +cop+0=0 (3.95)

with ¢ and Q being dependent on position only.

The above can be written in the general form of Eq. (3.89), with

17
—2+8—y2+0] b=0Q (3.96)

Verifying that self-adjointness applies (which we leave to the reader as an exercise),

we immediately have a variational principle

2 2
- H(aﬁa—%m)wﬁ dxdy (3.97)
Q|2 Oy

o2
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with ¢ satisfying the forced boundary condition, i.e., ¢ = ¢ on I';. Integration by
parts of the first two terms results in

_ 1 8¢ 2 1 8¢ 2 1 "
H__JQ {5 (E) +§(3_y> 3¢ —Q¢] dxdy (3.98)

on noting that boundary terms with prescribed ¢ do not alter the principle.

Example 2. This problem concerns the equation system discussed in the previous
section [Eqs (3.84) and (3.85)]. Again self-adjointness of the operator can be tested,
and found to be satisfied. We now write the functional as

d
1. -
LGUEF G )
n=|, (2%} 4 eSS e
dx’
[ (1. 1 dé . 1, dg
-], (34 3055+ 30 i) ax (399)

The verification of the correctness of the above, by executing a variation, is left to the
reader.

These two examples illustrate the simplicity of application of the general expres-
sions. The reader will observe that self-adjointness of the operator will generally
exist if even orders of differentiation are present. For odd orders self-adjointness is
only possible if the operator is a ‘skew’-symmetric matrix such as occurs in the
second example.

3.9.2 Adjustment for self-adjointness

On occasion a linear operator which is not self-adjoint can be adjusted so that self-
adjointness is achieved without altering the basic equation. Consider, for instance,
the problem governed by the following differential equation of a standard linear form:

¢ do
el = A
dx2+ozdx+,6’¢+Q 0 (3.100)
In this equation « and 3 are functions of x. It is easy to see that the operator L is now
a scalar:
d? d
L=— 3.101
a2 (3.101)

and is not self-adjoint.

Let p be some, as yet undetermined, function of x. We shall show that it is possible
to convert Eq. (3.100) to a self-adjoint form by multiplying it by this function. The
new operator becomes

L=pL (3.102)
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To test for symmetry with any two functions ) and - we write

LZ Y(pLy)dx = J (wp s+ wpa— + wpﬁv) dx (3.103)

On integration of the first term, by parts, we have (b.t. denoting boundary terms)

Jﬂ( dWp) 4 | e d +Bipp7dx) dx + b.t.

dx dx
B dy dvy dp
= JQ [_a a—mp ( a) +wpﬁv] dx +b.t. (3.104)

Symmetry (and therefore self-adjointness) is now achieved in the first and last
terms. The middle term will only be symmetric if it disappears, i.e., if
dp

pa— =0 (3.105)

or

%P:adx; p=efod (3.106)

By using this value of p the operator is made self-adjoint and a variational principle
for the problem of Eq. (3.100) is easily found.

A procedure of this kind has been used by Guymon et al.*’ to derive variational
principles for a convective diffusion equation which is not self-adjoint. (We have
noted such lack of symmetry in the equation in Example 2, Sec. 3.3.)

A similar method for creating variational functionals can be extended to the special
case of non-linearity of Eq. (3.89) when

b=b(u,x,...) (3.107)
If Eq. (3.92) is inspected we note that we could write
5(u"b) = 6(g) (3.108)
if
= JbT du

This integration is often quite easy to accomplish.

3.10 Maximum, minimum, or a saddle point?

In discussing variational principles so far we have assumed simply that at the solution
point 811 = 0, that is the functional is stationary. It is often desirable to know whether
IT is at a maximum, minimum, or simply at a ‘saddle point’. If a maximum or a
minimum is involved, then the approximation will always be ‘bounded’, i.e., will
provide approximate values of IT which are either smaller or larger than the correct
ones.} This in itself may be of practical significance.

T Provided all integrals are exactly evaluated.
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A

Fig. 3.7 Maximum, minimum, and a ‘saddle’ point for a functional I of one variable.

When, in elementary calculus, we consider a stationary point of a function IT of one
variable a, we investigate the rate of change of dII with da and write
ol P,
d(dIl) =d( =—da ) =—(d 3.109
@) = G da) =5 3 da) (3.109
The sign of the second derivative determines whether II is a minimum, maximum, or
simply stationary (saddle point), as shown in Fig. 3.7. By analogy in the calculus of
variations we shall consider changes of 6I1. Noting the general form of this quantity
given by Eq. (3.63) and the notion of the second derivative of Eq. (3.66) we can write,
in terms of discrete parameters,

T
S(610) —5(‘2—2) 5a§aT6(Z—1:> = 6a"Kq ba (3.110)

If, in the above, 6(611) is always negative then II is obviously reaching a maximum,
if it is always positive then IT is a minimum, but if the sign is indeterminate this shows
only the existence of a saddle point.

As 6a is an arbitrary vector this statement is equivalent to requiring the matrix Kt
to be negative definite for a maximum or positive definite for a minimum. The form of
the matrix Kt (or in linear problems of K which is identical to it) is thus of great
importance in variational problems.

3.11 Constrained variational principles. Lagrange
multipliers and adjoint functions

3.11.1 Lagrange multipliers

Consider the problem of making a functional IT stationary, subject to the unknown u
obeying some set of additional differential relationships

Cu)=0 in Q (3.111)



Constrained variational principles. Lagrange multipliers and adjoint functions

We can introduce this constraint by forming another functional
(u,») = II(u) + J ATC(u) dO (3.112)
Q

in which A is some set of functions of the independent coordinates in the domain 2
known as Lagrange multipliers. The variation of the new functional is now

ST1 = 611 + J AT6C(u) dQ + J 53T C(u) dQ (3.113)
Q Q

and this is zero providing C(u) = 0 and, simultaneously,
ST =0 (3.114)

In a similar way, constraints can be introduced at some points or over boundaries of
the domain. For instance, if we require that u obey

Ew=0 onTl (3.115)

we would add to the original functional the term
J ATE(u)dl’ (3.116)
r

with A now being an unknown function defined only on I'. Alternatively, if the
constraint C is applicable only at one or more points of the system, then the simple
addition of ATC(u) at these points to the general functional IT will introduce a discrete
number of constraints.

It appears, therefore, possible to always introduce additional functions A and
modify a functional to include any prescribed constraints. In the ‘discretization’
process we shall now have to use trial functions to describe both u and A.

Writing, for instance,

i=>» Na;=Na i=) Nb=Nb (3.117)
we shall obtain a set of equations
oIl
Oll Oa a
—= =0 = 3.118
Jc o ¢ { b } ( )
db

from which both the sets of parameters a and b can be obtained. It is somewhat
paradoxical that the ‘constrained’ problem has resulted in a larger number of
unknown parameters than the original one and, indeed, has complicated the solution.
We shall, nevertheless, find practical use for Lagrange multipliers in formulating
some physical variational principles, and will make use of these in a more general
context in Chapters 11 and 12.

Example. The point about increasing the number of parameters to introduce a
constraint may perhaps be best illustrated in a simple algebraic situation in which
we require a stationary value of a quadratic function of two variables a; and a,:

I =24} — 2aya, + a5 + 18a; + 6a, (3.119)

A
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subject to a constraint

a—a, =0 (3.120)
The obvious way to proceed would be to insert directly the equality ‘constraint’ and
obtain
Il = a} + 24a, (3.121)
and write, for stationarity,
2—2:0:26114—24 a=a,=-12 (3.122)
Introducing a Lagrange multiplier A we can alternatively find the stationarity of
I = 2a] — 2aya, + a3 + 18a; + 6ay + \a; — ay) (3.123)

and write three simultaneous equations
ol oIl ol
=0 =0 =
8a1 8(12 3)\
The solution of the above system again yields the correct answer
a=a,=-—12 A=6

but at considerably more effort. Unfortunately, in most continuum problems direct
elimination of constraints cannot be so simply accomplished.}

0 (3.124)

Before proceeding further it is of interest to investigate the form of equations result-
ing from the modified functional IT of Eq. (3.112). If the original functional II gave as
its Euler equations a system

Aw) =0 (3.125)

then we have
6T = J su' A(u) dQ + J 52T C(u) dQ + J AT6CdQ (3.126)
Q Q )
Substituting the trial functions (3.117) we can write for a linear set of constraints
C(u) =Liu+C,

ST = 6a” JQ NTA®8)dQ + 6b" JQ NY(Lja+ Cy)dQ (3.127)

+6a' J (LN)TAdQ =0
0
As this has to be true for all variations éa and éb, we have a system of equations
J NTA(d) d92 + J (LN)T3dQ = 0
. . (3.128)
J NY(Lja+C))de =0
Q

21

1 In the finite element context, Szabo and Kassos™ use such direct elimination; however, this involves

considerable algebraic manipulation.



Constrained variational principles. Lagrange multipliers and adjoint functions

For linear equations A, the first term of the first equation is precisely the ordinary,
unconstrained, variational approximation

K,a+f, (3.129)

and inserting again the trial functions (3.117) we can write the approximated Eq.
(3.128) as a linear system:

Kum Kab a fa
Ke=| “ + =0 (3.130)
Kaba 0 b fb

K}b:J NTL,NdQ; f,,:fJ NTC, d0 (3.131)
Q Q

with

Clearly the system of equations is symmetric but now possesses zeros on the diagonal,
and therefore the variational principle IT is merely stationary. Further, computational
difficulties may be encountered unless the solution process allows for zero diagonal
terms.

3.11.2 Identification of Lagrange multipliers. Forced boundary
conditions and modified variational principles

Although the Lagrange multipliers were introduced as a mathematical fiction
necessary for the enforcement of certain external constraints required to satisfy the
original variational principle, we shall find that in most physical situations they
can be identified with certain physical quantities of importance to the original
mathematical model. Such an identification will follow immediately from the
definition of the variational principle established in Eq. (3.112) and through the
second of the Euler equations corresponding to it. The variation 8II, written in Eq.
(3.113), supplies through its third term the constraint equation. The first two terms
can always be rewritten as

J AT6C(u) dQ + J SuA(u)dQ+b.t. =0 (3.132)
Q Q

This supplies the identification of A.
In the literature of variational calculation such identification arises frequently and
the reader is referred to the excellent text by Washizu®® for numerous examples.

Example. Here we shall introduce this identification by means of the example
considered in Sec. 3.8.1. As we have noted, the variational principle of Eq. (3.72)
established the governing equation and the natural boundary conditions of the
heat conduction problem providing the forced boundary condition

Clp)=¢—-9=0 (3.133)

was satisfied on I';, in the choice of the trial function for ¢.
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The above forced boundary condition can, however, be considered as a constraint
on the original problem. We can write the constrained variational principle as

ﬁ=H+J ¢ — ¢)dI' (3.134)
r,
where II is given by Eq. (3.72).

Performing the variation we have

61:[:6H+J
FO

SA(¢ — @) dl + JF SN dT (3.135)

)

OI1 is now given by the expression (3.75a) augmented by an integral
¢
k— dI’ .1
LO ok 5 d (3.136)

which was previously disregarded (as we had assumed that 6¢ = 0 onT'y). In addition
to the conditions of Eq. (3.75b), we now require that

J 6)\(q5—<;3)dF+J 6q§<>\+k%) dr = 0 (3.137)
Fd’ ¢ 8”
which must be true for all variations dA and 6¢. The first simply reiterates the
constraint

¢p—¢p=0 only (3.138)
The second defines \ as

o
=—k— 1
A kan (3.139)

Noting that k(0¢/0n) is equal to the flux ¢, on the boundary Iy, the physical identi-
fication of the multiplier has been achieved.

The identification of the Lagrange variable leads to the possible establishment of a
modified variational principal in which A is replaced by the identification.
We could thus write a new principle for the above example:

¢

ﬁ:H—J ks (6= 6)dr (3.140)

T

3

in which once again II is given by the expression (3.72) but ¢ is not constrained to
satisfy any boundary conditions. Use of such modified variational principles can be
made to restore interelement continuity and appears to have been first introduced
for that purpose by Kikuchi and Ando.?® In general these present interesting new
procedures for establishing useful variational principles.

A further extension of such principles has been made use of by Chen and Mei** and
Zienkiewicz er al.*> Washizu® discusses many such applications in the context of
structural mechanics. The reader can verify that the variational principle expressed
in Eq. (3.140) leads to automatic satisfaction of all the necessary boundary conditions
in the example considered.

The use of modified variational principles restores the problem to the original number
of unknown functions or parameters and is often computationally advantageous.



Constrained variational principles. Lagrange multipliers and adjoint functions

3.11.3 A general variational principle: adjoint functions and
operators

The Lagrange multiplier method leads to an obvious procedure of ‘creating’ a
variational principle for any set of equations even if the operators are not self-adjoint:

A(u) =0 (3.141)
Treating all the above equations as a set of constraints we can obtain such a general
variational functional simply by putting IT = 0 in Eq. (3.112) and writing
M= J ATA(u) dO (3.142)
0

now requiring stationarity for all variations of éA and du. The new variational
principle has, however, been introduced at the expense of doubling the number of
variables in the discretized situation. Treating the case of linear equations only, i.e.,

Aw)=Lu+g=0 (3.143)

and discretizing we note, going through the steps involved in Eqs (3.126) to (3.130),
that the final system of equations now takes the form

e s

K}, = J NTLNdQ
Q

with

(3.145)
f= J NTgdQ
Q

The equations are completely decoupled and the second set can be solved indepen-
dently for all the parameters a describing the unknowns in which we were originally
interested without consideration of the parameters b. It will be observed that this
second set of equations is identical with an, apparently arbitrary, weighted residual
process. We have thus completed the full circle and obtained the weighted residual
forms of Sec. 3.3 from a general variational principle.

The function A which appears in the variational principle of Eq. (3.142) is known as
the adjoint function to u.

By performing a variation on Eq. (3.142) it is easy to show that the Euler equations
of the principle are such that

A(u) =0 (3.146)
and
A'(u)=0 (3.147)

where the operator A is such that

L AT6(Au)dQ = JQ Su' A* (1) dQ (3.148)
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The operator A* is known as the adjoint operator and will exist only in linear
problems (see Appendix H).

For the full significance of the adjoint operator the reader is advised to consult
mathematical texts.?

3.12 Constrained variational principles. Penalty functions
and the least square method

3.12.1 Penalty functions

In the previous section we have seen how the process of introducing Lagrange multi-
pliers allows constrained variational principles to be obtained at the expense of
increasing the total number of unknowns. Further, we have shown that even in
linear problems the algebraic equations which have to be solved are now complicated
by having zero diagonal terms. In this section we shall consider an alternative pro-
cedure of introducing constraints which does not possess these drawbacks.

Considering once again the problem of obtaining stationarity of II with a set of
constraint equations C(u) = 0 in domain {2, we note that the product

cc=ci+G+--- (3.149)
where
CT - [C17C2,...]

must always be a quantity which is positive or zero. Clearly, the latter value is found
when the constraints are satisfied and clearly the variation

5(CTC)=0 (3.150)

as the product reaches that minimum.
We can now immediately write a new functional

IEI:H—l—aJQCT(u)C(u) dQ (3.151)

in which « is a ‘penalty number’ and then require the stationarity for the constrained
solution. If IT is itself a minimum of the solution then « should be a positive number.
The solution obtained by the stationarity of the functional II will satisfy the
constraints only approximately. The larger the value of « the better will be the
constraints achieved. Further, it seems obvious that the process is best suited to
cases where I is a minimum (or maximum) principle, but success can be obtained
even with purely saddle point problems. The process is equally applicable to
constrants applied on boundaries or simple discrete constraints. In this latter case
integration is dropped.

Example. To clarify ideas let us once again consider the algebraic problem of
Sec. 3.11, in which the stationarity of a functional given by Eq. (3.119) was sought
subject to a constraint. With the penalty function approach we now seek the
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Table 3.1

a= 1 2 6 10 100

a; = —12.00 —12.00 —12.00 —12.00 —12.00
a, = —13.50 —13.00 —12.43 —12.78 —12.03

minimum of a functional
12[:261% —2aya> + &5 + 18a, + 6a, + a(a; —a2)2 (3.152)

with respect to the variation of both parameters a;and a,. Writing the two simulta-
neous equations

11 I
m_, M_,

we find that as « is increased we approach the correct solution. In Table 3.1 the results
are set out demonstrating the convergence.

The reader will observe that in a problem formulated in the above manner the
constraint introduces no additional unknown parameters — but neither does it
decrease their original number. The process will always result in strongly positive
definite matrices if the original variational principle is one of a minimum.

In practical applications the method of penalty functions has proved to be quite
effective,”” and indeed is often introduced intuitively. One such ‘intuitive’ application
was already made when we enforced the value of boundary parameters in the manner
indicated in Chapter 1, Sec. 1.4.

In the example presented here (and frequently practised in the real assembly of
discretized finite element equations), the forced boundary conditions are not
introduced a priori and the problem gives, on assembly, a singular system of
equations

Ka+f=0 (3.154)
which can be obtained from a functional (providing K is symmetric)
IM=!a"Ka+a'f (3.155)
Introducing a prescribed value of a4, i.e., writing
a—a =0 (3.156)
the functional can be modified to
I =1+a(a —a) (3.157)
yielding
K, =K,+2a f,=f —2aa (3.158)

and giving no change in any of the other matrix coefficients. This is precisely the
procedure adopted in Chapter 1 (page 10) for modifying the equations, to introduce
prescribed values of a; (2o here replacing «, the ‘large number’ of Sec. 1.4). Many
applications of such a ‘discrete’ kind are discussed by Campbell.?®
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It is easy to show in another context’”” that the use of a high Poisson’s ratio
(v — 0.5) for the study of incompressible solids or fluids is in fact equivalent to the
introduction of a penalty term to suppress any compressibility allowed by an
arbitrary displacement variation.

The use of the penalty function in the finite element context presents certain
difficulties.

Firstly, the constrained functional of Eq. (3.151) leads to equations of the form

(K, +aKy)a+f=0 (3.159)

where K; derives from the original functions and K, from the constraints. As «
increases the above equation degenerates:

Ka=—f/a—0

and a = 0 unless the matrix K, is singular. The phenomenon where a = 0 is known as
locking and has often been encountered by researchers who failed to recognize its
source. This singularity in the equations does not always arise and we shall discuss
means of its introduction in Chapters 11 and 12.

Secondly, with large but finite values of a numerical difficulties will be encountered.
Noting that discretization errors can be of comparable magnitude to those due to not
satisfying the constraint, we can make

a = constant (1/h)"

ensuring a limiting convergence to the correct answer. Fried®®?! discusses this
problem in detail.

A more general discussion of the whole topic is given in reference 32 and in Chapter
12 where the relationship between Lagrange constraints and penalty forms is made
clear.

3.12.2 Least square approximations

In Sec. 3.11.3 we have shown how a constrained variational principle procedure could
be used to construct a general variational principle if the constraints become simply
the governing equations of the problem

C(u) = A(u) (3.160)

Obviously the same procedure can be used in the context of the penalty function
approach by setting II =0 in Eq. (3.151). We can thus write a ‘variational
principle’

ﬁ:J (A%+A§+---)dQ:J AT (u)A(u)dQ (3.161)
Q Q

for any set of differential equations. In the above equation the boundary conditions
are assumed to be satisfied by u (forced boundary condition) and the parameter « is
dropped as it becomes a multiplier.

Clearly, the above statement is a requirement that the sum of the squares of the
residuals of the differential equations should be a minimum at the correct solution.
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This minimum is obviously zero at that point, and the process is simply the well-
known least square method of approximation.

It is equally obvious that we could obtain the correct solution by minimizing any
functional of the form

ﬁ:J (p]A%—&-pzA%—F---)dQ:J AT(u)pA(u) dQ (3.162)
Q Q
in which py, p,, ..., etc., are positive valued weighting functions or constants and p is
a diagonal matrix:
P1 0
P 3.163
p= 7 (3.163)
0

The above alternative form is sometimes convenient as it puts different importance
on the satisfaction of individual components of the equation and allows additional
freedom in the choice of the approximate solution. Once again this weighting function
could be chosen so as to ensure a constant ratio of terms contributed by various
elements, although this has not yet been put into practice.

Least square methods of the kind shown above are a very powerful alternative
procedure for obtaining integral forms from which an approximate solution can be
started, and have been used with considerable success.>*** As the least square varia-
tional principles can be written for any set of differential equations without introdu-
cing additional variables, we may well enquire what is the difference between these
and the natural variational principles discussed previously. On performing a variation
in a specific case the reader will find that the Euler equations which are obtained no
longer give the original differential equations but give higher order derivatives of
these. This introduces the possibility of spurious solutions if incorrect boundary con-
ditions are used. Further, higher order continuity of trial function is now generally
needed. This may be a serious drawback but frequently can be by-passed by stating
the original problem as a set of lower order equations.

We shall now consider the general form of discretized equations resulting from the
least square approximation for linear equation sets (again neglecting boundary con-
ditions which are enforced). Thus, if we take

A(u)=Lu+b (3.164)
and take the usual trial function approximation
i = Na (3.165)

we can write, substituting into (3.162),

M= L[(LN)aer]Tp[(LN)aer] do (3.166)

and obtain

ST = JQ sa’ (LN) p[(LN)a 4 b] dQ + JQ[(LN)a +b"p(LN) sadQ2 =0  (3.167)
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or, as p is symmetric,
I = 2(53T{ U (LN)Tp(LN) dﬂ] a+ J (LN)Tpb dQ} =0 (3.168)
Q Q

This immediately yields the approximation equation in the usual form:
Ka+f=0 (3.169)

and the reader can observe that the matrix K is symmetric and positive definite.

To illustrate an actual example, consider the problem governed by Eq. (3.95) for
which we have already obtained a natural variational principle [Eq. (3.98)] in which
only first derivatives were involved requiring C, continuity for u. Now, if we use
the operator L and term b defined by Eq. (3.96), we have a set of approximating
equations with

K, = Jg(va,- +¢N;) (VPN + cN;) dxdy
(3.170)
fi= |, (V2N eN@ dray
Q

The reader will observe that now C; continuity is needed for the trial functions N.
An alternative avoiding this difficulty is to write Eq. (3.95) as a first-order system.
This can be written as

dq, 0Oq,
ax + a—y +cp+Q
Alu) = %_qx =0 (3.171)
¢ _
By qy

or, introducing the vector u,

u=[¢,4,,4,]' = (Na) (3.172)

as the unknown we can write the standard linear form (3.164) as

Lu+b=0
where
0 0
¢, a9 a..
ox’ 0Oy 0
L= 82’ -1, 0 b=< 0 (3.173)
0 0
— 0 -1
8)}’ )

The reader can now perform the substitution into Eq. (3.168) to obtain the
approximation equations in a form requiring only C, continuity — introduced,
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however, at the expense of additional variables. Use of such forms has been made
extensively in the finite element context.’>*

3.12.3 Galerkin least squares, stabilization

It is interesting to note that the concept of penalty formulation introduced earlier in
this section was anticipated as early as 1943 by Courant®® in a somewhat different
manner. He used the original variational principle augmented by the differential
equations of the problem employed as least square constraints. In this manner he
claimed, though never proved, that the convergence rate could be accelerated.

The suggestion put forward by Courant has been used effectively by others
though in a somewhat different manner. Noting that the Galerkin process is, for
self-adjoint equations, equivalent to that of minimizing a functional, the least
square formulation using the original equation is simply added to the Galerkin
form. Here it allows non-self adjoint operators to be used, for instance, and this
feature has been exploited with success. Consider, for instance, the problem which
we have discussed in Section 3.9.2 [viz. Eq. (3.100)] with 8 = 0. This equation, as
we have already pointed out, is non-self adjoint but Galerkin methods have been
successfully used in its solution providing the convection term (ad¢/dx) remains
relatively small compared to the second derivative term (the diffusion term). How-
ever, it is found that as the convection term increases the solution becomes highly
oscillatory. We shall discuss the stabilization of such problems in a general
manner exhaustively in Volume 3 as such problems are frequently encountered in
fluid mechanics. But here it is easy to consider the problem in a preliminary
manner. Suppose in a Galerkin form given by

Jﬂ{j—z%—v(aj—i—&-Q)}dx:O (3.174)

we add a multiple of the minimization of the least square of the total equation. The

result is
dv do¢ do
Lz {E dx v(anrQ)}dx

2 2
+Jﬂ(d”+a$)r<d¢+aw+g>dx:o (3.175)

dx? dx? T dx

and we see immediately that an additional diffusive term has been added which
depends on the parameter 7, though at the expense of having higher derivatives
appearing in the integrals. If only linear elements are used and the discontinuities
ignored at element interfaces, the process of adding the diffusive terms can stabilize
the oscillations which would otherwise occur. The idea appears to have first been
used by Hughes*. This process in the view of the authors is somewhat unorthodox
as discontinuity of derivatives is ignored, and alternatives to this will be discussed
at length in Chapter two of Volume 3.
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It interesting to note also that another application of the same Galerkin least
square process can be made to the mixed formulation with two variables u and p
for incompressible problems. We shall discuss such problems in Chapter 12 of this
volume and show how this process can be made applicable there.

Finally, it is of interest to note that the simple procedure introduced by Courant
can also be effective in the prevention of locking of other problems. The treatment
for beams has been studied by Freund and Salonen® and it appears that quite an
effective process can be reached.

3.13 Concluding remarks - finite difference and
boundary methods

This very extensive chapter presents the general possibilities of using the finite element
process in almost any mathematical or mathematically modelled physical problem.
The essential approximation processes have been given in as simple a form as
possible, at the same time presenting a fully comprehensive picture which should
allow the reader to understand much of the literature and indeed to experiment
with new permutations. In the chapters that follow we shall apply to various physical
problems a limited selection of the methods to which allusion has been made. In some
we shall show, however, that certain extensions of the process are possible (Chapters
12 and 16) and in another (Chapter 10) how a violation of some of the rules here
expounded can be accepted.

The numerous approximation procedures discussed fall into several categories. To
remind the reader of these, we present in Table 3.2 a comprehensive catalogue of the
methods used here and in Chapter 2. The only aspect of the finite element process
mentioned in that table that has not been discussed here is that of a direct physical
method. In such models an ‘atomic’ rather than continuum concept is the starting
point. While much interest exists in the possibilities offered by such models, their
discussion is outside the scope of this book.

In all the continuum processes discussed the first step is always the choice of
suitable shape or trial functions. A few simple forms of such functions have been
introduced as the need demanded and many new forms will be introduced in sub-
sequent chapters. Indeed, the reader who has mastered the essence of the present
chapter will have little difficulty in applying the finite element method to any suitably
defined physical problem. For further reading references 41-45 could be consulted.

The methods listed do not include specifically two well-known techniques, i.¢., finite
difference methods and boundary solution methods (sometimes known as boundary
elements). In the general sense these belong under the category of the generalized
finite element method discussed here.*!

1. Boundary solution methods choose the trial functions such that the governing
equation is automatically satisfied in the domain 2. Thus starting from the general
approximation equation (3.25), we note that only boundary terms are retained. We
shall return to such approximations in Chapter 13.

2. Finite difference procedures can be interpreted as an approximation based on
local, discontinuous, shape functions with collocation weighting applied (although
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Table 3.2 Finite element approximation

' l

Integral forms of continuum problems Direct physical
trial functions model

u:ZN,-al-

|
| l l

Variational principles Weighted integrals of partial Global physical
differential equation governing statements
(weak formulations) (e.g. virtual work)
| |
' |
Meaningful |
physical |
principles l |
| Constrained Miscellaneous |
| langragian weight |
‘ forms functions |
‘ Penalty Collocation — -
| Adjoint function (point or
| functions forms subdomain) l
—_— - ‘
| Least Galerkin
‘ square (W, =N;) |
forms |
S SR

usually the derivation of the approximation algorithm is based on a Taylor
expansion).

As Galerkin or variational approaches give, in the energy sense, the best
approximation, this method has only the merit of computational simplicity and
occasionally a loss of accuracy.

To illustrate this process we discuss an approximation carried out for the one-
dimensional equation (3.27) (viz. p. 47). Here we represent a localized approximation
through equally spaced nodal point values by

o= [ (M) - ()

Gi_1
) (3.176)
bit1

where 1 = x; | — x; (shown in Fig. 3.8). It is clear that adjacent parabolic approxima-
tions in this case are discontinuous between the nodes. Values of the function and its
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> X

i+1 i+2

Fig. 3.8. A local, discontinuous shape function by parabolic segments used to obtain a finite difference
approximation.

first two derivatives at a typical node i are given by

P(x;) = ¢;
o] 1
x|y 3 Gie1 = ¢in1) (3.177)
9%

1
2 = h_2(¢i+1—2¢i+¢i—l)

X=X;

If we insert these into the governing equation at node i, we note immediately that the
approximating equation at the node becomes

1
ﬁ(¢i71_2¢i+¢i+l)+Qi:0 (3.178)

This is identical (within a multiple of /) to the assembled finite element equations
(which we did not do explicitly) for the approximation with linear elements discussed
in Eq. (3.35). This is indeed one of the cases in which the approximation is identical
rather than different. In Chapter 16 we shall be discussing such finite difference and
point approximations in more detail. However, the reader will note the present exer-
cise is simply given to underline the similarity of finite element and finite difference
processes.

Many textbooks deal exclusively with these types of approximations. References
46-50 discuss finite difference approximation and references 51-54 relate to bound-
ary methods.
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Plane stress and plane strain

4.1 Introduction

Two-dimensional elastic problems were the first successful examples of the applica-
tion of the finite element method."? Indeed, we have already used this situation to
illustrate the basis of the finite element formulation in Chapter 2 where the general
relationships were derived. These basic relationships are given in Egs (2.1)—(2.5)
and (2.23) and (2.24), which for quick reference are summarized in Appendix C.

In this chapter the particular relationships for the plane stress and plane strain
problem will be derived in more detail, and illustrated by suitable practical examples,
a procedure that will be followed throughout the remainder of the book.

Only the simplest, triangular, element will be discussed in detail but the basic
approach is general. More elaborate elements to be discussed in Chapters 8 and 9
could be introduced to the same problem in an identical manner.

The reader not familiar with the applicable basic definitions of elasticity is referred
to elementary texts on the subject, in particular to the text by Timoshenko and
Goodier,® whose notation will be widely used here.

In both problems of plane stress and plane strain the displacement field is uniquely given
by the u and v displacement in the directions of the cartesian, orthogonal x and y axes.

Again, in both, the only strains and stresses that have to be considered are the three
components in the xy plane. In the case of plane stress, by definition, all other com-
ponents of stress are zero and therefore give no contribution to internal work. In plane
strain the stress in a direction perpendicular to the xy plane is not zero. However, by
definition, the strain in that direction is zero, and therefore no contribution to internal
work is made by this stress, which can in fact be explicitly evaluated from the three
main stress components, if desired, at the end of all computations.

4.2 Element characteristics

4.2.1 Displacement functions

Figure 4.1 shows the typical triangular element considered, with nodes i, j, m
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Y
x

Fig. 4.1 An element of a continuum in plane stress or plane strain.

numbered in an anticlockwise order. The displacements of a node have two

components
uA
a,— == { U; } (41)

=< a; (4.2)
al‘)’l

The displacements within an element have to be uniquely defined by these six
values. The simplest representation is clearly given by two linear polynomials
U=ao;+oXx+a3y
(4.3)
V= 0y + asX + agy

The six constants « can be evaluated easily by solving the two sets of three simultaneous
equations which will arise if the nodal coordinates are inserted and the displacements
equated to the appropriate nodal displacements. Writing, for example,
up =) +ax; +azy;
up =y + X+ a3); (4.4)
Uy = Q1 + QX + Q3
we can easily solve for oy, s, and a3 in terms of the nodal displacements u;, u;, u,,, and
obtain finally

1
U=sx [(ai + bix + ¢;y)u; + (@ + bix + ¢y uj + (A + by X + € ¥)h] (4.5a)
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in which
a;i = XiVm — Xm)j
bi =y; = Vm (4.5b)
€= Xm—Xj

with the other coefficients obtained by a cycle permutation of subscripts in the order,
i, j, m, and wheref

Ix oy
2A =det|1 x; y; | =2-(area of triangle ijm) (4.5¢)
1 xl’” ym

As the equations for the vertical displacement v are similar we also have

v a; + bix + Ciy)vi + (a/ + bjx + ij)vj + (am + bmx + Cmy)vm] (46)

=50

Though not strictly necessary at this stage we can represent the above relations, Eqs
(4.5a) and (4.6), in the standard form of Eq. (2.1):

u= { Z} = Na® = [IN, IN,, IN,,Ja° (4.7)

with I a two by two identity matrix, and
a; +bx+cy
2A
The chosen displacement function automatically guarantees continuity of displace-
ment with adjacent elements because the displacements vary linearly along any side

of the triangle and, with identical displacement imposed at the nodes, the same
displacement will clearly exist all along an interface.

N; = , etc. (4.8)

4.2.2 Strain (total)

The total strain at any point within the element can be defined by its three com-
ponents which contribute to internal work. Thus

9
e, ox’
e={ g v=10, a% { Z} = Su (4.9)
T 9 9
dy’ 0Ox

t Note: If coordinates are taken from the centroid of the element then
Xi -‘er + X =i +yj +ym=0 and g = 2A/3 =4a; =day

See also Appendix D for a summary of integrals for a triangle.
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Substituting Eq. (4.7) we have

a;
¢=Ba’= [Bia Bja Bm] a; (4103)
am
with a typical matrix B; given by
o,
Ox’
by, 0
B—sn—| o 2N_1 ol 4.10b
i = i = ’ Ay A y G ( . )
ON; ON; ¢, bi
dy ' Ox

This defines matrix B of Eq. (2.4) explicitly.

It will be noted that in this case the B matrix is independent of the position within
the element, and hence the strains are constant throughout it. Obviously, the criterion
of constant strain mentioned in Chapter 2 is satisfied by the shape functions.

4.2.3 Elasticity matrix

The matrix D of Eq. (2.5)

O-X 6,\
6=q o0, =D € p — & (4.11)
Txy P)/x_\f

can be explicitly stated for any material (excluding here o, which is simply additive).
To consider the special cases in two dimensions it is convenient to start from the form

e=Do+¢g
and impose the conditions of plane stress or plane strain.

Plane stress — isotropic material
For plane stress in an isotropic material we have by definition,

o, Vo,
ST E o
_ vo, o0,
&= -7 +E+6yo (4.12)
21+ vy,
Yo = T + Y0
Solving the above for the stresses, we obtain the matrix D as
£ 1 v 0
D= s v o1 0 (4.13)
1—v
0 0 (I-wv)/2
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and the initial strains as

g =< €y (4.14)
Vxy0
in which E is the elastic modulus and v is Poisson’s ratio.
Plane strain - isotropic material

In this case a normal stress o exists in addition to the other three stress components.
Thus we now have

STETE B
vo, 0, VO,
6}, = — E‘C E — E + Ey() (415)
2(1 + V)Txy
7\} = E 7\}0
and in addition
vo, VO, 0,
, = — e —— —_— ) = 0
[ E E + E + £-0

which yields
o, = V(O'X + ay) — Ee,

On eliminating o and solving for the three remaining stresses we obtain the matrix D
as

1—v v 0
D= L v 1—v 0 (4.16)
_(l+u)(l—2u) '
0 0 (1 =2v)/2
and the initial strains
€x0 + Ve
& =4 &0 1t Ve (4.17)
Vxy0

Anisotropic materials
For a completely anisotropic material, 21 independent elastic constants are necessary
to define completely the three-dimensional stress—strain relationship.*>

If two-dimensional analysis is to be applicable a symmetry of properties must exist,
implying at most six independent constants in the D matrix. Thus, it is always possible
to write

dl 1 d12 d13
D = d22 d23 (4 1 8)
sym. ds3
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Plane of strata parallel to xz

Fig. 4.2 A stratified (transversely isotropic) material.

to describe the most general two-dimensional behaviour. (The necessary symmetry of
the D matrix follows from the general equivalence of the Maxwell-Betti reciprocal
theorem and is a consequence of invariant energy irrespective of the path taken to
reach a given strain state.)

A case of particular interest in practice is that of a ‘stratified’ or transversely iso-
tropic material in which a rotational symmetry of properties exists within the plane
of the strata. Such a material possesses only five independent elastic constants.

The general stress—strain relations give in this case, following the notation of
Lekhnitskii* and taking now the y-axis as perpendicular to the strata (neglecting
initial strain) (Fig. 4.2),

Ox 10, 0.

SRR A
o N0x Oy 1O
! E, E, E
Vo, 1O, 0.
“TTE B +E
2w (4.19)
o= TR e
1
Vxy G_ZTW
1
Vyz = @Tyz

in which the constants E;, v; (G is dependent) are associated with the behaviour in
the plane of the strata and E,, G,, v, with a direction normal to the plane.
The D matrix in two dimensions now becomes, taking E/E, = nand G,/E, = m,
n  ny 0
nvy, 1 0 (4.20)
0 0 m(l—m3)

E
p-_
1 —nv;
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for plane stress or

E
P=araa _2y1 —2mA3)
n(l —m3) ny(l+v) 0
X [ nn(1+v)  (1—17) 0 (4.21)
0 0 m(1+ 1)1 — vy — 2mA3)

for plane strain.

When, as in Fig. 4.3, the direction of the strata is inclined to the x-axis then to
obtain the D matrices in universal coordinates a transformation is necessary.
Taking D’ as relating the stresses and strains in the inclined coordinate system
(x',)") it is easy to show that

D=TD'T" (4.22)
where
cos’ 3 sin’ 3 —2sin 3cos 8
T= sin® 3 cos’ 3 2sin 3cos 8 (4.23)

sinfcos3 —sinfcosf cos® 3 —sin’ 3

with (3 as defined in Fig. 4.3.
If the stress systems ¢’ and ¢ correspond to € and e respectively then by equality
of work

or

Fig. 4.3 An element of a stratified (transversely isotropic) material.
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from which Eq. (4.22) follows on noting (see also Chapter 1)
g =T'¢ (4.24)

4.2.4 Initial strain (thermal strain)

‘Initial’ strains, i.c., strains which are independent of stress, may be due to many
causes. Shrinkage, crystal growth, or, most frequently, temperature change will, in
general, result in an initial strain vector:

€ = [ex0 €y0 €20 Yxpo  Vyz0 %xo]T (4.25)

Although this initial strain may, in general, depend on the position within the
element, it will here be defined by average, constant values to be consistent with
the constant strain conditions imposed by the prescribed displacement function.

For an isotropic material in an element subject to a temperature rise 6° with a
coeflicient of thermal expansion o we will have

g=af[l 1 1 0 0 0" (4.26)

as no shear strains are caused by a thermal dilatation. Thus, for plane stress, Eq.
(4.14) yields the initial strains given by
1
g=abf’¢ 13 =atm (4.27)
0

In plane strain the o, stress perpendicular to the xy plane will develop due to the
thermal expansion as shown above. Using Eq. (4.17) the initial thermal strains for
this case are given by

g = (1 +v)af’m (4.28)

Anisotropic materials present special problems, since the coefficients of thermal
expansion may vary with direction. In the general case the thermal strains are
given by

g = af (4.29)

where o has properties similar to strain. Accordingly, it is always possible to find
orthogonal directions for which a is diagonal. If we let x" and )" denote the principal
thermal directions of the material, the initial strain due to thermal expansion for a
plane stress state becomes (assuming 2’ is a principal direction)

EX0 aq
g€ =0¢ ey p =0 (4.30)
Yx'y0 0

where a; and a, are the expansion coefficients referred to the x and )’ axes,
respectively.
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To obtain strain components in the x, y system it is necessary to use the strain
transformation

g =T'g, (4.31)

where T is again given by Eq. (4.23). Thus, g can be simply evaluated. It will be noted
that the shear component of strain is no longer equal to zero in the x, y coordinates.

4.2.5 The stiffness matrix

The stiffness matrix of the element ijm is defined from the general relationship (2.13)
with the coefficients

K = JB,TDB,zdx dy (4.32)

where ¢ is the thickness of the element and the integration is taken over the area of the
triangle. If the thickness of the element is assumed to be constant, an assumption con-
vergent to the truth as the size of elements decreases, then, as neither of the matrices
contains x or y we have simply

K¢ = B/DB,/A (4.33)

where A is the area of the triangle [already defined by Eq. (4.5)]. This form is now
sufficiently explicit for computation with the actual matrix operations being left to
the computer.

4.2.6 Nodal forces due to initial strain

These are given directly by the expression Eq. (2.13b) which, on performing the inte-
gration, becomes

(f)s, = —B/DgyrA,  ete. (4.34)

These ‘initial strain’ forces contribute to the nodes of an element in an unequal
manner and require precise evaluation. Similar expressions are derived for initial
stress forces.

4.2.7 Distributed body forces

In the general case of plane stress or strain each element of unit area in the xy plane is

subject to forces
()
by

in the direction of the appropriate axes.
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Again, by Eq. (2.13D), the contribution of such forces to those at each node is given by

¢ = —JNi{bx}dxdy
b,

i = —{ Zx } JN,- dxdy, etc. (4.35)
)
if the body forces b, and b, are constant. As N, is not constant the integration has to
be carried out explicitly. Some general integration formulae for a triangle are given in
Appendix D.
In this special case the calculation will be simplified if the origin of coordinates is
taken at the centroid of the element. Now

dexdy: Jydxdy =0

or by Eq. (4.7),

and on using Eq. (4.8)

e b, a;dxdy b, a _ b, é
) e

by relations noted on page 89.
Explicitly, for the whole element

b,
f¢ by
£ f:’ bl A 4.37
- J - by ? ( . )
f€
m bx
b

y
which means simply that the total forces acting in the x and y directions due to the
body forces are distributed to the nodes in three equal parts. This fact corresponds
with physical intuition, and was often assumed implicitly.

4.2.8 Body force potential

In many cases the body forces are defined in terms of a body force potential ¢ as
0¢ b 09

Ox T Oy
and this potential, rather than the values of b, and b, is known throughout the region
and is specified at nodal points. If ¢¢ lists the three values of the potential associated
with the nodes of the element, i.e.,

b, =

(4.38)

o =19 (4.39)
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and has to correspond with constant values of b, and b,, ¢ must vary linearly within
the element. The ‘shape function’ of its variation will obviously be given by a pro-
cedure identical to that used in deriving Eqs (4.4)—(4.6), and yields

(b = [Ni7N]'7 m]¢£’ (440)
Thus,
_ 9 _ ¢
bx - Ax - [biabjabm] 2A
and
_ 0 ¥
y _8_)/ - _[Civcjacm] A (441)

The vector of nodal forces due to the body force potential will now replace Eq. (4.37)
by

-bm bj7 bm_
Ci, C/a Cm
1|b; by, b
gl | (4
i o m
bia ij bm
L Cis C/: Cm

4.2.9 Evaluation of stresses

The derived formulae enable the full stiffness matrix of the structure to be assembled,
and a solution for displacements to be obtained.

The stress matrix given in general terms in Eq. (2.16) is obtained by the appropriate
substitutions for each element.

The stresses are, by the basic assumption, constant within the element. It is usual to
assign these to the centroid of the element, and in most of the examples in this chapter
this procedure is followed. An alternative consists of obtaining stress values at the
nodes by averaging the values in the adjacent elements. Some ‘weighting’ procedures
have been used in this context on an empirical basis but their advantage appears
small.

It is also usual to calculate the principal stresses and their directions for every
element. In Chapter 14 we shall return to the problem of stress recovery and show
that better procedures of stress recovery exist.®’

4.3 Examples — an assessment of performance

There is no doubt that the solution to plane elasticity problems as formulated in
Sec. 4.2 is, in the limit of subdivision, an exact solution. Indeed at any stage of a



98 Plane stress and plane strain

finite subdivision it is an approximate solution as is, say, a Fourier series solution with
a limited number of terms.

As explained in Chapter 2, the total strain energy obtained during any stage of
approximation will be below the true strain energy of the exact solution. In practice
it will mean that the displacements, and hence also the stresses, will be underestimated
by the approximation in its general picture. However, it must be emphasized that this
is not necessarily true at every point of the continuum individually; hence the value of
such a bound in practice is not great.

What is important for the engineer to know is the order of accuracy achievable in
typical problems with a certain fineness of element subdivision. In any particular case
the error can be assessed by comparison with known, exact, solutions or by a study of
the convergence, using two or more stages of subdivision.

With the development of experience the engineer can assess a priori the order of
approximation that will be involved in a specific problem tackled with a given element
subdivision. Some of this experience will perhaps be conveyed by the examples
considered in this book.

In the first place attention will be focused on some simple problems for which exact
solutions are available.

4.3.1 Uniform stress field

If the exact solution is in fact that of a uniform stress field then, whatever the element
subdivision, the finite element solution will coincide exactly with the exact one. This is
an obvious corollary of the formulation; nevertheless it is useful as a first check of
written computer programs.

4.3.2 Linearly varying stress field

Here, obviously, the basic assumption of constant stress within each element means
that the solution will be approximate only. In Fig. 4.4 a simple example of a beam
subject to constant bending moment is shown with a fairly coarse subdivision. It is
readily seen that the axial (o)) stress given by the element ‘straddles’ the exact
values and, in fact, if the constant stress values are associated with centroids of the
elements and plotted, the best ‘fit’ line represents the exact stresses.

The horizontal and shear stress components differ again from the exact values
(which are simply zero). Again, however, it will be noted that they oscillate by
equal, small amounts around the exact values.

At internal nodes, if the average of the stresses of surrounding elements is taken it
will be found that the exact stresses are very closely represented. The average at
external faces is not, however, so good. The overall improvement in representing
the stresses by nodal averages, as shown in Fig. 4.4, is often used in practice for
contour plots. However, we shall show in Chapter 14 a method of recovery which
gives much improved values at both interior and boundary points.
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QO Value at
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Exact

(oy = Ty = 0)
v =0.15

Fig. 4.4 Pure bending of a beam solved by a coarse subdivision into elements of triangular shape. (Values of
0y, 0y, and 7, listed in that order)

4.3.3 Stress concentration

A more realistic test problem is shown in Figs 4.5 and 4.6. Here the flow of stress
around a circular hole in an isotropic and in an anisotropic stratified material is con-
sidered when the stress conditions are uniform.® A graded division into elements is
used to allow a more detailed study in the region where high stress gradients are
expected. The accuracy achievable can be assessed from Fig. 4.6 where some of the
results are compared against exact solutions.*”’

In later chapters we shall see that even more accurate answers can be obtained with
the use of more elaborate elements; however, the principles of the analysis remain
identical.
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Fig. 4.5 A circular hole in a uniform stress field: (a) isotropic material; (b) stratified (orthotropic) material;
E=E=16=E=31=011=00G,=042

Exact solution for infinite plate
o Finite element solution

-1.0

(a) Isotropic (b) Orthotropic

Fig. 4.6 Comparison of theoretical and finite element results for cases (a) and (b) of Fig. 4.5.

4.4 Some practical applications

Obviously, the practical applications of the method are limitless, and the finite
element method has superseded experimental technique for plane problems because
of its high accuracy, low cost, and versatility. The ease of treatment of material
anisotropy, thermal stresses, or body force problems add to its advantages.

A few examples of actual early applications of the finite element method to complex
problems of engineering practice will now be given.



A
N R
| X
T <~ 5
g $:f$_’ ar
T *‘\;‘\. L H\} <—$_> 1004_¢_>
| NG o S <
S | Wt e <4
' ’(x ;:;5')(”%‘
% hl
,C : %ﬂ: %%5::‘\3“
! R 0
B I A |
< - AA % 48
A | e ‘JI”V <4>  <4>100
' o "4/%/7
| 5L A e
Dy Gl :
+Ar~/‘”t§~ <4 <4
. > X

/ |

Restrained in y direction from movement

Fig. 4.7 A reinforced opening in a plate. Uniform stress field at a distance from opening g, = 100, o, = 50. Thickness of plate regions A, B, and C is in the ratio of
1:3:23.



102 Plane stress and plane strain

4.4.1 Stress flow around a reinforced opening (Fig. 4.7)

In steel pressure vessels or aircraft structures, openings have to be introduced in the
stressed skin. The penetrating duct itself provides some reinforcement round the edge
and, in addition, the skin itself is increased in thickness to reduce the stresses due to
concentration effects.

Analysis of such problems treated as cases of plane stress present no difficulties.
The elements are chosen so as to follow the thickness variation, and appropriate
values of this are assigned.

The narrow band of thick material near the edge can be represented either by
special bar-type elements, or by very thin triangular elements of the usual type, to
which appropriate thickness is assigned. The latter procedure was used in the problem
shown in Fig. 4.7 which gives some of the resulting stresses near the opening itself.
The fairly large extent of the region introduced in the analysis and the grading of
the mesh should be noted.

4.4.2 An anisotropic valley subject to techtonic stress® (Fig. 4.8)

A symmetrical valley subject to a uniform horizontal stress is considered. The
material is stratified, and hence is ‘transversely isotropic’, and the direction of
strata varies from point to point.

The stress plot shows the tensile region that develops. This phenomenon is of
considerable interest to geologists and engineers concerned with rock mechanics.
(See reference 10 for additional applications on this topic.)

4.4.3 A dam subject to external and internal water pressures'’'?

A buttress dam on a somewhat complex rock foundation is shown in Fig. 4.9 and
analysed. This dam (completed in 1964) is of particular interest as it is the first to
which the finite element method was applied during the design stage. The hetero-
geneous foundation region is subject to plane strain conditions while the dam itself
is considered in a state of plane stress of variable thickness.

With external and gravity loading no special problems of analysis arise.

When pore pressures are considered, the situation, however, requires perhaps some
explanation.

It is well known that in a porous material the water pressure is transmitted to the
structure as a body force of magnitude

op 4
b, = o by, = 2y (4.43)
and that now the external pressure need not be considered.

The pore pressure p is, in fact, now a body force potential, as defined in Eq. (4.38).
Figure 4.9 shows the element subdivision of the region and the outline of the dam.
Figure 4.10(a) and (b) shows the stresses resulting from gravity (applied to the dam
only) and due to water pressure assumed to be acting as an external load or, alternatively,
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Fig. 4.8 Avalleywith curved strata subject to a horizontal tectonic stress (plane strain 170 nodes, 298 elements).

as an internal pore pressure. Both solutions indicate large tensile regions, but the increase

u = 0 Region analysed

of stresses due to the second assumption is important.
The stresses calculated here are the so-called ‘effective’ stresses. These represent the

forces transmitted between the solid particles and are defined in terms of the total
stresses ¢ and the pore pressures p by
¢ =c+mp

i.e., simply by removing the hydrostatic pressure component from the total stress.

mT:

[1,1,0]
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(4.44)
10,13

The effective stress is of particular importance in the mechanics of porous media
such as those that occur in the study of soils, rocks, or concrete. The basic assumption
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Fig. 4.9 Stress analysis of a buttress dam. A plane stress condition is assumed in the dam and plane strain in
the foundation. (a) The buttress section analysed. (b) Extent of foundation considered and division into finite
elements.

in deriving the body forces of Eq. (4.43) is that only the effective stress is of any
importance in deforming the solid phase. This leads immediately to another
possibility of formulation.'"* If we examine the equilibrium conditions of Eq. (2.10)
we note that this is written in terms of total stresses. Writing the constitutive relation,
Eq. (2.5), in terms of effective stresses, i.e.,

o =D'(z—g) + o (4.45)

and substituting into the equilibrium equation (2.10) we find that Eq. (2.12) is again
obtained, with the stiffness matrix using the matrix D’ and the force terms of
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Eq. (2.13b) being augmented by an additional force
— JVU B 'mp d(vol) (4.46)
or, if p is interpolated by shape functions N;, the force becomes
— JW B 'mN’ d(vol)p* (4.47)

This alternative form of introducing pore pressure effects allows a discontinuous
interpolation of p to be used [as in Eq. (4.46) no derivatives occur] and this is now
frequently used in practice.

4.4.4 Cracking

The tensile stresses in the previous example will doubtless cause the rock to crack. If a
stable situation can develop when such a crack spreads then the dam can be
considered safe.

Cracks can be introduced very simply into the analysis by assigning zero elasticity
values to chosen clements. An analysis with a wide cracked wedge is shown in
Fig. 4.11, where it can be seen that with the extent of the crack assumed no tension
within the dam body develops.
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Fig. 4.11 Stressesin a buttress dam. The introduction of a ‘crack’ modifies the stress distribution [same load-
ing as Fig. 4.10(b)].
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Fig. 4.14 An underground power station. Mesh used in analysis.
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A more elaborate procedure for allowing crack propagation and resulting stress
redistribution can be developed (see Volume 2).

4.4.5 Thermal stresses

As an example of thermal stress computation the same dam is shown under simple
temperature distribution assumptions. Results of this analysis are given in Fig. 4.12.

4.4.6 Gravity dams

A buttress dam is a natural example for the application of finite element methods.
Other types, such as gravity dams with or without piers and so on, can also be
simply treated. Figure 4.13 shows an analysis of a large dam with piers and crest gates.

In this case the approximation of assuming a two-dimensional treatment in the
vicinity of the abrupt change of section, i.e., where the piers join the main body of
the dam, is clearly involved, but this leads to localized errors only.

It is important to note here how, in a single solution, the grading of element size is
used to study concentration of stress at the cable anchorages, the general stress flow in
the dam, and the foundation behaviour. The linear ratio of size of largest to smallest
elements is of the order of 30 to 1 (the largest elements occurring in the foundation are
not shown in the figure).

4.4.7 Underground power station

This last example, illustrated in Figs 4.14 and 4.15, shows an interesting application.
Here principal stresses are plotted automatically. In this analysis many different
components of 6, the initial stress, were used due to uncertainty of knowledge
about geological conditions. The rapid solution and plot of many results enabled
the limits within which stresses vary to be found and an engineering decision arrived
at. In this example, the exterior boundaries were taken far enough and ‘fixed’
(u=v=0). However, a better treatment could be made using infinite elements as
described in Sec. 9.13.

4.5 Special treatment of plane strain with an
incompressible material

It will have been noted that the relationship (4.16) defining the elasticity matrix D for
an isotropic material breaks down when Poisson’s ratio reaches a value of 0.5 as the
factor in parentheses becomes infinite. A simple way of side-stepping this difficulty is
to use values of Poisson’s ratio approximating to 0.5 but not equal to it. Experience
shows, however, that if this is done the solution deteriorates unless special formula-
tions such as those discussed in Chapter 12 are used.
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4.6 Concluding remark

In subsequent chapters, we shall introduce elements which give much greater
accuracy for the same number of degrees of freedom in a particular problem. This
has led to the belief that the simple triangle used here is completely superseded.
In recent years, however, its very simplicity has led to its revival in practical use
in combination with the error estimation and adaptive procedures discussed in
Chapters 14 and 15.
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Axisymmetric stress analysis

5.1 Introduction

The problem of stress distribution in bodies of revolution (axisymmetric solids) under
axisymmetric loading is of considerable practical interest. The mathematical prob-
lems presented are very similar to those of plane stress and plane strain as, once
again, the situation is two dimensional.'? By symmetry, the two components of
displacements in any plane section of the body along its axis of symmetry define
completely the state of strain and, therefore, the state of stress. Such a cross-section
is shown in Fig. 5.1. If r and z denote respectively the radial and axial coordinates of a
point, with u and v being the corresponding displacements, it can readily be seen that
precisely the same displacement functions as those used in Chapter 4 can be used to
define the displacements within the triangular element i, j, m shown.

The volume of material associated with an ‘element’ is now that of a body of
revolution indicated in Fig. 5.1, and all integrations have to be referred to this.

The triangular element is again used mainly for illustrative purposes, the principles
developed being completely general.

In plane stress or strain problems it was shown that internal work was associated
with three strain components in the coordinate plane, the stress component normal to
this plane not being involved due to zero values of either the stress or the strain.

In the axisymmetrical situation any radial displacement automatically induces a strain
in the circumferential direction, and as the stresses in this direction are certainly non-zero,
this fourth component of strain and of the associated stress has to be considered. Here lies
the essential difference in the treatment of the axisymmetric situation.

The reader will find the algebra involved in this chapter somewhat more tedious
than that in the previous one but, essentially, identical operations are once again
involved, following the general formulation of Chapter 2.

5.2 Element characteristics

5.2.1 Displacement function

Using the triangular shape of element (Fig. 5.1) with the nodes i, j, m numbered in the
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Fig. 5.1 Element of an axisymmetric solid.

anticlockwise sense, we define the nodal displacement by its two components as

ot .

and the element displacements by the vector

am

Obviously, as in Sec. 4.2.1, a linear polynomial can be used to define uniquely the
displacements within the element. As the algebra involved is identical to that of
Chapter 4 it will not be repeated here. The displacement field is now given again by
Eq. (4.7):

u= { ”} = [IN,,IN;, IN,, Ja’ (5.3)
v

with
a;+bir+c¢;z
2A ’

and I a two-by-two identity matrix. In the above

N, = etc.

a; = TiZy — FyZj

Ci =T, — I’j

etc., in cyclic order. Once again A is the area of the element triangle.
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5.2.2 Strain (total)

As already mentioned, four components of strain have now to be considered. These
are, in fact, all the non-zero strain components possible in an axisymmetric deforma-
tion. Figure 5.2 illustrates and defines these strains and the associated stresses.

The strain vector defined below lists the strain components involved and defines
them in terms of the displacements of a point. The expressions involved are almost
self-evident and will not be derived here. The interested reader can consult a standard
elasticity textbook® for the full derivation. We thus have

ou
or
g, a
e={ 7 L= 0z = Su (5.5)
€p u
.
P)/rz %—’—@
0z  Or

Using the displacement functions defined by Eqs (5.3) and (5.4) we have

¢=Ba’= [B,—, Bj7 Bm]ae

in which
FON, -
or’ 0 b, 0
0, aaN d 0, ¢
_ z _
B, = N, . = @+bi+%, ol etc. (5.6)
r’ r
aN,' 8N, Ci, bi
Loz’ Or ]
AZ

g, (0,)

Fig. 5.2 Strains and stresses involved in the analysis of axisymmetric solids.
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With the B matrix now involving the coordinates r and z, the strains are no longer
constant within an element as in the plane stress or strain case. This strain variation is
due to the ¢4 term. If the imposed nodal displacements are such that « is proportional
to r then indeed the strains will all be constant. In addition, constant ¢, and ~,, strains
may be deduced from a linear v displacement. This is the only state of displacement
coincident with a constant strain condition and it is clear that the displacement
function satisfies the basic criterion of Chapter 2.

5.2.3 Initial strain (thermal strain)

In general, four independent components of the initial strain vector can be
envisaged:

&) = (57)

Although this can, in general, be variable within the element, it will be convenient to
take the initial strain as constant there.

The most frequently encountered case of initial strain will be that due to thermal
expansion. For an isotropic material we shall have then

g = ab’ = af’m (5.8)

1
|
1
0

where 6¢ is the average temperature rise in an element and « is the coefficient of
thermal expansion.

The general case of anisotropy need not be considered since axial symmetry would
be impossible to achieve under such circumstances. A case of some interest in practice
is that of a ‘stratified” material, similar to the one discussed in Chapter 4, in which the
plane of isotropy is normal to the axis of symmetry (Fig. 5.3). Here, two different
expansion coefficients are possible: one in the axial direction «. and another in the
plane normal to it, a,.

Now the initial thermal strain becomes

(5.9)

80:08

Practical cases of such ‘stratified’ anisotropy often arise in laminated or fibreglass
construction of machine components.
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Fig. 5.3 Axisymmetrically stratified material.

5.2.4 Elasticity matrix

The elasticity matrix D linking the strains € and the stresses ¢ in the standard form
[Eq. (2.5)],

c= =D(s —g)) + 09

needs now to be derived.
The anisotropic ‘stratified’ material will be considered first, as the isotropic case can
be simply presented as a special form.

Anisotropic, stratified, material (Fig. 5.3)
With the z-axis representing the normal to the planes of stratification we can rewrite
Eqs (4.19) (again ignoring the initial strains and stresses for convenience) as

I 0, 1o, V0 o o, 0. 1oy
" E E E - E E E
1 2 1 2 2 2 (5 10)
Vo, V0 0 Trz '

E B E TG
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Writing again
E, G,
—=mn —=m
E, ’ D,

we have on solving for the stresses, that

and  d=(14uv)(1 — v —2m3)

n(1 —nv3), nn(1+wv), n(y +nv3), 0

E _ 2
p-E b=vi o mallrw), (5.11)
d n(l - nu2)7
sym. , md
Isotropic material
For an isotropic material we can obtain the D matrix by taking
E] = Ez =F or n=1
and
V=V =V
and using the well-known relationship between isotropic elastic constants
G_G_ 1
E, E 7 2(1+v)
Substituting in Eq. (5.11) we now have
1 —v, v, v, 0
E v, 1 —v, v, 0
D=—— 5.12
(I+v)(1=2v) | v, v, l—v, 0 (5:12)
0, 0, 0, (1-2v)/2

5.2.5 The stiffness matrix

The stiffness matrix of the element ijm can now be computed according to the general
relationship (2.13). Remembering that the volume integral has to be taken over the
whole ring of material we have

K = 27TJB,.TDB,rdrdz (5.13)

with B given by Eq. (5.6) and D by either Eq. (5.11) or Eq. (5.12), depending on the
material.

The integration cannot now be performed as simply as was the case in the plane
stress problem because the B matrix depends on the coordinates. Two possibilities
exist: the first is that of numerical integration and the second of an explicit multiplica-
tion and term-by-term integration.

The simplest numerical integration procedure is to evaluate all quantities for a cen-
troidal point
Fit T+ Ty and 222i+z_/+zm

3 3

f:
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In this case we have simply as a first approximation
K{; = 27B/ DB;7A (5.14)

with A being the triangle area and B the value of the strain-displacement matrix at the
centroidal point.

More elaborate numerical integration schemes could be used by evaluating the inte-
grand at several points of the triangle. Such methods will be discussed in detail in
Chapter 9. However, it can be shown that if the numerical integration is of such an
order that the volume of the element is exactly determined by it, then in the limit
of subdivision, the solution will converge to the exact answer.* The ‘one point’ inte-
gration suggested here is of this type, as it is well known that the volume of a body of
revolution is given exactly by the product of the area and the path swept around by its
centroid. With the simple triangular element used here a fairly fine subdivision is in
any case needed for accuracy and most practical programs use the simple approxima-
tion which, surprisingly perhaps, is in fact usually superior to exact integration (see
Chapter 10). One reason for this is the occurrence of logarithmic terms in the exact
formulation. These involve ratios of the type r;/r,, and, when the element is at a
large distance from the axis, such terms tend to unity and evaluation of the logarithm
is inaccurate.

5.2.6 External nodal forces

In the case of the two-dimensional problems of the previous chapter the question of
assigning of the external loads was so obvious as not to need further comment. In the
present case, however, it is important to realize that the nodal forces represent a com-
bined effect of the force acting along the whole circumference of the circle forming the
element ‘node’. This point was already brought out in the integration of the expres-
sions for the stiffness of an element, such integrations being conducted over the
whole ring.

Thus, if R represents the radial component of force per unit length of the circum-
ference of a node at a radius r, the external ‘force’ which will have to be introduced in
the computation is

27rR
In the axial direction we shall, similarly, have
A

to represent the combined effect of axial forces.

5.2.7 Nodal forces due to initial strain

Again, by Eq. (2.13),

= —ZWJBTDsordr dz (5.15)
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or noting that g, is constant,
f¢ = —2II ( JB}rdr dz> Dg, (5.16)

The integration should be performed in a similar manner to that used in the determi-
nation of the stiffness.

It will readily be seen that, again, an approximate expression using a centroidal
value is

¢ = —27B DgyrA (5.17)

Initial stress forces are treated in an identical manner.

5.2.8 Distributed body forces

Distributed body forces, such as those due to gravity (if acting along the z-axis), cen-
trifugal force in rotating machine parts, or pore pressure, often occur in axisymmetric

problems.
b= {Zr } (5.18)

Let such forces be denoted by
per unit volume of material in the directions of r and z respectively. By the general
equation (2.13) we have

b,
¢ = —27TJIN,{ b, }rdrdz (5.19)
Using a coordinate shift similar to that of Sec. 4.2.7 it is easy to show that the first
approximation, if the body forces are constant, results in

b, A
£ = 2y L2 2
; 77{ b } 3 (5.20)

z

Although this is not exact the error term will be found to decrease with reduction of
element size and, as it is also self-balancing, it will not introduce inaccuracies. Indeed,
as will be shown in Chapter 10, the convergence rate is maintained.
If the body forces are given by a potential similar to that defined in Sec. 4.2.8, i.e.,
0 0
6, _ 09

"o T

and if this potential is defined linearly by its nodal values, an expression equivalent to
Eq. (4.42) can again be determined.

In many problems the body forces vary proportionately to r. For example in rotat-
ing machinery we have centrifugal forces

b, = Wpr (5.22)

where w is the angular velocity and p the density of the material.

b, = (5.21)
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A
A A
20 PN
A
— Exact
A (a)
1.0 x  (b)
o (c)
Gg
0
Gr
-1.0

| Axis of revolution
.

Stresses on section AA

(G (b) (©)

Fig. 5.4 Stresses in a sphere subject to an internal pressure (Poisson’s ratio v = 0.3: (a) triangular mesh - cen-
troidal values; (b) triangular mesh — nodal averages; (c) quadrilateral mesh obtained by averaging adjacent
triangles.
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5.2.9 Evaluation of stresses

The stresses now vary throughout the element, as will be appreciated from Eqs (4.5)
and (4.6). It is convenient now to evaluate the average stress at the centroid of the
element. The stress matrix resulting from Eqs (5.6) and (2.3) gives there, as usual,

6'6 = DBa" — DS() + () (523)

It will be found that a certain amount of oscillation of stress values between
elements occurs and better approximation can be achieved by averaging nodal
stresses or recovery procedures of Chapter 14.

5.3 Some illustrative examples

Test problems such as those of a cylinder under constant axial or radial stress give, as
indeed would be expected, solutions which correspond to exact ones. This is again an
obvious corollary of the ability of the displacement function to reproduce constant
strain conditions.

A problem for which an exact solution is available and in which almost linear stress
gradients occur is that of a sphere subject to internal pressure. Figure 5.4(a) shows the
centroidal stresses obtained using rather a coarse mesh, and the stress oscillation
around the exact values should be noted. (This oscillation becomes even more pro-
nounced at larger values of Poisson’s ratio although the exact solution is independent
of it.) In Fig. 5.4(b) the very much better approximation obtained by averaging the
stresses at nodal points is shown, and in Fig. 5.4(c) a further improvement is given
by element averaging. The close agreement with the exact solution even for the
very coarse subdivision used here shows the accuracy achievable. The displacements
at nodes compared with the exact solution are given in Fig. 5.5.

Computed value 5.27
Exact value 5.19

'
.
'
|
Axis of revolution

Computed value 6.30
Exact value 6.34

Fig. 5.5 Displacements of internal and external surfaces of sphere under loading of Fig. 5.4.
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(@ A Triangular average ()

O Quadrilateral average

Fig. 5.6 Sphere subject to steady-state heat flow (100 °C internal temperature, 0°C external temperature):
(a) temperature and stress variation on radial section; (b) ‘quadrilateral’ averages.

Axis of revolution

Internal
pressure p
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@
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2p f
'

Stress scale

(arrow for f
tension)

Fig. 5.7 Areactor pressure vessel. (a) ‘Quadrilateral’ mesh used in analysis; this was generated automatically
by a computer. (b) Stresses due to a uniform internal pressure (automatic computer plot). Solution based on
quadrilateral averages. (Poisson’s ratio v = 0.15).




Early practical applications

In Fig. 5.6 thermal stresses in the same sphere are computed for the steady-state
temperature variation shown. Again, excellent accuracy is demonstrated by compar-
ison with the exact solution.

5.4 Early practical applications

Two examples of practical applications of the programs available for axisymmetrical
stress distribution are given here.

5.4.1 A prestressed concrete reactor pressure vessel

Figure 5.7 shows the stress distribution in a relatively simple prototype pressure
vessel. Due to symmetry only one-half of the vessel is analysed, the results given
here referring to the components of stress due to internal pressure.

In Fig. 5.8 contours of equal major principal stresses caused by temperature are
shown. The thermal state is due to steady-state heat conduction and was itself
found by the finite element method in a way described in Chapter 7.

Axis of
| symmetry (@

(Zero contour
coincides with
boundary)

Fig. 5.8 A reactor pressure vessel. Thermal stresses due to steady-state heat conduction. Contours of major
principal stress in pounds per square inch. (Interior temperature 400°C, exterior temperature 0°C,
a=5x10"%/°C. £=258x 10°Ib/in?, v = 0.15).

123



124  Axisymmetric stress analysis

5.4.2 Foundation pile

Figure 5.9 shows the stress distribution around a foundation pile penetrating two
different strata. This non-homogeneous problem presents no difficulties and is treated
by the standard approach given in this chapter in which the ‘quadrilateral’ elements
shown are assemblies of two triangles and the results are averaged.

5.5 Non-symmetrical loading

The method described in the present chapter can be extended to deal with non-
symmetrical loading. If the circumferential loading variation is expressed in circular
harmonics then it is still possible to focus attention on one axial section although the
nodal degrees of freedom are now increased to three.

Details of this process are described in references 5 and 6 and in Chapter 9 of
Volume 2.

5.6 Axisymmetry — plane strain and plane stress

In the previous chapter we noted that plane stress and strain analysis was done in
terms of three stress and strain components and, indeed, both cases could be generally
incorporated in a single program with an indicator changing appropriate constants in
the matrix D. Doing this loses track of the 0. component in the plane strain case
which has to be separately evaluated. Further, special expressions [viz. Eq. 4.28]
had to be used to introduce initial strains. This is inconvenient (especially when
non-linear constitutive laws are used), and an alternative of writing the plane strain
case in terms of four stress—strain components as a special case of axisymmetric ana-
lysis is highly recommended.

If the axisymmetric strain definition of Eq. (5.5) is examined, we note that r = co
gives €y = 0 and plane strain conditions are obtained. Thus, if we ignore the terms
in B associated with gy, replace the coordinates

rand z by xand y
and further change the volume of integration
27r to 1

the plane strain formulation becomes available from the axisymmetric plane strain
directly.

Plane stress conditions can similarly be incorporated, requiring in addition
substitution of the axisymmetric D matrix by Eqs (4.13) or (4.19) augmented by
an appropriate zero row and column. Thus, at the cost of additional storage of
the fourth stress and strain component, all the cases discussed can be incorporated
in a single format.
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Fig. 5.9 (a) A pile in stratified soil. Irregular mesh and data for the problem. (b) A pile in stratified soil. Plot of
vertical stresses on horizontal sections. Solution also plotted for Boussinesq problem obtained by making
Ey = E, = Egie, and this is compared with exact values.
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Three-dimensional stress analysis

6.1 Introduction

It will have become obvious to the reader by this stage of the book that there is but one
further step to apply the general finite element procedure to fully three-dimensional
problems of stress analysis. Such problems embrace clearly all the practical cases,
though for some, the various two-dimensional approximations give an adequate
and more economical ‘model’.

The simplest two-dimensional continuum element is a triangle. In three dimensions
its equivalent is a tetrahedron, an element with four nodal cornerst, and this chapter
will deal with the basic formulation of such an element. Immediately, a difficulty not
encountered previously is presented. It is one of ordering of the nodal numbers and, in
fact, of a suitable representation of a body divided into such elements.

The first suggestions for the use of the simple tetrahedral element appear to be those
of Gallagher e al.' and Melosh.” Argyris** elaborated further on the theme and
Rashid and Rockenhauser’ were the first to apply three-dimensional analysis to
realistic problems.

It is immediately obvious, however, that the number of simple tetrahedral elements
which has to be used to achieve a given degree of accuracy has to be very large. This
will result in very large numbers of simultancous equations in practical problems,
which may place a severe limitation on the use of the method in practice. Further,
the bandwidth of the resulting equation system becomes large, leading to increased
use of iterative solution methods.

To realize the order of magnitude of the problems presented let us assume that the
accuracy of a triangle in two-dimensional analysis is comparable to that of a tetra-
hedron in three dimensions. If an adequate stress analysis of a square, two-
dimensional region requires a mesh of some 20 x 20 = 400 nodes, the total number
of simultaneous equations is around 800 given two displacement variables at a
node. (This is a fairly realistic figure.) The bandwidth of the matrix involves 20
nodes (Chapter 20), i.e., some 40 variables.

T The simplest polygonal shape which permits the approximation of the domain is known as the simplex.
Thus a triangular and tetrahedral element constitute the simplex in two and three dimensions, respectively.
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An equivalent three-dimensional region is that of a cube with 20 x 20 x 20 =
8000 nodes. The total number of simultaneous equations is now some 24000 as
three displacement variables have to be specified. Further, the bandwidth now
involves an interconnection of some 20 x 20 = 400 nodes or 1200 variables.

Given that with direct solution techniques the computation effort is roughly
proportional to the number of equations and to the square of the bandwidth, the
magnitude of the problems can be appreciated. It is not surprising therefore that
efforts to improve accuracy by use of complex elements with many degrees of freedom
have been strongest in the area of three-dimensional analysis.® !® The development
and practical application of such elements will be described in the following chapters.
However, the presentation of this chapter gives all the necessary ingredients of the
formulation for three-dimensional elastic problems and so follows directly from the
previous ones. Extension to more elaborate elements will be self-evident.

6.2 Tetrahedral element characteristics

6.2.1 Displacement functions

Figure 6.1 illustrates a tetrahedral element i, j, m, p in space defined by x, y, and z
coordinates.

X

Fig. 6.1 A tetrahedral volume. (Always use a consistent order of numbering, e.g., for p count the other nodes
in an anticlockwise order as viewed from p, giving the element as jjmp, etc.).
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The state of displacement of a point is defined by three displacement components,
u, v, and w, in the directions of the three coordinates x, y, and z. Thus

u=< v (6.1)

Just as in a plane triangle where a linear variation of a quantity was defined by its
three nodal values, here a linear variation will be defined by the four nodal values.
In analogy to Eq. (4.3) we can write, for instance,

U=qa;+ ax—+ a3y + auz (6.2)
Equating the values of the displacement at the nodes we have four equations of the
type
u; = aq + aoX; + azy; + ouz;, etc. (6.3)
from which «; to a4 can be evaluated.

Again, it is possible to write this solution in a form similar to that of Eq. (4.5) by
using a determinant form, i.c.,

u :é [(a; + bix 4 ¢;y + diz)u; + (a; + bx + ¢;y + diz)u;
+ (am + bypx + ¢y + dp2)uy, + (a, + byx + ¢,y + dyz)u,) (6.4)

with

X Vi Z

Xpo Vi E

1

1
6V = det
1 xﬂ] ym Zﬂl
1

(6.5a)

p Y %

in which, incidentally, the value V represents the volume of the tetrahedron. By
expanding the other relevant determinants into their cofactors we have

XpoYioE Loy
a; =det| X, Vm Zm by =—det|1 y, z,
Xpo Yoo Ep Ly 2
o 1oz ooy 1

¢; = —det|x,, 1 z, d; = —det|x,, yn 1 (6.5b)
x, 1 z X, ¥, 1

with the other constants defined by cyclic interchange of the subscripts in the order i,
j, m, p.

The ordering of nodal numbers i, j, m, p must follow a ‘right-hand’ rule obvious
from Fig. 6.1. In this the first three nodes are numbered in an anticlockwise
manner when viewed from the last one.
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The element displacement is defined by the 12 displacement components of the

nodes as
a;
R B
am
a,,
with
U;
a =< v etc.

We can write the displacements of an arbitrary point as
u= [IZV[7 IN], INm, INp]ae = Nae
with shape functions defined as

ai +bix + ¢y + diz
4
and I being a three by three identity matrix.

N; = , etc.

(6.6)

(6.7)

(6.8)

Once again the displacement functions used will obviously satisfy continuity
requirements on interfaces between various elements. This fact is a direct corollary

of the linear nature of the variation of displacement.

6.2.2 Strain matrix

Six strain components are relevant in full three-dimensional analysis. The strain

matrix can now be defined as

Ou

Ox

ov

€y 8_y

Ey ow

€2 z

E= Yev - ﬁua ov = Su

Xy — 4 —
Yy Jdy Ox
’YZ‘C @ + %
’ 0z Oy
ow Ou
ox oz

following the standard notation of Timoshenko’s elasticity text.'! Using Eqs (6.4)—

(6.8) it is an easy matter to verify that

¢ =SNa‘ = Ba° = [B;,B;,B,,,B,]a°

(6.10)
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in which
- aN -
: 0 0
6x ) )
ON;
0 ! 0 rp. T
) oy’ b, 0, 0
. 0, Ciy 0
0, 0, ON;
0z 110, 0, &
B, = =— (6.11)
ON; ON; 0 6V |c, by 0
' ox’ 0, dy ¢
0 aNl 8Nl L di Ov bi d
’ 0z’ Oy
L 9z’ " Ox
with other submatrices obtained in a similar manner simply by interchange of
subscripts.

Initial strains, such as those due to thermal expansion, can be written in the usual
way as a six-component vector which, for example, in an isotropic thermal expansion
is simply

g = o’ = af‘m (6.12)

S O = =

with « being the expansion coefficient and 6° the average element temperature rise.

6.2.3 Elasticity matrix

With complete anisotropy the D matrix relating the six stress components to the strain
components can contain 21 independent constants (see Sec. 4.2.3).
In general, thus,

0o = - :D(S—S()) "r‘O'() (613)

Txy

e

TZ X

Although no difficulty presents itself in computation when dealing with such
materials, it is convenient to recapitulate here the D matrix for an isotropic material.
This, in terms of the usual elastic constants £ (modulus) and v (Poisson’s ratio),
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can be written as

(1 —v, v, v, 0, 0, 0 T
1 —v, , 0, 0, 0
E 1 —v, 0, 0, 0
) Y
(I+v)(1-2v) (1 -2v)/2, 0, 0
Sym. (1-2v)/2, 0
i (1-20)/2]
(6.14)

6.2.4 Stiffness, stress, and load matrices

The stiffness matrix defined by the general relationship (2.10) can now be explicitly
integrated since the strain and stress components are constant within the element.

The general ij submatrix of the stiffness matrix will be a three by three matrix
defined as

K, =B/DB;V* (6.15)

where V¢ represents the volume of the elementary tetrahedron.
The nodal forces due to the initial strain become, similarly to Eq. (4.34),

f¢ = —B/Dgy V¢ (6.16)

with a similar expression for forces due to initial stresses.

Distributed body forces can once again be expressed in terms of their b, b,, and b,
components or in terms of the body force potential. Not surprisingly, it will once
more be found that if the body forces are constant the nodal components of the
total resultant are distributed in four equal parts [see Eq. (4.36)].

In fact, the similarity with the expressions and results of Chapter 4 is such that
further explicit formulation is unnecessary. The reader will find no difficulty in repeat-
ing the various steps needed for the formulation of a computer program.

—
/
[~ S ||
L —]
/
~ —|
L —] I
—
— | — L/
\_ PN
\/__/

Fig. 6.2 A systematic way of dividing a three-dimensional object into ‘brick’-type elements.
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(b)

Fig. 6.3 Composite element with eight nodes and its subdivision into five tetrahedra by alternatives (a) or (b).
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6.3 Composite elements with eight nodes

The division of a space volume into individual tetrahedra sometimes presents difficul-
ties of visualization and could easily lead to errors in nodal numbering, etc., unless a
fully automatic code is available. A more convenient subdivision of space is into
eight-cornered brick elements (bricks being the natural way to build a universe!).
By sectioning a three-dimensional body parallel sections can be drawn and, each
one being subdivided into quadrilaterals, a systematic way of element definition
could be devised as in Fig. 6.2.

Such elements could be assembled automatically from several tetrahedra and the
process of creating these tetrahedra left to a simple logical program. For instance,
Fig. 6.3 shows how a typical brick can be divided into five tetrahedra in two (and
only two) distinct ways. Stresses could well be presented as averages for a whole
brick-like element or as final nodal averages. We shall discuss again a rational
procedure for stress recovery in Chapter 14.

In Fig. 6.4 a more convenient subdivision of a brick into six tetrahedra is shown.
Here obviously the number of alternatives is very great; however (contrary to the

each divided
thus

Fig. 6.4 A systematic way of splitting an eight-cornered brick into six tetrahedra.
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5-element subdivision) diagonals on adjacent faces of elements for a mesh type shown
in Fig. 6.2 can always be made to match. Thus the 6-element subdivision creates a
conforming approximation.

In later chapters it will be seen how the basic bricks can be obtained directly with
more complex types of shape function.

6.4 Examples and concluding remarks

A simple, illustrative example of the application of simple, tetrahedral, elements is
shown in Figs 6.5 and 6.6. Here the well-known Boussinesq problem of an elastic
half-space with a point load is approximated by analysing a cubic volume of space.
Use of symmetry is made to reduce the size of the problem and the boundary
displacements are prescribed in a manner shown in Fig. 6.5.'> As zero displacements
were prescribed at a finite distance below the load a correction obtained from the
exact expression was applied before executing the plots shown in Fig. 6.6. Com-
parison of both stresses and displacement appears reasonable although it will be
appreciated that the division is very coarse. However, even this trivial problem
involved the solution of some 375 equations. More ambitious problems treated
with simple tetrahedra are given in references 5 and 12. Figure 6.7, taken from the
former, illustrates an analysis of a complex pressure vessel. Some 10000 degrees of
freedom are involved in this analysis. In Chapter 8 it will be seen how the use of
complex elements permits a sufficiently accurate analysis to be performed with a
much smaller total number of degrees of freedom for a very similar problem.

R
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u=0onAEHD

}4— 101t *ﬁ v =00n AEFB } symmetry

All other boundaries free

Fig. 6.5 The Boussinesq problem as one of three-dimensional stress analysis.
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Fig. 6.6 The Boussineq problem: (a) vertical stresses (c); (b) vertical displacements (w).
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Fig. 6.7 A nuclear pressure vessel analysis using simple tetrahedral elements.> Geometry, subdivision, and some stress results.



138 Three-dimensional stress analysis

Although we have in this chapter emphasized the easy visualization of a tetrahedral
mesh through the use of brick-like subdivision, it is possible to generate automatically
arbitrary tetrahedral meshes of great complexity with any prescribed mesh density
distribution. The procedures follow the general pattern of automatic triangle
generation13 to which we shall refer in Chapter 15 when discussing efficient, adap-
tively constructed meshes, but, of course, the degree of complexity introduced is
much greater in three dimensions. Some details of such a generator are described
by Peraire et al.,'"* and Fig. 6.8 illustrates an intersection of such an automatically
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Fig. 6.8 An automatically generated mesh of tetrahedra for a specified mesh density in the exterior region on
aircraft (a) and (b) an intersection of the mesh with the centreline plane.



References

generated mesh with an outline of an aircraft. It is impractical to show the full plot of
the mesh which contains over 30 000 nodes. The important point to note is that such
meshes can be generated for any configuration which can be suitably described
geometrically.”™!7 Although this example concerns aerodynamics rather than
elasticity, similar meshes can be generated in the latter context.
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Steady-state field problems — heat
conduction, electric and magnetic
potential, fluid flow, etc.

7.1 Introduction

While, in detail, most of the previous chapters dealt with problems of an elastic con-
tinuum the general procedures can be applied to a variety of physical problems.
Indeed, some such possibilities have been indicated in Chapter 3 and here more
detailed attention will be given to a particular but wide class of such situations.

Primarily we shall deal with situations governed by the general ‘quasi-harmonic’
equation, the particular cases of which are the well-known Laplace and Poisson
equations.!~® The range of physical problems falling into this category is large. To
list but a few frequently encountered in engineering practice we have:

Heat conduction

Seepage through porous media

Irrotational flow of ideal fluids

Distribution of electrical (or magnetic) potential
Torsion of prismatic shafts

Bending of prismatic beams,

Lubrication of pad bearings, etc.

The formulation developed in this chapter is equally applicable to all, and hence
little reference will be made to the actual physical quantities. Isotropic or anisotropic
regions can be treated with equal ease.

Two-dimensional problems are discussed in the first part of the chapter. A
generalization to three dimensions follows. It will be observed that the same, C,
‘shape functions’ as those used previously in two- or three-dimensional formulations
of elasticity problems will again be encountered. The main difference will be that now
only one unknown scalar quantity (the unknown function) is associated with each
point in space. Previously, several unknown quantities, represented by the displace-
ment vector, were sought.

In Chapter 3 we indicated both the ‘weak form’ and a variational principle applic-
able to the Poisson and Laplace equations (see Secs 3.2 and 3.8.1). In the following
sections we shall apply these approaches to a general, quasi-harmonic equation and
indicate the ranges of applicability of a single, unified, approach by which one com-
puter program can solve a large variety of physical problems.



The general quasi-harmonic equation

7.2 The general quasi-harmonic equation

7.2.1 The general statement

In many physical situations we are concerned with the diffusion or flow of some
quantity such as heat, mass, or a chemical, etc. In such problems the rate of transfer
per unit area, q, can be written in terms of its cartesian components as

qT = [CI.W qy; QZ} (71)

If the rate at which the relevant quantity is generated (or removed) per unit volume
is O, then for steady-state flow the balance or continuity requirement gives

dq. 9q, 0q.
ox oy oz

+0=0 (7.2)

Introducing the gradient operator

we can write the above as
Vig+0=0 (7.4)

Generally the rates of flow will be related to gradients of some potential quantity ¢.
This may be temperature in the case of heat flow, etc. A very general linear relation-
ship will be of the form

9
qx g;
qz %
Oz

where k is a three by three matrix. This is generally of a symmetric form due to energy
arguments and is variously referred to as Fourier’s, Fick’s, or Darcy’s law depending
on the physical problem.

The final governing equation for the ‘potential’ ¢ is obtained by substitution of
Eq. (7.5) into (7.4), leading to

—VkVp+0=0 (7.6)
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142  Steady-state field problems

which has to be solved in the domain 2. On the boundaries of such a domain we shall
usually encounter one or other of the following conditions:

1. OnT,,

i.e., the potential is specified.
2. On T', the normal component of flow, ¢,, is given as

4, =4+ Oé(b (77b)
where « is a transfer or radiation coefficient.
As
qn = an nT = [nxa nyv n:]

where n is a vector of direction cosines of the normal to the surface, this condition
can immediately be rewritten as

(kV¢)'n+g+ap=0 (7.7¢)

in which g and « are given.

7.2.2 Particular forms

If we consider the general statement of Eq. (7.5) as being determined for an arbitrary
set of coordinate axes x, y, z we shall find that it is always possible to determine locally
another set of axes x’,)’,z with respect to which the matrix k' becomes diagonal.
With respect to such axes we have

ky 0 0
K=[0 k, 0 (7.8)
0 0 ks

and the governing equation (7.6) can be written (now dropping the prime)

o (. 0¢ o ( 06\ 0 ([ 0¢ B
i) ) < e5) | ve0 0

with a suitable change of boundary conditions.
Lastly, for an isotropic material we can write

k = kI (7.10)

where I is an identity matrix. This leads to the simple form of Eq. (3.10) which was
discussed in Chapter 3.

7.2.3 Weak form of general quasi-harmonic equation [Eq. (7.6)]

Following the principles of Chapter 3, Sec. 3.2, we can obtain the weak form of



Finite element discretization

Eq. (7.6) by writing
J v(=V'k V¢ + 0) dQ+J v[(kV¢)Tn+q+oz¢] dl'=0 (7.11)
Q .

for all functions v which are zero on I';.

Integration by parts (see Appendix G) will result in the following weak statement
which is equivalent to satisfying the governing equations and the natural boundary
conditions (7.7b):

J (Vo)'k Vo dQ+J vQ dQ+J v(ag +q)dT =0 (7.12)
Q Q

q

The forced boundary condition (7.7a) still needs to be imposed.

7.2.4 The variational principle

We shall leave as an exercise to the reader the verification that the functional
1 1
H=—J (V¢>)TkV¢dQ+J ¢QdQ+—J a¢2dF+J ¢q dT (7.13)
2 Q Q 2 Fq Fq

gives on minimization [subject to the constraint of Eq. (7.7a)] the satisfaction of the
original problem set in Eqs (7.6) and (7.7).

The algebraic manipulations required to verify the above principle follow precisely
the lines of Sec. 3.8 of Chapter 3 and can be carried out as an exercise.

7.3 Finite element discretization

This can now proceed on the assumption of a trial function expansion
¢ =Y Na;=Na (7.14)

using either the weak formulation of Eq. (7.12) or the variational statement of
Eq. (7.13). If, in the first, we take

v=> Wiba; with W;=N; (7.15)

according to the Galerkin principle, an identical form will arise with that obtained
from the minimization of the variational principle.
Substituting Eq. (7.15) into (7.12) we have a typical statement giving
(J (VN;)"k VN dQ + J N;aN dr>a + J N,0 dQ + J N:gdl' =0
) Q

q

i=1,....,n (7.16)

q

or a set of standard discrete equations of the form

Ha+f=0 (7.17)
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144  Steady-state field problems
with

H;= JQ(VN,-)Tk VN, dQ + J 4 NaN;dI'  f;= JQ N;Q dQ + L,[ N,g dr
on which prescribed values of ¢ have to be imposed on boundaries T'y.

We note now that an additional ‘stiffness’ is contributed on boundaries for which a
radiation constant « is specified but that otherwise a complete analogy with the elastic
structural problem exists.

Indeed in a computer program the same standard operations will be followed even
including an evaluation of quantities analogous to the stresses. These, obviously, are
the fluxes

=-kV¢=—(kVN)a (7.18)

and, as with stresses, the best recovery procedure is discussed in Chapter 14.

7.4 Some economic specializations
7.4.1 Anisotropic and non-homogeneous media

Clearly material properties defined by the k matrix can vary from element to element in
a discontinuous manner. This is implied in both the weak and variational statements of
the problem.

The material properties are usually known only with respect to the principal (or sym-
metry) axes, and if these directions are constant within the element it is convenient to use
them in the formulation of local axes specified within each element, as shown in Fig. 7.1.

AY

Stratification

Fig. 7.1 Anisotropic material. Local coordinates coincide with the principal directions of stratification.



Some economic specializations

With respect to such axes only three coefficients k., k,, and k. need be specified, and
now only a multiplication by a diagonal matrix is needed in formulating the co-
efficients of the matrix H [Eq. (7.17)].

It is important to note that as the parameters a correspond to scalar values, no trans-
formation of matrices computed in local coordinates is necessary before assembly of the
global matrices.

Thus, in many computer programs only a diagonal specification of the k matrix is
used.

7.4.2 Two-dimensional problem

The two-dimensional plane case is obtained by taking the gradient in the form

o 01"
V= [a,a—y} (7.19)
and taking the flux as
o
ke O Ox
qx X ox
= = — .2
)l Wi o2
dy

On discretization by Eq. (7.16) a slightly simplified form of the matrices will now be
found. Dropping the terms with a and § we can write
N; ON; N; ON;
Hf/:J <k8’ 4 g, ONON,
e

INORTY 4 d 7.1
“ox ox oy ay>vy (7.21)

No further discussion at this point appears necessary. However, it may be worth-
while to particularize here to the simplest yet still useful triangular element (Fig. 7.2).
With

a; +bix + ¢y
N, = L7 TP
! 2A
as in Eq. (4.8) of Chapter 4, we can write down the element ‘stiffness’ matrix as
bib; bibj biby, k Ci¢i GG CiCy
e X Y
symmetric Db symmetric CmCm

The load matrices follow a similar simple pattern and thus, for instance, the reader
can show that due to Q we have

g 28

: (7.23)

a very simple (almost ‘obvious’) result.
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AY

Fig. 7.2 Division of a two-dimensional region into triangular elements.

Alternatively the formulation may be specialized to cylindrical coordinates and
used for the solution of axisymmetric situations by introducing the gradient

o o0]"
V= [&’82] (7.24)
where r, z replace x, y. With the flux now given by
o¢
={a) =l ey 029
0z
the discretization of Eq. (7.16) is now performed with the volume element expressed

by
dQ =2nrdrdz

and integration carried out as described in Chapter 5, Section 5.2.5.

7.5 Examples — an assessment of accuracy

It is very easy to show that by assembling explicitly worked out ‘stiffnesses’ of trian-
gular elements for ‘regular’ meshes shown in Fig. 7.3a, the discretized plane equations
are identical with those that can be derived by well-known finite difference methods.’



Examples — an assessment of accuracy

@

(b)

Fig. 7.3 'Regular’ and ‘irregular’ subdivision patterns.

Obviously the solutions obtained by the two methods will be identical, and so also
will be the orders of approximation.f

If an ‘irregular’ mesh based on a square arrangement of nodes is used a difference
between the two aproaches will be evident [Fig. 7.3()]. This is confined to the ‘load’
vector f¢. The assembled equations will show ‘loads’ which differ by small amounts
from node to node, but the sum of which is still the same as that due to the finite
difference expressions. The solutions therefore differ only locally and will represent
the same averages.

In Fig. 7.4 a test comparing the results obtained on an ‘irregular’ mesh with a
relaxation solution of the lowest order finite difference approximation is shown.
Both give results of similar accuracy, as indeed would be anticipated. However, it
can be shown that in one-dimensional problems the finite element algorithm gives
exact answers of nodes, while the finite difference method generally does not. In
general, therefore, superior accuracy is available with the finite element discretization.

Further advantages of the finite element process are:

1. It can deal simply with non-homogeneous and anisotropic situations (particularly
when the direction of anisotropy is variable).

2. The elements can be graded in shape and size to follow arbitrary boundaries and to
allow for regions of rapid variation of the function sought, thus controlling the
errors in a most efficient way (viz. Chapters 14 and 15).

3. Specified gradient or ‘radiation’ boundary conditions are introduced naturally and
with a better accuracy than in standard finite difference procedures.

1 This is only true in the case where the boundary values ¢ are prescribed.
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Fig. 7.4 Torsion of a rectangular shaft. Numbers in parentheses show a more accurate solution due to South-
well using a 12 x 16 mesh (values of ¢/GOL?).

4. Higher order elements can be readily used to improve accuracy without complicat-
ing boundary conditions — a difficulty always arising with finite difference approx-
imations of a higher order.

5. Finally, but of considerable importance in the computer age, standard programs
may be used for assembly and solution.

Two more realistic examples are given at this stage to illustrate the accuracy attain-
able in practice. The first is the problem of pure torsion of a non-homogeneous shaft
illustrated in Fig. 7.5. The basic differential equation here is

g (1 0¢ o (1 0¢ o
5 (550) *a5 (G on) +a0=0 (726)

¢ = 0 on external boundary

R ‘AA@T-E@.YA"—{’-@‘—;- .Ym\v y
S VAT
B

SACEIANS
e DAV
X

R, v )
pobYx

X
T

Fig. 7.5 Torsion of a hollow bimetallic shaft. ¢/GAL? x 10*.
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in which ¢ is the stress function, G is the shear modulus, and 6§ the angle of twist per
unit length of the shaft.

In the finite element solution presented, the hollow section was represented by a
material for which G has a value of the order of 10~ compared with the other
materials.t The results compare well with the contours derived from an accurate
finite difference solution.®

An example concerning flow through an anisotropic porous foundation is shown in
Fig. 7.6.

Here the governing equation is

0 OH 0 OH

in which H is the hydraulic head and k, and k, represent the permeability coefficients
in the direction of the (inclined) principal axes. The answers are here compared
against contours derived by an exact solution. The possibilities of the use of a
graded size of subdivision are evident in this example.

7.6 Some practical applications

7.6.1 Anisotropic seepage

The first of the problems is concerned with the flow through highly non-homo-
geneous, anisotropic, and contorted strata. The basic governing equation is still
Eq. (7.27). However, a special feature has to be incorporated to allow for changes
of X' and )/ principal directions from element to element.

No difficulties are encountered in computation, and the problem together with its
solution is given in Fig. 7.7.3

7.6.2 Axisymmetric heat flow

The axisymmetric heat flow equation results by using (7.24) and (7.25) with ¢ replaced
by T. Now T is the temperature and k the conductivity.

In Fig. 7.8 the temperature distribution in a nuclear reactor pressure vessel' is
shown for steady-state heat conduction when a uniform temperature increase is
applied on the inside.

7.6.3 Hydrodynamic pressures on moving surfaces

If a submerged surface moves in a fluid with prescribed accelerations and a small
amplitude of movement, then it can be shown’ that if compressibility is ignored the

1 This was done to avoid difficulties due to the ‘multiple connection’ of the region and to permit the use of a
standard program.
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Stratification

Fig. 7.6 Flow under an inclined pile wall in a stratified foundation. A fine mesh near the tip of the pile is not shown. Comparison with exact solution given by contours.
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Fig. 7.7 Flow under a dam through a highly non-homogeneous and contorted foundation.

excess pressures that are developed obey the Laplace equation

Vzp =0
On moving (or stationary) boundaries the boundary condition is of type 2 [see
Eq. (7.7b)] and is given by

op
o= P (7.28)

in which p is the density of the fluid and a,, is the normal component of acceleration of
the boundary.
On free surfaces the boundary condition is (if surface waves are ignored) simply

r=0 (7.29)

The problem clearly therefore comes into the category of those discussed in this
chapter.

As an example, let us consider the case of a vertical wall in a reservoir, shown in
Fig. 7.9, and determine the pressure distribution at points along the surface of the
wall and at the bottom of the reservoir for any prescribed motion of the boundary
points 1 to 7.

The division of the region into elements (42 in number) is shown. Here elements of
rectangular shape are used (see Sect 3.3) and combined with quadrilaterals composed

151



152 Steady-state field problems

lo 0 0 0 0 0
A R .
310\, 312 ~
29.7 20 10
236 ~
414
64.5 baa 136 o
38 <0 306 \
N \
N \
100 100 T~ 835
<2 \
| 10 ~.. 60 224
100 S '
! RN 0 62.7 N
< NE 0
T AN s
R s 549\ /307 ¢«
= N
@ | 100N\ 42
IS \ B
' N
I . 62.4 N 0
=, | 100N\ 37.3
n A 33|
e A\
© A o 0
g 100\% 64.7
N
=1 . 34,6
% | \ dos
\
0
- 100\ 65.6 \
] S g 8.3]
\ h
R \ 3651
X 0
< \ D
100 \
Ry
\ 64.3 N
' \ v Mo
\ 343
100X, o
' ! 6.7
| v 64.7 |
'
\ !
' 29.21
100 K |
'
| \ 0
' 65.2 y
' \ d
| '
| 100 14 634 3020
T

Fig. 7.8 Temperature distribution in steady-state conduction for an axisymmetrical pressure vessel.
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Fig. 7.9 Problem of a wall moving horizontally in a reservoir.
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Fig. 7.10 Pressure distribution on a moving wall and reservoir bottom.

of two triangles near the sloping boundary. The pressure distribution on the wall and
the bottom of the reservoir for a constant acceleration of the wall is shown in Fig. 7.10.
The results for the pressures on the wall agree to within 1 per cent with the well-
known, exact solution derived by Westergaard.'

For the wall hinged at the base and oscillating around this point with the top
(point 1) accelerating by a,, the pressure distribution obtained is also plotted in
Fig. 7.10.

In the study of vibration problems the interaction of the fluid pressure with
structural accelerations may be determined using Eq. (7.28) and the formulation
given above. This and related problems will be discussed in more detail in Chapter 19.

In Fig. 7.11 the solution of a similar problem in three dimensions is shown.* Here
simple tetrahedral elements combined as bricks as described in Chapter 6 were used
and very good accuracy obtained.

In many practical problems the computation of such simplified ‘added’ masses
is sufficient, and the process described here has become widely used in this
context.!! ™13

7.6.4 Electrostatic and magnetostatic problems

In this area of activity frequent need arises to determine appropriate field strengths
and the governing equations are usually of the standard quasi-harmonic type
discussed here. Thus the formulations are directly transferable. One of the first
applications made as early as 1967* was to fully three-dimensional electrostatic
field distributions governed by simple Laplace equations (Fig. 7.12).

In Fig. 7.13 a similar use of triangular elements was made in the context of
magnetic two-dimensional fields by Winslow® in 1966. These early works stimulated
considerable activity in this area and much work has now been published.'*!”
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Fig. 7.11 Pressures on an accelerating surface of a dam in an incompressible fluid.

The magnetic problem is of particular interest as its formulation usually involves
the introduction of a vector potential with three components which leads to a
formulation different from those discussed in this chapter. It is, therefore, worthwhile
introducing a variant which allows the standard programs of this section to be utilized
for this problem.'®
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N
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b

Fig. 7.12 A three-dimensional distribution of electrostatic potential around a porcelain insulator in an
earthed trough®.

In electromagnetic theory for steady-state fields the problem is governed by
Maxwell’s equations which are

VxH=-J
B = uH (7.30)
VIB=0

with the boundary condition specified at an infinite distance from the disturbance,
requiring H and B to tend to zero there. In the above J is a prescribed electric current
density confined to conductors, H and B are vector quantities with three components
denoting the magnetic field strength and flux density respectively, u is the magnetic
permeability which varies (in an absolute set of units) from unity in vacuo to several
thousand in magnetizing materials and x denotes the vector product, defined in
Appendix F.
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Fig. 7.13 Field near a magnet (after Winslow®).

The formulation presented here depends on the fact that it is a relatively simple
matter to determine the field H; which exactly solves Eq. (7.30) when p = 1| every-
where. This is given at any point defined by a vector coordinate r by an integral:

IJx(r—r
M= e ST
o @—r)(r—r)
In the above, r’ refers to the coordinates of d2 and obviously the integration domain

only involves the electric conductors where J # 0.
With H; known we can write

(7.31)

H=H,+H,
and, on substitution into Eq. (7.30), we have a system
VxH,, =0
B=u(H,+H,) (7.32)
VB=0
If we now introduce a scalar potential ¢, defining H,, as
H,=V¢ (7.33)
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we find the first of Eqs (7.36) to be automatically satisfied and, on eliminating B in the
other two, the governing equation becomes

ViuVe+VIuH, =0 (7.34)

with ¢ — 0 at infinity. This is precisely of the standard form discussed in this chapter
[Eq. (7.6)] with the second term, which is now specified, replacing Q.

An apparent difficulty exists, however, if p varies in a discontinuous manner, as
indeed we would expect it to do on the interfaces of two materials.

Here the term Q is now undefined and, in the standard discretization of Eq. (7.16)
or (7.17), the term

J N;0dQ = —J N; VIuH, dO (7.35)
Q Q

apparently has no meaning.
Integration by parts comes once again to the rescue and we note that

J N, VIuH, dQ = —J VINuH, + J N,;uHn dI' (7.36)
Q Q T

As in regions of constant u, V' H, = 0, the only contribution to the forcing terms
comes as a line integral of the second term at discontinuity interfaces.

Introduction of the scalar potential makes both two- and three-dimensional mag-
netostatic problems solvable by a standard program used for all the problems in this
section. Figure 7.14 shows a typical three-dimensional solution for a transformer.
Here isoparametric quadratic brick elements of the type which will be described in
Chapter 8 were used.'®

In typical magnetostatic problems a high non-linearity exists with

p=p(H])  where |H|=/H2+ H?+ H? (7.37)

The treatment of such non-linearities will be discussed in Volume 2.
Considerable economy in this and other problems of infinite extent can be achieved
by the use of infinite elements to be discussed in Chapter 9.

7.6.5 Lubrication problems

Once again a standard Poisson type of equation is encountered in the two-
dimensional domain of a bearing pad. In the simplest case of constant lubricant
density and viscosity the equation to be solved is the Reynolds equation

D (300 D (a0 ¢, Oh
o <h ax)+ay (h ay> = 6ul 5 (7.38)

where £ is the film thickness, p the pressure developed, p the viscosity and V' the
velocity of the pad in the x-direction.

Figure 7.15 shows the pressure distribution in the typical case of a stepped pad.”!
The boundary condition is simply that of zero pressure and it is of interest to note that
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Fig. 7.14 Three-dimensional transformer. (a) Field strength H. (b) Scalar potential on plane z = 4.0cm.

the step causes an equivalent of a ‘line load’ on integration by parts of the right-hand
side of Eq. (7.38), just as in the case of magnetic discontinuity mentioned above.

More general cases of lubrication problems, including vertical pad movements
(squeeze films) and compressibility, can obviously be dealt with, and much work
has been done here.”> %
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7.6.6 Irrotational and free surface flows

The basic Laplace equation which governs the flow of viscous fluid in seepage
problems is also applicable in the problem of irrotational fluid flow outside the
boundary layer created by viscous effects. The examples already given are adequate
to illustrate the general applicability in this context. Further examples are quoted
by Martin®® and others.3!-36

If no viscous effects exist, then it can be shown that for a fluid starting at rest the

motion must be irrotational, i.e.,

ou Ov
,=———=0 tc. 7.39
W o ox etc (7.39)

where u and v are appropriate velocity components.
This implies the existence of a velocity potential, giving

_ o __0¢
u=—>° v= o (7.40)
(oru=—-V¢)

If, further, the flow is incompressible the continuity equation [see Eq. (7.2)] has to
be satisfied, i.e.,

Viu=0 (7.41)
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and therefore
ViVve=0 (7.42)

Alternatively, for two-dimensional flow a stream function may be introduced defin-
ing the velocities as

N o
_Zr v ==

dy ox
and this identically satisfies the continuity equation. The irrotationality condition
must now ensure that

(7.43)

Vi vy =0 (7.44)

and thus problems of ideal fluid flow can be posed in one form or the other. As the
standard formulation is again applicable, there is little more that needs to be
added, and for examples the reader can well consult the literature cited. We shall
also discuss further such examples in Volume 3.

The similarity with problems of seepage flow, which has already been discussed, is
obvious.>"*

A particular class of fluid flow deserves mention. This is the case when a free surface
limits the extent of the flow and this surface is not known a priori.

The class of problem is typified by two examples — that of a freely overflowing jet
[Fig. 7.16(a)] and that of flow through an earth dam [Fig. 7.16(b)]. In both, the free
surface represents a streamline and in both the position of the free surface is unknown
a priori but has to be determined so that an additional condition on this surface is satis-
fied. For instance, in the second problem, if formulated in terms of the potential H,
Eq. (7.27) governs the problem.

@

(b)

Fig. 7.16 Typical free surface problems with a streamline also satisfying an additional condition of
pressure = 0. (a) Jet overflow. (b) Seepage through an earth dam.
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The free surface, being a streamline, imposes the condition
OH
20
on
to be satisfied there. In addition, however, the pressure must be zero on the surface as
this is exposed to atmosphere. As

(7.45)

H=L1y (7.46)

Y
where -y is the fluid specific weight, p is the fluid pressure, and y the elevation above
some (horizontal) datum, we must have on the surface

H=y (7.47)

The solution may be approached iteratively. Starting with a prescribed free surface
streamline the standard problem is solved. A check is carried out to see if Eq. (7.47) is
satisfied and, if not, an adjustment of the surface is carried out to make the new y
equal to the H just found. A few iterations of this kind show that convergence is
reasonably rapid. Taylor and Brown® show such a process. Alternative methods
including special variational principles for dealing with this problem have been
devised over the years and interested readers can consult references 40—48.

7.7 Concluding remarks

We have shown how a general formulation for the solution of a steady-state quasi-
harmonic problem can be written, and how a single program of such a form can be
applied to a wide variety of physical situations. Indeed, the selection of problems
dealt with is by no means exhaustive and many other examples of application are
of practical interest. Readers will doubtless find appropriate analogies for their
own problems.
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‘Standard’ and "hierarchical’
element shape functions: some
general families of C, continuity

8.1 Introduction

In Chapters 4, 5, and 6 the reader was shown in some detail how linear elasticity
problems could be formulated and solved using very simple finite element forms. In
Chapter 7 this process was repeated for the quasi-harmonic equation. Although the
detailed algebra was concerned with shape functions which arose from triangular
and tetrahedral shapes only it should by now be obvious that other element forms
could equally well be used. Indeed, once the element and the corresponding shape
functions are determined, subsequent operations follow a standard, well-defined
path which could be entrusted to an algebraist not familiar with the physical aspects
of the problem. It will be seen later that in fact it is possible to program a computer
to deal with wide classes of problems by specifying the shape functions only. The
choice of these is, however, a matter to which intelligence has to be applied and in
which the human factor remains paramount. In this chapter some rules for the
generation of several families of one-, two-, and three-dimensional elements will be
presented.

In the problems of elasticity illustrated in Chapters 4, 5, and 6 the displacement
variable was a vector with two or three components and the shape functions were
written in matrix form. They were, however, derived for each component separately
and in fact the matrix expressions in these were derived by multiplying a scalar
function by an identity matrix [e.g., Eqs (4.7), (5.3), and (6.7)]. This scalar form
was used directly in Chapter 7 for the quasi-harmonic equation. We shall therefore
concentrate in this chapter on the scalar shape function forms, calling these simply N;.

The shape functions used in the displacement formulation of elasticity problems
were such that they satisfy the convergence criteria of Chapter 2:

(a) the continuity of the unknown only had to occur between elements (i.e., slope
continuity is not required), or, in mathematical language, C, continuity was
needed;

(b) the function has to allow any arbitrary linear form to be taken so that the
constant strain (constant first derivative) criterion could be observed.

The shape functions described in this chapter will require the satisfaction of these
two criteria. They will thus be applicable to all the problems of the preceding chapters
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and also to other problems which require these conditions to be obeyed. Indeed they
are applicable to any situation where the functional IT or ¢II (see Chapter 3) is defined
by derivatives of first order only.

The element families discussed will progressively have an increasing number of
degrees of freedom. The question may well be asked as to whether any economic or
other advantage is gained by thus increasing the complexity of an element. The
answer here is not an easy one although it can be stated as a general rule that as the
order of an element increases so the total number of unknowns in a problem can be
reduced for a given accuracy of representation. Economic advantage requires, however,
a reduction of total computation and data preparation effort, and this does not follow
automatically for a reduced number of total variables because, though equation-solving
times may be reduced, the time required for element formulation increases.

However, an overwhelming economic advantage in the case of three-dimensional
analysis has already been hinted at in Chapters 6 and 7 for three-dimensional analyses.

The same kind of advantage arises on occasion in other problems but in general the
optimum element may have to be determined from case to case.

In Sec. 2.6 of Chapter 2 we have shown that the order of error in the approximation
to the unknown function is O(h” '), where A is the element ‘size” and p is the degree of
the complete polynomial present in the expansion. Clearly, as the element shape func-
tions increase in degree so will the order of error increase, and convergence to the
exact solution becomes more rapid. While this says nothing about the magnitude
of error at a particular subdivision, it is clear that we should seek element shape func-
tions with the highest complete polynomial for a given number of degrees of freedom.

8.2 Standard and hierarchical concepts

The essence of the finite element method already stated in Chapters 2 and 3 is in
approximating the unknown (displacement) by an expansion given in Eqs (2.1) and
(3.3). For a scalar variable u this can be written as

n
uzﬁ:ZN,»a,»:Na (8.1)

where n is the total number of functions used and g; are the unknown parameters to be
determined.
We have explicitly chosen to identify such variables with the values of the unknown
function at element nodes, thus making
u; = a; (82)
The shape functions so defined will be referred to as ‘standard’ ones and are the basis
of most finite element programs. If polynomial expansions are used and the element
satisfies Criterion 1 of Chapter 2 (which specifies that rigid body displacements cause

no strain), it is clear that a constant value of g; specified at all nodes must result in a
constant value of u:

o (30 .

i=1
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when «a; = u. It follows that
Z N, =1 (8.4)

at all points of the domain. This important property is known as a partition of unity'
which we will make extensive use of in Chapter 16. The first part of this chapter will
deal with such standard shape functions.

A serious drawback exists, however, with ‘standard’ functions, since when element
refinement is made totally new shape functions have to be generated and hence all
calculations repeated. It would be of advantage to avoid this difficulty by considering
the expression (8.1) as a series in which the shape function N; does not depend on the
number of nodes in the mesh n. This indeed is achieved with hierarchic shape functions
to which the second part of this chapter is devoted.

The hierarchic concept is well illustrated by the one-dimensional (elastic bar)
problem of Fig. 8.1. Here for simplicity elastic properties are taken as constant
(D = E) and the body force b is assumed to vary in such a manner as to produce
the exact solution shown on the figure (with zero displacements at both ends).

Two meshes are shown and a linear interpolation between nodal points assumed.
For both standard and hierarchic forms the coarse mesh gives

Kijai = f, (8.5)

For a fine mesh two additional nodes are added and with the standard shape
function the equations requiring solution are

K KL o a N
K3 Ky K| @ =135 (8.6)
0 Kih Ki] las £

In this form the zero matrices have been automatically inserted due to element inter-
connection which is here obvious, and we note that as no coefficients are the same, the
new equations have to be resolved. [Equation (2.13) shows how these coefficients are
calculated and the reader is encouraged to work these out in detail.]

With the ‘hierarchic’ form using the shape functions shown, a similar form of
equation arises and an identical approximation is achieved (being simply given by
a series of straight segments). The final/ solution is identical but the meaning of the
parameters a; is now different, as shown in Fig. 8.1.

Quite generally,

Kl = Kf, (8.7)

as an identical shape function is used for the first variable. Further, in this particular
case the off-diagonal coefficients are zero and the final equations become, for the
fine mesh,

chl 0 0 Cl>]k ﬁ
0 K& O & =1 f (8.8)
0 0 K&i|la fs
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Coarse Fine

Exact

Approximate

(b)

Fig. 8.1 A one-dimensional problem of stretching of a uniform elastic bar by prescribed body forces. (a) ‘Stan-
dard approximation. (b) Hierarchic approximation.

The ‘diagonality’ feature is only true in the one-dimensional problem, but in
general it will be found that the matrices obtained using hierarchic shape functions
are more nearly diagonal and hence imply better conditioning than those with
standard shape functions.

Although the variables are now not subject to the obvious interpretation (as local
displacement values), they can be easily transformed to those if desired. Though it is
not usual to use hierarchic forms in linearly interpolated elements their derivation in
polynomial form is simple and very advantageous.

The reader should note that with hierarchic forms it is convenient to consider the
finer mesh as still using the same, coarse, elements but now adding additional refining
functions.

Hierarchic forms provide a link with other approximate (orthogonal) series solu-
tions. Many problems solved in classical literature by trigonometric, Fourier series,
expansion are indeed particular examples of this approach.
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In the following sections of this chapter we shall consider the development of shape
functions for high order elements with many boundary and internal degree of
freedoms. This development will generally be made on simple geometric forms and
the reader may well question the wisdom of using increased accuracy for such
simple shaped domains, having already observed the advantage of generalized
finite element methods in fitting arbitrary domain shapes. This concern is well
founded, but in the next chapter we shall show a general method to map high
order elements into quite complex shapes.

Part 1 ‘Standard’ shape functions

Two-dimensional elements

8.3 Rectangular elements — some preliminary
considerations

Conceptually (especially if the reader is conditioned by education to thinking in the
cartesian coordinate system) the simplest element form of a two-dimensional kind
is that of a rectangle with sides parallel to the x and y axes. Consider, for instance,
the rectangle shown in Fig. 8.2 with nodal points numbered 1 to 8, located as
shown, and at which the values of an unknown function u (here representing, for
instance, one of the components of displacement) form the element parameters.
How can suitable C, continuous shape functions for this element be determined?

Let us first assume that u is expressed in polynomial form in x and y. To ensure
interelement continuity of u along the top and bottom sides the variation must be
linear. Two points at which the function is common between elements lying above
or below exist, and as two values uniquely determine a linear function, its identity
all along these sides is ensured with that given by adjacent elements. Use of this
fact was already made in specifying linear expansions for a triangle.

Similarly, if a cubic variation along the vertical sides is assumed, continuity will be
preserved there as four values determine a unique cubic polynomial. Conditions for
satisfying the first criterion are now obtained.

To ensure the existence of constant values of the first derivative it is necessary that
all the linear polynomial terms of the expansion be retained.

Finally, as eight points are to determine uniquely the variation of the function only
eight coeflicients of the expansion can be retained and thus we could write

U=+ arx+asy+ agxy + as)’ + agx)’ + ar ) + agxy’ (8.9)

The choice can in general be made unique by retaining the lowest possible expansion
terms, though in this case apparently no such choice arises.t The reader will easily
verify that all the requirements have now been satisfied.

1 Retention of a higher order term of expansion, ignoring one of lower order, will usually lead to a poorer
approximation though still retaining convergence,? providing the linear terms are always included.
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Fig. 8.2 A rectangular element.

Substituting coordinates of the various nodes a set of simultaneous equations will
be obtained. This can be written in exactly the same manner as was done for a triangle
in Eq. (4.4) as

ty Lox, oy xivn vhoxod v x| [ @
b= . . . (8.10)
ug 1, xg, »g, . . . . ng?; ag
or simply as
u’ = Ca (8.11)
Formally,
o=C'u (8.12)
and we could write Eq. (8.9) as
u=Pa=PC v (8.13)
in which
P =[1,x,p xp, 0% % %, xp°] (8.14)
Thus the shape functions for the element defined by
u=Nu’ =[N, N,,..., Ngu (8.15)
can be found as
N=PC"'! (8.16)

This process has, however, some considerable disadvantages. Occasionally an
inverse of C may not exist*® and always considerable algebraic difficulty is experi-
enced in obtaining an expression for the inverse in general terms suitable for all
element geometries. It is therefore worthwhile to consider whether shape functions
N;(x,y) can be written down directly. Before doing this some general properties of
these functions have to be mentioned.
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Fig. 8.3 Shape functions for elements of Fig. 8.2.

Inspection of the defining relation, Eq. (8.15), reveals immediately some important
characteristics. Firstly, as this expression is valid for all components of u®,
I; i=j
Ni(xj, ;) = 6 = {0; l-%]]-
where 6;; is known as the Kronecker delta. Further, the basic type of variation along
boundaries defined for continuity purposes (e.g., linear in x and cubic in y in the
above example) must be retained. The typical form of the shape functions for the
elements considered is illustrated isometrically for two typical nodes in Fig. 8.3. It
is clear that these could have been written down directly as a product of a suitable
linear function in x with a cubic function in y. The easy solution of this example is
not always as obvious but given sufficient ingenuity, a direct derivation of shape
functions is always preferable.
It will be convenient to use normalized coordinates in our further investigation.
Such normalized coordinates are shown in Fig. 8.4 and are chosen so that their
values are =1 on the faces of the rectangle:

X —X dx

]
(8.17)

g2 dn:g

b b

Once the shape functions are known in the normalized coordinates, translation into
actual coordinates or transformation of the various expressions occurring, for
instance, in the stiffness derivation is trivial.
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Fig. 8.4 Normalized coordinates for a rectangle.

8.4 Completeness of polynomials

The shape function derived in the previous section was of a rather special form [see
Eq. (8.9)]. Only a linear variation with the coordinate x was permitted, while in y a
full cubic was available. The complete polynomial contained in it was thus of order
1. In general use, a convergence order corresponding to a linear variation would
occur despite an increase of the total number of variables. Only in situations where
the linear variation in x corresponded closely to the exact solution would a higher
order of convergence occur, and for this reason elements with such ‘preferential’
directions should be restricted to special use, e.g., in narrow beams or strips. In
general, we shall seek element expansions which possess the highest order of a
complete polynomial for a minimum of degrees of freedom. In this context it is
useful to recall the Pascal triangle (Fig. 8.5) from which the number of terms

_____ AN
NN
WAYAVAYS 3
CINNAN 4

/\/\/\/\/\

/\/\/\/\/\/\

Fig. 8.5 The Pascal triangle. (Cubic expansion shaded — 10 terms).
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occurring in a polynomial in two variables x, y can be readily ascertained. For
instance, first-order polynomials require three terms, second-order require six
terms, third-order require ten terms, etc.

8.5 Rectangular elements — Lagrange family*~®

An easy and systematic method of generating shape functions of any order can be
achieved by simple products of appropriate polynomials in the two coordinates.
Consider the element shown in Fig. 8.6 in which a series of nodes, external and
internal, is placed on a regular grid. It is required to determine a shape function for
the point indicated by the heavy circle. Clearly the product of a fifth-order
polynomial in £ which has a value of unity at points of the second column of nodes
and zero elsewhere and that of a fourth-order polynomial in 5 having unity on the
coordinate corresponding to the top row of nodes and zero elsewhere satisfies all
the interelement continuity conditions and gives unity at the nodal point concerned.

Polynomials in one coordinate having this property are known as Lagrange poly-
nomials and can be written down directly as

1(E) = (=) —&) (€= &)= &) - (E—E&)
¢ (&= &) (& — &) (G = &) (& — &ksr) - (& — &)

giving unity at £, and passing through » points.

(8.18)

(0, m) m(l, J) (n, m)

o—® © l
| -
)

Fig. 8.6 A typical shape function for a Lagrangian element (n =5, m=4,/=1,/=4).
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(@) (b)

(©)
Fig. 8.7 Three elements of the Lagrange family: (a) linear, (b) quadratic, and (c) cubic.

Thus in two dimensions, if we label the node by its column and row number, 7, J,
we have
Ni= Ny = B () (8.19)

where n and m stand for the number of subdivisions in each direction.

Figure 8.7 shows a few members of this unlimited family where m = n.

Indeed, if we examine the polynomial terms present in a situation where n = m we
observe in Fig. 8.8, based on the Pascal triangle, that a large number of polynomial
terms is present above those needed for a complete expansion.” However, when

mapping of shape functions is considered (Chapter 9) some advantages occur for
this family.

I\
/\/\
/\/\/\
/\/\/\/\

/ /\/y\/y\ \
/  / /\33/\ N\

Fig. 8.8 Terms generated by a lagrangian expansion of order 3 x 3 (or n x n). Complete polynomials of order
3 (orn).

173



174

‘Standard’ and ‘hierarchical’ element shape functions

8.6 Rectangular elements — ‘serendipity’ family*>

It is usually more efficient to make the functions dependent on nodal values placed on
the element boundary. Consider, for instance, the first three elements of Fig. 8.9. In
each a progressively increasing and equal number of nodes is placed on the element
boundary. The variation of the function on the edges to ensure continuity is linear,
parabolic, and cubic in increasing element order.

To achieve the shape function for the first element it is obvious that a product of
linear lagrangian polynomials of the form

He+D(n+1) (8.20)

gives unity at the top right corners where £ = = 1 and zero at all the other corners.

Further, a linear variation of the shape function of all sides exists and hence

continuity is satisfied. Indeed this element is identical to the lagrangian one with n = 1.
Introducing new variables

So=28  mo=m (8.21)
in which &;, n; are the normalized coordinates at node 7, the form
Ny =3(1+&)(1+m) (8.22)

allows all shape functions to be written down in one expression.

As a linear combination of these shape functions yields any arbitrary linear varia-
tion of u, the second convergence criterion is satisfied.

The reader can verify that the following functions satisfy all the necessary criteria
for quadratic and cubic members of the family.

‘Quadratic’ element

Corner nodes:

Ny =51+ &)1 +m0) (& +mo — 1) (8.23)
n=1
£=-1 n £=1
€
(@ n=-1 (b)
O

(© (d)

Fig. 8.9 Rectangles of boundary node (serendipity) family: (a) linear, (b) quadratic, (c) cubic, (d) quartic.
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Mid-side nodes:

‘Cubic’ element
Corner nodes:
Ni =55 (14 &) (1 +m0)[=10+9(& +17)] (8.24)
Mid-side nodes:
&= +t1 and n=+4

Ny = 5 (1+&)(1—n*)(1+ )

with the remaining mid-side node expression obtained by changing variables.

In the next, quartic, member® of this family a central node is added so that all terms
of a complete fourth-order expansion will be available. This central node adds a shape
function (1 — &%)(1 — ?) which is zero on all outer boundaries.

The above functions were originally derived by inspection, and progression to yet
higher members is difficult and requires some ingenuity. It was therefore appropriate

(@ Ns=3(1-8) (1-n) () Ng=3(1-8§) (1-n?)
0.5
Step 1
107~ Ny = (1-8) (1-n)/4
0.5
Step 2

©

Step 3

Fig. 8.10 Systematic generation of ‘serendipity’ shape functions.
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to name this family ‘serendipity’ after the famous princes of Serendip noted for their
chance discoveries (Horace Walpole, 1754).

However, a quite systematic way of generating the ‘serendipity’ shape functions can
be devised, which becomes apparent from Fig. 8.10 where the generation of a
quadratic shape function is presented.””

As a starting point we observe that for mid-side nodes a lagrangian interpolation of
a quadratic x linear type suffices to determine N; at nodes 5 to 8. N5 and Ng are shown
at Fig. 8.10(a) and (b). For a corner node, such as Fig. 8.10(c), we start with a bilinear
lagrangian family N, and note immediately that while N; = 1 at node 1, it is not zero
at nodes 5 or 8 (step 1). Successive subtraction of %N 5 (step 2) and %Ng (step 3) ensures
that a zero value is obtained at these nodes. The reader can verify that the expressions
obtained coincide with those of Eq. (8.23).

Indeed, it should now be obvious that for all higher order elements the mid-side and
corner shape functions can be generated by an identical process. For the former a
simple multiplication of mth-order and first-order lagrangian interpolations suffices.
For the latter a combination of bilinear corner functions, together with appropriate
fractions of mid-side shape functions to ensure zero at appropriate nodes, is
necessary.

Similarly, it is quite easy to generate shape functions for elements with different
numbers of nodes along each side by a systematic algorithm. This may be very

Fig. 8.11 Shape functions for a transition ‘serendipity’ element, cubic/linear.



Elimination of internal variables before assembly — substructures

I\
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Fig. 8.12 Terms generated by edge shape functions in serendipity-type elements (3 x 3 and m x m).

desirable if a transition between elements of different order is to be achieved, enabling
a different order of accuracy in separate sections of a large problem to be studied.
Figure 8.11 illustrates the necessary shape functions for a cubic/linear transition.
Use of such special elements was first introduced in reference 9, but the simpler
formulation used here is that of reference 7.

With the mode of generating shape functions for this class of elements available it is
immediately obvious that fewer degrees of freedom are now necessary for a given
complete polynomial expansion. Figure 8.12 shows this for a cubic element where
only two surplus terms arise (as compared with six surplus terms in a lagrangian of
the same degree).

It is immediately evident, however, that the functions generated by nodes placed
only along the edges will not generate complete polynomials beyond cubic order.
For higher order ones it is necessary to supplement the expansion by internal
nodes (as was done in the quartic element of Fig. 8.9) or by the use of ‘nodeless’
variables which contain appropriate polynomial terms.

8.7 Elimination of internal variables before assembly —
substructures

Internal nodes or nodeless internal parameters yield in the usual way the element
properties (Chapter 2)
OI1¢
oa’

=K’ +1° (8.25)

As a° can be subdivided into parts which are common with other elements, a°, and
others which occur in the particular element only, a°, we can immediately write

o o’

0a®  0a®
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and eliminate a® from further consideration. Writing Eq. (8.25) in a partitioned form
we have

oI1¢ e
g Jom (T RT R Jlaf ST |
oa¢
From the second set of equations given above we can write
a’ = —(K)'(K"a" +1°) (8.27)
which on substitution yields
oI1°
= K" a +f*° 8.28
52 + (8.28)

in which
K* =K — IA(e(I:((’)flf(eT
(8.29)
fre — f Ke( ) 1fe

Assembly of the total region then follows, by considering only the element bound-
ary variables, thus giving a considerable saving in the equation-solving effort at the
expense of a few additional manipulations carried out at the element stage.

Perhaps a structural interpretation of this elimination is desirable. What in fact is
involved is the separation of a part of the structure from its surroundings and
determination of its solution separately for any prescribed displacements at the inter-
connecting boundaries. K* is now simply the overall stiffness of the separated
structure and f* the equivalent set of nodal forces.

If the triangulation of Fig. 8.13 is interpreted as an assembly of pin-jointed bars the
reader will recognize immediately the well-known device of ‘substructures’ used
frequently in structural engineering.

Such a substructure is in fact simply a complex element from which the internal
degrees of freedom have been eliminated.

Immediately a new possibility for devising more elaborate, and presumably more
accurate, elements is presented.

VRV aY

3 s

SR
4 V L
71 vanawal

(b)

Fig. 8.13 Substructure of a complex element.
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Fig. 8.14 A quadrilateral made up of four simple triangles.

Figure 8.13(a) can be interpreted as a continuum field subdivided into triangular
elements. The substructure results in fact in one complex element shown in Fig.
8.13(b) with a number of boundary nodes.

The only difference from elements derived in previous sections is the fact that the
unknown u is now not approximated internally by one set of smooth shape functions
but by a series of piecewise approximations. This presumably results in a slightly
poorer approximation but an economic advantage may arise if the total computation
time for such an assembly is saved.

Substructuring is an important device in complex problems, particularly where a
repetition of complicated components arises.

In simple, small-scale finite element analysis, much improved use of simple
triangular elements was found by the use of simple subassemblies of the triangles
(or indeed tetrahedra). For instance, a quadrilateral based on four triangles from
which the central node is eliminated was found to give an economic advantage
over direct use of simple triangles (Fig. 8.14). This and other subassemblies based
on triangles are discussed in detail by Doherty et al

8.8 Triangular element family

The advantage of an arbitrary triangular shape in approximating to any boundary
shape has been amply demonstrated in earlier chapters. Its apparent superiority
here over rectangular shapes needs no further discussion. The question of generating
more elaborate higher order elements needs to be further developed.

Consider a series of triangles generated on a pattern indicated in Fig. 8.15. The
number of nodes in each member of the family is now such that a complete poly-
nomial expansion, of the order needed for interelement compatibility, is ensured.
This follows by comparison with the Pascal triangle of Fig. 8.5 in which we see the
number of nodes coincides exactly with the number of polynomial terms required.
This particular feature puts the triangle family in a special, privileged position, in
which the inverse of the C matrices of Eq. (8.11) will always exist. However, once
again a direct generation of shape functions will be preferred — and indeed will be
shown to be particularly easy.

Before proceeding further it is useful to define a special set of normalized co-
ordinates for a triangle.
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() 6

(b)

(©

Fig. 8.15 Triangular element family: (a) linear, (b) quadratic, and (c) cubic.

8.8.1 Area coordinates

While cartesian directions parallel to the sides of a rectangle were a natural choice for
that shape, in the triangle these are not convenient.

A new set of coordinates, L, L,, and L; for a triangle 1, 2, 3 (Fig. 8.16), is defined
by the following linear relation between these and the cartesian system:

X = L])C] —+ L2X2 —+ L3.X'3
y=Liyi+Lyy,+ L3y; (8.30)
=L, +L,+ Ly

Toevery set, Ly, L,, Ly (which are not independent, but are related by the third equa-
tion), there corresponds a unique set of cartesian coordinates. At point 1, L; = 1 and
L, = L5 =0, etc. A linear relation between the new and cartesian coordinates implies

L, =0,

(X1 y1) ‘ (X v2)

Fig. 8.16 Area coordinates.
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that contours of L; are equally placed straight lines parallel to side 2-3 on which
L, =0, etc.

Indeed it is easy to see that an alternative definition of the coordinate L, of a point
P is by a ratio of the area of the shaded triangle to that of the total triangle:

_area P23

= 8.31
'™ area 123 ( )
Hence the name area coordinates.
Solving Eq. (8.30) gives
I - a+bix+cy
e 2A
ay + bzX + Gy
Ly= =" =7 8.32
L= (832)
I — a3+ bsx + c3y
3T 2A
in which
1 x y
A =idet|1 x, y,|=areal23 (8.33)
1 x5 y3
and
ap = X2)3 — X3 by =y — 3 €1 =X3 =X

etc., with cyclic rotation of indices 1, 2, and 3.
The identity of expressions with those derived in Chapter 4 [Eqs (4.5b) and (4.5¢)] is
worth noting.

8.8.2 Shape functions

For the first element of the series [Fig. 8.15(a)], the shape functions are simply the area
coordinates. Thus

Nl :Ll N2:L2 N3 :L3 (834)

This is obvious as each individually gives unity at one node, zero at others, and varies
linearly everywhere.

To derive shape functions for other elements a simple recurrence relation can be
derived.> However, it is very simple to write an arbitrary triangle of order M in a
manner similar to that used for the lagrangian element of Sec. 8.5.

Denoting a typical node i by three numbers /, J, and K corresponding to the
position of coordinates Ly;, L,;, and Ls; we can write the shape function in terms
of three lagrangian interpolations as [see Eq. (8.18)]

N; = [1(L)!(Ly)IK (Ls) (8.35)

In the above /7, etc., are given by expression (8.18), with L, taking the place of &,
etc.
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0,0, M)

(M, 0, 0) (0, M, 0)

Fig. 8.17 A general triangular element.

It is easy to verify that the above expression gives
Ni=1 —at Ly=Ly, Ly=Ly, Ly=Ls

and zero at all other nodes.
The highest term occurring in the expansion is

LiL3LY
and as
I+J+K=M

for all points the polynomial is also of order M.

Expression (8.35) is valid for quite arbitrary distributions of nodes of the pattern
given in Fig. 8.17 and simplifies if the spacing of the nodal lines is equal (i.e., 1/m).
The formula was first obtained by Argyris et al'' and formalized in a different
manner by others.”!?

The reader can verify the shape functions for the second- and third-order elements
as given below and indeed derive ones of any higher order easily.

Quadratic triangle [Fig. 8.15(b)]
Corner nodes:
N =Q2L, - 1)L, etc.
Mid-side nodes:
Ny=4L,L,, etc.

Cubic triangle [Fig. 8.15(c)]
Corner nodes:
Ny =3(L; = 1)(3L, — 2)L, etc. (8.36)
Mid-side nodes:
Ny=3LL,(3L; — 1), etc. (8.37)
and for the internal node:
Ny =27L,L,L;



Line elements

The last shape again is a ‘bubble’ function giving zero contribution along bound-
aries — and this will be found to be useful in many other contexts (see the mixed
forms in Chapter 12).

The quadratic triangle was first derived by Veubeke!® and used later in the context
of plane stress analysis by Argyris.14

When element matrices have to be evaluated it will follow that we are faced with
integration of quantities defined in terms of area coordinates over the triangular
region. It is useful to note in this context the following exact integration expression:

alb!c!

LiISLSdxdy =————  2A 8.38
Jlesz’ (a+b+c+2) ( )

One-dimensional elements

8.9 Line elements

So far in this book the continuum was considered generally in two or three dimen-
sions. ‘One-dimensional’ members, being of a kind for which exact solutions are
generally available, were treated only as trivial examples in Chapter 2 and in
Sec. 8.2. In many practical two- or three-dimensional problems such elements do in
fact appear in conjunction with the more usual continuum elements — and a unified
treatment is desirable. In the context of elastic analysis these elements may represent
lines of reinforcement (plane and three-dimensional problems) or sheets of thin lining
material in axisymmetric bodies. In the context of field problems of the type discussed
in Chapter 7 lines of drains in a porous medium of lesser conductivity can be
envisaged.

Once the shape of such a function as displacement is chosen for an element of this
kind, its properties can be determined, noting, however, that derived quantities such
as strain, etc., have to be considered only in one dimension.

Figure 8.18 shows such an element sandwiched between two adjacent quadratic-
type elements. Clearly for continuity of the function a quadratic variation of the

00O O
(@]

Fig. 8.18 A line element sandwiched between two-dimensional elements.
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unknown with the one variable ¢ is all that is required. Thus the shape functions are
given directly by the Lagrange polynomial as defined in Eq. (8.18).

Three-dimensional elements

8.10 Rectangular prisms — Lagrange family

In a precisely analogous way to that given in previous sections equivalent elements of
three-dimensional type can be described.

Now, for interelement continuity the simple rules given previously have to be
modified. What is necessary to achieve is that along a whole face of an element the
nodal values define a unique variation of the unknown function. With incomplete
polynomials, this can be ensured only by inspection.

Shape function for such elements, illustrated in Fig. 8.19, will be generated by a
direct product of three Lagrange polynomials. Extending the notation of Eq. (8.19)
we now have

for n, m, and p subdivisions along each side.

This element again is suggested by Zienkiewicz et al.> and elaborated upon by
Argyris et al.® All the remarks about internal nodes and the properties of the formu-
lation with mappings (to be described in the next chapter) are applicable here.

Fig. 8.19 Right prism of Lagrange family.



Rectangular prisms — ‘serendipity’ family

8.11 Rectangular prisms - ‘serendipity’ family*®"°

The family of elements shown in Fig. 8.20 is precisely equivalent to that of Fig. 8.9.
Using now three normalized coordinates and otherwise following the terminology of
Sec. 8.6 we have the following shape functions:

‘Linear’ element (8 nodes)
Ny =1 (1+&)(1+n0)(1+¢) (8.40)

which is identical with the linear lagrangian element.

‘Quadratic’ element (20 nodes)

Corner nodes:

Ny =g (1+ &)1 +m0)(1+ o) (& + 1m0 + G0 — 2) (8.41)
E=-1
8 nodes
~
n=-1
e
20 nodes
~
e
32 nodes
~
e

Fig. 8.20 Right prisms of boundary node (serendipity) family with corresponding sheet and line elements.
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Typical mid-side node:
&=0 n; = £l G ==l

Ni=1(1 =)0 +m) (1 + )

‘Cubic’ elements (32 nodes)
Corner node:
Ni=gg (14 &) (1+m0)(1+ G)O(E +n* +¢) — 19] (8.42)
Typical mid-side node:
fi:i% n; = %1 G ==+l

Ny =2 (1 - E)(1+9)(1+no) (1 + )

When ¢ =1 =(, the above expressions reduce to those of Eqs (8.22)—(8.24).
Indeed such elements of three-dimensional type can be joined in a compatible
manner to sheet or line elements of the appropriate type as shown in Fig. 8.20.

Once again the procedure for generating the shape functions follows that described
in Figs 8.10 and 8.11 and once again elements with varying degrees of freedom along
the edges can be derived following the same steps.

The equivalent of a Pascal triangle is now a tetrahedron and again we can observe
the small number of surplus degrees of freedom — a situation of even greater magni-
tude than in two-dimensional analysis.

8.12 Tetrahedral elements

The tetrahedral family shown in Fig. 8.21 not surprisingly exhibits properties similar
to those of the triangle family.

Firstly, once again complete polynomials in three coordinates are achieved at each
stage. Secondly, as faces are divided in a manner identical with that of the previous
triangles, the same order of polynomial in two coordinates in the plane of the face is
achieved and element compatibility ensured. No surplus terms in the polynomial occur.

8.12.1 Volume coordinates

Once again special coordinates are introduced defined by (Fig. 8.22):
X=Lix1+ Lyxy 4+ L3x3 + Lyxy
y=Linn+Lyyy+Lyys + Lays (8.43)
z=Lizi + Lyzy + Lyz3 + Lyzy
=L+ L+ L+ Ly
Solving Eq. (8.43) gives
_ay+bix+cey+dz

L
! 6V

etc.




Tetrahedral elements

Fig. 8.21 The tetrahedron family: (a) linear, (b) quadratic, and (c) cubic.

where the constants can be identified from Chapter 6, Eq. (6.5). Again the physical
nature of the coordinates can be identified as the ratio of volumes of tetrahedra
based on an internal point P in the total volume, ¢.g., as shown in Fig. 8.22:

_ volume P234

'™ Volume 1234 cte. (8.44)

8.12.2 Shape function

As the volume coordinates vary linearly with the cartesian ones from unity at one
node to zero at the opposite face then shape functions for the linear element
[Fig. 8.21(a)] are simply

Nl = Ll N2 = L2, etc. (845)

Formulae for shape functions of higher order tetrahedra are derived in precisely the
same manner as for the triangles by establishing appropriate Lagrange-type formulae
similar to Eq. (8.35). Leaving this to the reader as a suitable exercise we quote the
following:
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Fig. 8.22 Volume coordinates.

‘Quadratic’ tetrahedron [Fig. 8.21(b)]

For corner nodes:

N =Q2L, - 1)L, etc. (8.46)
For mid-edge nodes:

Ns=4L,L,, etc.
‘Cubic’ tetrahedron
Corner nodes:
Ny =31(3L, - 1)(3L, — 2)Ly, etc. (8.47)
Mid-edge nodes:
Ns=3LL,(3L; — 1), etc.

Mid-face nodes:

Ny; =27L11L,L5, etc.
A useful integration formula may again be here quoted:

arbreqrd . a'bleld!
JJJVOIL1L2L3L4 dxdydz- (a+b+c+d+3)'6V (848)




(c) 26 nodes

Fig. 8.23 Triangular prism elements (serendipity) family: (a) linear, (b) quadratic, and (c) cubic.
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8.13 Other simple three-dimensional elements

The possibilities of simple shapes in three dimensions are greater, for obvious reasons,
than in two dimensions. A quite useful series of elements can, for instance, be based
on triangular prisms (Fig. 8.23). Here again variants of the product, Lagrange,
approach or of the ‘serendipity’ type can be distinguished. The first element of
both families is identical and indeed the shape functions for it are so obvious as
not to need quoting.

For the ‘quadratic’ element illustrated in Fig. 8.23(b) the shape functions are

Corner nodes L; = (; = 1:
Ny =3LQ2L = D1 +¢) =3 Li(1-¢) (8.49)
Mid-edge of triangles:
Ny =2LLy(1 +¢), etc. (8.50)
Mid-edge of rectangle:
N;=Li(1 - Cz), etc.

Such elements are not purely esoteric but have a practical application as “fillers’ in
conjunction with 20-noded serendipity elements.

Part 2 Hierarchical shape functions

8.14 Hierarchic polynomials in one dimension

The general ideas of hiearchic approximation were introduced in Sect. 8.2 in the
context of simple, linear, elements. The idea of generating higher order hierarchic
forms is again simple. We shall start from a one-dimensional expansion as this has
been shown to provide a basis for the generation of two- and three-dimensional
forms in previous sections.

To generate a polynomial of order p along an element side we do not need to
introduce nodes but can instead use parameters without an obvious physical meaning.
As shown in Fig. 8.24, we could use here a linear expansion specified by ‘standard’
functions N, and N; and add to this a series of polynomials always designed so as
to have zero values at the ends of the range (i.e. points 0 and 1).

Thus for a quadratic approximation, we would write over the typical one-
dimensional element, for instance,

ﬁ=u0N0+U1N1 +a2N2 (851)
where
—1 +1
e () (8.52)

using in the above the normalized x-coordinate [viz. Eq. (8.17)].



Hierarchic polynomials in one dimension
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Fig. 8.24 Hierarchical element shape functions of nearly orthogonal form and their derivatives.

We note that the parameter a, does in fact have a meaning in this case as it is the
magnitude of the departure from linearity of the approximation # at the element
centre, since N, has been chosen here to have the value of unity at that point.

In a similar manner, for a cubic element we simply have to add a3 N5 to the quad-
ratic expansion of Eq. (8.51), where N3 is any cubic of the form

N§ :Oé0+a1€+a2€2+013€3 (853)

and which has zero values at £ = +1 (i.e., at nodes 0 and 1). Again an infinity of choices
exists, and we could select a cubic of a simple form which has a zero value at the centre
of the element and for which dN;/d¢ = 1 at the same point. Immediately we can write

NS =¢(1-8) (8.54)

as the cubic function with the desired properties. Now the parameter a; denotes
the departure of the slope at the centre of the element from that of the first
approximation.
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We note that we could proceed in a similar manner and define the fourth-order
hierarchical element shape function as

Ny =&(1-8) (8.55)

but a physical identification of the parameter associated with this now becomes more
difficult (even though it is not strictly necessary).

As we have already noted, the above set is not unique and many other possibilities
exist. An alternative convenient form for the hierarchical functions is defined by
1
= =1) peven

e D!
Np(©) =47 (8.56)
(& —€) podd
p!
where p ( >2) is the degree of the introduced polynomial.'® This yields the set of shape
functions:

Ns=LE-1)  N=LE-¢
Ny=4(-1) N=5(E-9  ete

We observe that all derivatives of N, of second or higher order have the value zero
at £ =0, apart from d’N,/d&’, which equals unity at that point, and hence, when
shape functions of the form given by Eq. (8.57) are used, we can identify the
parameters in the approximation as

i
Pder e

(8.57)

p=2 (8.58)

This identification gives a general physical significance but is by no means necessary.
In two- and three-dimensional elements a simple identification of the hierarchic
parameters on interfaces will automatically ensure C, continuity of the approximation.
As mentioned previously, an optimal form of hierarchical function is one that
results in a diagonal equation system. This can on occasion be achieved, or at least
approximated, quite closely.
In the elasticity problems which we have discussed in the preceding chapters the
element matrix K possesses terms of the form [using Eq. (8.17)]

ANy dNp, Lo J] dN¢ dN¢,

K[fn == J’QF dx dx X = a » k d§ df

If shape function sets containing the appropriate polynomials can be found for which
such integrals are zero for / # m, then orthogonality is achieved and the coupling
between successive solutions disappears.

One set of polynomial functions which is known to possess this orthogonality
property over the range —1 < ¢ < 1 is the set of Legendre polynomials P,(¢), and
the shape functions could be defined in terms of integrals of these polynomials.’
Here we define the Legendre polynomial of degree p by

1 1 &
O p-mivTag

de (8.59)

(€2 —1)"] (8.60)
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and integrate these polynomials to define
1 ar-!
Ny = | B ae =

(p— )21 e (& = 1)] (8.61)

Evaluation for each p in turn gives
Ns=¢ -1 N§{=2-¢) et

These differ from the element shape functions given by Eq. (8.57) only by a multiply-
ing constant up to N3, but for p > 3 the differences become significant. The reader can
easily verify the orthogonality of the derivatives of these functions, which is useful in
computation. A plot of these functions and their derivatives is given in Fig. 8.24.

8.15 Two- and three-dimensional, hierarchic, elements of
the ‘rectangle’ or 'brick’ type

In deriving ‘standard’ finite element approximations we have shown that all shape
functions for the Lagrange family could be obtained by a simple multiplication of
one-dimensional ones and those for serendipity elements by a combination of such
multiplications. The situation is even simpler for hierarchic elements. Here a// the
shape functions can be obtained by a simple multiplication process.

Thus, for instance, in Fig. 8.25 we show the shape functions for a lagrangian nine-
noded element and the corresponding hierarchical functions. The latter not only have
simpler shapes but are more easily calculated, being simple products of linear and
quadratic terms of Eq. (8.56), (8.57), or (8.61). Using the last of these the three
functions illustrated are simply

Ny =(1=¢)(1+n)/4
Ny = (1=&)(1=1)/2 (8.62)
Ny =(1-&)(1 =)
The distinction between lagrangian and serendipity forms now disappears as for
the latter in the present case the last shape function (N3) is simply omitted.
Indeed, it is now easy to introduce interpolation for elements of the type illustrated
in Fig. 8.11 in which a different expansion is used along different sides. This essential
characteristic of hierarchical elements is exploited in adaptive refinement (viz.

Chapter 15) where new degrees of freedom (or polynomial order increase) is made
only when required by the magnitude of the error.

8.16 Triangle and tetrahedron family'®"’

Once again the concepts of multiplication can be introduced in terms of area (volume)
coordinates.

Returning to the triangle of Fig. 8.16 we note that along the side 1-2, L5 is identi-
cally zero, and therefore we have

(Li+Ly)12=1 (8.63)

16,17
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(a) Standard (b) Hierarchical

Fig. 8.25 Standard and hierarchic shape functions corresponding to a lagrangian, quadratic element.

If £, measured along side 1-2, is the usual non-dimensional local element coordinate
of the type we have used in deriving hierarchical functions for one-dimensional
elements, we can write

Lili,=%(1-¢) Lol =5(1+¢) (8.64)
from which it follows that we have
§=(Ly— L) (8.65)

This suggests that we could generate hierarchical shape functions over the triangle
by generalizing the one-dimensional shape function forms produced earlier. For



Triangle and tetrahedron family

example, using the expressions of Eq. (8.56), we associate with the side 1-2 the
polynomial of degree p ( >2) defined by

1
] [(Ly — Ly)" = (Ly + L,)"] p even

Npa2 =1 § (8.66)
] (L, —Ly)" = (L, — Ly)(Ly + L,)"" "] podd

It follows from Eq. (8.64) that these shape functions are zero at nodes 1 and 2.
In addition, it can easily be shown that N,_,, will be zero all along the sides 31
and 3-2 of the triangle, and so C, continuity of the approximation # is assured.

It should be noted that in this case for p > 3 the number of hierarchical functions
arising from the element sides in this manner is insufficient to define a complete
polynomial of degree p, and internal hierarchical functions, which are identically
zero on the boundaries, need to be introduced; for example, for p = 3 the function
LL,L; could be used, while for p =4 the three additional functions LiL,L;,
LL5Ls, LiL,L3 could be adopted.

In Fig. 8.26 typical hierarchical linear, quadratic, and cubic trial functions for a
triangular element are shown. Similar hierarchical shape functions could be generated

(b)

()

Fig. 8.26 Triangular elements and associated hierarchical shape functions of (a) linear, (b) quadratic, and
(c) cubic form.

16,17
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from the alternative set of one-dimensional shape functions defined in Eq. (8.61).
Identical procedures are obvious in the context of tetrahedra.

8.17 Global and local finite element approximation

The very concept of hierarchic approximations (in which the shape functions are not
affected by the refinement) means that it is possible to include in the expansion

u=">_ N (8.67)
i=1

functions N which are not local in nature. Such functions may, for instance, be the
exact solutions of an analytical problem which in some way resembles the problem
dealt with, but do not satisfy some boundary or inhomogeneity conditions. The
“finite element’, local, expansions would here be a device for correcting this solution
to satisfy the real conditions. This use of the global-local approximation was first
suggested by Mote'® in a problem where the coefficients of this function were fixed.
The example involved here is that of a rotating disc with cutouts (Fig. 8.27). The
global, known, solution is the analytical one corresponding to a disc without
cutout, and finite elements are added locally to modify the solution. Other examples
of such ‘fixed’ solutions may well be those associated with point loads, where the use
of the global approximation serves to eliminate the singularity modelled badly by the
discretization.

@

‘Local’ elements

(b)

Fig. 8.27 Some possible uses of the local-global approximation: (a) rotating slotted disc, (b) perforated
beam.
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In some problems the singularity itself is unknown and the appropriate function
can be added with an unknown coefficient.

8.18 Improvement of conditioning with hierarchic forms

We have already mentioned that hierarchic element forms give a much improved
equation conditioning for steady-state (static) problems due to their form which is
more nearly diagonal. In Fig. 8.28 we show the ‘condition number’ (which is a
measure of such diagonality and is defined in standard texts on linear algebra; see
Appendix A) for a single cubic element and for an assembly of four cubic elements,
using standard and hierarchic forms in their formulation. The improvement of the
conditioning is a distinct advantage of such forms and allows the use of iterative solu-
tion techniques to be more easily adopted.'® Unfortunately much of this advantage
disappears for transient analysis as the approximation must contain specific modes
(see Chapter 17).

Single element (Reduction of condition number = 10.7)

®)

Amax/Mmin = 390 Mmax/Amin = 36

Four element assembly (Reduction of condition number = 13.2)

A ® ¢ —

1l Il
o —
Amax/Amin = 1643 Amax/Mmin = 124

Cubic order elements

@ Standard shape function
Hierarchic shape function

Fig. 8.28 Improvement of condition number (ratio of maximum to minimum eigenvalue of the stiffness
matrix) by use of a hierarchic form (elasticity isotropic v = 0.15).



198

‘Standard’ and ‘hierarchical’ element shape functions

8.19 Concluding remarks

An unlimited selection of element types has been presented here to the reader — and
indeed equally unlimited alternative possibilities exist.** What of the use of such

(¢10)
to
as

mplex elements in practice? The triangular and tetrahedral elements are limited
situations where the real region is of a suitable shape which can be represented
an assembly of flat facets and all other elements are limited to situations repre-

sented by an assembly of right prisms. Such a limitation would be so severe that
little practical purpose would have been served by the derivation of such shape func-
tions unless some way could be found of distorting these elements to fit realistic
curved boundaries. In fact, methods for doing this are available and will be described

n

\S]

11.

12.

13.

14.

the next chapter.
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Mapped elements and numerical
integration — ‘infinite’ and
‘singularity’ elements

9.1 Introduction

In the previous chapter we have shown how some general families of finite elements
can be obtained for Cy interpolations. A progressively increasing number of nodes
and hence improved accuracy characterizes each new member of the family and
presumably the number of such elements required to obtain an adequate solution
decreases rapidly. To ensure that a small number of elements can represent a rela-
tively complex form of the type that is liable to occur in real, rather than academic,
problems, simple rectangles and triangles no longer suffice. This chapter is therefore
concerned with the subject of distorting such simple forms into others of more
arbitrary shape.

Elements of the basic one-, two-, or three-dimensional types will be ‘mapped’ into
distorted forms in the manner indicated in Figs 9.1 and 9.2.

In these figures it is shown that the &, n, , or L{L,15L, coordinates can be distorted
to a new, curvilinear set when plotted in cartesian x, y, z space.

Not only can two-dimensional elements be distorted into others in two dimensions
but the mapping of these can be taken into three dimensions as indicated by the flat
sheet elements of Fig. 9.2 distorting into a three-dimensional space. This principle
applies generally, providing a one-to-one correspondence between cartesian and
curvilinear coordinates can be established, i.e., once the mapping relations of the type

X ]px(gv m, C) f\'(Ll7L2aL37L4)
Y = Jj(f? 7, C) or .f;’(LlaL27L37L4) (91)
z f:(£7nac) fé(LlaL27L37L4)

can be established.

Once such coordinate relationships are known, shape functions can be specified in
local coordinates and by suitable transformations the element properties established
in the global coordinate system.

In what follows we shall first discuss the so-called isoparametric form of relation-
ship (9.1) which has found a great deal of practical application. Full details of
this formulation will be given, including the establishment of element matrices by
numerical integration.
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Local coordinates
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Cartesian map

Fig. 9.1 Two-dimensional ‘mapping’ of some elements.
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In the final section we shall show that many other coordinate transformations can
be used effectively.

Parametric curvilinear coordinates

9.2 Use of ‘shape functions’ in the establishment of
coordinate transformations

A most convenient method of establishing the coordinate transformations is to use
the ‘standard’ type of C, shape functions we have already derived to represent the
variation of the unknown function.

If we write, for instance, for each element

X1
X:N;X1+N£X2+”~:N, X2 :N/X

Y1
y=Niyi+Nyy,+---=N¢ 1 5 =Ny (9.2)

2]
z=Njzj + Nhz; =--- =N 2 } =Nz

in which N’ are standard shape functions given in terms of the local coordinates, then
a relationship of the required form is immediately available. Further, the points with
coordinates x;, y;, z1, etc., will lie at appropriate points of the element boundary (as
from the general definitions of the standard shape functions we know that these have
a value of unity at the point in question and zero elsewhere). These points can
establish nodes a priori.

To each set of local coordinates there will correspond a set of global cartesian coor-
dinates and in general only one such set. We shall see, however, that a non-uniqueness
may arise sometimes with violent distortion.

The concept of using such element shape functions for establishing curvilinear
coordinates in the context of finite element analysis appears to have been first intro-
duced by Taig." In his first application basic linear quadrilateral relations were used.
Irons>® generalized the idea for other elements.

Quite independently the exercises of devising various practical methods of generat-
ing curved surfaces for purposes of engineering design led to the establishment of
similar definitions by Coons* and Forrest,” and indeed today the subjects of surface
definitions and analysis are drawing closer together due to this activity.

In Fig. 9.3 an actual distortion of elements based on the cubic and quadratic
members of the two-dimensional ‘serendipity’ family is shown. It is seen here that a
one-to-one relationship exists between the local (£,n) and global (x,y) coordinates.
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Fig. 9.3 Computer plots of curvilinear coordinates for cubic and parabolic elements (reasonable distortion).

If the fixed points are such that a violent distortion occurs then a non-uniqueness can
occur in the manner indicated for two situations in Fig. 9.4. Here at internal points of
the distorted element two or more local coordinates correspond to the same cartesian
coordinate and in addition to some internal points being mapped outside the element.
Care must be taken in practice to avoid such gross distortion.

Figure 9.5 shows two examples of a two-dimensional (£, n) element mapped into a
three-dimensional (x, y, z) space.

We shall often refer to the basic element in undistorted, local, coordinates as a
‘parent’ element.

Fig. 9.4 Unreasonable element distortion leading to a non-unique mapping and ‘overspill’. Cubic and
parabolic elements.
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Fig. 9.5 Flat elements (of parabolic type) mapped into three-dimensions.

In Sec. 9.5 we shall define a quantity known as the jacobian determinant. The well-
known condition for a one-to-one mapping (such as exists in Fig. 9.3 and does not in
Fig. 9.4) is that the sign of this quantity should remain unchanged at all the points of
the mapped element.

It can be shown that with a parametric transformation based on bilinear shape
functions, the necessary condition is that no internal angle [such as « in Fig. 9.6(a)]

o < 180°

(a) Linear element

(b) Quadratic element

Safe zone
for midpoint

Fig. 9.6 Rules for uniqueness of mapping (a) and (b).
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be greater than 180°.° In transformations based on parabolic-type ‘serendipity’ func-
tions, it is necessary in addition to this requirement to ensure that the mid-side nodes
are in the ‘middle half” of the distance between adjacent corners but a ‘middle third’
shown in Fig. 9.6 is safer. For cubic functions such general rules are impractical and
numerical checks on the sign of the jacobian determinant are necessary. In practice a
parabolic distortion is usually sufficient.

9.3 Geometrical conformability of elements

While it was shown that by the use of the shape function transformation each parent
element maps uniquely a part of the real object, it is important that the subdivision of
this into the new, curved, elements should leave no gaps. The possibility of such gaps
is indicated in Fig. 9.7.

(a) (b)

Fig. 9.7 Compatibility requirements in a real subdivision of space.

Theorem 1. If two adjacent elements are generated from ‘parents’ in which the shape
functions satisfy C, continuity requirements then the distorted elements will be contig-
uous (compatible).

This theorem is obvious, as in such cases uniqueness of any function u required by
continuity is simply replaced by that of uniqueness of the x, y, or z coordinate. As
adjacent elements are given the same sets of coordinates at nodes, continuity is
implied.

9.4 Variation of the unknown function within distorted,
curvilinear elements. Continuity requirements

With the shape of the element now defined by the shape functions N’ the variation of
the unknown, u, has to be specified before we can establish element properties. This is



Variation of the unknown function within distorted, curvilinear elements

Fig. 9.8 Various element specifications: O point at which coordinate is specified; O points at which the
function parameter is specified. (a) Isoparametric, (b) superparametric, (c) subparametric.

most conveniently given in terms of local, curvilinear coordinates by the usual
expression

u = Na’ (9.3)

where a° lists the nodal values.

Theorem 2. [f the shape functions N used in (9.3) are such that Cy continuity of u is
preserved in the parent coordinates then Cy continuity requirements will be satisfied in
distorted elements.

The proof of this theorem follows the same lines as that in the previous section.

The nodal values may or may not be associated with the same nodes as used to
specify the element geometry. For example, in Fig. 9.8 the points marked with a
circle are used to define the element geometry. We could use the values of the function
defined at nodes marked with a square to define the variation of the unknown.

In Fig. 9.8(a) the same points define the geometry and the finite element analysis
points. If then

N=N (9.4)

i.e., the shape functions defining the geometry and the function are the same, the
elements will be called isoparametric.

We could, however, use only the four corner points to define the variation of u
[Fig. 9.8(h)]. We shall refer to such an element as superparametric, noting that the
variation of geometry is more general than that of the actual unknown.

Similarly, if for instance we introduce more nodes to define u than are used to define
the geometry, subparametric elements will result [Fig. 9.8(¢)].

207
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While for mapping it is convenient to use ‘standard’ forms of shape functions the
interpolation of the unknown can, of course, use hierarchic forms defined in the
previous chapter. Once again the definitions of sub- and superparametric variations
are applicable.

Transformations

9.5 Evaluation of element matrices (transformation in &,
1, { coordinates)

To perform finite element analysis the matrices defining element properties, e.g., stiff-
ness, etc., have to be found. These will be of the form

JVGdV (9.5)

in which the matrix G depends on N or its derivatives with respect to global coordi-
nates. As an example of this we have the stiffness matrix

J B'DBdV (9.6)
v
and associated body force vectors
J N'bdv (9.7)
v

For each particular class of elastic problems the matrices of B are given explicitly by
their components [see the general form of Eqs (4.10), (5.6), and (6.11)]. Quoting the
first of these, Eq. (4.10), valid for plane problems we have

o,
ox’
IN;
B=| 0 9.8)
dy’ Ox

In elasticity problems the matrix G is thus a function of the first derivatives of N
and this situation will arise in many other classes of problem. In all, C; continuity
is needed and, as we have already noted, this is readily satisfied by the functions of
Chapter 8, written now in terms of curvilinear coordinates.

To evaluate such matrices we note that two transformations are necessary. In the
first place, as N; is defined in terms of local (curvilinear) coordinates, it is necessary
to devise some means of expressing the global derivatives of the type occurring in
Eq. (9.8) in terms of local derivatives.

In the second place the element of volume (or surface) over which the integration
has to be carried out needs to be expressed in terms of the local coordinates with an
appropriate change of limits of integration.
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Consider, for instance, the set of local coordinates &, 1, ¢ and a corresponding set of
global coordinates x, y, z. By the usual rules of partial differentiation we can write, for
instance, the £ derivative as

8N,'_8Nl' ax aN, 6_}/ 3/\7, aZ
o6 Ox 96 OJy 96 0z O¢

Performing the same differentiation with respect to the other two coordinates and

writing in matrix form we have

(9.9)

ON; Ox Oy 0z] (0N, ON;
23 ¢’ o’ o€ ox 0x
oN | |ox o ozl)on | on
o ("o o oam| Yo (N 10
onN | |ax oy oz |aw, ON,
ac ¢ ac o oz oz

In the above, the left-hand side can be evaluated as the functions N; are specified in
local coordinates. Further, as x, y, z are explicitly given by the relation defining the
curvilinear coordinates [Eq. (9.2)], the matrix J can be found explicitly in terms of
the local coordinates. This matrix is known as the jacobian matrix.

To find now the global derivatives we invert J and write

3Ni aN,

Ox 43

a [~ J an (9.11)
ON; ON;

0z aC

In terms of the shape function defining the coordinate transformation N’ (which as
we have seen are only identical with the shape functions N when the isoparametric
formulation is used) we have

[ ON; ON; ON/ 1 [ON, N,
Xis i Zj Taf ' Qe Tt
> o¢ > o€ > o€ ¢ o€ S I PN PR
ON] ON] ON; ON;  ONj}
J= o o i = |9 9k, g,z
E 877 X,, Z 877 yl? Z a,r] Zl a/r] I (977 2 2 .2
ONj ONj ON;] ONy  ON;
_Z 8C Xis Z 8< Yis Z 8( Zi_ i aC ) a( "'_

(9.12)

9.5.1 Volume integrals

To transform the variables and the region with respect to which the integration is
made, a standard process will be used which involves the determinant of J. Thus,
for instance, a volume element becomes

dxdydz =detJdédnd( (9.13)
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This type of transformation is valid irrespective of the number of coordinates used.
For its justification the reader is referred to standard mathematical texts.t (See also
Appendix F.)

Assuming that the inverse of J can be found we now have reduced the evaluation of
the element properties to that of finding integrals of the form of Eq. (9.5).

More explicitly we can write this as

[ ][ senodeanc 914

if the curvilinear coordinates are of the normalized type based on the right prism.
Indeed the integration is carried out within such a prism and not in the complicated
distorted shape, thus accounting for the simple integration limits. One- and two-
dimensional problems will similarly result in integrals with respect to one or two
coordinates within simple limits.

While the limits of integration are simple in the above case, unfortunately the
explicit form of G is not. Apart from the simplest elements, algebraic integration
usually defies our mathematical skill, and numerical integration has to be used.
This, as will be seen from later sections, is not a severe penalty and has the advantage
that algebraic errors are more easily avoided and that general programs, not tied to a
particular element, can be written for various classes of problems. Indeed in such
numerical calculations the analytical inverses of J are never explicitly found.

9.5.2 Surface integrals

In elasticity and other applications, surface integrals frequently occur. Typical here
are the expressions for evaluating the contributions of surface tractions [see Chapter
2, Eq. (2.24b)]:

f= —J NTtd4
A

The element d4 will generally lie on a surface where one of the coordinates (say ¢) is
constant.

The most convenient process of dealing with the above is to consider d4 as a
vector oriented in the direction normal to the surface (see Appendix F). For three-
dimensional problems we form the vector product

% ox

o€ an

_dA_ ) %
nd4 =dA = % X n d¢dn

o: ||

73 on

and on substitution integrate within the domain —1 < ¢, np < 1.

1 The determinant of the jacobian matrix is known in the literature simply as ‘the jacobian’ and is often
written as
A(x,y,2)

detJ =
. a(&m,¢)
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For two dimensions a line length dS arises and here the magnitude is simply

Ox ady

9% 0 9%
ndS=dS=<¢ 0y p x< 0 yd¢= Ox pd¢

23 1 23

0 0

on constant 7 surfaces. This may now be reduced to two components for the two-
dimensional problem.

9.6 Element matrices. Area and volume coordinates

The general relationship (9.2) for coordinate mapping and indeed all the following
theorems are equally valid for any set of local coordinates and could relate the
local Ly, L,, ... coordinates used for triangles and tetrahedra in the previous chapter,
to the global cartesian ones.

Indeed most of the discussion of the previous chapter is valid if we simply rename
the local coordinates suitably. However, two important differences arise.

The first concerns the fact that the local coordinates are not independent and in fact
number one more than the cartesian system. The matrix J would apparently therefore
become rectangular and would not possess an inverse. The second is simply the
difference of integration limits which have to correspond with a triangular or
tetrahedral ‘parent’.

The simplest, though perhaps not the most elegant, way out of the first difficulty is
to consider the last variable as a dependent one. Thus, for example, we can introduce
formally, in the case of the tetrahedra,

E=1,
n=1L,

(9.15)
(=1L

I—&=n—C= Ly

(by definition in the previous chapter) and thus preserve without change Eq. (9.9) and
all the equations up to Eq. (9.14).

As the functions N; are given in fact in terms of L;, L,, etc., we must observe
that

8N,—_8N,—%+6Ni%+8N,-%+E)N,-%
0¢ 0L, 0¢  OL, 06 OLy 0¢  OL, O¢

(9.16)

On using Eq. (9.15) this becomes simply

ON; _ON; 0N,
0¢  OL, 0Ly,

with the other derivatives obtainable by similar expressions.

21
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The integration limits of Eq. (9.14) now change, however, to correspond with the
tetrahedron limits, typically

Jl JI_CJ]_HG(& n,¢) dgdnd¢

0Jo 0

(9.17)

The same procedure will clearly apply in the case of triangular coordinates.

It must be noted that once again the expression G will necessitate numerical
integration which, however, is carried out over the simple, undistorted, parent
region whether this be triangular or tetrahedral.

An alternative to the above is to express the coordinates and constraint as

re=x—xN{ —x;Ny —x3N3 —--- =0
ry =Y =Nl =Ny — 3Ny —---=0 ©.18)
I’Z:z—lei—zzNé—Z3N§_...:0 ’

Vlzl—Ll—Lz—L3—L4:0

where N = N'(L,, L,, L3, L), etc. Now derivatives of the above with respect to x and
y may be written directly as

[or, Or, Or,] ~ _
aE Sugy Sugrt St Tugl
Vy ry I"y
Ox gy oz |0 1 0} Zykg—]va Zykg—];[;‘ Zykgﬁ‘ Zykg—]Zj
or. Or. Or. 1
8_;8_);8_; oo 22%22%22% Zz%

000 "oL, *oL, *oL, KoL,
o on o |
LOx Jy Oz |

oL, AL, OL,]

Ox  dy 0z

oL, OL, 0L,

Ox 9y 0z

OLy OLy 0L,

Ox 9y Oz

dL, 0L, OL,

[ ox 9y 0z |

The above may be solved for the partial derivatives of L; with respect to the x, y, z
coordinates and used directly with the chain rule written as

ON; ON; 0L, ON;O0L, ON;0L; ON;dL,
Ox OL, Ox 0L, Ox 0Ly Ox OLs Ox
The above has advantages when the coordinates are written using mapping functions
as the computation can still be more easily carried out. Also, the calculation of

integrals will normally be performed numerically (as described in Sec. 9.10) where
the points for integration are defined directly in terms of the volume coordinates.

(19.20)
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Fig. 9.9 A distorted triangular prism.

Finally it should be remarked that any of the elements given in the previous chapter
are capable of being mapped. In some, such as the triangular prism, both area and
rectangular coordinates are used (Fig. 9.9). The remarks regarding the dependence
of coordinates apply once again with regard to the former but the processes of the
present section should make procedures clear.

9.7 Convergence of elements in curvilinear coordinates

To consider the convergence aspects of the problem posed in curvilinear coordinates
it is convenient to return to the starting point of the approximation where an energy
functional II, or an equivalent integral form (Galerkin problem statement), was
defined by volume integrals essentially similar to those of Eq. (9.5), in which the
integrand was a function of « and its first derivatives.

Thus, for instance, the variational principles of the energy kind discussed in
Chapter 2 (or others of Chapter 3) could be stated for a scalar function u as

Oou Ou
H—J\QF(u,a,a—y,x,y> dQ+JFE(M,)dF (921)

The coordinate transformation changes the derivatives of any function by the
jacobian relation (9.11). Thus

du ou
Ox _ o
ou (=0 Em o (92)
ay an

and the functional can be stated simply by a relationship of the form (9.21) with x, y,
etc., replaced by &, 7, etc., with the maximum order of differentiation unchanged.

It follows immediately that if the shape functions are chosen in curvilinear coordi-
nate space so as to observe the usual rules of convergence (continuity and presence of
complete first-order polynomials in these coordinates), then convergence will occur.
Further, all the arguments concerning the order of convergence with the element
size & still hold, providing the solution is related to the curvilinear coordinate system.

Indeed, all that has been said above is applicable to problems involving higher
derivatives and to most unique coordinate transformations. It should be noted that
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the patch test as conceived in the x, y, . .. coordinate system (see Chapters 2 and 10) is

no longer simply applicable and in principle should be applied with polynomial fields

imposed in the curvilinear coordinates. In the case of isoparametric (or subpara-

metric) elements the situation is more advantageous. Here a linear (constant deriva-

tive x, y) field is always reproduced by the curvilinear coordinate expansion, and thus

the lowest order patch test will be passed in the standard manner on such elements.
The proof of this is simple. Consider a standard isoparametric expansion

u:zn:NiaiENa N =N(,1,0) (9.23)

i=1

with coordinates of nodes defining the transformation as

X=Y Nx; y=> Ny z=> Ng (9.24)

The question is under what circumstances is it possible for expression (9.23) to define
a linear expansion in cartesian coordinates:

U= 0]+ 00X+ Q3)+ 0z

= —&-azZNix,«—i-%ZNiy,-—l—mZNizi (9.25)
If we take
a; = oy + X, + a3y + 0z
and compare expression (9.23) with (9.25) we note that identity is obtained between
these providing
> N =1

As this is the usual requirement of standard element shape functions [see Eq. (8.4)] we
can conclude that the following theorem is valid.

Theorem 3. The constant derivative condition will be satisfied for all isoparametric
elements.

As subparametric elements can always be expressed as specific cases of an isopara-
metric transformation this theorem is obviously valid here also.

It is of interest to pursue the argument and to see under what circumstances higher
polynomial expansions in cartesian coordinates can be achieved under various trans-
formations. The simple linear case in which we ‘guessed’ the solution has now to be
replaced by considering in detail the polynomial terms occurring in expressions such
as (9.23) and (9.25) and establishing conditions for equating appropriate coefficients.

Consider a specific problem: the circumstances under which the bilinearly mapped
quadrilateral of Fig. 9.10 can fully represent any quadratic cartesian expansion. We
now have

4 4
X = Z Nix; y= Z Niy; (9.26)
T T

and we wish to be able to reproduce

U=+ QX + a3y + X’ + asxy + ag )’ (9.27)
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Mapping nodes

@

(b)

Fig. 9.10 Bilinear mapping of subparametric quadratic eight- and nine-noded element.

Noting that the bilinear form of N/ contains terms such as 1, £,  and £, the above can
be written as

u= P03+ BE+ Bn+ Bl + Bsén + 56772 + 575772 + 585277 + 5952772 (9.28)

where () to By depend on the values of a; to ag.
We shall now try to match the terms arising from the quadratic expansions of the
serendipity and lagrangian kinds shown in Fig. 9.10(b) and (c¢):

8
> N (9.29a)

1

u

u

9
> N, (9.29b)
1

where the appropriate terms are of the kind defined in the previous chapter.

For the eight-noded element (serendipity) [Fig. 9.10(h)] we can write (9.29(a))
directly using polynomial coefficients b;, i =1, ..., 8, in place of the nodal variables
a; (noting the terms occurring in the Pascal triangle) as

U= by + by€ + by + by& + bsén + ben® + bafn” + by (9.30)
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Regular (R) mesh

8- and 9-noded elements
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Fig. 9.11 Quadratic serendipity and Lagrange eight- and nine-noded elements in regular and distorted form.
Elastic deflection of a beam under constant moment. Note the poor results of the eight-noded element.

It is immediately evident that for arbitrary values of 3, to 3y it is impossible to
match the coefficients b; to by due to the absence of the term 52772 in Eq. (9.30).
[However if higher order (quartic, etc.) expansions of the serendipity kind were
used such matching would evidently be possible and we could conclude that for
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linearly distorted elements the serendipity family of order four or greater will always
represent quadratics.]

For the nine-noded, lagrangian, element [Fig. 9.10(c)] the expansion similar to
(9.30) gives

U= by + by + by + by& + -+ + by + bl (9.31)

and the matching of the coefficients of Eqs (9.31) and (9.28) can be made directly.

We can conclude therefore that nine-noded elements represent better cartesian
polynomials (when distorted linearly) and therefore are generally preferable in
modelling smooth solutions. This matter was first presented by Wachspress but the
simple proof presented above is due to Crochet.® An example of this is given in
Fig. 9.11 where we consider the results of a finite element calculation with eight-
and nine-noded elements respectively used to reproduce a simple beam solution in
which we know that the exact answers are quadratic. With no distortion both ele-
ments give exact results but when distorted only the nine-noded element does so,
with the eight-noded element giving quite wild stress fluctuation.

Similar arguments will lead to the conclusion that in three dimensions again only
the lagrangian 27-noded element is capable of reproducing fully the quadratic in
cartesian coordinates when trilinearly distorted.

Lee and Bathe’ investigate the problem for cubic and quartic serendipity and
lagrangian quadrilateral elements and show that under bilinear distortions the full
order cartesian polynomial terms remain in Lagrange elements but not in serendipity
ones. They also consider edge distortion and show that this polynomial order is
always lost. Additional discussion of such problems is also given by Wachspress.’

9.8 Numerical integration — one-dimensional

In Chapter 5, dealing with a relatively simple problem of axisymmetric stress distribu-
tion and simple triangular elements, it was noted that exact integration of expressions
for element matrices could be troublesome. Now for the more complex distorted
elements numerical integration is essential.

Some principles of numerical integration will be summarized here together with
tables of convenient numerical coefficients.

To find numerically the integral of a function of one variable we can proceed in one
of several ways.'”

9.8.1 Newton-Cotes quadraturef

In the most obvious procedure, points at which the function is to be found are
determined « priori — usually at equal intervals — and a polynomial passed through
the values of the function at these points and exactly integrated [Fig. 9.12(a)].

T ‘Quadrature’ is an alternative term to ‘numerical integration’.
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Fig. 9.12 (a) Newton—Cotes and (b) Gauss integrations. Each integrates exactly a seventh-order polynomial
li.e., error O(h®)].

As n values of the function define a polynomial of degree n — 1, the errors will be
of the order O(/") where & is the element size. This leads to the well-known
Newton—Cotes ‘quadrature’ formulae. The intregrals can be written as

1 n
1= j 1O = Hf(E) 9.32)
1

for the range of integration between —1 and +1 [Fig. 9.12(a)]. For example, if n = 2,
we have the well-known trapezoidal rule:

I=f(=1)+/f(1) (9.33)

for n = 3, the Simpson ‘one-third’ rule:

I=3[f(=1)+4f(0) +£(1)] (9.34)
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and for n = 4:
I=3[/(=1)+3f(=3) + 3G +/(1)] (9.35)

Formulae for higher values of # are given in reference 10.

9.8.2 Gauss quadrature

If in place of specifying the position of sampling points a priori we allow these to be loca-
ted at points to be determined so as to aim for best accuracy, then for a given number of
sampling points increased accuracy can be obtained. Indeed, if we again consider

1 n

1=| rou=> mse) (9.36)
- 1

and again assume a polynomial expression, it is easy to see that for n sampling

points we have 2n unknowns (H; and &;) and hence a polynomial of degree 2n — 1

could be constructed and exactly integrated [Fig. 9.12(b)]. The error is thus of

order O(h™").

The simultaneous equations involved are difficult to solve, but some mathematical
manipulation will show that the solution can be obtained explicitly in terms of
Legendre polynomials. Thus this particular process is frequently known as Gauss—
Legendre quadrature.'”

Table 9.1 shows the positions and weighting coefficients for gaussian integration.

For purposes of finite element analysis complex calculations are involved in deter-
mining the values of f, the function to be integrated. Thus the Gauss-type processes,
requiring the least number of such evaluations, are ideally suited and from now on
will be used exclusively.

Other expressions for integration of functions of the type

1 n
1= wer© =3 mre) 9.37)
1

can be derived for prescribed forms of w(§), again integrating up to a certain order
of accuracy a polynomial expansion of f' (§).10

9.9 Numerical integration — rectangular (2D) or right
prism (3D) regions

The most obvious way of obtaining the integral

= Jl jl £(€m) dedy (9.38)

1J-1

is to first evaluate the inner integral keeping 7 constant, i.e.,

1
_1

| remac= S H () = vln) (9.39)
i=1
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Table 9.1 Abscissae and weight coefficients of the gaussian
quadrature formula ['} f(x)dx = Y/—| H, f(a;)

+a
0
1/V3

V0.6
0.000 000 000 000 000

0.861136311594953
0.339981043 584 856

0.906 179 845938 664
0.538469 310105 683
0.000 000 000 000 000

0.932469 514203152
0.661209 386466265
0.238619 186083197

0.949107912342759
0.741 531185599 394
0.405845151377397
0.000 000 000 000 000

0.960289 856497 536
0.796 666477413 627
0.525532409916 329
0.183 434642495650

0.968 160239 507 626
0.836031107326636
0.613 371432700 590
0.324 253423403 809
0.000 000000000000

0.973906528 517172
0.865063 366 688 985
0.679409 568 299 024
0.433395394 129 247
0.148 874338981 631

H
2.000 000 000 000 000
1.000 000 000 000 000

5/9
8/9

0.347854845137454
0.652 145154862 546

0.236926 885056 189
0.478 628 670499 366
0.568 888 888 838 889

0.171324492379 170
0.360761 573048 139
0.467913934 572691

0.129484966 168 870
0.279705391489 277
0.381830050505119
0.417959 183 673 469

0.101228 536290376
0.222381034 453374
0.313706 645877 887
0.362 683783378 362

0.081274 388361574
0.180 648 160 694 857
0.260 610696 402935
0.312347077 040003
0.330239355001 260

0.066 671 344 308 688
0.149451 349 150 581
0.219086362 515982
0.269266 719 309 996
0.295524224714753

1= wonan

-1

i=1

i=1j=1

Evaluating the outer integral in a similar manner, we have

S Hubln)

S H> Hif(&m)

i=1  j=1

Z Z HiH; f(&,m:)

(9.40)
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Fig. 9.13 Integrating points for n =3 in a square region. (Exact for polynomial of fifth order in each
direction).

For a right prism we have similarly

=[] renodeanc

n n

= Z ZZHiHiHmf(fianivgm) (941)

m=1j=1i=1

In the above, the number of integrating points in each direction was assumed to be the
same. Clearly this is not necessary and on occasion it may be an advantage to use
different numbers in each direction of integration.

It is of interest to note that in fact the double summation can be readily interpreted
as a single one over (n x n) points for a rectangle (or n® points for a cube). Thus in
Fig. 9.13 we show the nine sampling points that result in exact integrals of order 5
in each direction.

However, we could approach the problem directly and require an exact integration
of a fifth-order polynomial in two dimensions. At any sampling point two coordinates
and a value of /" have to be determined in a weighting formula of type

] ] m
= J 1 J 1f(£’ n) dgdn = Z wi f (&, m:) (9.42)
I 1

There it would appear that only seven points would suffice to obtain the same order of
accuracy. Some formulae for three-dimensional bricks have been derived by Irons'!
and used successfully.12

9.10 Numerical integration — triangular or tetrahedral
regions

For a triangle, in terms of the area coordinates the integrals are of the form

1 pl-1L,
1 = J J f(L1L2L3) dL2 dLl L3 = 1 - Ll - L2 (943)
0Jo
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Table 9.2 Numerical integration formulae for triangles

Triangular
Order Figure Error Points coordinates Weights
Linear <‘. R=0() 13 1
a 1,40 1
Quadratic R= 0(h3) b 07%7% %
¢ 3,03 3
@ L &
Cubic A R=0(") b 0.6,0.2,0.2
«q ¢ 0.2,0.6, 0.2} 2
d 0.2,0.2,0.6
a 114 0.225000 0000
b ag, B, By
4 B, ar, B 0.1323941527
Quintic A R=0(") d B, B, v
q e ay, B, B>
f Ba, tr, B> 0.1259391805
g B, By vy
with

o =0.0597158717
B =0.4701420064 1
o, =0.7974269853
3, =0.1012865073

Once again we could use 7 Gauss points and arrive at a summation expression of
the type used in the previous section. However, the limits of integration now involve
the variable itself and it is convenient to use alternative sampling points for the second
integration by use of a special Gauss expression for integrals of the type given by
Eq. (9.37) in which w is a linear function. These have been devised by Radau'® and
used successfully in the finite element context.'* It is, however, much more desirable
(and aesthetically pleasing) to use special formulae in which no bias is given to any of
the natural coordinates L;. Such formulae were first derived by Hammer ez a/.'®> and
Felippa'® and a series of necessary sampling points and weights is given in Table 9.2."
(A more comprehensive list of higher formulae derived by Cowper is given on p. 184
of reference 17.)

A similar extension for tetrahedra can obviously be made. Table 9.3 presents some
formulae based on reference 15.
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Table 9.3 Numerical integration formulae for tetrahedra

Tetrahedral
No. Order Figure Error Points coordinates Weights
1 Linear R=0(1*) a I 1
a a, 3,5,
b B, 3,8 !
2 Quadratic R=0(1) c B, 8,0, 8 4
d B, B, B, o
a =0.58541020
B =0.138196 60
_4
14 5
3 Cubic R=0(h"

R QO 9
Ol DN GV Rl |
Sl = = OV a|—
SNl 19— A= G |
1ol— SAl— A= S— | —

O

9.11 Required order of numerical integration

With numerical integration used in place of exact integration, an additional error is
introduced into the calculation and the first impression is that this should be reduced
as much as possible. Clearly the cost of numerical integration can be quite significant,
and indeed in some early programs numerical formulation of element characteristics
used a comparable amount of computer time as in the subsequent solution of the
equations. It is of interest, therefore, to determine (¢) the minimum integration
requirement permitting convergence and (b) the integration requirements necessary
to preserve the rate of convergence which would result if exact integation were used.

It will be found later (Chapters 10 and 12) that it is in fact often a positive
disadvantage to use higher orders of integration than those actually needed under
(b) as, for very good reasons, a ‘cancellation of errors’ due to discretization and
due to inexact integration can occur.

9.11.1 Minimum order of integration for convergence

In problems where the energy functional (or equivalent Galerkin integral statements)
defines the approximation we have already stated that convergence can occur
providing any arbitrary constant value of the mth derivatives can be reproduced.
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In the present case m = 1 and we thus require that in integrals of the form (9.5) a
constant value of G be correctly integrated. Thus the volume of the element [, dV
needs to be evaluated correctly for convergence to occur. In curvilinear coordinates
we can thus argue that [, det |J| d¢ dnd¢ has to be evaluated exactly.>$

9.11.2 Order of integration for no loss of convergence

In a general problem we have already found that the finite element approximate
evaluation of energy (and indeed all the other integrals in a Galerkin-type approxima-
tion, see Chapter 3) was exact to the order 2( p — m), where p was the degree of the
complete polynomial present and m the order of differentials occurring in the
appropriate expressions.

Providing the integration is exact to order 2(p —m), or shows an error of
O(K*'?=™+1) or less, then no loss of convergence order will occur.t If in curvilinear
coordinates we take a curvilinear dimension % of an element, the same rule applies.
For C, problems (i.e., m = 1) the integration formulae should be as follows:

p=1, linear elements  O(h)
p =2, quadratic elements O(/’)
p=3, cubicelements  O(h’)

We shall make use of these results in practice, as will be seen later, but it should be
noted that for a linear quadrilateral or triangle a single-point integration is adequate.
For parabolic quadrilaterals (or bricks) 2 x 2 (or 2 x 2 x 2), Gauss point integration
is adequate and for parabolic triangles (or tetrahedra) three-point (and four-point)
formulae of Tables 9.2 and 9.3 are needed.

The basic theorems of this section have been introduced and proved numerically in
published work.'$~%

9.11.3 Matrix singularity due to numerical integration

The final outcome of a finite element approximation in linear problems is an equation
system

Ka+f=0 (9.44)

in which the boundary conditions have been inserted and which should, on solution
for the parameter a, give an approximate solution for the physical situation. If a solu-
tion is unique, as is the case with well-posed physical problems, the equation matrix K
should be non-singular. We have a priori assumed that this was the case with exact
integration and in general have not been disappointed. With numerical integration
singularities may arise for low integration orders, and this may make such orders
impractical. It is easy to show how, in some circumstances, a singularity of K must

1 For an energy principle use of quadrature may result in loss of a bound for II(a).
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arise, but it is more difficult to prove that it will not. We shall, therefore, concentrate
on the former case.

With numerical integration we replace the integrals by a weighted sum of indepen-
dent linear relations between the nodal parameters a. These linear relations supply the
only information from which the matrix K is constructed. If the number of unknowns a
exceeds the number of independent relations supplied at all the integrating points, then
the matrix K must be singular.

X Integrating point (3 independent relations)

O Nodal point with 2 degrees of freedom

o—o0

Both d.o.f.
7/
X (@) o suppressed
R Q One d.o.f.
suppressed
X X (b)
V2242
P ‘o)
X X X X
X X X X
4 ©
X X X X
X X X X
% 7
Linear Quadratic
Degree of Independent | Degree of Independent
freedom relation freedom relation
@ 4x2-3=5>1x3=3 2x8-3=13>4x3=12
a
singular singular
®) 6x2-3=9>2x3=6 13x2-3=23<8x3=24
singular
(c) 25x2-18=32<16x3=48 | 48x2=96<64x3=192

Fig. 9.14 Check on matrix singularity in two-dimensional elasticity problems (a), (b), and (c).
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To illustrate this point we shall consider two-dimensional elasticity problems using
linear and parabolic serendipity quadrilateral elements with one- and four-point
quadratures respectively.

Here at each integrating point three independent ‘strain relations’ are used and the
total number of independent relations equals 3 x (number of integration points). The
number of unknowns a is simply 2 x (number of nodes) less restrained degrees of
freedom.

In Fig. 9.14(a) and (b) we show a single element and an assembly of two elements
supported by a minimum number of specified displacements eliminating rigid body
motion. The simple calculation shows that only in the assembly of the quadratic
elements is elimination of singularities possible, all the other cases remaining strictly
singular.

In Fig. 9.14(c) a well-supported block of both kinds of elements is considered and
here for both element types non-singular matrices may arise although local, near
singularity may still lead to unsatisfactory results (see Chapter 10).

The reader may well consider the same assembly but supported again by the mini-
mum restraint of three degrees of freedom. The assembly of linear elements with a
single integrating point will be singular while the quadratic ones will, in fact, usually
be well behaved.

For the reason just indicated, linear single-point integrated elements are used
infrequently in static solutions, though they do find wide use in ‘explicit’ dynamics
codes — but needing certain remedial additions (e.g., hourglass control*'**) — while
four-point quadrature is often used for quadratic serendipity elements.t

In Chapter 10 we shall return to the problem of convergence and will indicate
dangers arising from local element singularities.

However, it is of interest to mention that in Chapter 12 we shall in fact seek matrix
singularities for special purposes (e.g., incompressibility) using similar arguments.

9.12 Generation of finite element meshes by mapping.
Blending functions

It would have been observed that it is an easy matter to obtain a coarse subdivision of
the analysis domain with a small number of isoparametric elements. If second- or
third-degree elements are used, the fit of these to quite complex boundaries is reason-
able, as shown in Fig. 9.15(a) where four parabolic elements specify a sectorial region.
This number of elements would be too small for analysis purposes but a simple sub-
division into finer elements can be done automatically by, say, assigning new positions
of nodes of the central points of the curvilinear coordinates and thus deriving a larger
number of similar elements, as shown in Fig. 9.15(b). Indeed, automatic subdivision
could be carried out further to generate a field of triangular elements. The process
thus allows us, with a small amount of original input data, to derive a finite element
mesh of any refinement desirable. In reference 23 this type of mesh generation is
developed for two- and three-dimensional solids and surfaces and is reasonably

T Repeating the test for quadratic lagrangian elements indicates a singularity for 2 x 2 quadrature (see
Chapter 10 for dangers).
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M ?

(b)

(©

Fig. 9.15 Automatic mesh generation by parabolic isoparametric elements. (a) Specified mesh points.
(b) Automatic subdivision into a small number of isoparametric elements. (c) Automatic subdivision into
linear triangles.

efficient. However, elements of predetermined size and/or gradation cannot be easily
generated.

The main drawback of the mapping and generation suggested is the fact that the
originally circular boundaries in Fig. 9.15(a) are approximated by simple parabolae
and a geometric error can be developed there. To overcome this difficulty another
form of mapping, originally developed for the representation of complex motor-car
body shapes, can be adopted for this purpose.>* In this mapping blending functions
interpolate the unknown u in such a way as to satisfy exactly its variations along the
edges of a square &, n domain. If the coordinates x and y are used in a parametric
expression of the type given in Eq. (9.1), then any complex shape can be mapped
by a single element. In reference 24 the region of Fig. 9.15 is in fact so mapped
and a mesh subdivision obtained directly without any geometric error on the
boundary.

The blending processes are of considerable importance and have been used to
construct some interesting element families (which in fact include the standard
serendipity elements as a subclass). To explain the process we shall show how a
function with prescribed variations along the boundaries can be interpolated.

Consider a region —1 < &,17 < 1, shown in Fig. 9.16, on the edges of which an
arbitrary function ¢ is specified [i.e., ¢(—1,7n),¢(1,n),d(&,—1),6(E, 1) are given].
The problem presented is that of interpolating a function ¢(,n) so that a smooth
surface reproducing precisely the boundary values is obtained. Writing

Mg =5 M=
L, (9.45)
N(m=—— N{O=——

for our usual one-dimensional linear interpolating functions, we note that

P, = N'()o(&, —1) + N*(n)¢(& 1) (9.46)
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Fig. 9.16 Stages of construction of a blending interpolation (a), (b), (c), and (d).

interpolates linearly between the specified functions in the 7 direction, as shown in
Fig. 9.16(b). Similarly,

Pep = N'(&)o(n, —1) + N*(©)o(n, 1) (9.47)

interpolates linearly in the £ direction [Fig. 9.16(c)]. Constructing a third function
which is a standard linear, bilinear interpolation of the kind we have already encoun-
tered [Fig. 9.16(d)], i.e.,

PePyp = N (N> ()o(1,1) + N (EN' (o1, —1)
+ N (N ()p(—1,1) + N (N (n)p(—1,-1) (9.48)
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we note by inspection that
¢ = P,p+ Pep — PPy (9.49)

is a smooth surface interpolating exactly the boundary functions.

Extension to functions with higher order blending is almost evident, and immedi-
ately the method of mapping the quadrilateral region —1 < &, n < 1 to any arbitrary
shape is obvious.

Though the above mesh generation method derives from mapping and indeed has
been widely applied in two and three dimensions, we shall see in the chapter devoted
to adaptivity (Chapter 15) that the optimal solution or specification of mesh density or
size should guide the mesh generation. We shall discuss this problem in that chapter to
some extent, but the interested reader is directed to references 26, 27 or books that
have appeared on the subje:ct.zg*3 ! The subject has now grown to such an extent
that discussion in any detail is beyond the scope of this book. In the programs
mentioned at the end of each volume of this book we shall refer to the GiD system
which is available to readers.*?

9.13 Infinite domains and infinite elements
9.13.1 Introduction

In many problems of engineering and physics infinite or semi-infinite domains exist. A
typical example from structural mechanics may, for instance, be that of three-
dimensional (or axisymmetric) excavation, illustrated in Fig. 9.17. Here the problem
is one of determining the deformations in a semi-infinite half-space due to the removal
of loads with the specification of zero displacements at infinity. Similar problems
abound in electromagnetics and fluid mechanics but the situation illustrated is typical.
The question arises as to how such problems can be dealt with by a method of approx-
imation in which elements of decreasing size are used in the modelling process. The
first intuitive answer is the one illustrated in Fig. 9.17(a) where the infinite boundary
condition is specified at a finite boundary placed at a large distance from the object.
This, however, begs the question of what is a ‘large distance’ and obviously substan-
tial errors may arise if this boundary is not placed far enough away. On the other
hand, pushing this out excessively far necessitates the introduction of a large
number of elements to model regions of relatively little interest to the analyst.

To overcome such ‘infinite’ difficulties many methods have been proposed. In some
a sequence of nesting grids is used and a recurrence relation derived.*** In others a
boundary-type exact solution is used and coupled to the finite element domain.**
However, without doubt, the most effective and efficient treatment is the use of
‘infinite elements™>’~* pioneered originally by Bettess.*! In this process the conven-
tional, finite elements are coupled to elements of the type shown in Fig. 9.17(b)
which model in a reasonable manner the material stretching to infinity.

The shape of such two-dimensional elements and their treatment is best accom-
plished by mapping®~*! these onto a bi-unit square (or a finite line in one dimension
or cube in three dimensions). However, it is essential that the sequence of trial
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(@ (b)
Conventional Solution using
treatment infinite elements

Imposed at an
arbitrary boundary

- u=0atr=oo
‘Infinite’ element

with two nodes at «

Fig. 9.17 A semi-infinite domain. Deformations of a foundation due to removal of load following an
excavation. (a) Conventional treatment and (b) use of infinite elements.

functions introduced in the mapped domain be such that it is complete and capable of
modelling the true behaviour as the radial distance r increases. Here it would be
advantageous if the mapped shape functions could approximate a sequence of the
decaying form

G, G G
9.50
T 1 (9.50)

where C; are arbitrary constants and r is the radial distance from the ‘focus’ of the

problem.
In the next subsection we introduce a mapping function capable of doing just this.

9.13.2 The mapping function

Figure 9.18 illustrates the principles of generation of the derived mapping function.
We shall start with a one-dimensional mapping along a line CPQ coinciding with
the x-direction. Consider the following function:

1 fé_XC + (1 +1L_§>XQ = chc +NQXQ (951(1)

X =—
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Fig. 9.18 Infinite line and element map. Linear 7 interpolation.

and we immediately observe that

Yot Xc _

&=—1 -corresponds to x = 7 =Y
£E=0 corresponds to x = xq
&E=1 corresponds to x = oo

where xp is a point midway between Q and C.
Alternatively the above mapping could be written directly in terms of the Q and P
coordinates by simple elimination of xc. This gives, using our previous notation:

X = NQXQ —+ Np)Cp
28 28
Both forms give a mapping that is independent of the origin of the x-coordinate as

Ng+ Np =1= Nc+ Ng (9.52)

The significance of the point C is, however, of great importance. It represents the
centre from which the ‘disturbance’ originates and, as we shall now show, allows
the expansion of the form of Eq. (9.50) to be achieved on the assumption that r is
measured from C. Thus

F=X—Xc (9.53)
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If, for instance, the unknown function u is approximated by a polynomial function
using, say, hierarchical shape functions and giving

U=y +a €+ as +o+--- (9.54)
we can easily solve Eqgs (9.51a) for &, obtaining
g—1-Q-Yc_ | _Xe—¥c (9.55)

X — Xc r
Substitution into Eq. (9.54) shows that a series of the form given by Eq. (9.50) is
obtained with the linear shape function in £ corresponding to 1/r terms, quadratic to
1/1%, etc.

In one dimenson the objectives specified have thus been achieved and the element will
yield convergence as the degree of the polynomial expansion, p, increases. Now a general-
ization to two or three dimensions is necessary. It is easy to see that this can be achieved
by simple products of the one-dimensional infinite mapping with a ‘standard’ type of
shape function in 7 (and () directions in the manner indicated in Fig. 9.18.

Firstly we generalize the interpolation of Eqs (9.51) for any straight line in x, y, z
space and write (for such a line as C;P;Q; in Fig. 9.18)

X = fli;gxc] + (1 +]§£>le

y=—1§£ycl+<1+1—§£)yQ] (9.56)

Z=-7 f §ZC1 (1 + IL—E>ZQ1 (in three dimensions)
Secondly we complete the interpolation and map the whole £7(¢) domain by adding a
‘standard’ interpolation in the n(¢) directions. Thus for the linear interpolation shown
we can write for elements PP;QQ;RR; of Fig. 9.18, as

el
+No(n)(—lig T Ql) (9.57)
with
Niln) =3 No<n>:1%7

and map the points as shown.

In a similar manner we could use quadratic interpolations and map an element as
shown in Fig. 9.19 by using quadratic functions in 7.

Thus it is an easy matter to create infinite elements and join these to a standard
element mesh as shown in Fig. 9.17(b). The reader will observe that in the generation
of such element properties only the transformation jacobian matrix differs from
standard forms, hence only this has to be altered in conventional programs.

The ‘origin’ or ‘pole’ of the coordinates C can be fixed arbitrarily for each radial
line, as shown in Fig. 9.18. This will be done by taking account of the knowledge
of the physical solution expected.
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Fig. 9.19 Infinite element map. Quadratic n interpolation.

In Fig. 9.20 we show a solution of the Boussinesq problem (a point load on an
elastic half-space). Here results of using a fixed displacement or infinite elements
are compared and the big changes in the solution noted. In this example the pole
of each element was taken at the load point for obvious reasons.*

Figure 9.21 shows how similar infinite elements (of the linear kind) can give excellent
results, even when combined with very few standard elements. In this example where a
solution of the Laplace equation is used (see Chapter 7) for an irrotational fluid flow, the
poles of the infinite elements are chosen at arbitrary points of the aerofoil centre-line.

In concluding this section it should be remarked that the use of infinite elements (as
indeed of any other finite elements) must be tempered by background analytical
knowledge and ‘miracles’ should not be expected. Thus the user should not expect,
for instance, such excellent results as those shown in Fig. 9.20 for a plane elasticity
problem for the displacements. It is ‘well known’ that in this case the displacements
under any load which is not self-equilibrated will be infinite everywhere and the
numbers obtained from the computation will not be, whereas for the three-dimen-
sional case it is infinite only at a point load.

Extensive use of infinite elements is made in Volume 3 in the context of the solution
of wave problems.
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Standard Standard and
element infinite elements

0.4

0.2

Vertical Displacement on z axis
\

Fig. 9.20 A point load on an elastic half-space (Boussinesq problem). Standard linear elements and infinite
line elements (E=1,v=0.1,P=1).

9.14 Singular elements by mapping for fracture
mechanics, etc.

In the study of fracture mechanics interest is often focused on the singularity point
where quantities such as stress become (mathematically, but not physically) infinite.
Near such singularities normal, polynomial-based, finite element approximations
perform badly and attempts have frequently been made here to include special func-
tions within an element which can model the analytically known singular function.
References 42—69 give an extensive literature survey of the problem and finite element
solution techniques. An alternative to the introduction of special functions within an
element — which frequently poses problems of enforcing continuity requirements with
adjacent, standard, elements — lies in the use of special mapping techniques.

An element of this kind, shown in Fig. 9.22(a), was introduced almost simultaneously
by Henshell and Shaw®® and Barsoum®*®’ for quadrilaterals by a simple shift of the
mid-side node in quadratic, isoparametric elements to the quarter point.

It can now be shown (and we leave this exercise to the curious reader) that along the
element edges the derivatives du/dx (or strains) vary as 1/+/r where r is the distance
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Infinite elements

1.0

Analytic
solution

00

Fig. 9.21 Irrotational flow around a NACA 0018 wing section.®® (a) Mesh of bilinear isoparametric and infi-
nite elements. (b) Computed O and analytical — results for velocity parallel to surface.

from the corner node at which the singularity develops. Although good results are
achievable with such elements the singularity is, in fact, not well modelled on lines
other than element edges. A development suggested by Hibbitt®® achieves a better
result by using triangular second-order elements for this purpose [Fig. 9.22(b)].

@)

= I>
(©

Fig. 9.22 Singular elements from degenerate isoparameters (a), (b), and (c
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Indeed, the use of distorted or degenerate isoparametrics is not confined to elastic
singularities. Rice®® shows that in the case of plasticity a shear strain singularity of
1/r type develops and Levy et al® use an isoparametric, linear quadrilateral to
generate such a singularity by the simple device of coalescing two nodes but treating
these displacements independently. A variant of this is developed by Rice and Tracey.*

The elements just described are evidently simple to implement without any changes
in a standard finite element program. However, in Chapter 16 we introduce a method
whereby any singularity (or other function) can be modelled directly. We believe the
methods to be described there supercede the above described techniques.

9.15 A computational advantage of numerically
integrated finite elements’®

One considerable gain that is possible in numerically integrated finite elements is the
versatility that can be achieved in a single computer program.

It will be observed that for a given class of problems the general matrices are always
of the same form [see the example of Eq. (9.8)] in terms of the shape function and its
derivatives.

To proceed to evaluation of the element properties it is necessary first to specify the
shape function and its derivatives and, second, to specify the order of integration.

The computation of element properties is thus composed of three distinct parts as
shown in Fig. 9.23. For a given class of problems it is only necessary to change the
prescription of the shape functions to achieve a variety of possible elements.

Conversely, the same shape function routines can be used in many different classes
of problem, as is shown in Chapter 20.

Use of different elements, testing the efficiency of a new element in a given context,
or extension of programs to deal with new situations can thus be readily achieved, and
considerable algebra (with its inherent possibilities of mistakes) avoided.

The computer is thus placed in the position it deserves, i.e., of being the obedient
slave capable of saving routine work.

The greatest practical advantage of the use of universal shape function routines is
that they can be checked decisively for errors by a simple program with the patch test
(viz. Chapter 10) playing the crucial role.

Shape function
specification )
General
formulation
for a

particular
type of
element
matrix

Order of
integration

Fig. 9.23 Computation scheme for numerically integrated elements.



Some practical examples of two-dimensional stress analysis

The incorporation of simple, exactly integrable, elements in such a system is,
incidentally, not penalized as the time of exact and numerical integration in many
cases is almost identical.

9.16 Some practical examples of two-dimensional stress
analysis”' =7’

Some possibilities of two-dimensional analysis offered by curvilinear elements are
illustrated in the following axisymmetric examples.

9.16.1 Rotating disc (Fig. 9.24)

Here only 18 elements are needed to obtain an adequate solution. It is of interest to
observe that all mid-side nodes of the cubic elements are generated within a program
and need not be specified.

9.16.2 Conical water tank (Fig. 9.25)

In this problem cubic elements are again used. It is worth noting that single-element
thickness throughout is adequate to represent the bending effects in both the thick
and thin parts of the container. With simple triangular elements, several layers of
elements would have been needed to give an adequate solution.

Density 0.283 Ib/in®
22500 r/min
E = 10.300 T/in?

:
| v=03 1520 10,26
J) 10.35

10.59

10.54

10.18

18 Elements
119 Nodes
238 Degrees of freedom

6.90 4.30 3.93 332 313 285

L 2.910 >

Fig. 9.24 A rotating disc analysed with cubic elements.

237



238 Mapped elements and numerical integration

Fig. 9.25 Conical water tank.

9.16.3 A hemispherical dome (Fig. 9.26)

The possibilities of dealing with shells approached in the previous example are here
further exploited to show how a limited number of elements can adequately solve a
thin shell problem, with precisely the same program. This type of solution can be
further improved upon from the economy viewpoint by making use of the well-
known shell assumptions involving a linear variation of displacements across the
thickness. Thus the number of degrees of freedom can be reduced. Methods of this
kind will be dealt with in detail in the second volume of this text.

9.17 Three-dimensional stress analysis

In three-dimensional analysis, as was already hinted at in Chapter 6, the complex
element presents a considerable economic advantage. Some typical examples are
shown here in which the quadratic, serendipity-type formulation is used almost
exclusively. In all problems integration using three Gauss points in each direction
was used.

9.17.1 Rotating sphere (Fig. 9.27)

This example, in which the stresses due to centrifugal action are compared with exact
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6002 E = 107 Ib/in?
v=0.2
t=0.5in
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Mg Ib/in
200 Exact
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—>
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-200

L/t varies for } to 20

Typical element

Fig. 9.26 Encastré, thin hemispherical shell. Solution with 15 and 24 cubic elements.

values, is perhaps a test on the efficiency of highly distorted elements. Seven elements
are used here and results show good agreement with exact stresses.

9.17.2 Arch dam in rigid valley

This problem, perhaps a little unrealistic from the engineer’s viewpoint, was the
subject of a study carried out by a committee of the Institution of Civil Engineers
and provided an excellent test for a convergence evaluation of three-dimensional
analysis.”> In Fig. 9.28 two subdivisions into quadratic and two into cubic elements
are shown. In Fig. 9.29 the convergence of displacements in the centre-line section
is shown, indicating that quite remarkable accuracy can be achieved with even one
element.

The comparison of stresses in Fig. 9.30 is again quite remarkable, though showing a
greater ‘oscillation’ with coarse subdivision. The finest subdivision results can be
taken as ‘exact’ from checks by models and alternative methods of analysis.

The above test problems illustrate the general applicability and accuracy. Two
further illustrations typical of real situations are included.
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(b)

(©)

(d)

Fig. 9.28 Arch dam in a rigid valley — various element subdivisions.
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Fig. 9.29 Arch dam in a rigid valley — centre-line displacements.
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Fig. 9.30 Arch dam in a rigid valley — vertical stresses on centre-line.
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9.17.3 Pressure vessel (Fig. 9.31): an analysis of a biomechanic
problem (Fig. 9.32)

Both show subdivisions sufficient to obtain reasonable engineering accuracy. The
pressure vessel, somewhat similar to the one indicated in Chapter 6, Fig. 6.7, shows
the very considerable reduction of degrees of freedom possible with the use of
more complex elements to obtain similar accuracy.

)
oNe
DLURT

Total No. of elements =96
Total No. of Nodes =707
Total No. of Freedoms = 2121

Fig. 9.31 Three-dimensional analysis of a pressure vessel.
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Fig. 9.32 A problem of biomechanics. Plot of linear element form only; curvature of elements omitted. Note
degenerate element shapes.

The example of Fig. 9.32 shows a perspective view of the elements used. Such plots
are not only helpful in visualization of the problem but also form an essential part of
data correctness checks as any gross geometric error can be easily discovered.

The importance of avoiding data errors in complex three-dimensional problems should
be obvious in view of their large usage of computer time. These, and indeed other,’®
checking methods must form an essential part of any computation system.

9.18 Symmetry and repeatability

In most of the problems shown, the advantage of symmetry in loading and geometry
was taken when imposing the boundary conditions, thus reducing the whole problem
to manageable proportions. The use of symmetry conditions is so well known to the
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Analysis domain
A

up=uy
Fig. 9.33 Repeatability segments and analysis domain (shaded).

engineer and physicist that no statement needs to be made about it explicitly. Less
known, however, appears to be the use of repeatability78 when an identical structure
(and) loading is continuously repeated, as shown in Fig. 9.33 for an infinite blade
cascade. Here it is evident that a typical segment shown shaded behaves identically
to the next one, and thus functions such as velocities and displacements at
corresponding points of AA and BB are simply identified, i.e.,

up = uyp

This identification is made directly in a computer program.

Similar repeatability, in radial coordinates, occurs very frequently in problems
involving turbine or pump impellers. Figure 9.34 shows a typical three-dimensional
analysis of such a repeatable segment.

Fig. 9.34 Repeatable sector in analysis of an impeller.
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10

The patch test, reduced integration,
and non-conforming elements

10.1 Introduction

We have briefly referred in Chapter 2 to the patch test as a means of assessing conver-
gence of displacement-type elements for elasticity problems in which the shape
functions violate continuity requirements. In this chapter we shall deal in more
detail with this test which is applicable to all finite element forms and will show that

(a) it is a necessary condition for assessing the convergence of any finite element
approximation and further that, if properly extended and interpreted, it can
provide

(b) a sufficient requirement for convergence,

(c) an assessment of the (asymptotic) convergence rate of the element tested,

(d) a check on the robustness of the algorithm, and

(e) a means of developing new and accurate finite element forms which violate
compatibility (continuity) requirements.

While for elements which a priori satisfy all the continuity requirements, have
correct polynomial expansions, and are exactly integrated such a test is superfluous
in principle, it is nevertheless useful as it gives

(f) a check that correct programming was achieved.

For all the reasons cited above the patch test has been, since its inception, and con-
tinues to be the most important check for practical finite element codes.

The original test was introduced by Irons e al.' = in a physical way and could be
interpreted as a check which ascertained whether a patch of elements (Fig. 10.1)
subject to a constant strain reproduced exactly the constitutive behaviour of the
material and resulted in correct stresses when it became infinitesimally small. If it
did, it could then be argued that the finite element model represented the real material
behaviour and, in the limit, as the size of the elements decreased would therefore
reproduce exactly the behaviour of the real structure.

Clearly, although this test would only have to be passed when the size of the
element patch became infinitesimal, for most elements in which polynomials are
used the patch size did not in fact enter the consideration and the requirement that
the patch test be passed for any element size became standard.
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Fig. 10.1 A patch of element and a volume of continuum subject to constant strain e,. A physical interpreta-

tion of the constant strain or linear displacement field patch test.

Quite obviously a rigid body displacement of the patch would cause no strain, and
if the proper constitutive laws were reproduced no stress changes would result. The
patch test thus guarantees that no rigid body motion straining will occur.

When curvilinear coordinates are used the patch test is still required to be passed in
the limit but generally will not do so for a finite size of the patch. (An exception here is
the isoparametric coordinate system in problems discussed in Chapter 9 since it is
guaranteed to contain linear polynomials in the global coordinates.) Thus for many
problems such as shells, where local curvilinear coordinates are used, this test has
to be restricted to infinitesimal patch sizes and, on physical grounds alone, appears
to be a necessary and sufficient condition for convergence.

Numerous publications on the theory and practice of the test have followed the
original publications cited* ® and mathematical respectability was added to those
by Strang.”® Although some authors have cast doubts on its validity”'* these have
been fully refuted'!™!® and if the test is used as described here it fulfils the require-
ments (a)—(f) stated above.

In the present chapter we consider the patch test applied to irreducible forms (see
Chapter 3) but an extension to mixed forms is more important. This has been studied
in references 13, 14 and 15 and made use of in many subsequent publications. The
matter of mixed form patch tests will be fully discussed in the next chapter; however,
the consistency and stability tests developed in the present chapter are always required.

One additional use of the patch test was suggested by Babuska er al.'® with a
shorter description given by Boroomand and Zienkiewicz.!” This test can establish
the efficiency of gradient (stress) recovery processes which are so important in error
estimation as will be discussed in Chapter 14.

10.2 Convergence requirements

We shall consider in the following the patch test as applied to a finite element solution
of a set of differential equations

A(uy=L(u)+g=0 (10.1)
in the domain €2 together with the conditions
B(u) =0 (10.2)

on the boundary of the domain, I
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The finite element approximation is given in the form
u~a=Na (10.3)

where N are shape functions defined in each element, 2,, and a are unknown
parameters.

By applying standard procedures of finite element approximation (see Chapters 2
and 3) the problem reduces in a linear case to a set of algebraic equations

Ka=f (10.4)

which when solved give an approximation to the differential equation and its bound-
ary conditions.

What is meant by ‘convergence’ in the approximation sense is that the approximate
solution, u, should tend to the exact solution u when the size of the elements £
approaches zero (with some specified subdivision pattern). Stated mathematically
we must find that the error at any point becomes (when 7 is sufficiently small)

lu—1i| = O(h?) < Cif (10.5)

where ¢ > 0 and C is a positive constant, depending on the position.

This must also be true for all the derivatives of u defined in the approximation.

By the order of convergence in the variable u we mean the value of the index ¢ in the
above definition.

To ensure convergence it is necessary that the approximation fulfil both consistency
and stability conditions.'®

The consistency requirement ensures that as the size of the elements / tends to zero,
the approximation equation (10.4) will represent the exact differential equation (10.1)
and the boundary conditions (10.2) (at least in the weak sense).

The stability condition is simply translated as a requirement that the solution of the
discrete equation system (10.4) be unique and avoid spurious mechanisms which may
pollute the solution for all sizes of elements. For linear problems in which we solve the
system of algebraic equations (10.4) as

a=K'f (10.6)

this means simply that the matrix K must be non-singular for all possible element
assemblies (subject to imposing minimum stable boundary conditions).

The patch test traditionally has been used as a procedure for verifying the
consistency requirement; the stability was checked independently by ensuring non-
singularity of matrices.'” Further, it generally tested only the consistency in satisfac-
tion of the differential equation (10.1) but not of its natural boundary conditions. In
what follows we shall show how all the necessary requirements of convergence can be
tested by a properly conceived patch test.

A ‘weak’ singularity of a single element may on occasion be permissible and some
elements exhibiting it have been, and still are, successfully used in practice. One such
case is given by the eight-node isoparametric element with a 2 x 2 Gauss quadrature,
to which we shall refer later here. This element is on occasion observed to show
peculiar behaviour (though its use has advantages as discussed in Chapter 11). An
element that occasionally fails is termed non-robust and the patch test provides a
means of assessing the degree of robustness.
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10.3 The simple patch test (tests A and B) — a necessary
condition for convergence

We shall first consider the consistency condition which requires that in the limit (as 4
tends to zero) the finite element approximation of Eq. (10.4) should model exactly the
differential equation (10.1) and the boundary conditions (10.2). If we consider a
‘small’ region of the domain (of size 24) we can expand the unknown function u
and the essential derivatives entering the weak approximation in a Taylor series.
From this we conclude that for convergence of the function and its first derivative
in typical problems of a second-order equation and two dimensions, we require
that around a point i assumed to be at the coordinate origin,

Ou Ou
= u e - p
u—u,+<ax)ix+(ay)iy+ + O(h?)

0 0

82:(£>A+-~+0(h”“) (10.7)
Ou Ou

— = — p—1

dy (ay>i+ ol )

with p > 2. The finite element approximation should therefore reproduce exactly the
problem posed for any linear forms of u as h tends to zero. Similar conditions can
obviously be written for higher order problems. This requirement is tested by the
current interpretation of the patch test illustrated in Fig. 10.2. We refer to this as
the base solution.

In this we compute first an arbitrary linear solution of the differential equation and
the corresponding set of parameters a [see Eq. (10.3)] at all ‘nodes’ of a patch which
assembles completely the nodal variable a; (i.e., provides all the equation terms
corresponding to it).

In test A we simply insert the exact value of the parameters a into the ith equation
and verify that

Kja, —f;=0 (10.8)
Y N
A\ A\
Test A Test B
a prescribed on all nodes a prescribed at edges of patch
Kjja; = f; verified at node i a; = Kt (f— Kjja) (j=1) solved

Fig. 10.2 Patch test of forms A and B.
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where f; is a force which results from any ‘body force’ required to satisfy the base solu-
tion differential equation (10.1). Generally in problems given in cartesian coordinates
the required body force is zero; however, in curvilinear coordinates (e.g., axisym-
metric elasticity problems) it can be non-zero.

In test B only the values of a corresponding to the boundaries of the ‘patch’ are
inserted and a; is found as

a, =K;'(f, —Kja)  j#i (10.9)

and compared against the exact value.

Both patch tests verify only the satisfaction of the basic differential equation and
not of the boundary approximations, as these have been explicitly excluded here.

We mentioned earlier that the test is, in principle, required only for an
infinitesimally small patch of elements; however, for differential equations with
constant coefficients and with a mapping involving constant jacobian the size of
the patch is immaterial and the test can be carried out on a patch of arbitrary
dimensions.

Indeed, if the coefficients are not constant the same size independence exists provid-
ing that a constant set of such coefficients is used in the formulation of the test. (This
applies, for instance, in axisymmetric problems where coefficients of the type 1/radius
enter the equations and when the patch test is here applied, it is simply necessary to
enter the computation with such quantities assumed constant.)

If mapped curvilinear elements are used it is not obvious that the patch test posed in
global coordinates needs to be satisfied. Here, in general, convergence in the mapping
coordinates may exist but a finite patch test may not be satisfied. However, once again
if we specify the nature of the subdivision without changing the mapping function, in
the limit the jacobian becomes locally constant and the previous remarks apply. To
illustrate this point consider, for instance, a set of elements in which local coordinates
are simply the polar coordinates as shown in Fig. 10.3. With shape functions using
polynomial expansions in the r, § terms the patch test of the kind we have described
above will not be satisfied with elements of finite size — nevertheless in the limit as the
element size tends to zero it will become true. Thus it is evident that patch test
satisfaction is a necessary condition which has always to be achieved providing the
size of the patch is infinitesimal.

A A

AN

4] > 0

——>» X

Fig. 10.3 Polar coordinate mapping.
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This proviso which we shall call weak patch test satisfaction is not always simple to
verify, particularly if the element coding does not easily permit the insertion of
constant coefficients or a jacobian. In Sec. 10.10 we shall discuss in some detail its
implementation, which, however, is only necessary in very special element forms. It
is indeed fortunate that the standard isoparametric element form reproduces exactly
the linear polynomial global coordinates (see Chapter 9) and for this reason does not
require special treatment unless some other crime (such as selective or reduced
integration) is introduced.

10.4 Generalized patch test (test C) and the single-
element test

The patch test described in the preceding section was shown to be a necessary condition
for convergence of the formulation but did not establish sufficient conditions for it. In
particular, it omitted the testing of the boundary ‘load’ approximation for the case
when the ‘natural’ (e.g. ‘traction of elasticity’) conditions are specified. Further it did
not verify the stability of the approximation. A test including a check on the above con-
ditions is easily constructed. We show this in Fig. 10.4 for a two-dimensional plane
problem as test C. In this the patch of elements is assembled as before but subject to
prescribed natural boundary conditions (or tractions around its perimeter) correspond-
ing to the base function. The assembled matrix of the whole patch is written as

Ka="f

Fixing only the minimum number of parameters a necessary to obtain a physically
valid solution (e.g., eliminating the rigid body motion in an elasticity example or a
single value of temperature in a heat conduction problem) a solution is sought for
remaining a values and compared with the exact base solution assumed.

Now any singularity of the K matrix will be immediately observed and, as the
vector f includes all necessary source and boundary traction terms, the formulation
will be completely tested (providing of course a sufficient number of test states is
used). The test described is now not only necessary but sufficient for convergence.

Natural boundary
conditions specified

Minimum esential
boundary conditions

(@) ()
Fig. 10.4 (a) Patch test of form C. (b) The single-element test.
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Gauss integration
points

Nine-noded
elements only

Eight and nine nodes

Fig. 10.5 (a) Zero energy (singular) modes for eight- and nine-noded quadratic elements and (b) for a patch
of bilinear elements with single integration points.

With boundary traction included it is of course possible to reduce the size of the
patch to a single element and an alternative form of test C is illustrated in Fig.
10.4(b), which is termed the single-element test.!! This test is indeed one requirement
of a good finite element formulation as, on occasion, a larger patch may not reveal the
inherent instabilities of a single element. This happens in the well-documented case of
the plane strain—stress eight-noded isoparametric element with (reduced) four-point
Gauss quadrature i.e., where the singular deformation mode of a single element
(see Fig. 10.5) disappears when several elements are assembled.t It should be noted,
however, that satisfaction of a single element test is not a sufficient condition for conver-
gence. For sufficiency we require at least one internal element boundary to test that
consistency of a patch solution is maintained between elements.

1 This figure also shows a similar singularity for a patch of four bilinear elements with single-point
quadrature, and we note the similar shape of zero energy modes (see Chapter 9, Sec. 9.11.3).
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10.5 The generality of a numerical patch test

In the previous section we have defined in some detail the procedures for conducting a
patch test. We have also asserted the fact that such tests if passed guarantee that
convergence will occur. However all the tests are numerical and it is impractical to
test all possible combinations.

In particular let us consider the base solutions used. These will invariably be a set of
polynomials given in two dimensions as

u=> 0P(x,y) (10.10)

where P; are a suitable set of low order polynomials (e.g., 1, x, y for Galerkin forms
possessing only first-order derivatives) and a; are parameters. It is fairly obvious that
if patch tests are conducted on each of these polynomials individually any base func-
tion of the form given in Eq. (10.10) can be reproduced and the generality preserved
for the particular combination of elements tested. This must always be done and is
almost a standard procedure in engineering tests, necessitating only a limited
number of combinations.

However, as various possible patterns of elements can occur and it is possible to
increase the size without limit the reader may well ask whether the test is complete
from the geometrical point of view. We believe it is necessary in a numerical test to
consider the possibility of several pathological arrangements of elements but that if
the test is purely limited to a single element and a complete patch around a node
we can be confident about the performance on more general geometric patterns.

Indeed even mathematical assessments of convergence are subject to limits often
imposed a posteriori. Such limits may arise if for instance a singular mapping is used.

The procedures referred to in this section satisfy most readers as to the validity and
generality of the test.

On some limited occasions it is possible to perform the test purely algebraically and
then its validity cannot be doubted. Some such algebraic tests will be referred to later
in connection with incompatible elements.

In this chapter we have only considered linear differential equations and linear
material behaviour. In Volume 2 non-linear problems will be fully discussed and
on some occasions the patch test can well be used and extended to cover such areas.

10.6 Higher order patch tests®®

While the patch tests discussed in the last three sections ensure (when satisfied) that
convergence will occur, they did not test the order of this convergence, beyond
assuring us that in the case of Eq. (10.7) the errors were, at least, of order O(h%) in
u. It is an easy matter to determine the actual highest asymptotic rate of convergence
of a given element by simply imposing, instead of a linear solution, exact higher
order polynomial solutions. The highest value of such polynomials for which complete
satisfaction of the patch test is achieved automatically evaluates the corresponding con-
vergence rate. It goes without saying that for such exact solutions generally non-zero
source (e.g., body force) terms in the original equation (10.1) will need to be involved.
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In addition, test C in conjunction with a higher order patch test may be used to
illustrate any tendency for ‘locking’ to occur (see Chapter 11). Accordingly, element
robustness with regard to various parameters (e.g., Poisson’s ratios near one-half for
elasticity problems in plane strain) may be established.

In such higher order patch tests it will of course first be assumed that the patch is
subject to the base expansion solution as described. Thus, for higher order terms it
will be necessary to start and investigate solutions of the type

a3x2+u4xy+u5y2+~--

each of which should be applied individually or as linearly independent combinations
and for each the solution should be appropriately tested.

In particular, we shall expect higher order elements to exactly satisfy certain order
solutions. However in Chapter 14 we shall use this idea to find the error between the
exact solution and the recovery using precisely the same type of formulation.

10.7 Application of the patch test to plane elasticity
elements with ‘standard’ and ‘reduced’ quadrature

In the next few sections we consider several applications of the patch test in the
evaluation of finite element models. In each case we consider only one of the necessary
tests which need to be implemented. For a complete evaluation of a formulation it is
necessary to consider all possible independent base polynomial solutions as well as a
variety of patch configurations which test the effects of element distortion or alterna-
tive meshing interconnections which will be commonly used in analysis. As we shall
emphasize, it is important that both consistency and stability be evaluated in a
properly conducted test.

In Chapter 9 (Sec. 9.11) we have discussed the minimum required order of
numerical integration for various finite element problems which results in no loss
of convergence rate. However, it was also shown that for some elements such a
minimum integration order results in singular matrices. If we define the standard
integration as one which evaluates the stiffness of an element exactly (at least in the
undistorted form) then any lower order of integration is called reduced.

Such reduced integration has some merits in certain problems for reasons which we
shall discuss in Chapter 12 (Sec. 12.5), but it can cause singularities which should be
discovered by a patch test (which supplements and verifies the arguments of Sec.
9.11.3). Application of the patch test to some typical problems will now be shown.

10.7.1 Example 1: Patch test for base solution

We consider first a plane stress problem on the patch shown in Fig. 10.6(a). The
material is linear, isotropic elastic with properties £ = 1000 and v = 0.3. The finite
element procedure used is based on the displacement form using four-noded isopara-
metric shape functions and numerical integration. Analyses are conducted using the
plane element and program described in Chapter 20. Since the stiffness computation
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(b)

Fig. 10.6 Patch for evaluation of numerically integrated plane stress problems. (a) Five-element patch.
(b) One-element patch.

includes only first derivatives of displacements, the formulation converges provided
that the patch test is satisfied for all linear polynomial solutions of displacements
in the base solution. Here we consider only one of the six independent linear poly-
nomial solutions necessary to verify satisfaction of the patch test. The solution
considered is

u=0.002x

(10.11)
v =-—0.0006y

which produces zero body forces and zero stresses except for
o, =2 (10.12)

The solution given in Table 10.1 is obtained for the nodal displacements and satisfies
Eq. (10.10) exactly.

The patch test is performed first using 2 x 2 gaussian ‘standard’ quadrature to
compute each element stiffness and resulting reaction forces at nodes. For patch
test A all nodes are restrained and nodal displacement values are specified according
to Table 10.1. Stresses are computed at specified Gauss points (1 x 1,2 x 2,and 3 x 3
Gauss points were sampled) and all are exact to within round-off error (double pre-
cision was used which produced round-off errors less than 107" in the quantities
computed). Reactions were also computed at all nodes and again produced the

Table 10.1 Patch solution for Fig. 10.6

Coordinates Computed displacements Forces
Node i Xi Vi u; Vi Fx, Fy,
1 0.0 0.0 0.0 0.0 -2 0
2 2.0 0.0 0.0040 0.0 3 0
3 2.0 3.0 0.0040 —0.00186 2 0
4 0.0 2.0 0.0 —0.00120 -3 0
5 0.4 0.4 0.0008 —0.00024 0 0
6 1.4 0.6 0.0028 —0.00036 0 0
7 1.5 2.0 0.0030 —0.00120 0 0
8 0.3 1.6 0.0006 —0.00096 0 0
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force values shown in Table 10.1 to within round-off limits. This approximation satis-
fies all conditions required for a finite element procedure (i.e., conforming shape func-
tions and normal-order quadrature). Accordingly, the patch test merely verifies that
the programming steps used contain no errors. Patch test A does not require explicit
use of the stiffness matrix to compute results; consequently the above patch test was
repeated using patch test B where only nodes 1 to 4 are restrained with their
displacements specified according to Table 10.1. This tests the accuracy of the stiffness
matrix and, as expected, exact results are once again recovered to within round-off
errors. Finally, patch test C was performed with node 1 fully restrained and node 4
restrained only in the x-direction. Nodal forces were applied to nodes 2 and 3 in
accordance with the values generated through the boundary tractions by o, (i.e.,
nodal forces shown in Table 10.1). This test also produced exact solutions for all
other nodal quantities in Table 10.1 and recovered o, of 2 at all Gauss points in
each element.

The above test was repeated for patch tests A, B, and C but usinga 1 x 1 ‘reduced’
Gauss quadrature to compute the element stiffness and nodal force quantities. Patch
test C indicated that the global stiffness matrix contained two global ‘zero energy
modes’ (i.e., the global stiffness matrix was rank deficient by 2), thus producing
incorrect nodal displacements whose results depend solely on the round-off errors
in the calculations. These in turn produced incorrect stresses except at the 1 x 1
Gauss point used in each element to compute the stiffness and forces. Thus, based
upon stability considerations, the use of 1 x 1 quadrature on four-noded elements
produces a failure in the patch test. The element does satisfy consistency require-
ments, however, and provided a proper stabilization scheme is employed (e.g., stiff-
ness or viscous methods are used in practice) this element may be used for practical
calculations.?*?!

It should be noted that a one-element patch test may be performed using the mesh
shown in Fig. 10.6(b). The results are given by nodes 1 to 4 in Table 10.1. For the one-
element patch, patch tests A and B coincide and neither evaluates the accuracy or
stability of the stiffness matrix. On the other hand, patch test C leads to the
conclusions reached using the five-element patch: namely, 2 x 2 gaussian quadrature
passes a patch test whereas 1 x 1 quadrature fails the stability part of the test (as
indeed we would expect by the arguments of Chapter 9, Sec. 9.11).

A simple test on cancellation of a diagonal during the triangular decomposition
step is sufficient to warn of rank deficiencies in the stiffness matrix. In the profile
method, described in Chapter 20, this is easily monitored as compact elimination
converts the initial value of a diagonal element to the final value in one step. Thus
only one extra scalar variable is needed to test the initial and final values.

10.7.2 Example 2: Patch test for quadratic elements: quadrature
effects

In Fig. 10.7 we show a two-element patch of quadratic isoparametric quadrilaterals.
Both eight-noded serendipity and nine-noded lagrangian types are considered and a
basic patch test type C is performed for load case 1. For the eight-noded element both
2 x 2 (‘reduced’) and 3 x 3 (‘standard’) gaussian quadrature satisfy the patch test,
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Fig. 10.7 Patch test for eight- and nine-noded isoparametric quadrilaterals.

whereas for the nine-noded element only 3 x 3 quadrature is satisfactory, with 2 x 2
reduced quadrature leading to failure in rank of the stiffness matrix. However, if we
perform a one-element test for the eight-noded and 2 x 2 quadrature element, we
discover the spurious zero-energy mode shown in Fig. 10.5 and thus the one-element
test has failed. We consider such elements suspect and to be used only with the
greatest of care. To illustrate what can happen in practice we consider the simple
problem shown in Fig. 10.8(a). In this example the ‘structure’ modelled by a single
element is considered rigid and interest is centred on the ‘foundation’ response.
Accordingly only one element is used to model the structure. Use of 2 x 2 quadrature
throughout leads to answers shown in Fig. 10.8(b) while results for 3 x 3 quadrature
are shown in Fig. 10.8(¢). It should be noted that no zero-energy mode exists since
more than one element is used. There is, however, here a spurious response due to
the large modulus variation between structure and foundation. This suggests that
problems in which non-linear response may lead to a large variation in material
parameters could also induce such performance, and thus use of the eight-noded
2 x 2 integrated element should always be closely monitored to detect such anoma-
lous behaviour.

Indeed, support or loading conditions may themselves induce very suspect
responses for elements in which near singularity occurs. Figure 10.9 shows some
amusing peculiarities which can occur for reduced integration elements and which
disappear entirely if full integration is used.?? In all cases the assembly of elements
is non-singular even though individual elements are rank deficient.

10.7.3 Example 3: Higher order patch test — assessment of order

In order to demonstrate a higher order patch test we consider the two-element plane
stress problem shown in Fig. 10.7 and subjected to bending loading shown as Load 2.
As above, two different types of element are considered: («) an eight-noded serendip-
ity quadrilateral elenent and (b) a nine-noded lagrangian quadrilateral element. In our
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® ®  Structure

Zero
displacement

Foundation

(b)

[ ]

(©

Fig. 10.8 A propagating spurious mode from a single unsatisfactory element. (a) Problem and mesh. (b) 2 x 2
integration. (c) 3 x 3 integration.

test we wish to demonstrate a feature for nine-noded element mapping discussed in
Chapter 9 (see Sec. 9.7) and first shown by Wachspress.” In particular we restrict
the mapping into the xy plane to be that produced by the four-noded isoparametric
bilinear element, but permit the dependent variable to assume the full range of varia-
tions consistent with the eight- or nine-noded shape functions. In Chapter 9 we
showed that the nine-noded element can approximate a complete quadratic displace-
ment function in x, y whereas the eight-noded element cannot. Thus we expect that
the nine-noded element when restricted to the isoparametric mappings of the four-
noded element will pass a higher order patch test for all arbitrary quadratic displace-
ment fields. The pure bending solution in elasticity is composed of polynomial terms
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Fig. 10.9 Peculiar response of near singular assemblies of elements.?? (a) A column of nine-noded elements with point load response of full 3 x 3 and 2 x 2 integration. The
whole assembly is non-singular but singular element modes are apparent. (b) A fully constrained assembly of nine-noded elements with no singularity — first six eigenmodes
with full (3 x 3) integration. () As (b) but with 2 x 2 integration. Note the appearance of ‘wild’ modes called ‘Escher’ modes named so in reference 22 after this graphic artist.
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Table 10.2 Bending load case (E = 100, v = 0.3)

Element Quadrature d VUp ug UR

Eight-node 3x3 0.750 0.150 0.75225
Eight-node 2 x 2} 0 0.750 0.150 0.75225
Nine-node 3x3 0.750 0.150 0.75225
Eight-node 3x3 0.7448 0.1490 0.74572
Eight-node 2 x 2} 1 0.750 0.150 0.75100
Nine-node 3x3 0.750 0.150 0.75225
Eight-node 3x3 0.6634 0.1333 0.66364
Eight-node 2 X 2} 2 0.750 0.150 0.75225
Nine-node 3x3 0.750 0.150 0.75225
Exact — 0.750 0.150 0.75225

up to quadratic order. Furthermore, no body force loadings are necessary to satisfy
the equilibrium equations. For the mesh considered the nodal loadings are equal and
opposite on the top and bottom nodes as shown in Fig. 10.7. The results for the two
elements are shown in Table 10.2 for the indicated quadratures with £ = 100 and
v=0.3.

From this test we observe that the nine-noded element does pass the higher order
test performed. Indeed, provided the mapping is restricted to the four-noded shape it
will always pass a patch test for displacements with terms no higher than quadratic.
On the other hand, the eight-noded element passes the higher order patch test per-
formed only for rectangular element (or constant jacobian) mappings. Moreover,
the accuracy of the eight-noded element deteriorates very rapidly with increased
distortions defined by the parameter d in Fig. 10.7.

The use of 2 x 2 reduced quadrature improves results for the higher order patch
test performed. Indeed, two of the points sampled give exact results and the third is
only slightly in error. As noted previously, however, a single element test for the
2 x 2 integrated eight-noded element will fail the stability part of the patch test and
it should thus be used with great care.

10.8 Application of the patch test to an incompatible
element
In order to demonstrate the use of the patch test for a finite element formulation
which violates the usually stated requirements for shape function continuity, we
consider the plane strain incompatible modes first introduced by Wilson et al*

and discussed by Taylor er al.”> The specific incompatible formulation considered
uses the element displacement approximations:

i = N;a, + Nla; + Nia, (10.13)

where N; (i = 1, ..., 4) are the usual conforming bilinear shape functions and the last
two terms are incompatible modes of deformation defined by the hierarchical functions

Ni=1-¢ and Nj=1-—7 (10.14)

defined independently for each element.
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Fig. 10.10 (a) Linear quadrilateral with auxiliary incompatible shape functions; (b) pure bending and linear
displacements causing shear; (c) auxiliary ‘bending’ shape functions with internal variables.

The shape functions used are illustrated in Fig. 10.10. The first, a set of standard
bilinear type, gives a displacement pattern which, as shown in Fig. 10.10(b),
introduces spurious shear strains in pure bending. The second, in which the param-
eters a; and a, are strictly associated with a specific element, therefore introduces
incompatibility but assures correct bending behaviour in an individual element.
The excellent performance of this element in the bending situation is illustrated in
Fig. 10.11.

In reference 25 the finite element approximation is computed by summing the
potential energies of each element and computing the nodal loads due to boundary
tractions from the conforming part of the displacement field only. Thus for the
purposes of conducting patch tests we compute the strains using all parts of the
displacement field leading to a generalization of (10.4) which may be written as

K K f
o wela) o) 019

Ky Knfla f
Here K;; and f; are the stiffness and loads of the four-noded (conforming) bilinear
element, K;, and K,; (= K},) are coupling stiffnesses between the conforming and
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Fig. 10.11 Performance of the non-conforming quadrilateral in beam bending treated as plane stress:
(a) conforming linear quadrilateral, (b) non-conforming quadrilateral.

non-conforming displacements, and K,, and f, are the stiffness and loads of the non-
conforming displacements. We note that, according to the algorithm of reference 24,
f, must vanish from the patch test solutions.

For a patch test in plane strain or plane stress, only linear polynomials need be
considered for which all non-conforming displacements must vanish. Thus for a
successful patch test we must have

K“a:fl (10163)
and
K213:f2 (1016b)

If we carry out a patch test for the mesh shown in Fig. 10.12(a) we find that all three
forms (i.e., patch tests A, B, and C) satisfy these conditions and thus pass the patch
test. If we consider the patch shown in Fig. 10.12(d), however, the patch test is not
satisfied. The lack of satisfaction shows up in different ways for each form of the
patch test. Patch test A produces non-zero f, values when @ is set to zero and a accord-
ing to the displacements considered. In form B the values of the nodal displacements
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Fig. 10.12 Patch test for an incompatible element form. (a) Regular discretization. (b) Irregular discretization
about node 5. (c) Constant jacobian discretization about node 5.

as are in error and @ are non-zero, also leading to erroneous stresses in each element.
In form C all unspecified displacements are in error as well as the stresses.

It is interesting to note that when a patch is constructed according to Fig. 10.12(c)
in which all elements are parallelograms all three forms of the patch test are once
again satisfied. Accordingly we can note that if any mesh is systematically refined
by subdivision of each element into four elements whose sides are all along &, 7
lines in the original element with values of —1, 0, or 1 (i.e., by bisections) the mesh
converges to constant jacobian approximations of the type shown in Fig. 10.12(c).
Thus, in this special case the incompatible mode element satisfies a weak patch test
and will thus converge. In general, however, it may be necessary to use a very fine
discretization to achieve sufficient accuracy, and hence the element probably has no
practical (nor efficient) engineering use.

267
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A simple artifice to ensure that an element passes the patch test is to replace the
derivatives of the incompatible modes by

ON] ON;
Ox Jo 1) 0§
n = J n 10.17
oN; ( ~en™ ) oy (1047
oy on

where j(&,n) is the determinant of the jacobian J(&,n) and J, and jj are the values of
the inverse jacobian and jacobian determinant evaluated at the element centre
(¢ = =0). This ensures satisfaction of the patch test for all element shapes, and
with this alteration of the algorithm the incompatible element proves convergent
and quite accurate.?

10.9 Generation of incompatible shape functions which
satisfy the patch test

In the previous section we have shown how an incompatible element can, on occasion, pro-
duce superior results despite its violation of the rules generally postulated. In solving plates
and shells we deal with problems requiring C; continuity; the use of such incompatible
functions is widespread not only because these produce superior results but also due to
the difficulty of developing functions which satisfy not only the continuity of the functions
but also their slope (viz. Volume 2, Chapter 4). In this section we address the problem of
how to generate incompatible shape functions in a manner that will automatically ensure
the satisfaction of the patch test and hence convergence. The rules for doing this have been
developed®®?” and applied to the derivation of plate bending elements. We derive these
rules here in a simple example of a second-order partial differential equation problem
but the results are easy to generalize to other situations.
Consider the finite element solution to the following equation:

Aw) = -TVu+ku—q=0 in the domain Q (10.18)

with boundary conditions

Uu=1u onT,
and (10.19)
ou _
T& =1 on Fl

This may represent the displacement u of an elastic membrane with an initial
tension 7" on an elastic foundation with spring constant k. Let the unknown u be
approximated by two sets of (hierarchic) expansions

u=u +u" (10.20a)

u® = N°fa® and u" =N"a (10.20b)

in which N° and N" are, respectively, compatible and non-conforming shape func-
tions. It must be stressed that these are linearly independent as otherwise stability

conditions (i.e., the non-singularity of matrices) would be violated as was the case
in the counterexample of Stummel.’
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When a patch of elements is subject to a linear variation of u such that Eq. (10.18) is
satisfied, the approximation u° is capable of yielding this solution and satisfying all
the patch test requirements. (Now, of course, ¢ = —ku has to be assumed.)

It follows therefore that in the patch test u" will be zero. However, it is important to
consider here a single element test in which the constant traction 7 (deduced from
u = u°) is applied. The Galerkin equation corresponding to the incompatible mode
now yields

8u ou ou _
—dI' = T I'= "rdr 10.21
JFE o LN, ( Gt )d L[)N,td (10.21)

and this equation has to be satisfied identically with 7, 7', and du/dn being constants.
In the above I, represents the total boundary of the element and n, and n, are com-
ponents of the boundary normal vector (see Appendix G).

The above condition can be easily achieved by ensuring that

. Ou . Ou
J N; My dr = J Nin )8 dl' =0 (10.22)
for each element, thus imposing the constraint
J N}idl' =0 (10.23)
I

which implies (as originally suggested by Wilson ez al.>*) that the effects of boundary
loads (and loads ¢) from the incompatible displacements must vanish or be ignored.

In order to illustrate the use of the above procedure in developing incompatible
mode shape functions, we consider the case of a non-conforming four-noded quadri-
lateral element which in the special case of a rectangle reproduces the non-conforming
element of reference 24. The convergence of this non-conforming element for the
rectangular or constant jacobian case has been illustrated in the previous section.

We take the conforming part of the shape function for each displacement compo-
nent as the four-noded isoparametric functions

u® = Naj (10.24)
Ny =31+ & +nm) (10.25)

and &, n are natural coordinates on the interval (—1, 1) with values at each corner
node 7 given by &;, n;. The non-conforming functions will be constructed from the
remaining four shape functions for the eight-noded isoparametric serendipity element
(Chapter 8). Accordingly we take for the non-conforming field

W= 3(1= )1 =mar +3(1+ (1 = 1)ar +3(1 = €)(1 +n)ay

where

1A=+ 7))y (10.26)

Substitution into the constraint conditions (10.23) yields the two scalar conditions
4

> by =0 (10.27)

i=1

4
> o =0 (10.28)

i=1

and
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where b;, ¢; depend on the geometry of the element through

bi:xl‘—xj'

and
Ci =Y — Vi (10.29)
with
j=mod (i,4) + 1

The two constraint conditions may be used to express two of the «; in terms of the
other two. The result gives two incompatible displacement modes which may be
added to the conforming field with the satisfaction of a strong patch test still ensured.
For elements which are rectangular the two resulting modes are identical to those
proposed and used in Eq. (10.14).

Other possibilities exist for constructing non-conforming or incompatible functions.’

10.10 The weak patch test — example

The problems described above yield exact solutions for the patch tests performed and
accordingly satisfy strong conditions. In order to illustrate the performance of an
element which only satisfies a weak patch test we consider an axisymmetric linear
elastic problem modelled by four-noded isoparametric elements. The material is assumed
isotropic and the finite element stiffness and reaction force matrices are computed using a
selective integration method where terms associated with the bulk modulus are evaluated
by a single-point Gauss quadrature, whereas all other terms are computed using a 2 x 2
(normal) gaussian quadrature (such as will be discussed in Chapter 12). It may be readily
verified that the stiffness matrix is of proper rank and thus stability of solutions is not an
issue. On the other hand, consistency must still be evaluated.

In order to assess the performance of a selective reduced quadrature formulation
we consider the patch of elements shown in Fig. 10.13. The patch is not as generally
shaped as desirable and is only used to illustrate performance of an element that
satisfies a weak patch test. The polynomial solution considered is

= (10.30)
w=0 .
h h
e —
6 -5 4
ZA [h
1 2 3
« J
r=1

Fig. 10.13 Patch for selective, reduced quadrature on axisymmetric four-noded elements.
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Table 10.3 Exact solution for patch

Displacement Force
Node Radius
1 ry U; Wi Fy Fy
1,4 1—h 2(1 —h) 0 —(1 —h)h 0
2,5 1 2 0 0 0
3,6 1+h 2(1+h) 0 (I +h)h 0

and material constants £ = 1 and v = 0 are used in the analysis. The resulting stress
field is given by

0, =0y =2 (10.31)

with other components identically zero. The exact solution for the nodal quantities of
the mesh shown in Fig. 10.13 are summarized in Table 10.3. Patch tests have been
performed for this problem using the selective reduced integration scheme described
above and values of /& of 0.8, 0.4, 0.2, 0.1, and 0.05. The result for the radial
displacement at nodes 2 and 5 (reported to six digits) is given in Table 10.4. All
other quantities (displacements, strains, and stresses) have a similar performance
with convergence rates of at least O(/) or more. Based on this assessment we conclude
the element passes a weak patch test.

Table 10.4 Radial displacement at
nodes 2 and 5

h u

0.8 2.01114
0.4 2.00049
0.2 2.00003
0.1 2.00000
0.05 2.00000

10.11 Higher order patch test — assessment of
robustness

A higher order patch test may also be used to assess element ‘robustness’. An element
is termed robust if its performance is not sensitive to physical parameters of the
differential equation. For example, the performance of many elements for solution
of plane strain linear elasticity problems is sensitive to Poisson’s ratio values near
0.5 (called ‘near incompressibility’). Indeed, for Poisson ratios near 0.5 the energy
stored by a unit volumetric strain is many orders larger than the energy stored by a
unit deviatoric strain. Accordingly finite elements which exhibit a strong coupling
between volumetric and deviatoric strains often produce poor results in the nearly
incompressible range, a problem discussed further in Chapter 12.

This may be observed using a four-noded element to solve a problem with a
quadratic displacement field (i.e., a higher order patch test). If we again consider a
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Fig. 10.14 Plane strain four-noded quadrilaterals with and without incompatible modes (higher order patch
test for performance evaluation).

pure bending example and an eight-element mesh shown in Fig. 10.14 we can clearly
observe the deterioration of results as Poisson’s ratio approaches a value of one-half.
Also shown in Fig. 10.14 are results for the incompatible modes derived in Sec. 10.9. It
is evident that the response is considerably improved by adding these modes,
especially if 2 x 2 quadrature is used.

If we consider the regular mesh and four-noded elements and further keep the
domain constant and successively refine the problem using meshes of 8, 32, 128,
and 512 elements, we observe that the answers do converge as guaranteed by the
patch test. However, as shown in Fig. 10.15, the rate of convergence in energy for
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Fig. 10.15 Higher order patch test on element robustness (see Fig. 10.14) (convergence test under sub-
division of elements).

Poisson ratio values of 0.25 and 0.4999 is quite different. For 0.25 the rate of conver-
gence is nearly a straight line for all meshes, whereas for 0.4999 the rate starts out
quite low and approaches an asymptotic value of 2 as / tends towards zero. For v
near 0.25 the element is called robust, whereas for v near 0.5 it is not. If we use
selective reduced integration (which for the plane strain case passes strong patch
tests) and repeat the experiment, both values of v produce a similar response and
thus the element becomes robust for all values of Poisson’s ratio less than 0.5.

The use of higher order patch tests can thus be very important to separate robust
elements from non-robust elements. For methods which seek to automatically refine a
mesh adaptively in regions with high errors, as discussed in Chapter 15, it is extremely
important to use robust elements.

10.12 Conclusion

In the preceding sections we have described the patch test and its use in practice by
considering several example problems. The patch test described has two essential
parts: (a) a consistency evaluation and (b) a stability check. In the consistency test a
set of linearly independent essential polynomials (i.e., all independent terms up to
the order needed to describe the finite element model) is used as a solution to the dif-
ferential equations and boundary conditions, and in the limit as the size of a patch
tends to zero the finite element model must exactly satisfy each solution. We presented
three forms to perform this portion of the test which we call forms A, B, and C.
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The use of form C, where all boundary conditions are the natural ones (e.g., trac-
tions for elasticity) except for the minimum number of essential conditions needed to
ensure a unique solution to the problem (e.g., rigid body modes for elasticity), is
recommended to test consistency and stability simultaneously. Both one-element
and more-than-one-element tests are necessary to ensure that the patch test is
satisfied. With these conditions and assuming that the solution procedure used can
detect any possible rank deficiencies the stability of solution is also tested. If no
such condition is included in the program a stability test must be conducted indepen-
dently. This can be performed by computing the number of zero eigenvalues in the
coefficient matrix for methods that use a solution of linear equations to compute
the finite element parameters, a. Alternatively, the loading used for the patch solution
may be perturbed at one point by a small value (say square root of the round-off limit,
e.g., by 107® for round-offs of order 10~") and the solution tested to ensure that it
does not change by a large amount.

Once an element has been shown to pass all of the essential patch tests for both
consistency and stability, convergence is assured as the size of elements tends to
zero. However, in some situations (e.g., the nearly incompressible elastic problem)
convergence may be very slow until a very large number of elements is used. Accord-
ingly, we recommend that higher order patch tests be used to establish element
robustness. Higher order patch tests involve the use of polynomial solutions of the
differential equation and boundary conditions with the order of terms larger than
the basic polynomials used in a patch test. Indeed, the order of polynomials used
should be increased until the patch test is satisfied only in a weak sense (i.e., as &
tends to zero). The advantage of using a higher order patch test, as opposed to
other boundary value problems, is that the exact solution may be easily computed
everywhere in the model.

In some of the examples we have tested the use of incompatible function and inexact
numerical integration procedures (reduced and selective integration). Some of these
violations of the rules previously stipulated have proved justified not only by yielding
improved performance but by providing methods for which convergence is guaranteed.
We shall discuss in Chapter 12 some of the reasons for such improved performance.
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11

Mixed formulation and constraints
— complete field methods

11.1 Introduction

The set of differential equations from which we start the discretization process will
determine whether we refer to the formulation as mixed or irreducible. Thus if we con-
sider an equation system with several dependent variables u written as [see Eqs (3.1)
and (3.2)]

Au) =0 in domain Q
and (11.1)
B(u) =0 on boundary T’

in which none of the components of u can be eliminated still leaving a well-defined
problem, then the formulation will be termed irreducible. If this is not the case the
formulation will be called mixed. These definitions were given in Chapter 3 (p.421).

This definition is not the only one possible! but appears to the authors to be widely
applicable™ if in the elimination process referred to we are allowed to introduce
penalty functions. Further, for any given physical situation we shall find that more
than one irreducible form is usually possible.

As an example we shall consider the simple problem of heat conduction (or the
quasi-harmonic equation) to which we have referred in Chapters 3 and 7. In this
we start with a physical constitutive relation defining the fluxes [see Eq. (7.5)] in
terms of the potential (temperature) gradients, i.c.,

A i)
qy
The continuity equation can be written as [see Eq. (7.7)]
quE%{;%";:—Q (11.3)
If the above equations are satisfied in {2 and the boundary conditions
p=¢onT, or qn=quonT, (11.4)

are obeyed then the problem is solved.
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Clearly elimination of the vector q is possible and simple substitution of Eq. (11.2)
into Eq. (11.3) leads to

~-V'kVe)+0=0 inQ (11.5)

with appropriate boundary conditions expressed in terms of ¢ or its gradient.

In Chapter 7 we showed discretized solutions starting from this point and clearly,
as no further elimination of variables is possible, the formulation was irreducible.

On the other hand, if we start the discretization from Eqs (11.2)—(11.4) the formu-
lation would be mixed.

An alternative irreducible form is also possible in terms of the variables q. Here we
have to introduce a penalty form and write in place of Eq. (11.3)

VTq+Q=f (11.6)
«

where « is a penalty number which tends to infinity. Clearly in the limit both equa-
tions are the same and in general if « is very large but finite the solutions should be
approximately the same.

Now substitution into Eq. (11.2) gives the single governing equation

1
VVTq+ak‘1q+VQ:0 (11.7)

which again could be used for the start of a discretization process as a possible
irreducible form.*

The reader should observe that, by the definition given, the formulations so far
used in this book were irreducible. In subsequent sections we will show how elasticity
problems can be dealt with in mixed form and indeed will show how such formula-
tions are essential in certain problems typified by the incompressible elasticity
example to which we have referred in Chapter 4. In Chapter 3 (Sec. 3.8.2) we have
shown how discretization of a mixed problem can be accomplished.

Before proceeding to a discussion of such discretization (which will reveal the
advantages and disadvantages of mixed methods) it is important to observe that if
the operator specifying the mixed form is symmetric or self-adjoint (see Sec. 3.9.1)
the formulation can proceed from the basis of a variational principle which can be
directly obtained for linear problems. We invite the reader to prove by using the
methods of Chapter 3 that stationarity of the variational principle given below is
equivalent to the differential equations (11.2) and (11.3) together with the boundary
conditions (11.4):

H:%J qu*quQ+J qTV¢dQ+J qdeQ—J ¢, dT (11.8)
9] Q Q q

for
¢p=¢ on T,

The establishment of such variational principles is a worthy academic pursuit and
had led to many famous forms given in the classical work of Washizu.> However, we
also know (see Sec. 3.7) that if symmetry of weighted residual matrices is obtained in a
linear problem then a variational principle exists and can be determined. As such sym-
metry can be established by inspection we shall, in what follows, proceed with such
weighting directly and thus avoid some unwarranted complexity.
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11.2 Discretization of mixed forms — some general
remarks
We shall demonstrate the discretization process on the basis of the mixed form of the
heat conduction equations (11.2) and (11.3). Here we start by assuming that each of

the unknowns is approximated in the usual manner by appropriate shape functions
and corresponding unknown parameters. Thusy

q~§=Ng and ¢=~¢=N,b (11.9)

where § and ¢ stand for nodal or element parameters that have to be determined.
Similarly the weighting functions are given by

v, 2V, =W  and vy~ b, = Wioh (11.10)

where 6q and 5¢ are arbitrary parameters.

Assuming that the boundary conditions for ¢ = ¢ are satisfied by the choice of the
expansion, the weighted statement of the problem is, for Eq. (11.2) after elimination
of the arbitrary parameters,

JQW}(k’I(H—VqE)dQ:O (11.11)
and, for Eq. (11.3) and the ‘natural’ boundary conditions,

- [ Wi+ @an+ | Wi - aar—o (1112
2 q
The reason we have premultiplied Eq. (11.2) by k™! is now evident as the choice

W, =N, W, =N, (11.13)

will yield symmetric equations [using Green’s theorem to perform integration by parts
on the gradient term in Eq. (11.12)] of the form

RO o1

with
A= J NJk'N,dQ
Q
C= J N, VN, dQ
9 (11.15)
fi=0
f, = — L N;QdQ — L Njgdr

q

T The reader will note that we have now changed the notation slightly, having previously used a different
symbol such as a; for nodal quantities. We do this because now more than one variable occurs and it is
convenient to denote this variable with a similarly denoted nodal parameter.
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This problem, which we shall consider as typifying a large number of mixed
approximations, illustrates the main features of the mixed formulation, including
its advantages and disadvantages. We note that

. The continuity requirements on the shape functions chosen are different. It is easily
seen that those given for Ny can be C, continuous while those for N, can be
discontinuous in or between elements (C_; continuity) as no denvatlves of this
are present. Alternatively, this discontinuity can be transferred to N, (using
Green’s theorem on the integral in C) while maintaining C, continuity for N,.

This relaxation of continuity is of particular importance in plate and shell bend-
ing problems (see Volume 2) and indeed many important early uses of mixed forms
have been made in that context.®™’

2. If interest is focused on the variable q rather than ¢, use of an improved approx-
imation for this may result in higher accuracy than possible with the irreducible
form previously discussed. However, we must note that if the approximation
function for q is capable of reproducing precisely the same type of variation as
that determinable from the irreducible form then no additional accuracy will result
and, indeed, the two approximations will yield identical answers.

Thus, for instance, if we consider the mixed approximation to the field problems
discussed using a linear triangle to determine N and piecewise constant N, as
shown in Fig. 11.1, we will obtain precisely the same results as those obtained
by the irreducible formulation with the same N, applied directly to Eq. (11.5),
providing Kk is constant within each element. This is evident as the second of Eqs
(11.14) is precisely the weighted continuity statement used in deriving the irredu-
cible formulation in which the first of the equations is identically satisfied.

Indeed, should we choose to use a linear but discontinuous approximation form
of N, in the interior of such a triangle, we would still obtain precisely the same
answers, with the additional coefficients becoming zero. This discovery was made

VANVANVAN

Constant q Linear q Linear ¢

Linear ¢

Fig. 11.1 A mixed approximation to the heat conduction problem yielding identical results as the corre-
sponding irreducible form (the constant k is assumed in each element).
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by Fraeijs de Veubeke!® and is called the principle of limitation, showing that under
some circumstances no additional accuracy is to be expected from a mixed formula-
tion. In a more general case where k is, for instance, discontinuous and variable
within an element, the results of the mixed approximation will be different and on
occasion superior.2 Note that a Cy-continuous approximation for q does not fall
into this category as it is not capable of reproducing the discontinuous ones.

3. The equations resulting from mixed formulations frequently have zero diagonal
terms as indeed in the case of Eq. (11.14).

We noted in Chapter 3 that this is a characteristic of problems constrained by a
Lagrange multiplier variable. Indeed, this is the origin of the problem, which adds
some difficulty to a standard gaussian elimination process used in equation solving
(see Chapter 20). As the form of Eq. (11.14) is typical of many two-field problems
we shall refer to the first variable (here q) as the primary variable and the second
(here ¢) as the constraint variable.

4. The added number of variables means that generally larger size algebraic problems
have to be dealt with. However, in Sec. 11.6 we shall show how such difficulties can
often be avoided by a suitable iterative solution.

The characteristics so far discussed did not mention one vital point which we
elaborate in the next section.

11.3 Stability of mixed approximation. The patch test

11.3.1 Solvability requirement

Despite the relaxation of shape function continuity requirements in the mixed
approximation, for certain choices of the individual shape functions the mixed
approximation will not yield meaningful results. This limitation is indeed much
more severe than in an irreducible formulation where a very simple ‘constant gradient’
(or constant strain) condition sufficed to ensure a convergent form once continuity
requirements were satisfied.

The mathematical reasons for this difficulty are discussed by Babuska'' and
Brezzi,'?> who formulated a mathematical criterion associated with their names. How-
ever, some sources of the difficulties (and hence ways of avoiding them) follow from
quite simple reasoning.

If we consider the equation system (11.14) to be typical of many mixed systems
in which q is the primary variable and ¢ is the constraint variable (equivalent to a
lagrangian multiplier), we note that the solution can proceed by eliminating q from
the first equation and by substituting into the second to obtain

(CTAT'C)p = —f, + CTAT'f (11.16)

which requires the matrix A to be non-singular (or Aq # 0 for all q # 0). To calculate
¢ it is necessary to ensure that the bracketed matrix, i.e.

H=C'A"'C (11.17)

is non-singular.
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Singularity of the H matrix will always occur if the number of unknowns in the
vector q, which we call n,, is less than the number of unknowns 7, in the vector ¢.
Thus for avoidance of singularity

is necessary though not sufficient as we shall find later.

The reason for this is evident as the rank of the matrix (11.17), which needs to be n,,
cannot be greater than n,, i.e., the rank of Al

In some problems the matrix A may well be singular. It can normally be made non-
singular by addition of a multiple of the second equation, thus changing the first
equation to

A=A+~CCT
fl = fl -+ "}’CfQ
where -~y is an arbitrary number. -
Although both the matrices A and CC" are singular their combination A should
not be, providing we ensure that for all vectors q # 0 either
AG#0 or Clg#0

In mathematical terminology this means that A is non-singular in the null space of CCT.
The requirement of Eq. (11.18) is a necessary but not sufficient condition for non-
singularity of the matrix H. An additional requirement evident from Eq. (11.16) is

Co#0 forall ¢#0

If this is not the case the solution would not be unique.
The above requirements are inherent in the Babuska—Brezzi condition previously
mentioned, but can always be verified algebraically.

11.3.2 Locking

The condition (11.18) ensures that non-zero answers for the variables q are possible. If
it is violated /ocking or non-convergent results will occur in the formulation, giving
near-zero answers for q [see Chapter 3, Eq. (3.159) ff.].

To show this, we shall replace Eq. (11.14) by its penalized form:

A (i {q}_{fl} with o — 00 (11.19)
c’ _EI o/  \H and I = identity matrix '

Elimination of &) leads to
(A + aCCHq = f, + oCt, (11.20)
As a — oo the above becomes simply
(cChq = Cf, (11.21)

Non-zero answers for q should exist even when f, is zero and hence the matrix CCT
must be singular. This singularity will always exist if n, > n,.
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The stability conditions derived on the particular example of Eq. (11.14) are
generally valid for any problem exhibiting the standard Lagrange multiplier form.
In particular the necessary count condition will in many cases suffice to determine
element acceptability; however, final conclusions for successful elements which pass
all count conditions must be evaluated by rank tests on the full matrix.

In the example just quoted q denote fluxes and ¢ temperatures and perhaps the
concept of locking was not clearly demonstrated. It is much more definite where
the first primary variable is a displacement and the second constraining one is a
stress or a pressure. There locking is more evident physically and simply means an
occurrence of zero displacements throughout as the solution approaches a limit.
This unfortunately will happen on occasion.

11.3.3 The patch test

The patch test for mixed elements can be carried out in exactly the way we have
described in the previous chapter for irreducible elements. As consistency is easily
assured by taking a polynomial approximation for each of the variables, only stability
needs generally to be investigated. Most answers to this can be obtained by simply
ensuring that count condition (11.18) is satisfied for any isolated patch on the bound-
aries of which we constrain the maximum number of primary variables and the
minimum number of constraint variables."

In Fig. 11.2 we illustrate a single element test for two possible formulations with C
continuous N, (quadratic) and discontinuous N,, assumed to be either constant or
linear within an element of triangular form. As no values of q can here be specified
on the boundaries, we shall fix a single value of ¢ only, as is necessary to ensure

ng<n
A + Test failed
() Ng=2
Restrained
Ng >Ny
A A Test passed

(but results equivalent
to irreducible form)

(b) ng=6 ng=6-1=5

Fig. 11.2 Single element patch test for mixed approximations to the heat conduction problem with discon-
tinuous flux q assumed: (a) quadratic Gy, ¢; constant q; (b) quadratic Cy, ¢; linear q.
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nq>n¢

A A\ Restrained

n,=12 n¢=6—1=5

q

Fig. 11.3 As Fig. 11.2 but with Cy continuous q.

uniqueness, on the patch boundary, which is here simply that of a single element. A
count shows that only one of the formulations, i.e., that with linear flux variation,
satisfies condition (11.18) and therefore may be acceptable.

In Fig. 11.3 we illustrate a similar patch test on the same element but with identical
C, continuous shape functions specified for both q and ¢ variables. This example
shows satisfaction of the basic condition of Eq. (11.18) and therefore is apparently
a permissible formulation. The permissible formulation must always be subjected
to a numerical rank test. Clearly condition (11.18) will need to be satisfied and
many useful conclusions can be drawn from such counts. These eliminate elements
which will not function and on many occasions will give guidance to elements
which will.

Even if the patch test is satisfied occasional difficulties can arise, and these are
indicated mathematically by the Babuska—Brezzi condition already referred to.!
These difficulties can be due to excessive continuity imposed on the problem by
requiring, for instance, the flux condition to be of C, continuity class. In Fig. 11.4
we illustrate some cases in which the imposition of such continuity is physically
incorrect and therefore can be expected to produce erroneous (and usually highly
oscillating) results. In all such problems we recommend that the continuity be relaxed
at least locally.

We shall discuss this problem further in Sec. 11.4.3.

Only q,,
continuous

g changes abruptly
(discontinuity)
Il

Adn =0n q
@ (b)

Fig. 11.4 Some situations for which C, continuity of flux q is inappropriate: (a) discontinuous change of
material properties; (b) singularity.
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11.4 Two-field mixed formulation in elasticity

11.4.1 General

In all the previous formulations of elasticity problems in this book we have used an
irreducible formulation, using the displacement u as the primary variable. The virtual
work principle was used to establish the equilibrium conditions which were written as
(see Chapter 2)

J 6sTch—J 5udeQ—J Su'tdl =0 (11.22)
Q Q T,
where t are the tractions prescribed on I', and with

¢ =Ds (11.23)

as the constitutive relation (omitting here initial strains and stresses for clarity).

We recall that statements such as Eq. (11.22) are equivalent to weighted residual
forms (see Chapter 3) and in what follows we shall use these frequently. In the
above the strains are related to displacement by the matrix operator S introduced
in Chapter 2, giving

£ =Su (11.24)
e =Séu (11.25)

with the displacement expansions constrained to satisfy the prescribed displacements
on I',,. This is, of course, equivalent to Galerkin-type weighting.
With the displacement u approximated as

u~ =N, (11.26)

the required stiffness equations were obtained in terms of the unknown displacement
vector u and the solution obtained.

It is possible to use mixed forms in which either ¢ or g, or, indeed, both these vari-
ables, are approximated independently. We shall discuss such formulations below.

11.4.2 The u-¢ mixed form

In this we shall assume that Eq. (11.22) is valid but that we approximate ¢ indepen-
dently as

6~6=N,6 (11.27)
and approximately satisfy the constitutive relation

¢ = DSu (11.28)

which replaces (11.23) and (11.24). The approximate integral form is written as

J 66" (Su—D'6)dQ2 =0 (11.29)
Q
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where the expression in the brackets is simply Eq. (11.28) premultiplied by D! to
establish symmetry and éo is introduced as a weighting variable.

Indeed, Eqs (11.22) and (11.29) which now define the problem are equivalent to the
stationarity of the functional

1 _
HHR:J cTSudQ——J cTD”on—J udeQ—J u'tdl (11.30)
0 2 )a 0 r,

where the boundary displacement
u=u

is enforced on I',,, as the reader can readily verify. This is the well-known Hellinger—
Reissner'>!® variational principle, but, as we have remarked earlier, it is unnecessary
in deriving approximate equations. Using

N, éu in place of éu
Béu = SN, 6u in place of é¢g
N,66 in place of b6
we write the approximate equations (11.29) and (11.22) in the standard form [see Eq.

(11.14)]
[(?T ﬁ]{i}:{g} (11.31)

A=—| NID'N,dQ
Q

with

C=+| NJBdQ
Q (11.32)

f, =+ NZbdQJrJ NItdr
Ja T,

In the form given above the N, shape functions have still to be of C, continuity,
though N, can be discontinuous. However, integration by parts of the expression
for C allows a reduction of such continuity and indeed this form has been used by
Herrmann®'7!® for problems of plates and shells.

11.4.3 Stability of two-field approximation in elasticity (u-o)

Before attempting to formulate practical mixed approach approximations in detail,
identical stability problems to those discussed in Sec. 11.3 have to be considered.

For the u—o forms it is clear that ¢ is the primary variable and u the constraint
variable (see Sec. 11.2), and for the total problem as well as for element patches we
must have as a necessary, though not sufficient condition

Ny = n, (11.33)

where 1, and n, stand for numbers of degrees of freedom in appropriate variables.
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X X
AA X X

n;=3 =3x3=9 =3x3=9
n,=3x2-3=3 =3x2-3=3 =6x2-3=9
(pass) (pass) (pass)
O O O O
X X X X X X
® o
X X X X
O O O O
n,=3 =3x3=9 =4x3=12 =4x3=12
n,=4x2-3=5 =8x2-3=13 =8x2-3=13 =9x2-3=15
(fail) (fail) (fail) (fail)

Two-element Q 4/8 assembly patch test

X XX X
X X | X X
ns=8x3=24
ny=13x2-3=23
(pass)

Fig. 11.5 Elasticity by the mixed 6—u formulation. Discontinuous stress approximation. Single element patch
test. No restraint on & variables but three G degrees of freedom restrained on patch. Test condition
n, = n, (X denotes & (3 DOF) and o the @ (2 DOF) variables).

In Fig. 11.5 we consider a two-dimensional plane problem and show a series of
elements in which N, is discontinuous while N, has C, continuity. We note again,
by invoking the Veubeke ‘principle of limitation’, that all the elements that pass
the single-element test here will in fact yield identical results to those obtained by
using the equivalent irreducible form, providing the D matrix is constant within
each element. They are therefore of little interest. However, we note in passing that
the Q 4/8, which fails in a single-element test, passes that patch test for assemblies
of two or more elements, and performs well in many circumstances. We shall see
later that this is equivalent to using four-point Gauss, reduced integration (see
Sec. 12.5), and as we have mentioned in Chapter 10 such elements will not always
be robust.

It is of interest to note that if a higher order of interpolation is used for ¢ than for u
the patch test is still satisfied, but in general the results will not be improved because of
the principle of limitation.

We do not show the similar patch test for the C, continuous N, assumption but
state simply that, similarly to the example of Fig. 11.3, identical interpolation of
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7—X

() o linear u linear

(b)

Fig. 11.6 Elasticity by the mixed 6—u formulation. Partially continuous ¢ (continuity at nodes only). (a) ¢
linear, u linear; (b) possible transformation of interface stresses with o, disconnected.

N, and N,, is acceptable from the point of view of stability. However, as in Fig. 11.4,
restriction of excessive continuity for stresses has to be avoided at singularities and at
abrupt material property change interfaces, where only the normal and tangential
tractions are continuous.

The disconnection of stress variables at corner nodes can only be accomplished for
all the stress variables. For this reason an alternative set of elements with continuous
stress nodes at element interfaces can be introduced (see Fig. 11.6)."”

In suchs elements excessive continuity can easily be avoided by disconnecting only
the direct stress components parallel to an interface at which material changes occur.
It should be noted that even in the case when all stress components are connected at a
mid-side node such elements do not ensure stress continuity along the whole interface.
Indeed, the amount of such discontinuity can be useful as an error measure. However,
we observe that for the linear element [Fig. 11.6(a)] the interelement stresses are
continuous in the mean.

It is, of course, possible to derive elements that exhibit complete continuity of the
appropriate components along interfaces and indeed this was achieved by Raviart
and Thomas® in the case of the heat conduction problem discussed previously.
Extension to the full stress problem is difficult’’ and as yet such elements have not
been successfully noted.

11.4.4 Pian-Sumihara quadrilateral

Today very few two-field elements based on interpolation of the full stress and
displacement fields are used. One, however, deserves to be mentioned. We begin by
first considering a rectangular element where interpolations may be given directly
in terms of cartesian coordinates. A four-node plane rectangular element with side
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AY

Y x

(X0, Yo)

Fig. 11.7 Geometry of rectangular 6—u element.

lengths 2a in the x-direction and 2b in the y-direction, shown in Fig. 11.7, has
displacement interpolation given by

The shape functions are given by

1 X — X —
W = L1252 (1-250)

1 x — _
Nz(x,y)—4<1+” ax°><1—y byo)

1 X—X —
N3(xay)_z<l+ a 0><1+y byo)

1 X —X -
M) = (1252 ) (14252

where x, and y, are the cartesian coordinates of the element centre. The strains
generated from this interpolation will be such that

ex =01+ By
gy = B3 + fax
Yoy = Bs + Bex + B7y

where (3; are expressed in terms of u. For isotropic linear elasticity problems these
strains will lead to stresses which have a complete linear polynomial variation in
each element (except for the special case when v = 0).
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Here the stress interpolation is restricted to each element individually and, thus, can
be discontinuous between adjacent elements. The limitation principle restricts the
possible choices which lead to different results from the standard displacement
solution. Namely, the approximation must be less than a complete linear polynomial.
To satisfy the stability condition given by Eq. (11.18) we need at least five stress
parameters in each element. A viable choice for a five-term approximation is one
which has the same variation in each element as the normal strains given above but
only a constant shear stress. Accordingly,

ay
oy 1 0 0 y—y 0 Q)
o, p=10 10 0 X — X 03
Ty 0 0 1 0 0 oy
Qs

Indeed, this approximation satisfies Eq. (11.18) and leads to excellent results for a
rectangular element. We now rewrite the formulation to permit a general quadrilat-
eral shape to be used.

The element coordinate and displacement field are given by a standard bilinear
isoparametric expansion

X:ZNi(g,n)ij fl:zN;(fﬂ?)ﬁz

i=1 i=1

where now

Ni(&n) = %(1 +&&)(1 +nm)

in which &; and 7, are the values of the parent coordinates at the nodes.

The problem remains to deduce an approximation for stresses for the general
quadrilateral element. Here this is accomplished by first assuming stresses on the
parent element (for convenience in performing the coordinate transformation the
tensor form is used, see Appendix B) in an analogous manner as the rectangle
above:

Yee X

(& n) = S ©
)

_ |:a1 + ayn a3

uul Qg (&%) + a5£

In the above the normal stresses again produce constant and bending terms while
shear stress is only constant. These stresses are then mapped (transformed) to
cartesian space using

6 =T'S(¢n)T

It remains now only to select an appropriate transformation. The transformation
must

1. produce stresses in cartesian space which satisfy the patch test (i.e., can produce
constant stresses and be stable);
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2. be independent of the orientation of the initially chosen element coordinate system
and numbering of element nodes (frame invariance requirement).

Pian and Sumihara® use a constant array (to preserve constant stresses) deduced
from the jacobian matrix at the centre of the element. Accordingly, with

ox 0Oy
3, = [Jo,n Jo.12} _ o6 B¢
Joo1 Jox ox Oy

dn on &n=0

the elements of the jacobian matrix at the centre are given by [see Eq. (8.10)]
Joar =35 & Joa2 = 5%,
Joot =32i& Joon =1y,

Using T = J,) gives the stresses (in matrix form)

_ ) 2
Oy ay Joum Jo,12€

- 2 2 Q4
Oy ¢ =94 @ ¢t | Jiun Jom& as
Tyy az Jo2do1n  Jo,12J0.228

where the parameters &;, i =1,2,3, replace the transformed quantities for the
constant part of the stresses. This approximation clearly satisfies the constant stress
condition (Condition 1) and can also be shown to satisfy the frame invariance
condition (Condition 2). The development is now complete and the arrays indicated

— A

<~—0.5
?]

Fig. 11.8 Pian-Sumihara quadrilateral (P-S) compared with displacement quadrilateral (Q-4). Effect of
element distortion (Exact = 1.0).
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in Eq. (11.32) may be computed. We note that the integrals are computed exactly for
all quadrilateral elements (with constant D) using 2 x 2 gaussian quadrature.

An alternative to the above definition for Ty, is to use the transpose of the jacobian
inverse at the centre of the element (i.e., Ty = Jy'). This has also been suggested
recently by several authors as a frame invariant transformation. However, as
shown in Fig. 11.8, the sensitivity to element distortion is much greater for this
form than the original one given by Pian and Sumihara for the above two-field
approximation. The other two options (e.g., T = Jg and T = Jal) do not satisfy
the frame invariance requirement, thus giving elements which depend on the orienta-
tion of the element with respect to the global coordinates.

11.5 Three-field mixed formulations in elasticity
11.5.1 The u-¢-< form

It is, of course, possible to use an independent approximation to all the essential
variables entering the elasticity problem. We can then write the three equations
(11.24), (11.23), and (11.22) in their weak form as

J 6’ (De—6)d2 =0

Q

J 66" (Su—g)dQ =0 (11.34)
Q

L 5(Su)TedQ — J

Su'bdQ — J Su'tdl =0
Q

T,

with a corresponding variational principle requiring the stationarity of

HHW:J %aTDsdQ—J GT(a—Su)dQ—J udeQ—J u'tdl' (11.35)
Q

Q Q T,

where u=1u on I', is enforced.t This principle is known by the name of Hu-
Washizu.” However, again we can proceed directly, using Eq. (11.34), taking the
following approximations

ur~u=N,u 6~ 6=N,0 and e~ E=N_2¢

with corresponding ‘variations’ (i.e., the Galerkin form W, = N,,, etc.) and writing
the approximating equations in a similar fashion as we have in the previous section.
This yields an equation system of the following form:

A C 0](¢ f,
cC" 0 E[{s}p={1 (11.36)
0 E'" 0] |a f,

11t is possible to include the displacement boundary conditions in Eq. (11.35) as a natural rather than
imposed constraint; however, most finite element applications of the principle are in the form shown.
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where
A= J NIDN. d
Q
E= J NIBdQ
Q
C= —J NN, d©2 (11.37)
Q
fi=0=0

f, = J N}bdQ+J N, tdr
0 r,
The reader will have observed again that in this section we have quoted the variational
principle purely as a matter of interest and that all the approximations have been
made directly.

11.5.2 Stability condition of three-field approximation (u-c¢-¢)

The stability condition derived in Sec. 11.3 [Eq. (11.18)] for two-field problems,
which we later used in Eq. (11.33) for the simple mixed elasticity form, needs to be
modified when three-field approximations of the form given in Eq. (11.36) are
considered.

Many other problems fall into a similar category (for instance, plate bending)
and hence the conditions of stability are generally useful. The requirement now is
that

n.+n, =n,

(11.38)

ng 2 N,

This was first stated in reference 23 and follows directly from the two-field criterion as
shown below.

The system of Eq. (11.36) can be ‘regularized’ by adding vE times the third
equation to the second, with ~ being an arbitrary constant. We now have

A C 0](¢ f,
C' A4EE" E|{ 6} ={_1 +Ef
0 E" of(ua f

On elimination of & using the first of the above we have

FEE" —CTAT'C, E][6) [f+9Ef; —CTAT'f
ET, 0 - f,

u

From the two-field requirement [Eq. (11.18)] it follows that we require for no
singularity

o=, (11.39)
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Rearranging Eq. (11.36) we can write

A 0 C7(¢ f,
0 0 E"|{ua,=<{1
Cl E o G f,

This again can be regularized by adding multiples ¥C and vE' of the third of the
above equations to the first and second respectively obtaining

A+7CC", ACE  C (¢ f; +~Cf,
COE'CT GETEET )R = 0 f o,
c’, E '0]\s f,
By partitioning as above it is evident that we require
n.+n, =n, (11.40)

We shall not discuss in detail any of the possible approximations to the e—6—u
formulation or their corresponding patch tests as the arguments are similar to
those of two-field problems.

In some practical applications of the three-field form the approximation of the
second and third equations in (11.34) is used directly to eliminate all but the displace-
ment terms. This leads to a special form of the displacement method which has been
called a B (B-bar) form.*** In the B form the shape function derivatives are replaced
by approximations resulting from the mixed form. We shall illustrate this concept
with an example of a nearly incompressible material in Sec. 12.4.

11.5.3 The u-6-¢,, form. Enhanced strain formulation

In the previous two sections the general form and stability conditions of the three-field
formulation for elasticity problems is given in Eqs (11.34) and (11.38). Here we con-
sider a special case of this form from which several useful elements may be deduced.

In the special form considered the strain approximation is split into two parts: one
the usual displacement-gradient term; and, second, an added or enhanced strain part.
Accordingly, we write

€ =Su+ g, 6e = 6(Su) + b, (11.41)

Substitution into Eq. (11.34) yields the weak forms as

JQ 5(Su)"(D(Su + &¢,) — 6)dQ = 0

J bed, (D(Su+£.,) —6)dQ =0
¢ (11.42)
J 661 €., dQ =0
Q

JQ 5(Su)Te dQ — J

SubdQ — J Sultdl' =0
Q

T,
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with, for completeness, a corresponding variational principle requiring the stationarity
of

1
I, = J 3 (Su + £.,) "D (Su + &) dQ + Jcsen dQ
0

—J udeQ—J u'tdl (11.43)
Q r,
where, as before, u = u is enforced on T',,.
We can directly discretize Eq. (11.42) by taking the following approximations
u~a=N,u 6~ 6=N,6 €en & €y = Nep€en (11.44)

with corresponding expressions for variations. Substituting the approximations into
Eq. (11.42) yields the discrete equation system

A C G (&, f,
c" 0o o0f{s ={1 (11.45)
GT 0 K u f;

where

A= J NIDN,, dQ
Q
C=-— J NIN, dOQ
Q

G= J N2, DB dQ
0 (11.46)

K= J B'DBd(
Q
fl - f2 - 0
f, = J NbdQ + J Nltdr
Q r,
In this form there is only one zero diagonal term and the stability condition reduces to
the single condition
Ny + ey = N, (11.47)

Further, the use of the strains deduced from the displacement interpolation leads to a
matrix which is identical to that from the irreducible form and we have thus included
this in Eq. (11.46) as K.

11.5.4 Simo-Rifai quadrilateral

An enhanced strain formulation for application to problems in plain elasticity was
introduced by Simo and Rifai.?® The element has four nodes and employs iso-
parametric interpolation for the displacement field. The derivatives of the shape
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functions yield a form

ON; ay ;(vi) + by j(yi)€ + ¢y j(yi)n
ox | 7 mn)
% B ay ;(x;) + by i (x,)€ + ¢, j(xi)n
Ay J(&m)

where a;, b; and ¢; depend on the nodal coordinates, and the jacobian determinant for
the 4-node quadrilateral is given byf

detd =j(§,n) = jo +/i&§+jan

The enhanced strains are first assumed in the parent coordinate frame and trans-
formed to the cartesian frame using a transformation similar to that used in develop-
ing the Pian—Sumihara quadrilateral in Sec. 11.4.2. Due to the presence of the
jacobian determinant in the strains computed from the displacements (as well as
the requirement to later pass the patch test for constant stress states) the enhanced
strains are computed from

1 T
Een = - T En)T
<)
In matrix form this may be written as

Ex | Th T3 T, Ty E¢e
g, p=———| T T3 T, T E

y ) 2 » X 12T m
Yy 2T Ty 2Ty Ty TiuTxn+ TihTy 2E,

The parent strains (strains with components in the parent element frame) are assumed
as

Eg €000 ?
Ey p=10 7 0 0 ﬁz
2E,, 00 ¢ ||

Ba

The above is motivated by the fact that the derivatives of the shape functions with
respect to parent coordinates yields

ON; ON;
and these may be combined to form strains in the usual manner, but in the parent
frame. Thus, by design, the above enhanced strains are specified to generate com-
plete polynomials in the parent coordinates for each strain component. References
27 and 28 discuss the relationship between the design of assumed stress elements
using the two-field form and the selection of enhanced strain modes so as to produce
the same result.

ag + bf?’]

T In general, the determinant of the jacobian for the two-dimensional Lagrange family of elements will not
contain the term with the product of the highest order polynomial, e.g., {n for the 4-node element, 52772 for
the 9-node element, etc.
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Remarks

1. The above enhanced strains are defined so that the C array is identically zero for
constant assumed stresses in each element.

2. Parent normal strains have linearly independent terms added. However, the
assumed parent shear strains are linearly dependent. Due to this linear dependence
the final shearing strain will usually be nearly constant in each element. Accord-
ingly, to be more explicit, normal strains are enhanced while shearing strain is
de-enhanced.

Since the C array vanishes, the equation set to be solved becomes

BRIt

and in this form no additional count conditions are apparently needed. The solution
may be accomplished partly at the element level by eliminating the equation asso-
ciated with the enhanced strain parameters. Accordingly,

K = f}
where
K'=K-G'A™'G
and
f;=f;, —G'A'f,

The sensitivity of the enhanced strain element to geometric distortion is evaluated
using the problem shown in Fig. 11.8. The transformation from the parent to the
global frame is assessed using T =J, and T = J; . These are the only options
which maintain frame invariance for the element. As observed in Fig. 11.9 the results

o
> H 0 S-R:J
04— P 0O S-R: J-inverse
\ o Q4
-5 \1
0.2 — 0. ~
<>'~<>.____'g~-—|:|-.__-——-|:|-—-—""'EI
-.__o ---------- 0 ---------- 0
0 1 1 ! ]
0 1 2 3 4
a

Fig. 11.9 Simo-Rifai enhanced strain quadrilateral (S-R) compared with displacement quadrilateral (Q-4).
Effect of element distortion (Exact = 1.0).
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Fig. 11.10 Mesh with 4 x 4 elements for shear load.
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N
N

o

are now better using the inverse transpose. Since the stress and strain are conjugates in
an energy sense, this result could be anticipated from the equivalence relationship

E:lJ oTsdQElJ sTEdD
2 o 2 |5

where F is energy and O denotes the domain of the element in the parent coordinate
system (i.e., the bi-unit square for a quadrilateral element).

The performance of the enhanced element is compared to the Pian—Sumihara
element for a shear loading on the mesh shown in Fig. 11.10. In Fig. 11.11 the
convergence results for various order meshes are shown for linear elastic, plane
strain conditions with: (¢) £ = 70 and v = 1/3 and (b) for E = 70 and v = 0.499995.
The results shown in Fig. 11.11 clearly show the strong dependence of the displacement

35

0 10 20 30 40 50

n — elements/side (v = 1/3)

0 10

20 30 40 50
n — elements/side (v = 0.499995)

60

Fig. 11.11 Convergence behaviour for: (a) v = 1/3; (b) v = 0.499995.
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formulation on Poisson’s ratio — namely the tendency for the element to lock for values
which approach the incompressibility limit of v =1/2. On the other hand, the
performance of both the enhanced strain and the Pian—Sumihara element are nearly
insensitive to the value of Poisson’s ratio selected, with somewhat better performance
of the enhanced element on coarse meshing.

11.6 An iterative method solution of mixed
approximations

It is of interest to consider here the procedure first suggested by Cantin ez al*’*° in

which the authors aimed at an iterative improvement of the displacement type solution.
This iterative process in fact solves two equations. In this the first equation replaces the
discontinuous stresses computed from a displacement type solution by continuous
stresses calculated by a least square smoothing. The continuous stress is expressed using

o' =Né (11.48)

where N are the same shape functions used in the displacement solution and ¢ are
nodal values of stresses. The least square problem is then expressed as

J (6" — 6)" (6" — 6) dQ = min (11.49)
Q
whose solution for a typical iteration i may be written as
A D —cra® =0 (11.50)
with
A= J NN dQ
Q

C' = J N'DB AN
Q

This type of stress smoothing was suggested by Brauchli and Oden in 1973.3 Though
we shall discuss its achievements later in Chapter 14 on recovery methods it has been
quite successfully used in the iterative improvement discussed here.

The second stage of the calculation takes the stresses computed above ¢ and
calculates the out-of-balance residual

L) :J BT6™ 1 40 4 f (11.51)
Q

The correction to the displacements using this residual is then expressed by
Ka“ ! = Ka® — %+ D (11.52)

The iteration may now proceed by incrementing k and computing new smoothed
stresses followed by new displacements.
The two steps may be written in a matrix setting as

A 0 g+ D 0 C7(e&® 0
B A A R AR
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where

C:J N'BdQ (11.54)
Q

At convergence the solutions become

ik — gk+b — g ¢k — gkt —_ &

Combining the two sides of the above equation yields

el s

The reader will notice that the equations which result at the end of this process are in
fact a mixed problem in stress and displacement form.

The convergence of the process is quite rapid and very often considerable improve-
ment in the answers is obtained. In Fig. 11.12 we show some results by Nakazawa
et al¥*7* using the bilinear displacement element and it is seen how much the results
are improved. In Fig. 11.13 a similar iteration is carried out using now triangular

e—————>1
B
CES=S=E=E== i) bi alb = 10
-f
Full integration (consistent A)
----------- Full integration (lumped A)
g 15+ — -—-— Nodal integration throughout
J
Sm
bx E 1 0 ’/:4”\‘-&-.
=8 ? <o Displacement solution
=05 i
§ 5 with stress recovery
= 0 L L L L | L L L L |
@ 0 5 10
Equilibrium iteration
bl -] S SRR
c .
= ;
o .
kS /
5 I
S 1.0y
Y
2 oo Displacement solution
S o5l with stress recovery
i3]
Ro)
8
O 1 1 1 1 I 1 1 1 1 I
0 5 10

Equilibrium iterations (with line search)

Fig. 11.12 Iterative solution of the mixed o/u formulation for a beam. Bilinear u and 6.
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A
o —>>
12 !
<
48
- = = = Exact
—-—TC3/3
e l2r .. TCR3/3 o l2p
g = T g
G 2 L0 DIETIITNN 4§ 10 mnmanens
g8 |/ gs |7
25 ol 2% .0
= 308 = £ 08
52 5 % 08
2 T3 2 |- T3
< 0.6 T 1 < 0.6 T 1
0 10 20 0 10 20
Iterations Iterations
Max deflection of beam (32 elements) Normal stress of point A
(@)
0
p (10) :
_ > 80
/l/u/ 70
—>
p/2 9 60
T=1 X
> w50
3 ¢ 5ao
3 n
B —> 30
Reference* —-—
2 20
P y I > TC3/3
i 10 tCR3/3-------
k2 X > 0 ! ! ! ! |
0 20 40 60 80 100
(b) c u
x coordinate
Sigma xx along B-C
TC3/3
TCR3/3
u

T3

Fig. 11.13 lterative solution of the mixed e/u formulation using two triangular element forms TC 3/3
and TCR 3/3. (a) A beam showing convergence with iterations. (b) An L-shaped domain showing the
improved results of stress distribution when no continuity of stress is imposed at singularity (element
TCR 3/3).
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elements. Here various combinations of displacement and stress variation have been
used and, in particular, the reader should note that at the singularity point some
means of stress disconnection is used as difficulties in C; stress continuity exist.
The very simplest procedure of disconnecting all components of stress at such
points has proven to be optimal. Details of such calculations are given in reference 19.

In a subsequent chapter, where we shall deal with problems of incompressibility, we
shall deal with an iteration due to Uzawa.* The particular iteration used in the above
iteration process is in fact a form of the Uzawa algorithm to which we will refer in
more detail later.

11.7 Complementary forms with direct constraint
11.7.1 General forms

In the introduction to this chapter we defined the irreducible and mixed forms and
indicated that on occasion it is possible to obtain more than one ‘irreducible’ form.
To illustrate this in the problem of heat transfer given by Eqs (11.2) and (11.3) we
introduced a penalty function « in Eq. (11.6) and derived a corresponding single
governing equation (11.7) given in terms of q. This penalty function here has no
obvious physical meaning and served simply as a device to obtain a close enough
approximation to the satisfaction of the continuity of flow equations.

On occasion it is possible to solve the problem as an irreducible one assuming «
priori that the choice of the variable satisfies one of the equations. We call such
forms directly constrained and obviously the choice of the shape function becomes
difficult.

We shall consider two examples.

The complementary heat transfer problem
In this we assume a priori that the choice of q is such that it satisfies Eq. (11.3) and the
natural boundary conditions

Vig=-0inQ and qn=quonl, (11.56)
Thus we only have to satisfy the constitutive relation (11.2), i.e.,
K'q+Ve=0inQ with ¢=¢onl, (11.57)
A weak statement of the above is
J 6qT(k71q+V¢)dQ—J 5qu(¢p — $)dl' =0 (11.58)
Q 0

in which g, represents the variation of normal flux on the boundary.
Use of Green’s theorem transforms the above into

J 5"k 'qdQ — J V1i6qpdQ + J 5q,¢dl + J 5q,pdl =0 (11.59)
Q Q Iy

q
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If we further assume that V' éq = 0 in Q and 8¢, = 0 on [y, i.e., that the weighting
functions are simply the variations of ¢, the equation reduces to

J 5qu*1qu+J 8q,dl =0 (11.60)
Q Ly
This is in fact the variation of a complementary flux principle

II= Jﬂ%qu’quQ—&—L ¢nddl (11.61)

Numerical solutions can obviously be started from either of the above equations
but the difficulty is the choice of the trial function satisfying the constraints. We
shall return to this problem in Sec. 11.7.2.

The complementary elastic energy principle
In the elasticity problem specified in Sec. 11.4 we can proceed similarly, assuming
stress fields which satisfy the equilibrium conditions both on the boundary I', and
in the domain Q.

Thus in an analogous manner to that of the previous example we impose on the
permissible stress field the constraints which we assume to be satisfied by the
approximation identically, i.c.,

S'¢+b=0inQ and t=tonT, (11.62)

Thus only the constitutive relations and displacement boundary conditions remain to
be satisfied, i.e.,

D '6—Su=0inQ and w=uonl, (11.63)
The weak statement of the above can be written as
JD 66" (D' — Su) dQ-i-JF st'(u—u)dl =0 (11.64)
which on integration by Green’s theorem gives
JQ 66'D e dQ + JQ(STéc)Tu dQ — L sthudl — JF sthudl =0 (11.65)

Again assuming that the test functions are complete variations satisfying the homo-
geneous equilibrium equation, i.e.,

S'™66=0inQ and St=0onT, (11.66)
we have as the weak statement
J 56TD_16dQ—J stadl =0 (11.67)
Q T,
The corresponding complementary energy variational principle is
1
H:—J cTD”ch—J t'adr (11.68)
2 )a r,

Once again in practical use the difficulties connected with the choice of the approx-
imating function arise but on occasion a direct choice is possible.*
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11.7.2 Solution using auxiliary functions

Both the complementary forms can be solved using auxiliary functions to ensure the
satisfaction of the constraints.
In the heat transfer problem it is easy to verify that the homogeneous equation

_94. %4y _

Viq= =0 11.69
1= T oy (11.69)
is automatically satisfied by defining a function 1 such that
oY oY
=== = —— 11.70
q.\ ay q_\/ ax ( )
Thus we define
q=L¢y+q and oq = L&y (11.71)
where q is any flux chosen so that
Vigy=-0 (11.72)
and
o 91"
L=|—, —— 11.73
B (11.73)

the formulations of Eqs (11.60) and (11.61) can be used without any constraints and,
for instance, the stationarity

(1 Tp—1 oY
H—JQE(L%/H—%) k (L¢+(I0)dQ—L <S

¢

>¢dF (11.74)

will suffice to so formulate the problem (here s is the tangential direction to the
boundary).

The above form will require shape functions for ) satisfying C, continuity.

In the corresponding elasticity problem a similar two-dimensional form can be
obtained by the use of the so-called Airy stress function t.%

Now the equilibrium equations

Jdo, 0Ty,
ox oy Th
STe +b= Y =0 (11.75)
0ty N do, h
ox 0 !
are identically solved by choosing
6 =Ly + o (11.76)

where
82 82 82 T
Loy ax2 axay
and o is an arbitrary stress chosen so that

ST6y+b=0 (11.78)

(11.77)
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Again the substitution of (11.76) into the weak statement (11.67) or the comple-
mentary variational problem (11.68) will yield a direct formulation to which no
additional constraints need be applied. However, use of the above forms does lead
to further complexity in multiply connected regions where further conditions are
needed. The reader will note that in Chapter 7 we encountered this in a similar
problem in torsion and suggested a very simple procedure of avoidance (see Sec. 7.5).

The use of this stress function formulation in the two-dimensional context was first
made by de Veubeke and Zienkiewicz®” and Elias,”® but the reader should note that
now with second-order operators present, C; continuity of shape functions is needed
in a similar manner to the problems which we have to consider in plate bending (see
Volume 2).

Incidentally, analogies with plate bending go further here and indeed it can be
shown that some of these can be usefully employed for other problems.*

11.8 Concluding remarks — mixed formulation or a test
of element ‘robustness’

The mixed form of finite element formulation outlined in this chapter opens a new
range of possibilities, many with potentially higher accuracy and robustness than
those offered by irreducible forms. However, an additional advantage arises even in
situations where, by the principle of limitation, the irreducible and mixed forms
yield identical results. Here the study of the behaviour of the mixed form can
frequently reveal weaknesses or lack of ‘robustness’ in the irreducible form which
otherwise would be difficult to determine.

The mixed approximation, if properly understood, expands the potential of the
finite element method and presents almost limitless possibilities of detailed improve-
ment. Some of these will be discussed further in the next two chapters, and others in
Volumes 2 and 3.
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Incompressible materials,
mixed methods and other
procedures of solution

12.1 Introduction

We have noted earlier that the standard displacement formulation of elastic problems
fails when Poisson’s ratio v becomes 0.5 or when the material becomes incompres-
sible. Indeed, problems arise even when the material is nearly incompressible with
v > 0.4 and the simple linear approximation with triangular elements gives highly
oscillatory results in such cases.

The application of a mixed formulation for such problems can avoid the difficulties and
is of great practical interest as nearly incompressible behaviour is encountered in a variety
of real engineering problems ranging from soil mechanics to aerospace engineering. Iden-
tical problems also arise when the flow of incompressible fluids is encountered.

In this chapter we shall discuss fully the mixed approaches to incompressible
problems, generally using a two-field manner where displacement (or fluid velocity)
u and the pressure p are the variables. Such formulation will allow us to deal with
full incompressibility as well as near incompressibility as it occurs. However, what
we will find is that the interpolations used will be very much limited by the stability
conditions of the mixed patch test. For this reason much interest has been focused
on the development of so-called stabilized procedures in which the violation of the
mixed patch test (or Babuska—Brezzi conditions) is artificially compensated. A part
of this chapter will be devoted to such stabilized methods.

12.2 Deviatoric stress and strain, pressure and volume
change

The main problem in the application of a ‘standard’ displacement formulation to
incompressible or nearly incompressible problems lies in the determination of the
mean stress or pressure which is related to the volumetric part of the strain (for
isotropic materials). For this reason it is convenient to separate this from the total
stress field and treat it as an independent variable. Using the ‘vector’ notation of
stress, the mean stress or pressure is given by

=3, to,+0)=im's (121)
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where m for the general three-dimensional state of stress is given by
m=[1, 1, 1, 0, 0, 0]

For isotropic behaviour the ‘pressure’ is related to the volumetric strain, ¢,, by the
bulk modulus of the material, K. Thus,

€, =Ext+ & teE = m'e (12.2)
P

== 12.3

K (12.3)

For an incompressible material K = oo (v = 0.5) and the volumetric strain is simply
zero.
The deviatoric strain €/ is defined by

e/ =¢—1lme, = (I-imm")e =1 (12.4)

where 1, is a deviatoric projection matrix which proves useful later and in Volume 2.
In isotropic elasticity the deviatoric strain is related to the deviatoric stress by the
shear modulus G as

o’ = 1,0 = 2GIe’ =2G (I, — imm")e (12.5)
where the diagonal matrix
o -

1

is introduced because of the vector notation. A deviatoric form for the elastic moduli
of an isotropic material is written as

D, =2G(I) — imm") (12.6)

for convenience in writing subsequent equations.
The above relationships are but an alternate way of determining the stress strain
relations shown in Chapters 2 and 4—6, with the material parameters related through

E
G72(1 +v) (127
K—4E |
C3(1-2vw)

and indeed Eqs (12.5) and (12.3) can be used to define the standard D matrix in an
alternative manner.

12.3 Two-field incompressible elasticity (u—p form)

In the mixed form considered next we shall use as variables the displacement u and the
pressure p.
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Now the equilibrium equation (11.22) is rewritten using (12.5), treating p as an
independent variable, as

J 6sTDdsdQ+J 6£Tmde—J 6udeQ—J su'tdl =0 (12.8)
Q Q 0 T,
and in addition we shall impose a weak form of Eq. (12.3), i.e.,
J 8p [mTa - ﬂ] Q=0 (12.9)
Q K

with ¢ = Su. Independent approximation of u and p as
u~u=N,u and p~p=N,p (12.10)

immediately gives the mixed approximation in the form
A C u f
o G 121)
C -V]lp f,

A:J B'D,BdQ C:J B'mN, dQ
Q Q

where

) (12.12)
T T Ty
V:JQprdiQ fl:JQN”bdQ+JF N, tdl’ f,=0

We note that for incompressible situations the equations are of the ‘standard’ form,
see Eq. (11.14) with V = 0 (as K = 00), but the formulation is useful in practice when
K has a high value (or v — 0.5).

A formulation similar to that above and using the corresponding variational theorem
was first proposed by Herrmann' and later generalized by Key® for anisotropic

n,=0 =0 =0 =2
n,=0 =0 =2 =2
(pass) (pass) (fail) (pass)
CEE CEE
A A A A A A A A
A ® ® ® ® ® o ® ® o [)
A A A A A A
n,=0 =0 =0 =2 =2
np =0 =3 =0 =3 =2
(pass) (fail) (fail) (fail) (pass)

@

Fig. 12.1 Incompressible elasticity u—p formulation. Discontinuous pressure approximation. (a) Single-
element patch tests.
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n,=2 =7x2=14 =7x2=14 =19x2=38

np = 5 =5 =17 =17

(fail) (pass) (fail) (pass)
Q4/1

A A

=9x2=18

=15
(pass)

Fig. 12.1 (continued) Incompressible elasticity u-p formulation. Discontinuous pressure approximation.
(b) Multiple-element patch tests.

elasticity. The arguments concerning stability (or singularity) of the matrices which we
presented in Sec. 11.3 are again of great importance in this problem.

Clearly the mixed patch condition about the number of degress of freedom now
yields [see Eq. (11.18)]

n, = n, (12.13)
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and is necessary for prevention of locking (or instability) with the pressure acting now
as the constraint variable of the lagrangian multiplier enforcing incompressibility.

In the form of a patch test this condition is most critical and we show in Figs 12.1
and 12.2 a series of such patch tests on elements with C, continuous interpolation of u
and either discontinuous or continuous interpolation of p. For each we have included
all combinations of constant, linear and quadratic functions.

In the test we prescribe all the displacements on the boundaries of the patch and
one pressure variable (as it is well known that in fully incompressible situations
pressure will be indeterminate by a constant for the problem with all boundary
displacements prescribed).

The single-element test is very stringent and eliminates most continuous pressure
approximations whose performance is known to be acceptable in many situations.
For this reason we attach more importance to the assembly test and it would
appear that the following elements could be permissible according to the criteria of
Eq. (12.13) (indeed all pass the B-B condition fully):

Triangles: T6/1; T10/3; T6/C3
Quadrilaterals: Q9/3; Q8/C4; Q9/C4

We note, however, that in practical applications quite adequate answers have been
reported with Q4/1, Q8/3 and Q9/4 quadrilaterals, although severe oscillations of p
may occur. If full robustness is sought the choice of the elements is limited.’

It is unfortunate that in the present ‘acceptable’ list, the linear triangle and
quadrilateral are missing. This appreciably restricts the use of these simplest elements.
A possible and indeed effective procedure here is to not apply the pressure constraint
at the level of a single element but on an assembly. This was done by Herrmann in his
original presentation! where four elements were chosen for such a constraint as
shown in Fig. 12.3(a). This composite ‘clement’ passes the single-eclement (and
multiple-element) patch tests but apparently so do several others fitting into this
category. In Fig. 12.3(b) we show how a single triangle can be internally subdivided
into three parts by the introduction of a central node. This coupled with constant
pressure on the assembly allows the necessary count condition to be satisfied and a
standard element procedure applies to the original triangle treating the central
node as an internal variable. Indeed, the same effect could be achieved by the intro-
duction of any other internal element function which gives zero value on the main
triangle perimeter. Such a bubble function can simply be written in terms of the
area coordinates (see Chapter 8) as

LiL,L5

However, as we have stated before, the degree of freedom count is a necessary but not
sufficient condition for stability and a direct rank test is always required. In particular
it can be verified by algebra that the conditions stated in Sec. 11.3 are not fulfilled for
this triple subdivision of a linear triangle (or the case with the bubble function) and
thus

Cp = 0 for some non-zero values of p

indicating instability.
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® O u variable (restrained, free) 2 DOF

A A p variable (restrained, free) 1 DOF

n,=2

p
(fail)

(b) (fail)
Fig. 12.2 Incompressible elasticity u—p formulation. Continuous (Cp) pressure approximation. (a) Single-

element patch tests. (b) Multiple-element patch tests.
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’ g + E
ng=2 np=0
A ) A
(b) P n,= 2 I’]p =0
OR
(Bubble function)
A + A
© n,=2 np=2
OR
A (Bubble function)
(d) Ao +

B

(Bubble function) |
np=2

n,=2

Fig. 12.3 Some simple combinations of linear triangles and quadrilaterals that pass the necessary patch test
counts. Combinations (a), (c), and (d) are successful but (b) is still singular and not usable.
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T Only vertical
Triangle 1 movement

@i -0 possible for

! ¢ no volume

’ change

&

<—0—>
Only horizontal
movement
possible for
no volume
change
Triangle 1

Fig. 12.4 Locking (zero displacements) of a simple assembly of linear triangles for which incompressibility is
fully required (n, = n, = 24).

In Fig. 12.3(c) we show, however, that the same concept can be used with good
effect for Cy continuous p.% Similar internal subdivision into quadrilaterals or the
introduction of bubble functions in quadratic triangles can be used, as shown in
Fig. 12.3(d), with success.

The performance of all the elements mentioned above has been extensively dis-
cussed® '* but detailed comparative assessment of merit is difficult. As we have
observed, it is essential to have n, > n, but if near equality is only obtained in a
large problem no meaningful answers will result for u as we observe, for example,
in Fig. 12.4 in which linear triangles for u are used with the element constant p.
Here the only permissible answer is of course u = 0 as the triangles have to preserve
constant volumes.

The ratio n,/n, which occurs as the field of elements is enlarged gives some indica-
tion of the relative performance, and we show this in Fig. 12.5. This approximates to
the behaviour of a very large element assembly, but of course for any practical
problem such a ratio will depend on the boundary conditions imposed.

We see that for the discontinuous pressure approximation this ratio for ‘good’
elements is 2—3 while for C, continuous pressure it is 6—8. All the elements shown
in Fig. 12.5 perform very well, though two (Q4/1 and Q9/4) can on occasion lock
when most boundary conditions are on u.

12.4 Three-field nearly incompressible elasticity (u—p-z¢,
form)
A direct approximation of the three-field form leads to an important method in finite

element solution procedures for nearly incompressible materials which has sometimes
been called the B-bar method. The methodology can be illustrated for the nearly
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@)

6/1 4/1

9/3

9/4

(b)

6/3C

3B1/3C

Fig. 12.5 The freedom index or infinite patch ratio for various u-p elements for incompressible elasticity
(y = ny/np). (@) Discontinuous pressure. (b) Continuous pressure.

incompressible isotropic problem. For this problem the method often reduces to the
same two-field form previously discussed. However, for more general anisotropic
or inelastic materials and in finite deformation problems the method has distinct
advantages as will be discussed further in Volume 2. The usual irreducible form
(displacement method) has been shown to ‘lock’ for the nearly incompressible
problem. As shown in Sec. 12.3, the use of a two-field mixed method can avoid this
locking phenomenon when properly implemented (e.g., using the Q9/3 two-field
form). Below we present an alternative which leads to an efficient and accurate
implementation in many situations. For the development shown we shall assume
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that the material is isotropic linear elastic but it may be extended easily to include
anisotropic materials.

Assuming an independent approximation to ¢, and p we can formulate the
problem by use of Eq. (12.8) and the weak statement of relations (12.2) and (12.3)

written as
J sp[m'Su—e,]d2=0 (12.14)
Q
J be, [Ke, —p]d2 =0 (12.15)
Q
If we approximate the u and p fields by Eq. (12.10) and
g, &= &, = N, (12.16)
we obtain a mixed approximation in the form
A C 0 u f;
c" 0o —E[{p,={1 (12.17)
0 —-E'" H||s, f;
where A, C, f;, f, are given by Eq. (12.12) and
E:J NIN,dQ2  f;=0 (12.18)
Q0
with
H= J NIKN, dQ (12.19)
Q

For completeness we give the variational theorem whose first variation gives Eqs
(12.8), (12.14) and (12.15). First we define the strain deduced from the standard
displacement approximation as

¢, = Su ~ Bi (12.20)

The variational theorem is then given as

II= %J (24 Dge, +£,Ke,) dQ + J p(m'e, —¢,) dQ
Q Q

,J udeQ—J u'tdl (12.21)
Q T,

12.4.1 The B-bar method for nearly incompressible problems

The second of (12.17) has the solution
&, =E'Cla=Wi (12.22)

In the above we assume that E may be inverted, which implies that N,, and N,, have the
same number of terms. Furthermore, the approximations for the volumetric strain
and pressure are constructed for each element individually and are not continuous
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across element boundaries. Thus, the solution of Eq. (12.22) may be performed for
each individual element. In practice N,, is normally assumed identical to N, so that
E is symmetric positive definite. The solution of the third of (12.17) yields the pressure
parameters in terms of the volumetric strain parameters and is given by

p=E'H'g, (12.23)

Substitution of (12.22) and (12.23) into the first of (12.17) gives a solution that is in
terms of displacements only. Accordingly,

A=, (12.24)

where for isotropy
A= J B'D,BdQ + W'HW
Q

=A+W'HW (12.25)

The solution of (12.24) yields the nodal parameters for the displacements. Use of
(12.22) and (12.23) then gives the approximations for the volumetric strain and
pressure.

The result given by (12.25) may be further modified to obtain a form that is similar
to the standard displacement method. Accordingly, we write

A= J B'DB dQ (12.26)
Q

where the strain—displacement matrix is now

B =1I,B+imN,W (12.27)
For isotropy the modulus matrix is

D =D, + Kmm" (12.28)

We note that the above form is identical to a standard displacement model except that
B is replaced by B. The method has been discussed more extensively in references 11,
12 and 13.

The equivalence of (12.25) and (12.26) can be verified by simple matrix multiplica-
tion. Extension to treat general small strain formulations can be simply performed by
replacing the isotropic D matrix by an appropriate form for the general material
model. The formulation shown above has been implemented into an element included
as part of the program referred to in Chapter 20. The elegance of the method is more
fully utilized when considering non-linear problems, such as plasticity and finite
deformation elasticity (see Volume 2).

We note that elimination starting with the third equation could be accomplished
leading to a u—p two-field form using K as a penalty number. This is convenient for
the case where p is continuous but ¢, remains discontinuous — this is discussed
further in Sec. 12.7.3. Such an elimination, however, points out that precisely the
same stability criteria operate here as in the two-field approximation discussed
earlier.
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12.5 Reduced and selective integration and its
equivalence to penalized mixed problems

In Chapter 9 we mentioned the lowest order numerical integration rules that still
preserve the required convergence order for various elements, but at the same
time pointed out the possibility of a singularity in the resulting element matrices.
In Chapter 10 we again referred to such low order integration rules, introducing
the name ‘reduced integration’ for those that did not evaluate the stiffness exactly
for simple elements and pointed out some dangers of its indiscriminate use due to
resulting instability. Nevertheless, such reduced integration and selective integration
(where the low order approximation is only applied to certain parts of the matrix)
has proved its worth in practice, often yielding much more accurate results than
the use of more precise integration rules. This was particularly noticeable in
nearly incompressible elasticity (or Stokes fluid flow which is similar)*~'® and in
problems of plate and shell flexure dealt with as a case of a degenerate solid'”'®
(see Volume 2).

The success of these procedures derived initially by heuristic arguments proved
quite spectacular — though some consider it somewhat verging on immorality to
obtain improved results while doing less work! Obviously fuller justification of
such processes is required.19 The main reason for success is associated with the fact
that it provides the necessary singularity of the constraint part of the matrix [viz.
Eqgs (11.19)—(11.21)] which avoids locking. Such singularity can be deduced from a
count of integration points,'>?° but it is simpler to show that there is a complete
equivalence between reduced (of selective) integration procedures and the mixed
formulation already discussed. This equivalence was first shown by Malkus and
Hughes®! and later in a general context by Zienkiewicz and Nakazawa.?

We shall demonstrate this equivalence on the basis of the nearly incompressible
elasticity problem for which the mixed weak integral statement is given by Egs
(12.8) and (12.9). It should be noted, however, that equivalence holds only for the
discontinuous pressure approximation.

The corresponding irreducible form can be written by satisfying the second of these
equations exactly by implying

p=Km'e (12.29)

and substituting above into (12.8) as

J 6e12G (IO - lme) edQ + J de'mKm'edQ
Q 3 Q
—J udeQ—J u'tdl =0 (12.30)
Q T,

On substituting
ux~a=N,a and ¢~ ¢&=SN,u=Bu (12.31)
we have

(A+A)a=f (12.32)
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where A and f; are exactly as given in Eq. (12.12) and
A= J B'mKm'BdQ (12.33)
Q

The solution of Eq. (12.32) for u allows the pressures to be determined at all points
by Eq. (12.29). In particular, if we have used an integration scheme for evaluating
(12.33) which samples at points (£,) we can write

p(&) = Km'g(&) = Kmeku—Ejln (12.34)

Now if we turn our attention to the penalized mixed form of Eqgs (12.8)—(12.12) we
note that the second of Eqn. (12.11) is explicitly

1
T To~ ~
JQ NI <m Bii — —N,,p> =0 (12.35)

If a numerical integration is applied to the above sampling at the pressure nodes
located at coordinate (&), previously defined in Eq. (12.34), we can write for each
scalar component of N,

>N (mB@m—iN@»)mzo (12.36)

in which the summation is over all integration points (§;) and W, are the appropriate
weights and jacobian determinants.
Now as

Ny (&) = 0

if & is at the pressure node j and zero at other pressure nodes, Eq. (12.36) reduces
simply to the requirement that at all pressure nodes

TB(&)i = N, ()b (12.37)

This is precisely the same condition as that given by Eq. (12.34) and the equivalence
of the procedures is proved, providing the integrating scheme used for evaluating A
gives an identical integral of the mixed form of Eq. (12.35).

This is true in many cases and for these the reduced integration-mixed equivalence
is exact. In all other cases this equivalence exists for a mixed problem in which an
inexact rule of integration has been used in evaluating equations such as (12.35).

For curved isoparametric elements the equivalence is in fact inexact, and slightly
different results can be obtained using reduced integration and mixed forms. This is
illustrated in examples given in reference 23.

We can conclude without detailed proof that this type of equivalence is quite
general and that with any problem of a similar type the application of numerical
quadrature at n, points in evaluating the matrix A within each element is equivalent
to a mixed problem in which the variable p is interpolated element-by-element using
as p-nodal values the same integrating points.

The equivalence is only complete for the selective integration process, i.c., applica-
tion of reduced numerical quadrature only to the matrix A, and ensures that this
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matrix is singular, i.e., no locking occurs if we have satisfied the previously stated
conditions (n, > n,).

The full use of reduced integration on the remainder of the matrix determining u,
i.e., A, is only permissible if that remains non-singular — the case which we have
discussed previously for the Q8/4 element.

It can therefore be concluded that all the elements with discontinuous interpolation
of p which we have verified as applicable to the mixed problem (viz. Fig. 12.1, for
instance) can be implemented for nearly incompressible situations by a penalized
irreducible form using corresponding selective integration.f

In Fig. 12.6 we show an example which clearly indicates the improvement of
displacements achieved by such reduced integration as the compressibility modulus
K increases (or the Poisson ratio tends to 0.5). We note also in this example the
dramatically improved performance of such points for stress sampling.

For problems in which the p (constraint) variable is continuously interpolated (Cy)
the arguments given above fail as quantities such as m'e are not interelement
continuous in the irreducible form.

A very interesting corollary of the equivalence just proved for (nearly) incom-
pressible behaviour is observed if we note the rapid increase of order of integrating
formulae with the number of quadrature points (viz. Chapter 9). For high order
elements the number of quadrature points equivalent to the p constraint permissible
for stability rapidly reaches that required for exact integration and hence their perfor-
mance in nearly incompressible situations is excellent, even if exact integration is
used. This was observed on many occasions’* > and Sloan and Randolf*” have
shown good performance with the quintic triangle. Unfortunately such high order
elements pose other difficulties and are seldom used in practice.

A final remark concerns the use of ‘reduced’ integration in particular and of
penalized, mixed, methods in general. As we have pointed out in Sec. 11.3.1 it is
possible in such forms to obtain sensible results for the primary variable (u in the
present example) even though the general stability conditions are violated, providing
some of the constraint equations are linearly dependent. Now of course the constraint
variable (p in the present example) is not determinate in the limit.

This situation occurs with some elements that are occasionally used for the solution
of incompressible problems but which do not pass our mixed patch test, such as Q8/4
and Q9/4 of Fig. 12.1. If we take the latter number to correspond to the integrating
points these will yield acceptable u fields, though not p.

Figure 12.7 illustrates the point on an application involving slow viscous flow
through an orifice — a problem that obeys identical equations to those of incompres-
sible elasticity. Here elements Q8/4, Q8/3, Q9/4 and Q9/3 are compared although
only the last completely satisfies the stability requirements of the mixed patch
test. All elements are found to give a reasonable velocity (u) field but pressures
are acceptable only for the last one, with element Q8/4 failing to give results
which can be plotted.’

1 The Q9/3 element would involve three-point quadrature which is somewhat unnatural for quadrilaterals.
It is therefore better to simply use the mixed form here — and, indeed, in any problem which has non-linear
behaviour between p and u (see Volume 2).
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Fig. 12.6 Sphere under internal pressure. Effect of numerical integration rules on results with different Poisson ratios.
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Fig. 12.7 Steady-state, low Reynolds number flow through an orifice. Note that pressure variation for
element Q8/4 is so large it cannot be plotted. Solution with u/p elements Q8/3, Q8/4, Q9/3, Q9/4.

It is of passing interest to note that a similar situation develops if four triangles of
the T3/1 type are assembled to form a quadrilateral in the manner of Fig. 12.8.
Although the original element locks, as we have previously demonstrated, a linear
dependence of the constraint equation allows the assembly to be used quite effectively
in many incompressible situations, as shown in reference 25.
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Fig. 12.8 A quadrilateral with intersecting diagonals forming an assembly of four T3/1 elements. This allows
displacements to be determined for nearly incompressible behaviour but does not yield pressure results.

12.6 A simple iterative solution process for mixed
problems: Uzawa method

12.6.1 General

In the general remarks on the algebraic solution of mixed problems characterized by
equations of the type [viz. Eq. (11.14)]

[(‘; EH;} N {E} (12.38)

we have remarked on the difficulties posed by the zero diagonal and the increased
number of unknowns (n, + n,) as compared with the irreducible form (n, or n,).

A general iterative form of solution is possible, however, which substantially
reduces the cost.”® In this we solve successively

yE D = y 0y pr® (12.39)
where r'¥) is the residual of the second equation computed as
& = cx® —f, (12.40)

and follow with solution of the first equation, i.e.,
xEHD — A7(f, — ey D)y (12.41)

In the above pis a ‘convergence accelerator matrix’ and is chosen to be efficient and
simple to use.

The algorithm is similar to that described initially by Uzawa®® and has been widely
applied in an optimization context.’~

Its relative simplicity can best be grasped when a particular example is considered.

12.6.2 Iterative solution for incompressible elasticity

In this case we start from Eq. (12.11) now written with V =0, i.e., complete
incompressibility is assumed. The various matrices are defined in (12.12), resulting



324

Incompressible materials, mixed methods and other procedures of solution

{ST E]{:}{ff;} (12.42)

Now, however, for three-dimensional problems the matrix A is singular (as
volumetric changes are not restrained) and it is necessary to augment it to make it
non-singular. We can do this in the manner described in Sec. 11.3.1, or equivalently
by the addition of a fictitious compressibility matrix, thus replacing A by

in the form

A=A+ J B'(A\Gmm")B d (12.43)
Q

If the second matrix uses an integration consistent with the number of discontinuous
pressure parameters assumed, then this is precisely equivalent to writing

A=A+ )GCCT (12.44)

and is simpler to evaluate. Clearly this addition does not change the equation system.
The iteration of the algorithm (12.39)—(12.41) is now conveniently taken with the
‘convergence accelerator’ being simply defined as

p = NGl (12.45)
We now have the iterative system given as
pet ) =p" + aGr (12.46)
where
& = cTa® (12.47)

the residual of the incompressible constraint, and
af ) = A7N(r, — cpit ) (12.48)

In this A can be interpreted as the stiffness matrix of a compressible material with
bulk modulus K = AG and the process may be interpreted as the successive addition
of volumetric ‘initial’ strains designed to reduce the volumetric strain to zero. Indeed
this simple approach led to the first realization of this algorithm.***® Alternatively
the process can be visualized as an amendment of the original equation (12.42) by
subtracting the term p/(AG) from each side of the second to give (this is often
called an augmented lagrangian form)28’34

A C u fl
T 1 { } = 1 (12.49)
1N __ 5
¢ —xclte £GP
and adopting the iteration
A C i) kD fy
1 { - } = | (12.50)
T _ __— 5(k)
C xctie \GP

With this, on elimination, a sequence similar to Eqs (12.46)—(12.48) will be
obtained provided A is defined by Eq. (12.44).
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Fig. 12.9 Convergence of iterations in an extrusion problem for different values of the penalty ratio
A=7/p.

Starting the iteration from
=0 and p”=0

in Fig. 12.9 we show the convergence of the maximum divu computed at any of the
integrating points used. We note that this convergence becomes quite rapid for large
values of A = (10°~10%).

For smaller ) values the process can be accelerated by using different p?® but for
practical purposes the simple algorithm suffices for many problems, including
applications in large strain.”’ Clearly much better satisfaction of the incompressibility
constraint can now be obtained than by the simple use of a ‘large enough’ bulk
modulus or penalty parameter. With A = 10*, for instance, in five iterations the initial
divu is reduced from the value ~10~* to 107'®, which is at the round-off limit of the
particular computer used.

The reader will note that the solution improvement strategy discussed in Sec. 11.6is
indeed a similar example of the above iteration process.

Finally, we remind the reader that the above iterative process solves the equations
of a mixed problem. Accordingly, it is fully effective only when the element used
satisfies the stability and consistency conditions of the mixed patch test.
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12.7 Stabilized methods for some mixed elements failing
the incompressibility patch test

12.7.1 Introduction

It has been observed earlier in this chapter that many of the two field u—p elements do
not pass the stability conditions imposed by the mixed patch test at the incompressible
limit(or the Babuska—Brezzi conditions). Here in particular we have such methods in
which the displacement and pressure are interpolated in an identical manner (for
instance, linear triangles, linear quadrilaterals, quadratic triangles, etc.) and many
attempts for stabilization of such elements have been introduced.

The most obvious stabilized element can be directly achieved from the formulation
suggested in Fig. 12.3(b) of the triangle with a displacement bubble introduced. If this
internal displacement is eliminated, then we have a stable element which has a
triangular shape with linear displacement and pressure interpolations from nodal
values. However, alternatives to this exist and these form several categories. The
first category is the introduction of non-zero diagonal terms by adding a least-
square form to the Galerkin formulation. This was first suggested by Courant®
and it appears that Brezzi and Pitkaranta in 1984*' have produced an element of
this kind. Numerous further suggestions have been proposed by Hughes et al.
between 1986 and 1989.*>~** More recently, an alternative proposal of achieving
similar answers has been proposed by Oiiate® which gains the addition of diagonal
terms by the introduction of so-called finite increment calculus to the formulation.

There is, however, an alternative possibility introduced by time integration of the
full incompressible formulation. Here many of the algorithms will yield, when
steady-state conditions are recovered, a stabilized form. A number of such algorithms
have been discussed by Zienkiewicz and Wu in 1991 and more recently a very
efficient method has appeared as a by-product of a fluid mechanics algorithm
named the characteristic based split (CBS) procedure*’ > which will be discussed at
length in Volume 3.

In the latter algorithm there exists a free parameter. This parameter depends on the
size of the time increment. In the other methods (with the exception of the bubble
formulation) there is a weighting parameter applied to the additional terms intro-
duced. We shall discuss each of these algorithms in the following subsections and
compare the numerical results obtainable.

One may question, perhaps, that resort to stabilization procedures is not worth-
while in view of the relative simplicity of the full mixed form. But this is a matter
practice will decide and is clearly in the hands of the analyst applying the necessary
solutions.

12.7.2 Simple triangle with bubble eliminated

In Fig. 12.3(c) we indicated that the simple triangle with C, linear interpolation
and an added bubble for the displacements u together with continuous C linear
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interpolation for the pressure p satisfied the count test part of the mixed patch test and
can be used with success. Here we consider this element further to develop some
understanding about its performance at the incompressible limit.

The displacement field with the bubble is written as

ur i =Y Ni; + Ny, (12.51)

where here
Nb == L1L2L3 (1252)

u; are nodal parameters of displacement and u, are parameters of the hierarchical
bubble function. The pressures are similarly given by

pRp= Nij; (12.53)
i

where p; are nodal parameters of the pressure. In the above the shape functions are
given by (e.g., see Eq. (8.34) and (8.32))

1
Ni :L,' :ﬁ(ai—i‘biX'f'Ciy) (1254)
where
a; = X;Vi — Xi)js bi=y; —yi; € =X =)

Jj, k are cyclic permutations of i and

L x »n
2A:det1 Xy I :Cll+Cl2+Cl3
I x5 »
The derivatives of the shape functions are thus given by
ON; _ b and ON; _ G
ox 2A dy 2A
Similarly the derivatives of the bubble are given by
ON, 1
TX” =IA (b1LoLs + byL3Ly + by Ly L)
ON, 1
aiyb =IA (c1LoLs + e3Ls3Ly + 3L, Ly)
The strains may be expressed in terms of the above and the nodal parameters asf
. b, 0 L1 b, 0
~ Ak ~
EZZE 0 Zi u,-+§i: 2’A 0 Z,- i, (12.55)
¢ D ¢ D

where again j, k are cyclic permutations of i.

1 At this point it is also possible to consider the term added to the derivatives to be enhanced modes and
delete the bubble mode from displacement terms.
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Substituting the above strains into Eq. (12.12) and evaluating the integrals give
An Ap Az 0
Ay Ap Ay 0

A= 12.56
Ay Apn Apn 0 ( )
0 0 0 A,
where
TOA [ (3bic; —2eiby)  (3bib; + deie;)
A G [ (4b"b+3c"c) bTe
bb = 3T
2160A b'e (3b"b + 4c"c)
and
b=1[by, by bs] and c=[c, ¢, ¢

Note in the above that all terms except A, are standard displacement stiffnesses for
the deviatoric part. Similarly,

Ci Cn Cp
C, Cp C
c— |“n b2 & (12.57)
Ci G Gy
Co Cpp Cp3

where

1[5 1 [b
Sogle] m Gl

In all the above arrays i and j have values from 1 to 3 and 4 denotes the bubble mode.

We note that the bubble mode is decoupled from the other entries in the A array — it
is precisely for this reason that the discontinuous constant pressure case shown in Fig.
12.3(b) cannot be improved by the addition of the internal parameters associated with
u,. Also, the parameters u,, are defined separately for each element. Consequently, we
may perform a partial solution at the element level to obtain the set of equations in the
form Eq. (12.11) where now

A Ap Ap Ci Cp Cg3 Vi Via Vis
A=Ay Ayn Ay |; C=1Cy Cn Cni; V=1V Vn Vn
Az Ay Agy Gy Gy Gy Vi Vi Vi
with
b,
VU:[& LHT” T”} 2A LA (12.58)
2A 2A 1T ™ Ci
2A
and
3A?

=0 (12.59)

(3b"b +4c'c) —b'e
—b'c (4b™b + 3cc)
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in which
¢ = 12(b7b)*+25(b™b) (c"¢) + 12(cTc)’— (be)’

The reader may recognize the V array given above as that for the two-dimensional,
steady heat equation with conductivity k =t and discretized by linear triangular
elements. The direct reduction of the bubble matrix A, as given above leads to an
anisotropic stabilization matrix t. A diagonal form of the stabilization results if the
weak form for the bubble terms is given by expressing the equilibrium equation in
terms of the laplacian of each displacement component and the gradient of the
pressure. This is permitted only for bubble terms which vanish identically on the
boundary of each element. In Sec. 12.7.4 we indicate how such a reduction could
be performed and leave as an exercise to the reader the construction of the weak
form terms and the resulting diagonal matrix A,,. Numerical experiments indicate
that very little difference is achieved between the two approaches. Since the construc-
tion of the diagonal form requires substitution of the constitutive equations into the
equilibrium equation it is very limited in the type of applications which can be
pursued (e.g., consideration of non-linear problems will preclude such simple
substitution).

12.7.3 An enhanced strain stabilization

In the previous section we presented a simple two-field formulation using
continuous u and p approximations together with added bubble modes to the dis-
placements. For more general applications this form is not the most convenient.
For example, if transient problems are considered the accelerations will also
involve the bubble mode and affect the inertial terms. We will also find in the com-
parisons section that use of the above bubble is not fully effective in eliminating
pressure oscillations in solutions. An alternative form is discussed in this section.
In the alternative form we use a three-field approximation involving u, p and ¢,
discussed in Sec. 12.4 together with an enhanced strain formulation as discussed
in Sec. 11.5.3.
The enhanced strains are added to those computed from displacements as

£=¢,+¢, (12.60)

in which g, represents a set of enhanced strain terms. The internal strain energy is
represented by

W(ge,) =1 (£"D,& +e,Ke,) (12.61)

Using the above notation a Hu—Washizu type variational theorem for the
deviatoric-spherical split may be written as

m,, = J [(W(&,e,)+pm'e—e,) + 6 (g, —£)]dQ + 1L, (12.62)
Q

where I1,,, represents the terms associated with body and traction forces.
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After substitution for the mixed enhanced strain the last term in the integral
simplifies as:

J o' (g, —£)dQ = _J 6'g,dQ (12.63)
Q Q

Taking variations with respect to u, p, ¢,, €, and ¢ yields

I, = J su"B'[D & + mp] dQ + 611,
Q
+ J be,[Ke, — p]dQ + J op[m's — ¢, ]dQ (12.64)
Q Q

—i—J bes [Dy& +mp — 6] dQ —i—J 661e,dQ2 =0
Q Q

Equal order interpolation with shape functions N are used to approximate u, p and ¢,
as

p~p=Np (12.65)

However, only approximations for u and p are C, continuous between elements. The
approximation for ¢, may be discontinuous between elements. The stress ¢ in each
element is assumed constant. Thus, only the approximation for &, remains to be
constructed in such a way that Eq. (11.49) is satisfied. For the present we shall
assume that this approximation may be represented by

g, ~ ¢, =B,a, (12.66)
and will satisfy Eq. (11.49) so that the terms involving ¢ and its variation in Eq. (12.64)

are zero and thus do not appear in the final discrete equations.
With the above approximations, Eq. (12.63) may be evaluated as

Auu Aue Cu 0 u f]
A, A, C, 0 a, 0
T T .= (12.67)
C, C, 0 -E P f,
0 0 -E" HJ\g f;
where A, = A, C, = C, f,, E and H are as defined in Eqs (12.12), (12.18) and (12.19)
and
A, = | BD,B,dQ=A],
Q
A, = | B,D,B,dQ (12.68)
Jo
C,=| B.mNdQ
Jo
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Since the approximations for ¢, and g, are discontinuous between elements we can
again perform a partial solution for €, and @, using the second and fourth row of
(12.67). After eliminating these variables from the first and third equation we
again, as in the simple triangle with bubble eliminated, obtain a form identical to
Eq. (12.11).

As an example we consider again the three-noded triangular element with linear
approximations for N in terms of area coordinates L;. We will construct enhanced
strain terms from the derivatives of a function. The simplest such approximation is
the bubble mode used in Sec. 12.7.2 where the function is given as

N(8) = LiL,L, (12.69)
and the enhanced strain part is given by
ge(Li) = Be(Li)&e (1270)

where @, are two enhanced strain parameters and B, is computed using Eq. (12.69) in
the usual strain—displacement matrix

ON,
Ox 0
ON,
B,=]| 0 o (12.71)
ON, ON,
dy  Ox

The result using Eq. (12.69) is identical to the bubble mode since here we are only con-
sidering static problems in the absence of body loads. If we considered the transient
case or added body loads there would be a difference since the displacement in the
enhanced form contains only the linear interpolations in N.

While this is an admissible form we have noted above that it does not eliminate all
oscillations for problems where strong pressure gradients occur. Accordingly, we also
consider here an alternative form resulting from three enhanced functions

N{=aL;+ L,L; (12.72)

in which i, j, k is a cyclic permutation and « is a parameter to be determined. Note
that this form only involves quadratic terms and thus gives linear strains which are
fully consistent with the linear interpolations for p and 6. The derivatives of the
enhanced function are given by

ON, 1
on = 34 L9bi+ Libi + Lib)]
o | (12.73)
8y€ =7 lac; + Licy + Lic;]
where
bi =y; — vk and Ci =Xk —X;

and A is the area of a triangular element. The requirement imposed by Eq. 11.49 gives
a=1/3.
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While the use of added enhanced modes leads to increased cost in eliminating the g,
and a, parameters in Eq. (12.67) the results obtained are free of pressure oscillations
in the problems considered in Sec. 12.7.7. Furthermore, this form leads to improved
consistency between the pressure and strain.

12.7.4 A pressure stabilization

In the first part of this chapter we separated the stress into the deviatoric and pressure
components as

6=0¢ + mp
Using the tensor form described in Appendix B this may be written in index form as
d
0 = 07+ &;p
The deviatoric stresses are related to the deviatoric strains through the relation

Ou Oy 2 %)

o L (12.74)

ol = 2Gel = G(

The equilibrium equations (in the absence of inertial forces) are:

80?; op
ax, +8xj+bj =0

Substituting the constitutive equations for the deviatoric part yields the equilibrium
form (assuming G is constant)

Ox,0m 3 oxyom, | o, T =0 (12.75)

7

G

In intrinsic form this is given as
G[Vu+1v(divu)] + Vp+b =0

where V is the laplacian operator and V the gradient operator. The constitutive
equation (12.2) is expressed in terms of the displacement as

u; 1
=—L=divu=— 12.76
o, dive=gr ( )
where div(+) is the divergence of the quantity. A single equation for pressure may be
deduced from the divergence of the equilibrium equation. Accordingly, from Eq.
(12.75) we obtain

&y

4
TGv2(<1ivu) + V3 +divh=0 (12.77)
Upon noting (12.76) we obtain

4G\ _, .
<1+§>V p+divb=0 (12.78)
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Thus, in general, the pressure must satisfy a Poisson equation, or in the absence of
body forces, a Laplace equation. We have noted the dangers of artificially raising
the order of the differential equation in introducing spurious solutions, however,
in the context of constructing approximate solutions to the incompressible problem
the above is useful in providing additional terms to the weak form which otherwise
would be zero. Brezzi and Pitkaranta*' suggested adding a weighted Eq. (12.78) to
Eq. (12.8) and (on setting the body force to zero for simplicity) obtain

J p <st - lp) dQ+ 5J spVipdQ =0 (12.79)
0 K Q,

The last term may be integrated by parts to yield a form which is more amenable to
computation as

T, 1 J dop dp
JQcSp(m €= &P dQ+p o, D%, O, d2=0 (12.80)

in which the resulting boundary terms are ignored. Upon discretization using equal
order linear interpolation on triangles for u and p we obtain a form identical to
that for the bubble with the exception that t is now given by

=41 (12.81)

On dimensional considerations with the first term in Eq. (12.80) the parameter 3
should have a value proportional to L4/F, where L is length and F is force.

12.7.5 Galerkin least square method

In Chapter 3, Sec. 3.12.3 we introduced the Galerkin least square (GLS) approach as a
modification to constructing a weak form. As a general scheme for solving the differ-
ential equations (3.1) by a finite element method we may write the GLS form as

JQ su" A(u) dQ + JQ SA(u) tA(u)dQ =0 (12.82)
where the first term represents the normal Galerkin form and the added terms are
computed for each element individually including a weight t to provide dimensional
balance and scaling. Generally, the t will involve parameters which have to be selected
for good performance. Discontinuous terms on boundaries between elements that
arise from higher order terms in A(u) are commonly omitted.

The form given above has been used by Hughes44 as a means of stabilizing the fluid
flow equations, which for the case of the incompressible Stokes problem coincide with
those for incompressible linear elasticity. For this problem only the momentum
equation is used in the least square terms. After substituting Eq. (12.75) into Eq.
(12.76) the momentum equation may be written as (assuming that G and K are
constant in each element)

O*u; G\ dp
G—f+(1+—)—=o (12.83)
8x12 3K 6xj
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A more convenient form results by using a single parameter defined as

- G
G=—— 12.84
1+ G/3K ( )
With this form the least square term to be appended to each element may be written as
_0%6u;  Oop _0*u;,  op
G L — )| G dQ 12.85
JQB ( ox? +8x,~>7—”< 8x,2,,+8xj> ( )

This leads to terms to be added to the standard Galerkin equations and is expressed as
AY C'l(u
C,Y.T VS i)

A =| G'V’NaVv’N,dQ
Q,

e

where

C = J GV’NaVN,;dQ
Q.
vi=1, (VN)TTV N, dQ
and the operators on the shape functions are given in two dimensions by
&N,  O°N,
VN, = L
Yooxt 0x3
ON; ON;|"
VN, = ! !
l [ax 1 E)xz}

Note again that all infinite terms between elements are ignored.

For linear triangular elements the second derivatives of the shape functions are identi-
cally zero within the element and only the V term remains and is now nearly identical to the
form obtained by eliminating the bubble mode. In the work of Hughes et al, T is given by

ah?

where « is a parameter which is recommended to be of O(1) for linear triangles and
quadrilaterals.

12.7.6 Incompressibility by time stepping

The fully incompressible case (i.e., K = co) has been studied by Zienkiewicz and Wu*
using various time stepping procedures. Their applications concern the solution of
fluid problems in which the rate effects for the Stokes problem appear as first deriva-
tives of time. We can consider such a method here as a procedure to obtain the static
solutions of elasticity problems in the limit as the rate terms become zero. Thus, this
approach is considered here as a method for either the Stokes problem or the case of
static incompressible elasticity.
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The governing equations for slightly compressible Stokes flow may be written as

Ou; Ba‘é Op
i At/ S < 12.87
TR S (12.87)
e s 12.
poc® Ot Ox; (12.88)

where pj is density (taken as unity in subsequent developments), ¢ = (K/ po)l/ % is the
speed of compressible waves, p is the pressure (here taken as positive in tension), and
u; is a velocity (or for elasticity interpretations a displacement) in the i-coordinate
direction. Note that the above form assumes some compressibility in order to
introduce the pressure rate term. At the steady limit this term is not involved,
consequently, the solution will correspond to the incompressible case. Deviatoric
stresses og- are related to deviatoric strains (or strain rates for fluids) as described
by Eq. (12.74).

Zienkiewicz and Wu consider many schemes for integrating the above equations
in time. Here we introduce only one of the forms, which will also be used in the
solution of the fluid equations which include transport effects (see Volume 3). For
the full fluid equations the algorithm is part of the characteristic based split (CBS)
method.*7~%

The equations are discretized in time using the approximations u(z,) ~ " and time
derivatives

Qu;  u"th =

~ 12.89
ot At ( )
where At = t,, — t,. The time discretized equations are given by
n+l _ n ao.‘_i;" n A
uil —ui 0% 0P, 98P (12.90)
At (9)(, 8x,» 3)([
1ph —p" ol OAu;
= 0 12.91
2 Ar ox T o (12.91)
where Ap = p" ! — p"s Au; = ! 7' — u; 0, can vary between 1/2 and 1; and 6, can

vary between 0 and 1. In all that follows we shall use 6; = 1.

The form to be considered uses a split of the equations by defining an intermediate
approximate velocity u; at time 7,,,; when integrating the equilibrium equation
(12.90). Accordingly, we consider

d.n
uj — uy aaij

= 12.92
Wt —ur " OAp
L — 12.
A ox Py, (12.93)

Differentiating the second of these with respect to x; to get the divergence of u?“ and

combining with the discrete pressure equation (12.91) results in
1A >’A Fp' ou
=Ly AN

C_2 At 2 (9x,~3x,- 8x,~6xl~ + 3x,~

(12.94)
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Thus, the original problem has been replaced by a set of three equations which need to
be solved successively.

Equations (12.92), (12.93) and (12.94) may be written in a weak form using as
weighting functions éu”, u and &p, respectively (viz. Chapter 3). They are then discre-
tized in space using the approximations

u' =i =N and ou”" =~ 6t = N, 60"
u ~ 0 =N,0" and ou* = 6" = N,ou"
Pl p" =N,p" and op ~ 6p = N,6p

n+1

with similar expressions for u and p"*'. The final discrete form is given by the

three equation sets

1 S _,
EM"(U —u") = —Ad" + 1, (12.95)
A%ML, @+ —a) = —C'(p" + 6,4p) (12.96)
{AL[M,, + 92A1H] Ap = —Cu" — AHp" + (12.97)

In the above we have integrated by parts all the terms which involve derivatives on
deviator stress (0‘;;), pressure (p) and displacements (velocities). In addition we con-
sider only the case where u/"' =u} =@&; on the boundary T, (thus requiring

du; = 6u; = 0 on T',)). Accordingly, the matrices are defined as

1
M, = [ NIN,dQ M, = | —=NIN, dQ
Q P Q cz PP
ON
A= | B'D,BdQ C= IN, dQ
Q o 0x;
ONT ON (12.98)
H= | —22724Q fi = | NI(t—knp")dl
0 axi 6X,- 1 r, u( np )
f;= [ Nyn'adl'
JI,

in which D, are the deviatoric moduli defined previously. The parameter k denotes an
option on alternative methods to split the boundary traction term and is taken as
either zero or unity. We note that a choice of zero simplifies the computation of
boundary contributions, however, some would argue that unity is more consistent
with the integration by parts.

The boundary pressure acting on I', is computed from the specified surface trac-
tions (7;) and the ‘best’ estimate for the deviator stress at step-n + 1 which is given
by al‘;’*. Accordingly,

n+1 . 7 d *
p  nit; — n,'O'i/- n/

is imposed at each node on the boundary T',.
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In general we require that Az < At,,;, where the critical time step is 4% /2G (in which
h is the element size). Such a quantity is obviously calculated independently for each
element and the lowest value occurring in any element governs the overall stability. It
is possible and useful to use here the value of At calculated for each element sepa-
rately when calculating incompressible stabilizing terms in the pressure calculation
and the overall time step elsewhere (we shall label the time increments multiplying
H in Eq. (12.97) as Atf,). A ratio of v = At /At greater than unity improves
considerably the stabilizing properties. As Eq. (12.97) has greater stability than Eqs
(12.95) and (12.96), and for 6, > 1/2 is unconditionally stable, we recommend that
the time step used in this equation be yYAf,, for each node. Generally a value of 2 is
good as we shall show in the examples (for details see reference 50).

Equation (12.95) defines a value of u” entirely in terms of known quantities at the n-
step. If the mass matrix M, is made diagonal by lumping (see Chapter 17 and
Appendix I) the solution is thus trivial. Such an equation is called explicit. The
equation for Ap, on the other hand depends on both M, and H and it is not possible
to make the latter diagonal easily.f It is possible to make M, diagonal using a similar
method as that employed for M,,. Thus, if 6, is zero this equation will also be explicit,
otherwise it is necessary to solve a set of algebraic equations and the method for this
equation is called implicit. Once the value of Ap is known the solution for &' is
again explicit. In practice the above process is quite simple to implement, however,
it is necessary to satisfy stability requirements by limiting the size of the time
increment. This is discussed further in Chapter 18 and in reference 47. Here we
only wish to show the limit result as the changes in time go to zero (i.e., for a constant
in time load value) and when full incompressibility is imposed.

At the steady limit the solutions become

w=u"""=a and P'=p""'=p (12.99)

Eliminating u* the discrete equations reduce to the mixed problem

A ¢ u 1 _y 12.100
c’ Az(CTMHIC—elH)Hﬁ}+{0}_ (12.100)

At the steady limit we again recover a term on the diagonal which stabilizes the
solution. This term is again of a Laplace equation type — indeed, it is now the differ-
ence between two discrete forms for the Laplace equation. The term CTM;, 'C makes
the bandwidth of the resulting equations larger — thus this form is different from all
the previous methods discussed above.

12.7.7 Comparisons

To provide some insight into the behaviour of the above methods we consider two
example problems. The first is a problem often used to assess the performance of

It is possible to diagonalize the matrix by solving an eigenproblem as shown in Chapter 17 — for large
problems this requires more effort than is practical.



338

Incompressible materials, mixed methods and other procedures of solution

codes to solve steady-state Stokes flow problems — which is identical to the case for
incompressible linear elasticity. The second example is a problem in nearly incom-
pressible linear elasticity.

Example: Driven cavity A two-dimensional plane (strain) case is considered for a
square domain with unit side lengths. The material properties are assumed to be
fully incompressible (v = 0.5) with unit viscosity (elastic shear modulus, G, of unity).
All boundaries of the domain are restrained in the x and y directions with the top
boundary having a unit tangential velocity (displacement) at all nodes except the
corner ones. Since the problem is incompressible it is necessary to prescribe the pressure
at one point in the mesh — this is selected as the centre node along the bottom edge. The
10 x 10 element mesh of triangular elements (200 elements total) used for the compar-
ison is shown in Fig. 12.10(a). The elements used for the analysis use linear velocity
(displacement) and pressure on three-noded triangles. Results are presented for the
horizontal velocity along the vertical centre line AA and for vertical velocity and pres-
sure along the horizontal centre line BB. Three forms of stabilization are considered:

1. Galerkin least square (GLS) Brezzi—Pitkaranta (BP) where the effect of « on 7 is
assessed. The results for the horizontal velocity are given in Fig. 12.10(b) and for
the vertical velocity and pressure in Figs 12.10(c) and (d), respectively. From the
analysis it is assessed that the stabilization parameter 7 should be about 0.5 to 1
(as also indicated by Hughes ez al*). Use of lower values leads to excessive oscilla-
tion in pressure and use of higher values to strong dissipation of pressure results.

2. Cubic bubble (MINI) element stabilization. Results for vertical velocity are nearly
indistinguishable from the GLS results as indicated in Fig. 12.11; however, those
for pressure show oscillation. Such oscillation has also been observed by others
along with some suggested boundary modifications.’! No free parameters exist
for this element (except possible modification of the bubble mode used), thus,
no artificial ‘tuning’ is possible. Use of more refined meshes leads to a strong
decrease in the oscillation.

3. Enhanced strain stabilization with quadratic modes. In Fig. 12.11 we show results
obtained using the enhanced formulation presented in Eq. (12.73). These results
are free of oscillation in pressures and require no tuning parameters. For use in
solving linear elasticity and Stokes problems they prove to be the most robust;
however, when used with other material models there are limitations in their use.

4. The CBS algorithm. Finally in Fig. 12.11 we present results using the CBS solution
which may be compared with GLS, a = 0.5. Once again the reader will observe
that with v =2, the results of CBS reproduce very closely those of GLS,
a = 0.5. However, in results for v = 1 no oscillations are observed and they are
quite reasonable. This ratio for v is where the algorithm gives excellent results
in incompressible flow modelling as will be demonstrated further in results
presented in Volume 3.

Example: Tension strip with slot As a second example we consider a plane strain
linear problem on a square domain with a central slot. The domain is two units
square and the central slot has a total width of 0.4 units and a height of 0.1 units.
The ends of the slot are semicircular. Lateral boundaries have specified normal
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Fig. 12.10 Mesh and GLS/Brezzi—Pitkaranta results.

displacement and zero tangential traction. The top and bottom boundaries are
uniformly stretched by a uniform axial loading and lateral boundaries are maintained
at zero displacement. We consider the linear elastic problem with elastic properties
E =24 and v = 0.499995; thus, giving a nearly incompressible situation. An unstruc-
tured mesh of triangles is constructed as shown in Fig. 12.12(b). Results for the
pressure along the horizontal and vertical centre lines (i.e., the x and y axes) are
presented in Figs 12.13(a) and 12.13(b) and the distribution of the vertical displace-
ment is shown in Fig. 12.13(c). We note that the results for this problem cause very
strong gradients in stress near the ends of the slot. The mesh used for the analysis
is not highly refined in this region and hence results from different analyses can be
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Fig. 12.11 Vertical velocity and pressure for driven cavity problem.
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Fig. 12.12 Region and mesh used for slotted tension strip.

expected to differ in this region. The results obtained using all formulations are
similar in distribution. However, the bubble form does show some oscillations in
pressure indicating that the stabilization achieved is not completely adequate. Results
for the CBS algorithm show an oscillation in the pressure along the x-axis at the
boundary of the slot. This is caused, we believe, by an inadequate resolution of
the pressure condition at this point of the curved boundary. In general, however,
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Fig. 12.13 Pressures and displacements for slot problems.

the results achieved with all forms are satisfactory and indicate that stabilized
methods may be considered for use in problems where constraints, such as incom-
pressibility, are encountered.

12.8 Concluding remarks

In this chapter we have considered in some detail the application of mixed methods to
incompressible problems and also we have indicated some alternative procedures.
The extension to non-isotropic problems and non-linear problems will be presented
in Volume 2, but will follow similar lines. In Volume 3 we shall note how important
the problem is in the context of fluid mechanics and it is there that much of the
attention to it has been given.

In concluding this chapter we would like to point out two matters:

1. The mixed formulation discovers immediately the non-robustness of certain
irreducible (displacement) elements and, indeed, helps us to isolate those which
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perform well from those that do not. Thus, it has merit which as a test is applicable
to many irreducible forms at all times.

In elasticity, certain mixed forms work quite well at the near incompressible limit
without resort to splits into deviatoric and mean parts. These include the two-field
quadrilateral element of Pian—Sumihara and the enhanced strain quadrilateral
element of Simo—Rifai which were presented in the previous chapter. There we
noted how well such elements work for Poisson’s ratio approaching one-half as
compared to the standard irreducible element of a similar type.
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13

Mixed formulation and constraints
— incomplete (hybrid) field
methods, boundary/Trefftz methods

13.1 General

In the previous two chapters we have assumed in the mixed approximation that all the
variables were defined and approximated in the same manner throughout the domain
of the analysis. This process can, however, be conveniently abandoned on occasion
with different formulations adopted in different subdomains and with some variables
being only approximated on surfaces joining such subdomains. In this part we shall
discuss such incomplete or partial field approximations which include various so-
called hybrid formulations.

In all the examples given here we shall consider elastic solid body approximations
only, but extension to the heat transfer or other field problems, etc., can be readily
made as a simple exercise following the procedures outlined.

13.2 Interface traction link of two (or more) irreducible
form subdomains

One of the most obvious and frequently encountered examples of an ‘incomplete field’
approximation is the subdivision of a problem into two (or more) subdomains in each
of which an irreducible (displacement) formulation is used. Independently approxi-
mated Lagrange multipliers (tractions) are used on the interface to join the subdomains,
as in Fig. 13.1(a).

In this problem we formulate the approximation in domain Q' in terms of displace-
ments u' and the interface tractions t' = L. With the weak form using the standard
virtual work expression [see Eqs (11.22)—(11.24)] we have

1 su'TtdD =0  (13.1)

1

J 1 5(Su’)"D'Su’ dQ — J
Q

su'Trdr — J su'ThdQ — J
T, (oX

r

in which as usual we assume that the satisfaction of the prescribed displacement on
I',; is implied by the approximation for u'. Similarly in domain Q? we can write,
now putting the interface traction as t* = —A to ensure equilibrium between the
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Fig. 13.1 Linking of two (or more) domains by traction variables defined only on the interfaces. (a) Variables
in each domain are displacements u (internal irreducible form). (b) Variables in each domain are displacements
and stresses 6—u (mixed form).

two domains,

J 2 5(Su?)TD*Su” dQ + J suthdr — J su*ThdQ — J
Q

ZéuZTEdF =0 (13.2)
T

T, o 2
The two subdomain equations are completed by a weak statement of displacement

continuity on the interface between the two domains, i.e.,
J ST —u')dl' =0 (13.3)
Iy

Discretization of displacements in each domain and of the tractions A on the
interface yields the final system of equations. Thus putting the independent
approximations as

u' =N, (13.4)
w = N (13.5)
A =N, A (13.6)
we have
0 K Q*|qa*p=<¢f (13.7a)
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where

KI::JIBnifBldQ

Q

K’ = J ZBzTDzBZ do
Q

Q' = —J NIN, dr
r,

(13.7b)
yzrwma
JL1
=] Nub' dr+J Nutdr
Q r!
£ =| Npb’dl'+ J NLEdr
Jo I?

We note that in the derivation of the above matrices the shape function N, and
hence A itself are only specified along the interface line — hence complying with our
definition of partial field approximation.

The formulation just outlined can obviously be extended to many subdomains and
in many cases of practical analysis is useful in ensuring a better matrix conditioning
and allowing the solution to be obtained with reduced computational effort.!

The variables u! and u?, etc., appear as internal variables within each subdomain
(or superelement) and can be eliminated locally providing the matrices K' and K’
are non-singular. Such non-singularity presupposes, however, that each of the sub-
domains has enough prescribed displacements to eliminate rigid body modes. If
this is not the case partial elimination is always possible, retaining the rigid body
modes until the complete solution is achieved.

The process described here is very similar to that introduced by Kron® at a very early
date and, more recently, used by Farhat et al.* in the FETI method which uses the process
on many individual element partitions as a means of iteratively solving large problems.

The formulation just used can, of course, be applied to a single field displacement for-
mulation in which we are required to specify the displacement on the boundaries in a
weak sense (rather than imposing these directly on the displacement shape functions).

This problem can be approached directly or can be derived simply via the first
equation of (13.7a) in which we put u? = i, the specified displacement on T';.

Now the equation system is simply

Kl 1 ~1 f
ot ?}H‘;}z{fi} (13.8)

fA:—J Niudl (13.9)
Iy

where

This formulation is often convenient for imposing a prescribed displacement on a
displacement element field when the boundary values cannot fit the shape function field.
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We have approached the above formulation directly via weak forms or weighted
residuals. Of course, a variational principle could be given here simply as the minimi-
zation of total potential energy (see Chapter 2) subject to a Lagrange multiplier A
imposing subdomain continuity. The stationarity of

Il = %L(Su)TD(su) do — L

u'bdQ —J

u'tdl + J A" —u?)dl  (13.10)
r,

I,

would result in the equation set (13.1)—(13.3). The formulation is, of course, subject to
limitations imposed by the stability and consistency conditions of the mixed patch test
for selection of the appropriate number of A variables.

13.3 Interface traction link of two or more mixed form
subdomains

The problem discussed in the previous section could of course be tackled by assuming
a mixed type of two-field approximation (6/u) in each subdomain, as illustrated in
Fig. 13.1(b).

Now in each subdomain variables u and ¢ will appear, but the linking will be
carried out again with the interface traction A.

We now have, using the formulation of Sec. 11.4.2 for domain Q' [see Eqs (11.29)
and (11.22)],

J 66'T[(DY) 6! —Su']dQ=0  (13.11a)
Ql

J s(Su')Te' dQ — J su'Tadr — J su'TbdQ — J su'tdD =0  (13.11b)
Q! T, o I}

and for domain O similarly

J 66’ [(D?)'6? —Su?]dQ =0  (13.12a)
QZ

J 5(Su?)Te? dQ + J
02

suThdr — J sutThdQ — J
T, 02

swTtdD =0  (13.12b)
F’)

t

With interface tractions in equilibrium the restoration of continuity demands that

J ST —u')dl =0 (13.13)
r;
On discretization we now have

ll] = Nulﬁl ll2 = l\luzfl2

¢ =N, o’ =N,é

A =N,k
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and
A ¢t 0 0 o &' fl
c™ o o o Q']ud f;
0 0 A* C* 0|6 =31 (13.14)
0 o0 T o Q*| | f;

0 QT o QT o A 0
with A, C, f|, and f, defined similarly to Eq. (11.32) with appropriate subdomain
subscripts and Q' and Q? given as in (13.7b).
All the remarks made in the previous section apply here once again — though use of
the above form does not appear frequently.

13.4 Interface displacement ‘frame’

13.4.1 General

In the preceding examples we have used traction as the interface variable linking two
or more subdomains. Due to lack of rigid body constraints the elimination of local
subdomain displacements has generally been impossible. For this and other reasons
it is convenient to accomplish the linking of subdomains via a displacement field
defined only on the interface [Fig. 13.2(a)] and to eliminate all the interior variables
so that this linking can be accomplished via a standard stiffness matrix procedure
using only the interface variables.

The displacement frame can be made to surround the subdomain completely and if
all internal variables are eliminated will yield a stiffness matrix of a new ‘element’

1
r |

] \

_l

Interface frame
u=v=NV

Nodes defining v

(@) (b)

Fig. 13.2 Interface displacement field specified on a ‘frame’ linking subdomains: (a) two-domain link; (b) a
‘superelement’ (hybrid) which can be linked to many other similar elements.
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which can be used directly in coupling with any other element with similar displace-
ment assumptions on the interface, irrespective of the procedure used for deriving
such an element [Fig. 13.2(b)].

In all the examples of this section we shall approximate the frame displacements as

v=N,¥ on r,; (13.15)

and consider the ‘nodal forces’ contributed by a single subdomain Q' to the ‘nodes’ on
this frame. Using virtual work (or weak) statements we have with discretization

Jp NItdl = ¢ (13.16)
where t are the tractions the interior exerts on the imaginary frame and q' are the
nodal forces developed. The balance of the nodal forces contributed by each sub-
domain now provides the weak condition for traction continuity.

As finally the tractions t can be expressed in terms of the frame parameters v only,
we shall arrive at

q =K'V+ 1) (13.17)

where K' is the stiffness matrix of the subdomain Q' and f} its internally contributed
‘forces’.

From this point onwards the standard assembly procedures are valid and the sub-
domain can be treated as a standard element which can be assembled with others by
ensuring that

qu:() (13.18)

where the sum includes all subdomains (elements!). We thus have only to consider a
single subdomain in what follows.

13.4.2 Linking two or more mixed form subdomains

We shall assume as in Sec. 13.3 that in each subdomain, now labelled e for generality,

the stresses ¢ and displacements u® are independently approximated. The equations

(13.11) are rewritten adding to the first the weak statement of displacement continuity.
We now have in place of (13.11a) and (13.13) (dropping superscripts)

J 66T(D_lo'fSu)deJ st'(u—v)dl' =0 (13.19)
Q(' FI(’

Equation (13.11b) will be rewritten as the weighted statement of the equilibrium
relation, i.e.,

—J su' (STe 4+ b)dQ + J su'(t—t)dl' =0
Q¢

e

or, after integration by parts

J 5(Su)TedQ — J Su'bdQ — J
Q¢

6uTtdF—J Su'tdl' =0 (13.20)
Tpe

Qe T
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In the above, t are the tractions corresponding to the stress field o [see Eq. (11.30)]:
t=Go (13.21)

In what follows I, i.e, the boundary with prescribed tractions, will generally be taken
as zero.
On approximating Eqs (13.19), (13.20) and (13.16) with

u=N,u 6 =N,c and v=N,v

we can write, using Galerkin weighting and limiting the variables to the ‘element’ e,

A C Q) (¢ 0
ct o o |u =<1 (13.22a)
QT o0 o V q
where
A= | NID'N,dQ
o
C’ = NZBdQ—J (GN,)'N, dT
e e
b (13.22b)
Q= | (GN,)'N,dr
uFIL’
f = | NbdQ
Joe

Elimination of 6° and u° from the above yields the stiffness matrix of the element
and the internally contributed force [see Eq. (13.17)].

Once again we can note that the simple stability criteria discussed in Chapter 11 will
help in choosing the number of ¢, u, and v parameters. As the final stiffness matrix of
an element should be singular for three rigid body displacements we must have [by
Eq. (11.18)]

Ny =n,+n,—3 (13.23)

in two-dimensional applications.

Various alternative variational forms of the above formulation exist. A particularly
useful one is developed by Pian et al.** In this the full mixed representation can be
written completely in terms of a single variational principle (for zero body forces)
and no boundary of type I', present:

I, = —J leD 'odQ — J (STe) u; dQ + J 6'SvdQ (13.24)
Q Q Q

In the above it is assumed that the compatible field of v is specified throughout the

element domain and not only on its interfaces and u; stands for an incompatible

field defined only inside the element domain.{

1 In this form, of course, the element could well fit into Chapter 11 and the subdivision of hybrid and
mixed forms is not unique here.
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We note that in the present definition
u=u; +v (13.25)

To show the validity of this variational principle, which is convenient as no inter-
face integrals need to be evaluated, we shall derive the weak statement corresponding
to Eqgs (13.19) and (13.20) using the condition (13.25).

We can now write in place of (13.19) (noting that for interelement compatibility we
have to ensure that u; = 0 on the interfaces)

J F 66" (D6 — Sv)dQ — JQ, 66" Su; dQ + L §t'u, dT =0 (13.26)
After use of Green’s theorem the above becomes simply
J H 66" (D6 — Sv)dQ + JQL)(STéc)Tu, dr=0 (13.27)
In place of (13.20) we write (in the absence of body forces b and boundary I'))
JQF bu; (STe) dQ + J p &vI(STe)d2 =0 (13.28)
and again after use of Green’s theorem
JQH su;STedQ — JQH 5(Sv)'ed2=0  (ifév=0 onT)) (13.29)

These equations are precisely the variations of the functional (13.24).

Of course, the procedure developed in this section can be applied to other mixed or
irreducible representations with ‘frame’ links. Tong and Pian®’ developed several
alternative element forms by using this procedure.

13.4.3 Linking of equilibrating form subdomains

In this form we shall assume a priori that the stress field expansion is such that
67 =6+ 6 (13.30)
and that the equilibrium equations are identically satisfied. Thus
ST6=0; STe, =bin O and Go=0; Goy=tonT,
In the absence of I',e, Eq. (13.20) is identically satisfied and we write (13.19) as (see
Chapter 11, Sec. 11.7)

J 66" (D 'or — Su)dQ + J 5t"(u—v)dr
Qe

Tpe

= J 66" D' (6 + 64) dQ — J (Géo)Tvdl = 0 (13.31)
€ FI"
On discretization, noting that the field u does not enter the problem

6 =N,0 v=N_,v
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we have, on including Eq. (13.16)

A€ e ~ f(.’
ERIHERN
Q 0 v q —f;
where
A = J N,DIN,dQ  f = J N,D 6, d
Q¢ Qe
Q= J (GN,)™N, dr
F[(’
and

(2) = J NUGGO dF
FI(’

Here climination of ¢ is simple and we can write directly
KV=q —f5-QT(A)'f{ and K =QT(A)'Q°  (13.33)

In Sec. 11.7 we have discussed the possible equilibration fields and have indicated
the difficulties in choosing such fields for a finite element, subdivided, field. In the
present case, on the other hand, the situation is quite simple as the parameters
describing the equilibrating stresses inside the element can be chosen arbitrarily in
a polynomial expression.

For instance, if we use a simple polynomial expression in two dimensions:

Oy =0p+oX+ay
o, =By + Bix+ By (13.34)
Tyy = Yo + 71X+ 7Y

we note that to satisfy the equilibrium we require

9 45 9
ST — Ox Oy 6{041+’72}0 (13.35)
9 9 Br+m
dy Ox
and this simply means
T2 = —0g
N ==

Thus a linear expansion in terms of 9 —2 = 7 independent parameters is easily
achieved. Similar expansions can of course be used with higher order terms.
It is interesting to observe that:

1. n, = n, — 3 is needed to preserve stability.

2. By the principle of limitation, the accuracy of this approximation cannot be better
than that achieved by a simple displacement formulation with compatible expan-
sion of v throughout the element, providing similar polynomial expressions arise in
stress component variations.
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However, in practice two advantages of such elements, known as hybrid-stress
elements, are obtained. In the first place it is not necessary to construct compatible
displacement fields throughout the element (a point useful in their application to,
say, a plate bending problem). In the second for distorted (isoparametric) elements
it is easy to use stress fields varying with the global coordinates and thus achieve
higher order accuracy.

The first use of such elements was made by Pian® and many successful variants are
in use today.” %

13.5 Linking of boundary (or Trefftz)-type solution by the
‘frame’ of specified displacements

We have already referred to boundary (Trefftz)-type solutions> earlier (Chapter 3).
Here the chosen displacement/stress fields are such that a priori the homogeneous
equations of equilibrium and constitutive relation are satisfied indentically in the
domain under consideration (and indeed on occasion some prescribed boundary
traction or displacement conditions).

Thus in Egs (13.19) and (13.20) the subdomain (element ¢) €, integral terms
disappear and, as the internal 6t and éu variations are linked, we combine all into a
single statement (in the absence of body force terms) as

—J 5tT(u—v)dr—J su'(t—t)dl =0 (13.36)
F]l' FIL'

This coupled with the boundary statement (13.16) provides the means of devising
stiffness matrix statements of such subdomains.
For instance, if we express the approximate fields as

u= Na (13.37)
implying
¢ =D(SN)a and t = Go = GD(SN)a

we can write in place of (13.22)
_HL’ e nd f€
o o1 1339
Q 0Ly q

H* :J [GD(SN)| N4 + J NTGD(SN) dT
Tye Tpe

where

Q° :J [GD(SN)]"N, dI’ (13.39)
s

f§=— J NTtdr
F,l’

In Eqgs (13.38) and (13.39) we have omitted the domain integral of the particular
solution ¢, corresponding to the body forces b but have allowed a portion of the
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boundary T". to be subject to prescribed tractions. Full expressions including the
particular solution can easily be derived.

Equation (13.38) is immediately available for solution of a single boundary prob-
lem in which v and t are described on portions of the boundary. More importantly,
however, it results in a very simple stiffness matrix for a full element enclosed by
the frame. We now have

K% = q —f° (13.40)
in which
K¢ = QeT(He)—lQe

(13.41)
f¢ = QeT(He)—lf(l)

This form is very similar to that of Eq. (13.33) except that now only integrals on the
boundaries of the subdomain element need to be evaluated.

Much has been written about so-called ‘boundary elements’ and their merits and
disadvantages.”**® Very frequently singular Green’s functions are used to satisfy
the governing field equations in the domain.*'"* The singular function
distributions used do not lend themselves readily to the derivation of symmetric
coupling forms of the type given in Eq. (13.38). Zienkiewicz et al =¥ show that it
is possible to obtain symmetry at a cost of two successive integrations. Further it
should be noted that the singular distributions always involve difficult integration
over a point of singularity and special procedures need to be used for numerical
implementation. For this reason the use of generally non-singular Trefftz functions
is preferable and it is possible to derive complete sets of functions satisfying the
governing equations without introducing singularities,**~*° and simple integration
then suffices.

While boundary solutions are confined to linear homogeneous domains these give
very accurate solutions for a limited range of parameters, and their combination with
‘standard’ finite elements has been occasionally described. Several coupling pro-
cedures have been developed in the past,** >’ but the form given here coincides
with the work of Zielinski and Zienkiewicz,*® Jirousek*' ~** and Piltner.* Jirousek
et al. have developed very general two-dimensional elasticity and plate bending
elements which can be enclosed by a many-sided polygonal domain (element) that
can be directly coupled to standard elements providing that same-displacement
interpolation along the edges is involved, as shown in Fig. 13.3. Here both interior
elements with a frame enclosing an element volume and exterior elements satisfying
tractions at free surface and infinity are illustrated.

Rather than combining in a finite element mesh the standard and the Trefftz-type
elements (‘T-elements™®®) it is often preferable to use the T-elements alone. This
results in the whole domain being discretized by elements of the same nature and
offering each about the same degree of accuracy. The subprogram of such elements
can include an arsenal of homogeneous ‘shape functions’ N¢ [see Eq. (13.37)] which
are exact solutions to different types of singularities as well as those which auto-
matically satisfy traction boundary conditions on internal boundaries, e.g., circles
or ellipses inscribed within large elements as shown in Fig. 13.4. Moreover, by com-
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(b)

Fig. 13.3 Boundary-Trefftz-type elements (T) with complex-shaped ‘frames’ allowing combination with
standard, displacement elements (D): (a) an interior element; (b) an exterior element.

pleting the set of homogeneous shape functions by suitable ‘load terms’ representing
the non-homogeneous differential equation solution, uy, one may account accurately
for various discontinuous or concentrated loads without laborious adjustment of the
finite element mesh.

Clearly such elements can perform very well when compared with standard ones, as
the nature of the analytical solution has been essentially included. Figure 13.5 shows

Boundary Displacement/stress
displacement t=0 fields defined by
interpolated ‘shape’ functions
in polynomial satisfying governing

form equations and
parameters a

Fig. 13.4 Boundary-Trefftz-type elements. Some useful general forms.*
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Fig. 13.5 Application of Trefftz-type elements to a problem of a plane-stress tension bar with a circular hole.
(a) Trefftz element solution. (b) Standard displacement element solution. (Numbers in parentheses indicate

standard solution with 230 elements, 1600 DOF).

excellent results which can be obtained using such complex elements. The number of
degrees of freedom is here much smaller than with a standard displacement solution
but, of course, the bandwidth is much larger.43

Two points come out clearly in the general formulation of Eqs (13.36)—(13.39).
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First, the displacement field, u given by parameters a, can only be determined by
excluding any rigid body modes. These can only give strains SN identically equal
to zero and hence make no contribution to the H matrix.

Second, stability conditions require that (in two dimensions)
ng 2 n, — 3

and thus the minimum 7, can be readily found (viz. Chapter 11). Once again there is
little point in increasing the number of internal parameters substantially above the
minimum number as additional accuracy may not be gained.

2
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@

Fig. 13.6 Boundary-Trefftz-type elements’ linking two domains of different materials in an elliptic bar
subject to torsion (Poisson equations).*’ (a) Stress function given by internal variables showing almost com-

plete continuity. (b) x component of shear stress (gradient of stress function showing abrupt discontinuity
of material junction).
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We have said earlier that the ‘translation’ of the formulation discussed to problems
governed by the quasi-harmonic equations is almost evident. Now identical relations
will hold if we replace

u—o¢
° (13.42)
t— gy
S—-V
For the Poisson equation
Vi =0 (13.43)

a complete series of analytical solutions in two dimensions can be written as

Re(") =1,x,x> = *, X = 3x)°, ...

forz=x+1iy (13.44)
Im (") = y,2xy,...
With the above we get
N =[1, x y, =0 2, ¥ -3n% 3%, ..] (13.45)

A simple solution involving two subdomains with constant but different values of Q
and a linking on the boundary is shown in Fig. 13.6, indicating the accuracy of the
linking procedures.

13.6 Subdomains with ‘standard’ elements and global
functions

The procedure just described can be conveniently used with approximations made
internally with standard (displacement) elements and global functions helping to
deal with singularities or other internal problems. Now simply an additional term
will arise inside nodes placed internally in the subdomain but the effect of global
functions can be contained inside the subdomain. The formulation is somewhat
simpler as complicated Trefftz-type functions need not be used.

We leave details to the reader and in Fig. 13.7 show some possible, useful sub-
domain assemblies. We shall return to this again in Chapter 16.

Fig. 13.7 'Superelements’ built from assembly of standard displacement elements with global functions
eliminating singularities confined to the assembly.
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13.7 Lagrange variables or discontinuous Galerkin
methods?

In all of the preceding examples we have linked the various element subdomains by a
line on which the additional Lagrange multipliers have been specified. These multi-
pliers could well be displacements or tractions which in fact were the same variables
as those inside the element domain.

The lagrangian variables which are so identified can be directly substituted in
terms of the variables given inside each subdomain. For instance the interface
displacement can be reproduced as the average displacement of those given in each
subdomain

u=>1(u +u)

The total number of variables occurring in the problem is thus reduced (though now
element variables have to be carried in the solution and the solution cost may well be
increased). The idea was first used by Kikuchi and Ando*® who used it to improve the
performance of non-conforming plate bending elements.

Recently a revival of such methods has taken place. The basic idea appear to be
presented by Makridakis and Babuska es al.*’ and in the context of a ‘discon-
tinuous Galerkin method’ is demonstrated by Oden and co-workers.®70 We
shall refer to the discontinuous Galerkin method in Volume 3 when dealing with
convection dominated problems and in a different context in Sec. 18.6 of
Chapter 18 for discrete time approximation problems. The process has practical
advantages such as:

1. different local interpolations can be used;
2. the stress (flux) continuity is preserved on each individual element.

We shall discuss these properties further when we address the method in
Volume 3.

13.8 Concluding remarks

The possibilities of elements of ‘superelements’ constructed by the mixed-incomplete
field methods of this chapter are very numerous. Many have found practical use in
existing computer codes as ‘hybrid elements’; others are only now being made
widely available. The use of a frame of specified displacements is only one of the
possible methods for linking Trefftz-type solutions. As an alternative, a frame of
specified boundary tractions t has also been successfully investigated.”*** In addition,
the so-called ‘frameless formulation’?’ has been found to be another efficient
solution (for a review see reference 28) in the Trefftz-type element approach. All of
the above mentioned alternative approaches may be implemented into standard
finite element computer codes. Much further research will elucidate the advantages
of some of the forms discovered and we expect the use of such developments to
continue to increase in the future.
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14

Errors, recovery processes and
error estimates

14.1 Definition of errors

We have stressed from the beginning of this book the approximate nature of the finite
element method and on many occasions to show its capabilities we have compared it
with exact solutions when these were known. Also on many occasions we have spoken
about the ‘accuracy’ of the procedures we suggested and discussed the manner by
which this accuracy could be improved. Indeed one of the objectives of this chapter
is concerned with the question of accuracy and a possible improvement on it by an
a posteriori treatment of the finite element data. We refer to such processes as
recovery. We shall also consider the discretization error of the finite element
approximation and a posteriori estimates of such error. In particular, we describe
two distinct types of error estimators, recovery based error estimators and residual
based error estimators. The critical role that the recovery processes play in the
computation of these error estimators will be discussed.

Before proceeding further it is necessary to define what we mean by error. This we
consider to be the difference between the exact solution and the approximate one.
This can apply to the basic function, such as displacement which we have called u
and can be given as

e=u—1u (14.1)

In a similar way, however, we could focus on the error in the strains (i.e., gradients in
the solution), such as ¢ or stresses ¢ and describe an error in those quantities as

e.=¢—¢& (14.2)
e, =6—6 (14.3)

The specification of local error in the manner given in Eqs (14.1)—(14.3) is generally
not convenient and occasionally misleading. For instance, under a point load both
errors in displacements and stresses will be locally infinite but the overall solution
may well be acceptable. Similar situations will exist near re-entrant corners where,
as is well known, stress singularities exist in elastic analysis and gradient singularities
develop in field problems. For this reason various ‘norms’ representing some
integral scalar quantity are often introduced to measure the error.
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If, for instance, we are concerned with a general linear equation of the form of Eq.
(3.6) (cf. Chapter 3), i.e.,

Lu+p=0 (14.4)

we can define an energy norm written for the error as

1 1

le]] = HQ e'Le er = Hﬂ(u — i) 'L(u—a) er (14.5)

This scalar measure corresponds in fact to the square root of the quadratic
functional such as we have discussed in Sec. 3.8 of Chapter 3 and where we sought
its minimum in the case of a self-adjoint operator L.

For elasticity problems the energy norm is identically defined and yields,

1

lle|] = HQ(Se)TDSe dﬂr (14.6)

(with symbols as used in Chapter 2).
Here e is given by Eq. (14.1) and the operator S defines the strains as

e=Su and &=Su (14.7)
and D is the elasticity matrix (see Chapter 2), giving the stress as
¢6=D¢ and =Dt (14.8)

in which for simplicity we ignore initial stresses and strains.
The energy norm of Eq. (14.6) can thus be written alternatively as
1

lell= | [ c—&™(—¢) dszr

LJQ

1

| (s—é)T(c—é)dﬂ]z (14.9)
L Jo

| (6—-6)'D ' (6 —6) er
LJQ

and its relation to strain energy is evident.
Other scalar norms can easily be devised. For instance, the L, norm of displace-
ment and stress error can be written as

lle|l., = “Q(u—ﬁ)T(u—ﬁ)er (14.10)

1

lleole, = “Q(c—a)T(c—a) er (14.11)

Such norms allow us to focus on the particular quantity of interest and indeed it is
possible to evaluate ‘root mean square’ (RMS) values of its error. For instance, the
RMS error in displacement, Au, becomes for the domain 2

(el )
|Au| = (T (14.12)
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Similarly, the RMS error in stress, Ao, becomes for the domain 2

eIz, N
|Adl = { =4 (14.13)

Any of the above norms can be evaluated over the whole domain or over subdomains
or even individual elements.
We note that

m
llell> = llell? (14.14)
i=1
where i refers to individual elements €2; such that their sum (union) is €.

We note further that the energy norm given in terms of the stresses, the L, stress
norm and the RMS stress error have a very similar structure and that these are
similarly approximated.

At this stage it is of interest to invoke the discussion of Chapter 2 (Sec. 2.6)
concerning the rates of convergence. We noted there that with trial functions in the
displacement formulation of degree p, the errors in the stresses were of the order
O(h?). This order of error should therefore apply to the energy norm error ||e||.
While the arguments are correct for well-behaved problems with no singularity, it
is of interest to see how the above rule is violated when singularities exist.

To describe the behaviour of stress analysis problems we define the variation of the
relative energy norm error (percentage) as

n_||z“|>< 100% (14.15)

where

lJul| = <J sTDsdQ>2 (14.16)
Q

is the energy norm of the solution. In Figs 14.1 and 14.2 we consider two similar stress
analysis problems, in the first of which a strong singularity is, however, present. In
both figures we show the relative energy norm error for an / refinement constructed
by uniform subdivision of the initial mesh and of a p refinement in which polynomial
order is increased throughout the original mesh.

We note two interesting facts. First, the # convergence rates for various polynomial
orders of the shape functions are nearly the same in the example with singularity (Fig.
14.1) and are well below the theoretically predicted optimal order O(h?), [or
O(NDF)™* /? as the NDF (number of degrees of freedom) is approximately inversely
proportional to /? for a two-dimensional problem].

Secondly, in the case shown in Fig. 14.2, where the singularity is avoided by round-
ing the corner, the convergence rates improve for elements of higher order, though
again the theoretical (asymptotic) rates are not achieved.

The reason for this behaviour is clearly the singularity, and in general it can be
shown that the rate of convergence for problems with singularity is

O(NDF)~min(\.))/2 (14.17)
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where A is a number associated with the intensity of the singularity. For elasticity
problems A ranges from 0.5 for a nearly closed crack to 0.71 for a 90° corner. The
rate of convergence illustrated in Fig. 14.2 approaches the value controlled by the
singularity for all values of p used in the elements.

14.2 Superconvergence and optimal sampling points

In this section we shall consider the matter of points at which the stresses, or dis-
placements, give their most accurate values in typical problems of a self-adjoint
kind. We shall note that on many occasions the displacements, or the function
itself, are most accurately sampled at the nodes defining an element and that the
gradients or stresses are best sampled at some interior points. Indeed in one
dimension at least we shall find that such points often exhibit the quality known
as superconvergence (i.e., the values sampled at these points show an error which
decreases more rapidly than elsewhere). Obviously, the user of finite element
analysis should be encouraged to employ such points but at the same time note
that the errors overall may be much larger. To clarify ideas we shall start with a
typical problem of second order in one dimension.

14.2.1 A one-dimensional example

Here we consider a problem of a second-order equation such as we have frequently
discussed in Chapter 3 and which may be typical of either one-dimensional heat
conduction or the displacements of an elastic bar with varying cross-section. This
equation can readily be written as

i(ka>+ﬁu+Q=0 (14.18)
with the boundary conditions either defining the values of the function u or of its
gradients at the ends of the domain.

Let us consider a typical problem shown in Fig. 14.3. Here we show an exact
solution for u and du/dx for a span of several elements and indicate the type of
solution which will result from a finite element calculation using linear elements.
We have already noted that on occasions we shall obtain exact solutions for u at
nodes (see Fig. 3.4). This will happen when the shape functions contain the exact
solution of the homogeneous differential equation (Appendix H) — a situation
which happens for Eq. (14.18) when 8 =0 and polynomial shape functions are
used. In all cases, even when [ is non-zero and linear shape functions are used, the
nodal values generally will be much more accurate than those elsewhere, Fig.
14.3(a). For the gradients shown in Fig. 14.3(b) we observe large discrepancies of
the finite element solution from the exact solution but we note that somewhere
within each element the results are nearly exact.

It would be useful to locate such points and indeed we have already remarked in the
context of two-dimensional analysis that values obtained within the elements tend to
be more accurate for gradients (strains and stresses) than those values calculated at
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Fig. 14.3 Optimal sampling points for the function (a) and its gradient (b) in one dimension (linear elements).

nodes. Clearly, for the problem illustrated in Fig 14.3(b) we should sample somewhere
near the centre of each element.

Pursuing this problem further in a heuristic manner we shall note that if higher
order elements (e.g., quadratic elements) are used the solution still remains exact or
nearly exact at the end nodes of an element but may depart from exactness at the
interior nodes, as shown in Fig. 14.4(a). The stresses, or gradients, in this case will
be optimal at points which correspond to the two Gauss quadrature points for
each element as indicated in Fig. 14.4(b). This fact was observed experimentally by
Barlow', and such points are frequently referred to as Barlow points.

We shall now state in an axiomatic manner that:

(a) the displacements are best sampled at the nodes of the element, whatever the
order of the element is, and

(b) the best accuracy is obtainable for gradients or stresses at the Gauss points
corresponding, in order, to the polynomial used in the solution.

At such points the order of the convergence of the function or its gradients is one order
higher than that which would be anticipated from the appropriate polynomial and
thus such points are known as superconvergent. The reason for such superconvergence
will be shown in the next section where we introduce the reader to a theorem
developed by Herrmann.’
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Fig. 14.4 Optimal sampling points for the function (a) and its gradient (b) in one dimension (quadratic

14.2.2 The Herrmann theorem and optimal sampling points

The concept of least square fitting has additional justification in self-adjoint prob-
lems in which an energy functional is minimized. In such cases, typical of a displace-
ment formulation of elasticity, it can be readily shown that the minimization is
equivalent to a least square fit of approximation stresses to the exact ones. Thus
quite generally we can start from a theory which states that minimization of an
energy functional 11 defined as

I = %J (Su)TASudQ + J u'pdQ (14.19)
Q Q
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which at an absolute minimum gives the exact solution G = u this is equivalent to mini-
mization of another functional IT* defined as

I = %JQ[S(u —u)]"AS(u —a)dQ (14.20)

In the above, S is a self-adjoint operator and A and p are prescribed matrices of
position. The above quadratic form [Eq. (14.19)] arises in the majority of linear
self-adjoint problems.

For elasticity problems this theorem is given by Herrmann? and shows that the
approximate solution for Su approaches the exact one Su as a weighted least square
approximation.

The proof of the Herrmann theorem is as follows. The variation of II defined in
Eq. (14.19) gives, at i = u (the exact solution),

811 = %J (Sé0)"ASudQ + %J (Su)TASSudQ + J s pdQ =0 (14.21)
Q Q Q
or as A is symmetric
OI1 = J (Séa)"ASudQ + J sa'pdQ =0 (14.22)
Q Q
in which déu is any arbitrary variation. Thus we can write
du=u (14.23)
and
J (Si)TASudQ + J i'pd2=0 (14.24)
Q Q

Subtracting the above from Eq. (14.19) and noting the symmetry of the A matrix, we
can write

= i—u)|’ u—u -3 u)|"ASu .
Hf%L[S(u )] AS( )dQ ;LZ[S( )] ASudQ) (14.25)

where the last term is not subject to variation. Thus
IT" = II + constant (14.26)

and its stationarity is equivalent to the stationarity of II.

It follows directly from the Herrmann theorem that, for one dimension and by a
well-known property of the Gauss—Legendre quadrature points, if the approximate
gradients are defined by a polynomial of degree p — 1, where p is the degree of the
polynomial used for the unknown function u, then stresses taken at these quadrature
points must be superconvergent. The single point at the centre of an element
integrates precisely all linear functions passing through that point and, hence, if the
stresses are exact to the linear form they will be exact at that point of integration.
For any higher order polynomial of order p, the Gauss—Legendre points numbering
p will provide points of superconvergent sampling. We see this from Fig. 14.5 directly.
Here we indicate one, two, and three point Gauss—Legendre quadrature showing why
exact results are recovered there for gradients and stresses.
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Fig. 14.5 The integration property of Gauss points: p=1, p=2, and p=3 which guarantees
superconvergence.

For points based on rectangles and products of polynomial functions it is clear
that the exact integration points will exist at the product points as shown in
Fig. 14.6 for various rectangular elements assuming that the weighting matrix A is
diagonal. In the same figure we show, however, some triangles and what appear to
be ‘good’ but not necessarily superconvergent sampling points. These are suggested
by Moan.? Though we find that superconvergent points do not exist in triangles,
the points shown in Fig. 14.6 are optimal. In Fig. 14.6 we contrast these points
with the minimum number of quadrature points necessary for obtaining an accurate
(though not always stable) stiffness representation and find these to be almost
coincident at all times.

In Fig. 14.7 representing an analysis of a cantilever by four rectangular quadratic
serendipity elements we see how well the stresses sampled at superconvergent points
behave compared to the overall stress pattern computed in each element. It is from
results like this that many suggestions have been made to obtain improved nodal
values and one method proposed by Hinton and Campbell has proved to be quite
widely used.* However, we shall discuss better recovery procedures later.
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0 (h%)

The extension of the idea of superconvergent points from one-dimensional
elements to two-dimensional rectangles was fairly obvious. However, the full super-
convergence is lost when isoparametric distortion occurs. We have shown, however,
that results at the pth-order Gauss—Legendre points still remain excellent and we
suggest that superconvergent properties of the integration points continue to be
used for sampling.

In all of the above discussion we have assumed that the weighting matrix A is
diagonal. But if such diagonality does not exist then the existence of superconvergent
points is questionable. However excellent results are still available through the
sampling points defined as above.

Finally, we refer readers to references 5—9 for surveys on the superconvergence
phenomenon and its detailed analyses.

14.3 Recovery of gradients and stresses

In the previous section we have shown that sampling of the gradients and stresses at
some particular points is generally optimal and possesses a higher order accuracy
when such points are superconvergent. However, we would also like to have similarly
accurate quantities elsewhere within each element for general analysis purposes, and
in particular we need such highly accurate gradients and stresses when the energy
norm or other similar norms have to be evaluated in error estimates. We have already
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Fig. 14.7 Cantilever beam with four quadratic (Q8) elements. Stress sampling at cubic order (2 x 2) Gauss
points with extrapolation to nodes.

shown how with some elements very large errors exist beyond the superconvergent
point and attempts have been made from the earliest days to obtain a complete
picture of stresses which is more accurate overall. Here attempts are generally
made to recover the nodal values of stresses and gradients from those sampled
internally and then to assume that throughout the element the recovered stresses ¢
are obtained by interpolation in the same manner as the displacements

6" =N,6" (14.27)

We have already suggested a process used almost from the beginning of finite element
calculations for triangular elements, where elements are sampled at the centroid
(assuming linear shape functions have been used) and then the stresses are averaged
at nodes. We have referred to such recovery in Chapter 4. However this is not the
best for triangles and for higher order elements such averaging is inadequate. Here
other procedures were necessary, for instance Hinton and Campbell4 suggested a pro-
cedure in which stresses at all nodes were calculated by extrapolating the Gauss point
values. A further improvement of a similar kind was suggested by Brauchli and Oden'
who used the stresses in the manner given by Eq. (14.27) and assumed that these stresses
should represent in a least square sense the actual finite element stresses, therefore an L,
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projection. Though this has a similarity with the ideas contained in the Herrmann
theorem it reverses the order of least square application and has not proved to be
always stable and accurate, especially for even order elements. We have already
described this procedure in the chapter on mixed elements (see Sec. 11.6) and noted
that to obtain results it is necessary to invert a ‘mass’ type matrix. This can only be
achieved without high cost if the mass matrix is diagonal. However, in the following
presentation we will show that highly improved results can be obtained by direct poly-
nomial ‘smoothing’ of the superconvergent values. Here the first method of importance
is called superconvergent patch recovery.!' =13

14.4 Superconvergent patch recovery — SPR
14.4.1 Recovery for gradients and stresses

We have already noted that the stresses sampled at certain points in an element
possess the superconvergent property (i.e., converge at the same rate as displacement)
and have errors of order O(h” 1), A fairly obvious procedure for utilizing such
sampled values seems to the authors to be that of involving a smoothing of such
values by a polynomial of order p within a patch of elements for which the number
of sampling points can be taken as greater than the number of parameters in the
polynomial. In Fig. 14.8 we show several such patches each assembled around a
central corner node. The first four represent rectangular elements where the supercon-
vergent points are well defined. The last two give patches of triangles where the best
sampling points are used which are not superconvergent.

If we accept the superconvergence of 6 at certain points s in each element then itis a
simple matter (which also turns out computationally much less expensive than the L,
projection) fo compute 6* which is superconvergent at all points within the element. The
procedure is illustrated for two dimensions in Fig. 14.8, where we shall consider
interior patches (assembling all elements at interior nodes) as shown.

At the superconvergent point the values of ¢ are accurate to order p + 1 (not p as is
true elsewhere). However, we can ecasily obtain an approximation given by a poly-
nomial of degree p, with identical order to these occurring in the shape function for
displacement, which has superconvergent accuracy everywhere if this polynomial is
made to fit the superconvergent points in a least square manner.

Thus we proceed for each component ; of ¢ as follows: Writing the recovered
solution as

U;ﬁ =pa= 1, X, ’ ) "la
pa=| hos (14.28)
a:[ah ay, v, am}
we minimize, for an element patch with total n sampling points,
n
= (6 (ks i) — Pka]2
k; l (14.29)

Pr = P(X%, Vi)



® Nodal values determined
A A from the patch
O Patch assembly point
— \d )~ A Superconvergent sampling
points
A A
x Element patches Qg

4-node elements Element”  8-node elements
patches

3-node elements 6-node elements
(linear) (quadratic)

9-node elements 12- and 16-node elements
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[(xx, vi) corresponding to coordinates of superconvergent points] obtaining immedi-
ately the coefficient a as

a=A"b (14.30)

where
A=>"pp and  b=> pi6;(x, ) (14.31)
=1 =

The availability of ¢* allows the superconvergent values of 6" to be determined at all
nodes. As some nodes belong to more than one patch, average values of 6" are best
obtained. The superconvergence of ¢* throughout each element is achieved with
Eq. (14.27).

It should be noted that on external boundaries and indeed on interfaces where
stresses are discontinuous the nodal values should be calculated from interior patches
in the manner shown in Fig. 14.9.

In Fig. 14.10 we show in a one-dimensional example how the superconvergent
patch recovery reproduces exactly the stress (gradient) solutions of order p + 1 for
linear or quadratic elements. Following the arguments of Chapter 10 on the patch
test it is evident that superconvergent recovery is now achieved at all points.
Indeed, the same figure shows why averaging (or L, projection) is inferior (particu-
larly on boundaries).

Figure 14.11 shows experimentally determined convergence rates for a one-
dimensional problem (stress distribution in a bar of length L =1; 0 < x <1 and
prescribed body forces). A uniform subdivision is used here to form the elements,
and the convergence rates for the stress error at x = 0.5 are shown using the direct
stress approximation &, the L, recovery o; and ¢* obtained by the SPR procedure
using linear, quadratic and cubic elements. It is immediately evident that o* is
superconvergent with a rate of convergence being at least one order higher than
that of 6. However, as anticipated, the L, recovery gives much inferior answers, show-
ing superconvergence only for odd values of p and almost no improvement for even
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Fig. 14.10 Recovery of exact o of degree p by linear elements (p = 1) and quadratic elements (p = 2).

values of p, while o shows a two-order increase of convergence rate for even order
elements (tests on higher order polynomials are reported in reference 14). This ultra
convergence has been verified mathematically.!> Although it is not observed when
elements of varying size are used, the important tests shown in Figs 14.12 and
14.13 indicate how well the recovery process works.

In the first of these, Fig. 14.12, a field problem is solved in two dimensions using a
very irregular mesh for which the existence of superconvergent points is only inferred
heuristically. The very small error in o} is compared with the error of 6, and the
improvement is obvious. Here o, = du/0x where u is the fluid variable.

In the second, i.e., Fig. 14.13, a problem of stress analysis, for which an exact
solution is known, is solved using three different recovery methods. Once again the
recovered solution o* (SPR) shows the much improved values compared with o
and it is clear that the SPR process should be included in all codes if simply to present
improved stress values.
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6o o0t o)

The SPR procedure which we have just outlined has proved to be a very powerful
tool leading to superconvergent results on regular meshes and much improved results
(nearly superconvergent) on irregular meshes. It has been shown numerically that it
produces superconvergent recovery even for triangular elements which do not have
superconvergent points within the element. A recent mathematical proof confirms
this capability of SPR.® The procedure was introduced by Zienkiewicz and Zhu in
1992713 and we still recommend it as the best procedure which is simple to use. How-
ever, many investigators have modified the procedure by increasing the functional where

a

¢qg

(a) Arbitrary mesh

(b) Error of o3

(c) Error of 6,

Fig. 14.12 Poisson equation in two dimensions solved using arbitrary shaped quadratic quadrilaterals.
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Fig. 14.13 Plane stress analysis of stresses around a circular hole in a uniaxial field.

the least square fit is performed to include satisfaction of discrete equilibrium equations
or boundary conditions, etc. While the satisfaction of known boundary tractions can on
occasion be useful most of these additional constraints introduced have affected the
superconvergent properties adversely and in general the modified versions of SPR by
Wiberg et al'” and by Blacker and Belytschko18 have not proved to be fully effective.
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14.4.2 SPR for displacements

The superconvergent patch recovery can be extended to produce superconvergent
displacements. The procedure for the displacements is quite simple if we assume
the superconvergent points to be at nodes of the patch. However, as we have already
observed it is always necessary to have more data than the number of coefficients in
the particular polynomial to be able to execute a least square minimization. Here of
course we occasionally need a patch which extends further than before, particularly
since the displacements will be given by a polynomial one order higher than that
used for the shape functions. In Fig. 14.8 however we show for most assemblies
that a similar patch as given before can be again applied producing a good approxi-
mation for u within its interior. Larger element patches have also been suggested in
reference 19.

The recovered solution u* has on occasion been used in dynamic problems (e.g.,
Wiberg'??"), because in dynamic problems the displacements themselves are often
important. We shall find such recovery useful in some problems of fluid dynamics
in Volume 3.

The SPR recovery technique described in this section takes advantage of the super-
convergence property of the finite element solutions and the availability of the
optimal sampling points. Very recently a new method of recovery which does not
need such information has been devised and will be discussed in the next section.

14.5 Recovery by equilibration of patches — REP

Although SPR has proved to work well generally, the reason behind its capability of
producing an accurate recovered solution even when superconvergent points do not
in fact exist remains an open question. We have therefore sought to determine viable
recovery alternatives. One of these, known by the acronym REP (recovery by equili-
brium of patches), will be described next. This procedure was first presented in
reference 21 and later improved in reference 22.

To some extent the motivation is similar to that of Ladevéze et a who sought
to establish (for somewhat different reasons) a fully equilibrating stress field which
can replace that of the finite element approximation. However we believe that the
process derived in reference 21 is simpler though equilibration is only approximate.

The starting point is the governing equilibrium equation

1.23‘24

S'Te+b=0 (14.32)
In the finite element approximation this becomes
J B'6dQ — J NTbdQ — J NTtdr =0 (14.33)
Q, Q, r

P

where 6 are the stresses from the finite element solution. In the above (2, is the domain
of the patch and the last term comes from the tractions on the boundary of the patch
domain I',. These can, of course, represent the whole of the problem, an element
patch or only a single element.
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As is well known the stresses ¢ which result from the finite element analysis will in
general be discontinuous and we shall seek to replace them in every element patch by a
recovered system which is smooth and continuous.

To achieve the recovery we proceed in an exactly analogous way to that used in the
SPR procedure, first approximating the stress in each patch by a polynomial of
appropriate order ¢*, second using this approximation to obtain nodal values of ¢
and finally interpolating these values by standard shape functions.

The stress ¢ is taken as a vector of appropriate components, which for convenience
we write as:

01
G =4 0y (14.34)
03

The above notation is general with, for instance, 0y = 0,, 0, = 0, and o3 = 7, in
two-dimensional plane elastic analysis.
We shall write each component of the above as a polynomial expansion of the form:

UT:[L X, "']ai:p(xay)ai (1435)

where p is a vector of polynomials and a; is a set of unknown coefficients for the ith
component of stress.

For equilibrium we shall always attempt to ensure that the total smoothed stress ¢*
satisfies in the least square sense the same patch equilibrium conditions as the finite
element solution. Accordingly,

J BT&szJ B'o" d (14.36)
Q, Q,
where
P 0 0 a
¢=Pa=[0 p 0| a, (14.37)
0 0 p a3

written here again for the case of three stress components. Obvious modifications are
made for more or less components.

It has been found in practice that the constraints provided by Eq. (14.36) are not
sufficient to always produce non-singular least square minimization. Accordingly,
the equilibrium constraints are split into an alternative form in which each component
of stress is subjected to equilibrium requirements. This may be achieved by expressing

the stress as
¢ =) lioj=) o (14.38)
i i
6=> 16;=> 6 (14.39)
i i

1,=[1, 0, 0] (14.40)
where
1,=[0, 1, 0]" etc. (14.41)
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and imposing the set of constraints

J B'6,d0 ~ J
Q,

Ble;dQ = J B'1,pdQa, (14.42)
Q,

Q,

The imposition of the approximate equation (14.42) allows each set of coefficients
a; to be solved independently reducing considerably the solution cost and here repeat-
ing a procedure used with success in SPR.

A least square minimization of Eq. (14.42) is expressed as

II = (H;a; — ff)T(Hiai —f7) (14.43)
where
H; = JQ B'1,pdQ (14.44)
and
7 = JQ B'6,dQ (14.45)

The minimization condition results in
a, = [H/H,] 'HIt (14.46)

For patches in some problems Eq. (14.43) may be unstable. Generally, this may be
eliminated by modifying the patch requirement to the minimization of

T = (Ha, — )T (Ha, — ) + 3 a(Hea, — )T (Ha, — £9) (14.47)

where the added terms represent modification on individual elements and « is a
parameter. Minimization now gives

-1
a, = [H,-THi +a)y Hf"THf] {H,Tff +ay Hj?va;’} (14.48)
e e

The REP procedure follows precisely the details of SPR near boundaries and gives
overall an approximation which does not require knowledge of any superconvergent
points. The accuracy of both processes is comparable and we are of the opinion that
many other alternative recovery procedures are still possible.

14.6 Error estimates by recovery

One of the most important applications of the recovery methods is its use in the
computation of the a posteriori error estimators. With the recovered solutions
available, we can now evaluate errors simply by replacing the exact values of quanti-
ties such as u, o, etc., which are in general unknown, in Eqs (14.1)—(14.3), by the
recovered values which are much more accurate than the direct finite element
solution. We write the error estimators in various norms such as

llef| ~ [le]| = [ju” —a| (14.49)
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lell, = [e]lz, = [[u” — 1|, (14.50)
lles||z, = le;]lz, = [I6" — 6l|, (14.51)

For example, the energy norm error estimator for elasticity problems has the form of

2

o]l = “Q(c* —&)™D (6" — 6)d0 (14.52)

Similarly, estimates of the RMS error in displacement and stress can be obtained
through Eqgs (14.12) and (14.13). Error estimators formulated by replacing the
exact solution with the recovered solution are sometimes called recovery based
error estimators. This type of error estimator was first introduced by Zienkiewicz
and Zhu.?

The accuracy or the quality of the error estimator is measured by the effectivity
index 6, which is defined as

&

|le]]
Pl (14.53)
el

A theorem proposed by Zienkiewicz and Zhu'? shows that for all estimators based
on recovery we can establish the following bounds for the effectivity index:

el g q el (14.54)
le]] le]]

where e is the actual error and e” is the error of the recovered solution, e.g.
lle*|| = |ju—u]]
The proof of the above theorem is straightforward if we write Eq. (14.52) as
e[| = [Ju” —af| = [[(u— 1) = (0 —u)[| = [le — €] (14.55)
Using now the triangle inequality we have
[lell — lle”Il < llell < llell + lle"]l (14.56)

from which the inequality (14.54) follows after division by ||e||. Obviously, the
theorem is also true for error estimators of other norms. Two important conclusions
follow:

1. any recovery process which results in reduced error will give a reasonable error
estimator and, more importantly,

2. if the recovered solution converges at a higher rate than the finite element solution
we shall always have asymptotically exact estimation.

To prove the second point we consider a typical finite element solution with shape
functions of order p where we know that the error (in the energy norm) is:

lle|]| = O(h") (14.57)
If the recovered solution gives an error of a higher order, e.g.,

el = 0P+ a >0 (14.58)
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then the bounds of the effectivity index are:
-0 <6< 1+ 0" (14.59)
and the error estimator is asymptotically exact, that is

0—1 as h—0 (14.60)

This means that the error estimator converges to the true error. This is a very impor-
tant property of error estimators based on recovery not generally shared by residual
based estimators which we shall discuss in the next section.

14.7 Other error estimators — residual based methods

Other methods to obtain error estimators have been proposed by many investigators
working in the field.?*~3* Most of these make use of the residuals of the finite element
approximation, either explicitly or implicitly. Error estimators based on these
methods are often called residual error estimators. Those using residuals explicitly
are termed explicit residual error estimators; the others are called implicit residual
error estimators.

In this section we are mainly concerned with implicit residual error estimators, in
particular, the equilibrated element residual estimator which has been shown to be
the most robust among all the residual error estimators.> >’

Here we consider the heat conduction problem in a two-dimensional domain as an
example. The differential equation is given by

~V'(kVe)=0 inQ (14.61)

with boundary conditions

In the above
q=—-kV¢

is the heat flux, n is the outward normal to the boundary I and g, is the flux normal to
the boundary (see Chapters 3 and 7).
The error of the finite element solution is

e=¢—¢

and for element i/ the energy norm error is written as
%
lell= ||, (var"kvodo (14.62)
o

In what follows we shall construct the equilibrated residual error estimator for this
problem. The procedure of constructing an estimator for other problems, such as
elasticity problems, is analogous.

We start by considering an interior element i. Substitute the finite element solution
(ﬁ into Eq. (14.61). Subtracting the resulting equation from Eq. (14.61) gives an

387
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element boundary value problem for error e given by
~V'(kVe)=r; inQ, (14.63)
with boundary condition
—(kVe)'n=¢q,—g, onT,
Here

r=V'(kVe)+ 0
is the residual in the finite element and
. T
4 =q n
is the finite element normal flux.

We notice immediately that Eq. (14.63) is not solvable because the exact normal
flux on the element boundary is in general unknown. A natural strategy to overcome
this difficulty is to replace the exact normal flux by a recovered solution ¢, which can
be computed from the finite element flux in element 7/ and its surrounding elements.

We can now write the boundary value problem of the element error as

~V'(kVe)=r; in®; (14.64)
with boundary condition
—(kVe)'n=¢q,— g, onT,

The approximate solution of the above equations e in the energy norm, ||e||, is
defined as the element residual error estimator.

Various recovery techniques can be used to recover the normal flux q,’;.30’31
However, the Neumann problem of Eq. (14.64) will guarantee to have a solution if
¢, is computed such that the residuals satisfy

JQ,- N;r;dQ + J ,-Nj(q; —¢,)dl'=0 (14.65)
where N; is the shape function for node j of element i. Although N; can be a shape
function of any order, a linear shape function seems to be the most practical in the
following computation.

The residuals which satisfy Eq. (14.65) are said to be equilibrated, thus the
recovered solution ¢, satisfying Eq. (14.65) is called the equilibrated flux. An error
estimator which uses the solution of the element error problem of Eq. (14.64) with
the equilibrated flux ¢, is termed an equilibrated residual error estimator. This type
of residual error estimator was first introduced by Bank and Weiser’® and later
pursued by Ainsworth and Oden.**

It is apparent that the most important step in the computation of the equilibrated
residual error estimator is to achieve the recovered normal flux ¢, which satisfies Eq.
(14.65). Once ¢, is determined, the error problem Eq. (14.64) can be readily solved,
over an element, following the standard finite element procedure. Therefore we
shall focus on the recovery process.

The technique of recovering normal flux by equilibrated residuals was first
proposed by Ladevéze et al® A different version of this technique was later used
by Ainsworth and Oden.**
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Integrating by parts, we can write Eq. (14.65) in a computationally more con-
venient form:

J NdeQ—J V' (kv9) dQ+J Nygidl' =0 (14.66)
Qi Qi Fi

Let the recovered element boundary normal flux, for each edge of the element, have
the form

q;kl = %((]1 + (AIk)Tns + Z (1467)

where the first term on the right-hand side is the average of the normal flux of the
finite element solution from element i/ and its neighbour element k; n, is the outward
normal on the edge s of element i; and Z; is a linear function defined on the edge s,
shared by elements i and &, with end nodes / and r and

Z,=Lia + L.a, (14.68)
with
2 2
L,=—(2Nj —N;) L.=—(2N;—Nj) (14.69)
| ]
where N; and N; are linear shape functions defined over edge s and /4, is the length of
edge 5. The unknown parameters aj and a) are to be determined from the residual
equilibrium equation (14.66).
It is easy to verify that

J NiL,dT =6, (14.70)

where 6, is the Kronecker delta, is given by:

Let X, denote a typical interior vertex node. Choose N; = N, in Eq. (14.66) and con-
sider the element patch associated with the linear shape function N, as shown in Fig.
14.14. A local numbering for the elements and edges connected to node X,, in the
patch is given. The edge normals shown here are the results of a global edge orientation.

Assume X, be the end node / of all the edges connected with X,,. For element ¢; in
the patch, substituting Eq. (14.67) into Eq. (14.66) for each edge and observing that
N, is non-zero only on s; and s, and at the directions of the edge normals, we have

J NnQdQ—J <VNn>T(kV¢S>dQ—j LN, (G, + o) "ny, dT

i i 51

+ J N, (@, + 40,y dT — J
K

N

N,Z, dI'dl" — J N,Z,,dI' =0 (14.72)
1 52
where the boundary integral takes a negative sign if the edge normal shown in
Fig. 14.15 is inward for the element.

Let f,, denote the first four, computable, terms of the above equation and notice
that [using Eq. (14.70)]

J N,Z,, dT = J Ny(Ly, d! + La")dl = a) (14.73)
S1 S1

389
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Fig. 14.14 Typical patch with interior vertex node X;, showing a local numbering of elements e; and edges S;.

and
J N,Z, dI' = J N, (anaifl + L.a?)dl = a?? (14.74)
82 52
Equation (14.71) now becomes
—ay, +al = —f, (14.75)
k
1"
r
S

Fig. 14.15 Element interface for equilibrated flux recovery
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Similarly for element e, to e5s we have

—ay +ap = —f,
—ay —ay = —f,
o ’ (14.76)
+ai4” + aisn = _f6’4
—ay +ay, = —f,
or in matrix form
Aa=b (14.77)
where
-1 1 0 0 0
0 —1 1 0 0
A= 0 0o -1 -1 0 (14.78)
0 0 0 1 1
1 0 0 0 —1
a=[al, a3, @, @, @]’ (14.79)
and
b=[~for ~Sorr oy Loy S| (14.80)

It is easy to verify that these equations are linearly dependent but have solutions
determined up to an arbitrary constant. A procedure to obtain an optimal par-
ticular solution is described as follows.***¥ First, a particular solution a, is
found by choosing, for example, @i = 0. Secondly, the corresponding homogeneous
equation

Ab=0 (14.81)

withb = [by, by, b3, by, bS]T is solved for a non-zero particular solution with the choice
of, corresponding 4y, bs = 1. It is easy to verify that b; is either 1 or —1 due to the
structure of A. In the element patch considered here b =[1,1,—1, -1, l]T.

The final particular solution of Eq. (14.77) takes the form

a=ay+b (14.82)
where the constant ~ is determined by the minimization of
M=a'a (14.83)
The minimization condition gives
bTaO
=—— 14.84
TE LT (14.84)

The solution gives the nodal value ay for each edge connected to node X, in the
element patch.
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Boundary nodes and their related element patches can be considered in the same
fashion except that we can take ¢, = g,, the known flux, for the element edge being
part of I';,. For edges coincident with I',, we let the first term on the right-hand side
of Eq. (14.67) be zero. By considering each vertex node of the mesh and its
associated element patch, we will be able to determine aj and « for every edge,
thus the recovered normal flux ¢, on the element boundary is achieved. The
procedure described above for recovering the normal flux is a recovery by element
residual.

We note that the non-uniqueness of the solution of Eq. (14.77) represents the non-
uniqueness of the equilibrium status of the element residuals. The choice of the
arbitrary constant in solving Eq. (14.77) will certainly affect the accuracy of the
recovered solution ¢j,, and therefore the accuracy of the error estimator.

The local error problem Eq. (14.64) is usually solved by a higher order (e.g., p + 1
or even p + 2) approximation. The solution of the problem is then employed in the
element equilibrated error estimator [|e||;, The global error estimator |le|| is
obtained through Eq. (14.15). The global error estimator has been shown to be
an upper bound of the exact error,** although it is not a trivial task to prove its
convergence.

We have shown here that the recovery method is the key to the computation of
implicit residual error estimators. It can be shown that using a properly designed
recovery method some of the explicit residual error estimators or their equivalent
can, in fact, be directly derived from recovery based error estimators.*>** Numerical
performance of residual based error estimators was tested by Babuska ez al.** =" and
compared with that of recovery based error estimators.

14.8 Asymptotic behaviour and robustness of error
estimators — the Babuska patch test

It is well known that elements in which polynomials of order p are used to represent
the unknown u will reproduce exactly any problem for which the exact solution is also
defined by such a polynomial. Indeed the verification of this behaviour is an essential
part of the ‘patch test’ which has to be satisfied by all elements to ensure convergence,
as we have discussed in Chapter 10.

Thus if we are attempting to determine the error in a general smooth solution we
will find that this error is dominated by terms of order p + 1. The response of any
patch to an exact solution of order p + 1 will therefore determine the asymptotic
behaviour when both the size of the patch and of all the elements tends to zero. If
the patch is assumed to be one of a repeatable kind, its behaviour when subjected
to an exact solution of order p + 1 will give the exact asymptotic error of the finite
element solution. Thus, any estimator can be compared with this exact value and
the asymptotic effectivity index can be established. Figure 14.16 shows such a
repeatable patch of quadrilateral elements which evaluate the performance for
quite irregular meshes.

We have indeed shown how true superconvergent behaviour reproduces exactly
such higher order solutions and thus leads to an effectivity index of unity in the
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Fig. 14.16 Repeating patch of irregular and quadrilateral elements.

asymptotic limit. In the papers presented by Babuska er al.>>~*"*! the procedure of

dealing with such repeatable patches for various patterns of two-dimensional
elements is developed. Thus, if we are interested in solving the differential equation

L) +/=0 (14.85)

where L is a linear differential operator of order 2p, we consider exact solutions
(harmonic solutions) to the homogeneous equation ( f = 0) of the form

Ugy = ZamX’” Y" =P(x,y)a; n=p+1—-m (14.86)

The boundary conditions are taken as
”ex|x+Lx: Uex| ¢ and uex|y+L,: uex‘y (14-87)

where L, and L, are periods in the x and y directions, respectively (viz. repeatability
Section 9.18). In general, the individual terms of Eq. (14.86) do not satisfy the
differential equation and it is necessary to consider linear combinations in terms of
the parameters in L as

a' =Ta (14.88)

This solution serves as the basis for conducting a patch test in which the boundary
conditions are assigned to be periodic and to prevent constant changes to u.T The
correct constant value may be computed from

Lmh(Nﬁh +C)dQ = Lm e AQ (14.89)

To compute upper and lower bounds (0;; and 6;) on the possible effectivity indices,
all possible combinations of the harmonic solution must be considered. This may be
achieved by constructing an error norm of the solutions, for example the L, norm of
the flux (or stress)

= J S 4)" (Qex — q4) A2 = (') "TTE,, Ta’ (14.90)
patc

1 For elasticity type problems the periodic boundary conditions prevent rigid rotations.
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Table 14.1 Robustness index for the equilibrated
residuals (ERpB) and SPR (ZZ-discrete) estima-
tors for a variety of anisotropic situations and
element patterns, p = 2

Estimator Robustness index
ERpB 10.21
SPR (ZZ-discrete) 0.02
and
— 112 T
Heq”Lz = J . h(qre - q/z)T(qre - qh) dQ = (a/) TTEreTa/ (14'91)
patc

and solving the eigenproblem
T'E, Ta' = ¢°T'E,, Ta’ (14.92)

to determine the minimum (lower bound) and maximum (upper bound) effectivity
indices. Further details of the process summarized here are given in Boroomand
and Zienkiewicz>''** and by Zienkiewicz ez al.*?

These bounds on the effectivity index are very useful for comparing various error
estimators and their behaviour for different mesh and element patterns. However, a
single parameter called the robustness index has also been devised®® and is useful as
a guide to the robustness of any particular estimator

1 1
R=max( |1 -6, +[1—-0y|, |1—=—]+|1——] (14.93)
01 0y

A large value of this index obviously indicates a poor performance. Conversely the
best behaviour is that in which

and this gives
R=0 (14.95)

In the series of tests reported in references 35—-41 various estimators have been
compared. Table 14.1 shows the highest robustness index value of an equilibrating
residual based error estimator and the SPR recovery error estimator for a set of
particular patches of triangular elements.’’

This performance comparison is quite remarkable and it seems that in all the tests
quoted by Babuska er al.*>~*! the SPR recovery estimator performs best. Indeed we
shall observe that in many cases of regular subdivision, when full superconvergence
occurs the ideal, asymptotically exact solution characterized by R=0 will be
obtained.

In Table 14.2 we show some results obtained for regular meshes of triangles and
rectangles with linear and quadratic elements. In the rectangular elements used for
problems of heat conduction type, superconvergent points are exact and the ideal
result is obtained for both linear and quadratic elements. It is surprising that this
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Table 14.2 Effectivity bounds and robustness of SPR and REP recovery estimator for regular meshes of
triangles and rectangles with linear and quadratic shape function (applied to heat conduction and elasticity
problems). Aspect ratio = length(L)/height(H) of elements in patch tested

Linear triangles and rectangles (heat conduction/elasticity)

SPR REP
Aspect ratio L/H 0r 0y R 0 0y R
1/1 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
12 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
1/4 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
1/8 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
1/16 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
1/32 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
1/64 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
Quadratic rectangles (heat conduction)

0r 0y R 0r 0y R
/1 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
12 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
1/4 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
1/8 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
1/16 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
1/32 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
1/64 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000

Quadratic rectangles (elasticity)

0 0y R 0 0y R
1/1 1.0000 1.0000 0.0000 0.9991 1.0102 0.0111
12 1.0000 1.0000 0.0000 0.9991 1.0181 0.0189
1/4 1.0000 1.0000 0.0000 0.9991 1.0136 0.0145
1/8 1.0000 1.0000 0.0000 0.9991 1.0030 0.0039
1/16 1.0000 1.0000 0.0000 0.9968 1.0001 0.0033
1/32 1.0000 1.0000 0.0000 0.9950 1.0000 0.0050
1/64 1.0000 1.0000 0.0000 0.9945 1.0000 0.0055

Quaderatic triangles (elasticity)

0 0y R 0 0y R
/1 0.9966 1.0929 0.0963 0.9562 1.0503 0.0940
12 0.9966 1.0931 0.0965 0.9559 1.0481 0.0923
1/4 0.9967 1.0937 0.0970 0.9535 1.0455 0.0924
1/8 0.9967 1.0943 0.0976 0.9522 1.0603 0.1081
1/16 0.9966 1.0946 0.0980 0.9518 1.0666 0.1148
1/32 0.9966 1.0947 0.0981 0.9517 1.0684 0.1167
1/64 0.9965 1.0947 0.0982 0.9516 1.0688 0.1172

also occurs in elasticity where the proof of superconvergent points is lacking (for
v > 0). Further, the REP procedure also seems to yield superconvergence except

for elasticity with quadratic elements.

For regular meshes of quadratic triangles generally superconvergence is not
expected and it does not occur for either heat conduction or elasticity problems.
However, the robustness index has very small values (R < 0.10 for SPR and

R < 0.12 for REP) and these estimators are therefore very good.
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Fig. 14.17.
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In Fig. 14.17 and Table 14.3 very irregular meshes of triangular and quadrilateral
elements are analysed in repeatable patterns. It is of course not possible to present
here all tests conducted by the effectivity patch test. The results shown are, however,
typical — others are given in reference 21. It is interesting to observe that the

Table 14.3 Effectivity bounds and robustness of SPR and REP recovery estimator for irregular meshes of
triangles (a, b, ¢, d) and quadrilaterals (e, f, g, h)

Linear element (heat conduction)

SPR REP
Mesh pattern 0 Oy R 0 Oy R
a 0.9626 1.0054 0.0442 0.9709 1.0145 0.0443
b 0.9715 1.0156 0.0447 0.9838 1.0167 0.0329
c 0.9228 1.4417 0.5189 0.8938 1.8235 0.9297
d 0.8341 1.2027 0.3685 0.9463 1.9272 0.9810
e 0.9943 1.0175 0.0232 0.9800 1.0589 0.0789
f 0.9969 1.0152 0.0183 0.9849 1.0582 0.0733
g 0.9987 1.0175 0.0188 0.9987 1.0175 0.0188
h 0.9991 1.0068 0.0077 0.9979 1.0062 0.0083
Linear elements (elasticity)
SPR REP

0 0y R 0r 0y R
a 0.9404 1.0109 0.0741 0.9468 1.0148 0.0707
b 0.8869 1.0250 0.1520 0.9392 1.0275 0.0915
c 0.8550 1.6966 0.8415 0.8037 2.0522 1.2486
d 0.7945 1.2734 0.4788 0.7576 1.9416 1.1840
e 0.9946 1.0247 0.0301 0.9579 1.0508 0.0928
f 1.0038 1.0281 0.0318 0.9612 1.0467 0.0855
g 0.9959 1.0300 0.0341 0.9960 1.0298 0.0338
h 0.9972 1.0139 0.0168 0.9965 1.0122 0.0157

Quadratic elements (heat conduction)

0, 0y R 0r 0y R
a 0.9443 1.0295 0.0877 0.9339 1.0098 0.0805
b 0.8146 1.0037 0.2313 0.9256 1.0028 0.0832
c 0.7640 1.0486 0.3000 0.9559 1.2229 0.2670
d 0.8140 1.0141 0.2423 0.9091 1.2808 0.3717
e 0.9762 1.0053 0.0296 0.9901 1.0177 0.0276
f 0.9691 1.0045 0.0363 0.9901 1.0322 0.0421
g 0.9692 1.0004 0.0322 0.9833 1.0024 0.0195
h 0.9906 1.0113 0.0207 1.0045 1.0261 0.0307

Quadratic elements (elasticity)

0, 0y R 0 0y R
a 0.9144 1.0353 0.1277 0.9197 1.0244 0.1111
b 0.7302 1.0355 0.4038 0.8643 1.0346 0.1905
c 0.7556 1.1024 0.4163 0.8387 1.2422 0.4035
d 0.7624 1.0323 0.3430 0.8244 1.2632 0.4388
e 0.9702 1.0102 0.0408 0.9682 1.0058 0.0386
f 0.9651 1.0085 0.0446 0.9749 1.0286 0.0537
g 0.9457 1.0115 0.0688 0.9807 1.0125 0.0321
h 0.9852 1.0141 0.0290 0.9996 1.0522 0.0526
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performance measured by the robustness index on quadrilateral elements is always
superior to that measured on triangles.

The results in a recent paper of Babuska ef al.”" show that alternative versions of
SPR (such as references 17, 18, 43) generally give much worse robustness index
performance than the original version, especially on irregular elements assembled
near boundaries.

1.41

14.9 Which errors should concern us?

In this chapter we have shown how various recovery procedures can accurately
estimate the overall error of the finite element approximation and thus provide a
very accurate error estimating method. We have also shown how superior are esti-
mators based on SPR recovery to those based on residual computation. The error
estimation discussed here concerns however only the original solution and if the
user takes advantage of the recovered values a much better solution is already avail-
able. In the next chapter we shall be concerned with adaptivity processes aiming at
reduction of the original finite element error for which a vast body of literature
already exists. Here again we shall show the excellent values of the effectivity
index which can be obtained with SPR type methods on examples for which an
‘exact’ solution is available from very fine mesh computations. What perhaps we
should also be concerned with are the errors remaining in the recovered solutions,
if indeed these are to be made use of. This problem is still unsolved and at the
moment all the adaptive methods simply aim at the reduction of various norms
of error in the finite element solution directly provided.
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Adaptive finite element refinement

15.1 Introduction

In the previous chapter we have discussed at some length various methods of recovery
by which the finite element solution results could be made more accurate and this led
us to devise various procedures for error estimation. In this chapter we shall be
concerned with methods which can be used to reduce the errors generally once a
finite element solution has been obtained. As the process depends on previous results
at all stages it is called adaptive. Such adaptive methods were first introduced to finite
element calculations by Babuska and Rheinbolt in the late 1970s."* Before proceed-
ing further it is necessary to clarify the objectives of refinement and specify
‘permissible error magnitudes’ and here the engineer or user must have very clear
aims. For instance the naive requirement that all displacements or all stresses
should be given within a specified tolerance is not always acceptable. The reasons
for this are obvious as at singularities, for example, stresses will always be infinite
and therefore no finite tolerance could be specified. The same difficulty is true for
displacements if point or knife edge loads are considered. The most common criterion
in general engineering use is that of prescribing a total limit of the error computed in
the energy norm. Often this error is required not to exceed a specified percentage of
the total energy norm of the solution and in the many examples presented later we
shall use this criterion. However, using a recovery type of error estimator it is possible
to adaptively refine the mesh so that the accuracy of a certain quantity of interest,
such as the RMS error in displacement and/or RMS error in stress (see Chapter
14, Egs. (14.10a) and (14.10b)), satisfy some user-specified criterion. We should
recognize that mesh refinement based on reducing the RMS error in displacement
is in effect reducing the average displacement error in each element; similarly mesh
refinement based on reducing the RMS error in stress is the same as reducing the aver-
age stress error in each element. Here we could, for instance, specify directly the per-
missible error in stresses or displacements at any location. Some investigators (e.g.,
Zienkiewicz and Zhu®) have used RMS error in stress in the adaptive mesh refinement
to obtain more accurate stress solutions. Others (e.g., Onate and Bugeda4) have used
the requirement of constant energy norm density in the adaptive analysis, which is in
fact equivalent to specifying a uniform distribution of RMS error in stress in each
element. We note that the recovery type of error estimators are particularly useful
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and convenient in designing adaptive analysis procedures for the quantities of
interest.

As we have already remarked in the previous chapter we will at all times consider the
error in the actual finite element solution rather than the error in the recovered solution.
It may indeed be possible in special problems for the error in the recovered solution to
be zero, even if the error in the finite element solution itself is quite substantial. (Con-
sider here for instance a problem with a linear stress distribution being solved by linear
elements which result in constant element stresses. Obviously the element error will be
quite large. But if recovered stresses are used, exact results can be obtained and no
errors will exist.) The problem of which of the errors to consider still needs to be
answered. At the present time we shall consider the question of recovery as that of pro-
viding a very substantial margin of safety in the definition of errors.

Various procedures exist for the refinement of finite element solutions. Broadly
these fall into two categories:

1. The h-refinement in which the same class of elements continue to be used but are
changed in size, in some locations made larger and in others made smaller, to
provide maximum economy in reaching the desired solution.

2. The p-refinement in which we continue to use the same element size and simply
increase, generally hierarchically, the order of the polynomial used in their
definition.

It is occasionally useful to divide the above categories into subclasses, as the /-
refinement can be applied and thought of in different ways. In Fig. 15.1 we illustrate
three typical methods of /4-refinement.

1. The first of these A-refinement methods is element subdivision (enrichment)
[Fig. 15.1(b)]. Here refinement can be conveniently implemented and existing ele-
ments, if they show too much error, are simply divided into smaller ones keeping
the original element boundaries intact. Such a process is cumbersome as many
hanging points are created where an element with mid-side nodes is joined to a
linear element with no such nodes. On such occasions it is necessary to provide
local constraints at the hanging points and the calculations become more involved.
In addition, the implementation of de-refinement requires rather complex data
management which may reduce the efficiency of the method. Nevertheless, the
method of element subdivision is quite widely used.

2. The second method is that of a complete mesh regeneration or remeshing
[Fig. 15.1(c)]. Here, on the basis of a given solution, a new element size is predicted
in all the domain and a totally new mesh is generated. Thus a refinement and de-
refinement are simultaneously allowed. This of course can be expensive, especially
in three dimensions where mesh generation is difficult for certain types of elements,
and it also presents a problem of transferring data from one mesh to another.
However, the results are generally much superior and this method will be used
in most of the examples shown in this chapter. For many practical engineering
problems, particularly of those for which the element shape will be severely dis-
torted during the analysis, adaptive mesh regeneration is a natural choice.

3. The final method, sometimes known as r-refinement [Fig. 15.1(d)], keeps the total
number of nodes constant and adjusts their position to obtain an optimal
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(a) Original mesh

(b) Mesh enhancement by subdivision (enrichment)

/

(c) Mesh enhancement by remeshing

(d) r-refinement of original mesh by reposition of nodes

Fig. 15.1 Various procedures by h-refinement.
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approximation.’~’ While this procedure is theoretically of interest it is difficult to
use in practice and there is little to recommend it. Further it is not a true refinement
procedure as a prespecified accuracy cannot generally be reached.

We shall see that with energy norms specified as the criterion, it is a fairly simple
matter to predict the element size required for a given degree of approximation.
Thus very few re-solutions are generally necessary to reach the objective.

With p-refinement the situation is different. Here two subclasses exist:

1. One in which the polynomial order is increased uniformly throughout the whole
domain;
2. One in which the polynomial order is increased locally using hierarchical refinement.

In neither of these has a direct procedure been developed which allows the prediction
of the best refinement to be used to obtain a given error. Here the procedures gener-
ally require more resolutions and tend to be more costly. However, the convergence
for a given number of variables is more rapid with p-refinement and it has much to
recommend it.

On occasion it is possible to combine efficiently the /- and p-refinements and call it
the hp-refinement. In this procedure both the size of elements /4 and their degree of
polynomial p are altered. Much work has been reported in the literature by Babuska,
Oden and others and the interested reader is referred to the references.®'® In the next
two sections, Sec. 15.2 and 15.3, we shall discuss both the /- and the p-refinements. In
Sec. 15.3 we also include some details of the very simple and yet efficient Ap-refinement
process introduced by Zienkiewicz, Zhu and Gong."’

15.2 Some examples of adaptive h-refinement

15.2.1 Mesh regeneration procedures

In the introduction to this chapter we have mentioned several alternative processes of /-
adaptivity and we suggested that the process in which the complete mesh is regenerated
is in general the most efficient. Such a procedure allows elements to be de-refined (or
enlarged) as well as refined (made smaller) and invariably starts at each stage of the ana-
lysis from a specification of the mesh size defined at each nodal point of the previous
mesh. Standard interpolation is used to find the size of elements required at any
point in the domain. This interpolation helps in the refinement subsequently. Indeed
at the starting point an initial mesh need not include the boundaries of the problem
as it will be used only to interpolate the sizes required in the domain during the process
of mesh generation. However, after this first stage of analysis as the refinement proceeds
the mesh sizes will be specified at the nodes of the last mesh.

In Chapter 9 of this book, where we discussed mapping, we also discussed various
possible mesh generators. These did not allow a mesh size variation of the refined kind
to be specified. In adaptivity it is very important to be able to define quite precisely the
element size or density of mesh so that a minimum number of elements can be used.

The generators which can do this have been developed since the mid-1980s. The
first of these by Peraire es al’® was applied to aerospace engineering and fluid
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mechanics calculations. Its basis is the frontal method of mesh generation developed
originally by Cavendish®' and Lo** and the original generator was made available
only for triangular elements. Later such generators were generalized to include tetra-
hedral elements in three-dimensional space.”> Today both triangular and tetrahedral
generators form the basis of most adaptive codes.

Extension to quadrilateral and hexahedral elements is by no means easy. First,
procedures for generating quadrilateral elements in two dimensions have been
devised. The work of Zhu and Zienkiewicz**** and Rank et al.***" has to be noted.
The procedures are based on the joining of two triangles into a quadrilateral at
different stages of the mesh generation process.

However, so far no extension of such methodologies to hexahedral elements in
space have been made. To the knowledge of the authors no efficient hexahedral
mesh generators exist for adaptivity, though very many attempts have been reported
in the literature.?® 3

In the more recent mesh generators used for both triangles and tetrahedra the
frontal procedure has been largely replaced by Delauney triangulation and the
reader is well advised to consult the following references and texts.

15.2.2 Predicting the required element size in h adaptivity

The error estimators discussed in the previous chapter allow the global energy (or
similar) norm of the error to be determined and the errors occurring locally (at the
element level) are usually also well represented. If these errors are within the limits
prescribed by the analyst then clearly the work is completed. More frequently these
limits are exceeded and refinement is necessary. The question which this section
addresses is how best to effect this refinement. Here obviously many strategies are
possible and much depends on the objectives to be achieved.

In the simplest case we shall seek, for instance, to make the relative energy norm
percentage error 7 less than some specified value 7 (say 5% in many engineering
applications). Thus

n<7 (15.1)
is to be achieved.

In an ‘optimal mesh’ it is desirable that the distribution of energy norm error (i.e.,
|le||x) should be equal for all elements. Thus if the total permissible error is determined
(assuming that it is given by the result of the approximate analysis) as

Permissible error = 7|u|| =~ 17(||ﬁ||2 + ||e||2)1/2 (15.2)
here we have used*®
llell* = lul* - [Ja|? (15.3)

We could pose a requirement that the error in any element & should be

12 2\1/2
el < o RN <o, (154)

where m 1s the number of elements involved.
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Elements in which the above is not satisfied are obvious candidates for refinement.
Thus if we define the ratio

Tk — ¢, (15.5)

we shall refine whenevery
& >1 (15.6)

&, can be approximated, of course, by replacing the true error in Eqs (15.4) and (15.5)
with the error estimators.

The refinement could be carried out progressively by refining only a certain number
of elements in which £ is higher than a certain limit and at each time of refining halve
the size of such elements. This type of element subdivision process is also known as
mesh enrichment. This process of refinement though ultimately leading to a satisfac-
tory solution being obtained with a relatively small number of total degrees of
freedom, is in general not economical as the total number of trial solutions may be
excessive.

It is more efficient to try to design a completely new mesh which satisfies the
requirement that

& <1 (15.7)

One possibility here is to invoke the asymptotic convergence rate criteria at the
element level (although we have seen that these are not realistic in the presence of
singularities) and to predict the element size distribution. For instance, if we assume

|le| |5 o< A (15.8)

where /i, is the current element size and p the polynomial order of approximation,
then to satisfy the requirement of Eq. (15.4) the new generated element size should
be no larger than

hoew = & Pl (15.9)

Mesh generation programs in which the local element size can be specified are
available now as we have already stated and these can be used to design a new
mesh for which the re-analysis is carried out.”>** In the figures we show how starting
from a relatively coarse solution a single mesh prediction often allows a solution
(almost) satisfying the specified accuracy requirement to be achieved.

The reason for the success of the mesh regeneration based on the simple assumption
of asymptotic convergence rate implied in Eq. (15.8) is the fact that with refinement
the mesh tends to be ‘optimal’ and the localized singularity influence no longer affects
the overall convergence.

Of course the effects of singularity will still remain present in the elements adjacent
to it and improved mesh subdivision can be obtained if in such elements we use the
appropriate convergence and write, if in Eqs (15.8) and (15.9) p is replaced by A,
see Chapter 14, Eq. (14.17)

hoew = & iy (15.10)

1 We can indeed ‘de-refine’ or use a larger element spacing where & < 1 if computational economy is
desired.
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Fig. 15.2 The influence of initial mesh to convergence rates in h version. Adaptive refinement using quadratic triangular elements. Problem of Fig. 15.3. Note that if initial
mesh is finer than h = 1/8 adaptive refinement reduces the number of equations.
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in which A is the singularity strength. A convenient number to use here is A = 0.5 as
most singularity parameters lie in the range 0.5-1.0. With this procedure, added to
the refinement strategy, we frequently achieve accuracies better than the prescribed
limit in one remeshing.

In the examples which follow we will show in general a process of refinement in
which the total number of degrees of freedom increases with each stage, even
though the mesh is redesigned. This need not necessarily be the case as a fine but
badly structured mesh can show much greater error than a near-optimal one. To
illustrate this point we show in Fig. 15.2 the one stage refinement designed to reach

Poisson's ratio, v = 0.3
Thickness, t = 1.0

Ay Plane strain conditions

A

L 4

| |
f 1.0 | Mesh 2
Mesh 1

Mesh 3

Fig. 15.3 Short cantilever beam and adaptive meshes of linear triangular elements.
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Poisson’s ratio, v = 0.3
Plane strain conditions

v v v gy ¥} | 4P=10

K 1.0 |

Mesh 1 (40 d.o.f) m=27.0% Mesh 2 (228 d.of) n=7.0%

Mesh 3 (286 d.o.f) m =4.0%

Fig. 15.4 Adaptive mesh of quadratic triangular elements for short cantilever beam.

5% accuracy in one step starting from uniform mesh subdivisions. The problem here
is the same as illustrated in Figs 15.3, 15.4, and 15.5 and in the refinement process we
use both the mesh criteria of Eqs (15.9) and (15.10).%7 This problem refers to a short
stubby cantilever beam in which two very high singularities exist at the corners
attached to a rigid wall. In Fig. 15.4 we show three stages of an adaptive solution
and in Fig. 15.5 we indicate how rapidly this converges although all uniform refine-
ments converge at a very slow rate (due to the singularities).

We note that now, in at least one refinement, a decrease of total error occurs with a
reduction of total degrees of freedom (starting from a uniform 8 x 8 subdivision with
NDF = 544 and n = 9.8% to n = 3.1% with NDF = 460).
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Fig. 15.5 Experimental rates of convergence for short cantilever beam.

The same problem is also solved by both mesh enrichment and mesh regeneration
using linear quadrilateral elements to achieve 5% accuracy. The prescribed accuracy
is obtained with optimal rate of convergence being reached by both adaptive refinement
processes (Fig. 15.6). However, the mesh enrichment method requires seven

Number degrees of freedom
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0.5 T T T T T
0 —70
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—40 ;\5‘
= -05 —20 ¢
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- Lo 0.5 > £
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20 ! ! !
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Log N
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Fig. 15.6 Short cantilever beam. Mesh enrichment versus mesh regeneration using linear quadrilateral
elements.
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Fig. 15.7 Short cantilever solved by mesh enrichment. Linear quadrilateral elements.

refinements, as shown in Fig. 15.7, while mesh regeneration requires only three (see
Fig. 15.8). Here the refinement criterion, Eq. (15.8), is used for the mesh enrichment
process.

As we mentioned earlier, the value of the energy norm error is not necessarily the
best criterion for practical refinement. Limits on the local stress error can be used
effectively. Such errors are quite simply obtained by the recovery processes described
in the previous chapter (SPR in Section 14.4 and REP in Section 14.5). In Fig. 15.9 we
show a simple exercise recently conducted by Ofate and Bugeda4 in which a refine-
ment of a stressed cylinder is made using various criteria as described in the caption
of Fig. 15.9. It will be observed that the stress tolerance method generally needs a

much finer mesh.

|
l

1F

Mesh 1 n =43.20% Mesh 2 n = 9.60% Mesh 3 1 = 5.00%

Fig. 15.8 Short cantilever solved by mesh regeneration. Linear quadrilateral elements.
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Fig. 15.9 Sequence of adaptive mesh refinement strategies based on (a) equal distribution of the global ener-
getic error between all the elements, (b) equal distribution of the density of energetic error, (c) equal
distribution of the maximum error in stresses at each point, and (d) equal distribution of the maximum percen-
tage of the error in stresses at each point. All final meshes have less than 5% energy norm error.

15.2.3 Some further examples

We shall now present further typical examples of /-refinement with mesh adaptivity.
In all of these, full mesh regeneration is used at every step.

Example 1. A Poisson equation in a square domain This example is fairly straight-
forward and starts from a simple square domain in which suitable loading terms
exist in a Poisson equation to give the solution shown in Fig. 15.10. In Fig. 15.11
we show the first subdivision of this domain into regular linear and quadratic
elements and the subsequent refinements. The elements are of both triangular and
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Base contour value = —0.365100 Base contour value = —0.365100
Maximum contour value = 0.852200 Maximum contour value = 0.852200
(a) Contour interval = 0.060865 (b) Contour interval = 0.060865

Fig. 15.10 Poisson equation ‘exact’ solutions. (a) du/dx contours; (b) du/dy contours.

quadrilateral shape and for the linear ones a target error of 10% in total energy has
been set, while for quadratic elements the target error is 1% of total energy. In
practically all cases three refinements suffice to reach a very accurate solution satisfy-
ing the requirements despite the fact that the original mesh cannot capture in any
way the high intensity region illustrated in the previous figure. It is of interest to
note that the effectivity indices in all cases are very good — this is true even for the
original refinement. Figure 15.12 shows the convergence for various elements with
the error plotted against the total number of degrees of freedom. The reader
should note that the asymptotic rate of convergence is exceeded when the refinement
gets closer to its final objective.

Example 2. An L-shaped domain It is of interest to note the results in Fig. 15.13
which come from an analysis of a re-entrant corner using isoparametric quadratic
quadrilaterals. Here a single refinement is shown together with the convergence of
the solution.

Example 3. A machine part For this machine part problem plane strain conditions are
assumed. A prescribed accuracy of 5% relative error is achieved in one adaptive
refinement (see Fig. 15.14) with linear quadrilateral elements. The convergence of
the shear stress 7, is shown in Fig. 15.15.

Example 4. A perforated gravity dam The final example of this section shows a more
practical engineering problem of a perforated dam. This dam was analysed in the late
1960s during its construction. More recently, the problem was given to a young
engineer to choose a suitable mesh of quadratic triangles. Figure 15.16(a) shows
the mesh chosen. Despite the high order of elements the error is quite high, being
around 17%. One stage of refinement with a specified value of 5% error in energy
norm reaches this in a single operation. As we have seen in previous examples such
convergence is not always possible but it is achieved here. We believe this typical
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Fig. 15.11 Poisson problem of Fig. 15.10. Adaptive solutions for: (a) linear triangles; (b) linear quadrilaterals;
() quadratic triangles; (d) quadratic quadrilaterals. 6" based on SPR, 6" based on L, projection. Target error
10% for linear elements and 1% for quadratic elements.
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Fig. 15.12 Adaptive refinement for Poisson problem of Fig. 15.10.

example shows the advantages of adaptivity and the ease with which a final good
mesh can be arrived at automatically.

15.3 p-refinement and hp-refinement

The use of non-uniform p-refinement is of course possible if done hierarchically and
many attempts have been made to do this efficiently. Some of this was done as early as
1983.3? However, the general process is difficult and necessitates many assumptions
about the decrease of error. Certainly, the desired accuracy can seldom be obtained in
a single step and most of the work on this requires a sequence of steps. We illustrate
such a refinement process in Fig. 15.17 for the perforated dam problem presented in
the previous section.

The same applies to ip-processes in which much work has been done during the last
decade.®'® We shall quote here only one particular attempt at sp-refinement which
seems to be particularly efficient and where the number of resolutions is quite
small. The methodology was introduced by Zienkiewicz e al. in 1989" and we
shall quote here some of the procedures suggested.

The first procedure is that of pursuing an /-refinement with lower order elements
(e.g., linear or quadratic elements) to obtain, say, a 5% accuracy, at which stage
the energy norm error is nearly uniformly distributed throughout all elements.
From there a p-refinement is applied in a uniform manner (i.e., the same p is used
in all elements). This has very substantial computational advantages as programming
is easy and can be readily accomplished, especially if hierarchical functions are used.
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Fig. 15.13 Adaptive refinement of an L-shaped domain in plane stress with prescribed error of 1%.

The uniform p-refinement also allows the global energy norm error to be approxi-
mately extrapolated by three consecutive solutions.*
The convergence of the p-refinement finite element solution can be written as

lle]| < CN77 (15.11)
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(a) Mesh 1 (565 d.o.f.) mn=9.75%

(b) Mesh 2 (3155 d.o.f.) m = 4.85%

Fig. 15.14 Adaptive refinement of machine part using linear quadrilateral elements. Target error 5%.

Base contour value = -1.833000 Base contour value = —-1.833000
Maximum contour value = 0.586500 Maximum contour value = 0.586500
Contour interval = 0.163095 Contour interval = 0.163095

Fig. 15.15 Adaptive refinement of machine part. Contours of shear stress for original and final mesh.
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Mesh 2 (1 = 4.9%, 0 = 1.06, 1764 DOF)
(b)

Fig. 15.16 Quadratic triangle. Automatic mesh generation to achieve 5% accuracy. Plane strain analysis of a
dam with perforation, water loading only. (a) Original mesh. (b) Refined mesh.

where C and [ are positive constants depending on the solution of the problem and N
is the number of degrees of freedom. We assume that for each refinement the error is,
observing Eq. (15.3),

2 s (2 -2
[Jull? — [1a,||* = CN;>* (15.12)
with g = p — 2,p — 1, p for the three solutions. Eliminating the two constants C and /3
from the above three equations, |[u||* can be solved by
log(N,, _ 1/Np)
2 2 2 2\

ul|”— ||u ul|” — |ju,_ Tog(N, _2/N, _

Il _ (Ul = oy 5 15.13)

2 N 2 2 N 2
[ul[” = [, 4] [Jul[” = [la, ||
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Fig. 15.17 Adaptive solution of perforated dam by p-refinement. (a) Stage three, 206 d.o.f.; (b) stage five,

365 d.of.

The global energy norm error for the final solution and indeed the error at any stage
of the p-refinement can be determined using

qg=12,...,p.

llell* = [lul|* — ||| (15.14)
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Fig. 15.18 Solution of L-shaped domain by h-p refinement (as defined in Example 2 of previous section)
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(c) h-p refinement. 1% accuracy reached with 1322 d.o.f.

using procedure one of reference 19.

Generally the high accuracy is gained rapidly by refinement, at least from examples
performed to date. In Figs 15.18 and 15.19 we show two examples for which we have
previously used an A-refinement. The first illustrates an L-shaped domain with one
singularity and the second a short cantilever beam with two strong singularities. In
the first both problems are solved using /-refinement and target 5% accuracy is
reached using quadratic triangles. At this stage the p is increased to third and
fourth order so that three solutions are available and when that is reached the

error is less than 1%.
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Poisson's ratio, v = 0.3
Plain strain conditions
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(d) p-refinement. 1% accuracy reached with 1104 d.o.f.

Fig. 15.19 Solution of short cantilever by h-p adaptive refinement using procedure one of reference 19.

In the same paper'® an alternative procedure is suggested. This uses a very coarse
mesh at the outset followed by p-refinement. In this case the error at the element level
is estimated at the last stage of the p-refinement as the difference between the last two
refinements (e.g., the third and fourth order). The global error estimator is calculated
by the extrapolation procedure used in the previous example. The element error
estimator is for order p — 1 rather than the highest order p. It is, however, very
accurate. The element error estimator is subsequently used to compute the optimal
mesh size as described in Sec. 15.2.2. Nearly optimal rate of convergence is
expected to be achieved because the optimal mesh is designed for p — 1 order
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Fig. 15.20 Solution of L-shaped domain by h-p adaptive refinement using alternative procedure of reference
19.

elements. Details of this process will be found again in the reference and will not be
discussed further.

At no stage of the /ip-refinements have we used here any of the estimators quoted in
the previous chapter. However, their use would make the optimal mesh design at
order p possible, because the element error can be accurately estimated at order p.
It will result in an optimal /sp-refinement.

The two examples we have quoted above are re-analysed using the alternative
process described above and presented in Figs 15.20 and 15.21. In both cases
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Fig. 15.21 Solution of short cantilever by h-p adaptive refinement using alternative procedure of reference
19.

the final accuracy shows an error of less than 1% but it is noteworthy that
the total number of degrees of freedom used with the second method is considerably
less than that in the first and still achieves a nearly optimal rate of convergence.

We can conclude this section on /ip-refinement with a final example where a highly
singular crack domain is studied. Once again the second procedure is used showing in
Fig. 15.22 a remarkable rate of convergence.
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Fig. 15.22 Adaptive h-p refinement for a singular crack using alternative procedure of reference 19.
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(a) Local mesh

(b) Pressure coefficients

Fig. 15.23 Directional mesh refinement. Gas flow past a circular cylinder — Mach number 3. Third refinement
mesh 709 nodes (1348 elements).



426 Adaptive finite element refinement

15.4 Concluding remarks

The methods of estimating errors and adaptive refinement which are described in this
and the previous chapter constitute a very important tool for practical application of
finite element methods. The range of applications is large and we have only touched
here upon the relatively simple range of linear elasticity and similar self-adjoint
problems. A recent survey shows many more areas of application* and the reader
is referred to this publication for interesting details. At this stage we would like to
reiterate that many different norms or measures of error can be used and that for
some problems the energy norm is not in fact ‘natural’. A good example of this is
given by problems of high-speed gas flow, where very steep gradients (shocks) can
develop. The formulation of such problems is complex, but this is not necessary for
the present argument.

For problems in fluid mechanics which we will discuss in Volume 3 and similarly for
problems of strain localization in plastic softening discussed in Volume 2 no global
norms can be used effectively. We shall therefore base our refinement on the value
of the maximum curvatures developed by the solution of u. On occasion an elonga-
tion of the elements will be used to refine the mesh appropriately. Figure 15.23
shows a typical problem of shock capture solved adaptively.
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16

Point-based approximations;
element-free Galerkin — and other
meshless methods

16.1 Introduction

In all of the preceding chapters, the finite element method was characterized by the
subdivision of the total domain of the problem into a set of subdomains called
elements. The union of such elements gave the total domain. The subdivision of
the domain into such components is of course laborious and difficult necessitating
complex mesh generation. Further if adaptivity processes are used, generally large
areas of the problem have to be remeshed. For this reason, much attention has
been given to devising approximation methods which are based on points without
necessity of forming elements.

When we discussed the matter of generalized finite element processes in Chapter 3,
we noted that point collocation or in general finite differences did in fact satisfy the
requirement of the pointwise definition. However the early finite differences were
always based on a regular arrangement of nodes which severely limited their applica-
tions. To overcome this difficulty, since the late 1960s the proponents of the finite
difference method have worked on establishing the possibility of finite difference
calculus being based on an arbitrary disposition of collocation points. Here the
work of Girault,' Pavlin and Perrone,” and Snell ez al.® should be mentioned. How-
ever a full realization of the possibilities was finally offered by Liszka and Orkisz,**
and Krok and Orkisz® who introduced the use of least square methods to determine
the appropriate shape functions.

At this stage Orkisz and coworkers realized not only that collocation methods
could be used but also the full finite element, weak formulation could be adopted
by performing integration. Questions of course arose as to what areas such integra-
tion should be applied. Liszka and Orkisz* suggested determining a ‘tributary area’
to each node providing these nodes were triangulated as shown in Fig. 16.1(a). On
the other hand in a somewhat different context Nay and Utku’ also used the least
square approximation including triangular vertices and points of other triangles
placed outside a triangular element thus simply returning to the finite element
concept. We show this kind of approximation in Fig. 16.1(b). Whichever form of
tributary area was used the direct least square approximation centred at each node
will lead to discontinuities of the function between the chosen integration areas and
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(@) (b)

Fig. 16.1 Patches of triangular elements and tributary areas.

thus will violate the rules which we have imposed on the finite element method.
However it turns out that such rules could be violated and here the patch test will
show that convergence is still preserved.

However the possibility of determining a completely compatible form of approxima-
tion existed. This compatible form in which continuity of the function and of its slope if
required and even higher derivatives could be accomplished by the use of so-called
moving least square methods. Such methods were originated in another context
(Shepard.® Lancaster and Salkauskas,”'’). The use of such interpolation in the mesh-
less approximation was first suggested by Nayroles et al.''™'® This formulation was
named by the authors as the diffuse finite element method.

Belytschko and coworkers'*!'> quickly realized the advantages offered by such an
approach especially when dealing with the development of cracks and other problems
for which standard eclements presented difficulties. His so-called ‘element-free
Galerkin’ method led to many seminal publications which have been extensively
used since.

An alternative use of moving least square procedures was suggested by Duarte and
Oden.'*!"” They introduced at the same time a concept of hierarchical forms by noting
that all shape functions derived by least squares possess the partition of unity
property (viz. Chapter 8). Thus higher order interpolations could be added at each
node rather than each element, and the procedures of element-free Galerkin or of
the diffuse element method could be extended.

The use of all the above methods still, however, necessitates integration. Now,
however, this integration need not be carried out over complex areas. A background
grid for integration purposes has to be introduced though internal boundaries were
no longer required. Thus such numerical integration on regular grids is currently
being used by Belytschko'®!” and other approaches are being explored. However
an interesting possibility was suggested by Babuska and Melenk.?*?!

Babuska and Melenk use a partition of unity but now the first set of basic shape
functions is derived on the simplest element, say the linear triangle. Most of the
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approximations then arise through addition of hierarchical variables centred at
nodes. We feel that this kind of approach which necessitates very few elements for
integration purposes combines well the methodologies of ‘element free’ and ‘standard
element’ approximation procedures. We shall demonstrate a few examples later on
the application of such methods which seem to present a very useful extension of
the hierarchical approach.

Incidentally the procedures based on local elements also have the additional
advantage that global functions can be introduced in addition to the basic ones to
represent special phenomena, for instance the presence of a singularity or waves.
Both of these are important and the idea presented by this can be exploited. In
Volume 3, we shall show the application of this to certain wave phenomena, see
Chapter 8, Volume 3.

This chapter will conclude with reference to other similar procedures which we do
not have time to discuss. We shall refer to such procedures in the closure of this chapter.

16.2 Function approximation

We consider here a local set of n points in two (or three) dimensions defined by the
coordinates xj, yi,zx; k= 1,2,...,n or simply X, = [x;, v, 2] at which a set of
data values of the unknown function #; are given. It is desired to fit a specified
function form to the data points. In order to make a fit it is necessary to:

1. Specify the form of the functions, p(x), to be used for the approximation. Here as
in the standard finite element method, it is essential to include low order poly-
nomials necessary to model the highest derivatives contained in the differential
equation or in the weak form approximation being used. Certainly a complete
linear and sometimes quadratic polynomial will always be necessary.

2. Define the procedure for establishing the fit.

Here we will consider some least square fit methods as the basis for performing the
fit. The functions will mostly be assumed to be polynomials, however, in addition
other functions can be considered if these are known to model well the solution
expected (e.g., see Chapter 8, Volume 3 on use of ‘wave’ functions).

16.2.1 Least square fit

We shall first consider a least square fit scheme which minimizes the square of the
distance between n data values u;, defined at the points x; and an approximating
function evaluated at the same points @(xy ). We assume the approximation function
is given by a set of monomials p;

i) = 3" p(x)a; = p(x)a (16.1
j=1

in which p is a set of linearly independent polynomial functions and @ is a set of
parameters to be determined. A least square scheme is introduced to perform the
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fit and this is written as (see Chapter 14 for similar operations): Minimize
n
J =13 "(a(xy) — i)*= min (16.2)
k=1

where the minimization is to be performed with respect to the values of a. Substituting
the values of & at the points x; we obtain
0 = Oy

80cj =1 ('9041

Sax) — @) =0;  j=1,2,....n (16.3)

where
U = Z pi(xk)ey
J

This set of equations may be written in a compact matrix form as

oJ g .
o Z P (pre — i) = 0 (16.4)
da
where p;, = p(x;). We can define the result of the sums as
H=) pip=P'P (16.5)
k=1
g=> pii="Pli (16.6)
k=1
in which
Pi U
p=| P and i={ ®
P Uy
The above process yields the set of linear algebraic equations
He =g =P
which, provided H is non-singular, has the solution
o=H'g=H"'P"a (16.7)

We can now write the approximation for the function as
i=px)H'"PTa = N(x)u

where N(x) are the appropriate shape or basis functions. In general N;(x;) is not unity
as it always has been in standard finite element shape functions. However, the parti-
tion of unity [viz. Eq. (8.4)] is always preserved provided p(x) contains a constant.

Example: Fit of a linear polynomial To make the process clear we first consider a
dataset, i, defined at four points, x;, to which we desire to fit an approximation
given by a linear polynomial

U(x) = o) + xay + yaz = p(x)a
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If we consider the set of data defined by
x,=[—-40 —10 0.0 6.0]
w=[ 50 =50 0.0 3.0]
iy, =[-15 51 3.5 43]

we can write the arrays as

1 -4 5 ~1.5
1 -1 -5 - 5.1
P=11 0 o ™ "= 35
1 6 3 4.3
Using Eq. (16.5) we obtain the values
4 1 3 114
H=P'P=|1 53 3 and g=Pla={ 267
3 359 —20.1
which from Eq. (16.7) has the solution
3.1241
o= 0.4745
—0.5237
Thus, the values for the least square fit at the data points are
—1.5194
) 5.0698
"7 29676
4.2820

The least square fit for these data points is shown in Fig. 16.2 and the difference
between the data points and the values of the fit at x, is given in Table 16.1.

16.2.2 Weighted least square fit

Let us now assume that the point at the origin, x, = 0, is the point about which we are
making the expansion and, therefore, the one where we would like to have the best
accuracy. Based on the linear approximation above we observe that the direct least
square fit yields at the point in question the /argest discrepancy. In order to improve
the fit we can modify our least square fit for weighting the data in a way that
emphasizes the effect of distance from a chosen point. We can write such a weighted
least square fit as the minimization of

n
T =13 wixi — Xp)(d(x¢) — d)*= min (16.8)
k=1

where w is the weighting function. Many choices may be made for the shape of the
function w. If we assume that the weight function depends on a radial distance, r,

433
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Fig. 16.2 Least square fit: (a) four data points; (b) fit of linear function on the four data points.
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Table 16.1 Difference between least square fit and data

X —4 -1 0 6
Vi 5 -5 0 3
iy ~1.500 5100 3.500 4.300
iy ~1.392 5268 3.124 4.400

Difference —0.108 —0.168 0.376 —0.100

from the chosen point we have

w=w(r); = (x —xp) - (X — Xg)

One functional form for w(r) is the exponential Gauss function:
w(r) =exp(—c?);  ¢>0 and r>0 (16.9)

For ¢ = 0.125 this function has the shape shown in Fig. 16.3 and when used with the
previously given four data points yields the linear fit shown in Table 16.2.

16.2.3 Interpolation domains and shape functions

In what follows we shall invariably use the least square procedure to interpolate the
unknown function in the vicinity of a particular node i. The first problem is that
when approximating to the function it is necessary to include a number of nodes
equal at least to the number of parameters of o sought to represent a given polynomial.
This number, for instance, in two dimensions is three for linear polynomials and six for
quadratic ones. As always the number of nodal points has to be greater than or equal to
the bare minimum which is the number of parameters required. We should note in
passing that it is always possible to develop a singularity in the equation used for
solving a, i