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PREFACE

Circuit analysis is not only fundamental to the entire breadth of electrical and computer
engineering—the concepts studied here extend far beyond those boundaries. For this reason
it remains the starting point for many future engineers who wish to work in this field. The text
and all the supplementary materials associated with it will aid you in reaching this goal. We
strongly recommend while you are here to read the Preface closely and view all the resources
available to you as a learner. And one last piece of advice, learning requires practice and rep-
etition, take every opportunity to work one more problem or study one more hour than you
planned. In the end, you’ll be thankful you did. 

To the Student

To the
Instructor

Highlights of the
Tenth Edition

The Tenth Edition has been prepared based on a careful examination of feedback received
from instructors and students. The revisions and changes made should appeal to a wide vari-
ety of instructors. We are aware of significant changes taking place in the way this material
is being taught and learned. Consequently, the authors and the publisher have created a for-
midable array of traditional and non-traditional learning resources to meet the needs of stu-
dents and teachers of modern circuit analysis. 

• A four-color design is employed to enhance and clarify both text and illustrations. This
sharply improves the pedagogical presentation, particularly with complex illustrations.
For example, see Figure 2.5 on page 31.

• New chapter previews provide motivation for studying the material in the chapter. See
page 25 for a chapter preview sample. Learning objectives for each chapter have been
updated and appear as part of the new chapter openers.

• End of chapter homework problems have been substantially revised and augmented.
There are now approximately 1400 problems in the Tenth Edition, of which over 400
are new! Multiple-choice Fundamentals of Engineering (FE) Exam problems also
appear at the end of each chapter.

• Practical applications have been added for nearly every topic in the text. Since these are
items students will naturally encounter on a regular basis, they serve to answer ques-
tions such as, “Why is this important?” or “How am I going to use what I learn from
this course?” For a typical example application, see page 333.
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• Problem Solving videos have been created showing students step-by-step how to solve
all Learning Assessment problems within each chapter. This is a special feature that
should significantly enhance the learning experience for each subsection in a chapter.
The problem-solving videos (PSVs) are now also available for the Apple iPod.

• In order to provide maximum flexibility, online supplements contain solutions to exam-
ples in the book using MATLAB, PSPICE or MultiSim. The worked examples can be
supplied to students as digital files, or one or more of them can be incorporated into
custom print editions of the text, depending upon the instructor’s preference. 

• Problem-Solving Strategies have been retained in the Tenth Edition. They are utilized
as a guide for the solutions contained in the PSVs.

• The WileyPLUS resources have been greatly updated and expanded, with additional
algorithmic problems, problem-solving videos and much more. New Reading Quiz
questions give instructors the opportunity to track student reading and measure their
comprehension. New Math Skills Assessments provide faculty with tools to assess stu-
dents’ mastery of essential mathematical concepts. Not only can faculty measure their
students’ math comprehension at the beginning of the term, they also now have
resources to which they can direct students to help them reinforce areas where they
need to upgrade their skills.

xvi P R E F A C E

Organization This text is suitable for a one-semester, a two-semester or a three-quarter course sequence.
The first seven chapters are concerned with the analysis of dc circuits. An introduction to
operational amplifiers is presented in Chapter 4. This chapter may be omitted without any
loss of continuity; a few examples and homework problems in later chapters must be skipped.
Chapters 8–12 are focused on the analysis of ac circuits beginning with the analysis of single-
frequency circuits (single-phase and three-phase) and ending with variable-frequency circuit
operation. Calculation of power in single-phase and three-phase ac circuits is also presented.
The important topics of the Laplace transform, Fourier transform, and two-port networks are
covered in Chapters 13–16.

The organization of the text provides instructors maximum flexibility in designing their
courses. One instructor may choose to cover the first seven chapters in a single semester,
while another may omit Chapter 4 and cover Chapters 1–3 and 5–8. Other instructors have
chosen to cover Chapters 1–3, 5–6, and sections 7.1 and 7.2 and then cover Chapters 8 and
9. The remaining chapters can be covered in a second semester course.

The pedagogy of this text is rich and varied. It includes print and media and much thought
has been put into integrating its use. To gain the most from this pedagogy, please review the
following elements commonly available in most chapters of this book. 

Learning Objectives are provided at the outset of each chapter. This tabular list tells the
reader what is important and what will be gained from studying the material in the chapter.

Examples are the mainstay of any circuit analysis text and numerous examples have always
been a trademark of this textbook. These examples provide a more graduated level of pres-
entation with simple, medium and challenging examples. Besides regular examples, numer-
ous Design Examples and Application Examples are found throughout the text. See for
example, page 343.

Hints can often be found in the page margins. They facilitate understanding and serve as
reminders of key issues. See for example, page 6.

Text Pedagogy
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Learning Assessments are a critical learning tool in this text. These exercises test the cumu-
lative concepts to that point in a given section or sections. Not only is the answer provided,
but a problem-solving video accompanies each of these exercises, demonstrating the solution
in step-by-step detail. The student who masters these is ready to move forward. See for
example, page 7.

Problem-Solving Strategies are step-by-step problem-solving techniques that many stu-
dents find particularly useful. They answer the frequently asked question, “where do I
begin?” Nearly every chapter has one or more of these strategies, which are a kind of sum-
mation on problem-solving for concepts presented. See for example, page 121.

The Problems have been greatly revised for the 10th Edition. This edition has over 400 new
problems of varying depth and level. Any instructor will find numerous problems appropri-
ate for any level class. There are approximately 1400 problems in the 10th Edition! Included
with the Problems are FE Exam Problems for each chapter. If you plan on taking the FE
Exam, these problems closely match problems you will typically find on the FE Exam.

Circuit Simulation and Analysis Software represents a fundamental part of engineering
circuit design today. Software such as PSPICE®, MultiSim® and MATLAB® allow engi-
neers to design and simulate circuits quickly and efficiently. As an enhancement with enor-
mous flexibility, all three of these software packages can be employed in the 10th edition. In
each case, online supplements are available that contain the solutions to numerous examples
in each of these software programs. Instructors can opt to make this material available online
or as part of a customized print edition, making this software an integral and effective part of
the presentation of course material.

The rich collection of material that is provided for this edition offers a distinctive and
helpful way for exploring the book’s examples and exercises from a variety of simulation
techniques.

P R E F A C E     xvii

WileyPLUSWileyPLUS is an innovative, research-based, online environment for effective teaching and
learning. 

WHAT DO STUDENTS RECEIVE WITH WILEYPLUS?

A Research-based Design. WileyPLUS provides an online environment that integrates rele-
vant resources, including the entire digital textbook, in an easy-to-navigate framework that
helps students study more effectively. 

• WileyPLUS adds structure by organizing textbook content into smaller, more manage-
able “chunks”. 

• Related media, examples, and sample practice items reinforce the learning objectives. 

• Innovative features such as calendars, visual progress tracking and self-evaluation tools
improve time management and strengthen areas of weakness.

One-on-one Engagement. With WileyPLUS, students receive 24/7 access to resources that
promote positive learning outcomes. Students engage with related examples (in various
media) and sample practice items, including:

• FE Exam Questions

• Reading Quiz Questions

• Circuit Solutions

• Learning Assessments

• Math Skills Assessments

irwin_fm_i-xxii-hr.qxd  3-09-2010  15:50  Page xvii



Measurable Outcomes. Throughout each study session, students can assess their progress and
gain immediate feedback. WileyPLUS provides precise reporting of strengths and weak-
nesses, as well as individualized quizzes, so that students are confident they are spending
their time on the right things. With WileyPLUS, students always know the exact outcome of
their efforts.

WHAT DO INSTRUCTORS RECEIVE WITH WILEYPLUS? WileyPLUS provides
reliable, customizable resources that reinforce course goals inside and outside of the class-
room as well as visibility into individual student progress. Pre-created materials and activi-
ties help instructors optimize their time.

Customizable Course Plan: WileyPLUS comes with a pre-created Course Plan designed by
a subject matter expert uniquely for this course. Simple drag-and-drop tools make it easy to
assign the course plan as-is or modify it to reflect your course syllabus. 
Pre-created Activity Types include:

• Questions

• Readings and Resources

• Presentation

• Print Tests

• Concept Mastery

Course Materials and Assessment Content:

• Lecture Notes 

• PowerPoint Slides

• Image Gallery

• Instructor’s Manual

• Gradable Reading Assignment Questions (embedded with online text) 

• Question Assignments: all end-of-chapter problems coded algorithmically with hints, links
to text, whiteboard/show work feature and instructor controlled problem solving help.

Gradebook: WileyPLUS provides instant access to reports on trends in class performance,
student use of course materials and progress towards learning objectives, helping inform
decisions and drive classroom discussions.

WileyPLUS. Learn more at www.wileyplus.com.

Powered by proven technology and built on a foundation of cognitive research, WileyPLUS
has enriched the education of millions of students, in over 20 countries around the world.

xviii P R E F A C E

Supplements The supplements list is extensive and provides instructors and students with a wealth of tra-
ditional and modern resources to match different learning needs. 

Problem-Solving Videos are offered again in the 10th Edition in an iPod-compatible format.
The videos provide step-by-step solutions to Learning Assessments. Videos for Learning
Assessments will follow directly after a chapter feature called Problem-Solving Strategy.
Students who have used these videos with past editions have found them to be very helpful.

The Solutions Manual for the 10th Edition has been completely redone, checked and dou-
ble-checked for accuracy. Although it is hand-written to avoid typesetting errors, it is the
most accurate solutions manual ever created for this textbook. Qualified instructors who
adopt the text for classroom use can download it off Wiley’s Instructor’s Companion Site.
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PowerPoint Lecture Slides are an especially valuable supplementary aid for some instruc-
tors. While most publishers make only figures available, these slides are true lecture tools that
summarize the key learning points for each chapter and are easily editable in PowerPoint.
The slides are available for download from Wiley’s Instructor Companion Site for qualified
adopters.

P R E F A C E     xix
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CHAPTER

BASIC CONCEPTS

1

Courtesy NASA, 2009

T H E L E A R N I N G  G O A L S
F O R  T H I S C H A P T E R  A R E :

■ Review the SI system of units and standard prefixes

■ Know the definitions of basic electrical
quantities: voltage, current, and power

■ Know the symbols for and definitions of
independent and dependent sources

■ Be able to calculate the power absorbed by a circuit
element using the passive sign convention

H
Hubble Space Telescope If you were asked to identify the

top engineering achievements that depend on currents, volt-

ages, and power in electrical systems, would NASA’s Hubble

Space Telescope make your list? It should. Launched over 20

years ago into an orbit 375 miles above the Earth’s surface,

the Hubble Telescope avoids distorting effects of the atmos-

phere and gives significant new data about the universe. It

features multiple channels having many intricate electrical

systems that detect different wavelengths of light and

enables us to examine our solar system as well as remote

galaxies. The success of the Hubble Space Telescope program

has led to other NASA plans. In February 2010, the Solar

Dynamics Observatory was launched to aid in studying our

sun’s dynamic processes including high resolution measure-

ments of solar flares; it is the first mission of NASA’s Living

with a Star program.

Sophisticated as it is, the power of the Hubble Space

Telescope is rooted in the fundamental concepts you will begin

to study in this chapter—charge, current, voltage, power, and

batteries. These core principles are the fundamental building

blocks of your understanding of electrical engineering and your

ability to analyze and design more complicated electrical sys-

tems. Just as the Hubble has led to even greater innovations,

we cannot imagine today what else may lie ahead for you.

1
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2 C H A P T E R  1 B A S I C  C O N C E P T S

1.1
System of Units

The system of units we employ is the international system of units, the Système International
des Unités, which is normally referred to as the SI standard system. This system, which is
composed of the basic units meter (m), kilogram (kg), second (s), ampere (A), kelvin (K),
and candela (cd), is defined in all modern physics texts and therefore will not be defined here.
However, we will discuss the units in some detail as we encounter them in our subsequent
analyses.

The standard prefixes that are employed in SI are shown in Fig. 1.1. Note the decimal rela-
tionship between these prefixes. These standard prefixes are employed throughout our study
of electric circuits.

Circuit technology has changed drastically over the years. For example, in the early 1960s
the space on a circuit board occupied by the base of a single vacuum tube was about the size
of a quarter (25-cent coin). Today that same space could be occupied by an Intel Pentium
integrated circuit chip containing 50 million transistors. These chips are the engine for a host
of electronic equipment.

Figure 1.1 >

Standard SI prefixes.

10–12

pico (p) nano (n) micro (�) milli (m) kilo (k) mega (M) giga (G) tera (T)

10–9 10–6 10–3 1 103 106 109 1012

1.2
Basic Quantities

Before we begin our analysis of electric circuits, we must define terms that we will employ.
However, in this chapter and throughout the book our definitions and explanations will be as
simple as possible to foster an understanding of the use of the material. No attempt will be
made to give complete definitions of many of the quantities because such definitions are not
only unnecessary at this level but are often confusing. Although most of us have an intuitive
concept of what is meant by a circuit, we will simply refer to an electric circuit as an inter-
connection of electrical components, each of which we will describe with a mathematical
model.

The most elementary quantity in an analysis of electric circuits is the electric charge. Our
interest in electric charge is centered around its motion, since charge in motion results in an
energy transfer. Of particular interest to us are those situations in which the motion is confined
to a definite closed path.

An electric circuit is essentially a pipeline that facilitates the transfer of charge from
one point to another. The time rate of change of charge constitutes an electric current.
Mathematically, the relationship is expressed as

1.1

where i and q represent current and charge, respectively (lowercase letters represent time
dependency, and capital letters are reserved for constant quantities). The basic unit of current
is the ampere (A), and 1 ampere is 1 coulomb per second.

Although we know that current flow in metallic conductors results from electron motion,
the conventional current flow, which is universally adopted, represents the movement of positive
charges. It is important that the reader think of current flow as the movement of positive
charge regardless of the physical phenomena that take place. The symbolism that will be used
to represent current flow is shown in Fig. 1.2. in Fig. 1.2a indicates that at any point
in the wire shown, 2 C of charge pass from left to right each second. in Fig. 1.2b
indicates that at any point in the wire shown, 3 C of charge pass from right to left each second.
Therefore, it is important to specify not only the magnitude of the variable representing the
current but also its direction.

I2 = -3 A
I1 = 2 A

i(t) =

dq(t)

dt
  or  q(t) = 3

t

-q

i(x) dx

I1=2 A

I2=–3 A

(a)

(b)

Circuit 1

Circuit 2

Figure 1.2

Conventional current flow:
(a) positive current flow;

(b) negative current flow.
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The two types of current that we encounter often in our daily lives, alternating current (ac)
and direct current (dc), are shown as a function of time in Fig. 1.3. Alternating current is the
common current found in every household and is used to run the refrigerator, stove, washing
machine, and so on. Batteries, which are used in automobiles and flashlights, are one source
of direct current. In addition to these two types of currents, which have a wide variety of uses,
we can generate many other types of currents. We will examine some of these other types
later in the book. In the meantime, it is interesting to note that the magnitude of currents in
elements familiar to us ranges from soup to nuts, as shown in Fig. 1.4.

We have indicated that charges in motion yield an energy transfer. Now we define the
voltage (also called the electromotive force, or potential) between two points in a circuit as the
difference in energy level of a unit charge located at each of the two points. Voltage is very sim-
ilar to a gravitational force. Think about a bowling ball being dropped from a ladder into a tank
of water. As soon as the ball is released, the force of gravity pulls it toward the bottom of the
tank. The potential energy of the bowling ball decreases as it approaches the bottom. The grav-
itational force is pushing the bowling ball through the water. Think of the bowling ball as a
charge and the voltage as the force pushing the charge through a circuit. Charges in motion
represent a current, so the motion of the bowling ball could be thought of as a current. The
water in the tank will resist the motion of the bowling ball. The motion of charges in an elec-
tric circuit will be impeded or resisted as well. We will introduce the concept of resistance in
Chapter 2 to describe this effect.

Work or energy, w(t) or W, is measured in joules (J); 1 joule is 1 newton meter (N �m).
Hence, voltage [v(t) or V] is measured in volts (V) and 1 volt is 1 joule per coulomb; that is,
1 volt=1 joule per coulomb=1 newton meter per coulomb. If a unit positive charge is
moved between two points, the energy required to move it is the difference in energy level
between the two points and is the defined voltage. It is extremely important that the variables
used to represent voltage between two points be defined in such a way that the solution will
let us interpret which point is at the higher potential with respect to the other.
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Figure 1.3

Two common types
of current: (a) alternating
current (ac); (b) direct
current (dc).

i(t)

t t

i(t)

(a) (b)

Figure 1.4

Typical current magnitudes.
Lightning bolt

Large industrial motor current

Typical household appliance current

Causes ventricular fibrillation in humans

Human threshold of sensation

Integrated circuit (IC) memory cell current

Synaptic current (brain cell)

106

104

102

100

10–2

10–4

10–6

10–8

10–10

10–12

10–14

C
ur
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m
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s 
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)
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In Fig. 1.5a the variable that represents the voltage between points A and B has been
defined as and it is assumed that point A is at a higher potential than point B, as indicated
by the ± and – signs associated with the variable and defined in the figure. The ± and – signs
define a reference direction for If then the difference in potential of points A
and B is 2 V and point A is at the higher potential. If a unit positive charge is moved from
point A through the circuit to point B, it will give up energy to the circuit and have 2 J less
energy when it reaches point B. If a unit positive charge is moved from point B to point A,
extra energy must be added to the charge by the circuit, and hence the charge will end up with
2 J more energy at point A than it started with at point B.

For the circuit in Fig. 1.5b, means that the potential between points A and B is
5 V and point B is at the higher potential. The voltage in Fig. 1.5b can be expressed as shown
in Fig. 1.5c. In this equivalent case, the difference in potential between points A and B is

and point B is at the higher potential.
Note that it is important to define a variable with a reference direction so that the answer

can be interpreted to give the physical condition in the circuit. We will find that it is not
possible in many cases to define the variable so that the answer is positive, and we will also
find that it is not necessary to do so.

As demonstrated in Figs. 1.5b and c, a negative number for a given variable, for example,
in Fig. 1.5b, gives exactly the same information as a positive number, that is, in Fig. 1.5c,

except that it has an opposite reference direction. Hence, when we define either current or volt-
age, it is absolutely necessary that we specify both magnitude and direction. Therefore, it is
incomplete to say that the voltage between two points is 10 V or the current in a line is 2 A,
since only the magnitude and not the direction for the variables has been defined.

The range of magnitudes for voltage, equivalent to that for currents in Fig. 1.4, is shown
in Fig. 1.6. Once again, note that this range spans many orders of magnitude.

V2V2

V2 = 5 V,

V2 = -5 V

V1 = 2 V,V1 .

V1 ,

4 C H A P T E R  1 B A S I C  C O N C E P T S

Figure 1.5

Voltage representations.
+

–

+

–

–

+

V1=2 V V2=–5 V V2=5 V

A
C
i
r
c
u
i
t

1

C
i
r
c
u
i
t

2

C
i
r
c
u
i
t

3

A A

B

(a) (b) (c)

B B

Figure 1.6

Typical voltage magnitudes.

Lightning bolt

High-voltage transmission lines
Voltage on a TV picture tube

Large industrial motors
ac outlet plug in U.S. households

Car battery
Voltage on integrated circuits
Flashlight battery

Voltage across human chest produced by the
     heart (EKG)

Voltage between two points on human scalp (EEG)

Antenna of a radio receiver
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104
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100

10–2

10–4
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10–10
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At this point we have presented the conventions that we employ in our discussions of
current and voltage. Energy is yet another important term of basic significance. Let’s
investigate the voltage–current relationships for energy transfer using the flashlight shown in
Fig. 1.7. The basic elements of a flashlight are a battery, a switch, a light bulb, and connect-
ing wires. Assuming a good battery, we all know that the light bulb will glow when the switch
is closed. A current now flows in this closed circuit as charges flow out of the positive ter-
minal of the battery through the switch and light bulb and back into the negative terminal of
the battery. The current heats up the filament in the bulb, causing it to glow and emit light.
The light bulb converts electrical energy to thermal energy; as a result, charges passing
through the bulb lose energy. These charges acquire energy as they pass through the battery
as chemical energy is converted to electrical energy. An energy conversion process is occur-
ring in the flashlight as the chemical energy in the battery is converted to electrical energy,
which is then converted to thermal energy in the light bulb.
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Battery

Switch

Light bulb

+–

Figure 1.7

Flashlight circuit.

Figure 1.8

Flashlight circuit with
voltages and current.

Battery +–
I

Vbulb –+Vbattery +–

Let’s redraw the flashlight as shown in Fig. 1.8. There is a current I flowing in this dia-
gram. Since we know that the light bulb uses energy, the charges coming out of the bulb have
less energy than those entering the light bulb. In other words, the charges expend energy as
they move through the bulb. This is indicated by the voltage shown across the bulb. The
charges gain energy as they pass through the battery, which is indicated by the voltage across
the battery. Note the voltage–current relationships for the battery and bulb. We know that the
bulb is absorbing energy; the current is entering the positive terminal of the voltage. For the
battery, the current is leaving the positive terminal, which indicates that energy is being
supplied.

This is further illustrated in Fig. 1.9, where a circuit element has been extracted from a
larger circuit for examination. In Fig. 1.9a, energy is being supplied to the element by
whatever is attached to the terminals. Note that 2 A, that is, 2 C of charge are moving from
point A to point B through the element each second. Each coulomb loses 3 J of energy as it
passes through the element from point A to point B. Therefore, the element is absorbing 6 J
of energy per second. Note that when the element is absorbing energy, a positive current
enters the positive terminal. In Fig. 1.9b energy is being supplied by the element to whatever
is connected to terminals A-B. In this case, note that when the element is supplying energy,
a positive current enters the negative terminal and leaves via the positive terminal. In this con-
vention, a negative current in one direction is equivalent to a positive current in the opposite
direction, and vice versa. Similarly, a negative voltage in one direction is equivalent to a pos-
itive voltage in the opposite direction.

3 V

3 V

I=2 AA

I=2 A

I=2 A

B

I=2 AA

B

(a)

(b)

+

–

+

–

Figure 1.9

Voltage–current relationships
for (a) energy absorbed and 
(b) energy supplied.
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Suppose that your car will not start. To determine whether the battery is faulty, you turn on
the light switch and find that the lights are very dim, indicating a weak battery. You borrow
a friend’s car and a set of jumper cables. However, how do you connect his car’s battery to
yours? What do you want his battery to do?

Essentially, his car’s battery must supply energy to yours, and therefore it should be
connected in the manner shown in Fig. 1.10. Note that the positive current leaves the posi-
tive terminal of the good battery (supplying energy) and enters the positive terminal of the
weak battery (absorbing energy). Note that the same connections are used when charging a
battery.

EXAMPLE

1.1

SOLUTION

I

I

Good
battery

Weak
battery

+ – + –

Figure 1.10

Diagram for Example 1.1.

In practical applications there are often considerations other than simply the electrical
relations (e.g., safety). Such is the case with jump-starting an automobile. Automobile
batteries produce explosive gases that can be ignited accidentally, causing severe physical
injury. Be safe—follow the procedure described in your auto owner’s manual.

We have defined voltage in joules per coulomb as the energy required to move a positive
charge of 1 C through an element. If we assume that we are dealing with a differential amount
of charge and energy, then

1.2

Multiplying this quantity by the current in the element yields

1.3

which is the time rate of change of energy or power measured in joules per second, or watts
(W). Since, in general, both v and i are functions of time, p is also a time-varying quantity.
Therefore, the change in energy from time to time can be found by integrating Eq. (1.3);
that is,

1.4

At this point, let us summarize our sign convention for power. To determine the sign of
any of the quantities involved, the variables for the current and voltage should be arranged as
shown in Fig. 1.11. The variable for the voltage v(t) is defined as the voltage across the ele-
ment with the positive reference at the same terminal that the current variable i(t) is entering.
This convention is called the passive sign convention and will be so noted in the remainder
of this book. The product of v and i, with their attendant signs, will determine the magnitude
and sign of the power. If the sign of the power is positive, power is being absorbed by the ele-
ment; if the sign is negative, power is being supplied by the element.

¢w = 3
t2

t1

p dt = 3
t2

t1

vi dt

t2t1

vi =

dw

dq
 a dq

dt
b =

dw

dt
= p

v =

dw

dq

i(t)

v(t)

+

–

The passive sign convention
is used to determine whether
power is being absorbed or
supplied.

[ h i n t ]

Figure 1.11

Sign convention for power.
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SOLUTION

EXAMPLE

1.2
Given the two diagrams shown in Fig. 1.12, determine whether the element is absorbing or
supplying power and how much.

2 V
+

–
2 V

4 A

2 V

(a)

–
–

+
+

–2 A

2 V

(b)

+

–

Figure 1.12

Elements for Example 1.2.

In Fig. 1.12a the power is P=(2 V)(–4 A)=–8 W. Therefore, the element is supplying
power. In Fig. 1.12b, the power is P=(2 V)(–2 A)=–4 W. Therefore, the element is
supplying power.

SOLUTION

EXAMPLE

1.3
We wish to determine the unknown voltage or current in Fig. 1.13.

In Fig. 1.13a, a power of –20 W indicates that the element is delivering power. Therefore,
the current enters the negative terminal (terminal A), and from Eq. (1.3) the voltage is 4 V.
Thus, B is the positive terminal, A is the negative terminal, and the voltage between them is
4 V.

In Fig 1.13b, a power of ±40 W indicates that the element is absorbing power and, there-
fore, the current should enter the positive terminal B. The current thus has a value of –8 A,
as shown in the figure.

E1.1 Determine the amount of power absorbed or supplied by the elements in Fig. E1.1.

Learning Assessment
ANSWER:
(a)
(b) .P = 8 W

P = -48 W;

12 V

I=4 A

I=2 A

V1=12 V
+

–

+

–

(a)

+

–
4 VV1=4 V

+

–

(b)Figure E1.1

(a) (b)

5 A

A

B

V1=? P=–20 W 5 V

–A

±B

P=40 W5 V

I=?

–

+

Figure 1.13

Elements for Example 1.3.
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Finally, it is important to note that our electrical networks satisfy the principle of conser-
vation of energy. Because of the relationship between energy and power, it can be implied
that power is also conserved in an electrical network. This result was formally stated in 1952
by B. D. H. Tellegen and is known as Tellegen’s theorem—the sum of the powers absorbed
by all elements in an electrical network is zero. Another statement of this theorem is that the
power supplied in a network is exactly equal to the power absorbed. Checking to verify that
Tellegen’s theorem is satisfied for a particular network is one way to check our calculations
when analyzing electrical networks.

8 C H A P T E R  1 B A S I C  C O N C E P T S

E1.2 Determine the unknown variables in Fig. E1.2.

Learning Assessment
ANSWER:
(a)
(b) .I = -5 A

V1 = -20 V;

I=?

V1=10 V

+

–

+

–
10 V

P=–50 W

I=2 A

V1=?

–

+

P=40 W

(a) (b)Figure E1.2

1.3
Circuit Elements

Thus far we have defined voltage, current, and power. In the remainder of this chapter we will
define both independent and dependent current and voltage sources. Although we will
assume ideal elements, we will try to indicate the shortcomings of these assumptions as we
proceed with the discussion.

In general, the elements we will define are terminal devices that are completely charac-
terized by the current through the element and/or the voltage across it. These elements, which
we will employ in constructing electric circuits, will be broadly classified as being either
active or passive. The distinction between these two classifications depends essentially on
one thing—whether they supply or absorb energy. As the words themselves imply, an active
element is capable of generating energy and a passive element cannot generate energy.

However, later we will show that some passive elements are capable of storing energy.
Typical active elements are batteries and generators. The three common passive elements are
resistors, capacitors, and inductors.

In Chapter 2 we will launch an examination of passive elements by discussing the resis-
tor in detail. Before proceeding with that element, we first present some very important active
elements.

1. Independent voltage source 3. Two dependent voltage sources

2. Independent current source 4. Two dependent current sources

INDEPENDENT SOURCES An independent voltage source is a two-terminal element
that maintains a specified voltage between its terminals regardless of the current through it
as shown by the v-i plot in Fig. 1.14a. The general symbol for an independent source, a circle,
is also shown in Fig. 1.14a. As the figure indicates, terminal A is v(t) volts positive with
respect to terminal B.

In contrast to the independent voltage source, the independent current source is a two-
terminal element that maintains a specified current regardless of the voltage across its
terminals, as illustrated by the v-i plot in Fig. 1.14b. The general symbol for an independent
current source is also shown in Fig. 1.14b, where i(t) is the specified current and the arrow
indicates the positive direction of current flow.
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In their normal mode of operation, independent sources supply power to the remainder of
the circuit. However, they may also be connected into a circuit in such a way that they absorb
power. A simple example of this latter case is a battery-charging circuit such as that shown
in Example 1.1.

It is important that we pause here to interject a comment concerning a shortcoming of the
models. In general, mathematical models approximate actual physical systems only under a cer-
tain range of conditions. Rarely does a model accurately represent a physical system under
every set of conditions. To illustrate this point, consider the model for the voltage source in
Fig. 1.14a. We assume that the voltage source delivers v volts regardless of what is connected
to its terminals. Theoretically, we could adjust the external circuit so that an infinite amount of
current would flow, and therefore the voltage source would deliver an infinite amount of power.
This is, of course, physically impossible. A similar argument could be made for the independ-
ent current source. Hence, the reader is cautioned to keep in mind that models have limitations
and thus are valid representations of physical systems only under certain conditions.

For example, can the independent voltage source be utilized to model the battery in an
automobile under all operating conditions? With the headlights on, turn on the radio. Do the
headlights dim with the radio on? They probably won’t if the sound system in your automo-
bile was installed at the factory. If you try to crank your car with the headlights on, you will
notice that the lights dim. The starter in your car draws considerable current, thus causing the
voltage at the battery terminals to drop and dimming the headlights. The independent volt-
age source is a good model for the battery with the radio turned on; however, an improved
model is needed for your battery to predict its performance under cranking conditions.
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A

B

A

B

v(t)

v

i

i(t)

(a) (b)

v

i

+
–

Figure 1.14

Symbols for (a) independent
voltage source, (b) independ-
ent current source.

EXAMPLE

1.4
Determine the power absorbed or supplied by the elements in the network in Fig. 1.15.

24 V 18 V

I=2 A
I=2 A

I=2 A

+

+

–

–

6 V

2

1

+
– Figure 1.15

Network for Example 1.4.
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DEPENDENT SOURCES In contrast to the independent sources, which produce a
particular voltage or current completely unaffected by what is happening in the remainder of
the circuit, dependent sources generate a voltage or current that is determined by a voltage or
current at a specified location in the circuit. These sources are very important because they
are an integral part of the mathematical models used to describe the behavior of many elec-
tronic circuit elements.

For example, metal-oxide-semiconductor field-effect transistors (MOSFETs) and bipolar
transistors, both of which are commonly found in a host of electronic equipment, are mod-
eled with dependent sources, and therefore the analysis of electronic circuits involves the use
of these controlled elements.

In contrast to the circle used to represent independent sources, a diamond is used to
represent a dependent or controlled source. Fig. 1.16 illustrates the four types of dependent
sources. The input terminals on the left represent the voltage or current that controls the
dependent source, and the output terminals on the right represent the output current or volt-
age of the controlled source. Note that in Figs. 1.16a and d, the quantities � and � are dimen-
sionless constants because we are transforming voltage to voltage and current to current. This
is not the case in Figs. 1.16b and c; hence, when we employ these elements a short time later,
we must describe the units of the factors r and g.

10 C H A P T E R  1 B A S I C  C O N C E P T S

The current flow is out of the positive terminal of the 24-V source, and therefore this
element is supplying (2)(24)=48 W of power. The current is into the positive terminals
of elements 1 and 2, and therefore elements 1 and 2 are absorbing (2)(6)=12 W and
(2)(18)=36 W, respectively. Note that the power supplied is equal to the power
absorbed.

SOLUTION

+
–

+
–

v=�vS

+

–

+

–

(a) (b)

vS

vS i=gvS

v=riS

i=�iS

iS

(c) (d)

iS

Figure 1.16

Four different types of
dependent sources.

Elements that are
connected in series have
the same current.

[ h i n t ]

E1.3 Find the power that is absorbed or supplied by the elements in Fig. E1.3.

Learning Assessment
ANSWER: Current source 
supplies 36 W, element 
1 absorbs 54 W, and
element 2 supplies 18 W.

Figure E1.3

12 V 6 V

I=3 A

3 A

I=3 A
+

+

–

–+

–

18 V

2

1
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In Fig. 1.17b, the output current is = (50)(1 mA) = 50 mA; that is, the circuit has
a current gain of 50, meaning that the output current is 50 times greater than the input current.

Io = �IS

Io

VoVS=2 V 20VS=Vo

+

–

+

–

50IS=Io

IS=1 mA

(a) (b)

+
–

Figure 1.17

Circuits for Example 1.5.

E1.4 Determine the power supplied by the dependent sources in Fig. E1.4.

Learning Assessment
ANSWER:
(a) Power supplied = 80 W; 
(b) power supplied = 160 W.

Figure E1.4

10VS 

+

–

4 IS

IS=4 A

1 1±
–

Io=2 A

VS=4 V

(a) (b)

10 V

+

–

SOLUTION

EXAMPLE

1.6
Calculate the power absorbed by each element in the network of Fig. 1.18. Also verify that
Tellegen’s theorem is satisfied by this network.

Figure 1.18

Circuit used in Example 1.6.

+

-

8 V

4

24 V

3 A

+ -

+ -

1 A 2 A

16 V

3

1

2 A

12 V
1 A

4 V

2
+ -

±
– 12 V

1 A

±
–

Let’s calculate the power absorbed by each element using the sign convention for power.

 P3 = (12)(1) = 12 W

 P2 = (4)(1) = 4 W

 P1 = (16)(1) = 16 W

Given the two networks shown in Fig. 1.17, we wish to determine the outputs.

In Fig. 1.17a the output voltage is or =(20)(2 V)=40 V. Note that
the output voltage has been amplified from 2 V at the input terminals to 40 V at the output
terminals; that is, the circuit is a voltage amplifier with an amplification factor of 20.

Vo = 20 VSVo = �VS SOLUTION

EXAMPLE

1.5
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Note that to calculate the power absorbed by the 24-V source, the current of 3 A flowing up
through the source was changed to a current �3 A flowing down through the 24-V source.

Let’s sum up the power absorbed by all elements: 16 � 4 � 12 � 16 � 24 � 72 � 0

This sum is zero, which verifies that Tellegen’s theorem is satisfied.

 P24V = (24)(-3) = -72 W
 P12V = (12)(2) = 24 W

 P4 = (8)(2) = 16 W

EXAMPLE

1.7

SOLUTION

Use Tellegen’s theorem to find the current in the network in Fig. 1.19.Io

3 ±
–

1 2

±
–

Ix=2 A

8Ix

2 A

8 A

9 A 11 A

3 A

10 V 4 V

6 V

12 V6 V

+

++

+

––

–

–

Io

Figure 1.19

Circuit used in Example 1.7.

First, we must determine the power absorbed by each element in the network. Using the sign
convention for power, we find

Applying Tellegen’s theorem yields

or

Hence,
Io = 1A

6Io + 176 = 12 + 108 + 30 + 32

-12 + 6Io - 108 - 30 - 32 + 176 = 0

 PDS = A8IxB(11) = (16)(11) = 176 W

 P4 V = (4)(-8) = -32 W

 P3 = (10)(-3) = -30 W

 P2 = (12)(-9) = -108 W

 P1 = (6)AIoB = 6Io W

 P2 A = (6)(-2) = -12 W

E1.5 Find the power that is absorbed or supplied by the circuit elements in the network in
Fig. E1.5.

Learning Assessment
ANSWER:

supplied;
absorbed;
absorbed.P4Ix

= 64 W
P1 = 32 W
P24 V = 96 W

Figure E1.5

8 V

Ix=4 A

4Ix24 V

+ –

±
–

1

±
–
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S E C T I O N  1 . 3 C I R C U I T  E L E M E N T S     13

E1.6 Find the power that is absorbed
or supplied by the network elements in
Fig. E1.6.

ANSWER:
P24V = 36 W supplied, 
P12V = 18 W absorbed, 
P21x

= 4.5 W supplied,
P1 = 9 W absorbed,
P2 = 13.5 W absorbed.

1

2

+
–24 V +

– 12 V

9 V

6 V
+ –

2Ix

–+

Ix=1.5 A– +

E1.7 Find Ix in Fig. E1.7 using
Tellegen’s theorem.

ANSWER:
Ix = -2 A.

3

1

2 +
–15 V

15 V

2 A1 A

5 A

10 V

10 V

25 V

Ix

+

–

+

–

+

–

+

–

EXAMPLE

1.8
The charge that enters the BOX is shown in Fig. 1.20. Calculate and sketch the current flow-
ing into and the power absorbed by the BOX between 0 and 10 milliseconds.

12 V BOX±
–

i (t)

q(t) (mC)

t (ms)

1

2

3

–2

–3

–1

1 2 3 4

5 6

7 8 9 10

Figure 1.20

Diagrams for Example 1.8.

Figure E1.6

Figure E1.7
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14 C H A P T E R  1 B A S I C  C O N C E P T S

SOLUTION Recall that current is related to charge by . The current is equal to the slope of

the charge waveform.

i(t) =

dq(t)

dt

The current is plotted with the charge waveform in Fig. 1.21. Note that the current is zero
during times when the charge is a constant value. When the charge is increasing, the cur-
rent is positive, and when the charge is decreasing, the current is negative.

t � 9 ms i(t) = 0

6 � t � 9 ms i(t) =

2 * 10-3
- (-2 * 10-3)

9 * 10-3
- 6 * 10-3 = 1.33 A

5 � t � 6 ms i(t) = 0

3 � t � 5 ms i(t) =

-2 * 10-3
- 3 * 10-3

5 * 10-3
- 3 * 10-3 = -2.5 A

2 � t � 3 ms i(t) = 0

1 � t � 2 ms i(t) =

3 * 10-3
- 1 * 10-3

2 * 10-3
- 1 * 10-3 = 2A

0 � t � 1 ms i(t) = 0

q(t) (mC), i(t) (A)

t (ms)

1

2

3

–2

–3

–1

1 2 3 4

5 6

7 8 9 10

Figure 1.21

Charge and current
waveforms for Example 1.8.

The power absorbed by the BOX is 12 i(t).

The power absorbed by the BOX is plotted in Fig. 1.22. For the time intervals, 
and ms, the BOX is absorbing power. During the time interval , the
power absorbed by the BOX is negative, which indicates that the BOX is supplying power
to the 12-V source.

3 � t � 5 ms6 � t � 9
1 � t � 2 ms

 p(t) = 12*0 = 0         t � 9 ms

 p(t) = 12*1.33 = 16 W      6 � t � 9 ms

 p(t) = 12*0 = 0         5 � t � 6 ms

 p(t) = 12*(-2.5) = - 30 W    3 � t � 5 ms

 p(t) = 12*0 = 0         2 � t � 3 ms

 p(t) = 12*2 = 24 W       1 � t � 2 ms

 p(t) = 12*0 = 0         0 � t � 1 ms

�
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Figure 1.22

Power waveform for
Example 1.8.

p(t) (W)

t (ms)

12

24

36

–24

–36

–12

1 2 3 4

5 6

7 8 9 10

E1.8 The power absorbed by the BOX in Fig. El.8 is
p(t) = 2.5e-4t W. Compute the energy and charge deliv-
ered to the BOX in the time interval 0 6 t 6 250 ms.

ANSWER: 395.1 mJ, 
8.8 mC.

Learning Assessment

E1.9 The energy absorbed by the BOX in Fig. El.9 is given below. Calculate and sketch the current
flowing into the BOX. Also calculate the charge that enters the BOX between 0 and 12 seconds.

50e–t V BOX+
–

i (t)

10 V BOX+
–

i (t)

w(t) (J)

t (s)

5

–2.5

1 2 3 4 5 6

7 8 9 10 11 12

Figure E1.8

Figure E1.9
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EXAMPLE

1.9
A Universal Serial Bus (USB) port is a common feature on both desktop and notebook
computers as well as many handheld devices such as MP3 players, digital cameras, and cell
phones. The USB 2.0 specification (www.usb.org) permits data transfer between a comput-
er and a peripheral device at rates up to 480 megabits per second. One important feature of
USB is the ability to swap peripherals without having to power down a computer. USB ports
are also capable of supplying power to external peripherals. Fig. 1.23 shows a Motorola
RAZR® and an Apple iPod® being charged from the USB ports on a notebook computer.
A USB cable is a four-conductor cable with two signal conductors and two conductors for
providing power. The amount of current that can be provided over a USB port is defined in
the USB specification in terms of unit loads, where one unit load is specified to be 100 mA.
All USB ports default to low-power ports at one unit load, but can be changed under soft-
ware control to high-power ports capable of supplying up to five unit loads or 500 mA.

Figure 1.23

Charging a Motorola RAZR®
and Apple iPod® from USB
ports. (Courtesy of Mark
Nelms and Jo Ann Loden)

t (s)1 2 3

4 5 6 7 8

9 10 11 12

i(t) (A)

0.125

0.25

–0.25

–0.125

ANSWER: Q = 0.
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1. A 680 mAh lithium-ion battery is standard in a Motorola RAZR®. If this battery
is completely discharged (i.e., 0 mAh), how long will it take to recharge the battery
to its full capacity of 680 mAh from a low-power USB port? How much charge is
stored in the battery at the end of the charging process?

2. A third-generation iPod® with a 630 mAh lithium-ion battery is to be recharged
from a high-power USB port supplying 150 mA of current. At the beginning of the
recharge, 7.8 C of charge are stored in the battery. The recharging process halts when
the stored charge reaches 35.9 C. How long does it take to recharge the battery?

1. A low-power USB port operates at 100 mA. Assuming that the charging current
from the USB port remains at 100 mA throughout the charging process, the time
required to recharge the battery is . The charge stored in
the battery when fully charged is 

.
2. The charge supplied to the battery during the recharging process is

. This corresponds to 
. Assuming a constant charging current of 150 mA from the high-power

USB port, the time required to recharge the battery is 468.3 mAh�150 mA = 3.12 h .
468.3 mAh

28.1 As = 28,100 mAs � 1h�60s =35.9 - 7.8 = 28.1 C

40.8 C
680mAh � 60 s�h = 40,800 mAs = 40.8 As =

680 mAh�100 mA = 6.8 h

SOLUTION

S U M M A R Y
•

■ The standard prefixes employed

■ The relationships between current and
charge

■ The relationships among power, energy,
current, and voltage

■ The passive sign convention The passive sign
convention states that if the voltage and current associated
with an element are as shown in Fig. 1.11, the product of 
v and i, with their attendant signs, determines the
magnitude and sign of the power. If the sign is positive,
power is being absorbed by the element, and if the sign is
negative, the element is supplying power.

■ Independent and dependent sources An
ideal independent voltage (current) source is a two-terminal
element that maintains a specified voltage (current) between
its terminals, regardless of the current (voltage) through
(across) the element. Dependent or controlled sources
generate a voltage or current that is determined by a voltage
or current at a specified location in the circuit.

■ Conservation of energy The electric circuits
under investigation satisfy the conservation of energy.

■ Tellegen’s theorem The sum of the powers
absorbed by all elements in an electrical network is zero.

 ¢w = 3
t2

t1

p dt = 3
t2

t1

vi dt

 p =

dw

dt
= vi

i(t) =

dq(t)

dt
  or  q(t) = 3

t

-q

i(x) dx

 T = 1012 m = 10-3

 G = 109 � = 10-6

 M = 106 n = 10-9

 k = 103 p = 10-12

P R O B L E M S
•

1.1 If the current in an electric conductor is 2.4 A, how
many coulombs of charge pass any point in a 30-second
interval?

1.2 Determine the time interval required for a 12-A battery
charger to deliver 4800 C.

1.3 A lightning bolt carrying 30,000 A lasts for 50 micro-
seconds. If the lightning strikes an airplane flying at
20,000 feet, what is the charge deposited on the plane?

1.4 If a 12-V battery delivers 100 J in 5 s, find (a) the amount
of charge delivered and (b) the current produced.
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18 C H A P T E R  1 B A S I C  C O N C E P T S

1.5 The current in a conductor is 1.5 A. How many coulombs of
charge pass any point in a time interval of 1.5 minutes?

1.6 If 60 C of charge pass through an electric conductor in
30 seconds, determine the current in the conductor.

1.7 Determine the number of coulombs of charge produced by
a 12-A battery charger in an hour.

1.8 Five coulombs of charge pass through the element in 
Fig. P1.8 from point A to point B. If the energy absorbed by
the element is 120 J, determine the voltage across the 
element.

Figure P1.8

1.9 The current that enters an element is shown in
Fig. P1.9. Find the charge that enters the element
in the time interval 

Figure P1.9

1.10 The charge entering the positive terminal of an element is
mC. If the voltage across the element is

, determine the energy delivered to the element
in the time interval 0 6 t 6 50 ms.
120e-2t V
q(t) = -30e-4t

i(t) mA

t (s)0

10

10 20

0 6 t 6 20 s.

B

A

+

-

V1

1.11 The charge entering the positive terminal of an element is
given by the expression . The power
delivered to the element is . Compute
the current in the element, the voltage across the element,
and the energy delivered to the element in the time
interval 

1.12 The voltage across an element is . The current
entering the positive terminal of the element is .
Find the energy absorbed by the element in 1.5 s starting
from t �� 0.

1.13 The power absorbed by the BOX in Fig. P1.13 is 
2e-2t W. Calculate the amount of charge that enters the
BOX between 0.1 and 0.4 seconds.

Figure P1.13

1.14 The power absorbed by the BOX in Fig. P1.14 is 
0.1e-4t W. Calculate the energy absorbed by the BOX
during this same time interval.

Figure P1.14

10e–2t V BOX+
–

4e–t V BOX+
–

2e-2t A
12e-2t V

0 6 t 6 100 ms.

p(t) = 2.4e-3t W
q(t) = -12e-2t mC

w(t) (mJ)

t (ms)

5

10

15

–10

–15

–5

1 2 3 4 5 6 7 8 9 10

15 V BOX+
–

i (t)

1.15 The energy absorbed by the BOX in Fig. P1.15 is shown below. How much charge enters
the BOX between 0 and 10 milliseconds?

Figure P1.15
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P R O B L E M S     19

1.16 The charge that enters the BOX in Fig. P1.16 is shown in the graph below. Calculate and sketch
the current flowing into and the power absorbed by the BOX between 0 and 10 milliseconds.

12 V BOX+
–

i (t)

q(t) (mC)

t (ms)

1

2

3

–2

–3

–1

1 2 3 4

5

6 7 8 9 10

1.17 The energy absorbed by the BOX in Fig. P1.17 is given below. Calculate and sketch the
current flowing into the BOX. Also calculate the charge which enters the BOX between 0
and 12 seconds.

10 V BOX+
–

i (t)

w(t) (J)

t (s)

5

–2.5

1 2 3 4 5

6 7 8

9

10

11

12

Figure P1.16

Figure P1.17
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20 C H A P T E R  1 B A S I C  C O N C E P T S

1.18 The charge entering the upper terminal of the BOX in Fig. P1.18 is shown below. How much
energy is absorbed by the BOX between 0 and 9 seconds?

Figure P1.18

1.19 The energy absorbed by the BOX in Fig. P1.19 is shown in the graph below. Calculate and
sketch the current flowing into the BOX between 0 and 10 milliseconds.

Figure P1.19

12 V BOX+
–

i (t)

w(t) (mJ)

t (ms)

10

20

30

–20

–30

–10

1 2 3 4

5 6 7

8 9 10

12 V BOX+
–

i (t)

q(t) (C)

t (s)

0.5

1

–1

–1.5

–0.5

1 2 3 4 5 6 7 8 9
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P R O B L E M S     21

1.20 Determine the amount of power absorbed or supplied
by the element in Fig. P1.20 if

(a)

(b)

(c)

(d)

Figure P1.20

1.21 Calculate the power absorbed by element A in
Fig. P1.21.

Figure P1.21

1.22 Calculate the power supplied by element A in Fig. P1.22.

Figure P1.22

1.23 Element A in the diagram in Fig. P1.23 absorbs 30 W of
power. Calculate Vx.

Figure P1.23

A

2 A

Vx
–

+

A20 V

2 A

–

+

A15 V

3 A

–

+

+

-

V1

I

 V1 = -12 V and I = -3A

 V1 = -12 V and I = 2A

 V1 = 9 V and I = -3A

 V1 = 9 V and I = 2A

1.24 Element B in the diagram in Fig. P1.24 supplies 60 W of
power. Calculate Ix.

Figure P1.24

1.25 Element B in the diagram in Fig. P1.25 supplies 72 W of
power. Calculate VA.

Figure P1.25

1.26 Element B in the diagram in Fig. P1.26 supplies 72 W of
power. Calculate Ix.

Figure P1.26

1.27 (a) In Fig. P1.27 (a), W. Is element 2 absorbing
or supplying power, and how much?

(b) In Fig. P1.27 (b), W. Is element 1 absorb-
ing or supplying power, and how much?

Figure P1.27

(a) (b)

12 V
–

+

6 V
-

+

6 V
+

-

24 V
-

+

1

2

1

2

P2 = -48

P1 = 36

B18 V

Ix

–

+

B

3 A

VA
–

+

B24 V

Ix

–

+
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1.28 Two elements are connected in series, as shown in
Fig. P1.28. Element 1 supplies 24 W of power. Is ele-
ment 2 absorbing or supplying power, and how much?

Figure P1.28

1.29 Element 2 in Fig. P1.29 absorbed 32 W. Find the power
absorbed or supplied by elements 1 and 3.

Figure P1.29

1.30 Choose such that the power absorbed by element 2 in
Fig. P1.30 is 7 W.

Figure P1.30

1.31 Find the power that is absorbed or supplied by the circuit
elements in Fig. P1.31.

Figure P1.31

16 V 4 A

1

4 A

+

-

-+
8 V

+
-

Ix=4 A

2Ix

(b)

20 V 2 A

2 A

1

14 V

+

-

-+
6 V

2 A

+
-

(a)

4 V

Is6 V 2 V

+

+

–

–

+

–

1

2

Is

8 V
–

+

12 V
-

+

2

4 V
+

-
1

3

3 V
–

+

6 V
+

-

1

2

1.32 Find the power that is absorbed or supplied by the net-
work elements in Fig. P1.32.

Figure P1.32

1.33 Compute the power that is absorbed or supplied by the
elements in the network in Fig. P1.33.

Figure P1.33

1.34 Find the power that is absorbed or supplied by element 2
in Fig. P1.34.

Figure P1.34

1.35 Find Ix in the network in Fig. P1.35.

Figure P1.35

1

12 V

28 V36 V

Ix

2 A

+ –
1Ix

–+

3

+

–

+
–

2 A

2 24 V

+

–

1

4 V

12 V

2 A

2 A

+ –
2Vx

–+

2 Vx

+

–

+
–

Ix=4 A

36 V

2 A

2 A
1Ix

2 3

1 – ±

12 V
+ -

28 V

+

-

24 V

+

-

±
–

(a)

Ix=2 A 2 A

2 A

2Ix

1

8 V

12 V

+ -

(b)

Ix=2 A2 A 2 A

2 A

4Ix 2 12 V

+

-

1

20 V24 V
+ -

±
–

±
–

– ±

±
–
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1.36 Determine the power absorbed by element 1 in Fig. P1.36.

Figure P1.36

1.37 Find the power absorbed or supplied by element 1 in
Fig. P1.37.

Figure P1.37

1.38 Find the power absorbed or supplied by element 3 in
Fig. P1.38.

Figure P1.38

1.39 Find the power absorbed or supplied by element 1 in Fig.
P1.39.

Figure P1.39

1

4 V
+ –

4Ix

Ix

+–

3 20 V

+

–
4 20 V

+

–
2 8 V12 V

4 A

4 A

2 A

12 V

+

–

+

–

1

4 V
+ –

+–

+
–

+
–

2 16 V

4 A

2 A

2 A 2 A

12 V

12 V

+

–

3 Vx

2Vx

+

–

4 20 V
+

–

2 A

1

6 V

18 V

Ix

Ix

+ –
2

4 V
+ –

20 V+
– 24 V +

–

2 A

2Ix

+

–

1

12 V

16 V36 V

Ix + –
2

8 V
+ –

2Ix 3
+

–

+
–

2 A

24 V

+

–

1.40 Find in the network in Fig. P1.40 using Tellegen’s
theorem.

Figure P1.40

1.41 Find in the circuit in Fig. P1.41 using Tellegen’s
theorem.

Figure P1.41

1.42 Is the source in the network in Fig. P1.42 absorbing
or supplying power, and how much?

Figure P1.42

1.43 Find in the network in Fig. P1.43 using Tellegen’s
theorem.

Figure P1.43

Ix=2 A

Io

4Ix

+
4

5

2

±
–

6

3

1

6 V
-

+-
8 V

8 V
+ -

16 V

24 V

3 A

3 A

6 A

4 A

1 A

+

-

10 V

+

-

6 V

+

-

±
–

Io

3 A 9 A

3 A

VS

+

-

8 V

6 A
-

+

10 V 9 A 16 V
-

+

6 V
+ -

+-

Vs

IxIx
2 A

18 V 12 V
+ -

8 V
+ -

4 V
+ -

6 V

2 A

24 V 2 A
+

-
12 V

+

-

±
–

– ±

Ix

Vx
+ -

321
+ -

+ -

24 V12 V

16 V
2 A

12 V9 V -
+

-
+

+-

Vx
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24 C H A P T E R  1 B A S I C  C O N C E P T S

1.44 Calculate the power absorbed by each element in the
circuit in Fig. P1.44. Also verify Tellegen’s theorem is
satisfied by this circuit.

Figure P1.44

1.45 Calculate the power absorbed by each element in the cir-
cuit in Fig. P1.45. Also verify that Tellegen’s theorem is
satisfied by this circuit.

Figure P1.45

5

30 V

40 V

1

5 V
+ –

2
1 A

5 A

+
–

+
–

4 A

4 A

3 A

1 A

15 V

4

5 V
+ –

+

–
5 V

-

+

10 V

+

–

3

10 V+ –

5

24 V
+ –

12 V
+ –

3Ix

–+

1 2
2 A

2 A

4 A

6 A

4 A

12 V

4

9 V

24 V +
–3 15 V6 V

+

–

+

–

- +
6 V

+ –

4 A

2 A

Ix = 2 A

+
–

1.46 In the circuit in Fig. P1.46, element 1 absorbs 40 W, ele-
ment 2 supplies 50 W, element 3 supplies 25 W, and ele-
ment 4 absorbs 15 W. How much power is supplied by
element 5?

Figure P1.46

543

1 2

irwin01_001-024hr.qxd  30-06-2010  13:16  Page 24



CHAPTER

RESISTIVE CIRCUITS

25

Courtesy of Tesla Motors

T H E L E A R N I N G  G O A L S F O R  T H I S
C H A P T E R  A R E :

■ Be able to use Ohm’s law to solve electric circuits

■ Be able to apply Kirchhoff’s current law and
Kirchhoff’s voltage law to solve electric circuits

■ Know how to analyze single-loop and single-
node-pair circuits

■ Know how to combine resistors in series and 
parallel

■ Be able to use voltage and current division to
solve simple electric circuits

■ Understand when and how to apply wye-delta
transformations in the analysis of electric circuits

■ Know how to analyze electric circuits contain-
ing dependent sources

T
Tesla Roadster Green technologies come in many colors.

The 2010 Tesla Roadster, for example, comes in Fusion Red,

Arctic White, Racing Green and Electric Blue, to name a few.

An environmentally friendly sports car that seats two, this

convertible has rocket acceleration and hugs the road like a

dream; it’s the world’s first high-performance electric car.

The Roadster contains over 6,800 safe, rechargeable lithium-

ion batteries that weigh about 1,000 pounds in total.  It is

twice as efficient as hybrid cars that combine a gasoline

engine and an electric motor to provide propulsion, but its

fantastic performance comes at a cost of over $100,000.  

Choosing between an all-electric vehicle and a hybrid

requires trade-offs on a wide range of criteria: performance,

cost, efficiency, effects on the environment, safety, and relia-

bility.  Handling qualities may be highly important to some,

cost and efficiency to others.  

As a student of circuit analysis, you will make trade-offs in

choosing between methods of analysis for different circuit

topologies.  This chapter describes fundamental laws that

apply to all circuits regardless of their complexity.  Ohm’s law

governs the most common relationship between voltage and

current for circuits that are linear.  Circuits having a single

power source with resistances having the same currents and

others having the same voltage will be analyzed using the

series-parallel method.  You’ll learn more techniques in the

chapters that follow, as you begin to master the same princi-

ples used by the designers of the Tesla Roadster.

2
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26 C H A P T E R  2 R E S I S T I V E  C I R C U I T S

2.1
Ohm’s Law

Ohm’s law is named for the German physicist Georg Simon Ohm, who is credited with
establishing the voltage–current relationship for resistance. As a result of his pioneering
work, the unit of resistance bears his name.

Ohm’s law states that the voltage across a resistance is directly proportional to the current
flowing through it. The resistance, measured in ohms, is the constant of proportionality
between the voltage and current.

A circuit element whose electrical characteristic is primarily resistive is called a resistor
and is represented by the symbol shown in Fig. 2.1a. A resistor is a physical device that can
be purchased in certain standard values in an electronic parts store. These resistors, which
find use in a variety of electrical applications, are normally carbon composition or wire-
wound. In addition, resistors can be fabricated using thick oxide or thin metal films for use
in hybrid circuits, or they can be diffused in semiconductor integrated circuits. Some typical
discrete resistors are shown in Fig. 2.1b.

The mathematical relationship of Ohm’s law is illustrated by the equation

v(t)=R i(t), where R � 0 2.1

or equivalently, by the voltage–current characteristic shown in Fig. 2.2a. Note carefully the
relationship between the polarity of the voltage and the direction of the current. In addition,
note that we have tacitly assumed that the resistor has a constant value and therefore that the
voltage–current characteristic is linear.

The symbol � is used to represent ohms, and therefore,

1 �=1 V/A

Although in our analysis we will always assume that the resistors are linear and are thus
described by a straight-line characteristic that passes through the origin, it is important that
readers realize that some very useful and practical elements do exist that exhibit a nonlinear
resistance characteristic; that is, the voltage–current relationship is not a straight line. 

R

i(t)

v(t)

+

–

(a) (b)

Figure 2.1

(a) Symbol for a resistor; 
(b) some practical devices. 

(1), (2), and (3) are high-
power resistors. (4) and (5)

are high-wattage fixed
resistors. (6) is a high-

precision resistor. (7)–(12)
are fixed resistors with

different power ratings.
(Photo courtesy of Mark

Nelms and Jo Ann Loden)

The passive sign convention
will be employed in
conjunction with Ohm’s law.

[ h i n t ]
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i(t)

(a) (b)

v(t)

R
1

v(t)

i(t)

Figure 2.2

Graphical representation of
the voltage–current relation-
ship for (a) a linear resistor
and (b) a light bulb.

The light bulb from the flashlight in Chapter 1 is an example of an element that exhibits
a nonlinear characteristic. A typical characteristic for a light bulb is shown in Fig. 2.2b.

Since a resistor is a passive element, the proper current–voltage relationship is illustrated
in Fig. 2.1a. The power supplied to the terminals is absorbed by the resistor. Note that the
charge moves from the higher to the lower potential as it passes through the resistor and
the energy absorbed is dissipated by the resistor in the form of heat. As indicated in Chapter 1,
the rate of energy dissipation is the instantaneous power, and therefore

p(t)=v(t)i(t) 2.2

which, using Eq. (2.1), can be written as

2.3

This equation illustrates that the power is a nonlinear function of either current or voltage and
that it is always a positive quantity.

Conductance, represented by the symbol G, is another quantity with wide application in
circuit analysis. By definition, conductance is the reciprocal of resistance; that is,

2.4

The unit of conductance is the siemens, and the relationship between units is

1 S=1 A/V

Using Eq. (2.4), we can write two additional expressions,

i(t)=Gv(t) 2.5

and

2.6

Eq. (2.5) is another expression of Ohm’s law.
Two specific values of resistance, and therefore conductance, are very important: R=0

and R=q.
In examining the two cases, consider the network in Fig. 2.3a. The variable resistance

symbol is used to describe a resistor such as the volume control on a radio or television set.

p(t) =

i2(t)

G
= Gv2(t)

G =

1

R

p(t) = Ri2(t) =

v2(t)

R
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As the resistance is decreased and becomes smaller and smaller, we finally reach a point
where the resistance is zero and the circuit is reduced to that shown in Fig. 2.3b; that is, the
resistance can be replaced by a short circuit. On the other hand, if the resistance is increased
and becomes larger and larger, we finally reach a point where it is essentially infinite and the
resistance can be replaced by an open circuit, as shown in Fig. 2.3c. Note that in the case of
a short circuit where R � 0,

Therefore, although the current could theoretically be any value. In the open-
circuit case where 

Therefore, the current is zero regardless of the value of the voltage across the open terminals.

 = 0

 i(t) = v(t)�R
R = q,

v(t) = 0,

 = 0

 v(t) = Ri(t)

28 C H A P T E R  2 R E S I S T I V E  C I R C U I T S

R

(a) (b) (c)

i(t) i(t) i(t)

+

–

v(t)

+

–

v(t)

+

–

v(t)

Figure 2.3

Short-circuit and open-circuit
descriptions.

In the circuit in Fig. 2.4a, determine the current and the power absorbed by the resistor.

Using Eq. (2.1), we find the current to be

I=V/R=12/2k=6 mA

Note that because many of the resistors employed in our analysis are in k�, we will use k
in the equations in place of 1000. The power absorbed by the resistor is given by Eq. (2.2) or
(2.3) as

 = V2�R = (12)2�2k = 0.072 W

 = I2R = A6 * 10-3B2(2k) = 0.072 W

 P = VI = (12)A6 * 10-3B = 0.072 W

SOLUTION

VS

VS VS R
P=80 mW

I=0.5 mA

4 mA

P=3.6 mW

G=50 �S

(a) (b)

(c) (d)

I I

I

12 V
10 k�

2 k�

+

-

±
–

±
–

±
–

Figure 2.4

Circuits for Examples 2.1
to 2.4.

EXAMPLE

2.1
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SOLUTION

EXAMPLE

2.2
The power absorbed by the 10-k� resistor in Fig. 2.4b is 3.6 mW. Determine the voltage
and the current in the circuit.

Using the power relationship, we can determine either of the unknowns:

and

Furthermore, once is determined, I could be obtained by Ohm’s law, and likewise once
I is known, then Ohm’s law could be used to derive the value of . Note carefully that the
equations for power involve the terms and . Therefore, and 
also satisfy the mathematical equations and, in this case, the direction of both the voltage and
current is reversed.

VS = -6 VI = -0.6 mAV2
SI2

VS

VS

 I = 0.6 mA

 I2
= (3.6 * 10-3)�10k

 I2R = P

 VS = 6 V

 V2
S = (3.6 * 10-3)(10k)

 V2
S�R = P

SOLUTION

EXAMPLE

2.3
Given the circuit in Fig. 2.4c, we wish to find the value of the voltage source and the power
absorbed by the resistance.

The voltage is

The power absorbed is then

Or we could simply note that

and therefore

and the power could be determined using P = I2R = V 2
S�R = VS I.

VS = IR = (0.5 * 10-3)(20k) = 10 V

R = 1�G = 20 k�

P = I2�G = (0.5 * 10-3)2�(50 * 10-6) = 5 mW

VS = I�G = (0.5 * 10-3)�(50 * 10-6) = 10 V

SOLUTION

EXAMPLE

2.4
Given the network in Fig. 2.4d, we wish to find R and 

Using the power relationship, we find that 

The voltage can now be derived using Ohm’s law as

The voltage could also be obtained from the remaining power relationships in Eqs. (2.2)
and (2.3).

VS = IR = A4 * 10-3B(5k) = 20 V

R = P�I2
= A80 * 10-3B�A4 * 10-3B2 = 5 k�

VS .
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Before leaving this initial discussion of circuits containing sources and a single resistor,
it is important to note a phenomenon that we will find to be true in circuits containing many
sources and resistors. The presence of a voltage source between a pair of terminals tells us
precisely what the voltage is between the two terminals regardless of what is happening in
the balance of the network. What we do not know is the current in the voltage source. 
We must apply circuit analysis to the entire network to determine this current. Likewise, the
presence of a current source connected between two terminals specifies the exact value of
the current through the source between the terminals. What we do not know is the value
of the voltage across the current source. This value must be calculated by applying circuit
analysis to the entire network. Furthermore, it is worth emphasizing that when applying
Ohm’s law, the relationship specifies a relationship between the voltage directly
across a resistor R and the current that is present in this resistor. Ohm’s law does not apply
when the voltage is present in one part of the network and the current exists in another. This
is a common mistake made by students who try to apply to a resistor R in the
middle of the network while using a V at some other location in the network.

V = IR

V = IR

30 C H A P T E R  2 R E S I S T I V E  C I R C U I T S

E2.1 Given the circuits in Fig. E2.1, find (a) the current I and the power absorbed by the resis-
tor in Fig. E2.1a, and (b) the voltage across the current source and the power supplied by the
source in Fig. E2.1b.

ANSWER: (a) I � 0.3 mA,
P � 3.6 mW; 
(b) 
P � 2.16 mW.

VS = 3.6 V,

E2.2 Given the circuits in Fig. E2.2, find (a) R and in the circuit in Fig. E2.2a, and (b) find
I and R in the circuit in Fig. E2.2b.

VS ANSWER: (a) R=10 k�,

(b) I=20.8 mA,
R=576 �.

VS = 4 V;

VS 0.6 mA40 k� 6 k�

+

(b)(a)

12 V

–

I

±
–

Figure E2.1

(b)(a)

VS
RR

P=1.6 mW P=0.25 W
12 V0.4 mA

+

–

I

±
–

Figure E2.2

Learning Assessments

E2.3 The power absorbed by Gx in Fig. E2.3 is 50 mW. Find Gx. ANSWER: Gx=500 �S.

Gx10 V ±
–

Figure E2.3
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in Fig. 2.5a will be used to describe the terms node, loop, and branch. A node is simply a
point of connection of two or more circuit elements. The reader is cautioned to note that,
although one node can be spread out with perfect conductors, it is still only one node. This
is illustrated in Fig. 2.5b, where the circuit has been redrawn. Node 5 consists of the entire
bottom connector of the circuit.

If we start at some point in the circuit and move along perfect conductors in any direction
until we encounter a circuit element, the total path we cover represents a single node.
Therefore, we can assume that a node is one end of a circuit element together with all the per-
fect conductors that are attached to it. Examining the circuit, we note that there are numerous
paths through it. A loop is simply any closed path through the circuit in which no node
is encountered more than once. For example, starting from node 1, one loop would contain the
elements and i1; another loop would contain and i1; and so on.
However, the path and i1 is not a loop because we have encountered node 3
twice. Finally, a branch is a portion of a circuit containing only a single element and the nodes
at each end of the element. The circuit in Fig. 2.5 contains eight branches.

Given the previous definitions, we are now in a position to consider Kirchhoff’s laws,
named after German scientist Gustav Robert Kirchhoff. These two laws are quite simple but
extremely important. We will not attempt to prove them because the proofs are beyond our
current level of understanding. However, we will demonstrate their usefulness and attempt to
make the reader proficient in their use. The first law is Kirchhoff’s current law (KCL), which
states that the algebraic sum of the currents entering any node is zero. In mathematical form
the law appears as

2.7a
N

j = 1
ij(t) = 0

R1 , v1 , R5 , v2 , R3 ,
R2 , v1 , v2 , R4 ,R1 , v2 , R4 ,
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i1(t)

v2(t)

v1(t)
R1

R2

R5R4

R3

(a)

R2i1(t)

i2(t) i3(t)

i5(t)

v1(t)

v2(t)

i7(t)

i4(t)i6(t)

i8(t)

R1

R4 R5

(b)

1

4

5

2
3R3

–±

±
–

±
–

–±

Figure 2.5

Circuit used to illustrate KCL.

KCL is an extremely important
and useful law.

[ h i n t ]

2.2
Kirchhoff’s Laws

The circuits we have considered previously have all contained a single resistor, and we have
analyzed them using Ohm’s law. At this point we begin to expand our capabilities to handle
more complicated networks that result from an interconnection of two or more of these sim-
ple elements. We will assume that the interconnection is performed by electrical conductors
(wires) that have zero resistance—that is, perfect conductors. Because the wires have zero
resistance, the energy in the circuit is in essence lumped in each element, and we employ the
term lumped-parameter circuit to describe the network.

To aid us in our discussion, we will define a number of terms that will be employed
throughout our analysis. As will be our approach throughout this text, we will use examples
to illustrate the concepts and define the appropriate terms. For example, the circuit shown
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where ij(t) is the jth current entering the node through branch j and N is the number of
branches connected to the node. To understand the use of this law, consider node 3 shown in
Fig. 2.5. Applying Kirchhoff’s current law to this node yields

i2(t)-i4(t)+i5(t)-i7(t)=0

We have assumed that the algebraic signs of the currents entering the node are positive and,
therefore, that the signs of the currents leaving the node are negative.

If we multiply the foregoing equation by –1, we obtain the expression

–i2(t)+i4(t)-i5(t)+i7(t)=0

which simply states that the algebraic sum of the currents leaving a node is zero. Alternatively,
we can write the equation as

i2(t)+i5(t)=i4(t)+i7(t)

which states that the sum of the currents entering a node is equal to the sum of the currents
leaving the node. Both of these italicized expressions are alternative forms of Kirchhoff’s
current law.

Once again it must be emphasized that the latter statement means that the sum of the
variables that have been defined entering the node is equal to the sum of the variables that have
been defined leaving the node, not the actual currents. For example, ij(t) may be defined enter-
ing the node, but if its actual value is negative, there will be positive charge leaving the node.

Note carefully that Kirchhoff’s current law states that the algebraic sum of the currents
either entering or leaving a node must be zero. We now begin to see why we stated in
Chapter 1 that it is critically important to specify both the magnitude and the direction of a cur-
rent. Recall that current is charge in motion. Based on our background in physics, charges can-
not be stored at a node. In other words, if we have a number of charges entering a node, then
an equal number must be leaving that same node. Kirchhoff’s current law is based on this prin-
ciple of conservation of charge.

Finally, it is possible to generalize Kirchhoff’s current law to include a closed surface. By
a closed surface we mean some set of elements completely contained within the surface that
are interconnected. Since the current entering each element within the surface is equal to that
leaving the element (i.e., the element stores no net charge), it follows that the current enter-
ing an interconnection of elements is equal to that leaving the interconnection. Therefore,
Kirchhoff’s current law can also be stated as follows: The algebraic sum of the currents
entering any closed surface is zero.

32 C H A P T E R  2 R E S I S T I V E  C I R C U I T S

Let us write KCL for every node in the network in Fig. 2.5, assuming that the currents
leaving the node are positive.

The KCL equations for nodes 1 through 5 are

Note carefully that if we add the first four equations, we obtain the fifth equation. What
does this tell us? Recall that this means that this set of equations is not linearly independent.
We can show that the first four equations are, however, linearly independent. Store this idea
in memory because it will become very important when we learn how to write the equations
necessary to solve for all the currents and voltages in a network in the following chapter.

 -i6(t) - i7(t) + i8(t) = 0

 -i3(t) + i5(t) - i8(t) = 0

 -i2(t) + i4(t) - i5(t) + i7(t) = 0

 i1(t) - i4(t) + i6(t) = 0

 -i1(t) + i2(t) + i3(t) = 0

EXAMPLE

2.5
SOLUTION
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The network in Fig. 2.5 is represented by the topological diagram shown in Fig. 2.6. We
wish to find the unknown currents in the network.

1

2
3

4

5

I5I4

I1

I6 30 mA

20 mA

40 mA

60 mA

SOLUTIONAssuming the currents leaving the node are positive, the KCL equations for nodes 1 through
4 are

The first equation yields and the last equation yields Knowing , we can immediately
obtain from the third equation. Then the values of and yield the value of from the
second equation. The results are and 

As indicated earlier, dependent or controlled sources are very important because we
encounter them when analyzing circuits containing active elements such as transistors. The
following example presents a circuit containing a current-controlled current source.

I6 = -10 mA.I5 = 50 mA,I4 = 70 mA,I1 = 80 mA,
I6I4I1I4

I5I5 .I1

 -0.02 + I5 - 0.03 = 0

 -0.06 + I4 - I5 + 0.04 = 0

 I1 - I4 + I6 = 0

 -I1 + 0.06 + 0.02 = 0

EXAMPLE

2.7
Let us write the KCL equations for the circuit shown in Fig. 2.7.

1
2

3

4

R1

R2

R3 R4

i2(t)

50i2(t)

i1(t)

v1(t)

i5(t) i3(t) i4(t)

±
–

Figure 2.7

Circuit containing a
dependent current source.

EXAMPLE

2.6

Figure 2.6

Topological diagram for the
circuit in Fig. 2.5.
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Let us find and in the network represented by the topological diagram in Fig. 2.6.

This diagram is redrawn in Fig. 2.8; node 1 is enclosed in surface 1, and nodes 3 and 4 are
enclosed in surface 2. A quick review of the previous example indicates that we derived a
value for from the value of However, is now completely enclosed in surface 2. If we
apply KCL to surface 2, assuming the currents out of the surface are positive, we obtain

or

which we obtained without any knowledge of Likewise for surface 1, what goes in must
come out and, therefore, The reader is encouraged to cut the network in Fig. 2.6
into two pieces in any fashion and show that KCL is always satisfied at the boundaries.

I1 = 80 mA.
I5 .

I4 = 70 mA

I4 - 0.06 - 0.02 - 0.03 + 0.04 = 0

I5I5 .I4

I1I4

SOLUTION

I1

I6

I4

60 mA 20 mA

40 mA 30 mA

Surface 1

Surface 2

Figure 2.8

Diagram used to demon-
strate KCL for a surface.

Kirchhoff’s second law, called Kirchhoff’s voltage law (KVL), states that the algebraic sum of
the voltages around any loop is zero. As was the case with Kirchhoff’s current law, we will defer
the proof of this law and concentrate on understanding how to apply it. Once again the reader is
cautioned to remember that we are dealing only with lumped-parameter circuits. These circuits
are conservative, meaning that the work required to move a unit charge around any loop is zero.

In Chapter 1, we related voltage to the difference in energy levels within a circuit and
talked about the energy conversion process in a flashlight. Because of this relationship
between voltage and energy, Kirchhoff’s voltage law is based on the conservation of energy.

Recall that in Kirchhoff’s current law, the algebraic sign was required to keep track of whether
the currents were entering or leaving a node. In Kirchhoff’s voltage law, the algebraic sign is used
to keep track of the voltage polarity. In other words, as we traverse the circuit, it is necessary to

The KCL equations for nodes 1 through 4 follow:

If we added the first three equations, we would obtain the negative of the fourth. What does
this tell us about the set of equations?

 i5(t) - i3(t) - i4(t) = 0

 -i1(t) + 50i2(t) + i4(t) = 0

 -i2(t) + i3(t) - 50i2(t) = 0

 i1(t) + i2(t) - i5(t) = 0

SOLUTION

EXAMPLE

2.8
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sum to zero the increases and decreases in energy level. Therefore, it is important we keep track
of whether the energy level is increasing or decreasing as we go through each element.

In applying KVL, we must traverse any loop in the circuit and sum to zero the increases
and decreases in energy level. At this point, we have a decision to make. Do we want to con-
sider a decrease in energy level as positive or negative? We will adopt a policy of consider-
ing a decrease in energy level as positive and an increase in energy level as negative. As we
move around a loop, we encounter the plus sign first for a decrease in energy level and a
negative sign first for an increase in energy level.

Finally, we employ the convention to indicate the voltage of point a with respect
to point b: that is, the variable for the voltage between point a and point b, with point a
considered positive relative to point b. Since the potential is measured between two points, it
is convenient to use an arrow between the two points, with the head of the arrow located at the
positive node. Note that the double-subscript notation, the ± and – notation, and the single-
headed arrow notation are all the same if the head of the arrow is pointing toward the positive
terminal and the first subscript in the double-subscript notation. All of these equivalent forms

Vab
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E2.4 Given the networks in Fig. E2.3, find (a) in Fig. E2.4a and (b) in Fig. E2.4b.ITI1 ANSWER:
(a) 
(b) IT = 70 mA.

I1 = -50 mA;

ANSWER: (a) 
(b) and
I2 = 5 mA.

I1 = 8 mA
I1 = 6 mA;

ANSWER: (a) ix=4 mA;
(b) ix=12 mA.

(a)

50 mA

I1

IT

10 mA 40 mA 20 mA

(b)

±
–

Figure E2.4

I14 mA

10 mA

(a)

I1

I2

12 mA

4 mA3 mA

(b)

±
–

E2.5 Find (a) in the network in Fig. E2.5a and (b) and in the circuit in Fig. E2.5b.I2I1I1

E2.6 Find the current ix in the circuits in Fig. E2.6.

Figure E2.5

(a) (b)

R44 mA

ix

10ix
R1 R2

12 mA

120 mA

ix

10ix

Figure E2.6

Learning Assessments
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Consider the network in Fig. 2.10.EXAMPLE

2.10

SOLUTION

Figure 2.10

Circuit used to explain KVL.

e

f

a b c d
VR3

VR4

VR2
VR1

R1

R4

R2 R3

24 V

16 V

8 V

+ – +

+

–

– + –

-
+

±
–

±
–

Let us demonstrate that only two of the three possible loop equations are linearly independent.

Note that this network has three closed paths: the left loop, right loop, and outer loop.
Applying our policy for writing KVL equations and traversing the left loop starting at point
a, we obtain

The corresponding equation for the right loop starting at point b is

The equation for the outer loop starting at point a is

Note that if we add the first two equations, we obtain the third equation. Therefore, as we
indicated in Example 2.5, the three equations are not linearly independent. Once again, we
will address this issue in the next chapter and demonstrate that we need only the first two
equations to solve for the voltages in the circuit.

VR1
+ VR2

+ VR3
+ 8 - 24 = 0

VR2
+ VR3

+ 8 + 16 - VR4
= 0

VR1
+ VR4

- 16 - 24 = 0

Consider the circuit shown in Fig. 2.9. If and are known quantities, let us find VR3
 .VR2

VR1

R1

VR1

VR2

VR3

R2

a

5 V

30 V

15 V

b

f e

c

d+

+
+

–

–

–

R3

+-

–±

±
–

Starting at point a in the network and traversing it in a clockwise direction, we obtain the
equation

which can be written as 

Now suppose that and are known to be 18 V and 12 V, respectively. Then VR3
= 20 V.VR2

VR1

 = 50

 +VR1
+ VR2

+ VR3
= 5 + 15 + 30

+VR1
- 5 + VR2

- 15 + VR3
- 30 = 0

SOLUTION

EXAMPLE

2.9

Figure 2.9

Circuit used to 
illustrate KVL.
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for labeling voltages are shown in Fig. 2.11. The usefulness of the arrow notation stems from
the fact that we may want to label the voltage between two points that are far apart in a
network. In this case, the other notations are often confusing.

In general, the mathematical representation of Kirchhoff’s voltage law is

2.8

where vj(t) is the voltage across the jth branch (with the proper reference direction) in a loop
containing N voltages. This expression is analogous to Eq. (2.7) for Kirchhoff’s current law.

a
N

j = 1
vj(t) = 0
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1 1

(a)

Vx=Vab

a

b

+

–

1

a

b

+

–

1Vx=Vo

+

–

Vx=Vo

+

–

Vo

(b)

Vx=Vab=Vo

(d)

Vo

+

–

Vo

+

–

(c)

Vo

Figure 2.11

Equivalent forms for labeling
voltage.

SOLUTION

EXAMPLE

2.11
Consider the network in Fig. 2.12a. Let us apply KVL to determine the voltage between two
points. Specifically, in terms of the double-subscript notation, let us find and Vec .Vae

The circuit is redrawn in Fig. 2.12b. Since points a and e as well as e and c are not physi-
cally close, the arrow notation is very useful. Our approach to determining the unknown
voltage is to apply KVL with the unknown voltage in the closed path. Therefore, to deter-
mine we can use the path aefa or abcdea. The equations for the two paths in which 
is the only unknown are

and

Note that both equations yield Even before calculating we could calculate
using the path cdec or cefabc. However, since is now known, we can also use the path

ceabc. KVL for each of these paths is

and

Each of these equations yields Vec = -10 V.

 -Vec - Vae + 16 - 12 = 0

 -Vec + 10 - 24 + 16 - 12 = 0
 4 + 6 + Vec = 0

VaeVec

Vae ,Vae = 14 V.

16 - 12 + 4 + 6 - Vae = 0

Vae + 10 - 24 = 0

VaeVae

Vae Vec

(a) (b)

R1

R4 R3

R224 V

16 V

6 V10 V
+ +––

–+

+

–

12 V

4 V

f d

b

e

a c

24 V

16 V

6 V10 V
+ +––

–+

+

–

12 V

4 V

f d

b

e

a c

±
–

+-

±
–

+-

Figure 2.12

Network used in
Example 2.11.

KVL is an extremely important
and useful law.

[ h i n t ]
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The two KVL equations are

 20VR1
+ VR3

- VR2
= 0

 VR1
+ VR2

- VS = 0

SOLUTION

E2.8 Find and in the network in Fig. E2.8.VebVad ANSWER:
Veb = 10 V.

Vad = 26 V,

12 V

4 V
24 V

8 V

6 V

f e d

a b c

+

+ – +

+–

–

–
6 V±

–

–±

E2.9 Find in the circuit in Fig. E2.9.Vbd ANSWER: Vbd = 11 V.

±
–Vbd

VR1
VR2

 = 1 V

12 V 10 VR1

a b c

d

+

–

+ +– –

±
–

Figure E2.8

Figure E2.9

E2.7 Find IX and I1 in Fig. E2.7. ANSWER: IX = 2 mA, 
I1 = 4 mA.

1 mA

6 mA

Ix

1.5Ix

I1

Figure E2.7

Given the network in Fig. 2.13 containing a dependent source, let us write the KVL equa-
tions for the two closed paths abda and bcdb.

± –
a b

d

cVR1

VS VR3

20 VR1
VR2

R1

R2 R3

+

+

–

+

–

–

±
–

EXAMPLE

2.12

Figure 2.13

Network containing a
dependent source.

Learning Assessments
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Before proceeding with the analysis of simple circuits, it is extremely important that we
emphasize a subtle but very critical point. Ohm’s law as defined by the equation V=IR
refers to the relationship between the voltage and current as defined in Fig. 2.14a. If the direc-
tion of either the current or the voltage, but not both, is reversed, the relationship between the
current and the voltage would be V=–IR. In a similar manner, given the circuit in
Fig. 2.14b, if the polarity of the voltage between the terminals A and B is specified as shown,
then the direction of the current I is from point B through R to point A. Likewise, in
Fig. 2.14c, if the direction of the current is specified as shown, then the polarity of the voltage
must be such that point D is at a higher potential than point C and, therefore, the arrow rep-
resenting the voltage V is from point C to point D.

The subtleties associated
with Ohm’s law, as described
here, are important and must
be adhered to in order to
ensure that the variables
have the proper sign.

[ h i n t ]

(a) (b) (c)

V

I

R

A

B

+

–

V

I

R

A

B

-

+

V

IR

C D

Figure 2.14
Circuits used to explain
Ohm’s law.

2.3
Single-Loop

Circuits

VOLTAGE DIVISION At this point we can begin to apply the laws presented earlier to the
analysis of simple circuits. To begin, we examine what is perhaps the simplest circuit—a 
single closed path, or loop, of elements. 

Applying KCL to every node in a single-loop circuit reveals that the same current flows
through all elements. We say that these elements are connected in series because they carry
the same current. We will apply Kirchhoff’s voltage law and Ohm’s law to the circuit to
determine various quantities in the circuit.

Our approach will be to begin with a simple circuit and then generalize the analysis to more
complicated ones. The circuit shown in Fig. 2.15 will serve as a basis for discussion. This cir-
cuit consists of an independent voltage source that is in series with two resistors. We have
assumed that the current flows in a clockwise direction. If this assumption is correct, the
solution of the equations that yields the current will produce a positive value. If the current is
actually flowing in the opposite direction, the value of the current variable will simply be
negative, indicating that the current is flowing in a direction opposite to that assumed. We have
also made voltage polarity assignments for and These assignments have been made
using the convention employed in our discussion of Ohm’s law and our choice for the direc-
tion of i(t)—that is, the convention shown in Fig. 2.14a.

Applying Kirchhoff’s voltage law to this circuit yields

or

However, from Ohm’s law we know that

Therefore,
v(t)=R1i(t)+R2i(t)

Solving the equation for i(t) yields

2.9i(t) =

v(t)

R1 + R2

 vR2
= R2i(t)

 vR1
= R1i(t)

v(t) = vR1
+ vR2

-v(t) + vR1
+ vR2

= 0

vR2
 .vR1

±
–

vR1

vR2

R1

R2

v(t)

i(t)

+

–

+

–

Figure 2.15

Single-loop circuit.
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Knowing the current, we can now apply Ohm’s law to determine the voltage across each
resistor:

2.10

Similarly,

2.11

Though simple, Eqs. (2.10) and (2.11) are very important because they describe the oper-
ation of what is called a voltage divider. In other words, the source voltage v(t) is divided
between the resistors and in direct proportion to their resistances.

In essence, if we are interested in the voltage across the resistor we bypass the calcu-
lation of the current i(t) and simply multiply the input voltage v(t) by the ratio 

As illustrated in Eq. (2.10), we are using the current in the calculation, but not explicitly.
Note that the equations satisfy Kirchhoff’s voltage law, since

-v(t) +

R1

R1 + R2
 v(t) +

R2

R1 + R2
 v(t) = 0

R1

R1 + R2

R1 ,
R2R1

vR2
=

R2

R1 + R2
 v(t)

 =

R1

R1 + R2
 v(t)

 = R1 c v(t)

R1 + R2
d

 vR1
= R1i(t)

40 C H A P T E R  2 R E S I S T I V E  C I R C U I T S

Consider the circuit shown in Fig. 2.16. The circuit is identical to Fig. 2.15 except that 
is a variable resistor such as the volume control for a radio or television set. Suppose that

and R2 = 30 k�.R1 = 90 k�,VS = 9 V,

R1EXAMPLE

2.13

SOLUTION

VS

V2

R1

I

R2

+

–

±
–

Figure 2.16
Voltage-divider circuit.

Let us examine the change in both the voltage across and the power absorbed in this
resistor as is changed from 90 k� to 15 k�.

Since this is a voltage-divider circuit, the voltage can be obtained directly as

 = 2.25 V

 = c 30k

90k + 30k
d (9)

 V2 = c R2

R1 + R2
dVS

V2

R1

R2

The manner in which voltage
divides between two
series resistors. 

[ h i n t ]
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Let us now demonstrate the practical utility of this simple voltage-divider network.
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SOLUTION

EXAMPLE

2.14
Consider the circuit in Fig. 2.17a, which is an approximation of a high-voltage dc transmis-
sion facility. We have assumed that the bottom portion of the transmission line is a perfect
conductor and will justify this assumption in the next chapter. The load can be represented by
a resistor of value 183.5 �. Therefore, the equivalent circuit of this network is shown in
Fig. 2.17b.

Figure 2.17

A high-voltage dc
transmission facility.(a) (b)

400-mile transmission line

Line resistance is 0.04125 �/mile

Perfect conductor

Load400 kV

2 kA

Vload

16.5 �

183.5 �400 kV

2 kA

+

–

±
–

±
–

Let us determine both the power delivered to the load and the power losses in the line.

Using voltage division, the load voltage is

 = 367 kV

 Vload = c 183.5

183.5 + 16.5
d 400k

Now suppose that the variable resistor is changed from 90 k� to 15 k�. Then

The direct voltage-divider calculation is equivalent to determining the current I and
then using Ohm’s law to find Note that the larger voltage is across the larger resist-
ance. This voltage-divider concept and the simple circuit we have employed to describe it
are very useful because, as will be shown later, more complicated circuits can be reduced
to this form.

Finally, let us determine the instantaneous power absorbed by the resistor under the
two conditions and For the case the power absorbed
by is

In the second case

The current in the first case is 75 �A, and in the second case it is 200 �A. Since the
power absorbed is a function of the square of the current, the power absorbed in the two
cases is quite different.

 = 1.2 mW

 P2 = a 9

45k
b 2

(30k)

 = 0.169 mW

 P2 = I2R2 = a 9

120k
b 2

(30k)

R2

R1 = 90 k�,R1 = 15 k�.R1 = 90 k�
R2

V2 .

 = 6 V

 V2 = c 30k

30k + 15k
d 9
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(a) (b)

R1

R2

i(t)

v(t)

vR1

vR2
R2

R1

v1(t)

v2(t)
i(t)

v3(t)

v4(t)

v5(t)

+

+

–

–

-
+

–±

±
–

-
+

+-

±
–

Figure 2.18 

Equivalent circuits with
multiple sources.

The input power is 800 MW and the power transmitted to the load is

Therefore, the power loss in the transmission line is

Since P=VI, suppose now that the utility company supplied power at 200 kV and 4 kA. What
effect would this have on our transmission network? Without making a single calculation, we
know that because power is proportional to the square of the current, there would be a large
increase in the power loss in the line and, therefore, the efficiency of the facility would decrease
substantially. That is why, in general, we transmit power at high voltage and low current.

 = 66 MW

 Pline = Pin - Pload = I2Rline

 = 734 MW

 Pload = I2Rload

MULTIPLE-SOURCE/RESISTOR NET WORKS At this point we wish to extend our
analysis to include a multiplicity of voltage sources and resistors. For example, consider the
circuit shown in Fig. 2.18a. Here we have assumed that the current flows in a clockwise
direction, and we have defined the variable i(t) accordingly. This may or may not be the
case, depending on the value of the various voltage sources. Kirchhoff’s voltage law for this
circuit is

or, using Ohm’s law,

which can be written as 

where

so that under the preceding definitions, Fig. 2.18a is equivalent to Fig. 2.18b. In other words,
the sum of several voltage sources in series can be replaced by one source whose value is the
algebraic sum of the individual sources. This analysis can, of course, be generalized to a cir-
cuit with N series sources.

v(t) = v1(t) + v3(t) - Cv2(t) + v4(t) + v5(t) D
AR1 + R2Bi(t) = v(t)

AR1 + R2Bi(t) = v1(t) - v2(t) + v3(t) - v4(t) - v5(t)

+vR1
+ v2(t) - v3(t) + vR2

+ v4(t) + v5(t) - v1(t) = 0
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Now consider the circuit with N resistors in series, as shown in Fig. 2.19a. Applying
Kirchhoff’s voltage law to this circuit yields

and therefore,
v(t)=RSi(t) 2.12

where

2.13

and hence,

2.14

Note also that for any resistor in the circuit, the voltage across is given by the expression

2.15

which is the voltage-division property for multiple resistors in series.
Equation (2.13) illustrates that the equivalent resistance of N resistors in series is simply

the sum of the individual resistances. Thus, using Eq. (2.13), we can draw the circuit in
Fig. 2.19b as an equivalent circuit for the one in Fig. 2.19a.

vRi
=

Ri

RS
 v(t)

RiRi

i(t) =

v(t)

RS

RS = R1 + R2 +
p

+ RN

 = R1i(t) + R2i(t) +
p

+ RNi(t)

 v(t) = vR1
+ vR2

+
p

+ vRN

(a) (b)

+ -
vR1

+-vRN

RN

+ -
vR2 + -

+

-

vR3

vR4
R4

R3R2R1

R5 RS=R1+R2+R3+…+RN

+

-

vR5

i(t)

i(t)

v(t)

v(t)

±
–

±
–

Figure 2.19

Equivalent circuits.

EXAMPLE

2.15
Given the circuit in Fig. 2.20a, let us find I, and the power absorbed by the 30-k�
resistor. Finally, let us use voltage division to find Vbc .

Vbd ,

Figure 2.20

Circuit used in Example 2.15.

±
–

±
–

±
–

I

12 V6 V

30 k�

10 k� 20 k�

e d

a b c

6 V

b

(b)(a)

c

40 k�

20 k�

irwin02_025-100hr.qxd  30-06-2010  13:14  Page 43



44 C H A P T E R  2 R E S I S T I V E  C I R C U I T S

Knowing the load voltage and load resistance, we can obtain the line current using
Ohm’s law:

The voltage drop across the line is 

 = 41.66 kV

 Vline = (IL)(Rline)

 = 2.083 kA

 IL = 458.3k�220

SOLUTION

Rline

Rload Vload=458.3 kV

IL

VS 220 �

20 � +

-

±
–Figure 2.21

Circuit used in
Example 2.16.

EXAMPLE

2.16
A dc transmission facility is modeled by the approximate circuit shown in Fig. 2.21. If the
load voltage is known to be we wish to find the voltage at the sending end
of the line and the power loss in the line.

Vload = 458.3 kV,

KVL for the network yields the equation

Therefore, the magnitude of the current is 0.1 mA, but its direction is opposite to that
assumed.

The voltage can be calculated using either of the closed paths abdea or bcdb. The
equations for both cases are

and

Using I=–0.1 mA in either equation yields Finally, the power absorbed by the
30-k� resistor is

Now from the standpoint of determining the voltage we can simply add the sources
since they are in series, add the remaining resistors since they are in series, and reduce the
network to that shown in Fig. 2.20b. Then

 = -2 V

 Vbc =

20k

20k + 40k
 (-6)

Vbc ,

P = I2R = 0.3 mW

Vbd = 10 V.

20kI + 12 - Vbd = 0

10kI + Vbd + 30kI - 6 = 0

Vbd

 I = -0.1 mA

 60kI = -6

 10kI + 20kI + 12 + 30kI - 6 = 0

SOLUTION
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Step 1. Define a current i(t). We know from KCL that there is only one current for a
single-loop circuit. This current is assumed to be flowing either clockwise or
counterclockwise around the loop.

Step 2. Using Ohm’s law, define a voltage across each resistor in terms of the defined
current.

Step 3. Apply KVL to the single-loop circuit.

Step 4. Solve the single KVL equation for the current i(t). If i(t) is positive, the current
is flowing in the direction assumed; if not, then the current is actually flowing
in the opposite direction.

Single-Loop Circuits

E2.10 Find I and in the circuit in Fig. E2.10.Vbd ANSWER: I � �0.05 mA
and .Vbd = 10 V

E2.11 In the network in Fig. E2.11, if is 3 V, find VS .Vad
ANSWER: VS = 9 V.

I

6 V

12 V

40 k�

80 k�

a b c

d

–±

±
–

Figure E2.10

–±

VS
20 k�

25 k�

15 k�

a b c

d
Figure E2.11

Learning Assessments

Problem-Solving Strategy

Now, using KVL, 

Note that since the network is simply a voltage-divider circuit, we could obtain immediately
from our knowledge of , , and . That is,

and is the only unknown in this equation.
The power absorbed by the line is

 = 86.79 MW

 Pline = I2
LRline

VS

Vload = c Rload

Rload + Rline
dVS

VloadRloadRline

VS

 = 500 kV

 VS = Vline + Vload
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where

2.16

2.17

Therefore, the equivalent resistance of two resistors connected in parallel is equal to the
product of their resistances divided by their sum. Note also that this equivalent resistance 
is always less than either or Hence, by connecting resistors in parallel we reduce the
overall resistance. In the special case when the equivalent resistance is equal to half
of the value of the individual resistors.

The manner in which the current i(t) from the source divides between the two branches
is called current division and can be found from the preceding expressions. For example,

2.18 =

R1 R2

R1 + R2
 i(t)

 v(t) = Rp i(t)

R1 = R2 ,
R2 .R1

Rp

Rp =

R1 R2

R1 + R2

1

Rp
=

1

R1
+

1

R2
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The parallel resistance
equation.

[ h i n t ]

CURRENT DIVISION An important circuit is the single-node-pair circuit. If we apply KVL to
every loop in a single-node-pair circuit, we discover that all of the elements have the same volt-
age across them and, therefore, are said to be connected in parallel. We will, however, apply
Kirchhoff’s current law and Ohm’s law to determine various unknown quantities in the circuit.

Following our approach with the single-loop circuit, we will begin with the simplest case
and then generalize our analysis. Consider the circuit shown in Fig. 2.22. Here we have an
independent current source in parallel with two resistors.

R2R1 v(t)i(t)

i1(t) i2(t)

+

–

Figure 2.22

Simple parallel circuit.

Since all of the circuit elements are in parallel, the voltage v(t) appears across each of
them. Furthermore, an examination of the circuit indicates that the current i(t) is into the
upper node of the circuit and the currents i1(t) and i2(t) are out of the node. Since KCL
essentially states that what goes in must come out, the question we must answer is how i1(t)
and i2(t) divide the input current i(t).

Applying Kirchhoff’s current law to the upper node, we obtain

i(t)=i1(t)+i2(t)

and, employing Ohm’s law, we have

 =

v(t)

Rp

 = a 1

R1
+

1

R2
bv(t)

 i(t) =

v(t)

R1
+

v(t)

R2

2.4
Single-Node-Pair
Circuits
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The manner in which
current divides between
two parallel resistors.

[ h i n t ]

Given the network in Fig. 2.23a, let us find and 

First, it is important to recognize that the current source feeds two parallel paths. To empha-
size this point, the circuit is redrawn as shown in Fig. 2.23b. Applying current division,
we obtain

and

Note that the larger current flows through the smaller resistor, and vice versa. In addition,
note that if the resistances of the two paths are equal, the current will divide equally between
them. KCL is satisfied since I1+I2=0.9 mA.

The voltage can be derived using Ohm’s law as

The problem can also be approached in the following manner. The total resistance seen by
the current source is 40 k�, that is, 60 k� in parallel with the series combination of 40 k�
and 80 k�, as shown in Fig. 2.23c. The voltage across the current source is then

Now that is known, we can apply voltage division to find Vo:

 = 24 V

 = a 80k

120k
b 36

 Vo = a 80k

80k + 40k
bV1

V1

 = 36 V

 V1 = A0.9 * 10-3B  40k

 = 24 V

 Vo = 80kI2

Vo

 = 0.3 mA

 I2 = c 60k

60k + (40k + 80k)
d A0.9 * 10-3B

 = 0.6 mA

 I1 = c 40k + 80k

60k + (40k + 80k)
d A0.9 * 10-3B

Vo .I1 , I2 ,

and

2.19

and

2.20

Eqs. (2.19) and (2.20) are mathematical statements of the current-division rule.

 =

R1

R1 + R2
 i(t)

 i2(t) =

v(t)

R2

i1(t) =

R2

R1 + R2
 i(t)

i1(t) =

v(t)

R1

SOLUTION

EXAMPLE

2.17
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ANSWER:
and

P40 k� = 5.76 W.
I2 = -4 mA,

I1 = 12 mA,E2.12 Find the currents and and the power absorbed by the 40-k� resistor in the network
in Fig. E2.12.

I2I1

I1 I2

40 k� 120 k�

16 mA

Figure E2.12

Learning Assessment

(a) (b) (c)

40 k�0.9 mA V1

+

–

Vo

I2

I1

60 k� 80 k�

40 k�

0.9 mA

+

–

V1

+

–

I1

I2

80 k�

40 k�60 k�

Vo

+

–

0.9 mA

V1

+

–

Figure 2.23

Circuits used in Example 2.17.

A typical car stereo consists of a 2-W audio amplifier and two speakers represented by
the diagram shown in Fig. 2.24a. The output circuit of the audio amplifier is in essence a
430-mA current source, and each speaker has a resistance of 4 �. Let us determine the
power absorbed by the speakers.

The audio system can be modeled as shown in Fig. 2.24b. Since the speakers are both 4-�
devices, the current will split evenly between them, and the power absorbed by each speaker is

 = 184.9 mW

 = A215 * 10-3B2(4)

 P = I2R

(a) (b)

Audio
amplifier

430 mA 4 � 4 �

Figure 2.24

Circuits used in
Example 2.18.

SOLUTION

EXAMPLE

2.18
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MULTIPLE-SOURCE/RESISTOR NET WORKS Let us now extend our analysis to
include a multiplicity of current sources and resistors in parallel. For example, consider the cir-
cuit shown in Fig. 2.25a. We have assumed that the upper node is v(t) volts positive with respect
to the lower node. Applying Kirchhoff’s current law to the upper node yields

i1(t)-i2(t)-i3(t)+i4(t)-i5(t)-i6(t)=0

or

i1(t)-i3(t)+i4(t)-i6(t)=i2(t)+i5(t)

The terms on the left side of the equation all represent sources that can be combined
algebraically into a single source; that is,

io(t)=i1(t)-i3(t)+i4(t)-i6(t)

which effectively reduces the circuit in Fig. 2.25a to that in Fig. 2.25b. We could, of course,
generalize this analysis to a circuit with N current sources. Using Ohm’s law, we can express
the currents on the right side of the equation in terms of the voltage and individual resistances
so that the KCL equation reduces to

Now consider the circuit with N resistors in parallel, as shown in Fig. 2.26a. Applying
Kirchhoff’s current law to the upper node yields

io(t) = a 1

R1
+

1

R2
bv(t)
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(a)

R1 R2i1(t) i3(t) i4(t) i6(t)

i2(t) i5(t)

v(t)

+

–

(b)

R1 R2io(t) v(t)

+

–

Figure 2.25

Equivalent circuits.

(a) (b)

Rpv(t)io(t)
+

–

RNR1 R2v(t) io(t)

i1(t) i2(t) iN(t)
+

–

Figure 2.26 

Equivalent circuits.

2.21

or

2.22

where

2.23
1

Rp
= a

N

i = 1
 
1

Ri

io(t) =

v(t)

Rp

 = a 1

R1
+

1

R2
+

p
+

1

RN
bv(t)

 io(t) = i1(t) + i2(t) +
p

+ iN(t)
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Step 1. Define a voltage v(t) between the two nodes in this circuit. We know from
KVL that there is only one voltage for a single-node-pair circuit. A polarity is
assigned to the voltage such that one of the nodes is assumed to be at a higher
potential than the other node, which we will call the reference node.

Step 2. Using Ohm’s law, define a current flowing through each resistor in terms of the
defined voltage.

Step 3. Apply KCL at one of the two nodes in the circuit.

Step 4. Solve the single KCL equation for v(t). If v(t) is positive, then the 
reference node is actually at a lower potential than the other node; if not, 
the reference node is actually at a higher potential than the other node

Single-Node-Pair
Circuits

Problem-Solving Strategy

Given the circuit in Fig. 2.27a, we wish to find the current in the 12-k� load resistor.

To simplify the network in Fig. 2.27a, we add the current sources algebraically and combine
the parallel resistors in the following manner:

Using these values we can reduce the circuit in Fig. 2.27a to that in Fig. 2.27b. Now,
applying current division, we obtain

 = -0.25 mA

 IL = - c 4k

4k + 12k
d A1 * 10-3B

 Rp = 4 k�

 
1

Rp
=

1

18k
+

1

9k
+

1

12k

IL

18 k� 9 k� 12 k� RL=12 k� 4 k� 12 k�

1 mA

1 mA

2 mA

4 mA

IL

(a) (b)

Figure 2.27

Circuits used 
in Example 2.19.

so that as far as the source is concerned, Fig. 2.26a can be reduced to an equivalent circuit,
as shown in Fig. 2.26b.

The current division for any branch can be calculated using Ohm’s law and the preceding
equations. For example, for the jth branch in the network of Fig. 2.26a,

Using Eq. (2.22), we obtain

2.24

which defines the current-division rule for the general case.

ij(t) =

Rp

Rj
 io(t)

ij(t) =

v(t)

Rj

SOLUTION

EXAMPLE

2.19
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E2.13 Find the power absorbed by the 6-kΩ resistor in the network in Fig. E2.13.

6 mA

4 mA

4 k� 6 k� 12 k�

ANSWER: P � 2.67 mW.

Figure E2.13

Learning Assessment

2.5
Series and

Parallel Resistor
Combinations

We have shown in our earlier developments that the equivalent resistance of N resistors in
series is

2.25

and the equivalent resistance of N resistors in parallel is found from

2.26

Let us now examine some combinations of these two cases.

1

Rp
=

1

R1
+

1

R2
+

p
+

1

RN

RS = R1 + R2 +
p

+ RN

We wish to determine the resistance at terminals A-B in the network in Fig. 2.28a.

Starting at the opposite end of the network from the terminals and combining resistors as
shown in the sequence of circuits in Fig. 2.28, we find that the equivalent resistance at the
terminals is 5 k�.

SOLUTION

EXAMPLE

2.20

RAB

A

B

(a)

9 k� 2 k�

1 k�

2 k� 2 k� 10 k�

6 k� 6 k�

6 k�
4 k� RAB

A

B
9 k�

2 k� 2 k�

6 k�
6 k�4 k�

(b)

12 k�=10 k�+
(6 k� in parallel 
with 3 k�)

RAB

A

B

(c)

9 k�

2 k�

6 k�4 k�
6 k�=2 k�+
(6 k� in parallel 
with 12 k�)

RAB

A

B

(d)

2 k�

4 k�
12 k�=9 k�+
(6 k� in parallel 
with 6 k�)

RAB

A

B

2 k�

(e)

3 k�=(4 k� in parallel with 12 k�)

Figure 2.28

Simplification of a resistance
network.
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When trying to determine the equivalent resistance at a pair of terminals of a network com-
posed of an interconnection of numerous resistors, it is recommended that the analysis
begin at the end of the network opposite the terminals. Two or more resistors are combined
to form a single resistor, thus simplifying the network by reducing the number of compo-
nents as the analysis continues in a steady progression toward the terminals. The simplifi-
cation involves the following:

Step 1. Resistors in series. Resistors R1 and R2 are in series if they are connected end
to end with one common node and carry exactly the same current. They can
then be combined into a single resistor RS, where RS=R1+R2 .

Step 2. Resistors in parallel. Resistors R1 and R2 are in parallel if they are connected to
the same two nodes and have exactly the same voltage across their terminals. They
can then be combined into a single resistor Rp, where 

These two combinations are used repeatedly, as needed, to reduce the network to a
single resistor at the pair of terminals.

Rp = R1 R2�AR1 + R2B.

Simplifying Resistor
Combinations

E2.15 Find the equivalent resistance at the terminals A-B in the circuit in Fig. E2.15. ANSWER: RAB � 3 k�.

RAB

A

B

4 k� 4 k�

3 k�
12 k� 8 k�6 k�

Figure E2.15

Learning Assessment

Problem-Solving Strategy

E2.16 Find RAB in Fig. E2.16. ANSWER: RAB � 12 k�.

4 k�A

B

3 k� 2 k�

4 k� 4 k� 2 k�

8 k�
12 k�

6 k� 2 k�RAB

Figure E2.16

E2.14 Find the equivalent resistance at the terminals A-B in the network in Fig. E2.14.

A

B

6 k� 3 k�

18 k�

10 k�

6 k�

RAB

Figure E2.14

ANSWER: RAB � 22 k�.

Learning Assessment
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A standard dc current-limiting power supply shown in Fig. 2.29a provides 0–18 V at 3 A to
a load. The voltage drop, across a resistor, R, is used as a current-sensing device, fed
back to the power supply and used to limit the current I. That is, if the load is adjusted so
that the current tries to exceed 3 A, the power supply will act to limit the current to that
value. The feedback voltage, should typically not exceed 600 mV.

If we have a box of standard 0.1- , 5-W resistors, let us determine the configuration of
these resistors that will provide when the current is 3 A.VR = 600 mV

Æ

VR,

VR,

(a) (b) (c)

0.1 �

0.1 �

dc
power
supply

R

I

Load

0 A

0 A

All resistors
 0.1 �

VR

+

+

-

-

R
R

Figure 2.29

Circuits used in 
Example 2.21.

SOLUTIONUsing Ohm’s law, the value of R should be

Therefore, two 0.1-� resistors connected in series, as shown in Fig. 2.29b, will provide the
proper feedback voltage. Suppose, however, that the power supply current is to be limited
to 9 A. The resistance required in this case to produce is

We must now determine how to interconnect the 0.1- resistor to obtain .
Since the desired resistance is less than the components available (i.e., 0.1- ), we must
connect the resistors in some type of parallel configuration. Since all the resistors are of
equal value, note that three of them connected in parallel would provide a resistance of
one-third their value, or . Then two such combinations connected in series, as
shown in Fig. 2.29c, would produce the proper resistance.

0.0333 �

Æ

R = 0.0667 �Æ

 = 0.0667 �

 R =

0.6

9

VR = 600 mV

 = 0.2 �

 =

0.6

3

 R =

VR

I

EXAMPLE

2.21
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TABLE 2.1 Standard resistor values for 5% and 10% tolerances (values available with a 10% 
tolerance shown in boldface)

1.0 10 100 1.0k 10k 100k 1.0M 10M

1.1 11 110 1.1k 11k 110k 1.1M 11M

1.2 12 120 1.2k 12k 120k 1.2M 12M

1.3 13 130 1.3k 13k 130k 1.3M 13M

1.5 15 150 1.5k 15k 150k 1.5M 15M

1.6 16 160 1.6k 16k 160k 1.6M 16M

1.8 18 180 1.8k 18k 180k 1.8M 18M

2.0 20 200 2.0k 20k 200k 2.0M 20M

2.2 22 220 2.2k 22k 220k 2.2M 22M

2.4 24 240 2.4k 24k 240k 2.4M

2.7 27 270 2.7k 27k 270k 2.7M

3.0 30 300 3.0k 30k 300k 3.0M

3.3 33 330 3.3k 33k 330k 3.3M

3.6 36 360 3.6k 36k 360k 3.6M

3.9 39 390 3.9k 39k 390k 3.9M

4.3 43 430 4.3k 43k 430k 4.3M

4.7 47 470 4.7k 47k 470k 4.7M

5.1 51 510 5.1k 51k 510k 5.1M

5.6 56 560 5.6k 56k 560k 5.6M

6.2 62 620 6.2k 62k 620k 6.2M

6.8 68 680 6.8k 68k 680k 6.8M

7.5 75 750 7.5k 75k 750k 7.5M

8.2 82 820 8.2k 82k 820k 8.2M

9.1 91 910 9.1k 91k 910k 9.1M

RESISTOR SPECIF ICATIONS Some important parameters that are used to specify
resistors are the resistor’s value, tolerance, and power rating. The tolerance specifications for
resistors are typically 5% and 10%. A listing of standard resistor values with their specified
tolerances is shown in Table 2.1.

The power rating for a resistor specifies the maximum power that can be dissipated by the
resistor. Some typical power ratings for resistors are and so forth,
up to very high values for high-power applications. Thus, in selecting a resistor for some par-
ticular application, one important selection criterion is the expected power dissipation.

1�4 W, 1�2 W, 1 W, 2 W,

Finally, we must check to ensure that the configurations in Figs. 2.29b and c have not
exceeded the power rating of the resistors. In the first case, the current is present
in each of the two series resistors. Therefore, the power absorbed in each resistor is

which is well within the 5-W rating of the resistors.
In the second case, the current The resistor configuration for R in this case is a

series combination of two sets of three parallel resistors of equal value. Using current
division, we know that the current I will split equally among the three parallel paths and,
hence, the current in each resistor will be 3 A. Therefore, once again, the power absorbed
by each resistor is within its power rating.

I = 9 A.

 = 0.9 W

 = (3)2(0.1)

 P = I2R

I = 3 A
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Given the network in Fig. 2.30, we wish to find the range for both the current and power
dissipation in the resistor if R is a 2.7-k� resistor with a tolerance of 10%.

Using the equations I=V/R=10/R and , the minimum and maxi-
mum values for the resistor, current, and power are outlined next.

Minimum resistor value=R(1-0.1)=0.9 R=2.43 k�

Maximum resistor value=R(1+0.1)=1.1 R=2.97 k�

Minimum current value=10/2970=3.37 mA

Maximum current value=10/2430=4.12 mA

Minimum power value=100/2970=33.7 mW

Maximum power value=100/2430=41.2 mW

Thus, the ranges for the current and power are 3.37 mA to 4.12 mA and 33.7 mW to
41.2 mW, respectively.

P = V2�R = 100�R
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I

10 V R±
–

Figure 2.30

Circuit used in Example 2.22.

Given the network shown in Fig. 2.31: (a) find the required value for the resistor R; (b) use
Table 2.1 to select a standard 10% tolerance resistor for R; (c) using the resistor selected in
(b), determine the voltage across the 3.9-k� resistor; (d) calculate the percent error in the
voltage if the standard resistor selected in (b) is used; and (e) determine the power rat-
ing for this standard component.

V1 ,

SOLUTIONa. Using KVL, the voltage across R is 19 V. Then using Ohm’s law, the current in the loop is

I=5/3.9k=1.282 mA

The required value of R is then

R=19/0.001282=14.82 k�

b. As shown in Table 2.1, the nearest standard 10% tolerance resistor is 15 k�.

c. Using the standard 15-k� resistor, the actual current in the circuit is

I=24/18.9k=1.2698 mA

and the voltage across the 3.9-k� resistor is

V=IR=(0.0012698)(3.9k)=4.952 V

d. The percent error involved in using the standard resistor is

% Error=(4.952-5)/5*100=–0.96%

e. The power absorbed by the resistor R is then

Therefore, even a quarter-watt resistor is adequate in this application.

P = IR = (0.0012698)2(15k) = 24.2 mW

24 V

R

V1=5 V

+

–
3.9 k�

±
–

Figure 2.31

Circuit used in Example 2.23.

2.6
Circuits with

Series-Parallel
Combinations

of Resistors

At this point we have learned many techniques that are fundamental to circuit analysis.
Now we wish to apply them and show how they can be used in concert to analyze circuits.
We will illustrate their application through a number of examples that will be treated in
some detail.

SOLUTION

EXAMPLE

2.22

EXAMPLE

2.23
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To begin our analysis of the network, we start at the right end of the circuit and combine the
resistors to determine the total resistance seen by the 12-V source. This will allow us to cal-
culate the current Then employing KVL, KCL, Ohm’s law, and/or voltage and current
division, we will be able to calculate all currents and voltages in the network.

At the right end of the circuit, the 9-k� and 3-k� resistors are in series and, thus, can be
combined into one equivalent 12-k� resistor. This resistor is in parallel with the 4-k� resis-
tor, and their combination yields an equivalent 3-k� resistor, shown at the right edge of the
circuit in Fig. 2.32b. In Fig. 2.32b the two 3-k� resistors are in series, and their combina-
tion is in parallel with the 6-k� resistor. Combining all three resistances yields the circuit
shown in Fig. 2.32c.

Applying Kirchhoff’s voltage law to the circuit in Fig. 2.32c yields

can be calculated from Ohm’s law as

or, using Kirchhoff’s voltage law,

Knowing and we can now determine all currents and voltages in Fig. 2.32b. Since
the current can be found using Ohm’s law as

 =

1

2
 mA

 I2 =

3

6k

I2Va = 3 V,
Va ,I1

 = 3 V

 = 12 - 9

 Va = 12 - 9kI1

 = 3 V

 Va = I1(3k)

Va

 I1 = 1 mA

 I1(9k + 3k) = 12

I1 .

SOLUTION

We wish to find all the currents and voltages labeled in the ladder network shown in
Fig. 2.32a.

Figure 2.32

Analysis of a ladder network.

(a) (b)

Va Vb Vc

I1

I1

I3 I5

I2

I1 I3

I4

12 V 3 k�4 k�6 k�

9 k�3 k�9 k�

+

–

+

+

– + –

–

+

–

+

–

+

–

+

–
Va Vb

I1 I3

I2

12 V 3 k�6 k�

3 k�9 k�

+

–

+

–

(d)(c)

12 V12 V

9 V

3 V

+

–
Va 6 k� 4 k�

3 k�

3 k�

9 k�9 k�9 k�

3 k�

1 mA

— mA1
2

— mA1
2

— V3
2

— V3
2

+ –— mA1
8

— mA3
8

— V3
8

— V9
8

I5

±
–

±
–

±
–

±
–

EXAMPLE

2.24

irwin02_025-100hr.qxd  30-06-2010  13:14  Page 56



S E C T I O N  2 . 6 C I R C U I T S  W I T H  S E R I E S - P A R A L L E L  C O M B I N A T I O N S  O F  R E S I S T O R S     57

Then, using Kirchhoff’s current law, we have

Note that the could also be calculated using Ohm’s law:

Applying Kirchhoff’s voltage law to the right-hand loop in Fig. 2.32b yields

or, since is equal to the voltage drop across the 3-k� resistor, we could use Ohm’s law as

We are now in a position to calculate the final unknown currents and voltages in Fig. 2.32a.
Knowing we can calculate using Ohm’s law as

Then, from Kirchhoff’s current law, we have

We could also have calculated using the current-division rule. For example,

 =

1

8
 mA

 I5 =

4k

4k + (9k + 3k)
 I3

I5

 I5 =

1

8
 mA

 
1

2
* 10-3

=

3

8
* 10-3

+ I5

 I3 = I4 + I5

 =

3

8
 mA

 I4 =

3

2

4k

 Vb = 4kI4

I4Vb ,

 =

3

2
 V

 Vb = 3kI3

Vb

 Vb =

3

2
 V

 3 - Vb =

3

2

 Va - Vb = 3kI3

 =

1

2
 mA

 I3 =

3

6k

 Va = (3k + 3k)I3

I3

 I3 =

1

2
 mA

 1 * 10-3
=

1

2
* 10-3

+ I3

 I1 = I2 + I3
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Given the circuit in Fig. 2.33 and let us find the source voltage 

If then from Ohm’s law, can now be used to calculate 
Kirchhoff’s current law applied at node y yields

Then, from Ohm’s law, we have

Since is now known, I5 can be obtained:

Applying Kirchhoff’s current law at node x yields

Now KVL applied to any closed path containing will yield the value of this input source.
For example, if the path is the outer loop, KVL yields

Since and 
Vo = 36 V

I5 = 1.5 mA,I1 = 3 mA

-Vo + 6kI1 + 3kI5 + 1kI5 + 4kI1 = 0

Vo

 = 3 mA

 I1 = I2 + I5

 = 1.5 mA

 I5 =

Va + Vb

3k + 1k

Va + Vb

 = 3 V

 Va = A1.5 * 10-3B(2k)

 = 1.5 mA

 I2 = I3 + I4

I3 = 1 mA.VbVb = 3 V.I4 = 1�2  mA,

Vo .I4 = 1�2  mA,

SOLUTION

EXAMPLE

2.25

Finally, can be computed as

can also be found using voltage division (i.e., the voltage will be divided between the
9-k� and 3-k� resistors). Therefore,

Note that Kirchhoff’s current law is satisfied at every node and Kirchhoff’s voltage law
is satisfied around every loop, as shown in Fig. 2.32d.

 =

3

8
 V

 Vc = c 3k

3k + 9k
dVb

VbVc

 =

3

8
 V

 Vc = I5(3k)

Vc

The following example is, in essence, the reverse of the previous example in that we
are given the current in some branch in the network and are asked to find the value of the
input source.
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Step 1. Systematically reduce the resistive network so that the resistance seen by the
source is represented by a single resistor.

Step 2. Determine the source current for a voltage source or the source voltage if a
current source is present.

Step 3. Expand the network, retracing the simplification steps, and apply Ohm’s law,
KVL, KCL, voltage division, and current division to determine all currents and
voltages in the network.

Problem-Solving Strategy
Analyzing Circuits
Containing a
Single Source and
a Series-Parallel
Interconnection
of Resistors

Vb

Va

Vo

I1 I5

I2

I3 I4

6 k� 3 k�

2 k�

1 k�

6 k�3 k�

4 k� z

y

x

+

–

–

+

±
–

Figure 2.33

Example circuit for analysis.

If we had selected the path containing the source and the points x, y, and z, we would obtain

Once again, this equation yields
Vo = 36 V

-Vo + 6kI1 + Va + Vb + 4kI1 = 0

E2.17 Find in the network in Fig. E2.17.Vo ANSWER: Vo = 2 V.

E2.18 Find in the circuit in Fig. E2.18.VS ANSWER: VS = 9 V.

Vo12 V

20 k� 40 k�

30 k� 20 k�

+

–

±
–

Figure E2.17

VS

20 k�

60 k�

0.1 mA

120 k�±
–

Figure E2.18

Learning Assessments
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E2.21 Find I0 in Fig. E2.21. ANSWER: I0=- 4 mA.

E2.22 Find Vo, V1, and V2 in Fig. E2.22. ANSWER: Vo=3.33 V, 
V1=- 4 V, V2=4 V.

9 mA12 k�

3 k� 6 k�

4 k�

I0
Figure E2.21

V2

+

–

V1

+

–

Vo

+

–

+
–

10 k�

10 k� 12 k� 8 k�

20 k� 3 k� 4 k�

4 k�

5 k� 16 V

Figure E2.22

E2.20 Find V1 in Fig. E2.20. ANSWER: V1=12 V.

25 mA 15 mA

3 k�

6 k�

6 k�

V1

–

+

Figure E2.20

E2.19 Find in the circuit in Fig. E2.19.IS ANSWER: IS = 0.3 mA.

3 VIS

90 k�

60 k� 30 k�

+

–Figure E2.19
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Consider the networks shown in Fig. 2.35. Note that the resistors in Fig. 2.35a form a
� (delta) and the resistors in Fig. 2.35b form a Y (wye). If both of these configurations are
connected at only three terminals a, b, and c, it would be very advantageous if an equivalence
could be established between them. It is, in fact, possible to relate the resistances of one net-
work to those of the other such that their terminal characteristics are the same. This relation-
ship between the two network configurations is called the Y-� transformation.

The transformation that relates the resistances R1, R2, and R3 to the resistances Ra , Rb , and
Rc is derived as follows. For the two networks to be equivalent at each corresponding pair of
terminals, it is necessary that the resistance at the corresponding terminals be equal (e.g., the
resistance at terminals a and b with c open-circuited must be the same for both networks).
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I1

R1

R3

R2

R4

R6

R5

V1 ±
–

Figure 2.34

Network used to illustrate the
need for the wye ∆ delta

transformation.

R3

R2

Ra

Rc Rb

R1

a

c b
bc

a

(a) (b)

Figure 2.35

Delta and wye resistance
networks.

2.7
Wye ∆ Delta

Transformations

To provide motivation for this topic, consider the circuit in Fig. 2.34. Note that this network has
essentially the same number of elements as contained in our recent examples. However, when
we attempt to reduce the circuit to an equivalent network containing the source and an equiv-
alent resistor R, we find that nowhere is a resistor in series or parallel with another. Therefore,
we cannot attack the problem directly using the techniques that we have learned thus far. We
can, however, replace one portion of the network with an equivalent circuit, and this conversion
will permit us, with ease, to reduce the combination of resistors to a single equivalent resist-
ance. This conversion is called the wye-to-delta or delta-to-wye transformation.

V1

E2.23 Find V0 and V1 in Fig. E2.23. ANSWER: V0 = -60 V, 
V1 = 10 V.

V1

–

+Vo

+

–

4 k�

10 k� 6 k�

12 k�4 k�

20 mA

Figure E2.23
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Therefore, if we equate the resistances for each corresponding set of terminals, we obtain
the following equations:

2.27

Solving this set of equations for Ra , Rb , and Rc yields

2.28

Similarly, if we solve Eq. (2.27) for R1 , R2 , and R3 , we obtain

2.29

Equations (2.28) and (2.29) are general relationships and apply to any set of resistances
connected in a Y or �. For the balanced case where Ra=Rb=Rc and R1=R2=R3 , the
equations above reduce to

2.30

and

2.31

It is important to note that it is not necessary to memorize the formulas in Eqs. (2.28)
and (2.29). Close inspection of these equations and Fig. 2.35 illustrates a definite pattern
to the relationships between the two configurations. For example, the resistance
connected to point a in the wye (i.e., Ra) is equal to the product of the two resistors in
the � that are connected to point a divided by the sum of all the resistances in the delta.
Rb and Rc are determined in a similar manner. Similarly, there are geometrical patterns
associated with the equations for calculating the resistors in the delta as a function of
those in the wye.

Let us now examine the use of the delta ∆ wye transformation in the solution of a
network problem.

R
¢

= 3RY

RY =

1

3
 R

¢

 R3 =

Ra Rb + Rb Rc + Ra Rc

Ra

 R2 =

Ra Rb + Rb Rc + Ra Rc

Rc

 R1 =

Ra Rb + Rb Rc + Ra Rc

Rb

 Rc =

R1 R3

R1 + R2 + R3

 Rb =

R2 R3

R1 + R2 + R3

 Ra =

R1 R2

R1 + R2 + R3

 Rca = Rc + Ra =

R1AR2 + R3B
R1 + R2 + R3

 Rbc = Rb + Rc =

R3AR1 + R2B
R3 + R1 + R2

 Rab = Ra + Rb =

R2AR1 + R3B
R2 + R1 + R3
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SOLUTION

EXAMPLE

2.26
Given the network in Fig. 2.36a, let us find the source current IS .

Figure 2.36

Circuits used in 
Example 2.26.

12 k� 18 k�

9 k�

6 k�

3 k�

2 k�

4 k� 9 k�

12 V
6 k�

4 k�

IS IS

12 V

(a) (b)

±
–

±
–

Note that none of the resistors in the circuit are in series or parallel. However, careful
examination of the network indicates that the 12k-, 6k-, and 18k-ohm resistors, as well as the
4k-, 6k-, and 9k-ohm resistors each form a delta that can be converted to a wye. Furthermore,
the 12k-, 6k-, and 4k-ohm resistors, as well as the 18k-, 6k-, and 9k-ohm resistors, each form
a wye that can be converted to a delta. Any one of these conversions will lead to a solution.
We will perform a delta-to-wye transformation on the 12k-, 6k-, and 18k-ohm resistors,
which leads to the circuit in Fig. 2.36b. The 2k- and 4k-ohm resistors, like the 3k- and 9k-ohm
resistors, are in series and their parallel combination yields a 4k-ohm resistor. Thus, the
source current is

 = 1.2 mA

 IS = 12�(6k + 4k)

E2.24 Determine the total resistance in the circuit in Fig. E2.24.RT ANSWER: RT = 34 k�.

E2.25 Find in the network in Fig. E2.25.Vo ANSWER: Vo = 24 V.

18 k�

36 k�54 k�

3 k�

2 k�

6 k�

18 k�

RT

Figure E2.24

12 k�

12 k� Vo

12 k�

12 k�

12 k�

4 mA
+

–
Figure E2.25

Learning Assessments
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Step 1. When writing the KVL and/or KCL equations for the network, treat the
dependent source as though it were an independent source.

Step 2. Write the equation that specifies the relationship of the dependent source to the
controlling parameter.

Step 3. Solve the equations for the unknowns. Be sure that the number of linearly inde-
pendent equations matches the number of unknowns.

The following four examples will each illustrate one of the four types of dependent
sources: current-controlled voltage source, current-controlled current source, voltage-
controlled voltage source, and voltage-controlled current source.

Circuits with
Dependent Sources

Problem-Solving Strategy

E2.26 Find I1 in Fig. E2.26. ANSWER: I1=-1.2 A.

12 �

18 �

18 �

18 �

3 A

6 �

I1Figure E2.26

2.8
Circuits with
Dependent
Sources

In Chapter 1 we outlined the different kinds of dependent sources. These controlled sources
are extremely important because they are used to model physical devices such as npn and pnp
bipolar junction transistors (BJTs) and field-effect transistors (FETs) that are either metal-
oxide-semiconductor field-effect transistors (MOSFETs) or insulated-gate field-effect tran-
sistors (IGFETs). These basic structures are, in turn, used to make analog and digital devices.
A typical analog device is an operational amplifier (op-amp). This device is presented in
Chapter 4. Typical digital devices are random access memories (RAMs), read-only memo-
ries (ROMs), and microprocessors. We will now show how to solve simple one-loop and 
one-node circuits that contain these dependent sources. Although the following examples are
fairly simple, they will serve to illustrate the basic concepts.

Let us determine the voltage in the circuit in Fig. 2.37.Vo

Figure 2.37

Circuit used in
Example 2.27.

-+
+

–

I1 3 k�

5 k�12 V

Va=2000 I1
Vo±

–

EXAMPLE

2.27
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The network in Fig. 2.39 contains a voltage-controlled voltage source. We wish to find in
this circuit.

Vo

Figure  2.39 
Circuit used in
Example 2.29.

±
–

+-

Vo

+

–

I 3 k�

1 k�12 V

2Vo

SOLUTIONApplying KVL, we obtain

where

and the units of the multiplier, 2000, are ohms. Solving these equations yields

Then

 = 10 V

 Vo = (5 k)I1

I1 = 2 mA

VA = 2000I1

-12 + 3kI1 - VA + 5kI1 = 0

SOLUTION

EXAMPLE

2.28
Given the circuit in Fig. 2.38 containing a current-controlled current source, let us find the
voltage Vo .

Figure  2.38

Circuit used in
Example 2.28.

Vo

VS4 Io

Io
4 k�

3 k�

2 k�

10 mA
+

–

+

–

Applying KCL at the top node, we obtain

where

Substituting this expression for the controlled source into the KCL equation yields 

Solving this equation for we obtain

The voltage can now be obtained using a simple voltage divider; that is,

 = 8 V

 Vo = c 4k

2k + 4k
dVS

Vo

VS = 12 V
VS ,

10-2
+

VS

6k
+

VS

3k
-

4VS

3k
= 0

Io =

VS

3k

10 * 10-3
+

VS

2k + 4k
+

VS

3k
- 4Io = 0

EXAMPLE

2.29
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SOLUTION Applying KVL to this network yields

where

Hence, the KVL equation can be written as

or
I=2 mA

Therefore,

 = 2 V

 Vo = 1kI

-12 + 3kI + 2kI + 1kI = 0

Vo = 1kI

-12 + 3kI + 2Vo + 1kI = 0

An equivalent circuit for a FET common-source amplifier or BJT common-emitter
amplifier can be modeled by the circuit shown in Fig. 2.40a. We wish to determine an
expression for the gain of the amplifier, which is the ratio of the output voltage to the
input voltage.

EXAMPLE

2.30

R1

R3 R4 R5

(a)

i1(t)

vi(t) gm vg(t) vo(t)

+

–

R2
vg(t)

+

–

R1

RL

(b)

i1(t)

vi(t) gm vg(t) vo(t)

+

–

R2
vg(t)

+

–

±
–

±
–

Figure 2.40

Example circuit containing a
voltage-controlled current

source.

Note that although this circuit, which contains a voltage-controlled current source, appears to
be somewhat complicated, we are actually in a position now to solve it with techniques we
have studied up to this point. The loop on the left, or input to the amplifier, is essentially
detached from the output portion of the amplifier on the right. The voltage across is vg(t),
which controls the dependent current source.

To simplify the analysis, let us replace the resistors and with such that

Then the circuit reduces to that shown in Fig. 2.40b. Applying Kirchhoff’s voltage law to
the input portion of the amplifier yields

vi(t) = i1(t)AR1 + R2B

1

RL
=

1

R3
+

1

R4
+

1

R5

RLR5R4 ,R3 ,

R2

SOLUTION
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and

vg(t)=i1(t)R2

Solving these equations for vg(t) yields

From the output circuit, note that the voltage vo(t) is given by the expression

vo(t)=–gmvg(t)RL

Combining this equation with the preceding one yields

Therefore, the amplifier gain, which is the ratio of the output voltage to the input voltage,
is given by

Reasonable values for the circuit parameters in Fig. 2.40a are
and Hence, the gain of the amplifier under

these conditions is

Thus, the magnitude of the gain is 165.29.

 = -165.29

 
vo(t)

vi(t)
=

-(0.04)(4.545)A103B(1)A103B
(1.1)A103B

R4 = R5 = 10 k�.R3 = 50 k�,gm = 0.04 S,
R2 = 1 k�,R1 = 100 �,

vo(t)

vi(t)
= - 

gm RL R2

R1 + R2

vo(t) =

-gm RL R2

R1 + R2
 vi(t)

vg(t) =

R2

R1 + R2
 vi(t)

At this point it is perhaps helpful to point out again that when analyzing circuits with
dependent sources, we first treat the dependent source as though it were an independent source
when we write a Kirchhoff’s current or voltage law equation. Once the equation is written,
we then write the controlling equation that specifies the relationship of the dependent source
to the unknown variable. For instance, the first equation in Example 2.28 treats the dependent
source like an independent source. The second equation in the example specifies the relation-
ship of the dependent source to the voltage, which is the unknown in the first equation.

E2.27 Find in the circuit in Fig. E2.27.Vo ANSWER: Vo = 12 V.

±–

Vo

VAI 2VA

4 k�

8 k�6 V

+

–

+ –

±
–

Figure E2.27

Learning Assessments
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E2.28 Find in the network in Fig. E2.28.Vo ANSWER: Vo = 8 V.

Vo

VS
Vo

2 mA
2000

2 k�

1 k�

6 k�
+

–

+

–

—

Figure E2.28

E2.29 Find VA in Fig. E2.29. ANSWER: VA = -12 V.

E2.30 Find V1 in Fig. E2.30. ANSWER: V1 = -32/3 V.

10 k� 5 k�

36 V12 V

5 k�

VA

Vx

2Vx

+

+

–

–

+
–

+
–

+–

Figure E2.29

4 k�

8 k�

50 V

18 V

8 k�

V1

Vx

0.5 Vx

+

+

–

–

–
++

–

+–

Figure E2.30

E2.31 Find 1x in Fig. E2.31. ANSWER: Ix = -1.5 mA.

10 mA 3 mA2 k� 5 k� 10 k�2Ix

Ix

Figure E2.31

E2.32 Find Vo in Fig. E2.32. ANSWER: Vo = 16 V.

6 mA 6 k�4 k� 0.5Ix

Ix

12 k� Vo

+

–
Figure E2.32
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E2.33 If the power supplied by the 3-A current source in Fig. E2.33 is 12 W, find VS and the
power supplied by the 10-V source.

ANSWER: VS = 42 
V, -30 W.

3 A

10 V6 �

4 �

3 � 4 �

Vs 5 �+
–

+
–

Figure E2.33

2.9
Resistor

Technologies
for Electronic

Manufacturing

In addition to the resistors shown in Fig 2.1, three types are employed in the modern elec-
tronics industry: thick-film, thin-film, and silicon-diffused resistors.

THICK-FILM RESISTORS Thick-film resistor components are found on all modern
surface mount technology (SMT) printed circuit boards. They come in a variety of shapes,
sizes, and values. A table of standard sizes for thick-film chip resistors is shown in Table 2.2,
and some examples of surface mount thick-film ceramic resistors can be seen in Fig. 2.41.

Thick-film resistors are considered “low-tech,” when compared with thin-film and sili-
con-diffused components, because they are manufactured using a screen printing process
similar to that used with T-shirts. The screens utilized in thick-film manufacturing use a much
finer mesh and are typically made of stainless steel for a longer lifetime. The paste used in
screen printing resistors consists of a mixture of ruthenium oxides ( ) and glass.RuO2

TABLE 2.2 Thick-film chip resistor standard sizes

SIZE CODE SIZE (MILS) POWER RATING (WATTS)

0201

0402

0603

0805

1206

2010

2512 1250 * 120

1�2200 * 100

1�4120 * 60 
1�880 * 50

1�1060 * 30

1�1640 * 20

1�2020 * 10

Chip Resistors Chip Capacitors

Figure 2.41

A printed circuit board show-
ing surface mount thick-film
ceramic resistors. (Courtesy
of Mike Palmer)
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Figure 2.42

Thick-film chip resistor
cross-section.

Electrode (Inner)

Electrode
(Between)

Electrode (Outer)Thick film
resistive element

Alumina
substrate

Protective
coating

Once the paste is screen printed, it is fired at temperatures around causing the
organic binders to vaporize and to allow the glass to melt and bind the metal and glass filler
to the substrate. The substrates are typically alumina ceramic. After firing, conductors
are screen printed and fired to form the contacts used to solder the resistors. A second layer
of glass is screen printed and fired to seal and protect the resistor. A cross-section of a typi-
cal thick-film resistor is shown in Fig. 2.42. Notice that the conductors are “wrapped” around
the substrate to allow them to be soldered from the bottom or top and allow the solder to
“wic” up the side to form a more reliable mechanical and electrical contact.

Thick-film resistors have typical “as fired” tolerances of These
wide tolerances are due to the fact that the screen printing process does not afford good geom-
etry transfer or consistent thickness. To obtain a better tolerance (i.e., 
the resistors can be trimmed with a YAG laser to remove a portion of the resistor and change
its value. The resistor is constantly measured during the cutting process to make sure the
resistance is within the specified tolerance.

THIN-FILM RESISTORS Thin-film resistors are fabricated by depositing a thin layer
(hundreds of angstroms, where one angstrom is one ten-billionth of a meter) of Tantalum
Nitride (TaN) or Nichrome (NiCr) onto a silicon or highly polished alumina ceramic sub-
strate. Using a photolithography process, the metal film is patterned and etched to form the
resistor structure. Thin-film metals have a limited resistivity (the reciprocal of conductivity—
a measure of a material’s ability to carry an electric current). This low resistivity limits the
practical range of thin-film resistors due to the large areas required. Both TaN and NiCr have
similar characteristics, but TaN is more chemically and thermally resistant and will hold up
better to harsh environments. Sputtered metal thin films are continuous and virtually defect
free, which makes them very stable, low-noise components that have negligible nonlinearity
when compared with the more porous thick-film materials.

Thin-film resistors are available in standard SMT packages, but are also available as wire-
bondable chips that can be directly patterned onto integrated circuits. A cross-sectional draw-
ing of the thin-film chip on ceramic or silicon is shown in Fig 2.43. Because of the addition-
al sophistication involved in fabrication, thin-film resistors are more expensive than thick-
film resistors. However, they have a number of important characteristics that make them the
preferred devices for a number of microwave applications. Like thick-film resistors, these
components can also be laser-trimmed to obtain a desired value within a specified tolerance.
Since the sputtered metal film is extremely thin, the power requirement for the laser is very
low, which in turn ensures that there will be minimal micro-cracking and therefore an
increased level of stability.

SILICON-DIFFUSED RESISTORS Silicon-diffused resistors are part of virtually all
integrated circuits (ICs). They are passive devices that are implemented to support or enhance
the capabilities of active devices, such as transistors and diodes. Both passive and active
devices are manufactured at the same time using the same technology (e.g., CMOS—com-
plementary metal-oxide semiconductor). The resistors are made by diffusing a dopant, such
as boron or phosphorus, into a silicon substrate at high temperature. This process is very

+�- 0.5%  to  +�- 1.0%),

+�- 10%  to  +�- 20%.

95%

850°C,
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Protective Coat Epoxy

High Purity Alumina
Substrate

Sputtered Resistive
Metal Film

Terminations (Nickel
& Solder Plating)

Electrode Thin Film

Figure 2.43 

Thin-film chip resistor
cross-section.

expensive and is the reason silicon-diffused resistors cost more than thin- or thick-film resis-
tors. A photo of an integrated silicon resistor is shown in Fig. 2.44. Notice that the resistor is
completely integrated within a larger circuit, because it is not economically feasible to make
discrete silicon-diffused resistors. Table 2.3 compares some of the characteristics of thick-
film, thin-film, and silicon-diffused resistors.

Silicon resistors have a resistance range on the order of 5–6k ohms/sq. The term “ohms per
square” means a dimensionless square area of resistive material, having an ohmic value equal

Diffused
Resistors

Figure 2.44
Silicon-diffused resistors.
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TABLE 2.3 Characteristics of resistor types

CHARACTERISTIC THICK-FILM THIN-FILM SILICON-DIFFUSED

Sheet resistance

Sheet tolerance (as fired) �/� �/� �/�

Sheet tolerance (final) �/� �/�

Relative cost Low High Higher

N�A1%1%

2%10%20%

5 -  6k ohms�sq25 -  300 ohms�sq5 -  500k ohms�sq

to the sheet resistivity of the material. For example, a 10-ohm sheet resistivity material would
constitute a 10-ohm resistor whether the material was 1 mil by 1 mil or 1 inch by 1 inch.
Dividing the length of the resistor by its width yields the number of squares, and multiplying
the number of squares by the sheet resistance yields the resistance value. The total resistance
values are limited because of the high cost of silicon area, and there are other circuit design
techniques for implementing high-valued resistors through the judicious use of transistors.
These devices suffer from large changes in value over temperature and some resistance change
with applied voltage. As a result of these poor characteristics, thin-film resistors mounted on
the surface of the silicon are used in place of diffused resistors in critical applications.

APPLICATION
EXAMPLE 2.31

The eyes (heating elements) of an electric range are frequently made of resistive nichrome
strips. Operation of the eye is quite simple. A current is passed through the heating element
causing it to dissipate power in the form of heat. Also, a four-position selector switch,
shown in Fig. 2.45, controls the power (heat) output. In this case the eye consists of two
nichrome strips modeled by the resistors and where 

1. How should positions A, B, C, and D be labeled with regard to high, medium, low, and
off settings?

2. If we desire that high and medium correspond to 2000 W and 1200 W power dissipa-
tion, respectively, what are the values of and 

3. What is the power dissipation at the low setting?

Position A is the off setting since no current flows to the heater elements. In position B, cur-
rent flows through only, while in position C current flows through only. Since 
more power will be dissipated when the switch is at position C. Thus, position C is the medi-
um setting, B is the low setting, and, by elimination, position D is the high setting.

When the switch is at the medium setting, only dissipates power, and we can write as

or
R1 = 44.08 �

R1 =

V2
S

P1
=

2302

1200

R1R1

R1 6 R2 ,R1R2

R2 ?R1

R1 6 R2 .R2 ,R1

•

SOLUTION

2.10
Application
Examples

Throughout this book we endeavor to present a wide variety of examples that demonstrate the
usefulness of the material under discussion in a practical environment. To enhance our
presentation of the practical aspects of circuit analysis and design, we have dedicated sections,
such as this one, in most chapters for the specific purpose of presenting additional application-
oriented examples.
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On the high setting, 2000 W of total power is delivered to and Since dissipates 1200 W,
must dissipate the remaining 800 W. Therefore, is

or

Finally, at the low setting, only is connected to the voltage source; thus, the power dissi-
pation at this setting is 800 W.

R2

R2 = 66.13 �

R2 =

V2
S

P2
=

2302

800

R2R2

R1R2 .R1

±
–

A
B

D

C

R1
R2

VS=230 V

Figure 2.45 

Simple resistive heater
selector circuit.

Have you ever cranked your car with the headlights on? While the starter kicked the engine,
you probably saw the headlights dim then return to normal brightness once the engine was
running on its own. Can we create a model to predict this phenomenon?

•
APPLICATION
EXAMPLE 2.32

Yes, we can. Consider the conceptual circuit in Fig. 2.46a and the model circuit in
Fig. 2.46b, which isolates just the battery, headlights, and starter. Note the resistor 
It is included to model several power loss mechanisms that can occur between the battery
and the loads, that is, the headlights and starter. First, there are the chemical processes with-
in the battery itself which are not 100% efficient. Second, there are the electrical connec-
tions at both the battery posts and the loads. Third, the wiring itself has some resistance,
although this is usually so small that it is negligible. The sum of these losses is modeled by

and we expect the value of to be small. A reasonable value is 
Next we address the starter. When energized, a typical automobile starter will draw

between 90 and 120 A. We will use 100 A as a typical number. Finally, the headlights will
draw much less current—perhaps only 1 A. Now we have values to use in our model 
circuit.

25 m�.RbattRbatt ,

Rbatt .
SOLUTION

12 V

12 V

Vbatt
Istart

Rbatt VL

IHL

+ -

Headlights

Headlight
switch

Ignition
switch

(a) (b)

±
–

Figure 2.46

A conceptual (a) model and
(b) circuit for examining the
effect of starter current on
headlight intensity.
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Assume first that the starter is off. By applying KCL at the node labeled we find that
the voltage applied to the headlights can be written as

Substituting our model values into this equation yields —very close to 12 V.
Now we energize the starter and apply KCL again:

Now the voltage across the headlights is only 9.25 V. No wonder the headlights dim!
How would corrosion or loose connections on the battery posts change the situation? In this
case, we would expect the quality of the connection from battery to load to deteriorate,
increasing and compounding the headlight dimming issue.Rbatt

VL = Vbatt - AIHL + IstartBRbatt

VL = 11.75 V

VL = Vbatt - IHL Rbatt

VL ,

A Wheatstone bridge circuit is an accurate device for measuring resistance. This circuit,
shown in Fig. 2.47, is used to measure the unknown resistor The center leg of the cir-
cuit contains a galvanometer, which is a very sensitive device that can be used to measure
current in the microamp range. When the unknown resistor is connected to the bridge, is
adjusted until the current in the galvanometer is zero, at which point the bridge is balanced.
In this balanced condition

so that

Rx = a R2

R1
bR3

R1

R3
=

R2

Rx

R3

Rx .
APPLICATION
EXAMPLE 2.33

•

Figure 2.47 

The Wheatstone bridge
circuit.

R1 R2

I2

R3

I1

I3

IG Ix

Rx

G

Using the balance equation for the bridge, the value of at no load is

 R3 = a R1

R2
bRx

R3SOLUTION

Engineers also use this bridge circuit to measure strain in solid material. For example, a
system used to determine the weight of a truck is shown in Fig. 2.48a. The platform is sup-
ported by cylinders on which strain gauges are mounted. The strain gauges, which measure
strain when the cylinder deflects under load, are connected to a Wheatstone bridge as shown
in Fig. 2.48b. The strain gauge has a resistance of under no-load conditions and
changes value under load. The variable resistor in the bridge is a calibrated precision device.

Weight is determined in the following manner. The required to balance the bridge
represents the strain, which when multiplied by the modulus of elasticity yields the

stress. The stress multiplied by the cross-sectional area of the cylinder produces the
load, which is used to determine weight.
Let us determine the value of under no load when the bridge is balanced and its value

when the resistance of the strain gauge changes to under load.120.24 �
R3

¢

¢¢

¢

¢R3

120 �
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Under load, the value of is

Therefore, the ¢R3 is

 = 0.2182 �
 ¢R3 = 109.3091 - 109.0909

 = 109.3091 �

 R3 = a 100

110
b (120.24)

R3

 = 109.0909 �

 = a 100

110
b (120)

Figure 2.48 

Diagrams used in 
Example 2.33.

R2=110 �R1=100 �

R3
Strain gauge

Rx

G

(a)

(b)

Strain gauge

Platform

2.11
Design Examples

Most of this text is concerned with circuit analysis; that is, given a circuit in which all the
components are specified, analysis involves finding such things as the voltage across some
element or the current through another. Furthermore, the solution of an analysis problem is
generally unique. In contrast, design involves determining the circuit configuration that will
meet certain specifications. In addition, the solution is generally not unique in that there may
be many ways to satisfy the circuit/performance specifications. It is also possible that there
is no solution that will meet the design criteria.

In addition to meeting certain technical specifications, designs normally must also meet
other criteria, such as economic, environmental, and safety constraints. For example, if a cir-
cuit design that meets the technical specifications is either too expensive or unsafe, it is not
viable regardless of its technical merit.

At this point, the number of elements that we can employ in circuit design is limited prima-
rily to the linear resistor and the active elements we have presented. However, as we progress
through the text we will introduce a number of other elements (for example, the op-amp,
capacitor, and inductor), which will significantly enhance our design capability.

We begin our discussion of circuit design by considering a couple of simple examples that
demonstrate the selection of specific components to meet certain circuit specifications. 
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DESIGN
EXAMPLE 2.34

•
An electronics hobbyist who has built his own stereo amplifier wants to add a back-lit dis-
play panel to his creation for that professional look. His panel design requires seven light
bulbs—two operate at and five at Luckily, his stereo design already
has a quality 12-V dc supply; however, there is no 9-V supply. Rather than building a new
dc power supply, let us use the inexpensive circuit shown in Fig. 2.49a to design a 12-V to
9-V converter with the restriction that the variation in be no more than In particu-
lar, we must determine the necessary values of and 

First, lamps and have no effect on Second, when lamps are on, they each
have an equivalent resistance of

As long as remains fairly constant, the lamp resistance will also be fairly constant. Thus,
the requisite model circuit for our design is shown in Fig. 2.49b. The voltage will be at
its maximum value of when are all off. In this case and are
in series, and can be expressed by simple voltage division as

V2 = 9.45 = 12 c R2

R1 + R2
d

V2

R2R1L3–L79 + 5% = 9.45 V
V2

V2

Req =

V2

I
=

9

0.005
= 1.8 k�

L3–L7V2 .L2L1

R2 .R1

;5%.V2

9 V�5 mA.12 V�15 mA

SOLUTION

±
–12 V

L3L1

R2 V2

R1

L2 L4 L5 L6 L7

+

-

12 V

1.8 k� 1.8 k� 1.8 k� 1.8 k� 1.8 k�

R2 V2

R1

+

-

(a)

(b)

±
–

Figure 2.49 
12-V to 9-V converter circuit
for powering panel lighting.
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Rearranging the equation yields

A second expression involving and can be developed by considering the case when
are all on, which causes to reach its minimum value of 9–5%, or 8.55 V. Now, the

effective resistance of the lamps is five 1.8- resistors in parallel, or The corre-
sponding expression for is

which can be rewritten in the form

Substituting the value determined for into the preceding equation yields

or

and so for 
R2 = 178.3 �

R2

R1 = 48.1 �

R1 = 360[1.4 - 1 - 0.27]

R1�R2

360R1

R2
+ 360 + R1

360
=

12

8.55
= 1.4

V2 = 8.55 = 12 c R2��360

R1 + AR2��360B d
V2

360 �.k�
V2L3–L7

R2R1

R1

R2
= 0.27

•
DESIGN
EXAMPLE 2.35

•
DESIGN
EXAMPLE 2.35

SOLUTION

Let’s design a circuit that produces a 5-V output from a 12-V input. We will arbitrarily fix
the power consumed by the circuit at 240 mW. Finally, we will choose the best possible
standard resistor values from Table 2.1 and calculate the percent error in the output voltage
that results from that choice.

The simple voltage divider, shown in Fig. 2.50, is ideally suited for this application. We
know that is given by

which can be written as

Since all of the circuit’s power is supplied by the 12-V source, the total power is given by

Using the second equation to eliminate we find that has a lower limit of

Substituting these results into the second equation yields the lower limit of that is

Thus, we find that a significant portion of Table 2.1 is not applicable to this design.
However, determining the best pair of resistor values is primarily a trial-and-error operation

R1 = R2 cVin

Vo
- 1 d � 350 �

R1 ,

R2 �
Vo Vin

P
=

(5)(12)

0.24
= 250 �

R2R1 ,

P =

V2
in

R1 + R2
	 0.24

R1 = R2 cVin

Vo
- 1 d

Vo = Vin c R2

R1 + R2
d

Vo

R1

12 V

R2 Vo=5 V

+

-

±
–

Figure 2.50

A simple voltage divider
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TABLE 2.4 Spreadsheet calculations for simple voltage divider

A B C D E

1 R2 R1 theor R1 Vo Pabs

2 300 420 430 4.932 0.197

3 330 462 470 4.950 0.180

4 360 504 510 4.966 0.166

5 390 546 560 4.926 0.152

6 430 602 620 4.914 0.137

7 470 658 680 4.904 0.125

8 510 714 750 4.857 0.114

9 560 784 750 5.130 0.110

10 620 868 910 4.863 0.094

11 680 952 910 5.132 0.091

12 750 1050 1000 5.143 0.082

13 820 1148 1100 5.125 0.075

14 910 1274 1300 4.941 0.065

15 1000 1400 1300 5.217 0.063

16 1100 1540 1500 5.077 0.055

17 1200 1680 1600 5.143 0.051

18 1300 1820 1800 5.032 0.046

19 1500 2100 2000 5.143 0.041

20 1600 2240 2200 5.053 0.038

21 1800 2520 2400 5.143 0.034

22 2000 2800 2700 5.106 0.031

23 2200 3080 3000 5.077 0.028

24 2400 3360 3300 5.053 0.025

that can be enhanced by using an Excel spreadsheet as shown in Table 2.4. Standard resis-
tor values from Table 2.1 were entered into Column A of the spreadsheet for Using the
equation above, theoretical values for were calculated using A standard
resistor value was selected from Table 2.1 for based on the theoretical calculation in
Column B. was calculated using the simple voltage-divider equation, and the power
absorbed by and was calculated in Column E.

Note that a number of combinations of and satisfy the power constraint for this
circuit. The power absorbed decreases as and increase. Let’s select and

, because this combination yields an output voltage of that is closest
to the desired value of The resulting error in the output voltage can be determined from
the expression

It should be noted, however, that these resistor values are nominal, that is, typical values.
To find the worst-case error, we must consider that each resistor as purchased may be as much
as off the nominal value. In this application, since is already greater than the target of
5 V, the worst-case scenario occurs when increases even further, that is, is 5% too low

and is 5% too high . The resulting output voltage is 5.32 V, which yields
a percent error of 6.4%. Of course, most resistor values are closer to the nominal value than
to the guaranteed maximum/minimum values. However, if we intend to build this circuit with
a guaranteed tight output error such as 5% we should use resistors with lower tolerances.

How much lower should the tolerances be? Our first equation can be altered to yield the
worst-case output voltage by adding a tolerance, , to and subtracting the tolerance from

Let’s choose a worst-case output voltage of , that is, a 5% error:V0max = 5.25 VR1.
R2¢

(1365 �)R2(1710 �)
R1V0

V0;5%

Percent error = c 5.032 - 5

5
d 100% = 0.64%

5 V.
5.032 VR2 = 1300 �

R1 = 1800 �R2R1

R2R1

R2R1

V0

R1

R1 = 1.4�R2.R1

R2.
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The resulting value of is 0.037, or 3.7%. Standard resistors are available in tolerances of
10, 5, 2, and 1%. Tighter tolerances are available but very expensive. Thus, based on nom-
inal values of and , we should utilize 2% resistors to ensure an output volt-
age error less than 5%.

1800 �1300 �

¢

12 c 1300(1 + ¢)

1800(1 - ¢) + 1300(1 + ¢)
dV0max = 5.25 = Vin c R2(1 + ¢)

R1(1 - ¢) + R2(1 + ¢)
d =

•
DESIGN
EXAMPLE 2.36

SOLUTION

In factory instrumentation, process parameters such as pressure and flowrate are measured,
converted to electrical signals, and sent some distance to an electronic controller. The con-
troller then decides what actions should be taken. One of the main concerns in these sys-
tems is the physical distance between the sensor and the controller. An industry standard
format for encoding the measurement value is called the 4–20 mA standard, where the
parameter range is linearly distributed from 4 to 20 mA. For example, a 100 psi pressure
sensor would output 4 mA if the pressure were 0 psi, 20 mA at 100 psi, and 12 mA at 50 psi.
But most instrumentation is based on voltages between 0 and 5 V, not on currents.

Therefore, let us design a current-to-voltage converter that will output 5 V when the cur-
rent signal is 20 mA.

The circuit in Fig. 2.51a is a very accurate model of our situation. The wiring from the sen-
sor unit to the controller has some resistance, If the sensor output were a voltage pro-
portional to pressure, the voltage drop in the line would cause measurement error even if the
sensor output were an ideal source of voltage. But, since the data are contained in the cur-
rent value, does not affect the accuracy at the controller as long as the sensor acts as
an ideal current source.

As for the current-to-voltage converter, it is extremely simple—a resistor. For 5 V at
20 mA, we employ Ohm’s law to find

The resulting converter is added to the system in Fig. 2.51b, where we tacitly assume that
the controller does not load the remaining portion of the circuit.

Note that the model indicates that the distance between the sensor and controller could
be infinite. Intuitively, this situation would appear to be unreasonable, and it is. Losses that
would take place over distance can be accounted for by using a more accurate model of the
sensor, as shown in Fig. 2.52. The effect of this new sensor model can be seen from the
equations that describe this new network. The model equations are

IS =

VS

RS
+

VS

Rwire + 250

R =

5

0.02
= 250 �

Rwire

Rwire .

I to V
converter

Sensor
model

Controller

Rwire

(a)

Sensor
model

Controller

Rwire

(b)

250 �

Figure 2.51

The 4- to 20-mA control
loop (a) block diagram,
(b) with the current-to-
voltage converter.
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and

Combining these equations yields

Thus, we see that it is the size of relative to that determines the
accuracy of the signal at the controller. Therefore, we want as large as possible. Both the
maximum sensor output voltage and output resistance, are specified by the sensor man-
ufacturer.

We will revisit this current-to-voltage converter in Chapter 4.

RS ,
RS

(Rwire + 250 �)RS

Isignal

IS
=

1

1 +

Rwire + 250

RS

Isignal =

VS

Rwire + 250

Improved
sensor
model

Controller

Rwire

Isignal

250 �

IS RS

VSFigure 2.52 

A more accurate model
for the 4- to 20-mA 

control loop.

The network in Fig. 2.53 is an equivalent circuit for a transistor amplifier used in a stereo
preamplifier. The input circuitry, consisting of a 2-mV source in series with a 500-� resis-
tor, models the output of a compact disk player. The dependent source, Rin , and Ro model
the transistor, which amplifies the signal and then sends it to the power amplifier. The
10-k� load resistor models the input to the power amplifier that actually drives the
speakers. We must design a transistor amplifier as shown in Fig. 2.53 that will provide an
overall gain of –200. In practice we do not actually vary the device parameters to achieve
the desired gain; rather, we select a transistor from the manufacturer’s data books that will
satisfy the required specification. The model parameters for three different transistors are
listed as follows:

DESIGN
EXAMPLE 2.37

•

SOLUTION

Manufacturer’s transistor parameter values

Part Number Rin (k ) Ro (k ) gm (mA/V)

1 1.0 50 50
2 2.0 75 30
3 8.0 80 20

��

Design the amplifier by choosing the transistor that produces the most accurate gain.
What is the percent error of your choice?

The output voltage can be written

Vo = -gm VARo��RLB
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Using voltage division at the input to find V,

Combining these two expressions, we can solve for the gain:

Using the parameter values for the three transistors, we find that the best alternative is tran-
sistor number 2, which has a gain error of

Percent error = a 211.8 - 200

200
b * 100% = 5.9%

AV =

Vo

VS
= -gm a Rin

Rin + RS
b ARo��RLB

V = VS a Rin

Rin + RS
b

±
–

RS=500 �

VS=2 mV Rin gm V Ro VoRL=10 k�

+

-
V

+

-

Figure 2.53

Transistor amplifier circuit
model.

S U M M A R Y
•

■ Ohm’s law V = IR

■ The passive sign convention with Ohm’s
law The current enters the resistor terminal with the
positive voltage reference.

■ Kirchhoff’s current law (KCL) The algebraic
sum of the currents leaving (entering) a node is zero.

■ Kirchhoff’s voltage law (KVL) The algebraic
sum of the voltages around any closed path is zero. 

■ Solving a single-loop circuit Determine the loop
current by applying KVL and Ohm’s law.

■ Solving a single-node-pair circuit Determine
the voltage between the pair of nodes by applying KCL and
Ohm’s law.

■ The voltage-division rule The voltage is divided
between two series resistors in direct proportion to their
resistance.

■ The current-division rule The current is divided
between two parallel resistors in reverse proportion to their
resistance.

■ The equivalent resistance of a network of
resistors Combine resistors in series by adding their
resistances. Combine resistors in parallel by adding their
conductances. The wye-to-delta and delta-to-wye
transformations are also an aid in reducing the complexity
of a network.

■ Short circuit Zero resistance, zero voltage; 
the current in the short is determined by the rest 
of the circuit.

■ Open circuit Zero conductance, zero current; the
voltage across the open terminals is determined by the rest
of the circuit.
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P R O B L E M S
•

2.1 Determine the current and power dissipated in the resistor
in Fig. P2.1.

9 V ±
– 12 �

Figure P2.1

0.5 S

2 �

12 V ±
–

2 A 12 �

Figure P2.2

Figure P2.3

2.4 Given the circuit in Fig. P2.4, find the voltage across each
resistor and the power dissipated in each.

6 A

5 �

0.25 S

Figure P2.4

2 mA Rx

12 mA Gx

Figure P2.5

Figure P2.6

2.2 Determine the current and power dissipated in the
resistors in Fig. P2.2.

2.3 Determine the voltage across the resistor in Fig. P2.3 and
the power dissipated.

2.5 In the network in Fig. P2.5, the power absorbed by is
20 mW. Find .Rx

Rx

2.6 In the network in Fig. P2.6, the power absorbed by is
20 mW. Find .Gx

Gx

2.7 A model for a standard two D-cell flashlight is shown in
Fig. P2.7. Find the power dissipated in the lamp.

1-� lamp

1.5 V

1.5 V

2.8 An automobile uses two halogen headlights connected as
shown in Fig. P2.8. Determine the power supplied by the
battery if each headlight draws 3 A of current.

Figure P2.8

12 V

+ -

Figure P2.7

2.9 Many years ago a string of Christmas tree lights was man-
ufactured in the form shown in Fig. P2.9a. Today the
lights are manufactured as shown in Fig. P2.9b. Is there a
good reason for this change?

Figure P2.9

(a)

(b)
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2.10 Find in the network in Fig. P2.10.

Figure P2.10

2.11 Find in the network in Fig. P2.11.

Figure P2.11

2.12 Find and in the network in Fig. P2.12.

Figure P2.12

2.13 Find in the circuit in Fig. P2.13.

Figure P2.13

2.14 Find in the network in Fig. P2.14.

Figure P2.14

12 mA4 mA

2Ix 3Ix

Ix

Ix

4 mA

2 mA

12 mA

I1

±
–

I1

2 mA

8 mA

4 mA

I1

±
–

I2

I2I1

2 mA

6 mA

I1

±
–

I1

20 mA

6 mA

4 mAI1

I1

2.15 Determine in the circuit in Fig. P2.15.

Figure P2.15

6 k� 2 k� 3 k�6 mA 3 mA

Ix IL

3 Ix

IL

2.16 Find and in the circuit in Fig. P2.16.

Figure P2.16

2.17 Find in the network in Fig. P2.17.

Figure P2.17

2 mA

4 mA

2Ix

Ix I1

I1

5 mA

2 mA

4 mA

3 mAIo

I1
–±

±
–

I1Io
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2.18 Find , , and in the network in Fig. P2.18.

Figure P2.18

2.19 Find in the circuit in Fig. P2.19.

Figure P2.19

2.20 Find in the network in Fig. P2.20.

Figure P2.20

2.21 Find I1, I2, and I3 in the network in Fig. P2.21.

Figure P2.21

2.22 In the network in Fig. P2.22, Find I1, I2 and I3 and show
that KCL is satisfied at the boundary.

Figure P2.22

2.23 Find in the circuit in Fig. P2.23.

Figure P2.23

2.24 Find in the network in Fig. P2.24.

Figure P2.24

2.25 Find and in the circuit in Fig. P2.25.

Figure P2.25

+-
a b c d

efg

2 V
-

+
3 V

+

-

1 V- +

1 V+ -

2 V

12 V 3 V

- +

–±

VecVfb

a b c

e d

4 V 12 V

3 V 2 V ++ --

3 V -+

±
–

±
–

Vad

a b c

d

–±

12 V

4 V
6 V

2 V

+
+

-

-

±
–

Vbd

I3

I2

I1

4 mA

4 mA

2 mA

1 mA

2Ix

I2

I3

I1

12 mA

4 mA

2Ix

Ix

2Ix

I1

6 mA

4 mA

6 mA

Ix

I1

4 mA

12 mA

4Ix

Ix I1

I1

4 mA

3 mA

2 mA

12 mA

Ix

Iy

Iz

– ±

IzIyIx
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2.26 Find and in the circuit in Fig. P2.26.

Figure P2.26

2.27 Given the circuit diagram in Fig. P2.27, find the 
following voltages: , , , , , , , , ,
and .

Figure P2.27

2.28 Find Vx and Vy in the circuit in Fig. P2.28.

Figure P2.28

2.29 Find Vx and Vy in the circuit in Fig. P2.29.

Figure P2.29

2.30 Find V1, V2 and V3 in the network in Fig. P2.30.

Figure P2.30

2.31 Find in the network in Fig. P2.31.

Figure P2.31

2.32 Find in the circuit in Fig. P2.32.

Figure P2.32

+
-

±
–+ –2 Ix Vx

+– Vx

Vo

12 �4 � 12 V

Ix
+-

Vo

±
–

-+
+ –

+

–

4 Vx
2 VA

Vx

VA

+

–

Vo

4 � 2 �

12 V -
+

Vo

6 V

4 V

6 V

+
–

Vx 2Vx

+

–

V1

+

–

V3

+

–

+

–

+
–

+–
V2 +–

12 V 4 V

6 V

+–

+
–

Vx +–

+

–

Vy

+

–

12 V

4 V6 V

6 V

+–

+
– +

–

Vx

+

–

Vy

+

–

+

–

+

-

16 V

+

-

8 V

+

-

14 V

+

-

20 V

+ +- -
8 V 12 V

+ +- -
12 V 4 V

g h i

a b c

d e f

Vdc

VfbVhfVaiVacVfaVdiVgcVbhVda

a b c

f

e

d

12 V 6 V

4 V +-

±
–

±
–

–±

9 V

5 V

-

+

6 V

+

-

VcfVae
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2.33 The 10-V source absorbs 2.5 mW of power. Calculate
Vba and the power absorbed by the dependent voltage
source in Fig. P2.33.

Figure P2.33

2.34 Find V1, V2, and V3 in the network in Fig. P2.34.

Figure P2.34

2.35 The 10-V source in Fig. P.2.35 is supplying 50 W.
Determine R1.

Figure P2.35

2.36 Find V1 and V2 in Fig. P2.36.

Figure P2.36

2.37 Find in the network in Fig. P2.37.

Figure P2.37

2.38 Find in the circuit in Fig. P2.38.

Figure P2.38

2.39 Find in the network in Fig. P2.39.

Figure P2.39

2.40 Find and the power supplied by the 15-V source in
the circuit in Fig. P2.40.

Figure P2.40

8 k�

5 k�

6 k�

2 k�

4 k�

10 V

15 V

25 V

Vx ±
–

– ±

–±

Vx

6 V

9 V

3 �

2 �

6 �

4 �

a

b

–±

– ±

Vab

8 V

24 V

6 V

4 k� 6 k�

±
–

±
–

–±

+

-

Vx

Vx

a b c

d

4 V12 V

3 k� 1 k�

±
–

±
–

Vbd

5 �

5 �

10 � V12 A

+

-

V2

+

-

10 V R1 4R1
+
–

6 V

4 V

+
–

12 V +
–

V1 4Vx

+

–

Vx

+

–

V3

+

–

-
+

+–
V2 +–

Vba

+-

-+
2 k� a

b

3 k�

10 k�

2 Vx

Vx20 V

5 k�

10 V

-

+

±
–
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2.41 Find in the network in Fig. P2.41. 

Figure P2.41

2.42 Find the power supplied by each source, including the
dependent source, in Fig. P2.42. 

Figure P2.42

2.43 Find the power absorbed by the dependent voltage
source in the circuit in Fig. P2.43.

Figure P2.43

2.44 Find the power absorbed by the dependent source in the
circuit in Fig. P2.44.

Figure P2.44

2.45 The 100-V source in the circuit in Fig. P2.45 is 
supplying 200 W. Solve for V2.

Figure P2.45

2.46 Find the value of V2 in Fig. P2.46 such that V1 = 0.

Figure P2.46

2.47 Find in the network in Fig. P2.47.

Figure P2.47

2.48 Find in the network in Fig. P2.48.

Figure P2.48

2.49 Find the power supplied by each source in the circuit in
Fig. P2.49.

Figure P2.49

1 k� 2 k� 5 k�4 mA 2 mA

6 k� 12 k� 12 k�12 mA

Io

Io

6 k� 3 k�2 k�12 mA

Io

Io

20 V +
–

+
–V1

+

–

V2

10 � 20 �

100 V +
–

+
–

V2

30 �

20 �

5 �

40 �

5 �

10 k�

4 k�

2000 Ix

10 k�

6 k�

20 V

60 V

±
–

±
–

–±

Ix

3 k�

10 k�
2 Vx

5 k�

10 k�

2 k�

10 V20 V

Vx

± –

±
–

±
–

15 V +
–

10 k�

3 k� 1 k�

5 k�

+
– 3 VxVx

3 mA

±
–

Vx

Vx
4

10 k� 5 k�

25 V V1

-

-

+

+

±
–

V1
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2.50 Find the current in the circuit in Fig. P2.50.

Figure P2.50

2.51 Find in the network in Fig. P2.51.

Figure P2.51

2.52 Find in the network in Fig. P2.52.

Figure P2.52

2.53 Determine in the circuit in Fig. P2.53.

Figure P2.53

Ix

V1

IL

6 k� 2 k� 3 k�

6 mA 3 mA

3 Ix

+

-

IL

Io

4 �

5 A

8 �

6 k�

Vx

3 Vx
+

-

Io

6 k�

12 k�4 k�

3 k�

12 mA

Io

Io

1 k� 2 k� 5 k�4 k� 7 mA 3 mA

IA

IA

2.54 Find the power absorbed by the dependent source in the network in Fig. P2.54.

Figure P2.54

2.55 Find in the circuit in Fig. P2.55.

Figure P2.55

2.56 Find in the network in Fig. P2.56.

Figure P2.56

6 k�

2 k�

3 k�4 k�

1 k�

A

B

RAB

RAB

RAB

2 k�

2 k�4 k�12 k�

2 k�9 k�

A

B

RAB

1 k�2 VA4 k� 2 k� 5 k�3 mAVA

+

-

88 C H A P T E R  2 R E S I S T I V E  C I R C U I T S

irwin02_025-100hr.qxd  30-06-2010  13:15  Page 88



2.57 Find in the circuit in Fig. P2.57.

Figure P2.57

2.58 Find in the network in Fig. P2.58.

Figure P2.58

2.59 Find in the circuit in Fig. P2.59.

Figure P2.59

2.60 Find in the network in Fig. P2.60.

Figure P2.60

2.61 Find in the circuit in Fig. P2.61.

Figure P2.61

2.62 Find in the network in Fig. P2.62.

Figure P2.62

2.63 Find the equivalent resistance in the network in 
Fig. P2.63.

Figure P2.63

Req

12 �

12 � 12 �

12 �

12 � 12 �12 �

Req

A

B
14 �

6 �

12 �6 �

6 �

9 �

6 �

6 �

6 �

RAB

RAB

A

B

12 �

6 �

12 � 6 � 6 �

9 �

9 � 9 �

RAB

RAB

A

B

2 �

12 �
6 �

3 �

3 �

2 �

4 �

RAB

RAB

10 �

6 �

4 � 12 �

2 � 6 �

A

B

RAB

RAB

2 �

4 � 6 �

8 � 10 �

A

B

RAB

RAB

RAB

1 k�

1 k�2 k�2 k�

2 k�2 k�

1 k�2 k�2 k�

A

B

RAB
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2.64 Find the equivalent resistance looking in at terminals a-b in the circuit in Fig. P2.64.

Figure P2.64

4 �

4 � 6 �

6 �

8 �

8 �

10 �

12 �

20 �

18 �

8 �

a

8 �

5 �

4 �

12 � 10 �

10 �

8 �

8 �

9 �

b

90 C H A P T E R  2 R E S I S T I V E  C I R C U I T S

2.65 Given the resistor configuration shown in Fig. P2.65,
find the equivalent resistance between the following sets
of terminals: (1) a and b, (2) b and c, (3) a and c, (4) d
and e, (5) a and e, (6) c and d, (7) a and d, (8) c and e,
(9) b and d, and (10) b and e.

Figure P2.65

2.66 Seventeen possible equivalent resistance values may
be obtained using three resistors. Determine the
seventeen different values if you are given resistors
with standard values: 47 , 33 , and 15 .

2.67 Find and in the circuit in Fig. P2.67.

Figure P2.67

2.68 Find and in the circuit in Fig. P2.68.

Figure P2.68

6 V 12 k� 4 k�

2 k�I1

Vo

+

-

±
–

V0I1

12 V 6 k� 4 k�

8 k�2 k�

I1

Vo

+

-

±
–

V0I1

���

4 � 4 �

10 �

12 �

a

5 � 5 �

b

c

d

e
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2.69 Find and in the circuit in Fig. P2.69.

Figure P2.69

2.70 Find and in the network in Fig. P2.70.

Figure P2.70

2.71 Find in the network in Fig. P2.71.

Figure P2.71

2.72 Determine in the circuit in Fig. P2.72.

Figure P2.72

2.73 Determine in the network in Fig. P2.73.

Figure P2.73

2.74 Calculate in Fig. P2.74.

Figure P2.74

2.75 Calculate VAB in Fig. P2.75.

Figure P2.75

2.76 Calculate and V1 in Fig. P2.76.

Figure P2.76

2.77 Calculate VAB in Fig. P2.77.

Figure P2.77

A B

12 k� 2 k�4 k�

6 k�8 k� 6 k�

VAB

18 V+
–

6 A V1

a b

15 � 6 � 4 �

6 �2 � 4 �

4 �

Vab

Vab

2 A

A

B

6 �4 �

2 �

4 � 4 � 2 �

4 � 2 �

6 �

VAB

a

b20 � 12 �

20 � 18 �

15 �
30 �

8 �75 V +
–

Vab

Vab

18 mA 3 k�

5 k�

1 k�

30 mA
+

-
Vo

Vo

Io12 V

2 k�

6 k�

4 k�

4 k� 16 k�

12 k�

-
+

Io

12 mA 12 k� 12 k� 12 k�

6 k�

Io

Io

10 k� 8 k�

16 k�

15 V

IA

V1

+

-

±
–

IAV1

±
–

4 � 3 �

1 �

2 �

2 � 5 �

20 V

Vab+

+

-

-

a b

c

d

Vdc

VdcVab
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2.78 Calculate VAB and I1 in Fig. P2.78.

Figure P2.78

2.79 Calculate VAB and I1 in Fig. P2.79.

Figure P2.79

2.80 Find in Fig. P2.80.

Figure P2.80

2.81 If in the network in Fig. P2.81, find 

Figure P2.81

2.82 If mA in the circuit in Fig. P2.82, find 

Figure P2.82

2.83 If mA in the circuit in Fig. P2.83, find 

Figure P2.83

2.84 Find the value of in the network in Fig. P2.84 such
that the power supplied by the current source is 0.

Figure P2.84

2.85 In the network in Fig. P2.85, Find .

Figure P2.85

2.86 Find the value of in the network in Fig. P2.86 such
that 

Figure P2.86

±
–

+-

8 V
2 �

4 � 2 �2 �

2 �

V1

V1Va

+

-
±
–

Va = 0.
V1

3 k�

2 k�7 k� 2 k�

1 k�

IS Vo

+

-

ISVo = 6 V.

±
–

±
–

2 �

3 �

6 �

8 �

18 V 3 A VS

VS

Io

VS 12 k�3 k�
6 k�

1 k�

±
–

VS.Io = 2

IS 4 k� 2 k�

Io = 5 mA

IS.Io = 5

Vo = 4 VVS

+

-

4 k�

8 k�

±
–

VS.Vo = 4 V

100 k�

20 k�

50 k�

30 k�

100 V +
– Vab +–

Vab

A

B

6 k� 8 k�

3 k�

2 k�

8 k�6 k�

6 k�

7 k�

VAB

I1

40 V +
–

A B

10 k� 6 k�12 k�

3 k�

4 k�6 k�

5 k�8 k� 4 k�

VAB

40 V+
–

I1
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2.87 If in the circuit in Fig. P2.87, find 

Figure P2.87

2.88 In the network in Fig. P2.88, Find 

Figure P2.88

2.89 Given that in the network in Fig. P2.89, 
find 

Figure P2.89

2.90 If VR = 15 V, find VX in Fig. P2.90.

Figure P2.90

2.91 If V2 = 4 V in Fig. P2.91, calculate Vx.

Figure P2.91

2.92 Find the value of IA in the network in Fig. P2.92.

Figure P2.92

2.93 Find the value of IA in the circuit in Fig. P2.93.

Figure P2.93

+

–

IA

Vo = 12 V
4 �

4 �

4 �

6 �

4 V-
+

+

–

IA

12 V

4 V

+–

2 �2 �

2 � 2 �

+
–5 � 2 �

2 �15 �

3 �

16 � 2 �

4 �

24 V

+–

Vx

2 I1

V2

+

–I1

+
–

+
–

4 �

5 �

4 � 3 �

2 A3 A

8 V

4 �

VRVx

+

–

–±+-

12 k�3 k�

6 V
3 k�

1 k�

2 k�

Vo=4 V

VS
+

-

2 mA

VS.
Vo = 4 V

±
–

4 k�

4 k�6 k� 3 k�

1 k�2 k�

VS

V1
+ -

VS.V1 = 12 V.

6 k� 3 k�4 k�

V1 = 5 V
+ -

IS

IS.V1 = 5 V
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2.94 Find in value of the current source IA in the network in
Fig. P2.94.

Figure P2.94

2.95 Given Vo = 12 V, find the value of IA in the circuit in 
Fig. P2.95.

Figure P2.95

2.96 Find the value of in the network in Fig. P2.96, such
that the 5-A current source supplies 50 W.

Figure P2.96

2.97 The 5-A current source in Fig. P2.97 supplies 150 W.
Calculate VA.

Figure P2.97

2.98 Given mA in the circuit in Fig. P2.98, find . 

Figure P2.98

2.99 Given mA in the network in Fig. P2.99, 
find . 

Figure P2.99

2.100 Given in the network in Fig. P2.100, find .

Figure P2.100

1 k�

6 V

IA

1 k�
12 V

1 k�

1 k�

2 k� Vo=4 V

+

-

±
–

–±

IAVo

±
–

+-

VA

1 k�

Io

6 V

6 mA

1 k�

1 k�

2 k� 2 k�

VA

Io = 2

±

6 V 1 k�

1 k�

Io

6 V

IA

1 k�

2 k�

2 k�

±
–

–

IAIo = 2

15 � 5 �

5 �4 �

2 �

2 �

25 V

5 A+
-VA

–±

±
–

–±

2 � 2 �

2 �

5 V

4 �

4 �

Vx

5 A

Vx

+

–

2 �

4 � 4 �

9 � 4 �

7 �

2 A

IA

+
–

12 V+
– Vo

Ix

2 Ix

+

–

+
–2 �

2 � 2 �

3 � 4 �

2 �

6 V

2 A

4 V+
– 6 VIA
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2.101 Find the value of in the circuit in Fig. P2.101 such
that the power supplied by the 5-A source is 60 W.

Figure P2.101

2.102 The 3-A current source in Fig. P2.102 is absorbing 
12 W. Determine R.

Figure P2.102

2.103 If the power supplied by the 50-V source in Fig. P2.103
is 100 W, find R.

Figure P2.103

2.104 Given that , find and in the circuit in
Fig. P2.104.

Figure P2.104

2.105 Find the power absorbed by the network in Fig. P2.105.

Figure P2.105

2.106 Find the value of in the network in Fig. P2.106
such that the power supplied by the 3-A source
is 20 W.

Figure P2.106

2.107 Find the power supplied by the 24-V source in the
circuit in Fig. P2.107.

Figure P2.107

–±

12 k�

12 k�

12 k�

12 k�

24 V

12 k� 12 k�

glx

2 �

1 �

2 �

2 �
3 A

Ix

g

–±12 k�

2 k�

6 k�

18 k�

6 k�

21 V

16 V

8 V

V11 k� 2 k� 2 k�

6 k�4 k�

4 mA

5 mA

RB

VA
+

+

-

-

– ±

–±

RBVAV1 = 4 V

2 A50 V +
–

5 � 2 �

R

R

2 �

1 �

3 A12 V +
–

–±

Vx

1 �1 �

3 A

4 �

2 � 5 A5 V 2 �±
–

Vx
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2.108 Find in the circuit in Fig. P2.108.

Figure P2.108

2.109 Find in the circuit in Fig. P2.109.

Figure P2.109

2.110 Determine the value of in the network in Fig. P2.110.

Figure P2.110

2.111 Find in the circuit in Fig. P2.111.

Figure P2.111

2.112 Find in the network in Fig. P2.112.

Figure P2.112

2.113 Find Io in the circuit in Fig. P2.113.

Figure P2.113

2.114 Find Io in the circuit in Fig. P2.114.

Figure P2.114

2.115 Find Vo in the circuit in Fig. P2.115.

Figure P2.115

2Iy

Vo

6 A

Vx

Iy

2 �

1 �

–

+

2 �
Vx

2

2 Vx

Vx

Io

Vo

2 A

2 �

1 �

4 A

–

+

2Ix

IxIo

6 A

Vo

2 � 1 �

+-
I

24 V

2 k�

4 k�

2 Vo
Vo

+

-

±
–

Vo

-+
IS

12 V

3 k�

5 k�

2000 IS
Vo

+

-

±
–

Vo

-

+

6 k�

4 k�

18 k�

12 k�

6 k�

12 V ±
–

Vo

Vo

±
–

2 �

12 �

12 � 4 �

3 �

5 �

36 V

18 �

9 �

Io

Io

12 �

8 �

12 �

14 �

12 �
24 V

Io

±
–

Io
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2.116 Find Vx in the network in Fig. P2.116.

Figure P2.116

2.117 Find Vo in the network in Fig. P2.117.

Figure P2.117

2.118 Find , , and in the circuit in Fig. P2.118.

.

Figure P2.118

2.119 Find in the network in Fig. P2.119.

Figure P2.119

Io

8 �

4 � Vx

6 � 5 A 3 Vx
+

-

Io

±
– 8 � 24 V2 A4 I1

I2

I1

I3

±
–

I3I2I1

6 A2Vy

Vo

Vy

4Vx

2 �

2 �

–

+

Vx1 �

2 �

–

+

Ix

Vx

6 �

6 �3 �

3 �

2 �

1 �

4 A
+

–

2Ix

Vo

2.120 A typical transistor amplifier is shown in Fig. P2.120. Find the amplifier gain G (i.e., the ratio 
of the output voltage to the input voltage).

Figure P2.120

2.121 Find the value of in the network in Fig. P2.121, such that the power supplied by the 6-A source is 108 W.

Figure P2.121

6 A

6 � 3 �

6 � 12 �

4 �

kIo

Io

k

-
+VS=250 mV

100 �

300 �

4 k�

4*105 Ib

5 k� 500 � Vo

+

-Ib

±
–
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2.122 Find the power supplied by the dependent current
source in Fig. P2.122.

Figure P2.122

2.123 If the power absorbed by the 10-V source in 
Fig. P2.123 is 40 W, calculate IS.

Figure P2.123

2.124 The power supplied by the 2-A current source in 
Fig. P2.124 is 50 W, calculate k.

Figure P2.124

2.125 Given the circuit in Fig. P2.125, solve for the value 
of k.

Figure P2.125

kV2 3 mA

50 V
V2 –+

+–

9 k�

18 k�

10 k�

30 k�

30 k�

50 V 2 A+
-

kI1

2 �

5 � 2 �

4 �5 � I1

0.6Vx 10 V+
–

+
-VxIs

6 �

10 � 15 �

4 � 5 �

+

-

10 �

10 �

5 � 0.4Vx2 A Vx

–

+

T Y P I C A L P R O B L E M S F O U N D  O N  T H E F E E X A M

2FE-1 What is the power generated by the source in the
network in Fig. 2PFE-1?

a.

b.

c.

d.

Figure 2PFE-1

6 k�

120 V

5 k�

18 k�

4 k� 6 k�

12 k�
±
–

2.4 W

3.6 W

1.2 W

2.8 W

2FE-2 Find in the circuit in Fig. 2PFE-2.

a.

b.

c.

d.

Figure 2PFE-2

5 �

15 �

10 �

10 �

a

b

4 A

Vab

-10 V

15 V

10 V

-5 V

Vab
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2FE-3 If in the circuit in Fig. 2PFE-3,
what is ?

a.

b.

c.

d.

Figure 2PFE-3

2FE-4 Find the equivalent resistance of the circuit in
Fig. 2PFE-4 at the terminals A-B.

a.

b.

c.

d.

Figure 2PFE-4

2FE-5 The 100 V source is absorbing of power in the
network in Fig. 2PFE-5. What is R?

a.

b.

c.

d.

Figure 2PFE-5

2FE-6 Find the power supplied by the source in the cir-
cuit in Fig. 2PFE-6.

a.

b.

c.

d.

Figure 2PFE-6

2FE-7 What is the current in the circuit in Fig. 2PFE-7?

a.

b.

c.

d.

Figure 2PFE-7

2FE-8 Find the voltage in the network in Fig. 2PFE-8.

a.

b.

c.

d.

Figure 2PFE-8

24 mA3 k�

1 k� 2 k�

6 k�

6 k�

12 k�

Vo

+

-

12 V

36 V

10 V

24 V

Vo

12 V

6 k�

3 k� 4 k�

12 k�

3 k� 6 k�6 k�

Io

-
+

-0.22 mA

2.75 mA

-1.25 mA

0.84 mA

Io

50 �

100 �25 �20 � 40 V

100 V

3 A±
–

±
–

184 W

212 W

232 W

120 W

40 V

10 �10 �

100 V

200 V

5 A

R

±
–

±
–

15.12 �

19.25 �

9.42 �

17.27 �

50 W

RAB

12 k�

6 k�

6 k�

4 k�

12 k�

12 k�

12 k�

A

B

20 k�

8 k�

12 k�

4 k�

2 �

4 �

8 � R2Req

18 �

8 �

20 �

12 �

R2

Req = 10.8 �
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2FE-9 What is the voltage in the circuit in Fig. 2PFE-9?

a.

b.

c.

d.

Figure 2PFE-9

2FE-10 Find the current in Fig. 2PFE-10.

a.

b.

c.

d.

Figure 2PFE-10

1 � 1 �

10 �
8 �3 �

2 �

12 V

Ix

±
–

8�3 A

3�2 A

5�3 A

1�2 A

Ix

2 � 3 �

1 �

4 A2 A Vo

+

-

12 V

5 V

8 V

2 V

Vo
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CHAPTER

NODAL AND LOOP
ANALYSIS TECHNIQUES

Courtesy of UPI/Ed Turner/Boeing/NewsCom

T H E L E A R N I N G  G O A L S F O R  T H I S
C H A P T E R  A R E :

■ Be able to calculate all currents and voltages in
circuits that contain multiple nodes and loops

■ Learn to employ Kirchhoff’s current law (KCL) to
perform a nodal analysis to determine all the node 
voltages in a circuit

■ Learn to employ Kirchhoff’s voltage law (KVL) to
perform a loop analysis to determine all the loop 
currents in a network

■ Be able to ascertain which of the two analysis
techniques should be utilized to solve a particular 
problem

B

3

Boeing Dreamliner Truly a dream come true, the Boeing 787

Dreamliner brings big-jet ranges to mid-size airplanes. A pleasure

for both cross-country and intercontinental commercial travelers,

this super-efficient airplane can carry 210 to 330 passengers on

long-range flights from nearly 3,000 miles to over 9,000 miles.

Featuring composite materials, it boasts unmatched efficiency,

requiring 20% less fuel than its competitors. In various design

stages for nearly six years, the final assembly plant opened in

2007 in Washington State and first flight occurred in late 2009.

Inside its efficient hull lies state of the art electronics.

Based on an open architecture, the Dreamliner has health-

monitoring systems that allow the airplane to self-monitor and

report maintenance requirements to ground computer systems.

A wireless broadband link sends this real-time diagnostic data

to technicians on the ground. The goal is safer operations

with predicted mechanical problems and shorter repair times.

An active gust alleviation system that automatically adjusts

wing flaps using sensor data of turbulence at the aircraft’s

nose improves flight control. 

The design of the Dreamliner is based on fundamental laws

that lead to algorithms most efficiently implemented on comput-

ers. The two basic circuit analysis techniques described in this

chapter follow this same pattern. Nodal analysis is based on bal-

ancing currents coming into and out of nodes in the circuits. Mesh

or loop analysis is based on balancing voltage increases and

drops around closed paths in the circuits. Both methods clearly

follow the fundamental laws introduced in Chapter 2. Unlike a

branch-by-branch analysis that yields large numbers of simple

equations, these two methods use network topology to provide a

minimum number of equations. Just as the Dreamliner outstrips

its predecessors in efficiency and range, these all-encompassing

techniques can easily handle more complex linear circuits.
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±
–

1
2 3

4

5

Va=3 V

I1 I3 I5

I2 I4

12 V 6 k� 4 k� 3 k�

9 k� 9 k�3 k� +

–

+

–

+

–

VS V1+ -
V3+ -

V5+ -

Vb=— V3
2 Vc=— V3

8
Figure 3.1

Circuit with known node
voltages.

3.1
Nodal Analysis

In a nodal analysis, the variables in the circuit are selected to be the node voltages. The node
voltages are defined with respect to a common point in the circuit. One node is selected as
the reference node, and all other node voltages are defined with respect to that node. Quite
often this node is the one to which the largest number of branches are connected. It is com-
monly called ground because it is said to be at ground-zero potential, and it sometimes rep-
resents the chassis or ground line in a practical circuit.

We will select our variables as being positive with respect to the reference node. If one or
more of the node voltages are actually negative with respect to the reference node, the analy-
sis will indicate it.

In order to understand the value of knowing all the node voltages in a network, we consider
once again the network in Fig. 2.32, which is redrawn in Fig. 3.1. The voltages, and

are all measured with respect to the bottom node, which is selected as the reference and
labeled with the ground symbol . Therefore, the voltage at node 1 is with respect
to the reference node 5; the voltage at node 2 is with respect to the reference node 5,
and so on. Now note carefully that once these node voltages are known, we can immediately cal-
culate any branch current or the power supplied or absorbed by any element, since we know the
voltage across every element in the network. For example, the voltage across the leftmost 
9-k� resistor is the difference in potential between the two ends of the
resistor; that is,

This equation is really nothing more than an application of KVL around the leftmost loop; that is,

In a similar manner, we find that

and

Then the currents in the resistors are

In addition,

since the reference node 5 is at zero potential.

 I4 =

Vb - 0

4k

 I2 =

Va - 0

6k

 I5 =

V5

9k
=

Vb - Vc

9k

 I3 =

V3

3k
=

Va - Vb

3k

 I1 =

V1

9k
=

VS - Va

9k

V5 = Vb - Vc

V3 = Va - Vb

-VS + V1 + Va = 0

 = 9 V

 = 12 - 3

 V1 = VS - Va

V1

Va = 3 V
VS = 12 V

Vc,
Vb ,Va ,VS ,
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Thus, as a general rule, if we know the node voltages in a circuit, we can calculate the
current through any resistive element using Ohm’s law; that is,

3.1

as illustrated in Fig. 3.2.
Now that we have demonstrated the value of knowing all the node voltages in a network,

let us determine the manner in which to calculate them. In a nodal analysis, we employ KCL
equations in such a way that the variables contained in these equations are the unknown node
voltages of the network. As we have indicated, one of the nodes in an N-node circuit is
selected as the reference node, and the voltages at all the remaining nonreference nodes
are measured with respect to this reference node. Using network topology, it can be shown that
exactly linearly independent KCL equations are required to determine the 
unknown node voltages. Therefore, theoretically once one of the nodes in an N-node circuit
has been selected as the reference node, our task is reduced to identifying the remaining

nonreference nodes and writing one KCL equation at each of them.
In a multiple-node circuit, this process results in a set of linearly independent

simultaneous equations in which the variables are the unknown node voltages. To
help solidify this idea, consider once again Example 2.5. Note that in this circuit only four
(i.e., any four) of the five KCL equations, one of which is written for each node in this five-
node network, are linearly independent. Furthermore, many of the branch currents in this
example (those not contained in a source) can be written in terms of the node voltages as
illustrated in Fig. 3.2 and expressed in Eq. (3.1). It is in this manner, as we will illustrate in
the sections that follow, that the KCL equations contain the unknown node voltages.

It is instructive to treat nodal analysis by examining several different types of circuits and
illustrating the salient features of each. We begin with the simplest case. However, as a 
prelude to our discussion of the details of nodal analysis, experience indicates that it is worth-
while to digress for a moment to ensure that the concept of node voltage is clearly understood.

At the outset it is important to specify a reference. For example, to state that the voltage
at node A is 12 V means nothing unless we provide the reference point; that is, the voltage
at node A is 12 V with respect to what? The circuit in Fig. 3.3 illustrates a portion of a
network containing three nodes, one of which is the reference node.

N - 1
N - 1

N - 1

N - 1N - 1

N - 1

i =

vm - vN

R
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Node m R

i

Node N

+

-

+

-

vNvm

Figure 3.2

Circuit used to illustrate
Ohm’s law in a multiple-node
network.

1 2

3

R1

R2

R3

V1=4 V V2=–2 V Figure 3.3

An illustration of node
voltages.
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The voltage is the voltage at node 1 with respect to the reference node 3.
Similarly, the voltage is the voltage at node 2 with respect to node 3. In addition,
however, the voltage at node 1 with respect to node 2 is ±6 V, and the voltage at node 2 with
respect to node 1 is -6 V. Furthermore, since the current will flow from the node of higher
potential to the node of lower potential, the current in is from top to bottom, the current
in is from left to right, and the current in is from bottom to top.

These concepts have important ramifications in our daily lives. If a man were hanging in
midair with one hand on one line and one hand on another and the dc line voltage of each
line was exactly the same, the voltage across his heart would be zero and he would be safe.
If, however, he let go of one line and let his feet touch the ground, the dc line voltage would
then exist from his hand to his foot with his heart in the middle. He would probably be dead
the instant his foot hit the ground.

In the town where we live, a young man tried to retrieve his parakeet that had escaped its
cage and was outside sitting on a power line. He stood on a metal ladder and with a metal
pole reached for the parakeet; when the metal pole touched the power line, the man was killed
instantly. Electric power is vital to our standard of living, but it is also very dangerous. The
material in this book does not qualify you to handle it safely. Therefore, always be extreme-
ly careful around electric circuits.

Now as we begin our discussion of nodal analysis, our approach will be to begin with sim-
ple cases and proceed in a systematic manner to those that are more challenging. Numerous
examples will be the vehicle used to demonstrate each facet of this approach. Finally, at the
end of this section, we will outline a strategy for attacking any circuit using nodal analysis.

CIRCUITS CONTAINING ONLY INDEPENDENT CURRENT SOURCES Consider
the network shown in Fig. 3.4. Note that this network contains three nodes, and thus we know
that exactly linearly independent KCL equations will be required to
determine the unknown node voltages. First, we select the bottom node as the
reference node, and then the voltage at the two remaining nodes labeled and will be
measured with respect to this node.

The branch currents are assumed to flow in the directions indicated in the figures. If one
or more of the branch currents are actually flowing in a direction opposite to that assumed,
the analysis will simply produce a branch current that is negative.

Applying KCL at node 1 yields

Using Ohm’s law (i=Gv) and noting that the reference node is at zero potential, we obtain

or

KCL at node 2 yields

or

which can be expressed as

-G2 v1 + AG2 + G3Bv2 = -iB

-G2Av1 - v2B + iB + G3Av2 - 0B = 0

- i2 + iB + i3 = 0

AG1 + G2Bv1 - G2 v2 = iA

-iA + G1Av1 - 0B + G2Av1 - v2B = 0

-iA + i1 + i2 = 0

v2v1

N - 1 = 2
N - 1 = 3 - 1 = 2

R3R2

R1

V2 = -2 V
V1 = 4 V
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Employing the passive sign
convention.

[ h i n t ]

1 2

3

R1 R3

R2

iB

i3

i1

i2

iA

v1 v2Figure 3.4

A three-node circuit.
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Therefore, the two equations for the two unknown node voltages and are

3.2

Note that the analysis has produced two simultaneous equations in the unknowns and 
They can be solved using any convenient technique, and modern calculators and personal
computers are very efficient tools for this application.

In what follows, we will demonstrate three techniques for solving linearly independent
simultaneous equations: Gaussian elimination, matrix analysis, and the MATLAB mathe-
matical software package. A brief refresher that illustrates the use of both Gaussian elimina-
tion and matrix analysis in the solution of these equations is provided in the Problem-Solving
Companion for this text. Use of the MATLAB software is straightforward, and we will
demonstrate its use as we encounter the application.

The KCL equations at nodes 1 and 2 produced two linearly independent simultaneous
equations:

The KCL equation for the third node (reference) is

Note that if we add the first two equations, we obtain the third. Furthermore, any two of the
equations can be used to derive the remaining equation. Therefore, in this N = 3 node circuit,
only N - 1 = 2 of the equations are linearly independent and required to determine the 
N - 1 = 2 unknown node voltages.

Note that a nodal analysis employs KCL in conjunction with Ohm’s law. Once the direction of
the branch currents has been assumed, then Ohm’s law, as illustrated by Fig. 3.2 and expressed by
Eq. (3.1), is used to express the branch currents in terms of the unknown node voltages. We can
assume the currents to be in any direction. However, once we assume a particular direction, we
must be very careful to write the currents correctly in terms of the node voltages using Ohm’s law.

+iA - i1 - iB - i3 = 0

 -i2 + iB + i3 = 0

 -iA + i1 + i2 = 0

v2 .v1

 -G2 v1 + AG2 + G3Bv2 = -iB

 AG1 + G2Bv1 - G2 v2 = iA

v2v1
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Suppose that the network in Fig. 3.4 has the following parameters: 
, and Let us determine all node voltages

and branch currents.

For purposes of illustration we will solve this problem using Gaussian elimination, matrix
analysis, and MATLAB. Using the parameter values Eq. (3.2) becomes

where we employ capital letters because the voltages are constant. The equations can be
written as

Using Gaussian elimination, we solve the first equation for in terms of :

V1 = V2 a 2

3
b + 4

V2  V1

 -  
V1

6k
+

V2

3k
= -4 * 10-3

 
V1

4k
-

V2

6k
= 1 * 10-3

 -V1 c 1

6k
d + V2 c 1

6k
+

1

6k
d = -4 * 10-3

 V1 c 1

12k
+

1

6k
d - V2 c 1

6k
d = 1 * 10-3

R3 = 6 k�.R1 = 12 k�, R2 = 6 k�, IB = 4 mA
IA = 1 mA,

SOLUTION

EXAMPLE

3.1
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This value is then substituted into the second equation to yield

or

This value for is now substituted back into the equation for in terms of which yields

The circuit equations can also be solved using matrix analysis. The general form of the
matrix equation is

GV = I

where in this case

and 

The solution to the matrix equation is

and therefore,

To calculate the inverse of G, we need the adjoint and the determinant. The adjoint is

and the determinant is

Therefore,

 = B -6

-15
R

 = 18k2D
1

3k2 -

4

6k2

1

6k2 -

1

 k2

T

 BV1

V2
R = 18k2D

1

3k

1

6k

1

6k

1

4k

T B 1 * 10-3

-4 * 10-3R

 =

1

18k2

 ∑G∑ = a 1

3k
b a 1

4k
b - a -1

6k
b a -1

6k
b

Adj G = D 1

3k

1

6k

1

6k

1

4k

T

BV1

V2
R = D

1

4k

-1

6k

-1

6k

1

3k

T
-1

B 1 * 10-3

-4 * 10-3R

V = G - 1I

I = B 1 * 10-3

-4 * 10-3RG = D 1

4k

- 
1

6k

- 
1

6k

1

3k

T ,  V = BV1

V2
R ,

 = -6 V

 V1 =

2

3
 V2 + 4

V2  ,V1V2

V2 = -15 V

-1

6k
 a 2

3
 V2 + 4 b +

V2

3k
= -4 * 10-3
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Knowing the node voltages, we can determine all the currents using Ohm’s law:

and

Fig. 3.5 illustrates the results of all the calculations. Note that KCL is satisfied at every node.

 I3 =

V2

6k
=

-15

6k
= - 

5

2
 mA

 I2 =

V1 - V2

6k
=

-6 - (-15)

6k
=

3

2
 mA

 I1 =

V1

R1
=

-6

12k
= - 

1

2
 mA

6 k�

6 k�1 mA 4 mA12 k�

V1=–6 V V2=–15 V

1
2
— mA

3
2
— mA 5

2
— mA

Figure 3.5

Circuit used in Example 3.1

1 2 3

v1 v2 v3

R1

R2 R5

R3

R4

i2

i4i1

i5

i3

iA iB

Figure 3.6 

A four-node circuit.

Let us now examine the circuit in Fig. 3.6. The current directions are assumed as shown
in the figure.

We note that this network has four nodes. The node at the bottom of the circuit is select-
ed as the reference node and labeled with the ground symbol. Since N = 4, N - 1 = 3 linearly
independent KCL equations will be required to determine the three unknown nonreference
node voltages labeled and .

At node 1, KCL yields

or

At node 2, KCL yields

or

 -v1 
1

R2
+ v2 a 1

R2
+

1

R4
+

1

R5
b - v3 

1

R5
= 0

 - 
v1 - v2

R2
+

v2

R4
-

v3 - v2

R5
= 0

-i2 + i4 - i5 = 0

 v1 a 1

R1
+

1

R2
+

1

R3
b - v2 

1

R2
- v3 

1

R3
= iA

 
v1

R1
- iA +

v1 - v2

R2
-

v3 - v1

R3
= 0

i1 - iA + i2 - i3 = 0

v3 v2 ,v1 ,
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At node 3, the equation is

or

Grouping the node equations together, we obtain

3.3

Note that our analysis has produced three simultaneous equations in the three unknown node
voltages and The equations can also be written in matrix form as

3.4

At this point it is important that we note the symmetrical form of the equations that
describe the two previous networks. Eqs. (3.2) and (3.3) exhibit the same type of symmetri-
cal form. The G matrix for each network is a symmetrical matrix. This symmetry is not acci-
dental. The node equations for networks containing only resistors and independent current
sources can always be written in this symmetrical form. We can take advantage of this fact
and learn to write the equations by inspection. Note in the first equation of (3.2) that the coef-
ficient of is the sum of all the conductances connected to node 1 and the coefficient of 
is the negative of the conductances connected between node 1 and node 2. The right-hand
side of the equation is the sum of the currents entering node 1 through current sources. This
equation is KCL at node 1. In the second equation in (3.2), the coefficient of is the sum of
all the conductances connected to node 2, the coefficient of is the negative of the conduc-
tance connected between node 2 and node 1, and the right-hand side of the equation is the
sum of the currents entering node 2 through current sources. This equation is KCL at node
2. Similarly, in the first equation in (3.3) the coefficient of is the sum of the conductances
connected to node 1, the coefficient of is the negative of the conductance connected
between node 1 and node 2, the coefficient of is the negative of the conductance con-
nected between node 1 and node 3, and the right-hand side of the equation is the sum of the
currents entering node 1 through current sources. The other two equations in (3.3) are
obtained in a similar manner. In general, if KCL is applied to node j with node voltage 
the coefficient of is the sum of all the conductances connected to node j and the coeffi-
cients of the other node voltages are the negative of the sum of the con-
ductances connected directly between these nodes and node j. The right-hand side of the
equation is equal to the sum of the currents entering the node via current sources.
Therefore, the left-hand side of the equation represents the sum of the currents leaving
node j and the right-hand side of the equation represents the currents entering node j.

Ae.g., vj -1 , vj +1B
vj

vj ,

v3

v2

v1

v1

v2

v2v1

C
iA

0

-iB

S=C
v1

v2

v3

SF

1

R1
+

1

R2
+

1

R3

- 
1

R2

- 
1

R3

- 
1

R2

1

R2
+

1

R4
+

1

R5

- 
1

R5

- 
1

R3

- 
1

R5

1

R3
+

1

R5

V

v3 .v2 ,v1 ,

 -v1 
1

R3
- v2 

1

R5
+ v3 a 1

R3
+

1

R5
b = -iB

 -v1 
1

R2
+ v2 a 1

R2
+

1

R4
+

1

R5
b - v3 

1

R5
= 0

 v1 a 1

R1
+

1

R2
+

1

R3
b - v2 

1

R2
- v3 

1

R3
= iA

 -v1 
1

R3
- v2 

1

R5
+ v3 a 1

R3
+

1

R5
b = -iB

 
v3 - v1

R3
+

v3 - v2

R5
+ iB = 0

i3 + i5 + iB = 0
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Let us apply what we have just learned to write the equations for the network in Fig. 3.7 by
inspection. Then given the following parameters, we will determine the node voltages using
MATLAB: and iB = 2 mA.iA = 4 mA,R5 = 1 k�,R3 = R4 = 4 k�,R1 = R2 = 2 k�,

EXAMPLE

3.2

v2
v3v1

R2 R3 R5

R1

R4

iB

iA

Figure 3.7

Circuit used in Example 3.2.

The equations are

which can also be written directly in matrix form as

Both the equations and the G matrix exhibit the symmetry that will always be present in cir-
cuits that contain only resistors and current sources.

If the component values are now used, the matrix equation becomes

=

or

=

This equation is in the form of Gv = i. Therefore, v = G-1 i. Performing this operation yields
the following voltages:

v1 = -4.3636 V

v2 = 3.6364 V

v3 = -0.7273 V

C
-0.004

0.002

0

SC
v1

v2

v3

SC  

 0.001

 0

 -0.0005

0

0.0005

-0.00025

-0.0005

-0.00025

0.00175

S

C
-0.004

0.002

0

SC
v1

v2

v3

SF

1

2k
+

1

2k

0

- 
1

2k

0

1

4k
+

1

4k

- 
1

4k

-  
1

2k

-  
1

4k

1

2k
+

1

4k
+

1

1k

V

C
-iA

iA - iB

0

S=C
v1

v2

v3

SF

1

R1
+

1

R2

0

- 
1

R1

0

1

R3
+

1

R4

- 
1

R4

- 
1

R1

- 
1

R4

1

R1
+

1

R4
+

1

R5

V

 -v1 a 1

R1
b - v2 a 1

R4
b + v3 a 1

R1
+

1

R4
+

1

R5
b = 0

 -v1(0) + v2 a 1

R3
+

1

R4
b - v3 a 1

R4
b = iA - iB

 v1 a 1

R1
+

1

R2
b - v2(0) - v3 a 1

R1
b = -iA

SOLUTION
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CIRCUITS CONTAINING DEPENDENT CURRENT SOURCES The presence of a
dependent source may destroy the symmetrical form of the nodal equations that define the
circuit. Consider the circuit shown in Fig. 3.8, which contains a current-controlled current
source. The KCL equations for the nonreference nodes are

and

where Simplifying the equations, we obtainio = v2�R3 .

v2 - v1

R2
+ io - iA = 0

�io +

v1

R1
+

v1 - v2

R2
= 0
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E3.1 Write the node equations for the circuit in Fig. E3.1.

Learning Assessments
ANSWER:

-1

12k
 V1 +

1

4k
 V2 = -2 * 10-3.

1

4k
 V1 -

1

12k
 V2 = 4 * 10-3

 ,

E3.2 Find all the node voltages in the network in Fig. E3.2 using MATLAB. ANSWER:

 V3 = 3.1429 V.

 V2 = 2.000 V,
 V1 = 5.4286 V,

4 mA

V1 V2

12 k�

6 k� 6 k� 2 mA

Figure E3.1

V1 V3
V22 k� 4 k�

1 k�

1 k� 2 mA4 mA

2 mA

6 k�

3 k� 6 k�8 mA 1 k�

2 k�

Vo

+

–

Figure E3.2

E3.3 Use nodal analysis to find Vo in Fig. E3.3. ANSWER: Vo = 2.79 V.

Figure E3.3
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v1 v2

R2

R1 R3

io

iA
�io

Figure 3.8

Circuit with a dependent
source.

Let us determine the node voltages for the network in Fig. 3.8, given the following parameters:

Using these values with the equations for the network yields

Solving these equations using any convenient method yields and
We can check these answers by determining the branch currents in the net-

work and then using that information to test KCL at the nodes. For example, the current
from top to bottom through is

Similarly, the current from right to left through is

All the results are shown in Fig. 3.9. Note that KCL is satisfied at every node.

I2 =

V2 - V1

R2
=

12�5 - (-24�5)

6k
=

6

5k
 A

R2

Io =

V2

R3
=

12�5

3k
=

4

5k
 A

R3

V2 = 12�5 V.
V1 = -24�5 V

 -  
1

6k
 V1 +

1

2k
 V2 = 2 * 10-3

 
1

4k
 V1 +

1

2k
 V2 = 0

 R3 = 3 k� R1 = 12 k�

 iA = 2 mA R2 = 6 k� � = 2

6 k�

12 k� 3 k�

V1=— V–24
  5

I2=— A6
5k

2Io=— A8
5k

V2=— V12
5

I1=— A–2
5k

Io=— A4 
5k

10
5k
— A

Figure 3.9 

Circuit used in
Example 3.3.

EXAMPLE

3.3

SOLUTION

or in matrix form

=

Note that the presence of the dependent source has destroyed the symmetrical nature of the
node equations.

B 0

iA
RB v1

v2
RB AG1 + G2B

-G2

-G2 - �G3B
AG2 + G3B R

 -G2 v1 + AG2 + G3Bv2 = iA

 AG1 + G2Bv1 - AG2 - �G3Bv2 = 0
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Let us determine the set of linearly independent equations that when solved will yield the
node voltages in the network in Fig. 3.10. Then given the following component values, we
will compute the node voltages using MATLAB: 

and � = 2.iB = 4 mA,iA = 2 mA,R4 = 4 k�,
R2 = R3 = 2 k�,R1 = 1 k�,

EXAMPLE

3.4

Applying KCL at each of the nonreference nodes yields the equations

where Simplifying these equations, we obtain

Given the component values, the equations become

= 

or

= 

Once again, the circuit equations resulting from a nodal analysis or in the form Gv = i, and
the results obtained from perfoming the operation v = G-1 i are

v1 = 11.9940 V

v2 = 15.9910 V

v3 = 15.9940 V

C
0.002

-0.002

0.004

SC
v1

v2

v3

SC
0.0015

-0.001

0

-0.001

2.0015

-0.0005

0

-2.0005

0.00075

S

C
0.002

-0.002

0.004

SC
v1

v2

v3

SF

1

1k
+

1

2k

- 
1

k

0

- 
1

k

1

k
+ 2 +

1

2k

- 
1

2k

0

- a2 +

1

2k
b

1

2k
+

1

4k

V

 -G2  v2 + AG2 + G4Bv3 = iB

  -G1  v1 + AG1 + � + G2Bv2 - A� + G2Bv3 = - iA

 AG1 + G3Bv1 - G1  v2 = iA

vx = v2 - v3  .

 G2Av3 - v2B + G4  v3 - iB = 0

 iA + G1Av2 - v1B + �vx + G2Av2 - v3B = 0

 G3 v1 + G1Av1 - v2B - iA = 0

R2R1

R3 R4

iA

iB

v2 v3vxv1 + -

�vx

Figure 3.10

Circuit containing a
voltage-controlled

current source.
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E3.4 Find the node voltages in the circuit in Fig. E3.4.

Learning Assessments
ANSWER:
V2 = -8 V.

V1 = 16 V,

E3.5 Find the voltage in the network in Fig. E3.5.Vo ANSWER: Vo = 4 V.

4 mA

10 k�

10 k�10 k�

Io

2Io

V1 V2

Figure E3.4

3 k�2 mA 12 k� 12 k� Vo

+

-

Vx
6000
—

Vx

Figure E3.5

2 mA

6 k�

3 k� 6 k�2IA 1 k�

2 k�

Vo

+

–

IA

E3.6 Find in Fig. E3.6 using nodal analysis.Vo ANSWER: = 0.952 V.Vo

Figure E3.6

CIRCUITS CONTAINING INDEPENDENT VOLTAGE SOURCES As is our practice,
in our discussion of this topic we will proceed from the simplest case to more complicated
cases. The simplest case is that in which an independent voltage source is connected to the
reference node. The following example illustrates this case.

Consider the circuit shown in Fig. 3.11a. Let us determine all node voltages and branch currents.

This network has three nonreference nodes with labeled node voltages and Based
on our previous discussions, we would assume that in order to find all the node voltages we
would need to write a KCL equation at each of the nonreference nodes. The resulting three
linearly independent simultaneous equations would produce the unknown node voltages.
However, note that and are known quantities because an independent voltage source is
connected directly between the nonreference node and each of these nodes. Therefore,

and Furthermore, note that the current through the 9-kΩ resistor is
from left to right. We do not know or the current in the remain-

ing resistors. However, since only one node voltage is unknown, a single-node equation will
produce it. Applying KCL to this center node yields

V2[12 - (-6)]�9k = 2 mA
V3 = -6 V.V1 = 12 V

V3V1

V3  .V2  ,V1  , SOLUTION

EXAMPLE

3.5
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or

from which we obtain

Once all the node voltages are known, Ohm’s law can be used to find the branch currents
shown in Fig. 3.11b. The diagram illustrates that KCL is satisfied at every node.

Note that the presence of the voltage sources in this example has simplified the analysis,
since two of the three linear independent equations are and We will
find that as a general rule, whenever voltage sources are present between nodes, the node
voltage equations that describe the network will be simpler.

V3 = -6 V.V1 = 12 V

V2 =

3

2
 V

 
V2 - 12

12k
+

V2

6k
+

V2 - (-6)

12k
= 0 

V2 - V1

12k
+

V2 - 0

6k
+

V2 - V3

12k
= 0

-
+

±
–

±
–

V3V1
V212 k� 12 k�

9 k�

6 k� 6 V12 V

(a)

-
+

12 k� 12 k�

9 k�

6 k� 6 V12 V

(b)

3
2
— V

2
k

— A

7
8k
— A

23
8k
— A 1

4k
— A 21

8k
— A

5
8k
— A

+12 V –6 V

Figure 3.11

Circuit used in
Example 3.5.

E3.7 Use nodal analysis to find the current in the network in Fig. E3.7.Io

Learning Assessment
ANSWER: Io =

3

4
 mA.

±
–

±
–

Vo

Io

6 k� 6 k�

6 V 3 k� 3 V

2 mA

6 k�

3 k�

6 k�

8 mA

12 V

1 k�

2 k�

Vo

+

–

±
–

Figure E3.7

Any time an independent
voltage source is connected
between the reference node
and a nonreference node,
the nonreference node volt-
age is known.

[ h i n t ]

E3.8 Find V0 in Fig. E3.8 using nodal analysis. ANSWER: V0 = 3.89 V.

Figure E3.8
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Next let us consider the case in which an independent voltage source is connected between
two nonreference nodes.

Suppose we wish to find the currents in the two resistors in the circuit of Fig. 3.12a.

If we try to attack this problem in a brute-force manner, we immediately encounter a prob-
lem. Thus far, branch currents were either known source values or could be expressed as
the branch voltage divided by the branch resistance. However, the branch current through
the 6-V source is certainly not known and cannot be directly expressed using Ohm’s law.
We can, of course, give this current a name and write the KCL equations at the two non-
reference nodes in terms of this current. However, this approach is no panacea because this
technique will result in two linearly independent simultaneous equations in terms of three
unknowns—that is, the two node voltages and the current in the voltage source.

To solve this dilemma, we recall that N-1 linearly independent equations are required to
determine the N-1 nonreference node voltages in an N-node circuit. Since our network has
three nodes, we need two linearly independent equations. Now note that if somehow one of
the node voltages is known, we immediately know the other; that is, if is known, then

If is known, then Therefore, the difference in potential
between the two nodes is constrained by the voltage source and, hence,

This constraint equation is one of the two linearly independent equations needed to deter-
mine the node voltages.

Next consider the network in Fig. 3.12b, in which the 6-V source is completely enclosed
within the dashed surface. The constraint equation governs this dashed portion of the net-
work. The remaining equation is obtained by applying KCL to this dashed surface, which
is commonly called a supernode. Recall that in Chapter 2 we demonstrated that KCL must
hold for a surface, and this technique eliminates the problem of dealing with a current
through a voltage source. KCL for the supernode is

Solving these equations yields and and, hence, and
A quick check indicates that KCL is satisfied at every node.

Note that applying KCL at the reference node yields the same equation as shown above.
The student may feel that the application of KCL at the reference node saves one from
having to deal with supernodes. Recall that we do not apply KCL at any node—even the ref-
erence node—that contains an independent voltage source. This idea can be illustrated with
the circuit in the next example.

I2 = 1�3 mA.
I1 = 5�3 mAV2 = 4 VV1 = 10 V

-6 * 10-3
+

V1

6k
+

V2

12k
+ 4 * 10-3

= 0

V1 - V2 = 6

V1 = V2 + 6.V2V2 = V1 - 6.
V1

SOLUTION

EXAMPLE

3.6

–±

6 mA

4 mA

6 k� 12 k�

V1 V2
6 V

–±

6 mA

4 mA6 k� 12 k�

V1 V2

6 V

I1 I2

(a) (b)
Figure 3.12

Circuits used in Example 3.6.
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Let us determine the current in the network in Fig. 3.13a.

Examining the network, we note that node voltages and are known and the node volt-
ages and are constrained by the equation

The network is redrawn in Fig. 3.13b.

V1 - V3 = 12

V3V1

V4V2

Io

SOLUTION

-
+

±
–

±
–

Io

12 V

12 V

6 V

2 k� 2 k�

2 k�

1 k�1 k�

V2 V3 V4

V1

-
+

±
–

±
–

Io

12 V

12 V

6 V

2 k� 2 k�

2 k�

1 k�1 k�

V3

V3+12

(a) (b)

Since we want to find the current (in the supernode containing and ) is writ-
ten as . The KCL equation at the supernode is then

Solving the equation for yields

can then be computed immediately as

Io =

-  
6

7

2k
= -  

3

7
 mA

Io

V3 = -  
6

7
 V

V3

V3 - (-6)

1k
+

V3 - 12

1k
+

V3

2k
= 0

V3 + 12 - (-6)

2k
  +  

V3 + 12 - 12

2k
  +  

V3 + 12
V3V1Io  , V1

E3.9 Use nodal analysis to find in the network in Fig. E3.9.Io

Learning Assessment
ANSWER: Io = 3.8 mA.

±
-

±
-

±-

6 V 4 V

12 V

1 k� 2 k�

2 k�2 k�

V1 V2 V3 V4

Io

Figure E3.9

Figure 3.13

Example circuit with
supernodes.

EXAMPLE

3.7
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C I R CU I TS CO N TA I N I N G  D E P E N D E N T  VO LTA G E S O U R CES As the following
examples will indicate, networks containing dependent (controlled) sources are treated in the
same manner as described earlier.

We wish to find in the network in Fig. 3.14.

Since the dependent voltage source is connected between the node labeled and the
reference node,

KCL at the node labeled is

where

Solving these equations yields and Therefore,

 = 4 mA

 Io =

V1 - V2

2k

V1 = 16 V.V2 = 8 V

Ix =

V2

1k

V2 - V1

2k
-

4

k
+

V2

1k
= 0

V2

V1 = 2kIx

V1

Io

SOLUTION

EXAMPLE

3.8

E3.10 Find Vo in Fig. E3.10 using nodal analysis. ANSWER: Vo = 5.6 V.

Figure E3.10

2 mA

3 k� 6 k�8 mA

12 V

1 k�

2 k�

Vo

+

–

+–

±
–2 kIx

V1 V2Io Ix

2 k�

2 k�

1 k�4 mA

Figure 3.14

Circuits used in
Example 3.8.
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Let us find the current in the network in Fig. 3.15.

This circuit contains both an independent voltage source and a voltage-controlled voltage
source. Note that and a supernode exists between the nodes labeled 
and 

Applying KCL to the supernode, we obtain

where the constraint equation for the supernode is

The final equation is

Solving these equations, we find that

and, hence,

Io =

V1

12k
=

3

8
 mA

V1 =

9

2
 V

V3 = 6

V1 - V2 = 2Vx

V1 - V3

6k
+

V1

12k
+

V2

6k
+

V2 - V3

12k
= 0

V2  .
V1V2 = Vx  ,V3 = 6 V  ,

Io

SOLUTION

Finally, let us consider two additional circuits that, for purposes of comparison, we will
examine using more than one method.

±
–

± –

6 k�

12 k�

12 k� 6 V6 k�

Io

V1 V3

Vx

V2
2Vx

+

-

Figure 3.15

Circuit used in
Example 3.9.

Let us find in the network in Fig. 3.16a. Note that the circuit contains two voltage
sources, one of which is a controlled source, and two independent current sources. The
circuit is redrawn in Fig. 3.16b in order to label the nodes and identify the supernode sur-
rounding the controlled source. Because of the presence of the independent voltage
source, the voltage at node 4 is known to be 4 V. We will use this knowledge in writing
the node equations for the network.

VoEXAMPLE

3.10

EXAMPLE

3.9
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Since the network has five nodes, four linear independent equations are sufficient to
determine all the node voltages. Within the supernode, the defining equation is

where

and thus

Furthermore, we know that one additional equation is

Thus, given these two equations, only two more equations are needed in order to solve for
the unknown node voltages. These additional equations result from applying KCL at the
supernode and at the node labeled The equations are

Combining the equations yields the two equations

Solving these equations, we obtain

 Vo = 3Vx - V3 = 1 V

 Vx = 2 V and V3 = 5 V

 -4Vx + 2V3 = 2

 8Vx - 2V3 = 6

V3 - 3Vx

1k
+

V3 - Vx

1k
=

2

k

- 
2

k
+

Vx

1k
+

Vx - V3

1k
+

3Vx - V3

1k
+

3Vx - 4

1k
= 0

V3 .

V4 = 4

V1 = 3Vx

V2 = Vx

V1 - V2 = 2Vx

±
–

±
–

1 k�

1 k�

4 V

1 k�

1 k� Vo

+

-

+

-

2Vx

Vx

+

-

Vx

2 mA

2 mA

(a)

±
–

±
–

1 k�

1 k�

4 V

1 k�

1 k�Vo

+

-

2Vx

V3V2

V1

V4

2
k
— A

2
k
— A

(b)

Figure 3.16

Circuit used in Example 3.10.

EXAMPLE

3.11
We wish to find in the network in Fig. 3.17a. Note that this circuit contains three voltage
sources, one of which is a controlled source and another is a controlled current source.
Because two of the voltage sources are connected to the reference node, one node voltage
is known directly and one is specified by the dependent source. Furthermore, the difference
in voltage between two nodes is defined by the 6-V independent source.

Io
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The network is redrawn in Fig. 3.17b in order to label the nodes and identify the supernode.
Since the network has six nodes, five linear independent equations are needed to determine the
unknown node voltages.

The two equations for the supernode are

The three remaining equations are

The equations for the control parameters are

Combining these equations yields the following set of equations:

Solving these equations by any convenient means yields

Then, since is The reader is encouraged to verify that
KCL is satisfied at every node.

-48 mA.IoV3 = 2Vx , V3 = -100 V.

 V5 = -48 V

 V4 = -32 V

 V1 = -38 V

 -3V4 + 2V5 = 0

 V1 - V4 = -6

 -2V1 + 5V4 - V5 = -36

 Ix =

V4

1k

 Vx = V1 - 12

V5 - V4

1k
+

V5

1k
= 2Ix

 V3 = 2Vx

 V2 = 12

 
V1 - 12

1k
+

V1 - V3

1k
+ 2Ix +

V4 - V3

1k
+

V4

1k
+

V4 - V5

1k
= 0

 V1 - V4 = -6

-
+

±
–

±
–

1 k� 1 k�

1 k�

1 k�

1 k�1 k�12 V

1 k�

6 V

Ix2Vx

2Ix

Io

Vx

+

-

-
+

±
–

±
–

1 k� 1 k�

1 k� 1 k�

1 k�1 k�12 V

1 k�

6 V

Ix

V1

V3V2 V5
V4

2Ix

2Vx Io

Vx

+

-

(a) (b)

Figure 3.17

Circuit used in Example 3.11.
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Step 1. Determine the number of nodes in the circuit. Select one node as the reference
node. Assign a node voltage between each nonreference node and the reference
node. All node voltages are assumed positive with respect to the reference node.
For an N-node circuit, there are node voltages. As a result, 
linearly independent equations must be written to solve for the node voltages.

Step 2. Write a constraint equation for each voltage source—independent or dependent—
in the circuit in terms of the assigned node voltages using KVL. Each
constraint equation represents one of the necessary linearly independent
equations, and voltage sources yield linearly independent equations. For
each dependent voltage source, express the controlling variable for that source
in terms of the node voltages.
A voltage source—independent or dependent—may be connected between a
nonreference node and the reference node or between two nonreference nodes.
A supernode is formed by a voltage source and its two connecting nonrefer-
ence nodes.

Step 3. Use KCL to formulate the remaining linearly independent equa-
tions. First, apply KCL at each nonreference node not connected to a voltage
source. Second, apply KCL at each supernode. Treat dependent current sources
like independent current sources when formulating the KCL equations. For
each dependent current source, express the controlling variable in terms of the
node voltages.

N - 1 - Nv

NvNv

N - 1N - 1

Problem-Solving Strategy
Nodal Analysis

E3.11 Use nodal analysis to find in the circuit in Fig. E3.11.Io

Learning Assessment
ANSWER: Io =

4

3
 mA.

-+

4 mA

V1 V2

2 k� 2 mA 2 k�

2000 Ix

Ix Io

2 mA

3 k� 6 k�8 mA

4kIx
Ix

1 k�

2 k�

Vo

+

–

+–

Figure E3.11

E3.12 Find Vo in Fig. E3.12 using nodal analysis. ANSWER: Vo = 6.29 V.

Figure E3.12
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All the circuits we will examine in this text will be planar, which simply means that we
can draw the circuit on a sheet of paper in such a way that no conductor crosses another con-
ductor. If a circuit is planar, the loops are more easily identified. For example, recall in
Chapter 2 that we found that a single equation was sufficient to determine the current in a cir-
cuit containing a single loop. If the circuit contains N independent loops, we will show (and
the general topological formula can be used for verification) that N independent
simultaneous equations will be required to describe the network.

Our approach to loop analysis will mirror the approach used in nodal analysis (i.e., we will
begin with simple cases and systematically proceed to those that are more difficult). Then at
the end of this section we will outline a general strategy for employing loop analysis.

CIRCUITS CONTAINING ONLY INDEPENDENT VOLTAGE SOURCES To begin
our analysis, consider the circuit shown in Fig. 3.19. We note that this network has seven branch-
es and six nodes, and thus the number of linearly independent KVL equations necessary to
determine all currents in the circuit is Since two linearly
independent KVL equations are required, we identify two independent loops, A-B-E-F-A and
B-C-D-E-B. We now define a new set of current variables called loop currents, which can be
used to find the physical currents in the circuit. Let us assume that current flows in the first
loop and that current flows in the second loop. Then the branch current flowing from B to Ei2

i1

B - N + 1 = 7 - 6 + 1 = 2.

B - N + 1

 i8(t) = -iD(t)

 i7(t) = iC(t) - iD(t)

 i6(t) = -iC(t)

 i5(t) = iB(t) - iD(t)

 i4(t) = iA(t) - iC(t)

 i3(t) = iB(t)

 i2(t) = iA(t) - iB(t)

 i1(t) = iA(t)
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±
–

1

42

5

3

iB(t)iA(t)

iC(t) iD(t)

i1(t)

i2(t) i3(t)

i5(t)i4(t)

i6(t) i7(t)

v2(t)

v1(t)

i8(t)

R2

R5R4

R3

R1

–±

Figure 3.18

Figure 2.5 redrawn with
loop currents.

3.2
Loop Analysis

We found that in a nodal analysis the unknown parameters are the node voltages and
KCL was employed to determine them. Once these node voltages have been calculated, all
the branch currents in the network can easily be determined using Ohm’s law. In contrast to
this approach, a loop analysis uses KVL to determine a set of loop currents in the circuit.
Once these loop currents are known, Ohm’s law can be used to calculate any voltages in the
network. Via network topology we can show that, in general, there are exactly 
linearly independent KVL equations for any network, where B is the number of branches in
the circuit and N is the number of nodes. For example, if we once again examine the circuit
in Fig. 2.5, we find that there are eight branches and five nodes. Thus, the number of lin-
early independent KVL equations necessary to determine all currents in the network is

The network in Fig. 2.5 is redrawn as shown in Fig. 3.18
with 4 loop currents labeled as shown. The branch currents are then determined as
B - N + 1 = 8 - 5 + 1 = 4.

B - N + 1
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through is The directions of the currents have been assumed. As was the case in the
nodal analysis, if the actual currents are not in the direction indicated, the values calculated will
be negative.

Applying KVL to the first loop yields

KVL applied to loop 2 yields

where 
Substituting these values into the two KVL equations produces the two simultaneous

equations required to determine the two loop currents; that is,

or in matrix form

At this point, it is important to define what is called a mesh. A mesh is a special kind of loop
that does not contain any loops within it. Therefore, as we traverse the path of a mesh, we do not
encircle any circuit elements. For example, the network in Fig. 3.19 contains two meshes defined
by the paths A-B-E-F-A and B-C-D-E-B. The path A-B-C-D-E-F-A is a loop, but it is not a mesh.
Since the majority of our analysis in this section will involve writing KVL equations for meshes,
we will refer to the currents as mesh currents and the analysis as a mesh analysis.

BR1 + R2 + R3

-R3

-R3

R3 + R4 + R5
R B i1

i2
R = B vS1

-vS2
R

 -i1AR3B + i2AR3 + R4 + R5B = -vS2

 i1AR1 + R2 + R3B - i2AR3B = vS1

v1 = i1R1 , v2 = i1R2 , v3 = Ai1 - i2B  R3 , v4 = i2R4 , and v5 = i2R5 .

+vS2 + v4 + v5 - v3 = 0

+v1 + v3 + v2 - vS1 = 0

i1 - i2.R3
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The equations employ the
passive sign convention.

[ h i n t ]

±
–

–±
A B C

F E D

vS1

v1

v2

vS2

v5

v4R4v3R3

R1

R2 R5

i1 i2
+

-

+

+

-

-

- + - +

Figure 3.19

A two-loop circuit.

SOLUTION

EXAMPLE

3.12
Consider the network in Fig. 3.20a. We wish to find the current 

We will begin the analysis by writing mesh equations. Note that there are no + and - signs
on the resistors. However, they are not needed, since we will apply Ohm’s law to each resis-
tive element as we write the KVL equations. The equation for the first mesh is

The KVL equation for the second mesh is

where 
Solving the two simultaneous equations yields and Therefore,

All the voltages and currents in the network are shown in Fig. 3.20b. Recall
from nodal analysis that once the node voltages were determined, we could check our analy-
sis using KCL at the nodes. In this case, we know the branch currents and can use KVL around
any closed path to check our results. For example, applying KVL to the outer loop yields

 0 = 0

 -12 +

15

2
+

3

2
+ 3 = 0

Io = 3�4 mA.
I2 = 1�2 mA.I1 = 5�4 mA

Io = I1 - I2  .
6kAI2 - I1B + 3kI2 + 3 = 0

-12 + 6kI1 + 6kAI1 - I2B = 0

Io  .
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Since we want to calculate the current we could use loop analysis, as shown in
Fig. 3.20c. Note that the loop current passes through the center leg of the network and,
therefore, The two loop equations in this case are

and

Solving these equations yields and Since the current in the
12-V source is these results agree with the mesh analysis.

Finally, for purposes of comparison, let us find using nodal analysis. The presence of
the two voltage sources would indicate that this is a viable approach. Applying KCL at the
top center node, we obtain

and hence,

and then

Note that in this case we had to solve only one equation instead of two.

Io =

Vo

6k
=

3

4
 mA

Vo =

9

2
 V

Vo - 12

6k
+

Vo

6k
+

Vo - 3

3k
= 0

Io

I1 + I2 = 5�4 mA,
I2 = 1�2 mA.I1 = 3�4 mA

-12 + 6kAI1 + I2B + 3kI2 + 3 = 0

-12 + 6kAI1 + I2B + 6kI1 = 0

I1 = Io  .
I1

Io  ,

±
–

±
–

Vo

Io

3 k�6 k�

6 k�

12 V 3 VI1 I2

(a)

±
–

±
–

Vo

3 k�6 k�

6 k�12 V 3 V

(b)

5
4
— mA 1

2
— mA

3
4
— mA

9
2
— mA

15
2
— V

+

+

-
3
2
— V

+ -

-

±
–

±
–

Vo

Io

I1 I2

3 k�6 k�

6 k�12 V 3 V

(c)

Figure 3.20

Circuits used in
Example 3.12.

Once again we are compelled to note the symmetrical form of the mesh equations that
describe the circuit in Fig. 3.19. Note that the coefficient matrix for this circuit is symmetrical.

Since this symmetry is generally exhibited by networks containing resistors and inde-
pendent voltage sources, we can learn to write the mesh equations by inspection. In the first
equation, the coefficient of is the sum of the resistances through which mesh current 1
flows, and the coefficient of is the negative of the sum of the resistances common to mesh
current 1 and mesh current 2. The right-hand side of the equation is the algebraic sum of the
voltage sources in mesh 1. The sign of the voltage source is positive if it aids the assumed
direction of the current flow and negative if it opposes the assumed flow. The first equation
is KVL for mesh 1. In the second equation, the coefficient of is the sum of all thei2

i2

i1
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SOLUTION

EXAMPLE

3.13
Let us write the mesh equations by inspection for the network in Fig. 3.21. Then we will
use MATLAB to solve for the mesh currents.

The three linearly independent simultaneous equations are

or in matrix form

Note the symmetrical form of the equations. The general form of the matrix equation is

RI = V

and the solution of this matrix equation is

Performing the indicated operation yields the following loop currents:

i1 = -0.6757 mA

i2 = 0.4685 mA

i3 = -0.1261 mA

I = R- 1V

C
10k

0

-6k

0

12k

-3k

-6k

-3k

21k

S C
I1

I2

I3

S = C
-6

6

0

S

 -(6k)I1 - (3k)I2 + (3k + 6k + 12k)I3 = 0

 -(0)I1 + (9k + 3k)I2 - (3k)I3 = 6

 (4k + 6k)I1 - (0)I2 - (6k)I3 = -6

+-

4 k�

6 k�

3 k�

12 k�9 k�

6 V

I1

I2 I3

Figure 3.21

Circuit used in
Example 3.13.

resistances in mesh 2, the coefficient of is the negative of the sum of the resistances com-
mon to mesh 1 and mesh 2, and the right-hand side of the equation is the algebraic sum of
the voltage sources in mesh 2. In general, if we assume all of the mesh currents to be in the
same direction (clockwise or counterclockwise), then if KVL is applied to mesh j with mesh
current the coefficient of is the sum of the resistances in mesh j and the coefficients of
the other mesh currents are the negatives of the resistances common to these
meshes and mesh j. The right-hand side of the equation is equal to the algebraic sum of the
voltage sources in mesh j. These voltage sources have a positive sign if they aid the current
flow and a negative sign if they oppose it.ij

Ae.g., ij - 1 , ij + 1B
ijij ,

i1
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E3.13 Use mesh equations to find in the circuit in Fig. E3.13.Vo

Learning Assessment
ANSWER: Vo =

33

5
 V.

±
–

+-
4 k�

2 k�

2 k�

6 k� Vo

3 V

6 V

+

-

2 k�

10 V
8 V

12 V4 k�

3 k�

3 k�

4 k�

6 k�

6 k� Vo

+

–

+
– +

–

-
+

Figure E3.13

Let us find both and in the circuit in Fig. 3.22.

Although it appears that there are two unknown mesh currents, the current goes directly
through the current source and, therefore, is constrained to be 2 mA. Hence, only the
current is unknown. KVL for the rightmost mesh is

And, of course,

 I1 = 2 * 10-3

2k( I2 -  I1) - 2 + 6k I2 = 0

I2

I1

I1

V1Vo

SOLUTION

E3.14 Find Vo in Fig. E3.14 using mesh analysis. ANSWER: Vo = 8.96 V.

Figure E3.14

CIRCUITS CONTAINING INDEPENDENT CURRENT SOURCES Just as the pres-
ence of a voltage source in a network simplified the nodal analysis, the presence of a current
source simplifies a loop analysis. The following examples illustrate the point.

EXAMPLE

3.14
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These equations can be written as

Solving these equation for I2 yields I2 = 3/4kA and thus

To obtain we apply KVL around any closed path. If we use the outer loop, the KVL
equation is

And therefore,

Note that since the current is known, the resistor did not enter the equation in
finding However, it appears in every loop containing the current source and, thus, is
used in finding V1 .

Vo .
4-k�I1

V1 =

21

2
 V

-V1 + 4kI1 - 2 + 6kI2 = 0

V1

Vo = 6kI2 =

9

2
 V

 I1 = 2�k 

- 2kI1 + 8kI2 = 2

2 mA

2 V

2 k�

4 k�

6 k�

V1

I1 I2 Vo

+

-

+-
Figure 3.22

Circuit used in
Example 3.14.

SOLUTION

EXAMPLE

3.15
We wish to find in the network in Fig. 3.23.

Since the currents and pass directly through a current source, two of the three required
equations are

The third equation is KVL for the mesh containing the voltage source; that is,

These equations yield

and hence,

Vo = 6kI3 - 3 =

-3

2
 V

I3 =

1

4
 mA

4kAI3 - I2B + 2kAI3 - I1B + 6kI3 - 3 = 0

 I2 = -2 * 10-3

 I1 = 4 * 10-3

I2I1

Vo
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-
+

4 mA

2 mA 3 V

2 k�

4 k�

6 k�

4 k�
Vo

+

-

I3

I1

I2

Figure 3.23

Circuit used in
Example 3.15.

What we have demonstrated in the previous example is the general approach for dealing
with independent current sources when writing KVL equations; that is, use one loop through
each current source. The number of “window panes” in the network tells us how many equa-
tions we need. Additional KVL equations are written to cover the remaining circuit elements
in the network. The following example illustrates this approach.

Let us find in the network in Fig. 3.24a.

First, we select two loop currents and such that passes directly through the 2-mA
source, and passes directly through the 4-mA source, as shown in Fig. 3.24b. Therefore,
two of our three linearly independent equations are 

The remaining loop current must pass through the circuit elements not covered by the two
previous equations and cannot, of course, pass through the current sources. The path for this
remaining loop current can be obtained by open-circuiting the current sources, as shown in
Fig. 3.24c. When all currents are labeled on the original circuit, the KVL equation for this
last loop, as shown in Fig. 3.24d, is

Solving the equations yields

and therefore,

Next consider the supermesh technique. In this case the three mesh currents are specified
as shown in Fig. 3.24e, and since the voltage across the 4-mA current source is unknown,
it is assumed to be The mesh currents constrained by the current sources are

The KVL equations for meshes 2 and 3, respectively, are

 -6 + 1kI3 + Vx + 1kAI3 - I1B = 0

 2kI2 + 2kAI2 - I1B - Vx = 0

 I2 - I3 = 4 * 10-3

 I1 = 2 * 10-3

Vx  .

Io = I1 - I2 - I3 =

-4

3
 mA

I3 =

-2

3
 mA

-6 + 1kI3 + 2kAI2 + I3B + 2kAI3 + I2 - I1B + 1kAI3 - I1B = 0

I3

 I2 = 4 * 10-3

 I1 = 2 * 10-3

I2

I1I2I1

Io

SOLUTION

In this case the 4-mA current
source is located on the
boundary between two mesh-
es. Thus, we will demonstrate
two techniques for dealing
with this type of situtation.
One is a special loop tech-
nique, and the other is known
as the supermesh approach.

[ h i n t ]

EXAMPLE

3.16
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Adding the last two equations yields

Note that the unknown voltage has been eliminated. The two constraint equations,
together with this latter equation, yield the desired result.

The purpose of the supermesh approach is to avoid introducing the unknown voltage 
The supermesh is created by mentally removing the 4-mA current source, as shown in
Fig. 3.24f. Then writing the KVL equation around the dotted path, which defines the super-
mesh, using the original mesh currents as shown in Fig. 3.24e, yields

Note that this supermesh equation is the same as that obtained earlier by introducing the
voltage Vx  .

-6 + 1kI3 + 2kI2 + 2kAI2 - I1B + 1kAI3 - I1B = 0

Vx  .

Vx

-6 + 1kI3 + 2kI2 + 2kAI2 - I1B + 1kAI3 - I1B = 0

+-

6 V

1 k�

2 k�2 k�

1 k�

4 mA

2 mA Io

(a)

+-

6 V

1 k�

2 k�
2 k�

1 k�

4 mA

2 mA Io

(e)

+-

6 V

1 k�

2 k�2 k�

1 k�

4 mA

2 mA Io

(b)

I1 I2

6 V

1 k�

2 k�2 k�

1 k�

(c)

6 V

1 k�

2 k�

2 k�

1 k�

4 mA

2 mA Io

(d)

I1 I2

I3I3

+-

6 V

1 k�

2 k�

2 k�

1 k�

2 mA Io

(f)

I1 I2
I1 I2

I3I3 Vx+-

+- +-

Figure 3.24

Circuits used in
Example 3.16.
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E3.15 Find in the network in Fig. E3.15.Vo

Learning Assessments
ANSWER: Vo =

33

5
 V.

E3.16 Find in the network in Fig. E3.16.Vo ANSWER: Vo =

32

5
 V.

±
–2 k� 4 k�

6 k�

4 mA

5 V

Vo+ -

Figure E3.15

±
–

1 k�

4 k� Vo

2 k�

2 mA

4 mA

4 V

+

-
Figure E3.16

E3.17 Find in Fig. E3.17 using loop analysis.Vo ANSWER: = 9.71 V.Vo

Figure E3.17

E3.18 Find in Fig. E3.17 using mesh analysis.Vo ANSWER: = 9.71 V.Vo

2 k�

10 V
8 V

12 V2 mA

3 k�

3 k�

4 k�

6 k�

6 k� Vo

+

–

+
– +

–

-
+
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CIRCUITS CONTAINING DEPENDENT SOURCES We deal with circuits containing
dependent sources just as we have in the past. First, we treat the dependent source as though
it were an independent source when writing the KVL equations. Then we write the control-
ling equation for the dependent source. The following examples illustrate the point.
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Let us find in the circuit in Fig. 3.25, which contains a voltage-controlled voltage source.

The equations for the loop currents shown in the figure are

where

These equations can be combined to produce

These equations can be placed in the form RI = V, where

-2000 2000 i1 0
R = I = V =

-6000 8000 i2 3

The solution is I = R-1V, and this operation yields

i1 = 1.5 mA

i2 = 1.5 mA

and therefore,

For comparison, we will also solve the problem using nodal analysis. The presence of the
voltage sources indicates that this method could be simpler. Treating the 3-V source and its
connecting nodes as a supernode and writing the KCL equation for this supernode yields

where

These equations also yield .Vo = 9 V

Vo = Vx + 3

Vx - 2Vx

2k
 +

Vx

4k
 +

Vx + 3

6k
= 0

 Vo = 6kI2 = 9 V

 - 6kI1 + 8kI2 = 3

 - 2kI1 + 2kI2 = 0

Vx = 4kI1

 - 2Vx + 2k(I1 + I2) - 3 + 6kI2 = 0

 - 2Vx + 2k(I1 + I2) + 4kI1 = 0

Vo

±
–

+-

3 VVx

2 k�

4 k� 6 k� Vo2 Vx
I1

I2

+

-

Figure 3.25

Circuit used in
Example 3.17.

SOLUTION

EXAMPLE

3.17
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Let us find in the circuit in Fig. 3.26, which contains a voltage-controlled current source.

The currents and are drawn through the current sources. Therefore, two of the equations
needed are

The KVL equation for the third mesh is

where

Combining these equations yields

The equations can be expressed in matrix form as IR = V, where

-1 2 0 i1 0
R = 0 1 0 I = i2 and V = 0.002

-2000 0 8000 i3 3

Performing the operation I = R-1V, produces the currents

i1 = 4.0 mA
i2 = 2.0 mA
i3 = 1.375 mA

And hence, . Vo = 8.25 V

 - 2kI2 + 8kI3 = 3

 I2 = 2�k

 - I1 + 2I2 = 0

 Vx = 4k (I1 - I2)

- 3 + 2k(I3 - I1) + 6kI3 = 0

 I2 = 2 * 10 - 3

 I1 =

Vx

2000

I2I1

Vo

±
–

Vx

I1

I3
4 k�

6 k�

2 mA

2 k�

3 V

Vx
2000
—

Vo

+

-

I2

+-

Figure 3.26

Circuit used in
Example 3.18.

The network in Fig. 3.27 contains both a current-controlled voltage source and a voltage-
controlled current source. Let us use MATLAB to determine the loop currents.

The equations for the loop currents shown in the figure are

 1kAI4 - I3B + 1kAI4 - I2B + 12 = 0

 -1kIx + 2kAI3 - I1B + 1kAI3 - I4B = 0

 I2 =

Vx

2k

 I1 =

4

k

SOLUTION

SOLUTION

EXAMPLE

3.18

EXAMPLE

3.19
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where

Combining these equations yields

In matrix form the equations are

=

The equations are in the form RI = V, and the solution to I = R-1V is

i1 = 4.0 mA

i2 = 6.0 mA

i3 = -2.0 mA

i4 = -1.0 mA

E
4

k

0

8

12

UD
I1

I2

I3

I4

TD
1

1

0

0

0

1

1k

1k

0

-1

3k

1k

0

0

-2k

-2k

T

 1kI2 + 1kI3 - 2kI4 = 12

 1kI2 + 3kI3 - 2kI4 = 8

 I1 + I2 - I3 = 0

 I1 =

4

k

 Ix = I4 - I2

 Vx = 2kAI3 - I1B

±
–

±
–

4 mA

2 k�

1 k�

2 k� 1 k�

12 V

IxVx

I41kIx

I1

I3

I2
Vx
2k
—

+ -

Figure 3.27

Circuit used in
Example 3.19.

At this point we will again examine the circuit in Example 3.10 and analyze it using loop
equations. Recall that because the network has two voltage sources, the nodal analysis was
somewhat simplified. In a similar manner, the presence of the current sources should
simplify a loop analysis.

Clearly, the network has four loops, and thus four linearly independent equations are
required to determine the loop currents. The network is redrawn in Fig. 3.28 where the loop cur-
rents are specified. Note that we have drawn one current through each of the independent cur-
rent sources. This choice of currents simplifies the analysis since two of the four equations are

 I3 = -2�k
 I1 = 2�k

EXAMPLE

3.20
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I1 I2 I3

I6I5I4

Figure 3.29

Circuit used in
Example 3.21.
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±
–

±
–2Vx Vo

Vx

+
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+

-

1 k�

1 k�

1 k� 1 k�

4 V2
k
— A

2
k
— A I1

I2

I4

I3

Figure 3.28

Circuit used in
Example 3.20.

Let us once again consider Example 3.11. In this case we will examine the network using
loop analysis. Although there are four sources, two of which are dependent, only one of
them is a current source. Thus, from the outset we expect that a loop analysis will be more
difficult than a nodal analysis. Clearly, the circuit contains six loops. Thus, six linearly inde-
pendent equations are needed to solve for all the unknown currents.

The network is redrawn in Fig. 3.29 where the loops are specified. The six KVL equa-
tions that describe the network are

 I3 = 2Ix

 1kAI2 - I1B - 6 + 1kAI2 - I5B = 0

 1kI1 + 1kAI1 - I2B + 1kAI1 - I4B = 0

EXAMPLE

3.21

The two remaining KVL equations for loop currents and are

where

Substituting the equations for and into the two KVL equations yields

Solving these equations for and , we obtain

and thus
Vo = 1V

I2 = 1 mA

I4 = 2 mA

 I4 I2

 4kI4 = 8

 2kI2 + 2kI4 = 6

 I3 I1

 Vx = 1k(I1 - I3 - I4)

 (I4 + I3 - I1)1k - 2Vx + 1kI4 + 4 = 0

 -2Vx + 1kI2 + (I2 - I3)1k = 0

 I4 I2
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And the control variables for the two dependent sources are

Substituting the control parameters into the six KVL equations yields

which can be written in matrix form as

The solution to the matrix equations RI = V is

i1 = 50.0 mA

i2 = -12.0 mA

i3 = -64.0 mA

i4 = 162.0 mA

i5 = -80.0 mA

i6 = -48.0 mA

F

3

-1

0

-3

2

0

-1

2

0

0

-1

0

0

0

1

0

0

0

-1

0

0

1

0

0

0

-1

-2

0

2

-3

0

0

2

0

-1

5

V F

I1

I2

I3

I4

I5

Io

V = F

0

6�k

0

12�k

0

0

V

3I1

-I1

0

-3I1

2I1

0

-I2

+2I2

0

0

-I2

0

0

0

I3

0

0

0

-I4

0

0

+I4

0

0

0

-I5

-2I5

0

+2I5

-3I5

0

0

+2Io

0

-Io

+5Io

=

=

=

=

=

=

0

6�k

0

12�k

0

0

 Ix = I5 - Io

 Vx = -1kI1

 1kAIo - I5B + 1kAIo - I3B + 1kIo = 0

 -2Vx + 1kAI5 - I2B + 1kAI5 - IoB = 0

 -12 + 1kAI4 - I1B + 2Vx = 0
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As a final point, it is very important to examine the circuit carefully before selecting an
analysis approach. One method could be much simpler than another, and a little time invested
up front may save a lot of time in the long run. For an N-node circuit, N - 1 linearly inde-
pendent equations must be formulated to solve for N - 1 node voltages. An N-loop circuit
requires the formulation of N linearly independent equations. One consideration in the selec-
tion of a method should be the number of linearly independent equations that must be for-
mulated. The same circuit was solved in Example 3.10 using nodal analysis and in Example
3.20 using loop analysis. The circuit in Fig. 3.16 has four unknown node voltages. As a result,
four linearly independent equations are required. Because there are two voltage sources, two
constraint equations are needed. It was pointed out in Example 3.20 that this same circuit has
four loops which requires four linearly independent equations. The two current sources
produce two constraint equations.

The effort required to solve this circuit using either nodal or loop analysis is similar.
However, this is not true for many circuits. Consider the circuit in Fig. 3.30. This circuit has
eight loops. Selection of the loop currents such that only one loop current flows through the
independent current source leaves us with seven unknown loop currents. Since this circuit has
seven nodes, there are six node voltages, and we must formulate six linearly independent
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±
–

±
–

±
–

±
–

2 �

4 � 4 � 3 � 6 �

2 � 2 � 2 � 2 �

20 V 20 V2 A 16 V 12 V

Figure 3.30

A circuit utilized in a
discussion of the selection

of an analysis technique.

Step 1. Determine the number of independent loops in the circuit. Assign a loop cur-
rent to each independent loop. For an N-loop circuit, there are N-loop currents.
As a result, N linearly independent equations must be written to solve for the
loop currents.

If current sources are present in the circuit, either of two techniques can be
employed. In the first case, one loop current is selected to pass through one
of the current sources. The remaining loop currents are determined by open-
circuiting the current sources in the circuit and using this modified circuit to
select them. In the second case, a current is assigned to each mesh in the circuit.

Step 2. Write a constraint equation for each current source—independent or dependent—
in the circuit in terms of the assigned loop current using KCL. Each constraint
equation represents one of the necessary linearly independent equations, and 
current sources yield linearly independent equations. For each dependent
current source, express the controlling variable for that source in terms of the
loop currents.

Step 3. Use KVL to formulate the remaining linearly independent equations.
Treat dependent voltage sources like independent voltage sources when formu-
lating the KVL equations. For each dependent voltage source, express the
controlling variable in terms of the loop currents.

N - NI

NI

NI

Problem-Solving Strategy
Loop Analysis

E3.19 Use mesh analysis to find in the circuit in Fig. E3.19.Vo ANSWER: Vo = 12 V.

±
–

+-
2 k�

12 V

4 k� 2 k� Vo

+

-

2000Ix

Ix

Figure E3.19

equations. By judicious selection of the bottom node as the reference node, four of the node
voltages are known, leaving just two unknown node voltages—the node voltage across the
current source and the node voltage across the 3-� and 6-� resistors. Applying KCL at these
two nodes yields two equations that can be solved for the two unknown node voltages. Even
with the use of a modern calculator or a computer program such as MATLAB, the solution
of two simultaneous equations requires less effort than the solution of the seven simultane-
ous equations that the loop analysis would require.

Learning Assessments
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E3.20 Use loop analysis to solve the network in Example 3.5 and compare the time and effort
involved in the two solution techniques.

E3.21 Use nodal analysis to solve the circuit in Example 3.15 and compare the time and effort
involved in the two solution strategies.

3.3
Application

Example

APPLICATION
EXAMPLE 3.22

•
A conceptual circuit for manually setting the speed of a dc electric motor is shown in
Fig. 3.31a. The resistors and are inside a component called a potentiometer, or pot,
which is nothing more than an adjustable resistor, for example, a volume control. Turning
the knob changes the ratio but the total resistance, isRpot = R1 + R2 ,a = R2�(R1 + R2),

R2R1

E3.22 Find Vo in Fig. E3.22 using mesh analysis. ANSWER: Vo = 6.97 V.

Figure E3.22

E3.23 Find Vo in Fig. E3.23 using mesh analysis. ANSWER: Vo = 9 V.

Figure E3.23

2 k�

10 V
0.5Vx

12 V

3 k�

3 k�

4 k�

4 k�

6 k�

6 k� Vo

Vx ++

–

–

+
– +

–

-
+

2 k�

10 V

8 V

12 V

3 k�

3 k�

4 k�

6 k�

6 k� Vo

0.5Ix

Ix

+

–

+
– +

–

-
+
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unchanged. In this way the pot forms a voltage divider that sets the voltage The
power amplifier output, is four times Power amplifiers can output the high cur-
rents needed to drive the motor. Finally, the dc motor speed is proportional to that is,
the speed in rpm is some constant k times Without knowing the details of the power
amplifier, can we analyze this system? In particular, can we develop a relationship between
rpm and a?

V.
VM ;

Vspeed .VM ,
Vspeed .

SOLUTION

µ

µ

(a)

(b)

±
–

Vspeed
+

-

Vspeed

Power amp
model

+

-

VM
+

-

Power
amp

dc
motor

�=1

�=0
VM/Vspeed=4

VM

+

-

+

-
4Vspeed

5 V Rpot

R1

R2

�=1

�=0
5 V Rpot

R1

R2

Figure 3.31

(a) A simple dc motor
driver and (b) the circuit

model used to analyze it.

Since the power amplifier output voltage is proportional to its input, we can model the
amplifier as a simple dependent source. The resulting circuit diagram is shown in
Fig. 3.31b. Now we can easily develop a relationship between motor speed and the pot posi-
tion, The equations that govern the operation of the motor, power amplifier, and the volt-
age divider are

Combining these relationships to eliminate yields a relationship between motor speed
and that is, If, for example, the motor constant is then

This relationship specifies that the motor speed is proportional to the pot knob position.
Since the maximum value of is 1, the motor speed ranges from 0 to 1000 rpm.

Note that in our model, the power amplifier, modeled by the dependent source, can
deliver any current the motor requires. Of course, this is not possible, but it does demon-
strate some of the tradeoffs we experience in modeling. By choosing a simple model, we
were able to develop the required relationship quickly. However, other characteristics of an
actual power amplifier have been omitted in this model.

a

rpm = 1000a

50 rpm�V,KMrpm = 20a.a,
Vspeed

 R2 = aRpot  R1 = (1 - a)Rpot

 Vspeed = 5 
R2

R1 + R2
= 5 c R2

Rpot
d = 5a

 VM = 4Vspeed

 speed (rpm) = KM VM

a.
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An 8-V source is to be used in conjunction with two standard resistors to design a voltage
divider that will output 5 V when connected to a load. While keeping the consumed
power as low as possible, we wish to minimize the error between the actual output and the
required 5 volts.

The divider can be modeled as shown in Fig. 3.32. Applying KCL at the output node yields
the equation

Using the specified parameters for the input voltage, desired output voltage, and the current
source, we obtain

By trial and error, we find that excellent values for the two standard resistors are
and Large resistor values are used to minimize power consump-

tion. With this selection of resistors the output voltage is 5.11 V, which is a percent error of
only 2.15%.

R2 = 27 k�.R1 = 10 k�

R1 =

3R2

5 + (100�)R2

 
VS - Vo

R1
=

Vo

R2
+ Io

100-�A

SOLUTION

±
–

R1

R2 Vo

Io

100 �A

VS

8 V
+

-

Figure 3.32

A simple voltage-divider
circuit with a 100-�A load.

S U M M A R Y

Nodal Analysis for an N-node Circuit

■ Determine the number of nodes in the circuit. Select one
node as the reference node. Assign a node voltage between
each nonreference node and the reference node. All node
voltages are assumed positive with respect to the reference
node. For an N-node circuit, there are N � 1 node voltages.
As a result, N � 1 linearly independent equations must be
written to solve for the node voltages.

■ Write a constraint equation for each voltage source—
independent or dependent—in the circuit in terms of the
assigned node voltages using KVL. Each constraint
equation represents one of the necessary linearly independent
equations, and voltage sources yield linearly
independent equations. For each dependent voltage source,
express the controlling variable for that source in terms of
the node voltages.

A voltage source—independent or dependent—may be
connected between a nonreference node and the reference
node or between two nonreference nodes. A supernode is
formed by a voltage source and its two connecting nonrefer-
ence nodes.

■ Use KCL to formulate the remaining linearly
independent equations. First, apply KCL at each nonrefer-
ence node not connected to a voltage source. Second, apply
KCL at each supernode. Treat dependent current sources like
independent current sources when formulating the KCL
equations. For each dependent current source, express the
controlling variable in terms of the node voltages.

Loop Analysis for an N-loop Circuit

■ Determine the number of independent loops in the circuit.
Assign a loop current to each independent loop. For an
N-loop circuit, there are N-loop currents. As a result,

N - 1 - Nv

NvNv

•

3.4
Design Example

DESIGN
EXAMPLE 3.23

•
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N linearly independent equations must be written to solve
for the loop currents.

■ If current sources are present in the circuit, either of two
techniques can be employed. In the first case, one loop cur-
rent is selected to pass through one of the current sources.
The remaining loop currents are determined by open-
circuiting the current sources in the circuit and using this
modified circuit to select them. In the second case, a current
is assigned to each mesh in the circuit.

■ Write a constraint equation for each current source—
independent or dependent—in the circuit in terms of the

assigned loop currents using KCL. Each constraint equation
represents one of the necessary linearly independent equa-
tions, and current sources yield linearly independent
equations. For each dependent current source, express the
controlling variable for that source in terms of the loop
currents.

■ Use KVL to formulate the remaining linearly inde-
pendent equations. Treat dependent voltage sources like
independent voltage sources when formulating the KVL
equations. For each dependent voltage source, express the
controlling variable in terms of the loop currents.

N - NI

NINI

P R O B L E M S
•

3.1 Find I1 in the circuit in Fig. P3.1.

2 mA

4 mA

4 mA3 k� 4 k�

I1

Figure P3.1

3.2 Find I1 in the network in Fig. P3.2.

6 mA

12 k� 4 k�6 k� 4 k�

I1

Figure P3.2

6 mA

3 k�4 mA 2 mA

1 k�2 k�

Io

Figure P3.3

3 k� V1 2 k�2 k�

2 k�

6 mA

4 mA

+

-

3.4 Use nodal analysis to find V1 in the circuit in Fig P3.4.

Figure P3.4

3.5 Find V1 and V2 in the circuit in Fig. P3.5 using nodal 
analysis.

3 k� 6 k�6 k�

4 k�

6 mA

4 mA V1

+

-

V2

+

-

Figure P3.5

3.6 Use nodal analysis to find both V1 and Vo in the 
circuit in Fig 3.6.

6 k� 1 k� Vo3 k�

6 k�

2 mA

2 k�

V2V1

12 mA

+

-

Figure P3.6

3.3 Find Io in the circuit in Fig. P3.3.
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3.7 Find Io in the circuit in Fig. P3.7 using nodal analysis.

1 k�
4 mA

6 mA

2 k�

2 k�Io

Figure P3.7

3.8 Find in the network in Fig. P3.8 using nodal analysis.Io

2 mA

4 mA

6 mA1 k� 1 k�

2 k�

Io

Figure P3.8

3.9 Find in the circuit in Fig. P3.9.Io

2 mA

6 mA
1 k�

2 k�

2 k�

Io

4 mA

Figure P3.9

3.10 Find Io in the circuit in Fig. P3.10 using nodal analysis.

2 k�

6 k�

3 k�

8 k�

2 mA

1 mA

Io

Figure P3.10

3.11 Use nodal analysis to find Io in the network in 

Fig. P3.11. 

4 k�

2 k�
4 k�

12 k�

2 mA

4 mA

6 mA

Io

Figure P3.11

3.12 Find in the network in Fig. P3.12 using nodal 
analysis.

Vo

12 V 6 V6 k�

12 k�6 k�

Vo+ -

±
–

±
–

Figure P3.12

3.13 Find in the circuit in Fig. P3.13 using nodal 
analysis.

Vo

12 V

1 k�

+
–1 k� 1 k�

2 k� 2 k�

Vo

+

–

Figure P3.13
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3.15 Find Io in the network in Fig. P3.15 using nodal 
analysis.

1 k�

1 k� 2 k�

4 mA 2 mA6 V

Io

-
+

Figure P3.15

3.16 Find in the circuit in Fig. P3.16 using nodal analysis.Io

2 k�

2 k� 1 k�

2 mA 6 V

Io

12 V +
–

-
+

Figure P3.16

3.17 Find Vo in the circuit in Fig. P3.17 using nodal analysis.

2 k� 4 mA

12 V

1 k�

2 k�1 k�

Vo

+

–

+–

Figure P3.17

3.18 Find in the circuit in Fig. P3.18 using nodal analysis.Vo

2 mA

12 V +
–

2 k�

1 k�

2 k�

1 k�

Vo

+

–

Figure P3.18

3.19 Find in the circuit in Fig. P3.19 using nodal analysis.Io

2 mA

12 V +
–

1 k�

2 k�

2 k�

1 k�

Io

Figure P3.19

3.20 Find Vo in the network in Fig. P3.20 using nodal 
analysis.

4 mA

+
–

Vo

+

–

1 k�

2 k�

12 V

2 k�

1 k�

Figure P3.20

3.14 Use nodal analysis to find in the circuit in Fig. P3.14.Vo

2 k� 4 k�

2 k� Vo

+

-

2 mA12 V ±
–

Figure P3.14
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3.21 Find in the circuit in Fig. P3.21 using nodal analysis.Vo

4 mA Vo

+

–

2 k�

1 k�

1 k�

12 V
2 k�-

+

Figure P3.21

3.22 Find in the network in Fig. P3.22 using nodal 
analysis.

Vo

4 mA

+
–

Vo

+

–

2 k�

2 k�

12 V

+
–

4 V

2 k�

Figure P3.22

3.23 Find in the circuit in Fig. P3.23 using nodal analysis.Io

12 V

6 V+
–

+
–

2 k�

1 k�2 k�

1 k�

Io

Figure P3.23

3.24 Find in the circuit in Fig. P3.24 using nodal analysis.Io

12 V

1 k�

6 V1 k�

2 k�
4 V

+–

Io

-
++

-

Figure P3.24

3.25 Use nodal analysis to solve for the node voltages in the
circuit in Fig. P3.25. Also calculate the power supplied
by the 2-mA current source.

12 V

12 k�

24 V

6 k� 4 k�

2 mA -
++

-

Figure P3.25

3.26 Use nodal analysis to determine the node voltages
defined in the circuit in Fig. P3.26.

3 mA

5 mA

12 V+
–

24 V

2 S 1 S

0.5 S

0.5 S

V1

V2
V3

V4

-
+

Figure P3.26
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3.30 Use nodal analysis to find in the circuit in Fig. P3.30.Vo

3.28 Use nodal analysis to find in the network in 
Fig. P3.28.

Vo

2 k�

2 k� 1 k�

1 k�12 V

1 k�1 k�

Vo

+

-

±
– 2 mA

Figure P3.28

3.29 Use nodal analysis to find in the circuit in Fig. P3.29.Vo

+-

2 k� 2 mA±
– 6 V

Vo2 k�

1 k�

1 k�

4 mA 12 V

1 k�1 k�

+

-

Figure P3.29

Vo

+

-

6 k� 6 k�

6 k�6 k�

6 k�

12 V

–±

Figure P3.30

3.31 Find in the network in Fig. P3.31.Vo

-
+

-+

2 k�

4 V

±
– 12 V±

– 6 V

Vo2 k�

1 k�

1 k�

2 k�

2 V

1 k�

+

-

Figure P3.31

3.32 Find Io in the network in Fig. P3.32 using nodal analysis.

1 k� 1 k�

2 k�

Io

12 V+
–

+
– 2 Vx

Vx+ –

Figure P3.32

3.33 Find Io in the network in Fig. P3.33 using nodal analysis.

1 k� 1 k� IoIx

12 V+
– +

– 4 Ix2 mA

Figure P3.33

3.34 Find in the network in Fig. P3.34 using nodal 
analysis.

Vo

1 k�

1 k�

2 k� 2 k�

Vo

+

–

+
– 2 Vo 2 mA

Figure P3.34

3.27 Use nodal analysis to solve for the node voltages in the
circuit in Fig. P3.27. Also calculate the power supplied
by the 2-mA current source.

2 mA

16 V+
–8 V+

–12 V+
–

4 k�

4 k�

2 k�

2 k�

Figure P3.27
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3.35 Find in the circuit in Fig. P3.35 using nodal
analysis.

Vo

1 k�

1 k�

1 k�

1 k� Vo

+

–

Ix

12 V+
–

4 Ix

Figure P3.35

3.36 Find in the network in Fig. P3.36 using nodal 
analysis.

Vo

12 V +
–

1 k�
1 k�

1 k� 1 k�

Vo

+

–

2 Io Io

Figure P3.36

3.37 Find Io in the network in Fig. P3.37 using nodal 
analysis.

6 V+
–

1 k� 1 k�

Vx

+

–

Io

1 k�

+

–

4 Vx

2 mA

Figure P3.37

3.38 Find Io in the network in Fig. P3.38 using nodal 
analysis.

6 V1 k�

1 k�

Vx+ –

Io

1 k�

2 Vx
2 mA

+
–

+
–

Figure P3.38

3.39 Find in the network in Fig. P3.39 using nodal 
analysis.

Vo

Vo

+

–

2 Ix

12 V

1 k�

1 k�

Ix
1 k�

2 mA+
–

Figure P3.39

3.40 Use nodal analysis to find Vo in the circuit in 
Fig. P3.40.

Vo

4 Ix

12 V

1 k� 1 k�

1 k�

Ix

2 mA

+–

Vx

+

–

+
–2 Vx

Figure P3.40

3.41 Use nodal analysis to find in the circuit in 
Fig. P3.41.

Vo

4 mA

6 V

+–

+
– 2 Vx Vx

+

–

Vo

+

–

Figure P3.41
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3.42 Use nodal analysis to find Vo in the network in 
Fig. P3.42.

3.45 Find Io in the circuit in Fig. P3.45 using nodal 
analysis.

4 mA

12 V

+–

+
– 2 Vx Vx

+

–

Vo

+

–

2 mA

1 k� 1 k� 1 k�

1 k� 1 k�

Figure P3.42

3.43 Use nodal analysis to find Vo in the circuit in
Fig. P3.43.

12 V

+–

+–

2 Vx

Vx

+

–

Vo

+

–

4 mA 2 mA 1 k� 1 k�

1 k�1 k�1 k�

Figure P3.43

3.44 Use nodal analysis to find Io in the circuit in Fig. P3.44.

2 mA6 V+
–

V1

V2
V3

4 Ix

1 k� 1 k�

1 k�

Io

Ix

1 k�

Vx+ –

+
– 2 Vx

Figure P3.44

12 k�

12 k�

12 k�12 mA 4Ix

IoIx

Figure P3.45

3.46 Find Vo in the circuit in Fig. P3.46. 

2 k�1 k�

1 k� Vo2 mA1 k�

+

-

Vx

+

-

2Vx
1000
—

Figure P3.46

3.47 Use nodal analysis to find in the circuit in Fig. P3.47.
In addition, find all branch currents and check your
answers using KCL at every node.

Vo

-
+

-+
2 k�12 k�

4 k�2 mA Vo6 V 4 k�

+

-

2000Ix

Ix

Figure P3.47
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3.48 Determine Vo in the network in Fig. P3.48 using nodal
analysis.

-
+

2 mA

1 k� Vo

1 k�Ix

1 k�

1 k�

1 k�

2Ix

12 V

+

-

Figure P3.48
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3.49 Use nodal analysis to find V1, V2, V3, and V4 in the 
circuit in Fig. P3.49.

1 �

8 �6 �

4 �

10 �

12 V

V1 V2

V4

2 VA

V3
VA

3 A

±
–

±–

± –

4 A

Figure P3.49

3.50 Use nodal analysis to determine the node voltages defined
in the circuit in Fig. P3.50.

5 A

12 V+
–

V5V4

V1

V2
V3

4 IA

9 �6 �

3 �

7 �

IA

12 �VA

+

–

+
– 2 VA

Figure P3.50

3.51 Use nodal analysis to determine the node voltages defined
in the circuit in Fig. P3.51.

12 V+
–

2 Ix

Vx

+

–

+
– 0.5 Vx

V2
V1

V4

V5

V3

5 � 3 A

4 �

6 �

3 k�

8 �

Ix

Figure P3.51

3.52 Use nodal analysis to determine the node voltages defined
in the circuit in Fig. P3.52.

3 A 4 A5 � 3 �

8 � 4 �

6 �

12 V +
–

+–

3Ix

Ix
2Vx

V1 V2 V3

Vx

+

–
V4

Figure P3.52

3.53 Find Io in the network in Fig. P3.53 using mesh analysis.

-
+

±
–6 V 24 V6 k�

4 k�6 k�

Io

Figure P3.53

3.54 Find Io in the circuit in Fig. P3.54.

±
–

±
–

4 k� 4 k�

2 k�

2 k�

6 V

24 V Io

Figure P3.54

3.55 Find in the network in Fig. P3.55 using mesh analysis.Vo

-± +-

4 k� Vo4 k�

4 V 12 V

4 k�

+

-

Figure P3.55
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3.58 Find in the circuit in Fig. P3.58 using mesh analysis.Vo

3.56 Find Io in the circuit in Fig. P3.56.

-±

3 V

Io

±
– 3 V±

–

6 k�

6 k�12 k�

12 k�
6 V

Figure P3.56

3.57 Use mesh analysis to find the power dissipated in the 
6-k� resistor in Fig. P3.57.

2 k�

2 k�

8 k�

4 k�

4 k�

6 k�12 V+
– 16 V+

–

8 V+
–

Figure P3.57

±
– Vo

6 V

1 k�

1 k� 12 V 2 k�

1 k�

+

-

-±

Figure P3.58

3.59 Use loop analysis to find in the network in Fig. P3.59.Vo

– ±

1 k� 2 mA 1 k� Vo

2 k�2 k�
12 V

+

-

Figure P3.59

3.60 Use mesh analysis to find Vo in the network in 
Fig. P3.60.

±
–12 V

3 k�

6 k� 2 mA Vo

2 k� +

-

Figure P3.60

3.61 Find in the network in Fig. P3.61 using loop analysis.Vo

1 k�

2 k�

2 k�

1 k�2 k�

6 V 4 mA

6 mA

+
–

Vo+ –

Figure P3.61

3.62 Find in the circuit in Fig. P3.62 using loop analysis.Vo

2 mA

4 mA 6 V

2 k� 1 k�1 k�

+–

Vo

+

–

Figure P3.62

3.63 Find in the circuit in Fig. P3.63 using loop analysis.Io

2 mA

2 k� 1 k�

2 k�4 mA 6 V+
–

Io

Figure P3.63
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3.69 Use loop analysis to find Vo in the circuit in Fig. P3.69.

-
+

6 mA

12 k�

12 k�

6 k�

2 mA12 V

Vo+ -

Figure P3.69

3.64 Find in the network in Fig. P3.64 using loop analysis.Io

2 mA

2 k� 1 k�

2 k�1 k� 4 mA

Io

Figure P3.64

3.65 Find Vo in the network in Fig. P3.65 using loop analysis.

Vo

+

–

2 k� 1 k�

2 k�

4 mA

2 mA

4 V

6 V

1 k�

–+–+

Figure P3.65

3.66 Find in the circuit in Fig. P3.66 using loop analysis.Vo

Vo

+

–

2 k� 2 k�

4 mA

6 mA

6 V

4 V

1 k�

1 k� –
+

–+

Figure P3.66

3.67 Find Io in the network in Fig. P3.67 using loop analysis.

–±

1 k�

1 k�

1 k� 1 k� 6 mA

12 V

Io

Figure P3.67

3.68 Find in the network in Fig. P3.68 using loop analysis. Io

-
+ 6 k�5 mA

6 k� 6 k�

6 k�

6 V

Io

Figure P3.68

3.70 Using loop analysis, find Vo in the network in 
Fig. P3.70.

–±

2 k�

1 k� Vo2 k� 1 k�

6 V

4 mA

12 V

1 k�

+

-

+-

Figure P3.70

3.71 Find Io in the circuit in Fig. P3.71.

+
-

6 k� 2 k�

2 k�

2 mA

1 mA

2 k�

4 k�

Io

6 V

Figure P3.71
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3.72 Use loop analysis to find Io in the network in Fig. P3.72.

1 k� 1 k�

1 k� 2 mA

4 mA

1 k�

1 k�

1 k�

Io

12 V +
-

Figure P3.72

3.73 Find in the circuit in Fig. P3.73 using loop analysis.Io

2 mA

6 mA

6 V

1 k� 1 k�

2 k�

1 k�

1 k�

4 mA +
–

Io

Figure P3.73

3.74 Find in the network in Fig. P3.74 using loop analysis.Io

6 mA

2 k�

1 k� 1 k�

1 k�

2 mA

4 mA

12 V6 V

+– +–

Io

Figure P3.74

3.75 Find Vo in the circuit in Fig. P3.75 using loop analysis.

2 k�

1 k�

2 k�

1 k� 1 k�

2 mA 4 mA

4 mA

6 V

2 mA4 V

+
–

+
–

Vo+ –

Figure P3.75

3.76 Using loop analysis, find Io in the circuit in Fig. P3.76.

+-

4 mA

2 mA

1 k� 1 k�
12 V

1 k�

1 k�

1 k�

1 k�

1 k�

1 k�

Io

Figure P3.76

3.77 Find the mesh currents in the network in Fig. P3.77.

+
-

1 k�
1 k�

1 k�

2 mA

2 k�

2 k�

2 k�

12 V

+
-6 V

I3 I4

1 k�

I1 I2

I5

Figure P3.77

3.78 Use loop analysis to find in the network in Fig. P3.78.Vo

4 k�

2 k� 2 k� Vo

12 V

2 Ix

+

-

Ix
+-

Figure P3.78

3.79 Find Vo in the circuit in Fig. P3.73 using nodal analysis.

±
–

-±

1 k�

1 k�

2 k� Vo

12 V
+

-

Vo
2

—

Figure P3.79
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3.82 Find Io in the network in Fig. P3.82.

± –

2 k�

2 k�

4 k� 12 k� 12 mA

4000Ix

Ix Io

Figure P3.82

3.83 Find in the circuit in Fig. P3.83 using loop analysis.Vo

+-

1 k�Ix 1 k�

1 k�

1 k� Vo

12 V
+

-Ix

Figure P3.83

3.84 Find in the network in Fig. P3.84 using nodal 
analysis.

Vo

-
+

10 k�

10 k� Vo4 mA4000Ix 10 k�

Ix

+

-

Figure P3.84

3.85 Find Io in the circuit in Fig. P3.85 using loop analysis.

2 Ix

1 k� 1 k�

2 k� 2 mA

Ix

Io

6 V +
–

Figure P3.85

3.86. Use mesh analysis to find in the circuit in 
Fig. P3.86.

Vo

± –

6 mA

6 Vx

8 k�

12 k�

4 k�

12 k� Vo

+

-

Vx

+

-

Figure P3.86

3.87 Using mesh analysis, find in the circuit in Fig. P3.87.Vo

4 k�
4 k�

Vx6 mA

Vo

+

-

2 k�

4 k�

+

-

Vx
4000
—

Figure P3.87

3.81 Find the power supplied by the 2-A current source in the
network in Fig. P3.81 using loop analysis.

+
-

4 �

5 � 2 A2Ix

Ix

10 V 4 �

Figure P3.81
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3.80 Use nodal analysis to find Vo in Fig. P3.80.

3 mA 10 k� 10 k� Vo

2Ix

Ix

+

-

Figure P3.80
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3.94 Use loop analysis to find Io in the circuit in Fig. P3.94.

2 Ix

2 Vx

1 k�

1 k�

1 k�

IxIo

6 V +
–

Vx+ –

+
–

Figure P3.94

3.88 Find in the network in Fig. P3.88 .Vo

1 k�

1 k�

1 k�

1 k�

4 mA

12 mA Vo

Vx

+

- +

-

1 k�

1 k�
Vx

1000
—

Figure P3.88

3.89 Using loop analysis, find in the circuit in Fig. P3.89.Vo

1 k� Vo

2 mA

1 k�2 k� 1 k�

2 k�

+
-12 V

+

-

Vx

+

-

-
+2Vx

Figure P3.89

3.90 Using loop analysis, find in the circuit in Fig. P3.90.Vo

-
+

2 mA

1 k� Vo

1 k�Ix

1 k�

1 k�

1 k�

2Ix

12 V

+

-

Figure P3.90

3.91 Using loop analysis, find in the network in Fig. P3.91.Vo

±
–

+-

4 mA

2 k�1 k� Vo

12 V

1 k�

1 k�

1 k�

2Vo

+

-

Figure P3.91

3.92 Using loop analysis, find in the circuit in Fig. P3.92.Vo

-+ +-

1 k�Vx2 k� 2 k� Vo

12 V2Vx

1 k�1 k�

2 k�

1 k�1 k�

4 mA

+

-

+

-

Figure P3.92

3.93 Using loop analysis, find Io in the network in Fig. P3.93.

±
–

-
+1 k� 1 k�

1 k�1 k�

1 k�

1 k�

12 V

1 k�

2Vx

Ix

Vx2Ix

Io

2 mA

+

-

Figure P3.93
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3.97 Find Vo in the circuit in Fig. P3.97 using loop analysis.

3.95 Find Ix in the circuit in Fig. P3.95 using loop analysis.

Vx

2 k�

2 mA

1 k�

1 k�

Ix

Vx+ –

+
–Ix

Figure P3.95

3.96 Find Io in the circuit in Fig. P3.96 using loop analysis.

2 Vx

1 k�

2 mA

1 k�

2 k�

1 k�

Io

Ix

Vx+ –

+
–

2 Ix

6 V+
–

Figure P3.96

2 mA

1 k�

1 k�

2 k�

2 k�

1 k�

Ix

Vx

Vo

+

+

–

–
2 Vx

+–2 Ix

4 mA

Figure P3.97

3.98 Solve for the mesh currents defined in the circuit in 
Fig. P3.98.

2 A1 �

2 �

8 �

2 � 4 �

VA– +

5 �

3IA

2VA I4+
–

9 V +
– I2I1

I3

IA

Figure P3.98

3.100 Solve for the mesh currents defined in the circuit in 
Fig. P3.100.

8 �

7 � 2 � 4 �

2Vx

20 V

10 V

+
– I1 I2 I3

I4

5 A

2 �

Vx– +
+–

Figure P3.100

3.99 Solve for the mesh currents defined in the circuit in 
Fig. P3.99.

5 � 3 �

4 �

2 �

7 �

2 � 4 �

Vx

+

–

8 �

3Ix
+
–

2Vx +
– 12 V+

–I4I3

I1 I2

Ix

Figure P3.99
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3.101 Using loop analysis, find Io in the circuit in Fig. P3.101.

±
–

±
–

1 k�

1 k�

1 k�

6 mA

1 k�1 k�

1 k�

1 k�

Io

Vx2Ix2Vx

Ix

+

-

12 V

Figure P3.101

3.102 Use mesh analysis to determine the power delivered 
by the indepenent 3-V source in the network in 
Fig. P3.102.

±
–

±
–

100 �
40 mA

200 �

100 �

600 �

Vx

300 �

6 Vx

3 V
+

-

Figure P3.102

3.103 Use mesh analysis to find the power delivered by the
current-control voltage source in the circuit in 
Fig. P3.103.

-+

32 �

6 � Vx 3 A 6 �

1 �

15 Ix

Ix
Vx
8

—

-

+

Figure P3.103

3.104 Use both nodal and loop analyses to determine Io in the
circuit in Fig. P3.104.

±
–

-
+1 k� 1 k�

1 k�1 k�

1 k�

1 k�

12 V

1 k�

2Vx

Ix

Vx2Ix

Io

2 mA

+

-

Figure P3.104

3.106 Find Io in the network in Fig. P3.106 using nodal 
analysis.

±
–

±
–

1 k�

1 k�

1 k�

6 mA

1 k�1 k�

1 k�

1 k�

Io

Vx2Ix2Vx

Ix

+

-

12 V

Figure P3.106

3.105 Use both nodal and loop analyses to find Vo in the 
circuit in Fig. P3.105.

-+ +-

1 k�Vx2 k� 2 k� Vo

12 V2Vx

1 k�1 k�

2 k�

1 k�1 k�

4 mA

+

-

+

-

Figure P3.105
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T Y P I C A L P R O B L E M S F O U N D  O N  T H E F E E X A M
•

3FE-1 Find in the circuit in Fig. 3PFE-1.Vo

-
+

±
–

Vx

+

-

Vo2 �

6 �2 �

1 �

12 V 6 V

±
–

– ±

4 �

3 �
12 V

6 � 2 A 2VxVx

Ix

+

-

±
–12 V 6 �

4 �

12 �

2I1

Vx

I1

+-

2 �

4 �
12 V

4 � 4 �

Ix 2Ix

Vo

Vx

+

-

2 �1 �

3 � 15 V4 A

V1

8 A

10 V

±
–

– ±

Figure 3PFE-1

a. 3.33 V

b. 8.25 V

c. 9.33 V

d. 2.25 V

a. 8.2 W

b. 15.3 W

c. 4.4 W

d. 13.5 W

a. �3.28 V

b. 4.14 V

c. �6.43 V

d. 2.25 V

a. �7 V

b. 5 V

c. �2 V

d. 4 V

a. 20 A

b. 12 A

c. 7 A

d. 14 A

3FE-2 Determine the power dissipated in the 6-ohm resistor in
the network in Fig. 3PFE-2.

Figure 3PFE-2

3FE-3 Find the current in the 4-ohm resistor in the circuit in
Fig. 3PFE-3.

Ix

Figure 3PFE-3

3FE-4 Determine the voltage in the circuit in
Fig. 3PFE-4.

Vo

Figure 3PFE-4

3FE-5 What is the voltage in the circuit in Fig. 3PFE-5?V1

Figure 3PFE-5
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OPERATIONAL AMPLIFIERS

Courtesy of NewsCom

R
Robotic Surgery Robotic-assisted surgery may well be the

most significant story in medical circles since the Jarvik artifi-

cial heart hit the headlines years ago.  Using small surgical

cuts, this minimally invasive procedure leads to faster recov-

ery and less pain, bleeding, and risk of infection. You can

expect to leave the hospital after an overnight stay and walk

within a day following kidney or bladder removal, once con-

sidered major surgeries.  Robotic-assisted techniques have

even been extended to certain heart surgeries. 

Robotics allows surgeons to work at a console only a few

feet away from the operating table, remotely manipulating

robotic arms at the bedside. The primary advantage is

reducing the impact of hand tremors on surgical instruments.

Combining computers and robotics also lets surgeons run

practice sessions beforehand on computer simulations,

further increasing their accuracy in a field where precision is

literally a matter of life or death. 

In this chapter, you will study the operational amplifier,

or op-amp, a key building block in robotics.  Nodal analysis

and Ohm’s law are all that you need to analyze this basic

electronic component.  An active device that receives external

power, the op-amp appears in common configurations for

inverting, amplifying, and summing voltage signals. The 

op-amp also provides design separation for cascaded stages.

Surgeons at the forefront of healthcare rely on electronic

designers for pioneering tools. With the op-amp at your

command, you can begin to create designs that could prove

to be life-savers.

4
T H E L E A R N I N G  G O A L S F O R  T H I S
C H A P T E R  A R E :

■ Learn how to model the op-amp device

■ Learn how to analyze a variety of circuits that employ
op-amps

■ Understand the use of op-amps in a number of
practical applications

CHAPTER
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How can we, understanding only sources and resistors, hope to comprehend the perform-
ance of the op-amp? The answer lies in modeling. When the bells and whistles are
removed, an op-amp is just a really good voltage amplifier. In other words, the output volt-
age is a scaled replica of the input voltage. Modern op-amps are such good amplifiers that
it is easy to create an accurate, first-order model. As mentioned earlier, the op-amp is very
popular and is used extensively in circuit design at all levels. We should not be surprised
to find that op-amps are available for every application—low voltage, high voltage, micro-
power, high speed, high current, and so forth. Fortunately, the topology of our model is
independent of these issues.

We start with the general-purpose LM324 quad (four in a pack) op-amp from National
Semiconductor, shown in the upper right corner of Fig. 4.1a. The pinout for the LM324 is shown
in Fig. 4.2 for a DIP (Dual Inline Pack) style package with dimensions in inches. Recognizing
there are four identical op-amps in the package, we will focus on amplifier 1. Pins 3 and 2 are the
input pins, and and are called the noninverting and inverting inputs, respectively.
The output is at pin 1. A relationship exists between the output and input voltages,

4.1Vo = Ao(IN
+

- IN
-
)

IN 1-,IN 1+

4.1
Introduction

It can be argued that the operational amplifier, or op-amp as it is commonly known, is the single
most important integrated circuit for analog circuit design. It is a versatile interconnection of
transistors and resistors that vastly expands our capabilities in circuit design, from engine con-
trol systems to cellular phones. Early op-amps were built of vacuum tubes, making them bulky
and power hungry. The invention of the transistor at Bell Labs in 1947 allowed engineers to cre-
ate op-amps that were much smaller and more efficient. Still, the op-amp itself consisted of indi-
vidual transistors and resistors interconnected on a printed circuit board (PCB). When the man-
ufacturing process for integrated circuits (ICs) was developed around 1970, engineers could
finally put all of the op-amp transistors and resistors onto a single IC chip. Today, it is common
to find as many as four high-quality op-amps on a single IC for as little as $0.40. A sample of
commercial op-amps is shown in Fig. 4.1.

Why are they called operational amplifiers? Originally, the op-amp was designed to
perform mathematical operations such as addition, subtraction, differentiation, and integra-
tion. By adding simple networks to the op-amp, we can create these “building blocks” as well
as voltage scaling, current-to-voltage conversion, and myriad more complex applications.

(a) (b)

4.2
Op-Amp Models

Figure 4.1

A selection of op-amps. On the left (a) is a discrete op-amp assembled on a printed circuit board (PCB). On the right, 
top-down, a LM324 DIP, LMC6492 DIP, and MAX4240 in a SO-5 package (small outline/5 pins). The APEX PA03 with its lid
removed (b) showing individual transistors and resistors. (Left, Courtesy of Mark Nelms and Jo Ann Loden; right, Courtesy
of Milt Perrin, Apex Microtechnology Corp.)
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0.3

0.78

(a) (b)

0.1 0.06

0.04

4

OUT 1 IN 1– IN 1+ VCC IN 2– IN 2+ OUT 2
1 2 3 4 5 6 7

IN 4– IN 4+ VEE IN 3– IN 3+ IN 3OUT 4
14 13 12 11 10 9 8

–
±

–
±3

±
–2±

–1

Figure 4.2

The pinout (a) and 
dimensional diagram 

(b) of the LM324 quad 
op-amp. Note the pin pitch 

(distance pin-to-pin) 
is 0.1 inches—standard 

for DIP packages.

Figure 4.3

Schematics showing the
power supply connections

and ground location for
(a) dual-supply and 

(b) single-supply
implementations.

VCCIN+
out

IN–

IN+

IN–
VCC

VEE

VCC

VEE VEE

VCC
±
–

±
–

(b)(a)

where all voltages are measured with respect to ground and is the gain of the op-amp.
(The location of the ground terminal will be discussed shortly.) From Eq. (4.1), we see that
when increases, so will However, if increases, then will decrease—hence the
names noninverting and inverting inputs. We mentioned earlier that op-amps are very good
voltage amplifiers. How good? Typical values for are between 10,000 and 1,000,000!

Amplification requires power that is provided by the dc voltage sources connected to pins
4 and 11, called and respectively. Fig. 4.3 shows how the power supplies, or rails,
are connected for both dual- and single-supply applications and defines the ground node to
which all input and output voltages are referenced. Traditionally, is a positive dc voltage
with respect to ground, and is either a negative voltage or ground itself. Actual values for
these power supplies can vary widely depending on the application, from as little as one volt
up to several hundred.

How can we model the op-amp? A dependent voltage source can produce What about
the currents into and out of the op-amp terminals (pins 3, 2, and 1)? Fortunately for us, the
currents are fairly proportional to the pin voltages. That sounds like Ohm’s law. So, we model
the I-V performance with two resistors, one at the input terminals and another at the
output The circuit in Fig. 4.4 brings everything together.(Ro).

(Ri)

Vo !

VEE

VCC

VEE ,VCC

Ao

VoIN
-

Vo .IN
+

Ao

Figure 4.4

A simple model for the gain
characteristics of an op-amp.

±
–

Ri

Ro

Aovin

vo(t)
vin(t)

IN+(t)

++

-

+

- IN–(t)
+

-
-
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What values can we expect for and We can reason through this issue with the
help of Fig. 4.5 where we have drawn an equivalent for the circuitry that drives the input
nodes and we have modeled the circuitry connected to the output with a single resistor, 
Since the op-amp is supposed to be a great voltage amplifier, let’s write an equation for the
overall gain of the circuit Using voltage division at the input and again at the output,
we quickly produce the expression

To maximize the gain regardless of the values of and we make the voltage divi-
sion ratios as close to unity as possible. The ideal scenario requires that be infinity, be
infinity, and be zero, yielding a large overall gain of Table 4.1 shows the actual 
values of and for a sampling of commercial op-amps intended for very different
applications. While and are not ideal, they do have the correct tendencies.

The power supplies affect performance in two ways. First, each op-amp has minimum
and maximum supply ranges over which the op-amp is guaranteed to function. Second,
for proper operation, the input and output voltages are limited to no more than the sup-
ply voltages.* If the inputs/output can reach within a few dozen millivolts of the supplies,
then the inputs/output are called rail-to-rail. Otherwise, the inputs/output voltage 
limits are more severe—usually a volt or so away from the supply values. Combining the
model in Fig. 4.4, the values in Table 4.1, and these I/O limitations, we can produce the
graph in Fig. 4.6 showing the output–input relation for each op-amp in Table 4.1. From
the graph we see that LMC6492 and MAX4240 have rail-to-rail outputs while the LM324
and PA03 do not. 

RoAo , Ri ,
RoAo , Ri ,

Ao .Ro

RiAo

RL ,RTh1

Vo

VS
= c Ri

Ri + RTh1
dAo c RL

Ro + RL
d

Vo�VS .

RL .

Ro ?Ao , Ri ,

Figure 4.5

A network that depicts an 
op-amp circuit. and 
model the driving circuit,
while the load is modeled by

. The circuit in Fig. 4.4 is
the op-amp model.

RL

RTh1VS

±
–

±
–

VS Ri RL

RoRTh1

Aovin
vo(t)vin(t)

+

-

+

-

*Op-amps are available that have input and/or output voltage ranges beyond the supply rails. However, these devices
constitute a very small percentage of the op-amp market and will not be discussed here.

TABLE 4.1 A list of commercial op-amps and their model values

MANUFACTURER PART NO. (V/V) ( ) ( ) COMMENTS�Ro M�Ri Ao

†Rail-to-rail is a trademark of Motorola Corporation. This feature is discussed further in the following paragraphs.

National LM324 100,000 1.0 20 General purpose, up to � 16 V

supplies, very inexpensive

National LMC6492 50,000 107 150 Low voltage, rail-to-rail inputs

and outputs†

Maxim MAX4240 20,000 45 160 Micro-power (1.8 V supply

@ 10 �A), rail-to-rail inputs

and outputs

Apex PA03 125,000 105 2 High-voltage, � 75 V and high-

output current capability, 30 A. 

That’s 2 kW!
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Figure 4.6

Transfer plots for the
op-amps listed in

Table 4.1. The supply
voltages are listed in

the plot legends. Note
that the LMC6492 and
MAX4240 have rail-to-

rail output voltages
(output voltage range

extends to power sup-
ply values), while the

LM324 and PA03 do
not.
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The input and output signals for an op-amp circuit are shown in Fig. 4.7. We wish to deter-
mine (a) if the op-amp circuit is linear and (b) the circuit’s gain.

a. We know that if the circuit is linear, the output must be linearly related, that is,
proportional, to the input. An examination of the input and output waveforms in Fig. 4.7
clearly indicates that in the region to 2.5 and 4 to 6 ms the output is constant
while the input is changing. In this case, the op-amp circuit is in saturation and therefore
not linear.

b. In the region where the output is proportional to the input, that is, to 1 ms, the
input changes by 1 V and the output changes by 3.3 V. Therefore, the circuit’s gain is 3.3.

t = 0

t = 1.25

Voltage (V)

Input

Input

Output

Output

t (ms)

1

–1

–3

–4

–2

3

2

0
1 32 4 5 6 7

Figure 4.7

An op-amp input–output
characteristic.

SOLUTION

EXAMPLE

4.1

Even though the op-amp can function within the minimum and maximum supply volt-
ages, because of the circuit configuration, an increase in the input voltage may not yield a
corresponding increase in the output voltage. In this case, the op-amp is said to be in satura-
tion. The following example addresses this issue.
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To introduce the performance of the op-amp in a practical circuit, consider the network in
Fig. 4.8a called a unity gain buffer. Notice that the op-amp schematic symbol includes the power
supplies. Substituting the model in Fig. 4.4 yields the circuit in Fig. 4.8b, containing just resis-
tors and dependent sources, which we can easily analyze. Writing loop equations, we have

Solving for the gain, we find

For we have

And, if is indeed

The origin of the name unity gain buffer should be apparent. Table 4.2 shows the actual gain
values for using the op-amps listed in Table 4.1. Notice how close the gain is to unity
and how small the input voltage and current are. These results lead us to simplify the op-amp in
Fig. 4.4 significantly. We introduce the ideal op-amp model, where and are infinite and 
is zero. This produces two important results for analyzing op-amp circuitry, listed in Table 4.3.
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=
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+
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Vo

I

+

-
Vo

Figure 4.8

Circuit (a) and model (b) for
the unity gain buffer.

v+

∞

i+
v– i–

±
–

Figure 4.9

Ideal model for an opera-
tional amplifier. Model
parameters:

.i
+

= i
-

= 0, v
+

= v
-

From Table 4.3 we find that the ideal model for the op-amp is reduced to that shown in
Fig. 4.9. The important characteristics of the model are as follows: (1) since is extremely
large, the input currents to the op-amp are approximately zero (i.e., ); and (2) if the
output voltage is to remain bounded, then as the gain becomes very large and approaches infin-
ity, the voltage across the input terminals must simultaneously become infinitesimally small so
that as (i.e., or ). The difference between these
input voltages is often called the error signal for the op-amp (i.e., ).v

+
- v

-
= ve

v
+

= v
-

v
+

- v
-

= 0v
+

- v
-

S 0Ao S q,

i
+

L i
-

L 0
Ri

TABLE 4.3 Consequences of the ideal op-amp
model on input terminal values

MODEL ASSUMPTION TERMINAL RESULT

I�V
TABLE 4.2 Unity gain buffer performance 
for the op-amps listed in Table 4.1

OP-AMP BUFFER GAIN Vin(mV) ( )pAI

LM324 0.999990 9.9999 9.9998

LMC6492 0.999980 19.999 1.9999 � 10�6

MAX4240 0.999950 49.998 1.1111

PA03 0.999992 7.9999 7.9999 � 10�5

input voltage

input current S 0 ARi S q

S 0 VAo S q
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The ground terminal shown on the op-amp is necessary for signal current return, and
it guarantees that Kirchhoff’s current law is satisfied at both the op-amp and the ground node
in the circuit.

In summary, then, our ideal model for the op-amp is simply stated by the following conditions:

4.2

These simple conditions are extremely important because they form the basis of our analysis
of op-amp circuits.

Let’s use the ideal model to reexamine the unity gain buffer, drawn again in Fig. 4.10,
where the input voltage and currents are shown as zero. Given that is zero, the voltage at
both op-amp inputs is Since the inverting input is physically connected to the output, is
also —unity gain!

Armed with the ideal op-amp model, let’s change the circuit in Fig. 4.10
slightly as shown in Fig. 4.11 where and are an equivalent for the cir-
cuit driving the buffer and models the circuitry connected to the output.
There are three main points here. First, the gain is still unity. Second, the op-
amp requires no current from the driving circuit. Third, the output current

comes from the power supplies, through the op-amp and out of
the output pin. In other words, the load current comes from the power sup-
plies, which have plenty of current output capacity, rather than the driving cir-
cuit, which may have very little. This isolation of current is called buffering.

An obvious question at this point is this: if why not just connect
to via two parallel connection wires; why do we need to place an op-

amp between them? The answer to this question is fundamental and provides
us with some insight that will aid us in circuit analysis and design.

Consider the circuit shown in Fig. 4.12a. In this case is not equal to 
because of the voltage drop across :

However, in Fig. 4.12b, the input current to the op-amp is zero and, therefore, appears at
the op-amp input. Since the gain of the op-amp configuration is 1, In Fig. 4.12a the
resistive network’s interaction with the source caused the voltage to be less than In other
words, the resistive network loads the source voltage. However, in Fig. 4.12b the 
op-amp isolates the source from the resistive network; therefore, the voltage follower is
referred to as a buffer amplifier because it can be used to isolate one circuit from another. The
energy supplied to the resistive network in the first case must come from the source where-
as in the second case it comes from the power supplies that supply the amplifier, and little or
no energy is drawn from VS .

VS ,

VS .Vo

Vo = VS .
VS

Vo = VS - IRS
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VSVo

VoVS

Vo = VS ,

(Io = Vo�RL)

RL

RSVS
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VoVS .
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= v
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= i
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= 0
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Figure 4.10

An ideal op-amp configured
as a unity gain buffer.
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Figure 4.11

A unity gain buffer with 
a load resistor.
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Figure 4.12

Illustration of the isolation capability of a voltage follower.
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EXAMPLE

4.2

SOLUTION

As a general rule, when analyzing op-amp circuits we write nodal equations at the op-amp
input terminals, using the ideal op-amp model conditions. Thus, the technique is straight-
forward and simple to implement.

4.3
Fundamental 

Op-Amp Circuits

Let us determine the gain of the basic inverting op-amp configuration shown in Fig. 4.13a
using both the nonideal and ideal op-amp models.

Figure 4.13

Op-amp circuit.
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Our model for the op-amp is shown generically in Fig. 4.13b and specifically in terms of the
parameters and in Fig. 4.13c. If the model is inserted in the network in Fig. 4.13a,
we obtain the circuit shown in Fig. 4.13d, which can be redrawn as shown in Fig. 4.13e.

RoRi , A,
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The node equations for the network are

where The equations can be written in matrix form as

Solving for the node voltages, we obtain

where

Hence,

which can be written as

If we now employ typical values for the circuit parameters (e.g., 
and ), the voltage gain of the network is

However, the ideal op-amp has infinite gain. Therefore, if we take the limit of the gain equa-
tion as we obtain

Note that the ideal op-amp yielded a result accurate to within four significant digits of that
obtained from an exact solution of a typical op-amp model. These results are easily repeated
for the vast array of useful op-amp circuits.

We now analyze the network in Fig. 4.13a using the ideal op-amp model. In this model,

 v
+

= v
-

 i
+

= i
-

= 0

lim
AS q

 a vo

vS
b = - 

R2

R1
= -5.000

A S q,

vo

vS
= -4.9996994 L -5.000

R2 = 5 k�R1 = 1 k�,Ro = 10 �,
Ri = 108 �,A = 105,

vo

vS
=

- AR2�R1B
1 - c a 1

R1
+

1

Ri
+

1

R2
b a 1

R2
+

1

Ro
bna 1

R2
b a 1

R2
-

A

Ro
b d

vo =

a 1

R2
-

A

Ro
b a vS

R1
b

a 1

R1
+

1

Ri
+

1

R2
b a 1

R2
+

1

Ro
b - a 1

R2
b a 1

R2
-

A

Ro
b

¢ = a 1

R1
+

1

Ri
+

1

R2
b a 1

R2
+

1

Ro
b - a 1

R2
b a 1

R2
-

A

Ro
b

B v1

vo
R =

1

¢

 D 1

R2
+

1

Ro

1

R2
-

A

Ro

1

R2

1

R1
+

1

Ri
+

1

Ro

T C vS

R1

0
S

D 1

R1
+

1

Ri
+

1

R2

- a 1

R2
-

A

Ro
b

- a 1

R2
b

1

R2
+

1

Ro

T B v1

vo
R = C vS

R1

0
S

ve = -v1 .

 
vo - v1

R2
+

vo - Ave

Ro
= 0

 
v1 - vS

R1
+

v1

Ri
+

v1 - vo

R2
= 0

irwin04-156-188hr.qxd  9-07-2010  14:17  Page 164



S E C T I O N  4 . 3 F U N D A M E N T A L  O P - A M P  C I R C U I T S     165

As shown in Fig. 4.13a, and, therefore, If we now write a node equation at
the negative terminal of the op-amp, we obtain

or

and we have immediately obtained the results derived previously.
Notice that the gain is a simple resistor ratio. This fact makes the amplifier very versatile in

that we can control the gain accurately and alter its value by changing only one resistor. Also,
the gain is essentially independent of op-amp parameters. Since the precise values of 
and are sensitive to such factors as temperature, radiation, and age, their elimination results
in a gain that is stable regardless of the immediate environment. Since it is much easier to
employ the ideal op-amp model rather than the nonideal model, unless otherwise stated we will
use the ideal op-amp assumptions to analyze circuits that contain operational amplifiers.
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vS - 0
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+

vo - 0

R2
= 0

v
-

= 0.v
+

= 0

Step 1. Use the ideal op-amp model: 

● ●

Step 2. Apply nodal analysis to the resulting circuit.

Step 3. Solve nodal equations to express the output voltage in terms of the op-amp
input signals.

v
+

= v
-

i
+

= i
-

= 0

Ao = q, Ri = q, Ro = 0. Op-Amp Circuits

Problem-Solving Strategy

EXAMPLE

4.3

SOLUTION

Let us now determine the gain of the basic noninverting op-amp configuration shown in Fig. 4.14.

Figure 4.14

The non-
inverting op-amp
configuration.

RI

RF

vin
vo

±
–

Once again, we employ the ideal op-amp model conditions, that is, and 
Using the fact that and the KCL equation at the negative terminal of the 
op-amp is

or

Thus,

Note the similarity of this case to the inverting op-amp configuration in the previous exam-
ple. We find that the gain in this configuration is also controlled by a simple resistor ratio
but is not inverted; that is, the gain ratio is positive.
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Gain error in an amplifier is defined as

We wish to show that for a standard noninverting configuration with finite gain the gain
error is

where 

The standard noninverting configuration and its equivalent circuit are shown in Fig. 4.15a
and b, respectively. The circuit equations for the network in Fig. 4.15b are

The expression that relates the input and output is

and thus the actual gain is

Recall that the ideal gain for this circuit is Therefore, the gain 
error is

which, when simplified, yields
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1��
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+ � d = vo c 1 + Ao �
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d
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vo
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 and v1 =

R1

R1 + R2
 vo = �vo

� = R1�(R1 + R2).

GE =

-100%

1 + Ao �

Ao ,

GE = c actual gain - ideal gain

ideal gain
d * 100%

The remaining examples, though slightly more complicated, are analyzed in exactly the
same manner as those outlined above.

Figure 4.15

Circuits used in Example 4.4.
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SOLUTION

EXAMPLE

4.4
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Consider the op-amp circuit shown in Fig. 4.16. Let us determine an expression for the 
output voltage.

The node equation at the inverting terminal is

At the noninverting terminal KCL yields

However, and Substituting these values into the two preceding equa-
tions yields

and

Solving these two equations for vo results in the expression

Note that if and the expression reduces to

Therefore, this op-amp can be employed to subtract two input voltages.
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Figure 4.16

Differential amplifier
operational
amplifier circuit.

The circuit shown in Fig. 4.17a is a precision differential voltage-gain device. It is used to
provide a single-ended input for an analog-to-digital converter. We wish to derive an expres-
sion for the output of the circuit in terms of the two inputs.

To accomplish this, we draw the equivalent circuit shown in Fig. 4.17b. Recall that the volt-
age across the input terminals of the op-amp is approximately zero and the currents into the
op-amp input terminals are approximately zero. Note that we can write node equations for
node voltages v1 and v2 in terms of vo and va . Since we are interested in an expression for

EXAMPLE

4.5

SOLUTION

EXAMPLE

4.6
SOLUTION
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vo in terms of the voltages v1 and v2 , we simply eliminate the va terms from the two node
equations. The node equations are

Combining the two equations to eliminate va, and then writing vo in terms of v1 and v2, yields
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b
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Figure 4.17

Instrumentation amplifier 
circuit.

E4.1 Find in the network in Fig. E4.1.Io

Learning Assessments
ANSWER: Io = 8.4 mA.

Figure E4.1

Vo

Io

12 V ±
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10 k�

2 k�

±
–
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E4.2 Determine the gain of the op-amp circuit in Fig. E4.2.

E4.3 Determine both the gain and the output voltage of the op-amp configuration shown in
Fig. E4.3.

ANSWER:
Vo

VS
= 1 +

R2

R1
 .

ANSWER:
gain = 101.

Vo = 0.101 V;

VS Vo

+

-

±
–

R2

R1

±
–

Figure E4.2

Vo

1 k�

100 k�

1 mV

+

-

±
–

±
–

Figure E4.3

E4.4 Find I1, I2, I3, and I4 in Fig. E4.4.

E4.5 Find V0 in terms of V1 and V2 in Fig. E4.5. If V1 = V2 = 4 V, find V0. If the op-amp
power supplies are �15 V and V2 = 2 V, what is the allowable range of V1?

ANSWER:
I1 = 0, I2 = 1.25 mA, 
I3 = -0.5 mA, I4 = 0.75 mA.

ANSWER: V0 = -2 V1 +

3.5 V2, 6 V, -4 V �
V1 	 11 V.

1 mA
5 k�

5 k�

Vo

I3

I4

I1 I2

10 k�

10 k�

±
–

Figure E4.4

V1

V2

5 k�

4 k�

10 k�

10 k�

±
–

4 k�

7 k�

Vo

Figure E4.5

(continues on the next page)
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The two op-amp circuits shown in Fig. 4.18 produce an output given by the equation

where

We wish to determine (a) the range of and (b) if both of the circuits will produce the full
range of given that the dc supplies are 

a. Given that and the range for both and as and
we find that

and thus the range of is to 

b. Consider first the network in Fig. 4.18a. The signal at which can be derived using the
network in Example 4.5, is given by the equation is a maximum
when and that is, The minimum value
for occurs when and that is, Since
both the max and min values are within the supply range of the first op-amp in;10 V,

Vx min = 2(1) - 3 = -1 V.V2 = 3 V,V1 = 1 VVx

Vx max = 2(2) - 2 = 2 V.V2 = 2 V,V1 = 2 V
VxVx = 2 V1 - V2 .

Vx ,
+8 V.-4 VVo

Vo max = 8(2) - 4(2) = 8 V and Vo min = 8(1) - 4(3) = -4 V

2 V � V2 � 3 V,
1 V � V1 � 2 VV2V1Vo = 8 V1 - 4 V2

;10 V.Vo

Vo

1 V � V1 � 2 V and 2 V � V2 � 3 V

Vo = 8V1 - 4V2

E4.6 Find V0 and V3 in Fig. E4.6. ANSWER: V0 = -9 V, 
V3 = -4.8 V.

V3
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±
–±

–
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Figure E4.6

E4.7 Find V0 in Fig. E4.7. ANSWER:

R2
R1 R4

R3

Vo
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±
–

Figure E4.7

SOLUTION

EXAMPLE

4.7
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Fig. 4.18a will not saturate. The output of the second op-amp in this circuit is given by
the expression Therefore, the range of is Since this
range is also within the power supply voltages, the second op-amp will not saturate, and
this circuit will produce the full range of 

Next, consider the network in Fig. 4.18b. The signal and so the range of is
and the range of is outside the power supply limits. This circuit will

saturate and fail to produce the full range of Vo .
Vy-16 V � Vy � -8 V

VyVy = -8V1

Vo .

-4 V � Vo � 8 V.VoVo = 4Vx .

Figure 4.18

Circuits used in 
Example 4.7.

(a)

(b)
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– Vo

VxV1

V2

10 k�

10 k�
30 k�

10 k�

±
–

–
±

VoV2
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–
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80 k�
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–
±

If you review the op-amp circuits presented in this chapter to this point, you will note one
common characteristic of all circuits. The output is connected to the inverting input of the 
op-amp through a resistive network. This connection where a portion of the output voltage is
fed back to the inverting input is referred to as negative feedback. Recall from the model of an
ideal op-amp that the output voltage is proportional to the voltage difference between the input
terminals. Feeding back the output voltage to the negative input terminal maintains this voltage
difference near zero to allow linear operation of the op-amp. As a result, negative feedback is
necessary for the proper operation of nearly all op-amp circuits. Our analysis of op-amp 
circuits is based on the assumption that the voltage difference at the input terminals is zero.

Almost all op-amp circuits utilize negative feedback. However, positive feedback is uti-
lized in oscillator circuits, the Schmitt trigger, and the comparator, which will be discussed in
the following section. Let’s now consider the circuit in Fig. 4.19. This circuit is very similar
to the circuit of Fig. 4.13a. However, there is one very important difference. In Fig. 4.19,
resistor R2 is connected to the positive input terminal of the op-amp instead of the negative
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input. Connecting the output terminal to the positive input terminal results in positive feed-
back. As a result of the positive feedback, the output value of this op-amp circuit has two pos-
sible values VCC or VEE. Analysis of this circuit using the ideal op-amp model presented in
this chapter does not predict this result. It is important to remember that the ideal op-amp
model may only be utilized when negative feedback is present in the op-amp circuit.
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Figure 4.19 

Op-amp circuit with
positive feedback.
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A common comparator application is the zero-crossing detector, shown in Fig. 4.21a
using a LM339 with supplies. As seen in Fig. 4.21b, when is positive, should be
near and when is negative, should be near The output changes value on
every zero crossing!

-5 V.VoVS+5 V
VoVS;5 V

4.4
Comparators

A comparator, a variant of the op-amp, is designed to compare the noninverting and invert-
ing input voltages. As shown in Fig. 4.20, when the noninverting input voltage is greater, the
output goes as high as possible, at or near . On the other hand, if the inverting input volt-
age is greater, the output goes as low as possible, at or near . Of course, an ideal op-amp
can do the same thing, that is, swing the output voltage as far as possible. However, op-amps
are not designed to operate with the outputs saturated, whereas comparators are. As a result,
comparators are faster and less expensive than op-amps.

We will present two very different quad comparators in this text, National
Semiconductor’s LM339 and Maxim’s MAX917. Note that the LM339 requires a resistor,
called a pull-up resistor, connected between the output pin and . The salient features of
these products are listed in Table 4.4. From Table 4.4, it is easy to surmise that the LM339 is
a general-purpose comparator, whereas the MAX917 is intended for low-power applications
such as hand-held products.

Vcc

VEE

Vcc

TABLE 4.4 A listing of some of the features of the LM339 and MAX917 comparators

PRODUCT MIN. SUPPLY MAX. SUPPLY SUPPLY CURRENT MAX. OUTPUT CURRENT TYPICAL Rpull - up

LM339 2 V 36 V 3 mA 50 mA

MAX919 2.8 V 5.5 V 0.8 �A 8 mA NA

3 k�

Figure 4.20 

(a) An ideal
comparator and 

(b) its transfer
curve.
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(a) (b)

Vo–5 V

3 k�

+5 V

+

-

±
–

Time

4

6

0

I/O
 v

ol
ta

ge
s 

(V
)

2

–2

–4

–6

Input
Output

VS ±
–

Figure 4.21

(a) A zero-crossing
detector and (b) the
corresponding input/
output waveforms.

In a light meter, a sensor produces a current proportional to the intensity of the incident
radiation. We wish to obtain a voltage proportional to the light’s intensity using the circuit
in Fig. 4.22. Thus, we select a value of R that will produce an output voltage of 1 V for each

of sensor current. Assume that the sensor has zero resistance.10 �A

R

I

Vo

Light
sensor

Incident
light

–
± +

-

Figure 4.22

Light intensity to voltage 
converter.

Applying KCL at the op-amp input,

Since is 105,
R = 100 k�

Vo�I
I = Vo�R

4.5
Application

Examples

At this point, we have a new element, the op-amp, which we can effectively employ in both
applications and circuit design. This device is an extremely useful element that vastly
expands our capability in these areas. Because of its ubiquitous nature, the addition of the 
op-amp to our repertoire of circuit elements permits us to deal with a wide spectrum of
practical circuits. Thus, we will employ it here, and also use it throughout this text.

The circuit in Fig. 4.23 is an electronic ammeter. It operates as follows: the unknown
current, I, through RI produces a voltage, is amplified by the op-amp to produce a
voltage, which is proportional to I. The output voltage is measured with a simple
voltmeter. We want to find the value of R2 such that 10 V  appears at for each milliamp
of unknown current.

Vo

Vo ,
VIVI .

SOLUTION

APPLICATION
EXAMPLE 4.8

•

APPLICATION
EXAMPLE 4.9

•
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Since the current into the op-amp terminal is zero, the relationship between and I is

The relationship between the input and output voltages is

or, solving the equation for we obtain

Using the required ratio of 104 and resistor values from Fig. 4.23, we can find that

R2 = 9 k�

Vo�I

Vo

I
= RI a 1 +

R2

R1
b

Vo�I,

Vo = VI a 1 +

R2

R1
b

VI = IRI

VI+

Vo

±
–

+

+

-

VI

I
Unknown
current

+

-
-

Voltmeter

RI=1 k�

R1=1 k�

R2

Figure 4.23

Electronic ammeter.

SOLUTION

Let us return to the dc motor control example in Chapter 3 (Example 3.22). We want to
define the form of the power amplifier that reads the speed control signal, , and outputs
the dc motor voltage with sufficient current to drive the motor as shown in Fig. 4.24. Let us
make our selection under the condition that the total power dissipation in the amplifier
should not exceed 100 mW.

From Table 4.1 we find that the only op-amp with sufficient output voltage—that is, a max-
imum output voltage of —for this application is the PA03 from APEX. Since
the required gain is we can employ the standard noninverting amplifier configuration
shown in Fig. 4.25. If the PA03 is assumed to be ideal, then

There are, of course, an infinite number of solutions that will satisfy this equation.

VM = Vspeed c 1 +

RB

RA
d = 4Vspeed

+4,
(4)(5) = 20 V

Vspeed

VM

+

–

Vspeed

+

–

VM/Vspeed=4
5 V Rpot

R1 �=1

�=0R2

Power
amp

dc
motor

Figure 4.24

The dc motor 
example from

Chapter 3.

SOLUTION

APPLICATION
EXAMPLE 4.10
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VM

+

–Vspeed
+

–

±
–

5 V
R1

R2
RB

RA

Figure 4.25

The power amplifier 
configuration using the
PA03 op-amp.

In order to select reasonable values, we should consider the possibility of high currents
in and when is at its peak value of 20 V. Assuming that for the PA03 is much
greater than the currents in and essentially determine the total power dissipated.
The total power dissipated in and is

Since the total power should not exceed 100 mW, we can use resistors—an inexpen-
sive industry standard—with room to spare. With this power specification, we find that

Also, since

then Combining this result with the power specification yields and
Both are standard 5% tolerance values.RB = 3 k�.

RA = 1 k�RB = 3 RA .

1 +

RB

RA
= 4

RA + RB =

V2
M

Ptotal
=

400

0.1
= 4000

1�4 W

Ptotal =

V2
M

RA + RB
�

202

RA + RB
=

400

RA + RB

RBRA

RARBRA ,
RinVMRBRA

An instrumentation amplifier of the form shown in Fig. 4.26 has been suggested. This
amplifier should have high-input resistance, achieve a voltage gain of 10,
employ the MAX4240 op-amp listed in Table 4.1, and operate from two 1.5 V AA cell bat-
teries in series. Let us analyze this circuit, select the resistor values, and explore the validity
of this configuration.

Vo�(V1 - V2)

+

–

+

–

Vy

Vx
V1 +

–
Vo

V2

±
–

3 V

3 V
Differential amplifier

3 V

R1
R

1.5 V

1.5 V

A

B
R2

RA

RA RB=RA

RB=RA

3 V

±
–

±
–

Figure 4.26

An instrumentation
amplifier using the
MAX4240 op-amp.

APPLICATION
EXAMPLE 4.11

•
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As indicated, the op-amp on the right side of the circuit is connected in the traditional
differential amplifier configuration. Example 4.5 indicates that the voltage gain for this
portion of the network is

And if the equation reduces to

If we can find a relationship between and and then an expression for the over-
all voltage can be written. Applying KCL at node A yields

or

In a similar manner, at node B we obtain

or

By combining these equations, the output voltage can be expressed as

If the resistors are selected such that then the voltage gain is

For a gain of we set To maintain low power, we will use fairly large values
for these resistors. We somewhat arbitrarily choose and 
We can use resistors in the differential amplifier stage as well.

Note that the voltage gain of the instrumentation amplifier is essentially the same as
that of a generic differential amplifier. So why add the cost of two more op-amps? In this
configuration the inputs and are directly connected to op-amp input terminals; there-
fore, the input resistance of the intrumentation amplifier is extremely large. From Table 4.1
we see that for the MAX4240 is This is not the case in the traditional differen-
tial amplifier where the external resistor can significantly decrease the input resistance.

45 M�.Rin

V2V1

100 k�
R1 = R2 = 450 k�.R = 100 k�

R1 = 4.5 R.+10,

Vo

V1 - V2
= 1 +

2R1

R

R1 = R2 ,

Vo = Vx - Vy = V1 c 1 +

R1

R
d - V2 c R1

R
d + V1 c R2

R
d - V2 c 1 +

R2

R
d

Vy = -V1 c R2

R
d + V2 c 1 +

R2

R
d

V1 - V2

R
=

V2 - Vy

R2

Vx = V1 c 1 +

R1

R
d - V2 c R1

R
d

V1 - V2

R
=

Vx - V1

R1

Vy ,VxV1 , V2 ,
Vo = Vx - Vy

RA = RB ,

Vo = (Vx - Vy) c RB

RA
d
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SOLUTION

4.6
Design Examples

We are asked to construct an amplifier that will reduce a very large input voltage (i.e., 
ranges between ) to a small output voltage in the range Using only two resis-
tors, we wish to design the best possible amplifier.

<5 V.;680 V
VinDESIGN

EXAMPLE 4.12
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±
–

Vo

+

-

R2

Vin

R1I
–
±

Figure 4.27

A standard inverting 
amplifier stage.

Since we must reduce to the use of an inverting amplifier seems to be appro-
priate. The input/output relationship for the circuit shown in Fig. 4.27 is

Since the circuit must reduce the voltage, must be much larger than By trial and
error, one excellent choice for the resistor pair, selected from the standard Table 2.1, is

and For the resulting output voltage is 5.037 V,
resulting in a percent error of only 0.74%.

Vin = 680 V,R2 = 200 �.R1 = 27 k�

R2 .R1

Vo

Vin
= - 

R2

R1

-5 V,+680 V

There is a requirement to design a noninverting op-amp configuration with two resistors
under the following conditions: the gain must be the input range is and the total
power consumed by the resistors must be less than 100 mW.

For the standard noninverting configuration in Fig. 4.28a, the gain is

For a gain of 10, we find If and then the gain require-
ment is met exactly. Obviously, a number of other choices can be made, from the standard
Table 2.1, with a ratio. The power limitation can be formalized by referring to
Fig. 4.28b where the maximum input voltage (2 V) is applied. The total power dissipated by
the resistors is

The minimum value for is 400 �.R1

PR =

22

R1
+

(20 - 2)2

R2
=

4

R1
+

324

9R1
6 0.1

3�27

R2 = 27 k�,R1 = 3 k�R2�R1 = 9.

Vo

Vin
= 1 +

R2

R1

;2 V,+10,

(a) (b)

Vo

+

-
R2

R1

±
–

Vin Vo=20 V

+

-
R2

R1

±
–

2 V
2 V

±
–

±
–

Figure 4.28

The noninverting op-amp
configuration employed in
Example 4.13.

SOLUTION

SOLUTION

DESIGN
EXAMPLE 4.13

•
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We wish to design a weighted-summer circuit that will produce the output

The design specifications call for use of one op-amp and no more than three resistors.
Furthermore, we wish to minimize power while using resistors no larger than 

A standard weighted-summer configuration is shown in Fig. 4.29. Our problem is reduced
to finding values for the three resistors in the network.
Using KCL, we can write

where

Combining these relationships yields

Therefore, we require

From these requirements, we see that the largest resistor is and that R is the smallest.
Also, note that the ratio can be expressed as Finally, to minimize power, we
should use the largest possible resistor values. Based on this information, the best resis-
tor values are and which yield the desired per-
formance exactly.

R2 = 2.7 k�,R1 = 300 �,R = 270 �,

27�30.R�R1

R2

R

R1
= 0.9 and R

R2
= 0.1

Vo = - c R

R1
dV1 - c R

R2
dV2

I1 =

V1

R1
 and I2 =

V2

R2

I1 + I2 = - 
Vo

R

10 k�.

Vo = -0.9V1 - 0.1V2

Vo

+

-

R1I1

I2

R2
V2V1

R

±
–

±
–

–
±

Figure 4.29

A standard weighted-
summer configuration.

SOLUTION

SOLUTION

In Example 2.36, a 250- resistor was used to convert a current in the 4- to 20-mA range
to a voltage such that a 20-mA input produced a 5-V output. In this case, the minimum cur-
rent (4 mA) produces a resistor voltage of 1 V. Unfortunately, many control systems oper-
ate on a 0- to 5-V range rather than a 1- to 5-V range. Let us design a new converter that will
output 0 V at 4 mA and 5 V at 20 mA.

The simple resistor circuit we designed in Example 2.36 is a good start. However, the volt-
age span is only 4 V rather than the required 5 V, and the minimum value is not zero. These

�

DESIGN
EXAMPLE 4.14

DESIGN
EXAMPLE 4.15
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facts imply that a new resistor value is needed and the output voltage should be shifted
down so that the minimum is zero. We begin by computing the necessary resistor value:

The resistor voltage will now range from to , or 1.25 to 6.25 V.
We must now design a circuit that shifts these voltage levels so that the range is 0 to 5 V.
One possible option for the level shifter circuit is the differential amplifier shown in 
Fig. 4.30. Recall that the output voltage of this device is

Since we have already chosen R for a voltage span of 5 V, the gain of the amplifier should
be 1 (i.e., ). Clearly, the value of the required shift voltage is 1.25 V. However, we
can verify this value by inserting the minimum values into this last equation

and find

There is one caveat to this design. We don’t want the converter resistor, R, to affect
the differential amplifier, or vice versa. This means that the vast majority of the
4–20 mA current should flow entirely through R and not through the differential ampli-
fier resistors. If we choose and this requirement will be met. Therefore,
we might select so that their resistance values are more than 300
times that of R.

R1 = R2 = 100 k�
R2 W R,R1

Vshift = (312.5)(0.004) = 1.25 V

0 = [(312.5)(0.004) - Vshift] 
R2

R1

R1 = R2

Vo = (VI - Vshift) 
R2

R1

(0.02)(312.5)(0.004)(312.5)

R =

Vmax - Vmin

Imax - Imin
=

5 - 0

0.02 - 0.004
= 312.5 �

VI

Vshift

+

-

Vo

+

-

R2
R2

R1

R1R4–20 mA

Differential amplifier with shifter

±
–

–
±

Figure 4.30

A 4–20 mA to 0–5 V
converter circuit.

S U M M A R Y

■ Op-amps are characterized by

High-input resistance

Low-output resistance

Very high gain

■ The ideal op-amp is modeled using

■ Op-amp problems are typically analyzed by writing node
equations at the op-amp input terminals

■ The output of a comparator is dependent on the difference
in voltage at the input terminals

 v
+

= v
-

 i
+

= i
-

= 0

•

irwin04-156-188hr.qxd  9-07-2010  14:17  Page 179



180 C H A P T E R  4 O P E R A T I O N A L  A M P L I F I E R S

P R O B L E M S
•

4.1 An amplifier has a gain of 15 and the input waveform
shown in Fig. P4.1. Draw the output waveform.

Figure P4.1

4.2 An amplifier has a gain of and the output waveform
shown in Fig. P4.2. Sketch the input waveform.

Figure P4.2

4.3 An op-amp based amplifier has supply voltages of 
and a gain of 20.

(a) Sketch the input waveform from the output waveform
in Fig. P4.3.

(b) Double the amplitude of your results in (a) and
sketch the new output waveform.

Figure P4.3

4.4 For an ideal op-amp, the voltage gain and input resistance
are infinite while the output resistance is zero. What are the
consequences for

(a) the op-amp’s input voltage?

(b) the op-amp’s input currents?

(c) the op-amp’s output current?

4.5 Revisit your answers in Problem 4.4 under the following
nonideal scenarios.

(a)

(b)

(c)

4.6 Revisit the exact analysis of the inverting configuration in
Section 4.3.

(a) Find an expression for the gain if 

(b) Plot the ratio of the gain in (a) to the ideal gain versus
for for an ideal gain of 

(c) From your plot, does the actual gain approach the
ideal value as increases or decreases?

(d) From your plot, what is the minimum value of if
the actual gain is within 5% of the ideal case?

4.7 Revisit the exact analysis of the inverting amplifier in
Section 4.3.

(a) Find an expression for the voltage gain if 

(b) For and plot the ratio of the
actual gain to the ideal gain for and

(c) From your plot, does the ratio approach unity as 
increases or decreases?

(d) From your plot in (b), what is the minimum value of
if the gain ratio is to be at least 0.98?Rin

Rin

1 k� � Rin � 100 k�.
Ao = 1000

R1 = 3 k�,R2 = 27 k�

Ao Z q.Rout = 0,
Rin Z q,

Ao

Ao

-10.1 � Ao � 1000Ao

Ao Z q.
Rout = 0,Rin = q,

Ao = q.Rout = 0,Rin Z q,

Ao = q.Rout 7 0,Rin = q,

Ao Z q.Rout = 0,Rin = q,

vo(V)

t (ms)

1

3

2

–3

–2

–1

0
25 50 75 100 125

;5 V

vo(V)

t (ms)

2

5
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4

–12
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0
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–50

150

100

0
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4.8 An op-amp based amplifier has supplies and a gain
of Over what input range is the amplifier linear?

4.9 Assuming an ideal op-amp, determine the voltage gain of the
circuit in Fig. P4.9.

Figure P4.9

4.10 Assuming an ideal op-amp, determine the voltage gain of
the circuit in Fig. P4.10.

Figure P4.10

4.11 Assuming an ideal op-amp in Fig. P4.11, determine the
value of RX that will produce a voltage gain of 26.

Figure P4.11

4.12 Assuming an ideal op-amp, find the voltage gain of the
network in Fig. P4.12.

Figure P4.12

4.13 Assuming an ideal op-amp in Fig. P4.13, determine the
output voltage Vo.

Figure P4.13

4.14 Determine the gain of the amplifier in Fig. P4.14. What
is the value of 

R2=20 kΩ

R1=3.3 kΩ

Vin=2 V

Figure P4.14

4.15 For the amplifier in Fig. P4.15, find the gain and 

R2=20 kΩ

R1=3.3 kΩ

VS=2 V

Figure P4.15

4.16 Using the ideal op-amp assumptions, determine the
values of and in Fig. P4.16.

Figure P4.16

11 V

1 k�
10 k�

I1

Vo
±
–

I1Vo

Vo
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Io

R2

R1

±
–

Io .

Vo

IoVin

R2

R1

±
–

Io ?

2 k�

4 k�

1 k�

6 V
2 V

–
±

Vo

+

-

±
– ±

–

9 k�

150 �100 �

18 k�

–
±

vo

+

-

v1

+

-

±
–

vo

+

-

v1

+

-

4 k�

RX

vo
v1

+

-

+
-

4 k�

2 k�

200 k�

±
–

20 k�

1 k�

–
±

vov1

+

-

±
–
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4.17 Using the ideal op-amp assumptions, determine 
and in Fig. P4.17.

Figure P4.17

4.18 In a useful application, the amplifier drives a load. The
circuit in Fig. P4.18 models this scenario.

(a) Sketch the gain for 

(b) Sketch for if 

(c) Repeat (b) if 

(d) What is the minimum value of if must be less
than 100 mA for 

(e) What is the current if is Repeat for

R2=27 kΩ

R1=3 kΩ

Figure P4.18

4.19 The op-amp in the amplifier in Fig. P4.19 operates with
supplies and can output no more than 200 mA.

What is the maximum gain allowable for the amplifier if
the maximum value of is 1 V?

R1+R2=10 kΩ

Figure P4.19

4.20 For the amplifier in Fig. P4.20, the maximum value of
is 2 V and the op-amp can deliver no more than 

100 mA.

(a) If supplies are used, what is the maximum
allowable value of 

(b) Repeat for supplies.

(c) Discuss the impact of the supplies on the maximum
allowable gain.

RL=10 kΩ

R1=100 kΩ

Figure P4.20

4.21 For the circuit in Fig. P4.21,

(a) find in terms of and 

(b) If and find 

(c) If the op-amp supplies are and 
what is the allowable range of 

Figure P4.21

4.22 Find in the circuit in Fig. P4.22, assuming that the 
op-amp is ideal.

Figure P4.22

4.23 The network in Fig. P4.23 is a current-to-voltage
converter or transconductance amplifier. Find 
for this network.

Figure P4.23
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±
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4.24 Calculate the transfer function for the network
shown in Fig. P4.24.

Figure P4.24

4.25 Determine the relationship between and in the
circuit shown in Fig. P4.25.

Figure P4.25

4.26 Find in the network in Fig. P4.26 and explain what
effect has on the output.

Figure P4.26

4.27 Determine the expression for in the network in 
Fig. P4.27.

Figure P4.27

4.28 Show that the output of the circuit in Fig. P4.28 is

Figure P4.28

4.29 Find in the network in Fig. P4.29.

Figure P4.29

4.30 Find the voltage gain of the op-amp circuit shown in
Fig. P4.30.

Figure P4.30

4.31 Determine the relationship between and in the
circuit in Fig. P4.31.

Figure P4.31
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RF

±
–

io�v1
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4.32 In the network in Fig. P4.32, derive the expression for 
in terms of the inputs and 

Figure P4.32

4.33 For the circuit in Fig. P4.33, find the value of that
produces a voltage gain of 10.

Figure P4.33

4.34 Find in the circuit in Fig. P4.34.

Figure P4.34

4.35 Find in the circuit in Fig. P4.35.

Figure P4.35

4.36 Determine the expression for the output voltage, of
the inverting-summer circuit shown in Fig. P4.36.

Figure P4.36

4.37 Determine the output voltage, of the noninverting
averaging circuit shown in Fig. P4.37.

Figure P4.37

4.38 Find the input/output relationship for the current
amplifier shown in Fig. P4.38.

Figure P4.38

4.39 Find in the circuit in Fig. P4.39.

Figure P4.39

±
–

80 k�

40 k�

40 k�Vo

20 k�

10 k�

5 V
+

-

-
+

-
+

Vo

RL

RF

RI

io

iin

±
–

-
+

RF
RI

vo

R1
v1

v2

v3

R2

R3

±
–

vo ,

RF

vo

R1
v1

v2

v3

R2

R3

-
+

vo ,

±
– -

+
±
–

±
–

40 k�

30 k�

100 k�

12 V

10 V

9 V

10 k�

20 k�

20 k�

6 V

Vo

+

-

-
+

Vo

±
–

±
–

40 k�

5 k�

5 k�

5 V
4 V 20 k�

Vo

+

-

-
+

Vo

±
–V1

R1

18 k� Vo

+

-

±
–

R1

v1
R1

R2

RI

RF

vov2
-
+

v2 .v1

vo
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4.40 Find in the circuit in Fig. P4.40.

Figure P4.40

4.41 Find the expression for in the differential amplifier
circuit shown in Fig. P4.41.

Figure P4.41

4.42 Find in the circuit in Fig. P4.42.

Figure P4.42

4.43 Find the output voltage, in the circuit in Fig. P4.43.

Figure P4.43

v1

v2

R3

R3

R4

R4

R1

R2

R2

–
±

+
-

–
±

vo ,

vo

v1

R2 R3

R4

R1
–
±

vo

vo

v2

v1
R1

R1

RF

R1

R1
–
±

–
±

vo

vo

v2

v1

R2

R2

R1

R1

–
±

±
–

vo

4.44 The electronic ammeter in Example 4.9 has been modified and is shown in Fig. P4.44. The selector switch allows the user to
change the range of the meter. Using values for and from Example 4.9, find the values of and that will yield a
10-V output when the current being measured is 100 mA and 10 mA, respectively.

RBRAR2R1

Figure P4.44

Vo

±
–

+

+

-

I
Unknown
current

Selector
switch

-

Voltmeter

R1=1 k�

RC=1 k�RBRA

R2=9 k�
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4.45 Given a box of 10- resistors and an op-amp, design a
circuit that will have an output voltage of

4.46 Design an op-amp circuit that has a gain of using
resistors no smaller than 

4.47 Design a two-stage op-amp network that has a gain 
of while drawing no current into its input
terminal. Use no resistors smaller than 

4.48 Design an op-amp circuit that has the following
input/output relationship:

4.49 A voltage waveform with a maximum value of 
200 mV must be amplified to a maximum of 10 V
and inverted. However, the circuit that produces the
waveform can provide no more than Design
the required amplifier.

4.50 An amplifier with a gain of is needed. Using
resistor values from Table 2.1, design the amplifier.
Use as few resistors as possible.

4.51 Design an op-amp-based circuit to produce the 
function

4.52 Design an op-amp-based circuit to produce the 
function

4.53 Show that the circuit in Fig. P4.53 can produce the 
output

only for 

Figure P4.53

Vo

V1

V2

R1

R2

R3

R4

±
–

0 � K1 � K2 + 1.

Vo = K1 V1 - K2 V2

Vo = 5 V1 - 7 V2

Vo = 5 V1 - 4 V2


 ; 1%

100 �A.

Vo = -5 V1 + 0.5 V2

1 k�.
-50,000

1 k�.
-50

Vo = -2V1 - 4V2

k�
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T Y P I C A L P R O B L E M S F O U N D  O N  T H E F E E X A M
•

4PFE-1 Given the summing amplifier shown in Fig. 4PFE-1, select the values of that will produce an output voltage of –3 V.
a. 4.42 k� b. 6.33 k�

c. 3.6 k� d. 5.14 k�

Figure 4PFE-1

4PFE-2 Determine the output voltage of the summing op-amp circuit shown in Fig. 4PFE-2.
a. 6 V b. 18 V

c. 9 V d. 10 V

Figure 4PFE-2

4PFE-3 What is the output voltage in Fig. 4PFE-3?

a. �5 V b. 6 V

c. 4 V d. �7 V

Figure 4PFE-3 

+
-

±
–

±
–

2 �

3 �

4 �6 V

2 V

Vo

+

-

Vo

12 k�

6 k�
6 k�

36 k�
18 k�

±
–

–
± 1 V

2 V

3 V
Vo

+

-

12 k�

±
–

–
±

–
±

Vo

4 V

2 V

4 k�

12 k�

R2

Vo

+

-

±
–

–
±

–
±

R2
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Vin

R1 = 5 k�

+
-

Rf

Vo

+

-

2 k�

2 k�

1 k�8 k�

6 k�

5 V

+
-

+

-

±
–

Vo

Figure 4PFE-4 Figure 4PFE-5 

4PFE-4 What value of in the op-amp circuit of Fig. 4PFE-4
is required to produce a voltage gain of 50?

a. 135 k�

b. 210 k�

c. 180 k�

d. 245 k�

Rf 4PFE-5 What is the voltage in the circuit in Fig. 4PFE-5?

a. 3 V

b. 6 V

c. 8 V

d. 5 V

Vo
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TECHNIQUES
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T H E L E A R N I N G  G O A L S
F O R  T H I S C H A P T E R  A R E :

■ Understand the concepts of linearity and equivalence

■ Know how to analyze electric circuits using the principle of
superposition 

■ Be able to calculate a Thévenin equivalent circuit for a
linear circuit

■ Be able to calculate a Norton equivalent circuit for a linear
circuit

■ Understand when and how to use a source transformation

■ Be able to use the maximum power transfer theorem

M
Monitoring Devices Devices that monitor traffic flow on inter-

state roadways help reduce congestion near cities. For improved

traffic control, monitoring devices flash your speed as you

approach, warning you when you are over the limit and persuad-

ing you to slow down. Such devices are useful in construction

zones where reduced speeds are required to protect workers.

Electric circuits have similar tools: current-monitoring

devices that detect excessive currents and disconnect compo-

nents that would be damaged if power limitations are exceed-

ed. These circuit breakers in homes or office buildings have

cutoff features that can be reset to restore service.

Measuring and regulating current flow in a circuit is as

important as ensuring traffic flows freely. In this chapter, we

use the superposition concept to calculate currents flowing in

an electric circuit due to multiple sources. We form a simple

equivalent circuit for parts of circuits that remain fixed,

enabling a focus only on components to be changed for differ-

ent operating conditions. Once you’ve mastered these con-

cepts you’ll be better prepared to design circuits that keep the

current flowing under the legal limit.

5
irwin05-189-244hr2.qxd  22-07-2010  9:47  Page 189



5.1
Introduction

Before introducing additional analysis techniques, let us review some of the topics we have
used either explicitly or implicitly in our analyses thus far.

EQUIVALENCE Table 5.1 is a short compendium of some of the equivalent circuits that
have been employed in our analyses. This listing serves as a quick review as we begin to look
at other techniques that can be used to find a specific voltage or current somewhere in a net-
work and provide additional insight into the network’s operation. In addition to the forms list-
ed in the table, it is important to note that a series connection of current sources or a parallel
connection of voltage sources is forbidden unless the sources are pointing in the same direc-
tion and have exactly the same values.

R1

R2

R1+R2

V1

V2

V1-V2

±
–

-
+

±
–

I1-I2I2I1

R2

R

R1
R1 R2

R1+R2
—

Io=ISR

ISVo=VSVS

+

-

±
–

TABLE 5.1 Equivalent circuit forms

190 C H A P T E R  5 A D D I T I O N A L  A N A LY S I S  T E C H N I Q U E S

LINEARITY All the circuits we have analyzed thus far have been linear circuits, which are
described by a set of linear algebraic equations. Most of the circuits we will analyze in the
remainder of the book will also be linear circuits, and any deviation from this type of network
will be specifically identified as such.

Linearity requires both additivity and homogeneity (scaling). It can be shown that the cir-
cuits that we are examining satisfy this important property. The following example illustrates
one way in which this property can be used.
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For the circuit shown in Fig. 5.1, we wish to determine the output voltage However,
rather than approach the problem in a straightforward manner and calculate then then

and so on, we will use linearity and simply assume that the output voltage is 
This assumption will yield a value for the source voltage. We will then use the actual value
of the source voltage and linearity to compute the actual value of 

If we assume that , then

can then be calculated as

Hence,

Now, applying KCL,

Then

Therefore, the assumption that produced a source voltage of 6 V. However, since
the actual source voltage is 12 V, the actual output voltage is 1 V(12�6) = 2 V.

Vout = 1 V

 = 6 V

 Vo = 2kIo + V1

Io = I1 + I2 = 1.5 mA

I1 =

V1

3k
= 1 mA

 = 3 V

 V1 = 4kI2 + V2

V1

I2 =

V2

2k
= 0.5 mA

Vout = V2 = 1 V

Vout˚.

Vout = 1 V.I2˚,
I1˚,Io˚,

Vout˚.

±
–12 V

2 k� 4 k�

3 k� 2 k� Vout

+

-
I2I1

Io I2 V2V1Vo Figure 5.1

Circuit used
in Example 5.1.

E5.1 Use linearity and the assumption that to compute the correct current in the
circuit in Fig. E5.1 if I = 6 mA.

IoIo = 1 mA

Figure E5.1

Learning Assessment
ANSWER: .Io = 3 mA

4 k� 2 k�

8 k� 6 k� 3 k�

I Io

SOLUTION

EXAMPLE

5.1

ANSWER: Vo � 5/3 V.E5.2 Find V0 in Fig. E5.2 using linearity and the assumption that Vo � 1 V.

Figure E5.2

V0

4 k�4 k�

6 k�

3 k�

20 V

+

–

8 k�

12 k�

4 k�

2 k�

+
–
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5.2
Superposition

To provide motivation for this subject, let us examine the simple circuit of Fig. 5.2a, in
which two sources contribute to the current in the network. The actual values of the sources
are left unspecified so that we can examine the concept of superposition.

The mesh equations for this network are

Solving these equations for i1(t) yields

In other words, the current i1(t) has a component due to v1(t) and a component due to v2(t).
In view of the fact that i1(t) has two components, one due to each independent source, it
would be interesting to examine what each source acting alone would contribute to i1(t). For
v1(t) to act alone, v2(t) must be zero. As we pointed out in Chapter 2, v2(t)=0 means that
the source v2(t) is replaced with a short circuit. Therefore, to determine the value of i1(t)
due to v1(t) only, we employ the circuit in Fig. 5.2b and refer to this value of i1(t) as 

Let us now determine the value of i1(t) due to v2(t) acting alone and refer to this value as
Using the network in Fig. 5.2c,

Then, using current division, we obtain

=

-v2(t)

15k
 ifl

1(t) =

-2v2(t)

15k
 a 3k

3k + 3k
b

ifl

2(t) = - 
v2(t)

6k +

(3k)(3k)

3k + 3k

=

-2v2(t)

15k

ifl

1(t).

=

v1(t)

5k
 iœ

1(t) =

v1(t)

3k +

(3k)(6k)

3k + 6k

iœ

1(t).

i1(t) =

v1(t)

5k
-

v2(t)

15k

 -3ki1(t) + 9ki2(t) = -v2(t)

 6ki1(t) - 3ki2(t) = v1(t)

EXAMPLE

5.2
SOLUTION

Now, if we add the values of and we obtain the value computed directly; that is,

Note that we have superposed the value of on or vice versa, to determine the
unknown current.

ifl

1(t),iœ

1(t)

=

v1(t)

5k
-

v2(t)

15k
 i1(t) = iœ

1(t) + ifl

1(t)

ifl

1(t),iœ

1(t)

Figure 5.2

Circuits used to illustrate
superposition.

±
–

±
–

3 k�

3 k�

v1(t) v2(t)i1(t) i2(t)

6 k�

(a)

±
–

3 k�

3 k�v1(t)

i'1(t) 6 k�

(b)

v2(t)±
–

3 k�

3 k�

i"1(t) i"2(t)6 k�

(c)
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Let us use superposition to find in the circuit in Fig. 5.3a.Vo

+-

1 k� 6 k� Vo2 mA

2 k�
3 V

+

–

(a)

+-

1 k� 6 k� V"o

2 k�
3 V

+

–

(c)

1 k� 6 k� V 'o

Io

2 mA

2 k� +

–

(b)

+-

1 k� 6 k� Vo

2 k� 3 V

+

–

(d)

2 mA

I1 I2
Figure 5.3

Circuits used
in Example 5.3.

The contribution of the 2-mA source to the output voltage is found from the network in
Fig. 5.3b, using current division

and

The contribution of the 3-V source to the output voltage is found from the circuit in
Fig. 5.3c. Using voltage division,

Therefore,

Although we used two separate circuits to solve the problem, both were very simple.

Vo = Vœ

o + Vfl

o = 6 V

 = 2 V

 Vfl

o = 3 a 6k

1k + 2k + 6k
b

Vœ

o = Io(6k) = 4 V

=

2

3
 mA Io = A2 * 10-3B a 1k + 2k

1k + 2k + 6k
b

SOLUTION

EXAMPLE

5.3

What we have demonstrated in Example 5.2 is true in general for linear circuits and is a
direct result of the property of linearity. The principle of superposition, which provides us
with this ability to reduce a complicated problem to several easier problems—each contain-
ing only a single independent source—states that

In any linear circuit containing multiple independent sources, the current or voltage at any
point in the network may be calculated as the algebraic sum of the individual contributions of
each source acting alone.

When determining the contribution due to an independent source, any remaining voltage
sources are made zero by replacing them with short circuits, and any remaining current sources
are made zero by replacing them with open circuits.

Although superposition can be used in linear networks containing dependent sources, it is
not useful in this case since the dependent source is never made zero.

As the previous example indicates, superposition provides some insight in determining the
contribution of each source to the variable under investigation.

We will now demonstrate superposition with two examples and then provide a problem-
solving strategy for the use of this technique. For purposes of comparison, we will also solve
the networks using both node and loop analyses. Furthermore, we will employ these same
networks when demonstrating subsequent techniques, if applicable.
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Consider now the network in Fig. 5.4a. Let us use superposition to find Vo˚.EXAMPLE

5.4

±
–6 V

2 k�

2 k�

2 k�

6 k� Vo

2 mA

2 mA

4 k�

+

–

±
–

±
–

6 V

2 k�

2 k�

6 k� V'o

4 k�

+

–

(a) (b)

6 V

2 k�

4 k�

V'o

V1

6 k�

+

– 2 k�

2 k�

6 k� V"o

4 k�

+

–

(c) (d)

±
–

+

–

2 mA

2 mA V"o

+

–

6 V

2 k�

2 k�

6 k� VoVo-6

4 k�

+

–

(e) (f)

4
3
— k�

2 k�

6 k� V1

I2

I1

I3

Figure 5.4

Circuits used in Example 5.4.

If we use nodal analysis and Fig. 5.3a to find and recognize that the 3-V source and
its connecting nodes form a supernode, can be found from the node equation

which yields . In addition, loop analysis applied as shown in Fig. 5.3d produces
the equations

and

which yield and hence Vo = 6 V.I2 = 1 mA

3k(I1 + I2) - 3 + 6kI2 = 0

I1 = -2 * 10-3

Vo = 6 V

Vo - 3

1k + 2k
- 2 * 10-3

+

Vo

6k
= 0

Vo

Vo

irwin05-189-244hr2.qxd  22-07-2010  9:47  Page 194



S E C T I O N  5 . 2 S U P E R P O S I T I O N     195

The contribution of the 6-V source to V0 is found from the network in Fig. 5.4b, which is
redrawn in Fig. 5.4c. The 2 k�+6 k�=8-k� resistor and 4-k� resistor are in parallel,
and their combination is an 8/3-k� resistor. Then, using voltage division,

Applying voltage division again,

The contribution of the 2-mA source is found from Fig. 5.4d, which is redrawn in Fig. 5.4e.
is simply equal to the product of the current source and the parallel combination of the

resistors; that is,

Then

A nodal analysis of the network can be performed using Fig. 5.4f. The equation for the
supernode is

The equation for the node labeled is

Solving these two equations, which already contain the constraint equation for the super-
node, yields 

Once again, referring to the network in Fig. 5.4f, the mesh equations for the network are

Solving these equations, we obtain and, hence, Vo = 48�7 V.I3 = 8�7 mA

 2kAI3 - I2B + 4kAI3 - I1B + 6kI3 = 0

 I2 = 2 * 10-3

 -6 + 4kAI1 - I3B + 2kAI1 - I2B = 0

Vo = 48�7 V.

V1 - Vo

4k
+

V1 - AVo - 6B
2k

+

V1

2k
= 0

V1

-2 * 10-3
+

AVo - 6B - V1

2k
+

Vo - V1

4k
+

Vo

6k
= 0

Vo = Vœ

o + Vfl

o =

48

7
 V

Vfl

o = A2 * 10-3B a 10

3
 k��6k b =

30

7
 V

Vfl

o

Vœ

o = V1 a 6k

6k + 2k
b =

18

7
 V

V1 = 6 ±
8

3
 k

8

3
 k + 2k

≤ =

24

7
 V

Let us demonstrate the power of superposition in the analysis of op-amp circuits by deter-
mining the input/output relationship for the op-amp configuration shown in Fig. 5.5a.

The contribution of to the output is derived from the network in Fig. 5.5b where is
set to zero. This circuit is the basic inverting gain configuration and

The contribution due to is shown in Fig. 5.5c where is set to zero. This circuit is the
basic noninverting configuration and

Vo2

V2
= 1 +

R2

R1

V1V2

Vo1

V1
= - 

R2

R1

V2VoV1

SOLUTION

SOLUTION

EXAMPLE

5.5
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Therefore, using superposition,

Thus, in this case, we have used what we learned in Chapter 4, via superposition, to imme-
diately derive the input/output relationship for the network in Fig. 5.5a.

Vo = c 1 +

R2

R1
dV2 - c R2

R1
dV1

-
+

±
–

±
–

R2

R1

V1 V2
Vo

+

–

(a)

R2

-
+

±
–

R2

R1

V1 Vo1

+

–

(b)

+
-

±
–V2

R1
R2

Vo2

+

–

(c)

Figure 5.5

(a) A superposition
example circuit; (b) the

circuit with set to zero;
(c) the circuit with set

to zero.
V1

V2

Step 1. In a network containing multiple independent sources, each source can be
applied independently with the remaining sources turned off.

Step 2. To turn off a voltage source, replace it with a short circuit, and to turn off a
current source, replace it with an open circuit.

Step 3. When the individual sources are applied to the circuit, all the circuit laws
and techniques we have learned, or will soon learn, can be applied to obtain a
solution.

Step 4. The results obtained by applying each source independently are then added
together algebraically to obtain a solution.

Applying
Superposition

Problem-Solving Strategy

Superposition can be applied to a circuit with any number of dependent and independent
sources. In fact, superposition can be applied to such a network in a variety of ways. For
example, a circuit with three independent sources can be solved using each source acting
alone, as we have just demonstrated, or we could use two at a time and sum the result with
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that obtained from the third acting alone. In addition, the independent sources do not have to
assume their actual value or zero. However, it is mandatory that the sum of the different
values chosen add to the total value of the source.

Superposition is a fundamental property of linear equations and, therefore, can be applied
to any effect that is linearly related to its cause. In this regard it is important to point out that
although superposition applies to the current and voltage in a linear circuit, it cannot be used
to determine power because power is a nonlinear function.

E5.3 Compute in circuit in Fig. E5.3 using superposition.Vo

Figure E5.3

Learning Assessment
ANSWER: Vo =

4

3
 V.

±
– 2 mA12 V 2 k�

4 k�3 k�

Vo

+

–

E5.4 Find V0 in Fig. E5.4 using superposition.

Figure E5.4

ANSWER: V0 � 5.6 V.

2 k�
12 V

3 k� 1 k�6 k� Vo

+

–

8 mA

2 mA

+–

E5.5 Find I0 in Fig. E5.5 using superposition.

Figure E5.5

ANSWER: I0 � �2/3 mA.

12 V

2 mA

4 k�

4 k�

2 k�

2 k�

6 mA
6 k�

+–

Io
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Figure 5.6

Concepts used to develop Thévenin’s theorem.

A

B

vo

(b)(a)

+

–

i A

B

(c)

i

Circuit

A
(linear)

Original
circuit

Circuit

B

Circuit

A
(linear)

vo±
–

5.3
Thévenin’s
and Norton’s
Theorems

Thus far we have presented a number of techniques for circuit analysis. At this point we will
add two theorems to our collection of tools that will prove to be extremely useful. The theo-
rems are named after their authors, M. L. Thévenin, a French engineer, and E. L. Norton, a
scientist formerly with Bell Telephone Laboratories.

Suppose that we are given a circuit and that we wish to find the current, voltage, or power
that is delivered to some resistor of the network, which we will call the load. Thévenin’s
theorem tells us that we can replace the entire network, exclusive of the load, by an equiva-
lent circuit that contains only an independent voltage source in series with a resistor in such
a way that the current–voltage relationship at the load is unchanged. Norton’s theorem
is identical to the preceding statement except that the equivalent circuit is an independent cur-
rent source in parallel with a resistor.

Note that this is a very important result. It tells us that if we examine any network from a
pair of terminals, we know that with respect to those terminals, the entire network is equiva-
lent to a simple circuit consisting of an independent voltage source in series with a resistor or
an independent current source in parallel with a resistor.

In developing the theorems, we will assume that the circuit shown in Fig. 5.6a can be split
into two parts, as shown in Fig. 5.6b. In general, circuit B is the load and may be linear or
nonlinear. Circuit A is the balance of the original network exclusive of the load and must be
linear. As such, circuit A may contain independent sources, dependent sources and resistors,
or any other linear element. We require, however, that a dependent source and its control vari-
able appear in the same circuit.

Circuit A delivers a current i to circuit B and produces a voltage across the input terminals
of circuit B. From the standpoint of the terminal relations of circuit A, we can replace circuit B
by a voltage source of volts (with the proper polarity), as shown in Fig. 5.6c. Since the 
terminal voltage is unchanged and circuit A is unchanged, the terminal current i is unchanged.

Now, applying the principle of superposition to the network shown in Fig. 5.6c, the total cur-
rent i shown in the figure is the sum of the currents caused by all the sources in circuit A and
the source that we have just added. Therefore, via superposition the current i can be written

5.1

where is the current due to with all independent sources in circuit A made zero (i.e., 
voltage sources replaced by short circuits and current sources replaced by open circuits), 
and is the short-circuit current due to all sources in circuit A with replaced by a 
short circuit.

The terms and are related by the equation

5.2

where is the equivalent resistance looking back into circuit A from terminals A-B with all
independent sources in circuit A made zero.

RTh

io =

-vo

RTh

voio

voisc

voio

i = io + isc

vo

vo

vo
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Substituting Eq. (5.2) into Eq. (5.1) yields

5.3

This is a general relationship and, therefore, must hold for any specific condition at terminals
A-B. As a specific case, suppose that the terminals are open-circuited. For this condition,
i=0 and is equal to the open-circuit voltage Thus, Eq. (5.3) becomes

5.4

Hence,

5.5

This equation states that the open-circuit voltage is equal to the short-circuit current times the
equivalent resistance looking back into circuit A with all independent sources made zero. We
refer to as the Thévenin equivalent resistance.

Substituting Eq. (5.5) into Eq. (5.3) yields

or

5.6

Let us now examine the circuits that are described by these equations. The circuit repre-
sented by Eq. (5.6) is shown in Fig. 5.7a. The fact that this circuit is equivalent at terminals
A-B to circuit A in Fig. 5.6 is a statement of Thévenin’s theorem. The circuit represented by
Eq. (5.3) is shown in Fig. 5.7b. The fact that this circuit is equivalent at terminals A-B to
circuit A in Fig. 5.6 is a statement of Norton’s theorem.

Having demonstrated that there is an inherent relationship between the Thévenin equiva-
lent circuit and the Norton equivalent circuit, we now proceed to apply these two important
and useful theorems. The manner in which these theorems are applied depends on the struc-
ture of the original network under investigation. For example, if only independent sources are
present, we can calculate the open-circuit voltage or short-circuit current and the Thévenin
equivalent resistance. However, if dependent sources are also present, the Thévenin equiva-
lent will be determined by calculating and since this is normally the best approach for
determining in a network containing dependent sources. Finally, if circuit A contains no
independent sources, then both and will necessarily be zero. (Why?) Thus, we cannot
determine since the ratio is indeterminate. We must look for another approach.
Notice that if then the equivalent circuit is merely the unknown resistance If we
apply an external source to circuit A—a test source —and determine the current, whichit˚,vt

RTh˚.voc = 0,
RTh by voc�isc˚,

iscvoc

RTh

isc˚,voc

vo = voc - RTh˚i

i =

-vo

RTh
+

voc

RTh

RTh

voc = RTh˚isc

i = 0 =

-voc

RTh
+ isc

voc˚.vo

i = - 
vo

RTh
+ isc

±
–

A

B

vooc

(a)

+

–

i

Circuit

B

A

B

vo

(b)

+

–

i

Circuit

B
RThisc

RTh Figure 5.7

(a) Thévenin and (b) Norton
equivalent circuits.
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flows into circuit A from then can be determined from Although the
numerical value of need not be specified, we could let and then 
Alternatively, we could use a current source as a test source and let then

Before we begin our analysis of several examples that will demonstrate the utility of these
theorems, remember that these theorems, in addition to being another approach, often permit
us to solve several small problems rather than one large one. They allow us to replace a net-
work, no matter how large, at a pair of terminals with a Thévenin or Norton equivalent cir-
cuit. In fact, we could represent the entire U.S. power grid at a pair of terminals with one of
the equivalent circuits. Once this is done, we can quickly analyze the effect of different loads
on a network. Thus, these theorems provide us with additional insight into the operation of a
specific network.

CIRCUITS CONTAINING ONLY INDEPENDENT SOURCES

vt = (1)RTh˚.
it = 1 A;

RTh = 1�it˚.vt = 1 Vvt

RTh = vt�it˚.RThvt˚,

Let us use Thévenin’s and Norton’s theorems to find in the network in Example 5.3.

The circuit is redrawn in Fig. 5.8a. To determine the Thévenin equivalent, we break the network
at the 6-k� load as shown in Fig. 5.8b. KVL indicates that the open-circuit voltage, is equal
to 3 V plus the voltage which is the voltage across the current source. The 2 mA from the
current source flows through the two resistors (where else could it possibly go!) and, therefore,

Therefore, By making both sources zero, we
can find the Thévenin equivalent resistance, using the circuit in Fig. 5.8c. Obviously,

Now our Thévenin equivalent circuit, consisting of and is connected back
to the original terminals of the load, as shown in Fig. 5.8d. Using a simple voltage divider, we
find that 

To determine the Norton equivalent circuit at the terminals of the load, we must find the
short-circuit current as shown in Fig. 5.8e. Note that the short circuit causes the 3-V source
to be directly across (i.e., in parallel with) the resistors and the current source. Therefore,

Then, using KCL, We have already determined ,
and, therefore, connecting the Norton equivalent to the load results in the circuit in Fig. 5.8f.
Hence, is equal to the source current multiplied by the parallel resistor combination,
which is 6 V.

Vo

RThIsc = 3 mA.I1 = 3�(1k + 2k) = 1 mA.

Vo = 6 V.

RTh˚,VocRTh = 3 k�.
RTh˚,
Voc = 9 V.V1 = A2 * 10-3B(1k + 2k) = 6 V.

V1˚,
Voc˚,

Vo

– ±

(a) (b) (c)

2 k� 2 k�2 k�

1 k� 1 k� 1 k�6 k� Vo

3 V 3 V

2 mA 2 mA

+

–

Voc RTh

+

–

V1

+

–

– ±

(f)

3 mA

3 k� 6 k� Vo

+

–

(d) (e)

3 k� 2 k�

9 V 1 k�Vo

3 V

6 k�

2 mA

+

–
IscI1

±
–

– ±

Figure 5.8

Circuits used in
Example 5.6.

SOLUTION

EXAMPLE

5.6
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Consider for a moment some salient features of this example. Note that in applying the theorems
there is no point in breaking the network to the left of the 3-V source, since the resistors in
parallel with the current source are already a Norton equivalent. Furthermore, once the network
has been simplified using a Thévenin or Norton equivalent, we simply have a new network with
which we can apply the theorems again. The following example illustrates this approach.

Let us use Thévenin’s theorem to find in the network in Fig. 5.9a.

If we break the network to the left of the current source, the open-circuit voltage is as
shown in Fig. 5.9b. Since there is no current in the 2-k� resistor and therefore no voltage
across it, is equal to the voltage across the 6-k� resistor, which can be determined by
voltage division as

The Thévenin equivalent resistance, is found from Fig. 5.9c as

Connecting this Thévenin equivalent back to the original network produces the circuit
shown in Fig. 5.9d. We can now apply Thévenin’s theorem again, and this time we break
the network to the right of the current source as shown in Fig. 5.9e. In this case is

Voc2
= A2 * 10-3B(4k) + 8 = 16 V

Voc2

RTh1
= 2k +

(3k)(6k)

3k + 6k
= 4 k�

RTh1
˚,

Voc1
= 12 a 6k

6k + 3k
b = 8 V

Voc1

Voc1

Vo

RTh1

(d)

8 V

2 mA

8 k�

4 k�4 k�

Vo

+

–

(c)

2 mA

3 k�

6 k�

2 k�

±
–

(f)

4 k�

RTh2

(e)

4 k�

8 V Voc2

+

–

±
–

(g)

16 V 8 k�

4 k�4 k�

Vo

+

–

±
–

(a)

2 k�3 k� 4 k�

8 k�6 k�12 V Vo

2 mA

+

–

±
–

(b)

3 k� 2 k�

6 k�12 V Voc1

+

–

±
–

Figure 5.9

Circuits used in Example 5.7.

SOLUTION

EXAMPLE

5.7
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and obtained from Fig. 5.9f is 4 k�. Connecting this Thévenin equivalent to the
remainder of the network produces the circuit shown in Fig. 5.9g. Simple voltage division
applied to this final network yields Norton’s theorem can be applied in a similar
manner to solve this network; however, we save that solution as an exercise.

Vo = 8 V.

RTh2

It is instructive to examine the use of Thévenin’s and Norton’s theorems in the solution of
the network in Fig. 5.4a, which is redrawn in Fig. 5.10a.

If we break the network at the 6-k� load, the open-circuit voltage is found from Fig. 5.10b.
The equations for the mesh currents are

and

from which we easily obtain Then, using KVL, is

is derived from Fig. 5.10c and is

Attaching the Thévenin equivalent to the load produces the network in Fig. 5.10d. Then
using voltage division, we obtain

In applying Norton’s theorem to this problem, we must find the short-circuit current
shown in Fig. 5.10e. At this point the quick-thinking reader stops immediately! Three mesh
equations applied to the original circuit will immediately lead to the solution, but the three
mesh equations in the circuit in Fig. 5.10e will provide only part of the answer, specifi-
cally the short-circuit current. Sometimes the use of the theorems is more complicated than
a straightforward attack using node or loop analysis. This would appear to be one of those
situations. Interestingly, it is not. We can find from the network in Fig. 5.10e without using
the mesh equations. The technique is simple, but a little tricky, and so we ignore it at this time.
Having said all these things, let us now finish what we have started. The mesh equations for
the network in Fig. 5.10e are

 2k˚AIsc - 2 * 10-3B + 4k˚AIsc - I1B = 0

 -6 + 4k˚AI1 - IscB + 2k˚AI1 - 2 * 10-3B = 0

Isc

 =

48

7
 V

 Vo =

32

3
 °

6k

6k +

10

3
k
¢

RTh = (2k��4k) + 2k =

10

3
 k�

RTh

 =

32

3
 V

 = 4k a 5

3
* 10-3 b + 2kA2 * 10-3B

 Voc = 4kI1 + 2kI2

VocI1 = 5�3 mA.

I2 = 2 * 10-3

-6 + 4kI1 + 2kAI1 - I2B = 0

SOLUTION

EXAMPLE

5.8
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where we have incorporated the fact that Solving these equations yields
has already been determined in the Thévenin analysis. Connecting the

Norton equivalent to the load results in the circuit in Fig. 5.10f. Solving this circuit yields
Vo = 48�7 V.

RThIsc = 16�5 mA.
I2 = 2 * 10-3 A.

2 mA

Vo

+

–

2 k�

4 k�

2 k�

6 k�

–
±6 V

(a)

2 mA

Voc

+

–

2 k�

4 k�

2 k�

±
–6 V I1

I2

(b)

2 mA

Isc
2 k�

4 k�

2 k�

±
–6 V I1

I2

(e) (f)

Vo

+

–

6 k�— k�
10
3

— mA16
5

RTh
2 k�

4 k�

2 k�

(c) (d)

±
– Vo

+

–

6 k�— V32
3

— k�
10
3

Figure 5.10

Circuits used in Example 5.8.
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E5.8 Find Vo in Fig. E5.8 using Thévenin’s theorem.

Figure E5.8

ANSWER: V0 � 3.88 V.

2 k�6 k�

3 k� 1 k�

6 k�

Vo

+

–

8 mA
12 V

2 mA

+–

E5.9 Find I0 in Fig. E5.9 using Norton’s theorem.

Figure E5.9

ANSWER: I0 � �0.857 mA.

3 k�

2 k�

3 k�

6 k�

2 mA
12 V

8 V

6 k�

-
+

4 k�

10 V

-
+

-
+

I0

E5.6 Use Thévenin’s theorem to find in the network in Fig. E5.6.Vo

Learning Assessments
ANSWER: Vo � �3V.

E5.7 Find Vo in the circuit in Fig. E5.6 using both Thévenin’s and Norton’s theorems. When
deriving the Norton equivalent circuit, break the network to the left of the 4-k� resistor. Why?

Vo

+

–

6 k�

3 k�

12 V

4 k�±
–

-
+

2 k�

6 V

Figure E5.6

ANSWER: Vo =

4

3
 V.
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Solving the equations for yields Knowing we can compute the cur-
rents and Their values are

Therefore,

and

 =

14

15
 k�

 RTh =

1

Io

 =

15

14
 mA

 Io = I1 + I2 + I3

 I3 =

1

2k
=

1

2
 mA

 I2 =

1 - 2Vx

1k
=

1

7
 mA

 I1 =

Vx

1k
=

3

7
 mA

I3˚.I1˚, I2˚,
Vx˚,Vx = 3�7 V.Vx

CIRCUITS CONTAINING ONLY DEPENDENT SOURCES As we have stated earlier,
the Thévenin or Norton equivalent of a network containing only dependent sources is 
The following examples will serve to illustrate how to determine this Thévenin equivalent
resistance.

RTh˚.

We wish to determine the Thévenin equivalent of the network in Fig. 5.11a at the terminals
A-B.

2 k� 1 k� A

B

1 k�

2Vx

Vx

1 k� 2 k�±
–

+–

(a)

2 k� 1 k� A

B

1 k�

2Vx

Vx

1 k� 1 V2 k�±
–

+–

(b)

±
–

±

–

I1

I3

Io
V1

I2

Figure 5.11

Networks employed in Example 5.9.

Our approach to this problem will be to apply a 1-V source at the terminals as shown in
Fig. 5.11b and then compute the current Io and RTh � 1/Io.

The equations for the network in Fig. 5.11b are as follows. KVL around the outer loop
specifies that

V1 � Vx � 1

The KCL equation at the node labeled is

V1

1k
+

V1 - 2Vx

2k
+

V1 - 1

1k
= 0

V1

SOLUTION

EXAMPLE

5.9
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Let us determine at the terminals A-B for the network in Fig. 5.12a.

Our approach to this problem will be to apply a 1-mA current source at the terminals A-B and
compute the terminal voltage as shown in Fig. 5.12b. Then 

The node equations for the network are

and

Solving these equations yields

and hence,

 =

10

7
 k�

 RTh =

V2

1 * 10-3

V2 =

10

7
 V

Ix =

V1

1k

 
V2 - V1

3k
+

V2

2k
= 1 * 10-3

 
V1 - 2000Ix

2k
+

V1

1k
+

V1 - V2

3k
= 0

RTh = V2�0.001.V2

RTh

SOLUTION

2 k� 3 k�

2 k� 3 k� A

B

2000Ix

V1 V2

1 k�

1 mA

2 k�±
–

(b)

Ix

2000Ix

Ix

A

B

1 k� 2 k�±
–

(a)

Figure 5.12

Networks used
in Example 5.10.

CIRCUITS CONTAINING BOTH INDEPENDENT AND DEPENDENT SOURCES In
these types of circuits we must calculate both the open-circuit voltage and short-circuit cur-
rent to calculate the Thévenin equivalent resistance. Furthermore, we must remember that we
cannot split the dependent source and its controlling variable when we break the network to
find the Thévenin or Norton equivalent.

We now illustrate this technique with a circuit containing a current-controlled voltage source.

Let us use Thévenin’s theorem to find in the network in Fig. 5.13a.

To begin, we break the network at points A-B. Could we break it just to the right of the 12-V
source? No! Why? The open-circuit voltage is calculated from the network in Fig. 5.13b.
Note that we now use the source because this circuit is different from that in
Fig. 5.13a. KCL for the supernode around the 12-V source is

AVoc + 12B - A-2000Iœ

xB
1k

+

Voc + 12

2k
+

Voc

2k
= 0

2000Ix
œ

Vo

SOLUTION

EXAMPLE

5.10

EXAMPLE

5.11
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where

yielding .
can be calculated from the circuit in Fig. 5.13c. Note that the presence of the short

circuit forces to zero and, therefore, the network is reduced to that shown in Fig. 5.13d.
Therefore,

Then

Connecting the Thévenin equivalent circuit to the remainder of the network at terminals
A-B produces the circuit in Fig. 5.13e. At this point, simple voltage division yields

Vo = (-6) °
1k

1k + 1k +

1

3
k
¢ =

-18

7
 V

RTh =

Voc

Isc
=

1

3
 k�

Isc =

-12

2

3
k

= -18 mA

Ifl

x

Isc

Voc = -6 V

Iœ

x =

Voc

2k

A

B

(a)

1 k�

12 V

1 k�

A

B

2000Ix 2 k�2 k� 1 k� Vo-
+

Ix

–±
+

–

1 k�

12 V

2000I'x 2 k�2 k� Voc-
+

(b)

–±

I'x

+

–

A

B

1 k�

12 V

2000I"x 2 k�2 k� Isc-
+

(c)

I"x

–±
A

B

2 k�1 k� Isc

(d)

12 V

–±

Vo

+

–

A

B

6 V 1 k�

1 k�

(e)

-
+

— k�
1
3

Figure 5.13

Circuits used
in Example 5.11.
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Let us find in the network in Fig. 5.14a using Thévenin’s theorem.

is determined from the network in Fig. 5.14b. Note that

and

Solving these equations yields and, hence,

is derived from the circuit in Fig. 5.14c. Note that if we collapse the short circuit, the net-
work is reduced to that in Fig. 5.14d. Although we have temporarily lost sight of we canIsc˚,
Isc

Voc = 2kI1 + 3 = 11 V

I1 = 4 mA

 Vœ

x = 4k a Vœ

x

2k
- 2 * 10-3 b

 I2 = 2 mA

 I1 =

Vœ

x

2k

Voc

Vo

(a) (b)

4 k�
6 k�

2 k�

3 V

Vo

2 mA

+

–

±
–

Vx
2000

Vx– +

4 k�

2 k�

3 V

Voc

2 mA

+

–

±
–

V'x
2000

V'x

I1

– +

I2

(c)

4 k�

2 k�

3 V

Isc

2 mA ±
–

V"x
2000

V"x I3– +

(d)

-
+

I3

2 mA

4 k�

2 k� 3 V

V"x
2000
—

——

—

V"x– +

Vo

+

–

(e)

+
- 6 k�

2 k�

11 V

Figure 5.14   

Circuits used
in Example 5.12.

SOLUTION

EXAMPLE

5.12
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easily find the branch currents and they, in turn, will yield KCL at the node at the bot-
tom left of the network is

or

Then since

as shown in Fig. 5.14c,

Then

Connecting the Thévenin equivalent circuit to the remainder of the original network pro-
duces the circuit in Fig. 5.14e. Simple voltage division yields

 =

33

4
 V

 Vo = 11 a 6k

2k + 6k
b

RTh =

Voc

Isc
= 2 k�

 =

11

2
 mA

 Isc =

Vfl

x

2000
+ I3

I3 =

3

2k
=

3

2
 mA

Vfl

x = 8 V

Vfl

x

4k
=

Vfl

x

2000
- 2 * 10-3

Isc˚.

We will now reexamine a problem that was solved earlier using both nodal and loop analy-
ses. The circuit used in Examples 3.10 and 3.20 is redrawn in Fig. 5.15a. Since a depend-
ent source is present, we will have to find the open-circuit voltage and the short-circuit 
current in order to employ Thévenin’s theorem to determine the output voltage 

As we begin the analysis, we note that the circuit can be somewhat simplified by first form-
ing a Thévenin equivalent for the leftmost and rightmost branches. Note that these two
branches are in parallel and neither branch contains the control variable. Thus, we can sim-
plify the network by reducing these two branches to one via a Thévenin equivalent. For the
circuit shown in Fig. 5.15b, the open-circuit voltage is

And the Thévenin equivalent resistance at the terminals, obtained by looking into the ter-
minals with the sources made zero, is

The resultant Thévenin equivalent circuit is now connected to the remaining portion of the
circuit producing the network in Fig. 5.15c.

Now we break the network shown in Fig. 5.15c at the output terminals to determine the
open-circuit voltage as shown in Fig. 5.15d. Because of the presence of the voltage
sources, we will use a nodal analysis to find the open-circuit voltage with the help of a
supernode. The node equations for this network are

 
V1 - 6

1k
+

V1 - 2Vœ

x

1k
=

2

k

 V1 = 3Vœ

x

Voc2

RTh1
= 1 k�

Voc1
=

2

k
 (1k) + 4 = 6 V

Vo˚.

SOLUTION

EXAMPLE

5.13

irwin05-189-244hr2.qxd  22-07-2010  9:47  Page 209



210 C H A P T E R  5 A D D I T I O N A L  A N A LY S I S  T E C H N I Q U E S

(a)

1 k�

1 k� 1 k�

4 V1 k� ±
–

2Vx

Vx

+

–

Vo

+

–

— A2
k

— A2
k

(b)

1 k�

4 V±
–

Voc1

+

–

— A2
k

6 V ±
–

(c)

1 k�

1 k�

1 k�1 k�

2Vx

Vx

+

–

Vo

+

–

— A2
k

±
–

±
–

6 V ±
–

(d)

1 k�

1 k�1 k�

2V'x

V'x

+

–

— A2
k

±
– Voc2

V1

+

–

1 k�

1 k�

2 V Vo

+

–

±
–

(g)

6 V ±
–

(e)

1 k�

1 k�1 k�

2V"x

V"x

+

–

— A2
k

±
– Isc2

(f)

0 A

6 V 2 V 6 V

6 V

2
k
— A

2
k
— A

Isc2
=— A2

k

2
k
— A

4
k
— A

Figure 5.15

Circuits used in Example 5.13.
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and thus and Then, the open-circuit voltage, obtained using the KVL
equation

is

The short-circuit current is derived from the network shown in Fig. 5.15e. Once again we
employ the supernode, and the network equations are

The node voltages obtained from these equations are and The line
diagram shown in Fig. 5.15f displays the node voltages and the resultant branch currents.
(Node voltages are shown in the circles, and branch currents are identified with arrows.)
The node voltages and resistors are used to compute the resistor currents, while the remain-
ing currents are derived by KCL. As indicated, the short-circuit current is

Then, the Thévenin equivalent resistance is

The Thévenin equivalent circuit now consists of a 2-V source in series with a resistor.
Connecting this Thévenin equivalent circuit to the load resistor yields the network shown in
Fig. 5.15g. A simple voltage divider indicates that Vo = 1 V.

1-k�

RTh2
=

Voc2

Isc2

= 1 k�

Isc2
= 2 mA

V2 = 6 V.Vfl

x = 2 V

 
V2 - 6

1k
+

V2 - 2Vfl

x

1k
=

2

k

 V2 = 3Vfl

x

Voc2
= 2 V

-2V œ

x + Voc2
+

2

k
 (1k) = 0

V1 = 6 V.Vœ

x = 2 V

Step 1. Remove the load and find the voltage across the open-circuit terminals, All
the circuit analysis techniques presented here can be used to compute this voltage.

Step 2. Determine the Thévenin equivalent resistance of the network at the open
terminals with the load removed. Three different types of circuits may be
encountered in determining the resistance, 
(a) If the circuit contains only independent sources, they are made zero by

replacing the voltage sources with short circuits and the current sources with
open circuits. is then found by computing the resistance of the purely
resistive network at the open terminals.

(b) If the circuit contains only dependent sources, an independent voltage
or current source is applied at the open terminals and the corresponding
current or voltage at these terminals is measured. The voltage/current ratio
at the terminals is the Thévenin equivalent resistance. Since there is no
energy source, the open-circuit voltage is zero in this case.

(c) If the circuit contains both independent and dependent sources, the 
open-circuit terminals are shorted and the short-circuit current between
these terminals is determined. The ratio of the open-circuit voltage to the
short-circuit current is the resistance 

Step 3. If the load is now connected to the Thévenin equivalent circuit, consisting of
in series with the desired solution can be obtained.

The problem-solving strategy for Norton’s theorem is essentially the same as that for
Thévenin’s theorem with the exception that we are dealing with the short-circuit current
instead of the open-circuit voltage.

RTh˚,Voc

RTh˚.

RTh

RTh˚.

Voc˚. Applying Thévenin’s
Theorem

Problem-Solving Strategy
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E5.10 Find in the circuit in Fig. E5.10 using Thévenin’s theorem.Vo

Learning Assessment 
ANSWER: Vo =

36

13
 V.

-
+

Vo6 k�

4 k�

4 k�

12 V

+

–

±
–

Vx
2
—

Vx+ –

Figure E5.10 

E5.11 Find in Fig. E5.11 using Thévenin’s theorem.Vo

Figure E5.11

ANSWER: V0 � 6.29 V.

2 k�

3 k� 1 k�6 k� Vo

IX

4 kIx

+

–

8 mA

2 mA

-+

E5.13 Find the Thévenin equivalent of the network at terminals A � B in Fig. E5.13.

Figure E5.13

ANSWER: RTh � 1619 �.

A

B

3 k�

2 k� 2 k�

1 k�

Vx +–

Vx
2000
—

E5.12 Use Thévenin’s theorem to find the power supplied by the 12-V source in Fig. E5.12.

Figure E5.12

ANSWER: 8.73 mW.

2 k�6 k�

3 k� 1 k�

6 k�

8 mA

12 V

2 mA

+–
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Having examined the use of Thévenin’s and Norton’s theorems in a variety of different
types of circuits, it is instructive to look at yet one other aspect of these theorems that we find
useful in circuit analysis and design. This additional aspect can be gleaned from the Thévenin
equivalent and Norton equivalent circuits.

The relationships specified in Fig. 5.7 and Eq. (5.5) have special significance because they
represent what is called a source transformation or source exchange. What these relationships
tell us is that if we have embedded within a network a current source i in parallel with a resistor
R, we can replace this combination with a voltage source of value v=iR in series with the
resistor R. The reverse is also true; that is, a voltage source v in series with a resistor R can
be replaced with a current source of value i=v/R in parallel with the resistor R. Parameters
within the circuit (e.g., an output voltage) are unchanged under these transformations.

We must emphasize that the two equivalent circuits in Fig. 5.7 are equivalent only at the
two external nodes. For example, if we disconnect circuit B from both networks in Fig. 5.7,
the equivalent circuit in Fig. 5.7b dissipates power, but the one in Fig. 5.7a does not.

We will now demonstrate how to find in the circuit in Fig. 5.16a using the repeated appli-
cation of source transformation.

If we begin at the left end of the network in Fig. 5.16a, the series combination of the 12-V
source and 3-k� resistor is converted to a 4-mA current source in parallel with the 3-k�
resistor. If we combine this 3-k� resistor with the 6-k� resistor, we obtain the circuit in
Fig. 5.16b. Note that at this point we have eliminated one circuit element. Continuing the
reduction, we convert the 4-mA source and 2-k� resistor into an 8-V source in series with
this same 2-k� resistor. The two 2-k� resistors that are in series are now combined to
produce the network in Fig. 5.16c. If we now convert the combination of the 8-V source and
4-k� resistor into a 2-mA source in parallel with the 4-k� resistor and combine the result-
ing current source with the other 2-mA source, we arrive at the circuit shown in Fig. 5.16d.
At this point, we can simply apply current division to the two parallel resistance paths and
obtain

and hence,

The reader is encouraged to consider the ramifications of working this problem using any
of the other techniques we have presented.

Vo = A1 * 10-3B(8k) = 8 V

Io = A4 * 10-3B a 4k

4k + 4k + 8k
b = 1 mA

Vo

±
– Vo

+

–

8 k�8 V 2 mA

4 k� 4 k�

(c)

Io

Vo

+

–

8 k�4 k�4 mA

4 k�

(d)

±
– Vo

+

–

2 k�

6 k� 8 k�12 V 2 mA

3 k� 4 k�

(a)

Vo

+

–

2 k�

2 k� 8 k�2 mA4 mA

4 k�

(b)

Figure 5.16

Circuits used in
Example 5.14.

SOLUTION

EXAMPLE

5.14
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At this point let us pause for a moment and reflect on what we have learned; that is, let us
compare the use of node or loop analysis with that of the theorems discussed in this chapter.
When we examine a network for analysis, one of the first things we should do is count the
number of nodes and loops. Next we consider the number of sources. For example, are there
a number of voltage sources or current sources present in the network? All these data, together
with the information that we expect to glean from the network, give a basis for selecting the
simplest approach. With the current level of computational power available to us, we can solve
the node or loop equations that define the network in a flash.

With regard to the theorems, we have found that in some cases the theorems do not neces-
sarily simplify the problem and a straightforward attack using node or loop analysis is as good
an approach as any. This is a valid point provided that we are simply looking for some partic-
ular voltage or current. However, the real value of the theorems is the insight and understand-
ing that they provide about the physical nature of the network. For example, superposition 
tells us what each source contributes to the quantity under investigation. However, a computer
solution of the node or loop equations does not tell us the effect of changing certain parameter
values in the circuit. It does not help us understand the concept of loading a network or the ram-
ifications of interconnecting networks or the idea of matching a network for maximum power
transfer. The theorems help us to understand the effect of using a transducer at the input of an
amplifier with a given input resistance. They help us explain the effect of a load, such as a
speaker, at the output of an amplifier. We derive none of this information from a node or loop
analysis. In fact, as a simple example, suppose that a network at a specific pair of terminals has
a Thévenin equivalent circuit consisting of a voltage source in series with a 2-k� resistor. If we
connect a 2-� resistor to the network at these terminals, the voltage across the 2-� resistor will
be essentially nothing. This result is fairly obvious using the Thévenin theorem approach; how-
ever, a node or loop analysis gives us no clue as to why we have obtained this result.

We have studied networks containing only dependent sources. This is a very important
topic because all electronic devices, such as transistors, are modeled in this fashion. Motors
in power systems are also modeled in this way. We use these amplification devices for many
different purposes, such as speed control for automobiles.

In addition, it is interesting to note that when we employ source transformation as we did
in Example 5.14, we are simply converting back and forth between a Thévenin equivalent cir-
cuit and a Norton equivalent circuit.

Note that this systematic, sometimes tedious, transformation allows us to reduce the net-
work methodically to a simpler equivalent form with respect to some other circuit element.
However, we should also realize that this technique is worthless for circuits of the form
shown in Fig. 5.4. Furthermore, although applicable to networks containing dependent
sources, it is not as useful as other techniques, and care must be taken not to transform the
part of the circuit that contains the control variable.

E5.14 Find in the circuit in Fig. E5.3 using source exchange.Vo

Learning Assessment 
ANSWER: Vo =

4

3
 V.

E5.15 Find the Io in Fig. E5.15 using source transformations.

Figure E5.15

2 k�6 k�

3 k� 1 k�

6 k�

8 mA 4 mA

12 V +–

Io

ANSWER: Io � �1.94 mA.
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Finally, we have a powerful tool at our disposal that can be used to provide additional
insight and understanding for both circuit analysis and design. That tool is Microsoft Excel,
and it permits us to study the effects, on a network, of varying specific parameters. The fol-
lowing example will illustrate the simplicity of this approach.

SOLUTION

EXAMPLE

5.15
We wish to use Microsoft Excel to plot the Thévenin equivalent parameters and for
the circuit in Fig. 5.17 over the range 0 to 10 k�.Rx

RThVoc

–± -+

Voc

+

-

12 V6 V

4 k� Rx

RTh Figure 5.17

Circuit used in
Example 5.15.

The Thévenin resistance is easily found by replacing the voltage sources with short
circuits. The result is

5.7

where and are in k�. Superposition can be used effectively to find If the 12-V
source is replaced by a short circuit

Applying this same procedure for the 6-V source yields

and the total open-circuit voltage is

5.8

In Excel we wish to (1) vary between 0 and 10 k�, (2) calculate and at each 
value, and (3) plot and versus We begin by opening Excel and entering column
headings as shown in Fig. 5.18a. Next, we enter a zero in the first cell of the column at col-
umn-row location A4. To automatically fill the column with values, go to the Edit menu and
select Fill/Series to open the window shown in Fig. 5.18b, which has already been edited
appropriately for 101 data points. The result is a series of values from 0 to 10 k� in 100 �
steps. To enter Eq. (5.8), go to location B4 (right under the heading). Enter the following
text and do not forget the equal sign:

=12-6*A4/(A4+4)

This is Eq. (5.8) with replaced by the first value for which is at column-row location
A4. Similarly for enter the following expression at C4.

=4*A4/(A4+4)

To replicate the expression in cell B4 for all values, select cell B4, grab the lower right
corner of the cell, hold and drag down to cell B104, and release. Repeat for by replicating
cell C4.

To plot the data, first drag the cursor across all cells between A4 and C104. Next, from
the Insert menu, select Chart. We recommend strongly that you choose the XY (Scatter)

RTh

Rx

RTh˚,
Rx˚,Rx

Voc

Rx

Rx

Rx˚.RThVoc

RxVocRThRx

Voc = 12 - 6 c Rx

Rx + 4
d

Voc2
= 12

Voc1
= -6 c Rx

Rx + 4
d

Voc˚.RThRx

RTh = 4��Rx =

4Rx

4 + Rx

irwin05-189-244hr2.qxd  22-07-2010  9:47  Page 215



216 C H A P T E R  5 A D D I T I O N A L  A N A LY S I S  T E C H N I Q U E S

chart type. Excel will take you step by step through the basic formatting of your chart,
which, after some manipulations, might look similar to the chart in Fig. 5.18c.

5.4
Maximum Power
Transfer

In circuit analysis we are sometimes interested in determining the maximum power that can be
delivered to a load. By employing Thévenin’s theorem, we can determine the maximum power
that a circuit can supply and the manner in which to adjust the load to effect maximum power
transfer.

Suppose that we are given the circuit shown in Fig. 5.19. The power that is delivered to
the load is given by the expression

We want to determine the value of that maximizes this quantity. Hence, we differentiate
this expression with respect to and equate the derivative to zero:

which yields

In other words, maximum power transfer takes place when the load resistance 
Although this is a very important result, we have derived it using the simple network in
Fig. 5.19. However, we should recall that v and R in Fig. 5.19 could represent the Thévenin
equivalent circuit for any linear network

RL = R.

RL = R

dPload

dRL
=

AR + RLB2v˚2 - 2v˚2RLAR + RLB
AR + RLB4 = 0

RL

RL

= a v

R + RL
b 2

RLPload = i2RL

v RL

Ri

±
–

Figure 5.19

Equivalent circuit for
examining maximum power

transfer.

(a)

(b)

(c)

V
oc

(V
)

R
T

h 
(k

Ω
)

0 2.5 57.5 10

R (kΩ)

0

2.5

5

7.5

10

12.5

15

0

0.5

1

1.5

2

2.5

3

Voc
RTh

Figure 5.18

(a) The Excel spreadsheet for Example 5.15 showing the
desired column headings. (b) The Fill/Series window edited
for varying Rx and (c) the final plot of Voc and RTh.
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Let us find the value of for maximum power transfer in the network in Fig. 5.20a and the
maximum power that can be transferred to this load.

To begin, we derive the Thévenin equivalent circuit for the network exclusive of the load.
can be calculated from the circuit in Fig. 5.20b. The mesh equations for the network are

Solving these equations yields and, hence,

shown in Fig. 5.20c, is 6 k�; therefore, for maximum power trans-
fer. The maximum power transferred to the load in Fig. 5.20d is

PL = a 10

12k
b 2

(6k) =

25

6
 mW

RL = RTh = 6 k�RTh˚,

 = 10 V

 Voc = 4kI1 + 6kI2

I2 = 1�3 mA

 3kAI2 - I1B + 6kI2 + 3 = 0

 I1 = 2 * 10-3

Voc

RL

±
–

(a)

±
–

(b)

Voc+ –
RL

4 k� 6 k�

3 k�

3 V2 mA

4 k� 6 k�

3 k� 3 V2 mA

I1 I2

(c) (d)

RTh
RL=6 k�

4 k� 6 k�

6 k�

10 V
3 k�

–±

Figure 5.20

Circuits used in
Example 5.16.

SOLUTION

EXAMPLE

5.16

Let us find for maximum power transfer and the maximum power transferred to this load
in the circuit in Fig. 5.21a.

We wish to reduce the network to the form shown in Fig. 5.19. We could form the Thévenin
equivalent circuit by breaking the network at the load. However, close examination of the net-
work indicates that our analysis will be simpler if we break the network to the left of the 4-k�
resistor. When we do this, however, we must realize that for maximum power transfer

can be calculated from the network in Fig. 5.21b. Forming a supernode
around the dependent source and its connecting nodes, the KCL equation for this supernode is

Voc - 2000Iœ

x

1k + 3k
+ (-4 * 10-3) +

Voc

2k
= 0

VocRL = RTh + 4 k�.

RL

SOLUTION

EXAMPLE

5.17
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E5.16 Given the circuit in Fig. E5.16, find for maximum power transfer and the maximum
power transferred.

RL

Learning Assessment
ANSWER:

PL =

2

3
 mW.

RL = 6 k�;

+-

6 V

6 k� 12 k�

2 k�

RL

Figure E5.16

2 k� RL
4 mA

1 k� 4 k�

3 k�

2000 Ix

(a)

–+

Ix

Isc4 mA

1 k�

3 k�

(d)

8 V

2 k� 4 k�

RL=6 k�

(e)

+
–

2 k� Isc
4 mA

1 k�

3 k�

2000 I"x

(c)

–+

I"x

Voc

+

–

2 k�

(b)

4 mA

1 k�

3 k�

2000 I'x

–+

I'x

Figure 5.21
Circuits used in
Example 5.17.

where

These equations yield Voc � 8 V. The short-circuit current can be found from the network in
Fig. 5.21c. It is here that we find the advantage of breaking the network to the left of the 4-k�
resistor. The short circuit shorts the 2-k� resistor and, therefore, Hence, the circuit
is reduced to that in Fig. 5.21d, where clearly Then

Connecting the Thévenin equivalent to the remainder of the original circuit produces the
network in Fig. 5.21e. For maximum power transfer and the
maximum power transferred is

PL = a 8

12k
b 2

(6k) =

8

3
 mW

RL = RTh + 4 k� = 6 k�,

RTh =

Voc

Isc
= 2 k�

Isc = 4 mA.
Ifl

x = 0.

Iœ

x =

Voc

2k
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Given the network in Fig. 5.22 with and let us graphically examine a
variety of aspects of maximum power transfer by plotting the parameters and
the efficiency as a function of the resistor ratio 

The parameters to be plotted can be determined by simple circuit analysis techniques. By
voltage division

From Ohm’s law

The input and output powers are

Pin = IVin =

V2
in

R1 + R2
=

25

2 + R2
˚̊ Pout = IVout = R2 c Vin

R1 + R2
d 2 = R2 c 5

2 + R2
d 2

I =

Vin

R1 + R2
=

5

2 + R2

Vout = c R2

R1 + R2
dVin = c R2

2 + R2
d (5)

R2�R1˚.= Pout�Pin

Vout˚, I, Pout˚, Pin

R1 = 2 �,Vin = 5 V

R2 Vout

+

–

R1=2 �

Vin=5 V

I

±
–

Figure 5.22

Circuit used in maximum
power transfer analysis.

E5.17 Find RL for maximum transfer and the maximum power transferred to RL in Fig E5.17.

Figure E5.17

ANSWER: 14/9 k�, 
2/7 mW.

2 k� RL2 mA12 V

3 k� 4 k�

+–

E5.18 Find RL for maximum transfer and the maximum power transferred to RL in Fig E5.18.

Figure E5.18

ANSWER: 24/13 k�,
27/26 mW.

4 k�

4 k�12 V 6 k�+– RL

Vx

2

Vx

+ –

+ –

EXAMPLE

5.18
SOLUTION
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Finally, the efficiency is

The resulting plots of the various parameters are shown in Fig. 5.23 for ranging from
to Note that as increases, increases toward (5 V) as dictated by volt-

age division. Also, the current decreases in accordance with Ohm’s law. Thus, for small val-
ues of is small, and when is large, I is small. As a result, the output power (the
product of these two parameters) has a maximum at as predicted by maximum
power transfer theory.

Maximum power does not correspond to maximum output voltage, current, or efficien-
cy. In fact, at maximum power transfer, the efficiency is always 0.5, or 50%. If you are an
electric utility supplying energy to your customers, do you want to operate at maximum
power transfer? The answer to this question is an obvious “No” because the efficiency is
only 50%. The utility would only be able to charge its customers for one-half of the energy
produced. It is not uncommon for a large electric utility to spend billions of dollars every
year to produce electricity. The electric utility is more interested in operating at maximum
efficiency.

R2�R1 = 1
R2VoutR2˚,

VinVoutR210R1˚.0.1R1

R2

efficiency =

Pout

Pin
=

R2

R1 + R2
=

R2

2 + R2

0

1

2

3

4

5

0 2 4 6 8 10
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Current

M
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Figure 5.23

Maximum power transfer
parameter plots for the

network in Fig. 5.22. (The
units for voltage, current,

and power have volts,
amperes, and watts,

respectively.)

APPLICATION
EXAMPLE 5.19

On Monday afternoon, Connie suddenly remembers that she has a term paper due Tuesday
morning. When she sits at her computer to start typing, she discovers that the computer
mouse doesn’t work. After disassembly and some inspection, she finds that the mouse con-
tains a printed circuit board that is powered by a 5-V supply contained inside the computer
case. Furthermore, the board is found to contain several resistors, some op-amps, and one
unidentifiable device, which is connected directly to the computer’s 5-V supply as shown in
Fig. 5.24a. Using a voltmeter to measure the node voltages, Connie confirms that all resis-

5.5
Application
Example
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tors and op-amps are functioning properly and the power supply voltage reaches the mouse
board. However, without knowing the mystery device’s function within the circuit, she can-
not determine its condition. A phone call to the manufacturer reveals that the device is
indeed linear but is also proprietary. With some persuasion, the manufacturer’s representa-
tive agrees that if Connie can find the Thévenin equivalent circuit for the element at nodes
A-B with the computer on, he will tell her if it is functioning properly. Armed with a single
1-k� resistor and a voltmeter, Connie attacks the problem.

To find the Thévenin equivalent for the unknown device, together with the 5-V source,
Connie first isolates nodes A and B from the rest of the devices on the board to measure the
open-circuit voltage. The resulting voltmeter reading is VAB � 2.4 V. Thus, the Thévenin
equivalent voltage is 2.4 V. Then she connects the 1-k� resistor at nodes A-B as shown in
Fig. 5.24b. The voltmeter reading is now Using voltage division to express 
in terms of and in Fig. 5.24b yields the expression

0.8 = VTh a 1k

1k + RTh
b

RtestRTh,VTh˚,
VABVAB = 0.8 V.

±
–

Unknown
element

V=5 V

A

B

(a)

±
–

A

B

RTh

VTh Rtest=1 k� VAB=0.8 V

(b)

±
–

A

B

RTh=2 k�

VTh=2.4 V

(c)

Figure 5.24

Network used in
Example 5.19.

Solving the equations for we obtain

Therefore, the unknown device and the 5-V source can be represented at the terminals A-B
by the Thévenin equivalent circuit shown in Fig. 5.24c. When Connie phones the manufac-
turer with the data, the representative informs her that the device has indeed failed.

RTh = 2.0 k�

RTh˚,

We often find that in the use of electronic equipment, there is a need to adjust some quan-
tity such as voltage, frequency, contrast, or the like. For very accurate adjustments, it is most
convenient if coarse and fine-tuning can be separately adjusted. Therefore, let us design a
circuit in which two inputs (i.e., coarse and fine voltages) are combined to produce a new
voltage of the form

Because the equation to be realized is the sum of two terms, the solution appears to be an
excellent application for superposition. Since the gain factors in the equation (i.e., 1/2 and 1/20)

Vtune = c 1
2
dVcoarse + c 1

20
dVfine

SOLUTION

SOLUTION

DESIGN
EXAMPLE 5.20
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are both less than one, a voltage divider with two inputs would appear to be a logical choice.
A typical circuit for this application is shown in Fig. 5.25a. The two superposition subcircuits
are shown in Figs. 5.25b and c. Employing voltage division in the network in Fig. 5.25b
yields

and therefore,

In a similar manner, we find that

which requires that
R2 = 19AR��R1B

Vtune_F

Vfine
= c R��R1

AR��R1B + R2

d =

1

20

R��R2 = R1

Vtune_C

Vcoarse
= c R��R2

AR��R2B + R1

d =

1

2

±
–

±
–

R1 R2

R Vtune

VcoarseVcoarse Vfine
+

-

(a)

±
–

R1

R2RVtune_C

+

-

(b)

Vfine±
–

R2

R1 R Vtune_F

+

-

(c)

Figure 5.25

(a) The coarse/fine adjust-
ment circuit, (b) with Vfine

set to zero and (c) with
Vcoarse set to zero.

Note that the two constraint equations for the resistors have three unknowns— and
Thus, we must choose one resistor value and then solve for the two remaining values.

If we arbitrarily select then and This completes the
design of the circuit. This example indicates that superposition is not only a useful analysis
tool but provides insight into the design of new circuits.

R2 = 9 k�.R1 = 900 �R = 1 k�,
R2˚.

R, R1,

Coaxial cable is often used in very-high-frequency systems. For example, it is commonly
used for signal transmission with cable television. In these systems resistance matching, the
kind we use for maximum power transfer, is critical. In the laboratory, a common apparatus
used in high-frequency research and development is the attenuator pad. The attenuator pad
is basically a voltage divider, but the equivalent resistance at both its input ports is careful-
ly designed for resistance matching. Given the network in Fig. 5.26 in which a source, mod-
eled by and drives an attenuator pad, which is connected to an equivalent load.(50 �),RSVS

DESIGN
EXAMPLE 5.21

•

±
–

R2RS

50 �

R2

R1VS Vout

RL

50 �

+

-

Attenuator pad

RTh-in RTh-out

Figure 5.26

The model circuit for the
attenuator pad design.
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Let us design the pad so that it has an equivalent resistance of and divides (i.e., atten-
uates) the input voltage by a factor of 10.

Since the attenuator or “T-Network” must have an equivalent resistance of we require
that and be Since these Thévenin resistance values are the same and the
circuit is symmetric, we can use the label twice to indicate that those resistors will be
the same value.

Since the equations are identical, we refer to both Thévenin equivalent resistance parame-
ters simply as The Thévenin equivalent voltage, can be easily derived from the cir-
cuit in Fig. 5.27 a using voltage division.

VTh = VS c R1

R1 + R2 + 50
d

VTh˚,RTh˚.

 RTh-out = R2 + CR1��AR2 + 50B D = 50

 RTh-in = R2 + CR1��AR2 + 50B D = 50

R2

50 �.RTh-outRTh-in

50 �,

50 �

±
– VTh

+

-

+

-

VThR1

RTh

RThR2R2

50 �

RS

VS
±
– VoutRL

50 �

(a) (b)

Figure 5.27

(a) The circuit used in
finding VTh and (b) the
resulting model.

From the Thévenin equivalent circuit in Fig. 5.27b, we find

Combining these equations yields the attenuation from to 

The Thévenin equivalent resistance equation and this attenuation equation provide us
with two equations in the two unknowns and Solving these equations yields

and For precise resistance matching, these resistors must be
very accurate.

With such low resistor values, the power dissipation can become significant as is
increased. For example, if and the power dissipated in the resis-
tor connected to the input source is 333 mW. To keep the temperature of that resistor at rea-
sonable levels, the power rating of that resistor should be at least 0.5 W.

R2VS = 10 V, Vout = 1 V
VS

R2 = 33.33 �.R1 = 20.83 �
R2˚.R1

Vout

VS
= cVout

VTh
d cVTh

VS
d =

1

2
 c R1

R1 + R2 + 50
d =

1

10

VoutVS

Vout = VTh c 50

RTh + 50
d =

VTh

2

Let us design a circuit that will realize the following equation:

An examination of this equation indicates that we need to add two terms, one of which is
from a voltage source and the other from a current source. Since the terms have negative
signs, it would appear that the use of an inverting op-amp stage would be useful. Thus, one
possible circuit for this application appears to be that shown in Fig. 5.28.

Vo = -3VS - 2000IS

SOLUTION

•
DESIGN
EXAMPLE 5.22

SOLUTION
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The Norton equivalent circuit at the terminals A-B will provide a composite view of the
op-amp’s input. Superposition can also be used in conjunction with the Norton equivalent
to simplify the analysis. Using the network in Fig. 5.29a, we can determine the contribution
of to the short-circuit current, which we call 

Isc1
=

VS

R1

Isc1
.Isc˚,VS

±
–

-
+

Vo

+

-

B

R2

R1

VS

IS

A

±
–

AR1 R1

VS ISIsc1

B

A

Isc2

B

(a)

AR1

RTh

B

(c)(b)

Figure 5.28

Circuit used in
Example 5.25.

Figure 5.29

Circuits used in deriving a
Norton equivalent circuit.

In a similar manner, using Fig. 5.29b, we find that the contribution of to the short-circuit
current is

Employing superposition, the sum of these two currents yields the actual short-circuit current

The Thévenin equivalent resistance at nodes A-B is obtained from the network in Fig. 5.29c as

The equivalent circuit is now redrawn in Fig. 5.30 where we have employed the ideal op-
amp conditions (i.e., ), and the current into the op-amp terminals is zero. Since 
is directly across the current in this resistor is also zero. Hence, all the current will
flow through producing the voltage

A comparison of this equation with the design requirement specifies that

which yields Combining a 1- and a 2- resistor in parallel will yield the
necessary exactly.667 �

k�k �R1 = 667 �.

R2

R1
= 3 and R2 = 2000 �

Vo = -R2 c VS

R1
+ IS d = - 

R2

R1
 VS - IS˚R2

R2˚,
IscRTh˚,

VinVin = 0

RTh = R1

Isc =

VS

R1
+ IS

Isc2
= IS

IS
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-
+

Vo

+
+
-

-

R2

0 A

0 A
Isc

Isc
RTh

Vin=0 V

Figure 5.30

The required circuit
containing the Norton
equivalent.

Fans are frequently needed to keep electronic circuits cool. They vary in size, power require-
ment, input voltage, and air-flow rate. In a particular application, three fans are connected in
parallel to a 24-V source as shown in Fig. 5.31. A number of tests were run on this configura-
tion, and it was found that the air flow, fan current, and input voltage are related by the follow-
ing equations:

where represents the air-flow rate in cubic feet per minute, is the fan voltage in volts,
and is the fan current in amperes. Note that fan current is related to fan speed, which in
turn is related to air flow. A popular and inexpensive method for monitoring currents in appli-
cations where high accuracy is not critical involves placing a low-value sense resistor in
series with the fan to “sense” the current by measuring the sense-resistor’s voltage.

IF

VFFCFM

FCFM = 200IF  VF = 100IF

SOLUTION

DESIGN
EXAMPLE 5.23

±
– VF

IF

24 V

+

-

Figure 5.31

A trio of 24-V fans.

We wish to design a circuit that will measure the air flow in this three-fan system.
Specifically, we want to

a. determine the value of the sense resistor, placed in series with each fan, such that its
voltage is 2% of the nominal 24-V fan voltage, and specify a particular 1% component
that can be obtained from the Digikey Corporation (Website: www.digikey.com).

b. design an op-amp circuit that will produce an output voltage proportional to total air
flow, in which 1 V corresponds to 50 CFM.

The fan’s voltage–current relationship specifies that each fan has a resistance of 
Since the voltage across the sense resistor should be 2% of 24 V, or 0.48 V, the fan current,
derived from the network in Fig. 5.32, is

and the required value of the sense resistor is

Rsense =

0.48

0.2352
= 2.04 �

IF =

24 - 0.48

100
= 235.2 mA

100 �.
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The power dissipation in this component is only

And thus a standard 1/4 W 2- resistor will satisfy the specifications.
The op-amp circuit must be capable of adding the air-flow contributions of all three fans

and scaling the result such that 1 V corresponds to 50 CFM. A summing op-amp circuit
would appear to be a logical choice in this situation, and thus we select the circuit shown in
Fig. 5.33 where the second stage is simply an inverter that corrects for the negative sign result-
ing from the summer output. In order to determine the summer’s gain, we calculate the
volts/CFM at the sense resistors. For a single fan, the air flow is

And the volts per CFM at the input to the summer are

Hence, the gain of the summer op-amp must be

This is a gain close to 2, and therefore we will use resistors that produce a 2:1 ratio, that is,
very close to 1.96. At this point, one additional consideration must be addressed. Note that
the resistors at the summer input are essentially connected in parallel with the sense resistors.
To ensure that all the fan current flows in the sense resistors, we select very large values for
the op-amp resistors. Let us choose and then R4 = 200 k�.R1 = R2 = R3 = 100 k�

Vo

Vsense
=

1 V�50 CFM

0.0102 V�CFM
= 1.96 V�V

0.48 V

47.04 CFM
= 0.0102 V�CFM

FCFM = 200IF = 47.04 CFM

�

Psense = I2
F˚Rsense = 0.11 W

±
–24 V

VF

IF

100 �
+

-

Vsense
0.48 V 

Rsense 

+

-

Figure 5.32

The equivalent circuit
for one fan and its sense

resistor.

±
–

VF

IF

24 V

+

-

VsenseRsense

+

-

Vo

+

-

-
+ -

+

R1

R2

R3

R4

R5

R6

Figure 5.33

The complete air-flow
measurement system.

Finally, the values for and can be somewhat arbitrary, as long as they are equal. If we
select a value of then only two different resistor values are needed for the entire
op-amp circuit.

100 k�,
R6R5
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Is=12 mA

2 k� Vo

+

–
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S U M M A R Y

■ Linearity: This property requires both additivity and
homogeneity. Using this property, we can determine the
voltage or current somewhere in a network by assuming
a specific value for the variable and then determining what
source value is required to produce it. The ratio of the
specified source value to that computed from the assumed
value of the variable, together with the assumed value of
the variable, can be used to obtain a solution.

■ In a linear network containing multiple independent
sources, the principle of superposition allows us to compute
any current or voltage in the network as the algebraic sum
of the individual contributions of each source acting alone.

■ Superposition is a linear property and does not apply to
nonlinear functions such as power.

■ Using Thévenin’s theorem, we can replace some portion of
a network at a pair of terminals with a voltage source in
series with a resistor is the open-circuit voltage at

the terminals, and is the Thévenin equivalent resistance
obtained by looking into the terminals with all independent
sources made zero.

■ Using Norton’s theorem, we can replace some portion of a
network at a pair of terminals with a current source in
parallel with a resistor is the short-circuit current at
the terminals, and is the Thévenin equivalent resistance.

■ Source transformation permits us to replace a voltage
source V in series with a resistance R by a current source
I � V/R in parallel with the resistance R. The reverse is also
true. This is an interchange relationship between Thévenin
and Norton equivalent circuits.

■ Maximum power transfer can be achieved by selecting
the load to be equal to found by looking into the
network from the load terminals.

RThRL

RTh

IscRTh˚.
Isc

RTh

VocRTh˚.
Voc

•

P R O B L E M S
•

5.1 Use linearity and the assumption that Vo � 1 V to find
the actual value of Vo in Fig. P5.1.

4 k�

2 k�4 k�

3 k�

6 k�

6 k�
Io

Vs = 24 V
+
–

2 k� 2 k�

4 k�
2 k�2 k�2 k�

Io

12 mA

5.4 Find in the circuit in Fig. P5.4 using linearity and the
assumption that 

Figure P5.4

5.5 Find in the network in Fig. P5.5 using linearity and the
assumption that  

Figure P5.5

5.6 Find in the network in Fig. P5.6 using 
superposition.

Figure P5.6

6 k� 3 k�

3 k�

Io

2 mA2 k�6 V +
–

Io

3 k� 3 k� 3 k�

6 k�
3 k�3 k�8 V 3 k�

I3

I3

Vo

I1 I2

V2 V4

+
–

––

+

–

++

Vo = 1 V.
Vo

12 k�

4 k� 4 k� 4 k�

4 k� 2 k�

Io

4 mA

Io = 1 mA.
Io

Figure P5.1

5.2 Using linearity and the assumption that Io � 1 mA, find
the actual value of Io in the network use Fig. P5.2.

5.3 Find in the network in Fig. P5.3 using linearity and the
assumption that Io = 1 mA.

Io

Figure P5.2

Figure P5.3
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6 k� 6 k�

6 k�

Io

6 mA6 k�12 V +
–

Figure P5.7

3 k� 8 k�

2 k�

Vo

2 mA6 k�12 V
+
–

+ –

Figure P5.8

4 k�

2 k�

6 k� 8 k�

4 k�

Vo

6 mA 4 mA

+ –

Figure P5.9

5.7 In the network in Fig. P5.7 find using 
superposition.

Io

5.8 Find in the network in Fig. P5.8 using superposition.Vo

5.9 Find Vo in the network in Fig. P.5.9 using superposition.

5.12 Find Vo in the circuit in Fig. P5.12 using superposition.

5.13 Find Vo in the circuit in Fig. P5.13 using superposition.

2 k�

2 k� 2 k� 2 k�

6 mA12 V

Vo+ –

+–

Figure P5.12

5.14 Find Io in the circuit in Fig. P5.14 using superposition.

2 k�

4 k�

4 k�

2 k� 2 k�

4 mA6 mA
Vo

+

–

Figure P5.13

5.15 Find Vo in the circuit in Fig. P5.15 using superposition.

6 k�

6 k�

6 k� 6 k�

6 mA12 V +
–

Io

Figure P5.14

6 k�

6 k�

12 V

6 mA

Vo

+

–

6 k�

6 k�+
–

Figure P5.15

5.10 Find Vo in the network in Fig. P5.10 using superposition.

6 k�

6 k� 12 V

6 k� 6 k�

6 k�

Vo

6 mA

+ –

+
–

Figure P5.10

5.11 Find Io in the network in Fig. P5.11 using superposition.

2 k�

2 k�

4 k� 4 k�

6 mA12 V +
–

IoFigure P5.11
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5.16 Find Io in the circuit in Fig. P5.16 using superposition.

6 k�

6 k�

6 k�

6 k�

6 mA

12 V 6 V

+– +–

Io

Figure P5.16

5.17 Use superposition to find Io in the circuit in Fig. P5.17.

6 mA

6 k� 6 k�

6 k� 6 k�

12 mA

12 V +
–

Io

Figure P5.17

5.18 Use superposition to find Io in the network in Fig. P5.18.

6 k�

6 mA 4 mA

6 k� 6 k�

6 k�

Io

Figure P5.18

5.19 Use superposition to find Vo in the circuit in Fig. P5.19.

3 k�

12 V 6 V

3 k� 3 k�

3 k�

+
–

+
–

Vo

+

–

Figure P5.19

5.20 Use superposition to find Vo in the network in Fig. P5.20.

6 k�

6 k�12 V 6 V

6 mA

6 k�

6 k� 6 k�

+
–

+
–

Vo

+

–

Figure P5.20

5.21 Use superposition to find Io in the circuit in Fig. P5.21.

6 k�

6 k� 6 k�12 V

6 mA 4 mA

6 k�

12 k�

+
–

Io

Figure P5.21

5.22 Use superposition to find Io in the network in Fig. P5.22.

4 k�

6 V

12 V 6 mA

3 k�

6 k�

+
–

+
–

Io

Figure P5.22

5.23 Use superposition to find Vo in the circuit in Fig. P5.23.

12 V 6 mA

3 k�

3 k� 3 k�

3 k�

+
–

Vo

+

–

Figure P5.23
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5.30 Use superposition to find in the circuit in Fig. P5.30.Io

5.28 Find in the circuit in Fig. P5.28 using superposition.Vo

5.29 Use superposition to find in the network in Fig. P5.29.Io

–+ +–

2 k� 1 k�

2 k� 1 k�1 k�

6 V

12 V

4 mA

Vo

+

–

Figure P5.28

4 mA

6 mA

2 k�
4 k�

2 mA

12 k�

Io

4 k�

Figure P5.29

5.31 Use superposition to find in the circuit in Fig. P5.31.Io

6 V

12 V

6 k�2 k�

12 V 4 k�

3 k�
2 mA

+
–

Io

–+

–
+

Figure P5.30

Io

2 k�3 k�

4 mA

12 V

2 mA

4 k�

6 k�

6 k�

–
+

Figure P5.31

5.24 Find VA in Fig. P5.24 using superposition.

2 k� 4 k� 2 k�

2 k�10 mA
2 mA

5 k�

10 V +
–

VA

+

–

Figure P5.24

5.25 Find I1 in Fig. P5.25 using superposition.

I1

12 V 16 V

8 V

4 k�

8 k�

2 k�

4 k�

6 k�

2 k�

–
+

–
+

–
+

Figure P5.25

5.26 Use superposition to calculate Ix in Fig. P5.26.

Ix

12 V 24 V

12 k�

4 k�

2 mA

6 k�

–
+

–+

Figure P5.26

5.27 Calculate Vo in Fig. P5.27 using superposition.

6 k�

6 mA

4 k� 10 k�

10 k�
2 k�

12 V 18 V+
–

+
–

Vo+ –

Figure P5.27
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5.33 Use Thévenin’s theorem to find Io in the circuit using 
Fig. P5.33.

5.35 Use Thévenin’s theorem to find Vo in the circuit in 
Fig. P5.35.
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3 k� 3 k�

4 k�

6 k� 6 k�

6 mA

6 V +
–

Vo

+

–

Figure P5.35

5.32 Use Thévenin’s theorem to find in the network in
Fig. P5.32.

Vo

Vo

+

–

4 k�2 k� 2 k�

12 V6 V

–+ – +

Figure P5.32

5.36 Use Thévenin’s theorem to find Io in the network in 
Fig. P5.36.

2 k�

1 k� 1 k�

4 mA

6 mA2 mA

Io

Figure P5.36

2 k�

2 k�

4 k� 4 k�

6 mA12 V +
–

Io

Figure P5.33

5.34 Use Thévenin’s theorem to find Vo in the circuit using
Fig. P5.34.

2 k�

2 k� 2 k� 2 k�

6 mA

12 V

Vo+ –

+–

Figure P5.34

5.37 Find Io in the network in Fig. P5.37 using Thevenin’s 
theorem.

1 k�

1 k� 2 k�

4 mA 2 mA6 V+
–

Io

Figure P5.37

5.38 Find Vo in the circuit in Fig. P5.38 using Thévenin’s 
theorem.

2 k�

2 k�

1 k�

1 k�4 mA

12 V

Vo

+

–

+–

Figure P5.38

5.39 Find Vo in the circuit in Fig. P5.39 using Thévenin’s 
theorem.

12 V

2 mA

2 k�

1 k�

1 k�

2 k�

+
–

Vo

+

–

Figure P5.39
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5.40 Find Io in the circuit in Fig. P5.40 using Thévenin’s 
theorem.

5.44 Calculate Ix in Fig. P5.44 using Thévenin’s theorem.5.41 Find Vo in the network in Fig. P5.41 using Thévenin’s
theorem.

5.42 Find Io in the network in Fig. P5.42 using Thévenin’s 
theorem.

5.43 Use Thévenin’s theorem to find Io in Fig. P5.43.

12 V

4 mA

1 k�

1 k�

2 k�

2 k� Vo

+

–

+
–

Figure P5.41

6 V

12 V

2 k�

1 k�

1 k�

2 k�

+– +
–

Io

Figure P5.42

5.45 Find in the network in Fig. P5.45 using Thévenin’s
theorem.

Io

I0

12 V 8 V 16 V

4 k�
2 mA

4 k�2 k�

2 k�

–
+

–
+

–
+

Figure P5.43

Ix

12 V 24 V

12 k�

2 mA

4 k�6 k�

–
+ –

+

Figure P5.44

Io

6 V 2 mA

1 k�

1 mA 1 k�

1 k�–
+

Figure P5.45

12 V

2 mA

2 k�

1 k�

2 k�

1 k�

+
–

Io

Figure P5.40
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5.46 Find Vo in the network in Fig. P5.46 using Thévenin’s
theorem.

1 mA 2 mA

2 mA 6 V

0.5 k�0.5 k�

1 k�

1 k�

Vo+ –

+
–

Figure P5.46

5.47 Use Thévenin’s theorem to find in the network in
Fig. P5.47.

Io

2 mA

2 mA

24 V 2 k�

4 k�

6 k�

3 k�

Io

+
–

Figure P5.47

5.48 Use Thévenin’s theorem to find in the circuit in 
Fig. P5.48.

Io

5.49 Given the linear circuit in Fig. P5.49, it is known that
when a 2-kΩ load is connected to the terminals A–B, the
load current is 10 mA. If a 10-kΩ load is connected to
the terminals, the load current is 6 mA. Find the current
in a 20-kΩ load.

5.50 If an 8-kΩ load is connected to the terminals of the
network in Fig. P5.50, � 16 Ω. If a 2-kΩ load is
connected to the terminals, . Find if a 
20-kΩ load is connected to the terminals.

VABVAB = 8 V
VAB

2 mA 1 mA 3 k�

4 k�

4 k�6 k�6 k�

6 k�

18 V

Io

– +

Figure P5.48

RTh

Voc

A

B

±
–

Figure P5.49

A

B

Linear
circuit

Figure P5.50

5.51 Find in the network in Fig. P5.51 using Norton’s 
theorem.

Io

12 V 3 k� 1 mA 3 k�

3 k�6 k�

Io

±
–

Figure P5.51

5.52 Use Norton’s theorem to find Io in the circuit in 
Fig. P5.52.

2 k� 4 mA

12 V

4 k�

4 k�

2 k�

2 k�

Io

–+

Figure P5.52
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5.55 Use Norton’s theorem to find in the circuit in 
Fig. P5.55.

Io

1 k� 1 k� 1 k�

2 V

4 V4 k�

2 mA

+
–

Io

–+

Figure P5.55

5.57 Use Norton’s theorem to find Io in the network in
Fig. P5.57.

5.58 Use Norton’s theorem to find in the circuit in 
Fig. P5.58.

Io

2 mA

2 mA

24 V 2 k�

4 k�

6 k�

3 k�

Io

+
–

Figure P5.57

2 mA 1 mA 3 k�

4 k�

4 k�6 k�6 k�

6 k�

18 V

Io

– +

Figure P5.58

5.56 Find in the circuit in Fig. P5.56 using Norton’s
theorem.

Vo

–+ +–

2 k� 1 k�

2 k� 1 k�1 k�

6 V

12 V

4 mA

Vo

+

–

Figure P5.56

2 k�

2 mA

2 k�4 k�

4 k�

24 V +
– Vo

+

–

Figure P5.54

5.54 Use Norton’s theorem to find Vo in the network 
in Fig. P5.54.

5.59 Find in the network in Fig. P5.59 using Thévenin’s
theorem.

Vo

5.60 Use Thévenin’s theorem to find in the circuit in 
Fig. P5.60.

Vo

Vo

+

–

2 VA
4 k�

2 k�12 V 4 k�+–

+–
VA+ –

Figure P5.59

2 Ix

Ix

Vo

+

–

6 V

2 k�

1 k�1 k�

– +

Figure P5.60

2 k�

2 k� 4 k�

6 k� 3 k�

12 V

Io

+
–

Figure P5.53

5.53 Find Io in the network in Fig. P5.53 using Norton’s
theorem.
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5.62 Use Thévenin’s theorem to find Vo in the circuit in 
Fig. P5.62.

5.61 Use Thévenin’s theorem to find in the circuit in 
Fig. P5.61.

Io

8 k�

12 V

12 k�

4 k� 2 Vx

Io

4 k�

2 k�

+
–

+
– Vx

+

–

Figure P5.61

2 Ix

1 k�

1 k�1 k�1 k�

12 V

Vo

+

–Ix

– +

Figure P5.62

5.64 Find in the network in Fig. P5.64 using Thévenin’s
theorem.

Vo

5.65 Use Norton’s theorem to find in the network in 
Fig. P5.65.

Vo

3 V 1 mA

1000 Ix

Ix

6 k� 1 k�

2 k� 2 k�
+
–

Vo

+

–

–+

Figure P5.64

2000 Ix
4 k�6 k�

2 k� 4 k�6 V 3 mA Vo

+

–Ix

+–

+–

Figure P5.65

5.66 Find in the circuit in Fig. P5.66 using Thévenin’s
theorem.

Vo

6 V 12 V
Vx

1000
–––––

4 k�4 k� 2 k�

2 k�Vx

+

–

Vo+ –

+
–

+
–

Figure P5.66

5.67 Find Vo in the network in Fig. P5.67 using Thévenin’s
theorem.

12 V 2 mA

1 k�

1 k� 2 Ix

1 k�

+
–

Vo

+

–

Ix

Figure P5.67

5.68 Use Thévenin’s theorem to find Vo in the circuit in 
Fig. P5.68.

4 mA

6 V

–+

+–

2 Vx Vo

+

–

Vx

+

–

1 k�

1 k� 1 k�

Figure P5.68

5.63 Find Io in the circuit in Fig. P5.63 using Thévenin’s
theorem.

12 V

Io

1 k�

1 k�

2 Vx2 k�+
–

Vx+ –

–+

Figure P5.63
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5.74 Find in the network in Fig. P5.74 using Thévenin’s
theorem.

Vo

5.73 Find in the circuit in Fig. P5.73 using Thévenin’s
theorem.

Vo

1 k�

1 k�

1 k� 1 k�

1 k�

2 mA

12 V

Ix

Vo

+

–

2 Ix

+
–

Figure P5.73

1 k�2 k�

2 mA
2 k�

1 k�12 V Vo

+

–

Vx

2 Vx

+

–

+
– +

–

1 k�

Figure P5.74

5.70 Use Thévenin’s theorem to find Vo in the network in 
Fig. P5.70.

3 k�

1 k�

3 k�1 mA

Vo

+

–

2 k�

Vx
4000––––

Vx

+

–

Figure P5.71

5.72 Find in the network in Fig. P5.72 using Thévenin’s
theorem.

Io

Io

1 k�

2 k�

1 k�1 k�

1 k�4 V 2 V+
–

+
–

+
–

Vx

2 Vx

+

–

Figure P5.72

5.69 Use Thévenin’s theorem to find Vo in the circuit in 
Fig. P5.69.

4 mA

2 mA

12 V

–+

+–

2 Vx Vo

+

–

Vx

+

–

1 k� 1 k� 1 k�

1 k�1 k�

Figure P5.69

4 mA 2 mA

12 V

–+

+–

2 Vx

Vo

+

–

Vx

+

–

1 k�1 k� 1 k�

1 k� 1 k�

Figure P5.70

5.71 Find in the network in Fig. P5.71 using Norton’s
theorem.

Vo

5.75 Find in the network of Fig. P5.75 using Thévenin’s
theorem.

Vo

1 k�1 k�

1 k�1 k�

2 k�

2 k� 1 k�1 mA

4 mA

Vo

Vx
+

–

2 Vx
1000

–––––

– +

Figure P5.75
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5.76 Use Thévenin’s theorem to find I2 in the circuit in 
Fig. P5.76.

12 � 5 A

6 �
7 �

9 �

3 �

12 V

VA 2VA

+

–

+
–

+
–

I2

IA

4IA

Figure P5.76

5.77 Use Thévenin’s theorem to find Vo in the circuit in
Fig. P5.77.

1 � 2 A

8 � 5 �

2 �

2 � 4 �

9 V

2VA

VA +–

+
–

+
–

IA

3IA Vo

+

–

Figure P5.77

5.78 Use Thévenin’s theorem to find in the network in 
Fig. P5.78.

Io

1 k�

1 k�

1 k�

2 k�

Vx

2 Vx
2 V

6 V

Io

+

–

+
–

+
–

+–

1 k�

Figure P5.78

5.79 Use Thévenin’s theorem to find in the network 
in Fig. P5.79.

Vo

2 mA

1 k�

1 k� 1 k�

1 k� 1 k� 1 k�

4 V 6 V Vo

+

–Ix

2 Ix

+
–

+
–

Figure P5.79

5.80 Find the Thévenin equivalent of the network in 
Fig. P5.80 at the terminals .A-B

2 k�1 k�

1 k� 1 k�
Vx

1000

A

B

Vx

+

–

Figure P5.80

5.81 Find the Thévenin equivalent of the network in 
Fig. P5.81 at the terminals .A-B

1 k�

2 k�2 k�1 k�

Ix

1000 Ix

+– A

B

Figure p5.81

5.82 Find the Thévenin equivalent circuit of the network in 
Fig. P5.82 at the terminals A–B.

12 �

6 �
7 �

9 �

3 � 5 �

VA 2 VA

+

–

+
–

IA

4 IA

A B

Figure P5.82
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5.83 Find the Thévenin equivalent of the network below at the
terminals A-B in Fig. P5.83.

1 k� 1 k� 1 k�

1 k� A

B

2 Ix

Ix

Figure P5.83

4 k�

12 k�

6 k�2 mA

6 V

24 VVo

+

-

+
–

– +

Figure P5.85

5.85 Use source transformation to find in the network 
in Fig. P5.85.

Vo

3 k�

9 k�

3 k�4 k�12 k�

6 k�
4 mA

6 V+
–

Io

Figure P5.86

4 k�

3 k�

6 k� 2 k�

12 V

6 V Vo

+

–

+
–

+
–

Figure P5.87

5.86 Find in the network in Fig. P5.86 using source
transformation.

Io

5.87 Find in the network in Fig. P5.87 using source 
transformation.

Vo

2 k�

6 k�4 k�

2 k� 3 V2 mA

6 V

Io

+
–

– +

Figure P5.88

4 k�3 k�3 k�

3 k� 12 k� 12 k�2 mA 6 V+
–

Vo+ –

Figure P5.89

5.89 Find in the network in Fig. P5.89 using source
transformation.

Vo

5.88 Use source transformation to find in the network in
Fig. P5.88.

Io

5.84 Find Io in the network in Fig. P5.84 using Thévenin’s
theorem.

6 V 2 mA

2Vx

Vx+ –

+
–

+
–

Io

Ix

4Ix

1 k� 1 k�

1 k�

1 k�

Figure P5.84

5.90 Find in the network in Fig. P5.90 using source
transformation.

Io

4 k�3 k�

12 k�3 k� 2 mA 12 V4 mA

4 mA

+
–

Io

Figure P5.90
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5.92 Use source exchange to find Io in the network in 
Fig. P5.92.

20 mA 6 k�

3 k�

4 k�

6 V

8 V

Io

6 k�

3 k�

12 k�

– +

–+

Figure P5.92

5.95 Use source exchange to find Io in the circuit in Fig. P5.95.

2 mA

6 k�

2 k�

12 k� 12 k�
1 k� 1 k�

6 V

8 V

24 V

2 k�

2 k�

2 k�

Io

–+

+
–

+
–

Figure P5.95

5.93 Use a combination of Y–Δ transformation source trans-
formation to find Io in the circuit in Fig. P5.93.

2 mA

6 k�

4 k�

4 k� 3 k�6 k�

6 k�

6 k�

4 k�

4 k�

6 k�
6 V

6 V

Io

– +

–+

Figure P5.93

5.94 Find Vo in the network in Fig. P5.94 using source
exchange.

V0

2 mA2 k�

1 k�

6 k�

12 V

12 V 4 mA6 k� 2 k�2 k�

2 k�

2 k�

+

–

+
–

+
–

Figure P5.94

6 k�

6 k� 3 k�

4 k�

3 k�

3 k�3 k�2 mA

6 V

12 V

+
–

Io

+–

Figure P5.91

5.91 Find in the circuit in Fig. P5.91 using source
transformation.

Io

5.96 Use source exchange to find Io in the network in 
Fig. P5.96.

2 mA

4 k� 8 k�

4 k� 8 k�

2 k� 3 k� 2 k�

2 k�

4 V 12 V8 k�

6 k� 12 k�

12 k�

I0

+
– +

–

Figure P5.96
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2 mA

1 mA
3 k�

8 k�

6 k�

Io

2 k�

Figure P5.100

Io

2 k�3 k�

4 mA

12 V

2 mA

4 k�

6 k�

6 k�

–
+

Figure P5.101

5.100 Using source transformation, find in the circuit in
Fig. P5.100.

Io

5.101 Use source transformation to find in the circuit
in Fig. P5.101.

Io

4 mA

6 mA

2 k�
4 k�

2 mA

12 k�

Io

4 k�

Figure P5.102

5.102 Using source transformation, find in the 
network in Fig. P5.102.

Io

6 k� 6 k�

3 k�

3 k�

6 k�

12 k�

2 mA

12 V +
–

Io

Figure P5.98

5.98 Use source transformation to find in the network
in Fig. P5.98.

Io

2 k�

8 k�6 k�

3 k� 4 k�12 V

2 mA

+
– Vo

+

–

Figure P5.99

5.99 Using source transformation, find in the circuit
in Fig. P5.99.

Vo

5.97 Use source exchange to find Io in the network in 
Fig. P5.97.

4 mA

2 mA

3 k�

2 k�

2 k�

2 k�

2 k�

2 k�

3 k�

4 k� 3 k�

3 k�

12 V 6 V

6 k�

6 k�

4 k�

4 k� 6 k�

I0
+
–

+
–

Figure P5.97
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6 k�2 k� 6 V

12 V

2 mA

4 k�

3 k�
12 V

+
–

+
–

Io

–+

Figure P5.103

2 mA 1 mA 3 k�

4 k�

4 k�6 k�6 k�

6 k�

18 V

Io

– +

Figure P5.104

2 mA

2 mA

24 V 2 k�

4 k�

6 k�

3 k�

Io

+
–

Figure P5.105

5.103 Use source transformation to find in the circuit in
Fig. P5.103.

Io

5.104 Use source transformation to find in the circuit in
Fig. P5.104.

Io

5.105 Using source transformation, find in the circuit in 
Fig. P5.105.

Io

RL2 k� 2 k�

2 k� 2 k�

12 V+
–

Figure P5.106

5.106 Find in the network in Fig. P5.106 in order to
achieve maximum power transfer.

RL

5.108 Find for maximum power transfer and the 
maximum power that can be transferred to the load in
Fig. P5.108.

RL

5.107 In the network in Fig. P5.107 find for maximum
power transfer and the maximum power transferred to
this load.

RL

RL2 k� 4 mA 4 k�

1 k� 2 k�

Figure P5.107

RL

2 mA

6 V

2 k�

6 k�

3 k�

+
–

Figure P5.108

5.109 Calculate the maximum power that can be transferred
to RL in Fig. P5.109.

RL6 k�
2 k�

3 mA

10 k�

10 k�
6 V 9 V+– +–

Figure P5.109

5.110 Find the value of RL in Fig. P5.110 for maximum power
transfer and the maximum power that can be dissipated
in RL.

2 k�

2 k�

4 k�

4 k�

6 k�12 V 

8 V 

6 V 

RL

+
–

+
–

+
–

Figure P5.110
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5.114 Find the value of in the network in Fig. P5.114 for
maximum power transfer.

RL

5.115 Find the value of RL in Fig. P5.115 for maximum power
transfer and the maximum power that can be transferred
to RL.

RL4 Vx

4 �

2 A

2 �

4 �

+
–

Vx+ –

Figure P5.114

8 � 4 �

2 A

– +

12 V

VA

2VA

RL+
–

+
–

Figure P5.115

4 k�

6 k�

12 V

4 k�

2 mA

Ix

2Ix

RL

+
–

Figure P5.117

5 �

10 �

12 V

5 �

Ix

2Ix

RL

+
–+

–

Figure P5.116

Vx

RL

0.5Vx

+

–

6 k�

12 V

3 k�

3 mA 2 k�

+
–

+
–

Figure P5.118

5.116 Find the value of Rl in Fig. P5.116 for maximum power
transfer and the maximum power that can be dissipated
in RL.

5.117 Find the value of RL in Fig. P5.117 for maximum power
transfer. In addition, calculate the power dissipated in
RL under these conditions.

5.118 Find the value of RL in Fig. P5.118 for maximum
power transfer. In addition, calculate the power dissi-
pated in RL under these conditions.

5.112 Determine the value of in the network in Fig.
P5.112 for maximum power transfer.

RL

5.113 Find for maximum power transfer and the 
maximum power that can be transferred to the load 
in Fig. P5.113.

RL

5.111 Determine the value of RL in Fig. P5.111 for maximum
power transfer. In addition, calculate the power dissipat-
ed in RL under these conditions.

15 �

20 �

20 �

30 V 20 V 10 �4 A

RL

+
–

+
–

Figure P5.111

RL100I

I

12 V

5 k�5 k�

+
–

Figure P5.112

4 Vx
1000

RL–––––

3 k�2 k�

1 k�Vx

+

–

1 mA

Figure P5.113
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Figure P5.119

2 k�

2 k� 2 k�

4 k�
1 mA

RL

Vx

+

–
2000

Vx

Figure P5.120

5.120 Find for maximum power transfer and the 
maximum power that can be transferred in the network
in Fig. P5.120.

RL

2 �

VA

8 �

9 V

2 VA

RL

2 A

IA

3 IA

1 �

2 � 4 �

–
+

±
–

±–

Figure P5.121

5.121 Find the value of RL in Fig. P5.121 for maximum power
transfer and the maximum power that can be dissipated
in RL.

5.119 Calculate the maximum power that can be transferred
to in the circuit in Fig. P5.119.RL

5.122 Solve the remaining problems using computational
methods. Find in the network in Fig. P5.122.Io

Io

6 k�

6 k� 6 k�

6 mA12 V 6 k�–
+

Figure P5.122

5.123 Find in the network in Fig. P5.123.Vo

Vo

+

–

24 V6 k�2 mA 4 k�

12 k�6 V

–+

–
+

Figure P5.123

4 �

4 �

4 �

4 �

20 V

100 V +
–

+
–

4 Vx

+–

RL

Vx

+

–

5.125 Find in the network in Fig. P5.125.Vo

5.124 Find in the circuit in Fig. P5.124.Io

Io

1 k�2 Vx

2 k�

12 V

2 mA

1 k� 1 k�2 k�

–
+

Vx

+

–

+
– Vo

+

–

Figure P5.125

2 mA 1 mA

6 k�

18 V

6 k�6 k�

Io

3 k�

4 k�

4 k�
–+

Figure P5.124
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5PFE-1 Determine the maximum power that can be delivered
to the load in the network in Fig. 5PFE-1.

a. 2 mW

b. 10 mW

c. 4 mW

d. 8 mW

RL

RL

1 k� 1 k� 1 k�

2 k�12 V 4 mA±
–

Figure 5PFE-1

•

5PFE-2 Find the value of the load in the network in 
Fig. 5PFE-2 that will achieve maximum power transfer,
and determine that value of the maximum power.

a. 22.5 mW

b. 80.4 mW

c. 64.3 mW

d. 121.5 mW

RL

RL 2Vx

2 k� 1 k�

12 V ±
–

±
–

Vx+ -

Figure 5PFE-2

RL

Ix

2Ix

3 � 12 �

12 �12 V ±
–

Figure 5PFE-3

5PFE-3 Find the value of in the network in Fig. 5PFE-3
for maximum power transfer to this load.

a. 12.92 Ω
b. 8.22 Ω
c. 6.78 Ω
d. 10.53 Ω

RL

±
–3 � 4 � 2 �

2 �

10 A 20 V

I

Figure 5PFE-4

5PFE-4 What is the current I in Fig. 5PFE-4?

a. 8 A

b. −4 A

c. 0 A

d. 4 A

±
– 2 �

4 � 3 �

12 A

a

b

12 V Voc RL

+

-

Figure 5PFE-5

5PFE-5 What is the open-circuit voltage at terminals a and
b of the circuit in Fig. 5PFE-5?

a. 8 V

b. 12 V

c. 4 V

d. 10 V

Voc

T Y P I C A L P R O B L E M S F O U N D  O N  T H E F E E X A M
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AND INDUCTANCE

245

T H E L E A R N I N G  G O A L S
F O R  T H I S C H A P T E R  A R E :

■ Know how to use circuit models for inductors
and capacitors to calculate voltage, current, 
and power

■ Be able to calculate stored energy for capacitors
and inductors

■ Understand the concepts of continuity of current
for an inductor and continuity of voltage for a 
capacitor

■ Be able to calculate voltages and currents for
capacitors and inductors in electric circuits with
dc sources

■ Know how to combine capacitors and inductors
in series and parallel

Airport Scanners To be searched or not to be searched is

never the question.  Air travelers demand security in the

skies and today’s technology makes it possible with just a

15-to-30 second body scan instead of an intrusive pat-down

that can take two to four minutes. Over 99% of airline pas-

sengers in major airports across the nation choose to use

body scanners when faced with the option. Scanners can

spot plastic and ceramic weapons and explosives that

evade metal detectors and could eventually replace metal

detectors at the nation’s 2,000 airport checkpoints.

Most travelers say they welcome any measure that

enhances safety, even if it means giving up some privacy.

Today’s new body scanners depend on millimeter wave tech-

nology or backscatter x-ray technology. The first produces an

image that resembles a fuzzy photo negative; the second a

chalk etching.  Millimeter wave technology emits 10,000

times less radio frequency than a cell phone. Backscatter

technology uses high-energy x-rays as it moves through

clothing and other materials.  In both cases, images used for

security are not retained but destroyed immediately.

This chapter introduces two new circuit elements:

capacitors and inductors that store energy in electric and

magnetic fields.  Voltage and current relationships for

these components do not follow Ohm’s law but instead

connect voltages and currents to their derivatives and

integrals. Capacitors and inductors are central to the

study of alternating current circuits. They are also key

components in making body scanners work. The circuit

designs behind effective full-body scanners help make

everyone safer in the skies.  What a feeling.

6

Courtesy of UPI/Brian Kersey/NewsCom
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6.1
Capacitors

A capacitor is a circuit element that consists of two conducting surfaces separated by a non-
conducting, or dielectric, material. A simplified capacitor and its electrical symbol are shown
in Fig. 6.1.

There are many different kinds of capacitors, and they are categorized by the type of
dielectric material used between the conducting plates. Although any good insulator can
serve as a dielectric, each type has characteristics that make it more suitable for particular
applications.

For general applications in electronic circuits (e.g., coupling between stages of amplifica-
tion), the dielectric material may be paper impregnated with oil or wax, mylar, polystyrene,
mica, glass, or ceramic.

Ceramic dielectric capacitors constructed of barium titanates have a large 
capacitance-to-volume ratio because of their high dielectric constant. Mica, glass, and ceram-
ic dielectric capacitors will operate satisfactorily at high frequencies.

Aluminum electrolytic capacitors, which consist of a pair of aluminum plates separated
by a moistened borax paste electrolyte, can provide high values of capacitance in small vol-
umes. They are typically used for filtering, bypassing, and coupling, and in power supplies
and motor-starting applications. Tantalum electrolytic capacitors have lower losses and more
stable characteristics than those of aluminum electrolytic capacitors. Fig. 6.2 shows a variety
of typical discrete capacitors.

In addition to these capacitors, which we deliberately insert in a network for specific
applications, stray capacitance is present any time there is a difference in potential between
two conducting materials separated by a dielectric. Because this stray capacitance can cause

246 C H A P T E R  6 C A P A C I T A N C E  A N D  I N D U C T A N C E

Figure 6.2

Some typical capacitors.
(Courtesy of Mark Nelms and
Jo Ann Loden)

d

Dielectric

(a)

Cq(t)v(t)

(b)

+
+

-
-

i=—
dq
dt

A

Figure 6.1

A capacitor and its
electrical symbol.

Note the use of the passive
sign convention.

[ h i n t ]
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unwanted coupling between circuits, extreme care must be exercised in the layout of elec-
tronic systems on printed circuit boards.

Capacitance is measured in coulombs per volt or farads. The unit farad (F) is named after
Michael Faraday, a famous English physicist. Capacitors may be fixed or variable and typi-
cally range from thousands of microfarads (�F) to a few picofarads (pF).

Capacitor technology, initially driven by the modern interest in electric vehicles, is rapidly
changing, however. For example, the capacitor on the left in the photograph in Fig. 6.3 is a
double-layer capacitor, which is rated at 2.5 V and 100 F. An aluminum electrolytic
capacitor, rated at 25 V and is shown on the right in this photograph. The elec-
trolytic capacitor can store 21.25 joules (J). The double-layer
capacitor can store Let’s connect ten of the 100-F capacitors in
series for an equivalent 25-V capacitor. The energy stored in this equivalent capacitor is
3125 J. We would need to connect 147 electrolytic capacitors in parallel to store that much
energy.

It is interesting to calculate the dimensions of a simple equivalent capacitor consisting of two
parallel plates each of area A, separated by a distance d as shown in Fig. 6.1. We learned in
basic physics that the capacitance of two parallel plates of area A, separated by distance d, is

where ´o , the permitivity of free space, is F/m. If we assume the plates are sep-
arated by a distance in air of the thickness of one sheet of oil-impregnated paper, which is
about m, then

and since 1 square mile is equal to square meters, the area is

A≠443 square miles

which is the area of a medium-sized city! It would now seem that the double-layer capacitor
in the photograph is much more impressive than it originally appeared. This capacitor is actu-
ally constructed using a high surface area material such as powdered carbon which is adhered
to a metal foil. There are literally millions of pieces of carbon employed to obtain the
required surface area.

Suppose now that a source is connected to the capacitor shown in Fig. 6.1; then positive
charges will be transferred to one plate and negative charges to the other. The charge on the
capacitor is proportional to the voltage across it such that

q=Cv 6.1

where C is the proportionality factor known as the capacitance of the element in farads.
The charge differential between the plates creates an electric field that stores energy.

Because of the presence of the dielectric, the conduction current that flows in the wires that
connect the capacitor to the remainder of the circuit cannot flow internally between the
plates. However, via electromagnetic field theory it can be shown that this conduction cur-
rent is equal to the displacement current that flows between the plates of the capacitor and is
present any time that an electric field or voltage varies with time.

Our primary interest is in the current–voltage terminal characteristics of the capacitor.
Since the current is

i =

dq

dt

2.59 * 106

 A = 1.148 * 109 m2

 100 F =

A8.85 * 10-12BA
1.016 * 10-4

1.016 * 10- 4

8.85 * 10- 12

C =

eo A
d

0.5 * 100 * 2.52
= 312.5 J.

0.5 * 6.8 * 10-2
* 252

=

68,000 �F, Figure 6.3

A 100-F double-layer
capacitor and a 68,000-�F
electrolytic capacitor.
(Courtesy of Mark Nelms and
Jo Ann Loden)
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then for a capacitor

which for constant capacitance is

6.2

Eq. (6.2) can be rewritten as

Now integrating this expression from t=–q to some time t and assuming v(–q)=0
yields

6.3

where v(t) indicates the time dependence of the voltage. Eq. (6.3) can be expressed as two
integrals, so that

6.4

where is the voltage due to the charge that accumulates on the capacitor from time
t=–q to time t=t0 .

The energy stored in the capacitor can be derived from the power that is delivered to the
element. This power is given by the expression

6.5

and hence the energy stored in the electric field is

6.6

since v(t=–q)=0. The expression for the energy can also be written using Eq. (6.1) as

6.7

Eqs. (6.6) and (6.7) represent the energy stored by the capacitor, which, in turn, is equal to
the work done by the source to charge the capacitor.

Now let’s consider the case of a dc voltage applied across a capacitor. From Eq. (6.2), we
see that the current flowing through the capacitor is directly proportional to the time rate of
change of the voltage across the capacitor. A dc voltage does not vary with time, so the cur-
rent flowing through the capacitor is zero. We can say that a capacitor is “an open circuit to

wC(t) =

1

2
 
q2(t)

C

 =

1

2
 Cv2(t) J

 = C3
v(t)

v(-q)
v(x) dv(x) =

1

2
 Cv2(x) 2 v(t)

v(-q)

 wC(t) = 3
t

-q

Cv(x) 
dv(x)

dx
 dx = C3

t

-q

v(x) 
dv(x)

dx
 dx

p(t) = v(t)i(t) = Cv(t) 
dv(t)

dt

vAt0B

 = v(t0) +

1

C
 3

t

t0

i(x) dx

 v(t) =

1

C
 3

t0

-q

i(x) dx +

1

C
 3

t

t0

i(x) dx

v(t) =

1

C
 3

t

-q

i(x) dx

dv =

1

C
 i dt

i = C 
dv

dt

i =

d

dt
 (Cv)
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If the charge accumulated on two parallel conductors charged to 12 V is 600 pC, what is the
capacitance of the parallel conductors?

Using Eq. (6.1), we find that

C =

Q

V
=

(600)A10-12B
12

= 50 pF

SOLUTION

EXAMPLE

6.1

dc” or “blocks dc.” Capacitors are often utilized to remove or filter out an unwanted dc volt-
age. In analyzing a circuit containing dc voltage sources and capacitors, we can replace the
capacitors with an open circuit and calculate voltages and currents in the circuit using our
many analysis tools.

Note that the power absorbed by a capacitor, given by Eq. (6.5), is directly proportional to
the time rate of change of the voltage across the capacitor. What if we had an instantaneous
change in the capacitor voltage? This would correspond to and infinite power. 
In Chapter 1, we ruled out the possibility of any sources of infinite power. Since we only have
finite power sources, the voltage across a capacitor cannot change instantaneously. This will
be a particularly helpful idea in the next chapter when we encounter circuits containing
switches. This idea of “continuity of voltage” for a capacitor tells us that the voltage across
the capacitor just after a switch moves is the same as the voltage across the capacitor just
before that switch moves.

The polarity of the voltage across a capacitor being charged is shown in Fig. 6.1b. In the
ideal case, the capacitor will hold the charge for an indefinite period of time, if the source is
removed. If at some later time an energy-absorbing device (e.g., a flash bulb) is connected
across the capacitor, a discharge current will flow from the capacitor and, therefore, the
capacitor will supply its stored energy to the device.

dv�dt = q

The voltage across a 5-�F capacitor has the waveform shown in Fig. 6.4a. Determine the
current waveform.

Note that

 = 0    8 ms � t

 =

-24

2 * 10-3
 t + 96   6 � t 6 8 ms

 v(t) =

24

6 * 10-3
 t    0 � t � 6 ms

Figure 6.4

Voltage and current wave-
forms for a

5-�F capacitor.

SOLUTION

EXAMPLE

6.2

20

i(t) (mA)

–60

0 6 t (ms)8

(b)

v(t) (V)

24 V

0 6 8 t (ms)

(a)
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Determine the energy stored in the electric field of the capacitor in Example 6.2 at t=6 ms.

Using Eq. (6.6), we have

At t=6 ms,

 = 1440 �J

 w(6 ms) =

1

2
 A5 * 10-6B(24)2

w(t) =

1

2
 Cv2(t)

EXAMPLE

6.3

The current in an initially uncharged 4-�F capacitor is shown in Fig. 6.5a. Let us derive the
waveforms for the voltage, power, and energy and compute the energy stored in the electric
field of the capacitor at t=2 ms.

The equations for the current waveform in the specific time intervals are

Since v(0)=0, the equation for v(t) in the time interval 0 � t � 2 ms is

and hence,
v(2 ms) = 103A2 * 10-3B2 = 4 mV

v(t) =

1

(4)A10-6B  3
t

0
8A10-3Bx dx = 103t2

 = 0    4 ms 6 t

 = -8 * 10-6    2 ms � t � 4 ms

 i(t) =

16 * 10-6t

2 * 10-3
   0 � t � 2 ms

EXAMPLE

6.4

Using Eq. (6.2), we find that

and

Therefore, the current waveform is as shown in Fig. 6.4b and i(t)=0 for t>8 ms.

 i(t) = 0    8 ms � t

 = -60 mA    6 � t 6 8 ms

 i(t) = 5 * 10-6A-12 * 103B   6 � t � 8 ms

 = 20 mA    0 � t � 6 ms

 = 5 * 10-6A4 * 103B    0 � t � 6 ms

 i(t) = C 
dv (t)

dt
 

SOLUTION

SOLUTION

E6.1 A 10-µF capacitor has an accumulated charge of 500 nC. Determine the voltage across the
capacitor.

Learning Assessment
ANSWER: 0.05 V.
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In the time interval 2 ms � t � 4 ms,

The waveform for the voltage is shown in Fig. 6.5b.
Since the power is p(t)=v(t)i(t), the expression for the power in the time interval

0 � t � 2 ms is p(t)=8t3. In the time interval 2 ms � t � 4 ms, the equation for the
power is

The power waveform is shown in Fig. 6.5c. Note that during the time interval 0 � t � 2 ms,
the capacitor is absorbing energy and during the interval 2 ms � t � 4 ms, it is delivering
energy.

The energy is given by the expression

w(t) = 3
t

t0

p(x) dx + wAt0B

 = 16A10-6Bt - 64A10-9B
 p(t) = -(8)A10-6B A-2t + 8 * 10-3B

 = -2t + 8 * 10-3

 v(t) =

1

(4)A10-6B  3
t

2A10-3B
- A8B A10-6Bdx + A4B A10-3B

0
Time
(ms)

Current (A)

–10

–5

5

10

15

0.5 1 1.5 2.5 3 3.5

(a)

2 4

Time
(ms)

Voltage (mV)

0

0.5

1

1.5

3

3.5

0.5 1 1.5 2 2.5 3 3.5 4

2

2.5

4

(b)

Time
(ms)

Energy (pJ)

0
0.5 1 1.5 2 2.5 3 3.5 4

5

10

15

20

25

30

35

(d)

Time
(ms)

Power (nW)

0

50

2.5 3 4

3.5

60

40
30

20

10

–10

–20

–30

(c)

0.5 1 1.5

2

Figure 6.5

Waveforms used in
Example 6.4.
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E6.2 The voltage across a 2-�F capacitor is shown in Fig. E6.2. Determine the waveform for the
capacitor current.

Figure E6.2

Learning Assessments

ANSWER:
v(t) (V)

12

0 1 2 3 4 t (ms)5 6

12

i(t) (mA)

–6
0 1 3 4 t (ms)52

6

E6.3 Compute the energy stored in the electric field of the capacitor in Learning Assessment
E6.2 at t=2 ms.

ANSWER: w=144 �J.

In the time interval 0 � t � 2 ms,

Hence,
w(2 ms)=32 pJ

In the time interval 2 � t � 4 ms,

From this expression we find that w(2 ms)=32 pJ and w(4 ms)=0. The energy wave-
form is shown in Fig. 6.5d.

 = A8 * 10-6Bt2
- A64 * 10-9Bt + 128 * 10-12

 = C A8 * 10-6Bx2
- A64 * 10-9Bx D t2 * 10-3 + 32 * 10-12

 w(t) = 3
t

2 * 10-3
C A16 * 10-6Bx - A64 * 10-9B D  dx + 32 * 10-12

w(t) = 3
t

0
8x3 dx = 2t4

E6.4 The voltage across a 5-�F capacitor is shown in Fig. E6.4. Find the waveform for the 
current in the capacitor. How much energy is stored in the capacitor at t=4 ms.

Figure E6.4

10

5

–5

v(t) (V)

t (ms)
1 2 3 4 5 6

7

8

9

10
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ANSWER: 312.5 nJ.

ANSWER: 250 �J.

Figure E6.5

t (ms)

–25

25

1 2 3

4

5 6

7

8 9 10

i(t) (mA)

t (ms)

–10

10

1

2

3

4

5 6 7 8 9 10

i(t) (�A)

t (ms)

–15

–5

–35

15

1 2 3 4 5 6 7

8

9 10

v(t) (V)

E6.5 The waveform for the current in a  1-nF capacitor is Fig. E6.5. If the capacitor has an initial
voltage of –5V, determine the waveform for the capacitor voltage. How much energy is stored in
the capacitor at t=6 ms?
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Figure 6.6

Two inductors and their 
electrical symbol

Figure 6.7
Some typical inductors.

(Courtesy of Mark Nelms
and Jo Ann Loden)

6.2
Inductors

An inductor is a circuit element that consists of a conducting wire usually in the form of a coil.
Two typical inductors and their electrical symbol are shown in Fig. 6.6. Inductors are typically
categorized by the type of core on which they are wound. For example, the core material may
be air or any nonmagnetic material, iron, or ferrite. Inductors made with air or nonmagnetic
materials are widely used in radio, television, and filter circuits. Iron-core inductors are used in
electrical power supplies and filters. Ferrite-core inductors are widely used in high-frequency
applications. Note that in contrast to the magnetic core that confines the flux, as shown in
Fig. 6.6b, the flux lines for nonmagnetic inductors extend beyond the inductor itself, as illus-
trated in Fig. 6.6a. Like stray capacitance, stray inductance can result from any element carry-
ing current surrounded by flux linkages. Fig. 6.7 shows a variety of typical inductors.

From a historical standpoint, developments that led to the mathematical model we employ
to represent the inductor are as follows. It was first shown that a current-carrying conductor
would produce a magnetic field. It was later found that the magnetic field and the current that
produced it were linearly related. Finally, it was shown that a changing magnetic field pro-
duced a voltage that was proportional to the time rate of change of the current that produced
the magnetic field; that is,

6.8

The constant of proportionality L is called the inductance and is measured in the unit henry,
named after the American inventor Joseph Henry, who discovered the relationship. As seen
in Eq. (6.8), 1 henry (H) is dimensionally equal to 1 volt-second per ampere.

Following the development of the mathematical equations for the capacitor, we find that
the expression for the current in an inductor is

6.9i(t) =

1

L
 3

t

-q

v(x) dx

v(t) = L 
di(t)

dt

v(t)

(a)

+

-

i(t)

(b) (c)

i(t)

v(t)

+

-

i(t)

Flux lines

Flux lines

L
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which can also be written as

6.10

The power delivered to the inductor can be used to derive the energy stored in the element.
This power is equal to

6.11

Therefore, the energy stored in the magnetic field is

Following the development of Eq. (6.6), we obtain

6.12

Now let’s consider the case of a dc current flowing through an inductor. From Eq. (6.8),
we see that the voltage across the inductor is directly proportional to the time rate of change
of the current flowing through the inductor. A dc current does not vary with time, so the volt-
age across the inductor is zero. We can say that an inductor is “a short circuit to dc.” In ana-
lyzing a circuit containing dc sources and inductors, we can replace any inductors with short
circuits and calculate voltages and currents in the circuit using our many analysis tools.

Note from Eq. (6.11) that an instantaneous change in inductor current would require infi-
nite power. Since we don’t have any infinite power sources, the current flowing through an
inductor cannot change instantaneously. This will be a particularly helpful idea in the next
chapter when we encounter circuits containing switches. This idea of “continuity of current”
for an inductor tells us that the current flowing through an inductor just after a switch moves
is the same as the current flowing through an inductor just before that switch moves.

wL(t) =

1

2
 Li2(t) J

wL(t) = 3
t

-q

cL 
di(x)

dx
d i(x) dx

 = cL 
di(t)

dt
d i(t)

 p(t) = v(t)i(t)

i(t) = iAt0B +

1

L
 3

t

t0

v(x) dx

EXAMPLE

6.5

Find the total energy stored in the circuit of Fig. 6.8a.

±
–

6 � 3 �

9 V 6 �

3 A

C1=20 �F C2=50 �F

L2=4 mHL1=2 mH

(a)

±
–

6 � 3 �

9 V 6 �3 A

A

(b)

IL1 IL2

VC2

+

-

VC1

+

-

Figure 6.8

Circuits used in
Example 6.5.
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The inductor, like the resistor and capacitor, is a passive element. The polarity of the volt-
age across the inductor is shown in Fig. 6.6.

Practical inductors typically range from a few microhenrys to tens of henrys. From a cir-
cuit design standpoint it is important to note that inductors cannot be easily fabricated on an
integrated circuit chip, and therefore chip designs typically employ only active electronic
devices, resistors, and capacitors that can be easily fabricated in microcircuit form.

This circuit has only dc sources. Based on our earlier discussions about capacitors and induc-
tors and constant sources, we can replace the capacitors with open circuits and the inductors
with short circuits. The resulting circuit is shown in Fig. 6.8b.

This resistive circuit can now be solved using any of the techniques we have learned in
earlier chapters. If we apply KCL at node A, we get

Applying KVL around the outside of the circuit yields

Solving these equations yields and The voltages and can
be calculated from the currents:

The total energy stored in the circuit is the sum of the energy stored in the two inductors
and two capacitors:

The total stored energy is 13.46 mJ.

 wC2 =

1

2
 A50 * 10-6B(10.8)2

= 2.92 mJ

 wC1 =

1

2
 A20 * 10-6B(16.2)2

= 2.62 mJ

 wL2 =

1

2
 A4 * 10-3B(1.8)2

= 6.48 mJ

 wL1 =

1

2
 A2 * 10-3B(-1.2)2

= 1.44 mJ

VC2 = 6IL2 = 6(1.8) = 10.8 V

VC1 = -6IL1 + 9 = 16.2 V

VC2VC1IL2 = 1.8 A.IL1 = -1.2 A

6IL1 + 3IL2 + 6IL2 = 9

IL2 = IL1 + 3

EXAMPLE

6.6
SOLUTION

The current in a 10-mH inductor has the waveform shown in Fig. 6.9a. Determine the
voltage waveform.

Using Eq. (6.8) and noting that

and
i(t)=0 4 ms<t

 i(t) =

-20 * 10-3t

2 * 10-3
+ 40 * 10-3   2 � t � 4 ms

 i(t) =

20 * 10-3t

2 * 10-3
   0 � t � 2 ms

(b)

i(t) (mA)

20

2 4 t (ms)

(a)

t (ms)

100

v(t) (mV)

–100

2 4

Figure 6.9

Current and voltage wave-
forms for a 10-mH inductor.

SOLUTION
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we find that

and

and v(t)=0 for t>4 ms. Therefore, the voltage waveform is shown in Fig. 6.9b.

 = -100 mV

 v(t) = A10 * 10-3B -20 * 10-3

2 * 10-3
  2 � t � 4 ms

 = 100 mV

 v(t) = A10 * 10-3B 20 * 10-3

2 * 10-3
  0 � t � 2 ms

The current in a 2-mH inductor is

i(t)=2 sin 377t A

Determine the voltage across the inductor and the energy stored in the inductor.

From Eq. (6.8), we have

and from Eq. (6.12),

 = 0.004 sin2
 377t J

 =

1

2
 A2 * 10-3B(2 sin 377t)2

 wL(t) =

1

2
 Li2(t)

 = 1.508 cos 377t V

 = A2 * 10-3B d

dt
 (2 sin 377t)

 v(t) = L 
di(t)

dt

The voltage across a 200-mH inductor is given by the expression

Let us derive the waveforms for the current, energy, and power.

The waveform for the voltage is shown in Fig. 6.10a. The current is derived from Eq. (6.10) as

 = 0  t 6 0
 = 5te-3t mA  t � 0

 = 5 e e-3x

-3
2 t
0

- 3 c- 
e-3x

9
 (3x + 1) d t

0
f

 = 5 e 3
t

0
e-3x dx - 33

t

0
xe-3x dx f

 i(t) =

103

200
 3

t

0
(1 - 3x)e-3x dx

 = 0  t 6 0

 v(t) = (1 - 3t)e-3tmV  t � 0

SOLUTION

EXAMPLE

6.7

SOLUTION

EXAMPLE

6.8
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A plot of the current waveform is shown in Fig. 6.10b.
The power is given by the expression

The equation for the power is plotted in Fig. 6.10c.
The expression for the energy is

This equation is plotted in Fig. 6.10d.

 = 0    t 6 0

 = 2.5t2e-6t �J   t � 0

 w(t) =

1

2
 Li2(t)

 = 0     t 6 0

 = 5t(1 - 3t)e-6t �W    t � 0

 p(t) = v(t)i(t)

1.0

0.8

0.6

0.4

0.2

0

–0.2
1.5 2 2.5 3 3.5 Time (s)

Time (s)

Voltage (mV)

0.5 1

0

0.5 1 1.5 2 2.5 3 3.5

Time (s)

Current (mA)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

–0.1

2.5 Time (s)

Power (W)

0.2
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0.1

0.05

0

–0.05
0.5

1

1.5 2

2.5

Energy (nJ)

35

25

20

15

5

10

30

0.5 1 1.5 2

40

0

(a) (b)

(c) (d)

Figure 6.10

Waveforms used in
Example 6.8.
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E6.8 The current in a 2-H inductor is shown in Fig. E6.8. Find the waveform for the inductor
voltage. How much energy is stored in the inductor at t=3 ms?

Figure E6.8

ANSWER: 25 �J.

t (ms)

–5

–10

5

1

2

3 54

6

7 8 109 11 12

i(t) (mA)

t (ms)

–5

–3.33

10

1

2

3 5

4 6

7 8 10

9

11

12

v(t) (V)

E6.6 The current in a 5-mH inductor has the waveform shown in Fig. E6.6. Compute the 
waveform for the inductor voltage.

Learning Assessments

ANSWER:

E6.7 Compute the energy stored in the magnetic field of the inductor in Learning Assesment
E6.6 at t=1.5 ms.

i(t) (mA)

10

20

0 1 2 3 4
t (ms)

t (ms)

100

v(t) (mV)

–50

0 1 2 3 4

Figure E6.6

ANSWER: W=562.5 nJ.
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E6.9 The voltage across a 0.1-H inductor is shown in Fig. E6.9. Compute the waveform for the
current in the inductor if i(0)=0.1A. How much energy is stored in the inductor at t=7 ms?

Figure E6.9

E6.10 Find the energy stored in the capacitor and inductor in Fig. E6.10.

Figure E6.10

ANSWER: 1.125 mJ.

t (ms)

–10

–5

5

10

1

2

3

4

5

6

7 8

9

10

v(t) (V)

t (ms)

–0.1

–0.25

0.2

0.1

1 2 3 4 5 6

7

8 9 10

i(t) (A)

1 H10 nF

12 V

3 k�

6 k�

8 mA

2 mA

2 k�

+
-

ANSWER: 0.72 �J, 0.5 �J.
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CAPACITOR AND INDUCTOR SPECIFICATIONS There are a couple of important parame-
ters that are used to specify capacitors and inductors. In the case of capacitors, the capac-
itance value, working voltage, and tolerance are issues that must be considered in their
application. Standard capacitor values range from a few pF to about 50 mF. Capacitors
larger than 1 F are available but will not be discussed here. Table 6.1 is a list of standard
capacitor values, which are typically given in picofarads or microfarads. Although both
smaller and larger ratings are available, the standard working voltage, or dc voltage rat-
ing, is typically between 6.3 V and 500 V. Manufacturers specify this working voltage
since it is critical to keep the applied voltage below the breakdown point of the dielec-
tric. Tolerance is an adjunct to the capacitance value and is usually listed as a percent-
age of the nominal value. Standard tolerance values are ; 5%, ; 10%, and ; 20%.
Occasionally, tolerances for single-digit pF capacitors are listed in pF. For example,
5 pF ; 0.25 pF.

The two principal inductor specifications are inductance and resistance. Standard com-
mercial inductances range from about 1 nH to around 100 mH. Larger inductances can, of
course, be custom built for a price. Table 6.2 lists the standard inductor values. The current
rating for inductors typically extends from a few dozen mA’s to about 1 A. Tolerances are
typically 5% or 10% of the specified value.

TABLE 6.1 Standard capacitor values

pF pF pF pF �F �F �F �F �F �F �F

1 10 100 1000 0.010 0.10 1.0 10 100 1000 10,000

12 120 1200 0.012 0.12 1.2 12 120 1200 12,000

1.5 15 150 1500 0.015 0.15 1.5 15 150 1500 15,000

18 180 1800 0.018 0.18 1.8 18 180 1800 18,000

2 20 200 2000 0.020 0.20 2.0 20 200 2000 20,000

22 220 2200 0.022 0.22 2.2 22 220 2200 22,000

27 270 2700 0.027 0.27 2.7 27 270 2700 27,000

3 33 330 3300 0.033 0.33 3.3 33 330 3300 33,000

4 39 390 3900 0.039 0.39 3.9 39 390 3900 39,000

5 47 470 4700 0.047 0.47 4.7 47 470 4700 47,000

6 51 510 5100 0.051 0.51 5.1 51 510 5100 51,000

7 56 560 5600 0.056 0.56 5.6 56 560 5600 56,000

8 68 680 6800 0.068 0.68 6.8 68 680 6800 68,000

9 82 820 8200 0.082 0.82 8.2 82 820 8200 82,000

TABLE 6.2 Standard inductor values

nH nH nH �H �H �H mH mH mH

1 10 100 1.0 10 100 1.0 10 100

1.2 12 120 1.2 12 120 1.2 12

1.5 15 150 1.5 15 150 1.5 15

1.8 18 180 1.8 18 180 1.8 18

2 20 200 2.0 20 200 2.0 20

2.2 22 220 2.2 22 220 2.2 22

2.7 27 270 2.7 27 270 2.7 27

3 33 330 3.3 33 330 3.3 33

4 39 390 3.9 39 390 3.9 39

5 47 470 4.7 47 470 4.7 47

6 51 510 5.1 51 510 5.1 51

7 56 560 5.6 56 560 5.6 56

8 68 680 6.8 68 680 6.8 68

9 82 820 8.2 82 820 8.2 82
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The capacitor in Fig. 6.11a is a 100-nF capacitor with a tolerance of 20%. If the voltage
waveform is as shown in Fig. 6.11b, let us graph the current waveform for the minimum and
maximum capacitor values.

The maximum capacitor value is 1.2C=120 nF, and the minimum capacitor value is
0.8C=80 nF. The maximum and minimum capacitor currents, obtained from the equation

are shown in Fig. 6.11c.

i(t) = C 
dv(t)

dt

SOLUTION

EXAMPLE

6.10

We wish to find the possible range of capacitance values for a 51-mF capacitor that has a
tolerance of 20%.

The minimum capacitor value is 0.8C=40.8 mF, and the maximum capacitor value is
1.2C=61.2 mF.

SOLUTION

EXAMPLE

6.9

As indicated in Chapter 2, wire-wound resistors are simply coils of wire, and therefore it
is only logical that inductors will have some resistance. The major difference between wire-
wound resistors and inductors is the wire material. High-resistance materials such as
Nichrome are used in resistors, and low-resistance copper is used in inductors. The resistance
of the copper wire is dependent on the length and diameter of the wire. Table 6.3 lists the
American Wire Gauge (AWG) standard wire diameters and the resulting resistance per foot
for copper wire.

TABLE 6.3 Resistance per foot of solid copper wire

AWG No. Diameter (in.) m�/ft

12 0.0808 1.59

14 0.0641 2.54

16 0.0508 4.06

18 0.0400 6.50

20 0.0320 10.4

22 0.0253 16.5

24 0.0201 26.2

26 0.0159 41.6

28 0.0126 66.2

30 0.0100 105

32 0.0080 167

34 0.0063 267

36 0.0049 428

38 0.0039 684

40 0.0031 1094
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±
–v(t)
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C

Figure 6.11

Circuit and graphs used
in Example 6.10.

The inductor in Fig. 6.12a is a 100-�H inductor with a tolerance of 10%. If the current
waveform is as shown in Fig. 6.12b, let us graph the voltage waveform for the minimum
and maximum inductor values.

The maximum inductor value is 1.1L=110 �H, and the minimum inductor value is
0.9L = 90 �H. The maximum and minimum inductor voltages, obtained from the equation

are shown in Fig. 6.12c.

v(t) = L 
di(t)

dt

SOLUTION

EXAMPLE

6.11
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SERIES CAPACITORS If a number of capacitors are connected in series, their equiva-
lent capacitance can be calculated using KVL. Consider the circuit shown in Fig. 6.13a. For
this circuit

v(t)=v1(t)+v2(t)+v3(t)+p+vN(t) 6.13

but

6.14vi(t) =

1

Ci
 3

t

t0

i(t) dt + viAt0B

(c)

i(
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 (
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A
)
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(a)

v(t)i(t) L
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-

Figure 6.12
Circuit and graphs
used in Example 6.11.

6.3
Capacitor
and Inductor
Combinations

(a)

v1(t)

vN(t)

CN

CS
C1 C2 C3v(t)

i(t) + -

- +

+

-

v2(t)
+ -

v3(t)
+ -

(b)

v(t)

i(t)

+

-

Figure 6.13

Equivalent circuit for
N series-connected

capacitors.
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Determine the equivalent capacitance and the initial voltage for the circuit shown in Fig. 6.14.

Note that these capacitors must have been charged before they were connected in series or
else the charge of each would be equal and the voltages would be in the same direction.

The equivalent capacitance is

where all capacitance values are in microfarads.
Therefore, CS=1 �F and, as seen from the figure, Note that the total

energy stored in the circuit is

However, the energy recoverable at the terminals is

 = 4.5 �J

 =

1

2
 C1 * 10-6(-3)2 D

 wCAt0B =

1

2
 CS v2(t)

 = 31 �J

 wAt0B =

1

2
 C2 * 10-6(2)2

+ 3 * 10-6(-4)2
+ 6 * 10-6(-1)2 D

vAt0B = -3 V.

1

CS
=

1

2
+

1

3
+

1

6

SOLUTION

EXAMPLE

6.12

Therefore, Eq. (6.13) can be written as follows using Eq. (6.14):

6.15

6.16

where

and

6.17

Thus, the circuit in Fig. 6.13b is equivalent to that in Fig. 6.13a under the conditions stated
previously.

It is also important to note that since the same current flows in each of the series capaci-
tors, each capacitor gains the same charge in the same time period. The voltage across each
capacitor will depend on this charge and the capacitance of the element.

1

CS
= a

N

i = 1
 
1

Ci
=

1

C1
+

1

C2
+

p
+

1

CN

vAt0B = a
N

i = 1
viAt0B

 =

1

CS
 3

t

t0

i(t) dt + vAt0B

 v(t) = a a
N

i = 1
 
1

Ci
b 3

t

t0

i(t) dt + a
N

i = 1
viAt0B

4 V3 �F

2 �F

6 �F

v(t)

+

+

-

-

2 V
+ -

1 V
+ -

Figure 6.14

Circuit containing multiple
capacitors with initial
voltages.

Capacitors in series combine
like resistors in parallel.

[ h i n t ]
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Two previously uncharged capacitors are connected in series and then charged with a 12-V
source. One capacitor is 30 �F and the other is unknown. If the voltage across the 30-�F
capacitor is 8 V, find the capacitance of the unknown capacitor.

The charge on the 30-�F capacitor is

Q=CV=(30 �F)(8 V)=240 �C

Since the same current flows in each of the series capacitors, each capacitor gains the same
charge in the same time period:

C =

Q

V
=

240 �C

4V
= 60 �F

SOLUTION

EXAMPLE

6.13

PARALLEL CAPACITORS To determine the equivalent capacitance of N capacitors
connected in parallel, we employ KCL. As can be seen from Fig. 6.15a,

6.18

6.19

where

Cp=C1+C2+C3+p+CN 6.20

 = Cp 
dv(t)

dt

 = a a
N

i = 1
Ci b  

dv(t)

dt

 = C1 
dv(t)

dt
+ C2 

dv(t)

dt
+ C3 

dv(t)

dt
+

p
+ CN 

dv(t)

dt

 i(t) = i1(t) + i2(t) + i3(t) +
p

+ iN(t)

v(t)

+

-

i1(t)

i(t)

v(t)

+

-

i(t)

C1 C2 C3 CN

i2(t) i3(t) iN(t)

(a) (b)

Cp

Figure 6.15
Equivalent circuit for

N capacitors connected
in parallel.

Determine the equivalent capacitance at terminals A-B of the circuit shown in Fig. 6.16.

 Cp = 15 �FSOLUTION

EXAMPLE

6.14

v(t)

+

-

A

B

4 �F 6 �F 2 �F 3 �F

Figure 6.16 

Circuit containing
multiple capacitors

in parallel.

Capacitors in parallel combine
like resistors in series.

[ h i n t ]

irwin06-245-295hr.qxd  9-07-2010  14:27  Page 266



S E C T I O N  6 . 3 C A P A C I T O R  A N D  I N D U C T O R  C O M B I N A T I O N S     267

E6.11 Two initially uncharged capacitors are connected as shown in Fig. E6.11. After a period
of time, the voltage reaches the value shown. Determine the value of C1.

Learning Assessments
ANSWER: C1=4 �F.

E6.12 Compute the equivalent capacitance of the network in Fig. E6.12. ANSWER: Ceq=1.5 �F.

24 V

6 V

+

-

+

-

12 �F

C1

Figure E6.11

Ceq

3 �F

2 �F 4 �F

2 �F

3 �F

12 �FFigure E6.12

E6.13 Determine CT in Fig. E6.13. ANSWER: 1.667 �F.

CT
5 �F 2 �F

8 �F

6 �F

3 �F 6 �F10 �F

6 �FA

B

6 �F4 �F

Figure E6.13

SERIES INDUCTORS If N inductors are connected in series, the equivalent inductance
of the combination can be determined as follows. Referring to Fig. 6.17a and using KVL, we
see that

v(t)=v1(t)+v2(t)+v3(t)+p+vN(t) 6.21

and therefore,

6.22

6.23 = LS 
di(t)

dt

 = a a
N

i = 1
Li b  

di(t)

dt

 v(t) = L1 
di(t)

dt
+ L2 

di(t)

dt
+ L3 

di(t)

dt
+

p
+ LN 

di(t)

dt
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where

6.24

Therefore, under this condition the network in Fig. 6.17b is equivalent to that in Fig. 6.17a.

LS = a
N

i = 1
Li = L1 + L2 +

p
+ LN

v(t)

L1

LN

L2 L3
+

+

-

-i(t) v1(t)

- +
vN(t)

+ -v2(t) + -v3(t)

v(t) LS

+

-

i(t)

(a) (b)

Figure 6.17

Equivalent circuit
for N series-connected

inductors.

Find the equivalent inductance of the circuit shown in Fig. 6.18.

The equivalent inductance of the circuit shown in Fig. 6.18 is

LS=1H+2H+4H

=7H

SOLUTION

EXAMPLE

6.15

v(t) 4 H

1 H 2 H

+

-

Figure 6.18

Circuit containing
multiple inductors.

PARALLEL INDUCTORS Consider the circuit shown in Fig. 6.19a, which contains N
parallel inductors. Using KCL, we can write

i(t)=i1(t)+i2(t)+i3(t)+p+iN(t) 6.25
However,

6.26

Substituting this expression into Eq. (6.25) yields

6.27

6.28 =

1

Lp
 3

t

t0

v(x) dx + iAt0B

 i(t) = a a
N

j = 1
 

1

Lj
b 3

t

t0

v(x) dx + a
N

j = 1
ijAt0B

ij(t) =

1

Lj
 3

t

t0

v(x) dx + ijAt0B

Inductors in series combine
like resistors in series.

[ h i n t ]
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Determine the equivalent inductance and the initial current for the circuit shown in
Fig. 6.20.

The equivalent inductance is

where all inductance values are in millihenrys:

Lp=2 mH

and the initial current is iAt0B = -1 A.

1

Lp
=

1

12
+

1

6
+

1

4

SOLUTION

EXAMPLE

6.16

where

6.29

and is equal to the current in Lp at t=t0. Thus, the circuit in Fig. 6.19b is equivalent to
that in Fig. 6.19a under the conditions stated previously.

iAt0B

1

Lp
=

1

L1
+

1

L2
+

1

L3
+

p
+

1

LN

v(t)

+

-

i1(t)

i(t)

L1

i2(t)

L2

i3(t) iN(t)

L3 LN v(t)

+

-

i(t)

Lp

(a) (b)

Figure 6.19

Equivalent circuits for
N inductors connected
in parallel.

v(t)

+

-

3 A

i(t)

12 mH

6 A

6 mH

2 A

4 mH

Figure 6.20

Circuit containing
multiple inductors with
initial currents.

The previous material indicates that capacitors combine like conductances, whereas
inductances combine like resistances.

E6.14 Determine the equivalent inductance of the network in Fig. E6.14 if all inductors 
are 6 mH.

Learning Assessment
ANSWER: 9.429 mH.

Leq

Figure E6.14

Inductors in parallel combine
like resistors in parallel.

[ h i n t ]
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E6.15 Find LT in Fig. E6.15. ANSWER: 5 mH.

LT2 mH 6 mH 4 mH12 mH
A

B

2 mH 4 mH 5 mH

2 mH 3 mH 2 mH
Figure E6.15

CHIP  CAPACITORS In Chapter 2, we briefly discussed the resistors that are used in mod-
ern electronic manufacturing. An example of these surface mount devices was shown in
Fig. 2.41, together with some typical chip capacitors. As we will indicate in the material that
follows, modern electronics employs primarily resistors and capacitors and avoids the use of
inductors when possible.

Surface-mounted chip capacitors account for the majority of capacitors used in electron-
ics assembly today. These capacitors have a large range of sizes, from as small as 10 mils on
a side up to 250 mils on a side. All ceramic chip capacitors consist of a ceramic dielectric
layer between metal plates. The properties of the ceramic and metal layers determine the type
of capacitor, its capacitance, and reliability. A cut-away view of a standard chip capacitor is
shown in Fig. 6.21. The inner metal electrodes are alternately connected to the opposing sides
of the chip where metal terminators are added. These terminators not only make connection
to the inner electrodes, but also provide a solder base for attaching these chips to printed

Ceramic dielectric

Inner electrodes (Ni/Cu)

Tin

Nickel

Copper

Figure 6.21

Cross section of a
multilayer ceramic chip

capacitor.

circuit boards. The number of alternating layers, the spacing between them, along with the
dielectric constant of the ceramic material, will determine the capacitance value.

We indicated earlier that resistors are normally manufactured in standard sizes with 
specific power ratings. Chip capacitors are also manufactured in this manner, and Table 6.4
provides a partial listing of these devices.

The standard sizes of chip capacitors are shown in Table 6.4.
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TABLE 6.4 Ceramic chip capacitor standard sizes

Size Code Size (Mils) Power Rating (Watts)

0201 20 � 10 1/20

0402 40 � 20 1/16

0603 60 � 30 1/10

0805 80 � 50 1/8

1206 120 � 60 1/4

2010 200 � 100 1/2

2512 250 � 120 1

CHIP  INDUCTORS A chip inductor consists of a miniature ceramic substrate with either
a wire wrapped around it or a thin film deposited and patterned to form a coil. They can be
encapsulated or molded with a material to protect the wire from the elements or left unpro-
tected. Chip inductors are supplied in a variety of types and values, with three typical con-
figurations that conform to the standard “chip” package widely utilized in the printed circuit
board (PCB) industry.

The first type is the precision chip inductor where copper is deposited onto the ceramic
and patterned to form a coil, as shown in Fig. 6.22.

Copper (Cu)
Termination Base

Etched
Copper
Coil

Alumina
Substrate

3 µm
Tin (Sn)
Outerplating

2 µm
Nickel (Ni)
Barrier

Figure 6.22

Precision chip inductor cross section.

Terminal
Electrode

Internal
Medium

Ferrite

E

WL

T

Figure 6.23

Ferrite chip inductor cross section

The second type is a ferrite chip inductor, which uses a series of coil patterns stacked
between ferrite layers to form a multiplayer coil as shown in Fig. 6.23.

The third type is a wire-wound open frame in which a wire is wound around a ceramic
substrate to form the inductor coil. The completed structure is shown in Fig. 6.24.

Each of these configurations displays different characteristics, with the wire-wound type
providing the highest inductance values (10 nH�4.7 uH)—and reasonable tolerances

The ferrite chip inductor gives a wide range of values (47 nH�33 uH) but has tol-
erances in the 5% range. The precision chip inductor has low inductance values
(1�100 nH) but very good tolerances (�/�0.1 nH).

(1–2%).

B

K

C

EA

F
F

G

D

Figure 6.24

Wire-wound chip inductor
cross section
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6.4
RC Operational
Amplifier Circuits

Two very important RC op-amp circuits are the differentiator and the integrator. These cir-
cuits are derived from the circuit for an inverting op-amp by replacing the resistors R1 and
R2 , respectively, by a capacitor. Consider, for example, the circuit shown in Fig. 6.25a. The
circuit equations are

However, v–=0 and i–=0. Therefore,

6.30vo(t) = -R2 C1 
dv1(t)

dt

C1 
d

dt
 Av1 - v

-
B +

vo - v
-

R2
= i

-

v–

±
–

R2

C1

v1(t)

v– i–
v± i±

vo

+

-

(a)

±
–

C2

R1

v1(t)

i–
v± i±

vo

+

-

(b)

-
+

-
+

Figure 6.25

Differentiator and integrator
operational amplifier circuits.

Thus, the output of the op-amp circuit is proportional to the derivative of the input.
The circuit equations for the op-amp configuration in Fig. 6.25b are

but since v–=0 and i–=0, the equation reduces to

or

6.31

If the capacitor is initially discharged, then vo(0)=0; hence,

6.32

Thus, the output voltage of the op-amp circuit is proportional to the integral of the input
voltage.

vo(t) =

-1

R1 C2
 3

t

0
v1(x) dx

 =

-1

R1 C2
 3

t

0
v1(x) dx + vo(0)

 vo(t) =

-1

R1 C2
 3

t

-q

v1(x) dx

v1

R1
= -C2 

dvo

dt

v1 - v
-

R1
+ C2 

d

dt
 Avo - v

-
B = i

-

The properties of the ideal
op-amp are v� � v� and
i� � i� � 0.

[ h i n t ]
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The waveform in Fig. 6.26a is applied at the input of the differentiator circuit shown in
Fig. 6.25a. If R2=1 k	 and C1=2 �F, determine the waveform at the output of the
op-amp.

Using Eq. (6.30), we find that the op-amp output is

dv1(t)/dt=(2)103 for 0 � t<5 ms, and therefore,

vo(t)=–4 V 0 � t<5 ms

dv1(t)/dt=–(2)103 for 5 � t<10 ms, and therefore,

vo(t)=4 V 5 � t<10 ms

Hence, the output waveform of the differentiator is shown in Fig. 6.26b.

 = -(2)10-3 
dv1(t)

dt

 vo(t) = -R2 C1 
dv1(t)

dt

SOLUTION

EXAMPLE

6.17

v1(t) (V)

10

t (ms)0 5 10 0 5 10 t (ms)

+4

–4

vo(t) (V)

(a) (b)

Figure 6.26

Input and output waveforms
for a differentiator circuit.

If the integrator shown in Fig. 6.25b has the parameters R1=5 k	 and C2=0.2 �F, deter-
mine the waveform at the op-amp output if the input waveform is given as in Fig. 6.27a and
the capacitor is initially discharged.

The integrator output is given by the expression

which with the given circuit parameters is

In the interval 0 � t<0.1 s, v1(t)=20 mV. Hence,

At t=0.1 s, vo(t)=–2 V. In the interval from 0.1 to 0.2 s, the integrator produces a pos-
itive slope output of 20t from vo(0.1)=–2 V to vo(0.2)=0 V. This waveform from t=0
to t=0.2 s is repeated in the interval t=0.2 to t=0.4 s, and therefore, the output wave-
form is shown in Fig. 6.27b.

 = -20t

 vo(t) = -103(20)10-3t  0 � t 6 0.1 s

vo(t) = -103

3
t

0
v1(x) dx

vo(t) =

-1

R1 C2
 3

t

0
v1(x) dx

SOLUTION

EXAMPLE

6.18
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t (s)

vo(t) (V)

0 0.1 0.2 0.3 0.4

–2

(b)

t (s)

20

v1(t) (mV)

–20

0 0.1 0.2 0.3 0.4

(a) Figure 6.27

Input and output waveforms
for an integrator circuit.

E6.16 The waveform in Fig. E6.16 is applied to the input
terminals of the op-amp differentiator circuit. Determine the
differentiator output waveform if the op-amp circuit parameters
are C1=2 F and R2=2 	.

Learning Assessment
ANSWER:

v1(t) (V)

6

0 1 2 3 4 t (s)

vo(t) (V)

1 2
3 4

24

–24
t (s)

Figure E6.16

6.5
Application
Examples

APPLICATION
EXAMPLE 6.19

In integrated circuits, wires carrying high-speed signals are closely spaced as shown by the
micrograph in Fig. 6.28. As a result, a signal on one conductor can “mysteriously” appear
on a different conductor. This phenomenon is called crosstalk. Let us examine this condi-
tion and propose some methods for reducing it.
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The origin of crosstalk is capacitance. In particular, it is undesired capacitance, often called
parasitic capacitance, that exists between wires that are closely spaced. The simple model
in Fig. 6.29 can be used to investigate crosstalk between two long parallel wires. A signal
is applied to wire 1. Capacitances and are the parasitic capacitances of the conductors
with respect to ground, while is the capacitance between the conductors. Recall that we
introduced the capacitor as two closely spaced conducting plates. If we stretch those plates
into thin wires, certainly the geometry of the conductors would change and thus the amount
of capacitance. However, we should still expect some capacitance between the wires.

C12

C2C1

Figure 6.28

SEM Image (Tom Way/
Ginger Conly. Courtesy of
International Business
Machines Corporation.
Unauthorized use not
permitted.)

±
–v1(t)

v2(t)

i12(t) i2(t)
C1 C2

C12

1
Wire

2
Wire Figure 6.29

A simple model for
investigating crosstalk.

In order to quantify the level of crosstalk, we want to know how much of the voltage on
wire 1 appears on wire 2. A nodal analysis at wire 2 yields

Solving for we find that

Integrating both sides of this equation yields

v2(t) = c C12

C12 + C2
dv1(t)

dv2(t)

dt
= c C12

C12 + C2
d  dv1(t)

dt

dv2(t)�dt,

i12(t) = C12 c dv1(t)

dt
-

dv2(t)

dt
d = i2(t) = C2 c dv2(t)

dt
d

SOLUTION
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Note that it is a simple capacitance ratio that determines how effectively is “coupled”
into wire 2. Clearly, ensuring that is much less than is the key to controlling
crosstalk. How is this done? First, we can make as small as possible by increasing the
spacing between wires. Second, we can increase by putting it closer to the ground
wiring. Unfortunately, the first option takes up more real estate, and the second one slows
down the voltage signals in wire 1. At this point, we seem to have a typical engineering
tradeoff: to improve one criterion, that is, decreased crosstalk, we must sacrifice another,
space or speed. One way to address the space issue would be to insert a ground connection
between the signal-carrying wires as shown in Fig. 6.30. However, any advantage achieved
with grounded wires must be traded off against the increase in space, since inserting
grounded wires between adjacent conductors would nearly double the width consumed
without them.

C2

C12

C2C12

v1(t)

Redrawing the circuit in Fig. 6.31 immediately indicates that wires 1 and 2 are now elec-
trically isolated and there should be no crosstalk whatsoever—a situation that is highly
unlikely. Thus, we are prompted to ask the question, “Is our model accurate enough to
model crosstalk?” A more accurate model for the crosstalk reduction scheme is shown in
Fig. 6.32 where the capacitance between signal wires 1 and 2 is no longer ignored. Once
again, we will determine the amount of crosstalk by examining the ratio 
Employing nodal analysis at wire 2 in the circuit in Fig. 6.33 yields

i12(t) = C12 c dv1(t)

dt
-

dv2(t)

dt
d = i2(t) = AC2 + C2GB c dv2(t)

dt
d

v2(t)�v1(t).

Solving for we obtain

Integrating both sides of this equation yields

Note that this result is very similar to our earlier result with the addition of the term.
Two benefits in this situation reduce crosstalk. First, is smaller because adding the
ground wire moves wires 1 and 2 farther apart. Second, makes the denominator of
the crosstalk equation bigger. If we assume that and that has been halved by the
extra spacing, we can expect the crosstalk to be reduced by a factor of roughly 4.

C12C2G = C2

C2G

C12

C2G

v2(t) = c C12

C12 + C2 + C2G
dv1(t)

dv2(t)

dt
= c C12

C12 + C2 + C2G
d  dv1(t)

dt

dv2(t)�dt,

±
–v1(t) v2(t)C1 C2

C1G C2G

Wire
1

Wire
2

Ground
wire

+

-

Figure 6.30

Use of a ground wire in the
crosstalk model.

±
–v1(t) v2(t)C1

C2C2GC1G

Wire
1

Wire
2

Ground
wire

+

-

Figure 6.31

Electrical isolation using
a ground wire in crosstalk
model.
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An excellent example of capacitor operation is the memory inside a personal computer. This
memory, called dynamic random access memory (DRAM), contains as many as 4 billion
data storage sites called cells (circa 2007). Expect this number to roughly double every 
2 years for the next decade or two. Let us examine in some detail the operation of a single
DRAM cell.

Fig. 6.34a shows a simple model for a DRAM cell. Data are stored on the cell capacitor in
true/false (or 1/0) format, where a large-capacitor voltage represents a true condition and a

±
–v1(t) v2(t)C1

C12

C2

C1G C2G

Wire
1

Wire
2

Ground
wire

+

-

Figure 6.32 

A more accurate
crosstalk model.

±
–v1(t)

C1GC1

C12

Wire
1

Wire
2

C2

i2(t)

v2(t)C2G

i12(t)

+

-

Figure 6.33 

A redrawn version of
the more accurate
crosstalk model.

APPLICATION
EXAMPLE 6.20

Cout
450 fF

Ccell
50 fF

3 V

VI/O

To
sense
amps

Cout
450 fF

Ileak
50 pA

Ccell
50 fF vcell(t)

VI/O

+

-

Ileak
50 pA

Ccell
50 fF vcell(t)

+

-

+

-

1.5 V

+

-

(a) (b) (c)

Figure 6.34

A simple circuit model
showing (a) the DRAM
memory cell, (b) the effect
of charge leakage from the
cell capacitor, and (c) cell
conditions at the beginning
of a read operation.

low voltage represents a false condition. The switch closes to allow access from the proces-
sor to the DRAM cell. Current source is an unintentional, or parasitic, current that mod-
els charge leakage from the capacitor. Another parasitic model element is the capacitance,
Cout , the capacitance of the wiring connected to the output side of the cell. Both Ileak and Cout

have enormous impacts on DRAM performance and design.
Consider storing a true condition in the cell. A high voltage of 3.0 V is applied at node

I/O and the switch is closed, causing the voltage on Ccell to quickly rise to 3.0 V. We open

Ileak

SOLUTION
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the switch and the data are stored. During the store operation the charge, energy, and number
of electrons, n, used are

Q=CV= A50*10–15 B(3)=150 fC

n=Q/q=150*10–15/ A1.6*10–19B=937,500 electrons

Once data are written, the switch opens and the capacitor begins to discharge through Ileak.
A measure of DRAM quality is the time required for the data voltage to drop by half, from
3.0 V to 1.5 V. Let us call this time tH. For the capacitor, we know

where, from Fig. 6.34b, icell(t)=–Ileak . Performing the integral yields

We know that at t=0, vcell=3 V. Thus, K=3 and the cell voltage is

6.33

Substituting t=tH and vcell AtH B=1.5 V into Eq. (6.33) and solving for tH yields
tH=15 ms. Thus, the cell data are gone in only a few milliseconds! The solution is rewrit-
ing the data before it can disappear. This technique, called refresh, is a must for all DRAM
using this one-transistor cell.

To see the effect of Cout , consider reading a fully charged Avcell=3.0 V B true condition.
The I/O line is usually precharged to half the data voltage. In this example, that would be
1.5 V as seen in Fig. 6.34c. To isolate the effect of Cout , we have removed Next, the
switch is closed. What happens next is best viewed as a conservation of charge. Just before
the switch closes, the total stored charge in the circuit is

When the switch closes, the capacitor voltages are the same (let us call it ) and the total
charge is unchanged:

QT=825 fC= Cout+ Ccell= A450*10–15+50*10–15 B
and

Thus, the change in voltage at during the read operation is only 0.15 V. A very sensitive
amplifier is required to quickly detect such a small change. In DRAMs, these amplifiers are
called sense amps. How can vcell change instantaneously when the switch closes? It cannot. In
an actual DRAM cell, a transistor, which has a small equivalent resistance, acts as the switch.
The resulting RC time constant is very small, indicating a very fast circuit. Recall that we are
not analyzing the cell’s speed—only the final voltage value, As long as the power lost in the
switch is small compared to the capacitor energy, we can be comfortable in neglecting the
switch resistance. By the way, if a false condition (zero volts) were read from the cell, then 
would drop from its precharged value of 1.5 V to 1.35 V—a negative change of 0.15 V. This
symmetric voltage change is the reason for precharging the I/O node to half the data voltage.
Review the effects of and Cout. You will find that eliminating them would greatly simplify
the refresh requirement and improve the voltage swing at node I/O when reading data. DRAM
designers earn a very good living trying to do just that.

Ileak

Vo

Vo .

VI�O

Vo = 1.65 V

VoVoVo 

Vo

QT = (1.5)(450 * 10-15) + (3)(50 * 10-15) = 825 fC

QT = Qout + Qcell = VI�O Cout + Vcell Ccell

Ileak .BA

vcell(t) = 3 -

Ileak

Ccell
 t V

vcell(t) =

1

Ccell
 3

 

 

A-IleakB  dt = - 
Ileak

Ccell
 t + K

vcell(t) =

1

Ccell
 3

 

 

icell  dt V

W =

1

2
 CV2

= (0.5)A50 * 10-15B A32B = 225 fJ
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6.6
Design Examples

DESIGN
EXAMPLE 6.21

We have all undoubtedly experienced a loss of electrical power in our office or our home.
When this happens, even for a second, we typically find that we have to reset all of our dig-
ital alarm clocks. Let’s assume that such a clock’s internal digital hardware requires a current
of 1 mA at a typical voltage level of 3.0 V, but the hardware will function properly down to
2.4 V. Under these assumptions, we wish to design a circuit that will “hold” the voltage level
for a short duration, for example, 1 second.

We know that the voltage across a capacitor cannot change instantaneously, and hence its use
appears to be viable in this situation. Thus, we model this problem using the circuit in
Fig. 6.35 where the capacitor is employed to hold the voltage and the 1-mA source represents
the 1-mA load.

As the circuit indicates, when the power fails, the capacitor must provide all the power for
the digital hardware. The load, represented by the current source, will discharge the capaci-
tor linearly in accordance with the expression

After 1 second, should be at least 2.4 V, that is, the minimum functioning voltage, and
hence

Solving this equation for C yields

Thus, from the standard capacitor values in Table 6.1, connecting three capacitors in
parallel produces . Although three capacitors in parallel will satisfy the
design requirements, this solution may require more space than is available. An alternate
solution involves the use of “double-layer capacitors” or what are known as Supercaps. 
A Web search of this topic will indicate that a company by the name of Elna America, Inc.
is a major supplier of double-layer capacitors. An investigation of their product listing
indicates that their DCK series of small coin-shaped supercaps is a possible alternative in this
situation. In particular, the DCK3R3224 supercap is a 220-mF capacitor rated at 3.3 V with
a diameter of 7 mm, or about 1/4 inch, and a thickness of 2.1 mm. Since only one of these
items is required, this is a very compact solution from a space standpoint. However, there is
yet another factor of importance and that is cost. To minimize cost, we may need to look for
yet another alternate solution.

560-�F1680 �F
560-�F

C = 1670 �F

2.4 = 3.0 -

1

C
 3

1

o
(0.001) dt

v(t)

v(t) = 3.0 -

1

C
 3

 

 

i(t) dt

Opens on 
power outages

3 V C 1-mA
load

±
–

Figure 6.35
A simple model for a
power outage ride-
through circuit.

SOLUTION
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DESIGN
EXAMPLE 6.22

Let us design an op-amp circuit in which the relationship between the output voltage and
two inputs is

In order to satisfy the output voltage equation, we must add two inputs, one of which must
be integrated. Thus, the design equation calls for an integrator and a summer as shown in
Fig. 6.36.

Using the known equations for both the integrator and summer, we can express the out-
put voltage as

vo(t) = -v2(t) c R4

R3
d - c R4

R2
d e- 

1

R1 C
 3

 

 

v1(t) dt f =

R4

R1 R2 C
 3

 

 

v1(t) dt - c R4

R3
dv2(t)

vo(t) = 53
 

 

v1(t) dt - 2v2(t)

If we now compare this equation to our design requirement, we find that the following
equalities must hold:

Note that we have five variables and two constraint equations. Thus, we have some flexi-
bility in our choice of components. First, we select a value that is neither large
nor small. If we arbitrarily select then must be and furthermore

If our third choice is then If we employ standard op-amps with
supply voltages of approximately then all currents will be less than 1 mA, which are
reasonable values.

;10 V,
R2 = 20 k	.R1 = 100 k	,

R1 R2 = 2 * 109

10 k	R3R4 = 20 k	,
C = 2 �F,

R4

R1 R2 C
= 5  R4

R3
= 2

R1 R2

R3
v1(t)

R4C

+

--
v2(t)
+

--

vo(t)

+

-

-
+

-
+

Figure 6.36

Op-amp circuit with
integrator and summer.

S U M M A R Y

■ The important (dual) relationships for capacitors and
inductors are as follows:

■ The passive sign convention is used with capacitors and
inductors.

■ In dc steady state, a capacitor looks like an open circuit and
an inductor looks like a short circuit.

 wL(t) =

1

2
 Li2(t) wC(t) =

1

2
 Cv2(t)

 p(t) = Li(t) 
di(t)

dt
 p(t) = Cv(t) 

dv(t)

dt

 i(t) =

1

L
 3

t

-q

v(x) dx v(t) =

1

C
 3

t

-q

i(x) dx

 v(t) = L 
di(t)

dt
 i(t) = C 

dv(t)

dt

 q = Cv

•

SOLUTION
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6.1 An uncharged 100-�F capacitor is charged by a constant
current of 1 mA. Find the voltage across the capacitor
after 4 s.

6.2 A 12-�F capacitor has an accumulated charge of 480 �C.
Determine the voltage across the capacitor.

6.3 A capacitor has an accumulated charge of 600 �C with 
5 V across it. What is the value of capacitance?

6.4 A 25-�F capacitor initially charged to �10 V is charged
by a constant current of 2.5 �A. Find the voltage across
the capacitor after min.

6.5 The energy that is stored in a 25-�F capacitor is w(t) �
12 sin2 377t. Find the current in the capacitor.

6.6 A capacitor is charged by a constant current of 2 mA and
results in a voltage increase of 12 V in a 10-s interval.
What is the value of the capacitance?

6.7 The current in a 100-�F capacitor is shown in Fig. P6.7.  
Determine the waveform for the voltage across the capaci-
tor if it is initially uncharged.

21
2

■ The voltage across a capacitor and the current flowing
through an inductor cannot change instantaneously.

■ Leakage resistance is present in practical capacitors.

■ When capacitors are interconnected, their equivalent
capacitance is determined as follows: capacitors in
series combine like resistors in parallel, and capacitors in
parallel combine like resistors in series.

■ When inductors are interconnected, their equivalent
inductance is determined as follows: inductors in series
combine like resistors in series, and inductors in
parallel combine like resistors in parallel.

■ RC operational amplifier circuits can be used to differentiate
or integrate an electrical signal.

P R O B L E M S
•

Figure P6.7

i(t) (mA)

t (ms)

10

0 1 2

6.8 The voltage across a 10-�F capacitor is shown in 
Fig. P6.8. Determine the waveform for the current in the
capacitor.

Figure P6.8

t (ms)

2

0

4

6

4 8 12 16

v(t) V

6.9 The voltage across a 20-�F capacitor is shown in 
Fig. P6.9. Determine the waveform for the current in the
capacitor.

Figure P6.9

6.10 Derive the waveform for the current in a 50-�F capacitor
in the voltage across the capacitor as shown in Fig. P6.10. 

Figure P6.10

6.11 If the voltage waveform across a 100-�F capacitor is
shown in Fig. P6.11, determine the waveform for the
current.

Figure P6.11

t (ms)

5

10

5 10 15 20

v(t) (V)

t (ms)

4

8

4 8 12

v(t) (V)

t (ms)

5

10

60 10 20

v(t) V
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6.15 The voltage across a 2-F capacitor is given by the 
waveform in Fig. P6.15. Find the waveform for the 
current in the capacitor.  

Figure P6.15

6.16 The voltage across a 2-�F capacitor is given by the 
waveform in Fig. P6.16. Compute the current waveform.

Figure P6.16

6.17 Draw the waveform for the current in a 24-�F capacitor
when the capacitor voltage is as described in Fig. P6.17.

Figure P6.17

6.18 The voltage across a 10-�F capacitor is given by the
waveform in Fig. P6.18. Plot the waveform for the
capacitor current.  

Figure P6.18
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–12

12
5 10

t (ms)
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t (�s)0

100

6

–4

160

60

v(t) (V)

t (ms)

2 3 6

–12

vC(t) (V)

t (s)0 10 20 30 40 50

+12

–12

6.12 The voltage waveform across a 100-�F capacitor is
shown in Fig. P6.12. Derive the waveform for the 
current.

Figure P6.12

6.13 The current flowing through a 5-�F capacitor is shown
in Fig. P6.13. Find the energy stored in the capacitor at
t=1.4 ms, t=3.3 ms, t=4.3 ms, t=6.7 ms, and 
t=8.5 ms.

Figure P6.13

6.14 The voltage across a 25-�F capacitor is shown in
Fig. P6.14. Determine the current waveform.  

Figure P6.14

v(t) (V)

t (ms)
0

0.2 0.4 0.6

0.8 1.0

20

–20

1.2

+

-

i(t) vc(t) 5 �F

10

15

5

–5

i(t) (mA)

t (ms)
1 2 3

4

5

6 7

8

t (ms)

4

8

12

100 15 20 25 30 35 40

v(t) V
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6.19 The waveform for the current in a 50-�F capacitor is
shown in Fig. P6.19. Determine the waveform for the
capacitor voltage.  

Figure P6.19

i(t) (mA)

0 t (ms)

10

10 20 30 40

6.21 The waveform for the voltage across 100-�F capacitor shown Fig. 6.21a is given in Fig. 6.21b. Determine the following
quantities: (a) the energy stored in the capacitor at ms, (b) the energy stored in the capacitor at ms, (c)

at ms, (d) at ms, and (e) at ms.

Figure P6.21

v(t) (V)

t (ms)

5

15

–5

1 2 3

4 5

6 7 8

(b)

v(t) 100 µF

ic(t)

±
–

(a)

t = 7.5ic(t)t = 4.75ic(t)t = 1.5ic(t)
t = 5.5t = 2.5

6.22 The current in an inductor changed from 0 to 200 mA in
4 ms and induces a voltage of 100 mV. What is the value
of the inductor?  

6.23 The current in a 100-mH inductor is 
Find (a) the voltage across the inductor and (b) the
expression for the energy stored in the element.  

6.24 If the current flows through a 2-H
inductor, find the energy stored at 

6.25 The current in a 25-mH inductor is given by the
expressions

Find (a) the voltage across the inductor and (b) the
expression for the energy stored in it.  

6.26 Given the data in the previous problem, find the
voltage across the inductor and the energy stored in it
after 1 s.  

t 7 0i(t) = 10(1 - e - t) mA

t 6 0i(t) = 0

t = 2s.
i(t) = 1.5t A

i(t) = 2 sin 377t A.

6.20 The waveform for the current in a 50-�F initially
uncharged capacitor is shown in Fig. P6.20. Determine
the waveform for the capacitor’s voltage.  

Figure P6.20

i(t) (mA)

t (ms)0
0

10

–10

10 20 30 40 50

6.27 The voltage across a 2-H inductor is given by the wave-
form shown in Fig. P6.27. Find the waveform for the
current in the inductor.  

Figure P6.27

6.28 The voltage across a 4-H inductor is given by the
waveform shown in Fig. P6.28. Find the waveform 
for the current in the inductor. 

Figure P6.28

v(t) (mV)

0 t (ms)

2.4

10 20 30 40 50

v(t) = 0, t 6 0.

0 2 4 6

v(t) (V)

t (s)

5

–5
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6.29 The current in a 30-mH inductor is shown in Fig. P6.29.
Derive the waveform for the inductor voltage.

Figure P6.29

6.30 The current waveform in a 40-mH inductor is shown in
Fig. P6.30. Derive the waveform for the inductor 
voltage.

Figure P6.30

6.31 If the current in a 60-mH inductor is given by the wave-
form in Fig. P6.31, compute the waveform for the 
inductor voltage.

Figure P6.31

i(t) (mA)

t (ms)

2

4

6

8

2 4 6 8 10

i(t) (mA)

t (ms)

5

10

15

20

2 4 6 8 10 12

i(t) (mA)

t (ms)

60

120

10 20 30 40 50 60 70

6.32 The current in a 200-mH inductor is shown in 
Fig. P6.32. Determine the waveform for the inductor
voltage.

Figure P6.32

6.33 The waveform for the current flowing through a 0.5-H
inductor is shown in the plot in Fig. P6.33. Accurately
sketch the inductor voltage versus time. Determine the
following quantities: (a) the energy stored in the induc-
tor at t=1.7 ms, (b) the energy stored in the inductor at
t=4.2 ms, and (c) the power absorbed by the inductor
at  t=1.2 ms, t=2.8 ms, and t=5.3 ms.

Figure P6.33

6.34 The current in a 10-mH inductor is shown in Fig. P6.34.
Determine the waveform for the voltage across the
inductor.  

Figure P6.34

i(t) (mA)

t (ms)

0

–12

1 2 3 4 5 6

+

-

i(t) vL(t) 0.5 H

t (ms)

5

10

–5

–10

1 2 3

4

5 6

i(t) (mA)

t (ms)

20

40

60

–20

–40

2 4 6 8

10 12 14 16

i(t) (mA)
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6.35 The current in a 50-mH inductor is given in Fig. P6.35.
Sketch the inductor voltage.  

Figure P6.35

6.36 The current in a 50-mH inductor is shown in Fig. P6.36.
Find the voltage across the inductor.  

Figure P6.36

6.37 Draw the waveform for the voltage across a 24-mH
inductor when the inductor current is given by the wave-
form shown in Fig. P6.37.  

Figure P6.37

6.38 The current in a 4-mH inductor is given by the waveform
in Fig. P6.38. Plot the voltage across the inductor.  

Figure P6.38

0.5 1.0

i(t) (mA)

t (ms)

0.12

i(t) (A)

t (s)0.3

0.6

1.1

8

4

–2

0.9

i(t) (mA)

t (ms)0

–20

+10

20 40 60 8070

i(t) (mA)

0 t (ms)2

4

–100

6 8 10

100

6.39 Find the possible capacitance range of the following
capacitors.  

(a) with a tolerance of 10%.

(b) with a tolerance of 20%.

(c) with a tolerance of 20%.

6.40 Find the possible inductance range of the following
inductors.  

(a) with a tolerance of 10%.

(b) with a tolerance of 5%.

(c) with a tolerance of 10%.

6.41 The capacitor in Fig. P6.41a is 51 nF with a tolerance of
10%. Given the voltage waveform in Fig. 6.41b, graph
the current for the minimum and maximum capaci-
tor values.  

Figure P6.41

(a)

±
– C

i(t)

v(t)

(b)

v(
t)

 (
V

)

0 1 2 3 4 5 6 7

Time (ms)

–60

–40

–20

0

20

40

60

i(t)

68 �H

2.0 nH

10 mH

39 �F

120 pF

0.0068 �F
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6.42 The inductor in Fig. P6.42a is 4.7 with a tolerance
of 20%. Given the current waveform in Fig. 6.42b, graph
the voltage for the minimum and maximum induc-
tor values.  

Figure P6.42

6.43 If the total energy stored in the circuit in Fig. P6.43 is
80 mJ, what is the value of L?  

Figure P6.43

6.44 Find the value of C if the energy stored in the capacitor
in Fig. P6.44 equals the energy stored in the inductor.  

Figure P6.44

200 �

100 �

0.1 H

C

12 V ±
–

200 �

L

80 �F 50 �1 A

Li(t)

(a)

(b)

i(
t)

 (
m

A
)

0 10 20 30 40 60 70 8050

Time (ms)

–15

–10

–5

0

5

10

15

±

–

v(t)

v(t)

�H 6.45 Given the network in Fig. P6.45, find the power dissi-
pated in the resistor and the energy stored in the
capacitor.  

Figure P6.45

6.46 Calculate the energy stored in the inductor in the circuit
shown in Fig. P6.46.

Figure P6.46

6.47 Calculate the energy stored in both the inductor and the
capacitor shown in Fig. P6.47.

Figure P6.47

6.48 Given a 1-, 3-, and capacitor, can they be intercon-
nected to obtain an equivalent capacitor?  

6.49 Find the total capacitance of the network in
Fig. P6.49.  

Figure P6.49

4 �F

1 �F

2 �F 3 �F

12 �FCT

CT

2-�F
4-�F

10 �

0.005 F 0.5 H

15 � 15 �
25 V +

–

5 k� 4 k�1 k�

6 k�200 mH 7 kV20 V+
–

2 F

4 �

3 � 3 H2 H

6 � 6 A12 V ±
–

3-	
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6.50 Find the total capacitance CT of the network in
Fig. P6.50.  

Figure P6.50

6.51 Find CT in the network shown in Fig. P6.51.

Figure P6.51

6.52 Find CT in the circuit in Fig. P6.52.

Figure P6.52

6.53 Determine the value of CT in the circuit in Fig. P6.53.

Figure P6.53

5 �F

6 �F

6 �F

12 �F

11 �F

9 �F

3 �F

CT

16 �F

5 �F

3 �F

5 �F
1 �F

4 �F

CT

6 �F6 �F

4 �F

8 �F

3 �F

12 �FCT

4 �F
6 �F

3 �F

3 �F

6 �F

CT

6.54 Find CT in the network in Fig. P6.54.

Figure P6.54

6.55 Determine CT in the circuit in Fig. P6.55 if all 

capacitors in the network are 6 �F.

Figure P6.55

6.56 Find CT in the circuit in Fig. P6.56 if all capacitors 

are 6 �F.

Figure P6.56

CT

CT

CT

3 �F3 �F

4 �F

3 �F

12 �F

6 �F
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6.57 Determine the value of CT in the circuit in Fig. P6.57 if
all capacitors are 12 �F.

Figure P6.57

6.58 If the total capacitance of the network in Fig. P6.58 is
10�F, find the value of CT.

Figure P6.58

6.59 In the network in Fig. 6.59, if CT = 4 �F, find the 
value of C.

Figure P6.59

6.60 Find the value of C in Fig. 6.60.

Figure P6.60

CT � 4 �F

C

12 �F

10 �F 2 �F

3 �F

CT � 4 �F C

4 �F

2 �F

12 �F

CT � 10 �F

C

12 �F 6 �F

4 �F

CT

6.61 If Ceq = 4 �F in the circuit in Fig. P6.61, calculate C.

Figure P6.61

6.62 Find the total capacitance shown in the network in
Fig. P6.62.  

Figure P6.62

6.63 In the network in Fig. P6.63, find the capacitance if
(a) the switch is open and (b) the switch is closed.  

Figure P6.63

6 �F

12 �F

12 �F

6 �F

3 �F

6 �F
CT

CT

CT 2 �F4 �F

2 �F4 �F8 �F6 �F

12 �F

CT

Ceq C

6 �F

7 �F
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6.64 Select the value of C to produce the desired total
capacitance of in the circuit in
Fig. P6.64.  

Figure P6.64

6.65 Select the value of C to produce the desired total
capacitance of in the circuit in
Fig. P6.65.  

Figure P6.65

6.66 The two capacitors in Fig. P6.66 were charged and then
connected as shown. Determine the equivalent capaci-
tance, the initial voltage at the terminals, and the total
energy stored in the network.  

Figure P6.66

2 V

6 V 12 �F

4 �F

-

+

+

-

1 �F

1 �F

1 �F2 �F

CC

CT

CT = 1 �F

8 �F

CT=10 �F

16 �F

C

CT = 10 �F
6.67 The two capacitors shown in Fig. P6.67 have been

connected for some time and have reached their present
values. Find 

Figure P6.67

6.68 The three capacitors shown in Fig. P6.68 have been
connected for some time and have reached their present
values. Find and 

Figure P6.68

6.69 Determine the inductance at terminals A-B in the
network in Fig. P6.69. 

Figure P6.69

A

B
2 mH

3 mH 4 mH

1 mH

2 mH12 mH4 mH

V1

V2

8 �F

4 �F

12 V

+

-

+

-

+

-

V2.V1

16 V

Vo 12 �F

4 �F

+

-

+

-

V0.

irwin06-245-295hr.qxd  9-07-2010  14:27  Page 289



290 C H A P T E R  6 C A P A C I T A N C E  A N D  I N D U C T A N C E

6.70 Find the total inductance at the terminals of the network
in Fig. P6.70.  

Figure P6.70

6.71 Find LT in the circuit in Fig. P6.71.

Figure P6.71

6.72 Find LT in the circuit in Fig. P6.72.

Figure P6.72

LT 2 �H

4 �H

12 �H

5 �H

6 �H

3 �H

LT

3 �H

2 �H 4 �H

7 �H

5 �H 6 �H

12 mH

6 mH

2 mH4 mH
LT

12 mH

6.73 Find LT in the circuit in Fig. P6.73. All inductors 
are 12 �H.

Figure P6.73

6.74 Find LT in the circuit in Fig. P6.74.

Figure P6.74

6.75 Find LT in the circuit in Fig. P6.75.

Figure P6.75

LT

2 �H

9 �H 3 �H 12 �H

6 �H

4 �H 6 �H 4 �H

8 �H 4 �H

12 �H

3 �H

LT

5 �H

8 �H

12 �H 6 �H

6 �H

12 �H

2 �H

1 �H

4 �H

4 �H

LT
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6.76 If the total inductance, LT, in the network in Fig. P6.76 is
5 �H, find the value of L.

Figure P6.76

LT � 5 �H

L

2 �H

6 �H

1 �H

1 �H

10 �H

3 �H

3 �H

6.77 If the total inductance, LT, of the network in Fig. P6.77 is
6 �H, find the value of L.

Figure P6.77

6.78 Find in the network in Fig. P6.78 (a) with the switch
open and (b) with the switch closed. All inductors are
12 mH.  

Figure P6.78

LT

LT

LT � 4 �H
L

2 �H 8 �H

18 �H 9 �H
3 �H

4 �H

4 �H

1 �H

6.79 Given the network shown in Fig. P6.79, find (a) the
equivalent inductance at terminals A-B with
terminals C-D short circuited, and (b) the equivalent
inductance at terminals C-D with terminals A-B open 
circuited.  

Figure P6.79

6.80 Find the value of L in the network in Fig. P6.80 so that
the total inductance, LT, will be 2 mH.  

Figure P6.80

6.81 A 20-mH inductor and a 12-mH inductor are connected
in series with a 1-A current source. Find (a) the equiva-
lent inductance and (b) the total energy stored.  

6.82 If the capacitors shown in Fig. P6.82 have been 
connected for some time and have reached. Their pres-
ent values, determine (a) the voltage V0 and (b) the total
energy stored in the capacitors.

Figure P6.82

3 �F

6 �F

12 V
+ -

Vo

4 mH

L

2 mH

6 mH

LT

12 mH5 mH

20 mH
A C

B D
6 mH
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6.83 If the capacitors in the circuit in Fig. P6.83 have been
connected for some time and have reached their present
values, calculate (a) the voltage V1 and (b) the total 
energy stored in the capacitors. 

Figure P6.83

6.84 If the capacitors shown in Fig. P6.84 have been 
connected for some time and the voltage has reached its
present value, determine (a) the voltages V1 and V2 and
(b) the total energy stored in the capacitors.

Figure P6.84

6.85 If the capacitors shown in Fig. P6.85 have been 
connected for some time and the voltage has reached its
present value, find (a) the voltages V1 and V2 and (b) the
total energy stored in the capacitors.

Figure P6.85

6 �F

18 V

3 �F
+

-
+

-

+

-

V1

V2

4 �F

24 V

12 �F
+

-
+

-

+

-

V1

V2

12 �F

6 �F
+

-
+

-

V1

6 V

6.86 If the capacitors in the circuit in Fig. P6.86 have been
connected for some time and have reached their present
values, (a) calculate the voltages V1 and V2 and 
(b) determine the total energy stored in the capacitors.

Figure P6.86

6.87 For the network in Fig. P6.87 
and Find .

Figure P6.87

6.88 If the input to the network shown in Fig. P6.88a is given
by the waveform in Fig. P.6.88b, determine the output
waveform v0(t) if v0(0)=0.

Figure P6.88

vi (t)

t (s)

2

1

–1

–2

1

2 3 4 5 76

(b)

vi(t)

+

-

vo(t)

+

-

+
-

40 k�

100 k�

(a)

±
–

±
–

-
+ +

-

vS2
(t)vS1

(t)

1 �F

10 k�20 k�

vo(t)

v0(t)vS2
(t) = 40 cos 377t V.

vS1
(t) = 80 cos 377t V

10 �F

3 �F

9 �F
+

-

+

-

V1

V2

36 V

+

-
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6.89 The input to the network shown in Fig. P6.89a is shown
in Fig. P6.89b. Derive the waveform for the output 
voltage v0(t) if v0(0)=0.

Figure P6.89

6.90 Show that the circuit shown in Fig. P6.90 acts like a dif-

ferentiator with an output voltage of vo(t) = -RC

Assume an ideal op-amp.

Figure P6.90

vi(t)

+

-

vo(t)

+

-

-
+

RC

dv0(t)

dt

vi (t)

t (s)

3

–1

1 2

3 4

(b)

vi(t)

+

-

vo(t)

+

-

-
+20 k�

200 �F

(a)

6.91 Sketch the output voltage of the network in Fig. P6.91a
if the input is given by the waveform in Fig. 6.91b.

Figure P6.91

6.92 Sketch the output voltage of the network in Fig. P6.92a
if the input is given by the waveform in Fig. P6.92b.

Figure P6.92

vi (t) (V)

t (ms)

2

1

3

1 2 3 4 5 76

(b)

vi(t)

+

-

vo(t)

+

-

-
+

2 µF

4 k�

(a)

(b)

vi (t) (V)

t 

3

1

2

2 4 6 8

vi(t)

+

-

vo(t)

+

-

-
+

1 µF

2 k�

(a)
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6.93 Given the network in Fig. P6.93a,

(a) Determine the equation for the closed-loop gain 

.

(b) Sketch the magnitude of the closed-loop gain as a func-
tion of frequency if R1=1 k	, R2=10 k	, and 
C=2 �F.

Figure P6.93

vi(t)

+

-

vo(t)

+

-

-
+

R1
R2

C

|G| = 2 v0

vi

2
6.94 An integrator is required that has the following

performance:

where the capacitor values must be greater than 10 nF
and the resistor values must be greater than .

(a) Design the integrator.

(b) If 
10-V supplies are used, what are the maximum
and minimum values of ?

(c) Suppose � 1 V. What is the rate of change of ?v0vs

v0

10 k	

v0 (t) = 106

3vs  dt

6PFE-1 Given three capacitors with values and

6-�F, can the capacitors be interconnected so that the
combination is an equivalent capacitor?

a. Yes. The capacitors should be connected as shown.

b. Yes. The capacitors should be connected as
shown.

c. Yes. The capacitors should be connected as shown.

d. No. An equivalent capacitance of is not pos-
sible with the given capacitors.

3 �F

2 µF 4 µF 6 µF Ceq

2 µF

4 µF

6 µF Ceq

2 µF 4 µF

6 µF

Ceq

3-�F

2-�F, 4-�F, 6PFE-2 The current pulse shown in Fig. 6PFE-2 is applied 
to a 1-�F capacitor. What is the energy stored in the
electric field of the capacitor?

a.

b.

c.

d.

Figure 6PFE-2

6

0 1

i(t) (A)

t (�s)

 w(t) = •
0 J, t � 0

30 * 106t J, 0 6 t � 1 �s

30 �J, t 7 1 �s

 w(t) = •
0 J, t � 0

18 * 106t2J, 0 6 t � 1 �s

18 �J, t 7 1 �s

 w(t) = •
0 J, t � 0

6 * 106t J, 0 6 t � 1 �s

6 �J, t 7 1 �s

 w(t) = •
0 J, t � 0

10 * 106t2J, 0 6 t � 1 �s

10 �J, t 7 1 �s

•
T Y P I C A L P R O B L E M S F O U N D  O N  T H E F E E X A M

irwin06-245-295hr.qxd  9-07-2010  14:27  Page 294



T Y P I C A L  P R O B L E M S  F O U N D  O N  T H E  F E  E X A M     295

6PFE-3 The two capacitors shown in Fig. 6FE-3 have
been connected for some time and have reached
their present values. Determine the unknown
capacitor 

a.

b.

c.

d.

Figure 6PFE-3

6PFE-4 What is the equivalent inductance of the network in
Fig. 6PFE-4?

a. 9.5 mH b. 2.5 mH

c. 6.5 mH d. 3.5 mH

Figure 6PFE-4

9 mH6 mH3 mH

3 mH2 mH

12 mH

Leq

24 V

8 V 60 �F

Cx

+ +

-

-

90 �F

10 �F

30 �F

20 �F

Cx.

6PFE-5 The current source in the circuit in Fig. 6PFE-5 has
the following operating characteristics:

What is the voltage across the 10-mH inductor
expressed as a function of time?

a.

b.

c.

d.

Figure 6PFE-5

v(t)Li(t)

+

-

v(t) = e0 V, t 6 0

-2te-2t V, t 7 0

v(t) = e0 V, t 6 0

-0.2te-2t
+ 0.4e-2t V, t 7 0

v(t) = e0 V, t 6 0

2e-2t
+ 4te-2t V, t 7 0

v(t) = e0 V, t 6 0

0.2e-2t
- 4te-2t V, t 7 0

i(t) = e0 A, t 6 0

20te-2t A, t 7 0
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T H E L E A R N I N G  G O A L S F O R  T H I S
C H A P T E R  A R E :

■ Be able to calculate initial values for inductor cur-
rents and capacitor voltages in transient circuits

■ Know how to calculate voltages and currents in first-
order transient circuits

■ Know how to calculate voltages and currents in 
second-order transient circuits

FIRST- AND SECOND-ORDER
TRANSIENT CIRCUITS

S
Sea Ice Measurements Data clearly demonstrate an ongoing

rise in global temperature. NASA’s Goddard Institute for Space

Studies has reported that we have just experienced the warmest

decade (2000 to 2009) on record. Measuring the environmental

impact of this change – and deciding how to respond to it – is a

major challenge facing scientists and policymakers today and

will be for years to come. 

Electronic devices are essential to efforts to measure impacts

such as the reduction in polar ice. Polar ice regulates global cli-

mate because it reflects about 80% of the incoming sunlight.

Radar altimetry data from satellites is being used to measure the

effect of warming on polar glaciers. Low-flying aircraft making

repeated runs across Arctic, Antarctic, and Greenland ice beds are

using radar backscatter to map transitions in sea ice thickness.

Sea ice growth and melt measurements from radar during all

summer-to-winter seasons confirm that the ice is disappearing.

This chapter describes voltage and current transitions in cir-

cuits resulting from switching of constant-level sources from one

value to another. Capacitors, inductors, and resistors are con-

nected in series or parallel, modeling transitions for simple to

more complex circuits. Extending to a square-wave pulse voltage

source demonstrates multiple switching dynamics. The transi-

tions in circuit voltages and currents that you will study in this

chapter are principles that you can see applied in a wide array of

devices. While some seem mundane, others, such as those that

measure sea ice, have a major impact on our future.

7 CHAPTER
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7.1
Introduction

In this chapter we perform what is normally referred to as a transient analysis. We begin our
analysis with first-order circuits—that is, those that contain only a single storage element.
When only a single storage element is present in the network, the network can be described
by a first-order differential equation.

Our analysis involves an examination and description of the behavior of a circuit as a func-
tion of time after a sudden change in the network occurs due to switches opening or closing.
Because of the presence of one or more storage elements, the circuit response to a sudden
change will go through a transition period prior to settling down to a steady-state value. It is
this transition period that we will examine carefully in our transient analysis.

One of the important parameters that we will examine in our transient analysis is the cir-
cuit’s time constant. This is a very important network parameter because it tells us how fast
the circuit will respond to changes. We can contrast two very different systems to obtain a
feel for the parameter. For example, consider the model for a room air-conditioning system
and the model for a single-transistor stage of amplification in a computer chip. If we change
the setting for the air conditioner from 70 degrees to 60 degrees, the unit will come on and
the room will begin to cool. However, the temperature measured by a thermometer in the
room will fall very slowly and, thus, the time required to reach the desired temperature is
long. However, if we send a trigger signal to a transistor to change state, the action may take
only a few nanoseconds. These two systems will have vastly different time constants.

Our analysis of first-order circuits begins with the presentation of two techniques for per-
forming a transient analysis: the differential equation approach, in which a differential equation
is written and solved for each network, and a step-by-step approach, which takes advantage of
the known form of the solution in every case. In the second-order case, both an inductor and
a capacitor are present simultaneously, and the network is described by a second-order
differential equation. Although the RLC circuits are more complicated than the first-order sin-
gle storage circuits, we will follow a development similar to that used in the first-order case.

Our presentation will deal only with very simple circuits, since the analysis can quickly
become complicated for networks that contain more than one loop or one nonreference node.
Furthermore, we will demonstrate a much simpler method for handling these circuits when
we cover the Laplace transform later in this book. We will analyze several networks in which
the parameters have been chosen to illustrate the different types of circuit response. Finally,
a number of application-oriented examples are presented and discussed.

We begin our discussion by recalling that in Chapter 6 we found that capacitors and induc-
tors were capable of storing electric energy. In the case of a charged capacitor, the energy is
stored in the electric field that exists between the positively and negatively charged plates.
This stored energy can be released if a circuit is somehow connected across the capacitor that
provides a path through which the negative charges move to the positive charges. As we
know, this movement of charge constitutes a current. The rate at which the energy is
discharged is a direct function of the parameters in the circuit that is connected across the
capacitor’s plates.

As an example, consider the flash circuit in a camera. Recall that the operation of the flash
circuit, from a user standpoint, involves depressing the push button on the camera that trig-
gers both the shutter and the flash and then waiting a few seconds before repeating the
process to take the next picture. This operation can be modeled using the circuit in Fig. 7.1a.
The voltage source and resistor model the batteries that power the camera and flash. The
capacitor models the energy storage, the switch models the push button, and finally the resis-
tor R models the xenon flash lamp. Thus, if the capacitor is charged, when the switch is
closed, the capacitor voltage drops and energy is released through the xenon lamp, produc-
ing the flash. In practice this energy release takes about a millisecond, and the discharge
time is a function of the elements in the circuit. When the push button is released and the
switch is then opened, the battery begins to recharge the capacitor. Once again, the time
required to charge the capacitor is a function of the circuit elements. The discharge and
charge cycles are graphically illustrated in Fig. 7.1b. Although the discharge time is very
fast, it is not instantaneous. To provide further insight into this phenomenon, consider what

RS
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we might call a free-body diagram of the right half of the network in Fig. 7.1a, as shown
in Fig. 7.1c (that is, a charged capacitor that is discharged through a resistor). When the
switch is closed, KCL for the circuit is

or

In the next section we will demonstrate that the solution of this equation is

Note that this function is a decaying exponential and the rate at which it decays is a function
of the values of R and C. The product RC is a very important parameter, and we will give it
a special name in the following discussions.

vC(t) = Vo e
-t�RC

dvC(t)

dt
+

1

RC
  vC(t) = 0

C  
dvC(t)

dt
+

vC(t)

R
= 0
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Discharge
time

Charge
timeVo

(b)

vC(t)

t

RS

R

[(R) Xenon lamp]

VS
C

(a)

vC(t)
+

-

(c)

vC(t) RC
+

-

Figure 7.1

Diagrams used to
describe a camera’s

flash circuit.

7.2
First-Order
Circuits

GENERAL FORM OF THE RESPONSE EQUATIONS In our study of first-order tran-
sient circuits we will show that the solution of these circuits (i.e., finding a voltage or cur-
rent) requires us to solve a first-order differential equation of the form

7.1

Although a number of techniques may be used for solving an equation of this type, we will
obtain a general solution that we will then employ in two different approaches to transient
analysis.

A fundamental theorem of differential equations states that if is any solution
to Eq. (7.1), and is any solution to the homogeneous equation

7.2dx(t)

dt
+ ax(t) = 0

x(t) = xc(t)
x(t) = xp(t)

dx(t)

dt
+ ax(t) = f(t)
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then
7.3

is a solution to the original Eq. (7.1). The term is called the particular integral solu-
tion, or forced response, and is called the complementary solution, or natural response.

At the present time we confine ourselves to the situation in which f(t)=A (i.e., some
constant). The general solution of the differential equation then consists of two parts that are
obtained by solving the two equations

7.4

7.5

Since the right-hand side of Eq. (7.4) is a constant, it is reasonable to assume that the solu-
tion must also be a constant. Therefore, we assume that

7.6

Substituting this constant into Eq. (7.4) yields

7.7

Examining Eq. (7.5), we note that

7.8

This equation is equivalent to

Hence,

and therefore,

7.9

Thus, a solution of Eq. (7.1) is

7.10

The constant can be found if the value of the independent variable x(t) is known at one
instant of time.

Eq. (7.10) can be expressed in general in the form

7.11

Once the solution in Eq. (7.11) is obtained, certain elements of the equation are given
names that are commonly employed in electrical engineering. For example, the term is
referred to as the steady-state solution: the value of the variable x(t) as t S q when the
second term becomes negligible. The constant � is called the time constant of the circuit.
Note that the second term in Eq. (7.11) is a decaying exponential that has a value, if 
of K2 for t=0 and a value of 0 for t=q. The rate at which this exponential decays is deter-
mined by the time constant �. A graphical picture of this effect is shown in Fig. 7.2a. As can
be seen from the figure, the value of has fallen from to a value of in one
time constant, a drop of 63.2%. In two time constants the value of has fallen to 0.135K2 ,xc(t)

0.368K2K2xc(t)

� 7 0,

K1

x(t) = K1 + K2 e-t��

K2

 =

A

a
+ K2 e-at

 x(t) = xp(t) + xc(t)

xc(t) = K2 e-at

ln xc(t) = -at + c

d

dt
 C ln xc(t) D = -a

dx c(t)�dt

xc(t)
= -a

K1 =

A

a

xp(t) = K1

xp(t)

 
dx c(t)

dt
+ ax c(t) = 0

 
dxp(t)

dt
+ axp(t) = A

xc(t)
xp(t)

x(t) = xp(t) + xc(t)
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a drop of 63.2% from the value at time This means that the gap between a point on
the curve and the final value of the curve is closed by 63.2% each time constant. Finally, after
five time constants, which is less than 1%.

An interesting property of the exponential function shown in Fig. 7.2a is that the initial
slope of the curve intersects the time axis at a value of In fact, we can take any point
on the curve, not just the initial value, and find the time constant by finding the time required
to close the gap by 63.2%. Finally, the difference between a small time constant (i.e., fast
response) and a large time constant (i.e., slow response) is shown in Fig. 7.2b. These curves
indicate that if the circuit has a small time constant, it settles down quickly to a steady-state
value. Conversely, if the time constant is large, more time is required for the circuit to settle
down or reach steady state. In any case, note that the circuit response essentially reaches
steady state within five time constants (i.e., 5�).

Note that the previous discussion has been very general in that no particular form of the
circuit has been assumed—except that it results in a first-order differential equation.

ANALYSIS TECHNIQUES

The Differential Equation Approach Eq. (7.11) defines the general form of the solu-
tion of first-order transient circuits; that is, it represents the solution of the differential equa-
tion that describes an unknown current or voltage anywhere in the network. One of the ways
that we can arrive at this solution is to solve the equations that describe the network behav-
ior using what is often called the state-variable approach. In this technique we write the
equation for the voltage across the capacitor and/or the equation for the current through
the inductor. Recall from Chapter 6 that these quantities cannot change instantaneously. Let
us first illustrate this technique in the general sense and then examine two specific examples.

Consider the circuit shown in Fig. 7.3a. At time the switch closes. The KCL equa-
tion that describes the capacitor voltage for time is

or
dv(t)

dt
+

v(t)

RC
=

VS

RC

C 
dv(t)

dt
+

v(t) - VS

R
= 0

t 7 0
t = 0,

t = �.

xc(t) = 0.0067K2 ,

t = �.
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K2

t

0.368K2

0

0.632 GG
� 2� 3� 4�

�

xc(t)=K2e–t/�

(a)

t
0

0.2
0.4
0.6
0.8
1.0

1 2 3 4

e–t/�

�=4 s

�=0.5 s

(b)

Figure 7.2

Time-constant illustrations.
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From our previous development, we assume that the solution of this first-order differential
equation is of the form

Substituting this solution into the differential equation yields

Equating the constant and exponential terms, we obtain

Therefore,

where is the steady-state value and RC is the network’s time constant. is determined by
the initial condition of the capacitor. For example, if the capacitor is initially uncharged (that
is, the voltage across the capacitor is zero at ), then

or

Hence, the complete solution for the voltage v(t) is

The circuit in Fig. 7.3b can be examined in a similar manner. The KVL equation that
describes the inductor current for is

A development identical to that just used yields

where is the steady-state value and L/R is the circuit’s time constant. If there is no
initial current in the inductor, then at 

and

K2 =

-VS

R

0 =

VS

R
+ K2

t = 0
VS�R

i(t) =

VS

R
+ K2 e  

 -aRLb  
t

 

 

L 
di(t)

dt
+ Ri(t) = VS

t 7 0

v(t) = VS - VS e-t�RC

K2 = -VS

0 = VS + K2

t = 0

K2VS

v(t) = VS + K2 e-t�RC

 � = RC

 K1 = VS

- 
K2

�
 e-t��

+

K1

RC
+

K2

RC
 e-t��

=

VS

RC

v(t) = K1 + K2 e-t��

Figure 7.3

(a) RC circuit, (b) RL circuit, 
(c) plot of the capacitor 
voltage in (a) and resistor
voltage in (b).

±
–

t=0 v(t)

R

CVS

(a)

±
–

t=0

i(t)

R

LVS

(b)

t

(c)

VS

v(t), vR(t)
vR(t)-+
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Hence,

is the complete solution. Note that if we wish to calculate the voltage across the resistor, then

Therefore, we find that the voltage across the capacitor in the RC circuit and the voltage
across the resistor in the RL circuit have the same general form. A plot of these functions is
shown in Fig. 7.3c.

 = VS 
A1 - e  

 - 
R
L  t

 

 

B
 vR(t) = Ri (t)

i(t) =

VS

R
-

VS

R
 e  

 - 
R
L  t 
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Consider the circuit shown in Fig. 7.4a. Assuming that the switch has been in position 1 for
a long time, at time t=0 the switch is moved to position 2. We wish to calculate the cur-
rent i(t) for .t 7 0

(d)

(a)

(c)

(b) t=0–

i(t) (mA)

t

±
–

R1

VS
R2

v(t) i(t)

C

t=0

6 k�

3 k�
100 �F12 V

±
–

R1

R2

v(t) i(t)

C12 V

±
– vC(0–)

6 k�

3 k�12 V
+

-

4—
3

1

2

Figure 7.4

Analysis of RC circuits.

At the capacitor is fully charged and conducts no current since the capacitor acts
like an open circuit to dc. The initial voltage across the capacitor can be found using volt-
age division. As shown in Fig. 7.4b,

The network for is shown in Fig. 7.4c. The KCL equation for the voltage across the
capacitor is

Using the component values, the equation becomes

dv(t)

dt
+ 5v(t) = 0

v(t)

R1
+ C 

dv(t)

dt
+

v(t)

R2
= 0

t 7 0

vC(0-) = 12 a 3k

6k + 3k
b = 4 V

t = 0-SOLUTION

EXAMPLE

7.1
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The form of the solution to this homogeneous equation is

If we substitute this solution into the differential equation, we find that Thus,

Using the initial condition we find that the complete solution is

Then i(t) is simply

or

i(t) =

4

3
 e-t�0.2 mA

i(t) =

v(t)

R2

v(t) = 4e-t�0.2 V

vC(0-) = vC(0+) = 4 V,

v(t) = K2 e-t�0.2 V

� = 0.2 s.

v(t) = K2 e-t��

SOLUTION

EXAMPLE

7.2
The switch in the network in Fig. 7.5a opens at t=0. Let us find the output voltage 
for 

At the circuit is in steady state and the inductor acts like a short circuit. The initial
current through the inductor can be found in many ways; however, we will form a
Thévenin equivalent for the part of the network to the left of the inductor, as shown in
Fig. 7.5b. From this network we find that and In addition, RTh=1 �.
Hence, obtained from Fig. 7.5c is 

The network for is shown in Fig. 7.5d. Note that the 4-V independent source and
the 2-ohm resistor in series with it no longer have any impact on the resulting circuit. The
KVL equation for the circuit is

which with the component values reduces to

The solution to this equation is of the form

which when substituted into the differential equation yields

Therefore,

Evaluating this function at the initial condition, which is

we find that

K2 =

-5

3

iL(0-) = iL(0+) = i(0) = 4�3 A

i(t) = A3 + K2 e-2tB A
 � = 1�2

 K1 = 3

i(t) = K1 + K2 e-t��

di(t)

dt
+ 2i(t) = 6

-VS1
+ R1 i(t) + L 

di(t)

dt
+ R3 i(t) = 0

t 7 0
iL(0-) = 4�3 A.iL(0-)

Voc = 4 V.I1 = 4 A

t = 0-

t 7 0.
vo(t)
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Hence,

and then

A plot of the voltage vo(t) is shown in Fig. 7.5e.

vo(t) = 6 -

10

3
 e-2t V

i(t) = a 3 -

5

3
 e-2t b  A

(c)

4 V

1 �

2 � vo(0–)

iL(0–)

+

-

±
–

(b)

12 V

4 V

2 �

2 �

Voc

I1

+

-

±
–

±
–

(a)

R1 L

12 V

4 V

t=0

2 �

R2

VS1

VS2

2 �
R3 2 �

2 H

±
–

±
–

vo(t)

+

-

(e)

6

t

vo(t) (V)

(d)

R1 L

12 V

4 V

2 �

VS1
2 �

R3 2 �

2 H

±
–

±
–

vo(t)

i(t)

+

-
8—
3

Figure 7.5

Analysis of an RL circuit.
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E7.1 Find for in the circuit shown in Fig. E7.1.t 7 0vC(t)

Learning Assessments
ANSWER:
vC(t) = 8e-t�0.6 V.

±
–12 V vc(t)

3 k� 4 k�t=0

2 k�100 �F
+

-
vo(t)

+

-Figure E7.1

±
–12 V

12 �

2 Hi2(t) 

i1(t) 

6 �

t=0

Figure E7.3

E7.3 In the circuit shown in Fig. E7.3, the switch opens at . Find for t 7 0.i1(t)t = 0 ANSWER:
i1(t) = 1e-9t A.

E7.2 Use the differential equation approach to find vo(t) for t>0 in Fig. E7.2. Plot the
response.

ANSWER: vo(t)=
12-5e-t/0.015 V.

+
–9 V 2 mAvo(t)

6 k�

6 k�

t=0

6 k�2.5 �F
+

-

Figure E7.2

E7.4 Use the differential equation approach to find i(t) for t>0 in Fig. E7.4. ANSWER: i(t)=
-2+6e-t/5�10-6

mA.

+
–

2 k� 2 k�

12 V

6 V6 mH

i(t) 

3 k�

t = 0

+
-

Figure E7.4
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The Step-by-Step Approach In the previous analysis technique, we derived the differ-
ential equation for the capacitor voltage or inductor current, solved the differential equation,
and used the solution to find the unknown variable in the network. In the very methodical
technique that we will now describe, we will use the fact that Eq. (7.11) is the form of the
solution and we will employ circuit analysis to determine the constants and �.

From Eq. (7.11) we note that as t S q, and Therefore, if the circuit
is solved for the variable x(t) in steady state (i.e., t S q) with the capacitor replaced by an
open circuit [v is constant and therefore ] or the inductor replaced by a
short circuit [i is constant and therefore ], then the variable 
Note that since the capacitor or inductor has been removed, the circuit is a dc circuit with
constant sources and resistors, and therefore only dc analysis is required in the steady-state
solution.

The constant in Eq. (7.11) can also be obtained via the solution of a dc circuit in which
a capacitor is replaced by a voltage source or an inductor is replaced by a current source. The
value of the voltage source for the capacitor or the current source for the inductor is a known
value at one instant of time. In general, we will use the initial condition value since it is gen-
erally the one known, but the value at any instant could be used. This value can be obtained
in numerous ways and is often specified as input data in a statement of the problem. However,
a more likely situation is one in which a switch is thrown in the circuit and the initial value
of the capacitor voltage or inductor current is determined from the previous circuit (i.e., the
circuit before the switch is thrown). It is normally assumed that the previous circuit has
reached steady state, and therefore the voltage across the capacitor or the current through the
inductor can be found in exactly the same manner as was used to find 

Finally, the value of the time constant can be found by determining the Thévenin equiva-
lent resistance at the terminals of the storage element. Then for an RC circuit, and

for an RL circuit.
Let us now reiterate this procedure in a step-by-step fashion.

� = L�RTh

� = RTh C

K1 .

K2

x(t) = K1 .v = L(di�dt) = 0
i = C(dv�dt) = 0

x(t) = K1 .e-at
S 0

K1 , K2 ,
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Step 1. We assume a solution for the variable x(t) of the form 

Step 2. Assuming that the original circuit has reached steady state before a switch was
thrown (thereby producing a new circuit), draw this previous circuit with the
capacitor replaced by an open circuit or the inductor replaced by a short circuit.
Solve for the voltage across the capacitor, or the current through the
inductor, prior to switch action.

Step 3. Recall from Chapter 6 that voltage across a capacitor and the current flowing
through an inductor cannot change in zero time. Draw the circuit valid for

with the switches in their new positions. Replace a capacitor with a
voltage source or an inductor with a current source of value

Solve for the initial value of the variable 

Step 4. Assuming that steady state has been reached after the switches are thrown,
draw the equivalent circuit, valid for by replacing the capacitor by
an open circuit or the inductor by a short circuit. Solve for the steady-state
value of the variable

Step 5. Since the time constant for all voltages and currents in the circuit will be the
same, it can be obtained by reducing the entire circuit to a simple series circuit
containing a voltage source, resistor, and a storage element (i.e., capacitor or
inductor) by forming a simple Thévenin equivalent circuit at the terminals of 

x(t)|t 7 5� � x(q)

t 7 5�,

x(0+).iL(0+) = iL(0-).
vC(0+) = vC(0-)

t = 0+

iL(0-),
vC(0-),

x(t) = K1 + K2 e-t��.

Problem-Solving Strategy
Using the Step-by-

Step Approach
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the storage element. This Thévenin equivalent circuit is obtained by looking
into the circuit from the terminals of the storage element. The time constant for
a circuit containing a capacitor is and for a circuit containing an
inductor it is 

Step 6. Using the results of steps 3, 4, and 5, we can evaluate the constants in step 1 as

Therefore, and hence the solution is

Keep in mind that this solution form applies only to a first-order circuit having
dc sources. If the sources are not dc, the forced response will be different.
Generally, the forced response is of the same form as the forcing functions
(sources) and their derivatives.

x(t) = x(q) + [x(0+) - x(q)]e-t��

K1 = x(q), K2 = x(0+) - x(q),

 x(q) = K1

 x(0+) = K1 + K2

� = L�RTh .
� = RTh C,

Consider the circuit shown in Fig. 7.6a. The circuit is in steady state prior to time t=0,
when the switch is closed. Let us calculate the current i(t) for 

Step 1. i(t) is of the form 

Step 2. The initial voltage across the capacitor is calculated from Fig. 7.6b as

Step 3. The new circuit, valid only for is shown in Fig. 7.6c. The value of the
voltage source that replaces the capacitor is Hence,

Step 4. The equivalent circuit, valid for is shown in Fig. 7.6d. The current i(q)
caused by the 36-V source is

Step 5. The Thévenin equivalent resistance, obtained by looking into the open-circuit
terminals of the capacitor in Fig. 7.6e, is

Therefore, the circuit time constant is

 = 0.15 s

 = a 3

2
b A103B(100)A10-6B

 � = RTh C

RTh =

(2k)(6k)

2k + 6k
=

3

2
 k�

 =

9

2
 mA

 i(q) =

36

2k + 6k

t 7 5�,

 =

16

3
 mA

 i(0+) =

32

6k

vC(0-) = vC(0+) = 32 V.
t = 0+,

 = 32 V

 vC (0-) = 36 - (2)(2)

K1 + K2 e-t��.

t 7 0.

SOLUTION

EXAMPLE

7.3
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Step 6.

Therefore,

The plot is shown in Fig. 7.7 and can be compared to the sketch in Fig. 7.6f. Examination
of Fig. 7.6f indicates once again that although the voltage across the capacitor is continu-
ous at t=0, the current i(t) in the 6-k� resistor jumps at t=0 from 2 mA to 
and finally decays to 4 1�2 mA.

5 1�3 mA,

i(t) =

36

8
+

5

6
 e-t�0.15 mA

 =

5

6
 mA

 =

16

3
-

9

2

 K2 = i(0+) - i(q) = i(0+) - K1

 K1 = i(q) =

9

2
 mA

(d)  t=∞

(a) (b)  t=0–

(c) t=0±

(f)

0 0.1 0.2 0.3

2

0.4 t(s)

i(t) (mA)

(e)

36 V 12 V

2 k� 6 k� 4 k�i(∞)

±
–

±
–

12 V36 V

2 k� 6 k� 4 k�i(0–)

vC(0–)
+

-

±
–

±
–t=0

12 V36 V

2 k� 6 k�

100 �F

4 k�i(t)

±
–

±
–

36 V 32 V 12 V

2 k� 6 k� 4 k�i(0±)

±
–

±
–

±
–

RTh

2 k� 6 k� 4 k� 16—
3
9—
2

Figure 7.6 Analysis of an RC transient circuit with a constant forcing function.
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Figure 7.7

Plot for Example 7.3.

The circuit shown in Fig. 7.8a is assumed to have been in a steady-state condition prior to
switch closure at t=0. We wish to calculate the voltage v(t) for .

Step 1. v(t) is of the form 

Step 2. In Fig. 7.8b we see that

Step 3. The new circuit, valid only for is shown in Fig. 7.8c, which is equiva-
lent to the circuit shown in Fig. 7.8d. The value of the current source that
replaces the inductor is . The node voltage can
be determined from the circuit in Fig. 7.8d using a single-node equation, and

is equal to the difference between the source voltage and The
equation for is

or

v1(0+) =

20

3
 V

v1(0+) - 24

4
+

v1(0+)

6
+

8

3
+

v1(0+)

12
= 0

v1(0+)
v1(0+).v(0+)

v1(0+)iL(0-) = iL(0+) = 8�3 A

t = 0+,

 =

8

3
 A

 iL (0-) =

24

4 +

(6)(3)

6 + 3

 a 6

6 + 3
b

K1 + K2 e-t��.

t 7 0

SOLUTION

EXAMPLE

7.4
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(a) (b)  t=0–

(c)  t=0± (d)  t=0±

(e)  t=∞ (f)

24

17.33
16

0 1 2 3 54

v(t) (V)

t (s)

(g)

v(t)+ -

t=0

iL(0–)

12 �

1 �

4 �

6 � 2 � 2 �24 V

12 �

1 �4 �

6 �24 V

4 H

±
–

±
–

v(0±)+ - v(0±) v1(0±)+ -

2 � 12 �

1 �
2 �

12 k�

1 �

4 � 4 �

6 � 6 �24 V 24 V±
–

±
–

RTh

12 � 12 �

1 � 1 �4 �v(∞)+ -

4 �

2 �6 � 2 �6 �24 V ±
–

8
3
— A

— A8
3

Figure 7.8 Analysis of an RL transient circuit with a constant forcing function.
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Then

Step 4. The equivalent circuit for the steady-state condition after switch closure is given
in Fig. 7.8e. Note that the 6-, 12-, 1-, and 2-� resistors are shorted, and there-
fore v(q)=24 V.

Step 5. The Thévenin equivalent resistance is found by looking into the circuit from the
inductor terminals. This circuit is shown in Fig. 7.8f. Note carefully that RTh is
equal to the 4-, 6-, and 12-� resistors in parallel. Therefore, RTh=2 �, and the
circuit time constant is

Step 6. From the previous analysis we find that

and hence that

From Fig. 7.8b we see that the value of v(t) before switch closure is 16 V. This
value jumps to 17.33 V at t=0.
A plot of this function for t>0 is shown in Fig. 7.9.

v(t) = 24 -

20

3
 e-t�2 V

 K2 = v(0+) - v(q) = - 
20

3

 K1 = v(q) = 24

� =

L

RTh

=

4

2
= 2 s

 =

52

3
 V

 v(0+) = 24 - v1(0+)

Figure 7.9

Plot for 
Example 7.4.
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E7.5 Consider the network in Fig. E7.5. The switch opens at . Find for .t 7 0vo(t)t = 0

Learning Assessments
ANSWER:

vo(t) =

24

5
+

1

5
 e-(5�8)t V.

±
–12 V

8 V

2 F
2 � 2 �

2 �1 �

t=0

±
–

vo(t)

+

-
Figure E7.5

E7.6 Consider the network in Fig. E7.6. If the switch opens at , find the output voltage
for .t 7 0vo(t)

t = 0 ANSWER:

vo(t) = 6 -

10

3
 e-2t V.

±
–12 V

4 V

2 � 2 �

2 � 2 H

t=0

-
+

vo(t)

+

-Figure E7.6

E7.7 Find v0(t) for t>0 in Fig. E7.7 using the step-by-step method. ANSWER:
vo(t)=-3.33e-t/0.06 V.

+
–

+
–

24 V

12 V

5 �F

6 �

3 �

6 �

4 k�

4 k�
t=0

vo(t)
+

-

Figure E7.7
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The circuit shown in Fig. 7.10a has reached steady state with the switch in position 1. At
time t=0 the switch moves from position 1 to position 2. We want to calculate vo(t) for
t>0.

Step 1. vo(t) is of the form 

Step 2. Using the circuit in Fig. 7.10b, we can calculate 

Then

Step 3. The new circuit, valid only for is shown in Fig. 7.10c. The value of the
current source that replaces the inductor is Because of
the current source

Step 4. The equivalent circuit, for the steady-state condition after switch closure, is
given in Fig. 7.10d. Using the voltages and currents defined in the figure, we
can compute vo(q) in a variety of ways. For example, using node equations we
can find vo(q) from

or, using loop equations,

Using either approach, we find that vo(q)=27 V.

 vo(q) = 6i2

 36 = 2Ai1 + i2B + 6i2 - 2i1

 36 = 2Ai1 + i2B + 4i1

 vo(q) = vB + 2iœ

A

 iœ

A =

vB

4

 
vB - 36

2
+

vB

4
+

vB + 2iœ

A

6
= 0

vo(0+) = (3)(6) = 18 V

iL(0-) = iL(0+) = 3 A.
t = 0+,

iL(0-) =

12 + 2iA

6
=

18

6
= 3 A

iA =

12

4
= 3 A

iL(0-)

K1 + K2 e-t��.

E7.8 Find i0(t) for t>0 Fig. E7.8 using the step-by-step method. ANSWER:
i0(t)=2.1-0.6e-t/0.001 A.

+
–

100 mH

12 V

3 A

io(t) 

6 �

4 � 3 �

3 �

t=0

Figure E7.8

SOLUTION

EXAMPLE

7.5
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Step 5. The Thévenin equivalent resistance can be obtained via voc and isc because of the
presence of the dependent source. From Fig. 7.10e we note that

Therefore,

 = 36 V

 voc = (4)(6) + 2(6)

 ifl

A =

36

2 + 4
= 6 A

±
–36 V ±

–12 V

2 � 3 Ht=0

6 �4 �

2iAiA

vo(t)

-
+

+

-

2

1

(a)

±
–12 V

6 �4 �

2iAiA

vo(0–)

iL(0–)

-
+

+

-

(b) t=0–

±
–36 V

6 �4 �

3 A2 �

2iAiA

vo(0±)

-
+

+

-

(c) t=0±

±
–36 V

6 �4 �

2 � vB

2i'A

i'Ai1

vo(∞)

-
+

+

-

(d) t=�

±
–36 V

6 �4 �

2 � voc

2i"Ai"A -
+

(e)

±
–36 V

6 �4 �

2 �

2i A'"

i A'" isc

isc

i A'"

-
+

(f)

+–

i2

Figure 7.10

Analysis of an RL transient circuit containing a dependent source.
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From Fig. 7.10f we can write the following loop equations:

Solving these equations for isc yields

Therefore,

Hence, the circuit time constant is

Step 6. Using the information just computed, we can derive the final equation for vo(t):

Therefore,
vo(t) = 27 - 9e-t�(3�8) V

 K2 = vo(0+) - vo(q) = 18 - 27 = -9

 K1 = vo(q) = 27

� =

L

RTh

=

3

8
 s

RTh =

voc

isc
=

36

9�2
= 8 �

isc =

9

2
 A

 36 = 2AiÔ

A + iscB + 6isc - 2iÔ

A

 36 = 2AiÔ

A + iscB + 4iÔ

A

E7.9 If the switch in the network in Fig. E7.9 closes at , find for .t 7 0vo(t)t = 0 ANSWER:

vo(t) = 24 + 36e-(t�12) V.

+- -+

vo(t)

+

-

3 A t=0

4 �
24 V

4 � 2 FvA

2 vA+

-

Figure E7.9

Learning Assessments

E7.10 Find io(t) for t>0 in Fig. E7.10 using the step-by-step method. ANSWER:

1.5 + 0.2143e-(t�0.7) mA.
io(t) =

12 V

6 k� 6 k�

6 k� 3 k�

4 k� 2 F

t=0

io(t) 

iA

2iA+
-

100 �F

Figure E7.10
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At this point, it is appropriate to state that not all switch action will always occur at time
t=0. It may occur at any time t0 . In this case the results of the step-by-step analysis yield
the following equations:

and

The function is essentially time-shifted by t0 seconds.
Finally, note that if more than one independent source is present in the network, we can

simply employ superposition to obtain the total response.

PULSE RESPONSE Thus far we have examined networks in which a voltage or current
source is suddenly applied. As a result of this sudden application of a source, voltages or cur-
rents in the circuit are forced to change abruptly. A forcing function whose value changes in
a discontinuous manner or has a discontinuous derivative is called a singular function. Two
such singular functions that are very important in circuit analysis are the unit impulse func-
tion and the unit step function. We will defer a discussion of the unit impulse function until
a later chapter and concentrate on the unit step function.

The unit step function is defined by the following mathematical relationship:

In other words, this function, which is dimensionless, is equal to zero for negative values of
the argument and equal to 1 for positive values of the argument. It is undefined for a zero
argument where the function is discontinuous. A graph of the unit step is shown in Fig. 7.11a.

u(t) = b0

1

t 6 0

t 7 0

x(t) = x(q) + Cx At0B - x(q) De-At - t0B��  t 7 t0

 x (q) = K1

 x At0B = K1 + K2

(a) (b)

(c) (d)

(e) (f)

t

1

0

t=01

2

±
–

Vo

u(t-t0)

t0 t0

1
Iou(t-t0)

±
–Vou(t)

t=0

Io

Figure 7.11

Graphs and models of the
unit step function.

irwin07_296-368hr.qxd  28-07-2010  11:34  Page 316



S E C T I O N  7 . 2 F I R S T- O R D E R  C I R C U I T S     317

The unit step is dimensionless, and therefore a voltage step of volts or a current step of Io

amperes is written as and respectively. Equivalent circuits for a voltage step are
shown in Figs. 7.11b and c. Equivalent circuits for a current step are shown in Figs. 7.11d
and e. If we use the definition of the unit step, it is easy to generalize this function by replac-
ing the argument t by t-t0. In this case

A graph of this function is shown in Fig. 7.11f. Note that is equivalent to delaying
u(t) by t0 seconds, so that the abrupt change occurs at time t=t0.

Step functions can be used to construct one or more pulses. For example, the voltage pulse
shown in Fig. 7.12a can be formulated by initiating a unit step at t=0 and subtracting one
that starts at t=T, as shown in Fig. 7.12b. The equation for the pulse is

If the pulse is to start at t=t0 and have width T, the equation would be

Using this approach, we can write the equation for a pulse starting at any time and ending at
any time. Similarly, using this approach, we could write the equation for a series of pulses,
called a pulse train, by simply forming a summation of pulses constructed in the manner
illustrated previously.

The following example will serve to illustrate many of the concepts we have just presented.

v(t) = AEu At - t0B - u C t - At0 + TB D F

v(t) = A Cu(t) - u(t - T) D

u At - t0B
u At - t0B = b0

1

t 6 t0

t 7 t0

Iou(t),Vo u(t)
Vo

t

tT

T

A

(a)

(b)

v(t)

A
Au(t)

–Au(t-T)–A

v(t)

Figure 7.12

Construction of a pulse via
two step functions.

Consider the circuit shown in Fig. 7.13a. The input function is the voltage pulse shown in
Fig. 7.13b. Since the source is zero for all negative time, the initial conditions for the

(b)(a)

9

0 0.3

v(t) (V)

t(s)

vC(t)v(t)

6 k�

100 �F
8 k�

4 k�

±
–

+

-

vo(t)

+

-

(c)  t=0 (d)

8 k�

4 k�

vo(0±)=0vc(0)=0

+

-

8 k�9 V

6 k� 4 k�

±
– vo(∞)

+

-

(e) (f)

4

2.11

0 0.3

vo(t) (V)

t(s)

8 k�

6 k� 4 k�

RTh

Figure 7.13
Pulse response
of a network.

EXAMPLE

7.6
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SOLUTION

network are zero i.e., The response vo(t) for is due to the
application of the constant source at t=0 and is not influenced by any source changes that
will occur later. At the forcing function becomes zero, and therefore vo(t) for

is the source-free or natural response of the network.
Let us determine the expression for the voltage vo(t) .

Since the output voltage vo(t) is a voltage division of the capacitor voltage, and the initial volt-
age across the capacitor is zero, we know that as shown in Fig. 7.13c.

If no changes were made in the source after t=0, the steady-state value of vo(t) C i.e.,
vo(q) D due to the application of the unit step at t=0 would be

as shown in Fig. 7.13d.
The Thévenin equivalent resistance is

as illustrated in Fig. 7.13e.
Therefore, the circuit time constant � is

Therefore, the response vo(t) for the period 0<t<0.3 s is

0<t<0.3 s

The capacitor voltage can be calculated by realizing that using voltage division,
Therefore,

Since the capacitor voltage is continuous,

and therefore,

Since the source is zero for the final value for vo(t) as is zero. Therefore,
the expression for vo(t) for is

t>0.3 s

The term indicates that the exponential decay starts at t=0.3 s. The complete
solution can be written by means of superposition as

vo(t) = 4A1 - e-t�0.4Bu(t) - 4A1 - e-(t - 0.3)�0.4Bu(t - 0.3) V

e-(t - 0.3)�0.4

vo(t) = 2.11e-(t - 0.3)�0.4 V

t 7 0.3 s
t S qt 7 0.3 s,

 = 2.11 V

 = 4A1 - e-0.3�0.4B
 vo(0.3+) =

2

3
 vC(0.3-)

vC(0.3-) = vC(0.3+)

vC(t) =

3

2
 A4 - 4e-t�0.4B V

vo(t) = 2�3 vC(t).

vo(t) = 4 - 4e-t�0.4 V

 = 0.4 s

 = (4)A103B(100)A10-6B
 � = RTh C

 = 4 k�

 RTh =

(6k)(12k)

6k + 12k

 = 4 V

 vo(q) =

9

6k + 4k + 8k
 (8k)

vo(0+) = 0,

t 7 0.3 s
t = 0.3 s

0 6 t 6 0.3 svC(0-) = 0 D .C
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THE BASIC CIRCUIT  EQUATION To begin our development, let us consider the two
basic RLC circuits shown in Fig. 7.14. We assume that energy may be initially stored in both
the inductor and capacitor. The node equation for the parallel RLC circuit is

Similarly, the loop equation for the series RLC circuit is

Ri +

1

C
 3

t

t0

i(x)  dx + vC At0B + L 
di

dt
= vS(t)

v

R
+

1

L
 3

t

t0

v(x) dx + iLAt0B + C 
dv

dt
= iS(t)

or, equivalently, the complete solution is

which in mathematical form is

Note that the term Cu(t)-u(t-0.3) D acts like a gating function that captures only the
part of the step response that exists in the time interval 0<t<0.3 s. The output as a func-
tion of time is shown in Fig. 7.13f.

2.11e-(t - 0.3)�0.4 u(t - 0.3) Vvo(t) = 4A1 - e-t�0.4B Cu(t) - u(t - 0.3) D +

vo(t) = •
0 t 6 0

4A1 - e-t�0.4B   V 0 6 t 6 0.3 s

2.11e-(t - 0.3)�0.4  V 0.3 s 6 t

¶

E7.11 The voltage source in the network in Fig. E7.11a is shown in Fig. E7.11b. The initial
current in the inductor must be zero. (Why?) Determine the output voltage vo(t) for t 7 0.

ANSWER: for

for 0 � t � 1 s, and
for 1 s<t.3.11e-(3�2)(t - 1) V

t 6 0, 4A1 - e-(3�2)tB V
vo(t) = 0

(a) (b)

12

0 1

v(t) (V)

t(s)

v(t)

2 �

2 �

2 H

±
– 2 � vo(t)

+

-

Figure E7.11

iS(t)

iL(t0)

R L C

v(t)

vS(t)

i(t) R

L±
–

(a) (b)

vC(t0)

C

+ -

Figure 7.14 Parallel and series RLC circuits.

Learning Assessments

7.3
Second-Order

Circuits
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Note that the equation for the node voltage in the parallel circuit is of the same form as that
for the loop current in the series circuit. Therefore, the solution of these two circuits is
dependent on solving one equation. If the two preceding equations are differentiated with
respect to time, we obtain

and

Since both circuits lead to a second-order differential equation with constant coefficients, we
will concentrate our analysis on this type of equation.

THE RESPONSE EQUATIONS In concert with our development of the solution of a 
first-order differential equation that results from the analysis of either an RL or an RC circuit
as outlined earlier, we will now employ the same approach here to obtain the solution of a
second-order differential equation that results from the analysis of RLC circuits. As a general
rule, for this case we are confronted with an equation of the form

7.12

Once again we use the fact that if x(t)=xp(t) is a solution to Eq. (7.12), and if x(t)=xc(t)
is a solution to the homogeneous equation 

then

is a solution to the original Eq. (7.12). If we again confine ourselves to a constant forcing
function C i.e., f(t)=A D , the development at the beginning of this chapter shows that the
solution of Eq. (7.12) will be of the form

7.13

Let us now turn our attention to the solution of the homogeneous equation

where a1 and a2 are constants. For simplicity we will rewrite the equation in the form

7.14

where we have made the following simple substitutions for the constants and

Following the development of a solution for the first-order homogeneous differential
equation earlier in this chapter, the solution of Eq. (7.14) must be a function whose first- and
second-order derivatives have the same form, so that the left-hand side of Eq. (7.14) will
become identically zero for all t. Again we assume that

Substituting this expression into Eq. (7.14) yields

s2Kest
+ 2��0 sKest

+ �2
0 Kest

= 0

x(t) = Kest

a2 = �2
0 .

a1 = 2��0

d2x(t)

dt 2
+ 2��0 

dx(t)

dt
+ �2

0 x(t) = 0

d2x(t)

dt 2
+ a1 

dx(t)

dt
+ a2 x(t) = 0

x(t) =

A

a2
+ xc(t)

x(t) = xp(t) + xc(t)

d2x(t)

dt 2
+ a1 

dx(t)

dt
+ a2 x(t) = 0

d2x(t)

dt 2
+ a1 

dx(t)

dt
+ a2 x(t) = f(t)

L 
d2i

dt 2
+ R 

di

dt
+

i

C
=

dvS

dt

C 
d2v

dt 2
+

1

R
 
dv

dt
+

v

L
=

diS

dt
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Dividing both sides of the equation by Kest yields

7.15

This equation is commonly called the characteristic equation; � is called the exponential
damping ratio, and �0 is referred to as the undamped natural frequency. The importance of
this terminology will become clear as we proceed with the development. If this equation is
satisfied, our assumed solution is correct. Employing the quadratic formula, we
find that Eq. (7.15) is satisfied if

7.16

Therefore, two values of s, s1 and s2, satisfy Eq. (7.15):

7.17

In general, then, the complementary solution of Eq. (7.14) is of the form

7.18

and are constants that can be evaluated via the initial conditions x(0) and 
For example, since

then

and

Hence, x(0) and produce two simultaneous equations, which when solved yield
the constants K1 and K2 .

Close examination of Eqs. (7.17) and (7.18) indicates that the form of the solution of
the homogeneous equation is dependent on the value �. For example, if �>1, the roots
of the characteristic equation, s1 and s2 , also called the natural frequencies because they
determine the natural (unforced) response of the network, are real and unequal; if �<1,
the roots are complex numbers; and finally, if �=1, the roots are real and equal.

Let us now consider the three distinct forms of the unforced response—that is, the
response due to an initial capacitor voltage or initial inductor current.

Case 1, �>1 This case is commonly called overdamped. The natural frequencies s1 and
s2 are real and unequal; therefore, the natural response of the network described by the
second-order differential equation is of the form

7.19

where K1 and K2 are found from the initial conditions. This indicates that the natural response
is the sum of two decaying exponentials.

xc(t) = K1 e-  A��0 - �0 2�2
- 1Bt

+ K2 e-  A��0 + �0 2�2
- 1Bt

dx (0)�dt

dx(t)

dt
 2  

t = 0
=

dx(0)

dt
= s1 K1 + s2 K2

x(0) = K1 + K2

x(t) = K1 es1 t
+ K2 es2 t

dx(0)�dt.K2K1

xc(t) = K1 es1 t
+ K2 es2 t

 s2 = -��0 - �0 2�2
- 1

 s1 = -��0 + �0 2�2
- 1

 = -��0 ; �0 2�2
- 1

 s =

-2��0 ; 24�2�2
0 - 4�2

0

2

x(t) = Kest

s2
+ 2��0 s + �2

0 = 0
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Case 2, �<1 This case is called underdamped. Since �<1, the roots of the characteristic
equation given in Eq. (7.17) can be written as

where , and Thus, the natural frequencies are com-
plex numbers (briefly discussed in the Appendix). The natural response is then of the form

7.20

where A1 and A2, like K1 and K2, are constants, which are evaluated using the initial condi-
tions x(0) and This illustrates that the natural response is an exponentially damped
oscillatory response.

Case 3, �=1 This case, called critically damped, results in

In the case where the characteristic equation has repeated roots, the general solution is of the form

7.21

where B1 and B2 are constants derived from the initial conditions.
It is informative to sketch the natural response for the three cases we have discussed: over-

damped, Eq. (7.19); underdamped, Eq. (7.20); and critically damped, Eq. (7.21). Figure 7.15
graphically illustrates the three cases for the situations in which xc(0)=0. Note that the
critically damped response peaks and decays faster than the overdamped response. The
underdamped response is an exponentially damped sinusoid whose rate of decay is
dependent on the factor �. Actually, the terms define what is called the envelope of
the response, and the damped oscillations (i.e., the oscillations of decreasing amplitude)
exhibited by the waveform in Fig. 7.15b are called ringing.

; e-��0 t

xc(t) = B1 e-��0 t
+ B2 te-��0 t

s1 = s2 = -��0

dx(0)�dt.

xc(t) = e-��0 tAA1 cos �0 21 - �2  t + A2 sin �0 21 - �2  tB

�d = �0 21 - �2
 .j = 1-1 , � = ��0

 s2 = -��0 - j�0 21 - �2
= -� - j�d

 s1 = -��0 + j�0 21 - �2
= -� + j�d
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t

Underdamped

e–�t

(b)

Critically
damped Overdamped

xc(t)
xc(t)

(a)

t

Figure 7.15

Comparison of overdamped,
critically damped, and under-

damped responses.

E7.12 A parallel RLC circuit has the following circuit parameters: R=1 �, L=2 H, and
C=2 F. Compute the damping ratio and the undamped natural frequency of this network.

ANSWER:
�0 = 0.5 rad�s.

� = 0.5;

E7.13 A series RLC circuit consists of R=2 �, L=1 H, and a capacitor. Determine the type
of response exhibited by the network if (a) (b) C=1 F, and (c) C=2 F.C = 1�2 F,

ANSWER:
(a) underdamped;
(b) critically damped;
(c) overdamped.

Learning Assessments

THE NET WORK RESPONSE We will now analyze a number of simple RLC networks
that contain both nonzero initial conditions and constant forcing functions. Circuits that
exhibit overdamped, underdamped, and critically damped responses will be considered.
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EXAMPLE

7.7

The following examples will demonstrate the analysis techniques.

Step 1. Write the differential equation that describes the circuit.

Step 2. Derive the characteristic equation, which can be written in the form
where � is the damping ratio and �0 is the undamped

natural frequency.

Step 3. The two roots of the characteristic equation will determine the type of
response. If the roots are real and unequal (i.e., �>1), the network response is
overdamped. If the roots are real and equal (i.e., �=1), the network response
is critically damped. If the roots are complex (i.e., �<1), the network
response is underdamped.

Step 4. The damping condition and corresponding response for the aforementioned
three cases outlined are as follows:

Overdamped: 

Critically damped: 

Underdamped: where and

Step 5. Two initial conditions, either given or derived, are required to obtain the two
unknown coefficients in the response equation.

�d = �0 21 - �2
� = ��0 ,x(t) = e-�tAA1 cos �d t + A2 sin �d tB,

x(t) = B1 e-��0 t
+ B2 te-��0 t

x(t) = K1 e-A��0 - �0 2�2
- 1Bt

+ K2 e-A��0 + �0 2�2
- 1Bt

s2
+ 2��0 s + �2

0 = 0,

Problem-Solving Strategy
Second-Order
Transient Circuits

Consider the parallel RLC circuit shown in Fig. 7.16. The second-order differential equation
that describes the voltage v(t) is

d2v

dt 2
+

1

RC
 
dv

dt
+

v

LC
= 0

A comparison of this equation with Eqs. (7.14) and (7.15) indicates that for the parallel RLC
circuit the damping term is 1/2 RC and the undamped natural frequency is If 
the circuit parameters are R=2 �, and L=5 H, the equation
becomes

Let us assume that the initial conditions on the storage elements are iL(0)=-1 A and
vC(0)=4 V. Let us find the node voltage v(t) and the inductor current.

The characteristic equation for the network is

and the roots are

 s2 = -0.5

 s1 = -2

s2
+ 2.5s + 1 = 0

d2v

dt 2
+ 2.5 

dv

dt
+ v = 0

C = 1�5 F,
1�1LC .

R L

iL(0)

v(t)

C vC(0)
+

-

Figure 7.16

Parallel RLC circuit.

SOLUTION
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Since the roots are real and unequal, the circuit is overdamped, and v(t) is of the form

The initial conditions are now employed to determine the constants K1 and K2. Since
v(t)=vC(t),

The second equation needed to determine K1 and K2 is normally obtained from the expression

However, the second initial condition is not If this were the case, we would simply
evaluate the equation at t=0. This would produce a second equation in the unknowns K1 and
K2. We can, however, circumvent this problem by noting that the node equation for the cir-
cuit can be written as

or

At t=0,

However, since

then when t=0

This equation, together with the equation

produces the constants and . Therefore, the final equation for the voltage is

Note that the voltage equation satisfies the initial condition v(0)=4 V. The response curve
for this voltage v(t) is shown in Fig. 7.17.

v(t) = 2e-2t
+ 2e-0.5t V

K2 = 2K1 = 2

4 = K1 + K2

-5 = -2K1 - 0.5K2

dv(t)

dt
= -2K1 e-2t

- 0.5K2 e-0.5t

 = -5

 = -2.5(4) - 5(-1)

 
dv(0)

dt
=

-1

RC
 v(0) -

1

C
 iL(0)

dv(t)

dt
=

-1

RC
 v(t) -

iL(t)

C

C 
dv(t)

dt
+

v(t)

R
+ iL(t) = 0

dv(0)�dt.

dv(t)

dt
= -2K1 e-2t

- 0.5K2 e-0.5t

vC(0) = v(0) = 4 = K1 + K2

v(t) = K1 e-2t
+ K2 e-0.5t
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t(s)

v(t) (V)
4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

0.0
0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0

Figure 7.17

Overdamped response. 
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The inductor current is related to v(t) by the equation

Substituting our expression for v(t) yields

or

Note that in comparison with the RL and RC circuits, the response of this RLC circuit is
controlled by two time constants. The first term has a time constant of and the sec-
ond term has a time constant of 2 s.

1�2 s,

iL(t) = - 
1

5
 e-2t

-

4

5
 e-0.5t A

iL(t) =

1

5
 3

 

 

C2e-2t
+ 2e-0.5t D  dt

iL(t) =

1

L
 3

 

 

v(t) dt

The series RLC circuit shown in Fig. 7.18 has the following parameters: C=0.04 F,
L=1 H, R=6 �, iL(0)=4 A, and vC(0)=-4 V. The equation for the current in the
circuit is given by the expression

A comparison of this equation with Eqs. (7.14) and (7.15) illustrates that for a series RLC
circuit the damping term is R/2L and the undamped natural frequency is 
Substituting the circuit element values into the preceding equation yields

Let us determine the expression for both the current and the capacitor voltage.

The characteristic equation is then

and the roots are

Since the roots are complex, the circuit is underdamped, and the expression for i(t) is

Using the initial conditions, we find that

i(0)=4=K1

i(t) = K1 e-3t cos 4t + K2 e-3t sin 4t

 s2 = -3 - j4

 s1 = -3 + j4

s2 + 6s + 25 = 0

d2i

dt 2
+ 6 

di

dt
+ 25i = 0

1�1LC .

d2 i
dt 2

+

R

L
 
di

dt
+

i

LC
= 0

EXAMPLE

7.8

SOLUTION

R

L

i(t)

C vC(0)
+

-

iL(0) Figure 7.18

Series RLC circuit. 
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and

and thus

Although we do not know we can find it via KVL. From the circuit we note that

or

Therefore,

and since K1=4, K2=–2, the expression then for i(t) is 

Note that this expression satisfies the initial condition i(0)=4. The voltage across the
capacitor could be determined via KVL using this current:

or

Substituting the preceding expression for i(t) into this equation yields

Note that this expression satisfies the initial condition vC(0)=–4 V.
A plot of the function is shown in Fig. 7.1.9:

vC(t) = -4e-3t cos 4t + 22e-3t sin 4t V

vC(t) = -Ri(t) - L 
di(t)

dt

Ri(t) + L 
di(t)

dt
+ vC(t) = 0

i(t) = 4e-3t cos 4t - 2e-3t sin 4t A

-3K1 + 4K2 = -20

 = -20

 = - 
6

1
 (4) +

4

1

 
di(0)

dt
= - 

R

L
 i(0) -

vC(0)

L

Ri(0) + L 
di(0)

dt
+ vC(0) = 0

di(0)�dt,

di(0)

dt
= -3K1 + 4K2

+ 4K2 e-3t cos 4t - 3K2 e-3t  sin 4t
di

dt
= -4K1 e-3t sin 4t - 3K1 e-3t cos 4t
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v(t) (V)

t(s)

10.0

8.0

6.0

4.0

2.0

0

–2.0

–4.0
0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0

Figure 7.19

Underdamped response.
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Let us examine the circuit in Fig. 7.20, which is slightly more complicated than the two we
have already considered. 

The two equations that describe the network are

Substituting the second equation into the first yields

If the circuit parameters and initial conditions are

the differential equation becomes

We wish to find expressions for the current i(t) and the voltage v(t).

The characteristic equation is then

and hence the roots are

Since the roots are real and equal, the circuit is critically damped. The term v(t) is then
given by the expression

Since v(t)=vC(t),

v(0) = vC(0) = 1 = K1

v(t) = K1 e-3t
+ K2 te-3t

 s2 = -3

 s1 = -3

s2
+ 6s + 9 = 0

d2 v
dt 2

+ 6 
dv

dt
+ 9v = 0

 R2 = 8 �   L = 2 H   iL(0) =

1

2
 A

 R1 = 10 �   C =

1

8
 F   vC(0) = 1 V

d2v

dt 2
+ a 1

R2 C
+

R1

L
b  

dv

dt
+

R1 + R2

R2 LC
 v = 0

 i(t) = C 
dv(t)

dt
+

v(t)

R2

 L 
di(t)

dt
+ R1 i(t) + v(t) = 0

EXAMPLE

7.9
SOLUTION

Figure 7.20

Series-parallel
RLC circuit.

+

+

-

-

vC(0) C v(t)

iL(0) L

i(t)

R1

R2
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In addition,

However,

Setting these two expressions equal to one another and evaluating the resultant equation at
t=0 yields

K1=1, K2=6, and the expression for v(t) is

Note that the expression satisfies the initial condition v(0)=1.
The current i(t) can be determined from the nodal analysis equation at v(t):

Substituting v(t) from the preceding equation, we find

or

If this expression for the current is employed in the circuit equation,

we obtain

which is identical to the expression derived earlier.
A plot of this critically damped function is shown in Fig. 7.21.

v(t) = e-3t
+ 6te-3t V

v(t) = -L 
di(t)

dt
- R1 i(t)

i(t) =

1

2
 e-3t

-

3

2
 te-3t A

i(t) =

1

8
 C-3e-3t

+ 6e-3t
- 18te-3t D +

1

8
 Ce-3t

+ 6te-3t D

i(t) = C 
dv(t)

dt
+

v(t)

R2

v(t) = e-3t
+ 6te-3t V

 3 = -3K1 + K2

 
1�2

1�8
-

1

1
= -3K1 + K2

dv(t)

dt
=

i(t)

C
-

v(t)

R2 C

dv(t)

dt
= -3K1 e-3t

+ K2 e-3t
- 3K2 te-3t

t(s)

v(t) (V)
1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

–0.2

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0

Figure 7.21

Critically damped
response.
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E7.14 The switch in the network in Fig. E7.14 opens at t=0. Find i(t) for t>0. ANSWER:
i(t) = -2e - t�2

+ 4e-t A.

E7.15 The switch in the network in Fig. E7.15 moves from position 1 to position 2 at t=0.
Find vo(t) for t>0.

ANSWER:
vo(t) = 2Ae-t

- 3e-3tB V.

1 F

3 �
6 �

12 V
i(t)

t=0 2 H

±
–

Figure E7.14

vo(t)

t=0

2 A

2 �

+

-

— H1
2

— F2
3

21

Figure E7.15

Learning Assessments

E7.16 Find vC(t) for t>0 in Fig. E7.16. ANSWER: vC(t)=-2e–2t

cos t-1.5e–2t sin t+24 V.

0.25 H

0.8 F

12 V

24 V

t=0

1 �

VS2

5 �

+
–

+
–

vc(t)- +

Figure E7.16

EXAMPLE

7.10
Consider the circuit shown in Fig. 7.22. This circuit is the same as the one analyzed in
Example 7.8, except that a constant forcing function is present. The circuit parameters
are the same as those used in Example 7.8:

 R = 6 �

 L = 1 H   vC(0) = -4 V

 C = 0.04 F   iL(0) = 4 A
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Figure 7.22

Series RLC circuit with a step
function input.

±
–12u(t) V

R iL(0)

L

C vC (0)
+

-

SOLUTION

We want to find an expression for vC(t) for t>0.

From our earlier mathematical development we know that the general solution of this
problem will consist of a particular solution plus a complementary solution. From Example
7.8 we know that the complementary solution is of the form 
The particular solution is a constant, since the input is a constant and therefore the general
solution is

An examination of the circuit shows that in the steady state, the final value of is 12 V,
since in the steady-state condition, the inductor is a short circuit and the capacitor is an open
circuit. Thus, . The steady-state value could also be immediately calculated from
the differential equation. The form of the general solution is then

The initial conditions can now be used to evaluate the constants  and :

Since the derivative of a constant is zero, the results of Example 7.8 show that

and since Therefore, the general solution for vC(t) is

Note that this equation satisfies the initial condition vC(0)=–4 and the final condition
vC(q)=12 V.

vC(t) = 12 - 16e-3t cos 4t + 13e-3t sin 4t V

K3 = -16, K4 = 13.

dvC(0)

dt
=

i(0)

C
= 100 = -3K3 + 4K4

 -16 = K3

 vC(0) = -4 = K3 + 12

K4K3

vC(t) = K3 e-3t cos 4t + K4 e-3t sin 4t + 12

K5 = 12

vC(t)

vC(t) = K3 e-3t cos 4t + K4 e-3t sin 4t + K5

K3 e-3t cos 4t + K4 e-3t sin 4t.

Let us examine the circuit shown in Fig. 7.23. A close examination of this circuit will
indicate that it is identical to that shown in Example 7.9 except that a constant forcing func-
tion is present. We assume the circuit is in steady state at The equations that
describe the circuit for are

Combining these equations, we obtain

If the circuit parameters are and the differen-
tial equation for the output voltage reduces to

d2v(t)

dt 2
+ 7 

dv(t)

dt
+ 12v(t) = 48

C = 1�4 F,L = 2 H,R2 = 2 �,R1 = 10 �,

d2v(t)

dt 2
+ a 1

R2 C
+

R1

L
b  

dv(t)

dt
+

R1 + R2

R2 LC
 v(t) =

24

LC

 i(t) = C 
dv(t)

dt
+

v(t)

R2

 L 
di(t)

dt
+ R1 i(t) + v(t) = 24

t 7 0
t = 0-.

EXAMPLE

7.11
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±
–

±
–

v(t)

i(t)
+

+

-

-

24 V

12 V

t=0
L

C R2

iL(0)

vC(0)

R1

Figure 7.23

Series-parallel RLC circuit
with a constant forcing
function.

Let us determine the output voltage 

The characteristic equation is

and hence the roots are

The circuit response is overdamped, and therefore the general solution is of the form

The steady-state value of the voltage, can be computed from Fig. 7.24a. Note that

The initial conditions can be calculated from Figs. 7.24b and c, which are valid at and
respectively. Note that and, hence, from the response equation

Fig. 7.24c illustrates that From the response equation we see that

 
dv(0)

dt
= -3K1 - 4K2

i(0+) = 1.

 -2 = K1 + K2

 v(0+) = 2 V = K1 + K2 + 4

v(0+) = 2 Vt = 0+,
t = 0-

v(q) = 4 V = K3

K3 ,

v(t) = K1 e-3t
+ K2 e-4t

+ K3

 s2 = -4

 s1 = -3

s2
+ 7s + 12 = 0

v(t).

(c) t=0+

±
–

±
–24 V 2 �2 V

i(0±)

iC(0±)

v(0±)=2 V

i(0±)=1 A
10 �

+

-

(a) t=∞

±
–24 V 2 �

10 �i(∞)=2 A

v(∞)=4 V

+

-

(b) t=0–

12 V

10 �

2 �

i(0–)=1 A

v(0–)=2 VvC(0–)=2 V

+

-

±
–

+

-

Figure 7.24 Equivalent circuits at , , and for the circuit in Fig. 7.23.t = 0+t = 0-t = q
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and since

then

Solving the two equations for and yields and Therefore, the general
solution for the voltage response is

Note that this equation satisfies both the initial and final values of v(t).

v(t) = 4 - 8e-3t
+ 6e-4t V

K2 = 6.K1 = -8K2K1

0 = -3K1 - 4K2

 = 0

 = 4 - 4

 
dv(0)

dt
=

i(0)

C
-

v(0)

R2 C

E7.17 The switch in the network in Fig. E7.17 moves from position 1 to position 2 at t=0.
Compute io(t) for t>0 and use this current to determine vo(t) for t>0.

ANSWER:

vo(t)=12+18io(t) V.

io(t) = -  
11

6
 e-3t

+

14

6
 e-6t A;

±
–

±
–

±
–

24 V

4 V 12 V

io(t)

vo(t)

+

-

— F
1
36

2

1

t=0
2 H6 �

18 �

Figure E7.17

Learning Assessments

E7.18 Find i(t) for t>0 in Fig. E7.18. ANSWER: i(t)=0.4144e–17.07t

– 2.414e–2.93t+3 A.

10 V

20 V

2 H

t=0

10 �

10 �

+
–

+
– 0.01F

i(t) 

Figure E7.18
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There are a wide variety of applications for transient circuits. The following examples
demonstrate some of them. 7.4

Application
Examples

Let us return to the camera flash circuit, redrawn in Fig. 7.25, which was discussed in the
introduction of this chapter. The Xenon flash has the following specifications:

For this particular application, a time constant of 1 ms is required during flash time. In addi-
tion, to minimize the physical size of the circuit, the resistor must dissipate no more than
100-mW peak power. We want to determine values for and Furthermore, we
wish to determine the recharge time, the flash bulb’s voltage, current, power, and total energy
dissipated during the flash.

R1 .VS , CF ,
R1

  Equivalent resistance: 80 �

  Voltage required for successful flash: bminimum 50 V
maximum 70 V

±
– RB

R1

VS CF
vB(t)

iB(t)

+

-

+

-

vCF(t)

Figure 7.25
A model for a camera flash
charging circuit.

We begin by selecting the source voltage, Since the capacitor is applied directly to the
Xenon bulb during flash, and since at least 50 V is required to flash, we should set higher
than 50 V. We will somewhat arbitrarily split the difference in the bulb’s required voltage
range and select 60 V for 

Now we consider the time constant during the flash time. From Fig. 7.25, during flash,
the time constant is simply

7.22

Given and we find 
Next, we turn to the value of At the beginning of the charge time, the capacitor volt-

age is zero and both the current and power in are at their maximum values. Setting the
power to the maximum allowed value of 100 mW, we can write

7.23

and find that The recharge time is the time required for the capacitor to
charge from zero up to at least 50 V. At that point the flash can be successfully dis-
charged. We will define as the point at which the switch moves from the bulb back
to At the capacitor voltage is zero, and at the capacitor voltage is 60 V;
the time constant is simply The resulting equation for the capacitor voltage during
recharge is

7.24

At Substituting this and the values of and into Eq. (7.24)
yields a charge time of —just less than a second. As a point of interest, let ustcharge = 806 ms

CFR1t = tcharge , vCF(t) = 50 V.

vCF(t) = K1 + K2 e-t��
= 60 - 60e-t�R1 CF V

R1 CF .
t = q,t = 0,R1 .

t = 0

R1 = 36 k�.

PRmax =

V2
S

R1
=

3600

R1
= 0.1

R1

R1 .
CF = 12.5 	F.RB = 80 �,tF = 1 ms

�F = RB CF

VS .

VS

VS . SOLUTION

APPLICATION
EXAMPLE 7.12

•
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reconsider our choice for What happens if is decreased to only 51 V? First, from
Eq. (7.23), changes to Second, from Eq. (7.24), the charge time increases only
slightly to 1.28 s. Therefore, it appears that selection of will not have much effect on the
flash unit’s performance, and thus there exists some flexibility in the design.

Finally, we consider the waveforms for the flash bulb itself. The bulb and capacitor volt-
age are the same during flash and are given by the decaying exponential function

7.25

where the time constant is defined in Eq. (7.22), and we have assumed that the capacitor is
allowed to charge fully to (i.e., 60 V). Since the bulb’s equivalent resistance is the
bulb current must be

7.26

As always, the power is the v-i product.

7.27

Finally, the total energy consumed by the bulb during flash is only

7.28wB(t) = 3
q

0
pB(t) dt = 3

q

0
45e-2000t dt =

45

2000
 e-2000t 2 0

q

=

45

2000
= 22.5 mJ

pB(t) = vB(t)iB(t) = 45e-2000t W

iB(t) =

60e-1000t

80
= 750e-1000t mA

80 �,VS

vB(t) = 60e-1000t V

VS

26.01 k�.R1

VSVS .

One very popular application for inductors is storing energy in the present for release in the
future. This energy is in the form of a magnetic field, and current is required to maintain the
field. In an analogous situation, the capacitor stores energy in an electric field, and a volt-
age across the capacitor is required to maintain it. As an application of the inductor’s energy
storage capability, let us consider the high-voltage pulse generator circuit shown in
Fig. 7.26. This circuit is capable of producing high-voltage pulses from a small dc voltage.
Let’s see if this circuit can produce an output voltage peak of 500 V every 2 ms, that is,
500 times per second.

SOLUTION

±
– vo(t)5 V

Vin i(t)
L

R
100 �

1 mH

pos.
1

pos.
2

-

+

Figure 7.26

A simple high-voltage pulse
generator.

At the heart of this circuit is a single-pole, double-throw switch—that is, a single switch
(single-pole) with two electrically connected positions (double-throw), 1 and 2. As shown
in Fig. 7.27a, when in position 1, the inductor current grows linearly in accordance with
the equation

Then the switch moves from position 1 to position 2 at time The peak inductor
current is

While at position 1, the resistor is isolated electrically, and therefore its voltage is zero.

ip(t) =

Vin T1

L

T1 .

i(t) =

1

L
 3

T1

0
Vin dt

APPLICATION
EXAMPLE 7.13
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At time when the switch is in position 2, as shown in Fig. 7.27b, the inductor
current flows into the resistor producing the voltage

At this point, we know that the form of the voltage in the time interval is

And The initial value of in the time interval is K since at time the
exponential term is 1. According to the design specifications, this initial value is 500 and
therefore 

Since this voltage is created by the peak inductor current flowing in R,

and thus is 1 ms and is 5 A.
The equation for the voltage in the time interval or is

At the end of the 2-ms period, that is, at the voltage is or essentially zero.
The complete waveform for the voltage is shown in Fig. 7.28.

It is instructive at this point to consider the ratings of the various components used in this
pulse generator circuit. First, 500 V is a rather high voltage, and thus each component’s
voltage rating should be at least 600 V in order to provide some safety margin. Second, the
inductor’s peak current rating should be at least 6 A. Finally, at peak current, the power
losses in the resistor are 2500 W! This resistor will have to be physically large to handle this
power load without getting too hot. Fortunately, the resistor power is pulsed rather than con-
tinuous; thus, a lower power rated resistor will work fine, perhaps 500 W. In later chapters
we will address the issue of power in much more detail.

500e-100t = 2 ms,

vo(t - 1 ms) = 500e-100,000(t - 1 ms) V

t 7 1 ms,t 7 T1 ,
IPT1

K = 500 = AVin T1 RB�L = 5T1(100)�10-3

IP

K = 500.

T1t 7 T1vo(t)� = L�R.

vo(t) = Ke-(t - T1)��  t 7 T1

t 7 T1 ,vo(t),

voAt - T1B = iAt - T1BR  t 7 T1

t 7 T1 ,

±
– vo(t)5 V

Vin i(t)
L

R
100 �

1 mH

-

+

(a)

±
– vo(t)

i(t)
5 V
Vin

L
R

100 �
1 mH

-

+

(b)

O
ut

pu
t V

ol
ta

ge
 (

V
)

0 10 20 30 40 50

Time (ms)

0

100

600

200

300

400

500

Figure 7.28

The output voltage of the
pulse generator.

Figure 7.27 (a) Pulse generator with switch in position 1. Inductor is energized. (b) Switch in
position 2. As energy is drained from the inductor, the voltage and current decay toward zero.
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APPLICATION
EXAMPLE 7.14

A heart pacemaker circuit is shown in Fig. 7.29. An SCR (silicon-controlled rectifier) is a
solid-state device that has two distinct modes of operation. When the voltage across the
SCR is increasing but less than 5 V, the SCR behaves like an open circuit, as shown in
Fig. 7.30a. Once the voltage across the SCR reaches 5 V, the device functions like a current
source, as shown in Fig. 7.30b. This behavior will continue as long as the SCR voltage
remains above 0.2 V. At this voltage, the SCR shuts off and again becomes an open circuit.

Assume that at t=0, vC(t) is 0 V and the 1-	F capacitor begins to charge toward the
6-V source voltage. Find the resistor value such that vC(t) will equal 5 V (the SCR firing
voltage) at 1 s. At t=1 s, the SCR fires and begins discharging the capacitor. Find the time
required for vC(t) to drop from 5 V to 0.2 V. Finally, plot vC(t) for the three cycles.

SOLUTION

R

C
vC(t) SCR

1 �F
V=6 V

+

-

Figure 7.29

Heart pacemaker equivalent
circuit.

For t<1 s, the equivalent circuit for the pacemaker is shown in Fig. 7.31. As indicated
earlier, the capacitor voltage has the form

A voltage of 0.2 V occurs at

whereas a voltage of 5 V occurs at

We desire that Therefore,

and

and R = 569 k�RC = 0.569 s

t2 - t1 = 1.758RC = 1 s

t2 - t1 = 1 s.

t2 = 1.792RC

t1 = 0.034RC

vC(t) = 6 - 6e-t�RC V

SCR SCR I=50 �A

(a) (b)

Figure 7.30

Equivalent circuits for
an SCR.

V=6 V
1 �F

R

C
vC(t)

+

-

Figure 7.31

Pacemaker equivalent
network during capacitor

charge cycle.
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At t=1 s the SCR fires and the pacemaker is modeled by the circuit in Fig. 7.32. The form
of the discharge waveform is

The term (t-1) appears in the exponential to shift the function 1 s, since during that time
the capacitor was charging. Just after the SCR fires at vC(t) is still 5 V, whereas at
t=q, vC(t)=6-IR. Therefore,

and

Our solution, then, is of the form

Let T be the time beyond 1 s necessary for v(t) to drop to 0.2 V. We write

Substituting for I, R, and C, we find

The output waveform is shown in Fig. 7.33.

T = 0.11 s

vC(T + 1) = 6 - IR + (IR - 1)e-T�RC
= 0.2

vC(t) = 6 - IR + (IR - 1)e-(t - 1)�RC

K1 = 6 - IRK1 + K2 = 5

t = 1+ s,

v(t) = K1 + K2 e-(t - 1)�RC

I=50 �AV=6 V
1 �F

R

C
vC(t)

+

-

Figure 7.32

Pacemaker equivalent
network during capacitor
discharge cycle.

t(s)

v(t) (V)
6

4

2

0
0 1 2 3 4

Figure 7.33 

Heart pacemaker output
voltage waveform.

Consider the simple RL circuit, shown in Fig. 7.34, which forms the basis for essentially
every dc power supply in the world. The switch opens at and R have been chosen
simply to create a 1-A current in the inductor prior to switching. Let us find the peak volt-
age across the inductor and across the switch.

VSt = 0.
APPLICATION
EXAMPLE 7.15

•
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We begin the analysis with an expression for the inductor current. At the inductor cur-
rent is 1 A. At the current is 0. The time constant is simply but when the switch
is open, R is infinite and the time constant is zero! As a result, the inductor current is

7.29

where 
 is infinite. The resulting inductor voltage is

7.30

At the peak inductor voltage is negative infinity! This voltage level is caused by the
attempt to disrupt the inductor current instantaneously, driving through the roof.
Employing KVL, the peak switch voltage must be positive infinity (give or take the supply
voltage). This phenomenon is called inductive kick, and it is the nemesis of power supply
designers.

Given this situation, we naturally look for a way to reduce this excessive voltage and,
more importantly, predict and control it. Let’s look at what we have and what we know. We
have a transient voltage that grows very quickly without bound. We also have an initial cur-
rent in the inductor that must go somewhere. We know that capacitor voltages cannot
change quickly and resistors consume energy. Therefore, let’s put an RC network around
the switch, as shown in Fig. 7.35, and examine the performance that results from this
change.

di�dt
t = 0,

vL(t) = L 
diL(t)

dt
= -
e-
t

iL(t) = 1e-
t A

L�R,t = q,
t = 0,SOLUTION

±
–

R
1 �

t=0

iL(t)

L
100 �H

vswitch

VS

1 V
+

-

+

-

vL(t)

Figure 7.34

The switched inductor
network at the heart of
modern power supplies.

±
–

R
1 �

t=0

iL(t)

vL(t)L

C

R

100 �H

vswitch

VS

1 V
+

-

+

-

Figure 7.35

Conversion of a switched
inductor circuit to an RLC
network in an attempt to

control inductive kick.

The addition of the RC network yields a series circuit. We need the characteristic equa-
tion of this series RLC network when the switch is open. From Eq. (7.15), we know that the
characteristic equation for the series RLC circuit is

7.31

To retain some switching speed, we will somewhat arbitrarily choose a critically damped
system where and This choice for should allow the system to sta-
bilize in a few microseconds. From Eq. (7.31) we can now write expressions for C and R.

7.32

Solving these equations yields the parameter values and Now we
can focus on the peak switch voltage. When the switch opens, the inductor current, set at
1 A by the dc source and the 1- resistor, flows through the RC circuit. Since the capacitor
was previously discharged by the closed switch, its voltage cannot change immediately and

�

R = 199 �.C = 10 nF

�2
0 = 1012

=

1

LC
=

1

10-4C
  2��0 = 2 * 106

=

R + 1

L
=

R + 1

10-4

�0�0 = 106 rad�s.� = 1

s2
+ 2��0 s + �2

0 = s2
+ c R + 1

L
d s +

1

LC
= 0
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its voltage remains zero for an instant. The resistor voltage is simply where is the
initial inductor current. Given our and R values, the resistor voltage just after opening the
switch is 199 V. The switch voltage is then just the sum of the capacitor and resistor volt-
ages (i.e., 199 V). This is a tremendous improvement over the first scenario!

A plot of the switch voltage, shown in Fig. 7.36, clearly agrees with our analysis. This
plot illustrates the effectiveness of the RC network in reducing the inductive kick generated
by opening the switch. Note that the switch voltage is controlled at a 199-V peak value and
the system is critically damped; that is, there is little or no overshoot, having stabilized in
less than Because of its importance, this R-C network is called a snubber and is the
engineer’s solution of choice for controlling inductive kick.

5 	s.

IL

ILIL R

O
ut

pu
t V

ol
ta

ge
 (

V
)

0 10 20 30 40 50

Time (ms)

0

100

600

200

200

200

200

Figure 7.36

Plot of the switch voltage
when the snubber circuit
is employed to reduce
inductive kick.

APPLICATION
EXAMPLE 7.16

One of the most common and necessary subcircuits that appears in a wide variety of elec-
tronic systems—for example, stereos, TVs, radios, and computers—is a quality dc voltage
source or power supply. The standard wall socket supplies an alternating current (ac) volt-
age waveform shown in Fig. 7.37a, and the conversion of this voltage to a desired dc level
is done as illustrated in Fig. 7.37b. The ac waveform is converted to a quasi-dc voltage by
an inexpensive ac–dc converter whose output contains remnants of the ac input and is
unregulated. A higher quality dc output is created by a switching dc–dc converter. Of the
several versions of dc–dc converters, we will focus on a topology called the boost con-
verter, shown in Fig. 7.38. Let us develop an equation relating the output voltage to the
switching characteristics.

(a) (b)

A
C

 v
ol

ta
ge

 w
av

ef
or

m

Time

AC–DC
converter

DC–DC
switching

power
supply

Vo

+

-

Vin

+

-

Figure 7.37 

(a) The ac voltage waveform
at a standard wall outlet
and (b) a block diagram of a
modern dc power supply.

•

irwin07_296-368hr.qxd  28-07-2010  11:34  Page 339



340 C H A P T E R  7 F I R S T-  A N D  S E C O N D - O R D E R  T R A N S I E N T  C I R C U I T S

Consider the boost converter in Fig. 7.38a, where switch 1 (S1) is closed and S2 is open for
a time interval ton . This isolates the inductor from the capacitor, creating two subcircuits that
can be analyzed independently. Note that during ton the inductor current and stored energy
are increasing while at the output node, the capacitor voltage discharges exponentially into
the load. If the capacitor’s time constant (�=RC) is large, then the output voltage will
decrease slowly. Thus, during ton energy is stored in the inductor and the capacitor provides
energy to the load.

Next, we change both switch positions so that S1 is open and S2 is closed for a time
interval toff , as seen in Fig. 7.38b. Since the inductor current cannot change
instantaneously, current flows into the capacitor and the load, recharging the capacitor.
During toff the energy that was added to the inductor during ton is used to recharge the
capacitor and drive the load. When toff has elapsed, the cycle is repeated.

Note that the energy added to the inductor during ton must go to the capacitor and load
during toff ; otherwise, the inductor energy would increase to the point that the inductor
would fail. This requires that the energy stored in the inductor must be the same at the end
of each switching cycle. Recalling that the inductor energy is related to the current by

we can state that the inductor current must also be the same at the end of each switching
cycle, as shown in Fig. 7.39. The inductor current during ton and toff can be written as

7.33

where I0 is the initial current at the beginning of each switching cycle. If the inductor
current is the same at the beginning and end of each switching cycle, then the integrals in
Eq. (7.33) must sum to zero. Or

Vin ton = AVo - VinBtoff = AVo - VinB AT - tonB

ton 6 t 6 toffcVin - Vo

L
d toff + I0

iL(t) =

1

L
 3

ton + toff

ton

vL(t) dt =

1

L
 3

ton + toff

ton

AVin - VoB  dt =

0 6 t 6 toniL(t) =

1

L
 3

ton

0
vL(t) dt =

1

L
 3

ton

0
Vin dt = cVin

L
d ton + I0

w(t) =

1

2
 Li 2(t)

SOLUTION

S1

S2

C

(a)

(b)

R

iL(t)

vL(t)

VoVin

+

+

-

-

S1

S2

C R

iL(t)

vL(t)

VoVin

+

+

-

-

Figure 7.38

The boost converter with
switch settings for time

intervals (a) ton and (b) toff.
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iL(t)
I0

Vin

Vin-Vo
ton toff

T 2T 3T

0
vL(t)

Figure 7.39

Waveform sketches for the
inductor voltage and 
current.
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Figure 7.40

Effect of duty cycle on
boost converter gain.

where T is the period Solving for yields

where D is the duty cycle Thus, by controlling the duty cycle, we control the
output voltage. Since D is always a positive fraction, is always bigger than —thus
the name boost converter. A plot of versus duty cycle is shown in Fig. 7.40.Vo�Vin

VinVo

AD = ton�TB.

Vin c 1

A1 - ton�TB d = Vin c 1

1 - D
dVo = Vin c T

T - ton
d = Vin c 1

AT - tonB�T
d =

VoAT = ton + toffB.

APPLICATION
EXAMPLE 7.17

An experimental schematic for a railgun is shown in Fig. 7.41. With switch Sw-2 open,
switch Sw-1 is closed and the power supply charges the capacitor bank to 10 kV. Then
switch Sw-1 is opened. The railgun is fired by closing switch Sw-2. When the capacitor dis-
charges, the current causes the foil at the end of the gun to explode, creating a hot plasma
that accelerates down the tube. The voltage drop in vaporizing the foil is negligible, and,
therefore, more than 95% of the energy remains available for accelerating the plasma. The
current flow establishes a magnetic field, and the force on the plasma caused by the mag-
netic field, which is proportional to the square of the current at any instant of time, acceler-
ates the plasma. A higher initial voltage will result in more acceleration.

The circuit diagram for the discharge circuit is shown in Fig. 7.42. The resistance of the
bus (a heavy conductor) includes the resistance of the switch. The resistance of the foil and
resultant plasma is negligible; therefore, the current flowing between the upper and lower con-
ductors is dependent on the remaining circuit components in the closed path, as specified in
Fig. 7.41.

•
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The differential equation for the natural response of the current is

Let us use the characteristic equation to describe the current waveform.

Using the circuit values, the characteristic equation is

and the roots of the equation are

and hence the network is underdamped.
The roots of the characteristic equation illustrate that the damped resonant frequency is

Therefore,

and the period of the waveform is

An actual plot of the current is shown in Fig. 7.43, and this plot verifies that the period of
the damped response is indeed 8.5 	s.

T =

1

fd
= 8.5 	s

fd = 118 kHz

�d = 740 krad�s

s1 , s2 = (-18.75 ; j74) * 104

s2
+ 37.5 * 104s + 58.3 * 1010

= 0

d2i(t)

dt2
+

Rbus

Lbus
 
di(t)

dt
+

i(t)

Lbus C
= 0

SOLUTION

Upper conductor

Insulator

Lower conductor

Foil

Charging
resistor

Sw–1 Sw–2

Capacitor
bank

53.6 �F

Power
supply
10 kV

100 kW

Figure 7.41

Experimental schematic
for a railgun.

Sw-2
Rbus=12 m�

C=53.6 �F Rfoil

i(t)

Lbus=32 nH

10 kV

+

-

Figure 7.42

Railgun discharge circuit.
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Figure 7.43

Load current with a capacitor
bank charged to 10 kV.
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We wish to design an efficient electric heater that operates from a 24-V dc source and
creates heat by driving a 1- resistive heating element. For the temperature range of inter-
est, the power absorbed by the heating element should be between 100 and 400 W. An expe-
rienced engineer has suggested that two quite different techniques be examined as possible
solutions: a simple voltage divider and a switched inductor circuit.

In the first case, the required network is shown in Fig. 7.44. The variable resistance element
is called a rheostat. Potentiometers are variable resistors that are intended for low power
(i.e., less than 1 W) operation. Rheostats, on the other hand, are devices used at much higher
power levels.

We know from previous work that the heating element voltage is

7.34

Changing will change the voltage across, and the power dissipated by, the heating ele-
ment. The power can be expressed as

7.35

By substituting the maximum and minimum values of the output power into Eq. (7.35), we
can determine the range of resistance required for the rheostat:

7.36

So, a 2- rheostat should work just fine. But what about the efficiency of our design?
How much power is lost in the rheostat? The rheostat power can be expressed as

7.37

We know from our studies of maximum power transfer that the value of that causes
maximum power loss, and thus the worst-case efficiency for the circuit, occurs when

Obviously, the resistances consume the same power, and the efficiency
is only 50%.

Now that we understand the capability of this voltage-divider technique, let’s explore the
alternative solution. At this point, it would at least appear that the use of a switched induc-
tor is a viable alternative since this element consumes no power. So, if we could set up a
current in an inductor, switch it into the heating element, and repeat this operation fast
enough, the heating element would respond to the average power delivered to it and main-
tain a constant temperature.

Consider the circuit in Fig. 7.45, where the switch moves back and forth, energizing the
inductor with current, and then directing that current to the heating element. Let’s examine
this concept to determine its effectiveness. We begin by assuming that the inductor current

Radj = Rhe = 1 �.

Radj

Padj =

AVS - VoB2
Radj

= V2
S 

Radj

ARhe + RadjB2

�

Radj, max =

C

V2
S Rhe

Po, min
- Rhe =

C

(242)(1)

100
- 1 = 1.4 �

Radj, min =

C

V2
S Rhe

Po, max
- Rhe =

C

(242)(1)

400
- 1 = 0.2 �

Po =

V2
o

Rhe
= V2

S 
Rhe

ARhe + RadjB2

Radj

Vo = VS 
Rhe

Rhe + Radj

�
DESIGN
EXAMPLE 7.18

SOLUTION

±
–

+

-

Vo
Rhe

Radj

1 �

VS
24 V

Figure 7.44

A simple circuit for varying
the temperature of a
heating element.

7.5
Design Examples

•
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is zero and the switch has just moved to position 1. The inductor current will begin to grow
linearly in accordance with the fundamental equation

7.38

Note that is the slope of the linear growth. Since is set at 24 V, we can control the
slope with our selection for L. The inductor current increases until the switch moves at time

, at which point the peak current is

7.39

This inductor current will discharge exponentially through the heating element according to
the equation

7.40

where is zero when the switch moves to position 2 and If the switch is main-
tained in position 2 for about 5 time constants, the inductor current will essentially reach
zero and the switch can return to position 1 under the initial condition—zero inductor
current. A sketch of the inductor current over a single switching cycle is shown in
Fig. 7.46. Repeated switching cycles will transfer power to the heating element. If the
switching period is much shorter than the element’s thermal time constant—a measure of
how quickly the element heats up—then the element’s temperature will be determined by
the average power. This is a concept we don’t understand at this point. However, we will
present Average Power in Chapter 9, and this example provides at least some motivation
for its examination. Nevertheless, we should recognize two things: the load current is just
the exponential decaying portion of the inductor current, and the initial value of that expo-
nential is , as defined in Eq. (7.39). Increasing will increase the element’s power
and temperature. As Eq. (7.39) indicates, this is easily done by controlling It is impossi-
ble to proceed with the design until we can accurately predict the average power at the load.

t1 !
IpeakIpeak

� = L�Rhe .t¿

iLAt¿B = Ipeak e-t¿��

Ipeak =

VS

L
 t1

t = t1

VSVS�L

iL(t) =

1

L
 3

 

 

vL(t) dt =

1

L
 3

 

 

VS dt =

VS

L
 t

±
–

iL(t)

L

VS vo(t)
Rhe

pos.
1

pos.
2

1 �24 V

-

+

Figure 7.45

A switched inductor solution
to varying the heating

element’s temperature.

Time

VS /L

Ipeak

In
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ct
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ur
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nt

t1

Figure 7.46

A single switching cycle for
the inductor-based solution.

The value of Ipeak is directly
proportional to t1.
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Returning to our original concern, have we improved the efficiency at all? Note that there
are no power-consuming components in our new circuit other than the heating element
itself. Therefore, ignoring resistance in the inductor and the switch, we find that our solu-
tion is 100% efficient! In actuality, efficiencies approaching 95% are attainable. This is a
drastic improvement over the other alternative, which employs a rheostat.

Consider the circuit in Fig. 7.47a, where a dc power supply, typically fed from a wall out-
let, is modeled as a dc voltage source in series with a resistor The load draws a constant
current and is modeled as a current source. We wish to design the simplest possible circuit
that will isolate the load device from disturbances in the power supply voltage. In effect, our
task is to improve the performance of the power supply at very little additional cost.

A standard solution to this problem involves the use of a capacitor , as shown in
Fig. 7.47b. The two voltage sources and the single-pole double-throw switch model the
input disturbance sketched in Fig. 7.47c. Engineers call a decoupling capacitor since
it decouples disturbances in the input voltage from the output voltage. In typical elec-
tronic circuits, we find liberal use of these decoupling capacitors. Thus, our task is to
develop a design equation for in terms of and Our result will
be applicable to any scenario that can be modeled by the circuit in Fig. 7.47b.

t¿.RS , VS , Vo , ¢VS , ¢Vo ,CD

CD

CD

RS .
DESIGN
EXAMPLE 7.19

±
–

±
– vo(t)VS

RS

VS+ΔVS

ILt=0t=t'

+

-

±
–

±
– vo(t)

CD

RS

VS

IL

VS+ΔVS

t=0t=t'

+

-

(c)(a) (b)

Vo+ΔVo

VS+ΔVS

Vo

VS

0 t'
t

Figure 7.47 (a) A simple dc circuit that models disturbances in the source voltage.
(b) The use of a decoupling capacitor to reduce disturbances in the load voltage. (c) Definitions
of the input and output voltage disturbances.

The voltage across can be expressed in the standard form as

7.41

Equivalent circuits for and are shown in Fig. 7.48a and b, respectively. At
these two time extremes we find

7.42

To determine the time constant’s equivalent resistance, we return to the circuit in
Fig. 7.48b, reduce all independent sources to zero, and view the resulting circuit from the
capacitor’s terminals. It is easy to see that the time constant is simply Thus,

7.43vo(t) = VS + ¢VS - IL RS - ¢VS e-t�RS CD

RS CD .

 vo(q) = K1 = VS + ¢VS - IL RS

 vo(0) = K1 + K2 = VS - IL RS

t = qt = 0

vo(t) = K1 + K2 e-t��

CD SOLUTION

•
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At exactly the output voltage is its original value, plus Substituting this
condition into Eq. (7.43) yields

which can be reduced to the expression

7.44

Notice that the value of depends not on the input and output voltages, but rather on the
changes in those voltages! This makes Eq. (7.44) very versatile indeed. A simple algebraic
manipulation of Eq. (7.44) yields the design equation for CD:

7.45

Examining this expression, we see that is directly related to and inversely related to
If doubles or if is halved, then will double as well. This result is not very sur-

prising. The dependence on the voltage changes is more complex. Let us isolate this term
and express it as

7.46

Figure 7.49 shows a plot of this term versus the ratio Note that for very small
(i.e., a large degree of decoupling), this term is very large. Since this term is multi-

plied with in Eq. (7.45), we find that the price for excellent decoupling is a very large
capacitance.
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A plot of the function f
versus .¢Vo �¢VS

Figure 7.48 The circuit in Fig. 7.47b at just after the switch has moved. (b) The same circuit at .t = qt = 0
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Finally, as an example, consider the scenario in which is 5 V, is and the input
disturbance is characterized by and If the output changes are to be
limited to only 0.2 V, the required capacitance would be Such a capacitor
rated for operation at up to 16 V costs less than $0.20 and should be slightly smaller than a
peanut M&M.

This very simple, but very important, application demonstrates how an engineer can
apply his or her basic circuit analysis skills to attack and describe a practical application in
such a way that the result is broadly applicable. Remember, the key to this entire exercise
is the creation of a circuit model for the decoupling scenario.

CD = 112.0 	F.
t¿ = 0.5 ms.¢VS = 1 V

20 �,RSVS

The network in Fig. 7.50 models an automobile ignition system. The voltage source
represents the standard 12-V battery. The inductor is the ignition coil, which is magneti-
cally coupled to the starter (not shown). The inductor’s internal resistance is modeled by
the resistor, and the switch is the keyed ignition switch. Initially, the switch connects the
ignition circuitry to the battery, and thus the capacitor is charged to 12 V. To start the
motor, we close the switch, thereby discharging the capacitor through the inductor.
Assuming that optimum starter operation requires an overdamped response for iL(t) that
reaches at least 1 A within 100 ms after switching and remains above 1 A for between 1
and 1.5 s, let us find a value for the capacitor that will produce such a current waveform.
In addition, let us plot the response, including the time interval just prior to moving the
switch, and verify our design.

DESIGN
EXAMPLE 7.20

SOLUTION

t=0
VS=12 V

Switch
vC(t)

iL(t)

L=200 mH

R=4 �

C

+ -

Figure 7.50

Circuit model for
ignition system.

Before the switch is moved at t=0, the capacitor looks like an open circuit, and the induc-
tor acts like a short circuit. Thus,

After switching, the circuit is a series RLC unforced network described by the characteris-
tic equation

with roots at s=–s1 and –s2 . The characteristic equation is of the form

Comparing the two expressions, we see that

and
1

LC
= s1 s2

R

L
= s1 + s2 = 20

As + s1B As + s2B = s2
+ As1 + s2Bs + s1 s2 = 0

s2
+

R

L
 s +

1

LC
= 0

iLA0-B = iLA0+B = 0 A  and  vCA0-B = vCA0+B = 12 V
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Since the network must be overdamped, the inductor current is of the form

Just after switching,

or

Also, at the inductor voltage equals the capacitor voltage because iL=0 and there-
fore iLR=0. Thus, we can write

or

At this point, let us arbitrarily choose s1=3 and s2=17, which satisfies the condition
s1+s2=20, and furthermore,

Hence, iL(t) is

Figure 7.51a shows a plot of iL(t). At 100 ms, the current has increased to 2.39 A, which
meets the initial magnitude specifications. However, 1 second later, at t=1.1 s, iL(t) has
fallen to only 0.16 A—well below the magnitude-over-time requirement. Simply put, the
current falls too quickly. To make an informed estimate for s1 and s2 , let us investigate the
effect the roots exhibit on the current waveform when s2>s1 .

Since s2>s1 , the exponential associated with s2 will decay to zero faster than that asso-
ciated with s1 . This causes iL(t) to rise—the larger the value of s2 , the faster the rise. After

seconds have elapsed, the exponential associated with s2 is approximately zero and
iL(t) decreases exponentially with a time constant of �=1/s1. Thus, to slow the fall of
5A1�s2B

iL(t) = 4.29 Ce-3t
- e-17t D  A

 C =

1

Ls1 s2
=

1

(0.2)(3)(17)
= 98 mF

 K1 =

60

s2 - s1
=

60

14
= 4.29

K1 =

60

s2 - s1

vLA0+B = L 
diLA0+B

dt
1 - s1 K1 + s2 K1 =

12

L

t = 0+,

K2 = -K1

iLA0+B = K1 + K2 = 0

iL(t) = K1 e-s1 t
+ K2 e-s2 t

3.0 A

2.0 A

1.0 A

0.0 A
0.5 s 1.0 s 1.5 s 2.0 s 2.5 s 3.0 s

Time
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0.0 A

–0.0 s –0.0 s0.5 s 1.0 s 1.5 s 2.0 s 2.5 s 2.9 s
Time

iL(t) iL(t)

(b)(a)

Figure 7.51 Ignition current as a function of time.
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iL(t), we should reduce s1. Hence, let us choose s1=1. Since s1+s2 must equal 20,
s2=19. Under these conditions

and

Thus, the current is

which is shown in Fig. 7.51b. At 100 ms the current is 2.52 A. Also, at t=1.1 s, the cur-
rent is 1.11 A—above the 1-A requirement. Therefore, the choice of C=263 mF meets all
starter specifications.

iL(t) = 3.33 Ce-t
- e-19t D  A

K1 =

60

s2 - s1
=

60

18
= 3.33

C =

1

Ls1 s2
=

1

(0.2)(1)(19)
= 263 mF

A defibrillator is a device that is used to stop heart fibrillations—erratic uncoordinated
quivering of the heart muscle fibers—by delivering an electric shock to the heart. The Lown
defibrillator was developed by Dr. Bernard Lown in 1962. Its key feature, shown in Fig. 7.52a,
is its voltage waveform. A simplified circuit diagram that is capable of producing the Lown
waveform is shown in Fig. 7.52b. Let us find the necessary values for the inductor and
capacitor.

DESIGN
EXAMPLE 7.21

SOLUTION

(b)

3000

0 5 10

Time (milliseconds)

vo(t) (V)

(a)

vo(t)
VS

6000 V
R=50 �
patientC

i(t)L

t=0
+

-

Figure 7.52 Lown defibrillator waveform and simplified circuit. Reprinted with permission from John
Wiley & Sons, Inc., Introduction to Biomedical Equipment Technology.

Since the Lown waveform is oscillatory in nature, we know that the circuit is underdamped
and the voltage applied to the patient is of the form

where

and

 �o =

1

1LC

 � = �o 21 - �2

 ��o =

R

2L

vo(t) = K1 e-��o t sin[�t]

(� 6 1)

•
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for the series RLC circuit. From Fig. 7.52a, we see that the period of the sine function is

Thus, we have one expression involving and 

A second expression can be obtained by solving for the ratio of at to that at
At these two instants of time, the sine function is equal to and respectively.

Using values from Fig. 7.52a, we can write

or

Given the necessary inductor value is

Using our expression for 

or

Solving for the capacitor value, we find

Let us verify our design using the circuit shown in Fig. 7.53a. The output voltage plot shown
in Fig. 7.53b matches the Lown waveform in Fig. 7.52a; thus, we can consider the design
to be a success.

While this solution is viable, it is not the only one. Like many design problems, there are
often various ways to satisfy the design specifications.
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Figure 7.53

Circuit and output
plot for the Lown 

defibrillator.
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S U M M A R Y

First-Order Circuits

■ An RC or RL transient circuit is said to be first order if it
contains only a single capacitor or single inductor. The
voltage or current anywhere in the network can be obtained
by solving a first-order differential equation.

■ The form of a first-order differential equation with a con-
stant forcing function is

and the solution is

where A� is referred to as the steady-state solution and � is
called the time constant.

■ The function decays to a value that is less than 1% of
its initial value after a period of 5�. Therefore, the time
constant, �, determines the time required for the circuit to
reach steady state.

■ The time constant for an RC circuit is RThC and for an RL
circuit is L/RTh, where RTh is the Thévenin equivalent
resistance looking into the circuit at the terminals of the
storage element (i.e., capacitor or inductor).

■ The two approaches proposed for solving first-order
transient circuits are the differential equation approach and
the step-by-step method. In the former case, the differential
equation that describes the dynamic behavior of the circuit
is solved to determine the desired solution. In the latter
case, the initial conditions and the steady-state value of the
voltage across the capacitor or current in the inductor are
used in conjunction with the circuit’s time constant and the
known form of the desired variable to obtain a solution.

■ The response of a first-order transient circuit to an input
pulse can be obtained by treating the pulse as a combina-
tion of two step-function inputs.

Second-Order Circuits

■ The voltage or current in an RLC transient circuit can be
described by a constant coefficient differential equation
of the form

where f(t) is the network forcing function.

■ The characteristic equation for a second-order circuit is

where � is the damping ratio and

�0 is the undamped natural frequency.

■ If the two roots of the characteristic equation are 

■ real and unequal, then �>1 and the network response is
overdamped

■ real and equal, then �=1 and the network response is
critically damped

■ complex conjugates, then �<1 and the network
response is underdamped

■ The three types of damping together with the corresponding
network response are as follows:

1. Overdamped: 

2. Critically damped: 

3. Underdamped: 

where and 

■ Two initial conditions are required to derive the two
unknown coefficients in the network response equations.

�d = �0 21 - �2� = ��0 
x(t) = e-�tAA1 cos �d t + A2 sin �d tB,

x(t) = B1 e-��0 t
+ B2 te-��0 t

x(t) = K1 e-A��0 - �0 2�2
- 1Bt

+ K2 e-A��0 + �0 2�2
- 1Bt

s2
+ 2��0 s + �2

0 = 0,

d2x(t)

dt 2
+ 2��0 

dx(t)

dt
+ �2

0 x(t) = f(t)

e-t��

x(t) = A� + K2 e-t��

dx(t)

dt
+

x(t)

�
= A

•

P R O B L E M S
•

7.1 Use the differential equation approach to find for
in the network in Fig. P7.1.

Figure P7.1

7.2 Use the differential equation approach to find for
in the network in Fig. P7.2.

Figure P7.2

t=01 k�4 k�

2 k� 2 k� 300 �F4 mA

io(t)

t 7 0
io(t)

t = 0

2 H

12 V

6 �

6 �

±
– i(t)

t 7 0
i(t)
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7.3 Use the differential equation approach to find 
for in the circuit in Fig. P7.3 and plot the
response including the time interval just prior to
switch action.

Figure P7.3

7.4 Use the differential equation approach to find for
in the circuit in Fig. P7.4.

Figure P7.4

7.5 Use the differential equation approach to find for
in the circuit in Fig. P7.5.

Figure P7.5

7.6 Use the differential equation approach to find for
in the circuit in Fig. P7.6 and plot the response including

the time interval just prior to closing the switch.

Figure P7.6

7.7 Use the differential equation approach to find for
in the circuit in Fig. P7.7 and plot the response

including the time interval just prior to opening the
switch.

Figure P7.7

7.8 Use the differential equation approach to find for
in the circuit in Fig. P7.8 and plot the response

including the time interval just prior to closing
the switch.

Figure P7.8

7.9 Use the differential equation approach to find for
in the circuit in Fig. P7.9 and plot the response

including the time interval just prior to opening the
switch.

Figure P7.9

7.10 In the network in Fig. P7.10, find for using
the differential equation approach.

Figure P7.10
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7.11 Use the differential equation approach to find for
in the circuit in Fig. P7.11 and plot the response,

including the time interval just prior to opening the
switch.

Figure P7.11

7.12 Use the differential equation approach to find for
in the circuit in Fig. P7.12 and plot the response,

including the time interval just prior to opening the
switch.

Figure P7.12

7.13 Use the differential equation approach to find for
in the circuit in Fig. P7.13 and plot the response,

including the time interval just prior to opening the
switch.

Figure P7.13

7.14 Using the differential equation approach, find for
in the circuit in Fig. P7.14 and plot the response,

including the time interval just prior to opening the
switch.

Figure P7.14

7.15 Use the step-by-step technique to find for in
the network in Fig. P7.15.

Figure P7.15

7.16 Use the step-by-step method to find for in the
circuit in Fig. P7.16.

Figure P7.16

7.17 Find vo(t) for t>0 in the network in Fig. P7.17.

Figure P7.17
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7.18 Find vo(t) for t>0 in the network in Fig. P7.18.

Figure P7.18

7.19 Use the step-by-step method to find for in the
circuit in Fig. P7.19.

Figure P7.19

7.20 Use the step-by-step method to find for in 
the circuit in Fig. P7.20.

Figure P7.20

7.21 Find vo(t) for t>0 in the circuit in Fig. P7.21.

Figure P7.21

7.22 Find vo(t) for t>0 in the circuit in Fig. P7.22.

Figure P7.22

7.23 Find vo(t) for t>0 in the circuit in Fig. P7.23.

Figure P7.23

7.24 Find vo(t) for t>0 in the network in Fig. P7.24.

Figure P7.24

7.25 Use the step-by-step technique to find for in
the network in Fig. P7.25.

Figure P7.25

7.26 Use the step-by-step method to find for in 
the network in Fig. P7.26.

Figure P7.26

7.27 Find io(t) for t>0 in the circuit in Fig. P7.27.

Figure P7.27
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7.28 Find io(t) for t>0 in the circuit in Fig. P7.28.

Figure P7.28

7.29 Find io(t) for t>0 in the circuit in Fig. P7.29.

Figure P7.29

7.30 Find io(t) for t>0 in the network in Fig. P7.30.

Figure P7.30

7.31 Find io(t) for t>0 in the circuit in Fig. P7.31.

Figure P7.31

7.32 Use the step-by-step method to find for in
the network in Fig. P7.32.

Figure P7.32

7.33 Find for in the network in Fig. P7.33 using
the step-by-step method.

Figure P7.33

7.34 Find for in the network in Fig. P7.34 using
the step-by-step method.

Figure P7.34
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7.37 Find for in the network in Fig. P7.37 using the
step-by-step technique.

Figure P7.37

t=0
24 V 2 k�4 k�

4 k� 4 k� 200 �F

±
– vo(t)

+

-

t 7 0vo(t)

7.35 Find for in the circuit in Fig. P7.35 using the
step-by-step method.

Figure P7.35

t=0

6 �

3 � 6 �

4 �

2 H

6 A vo(t)

+

-

t 7 0vo(t) 7.38 Find for in the circuit in Fig. P7.38
using the step-by-step method.

Figure P7.38

-
+

4 k� 4 k�

12 V

8 k� 50 �F

+

-

vo(t)

t=0

t 7 0vo(t)

7.36 Use the step-by-step method to find for in the
circuit in Fig. P7.36.

Figure P7.36

t=0
24 V 2 k�4 k�

4 k� 4 k� 200 �F

±
–

io(t)

t 7 0io(t)

7.39 The switch in the circuit in Fig. P7.39 is opened at
t=0. Find i(t) for t>0.

Figure P7.39

–
+

+
–

i(t)

2 �

9 V

3 �

4 �

6 V

0.5 H

t=0

7.41 The switch in Fig. P7.41 closes at t=0. Find vo(t) for t>0.

Figure P7.41

120 �F

9 k�

4 mA
6 V 4 k� vo(t)

+

-

6 k�

3 k�

t=0

+
-

7.40 The switch in the circuit in Fig. P7.40 is moved at
t=0. Find io(t) for t>0.

Figure P7.40

4 k� 4 k�

t=0

3 k�

4 k�io(t)

1 k�
18 V 100 �F

+-
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7.42 The switch in the circuit in Fig. P7.42 has been closed for
a long time and is opened at t=0. Find i(t) for t>0.

Figure P7.42

7.43 The switch in the circuit in Fig. P7.43 has been closed for
a long time and is moved at t=0. Find io(t) for t>0.

Figure P7.43

7.44 The switch in the circuit in Fig. P7.44 has been in posi-
tion A for a long time and is moved to position B 
at t=0. Calculate vo(t) for t>0.

Figure P7.44

7.45 The switch in the circuit in Fig. P7.45 has been closed for a
long time and is opened at t=0. Determine vC(t) for t>0.

Figure P7.45

7.46 Find for in the network in Fig. P7.46 using 
the step-by-step method.

Figure P7.46

7.47 Use the step-by-step method to find for in the
network in Fig. P7.47.

Figure P7.47

7.48 Find vo(t) for t>0 in the network in Fig. P7.48.

Figure P7.48

7.49 Find vo(t) for t>0 in the network in Fig. P7.49.

Figure P7.49
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7.50 Find vo(t) for t>0 in the network in fig. P7.50.

Figure P7.50

7.51 Determine vo(t) for t>0 in the network in Fig. P7.51

Figure P7.51

7.52 Find vo(t) for t>0 in the circuit in Fig. P7.52.

Figure P7.52

7.53 Find vo(t) for t>0 in the network in Fig. P7.53.

Figure P7.53

7.54 Find vo(t) for t>0 in the network in Fig. P7.54.

Figure P7.54

7.55 Use the step-by-step technique to find for in
the circuit in Fig. P7.55.

Figure P7.55

7.56 Use the step-by-step technique to find for in 
the network in Fig. P7.56.

Figure P7.56

7.57 Find for in the network in Fig. P7.57 using
the step-by-step technique.

Figure P7.57
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7.58 Find io(t) for t>0 in the network in Fig. P7.58.

Figure P7.58

7.59 Find for in the circuit in Fig. P7.59 using
the step-by-step method.

Figure P7.59

7.60 Find for in the circuit in Fig. P7.60 using 
the step-by-step method.

Figure P7.60

7.61 Find for in the circuit in Fig. P7.61 using the
step-by-step method.

Figure P7.61

7.62 Find vo(t) for t>0 in the circuit in Fig. P7.62.

Figure P7.62

7.63 Find io(t) for t>0 in the network in Fig. P7.63.

Figure P7.63

7.64 Find vo(t) for t>0 in the circuit in Fig. P7.64.

Figure P7.64

7.65 Find io(t) for t>0 in the circuit in Fig. P7.65.

Figure P7.65
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7.66 Find io(t) for t>0 in the network in Fig. P7.66.

Figure P7.66

7.67 Find io(t) for t>0 in the circuit in Fig. P7.67.

Figure P7.67

7.68 Find vo(t) for t>0 in the network in Fig. P7.68.

Figure P7.68
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7.69 Find io(t) for t>0 in the circuit in Fig.P7.69.

Figure P7.69

7.70 Use the step-by-step method to find for in 
the network in Fig. P7.70.

Figure P7.70

7.71 Use the step-by-step method to find for in
the network in Fig. P7.71.

Figure P7.71

7.72 Find for in the circuit in Fig. P7.72 using the
step-by-step method.

Figure P7.72
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7.73 Find for in the network in Fig. P7.73 using
the step-by-step method.

Figure P7.73

7.74 Use the step-by-step technique to find for in
the network in Fig. P7.74.

Figure P7.74

7.75 Determine the equation for the voltage for in
Fig. P7.75a when subjected to the input pulse shown in
Fig. P7.75b.

Figure P7.75

7.76 The current source in the network in Fig. P7.76a is
defined in Fig. P7.76b. The initial voltage across the
capacitor must be zero. (Why?) Determine the current

for .

Figure P7.76

7.77 The voltage shown in Fig. P7.77a is given by the
graph shown in Fig. P7.77b. If , answer the fol-
lowing questions: 
(a) How much energy is stored in the inductor at 

(b) How much power is supplied by the source at 

(c) What is (d) How much power is absorbed
by the inductor at 

Figure P7.77
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7.78 Find the output voltage in the network
in Fig. P7.78 if the input voltage is

Figure P7.78

7.79 Given that and in
the circuit in Fig. P7.79, find .

Figure P7.79

7.80 In the network in Fig. P7.80, find for . If
calculate .

Figure P7.80

7.81 In the circuit in Fig. P7.81, for
. Find for 

Figure P7.81

7.82 The switch in the circuit in Fig. P7.82 is closed at . If
, determine , and .

Figure P7.82

7.83 The switch in the circuit in Fig. P7.83 has been closed
for a long time and is opened at . If

, find , and .

Figure P7.83

7.84 Given that for in the 
circuit in Fig. P7.84, find and L.

Figure P7.84

7.85 Given that for in
the network in Fig. P7.85, find the following: 
(a)

(b)

(c) the capacitance C.

Figure P7.85
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7.86 The differential equation that describes the current 
in a network is

Find

(a) the characteristic equation of the network,

(b) the network’s natural frequencies

(c) the expression for 

7.87 The voltage in a network is defined by the equation

Find

(a) the characteristic equation of the network

(b) the circuit’s natural frequencies

(c) the expression for .

7.88 The voltage in a network is defined by the equation

Find

(a) the characteristic equation of the network.

(b) the circuit’s natural frequencies.

(c) the expression for 

7.89 A parallel RLC circuit contains a resistor and
an inductor . Select the value of the capacitor so
that the circuit is critically damped.

7.90 A series RLC circuit contains a resistor of and
a capacitor F. Select the value of the inductor
so that the circuit is critically damped.

7.91 In the critically damped circuit shown in Fig. P7.91, the
initial conditions on the storage elements are 
and . Determine the voltage .

Figure P7.91

7.92 For the underdamped circuit shown in Fig. P7.92, 
determine the voltage if the initial conditions on the
storage elements are and .

Figure P7.92

7.93 Find for in the circuit in Fig. P7.93.

Figure P7.93

7.94 Find for in the circuit in Fig. P7.94 if

.

Figure P7.94

7.95 Find for in the circuit in Fig. P7.95 and plot
the response, including the time interval just prior to
closing the switch.

Figure P7.95
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d2io(t)

dt2
+ 6

dio(t)

dt
+ 4io(t) = 0

io(t)
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7.98 Find for in the circuit in Fig. P7.98 and plot the response, including the time
interval just prior to closing the switch.

Figure P7.98

8 �

6 �4 �1.5 A 1 �

— F1
25

t=0

vo(t)

+

-

— H
1
8

— H
1
8

t 7 0vo(t)

7.96 The switch in the circuit in Fig. P7.96 has been closed for
a long time and is opened at Find for 

Figure P7.96

7.97 The switch in the circuit in Fig P7.97 has been closed for a
long time and is opened at Find for .

Figure P7.97

1.5 �6 �

0.1 F

1.25 H

12 V

6 V

t=0

i(t)

±
–

±
–

t 7 0i(t)t = 0.

5 �5 �

5 �

1 H
0.04 F20 V

10 V

t=0

i(t)
±
–

–
±

t 7 0.i(t)t = 0.

7.99 In the circuit shown in Fig. P7.99, find .

Figure P7.99

7.100 Find for in the circuit in Fig. P7.100 and
plot the response, including the time interval just prior
to moving the switch.

Figure P7.100

7.101 Find for in the circuit in Fig. P7.101 and
plot the response, including the time interval just prior
to moving the switch.

Figure P7.101

7.102 Find for in the network in Fig. P7.102 and
plot the response, including the time interval just prior
to moving the switch.

Figure P7.102

10 k�

100 mH

10 k� 5 k�

2 k�100 V

t=0

10 �F

±
– vo(t)

+

-

t 7 0vo(t)

6 k�

1 k�

2.5 mH

3 mA

6 k� 4 k�

12 V

8 k�t=0

±
–

vo(t)

+

-

— nF2
15

t 7 0vo(t)

4 k� 1 k�2.5 mA

1 mHt=0

0.05 nF

t 7 0vo(t)

8 V

t=0

±
– v(t)

+

-

—12
5 H

—1
12 F2 �

v(t) 7 0
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7.107 Given the network in Fig. P7.107, plot over a 
10-s interval starting at , using a 100-ms step size.

Figure P7.107

5 k�

10 k�20 k�

10 mH

6 V

12 V

+

-

vo(t)

t=0

±
–

±–

50 �F

t = 0
vo(t)

7.106 Given the network in Fig. P7.106 to plot over a 10-s interval starting at ,
using a 100-ms step size.

Figure P7.106

4 �2 �

6 � 2 A

2 H

12 V

2 �

1 F
+

-

vo(t)

t=0

±
–

t = 0vo(t)

7.103 Find for in the circuit in Fig. P7.103 and
plot the response, including the time interval just prior
to moving the switch.

Figure P7.103

7.104 Design a parallel RLC circuit with that has
the characteristic equation

7.105 Design a parallel RLC circuit with that has
the characteristic equation

s2
+ 4 * 107s + 4 * 1014

= 0

R � 1 k�

s2
+ 4 * 107s + 3 * 1014

= 0

R � 1 k�

6.25 nF

2 k�

1 k�

t = 0

1 mH

vo(t)±
±

–
–

12 V

t 7 0vo(t)

7.108 Given the network in Fig. P7.108a and the input volt-
age shown in Fig. P7.108b, plot the voltage 
over the interval s, using a 20-ms step
size.

Figure P7.108

1M�

2 mH

100 k�

0.1 �F

(a)

(b)

vin(t) V

t(s)

10

10

±
– vo(t)vin(t)

+

-

0 
 t 
 4
vo(t)

Solve the remaining problems using computational methods.
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7.109 Given the network in Fig. P7.109a, and the input voltage shown in Fig. P7.109b, plot
over the interval s, using a 100-ms step size.

Figure P7.109

vo(t)

+

-

2 �2 �2 �

1 F 1 �1 H 4 �2 A

vin(t)

±–

(a)

(b)

vin(t) V

t (s)

10

10

0 
 t 
 10vo(t)

7.110 Given the network in Fig. P7.110a and the input in Fig. P 7.110b, plot in the inter-
val s, using a 20-ms step size.

Figure P7.110

vo(t)vs(t)

10 k�

5 k� +

-

10 k�10 mH±
–

100 �F

(a)

(b)

vs(t) V

t (s)

10

1 2 3 40

0 
 t 
 4
vo(t)
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T Y P I C A L P R O B L E M S F O U N D  O N  T H E F E E X A M
•

7PFE-1 In the circuit in Fig. 7PFE-1, the switch, which has been closed for a long time, opens
at . Find the value of the capacitor voltage at .

a.

b.

c.

d.

Figure 7PFE-1

7PFE-2 In the network in Fig. 7PFE-2, the switch closes at . Find at .

a.

b.

c.

d.

Figure 7PFE-2

7PFE-3 Assume that the switch in the network Fig. 7PFE-3 has been closed for some time. At
the switch opens. Determine the time required for the capacitor voltage to decay to

one-half of its initially charged value.

a.

b.

c.

d.

Figure 7PFE-3

12 k�

6 k�12 V 100 �F

t=0

±
– vC(t)

+

-

0.143 s

0.235 s

0.625 s

0.416 s

t = 0

12 k� 4 k�

12 k�12 V 100 �F

t=0

±
– vo(t)

+

-

3.79 V

4.25 V

1.57 V

5.62 V

t = 1sv0(t)t = 0

8 k� 6 k�

6 k�6 k�12 V 100 �F

t=0

±
– vC(t)

+

-

0.462 V

0.264 V

0.756 V

0.936 V

t = 2svc(t)t = 0
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7PFE-4 Find the inductor current for in the circuit in Fig. 7PFE-4.

a.

b.

c.

d.

Figure 7PFE-4

7PFE-5 Find the inductor current for in the circuit in Fig. 7PFE-5.

a.

b.

c.

d.

Figure 7PFE-5

3 H

4 �4 �2 �

3 �

±
–12 V

iL(t)
t = 0

iL(t) = 2.4 + 0.6e-5t�3 A, t 7 0

iL(t) = 0.4 + 0.2e-4t�3 A, t 7 0

iL(t) = 1.2 + 0.4e-5t�3 A, t 7 0

iL(t) = 1.4 + 0.4e-4t�3 A, t 7 0

t 7 0iL(t)

±
–

2 �

2 � 2 �10 V 4 H

iL(t)

t = 0

1 A

iL(t) = 3 - e-2t�3 A, t 7 0

iL(t) = 6 - e-t�6 A, t 7 0

iL(t) = 1 + 2e-2t�3 A, t 7 0

iL(t) = 3 - 2e-t�6 A, t 7 0

t 7 0iL(t)

irwin07_296-368hr.qxd  28-07-2010  11:34  Page 368



CHAPTER

AC STEADY-STATE
ANALYSIS

369

T H E L E A R N I N G  G O A L S F O R  T H I S
C H A P T E R  A R E :

■ Understand the basic characteristics of sinusoidal
functions

■ Be able to perform phasor and inverse phasor
transformations and draw phasor diagrams

■ Know how to calculate impedance and admittance 
for our basic circuit elements: R, L, C

■ Be able to combine impedances and admittances
in series and parallel

■ Be able to draw the frequency-domain circuit for a 
given circuit with a sinusoidal source

■ Know how to apply our circuit analysis techniques to
frequency-domain circuits

S
Smart Power Grids What makes a power grid smart? It takes a

two-way communication between the electric power generator and

the consumer. For providers, a smart grid gives rapid information

about power quality and alerts them when blackouts occur. For

consumers, it promotes the efficient use of electricity by letting

them know the time of day when power is more available and less

expensive. The aim of the smart power grid is to interconnect the

nation within this decade in an efficient power distribution system

that includes conventional and large-scale renewable power

sources. Real-time pricing is expected to become commonplace. 

Smart power grids allocate available power to meet higher pri-

orities. Wireless sensors, software, and microprocessors are key

components in this intelligent digital network. As demand for elec-

tricity continues to increase, a smarter grid that provides electricity

more efficiently also helps in the fight against global warming.

This chapter introduces ac signals—alternating voltages and

currents—which is the form of electricity that the power grid deliv-

ers to the end user. Your background in differential equations,

needed in the last chapter, will again become highly important in

finding steady-state voltages and currents for linear circuits having

power sources described by cosine waveforms. A compact nota-

tion called phasors will be introduced, and you will perform calcu-

lations involving complex numbers. Remarkably, dc circuit analysis

techniques that you studied earlier can now be applied directly

using phasors for ac circuit analysis. Ac circuits can be analyzed

using every basic method—nodal, mesh, superposition, and others.

8

TebNad/iStockphoto
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8.1
Sinusoids

Let us begin our discussion of sinusoidal functions by considering the sine wave

8.1

where x(t) could represent either v(t) or i(t). XM is the amplitude, maximum value, or peak
value; � is the radian or angular frequency; and �t is the argument of the sine function. A
plot of the function in Eq. (8.1) as a function of its argument is shown in Fig. 8.1a. Obviously,
the function repeats itself every 2� radians. This condition is described mathematically as

, or in general for period T, as

8.2

meaning that the function has the same value at time t+T as it does at time t.

x C�(t + T) D = x(�t)

x(�t + 2�) = x(�t)

x(t) = XM sin �t

370 C H A P T E R 8 A C  S T E A D Y- S T A T E  A N A LY S I S

The waveform can also be plotted as a function of time, as shown in Fig. 8.1b. Note that
this function goes through one period every T seconds. In other words, in 1 second it goes
through 1/T periods or cycles. The number of cycles per second, called Hertz, is the
frequency f, where

8.3

Now since as shown in Fig. 8.1a, we find that

8.4

which is, of course, the general relationship among period in seconds, frequency in Hertz,
and radian frequency.

Now that we have discussed some of the basic properties of a sine wave, let us consider
the following general expression for a sinusoidal function:

8.5

In this case is the argument of the sine function, and � is called the phase angle.
A plot of this function is shown in Fig. 8.2, together with the original function in Eq. (8.1)
for comparison. Because of the presence of the phase angle, any point on the waveform

occurs � radians earlier in time than the corresponding point on the wave-
form Therefore, we say that lags by radians. In the
more general situation, if

and

x2(t) = XM2
 sin (�t + �)

x1(t) = XM1
 sin (�t + �)

�XM sin (�t + �)XM sin �tXM sin �t.
XM sin (�t + �)

(�t + �)

x(t) = XM sin (�t + �)

� =

2�

T
= 2�f

�T = 2�,

f =

1

T

–XM

XM

–XM

XM

x(�t)

��—
2

——
2

3�

2� �t

(a)

x(t)

T——
4

——
4

3T

T t

(b)

T—
2

Figure 8.1

Plots of a sine wave as a
function of both and t.�t

The relationship between
frequency and period

[ h i n t ]

The relationship between
frequency, period, and radian
frequency

[ h i n t ]

Phase lag defined

[ h i n t ]

In phase and out of phase
defined

[ h i n t ]
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then leads by �-� radians and lags by �-� radians. If �=�, the
waveforms are identical and the functions are said to be in phase. If the functions are
out of phase.

The phase angle is normally expressed in degrees rather than radians. Therefore, at this
point we will simply state that we will use the two forms interchangeably; that is,

8.6

Rigorously speaking, since �t is in radians, the phase angle should be as well. However, it is
common practice and convenient to use degrees for phase; therefore, that will be our practice
in this text.

In addition, it should be noted that adding to the argument integer multiples of either 2�
radians or 360° does not change the original function. This can easily be shown mathemati-
cally but is visibly evident when examining the waveform, as shown in Fig. 8.2.

Although our discussion has centered on the sine function, we could just as easily have
used the cosine function, since the two waveforms differ only by a phase angle; that is,

8.7

8.8

We are often interested in the phase difference between two sinusoidal functions. Three
conditions must be satisfied before we can determine the phase difference: (1) the
frequency of both sinusoids must be the same, (2) the amplitude of both sinusoids must be
positive, and (3) both sinusoids must be written as sine waves or cosine waves. Once
in this format, the phase angle between the functions can be computed as outlined
previously. Two other trigonometric identities that normally prove useful in phase angle
determination are

8.9

8.10

Finally, the angle-sum and angle-difference relationships for sines and cosines may be 
useful in the manipulation of sinusoidal functions. These relations are

8.11

 cos (� - �) = cos � cos � + sin � sin �

 sin (� - �) = sin � cos � - cos � sin �

 cos (� + �) = cos � cos � - sin � sin �

 sin (� + �) = sin � cos � + cos � sin �

 -sin (�t) = sin (�t ; 180°)

 -cos (�t) = cos (�t ; 180°)

 sin �t = cos a�t -

�

2
b

 cos �t = sin a�t +

�

2
b

x(t) = XM sin a�t +

�

2
b = XM sin (�t + 90°)

� Z �,
x1(t)x2(t)x2(t)x1(t)

x(�t)

�
2� �t

XM sin (�t+�)
XM sin �t

�

Figure 8.2

Graphical illustration of

leading

by � radians.XM sin �t

XM sin˚(�t + �)

Phase lead graphically
illustrated

[ h i n t ]

A very important point

[ h i n t ]

Some trigonometric identities
that are useful in phase angle
calculations

[ h i n t ]
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We wish to plot the waveforms for the following functions:

a.

b. and

c.

Figure 8.3a shows a plot of the function v(t) = 1 cos �t. Figure 8.3b is a plot of the function
Figure 8.3c is a plot of the function Note that

since

this waveform is 180° out of phase with the waveform in Fig. 8.3b; that is,
and Fig. 8.3c is the negative of Fig. 8.3b. Finally, since

the function

this function is identical to that shown in Fig. 8.3b.

v(t) = 1 cos (�t - 315°) = 1 cos (�t - 315° + 360°) = 1 cos (�t + 45°)

cos (�t + 225°) = -cos (�t + 45°),

v(t) = 1 cos (�t + 225°) = 1 cos (�t + 45° + 180°)

v(t) = 1 cos (�t + 225°).v(t) = 1 cos (�t + 45°).

v(t) = 1 cos (�t - 315°).

v(t) = 1 cos (�t + 225°),

v(t) = 1 cos (�t + 45°),
EXAMPLE

8.1

SOLUTION

Figure 8.3
Cosine waveforms with

various phase angles.

1

45° �t–45° 135° 225° 315°

(c)

1

v(�t)

90° �t180° 270° 360°

(a)

1

v(�t) v(�t)

45°
�t–45°

135°
225°315°

(b)

Determine the frequency and the phase angle between the two voltages 
and v2(t) =

The frequency in Hertz (Hz) is given by the expression

Using Eq. (8.9), can be written as

Then employing Eq. (8.7), we obtain

Now that both voltages of the same frequency are expressed as sine waves with positive
amplitudes, the phase angle between and is 60°-(–60°)=120°; that is, 
leads by 120° or lags by 120°.v1(t)v2(t)v2(t)

v1(t)v2(t)v1(t)

6 sin (�t + 300°) V = 6 sin (�t - 60°) V

v2(t) = -6 cos (�t + 30°) = 6 cos (�t + 210°) V

v2(t)

f =

�

2�
=

1000

2�
= 159.2 Hz

-6 cos (1000t + 30°) V.12 sin (1000 t + 60°) V
v1(t) =EXAMPLE

8.2
SOLUTION
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Consider the circuit in Fig. 8.5. Let us derive the expression for the current.

SOLUTION

EXAMPLE

8.3

E8.1 Given the voltage determine the frequency of the volt-
age in Hertz and the phase angle in degrees.

v(t) = 120 cos (314t + ��4) V,

Learning Assessments
ANSWER: f=50 Hz;
�=45°.

E8.2 Three branch currents in a network are known to be

Determine the phase angles by which leads and leads i3(t).i1(t)i2(t)i1(t)

 i3(t) = -0.25 sin (377t + 60°) A

 i2(t) = 0.5 cos (377t + 10°) A

 i1(t) = 2 sin (377t + 45°) A
ANSWER: leads 
by –55°; leads by 165°.i3i1

i2i1

8.2
Sinusoidal and

Complex Forcing
Functions

Figure 8.4

Current response to an
applied voltage in an
electrical network.

±
–

Linear
electrical
network

i(t)

v(t)

±
–

i(t)

v(t)=VM cos �t L

R

The KVL equation for this circuit is

L 
di(t)

dt
+ Ri(t) = VM cos �t

In the preceding chapters we applied a constant forcing function to a network and found that
the steady-state response was also constant.

In a similar manner, if we apply a sinusoidal forcing function to a linear network, the
steady-state voltages and currents in the network will also be sinusoidal. This should also be
clear from the KVL and KCL equations. For example, if one branch voltage is a sinusoid of
some frequency, the other branch voltages must be sinusoids of the same frequency if KVL
is to apply around any closed path. This means, of course, that the forced solutions of the dif-
ferential equations that describe a network with a sinusoidal forcing function are sinusoidal
functions of time. For example, if we assume that our input function is a voltage v(t) and our
output response is a current i(t), as shown in Fig. 8.4, then if i(t) will
be of the form The critical point here is that we know the form of the
output response, and therefore the solution involves simply determining the values of the two
parameters B and �.

i(t) = B sin˚(�t + �).
v(t) = A sin˚(�t + �),

Figure 8.5

A simple RL circuit.
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Since the input forcing function is we assume that the forced response component
of the current i(t) is of the form

which can be written using Eq. (8.11) as

Note that this is, as we observed in Chapter 7, of the form of the forcing function 
and its derivative Substituting this form for i(t) into the preceding differential
equation yields

Evaluating the indicated derivative produces

By equating coefficients of the sine and cosine functions, we obtain

that is, two simultaneous equations in the unknowns and Solving these two equations
for and yields

Therefore,

which, using the last identity in Eq. (8.11), can be written as

where A and � are determined as follows:

Hence,

 tan � =

A sin �

A cos �
= -  

�L

R

 A sin � =

-�LVM

R2
+ �2L2

 A cos � =

RVM

R2
+ �2L2

i(t) = A cos (�t + �)

i(t) =

RVM

R2
+ �2L2

 cos �t +

�LVM

R2
+ �2L2

 sin �t

 A2 =

�LVM

R2
+ �2L2

 A1 =

RVM

R2
+ �2L2

A2A1

A2.A1

 A1 R + A2 �L = VM

 -A1 �L + A2 R = 0

-A1 �L sin �t + A2 �L cos �t + RA1 cos �t + RA2 sin �t = VM cos �t

+ RAA1 cos �t + A2 sin �tB = VM cos �tL 
d

dt
 AA1 cos �t + A2 sin �tB

sin �t.
cos �t

 = A1 cos �t + A2 sin �t

 i(t) = A cos � cos �t - A sin � sin �t

i(t) = A cos (�t + �)

VM cos �t,
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and therefore,

and since

Hence, the final expression for i(t) is

The preceding analysis indicates that � is zero if L=0 and hence i(t) is in phase with
v(t). If R=0, �=–90°, and the current lags the voltage by 90°. If L and R are both
present, the current lags the voltage by some angle between 0° and 90°.

i(t) =

VM

2R2
+ �2L2

 cos a�t -  tan-1 
�L

R
b

 A =

VM

2R2
+ �2L2

 =

V2
M

R2
+ �2L2

  A2
=

R2V2
M

AR2
+ �2L2B2 +

(�L)2 V2
M

AR2
+ �2L2B2

 (A cos �)2
+ (A sin �)2

= A2Acos2 � + sin2 �B = A2

 � = -tan-1 
�L

R

This example illustrates an important point: solving even a simple one-loop circuit contain-
ing one resistor and one inductor is very complicated compared to the solution of a single-
loop circuit containing only two resistors. Imagine for a moment how laborious it would be
to solve a more complicated circuit using the procedure employed in Example 8.3. To 
circumvent this approach, we will establish a correspondence between sinusoidal time
functions and complex numbers. We will then show that this relationship leads to a set of
algebraic equations for currents and voltages in a network (e.g., loop currents or node 
voltages) in which the coefficients of the variables are complex numbers. Hence, once again
we will find that determining the currents or voltages in a circuit can be accomplished by 
solving a set of algebraic equations; however, in this case, their solution is complicated by
the fact that variables in the equations have complex, rather than real, coefficients.

The vehicle we will employ to establish a relationship between time-varying sinusoidal
functions and complex numbers is Euler’s equation, which for our purposes is written as

8.12

This complex function has a real part and an imaginary part:

8.13

where Re(�) and Im(�) represent the real part and the imaginary part, respectively, of the func-
tion in the parentheses.

Now suppose that we select as our forcing function in Fig. 8.4 the nonrealizable voltage

8.14

which because of Euler’s identity can be written as

8.15v(t) = VM cos �t + jVM sin �t

v(t) = VM ej�t

Recall that j = 1-1.

 ImAej�tB = sin �t

 ReAej�tB = cos �t

ej�t
= cos �t + j sin �t
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The real and imaginary parts of this function are each realizable. We think of this complex
forcing function as two forcing functions, a real one and an imaginary one, and as a consequence
of linearity, the principle of superposition applies and thus the current response can be written as

8.16

where is the response due to and is the response
due to This expression for the current containing both a real and an imaginary
term can be written via Euler’s equation as

8.17

Because of the preceding relationships, we find that rather than apply the forcing function
and calculate the response we can apply the complex forcing

function and calculate the response the real part of which is the desired
response Although this procedure may initially appear to be more compli-
cated, it is not. It is through this technique that we will convert the differential equation to an
algebraic equation that is much easier to solve.

IM cos (�t + �).
IM ej(�t + �),VM ej�t

IM cos (�t + �),VM cos �t

i(t) = IM ej(�t + �)

jVM sin �t.
jIM sin (�t + �)VM cos �tIM cos (�t + �)

i(t) = IM cos (�t + �) + jIM sin (�t + �)

Once again, let us determine the current in the RL circuit examined in Example 8.3.
However, rather than apply , we will apply 

The forced response will be of the form

where only and � are unknown. Substituting v(t) and i(t) into the differential equation
for the circuit, we obtain

Taking the indicated derivative, we obtain

Dividing each term of the equation by the common factor yields

which is an algebraic equation with complex coefficients. This equation can be written as

Converting the right-hand side of the equation to exponential or polar form produces the 
equation

(A quick refresher on complex numbers is given in the Appendix for readers who need to
sharpen their skills in this area.) The preceding form clearly indicates that the magnitude
and phase of the resulting current are

and

� = -tan 
-1 

�L

R

IM =

VM

2R2
+ �2L2

IM ej�
=

VM

2R2
+ �2L2

 ejC-tan-1(�L�R)D

IM ej�
=

VM

R + j�L

RIM ej�
+ j�LIM ej�

= VM

ej�t

RIM ej(�t + �)
+ j�LIM ej(�t + �)

= VM ej�t

RIM ej(�t + �)
+ L 

d

dt
 AIM ej(�t + �)B = VM ej�t

IM

i(t) = IM ej(�t + �)

VM ej�t.VM cos �t
EXAMPLE

8.4
SOLUTION

Summary of complex number
relationships:

 
1

ej�
= e-j�

 y = r sin �

 x = r cos �

 � = tan- 1 
y

x

 r = 2x2
+ y2

 x + jy = rej�

[ h i n t ]
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However, since our actual forcing function was rather than our actual
response is the real part of the complex response:

Note that this is identical to the response obtained in the previous example by solving the
differential equation for the current i(t).

 =

VM

2R2
+ �2L2

 cos a�t -  tan-1 
�L

R
b

 i(t) = IM cos (�t + �)

VM ej�t,VM cos �t

8.3
Phasors

Once again let us assume that the forcing function for a linear network is of the form

Then every steady-state voltage or current in the network will have the same form and the
same frequency �; for example, a current i(t) will be of the form 

As we proceed in our subsequent circuit analyses, we will simply note the frequency and
then drop the factor since it is common to every term in the describing equations.
Dropping the term indicates that every voltage or current can be fully described by a mag-
nitude and phase. For example, a voltage v(t) can be written in exponential form as

8.18

or as a complex number

8.19

Since we are working with a complex forcing function, the real part of which is the
desired answer, and each term in the equation will contain we can drop Re(�) and 
and work only with the complex number This complex representation is commonly
called a phasor. As a distinguishing feature, phasors will be written in boldface type. In
a completely identical manner a voltage and a
current = are written in phasor notation as

and respectively. Note that it is common practice to express pha-
sors with positive magnitudes.

I = IM/�,V = VM/�
Re CIM ej(�t + �) Di(t) = IM cos (�t + �)

v(t) = VM cos (�t + �) = Re CVM ej(�t + �) D
VM/�.

ej�tej�t,

v(t) = ReAVM/� ej�tB

v(t) = VM cos (�t + �) = Re CVM ej(�t + �) D

ej�t
ej�t

i(t) = IM ej(�t + �).

v(t) = VM ej�t

If and
, then

in phasor notation

and

I = IM /�

V = VM /�

i(t) = IM cos (�t + �)
v(t) = VM cos (�t + �)

[ h i n t ]

Again, we consider the RL circuit in Example 8.3. Let us use phasors to determine the
expression for the current.

The differential equation is

The forcing function can be replaced by a complex forcing function that is written as
with phasor Similarly, the forced response component of the current

i(t) can be replaced by a complex function that is written as with phasor 
From our previous discussions we recall that the solution of the differential equation is
the real part of this current.

I = IM/�.Iej�t
V = VM/0°.Vej�t

L 
di(t)

dt
+ Ri(t) = VM cos �t

SOLUTION

EXAMPLE

8.5
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Using the complex forcing function, we find that the differential equation becomes

Note that is a common factor and, as we have already indicated, can be eliminated, leaving
the phasors; that is,

Therefore,

Thus,

which once again is the function we obtained earlier.

i(t) =

VM

2R2
+ �2L2

 cos a�t -  tan-1 
�L

R
b

I =

V
R + j�L

= IM/� =

VM

2R2
+ �2L2

 ^-tan-1 
�L

R

j�LI + RI = V

ej�t

 j�LIej�t
+ RIej�t

= Vej�t

 L 
d

dt
 AIej�tB + RIej�t

= Vej�t

The differential equation is
reduced to a phasor equation.

[ h i n t ]

We define relations between phasors after the term has been eliminated as “phasor, or
frequency domain, analysis.” Thus, we have transformed a set of differential equations with
sinusoidal forcing functions in the time domain into a set of algebraic equations containing
complex numbers in the frequency domain. In effect, we are now faced with solving a set of
algebraic equations for the unknown phasors. The phasors are then simply 
transformed back to the time domain to yield the solution of the original set of differential 
equations. In addition, we note that the solution of sinusoidal steady-state circuits would be
relatively simple if we could write the phasor equation directly from the circuit description.
In Section 8.4 we will lay the groundwork for doing just that.

Note that in our discussions we have tacitly assumed that sinusoidal functions would be rep-
resented as phasors with a phase angle based on a cosine function. Therefore, if sine functions
are used, we will simply employ the relationship in Eq. (8.7) to obtain the proper phase angle.

In summary, while v(t) represents a voltage in the time domain, the phasor V represents
the voltage in the frequency domain. The phasor contains only magnitude and phase infor-
mation, and the frequency is implicit in this representation. The transformation from the time
domain to the frequency domain, as well as the reverse transformation, is shown in Table 8.1.
Recall that the phase angle is based on a cosine function and, therefore, if a sine function is
involved, a 90° shift factor must be employed, as shown in the table.

ej�t

TABLE 8.1 Phasor representation

A/;� - 90°A sin (�t ; �)

A/;�A cos (�t ; �)

Step 1. Using phasors, transform a set of differential equations in the time domain into
a set of algebraic equations in the frequency domain.

Step 2. Solve the algebraic equations for the unknown phasors.
Step 3. Transform the now-known phasors back to the time domain.

Phasor Analysis

Problem-Solving Strategy

TIME DOMAIN FREQUENCY DOMAIN
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E8.3 Convert the following voltage functions to phasors.

v2(t) = 18 sin (2513t + 4.2°) V

 v1(t) = 12 cos (377t - 425°) V

Learning Assessments
ANSWER:
V2 = 18/-85.8° V.

V1 = 12/-425° V;

E8.4 Convert the following phasors to the time domain if the frequency is 400 Hz.

 V2 = 12/-60° V

 V1 = 10/20° V

ANSWER:

v2(t) = 12 cos (800�t - 60°) V.
v1(t) = 10 cos (800�t + 20°) V;

However, if a network contains only sine sources, there is no need to perform the 90° shift.
We simply perform the normal phasor analysis, and then the imaginary part of the time-
varying complex solution is the desired response. Simply put, cosine sources generate a
cosine response, and sine sources generate a sine response.

As we proceed in our development of the techniques required to analyze circuits in the sinu-
soidal steady state, we are now in a position to establish the phasor relationships between
voltage and current for the three passive elements R, L, and C.

In the case of a resistor as shown in Fig. 8.6a, the voltage–current relationship is known to be

8.20

Applying the complex voltage results in the complex current and there-
fore Eq. (8.20) becomes

which reduces to

8.21

Equation (8.21) can be written in phasor form as

8.22

where

From Eq. (8.21) we see that and thus the current and voltage for this circuit are in phase.
Historically, complex numbers have been represented as points on a graph in which the

x-axis represents the real axis and the y-axis the imaginary axis. The line segment connect-
ing the origin with the point provides a convenient representation of the magnitude and angle
when the complex number is written in a polar form. A review of the Appendix will indicate
how these complex numbers or line segments can be added, subtracted, and so on. Since
phasors are complex numbers, it is convenient to represent the phasor voltage and current
graphically as line segments. A plot of the line segments representing the phasors is called a
phasor diagram. This pictorial representation of phasors provides immediate information on
the relative magnitude of one phasor with another, the angle between two phasors, and the
relative position of one phasor with respect to another (i.e., leading or lagging). A phasor
diagram and the sinusoidal waveforms for the resistor are shown in Figs. 8.6c and d, res-
pectively. A phasor diagram will be drawn for each of the other circuit elements in the
remainder of this section.

�v = �i

V = VM ej�v = VM/�v and  I = IM ej�i = IM/�i

V = RI

VM ej�v = RIM ej�i

VM ejA�t + �vB = RIM ejA�t+�iB
IM ejA�t + �iB,VM ejA�t + �vB

v(t) = Ri(t)

8.4
Phasor

Relationships for
Circuit Elements

Current and voltage are in
phase.

[ h i n t ]
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EXAMPLE

8.6
SOLUTION

If the voltage is applied to a 6-� resistor as shown in
Fig. 8.6a, we wish to determine the resultant current.

Since the phasor voltage is

the phasor current from Eq. (8.22) is

which in the time domain is

i(t) = 4 cos (377t + 75°) A

I =

24/75°

6
= 4/75° A

V = 24/75° V

v(t) = 24 cos (377t + 75°) V

Figure 8.6

Voltage–current relationships
for a resistor.

(a) (b)

(c) (d)

Im

Re

I

V

�v=�i �v=�i

v, i

v
i

�t

v(t)=i(t) R

i(t)

R

+

-

V=RI

I

R

+

-

E8.5 The current in a 4-� resistor is known to be Express the voltage
across the resistor as a time function if the frequency of the current is 4 kHz.

I = 12/60° A.

Learning Assessment
ANSWER:
v(t) = 48 cos (8000�t + 60°) V.

The voltage–current relationship for an inductor, as shown in Fig. 8.7a, is

8.23

Substituting the complex voltage and current into this equation yields

which reduces to

8.24VM ej�v = j�LIM ej�i

VM ejA�t + �vB = L 
d

dt
 IM ejA�t + �iB

v(t) = L 
di(t)

dt
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The voltage is applied to a 20-mH inductor as shown in
Fig. 8.7a. Find the resultant current.

The phasor current is

or

i(t) = 1.59 cos (377t - 70°) A

 = 1.59/-70° A

 =

12/20°

(377)(20 * 10-3)/90°

 I =

V
j�L

=

12/20°

�L/90°

v(t) = 12 cos (377t + 20°) V

SOLUTION

EXAMPLE

8.7

Figure 8.7

Voltage–current relationships
for an inductor.

(a) (b)

(c) (d)

v(t), i(t)

�t

v(t) i(t)Im

Re

I
�v=�i +90°

�i

90°

V

v(t)=L
di(t)

dt–––

i(t)

L

+

-

V=j�LI

I

+

-

L

Equation (8.24) in phasor notation is

8.25

Note that the differential equation in the time domain (8.23) has been converted to an alge-
braic equation with complex coefficients in the frequency domain. This relationship is
shown in Fig. 8.7b. Since the imaginary operator , Eq. (8.24)
can be written as

8.26

Therefore, the voltage and current are 90° out of phase, and in particular the voltage leads the
current by 90° or the current lags the voltage by 90°. The phasor diagram and the sinusoidal
waveforms for the inductor circuit are shown in Figs. 8.7c and d, respectively.

VM ej�v = �LIM ejA�i + 90°B

j = 1e j90°
= 1/90° = 1-1

V = j�LI
The derivative process yields
a frequency-dependent
function.

[ h i n t ]

The voltage leads the current
or the current lags the
voltage.

[ h i n t ]

Applying 

x1 /�1

x2 /�2
=

x1

x2
 /�1 - �2

V = j�LI

[ h i n t ]
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E8.6 The current in a 0.05-H inductor is If the frequency of the cur-
rent is 60 Hz, determine the voltage across the inductor.

I = 4/-30° A.

Learning Assessment

The voltage–current relationship for our last passive element, the capacitor, as shown in
Fig. 8.8a, is

8.27

Once again employing the complex voltage and current, we obtain

which reduces to

8.28

In phasor notation this equation becomes

8.29

Eq. (8.27), a differential equation in the time domain, has been transformed into Eq. (8.29),
an algebraic equation with complex coefficients in the frequency domain. The phasor rela-
tionship is shown in Fig. 8.8b. Substituting into Eq. (8.28) yields

8.30

Note that the voltage and current are 90° out of phase. Eq. (8.30) states that the current
leads the voltage by 90° or the voltage lags the current by 90°. The phasor diagram and the
sinusoidal waveforms for the capacitor circuit are shown in Figs. 8.8c and d, respectively.

IM e j�i = �CVM e jA�v + 90°B

j = 1ej90°

I = j�CV

IM ej�i = j�CVM ej�v

IM ejA�t + �iB = C 
d

dt
 VM ejA�t + �vB

i(t) = C 
dv(t)

dt

Figure 8.8 

Voltage–current relationships
for a capacitor.

90°

(a) (b)

(c) (d)

�i=�v +90°

Im

Re

V

�v

I
v(t)i(t)v(t), i(t)

�t

v(t)

i(t)=C
dv(t)

dt–––

C

+

-

V

I=j�CV

+

-

C

The current leads the voltage
or the voltage lags the
current.

[ h i n t ]

ANSWER:
vL(t) = 75.4 cos (377t + 60°) V.

irwin08_369-434hr.qxd  28-07-2010  12:03  Page 382



8.5
Impedance and

Admittance

We have examined each of the circuit elements in the frequency domain on an individual
basis. We now wish to treat these passive circuit elements in a more general fashion. We
define the two-terminal input impedance Z, also referred to as the driving point impedance,
in exactly the same manner in which we defined resistance earlier. Later we will examine
another type of impedance, called transfer impedance.

Impedance is defined as the ratio of the phasor voltage V to the phasor current I:

8.31

at the two terminals of the element related to one another by the passive sign convention, as
illustrated in Fig. 8.9. Since V and I are complex, the impedance Z is complex and

8.32

Since Z is the ratio of V to I, the units of Z are ohms. Thus, impedance in an ac circuit is
analogous to resistance in a dc circuit. In rectangular form, impedance is expressed as

8.33

where is the real, or resistive, component and is the imaginary, or reactive,
component. In general, we simply refer to R as the resistance and X as the reactance. It is

X(�)R(�)

Z(�) = R(�) + jX(�)

Z =

VM/�v

IM/�i
=

VM

IM
 /�v - �i = Z/�z

Z =

V
I
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The voltage is applied to a 100-	F capacitor as shown in
Fig. 8.8a. Find the current.

The resultant phasor current is

Therefore, the current written as a time function is

i(t) = 3.14 cos (314t + 105°) A

 = 3.14/105° A

 = (314)A100 * 10-6/90°B A100/15°B
 I = j�CA100/15° B

v(t) = 100 cos (314t + 15°) V

SOLUTION

EXAMPLE

8.8

Applying I = j�C V

[ h i n t ]

E8.7 The current in a 150-	F capacitor is If the frequency of the
current is 60 Hz, determine the voltage across the capacitor.

I = 3.6/-145° A.

Learning Assessment
ANSWER:

.vC(t) = 63.66 cos (377t - 235°) V

±
– Z   �z

IM   �i

VM   �v
ac

circuit

Figure 8.9

General impedance
relationship.
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important to note that R and X are real functions of � and therefore Z(�) is frequency
dependent. Equation (8.33) clearly indicates that Z is a complex number; however, it is not a
phasor, since phasors denote sinusoidal functions.

Equations (8.32) and (8.33) indicate that

8.34

Therefore,

8.35

where

 X = Z sin �z

 R = Z cos �z

 �z = tan-1 
X

R

 Z = 2R2
+ X2

Z/�z = R + jX

TABLE 8.2 Passive element impedance

PASSIVE ELEMENT IMPEDANCE

R

L

C Z =

1
j�C

= jXC = - 
1

�C
 /90° , XC = - 

1
�C

Z = j�L = jXL = �L/90° , XL = �L

Z = R

KCL and KVL are both valid in the frequency domain. We can use this fact, as was done
in Chapter 2 for resistors, to show that impedances can be combined using the same rules that
we established for resistor combinations. That is, if are connected in
series, the equivalent impedance is

8.36

and if are connected in parallel, the equivalent impedance is given by

8.37
1

Zp
=

1

Z1
+

1

Z2
+

1

Z3
+

p
+

1

Zn

Z1 , Z2 , Z3 , p , Zn

Zs = Z1 + Z2 + Z3 +
p

+ Zn

Zs

Z1 , Z2 , Z3 , p , Zn

Determine the equivalent impedance of the network shown in Fig. 8.10 if the frequency
is f=60 Hz. Then compute the current i(t) if the voltage source is

Finally, calculate the equivalent impedance if the frequency is
f=400 Hz.
v(t) = 50 cos (�t + 30°) V.

EXAMPLE

8.9

For the individual passive elements the impedance is as shown in Table 8.2. However, just
as it was advantageous to know how to determine the equivalent resistance in dc circuits, we
want to learn how to determine the equivalent impedance in ac circuits.
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The impedances of the individual elements at 60 Hz are

Since the elements are in series,

The current in the circuit is given by

or in the time domain, 
If the frequency is 400 Hz, the impedance of each element is

The total impedance is then

At the frequency f=60 Hz, the reactance of the circuit is capacitive; that is, if the imped-
ance is written as R+jX, X<0. However, at f=400 Hz the reactance is inductive
since X>0.

Z = 25 + j42.31 = 49.14/59.42° �

 ZC =

-j

�C
= -j7.96 �

 ZL = j�L = j50.27 �

 ZR = 25 �

i(t) = 0.96 cos (377t + 91.22°) A.

I =

V
Z

=

50/30°

25 - j45.51
=

50/30°

51.93/-61.22°
= 0.96/91.22° A

 = 25 - j45.51 �

 Z = ZR + ZL + ZC

 ZC =

-j

�C
=

-j

(2� * 60)A50 * 10-6B = -j53.05 �

 ZL = j�L = j(2� * 60)A20 * 10-3B = j7.54 �

 ZR = 25 �

Figure 8.10

Series ac circuit.

±
–v(t)

i(t)

L=20 mH

R=25 �

C=50 �F

Step 1. Express v(t) as a phasor and determine the impedance of each passive element.

Step 2. Combine impedances and solve for the phasor I.

Step 3. Convert the phasor I to i(t).

Basic AC Analysis

Problem-Solving Strategy

SOLUTION
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E8.8 Find the current i(t) in the network in Fig. E8.8.

Learning Assessment
ANSWER:
i(t) = 3.88 cos (377t - 39.2°) A.

±
–

v(t)=120 sin
(377t+60°) V

i(t)

40 mH

20 �

50 �F

Figure E8.8

Technique for taking the
reciprocal:

 =

R - jX

R2
+ X2

 
1

R + jX
=

R - jX

(R + jX)(R - jX)

[ h i n t ]

Another quantity that is very useful in the analysis of ac circuits is the two-terminal input
admittance, which is the reciprocal of impedance; that is,

8.38

The units of Y are siemens, and this quantity is analogous to conductance in resistive dc
circuits. Since Z is a complex number, Y is also a complex number.

8.39

which is written in rectangular form as

8.40

where G and B are called conductance and susceptance, respectively. Because of the relation-
ship between Y and Z, we can express the components of one quantity as a function of the
components of the other. From the expression

8.41

we can show that

8.42

and in a similar manner, we can show that

8.43

It is very important to note that in general R and G are not reciprocals of one another. The
same is true for X and B. The purely resistive case is an exception. In the purely reactive case,
the quantities are negative reciprocals of one another.

The admittance of the individual passive elements are

8.44

 YC = j�C = �C/90°

 YL =

1

j�L
= - 

1

�L
 /90°

 YR =

1

R
= G

R =

G

G2
+ B2

,  X =

-B

G2
+ B2

G =

R

R2
+ X2

,  B =

-X

R2
+ X2

G + jB =

1

R + jX

Y = G + jB

Y = YM/�y

Y =

1

Z
=

I
V
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Calculate the equivalent admittance for the network in Fig. 8.11 and use it to determine
the current I if VS = 60/45° V.

Yp

SOLUTION

EXAMPLE

8.10

Once again, since KCL and KVL are valid in the frequency domain, we can show, using
the same approach outlined in Chapter 2 for conductance in resistive circuits, that the rules
for combining admittances are the same as those for combining conductances; that is, if

are connected in parallel, the equivalent admittance is

8.45

and if are connected in series, the equivalent admittance is

8.46
1

YS
=

1

Y1
+

1

Y2
+

p
+

1

Yn

Y1 , Y2 , p , Yn

Yp = Y1 + Y2 +
p

+ Yn

Y1 , Y2 , Y3 , p , Yn

Figure 8.11

Example parallel
circuit.±

–VS Yp ZR=2 � ZL=j4 �

I

From Fig. 8.11 we note that

Therefore,

and hence,

 = 33.5/18.43° A

 = a 1

2
- j 

1

4
b A60/45°B

 I = Yp VS

Yp =

1

2
- j 

1

4
 S

 YL =

1

ZL
=

-j

4
 S

 YR =

1

ZR
=

1

2
 S

Admittances add in 
parallel.

[ h i n t ]

E8.9 Find the current I in the network in Fig. E8.9.

Learning Assessments
ANSWER: I = 9.01/53.7° A.

±
– ZR=2 � ZR=4 �ZL=j2 � ZC=–j1 �

I

V=10  20° V

Figure E8.9
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As a prelude to our analysis of more general ac circuits, let us examine the techniques for
computing the impedance or admittance of circuits in which numerous passive elements are
interconnected. The following example illustrates that our technique is analogous to our
earlier computations of equivalent resistance.

Consider the network shown in Fig. 8.12a. The impedance of each element is given in the
figure. We wish to calculate the equivalent impedance of the network at terminals A–B.Zeq

EXAMPLE

8.11

The equivalent impedance could be calculated in a variety of ways; we could use only
impedances, or only admittances, or a combination of the two. We will use the latter. We begin
by noting that the circuit in Fig. 8.12a can be represented by the circuit in Fig. 8.12b.

Note that

Therefore,

Now

and hence,

 = 0.20 + j0.10 S

 =

1

4 - j2

 Y34 =

1

Z34

 = 4 - j2 �

 = (4 + j2) + (-j4)

 Z34 = Z3 + Z4

Z4 = -j4 �

 = j 
1

4
 S

 =

1

j4
+

1

-j2

 Y4 = YL + YC

Zeq

Figure 8.12 Example circuit for determining equivalent impedance in two steps.

(a) (b)

1 �

2 �

j6 �Zeq

Zeq

Z1 Z3

Z2 Z4

j4 � –j2 �

–j2 �

–j2 �

A

B B

A

j2 �4 �

SOLUTION
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Since

then

The reader should carefully note our approach: we are adding impedances in series and
adding admittances in parallel.

From we can compute as

Now

and then

Therefore,

 = 3.8 + j0.6 �

 = 0.8 - j0.4 + 3 + j1

 Z eq = Z 1 + Z 234

 = 0.8 - j0.4 �

 Z1 =

1

1 + j 
1

2

 = 1 + j 
1

2
 S

 =

1

1
+

1

-j2

 Y1 = YR + YC

 = 3 + j1 �

 =

1

0.30 - j0.10

 Z 234 =

1

Y234

Z234Y234

 = 0.30 - j0.10 S

 Y234 = Y2 + Y34

 = 0.10 - j0.20 S

 Y2 =

1

2 + j4

 = 2 + j4 �

 Z2 = 2 + j6 - j2

Step 1. Add the admittances of elements in parallel.

Step 2. Add the impedances of elements in series.

Step 3. Convert back and forth between admittance 
and impedance in order to combine neighboring elements.

Combining
Impedances and
Admittances

Problem-Solving Strategy
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Let us sketch the phasor diagram for the network shown in Fig. 8.13.
EXAMPLE

8.12

Impedance and admittance are functions of frequency, and therefore their values change as
the frequency changes. These changes in Z and Y have a resultant effect on the
current–voltage relationships in a network. This impact of changes in frequency on circuit
parameters can be easily seen via a phasor diagram. The following examples will serve to
illustrate these points.

E8.10 Compute the impedance in the network in Fig. E8.10.ZT

Learning Assessments
ANSWER:
ZT = 3.38 + j1.08 �.

E8.11 Find Z in Fig. E8.11. ANSWER:
Z = 1.95 + j0.29 �.

ZT

2 � –j4 �

j2 �

j6 �2 �

4 �

Figure E8.10

Figure E8.11

8.6
Phasor Diagrams

RIS

IR

V

IL IC

j�L 1

j�C
—

Figure 8.13
Example parallel circuit.

SOLUTION The pertinent variables are labeled on the figure. For convenience in forming a phasor diagram,
we select V as a reference phasor and arbitrarily assign it a 0° phase angle. We will, therefore,
measure all currents with respect to this phasor. We suffer no loss of generality by assigning V
a 0° phase angle, since if it is actually 30°, for example, we will simply rotate the entire
phasor diagram by 30° because all the currents are measured with respect to this phasor.

At the upper node in the circuit KCL is

IS = IR + IL + IC =

V
R

+

V
j�L

+

V
1�j�C

Z

j3 �

j2 �

–j3 �

–j3 �

4 �

5 
� 4 �

3 �

2 �

irwin08_369-434hr.qxd  28-07-2010  12:03  Page 390



S E C T I O N  8 . 6 P H A S O R  D I A G R A M S     391

Since then

The phasor diagram that illustrates the phase relationship between V, IR , IL and IC is shown
in Fig. 8.14a. For small values of � such that the magnitude of IL is greater than that of IC,
the phasor diagram for the currents is shown in Fig. 8.14b. In the case of large values of
�—that is, those for which IC is greater than IL—the phasor diagram for the currents is
shown in Fig. 8.14c. Note that as � increases, the phasor moves from to along a
locus of points specified by the dashed line shown in Fig. 8.14d.

Note that is in phase with V when or, in other words, when �L=1/�C.
Hence, the node voltage V is in phase with the current source when

This can also be seen from the KCL equation

I = c 1

R
+ j a�C -

1

�L
b dV

� =

1

1LC

IS

IC = ILIS

ISn
IS1

IS

IS =

VM/0°

R
+

VM/-90°

�L
+ VM �C/90°

V = VM/0°,

Figure 8.14

Phasor diagrams for the
circuit in Fig. 8.13.

(c) (d)

(a) (b)

V

IC

IL

IR

V

ISn

ISf

IS2

IS1

IR

V

IC

IL

IC+IL
IS

IR

V

IC

IL

IR

IS

IL+IC

From a graphical standpoint,
phasors can be manipulated
like vectors.

[ h i n t ]

Let us determine the phasor diagram for the series circuit shown in Fig. 8.15a.

KVL for this circuit is of the form

 = IR + �LI/90° +

I
�C

 /-90°

 VS = VR + VL + VC

SOLUTION

EXAMPLE

8.13
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E8.12 Draw a phasor diagram to illustrate all currents and voltages
for the network in Fig. E8.12.

Learning Assessments
ANSWER:

If we select I as a reference phasor so that then if the phasor
diagram will be of the form shown in Fig. 8.15b. Specifically, if �=377 rad/s (i.e.,
f=60 Hz), then �L=6 and 1/�C=2. Under these conditions, the phasor diagram is as
shown in Fig. 8.15c. If, however, we select as reference with, for example,

then

and the entire phasor diagram, as shown in Figs. 8.15b and c, is rotated 45°, as shown in
Fig. 8.15d.

 = 3/45° A

 =

1212 /90°

422/45°

 I =

V
Z

=

1212 /90°

4 + j6 - j2

vS(t) = 12 12 cos (377t + 90°) V

VS

�LIM 7 IM��C,I = IM/0°,

Figure 8.15 

Series circuit and certain
specific phasor diagrams

(plots are not drawn
to scale).

(a) (b)

VL

VC

VS

VR I

VL+VC

(c)

I

VL+VC

VR=4IM    0°

VL=6IM/90°

VC=2IM    –90°

45°

VS

(d)

I

VL+VC
45°45°

VSVL

VR

VC

VLVS

VR

VC

±
–

R=4�I

L=15.92 mH

C=1326 �F

+ -

- +

+

-

I2I1

–j4 �2 � V

+

-

I=4  45° A
I2=1.79 A

I1=3.58 A

108° 45°
18.43°

I=4 A

V=7.16 V

Figure E8.12
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At this point, it is important for the reader to understand that in our manipulation of algebraic
phasor equations with complex coefficients we will, for the sake of simplicity, normally carry
only two digits to the right of the decimal point. In doing so, we will introduce round-off errors
in our calculations. Nowhere are these errors more evident than when two or more approaches
are used to solve the same problem, as is done in the following example.

We have shown that Kirchhoff’s laws apply in the frequency domain, and therefore they can
be used to compute steady-state voltages and currents in ac circuits. This approach involves
expressing these voltages and currents as phasors, and once this is done, the ac steady-state
analysis employing phasor equations is performed in an identical fashion to that used in the
dc analysis of resistive circuits. Complex number algebra is the tool that is used for the math-
ematical manipulation of the phasor equations, which, of course, have complex coefficients.
We will begin by illustrating that the techniques we have applied in the solution of dc resis-
tive circuits are valid in ac circuit analysis also—the only difference being that in steady-state
ac circuit analysis the algebraic phasor equations have complex coefficients.

●  For relatively simple circuits (e.g., those with a single source), use

●  Ohm’s law for ac analysis—that is, 

●  The rules for combining and 

●  KCL and KVL

●  Current and voltage division

●  For more complicated circuits with multiple sources, use

●  Nodal analysis

●  Loop or mesh analysis

●  Superposition

●  Source exchange

●  Thévenin’s and Norton’s theorems

YpZs

V = IZ

AC Steady-State
Analysis

Problem-Solving Strategy

8.7
Basic Analysis

Using Kirchhoff’s
Laws

E8.13 Find the value of C such that v(t) and i(t) are in phase in Fig. E8.13. ANSWER: C = 400 µF

Figure E8.13

4 � 10 mHCv(t)i(t)

+

-
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We wish to calculate all the voltages and currents in the circuit shown in Fig. 8.16a.

Our approach will be as follows. We will calculate the total impedance seen by the source
Then we will use this to determine Knowing we can compute using KVL.

Knowing we can compute and and so on.
The total impedance seen by the source is

 = 9.61/30.94° �

 = 4 + 4.24 + j4.94

 = 4 +

24 + j48

8 + j2

 Zeq = 4 +

(j6)(8 - j4)

j6 + 8 - j4

VS

I3 ,I2V1 ,
V1I1 ,I1 .VS .

Technique

1. Compute 

2. Determine 

Then and 

Current and voltage
division are also applicable.

I3 =

V1

Z3
I2 =

V1

Z2

V1 = Vs - I1Z1

I1 .

[ h i n t ]

I1

I1

V1

VS

VS

I2 I3
+

-

±
–

±
–

Z1

Z2 Z3

Figure 8.16 (a) Example ac circuit, (b) phasor diagram for the currents
(plots are not drawn to scale).

V2

+

-

V1

+

-

I1 I3

I2

±
–

I3

I1

I2

(b)(a)

29.06°
–11.58°

105°

VS=24  60° V

4 � 8 �

j6 � –j4 �

Then

can be determined using KVL:

Note that could also be computed via voltage division:

which from our previous calculation is

V1 =

VS 
(j6)(8 - j4)

j6 + 8 - j4

4 +

(j6)(8 - j4)

j6 + 8 - 4

 V

V1

 = 16.26/78.43° V

 = 3.26 + j15.93

 = 24/60° - 10/29.06°

 V1 = VS - 4I1

V1

 = 2.5/29.06° A

 I1 =

VS

Zeq
=

24/60°

9.61/30.94°

EXAMPLE

8.14 SOLUTION

irwin08_369-434hr.qxd  28-07-2010  12:03  Page 394



S E C T I O N  8 . 7 B A S I C  A N A LY S I S  U S I N G  K I R C H H O F F ' S  L A W S     395

Knowing we can calculate both and :

and

Note that and could have been calculated by current division. For example, could
be determined by

Finally, can be computed as

This value could also have been computed by voltage division. The phasor diagram for the
currents and is shown in Fig. 8.16b and is an illustration of KCL.

Finally, the reader is encouraged to work the problem in reverse; that is, given find
Note that if is known, can be computed immediately using the capacitor imped-

ance. Then yields Knowing we can find Then and so on.
Note that this analysis, which is the subject of Learning Assessment E8.12, involves simply
a repeated application of Ohm’s law, KCL, and KVL.

I2 + I3 = I1 ,I2 .V1V1 .V2 + I3(8)
I3V2VS .

V2 ,
I3I1 , I2 ,

 = 7.28/15° V

 V2 = I3(-j4)
V2

 = 2.71/-11.55° A

 =

A2.5/29.06°B A8.94/-26.57°B
8 + j2

 I2 =

I1(8 - j4)

8 - j4 + j6

I2I3I2

 = 1.82/105° A

 I3 =

V1

8 - j4

 = 2.71/-11.58° A

 I2 =

V1

j6
=

16.26/78.43°

6/90°

I3I2V1 ,

 = 16.26/78.42° V

 V1 =

A24/60°B A6.51/49.36°B
9.61/30.94°

Learning Assessments

Figure E8.14

E8.14 Find vA(t) in Fig. E8.14. ANSWER: vA(t)=
95.83 cos(50t+24.1°) V.

vA(t)

+

-

2 �

5 �

+
–

+
–

0.05 H

0.1 H

0.01 F

0.005 F

60 cos (50t+20°) V 100 cos 50t V
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E8.15  Find in Fig. E8.15. Vo ANSWER: 
Vo = 2.98/-153.43° V.

Figure E8.15

Figure E8.16

E8.16 In the network in Fig. E8.16, is known to be Compute .VS8/45° V.Vo ANSWER:
VS = 17.89/-18.43° V.

±
–VS V1

I2

I3I1

2 �

2 �j2 � Vo

–j2 � +
+

-
-

In this section we revisit the circuit analysis methods that were successfully applied earlier
to dc circuits and illustrate their applicability to ac steady-state analysis. The vehicle we
employ to present these techniques is examples in which all the theorems, together with
nodal analysis and loop analysis, are used to obtain a solution.

Let us determine the current in the network in Fig. 8.17a using nodal analysis, loop analy-
sis, superposition, source exchange, Thévenin’s theorem, and Norton’s theorem.

1. Nodal Analysis We begin with a nodal analysis of the network. The KCL equation
for the supernode that includes the voltage source is

V1

1 + j
- 2/0° +

V2

1
+

V2

1 - j
= 0

Io
EXAMPLE

8.15

8.8
Analysis
Techniques

SOLUTION

Summing the current, leaving
the supernode. Outbound
currents have a positive sign.

[ h i n t ]

4 � 2 �

Vo

+

-

–j 2�–j 2� j 2�  2   0° A
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and the associated KVL constraint equation is

Solving for in the second equation and using this value in the first equation yields

or

Solving for we obtain

Therefore,

2. Loop Analysis The network in Fig. 8.17b is used to perform a loop analysis. Note
that one loop current is selected that passes through the independent current source.
The three loop equations are

Combining the first two equations yields

The third loop equation can be simplified to the form

Solving this last equation for and substituting the value into the previous equa-
tion yields

or

I3 =

-10 + 6j

4

I3 c -4 + 2j

1 - j
+ 1 - j d = 8 + 2j

I2

I2(1 - j) + I3(2 - j) = 0

I2(2) + I3(1 - j) = 8 + 2j

 1I3 + 1AI2 + I3B - j1AI2 + I3B = 0

 1AI1 + I2B + j1AI1 + I2B - 6/0° + 1AI2 + I3B - j1AI2 + I3B = 0

I1 = -2/0°

Io =

4 + j

1 + j
= a 5

2
-

3

2
 j b  A

V2 = a 4 + j

1 + j
b  V

V2 ,

V2 c 1

1 + j
+ 1 +

1

1 - j
d =

6 + 2 + 2j

1 + j

V2 - 6/0°

1 + j
- 2/0° + V2 +

V2

1 - j
= 0

V1

V1 + 6/0° = V2

Figure 8.17 Circuits used
in Example 8.15 for node
and loop analysis.

+-
j1 �

–j1 �1 �1 �

V1 V2

Io

1 �

2  0° A

6  0° V

+-
j1 �

–j1 �1 �1 �

Io

I3

I2

1 �

2  0° A

6  0° V

I1

(b)(a)

Just as in a dc analysis, the
loop equations assume that a
decrease in potential level
is 
 and an increase is �.

[ h i n t ]
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Figure 8.18

Circuits used in Example
8.15 for a superposition

analysis.

j1 �

–j1 �
1 �1 �

I 'o

1 �

2  0° A 2  0° A

(a)

1 �

I 'o

Z'

(b)

j1 �

–j1 �1 �1 �

I"o

V"1

1 �6  0° V
+-

+

-

(c)

and finally

3. Superposition In using superposition, we apply one independent source at a time.
The network in which the current source acts alone is shown in Fig. 8.18a. By combining
the two parallel impedances on each end of the network, we obtain the circuit in
Fig. 8.18b, where

Therefore, using current division,

The circuit in which the voltage source acts alone is shown in Fig. 8.18c. The voltage
obtained using voltage division is

and hence,

Then

4. Source Exchange As a first step in the source exchange approach, we exchange the
current source and parallel impedance for a voltage source in series with the imped-
ance, as shown in Fig. 8.19a.

Io = Iœ

o + Ifl

o = 1 +

6

4
 (1 - j) = a 5

2
-

3

2
 j b  A

Ifl

0 =

6

4
 (1 - j) A

 =

6(1 - j)

4
 V

 Vfl

1 =

(6/0°) c 1(1 - j)

1 + 1 - j
d

1 + j + c 1(1 - j)

1 + 1 - j
d

Vfl

1

Iœ

o = 1/0° A

Z¿ =

(1 + j)(1 - j)

(1 + j) + (1 - j)
= 1 �

Io = -I3 = a 5

2
-

3

2
 j b  A

In applying superposition in
this case, each source is
applied independently, and
the results are added to
obtain the solution.

[ h i n t ]
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j1 �1 �

–j1 �2(1+j) V 1 �

Io

1 �
6  0° V

+-

(a)

±
–

–j1 �

(b)

1 �

1 �

1 �

j1 �

Io

6+2(1+j)
1+j

— Ac c
1 �

Io

Z

(c)

—   A
8+2j
1+jc c

Figure 8.19
Circuits used in
Example 8.15
for a source
exchange
analysis.

In source exchange, a voltage
source in series with an
impedance can be exchanged
for a current source in parallel
with the impedance and vice
versa. Repeated application
systematically reduces the
number of circuit elements.

[ h i n t ]

In this Thévenin analysis,

1. Remove the 1-� load and
find the voltage across the
open terminals, .

2. Determine the impedance
ZTh at the open terminals
with all sources made zero.

3. Construct the following
circuit and determine .Io

Voc

[ h i n t ]

±
–

ZTh

Voc 1 �

Io

Adding the two voltage sources and transforming them and the series impedance
into a current source in parallel with that impedance are shown in Fig. 8.19b.
Combining the two impedances that are in parallel with the 1-� resistor produces
the network in Fig. 8.19c, where

Therefore, using current division,

5. Thévenin Analysis In applying Thévenin’s theorem to the circuit in Fig. 8.17a, we
first find the open-circuit voltage, as shown in Fig. 8.20a. To simplify the analysis,
we perform a source exchange on the left end of the network, which results in the
circuit in Fig. 8.20b. Now using voltage division,

or

The Thévenin equivalent impedance, obtained at the open-circuit terminals when
the current source is replaced with an open circuit and the voltage source is replaced
with a short circuit is shown in Fig. 8.20c and calculated to be

ZTh =

(1 + j)(1 - j)

1 + j + 1 - j
= 1 �

ZTh ,

Voc = (5 - 3j) V

Voc = [6 + 2(1 + j)] c 1 - j

1 - j + 1 + j
d

Voc ,

 = a 5

2
-

3

2
 j b  A

 Io = a 8 + 2j

1 + j
b a 1

2
b =

4 + j

1 + j

Z =

(1 + j)(1 - j)

1 + j + 1 - j
= 1 �
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Figure 8.20
Circuits used in Example

8.15 for a Thévenin analysis.

1 � ZTh

j1 �

–j1 �

1 �

(c)

±
–

ZTh=1 �

Voc=(5-3j) V 1 �

(d)

Io

+-
6  0° V

2  0° A
Voc

j1 �

–j1 �

1 �

1 �

+

-

(a) (b)

+-
6  0° V

Voc

j1 �

–j1 �2(1+j) V

1 �1 �
+

-

±
–

In this Norton analysis,

1. Remove the 1-� load and
find the current through
the short-circuited termi-
nals.

2. Determine the impedance
ZTh at the open load
terminals with all sources
made zero.

3. Construct the following
circuit and determine .Io

Isc

[ h i n t ]

1 �

Io

Isc ZTh

Figure 8.21
Circuits used in Example

8.15 for a Norton analysis.

+-
6  0° V

2  0° A
Isc

j1 �

–j1 �

1 �

I1

1 �

(a)

ZTh=1 �

1 �

(b)

Io

Isc= —  A
8+2j
1+j

rr

Connecting the Thévenin equivalent circuit to the 1-� resistor containing in the
original network yields the circuit in Fig. 8.20d. The current is then

6. Norton Analysis Finally, in applying Norton’s theorem to the circuit in Fig. 8.17a,
we calculate the short-circuit current, using the network in Fig. 8.21a. Note that
because of the short circuit, the voltage source is directly across the impedance in the
left-most branch. Therefore,

Then, using KCL,

 = a 8 + 2j

1 + j
b  A

 Isc = I1 + 2/0° = 2 +

6

1 + j

I1 =

6/0°

1 + j

Isc ,

Io = a 5

2
-

3

2
 j b  A

Io

Io
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Let us determine the voltage in the circuit in Fig. 8.22a. In this example we will use node
equations, loop equations, Thévenin’s theorem, and Norton’s theorem. We will omit the
techniques of superposition and source transformation. Why?

1. Nodal Analysis To perform a nodal analysis, we label the node voltages and identify the
supernode as shown in Fig. 8.22b. The constraint equation for the supernode is

V3 + 12/0° = V1

Vo

The Thévenin equivalent impedance, ZTh, is known to be 1 � and, therefore, connect-
ing the Norton equivalent to the 1-� resistor containing yields the network in
Fig. 8.21b. Using current division, we find that

 = a 5

2
-

3

2
 j b  A

 Io =

1

2
 a 8 + 2j

1 + j
b

Io

Figure 8.22 Circuits
used in Example 8.16
for nodal and loop
analysis.

±
––j 1�

j1 � 1 �

1 �1 �

2Ix

Ix

Vo

+

-

4   0° A12   0° V

(a)

±
––j 1�

j1 � 1 �

1 �1 �

2Ix

Ix

V1

V3V2

Vo

+

-

4   0° A12   0° V

(b)

±
––j 1�

j1 �

1 �
1 �1 �

2Ix

Ix

I1

Vo

+

-

4   0° A

12   0° V

(c)

I3 I4

I2

SOLUTION

EXAMPLE

8.16

Let us now consider an example containing a dependent source
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and the KCL equations for the nodes of the network are

At this point we can solve the foregoing equations using a matrix analysis or, for exam-
ple, substitute the first and last equations into the remaining two equations, which yields

Solving these equations for yields

2. Loop Analysis The mesh currents for the network are defined in Fig. 8.22c. The
constraint equations for the circuit are

The KVL equations for mesh 1 and mesh 4 are

Note that if the constraint equations are substituted into the second KVL equation, the
only unknown in the equation is This substitution yields

and hence,

3. Thévenin’s Theorem In applying Thévenin’s theorem, we will find the open-circuit
voltage and then determine the Thévenin equivalent impedance using a test source at the
open-circuit terminals. We could determine the Thévenin equivalent impedance by calcu-
lating the short-circuit current; however, we will determine this current when we apply
Norton’s theorem.

The open-circuit voltage is determined from the network in Fig. 8.23a. Note that
and since flows through the inductor, the open-circuit voltage is

To determine the Thévenin equivalent impedance, we turn off the independent sources,
apply a test voltage source to the output terminals, and compute the current leaving the
test source. As shown in Fig. 8.23b, since flows in the test source, KCL requiresIfl

x

 = -4 + j8 V

 Voc = -1A4/0°B + j1A2Iœ

xB
Voc2Iœ

xIœ

x = 4/0° A

 Vo = +4/143.13° V

 I4 = +4/143.13° A

I4 .

 j1AI4 - I3B + 1AI4 - I2B + 1I4 = 0

 -j1I1 + 1AI1 - I3B = -12/0°

 I3 = 2Ix = 2I4 + 8/0°

 Ix = I4 - I2 = I4 + 4/0°

 I2 = -4/0°

 = +4/143.13° V

 Vo =

-(8 + j4)

1 + j2

Vo

 -(4 + j2)Vo + (1 + j)V2 = 12 + j16

 3Vo - (1 + j)V2 = -(4 + j12)

 4/0° +

Vo - V3

1
+

Vo

1
= 0

 
V2 - V1

-j1
+

V2 - V3

1
- 2 aV3 - Vo

1
b = 0

 
V1 - V2

-j1
+

V3 - V2

1
- 4/0° +

V3 - Vo

1
+

V3

j1
= 0

How does the presence of a
dependent source affect
superposition and source
exchange?

[ h i n t ]
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that the current in the inductor be also. KVL around the mesh containing the test
source indicates that

Therefore,

Then

If the Thévenin equivalent network is now connected to the load, as shown in
Fig. 8.23c, the output voltage is found to be

4. Norton’s Theorem In using Norton’s theorem, we will find the short-circuit current
from the network in Fig. 8.24a. Once again, using the supernode, the constraint and
KCL equations are

 IÔ

x =

V3

1

 
V1 - V2

-j1
+

V3 - V2

1
- 4/0° +

V3

j1
+ IÔ

x = 0

 
V2 - V1

-j1
+

V2 - V3

1
- 2IÔ

x = 0

 V3 + 12/0° = V1

 = +4/143.13° V

 Vo =

-4 + 8j

2 - j1
 (1)

Vo

 = 1 - j �

 ZTh =

Vtest

-Ifl

x

Ifl

x =

-Vtest

1 - j

j1Ifl

x - 1Ifl

x - Vtest = 0

Ifl

x

Figure 8.23
Circuits used in Example
8.16 when applying
Thévenin’s theorem.(c)

±
–

±
–

–j1 �

j1 �

1 �1 �

2Ix

I'x

Voc

+

-

4   0° A12   0° V

(a)

–j 1�

j1 �

1 �1 �

2I"x

I"x

I"x

Vtest

(b)

±
–

1 �

1 �

–j1 �

–4+j8 V Vo

+

-
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Figure 8.24 Circuits used in Example 8.16 when applying Norton’s theorem.

±
––j 1�

j1 �

1 �1 �

2I'"x

I'"x

Isc

V1

V3V2

4   0° A12   0° V

(a) (b)

— A
–(8+j4)

1+j
Vo1 �

1 �

–j1 � Io

+

-

Substituting the first and last equations into the remaining equations yields

Solving these equations for yields

The KCL equation at the right-most node in the network in Fig. 8.24a is

Solving for we obtain

The Thévenin equivalent impedance was found earlier to be

Using the Norton equivalent network, the original network is reduced to that shown in
Fig. 8.24b. The voltage is then

 = +4/+143.13° V

 = -4 c 3 - j

3 + j
d

 Vo =

-(8 + j4)

1 + j
 c (1)(1 - j)

1 + 1 - j
d

Vo

ZTh = 1 - j �

Isc =

-(8 + j4)

1 + j
 A

Isc ,

IÔ

x = 4/0° + Isc

IÔ

x =

-4

1 + j
 A

IÔ

x

 -(1 + j)V2 + (2)IÔ

x = 4 - j12

 (1 + j)V2 - (3 + j)IÔ

x = j12
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E8.17 Use nodal analysis to find in the network in Fig. E8.17.Vo

Learning Assessments
ANSWER:
Vo = 2.12/75° V.

±
– Vo

+

-

2 �

1 � 1 �

–j1 �

j2 �12  30° V

Figure E8.17

E8.18  Find I1 in Fig. E8.18 using nodal analysis. ANSWER: 
I1 = 0.7781/-161.9° A.

  3   10° A

+
–

+
–

3 � 4 �

–j2 �

j3 �

j2 �

  6   0° V

12   0° V

I1

Figure E8.18

E8.19  Find Vx in Fig. E8.19 using (a) nodal analysis and (b) mesh analysis. ANSWER: 
Vx = 17.4/-21.62° V.

4 �

4 �

–j2�

j4 �

j2 �

3 �

Vx

-

+

10   0° V

24   0° V

+
–

+
–

Figure E8.19

E8.20  Use (a) mesh equations and (b) Thévenin’s theorem to find Vo in the network in the 
network in Fig. E8.20.

ANSWER:  
Vo = 10.88/36° V.

±
– VoI1

+

-

2 �

2 �

–j2 �

j2 �

24  0° V

2  90° A

I2

Figure E8.20
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E8.21 Find Vo in Fig. E8.21 using mesh analysis. ANSWER:
Vo = 1.4654 /-12.34° V.

24  0° V

6 �

4 �

j4 � 3 �

4 �

–j2 �

j2 �

2 VA

+
–

+
–

Vo

+

–

VA

+

–
Figure E8.21

E8.22 Find I1 in Fig. E8.18 using superposition ANSWER: 
I1 = 0.7781 /-161.9° V.

  3   10° A

+
–

+
–

3 � 4 �

–j2 �

j3 �

j2 �

  6   0° V

12   0° V

I1

Figure E8.22

E8.23  Use (a) superposition, (b) source transformation, and (c) Norton’s theorem to find 
Vo in the network in Fig. E8.23.

ANSWER: Vo = 12/90° V.

Figure E8.23

±
– Vo

+

-

2 �

2 �

–j2 �

j2 �

24  0° V

12  0° V-
+
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E8.24 Find Vo in Figure E8.24 using Thevenin’s theorem. ANSWER:
Vo = 1.4654/-12.34° V.

24  0° V

6 �

4 �

j4 � 3 �

4 �

–j2 �

j2 �

2 VA

+
–

+
–

Vo

+

–

VA

+

–
Figure E8.24

Let’s solve for the current in the circuit in Fig. 8.25. At first glance, this appears to be
a simple single-loop circuit. A more detailed observation reveals that the two sources oper-
ate at different frequencies. The radian frequency for the source on the left is 
while the source on the right operates at a radian frequency of If we draw a
frequency-domain circuit, which frequency do we use? How can we solve this problem?

Recall that the principle of superposition tells us that we can analyze the circuit with each
source operating alone. The circuit responses to each source acting alone are then added
together to give us the response with both sources active. Let’s use the principle of super-
position to solve this problem. First, calculate the response from the source on the left
using the circuit shown in Fig. 8.26a. Now we can draw a frequency-domain circuit for
� = 10 rad�s.

i¿(t)

20 rad�s.
10 rad�s,

i(t)

SOLUTION

EXAMPLE

8.17

Figure 8.25

Circuit used in Example
8.17.

±
–

±
–

i(t)10 � 1 H

100 cos 10t V 50 cos (20t-10°) V

Then Therefore, 

The response due to the source on the right can be determined using the circuit in
Fig. 8.27. Note that is defined in the opposite direction to in the original circuit. The
frequency-domain circuit for is also shown in Fig. 8.27b.

The current Therefore, 

The current can now be calculated as 
2.24 cos (20t - 73.43°) A.

7.07 cos (10t - 45°) -=i¿(t) - i–(t)i(t)

i–(t) = 2.24 cos (20t - 73.43°) A.I– =

50/-10°

10 + j20
= 2.24/-73.43° A.

� = 20 rad�s
i(t)i–(t)

i¿(t) = 7.07 cos (10t - 45°) A.I¿ =

100/0°

10 + j10
= 7.07/-45° A.
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Figure 8.26 Circuits used to illustrate superposition.

±
–

i'(t)10 � 1 H

100 cos 10t V

(a)

±
–

10 � j10 �

100  0° V

I'

(b)

±
–

±
–

i"(t)10 � 1 H

50 cos (20t-10°) V

(a)

10 � j20 � I"

(b)

50  –10° V

Figure 8.27 Circuits used to illustrate superposition.

8.9
Application
Examples

APPLICATION
EXAMPLE 8.18

The network in Fig. 8.28 models an unfortunate situation that is all too common. Node A,
which is the voltage at the output of a temperature sensor, has “picked-up” a high-
frequency voltage, caused by a nearby AM radio station. The noise frequency is
700 kHz. In this particular scenario, the sensor voltage, like temperature, tends to vary
slowly. Our task then is to modify the circuit to reduce the noise at the output without dis-
turbing the desired signal, vin(t).

vnoise(t),
vin(t)

Figure 8.28

Modeling radio frequency
noise pickup.

±
–

vo(t)
vin(t)

vnoise(t)

R

A

10 k�

+

-

±
–
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Consider the network in Fig. 8.29a. If component X has a high impedance—that is, much
greater than R at 700 kHz and an impedance of zero at dc—we should be able to alleviate
the problem. Using voltage division to obtain in Fig. 8.29b, we find

where and are either and 0, or and At dc, the inductor’s
impedance is zero, the voltage division ratio is unity, is and equals But at
700 kHz, is and the desired voltage division ratio should be very small; that is, the
inductor impedance must be much greater than R, so that becomes nearly zero. If we
choose to reduce the noise at the output by 90%, we find

Solving this equation yields which is close to a standard inductor value.L = 22.6 mH,

` R

R + j�L
` =

1

10
 at f = 700 kHz

Vo

VnoiseV1

Vin .VoVinV1

� = 0,2�(700 * 103).VnoiseVin�V1

Vo = c R

R + j�L
dV1

Vo

±
–

±
–

vo(t)
vin(t)

vnoise(t)

R

A

10 k�

+

-

X

(a)

±
–

±
–

Vo

Vin

Vnoise

R

A

10 k�

j�L

+

-

(b)

Figure 8.29

(a) Model used to reject
and (b) the required

component.
Vnoise

SOLUTION

APPLICATION
EXAMPLE 8.19

The circuit in Fig. 8.30 is called a General Impedance Converter (GIC). We wish to devel-
op an expression for the impedance in terms of , and and then using
resistors of equal value and a 1- capacitor, create a 1-H equivalent inductance.	F

Z5 ,Z1 , Z2 , Z3 , Z4Zeq

Figure 8.30 

The general impedance
converter.

Z5

Z4

Z3

A

B

C

D

Vin

Vin

Vin

V3

Zeq

V2

Iin

E

Z2

Z1

±
–

-
+
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We simply employ the ideal op-amp assumptions; that is, there is no current entering any 
op-amp input, and the voltage across any op-amp’s input terminals is zero. As a result, the
voltage at both nodes A and C are Next, we apply KCL at each op-amp input. At node A 

which yields

8.47

At node C, we find

Solving for yields

Substituting our results from Eq. (8.47), we can express as

8.48

At node E, we write

Then using our expression for in Eq. (8.48), we find that

Finally, the impedance of interest is

8.49

Now, if and then becomes

Hence, the value of R necessary to yield a 1-H inductance is At this point, we must
address the question: why go to all this trouble just to make inductance? The answer is size
and weight. A 1-H inductor would be very large and heavy. The GIC is easy to construct with
integrated circuit components, requires very little space, and weighs only a few grams!

1000 �.

Zeq = j�CR2
= j�Leq

ZeqZ4 = 1�j�C,Z1 = Z3 = Z5 = Z2 = R

Zeq =

Vin

Iin
= cZ1 Z3 Z5

Z2 Z4
d

Iin = Vin c Z2 Z4

Z1 Z3 Z5
d

V3

Iin =

Vin - V3

Z5

V3 = Vin c 1 -

Z2 Z4

Z1 Z3
d
V3

V3 = Vin c 1 +

Z4

Z3
d - V2 cZ4

Z3
d

V3

V3 - Vin

Z4
=

Vin - V2

Z3

V2 = Vin c 1 +

Z2

Z1
d

V2 - Vin

Z2
=

Vin

Z1

Vin .

SOLUTION

8.10
Design Examples

DESIGN 
EXAMPLE 8.20

In Chapter 4 we found that the op-amp provided us with an easy and effective method of
producing controllable voltage gain. From these earlier studies, we have come to expect
gain from these “active” devices in a configuration like that shown in Fig. 8.31a. However,
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an experienced engineer has suggested that we could achieve some gain from the proper
configuration of “passive” elements as illustrated in Fig. 8.31b, and has proposed the cir-
cuit in Fig. 8.31c. Therefore, let us use this suggested configuration in an attempt to design
for a gain of 10 at 1 kHz if the load is 

The voltage gain of the network in Fig. 8.31c can be expressed as

where

Combining these two equations and rearranging the terms yields the expression

We know that in order to achieve amplification, the denominator must be less than the
numerator. In addition, the denominator will be reduced if the reactances of the inductor
and capacitor are made equal in magnitude, since they are opposite in sign. Thus, by select-
ing the parameters such that the reactance of the inductor will cancel that of the
capacitor. Under this condition, the gain is reduced to

For the given load and frequency values, a capacitor value of will provide the
required gain. The inductor value can then be obtained from the constraint

which yields It should be noted that if the frequency changes, the impedance
of both the inductor and capacitor will also change, thus altering the gain. Finally, we will
find in a later chapter that the equation is an extremely important expression and
one that can have a dramatic effect on circuits.

�2LC = 1

L = 1.59 mH.

�2LC = 1

15.9 	F

Vo

Vin
= j�RC

�2LC = 1,

Vo

Vin
= £

j�L

j c�L -

1

�C
d +

L

CR

§

Z =

(j�L)R

j�L + R

Vo

Vin
= £

Z

Z +

1

j�C
§

100 �.

Figure 8.31 

Circuit configurations used
in Example 8.20.±

– R

(a)

±
– R

(b)

±
–Vin

vinvin

R
100 �

(c)

Voj�L

1/j�C

+

-

Passive
devices

used
for gain?

Active
devices

used
for gain

SOLUTION
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DESIGN 
EXAMPLE 8.21

A sinusoidal signal, when added to a dc level of provides a
0- to 5-V clock signal used to control a microprocessor. If the oscillation frequency of the
signal is to be 1 GHz, let us design the appropriate circuit.

As we found in Chapter 4, this application appears to be a natural application for an op-amp
summer. However, the frequency of oscillation (1 GHz) is much higher than the maximum
frequency most op-amps can handle—typically less than 200 MHz. Since no amplification
is required in this case, we should be able to design an op-amp-less summer that, while not
precise, should get the job done.

Consider the circuit in Fig. 8.32a where inputs and are connected to yield the out-
put For this application, component A should block any dc component in from
reaching the output but permit the 1-GHz signal to pass right through. Similarly, component
B should pass while blocking any high-frequency signal. Thus, the impedance of com-
ponent A should be infinite at dc but very low at 1 GHz. And the impedance of component
B should be zero at dc but very high at high frequency. Our earlier studies indicate that com-
ponent A must be a capacitor and component B an inductor. The resulting circuit, called a
bias T, is shown in Fig. 8.32b.

V2

v1(t)vo(t).
V2v1(t)

V2 = 2.5 V,v1(t) = 2.5 cos (�t)

Figure 8.32

(a) A simple passive summer
circuit; (b) a solution—the

bias T.

A

B

v1(t)

V2 V2

+

-

vo(t)
+

-

(a)

v1(t)

L

C
+

-

vo(t)
+

-

(b)

The values for C and L are dependent on both the signal frequency and the precision
required in the summing operation, and can be easily seen by using superposition to inves-
tigate the contribution of each input to In Fig. 8.33a, the dc voltage has been
reduced to zero and an ac circuit has been drawn at a frequency of 1 GHz—that is, the fre-
quency of Using voltage division, we can express the output voltage as

8.50

Note that in order to achieve a perfect summer, the voltage division ratio must be unity.
However, such a voltage division ratio requires the impractical condition equal infinity.

Instead, we will approach the problem by choosing values for the inductive and capacitive
reactances. As stated earlier, the capacitive reactance should be small; we choose And the
inductive reactance should be large—let’s say The resulting L and C values are

and

Now we consider In Fig. 8.33b, has been reduced to zero and an ac circuit has
been drawn at dc—the frequency of Again, voltage division could be used to express theV2 .

v1(t)V2 .

L =

XL

�
= 1.59 	H

C =

1

�XC
=

1

2� * 109
= 159 pF

10 k�.
1 �.

�2LC

Vo1 = £
j�L

j�L -

j

�C
§V1 = c �2LC

�2LC - 1
dV1

v1(t).

V2vo(t).

SOLUTION
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Figure 8.33

Exploring the bias-T
by steady-state
ac superposition
with (a) and
(b) v1(t) = 0

V2 = 0

(a)

1/j�C

1/j(0)C

j(0)L

j�L Vo1V1

++

-

Vo2

V2

+

--

(b)

output voltage. However, we see that the impedances of the capacitor and inductor are
infinity and unity, respectfully. As a result, the output is exactly equal to , regardless of
the values of C and L! Thus, the output voltage consists of two voltages—one at dc and the
other at 1 GHz. The dc component is just From Eq. (8.50), the ac component
at 1 GHz is

Back in the time domain, the output voltage is, to three significant digits,

vo(t) = 2.5 + 2.5 cos C2�A109Bt D  V

Vo1 = c j10,000

j10,000 - j1
d2.5/0° = 2.50025/0° V

V2 = 2.5 V.

V2

S U M M A R Y

■ The sinusoidal function definition The

sinusoidal function has an

amplitude of XM, a radian frequency of �, a period of

and a phase angle of �.

■ The phase lead and phase lag definitions If
and 

leads by radians and lags by
radians.

■ The phasor definition The sinusoidal voltage
can be written in exponential form

as and in phasor form as 

■ The phase relationship in and for
elements R, L, and C If and represent the
phase angles of the voltage across and the current through a
circuit element, then if the element is a resistor, 
lags by 90° if the element is an inductor, leads 
by 90° if the element is a capacitor.

■ The impedances of R, L, and C Impedance, Z,
is defined as the ratio of the phasor voltage, V, to the phasor
current, I, where Z=R for a resistor, Z for an
inductor, and Z for a capacitor.

■ The phasor diagrams Phasor diagrams can be used
to display the magnitude and phase relationships of various
voltages and currents in a network.

Frequency-domain analysis

1. Represent all voltages, and all currents, 
as phasors and represent all passive elements by their
impedance or admittance.

2. Solve for the unknown phasors in the frequency (�)
domain.

3. Transform the now-known phasors back to the time
domain.

■ Solution techniques for ac steady-state
problems
Ohm’s law
KCL and KVL
Nodal and loop analysis
Superposition and source exchange
Thévenin’s theorem
Norton’s theorem

ij(t) ,vi(t) ,

= 1�j�C
= j�L

�v�i�v

�i�i = �v

�i�v

�i�V

V = VM/�.v(t) = Re CVM ej(�t + �) D
v(t) = VM cos (�t + �)

� - �

x1(t)x2(t)� - �x2(t)x1(t)
x2(t) = XM2

 sin (�t + �),x1(t) = XM1
 sin (�t + �)

2���,

x(t) = XM sin (�t + �)

•
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8.1 Given i(t) � 5 cos (400t � 120
) A, determine the period
of the current and the frequency in Hertz.

8.2 Determine the relative phase relationship of the two
waves

8.3 Given the following voltage and current:

Determine the phase relationship between and 

8.4 Determine the phase angles by which leads and
leads , where

8.5 Calculate the current in the capacitor shown in Fig. P8.5 if
the voltage input is

(a)

(b)

Give the answers in both the time and frequency domains.

Figure P8.5

8.6 Find the frequency-domain impedance, Z, as shown in
Fig. P8.6.

Figure P8.6

Z 3 � j4 �

v(t)

i(t)

C=1 �F

+

-

v2(t) = 12 sin (377t + 60°) V.

v1(t) = 10 cos (377t - 30°) V.

i2(t) = -0.1 sin (377t + 45°) A

i1(t) = 0.05 cos (377t - 20°) A

v1(t) = 4 sin (377t + 25°) V

i2(t)v1(t)
i1(t)v1(t)

v(t).i(t)

v(t) = 10 cos (377t + 30°) V

i(t) = 5 sin (377t - 20°) V

v2(t) = 10 cos (377t + 90°) V

v1(t) = 10 cos (377t - 30°) V

8.7 Find the impedance, Z, shown in Fig. P8.7 at a
frequency of 60 Hz.

Figure P8.7

8.8 Find the equivalent admittance for the circuit in Fig. P8.8,
if = 10 radians/second.

Figure P8.8

8.9 Find the equivalent impedance for the circuit in Fig. P8.9.

Figure P8.9

Zeq

8 �

j10 �

j5 �

4 �

10 �

–j2 �

–j8 �

0.01 F0.2 H

0.1 H

8 �5 �

4 �

Yeq

◊

1 �

2 �10 mH

10 µFZ

P R O B L E M S
•
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8.10 Find the frequency-domain impedance, Z, shown in 
Fig. P8.10.

Figure P8.10

8.11 Find Z in the network in Fig. P8.11.

Figure P8.11

8.12 Find the impedance, Z, shown in Fig. P8.12 at a
frequency of 400 Hz.

Figure P8.12

8.13 Find the impedance, Z, shown in Fig. P8.13 at a
frequency of 60 Hz.

Figure P8.13

Z 10 mH 500 �F

4 �2 �

Z 1 � 10 �F

2 �10 mH

1 �2 �

2 � 2 �

–1j �

j2 �j2 �Z

Z

–j1 �

–j2 �

1 �

j2 �

2 �

8.14 Find the frequency-domain impedance, Z, shown in
Fig. P8.14.

Figure P8.14

8.15 In the circuit shown in Fig. P8.15, determine the value of
the inductance such that the current is in phase with the
source voltage.

Figure P8.15

8.16 Find the value of C in the circuit shown in Fig. P8.16 so
that Z is purely resistive at a frequency of 60 Hz.

Figure P8.16

8.17 Find the value of the capacitance, C, shown in the circuit
in Fig. P8.17 so that i(t) will be in phase with the source
voltage.

Figure P8.17

40 mH±
–

v(t) = 60

cos (250t+30°) V

8 � 15 �

C

i(t)

Z C

1 � 5 mH

±
–12 cos (1000t+75°) V

100 �F

4 �

L

Z

1 �

4 �

2 �

j2 �

j4 �

j2 �

j1 �

–j1 �

6 �
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8.18 The impedance of the network in Fig. P8.18 is found to
be purely real at What is the value of C?

Figure P8.18

8.19 Find the frequency at which the circuit shown in
Fig. P8.19 is purely resistive.

Figure P8.19

8.20 At � rad/s, the equivalent admittance for the
circuit in Fig. P8.20 is . Calculate values
for R and C

Figure P8.20

8.21 The admittance of the box in Fig. P8.21 is 
at 500 rad/s. What is the impedance at 300 rad/s?

Figure P8.21

8.22 The impedance of the box in Fig. P8.22 is at
1000 rad/s. What is the impedance at 1300 rad/s?

Figure P8.22

Z

5 + j4 �

Y

0.1 + j0.2 S

R

CY

0.1 + j0.2 S
= 100

5 mH 1 mF1 �Z

6 �

10 mH

CZ

f = 400 Hz.
8.23 In the diagram in Fig. P8.23, v(t)=50 cos(10t+10°) V

and i(t)=25 cos(10t+41°) A. Is the impedance of the
BOX inductive or capacitive? Explain your answer.

Figure P8.23

8.24 Determine the value of in Fig. 8.24 such that the peak
value of i(t) is 2 A.

Figure P8.24

8.25 In the diagram in Fig. P8.25 when v(t)=5 cos 500t V,
i(t)=0.4 cos(500t-30°) A. Calculate i(t) if v(t)=
5 cos 1000t V.

Figure P8.25

8.26 Draw the frequency-domain network and calculate 
in the circuit shown in Fig. P8.26 if is 200 cos

mA, is 100 sin mA, and
Also, use a phasor diagram to

determine 

Figure P8.26

vS(t)30 �

250 nF

i2(t)i1(t) ±
–vo(t)

vC(t)

+

-

-

+

vC(t).
vS(t) = 10 sin(105t) V.

(105t + 90°)i2(t)(105t + 60°)
i1(t)

vo(t)

+
–

Linear
circuit

i(t)

v(t)

+
–v(t) = 25 cos �t V 0.002 F

10 �i(t)

�

+
– Box

i(t)

v(t)
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8.27 Find vx(t) and vR(t) in the circuit in Fig. P8.27 if 
v(t)=50 cos10t V.

Figure P8.27

8.28 Calculate vC(t) in Fig. P8.28.

Figure P8.28

4 �

10 �

5 �

7 �

0.05 H

0.04 H100 cos 100t V

1000 µF vC(t)

+ +–

–

0.2 H3 �

2 H 20 � 0.01 F

5 �

+
– v(t)

vR(t)

vx(t)

++

–

–

8.31 Calculate v1(t) if i1(t)=7 cos 100t A and i2(t)=3cos(100t+45º) in Fig. P8.31.

Figure P8.31

8.32 Calculate vo(t) in Fig. P8.32.

Figure P8.32

3 �5 �4 �

6 �

2 H 2 �

1 H

0.05 F

50 cos 5t V 0.2 F+
–

vo(t)
+

–

10 � 5 �50 mH 1000 �Fi1(t) i2(t) v2(t)

+

–

8.29 Find io(t) in the circuit in Fig. P8.29 if v(t)=50 cos 100t V.

Figure P8.29

8.30 Find v0(t) and io(t) in Fig. P8.30.

Figure P8.30

6 �5 �

8 �

3 H

2 H

0.05 F

25 cos 2t V

0.1 F

io(t)
+
–

vo(t)
+

–

4 � 6 �

5 �

3 �

20 mH

50 mH

2000 µF

1000 µFio(t)v(t) +
–
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8.33 Calculate vx(t) in the circuit in Fig. 8.33 if v(t)=50 cos(10t-30°) V.

Figure P8.33

8.34 Calculate i1(t), i2(t), and vx(t) in Fig. P8.34.

Figure P8.34

8.35 Calculate i1(t) and i2(t) in Fig. P8.35.

Figure P8.35

8.36 Find in the circuit in Fig. P8.36.

Figure P8.36

10 �

5 �

±
–

±
–

0.1 H

0.2 H

0.005 F

100 cos 40t V 40 cos (40t-30°) Vvx(t)

+

-

vx(t)

5 �

10 �

0.5 H

4 �

50 cos 10t V 0.05 F 0.4 H

0.025 F

+
–

vx(t)

0.75 vx(t)

+

–

i1(t)

i2(t)

±
–

5 �

10 �

0.5 H

4 �

50 cos 10t V 0.05 F 0.4 H 0.025 F+
– vx(t)

+

–

i1(t)

i2(t)

5 �0.2 H 0.8 H0.025 F

0.025 F2 � 2 �

v(t) vx(t)

+

–

+
–

irwin08_369-434hr.qxd  28-07-2010  12:03  Page 418



8.37 Find in the network in Fig. P8.37.

Figure P8.37

8.38 Find and in the circuit in Fig. P8.38.

Figure P8.38

2 � 0.2 H

0.02 F v1(t)

+

-

v2(t)

+-

4 cos10t A 2 cos(10t+15°) A

12 cos(10t-25°) V

v2(t)v1(t)

±
–

5 �

10 � 0.1 H

0.2 H

0.008 F

50 cos 25t V

vx(t)+ -

2vx(t)
vo(t)

±
–

vo(t)
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8.39 Find the voltage V shown in Fig. P8.39.

Figure P8.39

8.40 Find the voltage shown in Fig. P8.40.

Figure P8.40

8.41 Find the frequency-domain voltage shown in
Fig. P8.41.

Figure P8.41

8.42 Find in the network in Fig. P8.42.

Figure P8.42

8.43 Find in the network in Fig. P8.43.

Figure P8.43

8.44 Given the network in Fig. P8.44, determine the value of
if .

Figure P8.44

VoVS

2 � j2 �

2 �–j1 �

+

-

V1

+

-

±
–

VS = 24/0°VVo

2  60° A 100  30° Vj40 �

30 �

Vo

+

-

±
–

Vo

2 �

2 �

j1 �

–j1 �

4 �-
+ Vo

+

-

12   0° V

Vo

Vo

1 �

5 30° A15 � –j12 �

+

-

Vo

10  30° V

2 �

–j12 �

j10 �

±
– Vo

+

-

Vo

V100  0° V

1 �

–j1 �±
–

+

-
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8.45 If , find in Fig. P8.45.

Figure P8.45

8.46 Find in the network in Fig. P8.46, if .

Figure P8.46

8.47 In the network in Fig. P8.47, is known to be
Find Z.

Figure P8.47

8.48 In the network in Fig. P8.48, . Find .

Figure P8.48

1 �

1 �

1 �

j1 � –j1 �

1 �

IoIx

±
–

2  0° A

12  0° V

IxIo = 4 /0° A

2 � –j1 �

1 �±
–12  0° V Z Vo

+

-

4 /45° V.
Vo

V1

VS
j1 �

2 �2 �1 � –j1 �

–j1 �
+-

+

-

V1 = 4 /0° VVS

–j2 �

2 �

j1 � 1 �IS

V1

Io

+-

IoV1 = 4 /0° V
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8.49 If in the circuit in Fig. P8.49, find .

Figure P8.49

8.50 If in the network in Fig. P8.50, find 

Figure P8.50

8.51 Using nodal analysis, find in the circuit in Fig. P8.51.

Figure P8.51

8.52 Use nodal analysis to find in the circuit in Fig. P8.52.

Figure P8.52

Io

V

±
–

±
– 6  0° V

4  0° A

12  0° V

2 �

2 �

–j1 �

j2 �

Io

Io

V1 V2

±
– 4  0° A

2  0° A12  0° V
1 �

1 � 1 �

–j1 �

Io

1 � 1 �

1 �

1 �

1 �

j1 �

–j1 �1 �

Io

Ix

R2

1 �

±
–

2  0° A

12  0° V

Ix.Io = 4 /0° A

1 �

1 �

1 �

j1 � –j1 � 1 �

IoIx

1 �±
– 2  0° A12  0° V

±
– 4  0° V

IxIo = 4 /0° A
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8.53 Find in the network in Fig. P8.53 using nodal analysis.

Figure P8.53

8.54 Use the supernode technique to find in the circuit in Fig. P8.54.

Figure P8.54

8.55 Use nodal analysis to find in the circuit in Fig. P8.55.

Figure P8.55

6  0° V

2  0° A

12  0° V
1 �

1 �1 � –j1 � j2 �

–± – ±

Vo

+

-

Vo

12  0° V
2 �

2 �1 �

–j1 �

j2 � –j2 �

Io

+-

Io

2  0° A 4  0° V12  0° V

2 �

2 � 1 �

V

–j1 �

j2 �

Vo

+

-

±
–

±
–

Vo

8.56 Find in the circuit in Fig. P8.56 using nodal analysis.

Figure P8.56

8.57 Use nodal analysis to find in the circuit in Fig. P8.57.

Figure P8.57

6  0° V 4  0° A

2  0° A

12  0° V

j1 �

–j1 � 1 �1 �

1 �

1 �

Io

±
–

–±

Io

2  0° A

6  0° V12  0° V

2 � 2 � 1 �

–j2 �

j1 �

Io

±
–

±
–

Io
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8.58 Use nodal analysis to find in the circuit in Fig. P8.58.

Figure P8.58

8.59 Use nodal analysis to find in the network in Fig. P8.59.

Figure P8.59

8.60 Use nodal analysis to find in the circuit in Fig. P8.60.

Figure P8.60

8.61 Use nodal analysis to find in the circuit in Fig. P8.61.

Figure P8.61

1 �1 �

+

–

2  0° A

6  0° V

+-

Vo

–j1 �

4 Ix

Ix

Vo

Vo

+

–

Vx

4 Vx+

–

+
–

1 �

1 �

1 �

–j1 �

+
–

4 V

Vo

4 V

4 Vo

j �

Vo

+

–

+
–

+
–

1 �

1 �

1 �

Vo

4 Vo

4 V

1 �

–j � Vo

+

–

+
–

+
–

1 �

1 �

Vo
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8.62 Use nodal analysis to find in the network in Fig. 8.62.

Figure P8.62

8.63 Use nodal analysis to find in the circuit in Fig. P8.63.

Figure P8.63

8.64 Use nodal analysis to find in the circuit in Fig. P8.64.

Figure P8.64

8.65 Use nodal analysis to find in the circuit in Fig. P8.65.

Figure P8.65

4  0° V

1 � 1 �–j1 �

+
–

Vx

1 �1 �

+

–

Ix

+
– 2 Vx4 Ix

Io

Io

6  0° V 2  0° A

4  0° A

1 �

–j1 �

+
–Vx

1 �

1 �

+

–

Vo

+

–

+
– 4 Vx

Vo

6  0° V1 �

1 �

1 �

1 �–j1 �

+
–Vx

+

–

Vo

Ix

+ –

4 Ix

+
– 2 Vx

Vo

6  0° V2  0° A

1 �

1 � 1 �

1 �–j1 �

+
–

+
–

Vx

+

–

Vo

+

–

4 Vx

Vo
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8.66 Use nodal analysis to find in the circuit in Fig. P8.66.

Figure P8.66

8.67 Find the voltage across the inductor in the circuit shown
in Fig. P8.67 using nodal analysis.

Figure P8.67

8.68 Use mesh analysis to find in the circuit shown in
Fig. P8.68.

Figure P8.68

8.69 Use mesh analysis to find in the circuit shown in
Fig. P8.69.

Figure P8.69

12  0° V 4  90° A

2 �

4 � j2 �

–j4 �

I1

Vo

+

-

±
–

I2

Vo

6  0° V

12  45° V

2 �

–j1 �

j2 �

I1

– ±

Vo

+

-

±
–

I2

Vo

10  30° V 4 �

–j2 �

j1 � 2Ix

V1 V2

Ix

±
–

12  0° V

1 �1 � –j1 �

j1 �

2Vx

–±

Vo

+

-

Vx

+

-

Vx 8.70 Use loop analysis to find in the circuit in Fig. P8.70.

Figure P8.70

6  0° V

4  0° A

1 � 1 �

–j1 �+
–

1 �
Vo

+

–

Vo

8.71 Use loop analysis, to find Vo in the circuit in Fig. P8.71.

Figure P8.71

6  0° V

4  0° A

1 � 1 �

1 �

–j1 �+
–

1 �
Vo

+

–

8.72 Using loop analysis, find in the network in Fig. P8.72.

Figure P8.72

8.73 Find in the circuit in Fig. P8.73 using mesh analysis.

Figure P8.73

2  0° A

6  0° V

4  0° A

–j1 �

–±

2 �

1 �

2 �

j2 �

Vo

+

-

Vo

2  0° A

4  0° A

12  0°V

–j2 � 2 �

Io

2 �

j1 �

+-

Io
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8.74 Use mesh analysis to find in the circuit in Fig. P8.74.

Figure P8.74

8.75 Use loop analysis to find in the network in Fig. P8.75.

Figure P8.75

8.76 Find in the network in Fig. P8.76.

Figure P8.76

8.77 Determine in the circuit in Fig. P8.77.

Figure P8.77

8.78 Find in the network in Fig. P8.78.

Figure P8.78

8.79 Use loop analysis to find in the network in Fig. P8.79.

Figure P8.79

8.80 Use loop analysis to find in the circuit in Fig. P8.80.

Figure P8.80

8.81 Use loop analysis to find in the network in Fig. P8.81.

Figure P8.81

6 V

4 Ix

1 �

1 �

–j1 �

+
–

1 �

Vo

Ix

+

–

Vo

4 V

4 Ix

1 �

–j1 �

+
–

1 �
Vo

Ix

+

–

1 �

Vo

6  0° V

4  0° A

2  0° A1 �

1 �

–j1 �

+
–

1 �

Vx

Vx

+

–

Vo

+

–

+
–

Vo

4  0° A

1 �

1 �j1 �

–j1 �

2Ix

Ix

Vo

+

-

Vo

±
–

6  0° A 12  0° V

1 �

2 � 2 �–j1 �

j2 � Vo

+

-

Vo

-
+

±
–

2  0° A16  0° V

12  0° V

2 �

2 �

–j1 �

j1 �

Vo

+

-

Vo

2  0° A

4  30° A1 �

1 �

1 �

1 �2Vx Vx

Io

+

-

–j1 �

±
–

Io

2  0° A

6  0° A 4  0°A

–j2 �

2 � 2 �

1 �

j1 �

Vo

+

-

Vo
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8.82 Use loop analysis to find in the circuit in Fig. P8.82.

Figure P8.82

8.83 Use loop analysis to find in the circuit in Fig. P8.59.

8.84 Use loop analysis to find in the network in Fig. P8.63.

8.85 Use superposition to find in the network in Fig. P8.85.

Figure P8.85

8.86 Use superposition  to determine in the circuit in 
Fig. 8.86.

Figure P8.86

8.87 Using superposition, find in the circuit in Fig. P8.87.

Figure P8.87

2  0° A6  0° V

2 �

1 � –j1 �

j2 �

±
–

Vo

+

-

Vo

6  0° A6  0° V

1 �

1 �

–j1 � j1 �

Vo

+

-

-
+

Vo

12  0° V

4  0° A1 �

1 �

–j1 �

– ±

Vo

+

-

Vo

Vo

Vo

6 V

4 Ix1 �

1 �

–j1 � +
–

1 �
Vo

Ix

+

–

Vo 8.88 Find in the network in Fig. P8.88 using superposition.

Figure P8.88

8.89 Find in the network in Fig. P8.89 using superposition.

Figure P8.89

8.90 Use superposition to find in the circuit in Fig. P8.90.

Figure P8.90

8.91 Use superposition to find in the network in Fig. 8.91.

Figure P8.91

–j1 � 4  0° A

1 �
1 �

1 �

Vo

+

–

6  0° V+
-

Vo

6  0° V

2  0° A 4  0° A

1 �–j1 �

j1 �

+
–

1 �1 �

Vo

+

–

Vo

4  0° A

16  0° V 2 �

2 �

1 �

–j2 �

j3 �

Vo

+

-

+
-

Vo

2  0° A 12  0° V

2 �

2 �–j2 � j4 �

– ±

Vo

+

-

Vo
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8.92 Use superposition to find in the circuit in Fig. P8.92.

Figure P8.92

8.93 Use source exchange to find the current in the net-
work in Fig. P8.93.

Figure P8.93

2  0° A

12  0° V

2 �

2 �

Io

–j1 �

1 �

4  0° A

+
-

Io

6  0° V

4  0° A

1 � 1 �

–j1 �+
–

1 �
Vo

+

–

Vo 8.94 Use source transformation to determine in the net-
work in Fig. P8.94.

Figure P8.94

8.95 Use source exchange to determine in the network in
Fig. P8.95.

Figure P8.95

– ±

Vo

+

-

6  0° V
2  0° A12  0° V 2 �1 �

–j1 �

+
-

Vo

Io

V2V1

±
–

2  0° A

4  0° A

12  0° V

1 �

1 � 1 �

–j1 �

Io

8.96 Use source transformation to determine in the network in Fig. P8.96.

Figure P8.96

6  0° V

4  0° A

12  0° V

j2 �

2 �

2 �

–j1 �

±
–

±
–

Io

V

Io

8.97 Use source transformation to find in the circuit in
Fig. P8.97.

Figure P8.97

8.98 Use source transformation to find in the circuit in
Fig. P8.98.

Figure P8.98

1 �

1 �

2 �

2 �

5 � Vo

+

-

+
-

+
-4  0° V

2  0° A

6  0° V

–j2 �

Vo

-

12  0° V

1 � 1 �

12 �

–j2 � Vo

+

+
-

2  0° R

Vo
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8.99 Use source transformation to find in the circuit in Fig. P8.99.

Figure P8.99

12 �

1 �

6 �

3 �

+
-

+
-6  0° V

2  0° A

4  0° A

8  0° V

–j3 � 4 �

Io

Io

8.100 Use source transformation to find in the network in
Fig. P8.100.

Figure P8.100

8.101 Use Thevenin’s theorem to find in the circuit in 
Fig. P8.101.

Figure P8.101

8.102 Apply Thévenin’s theorem twice to find in the cir-
cuit in Fig. P8.102.

Figure P8.102

8.103 Use Thévenin’s theorem to find  in the network in
Fig. P8.103.

Figure P8.103

8.104 Use Thévenin’s theorem to determine  in the circuit
in Fig. P8.104.

Figure P8.104

4  0° A

2  0° A

6  0° V

1 � 1 �1 �

+-

Io

–j2 �

Io

12  0° V

2 �

2 �–j2 �

4 �

+
- 4  0° A

Io

Io

6  0° V

1 �

1 �j1 �–j1 �

1 �2 �

+
- Vo

+

-

Vo

12  0° V 4  90° A

2 �

4 � j2 �

–j4 �

I1

Vo

+

-

±
–

I2

Vo

3 �

2 �

2 �

2 �

+
-

4  0° A

2  0° A

10  0° V

–j1 �

Io

Io
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8.107 Use Thévenin’s theorem to find in the network in Fig. P8.107.

Figure P8.107

8.108 Use Thévenin’s theorem to find in the network in Fig. P8.108.

Figure P8.108

1 �

1 � –j1 �

1 �

1 �

4  0° V

6  0° V

2  0° A 2  0° A-
+

-+

Io

Io

1 �

1 �

1 �

–j1 � Vo

+

-

4  0° V
6  0° V

2  0° A-
+

-+

Vo

8.105 Use Thévenin’s theorem to find in the circuit 
in Fig. P8.105.

Figure P8.105

–j1 � 4  0° A

1 �
1 �

1 �

Vo

+

-

6  0° V+
-

Vo 8.106 Use Thévenin’s theorem to find in the network in 
Fig. P8.106.

Figure P8.106

1 �

1 �

1 �

2 �

+
-6  0° V

4  0° A

–j1 �

Vo

+

-

Vo

8.109 Use Thévenin’s theorem to find in the network in
Fig. P8.109.

Figure P8.109

8.110 Given the network in Fig. P8.110, find the Thévenin’s
equivalent of the network at terminals A–B.

Figure P8.110

V2

V1 V3

1 �

j1 �

1 � A

B

–j1 �

±
–

-+
±– 6  0° V

4  0° V

12  0° V
6  0° A

4  0° A

4  0° A

1 �

j2 �

–j1 �

1 �

2 � Vo

+

-

Vo
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8.111 Find in the network in Fig. P8.111 using Thévenin’s
theorem.

Figure P8.111

8.112 Find the Thévenin’s equivalent for the network in
Fig. P8.112 at terminals A–B.

Figure P8.112

8.113 Find in the circuit in Fig. P8.113 using Norton’s
theorem.

Figure P8.113

8.114 Find in the network in Fig. P8.114 using Norton’s
theorem.

Figure P8.114

8.115 Use Norton’s  theorem to find  in the circuit 
in Fig. P8.103.

8.116 Use Norton’s  theorem to find  in the circuit in 
Fig. P8.104.

8.117 Use Norton’s  theorem to find  in the network in 
Fig. P8.105.

8.118 Use Norton’s  theorem to find  in the circuit in 
Fig. P8.107.

8.119 Use Norton’s  theorem to find  in the circuit in 
Fig. P8.108.

8.120 Use Norton’s theorem to find in the network in
Fig. P8.120.

Figure P8.120

8.121 Find using Norton’s theorem for the circuit in
Fig. P8.121.

Figure P8.121

8.122 Use Norton’s  theorem to find in the circuit in 
Fig. P8.122.

Figure P8.122

8.123 Use Norton’s  theorem to find  in the circuit 
in Fig. P8.61.

Vo

+

–

1 �

1 �

–j1 �

2 �1 �

Ix

4 Ix 2  0° A

4  0° A Vo

Vo

4  0° V 8  0° V

j1 �

Vx

2Vx

1 �

1 �

1 �

–j1 �±
–

±
–

+ -

±
– Vo

+

-

Vo

4  0° A

j1 � 2Vx 1 �

1 �

1 �

–j1 �

Vo

+

-

Vx

+

-

Vo

Io

Vo

Vo

Io

Io

6  45° A 2  0° Aj1 �

Io

2 �

–j2 �

Io

– ±

Vx

+

-

11.3  45° V

2  0° A j4 � –j3 �10 �

Vx

2Vx

Vx4  0° A

1 �

–j1 �

j1 �

A

B

+

-

12  0° V

1 �1 �

j1 �

–j1 � Vo2Vx

+

-

Vx

+

-

–±

Vo
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8.124 Use source transformation to find  in the circuit in
Fig. P8.124.

Figure P8.124

8.125 Calculate the Thévenin equivalent impedance in the
circuit shown in Fig. P8.125.

Figure P8.125

8.126 Find the Thévenin equivalent for the network in
Fig. P8.126 at terminals A–B.

Figure P8.126

8.127 Find the Thévenin equivalent of the network in
Fig. P8.127 at terminals .

Figure P8.127

Solve the remaining problems using computational methods.

8.128 Apply Norton’s theorem to find in the network in
Fig. P.8.128.

Figure P8.128

8.129 Find in the circuit in Fig. P8.129.

Figure P8.129

8.130 Find the node voltages in the network in Fig. P8.130.

Figure P8.130

8.131 Determine in the network in Fig. P8.131.

Figure P8.131

6  0° V
2  0° A

j1 �1 � 1 �

1 � 1 �

1 �

–j1 �

12  30° V±
–

+-

Vo

+

-

Vo

2  0° A

12  0° V

j1 �

2 �

2 �

1 �

1 �
1 �

–j1 �

–j2 �±
–

6  0° V
12  0° V

j1 �1 � 1 �1 �

1 � 1 �

–j1 �

2  0° A±
–

–±

Vo

+

-

Vo

4  0° A

6  0° V

j1 �

1 �

1 �

1 �

1 �

–j1 �

±
–

Vo

+

-

Vo

1 � 1 �

3 �

–j1 �

j1 �

Vx+ -

2Vx±
–

A

B

A–B

1 �

±
–

–j1 �

j1 �

2Ix

A

B

Ix

3 � –j3 �
4 Ix

Ix

ZTh

-+

ZTh

Vo

+

-

12  0° V

2  0° A12 �

–j2 �

6 �

+
–

6 �

Vo
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8.132 Use Thévenin’s theorem, to determine in the network
in Fig. P8.132.

Figure P8.132

8.133 Find in the network in Fig. P8.133.

Figure P8.133

8.134 Use both nodal analysis and loop analysis to find in
the network in Fig. P8.134.

Figure P8.134

8.135 Given the circuit in Fig. P8.135, at what frequency 
are the magnitudes of and equal?

Figure P8.135

8.136 If the network in Fig. P8.136 operates at , 
find the current .

Figure P8.136

8.137 The network in Fig. P8.137 operates at . 
Find the voltage  .

Figure P8.137

8.138 Find in the network in Fig. P8.138.

Figure P8.138

8.139 Find in the network in Fig. P8.139.

Figure P8.139

4  0° V6  0° V1 �

1 �1 �

j1 � 1 �

1 �

1 �

–j1 �

2IxIx Io

-
+

±
–

Io

2  0° A

6  0° V 12  0° V

4  0° A

1 �

1 �

1 �1 �

1 �

–j1 �

j1 �

Io
–± – ±

Io

Vo

+

-

12  0° V

2  0° A

1 �

1 �

2 �

2 �

j2 �

–j1 �

±
–

Vo

f = 60 Hz

12  0° V

6  0° V1 �

1 �

2 �

2 �

j1 �

–j2 �±
–

±
–

Io

Io

f = 400 Hz

150 �
R2

R1

100 �F

100 �

100 mH
vin(t)

iC(t)

iL(t)

5 cos(�t) V

C

L±
–

iL(t)iC(t)

2  0° A

12  0° V

1 �

1 �1 �

1 �Vx1 �

–j1 �

j1 �

2Ix

2Vx

Io

Ix

±
–

– ±
+

-

Io

4  0° A

12  0° V j1 �1 �

1 � 1 �

Io

1 � 1 �–j1 �

2  0° A

±
– 6  0° V±

–

Io

4  0° A

12  0° V j1 �1 �

1 � 1 �

Io

1 �

1 �–j1 �

2  0° A

±
– 6  0° V±

–

Io

irwin08_369-434hr.qxd  28-07-2010  12:03  Page 431



8.140 Determine in the network in Fig. P8.140.

Figure P8.140

8.141 Find in the circuit in Fig. P8.141.

Figure P8.141

2  0° A12  0° V

6  0° V1 �

1 � 1 �

1 �

1 �

–j1 �

j1 �

2Ix

IxIo

±
–

±
–

Io

2  0° A

12  0° V

1 �

1 � 1 �

1 �1 �

1 �

–j1 �

j1 �

+

-

Vx

2Vx
Io

+--+

Io
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8.142 Find in the network in Fig. P8.142.

Figure P8.142

8.143 The network in Fig. P8.143 operates at 60 Hz. Find the currents and .

Figure P8.143

8.144 Find in the network in Fig. P8.144.

Figure P8.144

8.145 The network in Fig. P8.145 operates at 60 Hz. Find the currents and .

Figure P8.145

10 �

–j5.305 �

j18.85 �

±
– 12  0° V

Ix

2 IxIo

IxIo

vo(t)

+

-

4 k�

50�F

2 mH±
–

2ix

ix

16 cos (377t+45°) V

vo(t)

10 �

–j5.305 �

j18.85 �

±
– 12  0° V

Ix

2 IxIo

IxIo

vo(t)

+

-

4 k�

50�F

2 mH±
–

2ix

ix

16 cos (377t+45°) V

vo(t)
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8PFE-1 Find Vo in the network in Fig. 8PFE-1.

a.

b.

c.

d.

Figure 8PFE-1

8PFE-2 Find Vo in the circuit in Fig. 8PFE-2.

a.

b.

c.

d.

Figure 8PFE-2

8PFE-3 Find Vo in the network in Fig. 8PFE-3.

a.

b.

c.

d.

Figure 8PFE-3

12  0° V

j2 �

–j1 �2 �

4 � Vo

2Vo

+

-

±
–

±
–

10.42�30° V

16.96�45° V

2.06�20.84° V

8.24�-30.96° V

12  0° V 2  0° A–j1 �

1 �

2Ix

2 �

Vo

Ix

+

-

±
–

18.3�12.32° V

30.8�8.97° V

20.1�4.63° V

25.4�10.25° V

Vo

+

-

12  0° V

2  0° A

–j1 �

j1 �

1 �2 �

– ±

5.06�-71.6° V

3.02�24.3° V

7.16�-26.6° V

4.62�30.4° V
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•
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8PFE-4 Determine the midband (where the coupling capacitors can be ignored) gain of
the single-stage transistor amplifier shown in Fig. 8PFE-4.

a. 110.25

b. �133.33

c. 26.67

d. �95.75

Figure 8PFE-4

8PFE-5 What is the current Io in the circuit in Fig. 8PFE-5?

a.

b.

c.

d.

Figure 8PFE-5

±
–

3 �

1 �

1 �

Io

6  0° V

–j1 �

j3 �

5.23�40.15° A

1.48�32.92° A

2.75�21.43° A

6.32�30.31° A

Vo

+

-

1 k�

5 k� 6 k�

40*10–3Vx
12 k�Vx

VS

+

-
±
–

irwin08_369-434hr.qxd  28-07-2010  12:03  Page 434



CHAPTER

STEADY-STATE
POWER ANALYSIS

435

S
Solar mirror arrays Enough solar energy strikes Earth every

day to power our homes and businesses for almost 30 years.

However, today’s solar power systems are able to capture only

a miniscule fraction of that energy. The ongoing challenge in

the solar power industry is to develop collection technologies

that convert more of the sun’s energy into usable power.

Three technologies that strive to capture solar power 

more efficiently are parabolic troughs, tower systems, and

dish/engine systems. Trough systems use mirrors to multiply

the sun’s energy from 30 to 60 times its normal intensity

to a receiver pipe containing synthetic oil at the focal line.

Power towers focus thousands of mirrors onto a receiver at

the top of the tower. Solar Two near Barstow, CA is the

world’s largest solar power tower. Dish/engine systems use a

mirrored array to give 30% conversion efficiencies—higher

than other solar technology. Aligning this mirror’s direction

using feedback control can maximize the effective sun’s rays

seen by the mirrors, even on cloudy days.

This chapter is aimed at filling a gap in your study of

circuit analysis: finding the average power supplied or

absorbed by each element in ac circuits. This average real

power is the product of effective values of sinusoidal voltages

and currents—as expected—but also a power factor that

depends on their phase differences. Leading and lagging

power factors are discussed, and complex power is intro-

duced as a common term in power distribution. Whatever the

generation source, ac power can be delivered more efficiently

by improving the power factor. Getting a handle on power 

factors is far from an academic exercise; it is central to under-

standing how to wring more power out of the sun.

9
T H E L E A R N I N G  G O A L S F O R  T H I S
C H A P T E R  A R E :

■ Know how to calculate instantaneous and average power in
ac circuits

■ Be able to calculate the maximum average power transfer for
a load in an ac circuit

■ Know how to calculate the effective or rms value for a 
periodic waveform

■ Know how to calculate real power, reactive power, complex
power, and power factor in ac circuits

■ Understand how to correct the power factor in ac circuits

■ Understand the importance of safety and the
consequences of ignoring it when working with power

Mlenny Photography/Alexander Hafemann/
iStockphoto
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EXAMPLE

9.1

SOLUTION

9.1
Instantaneous
Power

By employing the sign convention adopted in the earlier chapters, we can compute the instan-
taneous power supplied or absorbed by any device as the product of the instantaneous volt-
age across the device and the instantaneous current through it. 

Consider the circuit shown in Fig. 9.1. In general, the steady-state voltage and current for
the network can be written as

9.1

9.2

The instantaneous power is then

9.3

Employing the following trigonometric identity,

9.4

we find that the instantaneous power can be written as

9.5

Note that the instantaneous power consists of two terms. The first term is a constant (i.e., it
is time independent), and the second term is a cosine wave of twice the excitation frequency.
We will examine this equation in more detail in Section 9.2.

p(t) =

VM IM

2
 Ccos A�v - �iB + cos A2�t + �v + �iB D

cos �1 cos �2 =

1

2
 Ccos A�1 - �2B + cos A�1 + �2B D

 = VM IM cos A�t + �vB cos A�t + �iB
 p(t) = v(t)i(t)

 i(t) = IM cos A�t + �iB
 v(t) = VM cos A�t + �vB

436 C H A P T E R  9 S T E A D Y- S T A T E  P O W E R  A N A LY S I S

±
– Zv(t)

i(t)

Figure 9.1

Simple ac network.

The circuit in Fig. 9.1 has the following parameters: and
We wish to determine equations for the current and the instantaneous power

as a function of time and plot these functions with the voltage on a single graph for
comparison.

Since

then

From Eq. (9.5),

A plot of this function, together with plots of the voltage and current, is shown in Fig. 9.2.
As can be seen in this figure, the instantaneous power has a dc or constant term and a sec-
ond term whose frequency is twice that of the voltage or current.

 = 3.46 + 4 cos (2�t + 90°) W

 p(t) = 4[cos (30°) + cos (2�t + 90°)]

i(t) = 2 cos (�t + 30°) A

 = 2/30° A

 I =

4/60°

2/30°

Z = 2/30° �.
v(t) = 4 cos (�t + 60°) V

Note that p(t) contains a dc
term and a cosine wave with
twice the frequency of v(t)
and i(t).

[ h i n t ]
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8.0

6.0

4.0

2.0

0.0

–2.0

–4.0

–6.0

–8.0

p(t)

i(t)

v(t)

0.000 0.003 0.006 0.009 0.012 0.015 0.018 0.021 0.024 0.027 0.030
t(s)

Figure 9.2

Plots of v(t), i(t), and p(t) for
the circuit in Example 9.1
using f � 60 Hz.

The average value of any periodic waveform (e.g., a sinusoidal function) can be computed by
integrating the function over a complete period and dividing this result by the period. Therefore,
if the voltage and current are given by Eqs. (9.1) and (9.2), respectively, the average power is

9.6

where is arbitrary, is the period of the voltage or current, and P is measured in
watts. Actually, we may average the waveform over any integral number of periods so that
Eq. (9.6) can also be written as

9.7

where n is a positive integer.
Employing Eq. (9.5) for the expression in (9.6), we obtain

9.8

We could, of course, plod through the indicated integration; however, with a little forethought
we can determine the result by inspection. The first term is independent of t, and therefore a con-
stant in the integration. Integrating the constant over the period and dividing by the period simply
results in the original constant. The second term is a cosine wave. It is well known that the aver-
age value of a cosine wave over one complete period or an integral number of periods is zero, and
therefore the second term in Eq. (9.8) vanishes. In view of this discussion, Eq. (9.8) reduces to

9.9

Note that since the argument for the cosine function can be either
or In addition, note that is the angle of the circuit impedance as

shown in Fig. 9.1. Therefore, for a purely resistive circuit,

9.10P =

1

2
 VM IM

�v - �i�i - �v .�v - �i

cos (-�) = cos (�),

P =

1

2
 VM IM cos A�v - �iB

P =

1

T
 3

t0 + T

t0

 
VM IM

2
 Ccos (�v - �i) + cos (2�t + �v + �i) D  dt

P =

1

nT
 3

t0 + nT

t0

VM IM cos (�t + �v) cos (�t + �i) dt

T = 2���t0

 =

1

T
 3

t0 + T

t0

VM IM cos A�t + �vB cos A�t + �iB dt

 P =

1

T
 3

t0 + T

t0

p(t) dt

9.2
Average Power

A frequently used equation
for calculating the average
power.

[ h i n t ]
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EXAMPLE

9.2

SOLUTION

and for a purely reactive circuit,

Because purely reactive impedances absorb no average power, they are often called lossless
elements. The purely reactive network operates in a mode in which it stores energy over one
part of the period and releases it over another.

 = 0

 P =

1

2
 VM IM cos (90°)
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We wish to determine the average power absorbed by the impedance shown in Fig. 9.3.

±
–10  60° V

I

2 �

j2 �

Figure 9.3
Example RL circuit.

From the figure we note that

Therefore,

Hence,

Since the inductor absorbs no power, we can employ Eq. (9.10), provided that in that
equation is the voltage across the resistor. Using voltage division, we obtain

and therefore,

In addition, using Ohm’s law, we could also employ the expressions

or

where once again we must be careful that the and in these equations refer to the
voltage across the resistor and the current through it, respectively.

IMVM

 P =

1

2
 I2

M R

 P =

1

2
 
V2

M

R

 = 12.5 W

 P =

1

2
 (7.07)(3.53)

VR =

A10/60°B(2)

2 + j2
= 7.07/15° V

VM

 = 12.5 W

 =

1

2
 (10)(3.53) cos (60° - 15°)

 P =

1

2
 VM IM cos (�v - �i)

IM = 3.53 A and  �i = 15°

I =

V
Z

=

VM/�v

2 + j2
=

10/60°

2.83/45°
= 3.53/15° A
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For the circuit shown in Fig. 9.4, we wish to determine both the total average power
absorbed and the total average power supplied.

±
–12  45°V

I I2

I1

–j1 �

2 �

4 �

V Figure 9.4

Example circuit for
illustrating a power
balance.

From the figure we note that

and therefore,

The average power absorbed in the 4-� resistor is

The average power absorbed in the 2-� resistor is

Therefore, the total average power absorbed is

Note that we could have calculated the power absorbed in the 2-� resistor using 
if we had first calculated the voltage across the 2-� resistor.

The total average power supplied by the source is

Thus, the total average power supplied is, of course, equal to the total average power absorbed.

 = 46.7 W

 =

1

2
 (12)(8.15) cos (45° - 62.10°)

 PS =

1

2
 VM IM cos (�v - �i)

1�2 V2
M�R

PA = 18 + 28.7 = 46.7 W

P2 =

1

2
 I2

M R =

1

2
 (5.34)2(2) = 28.7 W

P4 =

1

2
 VM IM =

1

2
 (12)(3) = 18 W

 = 8.15/62.10° A

 = 3/45° + 5.36/71.57°

 I = I1 + I2

 I2 =

12/45°

2 - j1
=

12/45°

2.24/-26.57°
= 5.36/71.57° A

 I1 =

12/45°

4
= 3/45° A

EXAMPLE

9.3

SOLUTION
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When determining average power, if more than one source is present in a network, we can use
any of our network analysis techniques to find the necessary voltage and/or current to compute
the power. However, we must remember that in general we cannot apply superposition to power.

E9.1 Find the average power absorbed by each resistor in the network in Fig. E9.1.

Learning Assessments
ANSWER:
P4� = 7.20 W.

P2� = 7.20 W;

E9.2 Given the network in Fig. E9.2, find the average power absorbed by each passive circuit
element and the total average power supplied by the current source.

ANSWER:

PCS = 90.50 W.
PL = 0;P4� = 33.96 W;

P3� = 56.60 W;

±
–

2 �

4 � –j4 �

12  60° V

Figure E9.1

3 �

4 �

j2 �10  30° A

Figure E9.2

Superposition is not
applicable to power. Why?

[ h i n t ]

E9.3 Find the power supplied and the power absorbed by each element in Fig. E9.3.

–j2 � –j2 �

2 �4 �

j2 �2  0° A

Figure E9.3

EXAMPLE

9.4
SOLUTION

Consider the network shown in Fig. 9.5. We wish to determine the total average power
absorbed and supplied by each element.

From the figure we note that

and

The power absorbed by the 2-� resistor is

P2 =

1

2
 VM IM =

1

2
 (12)(6) = 36 W

I3 =

12/30° - 6/0°

j1
=

4.39 + j6

j1
= 7.44/-36.21° A

I2 =

12/30°

2
= 6/30° A

ANSWER: PC = 0 W; 
PL = 0 W; P4� = 1.78 W; 
P2� = 2.22 W; PCS = -4 W.
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±
–

±
–2 �

j1 �I1 I3

I2

12  30° V 6  0° V

Figure 9.5
Example RL circuit with
two sources.

Under the following condition:

if P � IV is positive, power is
being absorbed.

If P � IV is negative, power is
being generated.

±
–

I

V

[ h i n t ]

According to the direction of I3, the source is absorbing power. The power it
absorbs is given by

At this point an obvious question arises: how do we know whether the source is
supplying power to the remainder of the network or absorbing it? The answer to this question
is actually straightforward. If we employ our passive sign convention that was adopted in the
earlier chapters—that is, if the current reference direction enters the positive terminal of
the source and the answer is positive—the source is absorbing power. If the answer is negative,
the source is supplying power to the remainder of the circuit. A generator sign convention could
have been used, and under this condition the interpretation of the sign of the answer would be
reversed. Note that once the sign convention is adopted and used, the sign for average power
will be negative only if the angle difference is greater than 90°

To obtain the power supplied to the network, we compute I1 as

Therefore, the power supplied by the source using the generator sign convention is

and hence the power absorbed is equal to the power supplied.

 = 54 W

 PS =

1

2
 (12)(11.29) cos (30° + 7.10°)

12/30°-V

 = 11.29/-7.10° A

 = 6/30° + 7.44/-36.21°

 I1 = I2 + I3

Ai.e., @�v - �i @ 7 90°B.

6/0°-V

 = 18 W

 =

1

2
 (6)(7.44) cos [0° - (-36.21°)]

 P6/0° =

1

2
 VM IM cos(�v - �i)

6/0°-V

E9.4 Determine the total average power absorbed and supplied by each element in the network
in Fig. E9.4.

Learning Assessments
ANSWER:

PC = 0.P4� = 49.6 W;
PVS = 19.8 W;
PCS = -69.4 W;

±
–12  0° A 4  30° V

–j2 �

4 �

Figure E9.4
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E9.5 Given the network in Fig. E9.5, determine the total average power absorbed or supplied
by each element.

ANSWER:

PL = 0. P4� = 27.7 W;
 P2� = 22.2 W;

 P12/0° = 5.5 W;
 P24/0° = -55.4 W;

±
–

±
–24  0° V

12  0° V

j2 �

4 �

2 �

Figure E9.5

E9.6 Determine the average power absorbed by the 4-� and 3-� resistors in Fig. E9.6. ANSWER: P4� = 9.86 W;
P3� = 0.91 W.

j3 �

4 �3 �

–j2 �

j2 �

12  0° V

6  0° V

3  10° A+
-

+
-

Figure E9.6

9.3
Maximum
Average Power
Transfer

In our study of resistive networks, we addressed the problem of maximum power transfer
to a resistive load. We showed that if the network excluding the load was represented by a
Thévenin equivalent circuit, maximum power transfer would result if the value of the load
resistor was equal to the Thévenin equivalent resistance We will now reex-
amine this issue within the present context to determine the load impedance for the network
shown in Fig. 9.6 that will result in maximum average power being absorbed by the load
impedance ZL .

The equation for average power at the load is

9.11

The phasor current and voltage at the load are given by the expressions

9.12

9.13

where
9.14

and
9.15 ZL = RL + jXL

 Z Th = RTh + jXTh

 VL =

Voc ZL

Z Th + ZL

 IL =

Voc

Z Th + ZL

PL =

1

2
 VL IL cos A�vL

- �iLB

Ai.e., RL = RThB.

±
–

ZTh

ac circuit

Voc ZL

IL

VL

+

-

Figure 9.6

Circuit used to examine
maximum average power
transfer.
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The magnitude of the phasor current and voltage are given by the expressions

9.16

9.17

The phase angles for the phasor current and voltage are contained in the quantity 
Note also that and, in addition,

9.18

Substituting Eqs. (9.16) to (9.18) into Eq. (9.11) yields

9.19

which could, of course, be obtained directly from Eq. (9.16) using Once again,
a little forethought will save us some work. From the standpoint of maximizing is a
constant. The quantity absorbs no power, and therefore any nonzero value of this
quantity only serves to reduce Hence, we can eliminate this term by selecting XL = -XTh .
Our problem then reduces to maximizing

9.20

However, this is the same quantity we maximized in the purely resistive case by selecting
Therefore, for maximum average power transfer to the load shown in Fig. 9.6, ZL

should be chosen so that

9.21

Finally, if the load impedance is purely resistive the condition for maxi-
mum average power transfer can be derived via the expression

where is the expression in Eq. (9.19) with XL=0. The value of that maximizes
under the condition XL=0 is

9.22RL = 2R2
Th + X2

Th

PLRLPL

dPL

dRL

= 0

Ai.e., XL = 0B,
ZL = RL + jXL = RTh - jXTh = Z*Th

RL = RTh .

PL =

1

2
 

V2
oc RL

ARL + RThB2

PL .
AXTh + XLB

VocPL ,
PL =

1
2 I2

L RL .

PL =

1

2
 

V2
oc RL

ARTh + RLB2 + AXTh + XLB2

cos �ZL
=

RL

AR2
L + X2

LB1�2

�vL
- �iL = �ZL

A�vL
- �iLB.

 VL =

VocAR2
L + X2

LB1�2

C ARTh + RLB2 + AXTh + XLB2 D 1�2

 IL =

Voc

C ARTh + RLB2 + AXTh + XLB2 D 1�2

This impedance-matching
concept is an important
issue in the design of
high-speed computer chips
and motherboards. For
today’s high-speed chips with
internal clocks running
at about 3 GHz and
motherboards with a bus
speed above 1 GHz, 
impedance matching is nec-
essary in order to obtain the
required speed for signal
propagation. Although this
high-speed transmission line
is based on a distributed
circuit (discussed later in
electrical engineering
courses), the impedance-
matching technique for the
transmission line is the 
same as that of the lumped
parameter circuit for
maximum average power
transfer.

[ h i n t ]

Step 1. Remove the load ZL and find the Thévenin equivalent for the remainder of the
circuit.

Step 2. Construct the circuit shown in Fig. 9.6.

Step 3. Select and then and the maximum

average power transfer =

1

2
 I2

L RTh = V2
oc�8 RTh .

IL = Voc�2 RThZL = Z*Th = RTh - jXTh ,

Problem-Solving Strategy
Maximum Average
Power Transfer
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In this Thévenin analysis,
1. Remove ZL and find the

voltage across the open
terminals, Voc .

2. Determine the impedance
ZTh at the open terminals
with all independent
sources made zero.

3. Construct the following 
circuit and determine I and
PL.

[ h i n t ]

±
–

ZTh
I

Voc ZTh*

(a) (b)

(c)

ZL

j1 �

2 � 4 �4  0° A

j1 �

2 � 4 �4  0° A

ZTh

j1 �

2 � 4 �

Voc

+

-

Figure 9.7

Circuits for illustrating
maximum average 

power transfer.

EXAMPLE

9.5
SOLUTION

Given the circuit in Fig. 9.7a, we wish to find the value of ZL for maximum average power
transfer. In addition, we wish to find the value of the maximum average power delivered to
the load.

To solve the problem, we form a Thévenin equivalent at the load. The circuit in Fig. 9.7b is
used to compute the open-circuit voltage

The Thévenin equivalent impedance can be derived from the circuit in Fig. 9.7c. As shown
in the figure,

Therefore, ZL for maximum average power transfer is

With ZL as given previously, the current in the load is

Therefore, the maximum average power transferred to the load is

PL =

1

2
 I2

M RL =

1

2
 (1.87)2(1.41) = 2.47 W

I =

5.26/-9.46°

2.82
= 1.87/-9.46° A

ZL = 1.41 - j0.43 �

ZTh =

4(2 + j1)

6 + j1
= 1.41 + j0.43 �

Voc =

4/0° (2)

6 + j1
 (4) = 5.26/-9.46° V

EXAMPLE

9.6
SOLUTION

For the circuit shown in Fig. 9.8a, we wish to find the value of ZL for maximum average
power transfer. In addition, let us determine the value of the maximum average power deliv-
ered to the load.

We will first reduce the circuit, with the exception of the load, to a Thévenin equivalent circuit.
The open-circuit voltage can be computed from Fig. 9.8b. The equations for the circuit are

 Vœ

x = -2I1

 Vœ

x + 4 = (2 + j4)I1
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When there is a dependent
source, both Voc and Isc must
be found and ZTh computed
from the equation 

ZTh =

Voc

Isc

[ h i n t ]Solving for I1 , we obtain

The open-circuit voltage is then

The short-circuit current can be derived from Fig. 9.8c. The equations for this circuit are

Solving these equations for Isc yields

The Thévenin equivalent impedance is then

Therefore, for maximum average power transfer the load impedance should be

The current in this load ZL is then

Hence, the maximum average power transferred to the load is

 = 1.25 W

 PL =

1

2
 (1.58)2(1)

IL =

Voc

ZTh + ZL
=

-3 - j1

2
= 1.58/-161.57° A

ZL = 1 + j1 �

ZTh =

Voc

Isc
=

3 + j1

1 + j2
= 1 - j1 �

Isc = -(1 + j2) A

 Vfl

x = -2AI - IscB
 -4 = -2I + (2 - j2)Isc

 Vfl

x + 4 = (2 + j4)I - 2Isc

 = +3.16/-161.57° V

 = -3 - j1

 = 22/-45° - 4/0°

 Voc = 2I1 - 4/0°

I1 =

1/-45°

12

(a)

4  0° V

j4 �

2 �

–j2 �

±
– ZL

±
–

Vx

Vx

-

+

(b)

4  0° V

j4 �

2 �

–j2 �

±
–

±
–

I1

V'x Voc

+

-

V'x

(c)

4  0° V

j4 � –j2 �

±
–

±
–

IscIV"x

2 �V"x

-

+

-

+

Figure 9.8

Circuits for illustrating maximum average power transfer.
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E9.7 Given the network in Fig. E9.7, find ZL for maximum average power transfer and the
maximum average power transferred to the load.

Learning Assessments
ANSWER: ZL = 1 + j1 �;
PL = 45 W.

– ±

ZL

24  0° V

12  0° V

–j2 �

j2 �

2 �

–
±

Figure E9.7

E9.8 Find ZL for maximum average power transfer and the maximum average power trans-
ferred to the load in the network in Fig. E9.8.

ANSWER: ZL = 2 - j2 �;
PL = 45 W.

+-

ZL

12  0° V

+-

24  0° V

–j2 �

j2 �2 �

Figure E9.8

E9.9 Determine ZL for maximum average power transfer and the value of the maximum aver-
age power transferred to ZL in Fig. E9.9.

ANSWER:
ZL = 4.79 - j1.68�;
PL = 14.26 W.

ZL

j3 �

4 �3 � j2 �

12  0° V

6  0° V

3  10° A+
-

+
-

Figure E9.9

E9.10 Find ZL for maximum average power transfer and the value of the maximum average
power transferred to ZL in Fig. E9.10.

ANSWER:
ZL = 5.67 - j 2.2 �;
PL = 9.29 W.

ZL

j3 �

4 �3 � j2 �

2 Ix

Ix

6  0° V

3  10° A
+
-

+
–

Figure E9.1o

irwin09_435-490hr.qxd  28-07-2010  12:00  Page 446



S E C T I O N  9 . 4 E F F E C T I V E  O R  R M S  V A L U E S     447

In the preceding sections of this chapter, we have shown that the average power absorbed by
a resistive load is directly dependent on the type, or types, of sources that are delivering power
to the load. For example, if the source was dc, the average power absorbed was I2R, and if the
source was sinusoidal, the average power was Although these two types of wave-
forms are extremely important, they are by no means the only waveforms we will encounter
in circuit analysis. Therefore, a technique by which we can compare the effectiveness of dif-
ferent sources in delivering power to a resistive load would be quite useful.

To accomplish this comparison, we define what is called the effective value of a periodic
waveform, representing either voltage or current. Although either quantity could be used, we
will employ current in the definition. Hence, we define the effective value of a periodic cur-
rent as a constant or dc value, which as current would deliver the same average power to a
resistor R. Let us call the constant current Then the average power delivered to a resistor
as a result of this current is

Similarly, the average power delivered to a resistor by a periodic current i(t) is

Equating these two expressions, we find that

9.23

Note that this effective value is found by first determining the square of the current, then
computing the average or mean value, and finally taking the square root. Thus, in “reading”
the mathematical Eq. (9.23), we are determining the root mean square, which we abbreviate
as rms, and therefore is called 

Since dc is a constant, the rms value of dc is simply the constant value. Let us now deter-
mine the rms value of other waveforms. The most important waveform is the sinusoid, and
therefore, we address this particular one in the following example.

Irms .Ieff

Ieff =

C

1

T
 3

t0 + T

t0

i2(t) dt

P =

1

T
 3

t0 + T

t0

i2(t)R dt

P = I2
eff R

Ieff .

1�2 I2
M R.

9.4
Effective or rms

Values

EXAMPLE

9.7
SOLUTION

We wish to compute the rms value of the waveform i(t) = cos (�t-�), which has a
period of T=2�/�.

Substituting these expressions into Eq. (9.23) yields

Using the trigonometric identity

we find that the preceding equation can be expressed as

Since we know that the average or mean value of a cosine wave is zero,

9.24 = IM c �

2�
 a t

2
b 2 2���

0
d 1�2

=

IM

12

 Irms = IM a �

2�
 3

2���

0
 
1

2
  dt b 1�2

Irms = IM e �

2�
 3

2���

0
c 1

2
+

1

2
 cos (2�t - 2�) d  dt f 1�2

cos2� =

1

2
+

1

2
 cos 2�

Irms = c 1

T
 3

T

0
I2

M cos2(�t - �) dt d 1�2

IM
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Therefore, the rms value of a sinusoid is equal to the maximum value divided by 
Hence, a sinusoidal current with a maximum value of delivers the same average power
to a resistor R as a dc current with a value of Recall that earlier a phasor X was
defined as for a sinusoidal wave of the form This phasor can also
be represented as if the units are given in rms. For example, rms is
equivalent to 170/30° V.

120/30° VXM�12/�
XM cos (�t + �).XM/�

IM�12 .
IM

12 .

On using the rms values for voltage and current, the average power can be written, in
general, as

9.25

The power absorbed by a resistor R is

9.26

In dealing with voltages and currents in numerous electrical applications, it is important to
know whether the values quoted are maximum, average, rms, or what. We are familiar with
the 120-V ac electrical outlets in our home. In this case, the 120 V is the rms value of the volt-
age in our home. The maximum or peak value of this voltage is The voltage
at our electrical outlets could be written as The maximum or peak value must
be given if we write the voltage in this form. There should be no question in our minds that
this is the peak value. It is common practice to specify the voltage rating of ac electrical
devices in terms of the rms voltage. For example, if you examine an incandescent light bulb,
you will see a voltage rating of 120 V, which is the rms value. For now we will add an rms to
our voltages and currents to indicate that we are using rms values in our calculations.

170 cos 377t V.
12012 = 170 V.

P = I2
rms R =

V2
rms

R

P = Vrms Irms cos A�v - �iB

EXAMPLE

9.8
SOLUTION

Determine the rms value of the current waveform in Fig. 9.9 and use this value to compute
the average power delivered to a 2-� resistor through which this current is flowing.

The current waveform is periodic with a period of T=4 s. The rms value is

The average power delivered to a 2-� resistor with this current is

P = I2
rms R = (4)2(2) = 32 W

 = 4 A

 = c 1
4

 a 16t 2 2
0

+ 16t 2 4
2
b d 1�2

 Irms = e 1

4
c 3

2

0
(4)2 dt + 3

4

2
(-4)2 dt d f 1�2

t(s)–2

4

–4

0 2 4 6

Current (A)

i(t)
Figure 9.9

Waveform used to
illustrate rms values.
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EXAMPLE

9.9SOLUTION

Learning Assessments

i(t) (A)

t(s)0 2 4 6 8 10 12

2

4

Figure E9.11

We wish to compute the rms value of the voltage waveform shown in Fig. 9.10.

The waveform is periodic with period T = 3 s. The equation for the voltage in the time frame
0 � t � 3 s is

The rms value is

 = 1.89 V

 = c 1
3
 a 16t3

3
2 1
0

+ a 64t -

64t2

2
+

16t3

3
b 2 3

2
b d 1�2

 Vrms = e 1

3
 c3

1

0
(4t)2 dt +3

2

1
(0)2 dt + 3

3

2
(8 - 4t)2 dt d f 1�2

v(t) = c4t V

0 V

-4t + 8 V

0 6 t � 1 s

1 6 t � 2 s

2 6 t � 3 s

t(s)
0 1 2 3 4 5

4

–4

v(t) (V) Figure 9.10

Waveform used to
illustrate rms values.

E9.11 The current waveform in Fig. E9.11 is flowing through a 4- resistor. Compute the
average power delivered to the resistor.

Æ ANSWER: P = 32 W.

E9.12 The current waveform in Fig. E9.12 is flowing through a 10-� resistor. Determine the
average power delivered to the resistor.

i(t) (A)

t(s)
0 2

4 6
8 10

12

–4

4

ANSWER: P = 80 W.

Figure E9.12
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E9.13 The voltage across a 2-W resistor is given by the waveform in Fig. E9.13. Find the aver-
age power absorbed by the resistor.

ANSWER: P = 38.22 W.

t(s)

2 4

6 8 10 12 14 16 18 20

–10

10

v(t) (V)

Figure E9.13

E9.14 Compute the rms value of the voltage waveform shown in Fig. E9.14. ANSWER:
Vrms = 1.633 V.

t(s)

v(t) (V)
4

0 2 4 6 8Figure E9.14

9.5
The Power Factor

The power factor is a very important quantity. Its importance stems in part from the economic
impact it has on industrial users of large amounts of power. In this section we carefully define
this term and then illustrate its significance via some practical examples.

In Section 9.4 we showed that a load operating in the ac steady state is delivered an aver-
age power of

We will now further define the terms in this important equation. The product is
referred to as the apparent power. Although the term is a dimensionless quan-
tity, and the units of P are watts, apparent power is normally stated in volt-amperes (VA) or
kilovolt-amperes (kVA) to distinguish it from average power.

We now define the power factor (pf) as the ratio of the average power to the apparent
power; that is,

9.27

where

9.28

The angle is the phase angle of the load impedance and is often referred to as
the power factor angle. The two extreme positions for this angle correspond to a purely resis-
tive load where and the pf is 1, and the purely reactive load where and
the pf is 0. It is, of course, possible to have a unity pf for a load containing R, L, and C ele-
ments if the values of the circuit elements are such that a zero phase angle is obtained at the
particular operating frequency.

There is, of course, a whole range of power factor angles between and 0°. If the load
is an equivalent RC combination, then the pf angle lies between the limits 
On the other hand, if the load is an equivalent RL combination, then the pf angle lies between
the limits Obviously, confusion in identifying the type of load could result,
due to the fact that To circumvent this problem, the pf is said to be
either leading or lagging, where these two terms refer to the phase of the current with respect
to the voltage. Since the current leads the voltage in an RC load, the load has a leading pf. 

cos �ZL
= cos A-�ZL

B.
0 6 �ZL

6 90°.

-90° 6 �ZL
6 0°.

;90°

�ZL
= ;90°�ZL

= 0

�v - �i = �ZL

cos A�v - �iB = cos �ZL

pf =

P

Vrms Irms
= cos A�v - �iB

cos A�v - �iB
Vrms Irms

P = Vrms Irms cos A�v - �iB
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EXAMPLE

9.10

SOLUTION

In a similar manner, an RL load has a lagging pf; therefore, load impedances of ZL = 1 - j1 �
and ZL = 2 + j1 � have power factors of cos(-45°) = 0.707 leading and cos(26.57°) = 0.894
lagging, respectively.

An industrial load consumes 88 kW at a pf of 0.707 lagging from a 480-V rms line. The
transmission line resistance from the power company’s transformer to the plant is 0.08 �.
Let us determine the power that must be supplied by the power company (a) under present
conditions and (b) if the pf is somehow changed to 0.90 lagging. (It is economically advan-
tageous to have a power factor as close to one as possible.)

a. The equivalent circuit for these conditions is shown in Fig. 9.11. Using Eq. (9.27), we
obtain the magnitude of the rms current into the plant:

The power that must be supplied by the power company is

b. Suppose now that the pf is somehow changed to 0.90 lagging but the voltage remains
constant at 480 V. The rms load current for this condition is

Under these conditions, the power company must generate

Note carefully the difference between the two cases. A simple change in the pf of the
load from 0.707 lagging to 0.90 lagging has had an interesting effect. Note that in the first
case the power company must generate 93.38 kW in order to supply the plant with 88 kW
of power because the low power factor means that the line losses will be high—5.38 kW.
However, in the second case the power company need only generate 91.32 kW in order to
supply the plant with its required power, and the corresponding line losses are only 3.32 kW.

 = 91.32 kW

 = 88,000 + (0.08)(203.7)2

 PS = PL + (0.08)I2
rms

 = 203.7 A rms

 =

(88)A103B
(0.90)(480)

 Irms =

PL

(pf)AVrmsB

 = 93.38 kW

 = 88,000 + (0.08)(259.3)2

 PS = PL + (0.08)I2
rms

 = 259.3 A rms

 =

(88)A103B
(0.707)(480)

 Irms =

PL

(pf)AVrmsB

±
–

PL=88 kW
pf=0.707 lagging

Irms

VS 480 V rms

0.08 � Figure 9.11

Example circuit for
examining changes in
power factor.

Technique
1. Given PL, pf, and Vrms,

determine Irms.
2. Then Rline,

where Rline is the line
resistance.

PS = PL + I2
rms

[ h i n t ]
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E9.15 An industrial load consumes 100 kW at 0.707 pf lagging. The 60-Hz line voltage at the
load is The transmission-line resistance between the power company trans-
former and the load is 0.1 Æ. Determine the power savings that could be obtained if the pf is
changed to 0.94 lagging.

480/0° V rms.

Learning Assessment
ANSWER: Power saved is
3.771 kW.

Z   �zVrms

Irms

+

-

Figure 9.12

Circuit used to explain power
relationships.

Example 9.10 clearly indicates the economic impact of the load’s power factor. The cost
of producing electricity for a large electric utility can easily be in the billions of dollars. A low
power factor at the load means that the utility generators must be capable of carrying more
current at constant voltage, and they must also supply power for higher losses than
would be required if the load’s power factor were high. Since line losses represent energy
expended in heat and benefit no one, the utility will insist that a plant maintain a high pf,
typically 0.9 lagging, and adjust the rate it charges a customer that does not conform to this
requirement. We will demonstrate a simple and economical technique for achieving this power
factor correction in a future section.

I2
rms Rline

9.6
Complex Power

In our study of ac steady-state power, it is convenient to introduce another quantity, which is
commonly called complex power. To develop the relationship between this quantity and
others we have presented in the preceding sections, consider the circuit shown in Fig. 9.12.

The complex power is defined to be

9.29

where refers to the complex conjugate of Irms; that is, if then
Complex power is then

9.30

or
9.31

where, of course, We note from Eq. (9.31) that the real part of the complex
power is simply the real or average power. The imaginary part of S we call the reactive or
quadrature power. Therefore, complex power can be expressed in the form

9.32

where
9.33

9.34

As shown in Eq. (9.31), the magnitude of the complex power is what we have called the
apparent power, and the phase angle for complex power is simply the power factor angle.
Complex power, like apparent power, is measured in volt-amperes, real power is measured in
watts, and to distinguish Q from the other quantities, which in fact have the same dimensions,
it is measured in volt-amperes reactive, or var.

Now let’s examine the expressions in Eqs. (9.33) and (9.34) in more detail for our three
basic circuit elements: R, L, and C. For a resistor, andcos A�v - �iB = 1,�v - �i = 0°,

 Q = Im(S) = Vrms Irms sin A�v - �iB
 P = Re(S) = Vrms Irms cos A�v - �iB

S = P + jQ

�v - �i = �Z .

S = Vrms Irms cos A�v - �iB + jVrms Irms sin A�v - �iB

S = Vrms/�v Irms/-�i = Vrms Irms/�v - �i

I*rms = Irms/-�i = IR - jII .
Irms = Irms/�i = IR + jII ,I*rms

S = Vrms I*rms
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As a result, a resistor absorbs real power but does not absorb any
reactive power For an inductor, and

An inductor absorbs reactive power but does not absorb real power. Repeating for a capaci-
tor, we get and

A capacitor does not absorb any real power; however, the reactive power is now negative.
How do we interpret the negative reactive power? Refer to Fig. 9.12 and note that the volt-
age and current are specified such that they satisfy the passive sign convention. In this case,
the product of the voltage and current gives us the power absorbed by the impedance in that
figure. If the reactive power absorbed by the capacitor is negative, then the capacitor must be
supplying reactive power. The fact that capacitors are a source of reactive power will be uti-
lized in the next section, on power factor correction.

We see that resistors absorb only real power, while inductors and capacitors absorb only
reactive power. What is a fundamental difference between these elements? Resistors only
absorb energy. On the other hand, capacitors and inductors store energy and then release it
back to the circuit. Since inductors and capacitors absorb only reactive power and not real
power, we can conclude that reactive power is related to energy storage in these elements.

Now let’s substitute into Eq. (9.29). Multiplying 
yields The complex power absorbed by an impedance can be obtained by multiplying the
square of the rms magnitude of the current flowing through that impedance by the impedance.

9.35

Instead of substituting for in Eq. (9.29), let’s substitute for :

9.36

This expression tells us that we can calculate the complex power absorbed by an admittance
by multiplying the square of the rms magnitude of the voltage across the admittance by the
conjugate of the admittance. Suppose the box in Fig. 9.12 contains a capacitor. The admit-
tance for a capacitor is Plugging into the equation above yields

9.37

Note the negative sign on the complex power. This agrees with our previous statement that a
capacitor does not absorb real power but is a source of reactive power.

The diagrams in Fig. 9.13 further explain the relationships among the various quantities
of power. As shown in Fig. 9.13a, the phasor current can be split into two components: one

S = V2
rms(j�C)* = -j�CV 2

rms

j�C.

S = Vrms I*rms = Vrms aVrms

Z
b *

=

V2
rms

Z*
= V2

rms Y* = V2
rms(G + jB)* = P + jQ

Irms Vrms

S = Vrms I*rms = AIrms ZBI*rms = Irms I*rms Z = I2
rms Z = I2

rms(R + jX) = P + jQ

I2
rms .

Irms * I*rms = Irms/�i * Irms/-�iVrms = Irms* Z

 Q = Vrms Irms sin (-90°) 6 0

 P = Vrms Irms cos (-90°) = 0

�v - �i = -90°

 Q = Vrms Irms sin (90°) 7 0

 P = Vrms Irms cos (90°) = 0

�v - �i = 90°(Q = 0).
(P 7 0)sin A�v - �iB = 0.

Im

Re

Vrms

Irms sin (�v–�i)

Irms
I rm

s 
co

s (
� v–

� i)

�v–�i

�i

�v

(a)

Im

Re

�v–�i

(b)

�v–�i

±Q

–Q

P

S

S

Im

Re

�v–�i

(c)

P= I2
rmsRe (Z)

Q=I2
rmsIm (Z)S=

I2 rm
s 
Z

Figure 9.13   

Diagram for illustrating power relationships.
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that is in phase with Vrms and one that is 90° out of phase with Vrms. Eqs. (9.33) and (9.34) illus-
trate that the in-phase component produces the real power, and the 90° component, called the
quadrature component, produces the reactive or quadrature power. In addition, Eqs. (9.33)
and (9.34) indicate that

9.38

which relates the pf angle to P and Q in what is called the power triangle.
The relationships among S, P, and Q can be expressed via the diagrams shown in

Figs. 9.13b and c. In Fig. 9.13b we note the following conditions. If Q is positive, the load is
inductive, the power factor is lagging, and the complex number S lies in the first quadrant. If
Q is negative, the load is capacitive, the power factor is leading, and the complex number S
lies in the fourth quadrant. If Q is zero, the load is resistive, the power factor is unity, and the
complex number S lies along the positive real axis. Fig. 9.13c illustrates the relationships
expressed by Eqs. (9.35) to (9.37) for an inductive load.

In Chapter 1, we introduced Tellegen’s theorem, which states that the sum of the powers
absorbed by all elements in an electrical network is zero. Based on this theorem, we can also
state that complex power is conserved in an ac network—the total complex power delivered to
any number of individual loads is equal to the sum of the complex powers delivered to the
loads, regardless of how loads are interconnected.

tan A�v - �iB =

Q

P
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If v(t) and i(t) are known and we wish to find P given an impedance 
two viable approaches are as follows:

Step 1. Determine V and I and then calculate

Step 2. Use I to calculate the real part of S—that is,

The latter method may be easier to calculate than the former. However, if the imaginary
part of the impedance, X, is not zero, then

which is a common mistake. Furthermore, the P and Q portions of S are directly related
to and provide a convenient way in which to relate power, current, and impedance.
That is,

 S = I2 Z

 tan � =

Q

P

Z/�

P Z

V2

R

P = Re(S) = I2R

P = VrmsIrms cos � or  P = VrmsIrms cos A�v - �iB

Z/� = R + jX,

Problem-Solving Strategy
Determining P or S

The following example illustrates the usefulness of S.

EXAMPLE

9.11
SOLUTION

A load operates at 20 kW, 0.8 pf lagging. The load voltage is at 60 Hz. The
impedance of the line is 0.09 + j0.3 �. We wish to determine the voltage and power factor
at the input to the line.

The circuit diagram for this problem is shown in Fig. 9.14. As illustrated in Fig. 9.13,

S =

P

cos �
=

P

pf
=

20,000

0.8
= 25,000 VA

220/0° V rms
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Therefore, at the load

Since 

The complex power losses in the line are

As stated earlier, complex power is conserved, and, therefore, the complex power at the
generator is

Hence, the generator voltage is

and the generator power factor is

We could have solved this problem using KVL. For example, we calculated the load
current as

Hence, the voltage drop in the transmission line is

Therefore, the generator voltage is

Hence, the generator voltage is 249.53 V rms. In addition,

and therefore,
pf = cos (41.73°) = 0.75 lagging

�v - �i = 4.86° - (-36.87°) = 41.73°

 = 249.53/4.86° V rms

 VS = 220/0° + 35.59/36.43°

 = 35.59/36.43° V rms

 Vline = A113.64/-36.87°B(0.09 + j0.3)

IL = 113.64/-36.87° A rms

cos (41.73°) = 0.75 lagging

 = 249.53 V rms

 VS =

@SS @
IL

=

28,356.25

113.64

 = 28,356.25/41.73° VA

 = 21,162.26 + j18,874.21

 SS = SL + Sline

 = 1162.26 + j3874.21 VA

 = (113.64)2(0.09 + j0.3)

 Sline = I2
L Zline

 = 113.64/-36.87° A rms

 IL = c 25,000/36.87°

220/0°
d *

SL = VL I*L

SL = 25,000/� = 25,000/36.87° = 20,000 + j15,000 VA

±
–

20 kW
0.8 pf lagging

IL

VS

0.09 � j0.3 �

220  0° V rms

Figure 9.14

Example circuit for
power analysis.

1. Use the given ,

and rms to obtain

SL and IL based on Eqs.

(9.33) and (9.29),

respectively.

2. Use IL and Zline to obtain

Sline using Eq. (9.35).

3. Use SS = Sline + SL .

4. VS = SS yields VS and �v.

Since VS = VS and �i is

the phase of IL , 

pf = cos A�v - �i B .
/�v

�I*
L

VL

PL , cos �

[ h i n t ]
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EXAMPLE

9.12

SOLUTION

Two networks A and B are connected by two conductors having a net impedance of 
Z = 0 + j1 �, as shown in Fig. 9.15. The voltages at the terminals of the networks are

and We wish to determine the average power
flow between the networks and identify which is the source and which is the load.

As shown in Fig. 9.15,

The power delivered by network A is

The power absorbed by network B is

If the power flow had actually been from network B to network A, the resultant signs on
and would have been negative.PBPA

 = 7200.4 W

 = (120)(62.12) cos (0° - 15°)

 PB = ∑VB∑ ∑I∑ cos A�VB
- �IB

 = 7200.4 W

 = (120)(62.12) cos (30° - 15°)

 PA = ∑VA∑ ∑I∑ cos A�VA
- �IB

 = 62.12/15° A rms

 =

120/30° - 120/0°

j1

 I =

VA - VB

Z

VB = 120/0° V rms.VA = 120/30° V rms

Network

A
Network

B
VA

+

-

VB

Z

I
+

-

Figure 9.15

Network used in
Example 9.12.

E9.16 An industrial load requires 40 kW at 0.84 pf lagging. The load voltage is
at 60 Hz. The transmission-line impedance is 0.1+j0.25 �. Determine the

real and reactive power losses in the line and the real and reactive power required at the input
to the transmission line.

220/0° V rms

Learning Assessments
ANSWER:

QS = 37.55 kvar.
PS = 44.685 kW;
Qline = 11.713 kvar;
Pline = 4.685 kW;

E9.17 A load requires 60 kW at 0.85 pf lagging. The 60-Hz line voltage at the load is
If the transmission-line impedance is 0.12+j0.18 �, determine the line

voltage and power factor at the input.
220/0° V rms.

ANSWER:

pfin = 0.792 lagging.
Vin = 284.6/5.8° V rms;

E9.18 The source in Fig. E9.18 supplies 40 kW at a power factor of 0.9 lagging. The real and
reactive losses of the transmission-line feeder are 1.6 kW and 2.1 kvar, respectively. Find the
load voltage and the real and reactive power absorted by the load.

ANSWER:
VL = 416.83 � - 1.62	 V;
PL = 38.4 kW; 
QL = 17.27 kvar.

+
– Load

R jX

440  0° V rms VL

+

-

Figure E9.18
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E9.19 Find the power factor of the source and vS (t) in Fig. E9.19. if f = 60 Hz. ANSWER: pftn = 0.9457
lagging; vS (t) = 

765.94 cos(377t - 7.77°) V.

±
–

50 kW
0.82

lagging

50 kVA
0.95

leading
vS

0.2 � j0.4 �

480  0° V rms

+

-

Figure E9.19

Industrial plants that require large amounts of power have a wide variety of loads. However, by
nature the loads normally have a lagging power factor. In view of the results obtained in
Example 9.10, we are naturally led to ask whether there is any convenient technique for raising
the power factor of a load. Since a typical load may be a bank of induction motors or other expen-
sive machinery, the technique for raising the pf should be an economical one to be feasible.

To answer the question we pose, consider the diagram in Fig. 9.16. A typical industrial
load with a lagging pf is supplied by an electrical source. Also shown is the power triangle
for the load. The load pf is If we want to improve the power factor, we need to
reduce the angle shown on the power triangle in Fig. 9.16. From Eq. (9.38) we know that the
tangent of this angle is equal to the ratio of Q to P. We could decrease the angle by increas-
ing P. This is not an economically attractive solution because our increased power con-
sumption would increase the monthly bill from the electric utility.

cos A�oldB.

9.7
Power Factor

Correction

The other option we have to reduce this angle is to decrease Q. How can we decrease
Q? Recall from a previous section that a capacitor is a source of reactive power and does
not absorb real power. Suppose we connect a capacitor in parallel with our industrial load
as shown in Fig. 9.17. The corresponding power triangles for this diagram are also shown
in Fig. 9.17. Let’s define

Then with the addition of the capacitor,

Snew = Sold + Scap

Therefore,

Scap = Snew - Sold

= (Pnew - jQnew) - (Pold + jQold)

= j (Qnew - Qold)

= j (Qcap)

Sold = Pold + jQold = ∑Sold∑/�old and Snew = Pold + jQnew = ∑Snew∑/�new

Electrical
source

Industrial
load with
lagging pf

VL

IL
+

-

PL=Pold

�vL
–�iL=�old

SL=Sold

QL=Qold Figure 9.16

Diagram for power
factor correction.
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Recall from Eqs. (9.36) and (9.37) that in general

S = V2
rms/Z*

and for a capacitor

Z* = -1/j�C

so that

Scap = Qcap = -j�CV2
rms

This equation can be used to find the required value of C in order to achieve the new speci-
fied power factor defined by the new power factor angle illustrated in Fig. 9.17.

Hence, we can obtain a particular power factor for the total load (industrial load and
capacitor) simply by judiciously selecting a capacitor and placing it in parallel with the
original load. In general, we want the power factor to be large, and therefore the power fac-
tor angle must be small [i.e., the larger the desired power factor, the smaller the angle

].A�vL
- �iTB
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Electrical
source

Industrial
load with
lagging pf

VL

IT IL

C
+

-

�vL
– �iL=�old

PL=Pold

SL=Sold

QL=Qold

Qcap

�new

�vL
– �iT=�new

PL=Pold

Snew
Qnew

Figure 9.17

Power factor correction
diagram including capacitor.

EXAMPLE

9.13
Every month our electrical energy provider sends us a bill for the amount of electrical
energy that we have consumed. The rate is often expressed in cents per kWh and consists
of at least two components: (1) the demand charge, which covers the cost of lines, poles,
transformers, and so on, and (2) the energy charge, which covers the cost to produce elec-
tric energy at power plants. The energy charge is the subject of the deregulation of the elec-
tric utility industry where you, as a customer, choose your energy provider.

It is common for an industrial facility operating at a poor power factor to be charged more by
the electric utility providing electrical service. Let’s suppose that our industrial facility operates
at and requires 500 kW at a power factor of 0.75 lagging. Assume an energy charge
of 2¢ per kWh and a demand charge of $3.50 per kW per month if the power factor is between
0.9 lagging and unity and $5 per kVA per month if the power factor is less than 0.9 lagging.

The monthly energy charge is Let’s calculate the
monthly demand charge with the 0.75 lagging power factor. The complex power absorbed
by the industrial facility is

Sold =

500

0.75
/cos-1 (0.75) = 666.67/41.4° = 500 + j441 kVA

500 * 24 * 30 * $0.02 = $7200.

277 V rms
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The monthly demand charge is The total bill from the energy
provider is per month.

Let’s consider installing a capacitor bank, as shown in Fig. 9.18, to correct the power fac-
tor and reduce our demand charge. The demand charge is such that we only need to correct
the power factor to 0.9 lagging. The monthly demand charge will be the same whether the
power factor is corrected to 0.9 or unity. The complex power absorbed by the industrial facil-
ity and capacitor bank will be

The monthly demand charge for our industrial facility with the capacitor bank is
per month. The average power absorbed by our capacitor bank is

negligible compared to the average power absorbed by the industrial facility, so our month-
ly energy charge remains $7200 per month. With the capacitor bank installed, the total bill
from the energy provider is per month.

How many kvars of capacitance do we need to correct the power factor to 0.9 lagging?

Let’s assume that it costs $100 per kvar to install the capacitor bank at the industrial
facility for an installation cost of $19,880. How long will it take to recover the cost of
installing the capacitor bank? The difference in the monthly demand charge without the
bank and with the bank is Dividing this value into the cost
of installing the bank yields 12.56 months.$19,880�$1583.35 =

$3333.35 - $1750 = $1583.35.

Snew - Sold = Scap = (500 + j242.2) - (500 + j441) = -j198.8 kvar

$7200 + $1750 = $8950

500 * $3.50 = $1750

Snew =

500

0.9
/cos-1 (0.9) = 555.6/25.84° = 500 + j242.2 kVA

$7200 + $3333.35 = $10533.35
666.67 * $5 = $3333.35.

Figure 9.18

A bank of capacitors.
(Courtesy of Jeremy Nelms,
Talquin Electric Cooperative,
Inc.)

EXAMPLE

9.14
Plastic kayaks are manufactured using a process called rotomolding, which is diagrammed
in Fig. 9.19. Molten plastic is injected into a mold, which is then spun on the long axis of
the kayak until the plastic cools, resulting in a hollow one-piece craft. Suppose that the
induction motors used to spin the molds consume 50 kW at a pf of 0.8 lagging from a

60-Hz line. We wish to raise the pf to 0.95 lagging by placing a bank of
capacitors in parallel with the load.
220/0°-V rms,

Induction
motor

Kayak mold

Figure 9.19

Rotomolding 
manufacturing process.
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SOLUTION

IL

ICIT

50 kW
pf=0.8 lagging

C220  0° V rms

+

-

Figure 9.20

Example circuit for power
factor correction.

The circuit diagram for this problem is shown in Fig. 9.20. PL = 50 kW and since
0.8 = 36.87°, �old = 36.87°. Therefore,

Hence,

and

Since the required power factor is 0.95, 

Then

Hence

Solving the equation for C yields

By using a capacitor of this magnitude in parallel with the industrial load, we create, from
the utility’s perspective, a load pf of 0.95 lagging. However, the parameters of the actual
load remain unchanged. Under these conditions, the current supplied by the utility to the
kayak manufacturer is less and therefore they can use smaller conductors for the same
amount of power. Or, if the conductor size is fixed, the line losses will be less since these
losses are a function of the square of the current.

 = 1155 
F

 C =

21,070

(377)(220)2

 16,430 - 37,500 = -�CV2 rms

 Qnew - Qold = Qcap = -�CV2 rms

 = 16,430 var

 = 50,000 tan (18.19°)

 Qnew = Pold tan �new

 = 18.19°

 �new = cos-1 ApfnewB = cos-1 (0.95)

Scap = 0 + jQcap

Sold = Pold + jQold = 50,000 + j37,500

Qold = Pold tan �old = (50)A103B(0.75) = 37.5 kvar

 cos-1

Step 1. Find Qold from and �old , or the equivalent pfold .

Step 2. Find �new from the desired pfnew.

Step 3. Determine Qnew=Pold tan �new.

Step 4. Qnew-Qold=Qcap=–�CV2 rms.

PL

Problem-Solving Strategy
Power Factor

Correction
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E9.20 Compute the value of the capacitor necessary to change the power factor in Learning
Assessment E9.16 to 0.95 lagging.

Learning Assessments
ANSWER: C = 773 
F.

E9.21 Find the value of capacity to be connected in parallel with the load in Fig. E9.21 to make
the source power factor 0.95 leading, f = 60 Hz.

ANSWER: C = 546.2 
F.

Figure E9.21

50 kW
0.82

lagging
+
– 480  0° V rms

The single-phase three-wire ac circuit shown in Fig. 9.21 is an important topic because it is
the typical ac power network found in households. Note that the voltage sources are equal;
that is, Thus, the magnitudes are equal and the phases are equal (single
phase). The line-to-line voltage Within a household, lights and
small appliances are connected from one line to neutral n, and large appliances such as hot
water heaters and air conditioners are connected line to line. Lights operate at about
120 V rms and large appliances operate at approximately 240 V rms.

Let us now attach two identical loads to the single-phase three-wire voltage system using
perfect conductors as shown in Fig. 9.21b. From the figure we note that

and

KCL at point N is

Note that there is no current in the neutral wire, and therefore it could be removed with-
out affecting the remainder of the system; that is, all the voltages and currents would be
unchanged. One is naturally led to wonder just how far the simplicity exhibited by this
system will extend. For example, what would happen if each line had a line impedance,
if the neutral conductor had an impedance associated with it, and if there were a load tied
from line to line? To explore these questions, consider the circuit in Fig. 9.21c. Although
we could examine this circuit using many of the techniques we have employed in previ-
ous chapters, the symmetry of the network suggests that perhaps superposition may lead
us to some conclusions without having to resort to a brute-force assault. Employing super-
position, we consider the two circuits in Figs. 9.21d and e. The currents in Fig. 9.21d are
labeled arbitrarily. Because of the symmetrical relationship between Figs. 9.21d and e, the

 = 0

 = - a V
ZL

-

V
ZL
b

 InN = - AIaA + IbBB

IbB = - 
V
ZL

IaA =

V
ZL

Vab = 2Van = 2Vnb = 2V.
Van = Vnb = V.

9.8
Single-Phase

Three-Wire
Circuits
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±
–

±
–

V

V

a

n

b

(a) (b)

±
–

±
–

ZL

IaA

InN

IbB

a

n

b

A

N

B

ZLV

V

(c)

V

V±
–

±
–

ZL

Zline

Zline

Zn ZLL

ZL

(d)

Ib

Id

Ia Ic

Ie

If

V±
– ZL

Zline

Zline

Zn ZLL

ZL

(e)

–If

–Ic

–Id

–Ib

–Ia –Ic

V±
–

ZL

Zline

Zline

Zn ZLL

ZL

Figure 9.21 
Single-phase three-wire

system.

currents in Fig. 9.21e correspond directly to those in Fig. 9.21d. If we add the two phasor
currents in each branch, we find that the neutral current is again zero. A neutral current of
zero is a direct result of the symmetrical nature of the network. If either the line impedances
Zline or the load impedances ZL are unequal, the neutral current will be nonzero. We will
make direct use of these concepts when we study three-phase networks in Chapter 11.

EXAMPLE

9.15

SOLUTION

A three-wire single-phase household circuit is shown in Fig. 9.22a. Use of the lights, stereo,
and range for a 24-hour period is demonstrated in Fig. 9.22b. Let us calculate the energy use
over the 24 hours in kilowatt-hours. Assuming that this represents a typical day and that our
utility rate is $0.08/kWh, let us also estimate the power bill for a 30-day month.

Applying nodal analysis to Fig. 9.22a yields

The current magnitudes for each load can be found from the corresponding power levels
as follows:

 InN = IS - IL

 IbB = -IS - IR

 IaA = IL + IR
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(b)(a)

Lights off
on

12 A.M. 2 24 46 68 810 10 12
12 P.M.

on

on
off

off

Stereo

Range

±
–

±
–

Lights
120 W

Range
7200 W

Stereo
24 W

IL

IS

IaA

InN

120  0° V rms

120  0° V rms

IbB

IR

a

n N

B

A

b

Figure 9.22

Household three-wire
network and appliance
usage.

The energy used is simply the integral of the power delivered by the two sources over the
24-hour period. Since the voltage magnitudes are constants, we can express the energy
delivered by the sources as

The integrals of and can be determined graphically from Fig. 9.22b.

Therefore, the daily energy for each source and the total energy is

Over a 30-day month, a $0.08/kWh utility rate results in a power bill of

Cost = A30.8)A30)A0.08) = $73.92

 Etotal = 30.8 kWh

 Enb = 14.6 kWh

 Ean = 16.2 kWh

 3
12a.m.

12a.m.
-IbB dt = 8IS + 4IR = 121.6

 3
12a.m.

12a.m.
IaA dt = 4IR + 15IL = 135

IbBIaA

 Enb = Vnb3
 

 

-IbB dt

 Ean = Van3
 

 

IaA dt

 IR =

PR

Vab
=

7200

240
= 30 A rms

 IS =

PS

Vnb
=

24

120
= 0.2 A rms

 IL =

PL

Van
=

120

120
= 1 A rms

The energy consumption is typically measured by meters, of the form shown in Fig. 9.23,
which are a familiar sight on the outside of our homes.
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Figure 9.23

Electric meters used to
measure home energy

consumption.
(Left, Comstock/Punchstock; 

right, Robert Llewellyn/
Workbook Stock/Jupiter

Images)

9.9
Safety
Considerations

Although this book is concerned primarily with the theory of circuit analysis, we recognize
that, by this point in their study, most students will have begun to relate the theory to the elec-
trical devices and systems that they encounter in the world around them. Thus, it seems advis-
able to depart briefly from the theoretical and spend some time discussing the very practical
and important subject of safety. Electrical safety is a very broad and diverse topic that would
require several volumes for a comprehensive treatment. Instead, we will limit our discussion
to a few introductory concepts and illustrate them with examples.

It would be difficult to imagine that anyone in our society could have reached adolescence
without having experienced some form of electrical shock. Whether that shock was from a
harmless electrostatic discharge or from accidental contact with an energized electrical cir-
cuit, the response was probably the same—an immediate and involuntary muscular reaction.
In either case, the cause of the reaction is current flowing through the body. The severity of
the shock depends on several factors, the most important of which are the magnitude, the
duration, and the pathway of the current through the body.

The effect of electrical shock varies widely from person to person. Figure 9.24 shows the
general reactions that occur as a result of 60-Hz ac current flow through the body from hand
to hand, with the heart in the conduction pathway. Observe that there is an intermediate range
of current, from about 0.1 to 0.2 A, which is most likely to be fatal. Current levels in this
range are apt to produce ventricular fibrillation, a disruption of the orderly contractions of the
heart muscle. Recovery of the heartbeat generally does not occur without immediate medical
intervention. Current levels above that fatal range tend to cause the heart muscle to contract
severely, and if the shock is removed soon enough, the heart may resume beating on its own.

The voltage required to produce a given current depends on the quality of the contact to the
body and the impedance of the body between the points of contact. The electrostatic voltage
such as might be produced by sliding across a car seat on a dry winter day may be on the order
of 20,000 to 40,000 V, and the current surge on touching the door handle, on the order of 40 A.
However, the pathway for the current flow is mainly over the body surface, and its duration is
for only a few microseconds. Although that shock could be disastrous for some electronic
components, it causes nothing more than mild discomfort and aggravation to a human being.

Electrical appliances found about the home typically require 120 or 240 V rms for opera-
tion. Although the voltage level is small compared with that of the electrostatic shock, the
potential for harm to the individual and to property is much greater. Accidental contact is more
apt to result in current flow either from hand to hand or from hand to foot—either of which
will subject the heart to shock. Moreover, the relatively slowly changing (low frequency) 
60-Hz current tends to penetrate more deeply into the body as opposed to remaining on the
surface as a rapidly changing (high frequency) current would tend to do. In addition, the ener-
gy source has the capability of sustaining a current flow without depletion. Thus, subsequent
discussion will concentrate primarily on hazards associated with the 60-Hz ac power system.
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The single-phase three-wire system introduced earlier is commonly, though not exclusively,
used for electrical power distribution in residences. Two important aspects of this or any system
that relate to safety were not mentioned earlier: circuit fusing and grounding.

Each branch circuit, regardless of the type of load it serves, is protected from excessive
current flow by circuit breakers or fuses. Receptacle circuits are generally limited to 20 amps
and lighting circuits to 15 amps. Clearly, these cannot protect persons from lethal shock. The
primary purpose of these current-limiting devices is to protect equipment.

The neutral conductor of the power system is connected to ground (earth) at a multitude
of points throughout the system and, in particular, at the service entrance to the residence.
The connection to earth may be by way of a driven ground rod or by contact to a cold water
pipe of a buried metallic water system. The 120-V branch circuits radiating from the distri-
bution panel (fuse box) generally consist of three conductors rather than only two, as was
shown in Fig. 9.21. The third conductor is the ground wire, as shown in Fig. 9.25.

The ground conductor may appear to be redundant, since it plays no role in the normal
operation of a load that might be connected to the receptacle. Its role is illustrated by the
following example.

Ventricular fibrillation usually
fatal without intervention

Heartbeat stops, may restart if
shock is removed before death

Breathing stops

Muscular paralysis, severe pain,
difficulty breathing

Let-go threshold

Painful

Threshold of sensation

Severe burns, not fatal unless
vital organs are burned

10 A

1 A

100 mA

10 mA

1 mA

Figure 9.24

Effects of electrical shock.
(From C. F. Dalziel and 
W. R. Lee, “Lethal Electric
Currents,” IEEE Spectrum,
February 1969, pp. 44–50;
and C. F. Dalziel, “Electric
Shock Hazard,” IEEE
Spectrum, February 1972,
pp. 41–50.)

±
–

Circuit
breaker

120 V rms

Neutral

Ground conductor

Other
receptacles

Figure 9.25

A household receptacle.
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EXAMPLE

9.16

SOLUTION

EXAMPLE

9.17 SOLUTION

It was mentioned earlier that the circuit breaker or fuse cannot provide effective protection
against shock. There is, however, a special type of device called a ground-fault interrupter (GFI)
that can provide protection for personnel. This device detects current flow outside the normal
circuit. Consider the circuit of Fig. 9.26. In the normal safe operating condition, the current in
the neutral conductor must be the same as that in the line conductor. If at any time the current in
the line does not equal the current in the neutral, then a secondary path has somehow been estab-
lished, creating an unsafe condition. This secondary path is called a fault. For example, the fault
path in Fig. 9.26 is through Joe and the concrete floor. The GFI detects this fault and opens the
circuit in response. Its principle of operation is illustrated by the following example.

Joe has a workshop in his basement where he uses a variety of power tools such as drills,
saws, and sanders. The basement floor is concrete, and being below ground level, it is usu-
ally damp. Damp concrete is a relatively good conductor. Unknown to Joe, the insulation on
a wire in his electric drill has been nicked, and the wire is in contact with (or shorted to) the
metal case of the drill, as shown in Fig. 9.26. Is Joe in any danger when using the drill?

Without the ground conductor connected to the metal case of the tool, Joe would receive a
severe, perhaps fatal, shock when he attempted to use the drill. The voltage between his
hand and his feet would be 120 V, and the current through his body would be limited by the
resistance of his body and of the concrete floor. Typically, the circuit breakers would not
operate. However, if the ground conductor is present and properly connected to the drill
case, the case remains at ground potential, the 120-V source becomes shorted to ground, the
circuit breaker operates, and Joe lives to drill another hole.

120 V

Ground

Neutral

Concrete floor

Short

±
–

Figure 9.26

Faulty circuit, when the
case of the tool is not

grounded through the
power cord.

Let us describe the operation of a GFI.

Consider the action of the magnetic circuit in Fig. 9.27. Under normal operating conditions,
i1 and i2 are equal, and if the coils in the neutral and line conductors are identical, as we
learned in basic physics, the magnetic flux in the core will be zero. Consequently, no volt-
age will be induced in the sensing coil.

If a fault should occur at the load, current will flow in the ground conductor and perhaps
in the earth; thus, i1 and i2 will no longer be equal, the magnetic flux will not be zero, and
a voltage will be induced in the sensing coil. That voltage can be used to activate a circuit
breaker. This is the essence of the GFI device.

i1

Magnetic
core

Load

Sensing
coil

Neutral

V

Ground

±
–

i2

Figure 9.27
Ground-fault interrupter

circuit.
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Ground-fault interrupters are available in the form of circuit breakers and also as recepta-
cles. They are now required in branch circuits that serve outlets in areas such as bathrooms,
basements, garages, and outdoor sites. The devices will operate at ground-fault currents 
on the order of a few milliamperes. Unfortunately, the GFI is a relatively new device, 
and electrical code requirements are generally not retroactive. Thus few older residences 
have them.

Requirements for the installation and maintenance of electrical systems are meticulously
defined by various codes that have been established to provide protection of personnel and
property. Installation, alteration, or repair of electrical devices and systems should be under-
taken only by qualified persons. The subject matter that we study in circuit analysis does not
provide that qualification.

The following examples illustrate the potential hazards that can be encountered in a
variety of everyday situations. We begin by revisiting a situation described in a previous
example.

EXAMPLE

9.18

SOLUTION

Suppose that a man is working on the roof of a mobile home with a hand drill. It is early in
the day, the man is barefoot, and dew covers the mobile home. The ground prong on the
electrical plug of the drill has been removed. Will the man be shocked if the “hot” electri-
cal line shorts to the case of the drill?

To analyze this problem, we must construct a model that adequately represents the situation
described. In his book Medical Instrumentation (Boston: Houghton Mifflin, 1978), John G.
Webster suggests the following values for resistance of the human body: Rskin(dry) = 15 k�,
Rskin(wet) = 150 �, Rlimb(arm or leg) = 100 �, and Rtrunk = 200 �.

The network model is shown in Fig. 9.28. Note that since the ground line is open-circuited,
a closed path exists from the hot wire through the short, the human body, the mobile home, and
the ground. For the conditions stated previously, we assume that the surface contact resistanc-
es and are 150 � each. The body resistance, Rbody, consisting of arm, trunk, and leg,
is 400 �. The mobile home resistance is assumed to be zero, and the ground resistance, Rgnd,
from the mobile home ground to the actual source ground is assumed to be 1 �. Therefore,
the magnitude of the current through the body from hand to foot would be

A current of this magnitude can easily cause heart failure.
Additional protection would be provided if the circuit breaker were a ground-fault

interrupter.

 = 171 mA

 =

120

701

 Ibody =

120

Rsc1
+ Rbody + Rsc2

+ Rgnd

Rsc2
Rsc1

IS

IR

Rsc1

Rgnd

Rbody Rsc2

Circuit
breaker

“Hot” black
wire

Short

Drill case

Neutral white wire

Ground Green wire

±
–

Figure 9.28

Model for Example 9.18.
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EXAMPLE

9.19

SOLUTION

(a)

(b)

Light

Hand
rail±

–

Circuit
breaker

Rfault

Rlight

Rpool

Rarm Rtrunk

Rarm Rarm
Rwet
    contact

Rwet
    contact

Rrailing

Rwet
    contact

±
–

Circuit
breaker

Figure 9.29
Diagrams used in

Example 9.19.

Two boys are playing basketball in their backyard. To cool off, they decide to jump into
their pool. The pool has a vinyl lining, so the water is electrically insulated from the earth.
Unknown to the boys, there is a ground fault in one of the pool lights. One boy jumps in
and while standing in the pool with water up to his chest, reaches up to pull in the other
boy, who is holding onto a grounded hand rail, as shown in Fig. 9.29a. What is the impact
of this action?

The action in Fig. 9.29a is modeled as shown in Fig. 9.29b. Note that since a ground fault
has occurred, there exists a current path through the two boys. Assuming that the fault, pool,
and railing resistances are approximately zero, the magnitude of the current through the two
boys would be

This current level would cause severe shock in both boys. The boy outside the pool could
experience heart failure.

 = 126 mA

 =

120

950

 I =

120

A3RarmB + 3A3Rwet contactB + Rtrunk
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EXAMPLE

9.20

SOLUTION

EXAMPLE

9.21

SOLUTION

A patient in a medical laboratory has a muscle stimulator attached to her left forearm. Her
heart rate is being monitored by an EKG machine with two differential electrodes over the
heart and the ground electrode attached to her right ankle. This activity is illustrated in
Fig. 9.30a. The stimulator acts as a current source that drives 150 mA through the muscle
from the active electrode to the passive electrode. If the laboratory technician mistakenly
decides to connect the passive electrode of the stimulator to the ground electrode of the
EKG system to achieve a common ground, is there any risk?

When the passive electrode of the stimulator is connected to the ground electrode of the
EKG system, the equivalent network in Fig. 9.30b illustrates the two paths for the stimula-
tor current: one through half an arm and the other through half an arm and the body. Using
current division, the body current is

Therefore, a dangerously high level of current will flow from the stimulator through the
body to the EKG ground.

 = 19 mA

 Ibody =

(150)A10-3B(50)

50 + 50 + 200 + 100

EKG monitor

Muscle
stimulator

(b)(a)

Rtrunk

Ibody

Rleg

Rarm

150 mA

Rarm

Figure 9.30

Diagrams used in
Example 9.20.

A cardiac care patient with a pacing electrode has ignored the hospital rules and is listening
to a cheap stereo. The stereo has an amplified 60-Hz hum that is very annoying. The patient
decides to dismantle the stereo partially in an attempt to eliminate the hum. In the process,
while he is holding one of the speaker wires, the other touches the pacing electrode. What
are the risks in this situation?

Let us suppose that the patient’s skin is damp and that the 60-Hz voltage across the speak-
er wires is only 10 mV. Then the circuit model in this case would be as shown in Fig. 9.31.

±
–

Rdamp skin

Rarm

Rtrunk

Relectrode=0 �

10 mV

I

Figure 9.31

Circuit model for
Example 9.21.
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EXAMPLE

9.22

SOLUTION

The current through the heart would be

It is known that 10 
A delivered directly to the heart is potentially lethal.

 = 22.2 
A

 I =

(10)A10-3B
150 + 100 + 200

While maneuvering in a muddy area, a crane operator accidentally touched a high-voltage
line with the boom of the crane, as illustrated in Fig. 9.32a. The line potential was 7200 V.
The neutral conductor was grounded at the pole. When the crane operator realized what had
happened, he jumped from the crane and ran in the direction of the pole, which was approx-
imately 10 m away. He was electrocuted as he ran. Can we explain this very tragic accident?

The conditions depicted in Fig. 9.32a can be modeled as shown in Fig. 9.32b. The crane
was at 7200 V with respect to earth. Therefore, a gradient of 720 V/m existed along the
earth between the crane and the power pole. This earth between the crane and the pole is
modeled as a resistance. If the man’s stride was about 1 m, the difference in potential
between his feet was approximately 720 V. A man standing in the same area with his feet
together was unharmed.

(a)

Neutral conductor

Power line

(b)

Power pole

7200 V

Crane
Earth resistance

10 m

–±

Figure 9.32

Illustrations used in
Example 9.22.
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The examples of this section have been provided in an attempt to illustrate some of the
potential dangers that exist when working or playing around electric power. In the worst case,
failure to prevent an electrical accident can result in death. However, even nonlethal electrical
contacts can cause such things as burns or falls. Therefore, we must always be alert to ensure
not only our own safety, but also that of others who work and play with us.

The following guidelines will help minimize the chances of injury:

1. Avoid working on energized electrical systems.
2. Always assume that an electrical system is energized unless you can absolutely verify

that it is not.
3. Never make repairs or alterations that are not in compliance with the provisions of the

prevailing code.
4. Do not work on potentially hazardous electrical systems alone. 
5. If another person is “frozen” to an energized electrical circuit, deenergize the circuit, if

possible. If that cannot be done, use nonconductive material such as dry wooden
boards, sticks, belts, and articles of clothing to separate the body from the contact. Act
quickly but take care to protect yourself.

6. When handling long metallic equipment, such as ladders, antennas, and so on,
outdoors, be continuously aware of overhead power lines and avoid any possibility of
contact with them.

Safety guidelines.

[ h i n t ]

E9.22 A woman is driving her car in a violent rainstorm. While she is waiting at an intersec-
tion, a power line falls on her car and makes contact. The power line voltage is 7200 V.

(a) Assuming that the resistance of the car is negligible, what is the potential current
through her body if, while holding the door handle with a dry hand, she steps out
onto the wet ground?

(b) If she remained in the car, what would happen?

Learning Assessment
ANSWER: (a) I = 463 mA,
extremely dangerous; 
(b) she should be safe.

Safety when working with electric power must always be a primary consideration.
Regardless of how efficient or expedient an electrical network is for a particular application,
it is worthless if it is also hazardous to human life.

The safety device shown in Fig. 9.33, which is also used for troubleshooting, is a
proximity-type sensor that will indicate whether a circuit is energized by simply touching the
conductor on the outside of the insulation. This device is typically carried by all electricians
and is helpful when working on electric circuits.

In addition to the numerous deaths that occur each year due to electrical accidents, fire
damage that results from improper use of electrical wiring and distribution equipment
amounts to millions of dollars per year.

To prevent loss of life and damage to property, very detailed procedures and specifications
have been established for the construction and operation of electrical systems to ensure their
safe operation. The National Electrical Code ANSI C1 (ANSI—American National

Figure 9.33

A modern safety or
troubleshooting device.
(Courtesy of Fluke
Corporation. Reproduced
with permission.)
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Standards Institute) is the primary guide. There are other codes, however: for example, the
National Electric Safety Code, ANSI C2, which deals with safety requirements for public
utilities. Underwriters Laboratory (UL) tests all types of devices and systems to ensure that
they are safe for use by the general public. We find the UL label on all types of electrical
equipment that is used in the home, such as appliances and extension cords. 

Electric energy plays a central role in our lives. It is extremely important to our general
health and well-being. However, if not properly used, it can be lethal.

9.10
Application
Examples

The following application-oriented examples illustrate a practical use of the material studied
in this chapter.

APPLICATION
EXAMPLE 9.23

SOLUTION

For safety reasons the National Electrical Code restricts the circuit-breaker rating in a 120-V
household lighting branch circuit to no more than 20 A. Furthermore, the code also requires
a 25% safety margin for continuous-lighting loads. Under these conditions, let us determine
the number of 100-W lighting fixtures that can be placed in one branch circuit.

The model for the branch circuit is shown in Fig. 9.34. The current drawn by each 100-W
bulb is

Using the safety margin recommendation, the estimated current drawn by each bulb is
25% higher, or

Therefore, the maximum number of fixtures on one circuit breaker is

n = 20�1.04 = 19 fixtures

Ibulb = A1.25B A0.83B = 1.04 A rms

Ibulb = 100�120 = 0.833 A rms

a

n

20-A breaker

120  0° V rms 100 W 100 W 100 W 100 W±
–

Figure 9.34
20-A branch circuit for

household lighting.

APPLICATION
EXAMPLE 9.24

SOLUTION

An electric lawn mower requires 12 A rms at 120 V rms but will operate down to 110 V rms
without damage. At 110 V rms, the current draw is 13.1 A rms, as shown in Fig. 9.35. Give
the maximum length extension cord that can be used with a 120-V rms power source if the
extension cord is made from

1. 16-gauge wire (4 m�/ft)

2. 14-gauge wire (2.5 m�/ft)

The voltage drop across the extension cord is

or

Rcord = 0.382 �

Vcord = (2)(13.1)Rcord = 10 V rms
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SOLUTION

APPLICATION
EXAMPLE 9.25

If cord is the length of the extension cord, then for 16-gauge wire we find

and for 14-gauge wire

/cord =

Rcord

0.0025
= 152.8 feet

/cord =

Rcord

0.004
= 95.5 feet

/

120 V rms 110 V rms
Mower

13.1 A rms

Rcord

Vcord=5 V rms

Vcord=5 V rms

Rcord

±
–

± –

±–

±

–
Figure 9.35

Circuit model in
Example 9.24.

While sitting in a house reading a book, we notice that every time the air conditioner
comes on, the lights momentarily dim. Let us investigate this phenomenon using the
single-phase three-wire circuit shown in Fig. 9.36a and some typical current requirements
for a 10,000-Btu/h air conditioner, assuming a line resistance of 0.5 �.

The 60-W light bulb can be roughly modeled by its equivalent resistance:

or

When the air conditioner unit first turns on, the current requirement is 40 A, as shown in
Fig. 9.36b. As the compressor motor comes up to speed, the current requirement drops
quickly to a steady-state value of 10 A, as shown in Fig. 9.36c. We will compare the volt-
age across the light fixture, both at turn-on and in steady state.

Using superposition, let us first find that portion of caused by the voltage sources.
The appropriate circuit is shown in Fig. 9.36d. Using voltage division, we find that

or

Figure 9.36e will yield the contribution to caused by the 10-A steady-state current.
Using current division to calculate the current through the light bulb, we find that

or

Therefore, the steady-state value of is

At start-up, our expression for can be used with which yields
The resulting value for is

The voltage delivered to the light fixture at startup is 13% lower than the steady-state value,
resulting in a momentary dimming of the lights.

VAN = VAN1 + VAN2 = 119.50 - 19.92 = 99.58 V rms

VANVAN2 = -19.92 V rms.
IAB = 40 A,VAN2

VAN = VAN1 + VAN2 = 114.52 V rms

VAN

VAN2 = -4.98 V rms

VAN2 = - e IAB a RL

Rbulb + 2RL
b fRbulb

VAN

VAN1 = 119.50 V rms

VAN1 = VAN a Rbulb

Rbulb + 2RL
b

VAN

VAN ,

Rbulb = 240 �

Pbulb =

V2
an

Rbulb

Technique

1. Find the resistance of the
light bulb.

2. Use a large current source
to represent the transient
current of the air condi-
tioner and a small current
source to represent the
steady-state current.

3. Find the voltage drop
across the light bulb dur-
ing both the transient and
steady-state operations.

[ h i n t ]
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APPLICATION
EXAMPLE 9.26

SOLUTION

RL 0.5 �

IAB

RL 0.5 �

RL 0.5 �

Lights
60 W

10,000
Btu

(a)

B

N

b

a
A

n
air
conditioner

120  0° V rms

120  0° V rms

RL 0.5 �

Rbulb

40 A

240 � IAB

RL 0.5 �

RL 0.5 �

(b)

B

N

b

a
A

n

120  0° V rms

120  0° V rms

240 �

RL 0.5 �

Rbulb

10 A

240 � IAB

RL 0.5 �

RL 0.5 �

(e)

B

N

b

a
A

n

±
–

±
–

±
–

±
–

RL 0.5 �

Rbulb

10 A

240 � IAB

RL 0.5 �

RL 0.5 �

(c)

B

N

b

a
A

n

120  0° V rms

120  0° V rms

±
–

±
–

RL 0.5 �

Rbulb

RL 0.5 �

RL 0.5 �

(d)

B

N

b

a
A

n

120  0° V rms

120  0° V rms

±
–

±
–

Figure 9.36
Networks used in

Example 9.25.

Most clothes dryers operate from a outlet and have several temperature set-
tings, such as low, medium, and high. Let’s examine the manner in which the dryer creates
heat for drying and the way in which it regulates the temperature.

First we will consider the heat itself. A simple model for this situation is shown in
Fig. 9.37a, where a resistive heating element is connected across the 240- supply. For
a particular dryer, the resistance of the element is roughly The current through this
element is

9.39

Since the element is resistive, the voltage and current are in phase. The power dissipation is

Phe = I2
he Rhe = (21.81)2(11) = 5236 W

Ihe =

240

11
= 21.81 A rms

11 �.
V  rms

240- V  rms
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This value, more than 5 kW, is a lot of power! Note, however, that this is the power
dissipated under the assumption that the element is connected to the 240- supply
100% of the time. If we manipulate the percentage of the time the element is energized, we
can control the average power and thus the average temperature.

A fairly standard method for temperature control is shown schematically in Fig. 9.37b,
where a standard residential single-phase, three-wire service powers the heating element at

and the control circuit at The temperature switch is connected to
three resistors. Each temperature setting produces a different current through the thermostat
heater, which is just another resistor. Each switch setting will alter the temperature of the
themostat heater that controls the temperature set point. We can calculate the power dissi-
pated in the thermostat heater for each temperature setting. If we let be the resistance that
corresponds to the switch setting, then

9.40

We see that the thermostat heater power dissipation is lowest at the low setting and increas-
es as the switch is moved to the high setting.

Now let us consider the critical issue in the temperature control system. The thermostat
heater is located physically adjacent to the control thermostat (very similar to the ones used
to control heat and cooling in your homes where you set the temperature manually). In the
dryer, the thermostat heater acts as the desired setting. If the temperature at the thermostat
exceeds the setting, then the thermostat switch opens, deenergizing the heating element
and allowing it to cool off. When the thermostat determines the temperature is too low, the
thermostat switch will close, energizing the element and increasing the temperature. In this
way, the thermostat switch opens and closes throughout the drying cycle, maintaining the
correct temperature as selected by the temperature switch.

PTh = I2
Th RTh = a 120

RTh + RS
b 2

RTh c     = 1.3 W for the low setting

    = 1.79 W for the medium setting

    = 4.1 W for the high setting

RS

120 V rms.240 V  rms

V  rms

(a)

(b)

Rhe 11 �240 V rms

Heating
element

±
–

Rhe

120 V rms

120 V rms
3.5 k�

5 �

1.8 k�

2.7 k�
low

High-limit
'stat switch

High limit
thermostat

Control thermostat

Control
'stat switch

high
med

Thermostat
heater

heat heatheat

±
–

±
–

Figure 9.37

Partial schematics for a
residential clothes dryer:
(a) the heating element and
(b) the control system
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DESIGN
EXAMPLE 9.27

SOLUTION

Note that all of our calculations have been made for power levels, not temperatures. The
exact temperatures of the heating element, the thermostat heater, and the thermostat itself
depend on how heat moves about within the dryer—a thermodynamics issue that cannot be
addressed with a simple circuit diagram.

Finally, note the high limit thermostat and its associated switch. This thermostat is
mounted very close to the heating element. If the control thermostat fails, there is no tem-
perature control and we can expect trouble. The high limit thermostat will detect these
excessive temperatures and deenergize the heating element. Once the temperature drops,
normal operation can resume. Thus, the high limit thermostat is used to protect the dryer
and by extension your home.

9.11
Design Examples

The following application-oriented examples illustrate a practical use of the material studied
in this chapter.

A light-duty commercial single-phase three-wire 60-Hz circuit serves lighting, heating, and
motor loads, as shown in Fig. 9.38a. Lighting and heating loads are essentially pure resist-
ance and, hence, unity power factor (pf), whereas motor loads have lagging pf.

We wish to design a balanced configuration for the network and determine its economic
viability using the following procedure.

a. Compute the phase and neutral currents, as well as the complex power and pf for each
source.

b. Now move the heating load (panel H) to phase b, as shown in Fig. 9.38b. This is called
“balancing” the load. Repeat the analysis of (a).

c. Assume that the phase and neutral conductor resistances are each 0.05 � and have neg-
ligible effect on the results of (a). Evaluate the system line losses for (a) and (b). If the
loads in question operate 24 hours per day and 365 days per year, at $0.08/kWh, how
much energy (and money) is saved by operating in the balanced mode?

a. The magnitudes of the rms currents are

and

Im =

10,000

240
= 41.67 A rms

IL = IH =

P

V
=

5000

120
= 41.67 A rms

In

Ia

IL IH Im

Ib

±
–

±
–

Panel L
5 kW

Neutral

Phase b

Phase a
a

n

b

Panel L
5 kW

Panel M
10 kVA

pf=0.8

120  0° V rms

120  0° V rms

(a)

Ia

IL Im

Ib

±
–

±
–

a

n

b

Panel L

Panel
M

IH

Panel H

(b)

Figure 9.38

Single-phase three-wire
power distribution

system.
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In addition,

Therefore,

The currents in the neutral and phase b lines are

The complex power and power factor for each source are

and in a similar manner

b. Under the balanced condition 

and

Therefore,

and

c. The power loss in the lines in kW is

The total energy loss for a year is

and the annual cost is

A comparison of the unbalanced and balanced cases is shown in the following table:

Cost = $0.08 Wloss

Wloss = (24)(365)Ploss = 8760 Ploss

 = 0.05AI2
a + I2

b + I2
nB�1000

 Ploss = Ra I2
a + Rb I2

b + Rn I2
c

 pfb = 0.9487 lagging

 Sb = Vbn I*b = 9 + j3 kVA

 pfa = 0.9487 lagging

 Sa = Vna I*a = 9 + j3 kVA

 In = 0

 Ib = 79.06/-18.4° A rms

 = 79.06/-18.4° A rms

 Ia = IL + Im = 41.67/0° + 41.67/-36.9°

 pfb = 0.8 lagging

 Sb = Vbn I*b = 4 + j3 kVA

 pfa = cos (12.1°) = 0.9778 lagging

 Sa = Van I*a = A120/0°B A119.4/+12.1°B = 14 + j3 kVA

 Ib = 41.67/-36.9° A rms

 In = IL + IH = 83.34/0° A rms

 = 119.4/-12.1° A rms

 = 41.67/0° + 41.67/0° + 41.67/-36.9°

 Ia = IL + IH + Im

�m = cos-1(0.8) = -36.9°

UNBALANCED CASE BALANCED CASE

1.147 0.625

10,034 5,475

Cost($) 804 438  

Wloss(kW-hr)

Ploss(kW)

Therefore, the annual savings obtained using the balanced configuration is

 Annual cost savings = 804 - 438 = $366

 Annual energy savings = 10,048 - 5,475 = 4,573 kWh
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S U M M A R Y
•

■ Instantaneous power If the current and voltage are
sinusoidal functions of time, the instantaneous power is equal
to a time-independent average value plus a sinusoidal term
that has a frequency twice that of the voltage or current.

■ Average power
where �

is the phase of the impedance.

■ Resistive load since V and

I are in phase.

■ Reactive load

■ Maximum average power transfer To obtain

the maximum average power transfer to a load, the load

impedance should be chosen equal to the complex conjugate

of the Thévenin equivalent impedance representing the

remainder of the network.

■ rms or effective value of a periodic
waveform The effective, or rms, value of a periodic

waveform was introduced as a means of measuring the

effectiveness of a source in delivering power to a resistive

load. The effective value of a periodic waveform is found

by determining the root-mean-square value of the 

waveform. The rms value of a sinusoidal function is equal

to the maximum value of the sinusoid divided by 

■ Power factor Apparent power is defined as the prod-
uct The power factor is defined as the ratio of the
average power to the apparent power and is said to be lead-
ing when the phase of the current lags the voltage, and lag-
ging when the phase of the current lags the voltage. The
power factor of a load with a lagging power factor can be
corrected by placing a capacitor in parallel with the load.

■ Complex power The complex power, S, is defined as
the product The complex power S can be written
as S = P + jQ, where P is the real or average power and Q
is the imaginary or quadrature power.

■ The single-phase three-wire circuit The sin-
gle-phase three-wire circuit is the one commonly used in
households. Large appliances are connected line to line and
small appliances and lights are connected line to neutral.

■ Safety Safety must be a primary concern in the design
and use of any electrical circuit. The National Electric Code
is the primary guide for the construction and operation of
electrical systems.

S = I2Z = I2R + jI2X

Vrms  I*rms .

Vrms Irms .

12 .

P = 1�2 VI cos A;90°B = 0

P = 1�2 I2 R = 1�2 VI

 1�2 VI cos �,

P = 1�2 VI cos A�v - �iB  =

P R O B L E M S
•

9.1 The voltage and current at the input of a network are
given by the expressions

Determine the average power absorbed by the network.

9.2 The voltage and current at the input of a circuit are given
by the expressions

Determine the average power absorbed by the circuit.

9.3 Determine the equations for the current and the instanta-
neous power in the network in Fig. P9.3.

Figure P9.3

9.4 Given volts, find the average power
supplied by the source and the current in the network
in Fig. P9.4.

Figure P9.4

9.5 Determine the instantaneous power supplid by the source
in the circuit in Fig. P9.5.

Figure P9.5

4 �

2 �+
–12   60° V

–j2 �

j2 �

15 � 1 mF

10 �

50 mH

vS(t)

i2(t)

±
–

i2(t)
vs(t) = 100 cos 100t

±
–12   75° V

4 �

j3 �

I

i(t) = 5 cos (�t + 45°) A

v(t) = 170 cos(�t + 30°) V

i(t) = 4 sin �t A

v(t) = 6 cos �t V
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9.6 Find the instantanous power supplied by the source in the
network in Fig. P9.6.

Figure P9.6

4 � 2 �6   30° A

–j1 �

j1 �

9.9 Find the average power absorbed by the resis-
tor in the circuit shown in Fig. P9.9 if

and

Figure P9.9

1 �v1(t)

v2(t)

±
–

–±

v2(t) = 20 cos (377t + 120°) V.
v1(t) = 10 cos (377t + 60°) V

9.7 Find the instantaneous travel supplied by the source in the
network in Fig. P9.7.

Figure P9.7

4 �

4 � 4 �

12   30° V

–j4 � j4 �

+
-

9.8 Find the instantaneous power supplied by the source in
the network in Fig. P9.8.

Figure P9.8

4 �

2 �

6   45° A

–j2 � –j2 �j1 �

9.10 If A, find the average power
absorbed by each element in the circuit in Fig. P9.10.

Figure P9.10

120 �

40 �

12.5 �F

60 mHig(t)

ig(t) = 0.5 cos 2000t

9.11 Find the average power absorbed by the network in Fig.
P9.11.

Figure P9.11

+
–

2 �

1 �

1 �

–j2 � –j1 �j2 �

12  0° V

9.12 Find the average power absorbed by the 2-� resistor in
the network in Fig. P9.12 and the total power supplied.

Figure P9.12

4 �6  0° V

2 � –j2 �

j2 �

9.13 Find the average power absorbed by the 2-� resistor in the
circuit in Fig. P13 and the total power supplied.

Figure P9.13

2 �

4 �

2 �

12   0° A
j2 �

–j1 �

–j2 �+
-
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9.16 Compute the average power absorbed by each of the ele-
ments to the right of the dashed line in the circuit shown
in Fig. P9.16.

Figure P9.16

9.17 Find the average power absorbed by the network shown in
Fig. P9.17.

Figure P9.17

9.18 Determine the average power supplied by each source in
the network shown in Fig. P9.18.

Figure P9.18

4 �

2 �j1 �–j2 � 4  0° A V

±

–

2 �

j2 �

–j4 �

4  60° A

1 � j1 �

–j1 �±
–10  0° V

9.19 Given the network in Fig. P9.19, find the power sup-
plied and the average power absorbed by each element.

Figure P9.19

9.20 Given the network in Fig. P9.20, show that the power
supplied by the sources is equal to the power absorbed
by the passive elements.

Figure P9.20

9.21 Given the network in Fig. P9.21, find the average
power supplied to the circuit.

Figure P9.21

9.22 Calculate the average power absorbed by the 
resistor in the network shown in Fig. P9.22.

Figure P9.22

9.23 Determine the average power absorbed by the 
resistor in the network shown in Fig. P9.23.

Figure P9.23

–j4 �

±
– 2  0° A12  0° V j2 �

2 �

4 �

4-�

–j1 �j2 �

6  0° V 2 � 1 �±
–

1-�

–j2 �

j1 �2 �

12  0° A 4  0° V
1 �

±
–

–j2 � j3 �

6  45° V2  0° A 4 � ±
–

4 �

–j1 �j3 �

4  30° A

2 �

VT

±

–

9.14 Find the total average power supplied and the average power
absorbed by each element in the network in Fig. P9.14.

Figure P9.14

2 �

2 �

  4   0° A 12   0° Aj2 �

–j2 �

+
-

9.15 Calculate the average power supplied by the source in the
circuit in Fig. P9.15.

Figure P9.15

+
-

2 �2 H

4 �

50 cos5t V

5 � 3 �

6 � 1  H 0.2 F

0.05 F
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9.24 Determine the average power supplied to the network
in Fig. P9.24.

Figure P9.24

9.25 Determine the average power absorbed by a resis-
tor connected at the output terminals of the network
shown in Fig. P9.25.

Figure P9.25

9.26 Find the average power absorbed by the resistor in
the circuit shown in Fig. P9.26.

Figure P9.26

9.27 Determine the average power absorbed by the 
resistor in Fig. P9.27.

Figure P9.27

4 k�2 k�

1 k�

±
–

±
–

vo(t)
vS(t)=2 cos �t V

+

-

4- k�

12  0° V–j3 �

j2 �Ix

2Ix 2 � ±
–

2-�

12  0° V

–j2 �

j1 �2 �

2Ix

Ix

±
–

±
–

2-�

1  0° A

j1 �

j1 �

–j1 �

1 �

1 �

2 �

9.28 Determine the average power absorbed by the 
output resistor in Fig. P9.28.

Figure P9.28

9.29 Determine the impedance for maximum average
power transfer and the value of the maximum power
transferred to for the circuit shown in Fig. P9.29.

Figure P9.29

9.30 Determine the impedance for maximum average power
transfer and the value of the maximum average power
transferred to for the circuit shown in Fig. P9.30.

Figure P9.30

9.31 Determine the impedance for maximum average power
transfer and the value of the maximum average power
absorbed by the load in the network shown in Fig. P9.31.

Figure P9.31

j2 �

–j2 �2 � ZL4  30° A

6  0° V

–±

ZL

j1 �–j1 � 4 �1 �

ZL12  30° V 4  0° A±
–

ZL

ZL

1 �

j1 �

ZL6  0° A

ZL

ZL

2 k�

2 k�

1 k�

±
–

–
±

vo(t)vS(t)=2 cos �t V
+

-

2- k�
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9.36 Find the value of ZL in Fig. P9.36 for maximum aver-
age power transfer to the load.

Figure P9.36

9.37 Determine the impedance for maximum average power
transfer and the value of the maximum average power
transferred to for the circuit shown in Fig. P9.37.

Figure P9.37

9.38 In the network in Fig. P9.38, find for maximum
average power transfer and the maximum average
power transferred.

Figure P9.38

9.39 In the network in Fig. P9.39, find for maximum
average power transfer and the maximum average
power transferred.

Figure P9.39

ZL

4  0° A12  0° V

1 �

1 �

±
–

–j1 �

j1 �

j1 �

ZL

6  0° V2  0° A

1 �2 �

–j2 � ±
–

ZL

ZL

j1 �

–j1 �

ZL4  0° V

1 � 1 �

±
–

ZL

ZL

4 �

4 �

2 �

–j4 �

–j4 �

j2 �

12  0° V

ZL

+
-

9.32 Determine the impedance for maximum average power
transfer and the value of the maximum average power
absorbed by the load in the network shown in Fig. P9.32.

Figure P9.32

9.33 Find the value of ZL in Fig. P9.33 for maximum average
power transfer to the load.

Figure P9.33

9.34 Find the value of ZL in Fig. P9.34 for maximum average
power transfer to the load.

Figure P9.34

9.35 Find the value of ZL in Fig. P9.35 for maximum average
power transfer to the load.

Figure P9.35

2 �

4 �

j2 �–j4 �

ZL12  45° V

4 �

2 �

2 �

+j2 �

–j2 �

12  0° V ZL
+
-

2 �

4 �

2 �

6 �

j4 �–j4 �

  4  0° V

12  0° V

ZL

+
-

–j1 �

j1 �

ZL

6  0° V

1 �

2 �

– ±

ZL
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9.40 Determine the impedance for maximum average power
transfer and the value of the maximum average power
absorbed by the load in the network shown in Fig. P9.40.

Figure P9.40

9.41 Find the impedance for maximum average power
transfer and the value of the maximum average power
transferred to for the circuit shown in Fig. P9.41.

Figure P9.41

9.42 Repeat Problem 9.40 for the network in Fig. P9.42.

Figure P9.42

9.43 Compute the rms value of the voltage given by the
expression 

9.44 Compute the rms value of the voltage given by the
waveform shown in Fig. P9.44.

Figure P9.44

t(s)

v(t) (V)

10

0 1 5 6 10

v(t) = 10 + 20 cos (377t + 30°) V.

4  0° A

1 �

1 �
2 Vx

–j1 �

ZL

j1 �

±–

Vx

+

-

12  0° V

1 �

1 � 2 I

I

j1 �

–j1 �

ZL

– ±

ZL

ZL

6  0° V4  0° A

2 �

2 �

–j2 � ±
–

ZL

ZL 9.45 Find the rms value of the waveform shown in 
Fig. P9.45.

Figure P9.45

9.46 Calculate the rms value of the waveform shown in 
Fig. P9.46.

Figure P9.46

9.47 Calculate the rms value of the waveform shown in
Fig. P9.47.

Figure P9.47

9.48 Calculate the rms value of the waveform in
Fig. P9.48.

Figure P9.48

t(s)

i(t) (A)

2

0 2 3 4 76

t(s)

v(t) (V)

1

2

3

0 2 4 6 8 10 12 14

t(s)

v(t) (V)

1

3

2

–2

1

0 1 2 3 4 5 6

t(s)

v(t) (V)

1

3

2

0 1 2 3 4 5

irwin09_435-490hr.qxd  28-07-2010  12:00  Page 483



484 C H A P T E R  9 S T E A D Y- S T A T E  P O W E R  A N A LY S I S

9.49 Calculate the rms value of the waveform in Fig. P9.49.

Figure P9.49

t(s)

v(t) (V)

6

0 2 3 4 76

9.52 Find the rms value of the waveform shown in
Fig. P9.52.

Figure P9.52

t(s)

1

2

3

210 3 4
–1

–2

v(t) (V)

9.51 The current waveform shown in Fig. P9.51 is applied to a 4-� resistor. Calculate the average
power dissipated in the resistor.

Figure P9.51

t(s)

1

2

1

3 4 5 7 8 9 10

6

–0.5

–1

i(t) (A)

i(t) 4 k�

9.53 Calculate the rms value of the waveform shown in Fig.
P9.53.

Figure P9.53

t(s)

2

4

21 3 4 5 7 86

v(t) (V)

9.54 Find the rms value of the waveform shown in 
Fig. P9.54.

Figure P9.54

t(s)

1

–1

0

–2

2

3

4

5

21 3 4 5 76

v(t) (V)

9.50 Calculate the rms value of the waveform shown in Fig. P9.50.

Figure P9.50

i(t) (A)

t(s)

10

0 2 4 6 8 10 12 14

9.55 Calculate the rms value of the waveform in Fig. P9.55.

Figure P9.55

i(t) (A)

2

–2

0 2 3 51 4 t(s)
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9.56 Calculate the rms value of the waveform shown in
Fig. P9.56.

Figure P9.56

9.57 The current waveform in Fig. P9.57 is flowing through a
resistor. Find the average power absorbed by the

resistor.

Figure P9.57

9.58 Calculate the rms value of the waveform shown in
Fig. P9.58.

Figure P9.58

9.59 The industrial load in Fig. P9.59 is known to be induc-
tive and consumes 90 kW. The ammeter reading is 260A
rms, and the voltmeter reading is 480 V rms. Determine
the power factor of the total.

Figure P9.59

9.60 The industrial load in Fig. P9.59 consumes 110 kW at
0.88 of lagging. The ammeter leads 252A rms.
Determine the voltmeter reading.

9.61 The industrial load in Fig. P9.59 consumes 88 kW and
the power factor is 0.8 lagging. The power supplied is
96 kW, and the line impedance is 0.1 �. Determine the
readings of the ammeter and voltmeter.

±
– Voltmeter

Power
supply
voltage

Zline Ammeter

Industrial
load

i(t) (A)

t(s)

21 3 4 50

1

–2

i(t) (A)

t(s)
2 4 6 8

2

0

–2

–4

4

5-�

v(t) (V)

t(s)

4

0 1 2 3 4 5 6
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9.62 The power supply in Fig. P9.59 generates 50 kW 
the line impedance is 0.095 �. If the load consumes 
43 kW and the voltmeter leads 220 V rms, determine
the ammeter leading and the power factor of the induc-
tive load.

9.63 A plant consumes 100 kW of power at 0.9 pf lagging. If
the load current is 200 A rms, find the load voltage.

9.64 A plant consumes 20 kW of power from a 240-V rms
line. If the load power factor is 0.9, what is the angle by
which the load voltage leads the load current? What is
the load current phasor if the line voltage has a phasor
of 240 ?

9.65 A plant draws 250 A rms from a 240-V rms line to supply
a load with 50 kW. What is the power factor of the load?

9.66 The power company must generate 100 kW to supply
an industrial load with 94 kW through a transmission
line with resistance. If the load power factor is
0.83 lagging, find the load voltage.

9.67 A transmission line with impedance of 
is used to deliver power to a load. The load is inductive,
and the load voltage is 220 at 60 Hz. If the
load requires 12 kW and the real power loss in the line
is 560 W, determine the power factor angle of the load.

9.68 The power company supplies 80 kW to an industrial load.
The load draws 220 A rms from the transmission line. If
the load voltage is 440 V rms and the load power factor is
0.8 lagging, find the losses in the transmission line.

9.69 The power company supplies 40 kW to an industrial load.
The load draws 200 A rms from the transmission line. If
the load voltage is 240 V rms and the load power factor
is 0.8 lagging, find the losses in the transmission line.

9.70 An industrial load that consumes 40 kW is supplied by
the power company, through a transmission line with 

resistance, with 44 kW. If the voltage at the 
load is 240 V rms, find the power factor at the load.

9.71 A transmission line with impedance is
used to deliver power to a load. The load is capacitive
and the load voltage is 240 at 60 Hz. If the
load requires 15 kW and the real power loss in the line is
660 W, determine the input voltage to the line.

9.72 An industrial load operates at 30 kW, 0.8 pf lagging. The
load voltage is The real and reactive
power losses in the transmission-line feeder are 1.8 kW
and 2.4 kvar, respectively. Find the impedance of the
transmission line and the input voltage to the line.

240 /0° V rms.

/0° V rms

0.1 + j0.2 �

0.1-�

/0° V rms

0.08 + j0.25 �

0.09-�

/0° V rms
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9.77 In the circuit shown in Fig. P9.77, calculate VS, the com-
plex power supplied by the source, and the power factor
of the source.

Figure P9.77

9.78 In the circuit shown in Fig. P9.78, calculate VS, the com-
plex power supplied by the source, and the power factor
of the source.

Figure P9.78

9.79 Given the network in Fig. P9.79, find the complex power
supplied by the source, the power factor of the source,
and the voltage The frequency is 60 Hz.

Figure P9.79

9.80 Find the complex power supplied by the source, the power
factor of the source, and VS, (t) if f = 60 Hz in Fig. P9.80

Figure P9.80

9.81 Use Kirchhoff’s laws to compute the source voltage of
the network shown in Fig. P9.81.

Figure P9.81

j0.25 �

VS

0.09 �

220  0° V rms±
–

±

–

24 kW
0.85 pf
lagging

36 kW
0.78 pf
lagging

j0.3 �0.15 �

480  0° V rms
40 kW
0.84

lagging

40 kVA
0.9

leading
VS

±
–

±

–

j0.2 �0.05 �

240  0° V rms
20 kW

0.7
leading

12 kVA
0.9

lagging
VS

±
–

±

–

vs(t).

j0.2 �

240  0° V rms±
–

25 kW
0.88

leading

+

-

0.1 �

Vs

j0.25 �

480  0° V rms±
–

70 kVA
0.92

leading

+

-

0.15 �

Vs

9.73 Find the real and reactive power absorbed by each
element in the circuit in Fig. P9.73.

Figure P9.73

9.74 Calculate the real and reactive power absorbed by 
every element (including the sources) in the circuits in
Fig. P9.74.

Figure P9.74

9.75 For the network in Fig. P9.75, the complex power
absorbed by the source on the right is .
Find the value of R and the unknown element and its
value if . (If the element is a capacitor, give
its capacitance; if the element is an inductor, give its
inductance.)

Figure P9.75

9.76 The source in the circuit in Fig. P9.76 supplies 40 kW at a
power factor of 0.9 lagging. The real and reactive losses of
the transmission-line feeder are 1.6 kW and 2.1kvar,
respectively. Calculate R, X, and the load voltage.

Figure P9.76

R jX

480  0° V rms±
– LoadVL

+

-

Unknown
elementR

±
–

±
– 150  0° V rms120  –10° V rms

f = 60 Hz

0 + j1582.5 VA

4 � j4 � –j2 �

150  0° V rms125  10° V rms±
–

±
–

2 � j3 � –j5 �

95  –10° V rms125  0° V rms±
–

±
–
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9.82 Given the network in Fig. P9.82, determine the input
voltage 

Figure P9.82

j0.3 �

VS

0.1 �

240  0° V rms

+

-

±
–

36 kW
0.82 pf
lagging

48 kW
0.88 pf
lagging

VS.
9.83 Given the network in Fig. P9.83, determine the input

voltage 

Figure P9.83

j0.1 �

VS

0.1 �

240  0° V rms

+

-

±
–

30 kVA
0.9 pf

lagging

40 kW
0.795 pf
lagging

VS.

9.84 Given the circuit in Fig. P9.84, find the complex power supplied by the 
source and the source power factor. If find 

Figure P9.84

9.85 Given the network in Fig. P9.85, compute the input source voltage and the input
power factor.

Figure P9.85

j0.2 �

VS

0.08 � j0.05 �0.01 �

220  0° V rms

+

-

±
–

60 kW
0.86 pf
lagging

20 kW
0.8 pf

lagging

j0.2 �0.1 �
30 kW

0.8
leading

10 kW
0.8

lagging

20 kVA
0.9

lagging
VS 480  0° V rms±

–

±

–

vs(t).f = 60 Hz,

9.86 Given the network in Fig. P9.86, compute the input
source voltage and the input power factor.

Figure P9.86

9.87 What value of capacitance must be placed in parallel
with the 18-kW load in Problem 9.86 to raise the power
factor of this load to 0.9 lagging?

9.88 An industrial load consumes 44 kW at 0.82 pf lagging
from a line. A bank of capacitors
totaling is available. If these capacitors are
placed in parallel with the load, what is the new power
factor of the total load?

600 
F
240 /0° - Vrms 60-Hz

j0.2 �

VS

0.08 � j0.05 �0.01 �

220  0° V rms

+

-

±
–

40 kW
0.86 pf
lagging

18 kW
0.8 pf

lagging

9.89 A particular load has a pf of 0.8 lagging. The power
delivered to the load is 40 kW from a 270-V rms
60-Hz line. What value of capacitance placed in par-
allel with the load will raise the pf to 0.9 lagging?

9.90 A particular load has a pf of 0.8 lagging. The power
delivered to the load is 40 kW from a 220-V rms
60-Hz line. What value of capacitance placed in par-
allel with the load will raise the pf to 0.9 lagging?

9.91 An industrial load is supplied through a transmission
line that has a line impedance of The
60-Hz line voltage at the load is The
load consumes 124 kW at 0.75 pf lagging. What value
of capacitance when placed in parallel with the load
will change the power factor to 0.9 lagging?

9.92 The 60-Hz line voltage for a 60-kW, 0.76-pf lagging
industrial load is Find the value of
capacitance that when placed in parallel with the load
will raise the power factor to 0.9 lagging.

240 /0° V rms.

480 /0° V rms.
0.1 + j0.2 �.
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9.98 Determine the value of capacitance in Fig. P9.98 that
must be connected in parallel with the load so that the
power factor of the combined load and capacitor is
unity. Calculate the complex power supplied by the
source after the power factor has been corrected to
unity. The frequency f = 60 Hz

Figure P9.98

9.99 A 5-kW load operates at 60 Hz, 240-V rms and has a
power factor of 0.866 lagging. We wish to create a
power factor of at least 0.975 lagging using a single
capacitor. Can this requirement be met using a single
capacitor from Table 6.1?

9.100 A 5.1-kW household range is designed to operate 
on a 240-V rms sinusoidal voltage, as shown in 
Fig. P9.100a. However, the electrician has mistakenly
connected the range to 120 V rms, as shown in 
Fig. P9.100b. What is the effect of this error?

Figure P9.100

±
–

±
–

120  0° V rms

a

b

A

B

(a)

120  0° V rms

Range
5100 W

±
–

a

n

A

N

(b)

120  0° V rms Range

j0.3 �

480  0° V rms±
–

40 kVA
0.84

lagging

+

-

0.15 �

Vs

9.93 A plant consumes 60 kW at a power factor of 0.75 lag-
ging from a 240-V rms 60-Hz line. Determine the value
of the capacitor that when placed in parallel with the
load will change the load power factor to 0.9 lagging.

9.94 A bank of induction motors consumes 36 kW at 0.78 pf
lagging from a 60-Hz line. If 
of capacitors are placed in parallel with the load, what is
the new power factor of the total load?

9.95 Calculate the value of capacitance in Fig. P9.95 that must
be connected in parallel with the load to correct the
source power factor with the load to correct the source
power factor to 0.94 lagging. The frequncy f = 60 Hz.

Figure P9.95

9.96 In the circuit in Fig. P9.96, a load is modeled by an
impedance of 4 + j4 E. Determine the value of capaci-
tance that must be connected in parallel with the load to
correct the power factor of the combined load and
capacitor to 0.95 lagging. The frequncy f = 60 Hz.

Figure P9.96

9.97 In the circuit in Fig. P9.97, a load is modeled by an
impedance of 4 + j4 �. Determine the value of capaci-
tance which must be connected in parallel in with the
load to correct the power factor of the combined load
and capacitor to 0.95 lagging. The frequency f = 60 Hz.

Figure P9.97

j0.8 �

j4 �

120  0° V rms ±
–

4 �

4 �

j0.8 �

j4 �

120  0° V rms±
–

+

-

4 �

4 �

Vs

30 kW
0.75

lagging

±
–240  0° V rms

200 �F240 /0°  - V rms
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9.101 To test a light socket, a woman, while standing on cush-
ions that insulate her from the ground, sticks her finger
into the socket, as shown in Fig. P9.101. The tip of her
finger makes contact with one side of the line, and the
side of her finger makes contact with the other side of the
line. Assuming that any portion of a limb has a resistance
of is there any current in the body? Is there any cur-
rent in the vicinity of the heart?

Figure P9.101

9.102 An inexperienced mechanic is installing a 12-V battery in
a car. The negative terminal has been connected. He is
currently tightening the bolts on the positive terminal.
With a tight grip on the wrench, he turns it so that the
gold ring on his finger makes contact with the frame of
the car. This situation is modeled in Fig. P9.102, where
we assume that the resistance of the wrench is negligible
and the resistance of the contact is as follows:

What power is quickly dissipated in the gold ring, and
what is the impact of this power dissipation?

Figure P9.102

±
–

R1 R2

R3

R4

12 V

R4 = Rring to frame = 0.012 �

R3 = Rring = 0.012 �

R2 = Rwrench to ring = 0.012 �

R1 = Rbolt to wrench = 0.012 �

95 �,

9.103 A single-phase three-wire 60-Hz circuit serves three
loads, as shown in Fig. P9.103. Determine 
and the energy use over a 24-hour period in kilowatt-
hours.

Figure P9.103

9.104 A number of 120-V rms household fixtures are to be
used to provide lighting for a large room. The total
lighting load is 8 kW. The National Electric Code
requires that no circuit breaker be larger than 20 A
rms with a 25% safety margin. Determine the num-
ber of identical branch circuits needed for this
requirement.

9.105 A man and his son are flying a kite. The kite becomes
entangled in a 7200-V rms power line close to a
power pole. The man crawls up the pole to remove
the kite. While trying to remove the kite, the man
accidentally touches the 7200-V rms line. Assuming
that the power pole is well grounded, what is the
potential current through the man’s body?

IaA Ic

InN

±
–

±
–

120  0° V rms

A

Nn

a

b

120  0° V rms

100 W

1 kVA
pf=0.9
lagging

100 W

IaA, InN, Ic,
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T Y P I C A L P R O B L E M S F O U N D  O N  T H E F E E X A M
•

9PFE-4 An rms-reading voltmeter is connected to the output
of the op-amp shown in Fig. 9PFE-4. Determine the
meter reading.

a. 3 V

b. 5.2 V

c. 4.24 V

d. 2 V

Figure 9PFE-4

9PFE-5 Determine the average power delivered to the resistor
in Fig. 9PFE-5a if the current waveform is shown in
Fig. 9PFE-5b.

a. 18.78 W

b. 8.64 W

c. 2.82 W

d. 10.91 W

36 k�

12 k�

1.414 cos �t V rms-reading
voltmeter

±
–

–
±

9PFE-1 An industrial load consumes 120 kW at 0.707 pf lag-
ging and is connected to a line.
Determine the value of the capacitor that, when con-
nected in parallel with the load, will raise the power
factor to 0.95 lagging.

a.

b.

c.

d.

9PFE-2 Determine the rms value of the following waveform.

a. 2.33 V

b. 1 V

c. 3.25 V

d. 1.22 V

Figure 9PFE-2

9PFE-3 Find the impedance in the network in Fig. 9PFE-3
for maximum power transfer.

a.

b.

c.

d.

Figure 9PFE-3

– ±

ZL2  0° A

12  0° V

2 �

j2 �

–j1 �

0.3 - j1.6 �

0.2 + j1.4 �

0.4 - j1.2 �

0.8 + j2.4 �

ZL

v(t) (V)

t(s)

1

0 1

2

2 3 4 5

471 
F

928 
F

763 
F

642 
F

480 /0°V rms 60-Hz

Figure 9PFE-5

4 �

(b)(a)

1 2 3 4
0

–2

2

1

i(t) (A)

i(t)

t(s)
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CHAPTER

MAGNETICALLY
COUPLED NETWORKS

491

T H E L E A R N I N G  G O A L S
F O R  T H I S C H A P T E R  A R E :

■ Understand the concepts of mutual inductance,
coefficient of coupling, and turns ratio

■ Know how to calculate voltages and currents in
circuits containing mutual inductance

■ Know how to calculate voltages and currents in
circuits containing ideal transformers

M
Magnetic Levitation Train The Pony Express is to today’s

electronic mail as the stagecoach of the Old West is to which

modern miracle of land transportation? Did you guess a

speeding locomotive? Very good, but a better answer is the

magnetic levitation train—abbreviated MagLev. These passen-

ger trains—the world’s fastest—float on a magnetic field

about 10 mm above the guideway, propelled by a linear

induction motor. Shanghai Pudong International Airport has a

MagLev that reaches speeds over 300 mph, 60% faster than

the famed Bullet Trains of Japan. It gives the smoothest ride

ever, coasting along under magnetic power.

MagLev trains are used primarily when two large cities are

to be connected for passenger service. MagLev systems have

several advantages: lower maintenance because there are no

moving parts; no friction, only air resistance; an absence of

wheel noises; no exhaust fumes; and amazing speed. The only

drawbacks are higher costs and lack of compatibility with exist-

ing infrastructure. 

This chapter introduces a central concept of MagLev tech-

nology: the magnetic effects of mutual coupling in circuits

resulting from changing currents. Voltages are induced in near-

by branches due to these magnetic fields—this coupling is

quantified by mutual inductance terms. Transformers that step

up or step down voltages and currents from their primary to

secondary sides are useful in several ways, such as transmit-

ting power over long distances or for impedance matching in

acoustical equipment. Requiring extremely strong magnetic

fields, MagLev trains depend on these same mutual coupling

effects for high-speed transportation. It’s not magic; it’s elec-

tromagnetics.

10

Fudan Li/iStockphoto
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10.1
Mutual
Inductance

As we introduce this subject, we feel compelled to remind the reader, once again, that in our
analyses we assume that we are dealing with “ideal” elements. For example, we ignore the
resistance of the coil used to make an inductor and any stray capacitance that might exist.
This approach is especially important in our discussion of mutual inductance because an
exact analysis of this topic is quite involved. As is our practice, we will treat the subject in a
straightforward manner and ignore issues beyond the scope of this book that only serve to
complicate the presentation.

To begin our discussion of mutual inductance, we will recall two important laws: Ampère’s
law and Faraday’s law. Ampère’s law predicts that the flow of electric current will create a
magnetic field. If the field links an electric circuit, and that field is time-varying, Faraday’s law
predicts the creation of a voltage within the linked circuit. Although this occurs to some extent
in all circuits, the effect is magnified in coils because the circuit geometry amplifies the
linkage effect. With these ideas in mind, consider the ideal situation in Fig. 10.1 in which a
current i flows in an N-turn coil and produces a magnetic field, represented by magnetic 
flux The flux linkage for this coil is

10.1� = N�

�.
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v N turns �i

+

-

Figure 10.1
Magnetic flux � linking

an N-turn coil.

i

v L

+

-

Figure 10.2

An ideal inductor.

For the linear systems that we are studying in this textbook, the flux linkage and current are
related by

10.2

The constant of proportionality between the flux linkage and current is the inductance, which
we studied in Chapter 6. Eqs. (10.1) and (10.2) can be utilized to express the magnetic flux
in terms of the current:

10.3

According to Faraday’s law, the voltage induced in the coil is related to the time rate of
change of the flux linkage :

10.4

Let’s substitute Eq. (10.2) into Eq. (10.4) and use the chain rule to take the derivative:

10.5

We will not allow our inductances to vary with time, so Eq. (10.5) reduces to the defining
equation for the ideal inductor, as shown in Fig. 10.2:

10.6v = L 
di

dt

v =

d�

dt
=

d

dt
 (Li) = L 

di

dt
+ i 

dL

dt

v =

d�

dt

�

� =

L

N
 i

� = Li
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Note that the voltage and current in this figure satisfy the passive sign convention. Equation
(10.6) tells us that a current i flowing through a coil produces a voltage v across that coil.

Now let’s suppose that a second coil with N2 turns is moved close enough to an N1-turn
coil such that the magnetic flux produced by current links the second coil. No current flows
in the second coil as shown in Fig. 10.3. By Faraday’s law, a voltage will be induced
because the magnetic flux links the second coil. The flux linkage for coil 1 is

10.7

Current flowing in coil 1 produces a voltage We have been referring to 

as the inductance. In multiple coil systems, we will refer to as the self-inductance of coil 1. 
The flux linkage for coil 2 is and from Faraday’s law, the voltage is given as

10.8

Note that the voltage is directly proportional to the time rate of change of The con-
stant of proportionality, is defined as the mutual inductance and is given in units of hen-
rys. We will say that the coils in Fig. 10.3 are magnetically coupled.

Let’s connect a current source to the terminals of coil 2 as shown in Fig. 10.4. Both cur-
rents contribute to the magnetic flux For the coil configuration and current directions
shown in this figure, the flux linkages for each coil are

10.9

10.10

Applying Faraday’s law,

10.11

10.12 v2 =

d�2

dt
= L21 

di1

dt
+ L2 

di2

dt

 v1 =

d�1

dt
= L1 

di1

dt
+ L12 

di2

dt

 �2 = L21 i1 + L2 i2

 �1 = L1 i1 + L12 i2

�.

L21 ,
i1 .v2

v2 =

d�2

dt
=

d

dt
 AN2 �B =

d

dt
 aN2 a L1

N1
 i1 b b =

N2

N1
 L1 

di1

dt
= L21 

di1

dt

v2�2 = N2 �,
L1

L1v1 =

d�1

dt
= L1 

di1

dt
 .

�1 = N1 � = L1 i1

�
v2

i1

v1 N1 N2

�

i1

+

-

v2

+

-

Figure 10.3

Two coils magnetically
coupled.

v1

�

i1

+

-

v2 i2

+

-

N1 N2

Figure 10.4

Two magnetically coupled
coils driven by current
sources.
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Since we have limited our study to linear systems, where M is the symbol
for mutual inductance. From Eqs. (10.11) and (10.12), we can see that the voltage across each
coil is composed of two terms: a “self term” due to current flowing in that coil and a “mutual
term” due to current flowing in the other coil.

If the direction of in Fig. 10.4 is reversed, Eqs. (10.9) through (10.12) become

10.13

10.14

10.15

10.16

Eqs. (10.13)–(10.16) can also be obtained from the circuit in Fig. 10.5. Note that coil 2 in
this figure has a different winding arrangement as compared to coil 2 in Fig. 10.4.

Our circuit diagrams will become quite complex if we have to include details of the
winding configuration. The use of the dot convention permits us to maintain these details
while simplifying our circuit diagrams. Fig. 10.6a is the circuit diagram for the magnetical-
ly coupled coils of Fig. 10.4. The coils are represented by two coupled inductors with self-
inductances and and mutual inductance M. Recall that the voltage across each coil 
consists of two terms: a self term due to current flowing in that coil and a mutual term due
to current flowing in the other coil. The self term is the same voltage that we discussed in
an earlier chapter. The mutual term results from current flowing in the other coupled coil.

L2L1

 v2 =

d�2

dt
= -M 

di1

dt
+ L2 

di2

dt

 v1 =

d�1

dt
= L1 

di1

dt
- M 

di2

dt

 �2 = -Mi1 + L2 i2

 �1 = L1 i1 - Mi2

i2

L12 = L21 = M,

v1 N1 N2

�

i1

+

-

v2 i2

+

-

Figure 10.5
Magnetically coupled

coils with different winding
configuration.

M

v1 L1 L1 L2M
di1
dt–––

di2
dt–––+ L2M

di2
dt–––

di1
dt––– +i1 i2

+

-

+

-

+

-

v2

+

-

M

(a)

(b)

v1 L1 L1 L2M
di1
dt–––

di2
dt–––- L2–M

di2
dt–––

di1
dt––– +i1 i2

+

-

+

-

+

-

v2

+

-

Figure 10.6

Circuit diagrams for
magnetically coupled coils.
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In Fig. 10.6a, the mutual terms are positive when both currents enter the dots. The oppo-
site is true when one current enters a dot and the other current leaves a dot, as seen in
Fig. 10.6b. Let’s use this observation to develop a general procedure for writing circuit
equations for magnetically coupled inductors. Fig. 10.7a is the same diagram as Fig. 10.6a
except that the voltage across the inductors is broken into the self term and the mutual
term. The polarity of the self terms— and —are given by the passive sign
convention used extensively throughout this text. These terms would be present even if the
coils were not magnetically coupled. The mutual terms in Fig. 10.7a have the same 
polarity as the self terms. Note that both currents are entering the dots in Fig. 10.7a. The 
opposite is true in Fig. 10.7b. The self terms have the same polarity as before; however, the 
polarities for the mutual terms are different from those in Fig. 10.7a. We can now make a 
general statement:

When a current is defined to enter the dotted terminal of a coil, it produces a voltage in the
coupled coil which is positive at the dotted terminal. Similarly, when a current is defined to
enter the undotted terminal of a coil, it produces a voltage in the coupled coil which is positive
at the undotted terminal.

Let’s illustrate the use of this statement through some examples.

L2 di2�dtL1 di1�dt

M

L1 L1 L2M
di1
dt–––

di2
dt––– L2 M

di2
dt–––

di1
dt–––i1 i2

+

-

+

-

+

-

+

-

L2 M
di2
dt–––

di1
dt–––

+

-

-

+

M

(a)

(b)

L1 L1 L2M
di1
dt–––

di2
dt–––i1 i2

+

-

-

+

Figure 10.7

Circuit diagrams for
magnetically coupled coils
showing self and mutual
voltage terms.

Step 1. Assign mesh currents. It is usually much easier to write mesh equations for a
circuit containing magnetically coupled inductors than nodal equations.

Step 2. Write mesh equations by appling KVL. If a defined current enters the dotted
terminal on one coil, it produces a voltage in the other coil that is positive at
the dotted terminal. If a defined current enters the undotted terminal on one
coil, it produces a voltage in the other coil that is positive at the undotted
terminal.

Step 3. Solve for the mesh currents.

Magnetically
Coupled Inductors

Problem-Solving Strategy
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Determine the equations for and in the circuit shown in Fig. 10.8a.

The different voltage terms for the circuit are shown on the circuit diagram in Fig. 10.8b.
The polarity of the self terms is given by the passive sign convention. For both coils, the
defined currents are entering the undotted terminals on both coils. As a result, the polarity
of the voltages produced by these currents is positive at the undotted terminal of the other
coils. The equations for and are

 v2(t) = L2 
di2

dt
+ M 

di1

dt

 v1(t) = -L1 
di1

dt
- M 

di2

dt

v2(t)v1(t)

v2(t)v1(t)EXAMPLE

10.1

Write mesh equations for the circuit of Fig. 10.9a using the assigned mesh currents.

The circuit in Fig. 10.9b shows the voltage terms for mesh 1. The polarity of the self terms
for and is determined by the passive sign convention. The current enters the
dotted terminal of inductor This current produces the mutual term shown across induc-
tor Current enters the dotted terminal of and produces a voltage across that is
positive at its dotted terminal. The equation for this mesh is

v1(t) = R1 i1(t) + L1 
di1

dt
+ M 

d

dt
 Ai2 - i1B + L2 

d

dt
 Ai1 - i2B - M 

di1

dt

L2L1i1L1 .
L2 .

Ai2 - i1BL2L1

EXAMPLE

10.2

SOLUTION

SOLUTION

v1(t)

-

+

v2(t)

i2(t)i1(t)

+

-

M

L1 L2

v1(t)

-

+

v2(t)

i2(t)i1(t)

+

-

+

-

+

-

+

-

+

-

M

L1 L2L1M
di1
dt––– L2

di2
dt–––

di2
dt––– M

di1
dt–––

Figure 10.8a 

Circuit used in
Example 10.1.

Figure 10.8b 

Circuit showing self and
mutual voltage terms.

v1(t) i1(t)
i2(t)

L1

M L2

R1

R2
±
–

Figure 10.9a

Circuit used in
Example 10.2.
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The voltage terms for the second mesh are shown in Fig. 10.9c. The equation for mesh 2 is

R2 i2(t) + L2 
d

dt
 Ai2 - i1B + M 

di1

dt
= 0

L2 (i1-i2)M d
dt–––

di1
dt–––

-

+

+

-

v1(t) i1(t)

i2(t)
L1

M
L2

R1

R2
±
–

M (i2-i1)
d
dt–––+ -

di1
dt–––L1+ -

L2 (i2-i1)M d
dt–––

di1
dt–––

-

+

-

+

v1(t) i1(t)

i2(t)
L1

M
L2

R1

R2
±
–

Figure 10.9b

Circuit showing voltage
terms for mesh 1.

Figure 10.9c

Circuit showing voltage
terms for mesh 2.

E10.1 Write the equations for v1(t) and v2(t) in the circuit in Fig. E10.1.

Learning Assessment
ANSWER:

;

. v2(t) = -L2 
di2(t)

dt
- M 

di1(t)

dt

 v1(t) = L1 
di1(t)

dt
+ M 

di2(t)

dt

L1

-

+

v1(t)

i1(t)
M

L2

+

-

v2(t)

i2(t)

Figure E10.1

Assume that the coupled circuit in Fig. 10.10 is excited with a sinusoidal source. The volt-
ages will be of the form and and the currents will be of the form and

where V1 , V2 , I1 , and I2 are phasors. Substituting these voltages and currents into Eqs.
(10.11) and (10.12), and using the fact that L12 = L21 = M, we obtain

10.17

 V2 = j�L2 I2 + j�MI1

 V1 = j�L1 I1 + j�MI2

I2 ej�t,
I1 ej�tV2 ej�t,V1 ej�t

Figure 10.10

Mutually coupled coils.

L1

-

+

v1(t)

i1(t)

M

L2

+

-

v2(t)

i2(t)
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The model of the coupled circuit in the frequency domain is identical to that in the time
domain except for the way the elements and variables are labeled. The sign on the mutual
terms is handled in the same manner as is done in the time domain.

EXAMPLE

10.3
SOLUTION

The two mutually coupled coils in Fig. 10.11a can be interconnected in four possible ways.
We wish to determine the equivalent inductance of each of the four possible interconnections.

Case 1 is shown in Fig. 10.11b. In this case

where Leq = L1 + L2 + 2M.
Case 2 is shown in Fig. 10.11c. Using KVL, we obtain

where Leq = L1 + L2 - 2M.
Case 3 is shown in Fig. 10.11d and redrawn in Fig. 10.11e. The two KVL equations are

Solving these equations for I1 and I2 yields

Using KCL gives us

where

Case 4 is shown in Fig. 10.11f. The voltage equations in this case will be the same as
those in case 3 except that the signs of the mutual terms will be negative. Therefore,

Leq =

L1 L2 - M2

L1 + L2 + 2M

Leq =

L1 L2 - M2

L1 + L2 - 2M

I = I1 + I2 =

VAL1 + L2 - 2MB
j�AL1 L2 - M2B =

V
j�Leq

 I2 =

VAL1 - MB
j�AL1 L2 - M2B

 I1 =

VAL2 - MB
j�AL1 L2 - M2B

 V = j�M I1 + j�L2I2

 V = j�L1 I1 + j�MI2

 = j�Leq I

 V = j�L1 I - j�MI + j�L2 I - j�MI

 = j�Leq I

 V = j�L1 I + j�MI + j�L2 I + j�MI

(a) (b)

j�M j�L2j�L1

1 2 3 4

j�L2j�L1
j�M

V
I

–±

1 2 3 4

Figure 10.11

Circuits used in 
Example 10.3.
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SOLUTION

Figure 10.11

(continued)

EXAMPLE

10.4
We wish to determine the output voltage Vo in the circuit in Fig. 10.12.

The two KVL equations for the network are

Solving the equations yields

Therefore,

 = 5.36/3.43° V

 Vo = 2I2

I2 = 2.68/3.43° A

 -j2I1 + (2 + j6 - j2)I2 = 0

 (2 + j4)I1 - j2I2 = 24/30°

±
– I124  30° V

2 �

2 �j4 �

j2 �

j6 �

–j2 �

I2 Vo

+

-

Figure 10.12

Example of a magnetically
coupled circuit.

(c) (d)

(e) (f)

j�Mj�L1 j�L2V

I

±
–

1 4

2 3

j�L1 j�L2V

j�M

±
–

I

I1 I2

1 3

2 4

j�L2j�L1

V

1 2 3 4

I1

I

I2

j�M

–±

j�L2j�L1

VI

j�M

–±

1 2 3 4
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Let us now consider a more complicated example involving mutual inductance.

EXAMPLE

10.5
SOLUTION

Consider the circuit in Fig. 10.13. We wish to write the mesh equations for this network.

Because of the multiple currents that are present in the coupled inductors, we must be very
careful in writing the circuit equations.

The mesh equations for the phasor network are

which can be rewritten in the form

Note the symmetrical form of these equations.

 + aR3 + j�L2 +

1

j�C2
+ R4 b I3 = 0

 -j�MI1 - AR3 + j�L2 - j�MBI2

 - Aj�L2 + R3 - j�MBI3 = 0

 + a 1

j�C1
+ j�L1 + R2 + j�L2 + R3 - j2�M b I2

 - a j�L1 +

1

j�C1
- j�M b I1

 - j�MI3 = V

 aR1 + j�L1 +

1

j�C1
b I1 - aj�L1 +

1

j�C1
- j�Mb I2

 +

1

j�C2
 I3 + R4 I3 = 0

 R3AI3 - I2B + j�L2AI3 - I2B + j�MAI2 - I1B
 + j�L2AI2 - I3B + j�MAI1 - I2B + R3AI2 - I3B = 0

 
1

j�C1
 AI2 - I1B + j�L1AI2 - I1B + j�MAI3 - I2B + R2 I2

 I1 R1 + j�L1AI1 - I2B + j�MAI2 - I3B +

1

j�C1
 AI1 - I2B = V

±
–

j�L1 j�L2

R2

R3

R4

1

j�C2
–––––

1

j�C1
–––––

R1

I1V I2 I3

j�M

Figure 10.13

Example of a 
magnetically coupled

circuit.
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E10.2 Find the currents I1 and I2 and the output voltage Vo in the network in Fig. E10.2.

Learning Assessments
ANSWER:

 Vo = 3.84/-106.26° V.

 I2 = 0.96/-16.26° A;

 I1 = +4.29/137.2° A;

j4 �
–j4 �

4 �

24  0° V

I1 I2 Vo

j1 �

–±

j8 �

2 �

+

-Figure E10.2

I1

V1

I2R1 R3

R2

j�L2

j�M

j�L1

±
–

Figure E10.3

Figure E10.4

Figure E10.5

E10.3 Write the KVL equations in standard form for the network in Fig. E10.3. ANSWER:

= V1 .

+ AR2 + j�L2 + R3BI2

- AR2 + j�MBI1

- AR2 + j�MBI2 = -V1 ;

AR1 + j�L1 + R2BI1

–

+

+
–

2 �

j2 �

j4 �

j2 �

–j3 �

–j2 �j1.5 �

24  0° V

4 �

+
–

2 �

10  30° V

Vo

E10.4 Find Vo in Fig. E10.4. ANSWER:

Vo = .11.2/53.5° V

+

–

+
–

Vo

4 �

24  10° V

+
–36  0° V

4 �

j4 �

j2 �

j2 �

j4 �

–j4 �

–j3 �

E10.5 Find Vo in Fig. E10.5. ANSWER:
Vo = .32.8/–12.14° V
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EXAMPLE

10.6
SOLUTION

Given the network in Fig. 10.14 with the parameters 
and determine the impedance seen by the

source .

The mesh equations for the network are

If we now define and then the second equation yields

If this secondary mesh equation is substituted into the primary mesh equation, we obtain

VS = Z1 1 I1 +

�2M2

Z2 2
 I1

I2 =

j�M

Z2 2
 I1

Z2 2 = j�L2 + ZL ,Z1 1 = ZS + j�L1

 0 = -j�MI1 + Aj�L2 + ZLBI2

 VS = AZS + j�L1BI1 - j�MI2

VS

ZL = 1 - j1 �,j�M = j1 �,j�L2 = j2 �,
j�L1 = j2 �,ZS = 3 + j1 �,

and therefore

which is the impedance seen by . Note that the mutual term is squared, and therefore the
impedance is independent of the location of the dots.

VS

VS

I1
= Z1 1 +

�2M2

Z2 2

Figure E10.6

Vo

+

–

4 �2 �

j 2 �

j 3 � –j 1 �

j 1 �

j 3 �

4 �

2 �
20  30° V

3  30° V

10  0° V

+
–

+
–

4 �

E10.6 Find Vo in Fig. E10.6. ANSWER:
Vo = .11.4/0.334° V

VS
I1 I2

j�L1 j�L2

±
– ZL

ZS

j�M

Figure 10.14

Circuit employed in
Example 10.6.
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E10.7 Find the impedance seen by the source in the circuit in Fig. E10.7.

Learning Assessment
ANSWER:
ZS = 2.25/20.9° �.

j2 �

2 � 2 �

j1�j2 � –j2 �

–j1 �

±
–

j1 �

120  0° V

Figure E10.7

10.2
Energy Analysis

We now perform an energy analysis on a pair of mutually coupled inductors, which will yield
some interesting relationships for the circuit elements. Our analysis will involve the performance
of an experiment on the network shown in Fig. 10.15. Before beginning the experiment, we set
all voltages and currents in the circuit equal to zero. Once the circuit is quiescent, we begin by
letting the current i1(t) increase from zero to some value I1 with the right-side terminals open cir-
cuited. Since the right-side terminals are open, i2(t) = 0, and therefore the power entering these
terminals is zero. The instantaneous power entering the left-side terminals is

The energy stored within the coupled circuit at t1 when i1(t) = I1 is then

Continuing our experiment, starting at time t1, we let the current i2(t) increase from zero to
some value I2 at time t2 while holding i1(t) constant at I1 . The energy delivered through the
right-side terminals is

3
t2

t1

v2(t)i2(t) dt = 3
I2

0
L2 i2(t) di2(t) =

1

2
 L2 I2

2

3
t1

0
v1(t)i1(t) dt = 3

I1

0
L1i1(t) di1(t) =

1

2
 L1 I2

1

p(t) = v1(t)i1(t) = cL1 
di1(t)

dt
d i1(t)

L1 L2v1(t)

i1(t) i2(t)

+

-

v2(t)

+

-

M Figure 10.15

Magnetically coupled circuit.

Using the values of the circuit parameters, we find that

 = 3.5 + j2.5 �

 = 3 + j3 + 0.5 - j0.5

 
VS

I1
= (3 + j1 + j2) +

1

j2 + 1 - j1
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However, during the interval t1 to t2 the voltage v1(t) is

Since i1(t) is a constant I1, the energy delivered through the left-side terminals is

Therefore, the total energy stored in the network for t 7 t2 is

10.18

We could, of course, repeat our entire experiment with either the dot on L1 or L2, but not both,
reversed, and in this case the sign on the mutual inductance term would be negative, producing

It is very important for the reader to realize that in our derivation of the preceding
equation, by means of the experiment, the values and could have been any values at any
time; therefore, the energy stored in the magnetically coupled inductors at any instant of time
is given by the expression

10.19

The two coupled inductors represent a passive network, and therefore, the energy stored
within this network must be nonnegative for any values of the inductances and currents.

The equation for the instantaneous energy stored in the magnetic circuit can be written as

Adding and subtracting the term and rearranging the equation yields

From this expression we recognize that the instantaneous energy stored will be nonnegative if

10.20

Note that this equation specifies an upper limit on the value of the mutual inductance.
We define the coefficient of coupling between the two inductors L1 and L2 as

10.21

and we note from Eq. (10.20) that its range of values is

10.22

This coefficient is an indication of how much flux in one coil is linked with the other coil;
that is, if all the flux in one coil reaches the other coil, then we have 100% coupling and
k = 1. For large values of k (i.e., k 7 0.5), the inductors are said to be tightly coupled, and
for small values of k (i.e., k � 0.5), the coils are said to be loosely coupled. If there is no
coupling, k = 0. The previous equations indicate that the value for the mutual inductance
is confined to the range

10.23

and that the upper limit is the geometric mean of the inductances L1 and L2.

0 � M � 2L1 L2

0 � k � 1

k =

M

2L1 L2

M � 2L1 L2

w(t) =

1

2
 aL1 -

M2

L2
b i2

1 +

1

2
 L2 a i2 +

M

L2
 i1 b

2

1�2 AM2�L2Bi2
1

w(t) =

1

2
 L1 i2

1 +

1

2
 L2 i2

2 ; Mi1 i2

w(t) =

1

2
 L1 C i1(t) D 2 +

1

2
 L2 C i2(t) D 2 ; Mi1(t)i2(t)

I2I1

w =

1

2
 L1 I2

1 +

1

2
 L2 I2

2 - MI1 I2

w =

1

2
 L1 I2

1 +

1

2
 L2 I2

2 + MI1 I2

 = MI1 I2

 3
t2

t1

v1(t)i1(t) dt = 3
t2

t1

M 
di2(t)

dt
 I1 dt = MI13

I2

0
di2(t)

v1(t) = L1 
di1(t)

dt
+ M 

di2(t)

dt
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The coupled circuit in Fig. 10.16a has a coefficient of coupling of 1 (i.e., k = 1). We wish
to determine the energy stored in the mutually coupled inductors at time t = 5 ms. 
L1 = 2.653 mH and L2 = 10.61 mH.

From the data the mutual inductance is

The frequency-domain equivalent circuit is shown in Fig. 10.16b, where the impedance
values for and are 1, 4, and 2, respectively. The mesh equations for the net-
work are then

Solving these equations for the two mesh currents yields

and

and therefore,

At t = 5 ms, 377t = 1.885 radians or 108°, and therefore,

Therefore, the energy stored in the coupled inductors at t = 5 ms is

 = 22.5 mJ

 = (1.61)A10-3B + (36.14)A10-3B - (15.25)A10-3B
 -(5.31)A10-3B(-1.10)(-2.61)

  w(t)|t = 0.005 s =

1

2
 (2.653)A10-3B(-1.10)2

+

1

2
 (10.61)A10-3B(-2.61)2

 i2(t = 5 ms) = 3.33 cos (108° + 33.69°) = -2.61 A

 i1(t = 5 ms) = 9.41 cos (108° - 11.31°) = -1.10 A

 i2(t) = 3.33 cos (377t + 33.69°) A

 i1(t) = 9.41 cos (377t - 11.31°) A

I2 = 3.33/+33.69° AI1 = 9.41/-11.31° A

 -j2I1 + (4 + j4)I2 = 0

 (2 + j1)I1 - j2I2 = 24/0°

XMXL2
 ,XL1

 ,

M = 2L1 L2 = 5.31 mH

SOLUTION

EXAMPLE

10.7

(b)

j4 �j1 �I1

2 �

4 �±
–

j2 �

I224  0° V

L2L1i1(t)

2 �

24 cos  377t V 4 �±
–

M

(a)

i2(t)

Figure 10.16

Example of a
magnetically coupled
circuit drawn in the time
and frequency domains.
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Consider the situation illustrated in Fig. 10.17, showing two coils of wire wound around a
single closed magnetic core. Assume a core flux �, which links all the turns of both coils. In
the ideal case we also neglect wire resistance. Let us now examine the coupling equations
under the condition that the same flux goes through each winding and so,

and

and therefore,

10.24

Ampère’s law requires that

10.25

where H is the magnetic field intensity and the integral is over the closed path traveled by
the flux around the transformer core. If H = 0, which is the case for an ideal magnetic core
with infinite permeability, then

10.26

or

10.27

Note that if we divide Eq. (10.26) by N1 and multiply it by v1, we obtain

v1 i1 +

N2

N1
 v1 i2 = 0

i1

i2
= - 

N2

N1

N1 i1 + N2 i2 = 0

C
 

 

H � dl = ienclosed = N1 i1 + N2 i2

v1

v2
=

N1

N2
 

d�

dt

d�

dt

=

N1

N2

v2(t) = N2 
d�

dt

v1(t) = N1 
d�

dt

E10.8 The network in Fig. E10.8 operates at 60 Hz. Compute the energy stored in the
mutually coupled inductors at time t = 10 ms.

Learning Assessment
ANSWER:
w(10 ms) = 39 mJ.

2 �

–j2 �

j2 �j2 �I1

2 �

±
–

j1 �

I212  30° V

Figure E10.8

10.3
The Ideal
Transformer

v1(t)

i1(t) i2(t)

v2(t)

�

�

N1 N2+
–

+
–

• •
A

Figure 10.17

Transformer employing 
a magnetic core.
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However, since 

and hence the total power into the device is zero, which means that an ideal transformer
is lossless.

The symbol we employ for the ideal transformer is shown in Fig. 10.18a, and the corre-
sponding equations are

10.28

The normal power flow through a transformer occurs from an input current A i1 B on the
primary to an output current A i2 B on the secondary. This situation is shown in Fig. 10.18b, and
the corresponding equations are

10.29

Note that although the voltage, current, and impedance levels change through a trans-
former, the power levels do not. The vertical lines between the coils, shown in the figures,
represent the magnetic core. Although practical transformers do not use dots per se, they use
markings specified by the National Electrical Manufacturers Association (NEMA) that are
conceptually equivalent to the dots.

Thus, our model for the ideal transformer is specified by the circuit in Fig. 10.18a and
the corresponding Eq. (10.28), or alternatively by the circuit in Fig. 10.18b, together with
Eq. (10.29). Therefore, it is important to note carefully that our model specifies the equa-
tions as well as the relationship among the voltages, currents, and the position of the dots.
In other words, the equations are valid only for the corresponding circuit diagram. Thus,
in a direct analogy to our discussion of the mutual inductance equations and their corre-
sponding circuit, if we change the direction of the current or voltage or the position of the
dots, we must make a corresponding change in the equations. The following material will
clarify this critical issue.

Consider now the circuit shown in Fig. 10.19. If we compare this circuit to that shown in
Fig. 10.18b, we find that the direction of both the currents and voltages are the same. Hence
the equations for the network are

and

I1

I2
=

N2

N1

V1

V2
=

N1

N2

 N1 i1 = N2 i2

 
v1

v2
=

N1

N2

 N1 i1 + N2 i2 = 0

 
v1

v2
=

N1

N2

v1 i1 + v2 i2 = 0

v1 = AN1�N2Bv2 ,

v1

i1

N1 : N2

i2

Ideal

+

-

v2

+

-

v1

i1

N1 : N2

i2

Ideal

(a) (b)

+

-

v2

+

-

Figure 10.18

Symbol for an ideal
transformer: (a) primary
and secondary currents
into the dots; (b) primary
current into, and
secondary current out of,
the dots.
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Given the circuit shown in Fig. 10.20, we wish to determine all indicated voltages and currents.EXAMPLE

10.8

These equations can be written as

10.30

Also note that

and therefore the input impedance is

10.31

where ZL is reflected into the primary side by the turns ratio.
If we now define the turns ratio as

10.32

then the defining equations for the ideal transformer in this configuration are

10.33

Care must be exercised in using these equations because the signs on the voltages and cur-
rents are dependent on the assigned references and their relationship to the dots.

 Z1 =

ZL

n2

 I1 = nI2

 V1 =

V2

n

n =

N2

N1

Z1 =

V1

I1
= aN1

N2
b 2

ZL

 ZL =

V2

I2

 I1 =

N2

N1
 I2

 V1 =

N1

N2
 V2

V1

N1 : N2

I1

Ideal

+

-

V2

+

-

I2 ZL

Figure 10.19

Ideal transformer circuit
used to illustrate input

impedance.

–j4 �

j1 �

2 �

18 �
4 : 1

I1 I2

Ideal

V2V1
±
–

±

–

±

–

120  0° V

Figure 10.20

Ideal transformer circuit.

SOLUTION Because of the relationships between the dots and the currents and voltages, the transformer
equations are

V1 = - 
V2

n
and  I1 = -nI2
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where The reflected impedance at the input to the transformer is

Therefore, the current in the source is

The voltage across the input to the transformer is then

Hence, V2 is

The current I2 is

 = 9.33/166.50° A

 = -4A2.33/-13.5°B
 I2 = - 

I1

n

 = 20.87/193.07° V

 = -  
1

4
 A83.49/13.07°B

 V2 = -nV1

 = 83.49/13.07° V

 = A2.33/-13.5°B(32 + j16)

 V1 = I1 Z1

I1 =

120/0°

18 - j4 + 32 + j16
= 2.33/-13.5° A

Z1 = 42ZL = 16(2 + j1) = 32 + j16 �

n = 1�4 .

E10.9 Compute the current I1 in the network in Fig. E10.9.

Learning Assessments
ANSWER:
I1 = 3.07/39.81° A.

E10.10 Find Vo in the network in Fig. E10.9. ANSWER:
Vo = 3.07/39.81° V.

–j2 � –j2 �

2 �

2 �

2 �

1 : 2I1

Ideal

V2

+

-

Vo

+

-

V1

+

-

12  0° V ±
–

Figure E10.9

E10.11 Determine I1, I2, V1, and V2 in Fig. E10.11. ANSWER:
;
;
;

.V2 = 16.04/–135.9° V
V1 = 64.16/44.1°  V
I2 = 8.49/154.42° A
I1 = 2.12/–25.6° A

+
–

+
–

32 � 4:1

Ideal

3 �

j2 �

j16 �

–j24 �

20  –20° V

100  0° V

I1 I2

V1

+

–

V2

-

+

Figure E10.11
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Another technique for simplifying the analysis of circuits containing an ideal trans-
former involves the use of either Thévenin’s or Norton’s theorem to obtain an equivalent
circuit that replaces the transformer and either the primary or secondary circuit. This tech-
nique usually requires more effort, however, than the approach presented thus far. Let us
demonstrate this approach by employing Thévenin’s theorem to derive an equivalent cir-
cuit for the transformer and primary circuit of the network shown in Fig. 10.21a. The equa-
tions for the transformer in view of the direction of the currents and voltages and the posi-
tion of the dots are

 V1 =

V2

n

 I1 = nI2

E10.12 Determine Vo in Fig. E10.12. ANSWER:
.Vo = 24.95/–62.65°  V

+
–

+
–

32 � 4:1

Ideal

3 �

j2 �

j16 �

–j24 �

20  –20° V

100  0° V Vo

+

–

Figure E10.12

E10.13 Determine Vo in Fig. E10.13. ANSWER:
.Vo = 93.68/–83°  V

50  0° V 10  30° V+
–

+
–

2 � 10 � 0.5 �

6 � IdealIdeal

4:11:2
j4 �

j10 �

–j8 �

–j0.5 �

Vo

+

–

Figure E10.13

E10.14 If Vo = in Fig. E10.14, find VS.10/30° V ANSWER:
.VS = 32.34/–125.3°  V

–

+
– Vo

+

4 �2 � 2 �2:1

Ideal

10 �–j 5 �j 5 �

j 4 �

VS

Figure E10.14
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Given the circuit in Fig. 10.22a, we wish to draw the two networks obtained by replacing the
transformer and the primary, and the transformer and the secondary, with equivalent circuits.

Due to the relationship between the assigned currents and voltages and the location of the
dots, the network containing an equivalent circuit for the primary and the network containing
an equivalent circuit for the secondary are shown in Figs. 10.22b and c, respectively. The
reader should note carefully the polarity of the voltage sources in the equivalent networks.

SOLUTION

EXAMPLE

10.9

Forming a Thévenin equivalent at the secondary terminals 2 = 2¿, as shown in Fig. 10.21b,
we note that I2 = 0 and therefore I1 = 0. Hence

The Thévenin equivalent impedance obtained by looking into the open-circuit terminals with 
replaced by a short circuit is Z1, which when reflected into the secondary by the turns ratio is

Therefore, one of the resulting equivalent circuits for the network in Fig. 10.21a is
as shown in Fig. 10.21c. In a similar manner, we can show that replacing the transformer and
its secondary circuit by an equivalent circuit results in the network shown in Fig. 10.21d.

It can be shown in general that when developing an equivalent circuit for the trans-
former and its primary circuit, each primary voltage is multiplied by n, each primary cur-
rent is divided by n, and each primary impedance is multiplied by n2. Similarly, when
developing an equivalent circuit for the transformer and its secondary circuit, each
secondary voltage is divided by n, each secondary current is multiplied by n, and each
secondary impedance is divided by n2. Powers are the same, whether calculated on the
primary or secondary side.

Recall from our previous analysis that if either dot on the transformer is reversed, then n is
replaced by -n in the equivalent circuits. In addition, note that the development of these equiv-
alent circuits is predicated on the assumption that removing the transformer will divide the net-
work into two parts; that is, there are no connections between the primary and secondary other
than through the transformer. If any external connections exist, the equivalent circuit technique
cannot in general be used. Finally, we point out that if the primary or secondary circuits are
more complicated than those shown in Fig. 10.21a, Thévenin’s theorem may be applied to
reduce the network to that shown in Fig. 10.21a. Also, we can simply reflect the complicated
circuit component by component from one side of the transformer to the other.

ZTh = n2 Z1

VS1

Voc = V2 = nV1 = nVS1

1 2

2

1' 2'

2'

2'

2

Ideal Ideal

(a) (b)

1 : n

VS1
VS2 Voc

+

-

V1

+

-

V2

+

-

+

-

I2

±
–

Z1

I1 ±
–

Z2

I2 VS1 V1

+

-

V2
±
–

Z1

I1

(c)

nVS1

n2Z1

VS2
±
–

±
–

Z2

V2=nV1 I2=–––
I1
n

1

1'

(d)

VS1

Z2/n2

±
–

±
–

Z1

I1=nI2V1=–––
V2
n

–––
VS2

n

Figure 10.21

Circuit containing an ideal
transformer and some of its
equivalent networks.
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Step 1. Carefully examine the circuit diagram to determine the assigned voltage
polarities and current directions in relation to the transformer dots.

● If both voltages are referenced positive at the dotted terminals or undotted
terminals, then If this is not true, then 

● If one current is defined as entering a dotted terminal and the other current
is defined as leaving a dotted terminal, then If this condition is
not satisfied, then 

Step 2. If there are no electrical connections between two transformer windings,
reflect all circuit elements on one side of the transformer through to the other
side, thus eliminating the ideal transformer. Be careful to apply the statements
above when reflecting elements through the transformer. Remember that
impedances are scaled in magnitude only. Apply circuit analysis techniques to
the circuit that results from eliminating all ideal transformers. After this circuit
has been analyzed, reflect voltages and currents back through the appropriate
ideal transformers to find the answer.

Step 3. As an alternative approach, use Thévenin’s or Norton’s theorem to simplify the
circuit. Typically, calculation of the equivalent circuit eliminates the ideal
transformer. Solve the simplified circuit.

N1 i1 = -N2 i2 .
N1 i1 = N2 i2 .

v1�v2 = -N1�N2 .v1�v2 = N1�N2 .

Circuits Containing
Ideal Transformers

Problem-Solving Strategy

(a)

V1I1

+

-

V2

1 : 2

Ideal

4 � 12 � j4 �
–j3 �

+

-

1' 2'

1 2

±
–

±
–

I212  0° V 48  30° V

(b)

V2

16 � 12 � j4 �
–j12 �

2'

2

–
±

±
–

I224  0° V 48  30° V

(c)

V1

4 � 3 � j1 �
–j3 �

1'

1

–
±

±
–

I112  0° V 24  30° V

Figure 10.22

Example circuit and two
equivalent circuits.
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Step 4. If there are electrical connections between two transformer windings, use nodal
analysis or mesh analysis to write equations for the circuits. Solve the
equations using the proper relationships between the voltages and currents for
the ideal transformer.

Let us determine the output voltage Vo in the circuit in Fig. 10.23a.

We begin our attack by forming a Thévenin equivalent for the primary circuit. From
Fig. 10.23b we can show that the open-circuit voltage is

The Thévenin equivalent impedance looking into the open-circuit terminals with the volt-
age sources replaced by short circuits is

The circuit in Fig. 10.23a thus reduces to that shown in Fig. 10.23c. Forming an equivalent
circuit for the transformer and primary results in the network shown in Fig. 10.23d.

 = 4 - j2 �

 ZTh =

(4)(-j4)

4 - j4
+ 2

 = 12 - j8 = 14.42/-33.69° V

 Voc =

24/0°

4 - j4
 (-j4) - 4/-90°

SOLUTION

EXAMPLE

10.10

V1

+

-

V2

+

-

Vo

+

-

1 : 2

(a)

Ideal

2 �4 � 2 �

2 �

j3 �

–j4 �24  0° V

4  –90° V

±
–

–±

Vo

+

-

(d)

2 �16 �

2 �

j3 �–j8 �

28.84  –33.69° V-
+

(b)

Voc

+

-

4 � 2 �

–j4 �24  0° V

4  –90° V

±
–

–±

V1

+

-

V2

+

-

Vo

+

-

1 : 2

(c)

Ideal

2 �4 �

2 �

j3 �–j2 �

14.42  –33.69° V±
–

Figure 10.23

Example network and other
circuits used to derive an
equivalent network.
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Determine I1 , I2 , V1 , and V2 in the network in Fig. 10.24.

The nodal equations at nodes 1 and 2 are

The transformer relationships are V2 = 2V1 and I1 = 2I2 . The first nodal equation yields 
I1 = 5 A and therefore I2 = 2.5 A. The second nodal equation, together with the constraint
equations specified by the transformer, yields and V2 = 215 /63° V.V1 = 15 /63° V

 I2 +

V1 - V2

2
=

V2

2j

 
10 - V1

2
=

V1 - V2

2
+ I1

SOLUTION

EXAMPLE

10.11

Therefore, the voltage Vo is

 = 2.80/160.35° V

 Vo =

-28.84/-33.69°

20 - j5
 (2)

E10.15 Given the network in Fig. E10.15, form an equivalent circuit for the transformer and
secondary, and use the resultant network to compute I1 .

Learning Assessments
ANSWER:
I1 = 13.12/38.66° A.

E10.16 Given the network in Fig. E10.16, form an equivalent circuit for the transformer and
primary, and use the resultant network to find Vo .

ANSWER:
Vo = 3.12/38.66° V.

1 : 2

Ideal

2 �I1 2 �–j2 �

36  0° V 12  0° V±
–

±
–

Figure E10.15

2 �

1 : 2

Ideal

2 � –j2 �

12  0° V

4  0° V

±
–

–±

Vo

+

-

Figure E10.16

1 : 2

Ideal

j2 �

2 �

2 �

10  0° V ±
– V2

I2I1

+

-
V1

+

-

1 2

Figure 10.24

Circuit used in
Example 10.11.
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Two adjacent homes, A and B, are fed from different transformers, as shown in Fig. 10.25a.
A surge on the line feeding house B has caused the circuit breaker X-Y to open. House B is
now left without power. In an attempt to help his neighbor, the resident of house A volun-
teers to connect a long extension cord between a wall plug in house A and a wall plug in
house B, as shown in Fig. 10.25b. Later, the line technician from the utility company comes
to reconnect the circuit breaker. Is the line technician in any danger in this situation?

EXAMPLE

10.12

Before we move on to the next topic, let’s return to Faraday’s law. For the ideal 

transformer, Faraday’s law tells us that and What if a dc 

voltage is applied to our transformer? In that case, the magnetic flux is a constant,
and our transformer is not very useful. What if an ac voltage is applied to our

transformer? The magnetic flux is sinusoidal and time-varying. Transformers allow the ac
voltage value to be stepped up or down easily and efficiently; it is much more difficult to
efficiently step up or down the dc voltage value. The ease with which transformers allow us
to change the voltage level is one of the main reasons that ac voltages and currents are uti-
lized to transmit the bulk of the world’s electrical power.

v1 = v2 = 0,
�

v2(t) = N2 
d�

dt
 .v1(t) = N1 

d�

dt

E10.17 Determine I1 , I2 , V1 , and V2 in the network in Fig. E10.17.

Learning Assessment
ANSWER:

 V2 = 1.71/-160° V.

 V1 = 0.85/20° V;

 I2 = 1.54/166.3° A;

 I1 = 3.08/-13.7° A;

1 : 2

Ideal

j2 �2 �

2 �

2 �

10  0° V ±
– V2

I2I1

+

-
V1

+

-

Figure E10.17

10.4
Safety

Considerations

Transistors are used extensively in modern electronic equipment to provide a low-voltage
power supply. As examples, a common voltage level in computer systems is 5 V dc,
portable radios use 9 V dc, and military and airplane equipment operates at 28 V dc.
When transformers are used to connect these low-voltage transistor circuits to the power
line, there is generally less danger of shock within the system because the transformer
provides electrical isolation from the line voltage. However, from a safety standpoint, a
transformer, although helpful in many situations, is not an absolute solution. When work-
ing with any electrical equipment, we must always be vigilant to minimize the dangers of
electrical shock.

In power electronics equipment or power systems, the danger is severe. The problem in
these cases is that of high voltage from a low-impedance source, and we must constantly
remember that the line voltage in our homes can be lethal. 

Consider now the following example, which illustrates a hidden danger that could surprise
even the experienced professional, with devastating consequences.
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Unaware of the extension cord connection, the line technician believes that there is no volt-
age between points X and Z. However, because of the electrical connection between the two
homes, 7200 V rms exists between the two points, and the line technician could be seriously
injured or even killed if he comes in contact with this high voltage.

The following examples demonstrate several applications for transformers.

SOLUTION

120 V

0 V

(a)

7200 V

A B

0 V 7200 V

X Y

Z

120 V 120 V

(b)

7200 V

A B

7200 V 7200 V

X Y

Z

Figure 10.25

Diagrams used
in Example 10.12
(voltages in rms).

10.5
Application
Examples

APPLICATION
EXAMPLE 10.13

Consider the problem of transporting 24 MW over a distance of 100 miles (160.9 km) using
a two-conductor line. Determine the requisite conductor radius to achieve a transmission
efficiency of 95%, considering only the line resistance, if the line operates at (a) 240 V rms
or (b) 240 kV rms. Assume that conductor resistivity is -m.

a. At 240 V:

If

Therefore,

R =

Ploss

I2
=

1.2 M

(100k)2
= 1.2 * 10-4�

 Ploss = 0.05(24 M) = 1.2 MW = I2R

 � = 95%,

I =

P

V
=

24 M

240
= 100 kA rms

� = 8 * 10-8 �

SOLUTION
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Since

Therefore,

(which is a huge conductor and totally impractical!)

b. At 240 kV rms:
rms

and

and

(which is a very practical value!)

The point of this example is that practical transmission of bulk electrical energy requires
operation at high voltage. What is needed is an economical device that can efficiently con-
vert one voltage level to another. Such a device is, as we have shown, the power transformer. 

r = 0.8264 cm

A =

0.25744

120
= 2.145 * 10-4 m

R =

1.2 * 106

(100)2
= 120 �

I = 100 A

r = 8.624 m

A =

0.25744

1.2 * 10-4 = 214.5 m2
= 	r2

R =

�l

A
=

(8 * 10-8)(2 * 160.9 * 103)

A

The local transformer in Fig. 10.26 provides the last voltage stepdown in a power distribu-
tion system. A common sight on utility poles in residential areas, it is a single-phase trans-
former that typically has a 13.8-kV rms line to neutral on its primary coil, and a center tap
secondary coil provides both 120 V rms and 240 V rms to service several residences. A typ-
ical example of this transformer, often referred to as a “pole pig,” is shown in Fig. 10.27.

APPLICATION
EXAMPLE 10.14

a

n

1 : n

13.8 kV rms

120 V rms

120 V rms

Local
step-down
transformer

Substation

+

-

+

-

+

-

240 V rms

+

-

Figure 10.26

Local transformer
subcircuit with center tap.

Let us find the turns ratio necessary to produce the 240-V rms secondary voltage.
Assuming that the transformer provides 200-A rms service to each of 10 houses, let us
determine the minimum power rating for the transformer and the maximum current in the
primary.
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Your electric toothbrush sits innocuously in its cradle overnight. Even though there are no
direct electrical connections between the cradle and the toothbrush, the internal batteries are
being recharged. How can this be?

Mutually coupled inductors is the answer! One coil is in the cradle and energized by an ac
source. The second coil is in the bottom of the toothbrush itself. When the toothbrush is
mounted in the cradle, the two coils are physically close and thus mutually coupled, as
shown in Fig. 10.28.

Let’s investigate a reasonable design for these coils. First, we assume that the coils are
poorly coupled with a coupling coefficient of Second, the coil in the cradle is
driven at . Third, the coil in the toothbrush should generate at

in order to charge the battery. To keep the power “relatively” low, we will
limit the primary current to only Finally, to simplify our analysis, we will
assume that and are in phase.

First we develop loop equations for our circuit, which are

10.34

where and . By defining a new variable such that

L2 = 
2L1


V2 = 6/0° V rmsV1 = 120/0° V rms

 V2 = j�MI1 - j�L2 I2

 V1 = j�L1 I1 - j�MI2

I2I1

0.5 A rms.
100 mA rms

6/0° V120/0° V rms
k = 0.25.

The turns ratio is given by

If is the maximum current per house-
hold, then the maximum primary current is

The maximum power delivered to the pri-
mary is then

Therefore, the transformer must have a
power rating of at least 480 kVA.

S1 = V1 I1 = (13,800)(34.78) = 480 kVA.

I1 = nI2 = nA10IHB = 34.78 A rms

IH

n =

V2

V1
=

240

13,800
=

1

57.5

Figure 10.27 
A residential utility

transformer.
(tomba/iStockphoto)

SOLUTION

APPLICATION
EXAMPLE 10.15

SOLUTION
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we can eliminate in Eq. (10.34). Hence,

10.35

Taking the ratio of each side of Eq. (10.35), we can eliminate and :

If we now substitute the design parameter values listed above for and k and then solve
for we find

which yields

(We have used our restriction that and are in phase to convert current phasors to
magnitudes.) Choosing the smaller value for is the same as choosing a smaller Hence,
this is the result we select since the resulting coil will require fewer turns of wire, reducing
cost, weight, and size. Next, using Eq. (10.35), we can solve for the product :

To investigate the effect of on we use the value for and the relationship between
the two inductors, for the given In Table 10.1, and have been calculated for a col-
lection of values. Note that a 60-Hz excitation requires huge values for the inductances�

L2L1
.
V1L1 ,�

V1 = �L1(0.5) - �(0.25)(0.246)L1(0.1) = 0.494�L1

�L1

L2 .

I2I1


 = b0.246

1.02

20I2 
2
- A20kI1 + kI2B
 + I1 = 0


,
I1 , I2

V1

V2
=

120

6
= 20 =

I1 - k
I2

k
I1 - 
2I2

L1�

 V2 = j�k
L1 I1 - j�
2L1 I2

 V1 = j�L1 I1 - j�k
L1 I2

L2

±
–

Battery
chargerV2

V1

I2I1

j�L2j�L1

j�M

+

-

120  0° V rms

(b)(a)

Toothbrush

Cradle

Coil 2

Coil 1

Figure 10.28

The electric toothbrush:
(a) a nonartist’s conceptual
drawing and (b) a circuit
schematic.

TABLE 10.1 A listing of frequency choices and the resulting inductances.

FREQUENCY (Hz) FREQUENCY (rad/s) L1 L2

60 377 693 mH 39.0 mH

20k 126k 2.01 mH 117 �H

100k 628k 416 �H 23.4 �H
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that are completely impractical. Therefore, the table skips past the entire audible range
(there’s no reason to have to listen to your toothbrush recharging) to 20 kHz. Here the
inductance values are much more reasonable but still considerable. However, at 100 kHz,
the total inductance is just a few hundred microhenrys. These are very reasonable values
and ones which we will use.

The final question is this: if we have a 60-Hz sinusoid at the wall outlet, how do we
obtain 100 kHz? We add a voltage-controlled switch as shown in Fig. 10.29 that is turned
on and off at a rate of 100 kHz. The result is a pulsing voltage applied to the inductor at
100 kHz. Although the result is not exactly a 100-kHz sine wave, it is effective.

As shown in Fig. 10.30, two circuits are placed in close proximity: a high-current ac circuit
and a low-current dc circuit. Since each circuit constitutes a loop, we should expect a little
inductance in each circuit. Because of their proximity, we could also anticipate some cou-
pling. In this particular situation the inductance in each loop is 10 nH, and the coupling
coefficient is Let us consider two scenarios. In the first case, the ac circuit contains
an ac motor operating at 60 Hz. In the second case, the ac circuit models a FM radio trans-
mitter operating at 100 MHz. We wish to determine the induced noise in the dc circuit for
both cases. Which scenario produces the worst inductively coupled noise? Why?

k = 0.1.

+

-
±
–

Battery
charger

100 kHz

170 cos 377t V

v2(t)

i1(t) i2(t)

L2L1

MFigure 10.29

A switch, turned on and
off at a 100-kHz rate, can
emulate a high-frequency

ac input for our tooth-
brush application.

APPLICATION
EXAMPLE 10.16

j�LAC

k

±
–

ac
LOAD

5  0° A

340  0° V

LDC

5 Vdc ±
–

dc
LOAD

Figure 10.30

A circuit model for an ac
and a dc circuit that are

physically close enough to
have mutual coupling.
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The voltage induced into the dc circuit is noise and is known to be

We are concerned only with the magnitude of the noise. Given the model parameters listed
above, the noise voltage magnitude is

For the ac motor scenario, and the noise voltage is —essentially zero
when compared against the 5-V dc input. However, when modeling a FM radio transmitter
operating at 100 MHz the noise voltage is 3.14 V. That’s more than 60% of the 5-V dc level!

Thus, we find that magnetically-induced noise is much worse for high-frequency situ-
ations. It should be no surprise then that great care is taken to magnetically “shield” 
high-frequency–high-current circuitry.

1.88 �Vf = 60 Hz

Vnoise = 2	f(0.1)A10-8B(5) = 3.14 * 10-8f V

Vnoise = j�MIAC = j�k1LAC LDCIAC

SOLUTION

10.6
Design Examples

DESIGN
EXAMPLE
10.17

A linear variable differential transformer (LVDT), is commonly used to measure linear
movement. LVDTs are useful in a wide range of applications such as measuring the thick-
ness of thin material sheets and measuring the physical deformation of objects under
mechanical load. (A Web search on LVDT will yield a multitude of other example applica-
tions with explanations and photographs.) As shown in Figs. 10.31a and b, the LVDT is just
a coupled inductor apparatus with one primary winding and two secondaries that are wound
and connected such that their induced voltages subtract.

All three windings are contained in a hollow cylinder that receives a rod, usually made
of steel or iron, that is physically attached to whatever it is that’s moving. The presence of
the rod drastically increases the coupling coefficient between the windings. Let us investi-
gate how the LVDT output voltage is related to displacement and how the LVDT is driven.
Then, we will design our own LVDT, driven at 10 V rms, 2 kHz, such that at 100% travel,
the output voltage magnitude equals that of the input voltage.

±
– LP

IP

Vin Vo

LS

LS

IS

+

-

M12

M13

(a)

Secondary coil

Secondary coil

Magnetic 
rod

Primary coil

(b)

Figure 10.31

Two representations of
the standard LVDT:
(a) the cutaway view and
(b) the circuit diagram.
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Typically, the primary winding of the LVDT is excited by an ac sinusoid in the range of
3 to 30 V rms at frequencies between 400 and 5000 Hz. Since we only need to measure the
output voltage directly with a voltmeter, no external load is necessary.

The null position for the rod is dead center between the secondary windings. In that posi-
tion the coupling between the primary and each secondary is identical, and the output volt-
age is zero. Should the rod move in either direction, the coupling will change linearly, as
will the output voltage magnitude. The direction of travel is indicated by the relative phase
of the output.

Our LVDT design begins with the circuit in Fig. 10.31b where the mutual coupling coeffi-
cient for each secondary winding varies as shown in Fig. 10.32. To create a linear relationship
between displacement and output voltage, we restrict the nominal travel to that portion of
Fig. 10.32 where the coupling coefficient is linear with displacement. Therefore, in this
design, 100% travel will correspond to a coupling coefficient of 0.8.
Applying KVL to the primary loop yields

10.36

At the secondary, the KVL equation is

10.37

With no load at the output, and Eqs. (10.36) and (10.37) reduce to

10.38

Solving these for the output voltage and recognizing that we obtain

10.39

We can express the coupling coefficients for each secondary in terms of the percent of
travel:

k12 = b0.008x

0

for 0 6 x 6 100

for x 6 0
  k13 = b0.008x

0

for -100 6 x 6 0

for x 7 0

Vo = Vin 
B

LS

LP
Ck12 - k13 D

MlX = klX CLP LS D 0.5,

Vin = j�LP IP and Vo = IP j� CM12 - M13 D
IS= 0

2Aj�LSBIS + j�M13 IP - j�M12 IP + Vo = 0

Vin = j�LP IP + j�M13 IS - j�M12 IS

[k12-k13]

k13 k12

1.2

1

0.8

0.6

0.4

0.2

0

–0.2
–200 –150 –100 –50 0 50 100 150 200

C
ou

pl
in

g 
C

oe
ffi

ci
en

t

Travel

Figure 10.32

Coupling coefficients
for each secondary

winding and the coupling
difference. It is the differ-

ence that will determine
the output voltage

magnitude.

SOLUTION
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And, finally, assuming that the input voltage has zero phase angle, the output voltage can be
expressed as

10.40

Note the phase angle difference for positive versus negative travel.
To complete our analysis, we must determine a value for the secondary to primary induc-

tance ratio. At 100% travel, the magnitudes of the input and output voltages are equal and
Using this information in Eq. (10.40), we find that the inductor ratio must be

To determine actual values for the inductances, we must consider the input current we will
tolerate at the primary. We would prefer a relatively small current, because a large current would
require large-diameter wire in the primary winding. Let us choose a primary current of 
25 mA rms with an excitation of 10 V rms at 2000 Hz. From Eq. (10.38), the primary inductance
will be

which yields a secondary inductance of

The selection of the two inductances completes this design.

LS = 1.5625LP = 49.7 mH

LP =

Vin

�IP
=

10

2	(2000)(0.025)
= 31.8 mH

LS�LP = 1.252
= 1.5625.

k = 0.8.

 Vo = Vin 
B

LS

LP
[-0.008x] = Vin 

B

LS

LP
[+0.008x]/-180°  -100 6 x 6 0

 Vo = Vin 
B

LS

LP
[0.008x] = Vin 

B

LS

LP
[0.008x]/0°  0 6 x 6 100

The next example illustrates a technique for employing a transformer in a configuration that
will extend the life of a set of Christmas tree lights.

DESIGN
EXAMPLE
10.18

The bulbs in a set of Christmas tree lights normally operate at 120 V rms. However, they last
much longer if they are instead connected to 108 V rms. Using a 120 V-12 V transformer,
let us design an autotransformer that will provide 108 V rms to the bulbs.

The two-winding transformers we have presented thus far provide electrical isolation
between primary and secondary windings, as shown in Fig. 10.33a. It is possible, howev-
er, to interconnect primary and secondary windings serially, creating a three-terminal
device, known as an autotransformer, as shown in Fig. 10.33b and represented in
Fig. 10.33c. As we shall see, this arrangement offers certain practical advantages over the
isolated case. Note that the three-terminal arrangement is essentially one continuous
winding with an internal tap.

To reduce the voltage from 120 V rms to 108 V rms, the two coils must be connected such
that their voltages are in opposition to each other, corresponding to a subtractive connection
(in Fig. 10.33b), as shown in Fig. 10.34. In this arrangement, the voltage across both coils is

and the lights are simply connected across both coils.

Vo = V1 - V2 = 120 - 12 = 108 V rms

SOLUTION
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N1

N2

N1
X
Y

Z
N2

N1

Y

X

Z
N2

Additive connection Subtractive connection

(a) (b)

N1

X

Y

Z

N2

Additive connection

(c)

N1

X

Y

Z

N2

Subtractive connection

Figure 10.33

Autotransformer: (a) normal two-winding transformer with adjacent windings; (b) two-winding transformer inter-
connected to create a single-winding, three-terminal autotransformer; (c) symbolic representation of (b).

±
–120 V rms 120 V rms

12 V rms

V1

Vo=108 V rms Christmas
lights+

+

- -

V2

-

+

Figure 10.34 

Autotransformer for
low-voltage Christmas

tree lights.

DESIGN
EXAMPLE 10.19

Many electronics products today are powered by low-power ac to dc converters. (These units
simply convert an ac signal at the input to a constant dc signal at the output.) They are
normally called wall transformers and plug directly into a 120 V rms utility outlet. They typ-
ically have dc output voltages in the range of 5 to 18 V. As shown in Fig. 10.35, there are
three basic components in a wall transformer: a simple transformer, an ac to dc converter, and
a controller. A particular wall transformer is required that has a dc output of 9 V and a max-
imum power output of 2 W at an efficiency of only 60%. In addition, the ac to dc converter
requires a peak ac voltage input of 12 V for proper operation. We wish to design the trans-
former by selecting its turns ratio and current rating.
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First we consider the necessary turns ratio for the transformer. We must determine the volt-
age ratio, From the specifications, must have a peak value of at least 12 V. We
will include some safety margin and design for around 13.5 V. Since is 120 V rms, its
peak value is 169.7 V. Therefore,

Thus, the ratio is 12.6. We will use a turns ratio of 12.5:1, or 25:2. Next we consider
the power requirement. The maximum load is 2 W. At an efficiency of 60%, the maximum
input power to the unit is

At 120 V rms, the input current is only

Therefore, specifying a transformer with a turns ratio of 25:2 and a current rating of
100 mA rms should provide an excellent safety margin.

Iin =

Pin

Vin
=

3.33

120
= 27.8 mA rms

Pin =

Pout

�
=

2

0.6
= 3.33 W

V2�V1

n =

V2

V1
=

169.7

13.5
= 12.6

V1V2

V2V2�V1 .
SOLUTION

±
–

ac to dc
Converter120  0° V rms

VDCV1 V2

+

-

+

-
9 V

Controller Figure 10.35

A block diagram for a simple
wall transformer. These
devices convert ac voltages
(typically 120 V rms) to a dc
voltage at a fairly low power
level.

S U M M A R Y

■ Mutual inductance Mutual inductance occurs when
inductors are placed in close proximity to one another and
share a common magnetic flux.

■ The dot convention for mutual inductance
The dot convention governs the sign of the induced voltage
in one coil based on the current direction in another.

■ The relationship between the mutual
inductance and self-inductance of two coils
An energy analysis indicates that where k,
the coefficient of coupling, has a value between 0 and 1.

■ The ideal transformer An ideal transformer has
infinite core permeability and winding conductance. The
voltage and current can be transformed between the primary

and secondary ends based on the ratio of the number of
winding turns between the primary and secondary.

■ The dot convention for an ideal transformer
The dot convention for ideal transformers, like that for
mutual inductance, specifies the manner in which a current
in one winding induces a voltage in another winding.

■ Equivalent circuits involving ideal
transformers Based on the location of the circuits’
unknowns, either the primary or secondary can be
reflected to the other side of the transformer to form a
single circuit containing the desired unknown. The reflected
voltages, currents, and impedances are a function of the dot
convention and turns ratio.

M = k1L1 L2 ,

•

irwin10_491-540hr.qxd  28-07-2010  12:10  Page 525



526 C H A P T E R  1 0 M A G N E T I C A L LY  C O U P L E D  N E T W O R K S

P R O B L E M S
•

10.1 Given the network in Fig. P10.1,

(a) write the equations for and .

(b) write the equations for and .

Figure P10.1

10.2 Given the network in Fig. P10.2,

(a) find the equations for and .

(b) find the equations for and .

Figure P10.2

10.3 Given the network in Fig. P10.3,

(a) write the equations for and .

(b) write the equations for and .

Figure P10.3

10.4 Given the network in Fig. P10.4,

(a) find the equations for and .

(b) find the equations for and .

Figure P10.4

10.5 Find in the network in Fig. P10.5.

Figure P10.5

10.6 Find in the network in Fig. P10.6.

Figure P10.6

10.7 Find in the circuit in Fig. P10.7.

Figure P10.7

j1 �

j2 � j2 �

1 �2 �

1 �±
– Vo

+

-

10  0° V

Vo

–j1 �

j2 � j1 �

1 �1 �

2 �±
– Vo

+

-

12  0° V

j1 �

Vo

j1 �

j1 � j2 �

1 �1 �

1 �±
– Vo

+

-

12  0° V

Vo

Mi1(t) i2(t)

L2L1vc(t)va(t)

-

+

+

-

vd(t)vb(t)

+

-

-

+

vd(t)vc(t)

vb(t)va(t)

Mi1(t) i2(t)

L2L1vc(t)va(t)

+

-

-

+

vb(t)vd(t)

-

+

+

-

vd(t)vc(t)

vb(t)va(t)

Mi1(t) i2(t)

L2L1vc(t)va(t)

+

-

-

+

vb(t)vd(t)

-

+

+

-

vd(t)vc(t)

vb(t)va(t)

Mi1(t) i2(t)

L2L1vc(t)va(t)

+

-

-

+

vb(t)vd(t)

-

+

+

-

vd(t)vc(t)

vb(t)va(t)
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10.8 Determine in the network in Fig. P10.8.

Figure P10.8

10.9 Find in the circuit in Fig. P10.9.

Figure P10.9

10.10 Find in the network in Fig. P10.10.

Figure P10.10

10.11 Find in the circuit in Fig. P10.11.

Figure P10.11

j4 �

–j2 �

j8 �2 �

6 � 8 � 4 �±
– Vo

+

-

24  0° V

j2 �

Vo

j4 �

–j1 �

j6 �

1 �2 �

2 � 1 �

–j1 �

±
– Vo

+

-

24  0° V

j2 �

Vo

j1 �j1 �

j2 � j2 � 1 �

2 �

1 �±
– Vo

+

-

10  0° V

Vo

–

+
– Vo

+

3 �

6 � 1 � 1 �2 �

j 4 � j 4 �
j 1 �–j 2 �

24  0° V

Vo
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10.12 Find in the circuit in Fig. P10.12.

Figure P10.12

10.13 Find in the network in Fig. P10.13.

Figure P10.13

10.14 Find in the circuit in Fig. P10.14.

Figure P10.14

10.15 Find in the network in Fig. P10.15.

Figure P10.15

–
+

6 �

6 �

4 �

6 �

j 2 �
j 4 �

–j 1 �

24  0° V

2  0° V 2 �2 �

j 4 �

3  0° VVo

+

–

Vo

Vo

+

–

–
+

2 �

12 �

4 �

2 �4 � j 3 �j 4 �

–j 1 � –j 1 �–j 2 �

12  0° V

+
–24  0° V

Vo

j2 � j1 �

2 �

1 �

1 �

–j1 �
j1 �

±
–

Vo

+

-

10  0° V

Vo

+–

–
+4 � 4 � 6 �

12 �

j 3 � –j 1 �

–j 1 �–j 2 �

12  0° V

6  0° V

Io

Io
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10.16 Find in the network in Fig. P10.16.

Figure P10.16

10.17 Find in the network in Fig. P10.17.

Figure P10.17

10.18 Find in the network in Fig. P10.18.

Figure P10.18

Vo

+

–

3 �

2 �

j 2 �

j 2 � j 1 �

–j 1 �

2  0° V12  0° V +
–

Vo

3 � 3 �

6 �

1 �

1 �j 2 �j 2 �

–j 1 �

–j 4 �24  0° V

4  0° V 2  0° V

+
–

Vo+ –
j 1 �

Vo

Vo

+

-

j2 �j2 � 2 �
1 �

j1 �

j1 �

10  30° A

10  0° A

Vo
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10.19 Find in the circuit in Fig. P10.19.

Figure P10.19

10.20 Find in the network in Fig. P10.20.

Figure P10.20

10.21 Find in the circuit in Fig. P10.21.

Figure P10.21

10.22 Find in the circuit in Fig. P10.22.

Figure P10.22

10.23 Find in the network in Fig. P10.23.

Figure P10.23

10.24 Find in the network in Fig. P10.24.

Figure P10.24

10.25 Find in the network in Fig. P10.25.

Figure P10.25

10.26 Find in the network in Fig. P10.26.

Figure P10.26

10.27 Find in the network in Fig. P10.27.

Figure P10.27

±
–

±
–

Vo

+

-

100  0° V 200  0° V

j5 �

–j10 �10 �

j2 �

j2 �

2 �

Vo

Vo

+

-

10  30° V

10  0° V

j1 �

j1 �

j2 �

2 � 1 �

–j2 �

–j1 �

j1 �

±
–

±
–

Vo

–j1 �

j2 � j2 �

1 �

1 �

j1 �

–j2 �

Vo

+

-

24  0° V±
–

Vo

–j1 �

j2 �

j1 �

j2 �

1 �1 �1 �

1 �
j1 �

Vo

+

-

24  0° V±
–

Vo

–j1 �

4  0° A

–j2 �

Vo

+

-

j2 � j2 �2 �

j2 �

Vo

1 �

1 �

1 �

j2 �

–j1 �
j1 �

Vo6  0° V 4  30° A±
–

±

–

j2 �

Vo

–j1 � –j1 �

–j2 �

j2 �j2 �

1 �

Io

1 �4  0° A

j1 �

Io

2 �

1 �

j1 �

–j1 �

1 �

j1 �

Vo

+

-

6  0° A

4  0° A

j1 �

Vo

2 � 3 �–j2 �

j2 � j2 �

2 �

–j4 �

±
–32  0° V Io

j1 �

Io
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10.28 Determine the impedance seen by the source in the 
network shown in Fig. P10.28.

Figure P10.28

10.29 Determine the impedance seen by the source in the 
network in Fig. P10.29.

Figure P10.29

10.30 Determine the input impedance of the network shown 
in Fig. P10.30.

Figure P10.30

10.31 Determine the input impedance seen by the source in 
the circuit in Fig. P10.31.

Figure P10.31

10.32 Determine the input impedance of the circuit in 
Fig. P10.32.

Figure P10.32

10.33 Determine the input impedance in the network in 
Fig. P10.33.

Figure P10.33

10.34 Analyze the network in Fig. P10.34 and determine
whether a value of can be found such that the output
voltage is equal to twice the input voltage.

Figure P10.34

10.35 Given the network shown in Fig. P10.35, determine the
value of the capacitor C that will cause the impedance
seen by the voltage source to be purely 
resistive, f � 60 Hz.

Figure P10.35

1

j�C
––––

j1 �

j6 �

j50 �

12 � 4 �

10 �

±
–24  0° V

j�M=j6 �

24 /0° V

j2 �

j2 � –jXC �

j1 �

1 �

±
– VoV I1

+

-

I2

Xc

–j1 �–j2 �
Zin

j4 � j4 �1 �

3 �

j1 �

Zin

–j2 �j2 �
j1 �

j1 �

2 �
Zin

1 � 1 �

Zin

j 2 �

j 3 �

j 6 �j 3 �

–j 1 �

–j 1 �

–j 4 �

j 4 �

2 �

6 �

18 �

+
–2  0° V

j 1 �

j 4 �

j 2 �j 3 �

–j 1 �–j 1 �

–j 2 �

2 �

6 �

1 �

3 �

Zin

3 �

6 �

j 1 �

j 2 �j 4 � j 2 � –j 1 �12  0° V

2 �

–
+

–j1 �

–j2 �

j1 �

32  0° V

1 � 1 �

±
– j2 �j2 �j2 �

j2 �
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10.36 Two coils in a network are positioned such that there is
coupling between them. If the inductance of one

coil is 10 mH and the mutual inductance is 6 mH, com-
pute the inductance of the other coil.

10.37 The currents in the magnetically coupled inductors
shown  in Fig. P10.37 are known to be 
i1(t) = 8 cos (377t - 20º) mA and 
i2(t) = 4 cos (377t - 50º) mA. The inductor values are 
L1 = 2H, L2 = 1H, and k = 0.6. Determine 

and .

Figure P10.37

10.38 Determine the energy stored in the coupled inductors
in Problem 10.37 at ms.

10.39 The currents in the network in Fig. P10.39 are known
to be i1(t) = 10 cos(377t - 30º) mA and
i2(t) = 20 cos(377t - 45º) mA. The inductances are 
L1 = 2H, L2 = 2H, and k = 0.8. Determine 

and .

Figure P10.39

10.40 Determine the energy stored in the coupled inductors
in the circuit in Fig. P10.39 at ms.

10.41 Determine in the circuit in Fig. P10.41.

Figure P10.41

1 : 2

Ideal

j3 �

–j1 �

1 � 2 �

±
– Vo

+

-

24  45° V

Vo

t = 1

L1 L2 v2(t)

+

-

v1(t)

i1(t) i2(t)

+

-

M

v2(t)v1(t)

t = 1

L1 L2 v2(t)

+

-

v1(t)

i1(t)

i2(t)

+

-

v2(t)v1(t)

100%
10.42 Find all currents and voltages in the network in

Fig. P10.42.

Figure P10.42

10.43 Determine in the circuit in Fig. P10.43.

Figure P10.43

10.44 Determine , and in the network in 
Fig. P10.44.

Figure P10.44

10.45 Determine , and in the network in Fig. P10.45.

Figure P10.45

1 : 2

Ideal

j4 �–j1 �

2 � 4 �

±
– V2

+

-

V1

I1 I2

+

-

10  30° V

V2I1, I2, V1

V1

I1 I2

+

-

V2

+

-

±
–12  30° V

1 �

1 �

2 : 1

Ideal

V2I1, I2, V1

1 : 2

Ideal

j2 �

–j1 �

1 � 1 �

±
– Vo

+

-

10  30° V

Vo

V1

+

-

V2

+

-

I2I1

3 �

1 �

j1 �

1 : 2

Ideal

±
–12  0° V
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10.46 Find in the circuit in Fig. P10.46.

Figure P10.46

10.47 Find in the network in Fig. P10.47.

Figure P10.47

10.48 Find in the network in Fig. P10.48.

Figure P10.48

10.49 Find in the circuit in Fig. P10.49.

Figure P10.49

Io

–j 2 �

j 2 �3 � 2 �

1 � 2:1

Ideal

6  0° V

6  0° A

+–

Io

Vo

+

–

–j 4 �

–j 2 �

j 4 �2 �

4 �

2:1

Ideal

36  0° V 6  0° A+
–

Vo

–j 8 �

12 �

–j 3 �–j 4 �

18 �

6 �

6 �
6 �

2:1

Ideal

+
–36  0° V

Io

Io

–

+–j 2 �

–j 2 � j 2 �

2 �

2 �

2 �
2 �

2:1

Ideal

+
–24  0° V Vo

Vo
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10.50 Determine , and in the network in Fig. P10.50.

Figure P10.50

10.51 Find in the circuit in Fig. P10.51.

Figure P10.51

10.52 Determine , and in the network in Fig. P10.52.

Figure P10.52

–j1 �–j1 � j1 �

1 � 1 � 1 �

Ideal

1 : 2 I2I1

±
– V1

+

-

V2

+

-

24  30° V

V2I1, I2, V1

Io

–j 1 � –j 1 �

j 1 �

1 � 1 �

1 �1 �

1 � 1:2

Ideal

6  0° V12  0° V

4  0° V

+–

+
–

Io

2 �

I2

V2

+

-

V1

+

-

1 �

±
–1  0° V 1  0° A

1 �I1

Ideal

1 : 2

V2I1, I2, V1

10.53 Find in the network in Fig. P10.53.

Figure P10.53

10.54 Determine , and in the network in 
Fig. P10.54.

Figure P10.54

–j10 �

4 �3 �

1 : 4

Ideal

12  0° V 24  0° V

I1 I2

±
–

±
–V1

+

-

V2

+

-

V2I1, I2, V1

–j2 �–j1 �

2 �

1 �

2 �

 1 : 1 
Ideal

24  0° V ±
–

V1

+

-

V2

+

-
Vo

+

-

Vo
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10.55 Find in the network in Fig. P10.55.

Figure P10.55

10.56 Find the current in the network in Fig. P10.56.

Figure P10.56

–j4 �

–j2 �

–j4 �120  0° V

12 �

12 � 12 �
4 �

1 : 2

±
–

I

Ideal

I

1 � 1 �

4 �

j4 �

–j1 � ±
–

1  60° V2  –45° A

2 : 1

I

Ideal

I

10.57 Find in the network in Fig. P10.57.

Figure P10.57

10.58 Find in the circuit in Fig. P10.58.

Figure P10.58

–j16 �

–j2 �

–j1.2 �

1.6 �

2 �

2 �

6 �

10 �

 1 : 2

Ideal

32  0° V

Vo

+

-

±
–

Vo

–j8 �

j12 �

4 �

6 �

–j8 �

6 �

2 : 1

Ideal Ideal

Vo

+

-

±
–32  0° V

2. .
1

Vo

10.59 Find in the circuit in Fig. P10.59.

Figure P10.59

–j2 � –j1 �

j2 �2 �2 �

2 �2 �

1 � 1 �

1 : 2

Ideal

Vo

+

-

±
–24  0° V

Vo
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10.60 Find the voltage in the network in Fig. P10.60.

Figure P10.60

10.61 Determine the input impedance seen by the source in the circuit in Fig. P10.61.

Figure P10.61

10.62 Determine the input impedance seen by the source in the circuit in Fig. P10.62.

Figure P10.62

10.63 Determine the input impedance seen by the source in the network shown in Fig. P10.63.

Figure P10.63

–j1 �

–j32 �

j1 �

48 �

Ideal Ideal

1 : 42 : 1

±
–

1 �

12  0° V

–j2 �–j1 � 2 �

1 �1 �

Ideal

4 : 1

±
–

I1

VS V1

+

-

V2

+

-

j2 �

4 �2 �

Ideal

1 : 2

±
–

±

–

±

–

V1VS V2

–j16 �

–j2 �
j2 �

4 �

32 �

 1 : 42 : 1

IdealIdeal

32  0° V ±
–

Vo

I3

+

-
I2

I1

Vo
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10.64 Determine the input impedance seen by the source in the network shown in Fig. P10.64.

Figure P10.64

–j4 �

j2 �

4 �

4 �20 �

Ideal Ideal

2 : 14 : 1

±
–VS

10.65 The output stage of an amplifier in an old radio is to be
matched to the impedance of a speaker, as shown in
Fig. P10.65. If the impedance of the speaker is 8 � and
the amplifier requires a load impedance of 3.2 k�,
determine the turns ratio of the ideal transformer.

Figure P10.65

10.66 Given that in the circuit shown in 
Fig. P10.66, determine .

Figure P10.66

10.67 Determine in the circuit in Fig. 10.67.

Figure P10.67

10.68 Determine in the circuit in Fig. P10.68.

Figure P10.68

IS

I2=2  30° A1 �

j1 �

–j2 �

2 �

1 : 2

Ideal

IS

±
– Vo=4  30° VVS

1 �

1 : 2

Ideal

j1 �

j1 �1 � +

-

VS

I1 I2

Vo
VS

–j6 �

24 �

6 �
1 : 2

Ideal

±
–

+

-

V2

+

-

V1

+

-

VS

Vo = 48/30° V

Ideal

n : 1

Amplifier

10.69 In the network in Fig. P10.69, if find .

Figure P10.69

VS

–j1 � –j4 �4 � 2 �

1 � 8 �

2 : 1

Ideal

1 : 2

Ideal

I1

±
–

VSI1 = 4/0° A,
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10.70 In the circuit in Fig. P10.70, if find .

Figure P10.70

10.71 For maximum power transfer, we desire to match the impedance of the inverting amplifi-
er stage in Fig. P10.71 to the 50-� equivalent resistance of the ac input source. However,
standard op-amps perform best when the resistances around them are at least a few hun-
dred ohms. The gain of the op-amp circuit should be . Design the complete circuit by
selecting resistors no smaller than 1 k� and specifying the turns ratio of the ideal trans-
former to satisfy both the gain and impedance matching requirements.

Figure P10.71

10.72 Digital clocks often divide a 60-Hz frequency signal to obtain a 1-second, 1-minute, or
1-hour signal. A convenient source of this 60-Hz signal is the power line. However,
120 volts is too high to be used by the low power electronics. Instead, a 3-V, 60-Hz
signal is needed. If a resistive voltage divider is used to drop the voltage from 120 to 3
V, the heat generated will be unacceptable. In addition, it is costly to use a transformer
in this application. Digital clocks are consumer items and must be very inexpensive to
be a competitive product. The problem then is to design a circuit that will produce
between 2.5 V and 3 V at 60 Hz from the 120-V ac power line without dissipating any
heat or the use of a transformer. The design will interface with a circuit that has an
input resistance of 1200 ohms.

vo(t)

1 : n

gain=–10
Ideal

R2

R150 �

–
±

+

-

vin(t)

+

-

-10

Ix

Vo

VS

–j8 �

–j1 �

2 � 2 �

1 �

4 �

8 �

1 : 2

Ideal

1 : 2

Ideal

+ -

±
–

VoIx = 4/30° A,
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10PFE-1 In the network in Fig. 10PFE-1, find the impedance seen by the source.

a.

b.

c.

d.

Figure 10PFE-1

10PFE-2 In the circuit in Fig. 10PFE-2, select the value of the transformer’s turns ratio 

to achieve impedance matching for maximum power transfer. Using this value of n, calculate 
the power absorbed by the 3-� resistor.

a. 100.75 W
b. 37.5 W
c. 55.6 W

d. 75 W

Figure 10PFE-2

10PFE-3 In the circuit in Fig. 10PFE-3, select the turns ratio of the ideal transformer that will match
the output of the transistor amplifier to the speaker represented by the 16-� load.

a. 18

b. 30

c. 10

d. 25

Figure 10PFE-3

±
–

a : 1

Ideal

VS Vx

0.04 Vx

10 k�

1 k�

5 k�
16 �

(speaker)

+

-

±
–

N1 : N2

Ideal

48 �

3 �

–j2 �
j32 �

120  0° V

n =

N2

N1

±
–

M

k=0.5

1 H 4 H

100 mF

5 �

4 �

24 cos (2t+0°) V

8.23� -10.61°�

5.37� -26.57°�

2.56�31.26°�

4.88�19.75°� 

•
T Y P I C A L P R O B L E M S F O U N D  O N  T H E F E E X A M
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10PFE-5 What is the current in the circuit shown in Fig. 10PFE-5?

a.

b.

c.

d.

Figure 10PFE-5

j10 �

10 �

1 : 2
I1 I2

Ideal

V2V1
±
–

±

–

±

–

120  0° V

8.25�45° A

12.02�-15° A

10.54�30° A

16.97�-45° A

I2

10PFE-4 What is the current in the circuit shown in Fig. 10PFE-4?

a.

b.

c.

d.

Figure 10PFE-4

–j1 �

j2 �

1 �

6 �
2 : 1

I1 I2

Ideal

V2V1
±
–

±

–

±

–

120  0° V

15.36�8.48° A

23.54�11.31° A

5.85�20.62° A

11.77�35.25° A

I2
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CHAPTER

POLYPHASE CIRCUITS

541

W
Wind Farms Turning a former waste site into a reliable source

of renewable energy seems like a great idea—a real “win-win”

for energy and the environment.  Denmark has done just that

with its Middelgrunden Wind Farm on a natural reef east of the

Copenhagen harbor.  Established in 2000 as the world’s

largest offshore wind farm, it consists of 20 turbines with a

total rated power of 40 Megawatts.  For more than 200 years,

the reef had been a dumping site for harbor sludge and other

contaminated waste.  Today, airline travelers flying into

Copenhagen from the north can view the visual impact of this

renewable energy source as a recognizable tribute to Danish

ingenuity.

Denmark has more than 6200 wind turbines producing an

estimated 89 million kilowatt-hours of electricity each year. One

of Denmark’s largest industries, wind turbine manufacturing has

a considerable export market worldwide. The environmental

impact of wind farms is remarkable—avoiding tons of chemical

pollution that would occur from conventional energy sources.

Renewable power generated by wind farms—despite the

variability of wind itself—is added directly to the electric grid or

stored in such media as electrochemical batteries or large-

capacity capacitors.  The final step is providing this power to

the customer—a polyphase AC electrical system can deliver

more power at less voltage with smaller wires than the single-

phase systems you considered earlier.  We show in this chapter

that a balanced three-phase system provides a constant instan-

taneous power to its load. Working on a per-phase basis allows

you to easily calculate phase and line voltages and currents as

well as the power dissipated in the line and power delivered to

the load.  High efficiency is essential both for wind farm power

generation and for power usage by three-phase systems—we

strive to minimize power losses in all cases.

11
T H E L E A R N I N G  G O A L S
F O R  T H I S C H A P T E R  A R E :

■ Know the characteristics of a balanced, 
three-phase circuit

■ Know the basic wye and delta three-phase 
connections

■ Know how to calculate voltage and currents in
balanced, three-phase circuits

■ Know how to calculate complex power in bal-
anced, three-phase circuits

Stephen Strathdee/iStockphoto
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11.1
Three-Phase
Circuits

542 C H A P T E R  1 1 P O LY P H A S E  C I R C U I T S

In this chapter we add a new dimension to our study of ac steady-state circuits. Up to this
point we have dealt with what we refer to as single-phase circuits. Now we extend our analy-
sis techniques to polyphase circuits or, more specifically, three-phase circuits (that is, circuits
containing three voltage sources that are one-third of a cycle apart in time).

We study three-phase circuits for a number of important reasons. It is more advantageous
and economical to generate and transmit electric power in the polyphase mode than with
single-phase systems. As a result, most electric power is transmitted in polyphase circuits. In
the United States the power system frequency is 60 Hz, whereas in other parts of the world
50 Hz is common.

The generation of electric power in the polyphase mode is accomplished with an electric
generator, which converts mechanical energy to electrical energy. This mechanical energy
can be produced at a dam or hydroelectric facility as shown in Fig. 11.1. As illustrated in 
Fig. 11.2, water stored in a reservoir falls through a turbine to the river below. The turbine
drives the electric generator to produce three-phase voltages. In the fossil-fuel generating
facility in Fig. 11.3, the turbine is driven by steam. In the diagram of Fig. 11.4, fuel and air
are combusted in the boiler turning water into steam to drive the turbine. Cooling water is cir-
culated through the condenser to change the steam exhaust from the turbine back to water to
complete the cycle. A nuclear generating facility, shown in Fig. 11.5, also utilizes steam to
drive the turbine. The heat from fission in the reactor core produces the steam.

Note that all three types of generating facilities are located close to a body of water such
as a river and are not often close to the loads that consume the electrical energy. Power 
transmission lines, such as those shown in Fig. 11.6, are constructed to transport electrical
energy from the generating facilities to the loads. The transmission of electrical energy is
most efficiently accomplished at very high voltages. Because this voltage can be extremely
high in comparison to the level at which it is normally used (e.g., in the household), there is
a need to raise and lower the voltage. This can be easily accomplished in ac systems using
transformers, which we studied in Chapter 10. An example of a three-phase power trans-
former is shown in Fig. 11.7.

Figure 11.1 
Hydroelectric generating

facility. (Courtesy of
Mark Nelms)
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Figure 11.2 Diagram of a
hydroelectric generating
facility. (Diagram courtesy of
Southern Company)

Reservoir

Turbine

Generator

Figure 11.3 A fossil-fuel
generating facility. (Courtesy
of Mark Nelms)

irwin11_541-576hr.qxd  6-08-2010  15:11  Page 543



544 C H A P T E R  1 1 P O LY P H A S E  C I R C U I T S

Condenser

Steam

Steam exhaust

Boiler

Water

Fuel

Air

Turbine

Electricity

Cooling
water

GeneratorFigure 11.4

Conceptual diagram for a
fossil-fuel generating facility.

(Diagram courtesy of
Southern Company)

Figure 11.5

A nuclear generating facility.
(Stockbyte/SUPERSTOCK)

Figure 11.6
Power transmission lines.
(Courtesy of Mark Nelms)
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Figure 11.7

A three-phase power
transformer. (Courtesy of
Jeremy Nelms, Talquin
Electric Cooperative, Inc.)

(a)

a

b

c

n

±
–

Van=120  0° V rms

±
–

Vbn=120  –120° V rms

Vcn=120  –240° V rms
±
–

(b)

t

van vbn vcn

As the name implies, three-phase circuits are those in which the forcing function is a
three-phase system of voltages. If the three sinusoidal voltages have the same magnitude and
frequency and each voltage is 120° out of phase with the other two, the voltages are said to
be balanced. If the loads are such that the currents produced by the voltages are also balanced,
the entire circuit is referred to as a balanced three-phase circuit.

A balanced set of three-phase voltages can be represented in the frequency domain as
shown in Fig. 11.8a, where we have assumed that their magnitudes are 120 V rms. From the
figure we note that 

11.1

 = 120/120° V rms

 Vcn = 120/-240° V rms

 Vbn = 120/-120° V rms

 Van = 120/0° V rms

Figure 11.8

Balanced three-phase
voltages.

irwin11_541-576hr.qxd  6-08-2010  15:11  Page 545



546 C H A P T E R  1 1 P O LY P H A S E  C I R C U I T S

Our double-subscript notation is exactly the same as that employed in the earlier
chapters; that is, means the voltage at point a with respect to point n. We will also
employ the double-subscript notation for currents; that is, Ian is used to represent the cur-
rent from a to n. However, we must be very careful in this case to describe the precise path,
since in a circuit there will be more than one path between the two points. For example, in
the case of a single loop the two possible currents in the two paths will be 180° out of phase
with each other.

The preceding phasor voltages can be expressed in the time domain as

11.2

These time functions are shown in Fig. 11.8b.
Finally, let us examine the instantaneous power generated by a three-phase system.

Assume that the voltages in Fig. 11.8 are

11.3

If the load is balanced, the currents produced by the sources are

11.4

The instantaneous power produced by the system is

11.5

Using the trigonometric identity,

11.6

Eq. (11.5) becomes

11.7

which can be written as

11.8

There exists a trigonometric identity that allows us to simplify the preceding expression.
The identity, which we will prove later using phasors, is

11.9

If we employ this identity, the expression for the power becomes

11.10p(t) = 3 
Vm Im

2
 cos � W

cos � + cos (� - 120°) + cos (� + 120°) = 0

 + cos (2�t - � - 120°) + cos (2�t - � + 120°) D
 p(t) =

Vm Im

2
 C3 cos � + cos (2�t - �)

 + cos (2�t - � - 240°) + cos � + cos (2�t - � - 480°) D
 p(t) =

Vm Im

2
 Ccos � + cos (2�t - �) + cos �

 cos � cos � =

1

2
 Ccos (� - �) + cos (� + �) D

 + cos (�t - 240°) cos (�t - � - 240°)]

 = Vm Im[cos �t cos (�t - �) + cos (�t - 120°) cos (�t - � - 120°)

 p(t) = pa(t) + pb(t) + pc(t)

 ic(t) = Im cos (�t - � - 240°) A

 ib(t) = Im cos (�t - � - 120°) A

 ia(t) = Im cos (�t - �) A

 vcn(t) = Vm cos (�t - 240°) V

 vbn(t) = Vm cos (�t - 120°) V

 van(t) = Vm cos �t V

 vcn(t) = 12012 cos (�t - 240°) V

 vbn(t) = 12012 cos (�t - 120°) V

 van(t) = 12012 cos �t V

Van
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Note that this equation indicates that the instantaneous power is always constant in time
rather than pulsating, as in the single-phase case. Therefore, power delivery from a 
three-phase voltage source is very smooth, which is another important reason power is
generated in three-phase form.

By far the most important polyphase voltage source is the balanced three-phase source. This
source, as illustrated by Fig. 11.9, has the following properties. The phase voltages—that is,
the voltage from each line a, b, and c to the neutral n—are given by

11.11

 Vcn = Vp/+120°

 Vbn = Vp/-120°

 Van = Vp/0°

Figure 11.9

Balanced three-phase
voltage source.

Balanced
three-phase

power
source

a

b

c

n

Van

Phase a

Phase b

Phase c
Vbn

Vcn

Figure 11.10

Phasor diagram for a
balanced three-phase
voltage source.

120°
120°

120° Van

Vcn

Vbn

The phasor diagram for these voltages is shown in Fig. 11.10. The phase sequence of this set
is said to be abc (called positive phase sequence), meaning that lags by 120°.

We will standardize our notation so that we always label the voltages , , and 
and observe them in the order abc. Furthermore, we will normally assume with no loss of
generality that 

An important property of the balanced voltage set is that

11.12

This property can easily be seen by resolving the voltage phasors into components along the
real and imaginary axes. It can also be demonstrated via Eq. (11.9).

From the standpoint of the user who connects a load to the balanced three-phase voltage
source, it is not important how the voltages are generated. It is important to note, however, that
if the load currents generated by connecting a load to the power source shown in Fig. 11.9 are
also balanced, there are two possible equivalent configurations for the load. The equivalent
load can be considered as being connected in either a wye (Y) or a delta (�) configuration. The
balanced wye configuration is shown in Fig. 11.11a and equivalently in Fig. 11.11b. The delta
configuration is shown in Fig. 11.12a and equivalently in Fig. 11.12b. Note that in the case of
the delta connection, there is no neutral line. The actual function of the neutral line in the wye
connection will be examined, and it will be shown that in a balanced system the neutral line
carries no current and, for purposes of analysis, may be omitted.

The wye and delta connections each have their advantages. In the wye case, we have
access to two voltages, the line-to-line and line-to-neutral, and it provides a convenient place
to connect to ground for system protection. That is, it limits the magnitude of surge voltages.
In the delta case, this configuration stays in balance better when serving unbalanced loads,
and it is capable of trapping the third harmonic.

Van + Vbn + Vcn = 0

/Van = 0°.

VcnVbnVan

VanVbn

11.2
Three-Phase
Connections

irwin11_541-576hr.qxd  6-08-2010  15:11  Page 547



548 C H A P T E R  1 1 P O LY P H A S E  C I R C U I T S

Figure 11.11

Wye (Y )-connected loads.

a

b

c

n

ZY

ZY

ZY

Load

(a) (b)

Load

a

n

b

c

ZY

ZY ZY

Figure 11.12

Delta (�)-connected loads.

Load Load

(a) (b)

a

b

c

Z� Z�

Z�

a

b

c

Z�

Z�

Z�

Since the source and the load can each be connected in either Y or �, three-phase balanced
circuits can be connected Y–Y, Y–�, �–Y, or �–�. Our approach to the analysis of all of
these circuits will be “Think Y”; therefore, we will analyze the Y–Y connection first.

BALANCED WYE–WYE CONNECTION Suppose now that both the source and load are con-
nected in a wye, as shown in Fig. 11.13. The phase voltages with positive phase sequence are

11.13

where the phase voltage, is the magnitude of the phasor voltage from the neutral to any
line. The line-to-line voltages or, simply, line voltages can be calculated using KVL; for
example, 

 = 13 Vp/30°

 = Vp c 32 + j 
13

2
d

 = Vp - Vp c- 
1

2
- j 
13

2
d

 = Vp/0° - Vp/-120°

 Vab = Van - Vbn

Vp ,

 Vcn = Vp/+120°

 Vbn = Vp/-120°

 Van = Vp/0°

Figure 11.13

Balanced three-phase
wye–wye connection.

a Ia
Van

ZY+-

b Ib
Vbn

ZY+-

c Ic

In

Vcn

ZY+-

11.3
Source/Load
Connections
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The phasor addition is shown in Fig. 11.14a. In a similar manner, we obtain the set of line-
to-line voltages as

11.14

All the line voltages together with the phase voltages are shown in Fig. 11.14b. We will
denote the magnitude of the line voltages as and therefore, for a balanced system,

11.15

Hence, in a wye-connected system, the line voltage is equal to times the phase voltage.
As shown in Fig. 11.13, the line current for the a phase is

11.16

where Ib and Ic have the same magnitude but lag Ia by 120° and 240°, respectively.
The neutral current In is then

11.17

Since there is no current in the neutral, this conductor could contain any impedance or it
could be an open or a short circuit, without changing the results found previously.

As illustrated by the wye–wye connection in Fig. 11.13, the current in the line connecting
the source to the load is the same as the phase current flowing through the impedance ZY.
Therefore, in a wye–wye connection,

11.18

where is the magnitude of the line current and is the magnitude of the current in a wye-
connected load.

Although we have a three-phase system composed of three sources and three loads, we
can analyze a single phase and use the phase sequence to obtain the voltages and currents in
the other phases. This is, of course, a direct result of the balanced condition. We may even
have impedances present in the lines; however, as long as the system remains balanced, we
need analyze only one phase. If the line impedances in lines a, b, and c are equal, the system
will be balanced. Recall that the balance of the system is unaffected by whatever appears in
the neutral line, and since the neutral line impedance is arbitrary, we assume that it is zero
(i.e., a short circuit).

IYIL

IL = IY

In = AIa + Ib + IcB = 0

Ia =

Van

ZY
=

Vp/0°

ZY

13

VL = 13 Vp

VL ,

 Vca = 13 Vp/-210°

 Vbc = 13 Vp/-90°

 Vab = 13 Vp/30°

Figure 11.14

Phasor representation of
phase and line voltages in a
balanced wye–wye system.

Vab

Vbn

Vcn

Van

Vab

Van

Vbn

Vbc

VcnVca

30° 30°

(a) (b)

Conversion rules:

Vab = 23 Van

/Vab = /Van + 30°

[ h i n t ]
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EXAMPLE

11.1
SOLUTION

EXAMPLE

11.2

SOLUTION

An abc-sequence three-phase voltage source connected in a balanced wye has a line volt-
age of We wish to determine the phase voltages.

The magnitude of the phase voltage is given by the expression

The phase relationships between the line and phase voltages are shown in Fig. 11.14. From
this figure we note that

The magnitudes of these voltages are quite common, and one often hears that the electric
service in a building, for example, is three-phase 208/120 V rms.

 Vcn = 120/+60° V rms

 Vbn = 120/-180° V rms

 Van = 120/-60° V rms

 = 120 V rms

 Vp =

208

13

Vab = 208/-30° V rms.

A three-phase wye-connected load is supplied by an abc-sequence balanced three-phase
wye-connected source with a phase voltage of 120 V rms. If the line impedance and load
impedance per phase are 1+j1 � and 20+j10 �, respectively, we wish to determine the
value of the line currents and the load voltages.

The phase voltages are

The per-phase circuit diagram is shown in Fig. 11.15. The line current for the a phase is

The load voltage for the a phase, which we call is

 = 113.15/-1.08° V rms

 VAN = A5.06/-27.65°B(20 + j10)

VAN,

 = 5.06/-27.65° A rms

 IaA =

120/0°

21 + j11

 Vcn = 120/+120° V rms

 Vbn = 120/-120° V rms

 Van = 120/0° V rms

Figure 11.15
Per-phase circuit diagram

for the problem in
Example 11.2.

±
–

VANVan

IaA

Nn

a A

20 �

1 � j1 �

j10 �

The phase of

Van = /Van = /Vab - 30°

[ h i n t ]

/ IcC = / IaA + 120°

/ IbB = / IaA - 120°

[ h i n t ]
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The corresponding line currents and load voltages for the b and c phases are

To reemphasize and clarify our terminology, phase voltage, is the magnitude of the
phasor voltage from the neutral to any line, while line voltage, is the magnitude of
the phasor voltage between any two lines. Thus, the values of and will depend on the
point at which they are calculated in the system.

VpVL

VL ,
Vp ,

 IcC = 5.06/-267.65° A rms  VCN = 113.15/-241.08° V rms

 IbB = 5.06/-147.65° A rms  VBN = 113.15/-121.08° V rms

E11.1 The voltage for the a phase of an abc-phase-sequence balanced wye-connected source is
Determine the line voltages for this source.Van = 120/90° V rms.

ANSWER:

Vca = 208/-120° V rms.

Vbc = 208/0° V rms;

Vab = 208/120° V rms;

E11.2 An abc-phase-sequence three-phase voltage source connected in a balanced wye has a
line voltage of Determine the phase voltages of the source.Vab = 208/0° V rms.

ANSWER:

Vcn = 120/-270° V rms.

Vbn = 120/-150° V rms;

Van = 120/-30° V rms;

E11.3 A three-phase wye-connected load is supplied by an abc-sequence balanced three-phase
wye-connected source through a transmission line with an impedance of 1 + j1 � per phase. The
load impedance is 8 + j3 � per phase. If the load voltage for the a phase is 
Ai.e., at the load end B , determine the phase voltages of the source.Vp = 104.02 V rms

104.02/26.6° V rms

ANSWER:

 Vcn = 120/-210° V rms.

 Vbn = 120/-90° V rms;

Van = 120/30° V rms;

Learning Assessments

E11.4 A positive-sequence balanced three-phase wye-connected source with a phase voltage of
277 V rms supplies power to a balanced wye-connected load. The per-phase load impedance is
60 - j40 �. Determine the line currents in the circuit if the phase angle of Van = 0°.

ANSWER:
IaA = 3.84 A rms;
IbB = 3.84 A rms;
IcC = 3.84 A rms./153.69°

/-86.31°
/33.69°

E11.5 An abc-sequence set of voltages feeds a balanced three-phase wye–wye system. 
The line and load impedances are 0.5 + j0.75 � and 20 - j24 � respectively. If the load 
voltage of the a-phase is VAN = 125 V rms, find the line voltages of the input./10°

ANSWER:
Vab = 214.8 V rms;
Vbc = 214.8 V rms;
Vca = 214.8 V rms./161.6°

/-78.4°
/41.6°

E11.6 In a balanced three-phase wye–wye system, the total power in the lines is 650 W.
VAN = 117 V rms and the power factor of the load is 0.88 leading. If the line impedance is 
1 + j2 , determine the load impedance.�

/15°
ANSWER:
ZL = 7 - j3.78 �.
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The previous analysis indicates that we can simply treat a three-phase balanced circuit on
a per-phase basis and use the phase relationship to determine all voltages and currents. Let
us now examine the situations in which either the source or the load is connected in �.

DELTA-CONNECTED SOURCE Consider the delta-connected source shown in Fig. 11.16a.
Note that the sources are connected line to line. We found earlier that the relationship
between line-to-line and line-to-neutral voltages was given by Eq. (11.14) and illustrated in
Fig. 11.14 for an abc-phase sequence of voltages. Therefore, if the delta sources are

11.19

 Vca = VL/+120°

 Vbc = VL/-120°

 Vab = VL/0°

Figure 11.16

Sources connected in delta
and wye.

-+ -+

+-

a Ia

Ic

Ibbc

VabVca

Vbc

(a) (b)

-+ -+

a Ia

Ic

Ibbc
VbnVcn

Van
±
–

where is the magnitude of the phase voltage. The equivalent wye sources shown in
Fig. 11.16b are

11.20

where is the magnitude of the phase voltage of an equivalent wye-connected source.
Therefore, if we encounter a network containing a delta-connected source, we can easily con-
vert the source from delta to wye so that all the techniques we have discussed previously can
be applied in an analysis.

Vp

Vcn =

VL

13
 /-270° = Vp/+90°

Vbn =

VL

13
 /-150° = Vp/-150°

Van =

VL

13
 /-30° = Vp/-30°

VL

Step 1. Convert the source/load connection to a wye–wye connection if either the
source, load, or both are connected in delta since the wye–wye connection can
be easily used to obtain the unknown phasors.

Step 2. Only the unknown phasors for the a-phase of the circuit need be determined
since the three-phase system is balanced.

Step 3. Finally, convert the now known phasors to the corresponding phasors in the
original system.

Problem-Solving Strategy
Three-Phase

Balanced AC Power
Circuits
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Consider the network shown in Fig. 11.17a. We wish to determine the line currents and the
magnitude of the line voltage at the load.

The single-phase diagram for the network is shown in Fig. 11.17b. The line current IaA is

and thus and The voltage is then

Therefore, the magnitude of the line voltage at the load is

The phase voltage at the source is while the phase voltage at
the load is Clearly, we must be careful with our notation
and specify where the phase or line voltage is taken.

= 118.65 V rms.Vp = 205.51�13
Vp = 208�13 = 120 V rms,

 = 205.51 V rms

 VL = 13 (118.65)

 = 118.65/-30.71° V rms

 VAN = A9.38/-49.14°B(12 + j4)

VANV rms.IcC = 9.38/70.86° IbB = 9.38/-169.14° V rms

 = 9.38/-49.14° A rms

 IaA =

A208�13B /-30°

12.1 + j4.2

Figure 11.17

Delta–wye network and 
an equivalent single-phase
(a-phase) diagram.

±
–

±
–

-
+

j0.2 �0.1 � j4 �12 �B N

j0.2 �0.1 � j4 �12 �Aa

b

j0.2 �0.1 � j4 �12 �

Cc

208  –240°
V rms

208  –120° V rms

208  0° V rms
±
–

VAN

IaA

Nn

a A

12 �

0.1 � j0.2 �

j4 �

–30° V rms208
13

–––

(a) (b)

EXAMPLE

11.3

E11.7 Consider the network shown in Fig. E11.7. Compute the magnitude of the line voltages
at the load.

ANSWER:
205.2 V rms.VL =

Figure E11.7

±
–

a A

B

C

b N

208  0° V rms

0.1 �

0.1 � j0.1 �

j0.1 �

j0.1 �

j4 �

j4 �

j4 �0.1 �

10 �

10 �

10 �

208  –120° V rms

208  –240°
V rms

c

±
–

±
–

Learning Assessments

SOLUTION
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E11.8 Find the magnitude of the line voltage at the load in Fig. E11.8. ANSWER:
VL = 209.2 V rms.

Figure E11.8

+
–

+
–

–
+

9 �

0.05 �

0.05 �

0.05 �

9 �

j6 �

j0.1 �

j0.1 �

j0.1 �

j6 �

9 �

j6 �

A

B

C

a

b

c

215  –130° V rms

215  110° V rms

215  –10° V rms

DELTA-CONNECTED LOAD Consider now the �-connected load shown in Fig. 11.18. Note
that in this connection the line-to-line voltage is the voltage across each load impedance.

If the phase voltages of the source are

11.21

then the line voltages are

11.22

 Vca = 13 Vp/-210° = VL/-210° = VCA

 Vbc = 13 Vp/-90° = VL/-90° = VBC

 Vab = 13 Vp/30° = VL/30° = VAB

 Vcn = Vp/+120°

 Vbn = Vp/-120°

 Van = Vp/0°

Figure 11.18

Balanced three-phase
wye–delta system.

Bn

a A

b

c C

– ±

– ±

– ±

ZΔ

ZΔ
Vab

Vbc

Vca

IaA

IbB

IcC

IBC

IAB

ICA

Vcn

Vbn

Van

ZΔ
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where is the magnitude of the line voltage at both the delta-connected load and at the
source since there is no line impedance present in the network.

From Fig. 11.18 we note that if the phase currents at the load are

11.23

where IBC and ICA have the same magnitude but lag IAB by 120° and 240°, respectively. KCL
can now be employed in conjunction with the phase currents to determine the line currents.
For example,

However, it is perhaps easier to simply convert the balanced �-connected load to a balanced
Y-connected load using the �–Y transformation. This conversion is possible since the
wye–delta and delta–wye transformations outlined in Chapter 2 are also valid for impedance
in the frequency domain. In the balanced case, the transformation equations reduce to

and then the line current IaA is simply

Finally, using the same approach as that employed earlier to determine the relationship between
the line voltages and phase voltages in a Y–Y connection, we can show that the relationship
between the magnitudes of the phase currents in the �-connected load and the line currents is

11.24IL = 13 I
¢

IaA =

Van

ZY

ZY =

1

3
 Z

¢

 = IAB - ICA

 IaA = IAB + IAC

IAB =

VAB

Z
¢

Z
¢

= Z
¢

/� ,

VL

EXAMPLE

11.4
SOLUTION

A balanced delta-connected load contains a 10-� resistor in series with a 20-mH inductor
in each phase. The voltage source is an abc-sequence three-phase 60-Hz, balanced wye with
a voltage We wish to determine all � currents and line currents.

The impedance per phase in the delta load is Z�=10+j7.54 �. The line voltage 
Since there is no line impedance, 

Hence,

If Z� = 10 + j7.54 �, then

Then the line current

 = 28.78/-7.01° A rms

 =

120/30°

4.17/37.01°

 IaA =

Van

ZY
=

120/30°

3.33 + j2.51

 = 3.33 + j2.51 �

 ZY =

1

3
 Z

¢

 = 16.60/+22.98° A rms

 IAB =

12013/60°

10 + j7.54

VAB = Vab = 12013/60° V rms.12013/60° V rms.
Vab =

Van = 120/30° V rms.
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Therefore, the remaining phase and line currents are

 ICA = 16.60/+142.98° A rms  IcC = 28.78/+112.99° A rms

 IBC = 16.60/-97.02° A rms  IbB = 28.78/-127.01° A rms

Careful observation of Table 11.1 indicates that the following rules apply when solving
problems in balanced three-phase systems:

● The phase of the voltages and currents in a � connection is 30° ahead of those in a
Y connection.

● The magnitude of the line voltage or, equivalently, the �-connection phase voltage, is
times that of the Y-connection phase voltage.

● The magnitude of the line current or, equivalently, the Y-connection phase current, is
times that of the �-connection phase current.

● The load impedance in the Y connection is one-third of that in the �-connection, and
the phase is identical.

13

13

(a) (b)

b or B b or Bc or C

a or A

a or A

n

c or C

VL=13 Vp  �+30°

+ +

+

-

- +

--

IL=IL  �

IL=IL  �

IL  �

Vp  �

�+30°

VL=VL   �+30°

13

IL
–––

Figure 11.19

Voltage and current relationships for Y and � configurations.

Y �

Line voltage

Line current

Phase voltage

Phase current

Load impedance 3 ZY /� - �ZY /� - �

IL

13
 /� + 30°IL /�

13 Vp /� + 30°Vp /� AVan or  VANB
IL /�IL /�IaA

= VL /� + 30°AVab or  VABB
VL /� + 30°13 Vp /� + 30°

In summary, the relationship between the line voltage and phase voltage and the line current
and phase current for both the Y and � configurations are shown in Fig. 11.19. The currents and
voltages are shown for one phase. The two remaining phases have the same magnitude but lag
by 120° and 240°, respectively.
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E11.9 An abc-sequence three-phase voltage source connected in a balanced wye supplies power
to a balanced delta-connected load. The line current for the a phase is Find
the phase currents in the delta-connected load.

IaA = 12/40° A rms.
ANSWER:

ICA = 6.93/-170° A rms.

IBC = 6.93/-50° A rms;

IAB = 6.93/70° A rms;

Learning Assessments

E11.10 Find the line currents and the power absorbed by the delta-connected load in 
Fig. E11.10.

ANSWER:

IaA = 35.76 A rms;

IbB = 35.76 A rms;

IcC = 35.76 A rms;

17.29 - j6.92 kVA.

/85.26°

/-154.74°

/-34.74°

Figure E11.10

0.5 �

0.5 �

0.5 �

j1 �

j1 �

j1 �

15 � 15 � 15 �

30 �

– j12 �

–j12 �

30 �
30 �

– j12 �

j8 � j8 � j8 �

A

B

C

a

b

c

480  –120° V rms

480  120° V rms

480  0° V rms+
–

+
–

–
+

Whether the load is connected in a wye or a delta, the real and reactive power per phase is

11.25

where � is the angle between the phase voltage and the line current. For a Y-connected system,
and and for a �-connected system, and Therefore,

11.26

The total real and reactive power for all three phases is then

11.27

and, therefore, the magnitude of the complex power (apparent power) is

and
/ST = �

 = 13 VL IL

 ST = 2P2
T + Q2

T

 QT = 3 QP = 13 VL IL sin �

 PT = 3 PP = 13 VL IL cos �

 Qp =

VL IL

13
 sin �

 Pp =

VL IL

13
 cos �

Vp = VL .Ip = IL�13Vp = VL�13 ,Ip = IL

 Qp = Vp Ip sin �

 Pp = Vp Ip cos � 11.4
Power

Relationships
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EXAMPLE

11.5

SOLUTION

A three-phase balanced wye–delta system has a line voltage of 208 V rms. The total real
power absorbed by the load is 1200 W. If the power factor angle of the load is 20° lagging,
we wish to determine the magnitude of the line current and the value of the load impedance
per phase in the delta.

The line current can be obtained from Eq. (11.26). Since the real power per phase is 400 W,

The magnitude of the current in each leg of the delta-connected load is

Therefore, the magnitude of the delta impedance in each phase of the load is

Since the power factor angle is 20° lagging, the load impedance is

 = 95.34 + j34.70 �

 Z
¢

= 101.46/20°

 = 101.46 �

 =

208

2.05

 @Z
¢
@ =

VL

I
¢

 = 2.05 A rms

 I
¢

=

IL

13

 IL = 3.54 A rms

 400 =

208IL

13
 cos 20°

EXAMPLE

11.6
SOLUTION

For the circuit in Example 11.2 we wish to determine the real and reactive power per phase
at the load and the total real power, reactive power, and complex power at the source.

From the data in Example 11.2 the complex power per phase at the load is

Therefore, the real and reactive power per phase at the load are 512.07 W and 256.09 var,
respectively.

The complex power per phase at the source is

Therefore, total real power, reactive power, and apparent power at the source are 1613.6 W,
845.2 var, and , respectively.1821.6 VA

 = 537.86 + j281.78 VA

 = 607.2/27.65°

 = A120/0°B A5.06/27.65°B
 Ssource = VI*

 = 512.07 + j256.09 VA

 = 572.54/26.57°

 = A113.15/-1.08°B A5.06/27.65°B
 Sload = VI*
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EXAMPLE

11.7

SOLUTION

A balanced three-phase source serves three loads, as follows:

Load 1: 24 kW at 0.6 lagging power factor

Load 2: 10 kW at unity power factor

Load 3: 12 k at 0.8 leading power factor

If the line voltage at the loads is 208 V rms at 60 Hz, we wish to determine the line current and
the combined power factor of the loads.

From the data we find that

Therefore,

and the combined power factor is

 = 0.869 lagging

 pfload = cos 29.63°

 IL = 139.23 A rms

 =

50,160

20813

 IL =

@Sload @
13 VL

 = 50,160/29.63° VA

 Sload = 43,600 + j24,800

 S3 = 12,000/-36.9° = 9600 - j7200

 S2 = 10,000 + j0

 S1 = 24,000 + j32,000

VA

The sum of three complex
powers;
Sload = S1 + S2 + S3

[ h i n t ]

EXAMPLE

11.8
SOLUTION

Given the three-phase system in Example 11.7, let us determine the line voltage and power
factor at the source if the line impedance is Zline = 0.05 + j0.02 �.

The complex power absorbed by the line impedances is

The complex power delivered by the source is then

The line voltage at the source is then

and the power factor at the source is

 = 0.873 lagging

 pfS = cos 29.17°

 = 220.87 V rms

 VLS
=

SS

13 IL

 = 53,264/29.17° VA

 = 43,600 + j24,800 + 2908 + j1163

 SS = Sload + Sline

 = 2908 + j1163 VA

 Sline = 3ARline I2
L + jXline I2

LB

Recall that the complex power
for all three lines is
Sline = 3I2

L 

Zline

[ h i n t ]
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EXAMPLE

11.9
SOLUTION

Let’s consider the three-phase system shown in Fig. 11.20. Calculate the real power loss in
the line resistance for and .

For , , and the real power

losses in the line are .

For , and 

The line losses at are 100 times larger than those at . This example
illustrates that power transmission at higher voltages is more efficient because of the
reduced losses. The transformer discussed in Chapter 10 allows voltage levels in ac sys-
tems to be changed easily. Electric generators at power plants generate line voltages up to

. Transformers are utilized to step up this voltage for transmission from the plants to
the load centers.
25 kV

500 kV rms50 kV rms

Pline = 3I2
LRline = 3(11.55)2(0.1) = 40 MW

IL =

1000

23(50)
= 11.55 kA rmsVL = 50 kV rms

Pline = 3I2
LRline = 3(1.155)2(0.1) = 0.4 MW

IL =

Sload

23VL

=

1000

23(500)
= 1.155 kA rmsVL = 500 kV rms

50 kV rmsVL = 500 kV rms

Figure 11.20

Three-phase system for
calculation of line losses for

different load voltages.

a
A

B

C

b

c

1000 MVA
0.8 lagging

Balanced
three-phase

source

+

-
VL

0.1 � j0.2 �

0.1 � j0.2 �

0.1 � j0.2 �

E11.11 A three-phase balanced wye–wye system has a line voltage of 208 V rms. The total real
power absorbed by the load is at 0.8 pf lagging. Determine the per-phase impedance of
the load.

12 kW

LearningAssessments
ANSWER:
Z = 2.88/36.87°�.

E11.12 For the balanced wye–wye system described in Learning Assessment E11.3, 
determine the real and reactive power and the complex power at both the source and the load.

ANSWER:

Ssource = 1335.65 + j593.55 VA.

Sload = 1186.77 + j444.66 VA;

E11.13 A line feeds two balanced three-phase loads. If the two loads are rated as
follows,

Load 1: 5 kVA at 0.8 pf lagging
Load 2: 10 kVA at 0.9 pf lagging

determine the magnitude of the line current from the 480-V rms source.

480-V rms ANSWER:
IL = 17.97 A rms.
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E11.14 If the line voltage at the load is 480 V rms in Fig. E11.14, find the line voltage and
power factor at the source.

ANSWER: VL = 501.7 
V rms, pf = 0.9568 lagging.

a

b

c

40 kW
0.8 lagging

Balanced
three-phase

source

0.1 � j0.2 �

0.1 � j0.2 �

0.1 � j0.2 �

A

B

C

30 kVA
0.9 leading

+

–
480 V rms

In Section 9.7 we illustrated a simple technique for raising the power factor of a load. The
method involved judiciously selecting a capacitor and placing it in parallel with the load.
In a balanced three-phase system, power factor correction is performed in exactly the same
manner. It is important to note, however, that the Scap specified in Eq. (9.37) is provided by
three capacitors, and in addition, in the equation is the voltage across each capacitor. The
following example illustrates the technique.

Vrms

11.5
Power Factor

Correction

Major precautions for
three-phase power factor
correction:

Must distinguish PT and PP.
Must use appropriate V rms
for Y- and �-connections.

[ h i n t ]

EXAMPLE

11.10
SOLUTION

In the balanced three-phase system shown in Fig. 11.21, the line voltage is 34.5 kV rms at
60 Hz. We wish to find the values of the capacitors C such that the total load has a power
factor of 0.94 leading.

Following the development outlined in Section 9.7 for single-phase power factor correction,
we obtain

and

Therefore,

and

 = -j21.82 MVA

 Scap = Snew - Sold

 = 18.72 - j6.80 MVA

 Snew = 18.72 + j18.72 tan (-19.95°)

 = -19.95°

 �new = -cos-1
 0.94

 = 18.72 + j15.02 MVA

 Sold = 24/cos-1
 0.78 MVA

Figure E11.14

The reactive power to be
supplied by C is derived from
the expression

The phase voltage for the Y
connection is

VY =

34.5k

13

jQcap = -j�CV 2rms

[ h i n t ]
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However,

and since the line voltage is 34.5 kV rms, then

Hence,
C = 48.6 	F

(377) a 34.5k

13
b2

C =

21.82

3
 M

-j�C V2
rms = -j21.82 MVA

Figure 11.21
Network used in

Example 11.10.

C C C

a

b

c

Balanced
load

24 MVA
0.78 power

factor
lagging

Balanced
three-phase

source

Neutral

Finally, recall that our entire discussion in this chapter has focused on balanced systems.
It is extremely important, however, to point out that in an unbalanced three-phase system the
problem is much more complicated because of the mutual inductive coupling between 
phases in power apparatus.

E11.15 Find C in Example 11.10 such that the load has a power factor of 0.90 lagging. ANSWER: C = 13.26 	F.

LearningAssessments

E11.16 Find C in Fig. E11.16 such that the power factor of the source if 0.98 lagging. ANSWER: C = 14/	F.

Balanced
three-phase

source
60 Hz

Balanced
three-phase

load
6 MVA

0.75 lagging

13.8 kV rms C

C

C

The first of the following three examples illustrates the manner in which power flow is meas-
ured when utilities are interconnected, answering the question of who is supplying power to
whom. The last example demonstrates the actual method in which capacitors are specified by
the manufacturer for power factor correction.

11.6
Application
Examples

Figure E11.16
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Two balanced three-phase systems, X and Y, are interconnected with lines having imped-
ance Zline = 1 + j2 �. The line voltages are and as
shown in Fig. 11.22a. We wish to determine which system is the source, which is the load,
and the average power supplied by the source and absorbed by the load.

When we draw the per phase circuit for the system as shown in Fig. 11.22b, the analysis
will be essentially the same as that of Example 9.12.

The network in Fig. 11.22b indicates that

The average power absorbed by system Y is

Note that system Y is not the load, but rather the source and supplies 5.130 MW.
System X absorbs the following average power:

where

Therefore,

and hence system X is the load.
The difference in the power supplied by system Y and that absorbed by system X is, of

course, the power absorbed by the resistance of the three lines.

 = 4.910 MW

 PX = 13 (12,000)(270.30) cos (-30° + 0.93°)

IAa = -IaA = 270.30/-0.93° A rms

 PX = 13 Vab IAa cos A�Van
- �IaA

B

 = -5.130 MW

 = 13 (12,000)(270.30) cos (-25° + 180.93°)

 PY = 13 VAB IaA cos (�Van
- �IaA

)

 = 270.30/-180.93° A rms

 =

12,000

13
 /-30° -

12,000

13
 /-25°

15/63.43°

 IaA =

Van - VAN

Zline

VAB = 12/5° kV rms,Vab = 12/0° kV rms

Figure 11.22

Circuits used in
Example 11.11: (a) original
three-phase system,
(b) per-phase circuit.

(a)

a

System

X
System

Y

b
Vab Zline

c

n

A

B

C

N

1 � j2 �

j2 �

j2 �

1 �

1 �

+

-
VAB

+

-

(b)

IaAa A

Nn

1 � j2 �

Van=

+ +

- -

12
13

–30° kV rms––– VAN=12
13

–25° kV rms–––
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APPLICATION
EXAMPLE 11.12

Let us examine, in a general sense, the incremental cost of power factor correction;
specifically, how much capacitance is required to improve the power factor by a fixed
amount, say 0.01?

The answer to this question depends primarily on two factors: the apparent power and the
original power factor before correction. This dependence can be illustrated by developing
equations for the old and new power factors, and their corresponding power factor angles.
We know that

11.28

If the difference in the power factors is 0.01, then

11.29

Solving for the ratio since reactive power and capacitance are proportional to one
another will yield the reactive power per watt required to improve the power factor by 0.01.
Using Eq. (11.28), we can write

11.30

A plot of Eq. (11.30), shown in Fig. 11.23, has some rather interesting implications. First,
the improvement required for a power factor change of 0.01 is at a minimum when the orig-
inal power factor is about 0.81. Thus, an incremental improvement at that point is least
expensive. Second, as the original power factor approaches unity, changes in power factor
are more expensive to implement.

QC

P
=

Qold

P
- tan A�newB = tan A�oldB - tan A�newB = tan Cacos ApfoldBD - tan Cacos Apfold + 0.01BD

QC�P,

pfnew - pfold = 0.01

tan A�newB =

Qold - QC

P
pfnew = cos A�newB

tan A�oldB =

Qold

P
pfold = cosA�oldB

SOLUTION

The preceding example illustrates an interesting point. Note that the phase difference
between the two ends of the power line determines the direction of the power flow. Since the
numerous power companies throughout the United States are tied together to form the U.S.
power grid, the phase difference across the interconnecting transmission lines reflects the
manner in which power is transferred between power companies.

Capacitors for power factor correction are usually specified by the manufacturer in vars
rather than in farads. Of course, the supplier must also specify the voltage at which the capac-
itor is designed to operate, and a frequency of 60 Hz is assumed. The relationship between
capacitance and the var rating is

where QR is the var rating, V is the voltage rating, and is the capacitor’s impedance at
60 Hz. Thus, a 500-V, 600-var capacitor has a capacitance of

or

and can be used in any application where the voltage across the capacitor does not exceed the
rated value of 500 V.

C = 6.37 	F

C =

QR

�V2
=

600

(377)(500)2

ZC

QR =

V2

ZC
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Figure 11.23

A plot of required reactive
power per watt needed to
improve the original power
factor by 0.01.
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SOLUTION

APPLICATION
EXAMPLE 11.13

Table 11.2 lists the voltage and power ratings for three power factor correction capacitors.
Let us determine which of them, if any, can be employed in Example 11.10.

TABLE 11.2 Rated voltage and vars for power factor correction
capacitors

CAPACITOR RATED VOLTAGE (kV) RATED Q (Mvars)

1 10.0 4.0

2 50.0 25.0

3 20.0 7.5

From Fig. 11.21 we see that the voltage across the capacitors is the line-to-neutral voltage,
which is

or

Therefore, only those capacitors with rated voltages greater than or equal to 19.9 kV can be
used in this application, which eliminates capacitor 1. Let us now determine the capacitance
of capacitors 2 and 3. For capacitor 2,

or

which is much smaller than the required 48.6 	F. The capacitance of capacitor 3 is

or

which is within 2.5% of the required value. Obviously, capacitor 3 is the best choice.

C3 = 49.7 	F

C3 =

Q

�V2
=

7.5 * 106

(377)(20,000)2

C2 = 26.53 	F

C2 =

Q

�V2
=

25 * 106

(377)(50,000)2

Van = 19.9 kV

Van =

Vab

13
=

34,500

13
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In the first example in this section, we examine the selection of both the conductor and the
capacitor in a practical power factor correction problem.11.7

Design Examples

DESIGN
EXAMPLE
11.14

Two stores, as shown in Fig. 11.24, are located at a busy intersection. The stores are fed
from a balanced three-phase 60-Hz source with a line voltage of 13.8 kV rms. The power
line is constructed of a #4ACSR (aluminum cable steel reinforced) conductor that is rated
at 170 A rms.

A third store, shown in Fig. 11.24, wishes to locate at the intersection. Let us determine
(1) if the #4ACSR conductor will permit the addition of this store, and (2) the value of
the capacitors connected in wye that are required to change the overall power factor for all
three stores to 0.92 lagging.

1. The complex power for each of the three loads is

Therefore, the total complex power is

Since

the line current is

Since this value is well below the rated value of 170 A rms, the conductor is sized prop-
erly and we can safely add the third store.

2. The combined power factor for the three loads is found from the expression

cos � = pf =

1780

2417
= 0.7365 lagging

 = 101.1 A rms

 IL =

(2417)A103B
13 (13.8)A103B

ST = 13 VL IL

 = 2417/42.57° kVA

 = 1780 + j1635

 ST = S1 + S2 + S3

 S3 = 800/25.8° = 720 + j349 kVA

 S2 = 1000/60° = 500 + j866 kVA

 S1 = 700/36.9° = 560 + j420 kVA

SOLUTION

Figure 11.24
Circuit used in
Example 11.14.

Balanced
three-phase

source
13.8 kV

Store #1
700 kVA

pf=0.8 lagging

a
b
c

Store #2
1000 kVA

pf=0.5 lagging

Store #3
800 kVA

pf=0.9 lagging
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By adding capacitors we wish to change this power factor to 0.92 lagging. This new
power factor corresponds to a �new of 23.07°. Therefore, the new complex power is

As illustrated in Fig. 9.17, the difference between Snew and ST is that supplied by the
purely reactive capacitor and, therefore,

or

Thus,

and

Therefore,

Hence, three capacitors of this value connected in wye at the load will yield a total
power factor of 0.92 lagging.

C = 12.2 	F

377 a 13.8 * 103

13
b 2

C =

876.72

3
* 103

-j�C V2
rms =

-j876.72k

3

 = -j876.72 kVA

 jQC = j(758.28 - 1635)

Scap = jQC = Snew - ST

 = 1780 + j758.28 kVA

 Snew = 1780 + j1780 tan (23.07°)

SOLUTION

DESIGN
EXAMPLE 11.15

Control circuitry for high-voltage, three-phase equipment usually operates at much lower
voltages. For example, a 10-kW power supply might operate at a line voltage of ,
while its control circuit is powered by internal dc power supplies at Lower voltages
are not only safer to operate but also permit engineers to easily incorporate op-amps and
digital electronics into the control system. It is a great convenience to test the control circuit
without having to connect it directly to a three-phase source. Therefore, let us
design a low-power, three-phase emulator that simulates a three-phase system at low volt-
age and low cost and provides a test bed for the control circuitry. The emulator should gen-
erate proper phasing but with a magnitude that is adjustable between 1 and 4 volts peak.

Our design, shown in Fig. 11.25, will consist of three parts: a magnitude adjustment, a phase
angle generator, and a phase B generator. The ac input is a 60-Hz sine wave with a peak of
about 5 V. This voltage can be generated from a standard wall outlet using a step-
down transformer with a turns ratio of

n =

12012

5
= 34 : 1

120 V rms

480-V rms

;5 V.
480 V rms

Figure 11.25
A block diagram for a three-
phase emulator.

±
–

Magnitude
adjustor

5  0° V

Phase
angle

generator

Phase VBN
generator

VBN

+

-

VCN

+

-

VAN

+

-

The potentiometer circuit shown in Fig. 11.26a can be used to provide magnitude adjustment.
Resistors and provide the voltage limits of 1 and We can use simple 4 V.R2R1
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voltage division to determine the relationships between , and When the pot’s wiper
arm is at the bottom of the pot in Fig. 11.26a, we have

11.31

and when the wiper is at the top,

11.32

Solving Eqs. (11.31) and (11.32) yields the requirements that To obtain
values for these resistors we must simply choose one of them. We know that resistors are
available in a wide variety of values in small increments. Potentiometers on the other hand
are not. Typical potentiometer values are 10, 20, 50, 100, 200, 500, ...10k ... 100k, 200k,
500k, ... up to about Since the potentiometer offers fewer options, we will choose its
value to be which yields —a standard resistor value. We will set

as the phase voltage VAN .V1

R1 = R2 = 3.3 k�10 k�,
10 M�.

R1 = R2 = Rp�3.

R2 + Rp = 4R11V1 = 4 = 5 c R2 + Rp

R1 + R2 + Rp
d

R1 + Rp = 4R21V1 = 1 = 5 c R2

R1 + R2 + Rp
d

Rp .R2R1 ,

Figure 11.26

Subcircuits within the three-
phase emulator: (a) the

magnitude adjustor, (b) the
R-C portion of the phase
angle generator, (c) the

complete phase angle
generator, and (d) the

generator for phase .VBN

(a)

V1

R1

Rp5 sin (�t) V

R2

+

-

±
–

(b)

V2

R3

+

-

V1

+

-

1

j�C
––––

(c)

R4

R5

V2

R3

+

-

V3

+

-

V1

+

-

1

j�C
––––

±
– –

±

(d)

R6 R8

R7

VBN

+

-

VAN

+

-
VCN

+

-

–
±
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Next we consider the phase angle generator. Since capacitors are generally smaller phys-
ically than inductors, we will use the simple RC network in Fig. 11.26b to shift the phase of

Assigning a phase angle of 0° to we know that the phase of must be between 0
and degrees. Unfortunately, in order to generate we need a phase angle of 
If we create a phase angle of and invert the resulting sine wave, we will produce an
equivalent phase angle of The inversion can be performed by an inverting op-amp
configuration. To produce a phase angle at requires

We will choose a standard value of 120 nF for C, which yields This is a stan-
dard value at 1% tolerance. Using these values, will be

11.33

From Eq. (11.33) we see that our inverter should also have a gain of 2 to restore the mag-
nitude of The complete phase angle generator circuit is shown in Fig. 11.26c, where

and have been chosen to produce the required gain. Now is
used to represent The additional unity gain buffer stage isolates the resistances asso-
ciated with the inverter from the R-C phase generator. That way the inverter will not alter
the phase angle.

Finally, we must create the phase voltage Since the sum of the three-phase voltages
is zero, we can write

The simple op-amp summer in Fig. 11.26d will perform this mathematical operation. For
the summer

We require Since we are already using some 10-k resistors anyway, we
just use three more here. The complete circuit is shown in Fig. 11.27 where one more unity
gain buffer has been added at the potentiometer. This one isolates the R-C phase angle
generator from the magnitude adjustment resistors.

It may seem that we have used op-amps too liberally, requiring a total of four. However,
most op-amp manufacturers package their op-amps in single (one op-amp), dual (two op-
amps), and quad (four op-amps) packages. Using a quad op-amp, we see that our circuit will
require just one integrated circuit. As a final note, the op-amp power supply voltages must
exceed the maximum input or output voltages at the op-amp terminals, which is 4 V.
Therefore, we will specify supplies.+10 V

�R6 = R7 = R8 .

VBN = - c R8

R6
dVAN - c R8

R7
dVCN 

VBN = -VAN - VCN

VBN .

VCN .
V3R5 = 20 k�R4 = 10 k�

V2 .

V2 = V1 c 1

1 + j�CR3
d =

V1

2.0
 /-60°

V2

R3 = 38.3 k�.

R3C = 4.59 *  10-3
1�CR3 = tan (60°) = 1.732

V2-60°
+120°!

-60°
+120°.VCN-90

V2V1 ,V1 .

Figure 11.27

The complete three-phase
emulator with variable volt-
age magnitude.

R1 R3

R4

R5

R6

R7

R8

Rp

R2 V3=VCN
VBN

+

-

VAN

+

-

+

-

V2

+

-

V1

+

-

±
– ±

– –
±

–
±

1

j�C
––––

±
–
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■ An important advantage of the balanced three-phase system
is that it provides very smooth power delivery.

■ Because of the balanced condition, it is possible to analyze
a circuit on a per-phase basis, thereby providing a
significant computational shortcut to a solution.

■ A balanced three-phase voltage source has three sinusoidal
voltages of the same magnitude and frequency, and each
voltage is 120° out of phase with the others. A positive-
phase-sequence balanced voltage source is one in which 
lags by 120° and lags by 120°.

■ The relationships between wye- and delta-connected
sources are shown in Table 11.1.

■ The three-phase terminology is shown in Table 11.3.

■ In a balanced system the voltages and currents sum to zero.

(no current in the neutral line)

and

■ The steps recommended for solving balanced three-phase
ac circuits are as follows:

 Iab + Ibc + Ica = 0

 Vab + Vbc + Vca = 0

 Ia + Ib + Ic = 0

 Van + Vbn + Vcn = 0

VbnVcnVan

Vbn

S U M M A R Y
•

TABLE 11.3 Three-phase terminology

QUANTITY WYE DELTA

Line current

Ia , Ib , Ic Phase current

Line-to-neutral voltage 

Van , Vbn , Vcn Phase voltage 

Vab, Vbc , Vca Line-to-line, phase-to-phase, line voltage 

Phase voltage 

Iab , Ibc , Ica Phase current AIpB
AVpB

AVLB
AVpB

AVpB
AIpB

AILB

1. If the source/load connection is not wye–wye, then
transform the system to a wye–wye connection.

2. Determine the unknown phasors in the wye–wye
connection and deal only with the phase a.

3. Convert the now-known phasors back to the corresponding
phasors in the original connection.

■ Power factor correction in a balanced three-phase
environment is performed in the same manner as in the
single-phase case. Three capacitors are put in parallel with
the load to reduce the lagging phase caused by the
three-phase load.

P R O B L E M S
•

11.1 Sketch a phasor representation of an abc-sequence
balanced three-phase Y-connected source, including ,

, and if .

11.2 Sketch a phasor representation of a balanced three-phase
system containing both phase voltages and line voltages
if . Label all magnitudes and
assume an abc-phase sequence.

11.3 Sketch a phasor representation of a balanced three-phase
system containing both phase voltages and line voltages
if . Label all magnitudes and
assume an abc-phase sequence.

11.4 Sketch a phasor representation of a balanced three-phase
system containing both phase voltages and line voltages
if . Label all phasors and assume
an abc-phase sequence.

11.5 A positive-sequence three-phase balanced wye voltage
source has a phase voltage of .
Determine the line voltages of the source.

Van = 240/90° V rms

Vab = 208/60° V rms

Van = 100/45° V rms

Van = 120/90° V rms

Van = 120/15° V rmsVcnVbn

Van

11.6 Find the equivalent Z of the network in Fig. P11.6.

Figure P11.6

2 �1 �

1 �

1 �

1 �

2 �

–j2 �

–j2 �

–j1 �

–j1 �

j1 �

Z
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11.7 Find the equivalent impedances , , and in the
network in Fig. P11.7.

Figure P11.7

11.8 Find the equivalent Z of the network in Fig. P11.8.

Figure P11.8

11.9 Find the equivalent Z of the network in Fig. P11.9.

Figure P11.9

11.10 A positive-sequence balanced three-phase wye-connect-
ed source with a phase voltage of 120 V rms supplies
power to a balanced wye-connected load. The per-phase
load impedance is . Determine the line cur-
rents in the circuit if ./Van = 0°

40 + j10 �

2 �

Z

a

d

bc

1 � 1 �

1 �

2 �2 �

–j1 �
–j1 �

–j1 � –j1 �

2 �

1/2 �

1 �

–j1 �

–j1 �

–j2 �

–j2 �
–j2 �

j1 �

1 �

j1 �Z

1 �

a

bc

1 �1 �

j1 �

j1 �j1 �

ZcaZbcZab 11.11 A positive-sequence balanced three-phase 
wye-connected source supplies power to a balanced
wye-connected load. The magnitude of the line voltages
is 208 V rms. If the load impedance per phase is

, determine the line currents if .

11.12 In a three-phase balanced wye–wye system, the source is
an abc-sequence set of voltages with Van = 120 rms.
The per phase impedance of the load is . If
the line impedance per phase is , find the
line currents and the voltages.

11.13 An abc-sequence set of voltages feeds a balanced 
three-phase wye–wye system. If the line current in the 
a phase is 16.78. A rms, the line impedance is

, and the input voltage Vab = 440 V
rms. find the load impedance. 

11.14 An abc-phase-sequence three-phase balanced
wye-connected source supplies a balanced delta-
connected load. The impedance per phase in the delta
load is 12 
 j9 �. The line voltage at the source is

� 120 V rms. If the line impedance is
zero, find the line currents in the balanced wye–delta
system.

11.15 An abc-phase-sequence three-phase balanced 
wye-connected 60-Hz source supplies a balanced delta-
connected load. The phase impedance in the load consists
of a 20 � resistor in series with a 50-mH inductor, and
the phase voltage at the source is 
V rms. If the line impedance is zero, find the line cur-
rents in the system.

11.16 An abc-phase-sequence three-phase balanced wye-
connected source supplies power to a balanced 
wye-connected load. The impedance per phase in the
load is 14 + j12 �. If the source voltage for the a phase
is , and the line impedance is
zero, find the phase currents in the wye-connected
source.

11.17 An abc-sequence balanced three-phase wye-connected
source supplies power to a balanced wye-connected load.
The line impedance per phase is 1 + j5 �, and the load
impedance per phase is 25 
 j25 �. If the source line
voltage � 208 V rms find the line currents.

11.18 An abc-sequence balanced three-phase wye-connected
source supplies power to a balanced wye-connected
load. The line impedance per phase is and
the load impedance per phase is If the
source line voltage find the line
currents.

11.19 An abc-sequence set of voltages feeds a balanced 
three-phase wye–wye system. The line and load
impedances are and 
respectively. If the load voltage on the phase is

determine the line voltages of
the input.
VAN = 110/30° V rms,

�
10 + j10 �,1 + j1 �

Vab is 100/0° V rms,
20 + j20 �.

1 + j0 �,

/0°Vab

Van = 120/80° V rms

Van = 120/20° V rms

/40°23Vab

/70°1.2 + j1.8 �
/20.98°

0.8 + j1.4 �
12 + j16 �

/60°

/Van = 0°36 + j12 �
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11.20 In a balanced three-phase wye–wye system, the 
source is an abc-sequence set of voltages. The load
voltage on the a phase is VAN = 108.58 V rms,
Zline = 1 + j1.4 �, and Zload = 10 + j13 �. Determine the
input sequence of voltages.

11.21 A balanced abc-sequence of voltages feeds a balanced
three-phase wye–wye system. The line and load imped-
ance are and respectively. The
load voltage on the a phase is 
Find the line voltage .

11.22 In a balanced three-phase wye–wye system, the source is
an abc-sequence set of voltages. The load voltage on the
a phase is 
and Determine the input sequence
of the line-to-neutral voltages.

11.23 In a balanced three-phase wye–wye system, the source
is an abc-sequence set of voltages. The load voltage
on the a phase is 

and 
Determine the input voltages.

11.24 In a balanced three-phase wye–wye system, the source
is an abc-sequence set of voltages. 

and the load voltage on the a
phase is Find the line 
voltage 

11.25 A balanced abc-sequence of voltages feeds a balanced
three-phase wye–wye system. The line and load imped-
ance are 0.6 + j 0. � and 8 + j12 � respectively. The load
voltage on the a phase is 
Find the line voltage .

11.26 In a balanced three-phase wye–wye system, the source
is an abc-sequence set of voltages. Zline = 1 + j1.8 �,
Zload = 14 + j12 �, and the load voltage on the a phase
is VAN = 398.1 V rms. Find the line voltage 

11.27 In a balanced three-phase wye–delta system the source has
an abc phase sequence and Van = 120 V rms. The
line and load impedances are 0.5 + j0.4 � and 24 + j18 �,
respectively. Find the delta currents in the load.

11.28 In a balanced three-phase wye–wye system, the load
impedance is The source has phase
sequence abc and If the load
voltage is determine the
line impedance.

11.29 In a balanced three-phase wye–wye system, the
total power loss in the lines is 400 W.

and the power factor
of the load is 0.77 lagging. If the line impedance is

determine the load impedance.2 + j1 �,

VAN = 105.28/31.56° V rms

VAN = 111.62/-1.33° V rms,
Van = 120/0° V rms.

8 + j4 �.

/40°

Vab./17.99°

Vab

VAN = 116.63/10° V rms.

Vab.
VAN = 440/30° V rms.

Zload = 14 + j12 �,
Zline = 1 + j1 �,

Zload = 10 + j10 �.Zline = 2 + j1.4 �,
VAN = 120/60° V rms,

Zload = 10 + j13 �.
Zline = 1 + j1.4 �,VAN = 110/80° V rms,

Vab

VAN = 116.63/10° V rms.
8 + j12 �,0.6 + j0.9 �

/79.81°
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11.30 In a balanced three-phase wye–wye system, the load
impedance is 10 + j1 �. The source has phase sequence
abc and the line voltage Vab = 220 V rms. If the
load voltage VAN = 120 V rms, determine the line
impedance.

11.31 In a balanced three-phase wye–wye system, the load
impedance is 20 + j12 �. The source has an abc-phase
sequence and Van = 120 V rms. If the load voltage
is VAN = 111.49 V rms, determine the 
magnitude of the line current if the load is suddenly
short-circuited.

11.32 In a balanced three-phase wye–wye system, the
source is an abc-sequence set of voltages and

If the a-phase line current and
line impedance are known to be 
and respectively, find the load impedance.

11.33 In a balanced three-phase wye–wye system, the
source is an abc-sequence set of voltages and 
Van = 120 V rms. The load voltage on the a phase
is 110.65 V rms and the load impedance is 
16 + j20 �. Find the line impedance.

11.34 An abc-sequence set of voltages feeds a balanced 
three-phase wye–wye system. If the input voltage 
Van = 440 V rms, the load voltage on the a phase
is VAN = 398.32 V rms, and Zload is 20 + j24 �,
find the line impedance.

11.35 An abc-phase-sequence balanced three-phase source
feeds a balanced load. The system is wye–wye connect-
ed. The load impedance is 10 + j6 �, the line imped-
ance is 1 + j0.5 V, and = 60°. The total power
loss in the lines is 470.44 W. Find VAN and the magni-
tude of the source voltage.

11.36 An abc-sequence balanced three-phase source feeds a
balanced wye–wye system. Zline = 0.8 + j0.2 �, 
Zload = 12 + j6 �, = 30°. The total power absorbed
by the load is 2 kW. Determine the total power loss in the
lines.

11.37 An abc-phase-sequence three-phase balanced
wye-connected 60-Hz source supplies a balanced 
delta-connected load. The phase impedance in the
load consists of a 20-� resistor series with a 20-mH
inductor, and the phase voltage at the source is 

= 120 V rms. If the line impedance is zero,
find the line currents in the system.

11.38 In a three-phase balanced system, a delta-connected
source supplies power to a wye-connected load. 
If the line impedance is 0.2 + j 0.4 �, the load
impedance 3 + j2 �, and the source phase voltage 

= 208 V rms, find the magnitude of the line
voltage at the load.

11.39 In a balanced three-phase wye–wye system, the
source is an abc-sequence set of voltages and 

= 120 V rms. The load voltage on the a
phase is 110 V rms, and the load impedance is 
16 
 j20 �. Find the line impedance.

/50°
/50°Van

/10°Vab

/30°Van

/VAN

/VAN

/8.72°
/10°

/29.03°
/50°

0.8 + j1 �,
7.10/-10.28° A rms

Van = 120/40° V rms.

/- 0.2°
/0°

/0°
/30°
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11.40 In a balanced three-phase wye–wye system, the 
source is an abc-sequence set of voltages and 

� 120 V rms. If the a-phase line current
and line impedance are known to be 6 A rms 
and 1 + j1 �, respectively, find the load impedance.

11.41 An abc-phase-sequence three-phase balanced
wye-connected source supplies a balanced delta-
connected load. The impedance per phase in the delta
load is 12 + j6 �. The line voltage at the source is

� 120 V rms. If the line impedance is
zero, find the line currents in the balanced wye–delta
system.

11.42 In a balanced three-phase delta–wye system, the source
has an abc-phase sequence. The line and load imped-
ances are 0.6 + j0.3 � and 12 + j7 �, respectively.
If the line current � 9.6 A rms, determine
the phase voltages of the source.

11.43 In a three-phase balanced system, a delta-connected
source supplies power to a wye-connected load. If the
line impedance is 0.2 + j0.4 �, the load impedance
6 + j4 �, and the source phase voltage = 210 
V rms, find the magnitude of the line voltage at the load.

11.44 An abc-sequence set of voltages feeds a balanced three-
phase wye–wye system. If ,

and ,
find the load impedance.

11.45 An abc-phase-sequence three-phase balanced wye-
connected source supplies a balanced delta-connected
load. The impedance per phase of the delta load is

. If , find the line 
current.

11.46 An abc-phase-sequence three-phase balanced wye-
connected source supplies power to a balanced delta-
connected load. The impedance per phase in the load is

. If the source voltage for the a phase is
and the line impedance is zero,

find the phase currents in the wye-connected source.

11.47 In a three-phase balanced delta–delta system, the
source has an abc-phase sequence. The line and load
impedances are and ,
respectively. If the load current in the delta is

, find the phase voltages of
the source.

11.48 An abc-phase-sequence three-phase balanced wye-
connected source supplies a balanced delta-connected
load. The impedance per phase of the delta load is

. If the line impedance is zero and 
the line current in the a phase is known to be

, find the load voltage .

11.49 In a balanced three-phase wye–delta system, the source
has an abc-phase sequence and . 
If the line impedance is zero and the line current

, find the load impedance per phase
in the delta.
IaA = 5/20° A rms

Van = 120/0° V rms

VABIaA = 28.10/-28.66° A rms

10 + j8 �

IAB = 15/40° A rms

9 + j6 �0.3 + j0.2 �

Van = 120/80° V rms
14 + j7 �

VAB = 115/35° V rms20 + j4 �

Zline = 2 + j1.5 �VAN = 413.28/29.78° V rms,
Van = 440/30° V rms

/40°Vab

/- 20°IaA

/40°23Vab

/15°
/40°Van
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11.50 A three-phase load impedance consists of a balanced
wye in parallel with a balanced delta. What is the
equivalent wye load and what is the equivalent delta
load if the phase impedances of the wye and delta are

and , respectively?

11.51 In a balanced three-phase system, the abc-phase-
sequence source is wye connected and

. The load consists of two bal-
anced wyes with phase impedances of and

. If the line impedance is zero, find the line
currents and the phase current in each load.

11.52 In a balanced three-phase delta–delta system, the source
has an abc-phase sequence. The phase angle for the
source voltage is and .
If the total power absorbed by the load is 1400 W, find
the load impedance.

11.53 In a balanced three-phase system, the source is a
balanced wye with an abc-phase sequence and

The load is a balanced wye in
parallel with a balanced delta. The phase impedance of
the wye is and the phase impedance of the
delta is If the line impedance is

find the line currents and the phase
currents in the loads.

11.54 In a balanced three-phase system, the source is a
balanced wye with an abc-phase sequence and

The load consists of a balanced
wye with a phase impedance of in parallel
with a balanced delta with a phase impedance of

If the line impedance is find
the phase currents in the balanced wye load.

11.55 In a balanced three-phase system, the source has an
abc-phase sequence and is connected in delta. There are
two loads connected in parallel. The line connecting the
source to the loads has an impedance of 
Load 1 is connected in wye, and the phase impedance is

Load 2 is connected in delta, and the phase
impedance is The current in the delta
load is Find the phase voltage of the
source.

11.56 In a balanced three-phase system, the source has an
abc-phase sequence and is connected in delta. There are
two parallel wye-connected loads. The phase imped-
ance of load 1 and load 2 is and 
respectively. The line impedance connecting the source
to the loads is If the current in the a
phase of load 1 is find the delta
currents in the source.

11.57 An abc-phase-sequence balanced three-phase source
feeds a balanced load. The system is connected wye-
wye and The line impedance is

the load impedance is and
the total power absorbed by the load is 2000 W.
Determine the magnitude of the source voltage Van.

16 + j10 �,0.5 + j0.2 �,
/Van = 0°.

IAN1
= 10/20° A rms,

0.3 + j0.2 �.

10 + j4 �,4 + j4 �

16/45°A rms.
IAB12 + j9 �.

4 + j2 �.

0.2 + j0.1 �.

1.2 + j1 �,21 + j12 �.

8 + j5 �
Vab = 208/60° V rms.

1 + j0.8 �,
18 + j12 �.

5 + j3 �,

Vab = 215/50° V rms.

Iab = 4/15° A rms/Vab = 40°

12 + j3 �
8 + j2 �

Van = 120/20° V rms

15 + j10 �6 + j3 �
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11.58 A balanced three-phase delta-connected source
supplies power to a load consisting of a balanced
delta in parallel with a balanced wye. The phase
impedance of the delta is and the
phase impedance of the wye is The
abc-phase-sequence source voltages are

and
and the line impedance per

phase is Find the line currents and the
power absorbed by the wye-connected load.

11.59 The magnitude of the complex power (apparent power)
supplied by a three-phase balanced wye–wye system is
3600 VA. The line voltage is 208 V rms. If the line
impedance is negligible and the power factor angle of
the load is determine the load impedance.

11.60 An abc-sequence wye-connected source having a phase-a
voltage of is attached to a wye-connected
load having a per-phase impedance of If the
line impedance is , determine the total complex
power produced by the voltage sources and the real and
reactive power dissipated by the load.

11.61 A three-phase balanced wye–wye system has a line
voltage of 208 V rms. The line current is 6 A rms and
the total real power absorbed by the load is 1800 W.
Determine the load impedance per-phase, if the line
impedance is negligible.

11.62 A three-phase abc-sequence wye-connected source sup-
plies 14 kVA with a power factor of 0.75 lagging to a
delta load. If the delta load consumes 12 kVA at a
power factor of 0.7 lagging and has a phase current of

, determine the per-phase impedance of
the load and the line.

11.63 A balanced three-phase source serves the following
loads:

Load 1: lagging

Load 2: lagging

The line voltage at the load is 208 V rms at 60 Hz.
Determine the line current and the combined power
factor at the load.

11.64 A balanced three-phase source serves two loads:

Load 1: 36 kVA at 0.8 pf lagging

Load 2: 18 kVA at 0.6 pf lagging

The line voltage at the load is 208 V rms at 60 Hz.
Find the line current and the combined power factor at
the load.

11.65 The following loads are served by a balanced
three-phase source:

Load 1: 18 kVA at 0.8 pf lagging

Load 2: 8 kVA at 0.8 pf leading

Load 3: 12 kVA at 0.75 pf lagging

The load voltage is 208 V rms at 60 Hz. If the line
impedance is negligible, find the power factor at the
source.

30 kVA at 0.75 pf

60 kVA at 0.8 pf

10/- 30° A rms

1/20° Æ
100/70° �.

120/0° V rms

25°,

1 + j0.08 �.
Vca = 440/- 180° V rms,
Vab = 440/60° V rms, Vbc = 440/- 60° V rms,

12 + j8 �.
24 + j12 �,
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11.66 A balanced three-phase source serves the following
loads:

Load 1: 20 kVA at 0.8 pf lagging

Load 2: 10 kVA at 0.7 pf leading

Load 3: 10 kW at unity pf

Load 4: 16 kVA at 0.6 pf lagging

The line voltage at the load is 208 V rms at 60 Hz, and
the line impedance is . Find the line
voltage and power factor at the source.

11.67 A small shopping center contains three stores that
represent three balanced three-phase loads. The power
lines to the shopping center represent a three-phase source
with a line voltage of 13.8 kV rms. The three loads are

Load 1: 400 kVA at 0.9 pf lagging

Load 2: 200 kVA at 0.85 pf lagging

Load 3: 100 kVA at 0.90 pf lagging

Find the power line current.

11.68 The following loads are served by a balanced
three-phase source:

Load 1: 20 kVA at 0.8 pf lagging

Load 2: 4 kVA at 0.8 pf leading

Load 3: 10 kVA at 0.75 pf lagging

The load voltage is 208 V rms at 60 Hz. If the line imped-
ance is negligible, find the power factor at the source.

11.69 A balanced three-phase source supplies power to three
loads:

Load 1: 30 kVA at 0.8 pf lagging

Load 2: 24 kW at 0.6 pf leading

Load 3: unknown

If the line voltage and total complex power at the load
are 208 V rms and kVA, respectively, find the
unknown load.

11.70 A balanced three-phase source supplies power to three
loads. The loads are

Load 1: 24 kVA at 0.6 pf lagging

Load 2: 10 kW at 0.75 pf lagging

Load 3: unknown

If the line voltage at the load is 208 V rms, the magni-
tude of the total complex power is 35.52 kVA, and the
combined power factor at the load is 0.88 lagging, find
the unknown load.

11.71 A balanced three-phase source supplies power to three
loads:

Load 1: 18 kVA at 0.8 pf lagging

Load 2: 10 kW at 0.6 pf leading

Load 3: unknown

If the line voltage at the loads is  208 V rms, the line
current at the source is 116.39 A rms, and the combined
power factor at the load is 0.86 lagging, find the
unknown load.

60 /0°

0.02 + j0.04 �
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11.72 A balanced three-phase source supplies power to three
loads:

Load 1: 30 kVA at 0.8 pf lagging

Load 2: 24 kW at 0.6 pf leading

Load 3: unknown

The line voltage at the load and line current at the
source are 208 V rms and 166.8 A rms, respectively. If
the combined power factor at the load is unity, find the
unknown load.

11.73 A balanced three-phase source supplies power to three
loads:

Load 1: 24 kW at 0.8 pf lagging

Load 2: 10 kVA at 0.7 pf leading

Load 3: unknown

If the line voltage at the load is 208 V rms, the magni-
tude of the total complex power is 41.93 kVA, and the
combined power factor at the load is 0.86 lagging, find
the unknown load.

11.74 A three-phase abc-sequence wye-connected source
with supplies power to a
wye-connected load that consumes 50 kW of power in
each phase at a pf of 0.8 lagging. Three capacitors are
found that each have an impedance of , and
they are connected in parallel with the load in a wye
configuration. Determine the power factor of the com-
bined load as seen by the source.

11.75 If the three capacitors in the network in Problem 11.74
are connected in a delta configuration, determine the
power factor of the combined load as seen by the
source.

11.76 Find C in the network in Fig. P11.76 such that the total
load has a power factor of 0.87 leading.

Figure P11.76

C

C CBalanced
three-phase

source
60 Hz

Balanced
three-phase

load
20 MVA
0.707 pf
lagging

34.5 kV rms

+

-

-j2.0 �

Van = 220/0° V rms
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11.77 Find C in the network in Fig. P11.77 such that the total
load has a power factor of 0.9 lagging.

Figure P11.77

11.78 Find the value of C in Fig. P11.78 such that the total
load has a power factor of 0.87 lagging.

Figure P11.78

11.79 Find C in the network in Fig. P11.79 so that the total
load has a power factor of 0.9 leading.

Figure P11.79

C

C

C

4.6 kV rms

Balanced
three-phase

source
60 Hz

Balanced
three-phase

load
6 MVA
0.8 pf

lagging

+

-

C

C CBalanced
three-phase

source
60 Hz

Balanced
three-phase

load
20 MVA
0.707 pf
lagging

34.5 kV rms

+

-

C

C

C

4.6 kV rms

Balanced
three-phase

source
60 Hz

Balanced
three-phase

load
6 MVA
0.8 pf

lagging

+

-
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11.80 A standard practice for utility companies is to divide customers into single-phase users and three-phase users. The utility
must provide three-phase users, typically industries, with all three phases. However, single-phase users, residential and
light commercial, are connected to only one phase. To reduce cable costs, all single-phase users in a neighborhood are
connected together. This means that even if the three-phase users present perfectly balanced loads to the power grid, the
single-phase loads will never be in balance, resulting in current flow in the neutral connection. Consider the 60-Hz, 
abc-sequence network in Fig. P11.80. With a line voltage of phase a supplies the single-phase users 
on A Street, phase b supplies B Street, and phase c supplies C Street. Furthermore, the three-phase industrial load, which
is connected in delta, is balanced. Find the neutral current.

Figure P11.80

±
–

±
–

±
–

A Street
48 kW
pf=1

B Street
30 kW
pf=1

C Street
60 kW
pf=1

Three-phase
36 kW

pf=0.5
lagging

240  0°
V rms

240  –120°
V rms

IAN

N

Aa

n

b

c

B

C

IBN ICN

240  120°
V rms

InN

416/30° V rms,
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T Y P I C A L P R O B L E M S F O U N D  O N  T H E F E E X A M
•

11PFE-1 A wye-connected load consists of a series RL 
impedance. Measurements indicate that the rms 
voltage across each element is 84.85 V. If the rms
line current is 6A, find the total complex power for
the three-phase load configuration.

a.

b.

c.

d.

11PFE-2 A balanced three-phase delta-connected load consists
of an impedance of . If the line voltage at
the load is measured to be 230 V rms, find the total
real power absorbed by the three-phase configuration.

a. 6.62 kW

b. 2.42 kW

c. 3.36 kW

d. 5.82 kW

11PFE-3 Two balanced three-phase loads are connected in paral-
lel. One load with a phase impedance of 
is connected in delta, and the other load has a phase
impedance of and is connected in wye. If
the line-to-line voltage is 208 V rms, determine the line
current.

6 + j4 �

24 + j18 �

12 + j12 �

2.16/45° kVA

3.74/60° kVA

4.32/30° kVA

1.25/-45° kVA

a.

b.

c.

d.

11PFE-4 The total complex power at the load of a three-phase
balanced system is . Find the real power
per phase.

a. 3.24 kW

b. 4.01 kW

c. 6.93 kW

d. 8.25 kW

11PFE-5 A balanced three-phase load operates at with
a line voltage at the load of at 60 Hz.
The apparent power of the three-phase load is

It is known that the load has a lagging
power factor. What is the total three-phase reactive
power of the load?

a.

b.

c.

d. 43.59 kvar

25.35 kvar

30.51 kvar

22.43 kvar

100 kVA.

480/0° V rms
90 kW

24/30° kVA

35.32/90.53°A rms

40.49/30.27°A rms

28.63/-35.02°A rms

15.84/-60.25°A rms
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CHAPTER

VARIABLE-FREQUENCY
NETWORK PERFORMANCE

577

M
Music and Frequency Time and frequency are two sides of

the same coin, describing signals in two ways.  We hear music,

for example, as a time signal but the sampling rate for its digi-

tal recording, mastering, and manufacturing depends on signal

bandwidth—a frequency description. We utilize both “lan-

guages”—time and frequency—to design recording and play-

back equipment. For iPods and MP3 players on laptops, the

bandwidth has to be large enough to reproduce music in fre-

quency ranges from bass to violin and from tuba to flute.  For

reference, concert flutes have frequencies from 262 Hz to over

2 kHz (middle C to three octaves above). 

Your hearing must have a bandwidth that extends to fre-

quencies at least as high as the highest frequency present in

the musical signal. Voice or other signals can be modulated to

a band of much higher frequencies, so high in some cases that

they can be heard only by dogs or Superman. High-frequency

hearing tends to deteriorate as you get older. This can be an

advantage when you’re young. For example, you can download

high-frequency ringtones that are inaudible to the average pro-

fessor. On the other hand, some convenience stores discour-

age loitering by broadcasting high-frequency signals that most

adults can’t hear, but that are very irritating to teenagers.  

12
T H E L E A R N I N G  G O A L S F O R  T H I S
C H A P T E R  A R E :

■ Understand the variable-frequency performance of the 
basic circuit elements: R, L, and C

■ Learn the different types of network functions and the 
definition of poles and zeros

■ Be able to sketch a Bode plot for a network function

■ Know how to create a Bode plot

■ Know how to analyze series and parallel resonant circuits

■ Be introduced to the concepts of magnitude and frequency
scaling

■ Learn the characteristics of basic filters such low-pass,
high-pass, band-pass, and band rejection

■ Know how to analyze basic passive and active filters

David Redfern/Redferns/Getty Images, Inc.
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12.1
Variable
Frequency-
Response
Analysis

In previous chapters we investigated the response of RLC networks to sinusoidal inputs. In
particular, we considered 60-Hz sinusoidal inputs. In this chapter we allow the frequency of
excitation to become a variable and evaluate network performance as a function of
frequency. To begin, let us consider the effect of varying frequency on elements with which
we are already quite familiar—the resistor, inductor, and capacitor. The frequency-domain
impedance of the resistor shown in Fig. 12.1a is

The magnitude and phase are constant and independent of frequency. Sketches of the magnitude
and phase of ZR are shown in Figs. 12.1b and c. Obviously, this is a very simple situation.

For the inductor in Fig. 12.2a, the frequency-domain impedance ZL is

ZL = j�L = �L/90°

ZR = R = R/0°
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Figure 12.1 

Frequency-independent
impedance of a resistor.

Variable frequency is as important in electric circuits as it is

in describing musical signals.  Frequency response plots of

voltage transfer functions show magnitude in decibels and

phase in degrees on linear scales versus radian frequency on 

a logarithmic scale.  Filter design using variable frequency

techniques results in series or parallel circuits that yield

desired frequency spectra—low-pass, high-pass, or band-

pass—for recording, communication, and radar systems. Your

cell phone, television, and iPod or MP3 player use these

principles.  The music beat delivered from high quality record-

ings and the clear tones of live performances both uplift the

listener—provided the bandwidth is adequate.
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The phase is constant at 90°, but the magnitude of ZL is directly proportional to frequency.
Figs. 12.2b and c show sketches of the magnitude and phase of ZL versus frequency. Note
that at low frequencies the inductor’s impedance is quite small. In fact, at dc, ZL is zero, and
the inductor appears as a short circuit. Conversely, as frequency increases, the impedance
also increases.

Next consider the capacitor of Fig. 12.3a. The impedance is

Once again the phase of the impedance is constant, but now the magnitude is inversely
proportional to frequency, as shown in Figs. 12.3b and c. Note that the impedance
approaches infinity, or an open circuit, as � approaches zero and ZC approaches zero as
� approaches infinity.

Now let us investigate a more complex circuit: the RLC series network in Fig. 12.4a. The
equivalent impedance is

or

Zeq =

(j�)2LC + j�RC + 1

j�C

Zeq = R + j�L +

1

j�C

ZC =

1

j�C
=

1

�C
 /-90°
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Frequency-dependent
impedance of an inductor.
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Sketches of the magnitude and phase of this function are shown in Figs. 12.4b and c.
Note that at very low frequencies, the capacitor appears as an open circuit, and, therefore, the

impedance is very large in this range. At high frequencies, the capacitor has very little effect and
the impedance is dominated by the inductor, whose impedance keeps rising with frequency.

As the circuits become more complicated, the equations become more cumbersome. In an
attempt to simplify them, let us make the substitution j�=s. (This substitution has a more
important meaning, which we will describe in later chapters.) With this substitution, the
expression for Zeq becomes

If we review the four circuits we investigated thus far, we will find that in every case the
impedance is the ratio of two polynomials in s and is of the general form

12.1

where N(s) and D(s) are polynomials of order m and n, respectively. An extremely important
aspect of Eq. (12.1) is that it holds not only for impedances but also for all voltages, currents,
admittances, and gains in the network. The only restriction is that the values of all circuit
elements (resistors, capacitors, inductors, and dependent sources) must be real numbers.

Z(s) =

N(s)

D(s)
=

am sm
+ am - 1 sm - 1

+
p

+ a1 s + a0

bn sn
+ bn - 1 sn - 1

+
p

+ b1 s + b0

Zeq =

s2LC + sRC + 1

sC
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Frequency-dependent
impedance of a capacitor.
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Let us now demonstrate the manner in which the voltage across an element in a series RLC
network varies with frequency.
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Frequency-dependent
impedance of an RLC series
network.

Consider the network in Fig. 12.5a. We wish to determine the variation of the output volt-
age as a function of frequency over the range from 0 to 1 kHz.

Using voltage division, we can express the output as

or, equivalently, 

Using the element values, we find that the equation becomes

Vo = a (j�)A37.95 * 10-3B
(j�)2A2.53 * 10-4B + j�A37.95 * 10-3B + 1

b 10/0°

Vo = a j�CR

(j�)2LC + j�CR + 1
bVS

Vo = °
R

R + j�L +

1

j�C
¢VS

SOLUTION

EXAMPLE

12.1
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In subsequent sections we will illustrate that the use of a semilog plot is a very useful tool
in deriving frequency-response information.

As an introductory application of variable frequency-response analysis and characteriza-
tion, let us consider a stereo amplifier. In particular, we should consider first the frequency
range over which the amplifier must perform and then exactly what kind of performance we
desire. The frequency range of the amplifier must exceed that of the human ear, which is
roughly 50 Hz to 15,000 Hz. Accordingly, typical stereo amplifiers are designed to operate
in the frequency range from 50 Hz to 20,000 Hz. Furthermore, we want to preserve the fidelity
of the signal as it passes through the amplifier. Thus, the output signal should be an exact
duplicate of the input signal times a gain factor. This requires that the gain be independent of
frequency over the specified frequency range of 50 Hz to 20,000 Hz. An ideal sketch of this
requirement for a gain of 1000 is shown in Fig. 12.6, where the midband region is defined as
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The resultant magnitude and phase characteristics are semilog plots in which the fre-
quency is displayed on the log axis. The plots for the function are shown in Fig. 12.5b.Vo
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Figure 12.5 

(a) Network and (b) its
frequency-response

simulation.
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that portion of the plot where the gain is constant and is bounded by two points, which we
will refer to as and Notice once again that the frequency axis is a log axis and, thus,
the frequency response is displayed on a semilog plot.

A model for the amplifier described graphically in Fig. 12.6 is shown in Fig. 12.7a, with
the frequency-domain equivalent circuit in Fig. 12.7b.

If the input is a steady-state sinusoid, we can use frequency-domain analysis to find the gain

which with the substitution s=j� can be expressed as

Using voltage division, we find that the gain is

or

 Gv(s) = c sCin Rin

1 + sCin Rin
d (1000) c 1

1 + sCo Ro
d

 Gv(s) =

Vo(s)

VS(s)
=

Vin(s)

VS(s)
 
Vo(s)

Vin(s)
= c Rin

Rin + 1�sCin

d (1000) c 1�sCo

Ro + 1�sCo

d

Gv(s) =

Vo(s)

VS(s)

Gv(j�) =

Vo(j�)

VS(j�)

fHI .fLO
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Amplifier frequency-response
requirements.
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Amplifier equivalent network.
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Using the element values in Fig. 12.7a,

where 100� and 40,000� are the radian equivalents of 50 Hz and 20,000 Hz, respectively.
Since s=j�, the network function is indeed complex. An exact plot of Gv(s) is shown in
Fig. 12.8 superimposed over the sketch of Fig. 12.6. The exact plot exhibits smooth transi-
tions at and otherwise the plots match fairly well.

Let us examine our expression for Gv(s) more closely with respect to the plot in Fig. 12.8.
Assume that f is well within the midband frequency range; that is,

or 

Under these conditions, the network function becomes

or

Thus, well within midband, the gain is constant. However, if the frequency of excitation
decreases toward then is comparable to 100� and

Since RinCin=1/100�, we see that Cin causes the rolloff in gain at low frequencies.
Similarly, when the frequency approaches the gain rolloff is due to Co .

Through this amplifier example, we have introduced the concept of frequency-dependent
networks and have demonstrated that frequency-dependent network performance is caused
by the reactive elements in a network.

NET WORK FUNCTIONS In the previous section, we introduced the term voltage gain,
Gv(s). This term is actually only one of several network functions, designated generally as
H(s), which define the ratio of response to input. Since the function describes a reaction due
to an excitation at some other point in the circuit, network functions are also called transfer
functions. Furthermore, transfer functions are not  limited to voltage ratios. Since in electrical
networks inputs and outputs can be either voltages or currents, there are four possible net-
work functions, as listed in Table 12.1.

There are also driving point functions, which are impedances or admittances defined at a sin-
gle pair of terminals. For example, the input impedance of a network is a driving point function.

fHI ,

Gv(s) L c s

s + 100�
d (1000)

∑s∑fLO ,

Gv(s) = 1000

Gv(s) L c s
s
d (1000) c 1

1 + 0
d

100� V ∑s∑ V 40,000�

fLO V f V fHI

fHI ;fLO

 Gv(s) = c s

s + 100�
d (1000) c 40,000�

s + 40,000�
d
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frequency plots.
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POLES AND ZEROS As we have indicated, the network function can be expressed as the
ratio of the two polynomials in s. In addition, we note that since the values of our circuit ele-
ments, or controlled sources, are real numbers, the coefficients of the two polynomials will
be real. Therefore, we will express a network function in the form

12.2

where N(s) is the numerator polynomial of degree m and D(s) is the denominator polyno-
mial of degree n. Equation (12.2) can also be written in the form

12.3H(s) =

K0As - z1B As - z2B p As - zmB
As - p1B As - p2B p As - pnB

H(s) =

N(s)

D(s)
=

am sm
+ am - 1 sm - 1

+
p

+ a1 s + a0

bn sn
+ bn - 1 sn - 1

+
p

+ b1 s + b0
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TABLE 12.1 Network transfer functions

INPUT OUTPUT TRANSFER FUNCTION SYMBOL

Voltage Voltage Voltage gain

Current Voltage Transimpedance

Current Current Current gain

Voltage Current Transadmittance Y(s)

Gi(s)

Z(s)

Gv(s)

We wish to determine the transfer admittance CI2(s)/V1(s) D and the voltage gain of the
network shown in Fig. 12.9.

The mesh equations for the network are

Solving the equations for I2(s) yields

Therefore, the transfer admittance CI2(s)/V1(s) D is

and the voltage gain is

Gv(s) =

V2(s)

V1(s)
=

LCR2 s2

AR1 + R2BLCs2
+ AL + R1 R2 CBs + R1

YT(s) =

I2(s)

V1(s)
=

LCs2

AR1 + R2BLCs2
+ AL + R1 R2 CBs + R1

I2(s) =

sLV1(s)

AR1 + sLB AR2 + sL + 1�sCB - s2L2

 V2(s) = I2(s)R2

 -sLI1(s) + aR2 + sL +

1

sC
b I2(s) = 0

 AR1 + sLBI1(s) - sLI2(s) = V1(s)
SOLUTION

EXAMPLE

12.2

±
–

R1

R2

1

sC
—

+

-

V2(s)V1(s) sL I2(s)I1(s)

Figure 12.9

Circuit employed in
Example 12.2.
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where K0 is a constant, are the roots of N(s), and are the roots of D(s).
Note that if s=z1, or then H(s) becomes zero and hence are called zeros
of the transfer function. Similarly, if s=p1, or then H(s) becomes infinite and,
therefore, are called poles of the function. The zeros or poles may actually be com-
plex. However, if they are complex, they must occur in conjugate pairs since the coefficients
of the polynomial are real. The representation of the network function specified in Eq. (12.3)
is extremely important and is generally employed to represent any linear time-invariant
system. The importance of this form lies in the fact that the dynamic properties of a system
can be gleaned from an examination of the system poles.

p1 , p , pn

p2 , p , pn ,
z1 , p , zmz2 , p , zm ,

p1 , p , pnz1 , p , zm

586 C H A P T E R  1 2 V A R I A B L E - F R E Q U E N C Y  N E T W O R K  P E R F O R M A N C E

Learning Assessments 
E12.1 Find the driving-point impedance at VS(s) in the amplifier shown in Fig. 12.7b. ANSWER:

= c 1 + a 100�

s
b d  M�.

Z(s) = Rin +

1

sCin

E12.2 Find the pole and zero locations in hertz and the value of K0 for the amplifier network
in Fig. 12.7.

ANSWER: z1=0 Hz (dc);
p1=–50 Hz;
p2=–20,000 Hz;
K0= A4 * 107 B �.

E12.3 Determine the voltage transfer function Vo (s)/Vi (s) as a function of s in Fig. PE12.3.

ANSWER: 

R1

1
sC1

R2

++

––

1
sC2

Vi(s) Vo(s)

12.2
Sinusoidal
Frequency
Analysis

Although in specific cases a network operates at only one frequency (e.g., a power system
network), in general we are interested in the behavior of a network as a function of frequency.
In a sinusoidal steady-state analysis, the network function can be expressed as

12.4

where and �(�) is the phase. A plot of these two functions, which are com-
monly called the magnitude and phase characteristics, displays the manner in which the
response varies with the input frequency �. We will now illustrate the manner in which to
perform a frequency-domain analysis by simply evaluating the function at various frequen-
cies within the range of interest.

FREQUENCY RESPONSE USING A  BODE PLOT If the network characteristics are
plotted on a semilog scale (that is, a linear scale for the ordinate and a logarithmic scale for
the abscissa), they are known as Bode plots (named after Hendrik W. Bode). This graph is a

M(�) = ∑H(j�)∑

H(j�) = M(�)ej�(�)

s

s +
1

s 2+R1C2
C1R2 + C2R2 + C1R1 

R1R2C1C2 R1R2C1C2

Figure E12.3
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powerful tool in both the analysis and design of frequency-dependent systems and networks
such as filters, tuners, and amplifiers. In using the graph, we plot versus

instead of M(�) versus �. The advantage of this technique is that rather than plot-
ting the characteristic point by point, we can employ straight-line approximations to obtain
the characteristic very efficiently. The ordinate for the magnitude plot is the decibel (dB).
This unit was originally employed to measure the ratio of powers; that is,

12.5

If the powers are absorbed by two equal resistors, then

12.6

The term dB has become so popular that it is now used for voltage and current ratios, as
illustrated in Eq. (12.6), without regard to the impedance employed in each case.

In the sinusoidal steady-state case, H(j�) in Eq. (12.3) can be expressed in general as

12.7

Note that this equation contains the following typical factors:

1. A frequency-independent factor K0>0

2. Poles or zeros at the origin of the form j�; that is, for zeros and for poles

3. Poles or zeros of the form (1 + j��)

4. Quadratic poles or zeros of the form 1 + 2�(j��) + 

Taking the logarithm of the magnitude of the function H(j�) in Eq. (12.7) yields

12.8

Note that we have used the fact that the log of the product of two or more terms is equal to
the sum of the logs of the individual terms, the log of the quotient of two terms is equal to
the difference of the logs of the individual terms, and 

The phase angle for H(j�) is

12.9+
p

- tan-1
 ��a - tan-1 a 2�b ��b

1 - �2�2
b

b  p

/H(j�) = 0 ; N(90°) + tan-1
 ��1 + tan-1 a 2�3 ��3

1 - �2�2
3

b

log10 An
= n log10 A.

 - 20 log10 @1 + 2�bAj��bB + Aj��bB2 @  p
 + p - 20 log10 @1 + j��a @
 + 20 log10 @1 + 2�3Aj��3B + Aj��3B2 @
 + 20 log10 @1 + j��1 @

 20 log10∑H(j�)∑ = 20 log10 K0 ; 20N log10∑j�∑

(j��)2

(j�)-N(j�)+N

H(j�) =

K0(j�);NA1 + j��1B C1 + 2�3Aj��3B + Aj��3B2 D  p
A1 + j��aB C1 + 2�bAj��bB + Aj��bB2 D  p

 = 20 log10 
@V2 @
@V1 @ = 20 log10 

@I2 @
@I1 @

 number of dB = 10 log10 
@V2 @ 2�R

@V1 @ 2�R
= 10 log10 

@I2 @ 2R
@I1 @ 2R

number of dB = 10 log10 
P2

P1

log10 (�)
20 log10 M(�)
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As Eqs. (12.8) and (12.9) indicate, we will simply plot each factor individually on a
common graph and then sum them algebraically to obtain the total characteristic. Let us
examine some of the individual terms and illustrate an efficient manner in which to plot them
on the Bode diagram.

Constant Term The term represents a constant magnitude with zero phase
shift, as shown in Fig. 12.10a.

Poles or Zeros at the Origin Poles or zeros at the origin are of the form where
+ is used for a zero and-is used for a pole. The magnitude of this function is 
which is a straight line on semilog paper with a slope of that is, the value
will change by 20N each time the frequency is multiplied by 10, and the phase of this func-
tion is a constant The magnitude and phase characteristics for poles and zeros at
the origin are shown in Figs. 12.10b and c, respectively.

Simple Pole or Zero Linear approximations can be employed when a simple pole or zero
of the form (1 + j��) is present in the network function. For and
therefore, Similarly, if then 

and hence Therefore, for the response is
0 dB and for the response has a slope that is the same as that of a simple pole or zero
at the origin. The intersection of these two asymptotes, one for and one for 
is the point where or which is called the break frequency. At this break
frequency, where Therefore, the actu-
al curve deviates from the asymptotes by 3 dB at the break frequency. It can be shown that at

20 log10 @(1 + j1) @ = 20 log10(2)1�2
= 3 dB.� = 1��,

� = 1��,�� = 1
�� W 1,�� V 1

�� W 1
�� V 120 log10∑(1 + j��)∑ L 20 log10 ��.L  j��,

(1 + j��)�� W 1,20 log10∑(1 + j��)∑ = 20 log10 1 = 0 dB.
(1 + j��) L 1,�� V 1,

;N(90°).

;20N dB�decade;
;20N log10 �,
(j�);N,

20 log10 K0
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Magnitude characteristic
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(b)

1.0

0

Magnitude characteristic
with slope of –20N dB/decade
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(c)

1.0

0
Magnitude characteristic
with slope of
±20N dB/decade

P
ha

se
 (

de
g)

� (rad/s:log scale)

±N(90°)Phase
characteristic

Figure 12.10

Magnitude and phase
characteristics for a constant
term and poles and zeros at

the origin.
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one-half and twice the break frequency, the deviations are 1 dB. The phase angle associated
with a simple pole or zero is which is a simple arctangent curve. Therefore, the
phase shift is 45° at the break frequency and 26.6° and 63.4° at one-half and twice the break
frequency, respectively. The actual magnitude curve for a pole of this form is shown in
Fig. 12.11a. For a zero the magnitude curve and the asymptote for have a positive
slope, and the phase curve extends from 0° to as shown in Fig. 12.11b. If multiple poles
or zeros of the form are present, then the slope of the high-frequency asymptote is
multiplied by N, the deviation between the actual curve and the asymptote at the break fre-
quency is 3N dB, and the phase curve extends from 0 to and is at the break
frequency.

Quadratic Poles or Zeros Quadratic poles or zeros are of the form 1 + 2� (j��) + (j��)2

This term is a function not only of � but also of the dimensionless term �, which is called the
damping ratio. If �>1 or � = 1, the roots are real and unequal or real and equal, respectively,
and these two cases have already been addressed. If �<1, the roots are complex conjugates,
and it is this case that we will examine now. Following the preceding argument for a simple pole
or zero, the log magnitude of the quadratic factor is 0 dB for For ,

and therefore, for the slope of the log magnitude curve is +40 db/decade for a
quadratic zero and -40 db/decade for a quadratic pole. Between the two extremes, �� V 1

�� W 1,

20 log10 @1 - (��)2
+ 2j�(��) @ L 20 log10 @(��)2 @ = 40 log10∑��∑

�� W 1�� V 1.

N(45°)N(90°)

(1 + j��)N
+90°,

�� W 1

� = tan-1
 ��,
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Figure 12.11

Magnitude and phase plot (a)
for a simple pole, and (b) for
a simple zero.
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and the behavior of the function is dependent on the damping ratio �. Fig. 12.12a
illustrates the manner in which the log magnitude curve for a quadratic pole changes as a func-
tion of the damping ratio. The phase shift for the quadratic factor is 
The phase plot for quadratic poles is shown in Fig. 12.12b. Note that in this case the phase
changes from 0° at frequencies for which to –180° at frequencies for which 
For quadratic zeros the magnitude and phase curves are inverted; that is, the log magnitude
curve has a slope of +40 db/decade for and the phase curve is 0° for and

for �� W 1.+180°
�� V 1�� W 1,

�� W 1.�� V 1

tan-1
 2���� C1 - (��)2 D .

�� W 1,
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Figure 12.12

Magnitude and phase
characteristics for

quadratic poles.

EXAMPLE

12.3

SOLUTION

We want to generate the magnitude and phase plots for the transfer function

Note that this function is in standard form, since every term is of the form (j�� + 1). To deter-
mine the composite magnitude and phase characteristics, we will plot the individual asymp-
totic terms and then add them as specified in Eqs. (12.8) and (12.9). Let us consider the mag-
nitude plot first. Since K0=10, which is a constant independent of20 log10 10 = 20 dB,

Gv(j�) =

10(0.1j� + 1)

(j� + 1)(0.02j� + 1)
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frequency, as shown in Fig. 12.13a. The zero of the transfer function contributes a term of the
form which is 0 dB for has a slope of ±20 dB/decade for

and has a break frequency at =10 rad/s. The poles have break frequencies at
=1 and =50 rad/s. The pole with break frequency at =1 rad/s contributes a term

of the form which is 0 dB for and has a slope of –20 dB/decade
for A similar argument can be made for the pole that has a break frequency at

These factors are all plotted individually in Fig. 12.13a.
Consider now the individual phase curves. The term K0 is not a function of and does

not contribute to the phase of the transfer function. The phase curve for the zero is
which is an arctangent curve that extends from 0° for to ±90° for

and has a phase of ±45° at the break frequency. The phase curves for the two
poles are and . The term is 0° for –90° for 
and –45° at the break frequency =1 rad/s. The phase curve for the remaining pole is
plotted in a similar fashion. All the individual phase curves are shown in Fig. 12.13a.

�
� W 1,� V 1,-tan-1
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 0.02�-tan-1

 �
0.1� W 1
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 0.1�,

�
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� W 1.
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Figure 12.13

(a) Magnitude and phase
components for the poles
and zeros of the transfer
function in Example 12.3;
(b) Bode plot for the
transfer function in
Example 12.3.
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As specified in Eqs. (12.8) and (12.9), the composite magnitude and phase of the trans-
fer function are obtained simply by adding the individual terms. The composite curves are
plotted in Fig. 12.13b. Note that the actual magnitude curve (solid line) differs from the
straight-line approximation (dashed line) by 3 dB at the break frequencies and 1 dB at
one-half and twice the break frequencies.

EXAMPLE

12.4
SOLUTION

Let us draw the Bode plot for the following transfer function:

Once again all the individual terms for both magnitude and phase are plotted in Fig. 12.14a.
The straight line with a slope of –40 dB/decade is generated by the double pole at the

Gv(j�) =

25(j� + 1)
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Figure 12.14

(a) Magnitude and phase
components for the poles

and zeros of the transfer
function in Example 12.4;

(b) Bode plot for the
transfer function in

Example 12.4.
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origin. This line is a plot of –40 log10 versus and therefore passes through 0 dB at 
=1 rad/s. The phase for the double pole is a constant –180° for all frequencies. The

remainder of the terms are plotted as illustrated in Example 12.3.
The composite plots are shown in Fig. 12.14b. Once again they are obtained simply by

adding the individual terms in Fig. 12.14a. Note that for frequencies for which the
slope of the magnitude curve is –40 dB/decade. At =1 rad/s, which is the break frequency
of the zero, the magnitude curve changes slope to –20 dB/decade. At =10 rad/s, which is
the break frequency of the pole, the slope of the magnitude curve changes back to
–40 dB/decade.

The composite phase curve starts at –180° due to the double pole at the origin. Since the
first break frequency encountered is a zero, the phase curve shifts toward –90°. However,
before the composite phase reaches –90°, the pole with break frequency =10 rad/s
begins to shift the composite curve back toward –180°.

�

�
�

� V 1,

�
��

Example 12.4 illustrates the manner in which to plot directly terms of the form 
For terms of this form, the initial slope of –20N dB/decade will intersect the 0-dB axis at a
frequency of that is, implies that

and therefore, Note that the projected slope of the mag-
nitude curve in Example 12.4 intersects the 0-dB axis at 

Similarly, it can be shown that for terms of the form the initial slope 
of ±20N dB/decade will intersect the 0-dB axis at a frequency of 
that is, implies that and therefore 

By applying the concepts we have just demonstrated, we can normally plot the log mag-
nitude characteristic of a transfer function directly in one step.

A1�K0B1�N rad�s.
� =K0�(j�)N

= 1,+20 log10 @K0�(j�)N @ = 0 dB
� = A1�K0B1�N rad�s;

K0(j�)N,
� = (25)1�2

= 5 rad�s.
� = AK0B1�N rad�s.K0�(j�)N

= 1,
-20 log10 @K0�(j�)N @ = 0 dBAK0B1�N rad�s;

K0�(j�)N.

Learning Assessments
E12.4 Sketch the magnitude characteristic of the Bode plot, labeling
all critical slopes and points for the function

G(j�) =

104(j� + 2)

(j� + 10)(j� + 100)

ANSWER:

|G| (dB)

20log1020
–20 dB/decade

2 10 100 � (rad/s)

±20 dB/decade

Figure E12.4

E12.5 Sketch the magnitude characteristic of the Bode plot for the
transfer function:

ANSWER:

–26

–6

1 10 100 � (rad/s)

|H| (dB)

–20 dB/decade 

–20 dB/decade 

Figure E12.5

H(j�) =

5(j� + 10)

j�(j� + 100)
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E12.6 Sketch the magnitude characteristic of the Bode plot, labeling
all critical slopes and points for the function

G(j�) =

100(0.02j� + 1)

(j�)2

ANSWER:

E12.7 Sketch the magnitude characteristic of the Bode plot, labeling
all critical slopes and points for the function

G(j�) =

10j�

(j� + 1)(j� + 10)

ANSWER:

|G| (dB)

–20 dB/decade

10 � (rad/s)

–40 dB/decade

50

0

±20 dB/decade

|G| (dB)

–20 dB/decade

1 � (rad/s)

0

10

Figure E12.6

Figure E12.7

EXAMPLE

12.5

SOLUTION

We wish to generate the Bode plot for the following transfer function:

Expressing this function in standard form, we obtain

The Bode plot is shown in Fig. 12.15. The initial low-frequency slope due to the zero at the
origin is ±20 dB/decade, and this slope intersects the 0-dB line at �=1/K0=2 rad/s. At
�=0.5 rad/s the slope changes from ±20 dB/decade to 0 dB/decade due to the presence
of the pole with a break frequency at �=0.5 rad/s. The quadratic term has a center
frequency of �=10 rad/s (i.e., �=1/10). Since

and

then

� = 0.2

� = 0.1

2�� =

1

25

Gv(j�) =

0.5j�

(2j� + 1) C(j��10)2
+ j��25 + 1 D

Gv(j�) =

25j�

(j� + 0.5) C(j�)2
+ 4j� + 100 D
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Plotting the curve in Fig. 12.12a with a damping ratio of �=0.2 at the center
frequency �=10 rad/s completes the composite magnitude curve for the transfer
function.

The initial low-frequency phase curve is ±90°, due to the zero at the origin. This curve
and the phase curve for the simple pole and the phase curve for the quadratic term, as
defined in Fig. 12.12b, are combined to yield the composite phase curve.
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Figure 12.15

Bode plot for the transfer
function in Example 12.5.

Learning Assessment
E12.8 Given the following function G(j�), sketch the magnitude
characteristic of the Bode plot, labeling all critical slopes and points:

G(j�) =

0.2(j� + 1)

j� C(j��12)2
+ j��36 + 1 D

ANSWER:

|G| (dB)

–20 dB/decade

0.2 � (rad/s)

0

–40 dB/decade

121

1
6

�=—

Figure E12.8

DERIVING THE TRANSFER FUNCTION FROM THE BODE PLOT The following
example will serve to demonstrate the derivation process.

SOLUTION

EXAMPLE

12.6
Given the asymptotic magnitude characteristic shown in Fig. 12.16, we wish to determine
the transfer function Gv(j�).

Since the initial slope is 0 dB/decade, and the level of the characteristic is 20 dB, the fac-
tor K0 can be obtained from the expression
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20 dB=20 log10 K0

and hence
K0=10

0.01 0.1 1.0 100.0

� (rad/s)

20

M
ag

ni
tu

de
 (

dB
)

1

–20

0

9753 1

10.0

9753 1 9753 1 9753 1

–20dB/decade

–20dB/decade

–40dB/decade

Figure 12.16

Straight-line magnitude
plot employed in

Example 12.6.

The –20-dB/decade slope starting at �=0.1 rad/s indicates that the first pole has a break
frequency at �=0.1 rad/s, and therefore one of the factors in the denominator is (10j� + 1).
The slope changes by ±20 dB/decade at �=0.5 rad/s, indicating that there is a zero pres-
ent with a break frequency at �=0.5 rad/s, and therefore the numerator has a factor of
(2j� + 1). Two additional poles are present with break frequencies at �=2 rad/s and
�=20 rad/s. Therefore, the composite transfer function is

Note carefully the ramifications of this example with regard to network design.

Gv(j�) =

10(2j� + 1)

(10j� + 1)(0.5j� + 1)(0.05j� + 1)

Learning Assessments
E12.9 Determine the transfer function G(j�) if the straight-line magnitude
characteristic approximation for this function is as shown in Fig. E12.9.

ANSWER:

G(j�) =

5 a j�

5
+ 1 b a j�

50
+ 1 b

j� a j�

20
+ 1 b a j�

100
+ 1 b

.
–20 dB/decade

5 � (rad/s)

0 dB

5020 100

–20 dB/decade

–20 dB/decade

|G| (dB)

Figure E12.9
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E12.10 Find H(j�) if its magnitude characteristic is shown in Fig. E12.10. ANSWER:

5 25 � (rad/s)12

–40 dB/dec

40

20 dB/dec

–10

–20 dB/dec

|H|(dB)

Figure E12.10

12.3
Resonant Circuits

SERIES RESONANCE A circuit with extremely important frequency characteristics is
shown in Fig. 12.17. The input impedance for the series RLC circuit is

12.10

The imaginary term will be zero if

The value of � that satisfies this equation is

12.11

and at this value of � the impedance becomes 

12.12

This frequency �0 , at which the impedance of the circuit is purely real, is also called the res-
onant frequency, and the circuit itself at this frequency is said to be in resonance. Resonance
is a very important consideration in engineering design. For example, engineers designing the
attitude control system for the Saturn vehicles had to ensure that the control system frequency
did not excite the body bending (resonant) frequencies of the vehicle. Excitation of the bend-
ing frequencies would cause oscillations that, if continued unchecked, would result in a
buildup of stress until the vehicle would finally break apart.

Resonance is also a benefit, providing string and wind musical instruments with volume
and rich tones.

At resonance the voltage and current are in phase and, therefore, the phase angle is zero
and the power factor is unity. At resonance the impedance is a minimum and, therefore, the
current is maximum for a given voltage. Fig. 12.18 illustrates the frequency response of the
series RLC circuit. Note that at low frequencies the impedance of the series circuit is domi-
nated by the capacitive term, and at high frequencies the impedance is dominated by the
inductive term.

Resonance can be viewed from another perspective—that of the phasor diagram. In the
series circuit the current is common to every element. Therefore, the current is employed as
reference. The phasor diagram is shown in Fig. 12.19 for the three frequency values 

� 7 �0 .� = �0 ,
� 6 �0 ,

ZAj�0B = R

�0 =

1

1LC

�L =

1

�C

Z(j�) = R + j�L +

1

j�C
= R + j a�L -

1

�C
b

R

C

L

+
+

-

-

VR

I

V1

Figure 12.17

Series RLC circuit.

H(j�) =

0.3162 a j�

5
+ 1 b

a j�

12
+ 1 b a j�

25
+ 1 b a j�

40
+ 1 b

.
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When is negative and the voltage V1 lags the current. If 
is zero, and the voltage V1 is in phase with the current. If 

is positive, and the voltage V1 leads the current.
For the series circuit we define what is commonly called the quality factor Q as

12.13

Q is a very important factor in resonant circuits, and its ramifications will be illustrated
throughout the remainder of this section.

Q =

�0 L
R

=

1

�0 CR
=

1

R
 
B

L

C

� 7 �0 , VL 7 VC , �ZVL = VC , �Z

� = �0 ,� 6 �0 , VC 7 VL , �Z
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|Z|

R

0

|Z|

�0

�L-
�C

�

1——

VR

VC

I
�Z

VL

VR=V1

VC

I

�<�0 �=�0

VL

VC

V1
I

�>�0

VR

�Z

VL

V1

Figure 12.18

Frequency response of a
series RLC circuit.

Figure 12.19

Phasor diagrams for the
series RLC circuit.

EXAMPLE

12.7
SOLUTION

Consider the network shown in Fig. 12.20. Let us determine the resonant frequency, the
voltage across each element at resonance, and the value of the quality factor.

The resonant frequency is obtained from the expression

At this resonant frequency 

I =

V
Z

=

V
R

= 5/0° A

 = 2000 rad�s

 =

1

2(25)A10-3B(10)A10-6B

 �0 =

1

1LC
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Therefore,

Note the magnitude of the voltages across the inductor and capacitor with respect to the
input voltage. Note also that these voltages are equal and are 180° out of phase with one
another. Therefore, the phasor diagram for this condition is shown in Fig. 12.19 for �=�0 .
The quality factor Q derived from Eq. (12.13) is

The voltages across the inductor and capacitor can be written in terms of Q as

and

This analysis indicates that for a given current there is a resonant voltage rise across the
inductor and capacitor that is equal to the product of Q and the applied voltage.

 @VC @ =

∑I∑

�0 C
=

1

�0 CR
 ∑VS∑ = Q∑VS∑

 @VL @ = �0 L∑I∑ =

�0 L
R

 ∑VS∑ = Q∑VS∑

Q =

�0 L
R

=

(2)A103B(25)A10-3B
2

= 25

 VC =

I
j�0 C

= 250/-90° V

 VL = j�0 LI = 250/90° V

 VR = A5/0°B(2) = 10/0° V

±
–

2 �

10 �F

25 mH

VS=10  0° V

I Figure 12.20

Series circuit.

EXAMPLE

12.8
In an undergraduate circuits laboratory, students are asked to construct an RLC network that
will demonstrate resonance at f=1000 Hz given a 0.02 H inductor that has a Q of 200.
One student produced the circuit shown in Fig. 12.21, where the inductor’s internal resist-
ance is represented by R.

If the capacitor chosen to demonstrate resonance was an oil-impregnated paper capaci-
tor rated at 300 V, let us determine the network parameters and the effect of this choice of
capacitor.

Figure 12.21

RLC series resonant network.

Inductor

C

LR

VC

+

-

VS=10  0° V ±
–

I
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For resonance at 1000 Hz, the student found the required capacitor value using the
expression

which yields

The student selected an oil-impregnated paper capacitor rated at 300 V. The resistor value
was found using the expression for Q

or

R=1.59 �

At resonance, the current would be

or

When constructed, the current was measured to be only

This measurement clearly indicated that the impedance seen by the source was about 10 k�
of resistance instead of 1.59 �—quite a drastic difference. Suspecting that the capacitor that
was selected was the source of the trouble, the student calculated what the capacitor volt-
age should be. If operated as designed, then at resonance,

or

which is more than six times the capacitor’s rated voltage! This overvoltage had damaged the
capacitor so that it did not function properly. When a new capacitor was selected and the
source voltage reduced by a factor of 10, the network performed properly as a high Q circuit.

VC = 2000/-90° V

VC =

VS

R
 a 1

j�C
b = QVS

I ~ 1/0° mA

I = 6.28/0° A

I =

VS

R

Q =

�0 L
R

= 200

C = 1.27 	F

�0 = 2�f0 =

1

1LC

SOLUTION

Learning Assessments
E12.11 Given the network in Fig. E12.11, find the value C that will place the circuit in
resonance at 1800 rad/s.

ANSWER: C=3.09 	F.

±
–

3 �

C

100 mH

10  0° V

Figure E12.11
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E12.12 Given the network in E12.12, determine the Q of the network and the magnitude of
the voltage across the capacitor.

ANSWER:
Q = 60, @VC @ = 600 V.

E12.13 If the resonant frequency of the network in Fig. E12.13 is 10,000 rad/s, find L.
Also compute the current at resonance, �0/3, and 3�0.

ANSWER:
L = 100 	H; 6 cos 10,000t A;
5.294 cos (3,333t + 28.07°) A;
5.294 cos (30,000t - 28.07°)A.

+
– 5 �

100 	F

i(t ) L

 30 cos �t V

Figure E12.13

Let us develop a general expression for the ratio of for the network in Fig. 12.17 in
terms of and The impedance of the circuit, given by Eq. (12.10), can be used to
determine the admittance, which can be expressed as

12.14

Using the fact that , Eq. (12.14) becomes 

12.15

Since I=YV1 and the voltage across the resistor is VR=IR, then

12.16

and the magnitude and phase are

12.17

and

12.18

The sketches for these functions are shown in Fig. 12.22. Note that the circuit has the form
of a band-pass filter. The bandwidth is defined as the difference between the two half-power
frequencies. Since power is proportional to the square of the magnitude, these two frequen-
cies may be derived by setting the magnitude that is,2 1

1 + jQA���0 - �0��B 2 =

1

12

M(�) = 1�12 ;

�(�) = -tan-1
 Q a �

�0
-

�0

�
b

M(�) =

1

C1 + Q2A���0 - �0��B2 D 1�2

VR

V1
= Gv(j�) =

1

1 + jQA���0 - �0��B

Y(j�) =

1

R C1 + jQA���0 - �0��B D

Q = �0 L�R = 1��0CR

 =

1

R C1 + jQ(�L�RQ - 1��CRQ) D

 =

1

R C1 + j(�L�R - 1��CR) D

 Y(j�) =

1

R C1 + j(1�R)(�L - 1��C) D

�0 .Q, �,
VR�V1
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Therefore,

12.19

Solving this equation, we obtain four frequencies,

12.20

Taking only the positive values, we obtain

12.21

Subtracting these two equations yields the bandwidth as shown in Fig. 12.22:

12.22

and multiplying the two equations yields

12.23

which illustrates that the resonant frequency is the geometric mean of the two half-power
frequencies. Recall that the half-power frequencies are the points at which the log-magnitude
curve is down 3 dB from its maximum value. Therefore, the difference between the 3-dB
frequencies, which is, of course, the bandwidth, is often called the 3-dB bandwidth.

�2
0 = �LO �HI

BW = �HI - �LO =

�0

Q

 � HI = �0 c 1

2Q
+

B
a 1

2Q
b 2

+ 1 d

 �  LO = �0 c- 
1

2Q
+

B
a 1

2Q
b 2

+ 1 d

� = ;  
�0

2Q
; �0 

B
a 1

2Q
b 2

+ 1 

Q a �

�0
-

�0

�
b = ;1
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±90

�

45

0

–45

–90

1
2√

�LO �0 �HI

BW

Figure 12.22

Magnitude and phase
curves for Eqs. (12.17)

and (12.18).

Half-power frequencies and
their dependence on �0

and Q are outlined in these
equations.

[ h i n t ]

The bandwidth is the
difference between the half-
power frequencies and a
function of �0 and Q.

[ h i n t ]
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Eq. (12.13) indicates the dependence of Q on R. A high-Q series circuit has a small value
of R.

Eq. (12.22) illustrates that the bandwidth is inversely proportional to Q. Therefore, the fre-
quency selectivity of the circuit is determined by the value of Q. A high-Q circuit has a small
bandwidth, and, therefore, the circuit is very selective. The manner in which Q affects the fre-
quency selectivity of the network is graphically illustrated in Fig. 12.23. Hence, if we pass a
signal with a wide frequency range through a high-Q circuit, only the frequency components
within the bandwidth of the network will not be attenuated; that is, the network acts like a
band-pass filter.

Q has a more general meaning that we can explore via an energy analysis of the series res-
onant circuit. Let’s excite a series RLC circuit at its resonant frequency as shown in
Fig. 12.24. Recall that the impedance of the RLC circuit at resonance is just R. Therefore, the
current The capacitor voltage is

12.24

and volts. Recall from Chapter 6 that the

energy stored in an inductor is and the energy stored in a capacitor is 
For the inductor:

12.25

and for the capacitor:

12.26wC(t) =

1

2
 Cv2

C(t) =

1

2
 C a Vm

�0 RC
 sin �0 t b 2

=

V2
m

2�2
0 R2C

 sin2
 �0 t J

wL(t) =

1

2
 Li2(t) =

1

2
 L aVm

R
 cos �0 t b 2

=

V2
m L

2R2
 cos2

 �0 t J

(1�2)Cv2.(1�2)Li2

Vm

�0 RC
 sin �0 t=

Vm

�0 RC
 cos (�0 t - 90°)=vC(t)

VC =

1

j�0 C
 I =

1

j�0 C
 
Vm

R
/0° =

Vm

�0 RC
/-90°

i(t) = (Vm�R)cos �0 t A.
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Learning Assessment
E12.14 For the network in Fig. E12.11, compute the two half-power frequencies and the band-
width of the network.

ANSWER:
=1815 rad/s;
=1785 rad/s;

BW=30 rad/s.
�LO

�HI

�

Q1>Q

Q2<Q

Q

0

|Y| Figure 12.23

Network frequency response
as a function of Q.

C

LR

vC(t)

i(t)

+

-

Vm cos�0 t volts ±
–

Figure 12.24

Series RLC circuit excited at
its resonant frequency.
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At resonance, so the energy stored in the capacitor can be rewritten as

12.27

The total energy stored in the circuit is From

trigonometry, we know that so the total energy stored is a constant:

J.

Now that we have determined that the total energy stored in the resonant circuit is a 
constant, let’s examine the energy stored in the inductor and capacitor. Fig. 12.25 is a plot 
of the normalized energy stored in each element over two periods. Eq. (12.25) and (12.27)

have been divided by to yield the normalized energy. When a circuit is in resonance,

there is a continuous exchange of energy between the magnetic field of the inductor and the
electric field of the capacitor. This energy exchange is like the motion of a pendulum.
The energy stored in the inductor starts at a maximum value, falls to zero, and then returns to
a maximum; the energy stored in the capacitor starts at zero, increases to a maximum, and then
returns to zero. Note that when the energy stored in the inductor is a maximum, the energy
stored in the capacitor is zero and vice versa. In the first half-cycle, the capacitor absorbs
energy as fast as the inductor gives it up; the opposite happens in the next half-cycle. Even
though the energy stored in each element is continuously varying, the total energy stored in
the resonant circuit is constant and therefore not changing with time.

The maximum energy stored in the RLC circuit at resonance is Let’s calcu-

late the energy dissipated per cycle in this series resonant circuit, which is

12.28

The ratio of to is

12.29
WS

WD
=

V2
m L

2R2

V2
m T

2R

=

L

RT
=

L

R 
2�

�0

=

�0 L
R(2�)

WDWS

WD = 3
T

0
pR dt = 3

T

0
i2(t)R dt = 3

T

0
aVm

R
 cos2

 �0 t b 2

R dt =

V2
m T

2R

WS =

V2
m L

2R2
 .

V2
m L

2R2

V2
m L

2R2

cos2
 �0 t + sin2

 �0 t = 1,

wL(t) + wC(t) =

V2
m L

2R2
 Acos2

 �0 t + sin2
 �0 tB.

wC(t) =

V2
m

2 a 1

LC
bR2C

 sin2
 �0 t =

V2
m L

2R2
 sin2

 �0 t J

�2
0 = 1�LC,
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Figure 12.25

Energy transfer in a resonant
circuit.
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Earlier in this chapter, we defined Q to be so the equation above can be rewritten as

12.30

The importance of this expression for Q stems from the fact that this expression is applica-
ble to acoustic, electrical, and mechanical systems and therefore is generally considered to
be the basic definition of Q.

Q = 2� 
WS

WD

�0 L�R,
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EXAMPLE

12.9
Given a series circuit with R=2 �, L=2 mH, and C=5 	F, we wish to determine the
resonant frequency, the quality factor, and the bandwidth for the circuit. Then we will deter-
mine the change in Q and the BW if R is changed from 2 to 0.2 �.

Using Eq. (12.11), we have

and therefore, the resonant frequency is 
The quality factor is

and the bandwidth is

If R is changed to R=0.2 �, the new value of Q is 100, and therefore the new BW is
rad/s.102

 = 103 rad�s

 BW =

�0

Q
=

104

10

 = 10

 Q =

�0 L
R

=

A104B(2)A10-3B
2

104�2� = 1592 Hz.

 = 104 rad�s

 �0 =

1

1LC
=

1

C(2)A10-3B(5)A10-6B D 1�2

EXAMPLE

12.10
We wish to determine the parameters R, L, and C so that the circuit shown in Fig. 12.26
operates as a band-pass filter with an �0 of 1000 rad/s and a bandwidth of 100 rad/s.

Learning Assessments
E12.15 A series circuit is composed of R=2 �, L=40 mH, and C=100 	F. Determine the
bandwidth of this circuit and its resonant frequency.

ANSWER: BW=50 rad/s;
�0=500 rad/s.

E12.16 A series RLC circuit has the following properties: R=4 �, �0=4000 rad/s, and the
BW=100 rad/s. Determine the values of L and C.

ANSWER: L=40 mH;
C=1.56 	F.

SOLUTION

±
– VR

+

-

VS

L

R

C

Figure 12.26

Series RLC circuit.
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The voltage gain for the network is

Hence,

and since ,

The bandwidth is

Then

However,

Therefore,

Note that we have two equations in the three unknown circuit parameters R, L, and C.
Hence, if we select C=1 	F, then

and

yields

R=100 �

Therefore, the parameters R=100 �, L=1 H, and C=1 	F will produce the proper
filter characteristics.

1000(1)

R
= 10

L =

1

106C
= 1 H

1000L

R
= 10

Q =

�0 L
R

 = 10

 Q =

�0

BW
=

1000

100

BW =

�0

Q

1

LC
= 106

�0 = 103

�0 =

1

1LC

Gv(j�) =

(R�L)j�

(j�)2
+ (R�L)j� + 1�LC

SOLUTION

In Examples 12.7 and 12.8 we found that the voltage across the capacitor or inductor in
the series resonant circuit could be quite high. In fact, it was equal to Q times the magnitude
of the source voltage. With this in mind, let us reexamine this network as shown in Fig. 12.27.
The output voltage for the network is

Vo = a 1�j�C

R + j�L + 1�j�C
bVS

±
– Vo

+

-

VS

L

C

RFigure 12.27

Series resonant circuit.
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which can be written as

The magnitude of this voltage can be expressed as

12.31

In view of the previous discussion, we might assume that the maximum value of the output
voltage would occur at the resonant frequency �0. Let us see whether this assumption is correct.
The frequency at which is maximum is the nonzero value of �, which satisfies the equation

12.32

If we perform the indicated operation and solve for the nonzero �max, we obtain

12.33

By employing the relationships and the expression for �max can be
written as

12.34

Clearly, however, �0 closely approximates �max if the Q is high. In addition, if
we substitute Eq. (12.34) into Eq. (12.31) and use the relationships and

we find that

12.35

Again, we see that if the network has a high Q.@Vo @max L Q @VS @
@Vo @max =

Q @VS @
21 - 1�4Q2

�2
0 C2R2

= 1�Q2 ,
�2

0 = 1�LC
�max Z �0 ;

 = �0 
B

1 -

1

2Q2

 �max =

B
�2

0 -

1

2
 a�0

Q
b 2

Q = �0 L�R,�2
0 = 1�LC

�max =

B

1

LC
-

1

2
 a R

L
b 2

d @Vo @
d�

= 0

@Vo @

@Vo @ =

@VS @
3A1 - �2LCB2 + (�CR)2

Vo =

VS

1 - �2LC + j�CR
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EXAMPLE

12.11
Given the network in Fig. 12.27, we wish to determine �0 and �max for R=50 � and
R=1 � if L=50 mH and C=5 	F.

The network parameters yield

If R=50 �, then

 = 2

 =

(2000)(0.05)

50

 Q =

�0 L
R

 = 2000 rad�s

 =

1

2(5)A10-2B(5)A10-6B

 �0 =

1

1LC

SOLUTION
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and

If R=1 �, then Q=100 and �max=2000 rad/s.
We can plot the frequency response of the network transfer function for R=50 � and

R=1 �. The transfer function is

for R=50 � and

for R=1 �. The magnitude and phase characteristics for the network with R=50 � and
R=1 � are shown in Figs. 12.28a and b, respectively.

Note that when the Q of the network is small, the frequency response is not selective
and �0 Z �max . However, if the Q is large, the frequency response is very selective and
�0 M �max.

Vo

VS
=

1

2.5 * 10-7(j�)2
+ 5 * 10-6(j�) + 1

Vo

VS
=

1

2.5 * 10-7(j�)2
+ 2.5 * 10-4(j�) + 1

 = 1871 rad�s

 = 2000 
B

1 -

1

8

 �max = �0 
B

1 -

1

2Q2

M
ag

ni
tu

de

101

100

10–1

10–2

102 103 104

Frequency (rad/s)

P
ha

se
 (

de
g)

0

–50

–100

–150

–200
102 103 104

Frequency (rad/s)

(a)

Figure 12.28

Frequency response plots
for the network in Fig. 12.27

with (a) and
(b) .R = 1 �

R = 50 �
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102 103 104
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(b)

Figure 12.28

(continued)

EXAMPLE

12.12
On July 1, 1940, the third longest bridge in the nation, the Tacoma Narrows Bridge, was
opened to traffic across Puget Sound in Washington. On November 7, 1940, the structure
collapsed in what has become the most celebrated structural failure of that century. A pho-
tograph of the bridge, taken as it swayed back and forth just before breaking apart, is shown
in Fig. 12.29. Explaining the disaster in quantitative terms is a feat for civil engineers and
structures experts, and several theories have been presented. However, the one common
denominator in each explanation is that wind blowing across the bridge caused the entire
structure to resonate to such an extent that the bridge tore itself apart. One can theorize that
the wind, fluctuating at a frequency near the natural frequency of the bridge (0.2 Hz), drove
the structure into resonance. Thus, the bridge can be roughly modeled as a second-order
system. Let us design an RLC resonance network to demonstrate the bridge’s vertical move-
ment and investigate the effect of the wind’s frequency.

The RLC network shown in Fig. 12.30 is a second-order system in which vin(t) is analogous
to vertical deflection of the bridge’s roadway (1 volt=1 foot). The values of C, L, RA , and
RB can be derived from the data taken at the site and from scale models, as follows:

 resonant frequency = f0 L 0.2 Hz

 wind speed at failure L 42 mph

 vertical deflection at failure L 4 feet

SOLUTION
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The output voltage can be expressed as

from which we can easily extract the following expressions:

and

Let us choose RB=1 � and RA=9.5 �. Having no data for the damping ratio, �, we
will select L=20 H, which yields �=0.209 and Q=2.39, which seem reasonable for
such a large structure. Given the aforementioned choices, the required capacitor value is
C=31.66 mF. Using these circuit values, we now simulate the effect of 42 mph winds
fluctuating at 0.05 Hz, 0.1 Hz, and 0.2 Hz using an ac analysis at the three frequencies
of interest.

VoAj�0B
VinAj�0B =

RB

RA + RB
L

4 feet

42 mph

 2��0 =

RA + RB

L

 �0 =

1

1LC
= 2�(0.2) rad�s

Vo(j�) =

j� a RB

L
b  Vin(j�)

-�2
+ j� a RA + RB

L
b +

1

LC

Figure 12.29

Tacoma Narrows Bridge
on the verge of collapse.

(University of Washington
Libraries Special Collections,

UW21413.)

±
–vin(t) vo(t)

+

-

L RA

RB

CFigure 12.30

RLC resonance network for
a simple Tacoma Narrows

Bridge simulation.
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The results are shown in Fig. 12.31. Note that at 0.05 Hz the vertical deflection (1 ft/V) is
only 0.44 feet, whereas at 0.1 Hz the bridge undulates about 1.07 feet. Finally, at the bridge’s
resonant frequency of 0.2 Hz, the bridge is oscillating 3.77 feet—catastrophic failure.

Clearly, we have used an extremely simplistic approach to modeling something as com-
plicated as the Tacoma Narrows Bridge. However, we will revisit this event in Chapter 14
and examine it more closely with a more accurate model (K. Y. Billah and R. H. Scalan,
“Resonance, Tacoma Narrows Bridge Failure, and Undergraduate Physics Textbooks,”
American Journal of Physics, 1991, vol. 59, no. 2, pp. 118–124).

4.0 V
3.765

2.0 V

1.066

0.440
0 V

–2.0 V

–4.0 V

0.05 Hz

0.2 Hz

0.1 Hz

0 s 5 s 10 s 15 s 20 s 25 s 30 s 35 s 40 s
t(s)

vo(t) (V) Figure 12.31

Simulated vertical deflection
(1 volt 
 1 foot) for the
Tacoma Narrows Bridge for
wind shift frequencies of
0.05, 0.1, and 0.2 Hz.

PARALLEL RESONANCE In our presentation of resonance thus far, we have focused our
discussion on the series resonant circuit. Of course, resonance and all its ramifications still
apply if the RLC elements are arranged in parallel. In fact, the series and parallel resonant
circuits possess many similarities and a few differences.

Consider the network shown in Fig. 12.32. The source current IS can be expressed as

When the network is in resonance,
12.36

The input admittance for the parallel RLC circuit is

12.37

and the admittance of the parallel circuit, at resonance, is

12.38

that is, all the source current flows through the conductance G. Does this mean that there is
no current in L or C? Definitely not! IC and IL are equal in magnitude but 180° out of phase
with one another. Therefore, Ix , as shown in Fig. 12.32, is zero. In addition, if G=0, the
source current is zero. What is actually taking place, however, is an energy exchange between
the electric field of the capacitor and the magnetic field of the inductor. As one increases, the
other decreases and vice versa.

YAj�0B = G

Y(j�) = G + j�C +

1

j�L

IS = GVS

 = VS cG + j a�C -

1

�L
b d

 = VS G + j�CVS +

VS

j�L

 IS = IG + IC + IL
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Analogous to the series resonant case, the frequency response, shown in Fig. 12.33a, for
the parallel resonant circuit reveals that the admittance is dominated by the inductive term at
low frequencies and by the capacitive term at high frequencies. Similarly, the phasor diagram
for the parallel resonant circuit, shown in Figure 12.33b, again has much in common with
that of the series circuit. For the impedance phase angle, is positive, again indi-
cating that inductance dominates in the parallel circuit at low frequencies. For is
negative, and the capacitance dominates.

Applying the general definition of resonance in Fig. 12.22 to the parallel resonant circuit
yields an interesting result

12.39

This result appears to be the reciprocal of Q for the series case. However, the RLC currents
in the parallel case mimic the voltages in the series case:

12.40
and

 @IL @ = Q @IS @

 @IC @ = Q @IS @

Q =

R

�0 L
=

1

G�0 L
= R�0 C =

�0 C
G

� 7 �0 , �Z

�Z ,� 6 �0 ,
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±
–VS G C L

IS

ILICIG

IxFigure 12.32

Parallel RLC circuit.

|Y|

G

0

|Y|

�0

�C-
�L

�

1——

(a)

IG

IL

I

V1 V1

�Z

�<�0 �=�0 �>�0

�Z

(b)

IC
IG

IC

IL
IL

IC
I

IG V1

Figure 12.33

(a) The frequency plot of the
admittance and (b) the 

phasor diagram for the paral-
lel resonant circuit.
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EXAMPLE

12.13
The network in Fig. 12.32 has the following parameters:

and

If the source operates at the resonant frequency of the network, compute all the branch currents.

The resonant frequency for the network is

At this frequency

and

The branch currents are then

and

As the analysis indicates, the source supplies only the losses in the resistive element. In addi-
tion, the source voltage and current are in phase and, therefore, the power factor is unity.

 = IG = 1.2/0° A

 IS = IG + IC + IL

 IL = YL VS = 8.49/-90° A

 IC = YC VS = 8.49/90° A

 IG = GVS = 1.2/0° A

 YL = -j a 1

�0 L
b = -j7.07 * 10-2 S

 YC = j�0 C = j7.07 * 10-2 S

 = 117.85 rad�s

 =

1

2(120)A10-3B(600)A10-6B

 �0 =

1

1LC

  L = 120 mH C = 600 	F,

G = 0.01 S, VS = 120/0° V,

SOLUTION

EXAMPLE

12.14
Given the parallel RLC circuit in Fig. 12.34,

a. Derive the expression for the resonant frequency, the half-power frequencies, the
bandwidth, and the quality factor for the transfer characteristic Vout/Iin in terms of the
circuit parameters R, L, and C.

b. Compute the quantities in part (a) if R=1 k�, L=10 mH, and C=100 	F.

a. The output voltage can be written as

Vout =

Iin

YT

SOLUTION

Vout

+

-

Iin G C L

Figure 12.34

Circuit used in
Example 12.14.
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and, therefore, the magnitude of the transfer characteristic can be expressed as

The transfer characteristic is a maximum at the resonant frequency

12.41

and at this frequency

12.42

As demonstrated earlier, at the half-power frequencies the magnitude is equal to 
of its maximum value, and hence the half-power frequencies can be obtained from the
expression

Solving this equation and taking only the positive values of � yields

12.43

and

12.44

Subtracting these two half-power frequencies yields the bandwidth

12.45

Therefore, the quality factor is 

12.46

Using Eqs. (12.41), (12.45), and (12.46), we can write Eqs. (12.43) and (12.44) as

12.47

12.48

b. Using the values given for the circuit components, we find that

�0 =

1

2A10-2B A10-4B = 103 rad�s

 �HI = �0 c 1

2Q
+

B
1

(2Q)2
+ 1 d

 �LO = �0 c -1

2Q
+

B
1

(2Q)2
+ 1 d

 = R 
A

C

L

 =

RC

1LC

 Q =

�0

BW

 =

1

RC

 BW = �HI - �LO

 �HI =  
1

2RC
+

B

1

(2RC)2
+

1

LC

 �LO = - 
1

2RC
+

B

1

(2RC)2
+

1

LC

1

2A1�R2B + (�C - 1��L)2
=

R

12

1�12

2Vout

Iin

2  
max

= R

�0 =

1

1LC

2Vout

Iin

2 =

1

2A1�R2B + (�C - 1��L)2
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The half-power frequencies are

and

�HI=1005 rad/s

Therefore, the bandwidth is

and

 = 100

 Q = 103
 
B

10-4

10-2

BW = �HI = �LO = 10 rad�s

 = 995 rad�s

 �LO =

-1

(2)A103B A10-4B +

B

1

C(2)A10-1B D 2 + 106

EXAMPLE

12.15
Two radio stations, WHEW and WHAT, broadcast in the same listening area: WHEW
broadcasts at 100 MHz and WHAT at 98 MHz. A single-stage tuned amplifier, such as that
shown in Fig. 12.35, can be used as a tuner to filter out one of the stations. However, single-
stage tuned amplifiers have poor selectivity due to their wide bandwidths. To reduce the
bandwidth (increase the quality factor) of single-stage tuned amplifiers, designers employ a
technique called synchronous tuning. In this process, identical tuned amplifiers are cascaded.
To demonstrate this phenomenon, let us generate a Bode plot for the amplifier shown in
Fig. 12.35 when it is tuned to WHEW (100 MHz), using one, two, three, and four stages of
amplification.

Using the circuit for a single-stage amplifier shown in Fig. 12.35, we can cascade the stages
to form a four-stage synchronously tuned amplifier. If we now plot the frequency response
over the range from 90 MHz to 110 MHz, we obtain the Bode plot shown in Fig. 12.36.

From the Bode plot in Fig. 12.36 we see that increasing the number of stages does indeed
decrease the bandwidth without altering the center frequency. As a result, the quality factor
and selectivity increase. Accordingly, as we add stages, the gain at 98 MHz (WHAT’s fre-
quency) decreases, and that station is “tuned out.”

SOLUTION

Parallel resonant circuit

R L C
2.54 pF1 �H250 �4 V

1000
——–

Transistor model

V

+

-

V

+

-

Vo

+

-

Vo

+

-

Figure 12.35
Single-stage tuned amplifier.
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In general, the resistance of the winding of an inductor cannot be neglected, and hence a
more practical parallel resonant circuit is the one shown in Fig. 12.37. The input admittance
of this circuit is

The frequency at which the admittance is purely real is

12.49

 �r =

B

1

LC
-

R2

L2

 �r C -

�r L
R2

+ �2
r  L2

= 0

 =

R

R2
+ �2L2

+ j a�C -

�L

R2
+ �2L2

b
 = j�C +

R - j�L

R2
+ �2L2

 Y(j�) = j�C +

1

R + j�L
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0.8 V

0.4 V

Two stage

One stage

Three stage

100 M 110 M

Frequency (Hz)

O
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pu
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 (

V
)

0 V
Four stage

90 M

Figure 12.36

Bode plots for one-, two-,
three-, and four-stage tuned

amplifiers.

Learning Assessments
E12.17 A parallel RLC circuit has the following parameters: R=2 k�, L=20 mH, and
C=150 	F. Determine the resonant frequency, the Q, and the bandwidth of the circuit.

ANSWER:
�0=577 rad/s; Q=173;
and BW=3.33 rad/s.

E12.18 A parallel RLC circuit has the following parameters: R=6 k�, BW=1000 rad/s, and
Q=120. Determine the values of L, C, and �0 .

ANSWER:
L=417.5 	H;
C=0.167 	F; and
�0=119,760 rad/s.

E12.19 The parallel RLC resonant circuit in Fig. E12.19 has a resonant frequency of 12,000
rad/s and an admittance of 5 mS at resonance. Find R and C.

ANSWER:
R=200 �, C=69.44 NF.

RY 0.1 mH CIs

Figure E12.19

R

C

L

+

-

I

V

Figure 12.37

Practical parallel resonant
circuit.
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EXAMPLE

12.16
Given the tank circuit in Fig. 12.38, let us determine �0 and �r for R=50 � and R=5 �.

SOLUTION

Vo

+

-

5  0° A

50 mH

5 �H

R

Figure 12.38

Tank circuit used in
Example 12.16.

Using the network parameter values, we obtain

If R=50 �, then

If R=5 �, then

Note that as This fact is also illustrated in the frequency-response curves
in Figs. 12.39a and b, where we have plotted versus frequency for R=50 and
R=5 , respectively.�

�@Vo @
�r S �0 .R S 0,

 fr = 317.9 Hz

 = 1997 rad�s

 �r =

B

1

(0.05)(5)A10-6B - a 5

0.05
b 2

 fr = 275.7 Hz

 = 1732 rad�s

 =

B

1

(0.05)(5)A10-6B - a 50

0.05
b 2

 �r =

B

1

LC
-

R2

L2

 f0 = 318.3 Hz

 = 2000 rad�s

 =

1

2(0.05)(5)A10-6B

 �0 =

1

1LC
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Let us now try to relate some of the things we have learned about resonance to the Bode
plots we presented earlier. The admittance for the series resonant circuit is

12.50

The standard form for the quadratic factor is

where �=1/�0 , and hence in general the quadratic factor can be written as

12.51

If we now compare this form of the quadratic factor with the denominator of Y(j�), we find that

and therefore,

However, from Eq. (12.13),

and hence,

12.52

To illustrate the significance of this equation, consider the Bode plot for the function
Y(j�). The plot has an initial slope of ±20 dB/decade due to the zero at the origin. If �>1,
the poles represented by the quadratic factor in the denominator will simply roll off the fre-

Q =

1

2�

Q =

1

R
 
B

L

C

� =

R

2
 
B

C

L

 
2�

�0
= CR

 �2
0 =

1

LC

(j�)2

�2
0

+

2��

�0
 j + 1

(j��)2
+ 2���j + 1

 =

j�C

(j�)2LC + j�CR + 1

 Y(j�) =

1

R + j�L + 1�j�C
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400
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0.4
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1

1.2

220
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(a) R=50 �

240 260 280 300 320 340 360 380 400

Figure 12.39

Frequency-response curves for Example 12.16.

irwin12_577-666hr.qxd  6-08-2010  15:14  Page 618



quency response, as illustrated in Fig. 12.12a, and at high frequencies the slope of the com-
posite characteristic will be –20 dB/decade. If 0<�<1, the frequency response will peak
as shown in Fig. 12.12a, and the sharpness of the peak will be controlled by �. If � is very
small, the peak of the frequency response is very narrow, the Q of the network is very large,
and the circuit is very selective in filtering the input signal. Eq. (12.52) and Fig. 12.23 illus-
trate the connections among the frequency response, the Q, and the � of a network.
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12.4
Scaling

Throughout this book we have employed a host of examples to illustrate the concepts being
discussed. In many cases the actual values of the parameters were unrealistic in a practical
sense, even though they may have simplified the presentation. In this section we illustrate
how to scale the circuits to make them more realistic.

There are two ways to scale a circuit: magnitude or impedance scaling and frequency scal-
ing. To magnitude scale a circuit, we simply multiply the impedance of each element by a scale
factor . Therefore, a resistor R becomes R. Multiplying the impedance of an inductor j
L by yields a new inductor L, and multiplying the impedance of a capacitor 1/j C by

yields a new capacitor C/ . Therefore, in magnitude scaling,

12.53

since

and Q¿ is

The resonant frequency, the quality factor, and therefore the bandwidth are unaffected by
magnitude scaling.

In frequency scaling the scale factor is denoted as . The resistor is frequency independ-
ent and, therefore, unaffected by this scaling. The new inductor L¿, which has the same imped-
ance at the scaled frequency must satisfy the equation

where Therefore,

Hence, the new inductor value is

Using a similar argument, we find that

Therefore, to frequency scale by a factor KF,

12.54

 C¿ S

C

KF

 L¿ S

L

KF

 R¿ S R

C¿ =

C

KF

L¿ =

L

KF

j�1 L = jKF �1 L¿

�œ

1 = kF �1 .
j�1 L = j�œ

1 L¿

�œ

1 ,

KF

Q¿ =

�0 L¿

R¿

=

�0 KM L
KM R

= Q

�œ

0 =

1

1L¿ C¿

=

1

1KM LC�KM

= �0

 C¿ S

C

KM

 L¿ S KM L
 R¿ S KM R

KMKM

�KMKM

�KMKM

Magnitude or impedance
scaling.

[ h i n t ]

Frequency scaling.

[ h i n t ]
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Note that

and

and therefore,
BW¿=KF(BW)

Hence, the resonant frequency and bandwidth of the circuit are affected by frequency scaling.

Q¿ =

KF �0 L
RKF

= Q

�œ

0 =

1

2AL�KFB AC�KFB = KF �0
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EXAMPLE

12.17
SOLUTION

If the values of the circuit parameters in Fig 12.37 are R=2 �, L=1 H, and 
let us determine the values of the elements if the circuit is magnitude scaled by a factor

and frequency scaled by a factor .

The magnitude scaling yields

Applying frequency scaling to these values yields the final results:

 C– =

1

200
 

1

KF
= 0.005 	F

 L– =

100

KF
= 100 	H

 R– = 200 �

 C¿ =

1

2
 

1

KM
=

1

200
 F

 L¿ = (1)KM = 100 H

 R¿ = 2KM = 200 �

KF = 102KM = 102

C = 1�2 F,

Learning Assessment
E12.20 An RLC network has the following parameter values: R=10 �, L=1 H, and
C=2 F. Determine the values of the circuit elements if the circuit is magnitude scaled by a
factor of 100 and frequency scaled by a factor of 10,000.

ANSWER: R=1 k�;
L=10 mH; C=2 	F.

12.5
Filter Networks

PASSIVE FILTERS A filter network is generally designed to pass signals with a specific
frequency range and reject or attenuate signals whose frequency spectrum is outside this
pass-band. The most common filters are low-pass filters, which pass low frequencies and reject
high frequencies; high-pass filters, which pass high frequencies and block low frequencies;
band-pass filters, which pass some particular band of frequencies and reject all frequencies out-
side the range; and band-rejection filters, which are specifically designed to reject a particular
band of frequencies and pass all other frequencies.

The ideal frequency characteristic for a low-pass filter is shown in Fig. 12.40a. Also
shown is a typical or physically realizable characteristic. Ideally, we would like the low-pass
filter to pass all frequencies to some frequency �0 and pass no frequency above that value;
however, it is not possible to design such a filter with linear circuit elements. Hence, we must
be content to employ filters that we can actually build in the laboratory, and these filters have
frequency characteristics that are simply not ideal.
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A simple low-pass filter network is shown in Fig. 12.40b. The voltage gain for the network is

12.55

which can be written as

12.56

where �=RC, the time constant. The amplitude characteristic is

12.57

and the phase characteristic is

12.58�(�) = -tan-1
 ��

M(�) =

1

C1 + (��)2 D 1�2

 Gv(j�) =

1

1 + j��

Gv(j�) =

1

1 + j�RC
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Figure 12.40

Low-pass filter circuit and its frequency characteristics.

Figure 12.41

High-pass filter circuit and its frequency characteristics.
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Note that at the break frequency, �= the amplitude is

12.59

The break frequency is also commonly called the half-power frequency. This name is derived
from the fact that if the voltage or current is of its maximum value, then the power,
which is proportional to the square of the voltage or current, is one-half its maximum value.

The magnitude, in decibels, and phase curves for this simple low-pass circuit are shown
in Fig. 12.40c. Note that the magnitude curve is flat for low frequencies and rolls off at high
frequencies. The phase shifts from 0° at low frequencies to –90° at high frequencies.

The ideal frequency characteristic for a high-pass filter is shown in Fig. 12.41a, together with
a typical characteristic that we could achieve with linear circuit components. Ideally, the high-
pass filter passes all frequencies above some frequency �0 and no frequencies below that value.

A simple high-pass filter network is shown in Fig. 12.41b. This is the same network as
shown in Fig. 12.40b, except that the output voltage is taken across the resistor. The voltage
gain for this network is

12.60

where once again �=RC. The magnitude of this function is

12.61

and the phase is

12.62

The half-power frequency is �=1/�, and the phase at this frequency is 45°.
The magnitude and phase curves for this high-pass filter are shown in Fig. 12.41c. At

low frequencies the magnitude curve has a slope of ±20 dB/decade due to the term �� in
the numerator of Eq. (12.61). Then at the break frequency the curve begins to flatten out.
The phase curve is derived from Eq. (12.62).

Ideal and typical amplitude characteristics for simple band-pass and band-rejection filters
are shown in Figs. 12.42a and b, respectively. Simple networks that are capable of realizing
the typical characteristics of each filter are shown below as characteristics in Figs. 12.42c and
d. �0 is the center frequency of the pass or rejection band and the frequency at which the
maximum or minimum amplitude occurs. and are the lower and upper break fre-
quencies or cutoff frequencies, where the amplitude is of the maximum value. The
width of the pass or rejection band is called bandwidth, and hence

12.63

To illustrate these points, let us consider the band-pass filter. The voltage transfer function is

and, therefore, the amplitude characteristic is

At low frequencies

At high frequencies

M(�) M

RC�

�2LC
L

R

�L
L 0

M(�) L

RC�

1
L 0

M(�) =

RC�

2(RC�)2
+ A�2LC - 1B2

Gv(j�) =

R

R + j(�L - 1��C)

BW = �HI - �LO

1�12
�HI�LO

�(�) =

�

2
- tan-1

 ��

M(�) =

��

C1 + (��)2 D 1�2

Gv(j�) =

j��

1 + j��

1�12

M a� =

1
�
b =

1

12

1
�

 ,
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In the midfrequency range and thus M(�) L 1. Therefore, the fre-
quency characteristic for this filter is shown in Fig. 12.42e. The center frequency is

At the lower cutoff frequency

or

Solving this expression for �LO, we obtain

At the upper cutoff frequency

or

Solving this expression for �HI, we obtain

Therefore, the bandwidth of the filter is

BW = �HI - �LO =

R

L

�HI =

+(R�L) + 2(R�L)2
+ 4�2

0

2

�2
-

R

L
 � - �2

0 = 0

�2LC - 1 = +RC�

�LO =

-(R�L) + 2(R�L)2
+ 4�2

0

2

�2
+

R�

L
- �2

0 = 0

�2LC - 1 = -RC�

�0 = 1�1LC .

(RC�)2
W A�2LC - 1B2,
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(a) (b)
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1——
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��LO �0 �HI

Gv(j�)

(e)

(c) (d)
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Figure 12.42

Band-pass and
band-rejection filters and
characteristics.
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EXAMPLE

12.18
SOLUTION

Consider the frequency-dependent network in Fig. 12.43. Given the following circuit param-
eter values: L=159 	H, C=159 	F, and R=10 �, let us demonstrate that this one net-
work can be used to produce a low-pass, high-pass, or band-pass filter.

The voltage gain is found by voltage division to be

which is the transfer function for a band-pass filter. At resonance, �2=1/LC, and hence

Now consider the gain VL/VS :

which is a second-order high-pass filter transfer function. Again, at resonance,

Similarly, the gain VC/VS is

which is a second-order low-pass filter transfer function. At the resonant frequency,

VC

VS
=

1

j�CR
= -jQ = -j0.1

 =

39.6 * 106

-�2
+ A62.9 * 103Bj� + 39.6 * 106

 
VC

VS
=

1�(j�C)

j�L + R + 1�(j�C)
=

1

LC

(j�)2
+ j� a R

L
b +

1

LC

VL

VS
=

j�L

R
= jQ = j0.1

 =

-�2

-�2
+ A62.9 * 103Bj� + 39.6 * 106

 
VL

VS
=

j�L

j�L + R + 1�(j�C)
=

-�2

(j�)2
+ j� a R

L
b +

1

LC

VR

VS
= 1

 =

A62.9 * 103Bj�

-�2
+ A62.9 * 103Bj� + 39.6 * 106

 
VR

VS
=

R

j�L + R + 1�(j�C)
=

j� a R

L
b

(j�)2
+ j� a R

L
b +

1

LC

VR�VS

±
–

L

C

R

VC

+

-

VL

+

-

VR

+

-

VS=1  0° V

Figure 12.43

Circuit used in
Example 12.18.
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Thus, one circuit produces three different filters depending on where the output is taken.
This can be seen in the Bode plot for each of the three voltages in Fig. 12.44, where VS is
set to 

We know that Kirchhoff’s voltage law must be satisfied at all times. Note from the Bode
plot that the VR + VC + VL also equals VS at all frequencies! Finally, let us demonstrate KVL
by adding VR , VL , and VC :

Thus, even though VS is distributed between the resistor, capacitor, and inductor based on
frequency, the sum of the three voltages completely reconstructs VS .

VL + VR + VC =

a (j�)2
+ j� a R

L
b +

1

1LC
bVS

(j�)2
+ j� a R

L
b +

1

1LC

= VS

1/0° V.
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1.0 V

0.5 V

0 V

1.0 10 100 1.0 k 10 k 100 k 1.0 M

VS

VC VR VL

Frequency (Hz)

V
ol

ts

Figure 12.44

Bode plots for network
in Fig. 12.43.

EXAMPLE

12.19
SOLUTION

A telephone transmission system suffers from 60-Hz interference caused by nearby power
utility lines. Let us use the network in Fig. 12.45 to design a simple notch filter to eliminate
the 60-Hz interference.

The resistor Req represents the equivalent resistance of the telephone system to the right of
the LC combination. The LC parallel combination has an equivalent impedance of

Now the voltage transfer function is

which can be written

Vo

Vin
=

(j�)2
+

1

LC

(j�)2
+ a j�

Req C
b +

1

LC

Vo

Vin
=

Req

Req + Z
=

Req

Req +

(L�C)

j�L + (1�j�C)

Z = (j�L)��(1�j�C) =

(L�C)

j�L + 1�(j�C)
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Vo
Req

L

C

+

-

Vin

+

-

Figure 12.45

Circuit used in
Example 12.19.

Note that at resonance, the numerator and thus Vo go to zero. We want resonance to occur
at 60 Hz. Thus,

If we select C=100 	F, then the required value for L is 70.3 mH—both are reasonable
values. To demonstrate the effectiveness of the filter, let the input voltage consist of a
60-Hz sinusoid and a 1000-Hz sinusoid of the form

vin(t)=1 sin C(2�)60t D + 0.2 sin C(2�)1000tD
The input and output waveforms are both shown in Fig. 12.46. Note that the output voltage,
as desired, contains none of the 60-Hz interference.

�0 =

1

1LC
= 2�(60) = 120�

1.2 V

0.8 V

0.4 V

0 V

–0.4 V

–0.8 V

–1.2 V

vo(t)

vin(t)

t
20 ms 25 ms 30 ms 35 ms 40 ms

Figure 12.46

Transient analysis of the
network in Fig. 12.45.

Learning Assessments
E12.21 Given the filter network shown in Fig. E12.21, sketch the
magnitude characteristic of the Bode plot for Gv(j�).

ANSWER:

0

5 � (rad/s)

|G| (dB)

–20 dB/decade
vo(t)20 �F

10 k�

+

-

vS(t)

+

-

Figure E12.21
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ACTIVE FILTERS In the preceding section we saw that the four major classes of filters (low
pass, high pass, band pass, and band rejection) are realizable with simple, passive element cir-
cuits. However, passive filters have some serious drawbacks. One obvious problem is the inabil-
ity to generate a network with a gain>1 since a purely passive network cannot add energy to
a signal. Another serious drawback of passive filters is the need in many topologies for inductive
elements. Inductors are generally expensive and are not usually available in precise values. In
addition, inductors usually come in odd shapes (toroids, bobbins, E-cores, etc.) and are not eas-
ily handled by existing automated printed circuit board assembly machines. By applying opera-
tional amplifiers in linear feedback circuits, one can generate all of the primary filter types using
only resistors, capacitors, and the op-amp integrated circuits themselves.

The equivalent circuits for the operational amplifiers derived in Chapter 4 are also valid
in the sinusoidal steady-state case, when we replace the attendant resistors with impedances.
The equivalent circuits for the basic inverting and noninverting op-amp circuits are shown in
Figs. 12.47a and b, respectively. Particular filter characteristics are obtained by judiciously
selecting the impedances Z1 and Z2 .
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20 �F

25 k�vS(t)

+

-

vo(t)

+

-

0

2 � (rad/s)

±20 dB/decade

|G| (dB)

Figure E12.22

E12.22 Given the filter network in Fig. E12.22, sketch the magnitude
characteristic of the Bode plot for Gv(j�).

ANSWER:

|

1 �F

1 k�

1 H

vS(t)

+

-

vo(t)

+

-

Figure E12.23

E12.23 A band-pass filter network is shown in Fig. E12.23. Sketch the
magnitude characteristic of the Bode plot for Gv(j�).

0

1000 � (rad/s)618 1618

–20 dB/decade

±20 dB/decade

|G| (dB)

ANSWER:

+

–

+

–

R1

R2Vi(s) Vo(s)sL

Figure E12.24

E12.24 Determine what type of filter the nerwork shown in 
Fig. E12.24 represents by determining the voltage transfer function.

ANSWER:

s
(R1 + R2)L

R1R2

s
L

R1

+ 1; This is a high-pass filter.
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Z1

Z2

Z2

-
+

Vo

+

-

V1

+

-

Vo

+

-

V1

+

-

Z1 -
+

Z2
Z1
— V1

(a)

+
-

Vo

+

-

V1

+

-

Vo

+

-

V1

+

-
Z1

+
-

Z2
Z1

q1+—r V1

(b)

Figure 12.47

Equivalent circuits for
the (a) inverting and

(b) noninverting operational
amplifier circuits.

EXAMPLE

12.20
SOLUTION

Let us determine the filter characteristics of the network shown in Fig. 12.48.

The impedances as illustrated in Fig. 12.47a are

and

Therefore, the voltage gain of the network is

Note that the transfer function is that of a low-pass filter.

Gv(j�) =

V0(j�)

V1(j�)
=

-R2�R1

j�R2 C + 1

Z2 =

R2�j�C

R2 + 1�j�C
=

R2

j�R2 C + 1

Z1 = R1

C

R2

R1

V1

–
±+

-

Vo

+

-

Figure 12.48

Operational amplifier filter
circuit.
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EXAMPLE

12.21
SOLUTION

We will show that the amplitude characteristic for the filter network in Fig. 12.49a is as
shown in Fig. 12.49b.

Comparing this network with that in Fig. 12.47b, we see that

and

Therefore, the voltage gain for the network as a function of frequency is

where and Since the amplitude characteristic is of the
form shown in Fig. 12.49b. Note that the low frequencies have a gain of 1; however, the high
frequencies are amplified. The exact amount of amplification is determined through selec-
tion of the circuit parameters.

�1 7 �2 ,�2 = RC2 .�1 = RAC1 + C2B

 =

j��1 + 1

j��2 + 1

 =

j�ARC1 + RC2B + 1

j�RC2 + 1

 Gv(j�) =

V0(j�)

V1(j�)
= 1 +

R�Aj�RC2 + 1B
1�j�C1

Z2 =

R

j�RC2 + 1

Z1 =

1

j�C1

±
–

R

C2

(a) (b)

�=—–1
�1

�=—–
�1

�2

C1 

V1

+

-

Vo

M
ag

ni
tu

de
 (

dB
)+

-

Figure 12.49

Operational amplifier circuit and its amplitude characteristic.

EXAMPLE

12.22
SOLUTION

A low-pass filter is shown in Fig. 12.50, together with the op-amp subcircuit. We wish to
plot the frequency response of the filter over the range from 1 to 10,000 Hz.

The frequency-response plot, which can be determined by any convenient method, is shown
in Fig. 12.51.
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±
–

±
– Vo

Vo

VS

+

-

R4

R1

C1

C2

R2

10 �F

10 �F

R3 5 k�

50 k�

100 �100 �

(a)

Vx Rin

Rout

+

-

500 k� 107 Vx

100 �

(b)

±
–

Figure 12.50

Circuit used in
Example 12.22:

(a) low-pass filter;
(b) op-amp subcircuit.

100

0

40

80

120

160

|Vo| (V)

10110–1 102 103

Frequency (Hz)

104 105

Figure 12.51

Frequency-response plot
for the network in

Example 12.22.
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EXAMPLE

12.23

SOLUTION

A high-pass filter network is shown in Fig. 12.52 together with the op-amp subcircuit. We
wish to plot the frequency response of the filter over the range from 1 to 100 kHz.

±
–

–
± –

±

Vo
VS

R3

R1

R2

R4
Rout

Rin

C1

C2
50 �F

100 �F
100 �

100 �

100 �

500 k�

(b)(a)

–107 Vx

Vo

Vx

100 �

100 �

+

-

1

1 2 3

0
2

0

3 4
5

±
–

Figure 12.52

Circuits used in Example 12.23: (a) high-pass filter; (b) op-amp subcircuit.

100

0

24

20

16

8

4

|Vo| (V)

10110–1 102 103

Frequency (Hz)

104 106105

Figure 12.53

Frequency-response plot
for the network in
Example 12.23.

The frequency-response plot for this high-pass filter is shown in Fig. 12.53.
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All the circuits considered so far in this section have been first-order filters. In other
words, they all had no more than one pole and/or one zero. In many applications, it is desired
to generate a circuit with a frequency selectivity greater than that afforded by first-order cir-
cuits. The next logical step is to consider the class of second-order filters. For most active-
filter applications, if an order greater than two is desired, one usually takes two or more active
filter circuits and places them in series so that the total response is the desired higher-order
response. This is done because first- and second-order filters are well understood and easily
obtained with single op-amp circuits.

In general, second-order filters will have a transfer function with a denominator con-
taining quadratic poles of the form For high-pass and low-pass circuits,

and For these circuits, is the cutoff frequency, and is the damping
ratio discussed earlier.

For band-pass circuits, and where is the center frequency and Q is
the quality factor for the circuit. Notice that Q is a measure of the selectivity of
these circuits. The bandwidth is as discussed previously.

The transfer function of the second-order low-pass active filter can generally be written as

12.64

where is the dc gain. A circuit that exhibits this transfer function is illustrated in Fig. 12.54
and has the following transfer function:

12.65H(s) =

Vo(s)

Vin(s)
=

- a R3

R1
b a 1

R3 R2 C1 C2
b

s2
+ s a 1

R1 C1
+

1

R2 C1
+

1

R3 C1
b +

1

R3 R2 C1 C2

H0

H(s) =

H0 �2
c

s2
+ 2��c s + �2

c

�0�Q,
Q = 1�2�.

�0A = �0�Q,B = �2
0

��cA = 2��c .B = �2
c

s2
+ As + B.
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Learning Assessment
E12.25 Given the filter network shown in Fig. E12.25, determine
the transfer function sketch the magnitude characteristic
of the Bode plot for and identify the filter characteristics of
the network.

Gv(j�),
Gv(j�),

ANSWER: this is a

high-pass filter.

Gv(j�) =

-j�CR2

1 + j�CR1
 ;

–
±

vS(t)

+

-

vo(t)

R2

R1 C

+

-
±20 dB/decade

|M| dB

�= � (rad/s)

20 log10 CR2

1

R1C
——–

Figure E12.25

-
+

C2

C1

R3

R2R1

Vo(s)

+

-

Vin(s)

+

-

Figure 12.54

Second-order low-pass filter.
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EXAMPLE

12.25
SOLUTION

We wish to vary the capacitors and in Example 12.24 to achieve damping ratios of 1.0,
0.75, 0.50, and 0.25 while maintaining constant at 

As shown in the cutoff-frequency equation in Example 12.24, if is to remain constant at
the product of and must remain constant. Using the capacitance values in

Example 12.24, we have

or

Substituting this expression into the equation for the damping ratio yields

or

Therefore, for and 0.25, the corresponding values for are 0.15, 0.20,
0.30, and respectively. The values of that correspond to these values of are 67,
50, 33, and 17 nF, respectively.

C1C20.6 	F,
C1� = 1.0, 0.75, 0.50,

C1 =

(0.15)A10-6B
�

 =

(0.15)A10-6B
C1

 � =

210-14

2C1 2C1

 c 1
2

 a 1

R1
+

1

R2
+

1

R3
b d2R2 R3

C2 =

(10)-14

C1

C1 C2 = (10)-4

C2C12000 rad�s,
�c

2000 rad�s.�c

C2C1

SOLUTION

We wish to determine the damping ratio, cutoff frequency, and dc gain for the network
in Fig. 12.54 if and 

Comparing Eqs. (12.64) and (12.65), we find that

and therefore,

In addition, we note that

Substituting the given parameter values into the preceding equation yields

and
Ho = -1

 � = 1.5

 �0 = 2000 rad�s

Ho = - 
R3

R1

� =

1

2
 
B

C2

C1
 a 1

R1
+

1

R2
+

1

R3
b2R2 R3

 2��c =

1

C1
 a 1

R1
+

1

R2
+

1

R3
b

 �c =

1

2R3 R2 C1 C2

C1 = C2 = 0.1 	F.R1 = R2 = R3 = 5 k�
Ho

This example illustrates that we can adjust the network parameters to achieve a specified
transient response while maintaining the cutoff frequency of the filter constant. In fact, as a
general rule, we design filters with specific characteristics through proper manipulation of
the network parameters.

EXAMPLE

12.24
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EXAMPLE

12.26

SOLUTION

We will now demonstrate that the transient response of the circuits generated in Example
12.25 will exhibit increasing overshoot and ringing as is decreased. We will apply a -V
step function to the input of the network and employ the op-amp model with 

and 

The transient response for the four cases of damping, including the associated values for the
capacitors, can be computed using any convenient method.

The results are shown in Fig. 12.55. The curves indicate that a might be a good
design compromise between rapid step response and minimum overshoot.

� = 0.75

A = 105.Ro = 0 �,
Ri = q �,

-1�

2 4 6 8 10
0

2.0

1.5

1.0

0.5

0.25
0.50

1.0

�=0.75

vo (V)

0
t (ms)

12

Figure 12.55

Transient analysis of
Example 12.25.

Learning Assessment
E12.26 Verify that Eq. (12.65) is the transfer function for the network in Fig. 12.54.

The general transfer function for the second-order band-pass filter is

12.66

As discussed earlier, is the center frequency of the band-pass characteristic and Q is the
quality factor. Recall that for low-pass filters, was the passband or dc gain. For a band-
pass filter, the gain is maximum at the center frequency, To find this maximum gain we
substitute in the preceding expression to obtain

12.67

In addition, the difference between the high and low half-power frequencies (i.e., )
is, of course, the bandwidth

12.68

Q is a measure of the selectivity of the band-pass filter, and as the equation indicates, as Q is
increased, the bandwidth is decreased.

�HI - �LO = BW =

�0

Q

�HI - �LO

 =

QHo

�0

 
VoAj�0B
VSAj�0B =

j�0 Ho

-�2
0 + j�0A�0�QB + �2

0

s = j�0

�0 .
Ho

�0

Vo(s)

VS(s)
=

sHo

s2
+

�0

Q
 s + �2

0
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-
+C2

C1

R3

R2

R1

VoVS

+

-

±
–

Figure 12.56

Second-order band-pass
filter.

EXAMPLE

12.27
SOLUTION

We wish to find a new expression for Eqs. (12.70) to (12.73) under the condition

Using the condition, we find that the equations reduce to

and
Vo

VS

2
� = �0

= - 
R2

2R1

 BW =

2

R2 C

 Q =

1

2
 
B

R2

R1
 
B

1 +

R1

R3

 �0 =

1

C
 
B

1 + R1�R3

R1 R2

C1 = C2 = C.

An op-amp implementation of a band-pass filter is shown in Fig. 12.56. The transfer func-
tion for this network is

12.69

Comparing this expression to the more general expression for the band-pass filter yields the
following definitions:

12.70

These expressions can be simplified to yield

12.71

12.72

and

12.73
Vo

VS

2
� = �0

=

QHo

�0
= - 

R2

R1
 a 1

1 + C1�C2

b

 BW =

�0

Q
=

1

R2
 a 1

C1
+

1

C2
b

 Q =

A1 + R1�R3B1�2

1 + C1�C2

 a R2 C1

R1 C2
b 1�2

 
Q

�0
 �0 =

R2 C1 C2

C1 + C2
 a 1 + R1�R3

R1 R2 C1 C2
b 1�2

 
Q

�0
=

R2 C1 C2

C1 + C2

 �0 = a 1 + R1�R3

R1 R2 C1 C2
b 1�2

Vo(s)

VS(s)
=

- a 1

R1 C1
b s

s2
+ a 1

R2 C1
+

1

R2 C2
b s +

1 + R1�R3

R1 R2 C1 C2
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EXAMPLE

12.28
SOLUTION

Let us use the equations in Example 12.27 to design a band-pass filter of the form shown in
Fig. 12.56 with a and Use and
determine the center frequency of the filter.

Using the filter equations, we find that

and

or

Therefore, and completely define the
band-pass filter shown in Fig. 12.56. The center frequency of the filter is

 = 6000 rad�s

 =

1

10-7 
B

1 + (1000�385)

(1000)(10,000)

 �0 =

1

C
 
B

1 + R1�R3

R1 R2

C = 0.1 	FR3 = 385 �,R2 = 10 k�,R = 1 k�,

R3 = 385 �

 3 =

1

2
 
B

10,000

1000
 
B

1 +

1000

R3

 Q =

1

2
 
B

R2

R1
 
B

1 +

R1

R3

 R1 = 1 k�

 -5 = - 
10,000

2R1

 
Vo

VS
 A�0B = - 

R2

2R1

 R2 = 10 k�

 2000 =

2

R2(10)-7

 BW =

2

R2 C

C = 0.1 	F,Q = 3.AVo�VSB A�0B = -5,BW = 2000 rad�s,

EXAMPLE

12.29
SOLUTION

We wish to obtain the Bode plot for the filter designed in Example 12.28. We will employ
the op-amp model, in which and and plot over the frequency
range from 600 to 60 kHz.

The equivalent circuit for the filter is shown in Fig. 12.57a. The Bode plot is shown in
Fig. 12.57b. As can be seen from the plot, the center frequency is and BW = 2 krad�s.6 krad�s

A = 105,Ro = 0,Ri = q,
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103

(a) (b)

104 105

–20

–10

20

10

0

|Vo| (dB)

102 � (rad/s)

C1

C2

1 k� 10 k�

385 �VS Vo

R2R1

R3

0.1 �F

0.1 �F

±
–

±
–

Vx
105 Vx

1  0° V

+

-

Figure 12.57

Figures employed in Example 12.29: (a) band-pass filter equivalent circuit; (b) Bode plot.

Learning Assessment
E12.27 Verify that Eq. (12.69) is the transfer function for the band-pass filter in Fig. 12.56.

Although op-amps are very popular and extremely useful in a wide variety of filter applica-
tions, they are not always the best choices as a result of limitations associated with their internal
circuitry. Two examples are high-frequency active filters and low-voltage circuitry.
Given the evolution of the wireless market (cell phones, pagers, etc.), these applications will
only grow in prominence. There is, however, an op-amp variant called the operational
transconductance amplifier, or OTA, that performs excellently in these scenarios, allowing, for
example, very advanced filters to be implemented on a single chip. In this text, we will intro-
duce OTA fundamentals and applications, including analog multipliers, automatic gain control
amplifiers, and the aforementioned filters.

Advantages of the OTA over the op-amp can be deduced from the diagrams in Fig. 12.58.
In the three-stage op-amp model, the input stage provides the large-input resistance, converts

(    6  3 V)

vin

+

- vo

+

-

Input
stage

Gain
stage

Output
stage

Rin
(large)

Ro (small)

Some
gain

Large
gain

Gain=1

(a)

(b)

vin

+

-

Input
stage

Gain
stage

Rin
(large)

Ro (large)

Gain=1 Transconductance
gain

io

Figure 12.58

Block diagrams depicting the
physical construction of the
(a) op-amp and (b) OTA.
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Ideally, and the output voltage is independent of external components 
and The overall gain of the OTA is

12.75

For an ideal OTA, both and yielding a transconductance that is independent
of and Similarities and differences between ideal OTAs and ideal op-amps are listed
in Table 12.2. 

RL .RS

Ro S q,Rin

Gm =

io

vin
= c Rin

RS + Rin
dgm c Ro

RL + Ro
d

RL .
RSRo S 0,Rin S q,
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(a) (b)

vin
+

-

io
gm vin

io

vinRin Ro

+

-

±
–

gm

Figure 12.59

The OTA schematic symbol (a) and simple model (b).

±
–

±
–

±
–vS

Avvin gmvin

RS RS

RL RL

Ro

Ro

io

vinRin RinvS

+

-

vin

+

-

vo

+

-

(a) (b)

Figure 12.60

Simple circuits that demonstrate the relative strengths of the  op-amp (a) and OTA (b).

the differential input voltage to a single-ended (referenced to ground) voltage, and pro-
duces some voltage gain. The gain stage provides the bulk of the op-amp’s voltage gain.
Finally, the output stage has little if any voltage gain but produces a low-output resistance.
This three-stage model accurately depicts the physical design of most op-amps.

Now consider the two-stage OTA model. As in the op-amp, the input stage provides a
large-input resistance, but its voltage gain is minimal. Unlike the op-amp, the gain stage
produces a current output rather than a voltage. Since the output signal is a current, the gain
is amps per volt, or transconductance, in or siemen. With no output stage, the OTA is
more compact and consumes less power than the op-amp and has an overall output resistance
of —a large value. Having all of the OTA’s gain in a single stage further simplifies the inter-
nal design, resulting in a simple, fast, compact amplifier that can be efficiently replicated
many times on a single silicon chip. The schematic symbol for the OTA and a simpler model
are shown in Figs. 12.59a and b, respectively.

To compare the performance of the op-amp and OTA, consider the circuits in Fig. 12.60.
For the op-amp, the overall voltage gain is

12.74A =

vo

vin
= c Rin

RS + Rin
dAV c RL

RL + Ro
d

Ro

A�V

vin(t)
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As with op-amps, OTAs can be used to create mathematical circuits. We will focus on
three OTA circuits used extensively in active filters: the integrator, the simulated resistor, and
the summer. To simplify our analyses, we assume the OTA is ideal with infinite input and
output resistances. The integrator in Fig. 12.61, which forms the heart of our OTA active
filters, can be analyzed as follows:

12.76

Or, in the frequency domain,

12.77

An interesting aspect of IC fabrication is that resistors (especially large-valued resistors,
that is, ) are physically very large compared to other devices such as transistors.
In addition, producing accurate values is quite difficult. This has motivated designers to use
OTAs to simulate resistors. One such circuit is the grounded resistor, shown in Fig. 12.62.
Applying the ideal OTA equations in Table 12.2,

12.78

A simple summer circuit is shown in Fig. 12.63a, where OTA 3 is a simulated resistor. Based
on Eq. (12.78), we produce the equivalent circuit in Fig. 12.63b. The analysis is straightforward.

12.79

At this point, we introduce our last important feature of the OTA: programmability. The
transconductance, is linearly controlled by a current called the amplifier bias current, or

as seen in Fig. 12.64a. Unfortunately, the input is not part of the schematic symbol.
The sensitivity of to is typically but the range of and its maximum value
depend on the OTA design. Typical values are 10 mS for the maximum and 3 to 7 powers
of ten, or decades, for the transconductance range. For example, if the maximum were
10 mS and the range were 4 decades, then the minimum would be and the usable
range of would be to 0.5 mA.0.05 	AIABC

1 	Sgm

gm

gm

gm20 S�A,IABCgm

IABCIABC ,
gm ,

io1 = gm1 v1 io2 = gm2 v2 io = io1 + io2 vo =

io

gm3
=

gm1

gm3
 v1 +

gm2

gm3
 v2

io = gmA0 - vinB = -gm vin  iin = -io  Req =

vin

iin
=

1

gm

    7 10 k�

IO = gm  V1  VO =

IO

j�C
  VO =

gm

j�C
 V1

io = gm v1  vo =

1

C
 3

 

 

io dt  vo =

gm

C
 3

 

 

v1 dt
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TABLE 12.2 A comparison of ideal op-amps and OTA features

AMPLIFIER TYPE IDEAL R in IDEAL Ro IDEAL GAIN INPUT CURRENTS INPUT VOLTAGE

Op-amp 0 0 0

OTA 0 nonzerogmqq

qq

C

±
–

gm
v1 io

vo

+

-

Figure 12.61

The OTA integrator.

iin

iovin

0 A

+

- ±
–

gm

Figure 12.62

The OTA simulated resistor.

±
–

gm1

±
–

gm2
-
+

gm3

io3
vo

+

-
vo

+

-

io2

io1v1

v2

io

±
–

gm1

±
–

gm2
io2

io1v1

v2

io

1/gm3

(a) (b)

Figure 12.63

An OTA voltage summer.
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Fig. 12.64b shows a simple means for setting The gain set resistor, limits :

12.80

where is the positive power supply. If the voltage at the pin labeled is known, then 
can be set by Unfortunately, different manufacturers design their OTAs with different 
values, which are listed in the amplifier’s data sheet. For our work, we will assume that is
zero volts.

12.81IABC =

VCC

RG

VG

VGRG .
IABCVGVCC

IABC =

VCC - VG

RG

IABC RG ,IABC .
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±
–

gm1

IABC

IABC

(a)

±
–

gm

VG

RG

VCC

vin

io

(b)

Figure 12.64

A modified OTA schematic symbol showing 
(a) the amplifier input bias current and (b) setting 

with a single resistor.IABC

EXAMPLE

12.30
SOLUTION

An ideal OTA has a sensitivity of 20, a maximum of 4 mS, and a range of
4 decades. Using the circuit in Fig. 12.62, produce an equivalent resistance of giv-
ing both and 

From Eq. (12.78), the equivalent resistance is yielding 
Since the required amplifier bias current is IABC = 2 	A.gm = 20IABC ,

gm = 40 	S.Req = 1�gm = 25 k�,

IABC .gm

25 k�,
gmgmgm - IABC

EXAMPLE

12.31
SOLUTION

The circuit in Fig. 12.65 is a floating simulated resistor. For an ideal OTA, find an expres-
sion for Using the OTA described in Example 12.30, produce an 80- resist-
ance. Repeat for a 10- resistor.

For OTA 1, we have and Thus, We must
also consider the return current that is contributed by OTA 2, where and

Now For proper operation, we must ensure that 
For we have Since the

required bias current for both OTAs is Changing to 
the transconductance becomes However, the minimum for these OTAs is
specified at We must find either suitable OTAs or a better circuit.0.4 	S.

gmgm = 0.1 	S.
Req = 1�gm = 10 M�,IABC = 0.625 	A.

gm = 20IABC ,gm1 = gm2 = gm = 12.5 	S.Req = 1�gm = 80 k�,
gm1 = gm2 .Req = v1�i1 = 1�gm2 .io2 = i1 .

io2 = gm2Av1B
Req = v1�i1 = 1�gm1 .i1 = -io1 .io1 = gm1A-v1B

M�
k�Req = v1�i1 .

± –
gm1

± –
gm2

io2

io1

i1

i1

v1

+

-

Figure 12.65

The floating simulated
resistor.
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EXAMPLE

12.32

SOLUTION

Using the summer in Fig. 12.63 and the OTAs specified in Example 12.30, produce the
following function:

Repeat for the function

Comparing Eq. (12.79) with the desired function, we see that and
With only two equations and three unknowns, we must choose one value.

Arbitrarily selecting yields and The correspon-
ding bias currents are , and 

For the second case, we simply invert the sign of as shown in Fig. 12.66. This is yet
another advantage of OTA versus op-amps. Again choosing yields the same
bias current as the first case.

gm3 = 0.1 mS
v2

IABC3 = 5 	A.IABC2 = 10 	AIABC1 = 50 	A,
gm2 = 0.2 mS.gm1 = 1 mSgm3 = 0.1 mS

gmgm2�gm3 = 2.
gm1�gm3 = 10

 vo = 10v1 - 2v2

 vo = 10v1 + 2v2

±
–

gm1

-
+

gm2
-
+

gm3

io3
vo

+

-

v1

v2

Figure 12.66

A slight modification of
the adder in Fig. 12.63
yields this subtracting
circuit.

Since the gain of the OTA is controlled by is it possible to design an analog
multiplier whose output is the product of two voltages? This is shown in Fig. 12.67 where
the output current can be written as

12.82

and the output voltage as

12.83

The resistor ratio is used to set the scale factor for the output voltage. Using supply
voltages, and we see that the multiplier can support positive and negative voltages
at and at However, must supply positive into the bias current pin. Thus, 
must be positive. This kind of multiplier, where only one input can be positive or negative,
is called a two-quadrant multiplier. When both inputs can be of either sign, the classifica-
tion is a four-quadrant multiplier.

Consider a Sunday drive through the city out to the countryside and back again. You happen
to pass the antenna for the very same FM radio station you’re listening to on your car radio. You
know that your car antenna receives a larger signal when you are nearer the antenna, but the
radio’s volume is the same whether you are near to or far from it. How does the car know?

Of course, the car has no idea where the station antenna is. Instead, the amplification
between the car’s antenna and its speakers is controlled based on the strength of the received
signal—a technique called automatic gain control, or AGC. The circuit in Fig. 12.68 shows
how this can be implemented with OTAs. There are two critical features here. First, the gain
of OTA 1 is dependent on its own output voltage such that an increase in causes a decrease
in gain. This is called automatic gain control. Second, should be a function of the mag-
nitude of rather than its instantaneous value. A subcircuit called a peak detector performs
this function. Although its internal workings are beyond our scope, we should understand the
necessity of it.

vo 
gm1

vo

v2IABCv2 vo .v1

VEE ,VCC

;

vo = io RL = 20 c RL

RG
dv1 v2

io = v1 gm = v1A20IABCB = 20v1 c v2

RG
d

IABC ,

±
–

gm

RG

RL

v2

v1 io

vo

+

-

Figure 12.67

A two-quadrant analog
multiplier.
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Io1 = gm1  Vi1 Io2 = -gm2  Vo IC = Vo(j�C) = Io1 + Io2 Vo =

Io1 + Io2

j�C
=

gm1

j�C
 Vi1 -

gm2

j�C
 Vo

While OTA1 provides variable gain, OTA2 adjusts the gain to yield an output voltage
dependent on itself:

12.84

We see that the output voltage has two terms, both of which are proportional to It is in
the second term, where the proportionality constant depends on itself, that automatic gain
control occurs. Solving Eq. (12.84) for shows the impact of AGC more clearly. (To facil-
itate the point we are making, we have dropped the absolute value operator for now. The peak
detector is, of course, still required.)

12.85

When the received signal is small (we are far from the station’s antenna), the denomi-
nator approaches unity and the output is approximately However, as we get nearer to the
antenna, increases and the denominator grows until Now approaches the ratio

essentially independent of the received signal, and the radio volume is less sensitive to
our distance from the antenna!

Using the subcircuits in Figs. 12.61 and 12.62, we can create active filters called OTA-C
filters, which contain only OTAs and capacitors. The lack of resistors makes OTA-C filters
ideal for single-chip, or monolithic, implementations. As an introduction, consider the circuit
in Fig. 12.69. For ideal OTAs, the transfer function can be determined as follows:

A�B,
voBvin W 1.vin

Avin .
vin

vo =

Avin

1 + Bvin

vo

vo

vin .

vo = io RL = vin gm1 RL = vin RLA20IABC1B = 20vin RL gm2AVCC - @vo @ B = Avin - Bvin @vo @
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±
–

gm1

+
-

gm2

vo

+

-

vin

VCC

IABC1

RL

io Peak
detector

Figure 12.68

An amplifier with automatic
gain control implemented

using two OTAs. A third OTA
could be used to realize the

load resistor if desired.

Solving the transfer function yields the low-pass function

12.86

From Eq. (12.86), the circuit is a first-order low-pass filter with the asymptotic Bode
plot shown in Fig. 12.70. Both the corner frequency, and dc gain,

are programmable.
In monolithic OTA-C filters, the capacitors and OTAs are fabricated on a single chip.

Typical OTA capacitor values range from about 1 pF up to 50 pF.

ADC = gm1�gm2 ,
fC = gm2�(2�C),

Vo

Vi1
=

gm1�gm2

j�C

gm2
+ 1

±
–

gm1
vi1 vo

-
+

gm2

io1

iC
C

io2
0 A

Figure 12.69

A simple first-order low-pass
OTA-C filter.
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G
ai

n

ADC

fC
f

Figure 12.70

Asymptotic Bode plot for a
first-order low-pass filter.

EXAMPLE

12.33

SOLUTION

The low-pass filter in Fig. 12.69 is implemented using a 25-pF capacitor and OTAs with a
sensitivity of 20, a maximum of 1 mS, and 3 decades of range. Find the

required bias currents for the filter transfer function:

12.87

Comparing Eq. (12.86) to the desired function, For 
Since the bias current for OTA 2 is Finally,

IABC1 = 3.14 	A.gm1�gm2 = 4 yields
IABC2 = 0.785 	A.gm = 20IABC ,gm2 = 15.7 	S.

C = 25 pF,gm2�C = (2�)105.

VO

Vin
=

4
j�

2�A105B + 1

gmgm - IABC

Of the dozens of OTA filter topologies, a very popular one is the two-integrator biquad fil-
ter. The term biquad is short for biquadratic, which, in filter terminology, means the filter
gain is a ratio of two quadratic functions such as

12.88

By selecting appropriate values for A, B, and C, low-pass, band-pass, and high-pass functions
can be created, as listed in Table 12.3. Figure 12.71 shows the most popular two-integrator
biquad used in practice—the Tow-Thomas filter. Assuming ideal OTAs, we can derive the
filter’s transfer function. For OTA 1, an integrator,

VO1

Vi1 - VO2
=

gm1

j�C1

VO

Vin
=

A(j�)2
+ B(j�) + C

(j�)2
+

�0

Q
 (j�) + �2

0

-
+

gm1 +
-

gm2 vo2

vo1

vi1

io1
io2

C2
C1

io3

vi3

vi2

-
+

gm3

Figure 12.71

The Tow-Thomas OTA-C
biquad filter.

TABLE 12.3 Various Tow-Thomas biquad filter possibilities

FILTER TYPE A B C

Low-pass 0 0 nonzero

Band-pass 0 nonzero 0

High-pass nonzero 0 0
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The output current of OTA 2 is

Applying KCL at the second output node, we find

where

Solving for and yields

and

12.89

Note that this single circuit can implement both low-pass and band-pass filters depending on
where the input is applied! Table 12.4 lists the possibilities. Comparing Eqs. (12.88) and
(12.89), design equations for Q, and the bandwidth can be written as

12.90

Consider a Tow-Thomas band-pass filter. From Eq. (12.90), if and
the following relationships are easily derived:

12.91

where k is the sensitivity. Based on Eq. (12.91), we have efficient control over the
filter characteristics. In particular, tuning with fixed scales both the center frequency
and Q directly without affecting bandwidth. Tuning only changes the bandwidth but not
the center frequency. Finally, tuning all three bias currents scales both the center frequency
and bandwidth proportionally, producing a constant Q factor.

IABC3

IABC3IABC

gm - IABC

�0 =

gm

C
=

k

C
 IABC  �0

Q
= BW =

gm3

C
=

k

C
 IABC3  Q =

gm

gm3
=

IABC

IABC3

C1 = C2 = C,
gm1 = gm2 = gm

�0 =

B

gm1 gm2

C1 C2
  �0

Q
= BW =

gm3

C2
  Q =

B

gm1 gm2

gm3 

2
 
B

C2

C1

�0 ,

VO2 =

Vi1 - c j�C1

gm1
d  Vi2 + c j�C1 gm3

gm1 gm2
d  Vi3

c C1 C2

gm1 gm2
d (j�)2

+ c gm3 C1

gm2 gm1
d (j�) + 1

VO1 =

c j�C2

gm2
+

gm3

gm2
d  Vi1 + Vi2 - c gm3

gm2
d  Vi3

c C1 C2

gm1 gm2
d (j�)2

+ c gm3 C1

gm2 gm1
d (j�) + 1

VO2VO1

IO3 = CVi3 - VO2 Dgm3

IO3 + IO2 = Aj�C2B  VO2

IO2 = gm2 CVO1 - Vi2 D
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EXAMPLE

12.34
SOLUTION

Using the OTA’s specifications from Example 12.30 and 5-pF capacitors, design a Tow-
Thomas low-pass filter with a corner frequency of 6 MHz, and dc gain of 1.

Using the input–output pair with and allows us to use 
Eq. (12.91):

C1 = C2gm1 = gm2 = gmvi1 - vo2

Q = 5,

TABLE 12.4 Low-pass and band-pass combinations for
the Tow-Thomas biquad filter in Figure 12.72

FILTER TYPE INPUT OUTPUT SIGN

positive

Low-pass negative

positive

Band-pass negative

positivevo2vi3

vo2vi2

vo2vi1

vo1vi3

vo1vi2
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The required bias currents are

From the Bode plot shown in Fig. 12.72 we see that the corner frequency is indeed 6 MHz.

IABC1 = IABC2 =

gm

20
= 9.425 	A  IABC3 =

gm3

20
= 1.885 	A

gm = �0 C = (2�)A6 * 106B A5 * 10-12B = 188.5 	S  gm3 =

gm

Q
= 37.7 	S
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Figure 12.72

Bode plot of the Tow-
Thomas low-pass filter
of Example 12.34.

12.6
Application

Examples

The ac-dc converter in Fig. 12.73a is designed for use with a hand-held calculator. Ideally,
the circuit should convert a 120-V rms sinusoidal voltage to a 9-V dc output. In actuality
the output is

Let us use a low-pass filter to reduce the 60-Hz component of vo(t).

The Thévenin equivalent circuit for the converter is shown in Fig. 12.73b. By placing a
capacitor across the output terminals, as shown in Fig. 12.73c, we create a low-pass filter at
the output. The transfer function of the filtered converter is

which has a pole at a frequency of f=1/2�RThC. To obtain significant attenuation at
60 Hz, we choose to place the pole at 6 Hz, yielding the equation

1

2�RTh C
= 6

VOF

VTh
=

1

1 + sRTh C

vo(t) = 9 + 0.5 sin 377t V

SOLUTION

APPLICATION
EXAMPLE 12.35
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The antenna of an FM radio picks up stations across the entire FM frequency range—
approximately 87.5 MHz to 108 MHz. The radio’s circuitry must have the capability to first
reject all of the stations except the one that the listener wants to hear and then to boost the
minute antenna signal. A tuned amplifier incorporating parallel resonance can perform both
tasks simultaneously.

The network in Fig. 12.74a is a circuit model for a single-stage tuned transistor amplifier
where the resistor, capacitor, and inductor are discrete elements. Let us find the transfer
function Vo(s)/VA(s), where VA(s) is the antenna voltage and the value of C for maximum
gain at 91.1 MHz. Finally, we will simulate the results.
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or
C=53.05 	F

A transient simulation of the converter is used to verify performance.
Figure 12.73d shows the output without filtering, vo(t), and with filtering, vOF(t). The

filter has successfully reduced the unwanted 60-Hz component by a factor of roughly six.

(d)

9.6 V

9.4 V

9.2 V

9.0 V

8.8 V

8.6 V

8.4 V
0 s 10 ms 20 ms 30 ms 40 ms 50 ms 60 ms 70 ms

t

vo(t)

vOF(t)

(a)

(c)

(b)

±
–

AC/DC
converter Vo

Req=500 �

120 V rms

+

-

500 �

RTh

vo(t)

+

-

vTh

9 V

0.5 sin 377t V
+

-

±
–

±
–

500 �

RTh

VOFC

+

-

VTh ±
–

Figure 12.73

Circuits and output plots for ac/dc converter.

APPLICATION
EXAMPLE 12.36
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Since the transfer function is

The parallel resonant network is actually a band-pass filter. Maximum gain occurs at the
center frequency, f0 This condition corresponds to a minimum value in the denominator.
Isolating the denominator polynomial, D(s), and letting s=j�, we have

which has a minimum value when the real part goes to zero, or

yielding a center frequency of

Thus, for a center frequency of 91.1 MHz, we have

2�A91.1 * 106B =

1

1LC

�0 =

1

1LC

1

LC
- �2

0 = 0

D(j�) =

R

LC
- �2

+

j�

C

 
Vo(s)

VA(s)
= -

4

1000
 £

s�C

s2
+

s

RC
+

1

LC

§

 
Vo(s)

VA(s)
= -

4

1000
 cR��sL��

1

sC
d

V(s) = VA(s), SOLUTION

(b)
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––––±
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Figure 12.74

Circuit and Bode plot for the
parallel resonant tuned
amplifier.
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As we have seen in our study of filters thus far, inductors play a fundamental role.
However, these elements are typically large and heavy, especially when compared with IC
chips. Therefore, circuit designers often use electronic components, such as op-amps and
OTAs, to circumvent the use of inductors. This redesign may actually take more components,
but the trade-off is well worth it, because resistors, capacitors, and these electronic elements
are easily implemented in large-scale integrated circuits.
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and the required capacitor value is

C=3.05 pF

The Bode plot for the tuned amplifier, as shown in Fig. 12.74b, confirms the design, since
the center frequency is 91.1 MHz, as specified.

APPLICATION
EXAMPLE 12.37

Consider the ladder network in Fig. 12.75. This circuit is actually a prototype of a fifth-
order Chebyshev low-pass filter with a pass-band frequency of . The frequen-
cy response of the filter is shown in Fig. 12.76.

�o = 1 rad�s

Figure 12.75

A prototype fifth-order 
low-pass Chebyshev filter.

Figure 12.76

Frequency response of the
filter shown in Fig. 12.75.

Note that this filter contains three inductors. Therefore, we would like to have an imple-
mentation of this filter that does not contain these elements. The filter was redesigned using
OTAs, and the circuit implementation of this equivalent filter is shown in Fig. 12.77.

After frequency scaling the filter from to 1 M rad/s and magnitude scal-
ing the input and output resistance from to , the resultant element values are shown
in Table 12.5. Note that in OTA implementations inductors are replaced by capacitors and
they have the same numerical values, but the units are farads instead of henrys.

1 k�1 �
�0 = 1 rad�s

Rin

Rout

4.63 H 5.85 H 4.079 H

0.58 F 0.57 F±
–

L 1 L 3 L 5

C 2 C 4

1.0 �

2.0 �

�0 = 1 rad/s

FrequencyV(s)

800 mV

600 mV

400 mV

200 mV

0 V
10 mHz 100 mHz 1.0 Hz
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gm gm

± –
gm

± –
gm

± –
gm

±
– ± –± –

L 3 L 4L 1

I 5

RoutRin

Vin

I 3

V 2

C 2 C 4

V 4

I 1

1

sL1 + Rin
–––––––

1

sC3
–––

1

sC4
–––

1

sL3
––– 1

sL5 + Rout
––––––––

Figure 12.77

Inductorless implementation
of the fifth-order low-pass
Chebyshev filter shown in
Fig. 12.75 using OTAs.

TABLE 12.5 The set of values for the filter in Example 12.37

LC PROTOTYPE PROTOTYPE WITH OTA FINAL DESIGN

 Rout = 2 k � Rout = 2 � Rout = 2 �

 L5 = 4.078996 n F L5 = 4.078996 F L5 = 4.078996 H

 L4 = 0.569797 n F L4 = 0.569797 F L4 = 0.569797 F

 L3 = 5.850298 n F L3 = 5.850298 F L3 = 5.850298 H

 L1 = 0.58354 n F L1 = 0.58354 F C1 = 0.58354 F

 L1 = 4.626548 n F L1 = 4.626548 F L1 = 4.626548 H

 Rin = 1 k � Rin = 1 � Rin = 1 �

12.7
Design Examples

SOLUTION

DESIGN
EXAMPLE 12.38

Compact discs (CDs) have become a very popular medium for recording and playing
music. CDs store information in a digital manner; that is, the music is sampled at a very
high rate, and the samples are recorded on the disc. The trick is to sample so quickly that
the reproduction sounds continuous. The industry standard sampling rate is 44.1 kHz—
one sample every 22.7 	s.

One interesting aspect regarding the analog-to-digital conversion that takes place inside
the unit recording a CD is called the Nyquist criterion. This criterion states that in the analog
conversion, any signal components at frequencies above half the sampling rate (22.05 kHz in
this case) cannot be faithfully reproduced. Therefore, recording technicians filter these fre-
quencies out before any sampling occurs, yielding higher fidelity to the listener.

Let us design a series of low-pass filters to perform this task.

Suppose, for example, that our specification for the filter is unity gain at dc and 20 dB of
attenuation at 22.05 kHz. Let us consider first the simple RC filter in Fig. 12.78.

The transfer function is easily found to be

Since a single-pole transfer function attenuates at 20 dB/decade, we should place the pole
frequency one decade before the –20 dB point of 22.05 kHz.

Gv1(s) =

Vo1

Vin
=

1

1 + sRC

Throughout this chapter we have presented a number of design examples. In this section we
consider some additional ones that also have practical ramifications.
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R

C vo1(t)vin(t)

+

-

±
–

Figure 12.78

Single-pole low-pass filter.
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Figure 12.79

Bode plot for single-pole
filter.

Thus,

If we arbitrarily choose C=1 nF, the resulting value for R is 72.18 k�, which is reason-
able. A Bode plot of the magnitude of Gv1(s) is shown in Fig. 12.79. All specifications are
met but at the cost of severe attenuation in the audible frequency range. This is undesirable.

An improved filter is shown in Fig. 12.80. It is a two-stage low-pass filter with identical
filter stages separated by a unity-gain buffer.

The presence of the op-amp permits us to consider the stages independently. Thus, the
transfer function becomes

To find the required pole frequencies, let us employ the equation for at 22.05 kHz,
since we know that the gain must be 0.1 (attenuated 20 dB) at that frequency. Using the sub-
stitution s=j�, we can express the magnitude of Gv2(s) as

and the pole frequency is found to be 7.35 kHz. The corresponding resistor value is
21.65 k�. Bode plots for Gv1 and Gv2 are shown in Fig. 12.81. Note that the two-stage fil-
ter has a wider bandwidth, which improves the fidelity of the recording.

@Gv2 @ = • 1

1 + A22,050�fpB2 ¶ = 0.1

Gv 2(s)

Gv2(s) =

Vo2

Vin
=

1

[1 + sRC]2

fP =

1

2�RC
= 2.205 kHz

R
R

CC±
–

±
–

vo2(t)vin(t)

+

-

Figure 12.80

Two-stage buffered filter.
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Figure 12.81

Bode plot for single- and two-stage filters.
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Figure 12.82

Bode plots for single-, two-, and four-stage filters.

Let us try one more improvement—expanding the two-stage filter to a four-stage filter.
Again, the gain magnitude is 0.1 at 22.05 kHz and can be written

The resulting pole frequencies are at 15 kHz, and the required resistor value is 10.61 k�.
Figure 12.82 shows all three Bode plots. Obviously, the four-stage filter, having the widest
bandwidth, is the best option (discounting any extra cost associated with the additional
active and passive circuit elements).

@Gv3 @ = • 1

C1 + A22,050�fpB2 D 2 ¶ = 0.1

SOLUTION

DESIGN
EXAMPLE 12.39

The circuit in Fig. 12.83a is called a notch filter. From a sketch of its Bode plot in Fig. 12.83b,
we see that at the notch frequency, the transfer function gain is zero, while at frequencies
above and below the gain is unity. Let us design a notch filter to remove an annoying
60-Hz hum from the output voltage of a cassette tape player and generate its Bode plot.

Fig. 12.83c shows a block diagram for the filter implementation. The tape output contains
both the desired music and the undesired hum. After filtering, the voltage Vamp will have no
60-Hz component as well as some attenuation at frequencies around 60 Hz. An equivalent
circuit for the block diagram including a Thévenin equivalent for the tape deck and an
equivalent resistance for the power amp is shown in Fig. 12.83d. Applying voltage division,
we find the transfer function to be

After some manipulation, the transfer function can be written as

Vamp

Vtape
=

Ramp

Ramp + Rtape
 £

s2LC + 1

s2LC + s a L

Rtape + Ramp
b + 1

§

Vamp

Vtape
=

Ramp

Ramp + Rtape + a sL��
1

Cs
b

fn

fn ,
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We see that the transfer function contains two zeros and two poles. Letting s=j�, the zero
frequencies, �z , are found to be at

Obviously, we would like the zero frequencies to be at 60 Hz. If we arbitrarily choose
C=10 	F, then L=0.704 H.

The Bode plot, shown in Fig. 12.83e, confirms that there is indeed zero transmission at
60 Hz.

�z = ;  
1

1LC

|Vamp|

(a)

1.0 V

0.6 V

0.4 V

0.2 V

0 V

5.0 Hz 10 Hz

Frequency

0.8 V

30 Hz 100 Hz 300 Hz 1.0 KHz

(e)

1

0
fn f

H(s)

(b)

Power
amp

Tape deck

Notch
filter Speaker

Rtape=50 � Ramp=1 k�

(c)

±
– VoVin

C

L
R

+

-

(d)

±
– VampVtape

Rtape

Ramp

1 k�

50 �
L

C

+

-

Figure 12.83

Circuits and Bode plots for 60-Hz notch filter.
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SOLUTION

DESIGN
EXAMPLE 12.40

A fast-growing field within electrical engineering is mixed-mode circuitry, which combines
digital and analog networks to create a larger system. A key component in these systems is
the analog-to-digital converter, or ADC. It “measures” an analog voltage and converts it to
a digital representation. If these conversions are done quickly enough, the result is a
sequence of data points, as shown in Fig. 12.84a. Connecting the dots reveals the original
analog signal, Unfortunately, as seen in Fig. 12.84b, undesired signals such as 
at higher frequencies can also have the same set of data points. This phenomenon is called
aliasing and can be avoided by employing a low-pass filter, called an anti-aliasing filter,
before the ADC as shown in Fig. 12.84c. In general, the half-power frequency of the filter
should be greater than the frequency of the signals you wish to convert but less than those
you want to reject.

We wish to design an anti-aliasing filter, with a half-power frequency at 100 Hz, that will
permit us to acquire a 60-Hz signal. In this design we will assume the ADC has infinite
input resistance.

Assuming the ADC has infinite input resistance, we find that the transfer function for the
filter is quite simple:

The half-power frequency is

If we somewhat arbitrarily choose C at 100 nF, a little larger than the resistor but smaller
than the ADC integrated circuit in size, the resulting resistor value is 15.9 k�.

fP =

1

2�RC
= 100 Hz

Vo

Vin
=

1

j�C

R +

1

j�C

=

1

1 + j�RC

vB(t)vA(t).

vA(t)

vB(t)

vA(t)

(a) (b)

(c)

ADCVoC

R

+

-

Vin

+

-

Figure 12.84

A brief explanation of ADC
basics. (a) The ADC samples
are like data points on the
acquired waveform.
(b) Higher frequency signals
can have the same data
points. After acquisition, it
appears that has been
shifted to a lower frequency,
an effect called aliasing.
(c) The solution, an
anti-aliasing low-pass filter.

vB(t)
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DESIGN
EXAMPLE 12.41

The circuit in Fig. 12.85a is an inexpensive “bass boost” amplifier that amplifies only low-
frequency audio signals, as illustrated by the Bode plot sketch in Fig. 12.85b. We wish to
derive the transfer function when the switch is open. Then, from this transfer function
and Fig. 12.85b, select appropriate values for and What is the resulting value of 

With the switch open, we can use the classic noninverting op-amp configuration expression
to write the transfer function as

where and is the parallel combination of the and can be written as

and the transfer function as

12.92

where The network has one zero at and one pole at Since 
must be less than the zero frequency must be greater than the pole frequency, and the
sketch in Fig. 12.85b is appropriate.

Now let us determine the component values. At dc the gain must be 6 dB or a
factor of 2. From Eq. (12.92).

Thus, and From Fig. 12.85b, the zero frequency is 500 Hz, and given
this information we can determine as

Of course, Finally, the pole frequency is

1

2�R2 C
= 250 Hz

R1 = R2 = 2RP = 6.37 k�.

1

RP C
= 2�(500) 1 RP =

1

1000�C
= 3.18 k�

RP

RP = R1�2.R1 = R2

Vo

Vin
 (j0) =

R1 + R2

R1
= 2

(� = 0)

R2 ,
RP1�R2 C.1�RP CRP = R1��R2 .

Vo
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R2

1 + j�R2 C
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=
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=
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Figure 12.85

A “bass boost” circuit (a) and
a sketch of its magnitude

Bode plot (b).

SOLUTION
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SOLUTION

DESIGN
EXAMPLE 12.42

An audiophile has discovered that his tape player has the limited high-frequency response
shown in Fig. 12.86a. Anxious to the point of sleeplessness, he decides to insert a “treble
boost” circuit between the tape deck and the main amplifier that has the transfer function
shown in Fig. 12.86b. Passing the tape audio through the boost should produce a “flat”
response out to about 20 kHz. The circuit in Fig. 12.86c is his design. Show that the cir-
cuit’s transfer function has the correct form and select and for proper operation.

Recognizing the circuit as a noninverting gain configuration, the transfer is

12.93

where is and is the series combination of and Substituting these values
into Eq. (12.93) yields

Since the pole frequency should be 20 kHz,

The zero frequency is at 8 kHz, and thus

Therefore, is then 12.0 k�.R2

fZ = 8 * 103
=

1

2�CAR1 + R2B 1 R1 + R2 = 19.9 k�

fP = 2 * 104
=

1

2�CR1
1 R1 = 7.96 k�

Vo

Vin
= 1 +

R2

R1 +

1

j�C

=

1 + j�CAR1 + R2B
1 + j�CR1

1�j�C.R1Z1R2Z2
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Figure 12.86

Correcting a deficient
audio response. (a) The
original response, (b) the
corrective transfer function,
and (c) the circuit imple-
mentation.

S U M M A R Y

■ There are four types of network or transfer functions:

1. Z(j�): the ratio of the input voltage to the input current

2. Y(j�): the ratio of the output current to the input voltage

3. Gv(j�): the ratio of the output voltage to the input voltage

4. Gi(j�): the ratio of the output current to the input current

■ Driving point functions are impedances or admittances
defined at a single pair of terminals, such as the input
impedance of a network.

■ When the network function is expressed in the form

H(s) =

N(s)

D(s)

•
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P R O B L E M S

12.1 Determine the driving point impedance at the input termi-
nals of the network shown in Fig. P12.1 as a  function of s.

Figure P12.1

12.2 Determine the driving point impedance at the input termi-
nals of the network shown in Fig. P12.2 as a function of s.

Figure P12.2

12.3 Determine the voltage transfer function as 
a function of s for the network shown in Fig. P12.3.

Figure P12.3

12.4 Find the driving point impedance at the input terminals
of the circuit in Fig. P12.4 as a function of s.

Figure P12.4
12.5 Determine the driving point impedance at the input ter-

minals 1–2 or the network shown in Fig. P12.5 as a func-
tion of s, if (a) terminals 3–4 are open and (b) terminals
3–4 are stocked.

Figure P12.5
12.6 Repeat Problem P12.5 with a 2-� resistor connected

between terminals 3 and 4 in Fig. P12.6.

Figure P12.6
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the roots of N(s) cause H(s) to become zero and are called
zeros of the function, and the roots of D(s) cause H(s) to
become infinite and are called poles of the function.

■ Bode plots are semilog plots of the magnitude and phase of
a transfer function as a function of frequency. Straight-line
approximations can be used to sketch quickly the
magnitude characteristic. The error between the actual
characteristic and the straight-line approximation can be
calculated when necessary.

■ The resonant frequency, given by the expression

is the frequency at which the impedance of a series RLC circuit
or the admittance of a parallel RLC circuit is purely real.

■ The quality factor is a measure of the sharpness of the
resonant peak. A higher Q yields a sharper peak.

For series RLC circuits, For parallel
RLC circuits, 

■ The half-power, cutoff, or break frequencies are the
frequencies at which the magnitude characteristic of the
Bode plot is of its maximum value.

■ The parameter values for passive circuit elements can be
both magnitude and frequency scaled.

■ The four common types of filters are low-pass, high-pass,
band-pass, and band rejection.

■ The bandwidth of a band-pass or band-rejection filter is the
difference in frequency between the half-power points; that is,

BW=�HI-�LO

For a series RLC circuit, BW=R/L. For a parallel RLC
circuit, BW=1/RC.

1�12

Q = R1C�L .
Q = (1�R)1L�C .

�0 =

1

1LC

•
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12.7 Determine the driving point impedance at the input termi-
nals of the network shown in Fig. P12.7 as a function of s.

Figure P12.7

12.8 Find the transfer impedance for the network
shown in Fig. P12.8.

Figure P12.8

12.9 Draw the Bode plot for the network function

12.10 Draw the Bode plot for the network function

12.11 Sketch the magnitude characteristic of the Bode plot for
the transfer function

12.12 Draw the Bode plot for the network function

12.13 Sketch the magnitude characteristic of the Bode plot for
the transfer function

12.14 Draw the Bode plot for the network function

12.15 Sketch the magnitude characteristic of the Bode plot for
the transfer function

G(j�) =

400(j� + 2)(j� + 50)

-�2(j� + 100)2

H(j�) =

100

(j�)2(j�2 + 1)

H(j�) =

20(0.1j� + 1)

j�(j� + 1)(0.01j� + 1)

H(j�) =

10j� + 1

j�(0.01j� + 1)

H(j�) =

100(j�)

(j� + 1)(j� + 10)(j� + 50)

H(j�) =

j�

(j� + 1)(0.1j� + 1)

H(j�) =

j�4 + 1

j�20 + 1

2 �

4 �

1 F

2 H

vo(t)

+

-

iS(t)

Vo(s)�Is(s)

1 F2 F

1 H

1 �
1 �

2 �

2 �

Z(s)

12.16 Sketch the magnitude characteristic of the Bode plot for
the transfer function

12.17 Sketch the magnitude characteristic of the Bode plot for
the transfer function

12.18 Sketch the magnitude characteristic of the Bode plot for
the transfer function

12.19 Sketch the magnitude characteristic of the Bode plot for
the transfer function

12.20 Sketch the magnitude characteristic of the Bode plot for
the transfer function

12.21 Sketch the magnitude characteristic of the Bode plot for
the transfer function

12.22 Sketch the magnitude characteristic of the Bode plot for
the transfer function

12.23 Sketch the magnitude characteristic of the Bode plot for
the transfer function

12.24 Sketch the magnitude of the Bode plot for the transfer
function

12.25 Sketch the magnitude characteristic of the Bode plot for
the transfer function

G(j�) =

10(j� + 2)(j� + 100)

j�(-�2
+ 4j� + 100)

H(j�) =

250(j� + 10)

(j�)2(j� + 100)2

H(j�) =

0.5(10j� + 1)(j� + 1)

j�(0.1j� + 1)(0.01j� + 1)2

H(j�) =

0.1(2j� + 1)

j�(0.1j� + 1)(0.01j� + 1)

H(j�) =

10(5j� + 1)

(100j� + 1)(0.02j� + 1)

H(j�) =

10j� + 1

(j� + 1)(0.1j� + 1)

H(j�) =

+6.4

(j� + 1)(-�2
+ 8j� + 16)

G(j�) =

-�2

(j� + 1)3

G(j�) =

-�2104

(j� + 1)2(j� + 10)(j� + 100)2

G(j�) =

10j�

(j� + 1)(j� + 10)2
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12.26 Sketch the magnitude characteristic of the Bode plot for
the transfer function

12.27 Find if its magnitude characteristic is shown in
Fig. P12.27.

Figure P12.27

12.28 Determine H(j�) from the magnitude characteristic
shown in Fig. P12.28.

Figure P12.28

12.29 Determine H(j�) from the magnitude characteristic of
the Bode plot shown in Fig. P12.29.

Figure P12.29

51 log �0.1 50

–20 dB/dec

–40 dB/dec

0 dB

–20 dB/dec

–40 dB/dec

5 log �0.25 50

–20 dB/dec

20 dB –20 dB/dec

1 80 � (rad/s)10

–20 dB/dec

120

±20 dB/dec
40 dB

–40 dB/dec

|H|

H(j�)

H(j�) =

+6.4(j�)

(j� + 1)(-�2
+ 8j� + 64)

12.30 Determine H(j�) from the magnitude characteristic of
the Bode plot shown in Fig. P12.30.

Figure P12.30

12.31 The magnitude characteristic of a band-elimination
filter is shown in Fig. P12.31. Determine .

Figure P12.31

12.32 Given the magnitude characteristic in Fig. P12.32,
find .

Figure P12.32

12.33 Find if its magnitude characteristic is shown in
Fig. P12.33.

Figure P12.33

0.4 1000 � (rad/s)50

–20 dB/dec

–20 dB/dec40 dB

–40 dB/dec

|H|

400

H(j�)

±20 dB/dec
±20 dB/dec –40 dB/dec

4 10 20 100 600 � (rad/s)

0 dB

|H|

H(j�)

–20 dB/dec
0 dB

±20 dB/dec

� (rad/s)10 100 1000 10,000

H(j�)

40.2 6020

–60 dB/dec

–40 dB/dec

–20 dB/dec
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12.34 Find if its amplitude characteristic is shown in
Fig. P12.34.

Figure P12.34

12.35 Determine if its magnitude characteristic is
shown in Fig. P12.35.

Figure P12.35

12.36 Find for the magnitude characteristic shown in
Fig. P12.36.

Figure P12.36

12.37 The series RLC circuit in Fig. P12.37 is driven by a
variable-frequency source. If the resonant frequency of
the network is selected as , find the
value of C. In addition, compute the current at
resonance and at and .

Figure P12.37

i(t) 10 mH

2 �

C

24 cos (�t+30°) V ±
–

4�0�0�4

�0 = 1600 rad�s

20 dB
�=0.1

20 900100 � (rad/s)

–20 dB/dec

–40 dB/dec

–20 dB/dec

0.8

|G|

G(j�)

–40 dB/dec

–40 dB/dec

–20 dB/dec

105 50

0 dB

� (rad/s)

|H|

H(j�)

1 812 60 400 � (rad/s)

0 dB

–20 dB/dec

–20 dB/dec
–20 dB/dec

–40 dB/dec

|H|

H(j�) 12.38 Given the network in Fig. P12.38, determine the
change necessary in the variable resistor to cut the
bandwidth of the circuit in half. What is the new 
bandwidth?

Figure P12.38

12.39 A series RLC circuit resonates at . If
, and it is known that the impedance at

resonance is , compute the value of L, the Q of
the circuit, and the bandwidth.

12.40 Given the series RLC circuit in Fig. P12.40, (a) derive
the expression for the half-power frequencies, the
resonant frequency, the bandwidth, and the quality
factor for the transfer characteristic in terms of R,
L, and C, (b) compute the quantities in part (a) if

, and .

Figure P12.40

12.41 A series resonant circuit has a Q of 120 and a resonant
frequency of . Determine the half-power
frequencies and the bandwidth of the circuit.

12.42 Given the network in Fig. P12.42, find and

Figure P12.42

±
–

2 mH1 �

10 �F6 cos �t V vo(t)

+

-

∑Vo∑max.
�0, Q, �max,

10,000 rad�s

±
–

LR

C

i(t)

vin(t)

C = 10 	FR = 10 �, L = 50 mH

I�Vin

2.4 �
C = 20	F

1000 rad�s

+
–

10 �

500 	F

20 mH

20  0° V
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12.46 A series RLC circuit is driven by a signal generator. The
resonant frequency of the network is known to be

and at that frequency the impedance seen
by the signal generator is . If , find L, Q,
and the bandwidth.

12.47 A parallel RLC resonant circuit has a resistance of
. If it is known that the bandwidth is and

the lower half-power frequency is , find the
values of the parameters L and C.

12.48 A parallel RLC resonant circuit with a resonant
frequency of has an admittance at
resonance of . If the capacitance of the network is

, find the values of R and L.2 	F
1 mS
20,000 rad�s

800 rad�s
80 rad�s200 �

C = 20 	F5 �
1600 rad�s

12.43 A variable-frequency voltage source drives the network
in Fig. P12.43. Determine the resonant frequency, Q,
BW, and the average power dissipated by the network
at resonance.

Figure P12.43

±
–12 cos �t V

50 mH

100 �

5 �F

12.44 In the network in Fig. P12.44, the inductor value is
, and the circuit is driven by a variable-

frequency source. If the magnitude of the current at
resonance is , and ,
find C, Q, and the bandwidth of the circuit.

Figure P12.44

±
–

CR

L36 cos (�t ±45°) V

L = 10 mH12 A, �0 = 1000 rad�s

10 mH

12.49 A parallel RLC circuit, which is driven by a variable
frequency 2-A current source, has the following
values: , and . Find
the bandwidth of the network, the half-power
frequencies, and the voltage across the network at the
half-power frequencies.

12.50 A parallel RLC circuit, which is driven by a variable
frequency 2-A current source, has the following values:

, and . Find the
bandwidth of the network, the half-power frequencies,
and the voltage across the network at the half-power
frequencies.

12.51 Determine the parameters of a parallel resonant
circuit that has the following properties:

, and an impedance at
resonance of .2000 �
�0 = 2 Mrad�s, BW = 20 rad�s

C = 10 	FR = 1 k�, L = 400 mH

C = 10 	FR = 1 k�, L = 100 mH

12.45 The network in Fig. P12.45 operates at 200 c/s. Determine the manner in which the resistor
bank should be connected to maximize the voltage Vo and determine the value of the maxi-
mum voltage (R1 12 �, R2 6 �, R3 4 �).

Figure P12.45

+
–12  0° V 50μF

500 μH

Vo

+

–

R1 R2 R3

===
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12.52 The source in the network in Fig. P12.52 is 
and . If , find L, Q, and the BW. Compute the output voltage

and discuss the magnitude of the output voltage at the two input frequencies.

Figure P12.52

12.53 Consider the network in Fig. P12.53. If , and ,
determine the resonant frequency the Q of the network, and the bandwidth of the net-
work. What impact does an of have on the quantities determined?

Figure P12.53

RS R L C

10 k�RS

�0

RS = qR = 1 k�, L = 20 mH, C = 50 	F

R LC

+

-

vo(t)iS(t)

v0(t)
�0 = 1000 rad�sC = 500 	F

iS(t) = cos 1000t + cos 1500t A. R = 200 �

12.54 Determine the value of C in the network shown in
Fig. P12.54 for the circuit to be in resonance.

Figure P12.54

12.55 Determine the equation for the nonzero resonant fre-
quency of the impedance shown in Fig. P12.55.

Figure P12.55

Z L R

C

±
–

C 6 �

4 H4 �

4 cos 2t V

12.56 Determine the new parameters of the network in 
Fig. P12.56 if 

Figure P12.56

12.57 Determine the new parameters of the network shown in
Fig. P12.57 if 

Figure P12.57

R=2 �Z

C=— F1
8

L=— H1
2

Znew = 104Zold .

R=2 �Z

C=— F1
8

L=— H1
2

�new = 104�old.
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12.58 Sketch the magnitude characteristic of the Bode plot
for the transfer function of the network in Fig. P12.58.
What type of filter is this?

Figure P12.58

12.59 Given the network in Fig. P12.59, sketch the magnitude
characteristic of the transfer function

Identify the type of filter.

Figure P12.59

12.60 Determine what type of filter the network shown in
Fig. P12.60 represents by determining the voltage
transfer function.

Figure P12.60

vi(t)

+

-

vo(t)

+

-

C

R1

R2

vo(t)

+

-

vi(t)

+

-

10 H

100 �1 mF

Gv(j�) =

V0

V1
(j�)

+
–

1.8 kΩ 400 Ω

900 Ω 50 μF vo(t)vs(t)

+

–

12.61 Determine what type of filter the network shown in
Fig. P12.61 represents by determining the voltage
transfer function.

Figure P12.61

12.62 Given the network in Fig. P12.62, sketch the magnitude
characteristic of the transfer function

Identify the type of filter.

Figure P12.62

12.63 Given the lattice network shown in Fig. P12.63,
determine what type of filter this network represents by
determining the voltage transfer function.

Figure P12.63

R1

R1

C

R2

vi(t)

+

-

vo(t)

+

-

100 �

1000 �F

10 Hvi(t)

+

-

vo(t)

+

-

Gv(j�) =

Vo

V1
(j�)

vi(t)

+

-

vo(t)

+

-

L

R1

R2

12.64 The circuit in Fig. P12.64 is a dual-T notch filter. It has an advantage over the filter in Example 12.36
in that it contains no inductors, which tend to be bulky and heavy. Derive the transfer function for this
filter and verify your work for the component values and .

Figure P12.64

C C

2 CR R

vi(t)

+

-

vo(t)

+

-

R
2

——

R = 1590 �C = 100 nF
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12.65 Given the network in Fig. P12.65, find the transfer
function

and determine what type of filter the network 
represents.

Figure P12.65

12.66 Determine the value of L in the circuit in Fig. P12.66
that will place the network in resonance.

Figure P12.66

12.67 Determine the voltage transfer function and its
magnitude characteristic for the network shown in
Fig. P12.67 and identify the filter properties.

Figure P12.67

-
+

vo(t)

+

-

vi(t)

+

-

R2

R1 C1 C2

+
– 10 cos t V

L

2 F

12 �

6 �

18 �

3 �

±
–

vo(t)

+

-

vi(t)

+

-

R2R1

C

Vo

V1
(j�)

12.68 Repeat Problem 12.67 for the network shown in
Fig. P12.68.

Figure P12.68

12.69 An OTA with a transconductance of is required.
A 5-V supply is available, and the sensitivity of to

is 20.

(a) What values of and do you recommend?

(b) If has a tolerance of , what is the possible
range of in the final circuit?

12.70 The OTA and 5-V source described in Problem 12.69
are used to create a tranconductance of .

(a) What resistor value is required?

(b) If the input voltage to the amplifier is
, what is the output current

function?

12.71 A particular OTA has a maximum transconductance of
with a range of 6 decades.

(a) What is the minimum possible transconductance?

(b) What is the range of ?

(c) Using a 5-V power supply and resistor to set ,
what is the range of values for the resistor and the
power it consumes?

12.72 A circuit is required that can double the frequency of a
sinusoidal voltage.
(a) If , show that the multiplier

circuit in Fig. P12.72 can produce an output that
contains a sinusoid at frequency .

(b) We want the magnitude of the double-frequency
sinusoid to be . Determine values for and 
if the transconductance range is limited between

and .

Figure P12.72

vin

RG

RL vo

+

-

±
–

gm

IABC

10 mS10 	S

RLRG1 V

2�

vin(t) = 1 sin (�t) V

IABC

IABC

5 mS

vin(t) = 1.5 cos(�t)V

2.5 mS

gm

+5%RG

RGIABC

IABC

gm

1 mS

±
–

vo(t)

+

-

vS(t)

+

-

R1

CR2
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12.73 The automatic gain control circuit in Fig. 12.73 is used
to limit the transconductance, .

(a) Find an expression for in terms of 

(b) Express the asymptotic transconductance, , in
terms of and at and as approaches 
infinity. Given and values in the circuit dia-
gram, what are the values of the asymptotic
transconductance?

(c) What are the consequences of your results in (b)?

(d) If must be no more than for proper operation,
what is the minimum transconductance for the
functional circuit?

Figure P12.73

12.74 In Fig. P12.74, is a dc voltage. The circuit is intended
to be a dc wattmeter where the output voltage value
equals the power consumed by in watts.

(a) The sensitivity is . Find such
that 

(b) Choose such that at corresponds to 
dissipated in .

Figure P12.74

12.75 Design a low-pass filter with a cutoff frequency
between 15 and .

12.76 Design a low-pass filter using one resistor and one
capacitor that will produce a 4.24-volt output at 159 Hz
when 6 volts at are applied at the input.159 Hz

16 kHz

±
–

±
–

I1

5 V

RL

RL

RG

Vx

Rsense

Ix 100 �

+

- Vo

+

-

RL

1 WVo1 VRL

Ix�I1 = 104.
RG20 S�Agm - IABC

RL

Vx

±
–

±
–

IABC

RL

vin
vo

io

4 V

4 V

VCC

10 k�

1 k�

RG

Vccvin

RGRL

vinvin = 0RLRG

io�vin

vin, RG, and RL.vo

io�vin

12.77 Design a high-pass filter with a half-power frequency
between 159 and .

12.78 Design a band-pass filter with a low cutoff frequency of
approximately and a high cutoff frequency of
approximately .

12.79 Given the circuit in Fig. P12.67, design a second-order
band-pass filter with a center frequency gain of

, and a . Let
. What is the Q of this

filter? Sketch the Bode plot for the filter. Use the ideal
op-amp model.

12.80 Referring to Example 12.39, design a notch filter for
the tape deck for use in Europe, where power utilities
generate at .

12.81 An engineer has proposed the circuit shown in
Fig. P12.81 to filter out high-frequency noise.
Determine the values of the capacitor and resistor to
achieve a 3-dB voltage drop at 23.16 kHz.

Figure P12.81

12.82 For the high-pass active filter in Fig. P12.82, choose
, and such that 

Figure P12.82

12.83 For the low-pass active filter in Fig. P12.83, choose 
and C such that .

Figure P12.83

R2

C

1 k�

vS(t) vo(t)
±
–

–
± +

-

Ho = -7 and fc = 10 kHz
R2

R2R1

10 k�±
–

±
–

vo(t)vS(t)

C

+

-

Ho = 5 and fc = 3 kHz.R2C, R1

R

C

50 Hz

C1 = C2 = C and R1 = 1 k�
BW = 10 krad�s-5, �0 = 50 krad�s

5535 Hz
4535 Hz

161 kHz
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12.84 The second-order low-pass filter shown in Fig. P12.84
has the transfer function

Design a filter with and ,
assuming that and .

Figure P12.84

R1 R2

C2

C1

R3

–
±

vo(t)
+

-

v1(t)

+

-

R1 = 1 k�C1 = C2 = 10 nF
fc = 500 HzHo = -10

Vo

V1
(s) =

-R3

R1
a 1

R2R3C1C2
b

s2
+

s

C1
a 1

R1
+

1

R2
+

1

R3
b +

1

R2R3C1C2

12.85 Given the second-order low-pass filter in Fig. P12.85,
design a filter that has and . Set

, and let and . Use an
op-amp model with , and .

Figure P12.85

R2

R1

R3 R4

C1 C2

±
–

–
± –

±
vS(t)

vo(t)
+

-

A = (2)105Ri = q, R0 = 0
C1 = C2R2 = R4R1 = R3 = 1 k�

fc = 5 kHzHo = 100
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T Y P I C A L P R O B L E M S F O U N D  O N  T H E F E E X A M
•

12PFE-1 Determine the voltage at resonance in the circuit in
Fig. 12PFE-1.

a.
b.
c.
d.

Figure 12PFE-1

12PFE-2 Given the series circuit in Fig. 12PFE-2, find the
value of R so that the BW of the network about the
resonant frequency is .

a.
b.
c.
d.

Figure 12PFE-2

12PFE-3 Given the low-pass filter circuit shown in Fig. 12PFE-3, 
find the frequency in Hz at which the output is down 
3 dB from the dc, or very low frequency, output.

a.
b.
c.
d.

Figure 12PFE-3

5 k�

1 �FInput

+

-

Output

+

-

32 Hz
47 Hz
60 Hz
26 Hz

R 20 mH

50 �FvS(t) ±
–

6 �
4 �
2 �
8 �

200 rad�s

2 � 1 mH

12 cos �t V 10 �F vo(t)

+

-

±
–

30�45° V
40�-60° V
35�60° V
60�-90° V

V0 12PFE-4 Given the band-pass filter shown in Fig. 12PFE-4,
find the value of R necessary to provide a resonant
frequency of and a .

a.
b.
c.
d.

Figure 12PFE-4

12PFE-5 Given the low-pass filter shown in Fig. 12PFE-5,
find the half-power frequency of this circuit, if the
source frequency is .

a.
b.
c.
d.

Figure 12PFE-5

10 �F

2 k�

vo(t)vS(t)

+

-

±
–

4 Hz
12 Hz
2 Hz
8 Hz

8 Hz

10 �F

vS(t)

L

R vo(t)

+

-

±
–

5 �
6 �
10 �
2 �

BW of 100 rad�s1000 rad�s
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CHAPTER

THE LAPLACE TRANSFORM

667

13
T H E L E A R N I N G  G O A L S
F O R  T H I S C H A P T E R  A R E :

■ Be able to determine the Laplace transform of
signals common to electric circuits

■ Know how to perform an inverse Laplace transform
using partial fraction expansion

■ Be introduced to the concept of convolution

■ Be able to apply the initial-value and final-value
theorems

■ Know how to use the Laplace transform to analyze
transient circuits

Micro-Aerial Robots or Tiny UAVs The size of a toy but far

more than a toy, the tiny, powerful UAV—unmanned aerial vehi-

cle or micro-aerial robot—finds its niche in such roles as

advancing military missions, fighting wildfires in our national

forests, or averting terrorist attacks. The UAV comes in many

forms: it may be a miniature helicopter, a robo-hummingbird,

or a Wasp Micro Air Vehicle. Some carry a GPS for location, a

microprocessor to keep flight stable, and a color video camera.

With over 5000 in operation today, Raven drones are the most

popular small UAVs in the US military fleet. While they once

required heavy, briefcase-sized control units, today’s drones can

be controlled with an iPhone.

Identified at times as a bird, a bee, or a giant mosquito, the

Micro Flying Robot developed in Japan and weighing only 8 grams

is driven by four micro-actuators that control two rotors and stabi-

lizing units. Swarms of tiny UAVs can link up to form an airborne

network for monitoring work too dangerous for humans, such as

tracking hurricanes or mapping hazardous chemical plumes.

Mathematical models of these micro-aerial robots require

time-domain or transform techniques to describe their dynamic

Courtesy of Lin Chi Mak and the UNSW MAVSTAR
team 2009
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behavior. In this chapter, we present the basic operations of

the Laplace transform – its pairs and properties, its relation-

ship to convolution in the time domain. You worked with these

transforms in your differential equations course and now will

learn how to apply the results to circuit analysis.  These tools

are essential in finding circuit voltages and currents and in the

analysis of much more complicated robots—of any size—which

are a challenge to design and operate.

13.1
Definition

The Laplace transform of a function f(t) is defined by the equation

13.1

where s is the complex frequency

13.2

and the function is assumed to possess the property that

Note that the Laplace transform is unilateral (0 � t 6 q), in contrast to the Fourier trans-
form (see Chapter 15), which is bilateral (- q 6 t 6 q). In our analysis of circuits using the
Laplace transform, we will focus our attention on the time interval t � 0. It is the initial con-
ditions that account for the operation of the circuit prior to t = 0; therefore, our analyses will
describe the circuit operation for t � 0.

For a function f(t) to possess a Laplace transform, it must satisfy the condition

13.3

for some real value of �. Because of the convergence factor e-�t, a number of important func-
tions have Laplace transforms, even though Fourier transforms for these functions do not
exist. All of the inputs we will apply to circuits possess Laplace transforms. Functions that
do not have Laplace transforms are of no interest to us in circuit analysis.

The inverse Laplace transform, which is analogous to the inverse Fourier transform, is
defined by the relationship

13.4

where �1 is real and �1 7 � in Eq. (13.3).
Since evaluation of this integral is based on complex variable theory, we will avoid its use.

How then will we be able to convert our solution in the complex frequency domain back to
the time domain? The Laplace transform has a uniqueness property: for a given there
is a unique F(s). In other words, two different functions and cannot have the same
F(s). Our procedure then will be to use Eq. (13.1) to determine the Laplace transform for a
number of functions common to electric circuits and store them in a table of transform pairs.
We will use a partial fraction expansion to break our complex frequency-domain solution into
a group of terms for which we can utilize our table of transform pairs to identify a time func-
tion corresponding to each term.

f2(t)f1(t)
f(t),

l-1 CF(s) D = f(t) =

1

2�j
 3

�1 + jq

�1 - jq

F(s)est ds

Ae.g., et2B

3
q

0
e-�t @f(t) @  dt 6 q

f(t) = 0  for t 6 0

f(t)

s = � + j�

l Cf(t) D = F(s) = 3
q

0
f(t)e-st dt
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13.1
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Two singularity functions are very important in circuit analysis: (1) the unit step function,
u(t), discussed in Chapter 7, and (2) the unit impulse or delta function, �(t). They are called
singularity functions because they are either not finite or they do not possess finite derivatives
everywhere. They are mathematical models for signals that we employ in circuit analysis.

The unit step function u(t) shown in Fig. 13.1a was defined in Section 7.2 as

Recall that the physical analogy of this function, as illustrated earlier, corresponds to clos-
ing a switch at t = 0 and connecting a voltage source of 1 V or a current source of 1 A to a
given circuit. The following example illustrates the calculation of the Laplace transform for
unit step functions.

t 6 0

t 7 0
u(t) = b0

1

13.2
Two Important

Singularity
Functions

1

u(t)

t0

1

u(t-a)

t0 a

1

(a) (b)

(c)

u(t)

t0 T

t0 T

–u(t-T)

u(t)-u(t-T)

Figure 13.1
Representations of the
unit step function.

Let us determine the Laplace transform for the waveforms in Fig. 13.1.

The Laplace transform for the unit step function in Fig. 13.1a is

 = 3
q

0
1e-st dt

 F(s) = 3
q

0
u(t)e-st dt

SOLUTION

irwin13_667-694hr.qxd  6-08-2010  15:16  Page 669



The unit impulse function can be represented in the limit by the rectangular pulse shown in
Fig. 13.2a as The function is defined by the following:

The unit impulse is zero except at t = t0, where it is undefined, but it has unit area (some-
times referred to as strength). We represent the unit impulse function on a plot as shown in
Fig. 13.2b.

An important property of the unit impulse function is what is often called the sampling
property, which is exhibited by the following integral:

for a finite t0 and any f(t) continuous at t0. Note that the unit impulse function simply samples
the value of f(t) at t = t0.

3
t2

t1

f(t)�At - t0B dt = bf At0B
0

  t1 6 t0 6 t2

t0 6 t1 , t0 7 t2

 3
t0 + �

t0 - �

�At - t0B dt = 1   � 7 0

 �At - t0B = 0   t Z t0

a S 0.
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Therefore,

The Laplace transform of the time-shifted unit step function shown in Fig. 13.1b is

Note that

Therefore,

Finally, the Laplace transform of the pulse shown in Fig. 13.1c is

 =

1 - e-Ts

s
  � 7 0

 F(s) = 3
q

0
Cu(t) - u(t - T) De-st dt

 =

e-as

s
  � 7 0

 F(s) = 3
q

a
e-st dt

a 6 t 6 q

     t 6 a
u(t - a) = b 1

0

F(s) = 3
q

0
u(t - a)e-st dt

l[u(t)] = F(s) =

1

s

 =

1

s
  � 7 0

 = - 
1

s
 e-st 2q

0
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Now that we have defined the unit impulse function, let’s consider the following question:
why introduce the unit impulse function? We certainly cannot produce a voltage or current
signal with zero width and infinite height in a physical system. For engineers, the unit impulse
function is a convenient mathematical function that can be utilized to model a physical process.
For example, a lightning stroke is a short-duration event. If we were analyzing a system that
was struck by lightning, we might consider modeling the lightning stroke as a unit impulse
function. Another example is the process of sampling where an analog-to-digital converter
(ADC) is utilized to convert a time signal into values that can be used in a computer. The ADC
captures the value of the time signal at certain instants of time. The sampling property of the
unit impulse function described above is very useful in modeling the sampling process.

S E C T I O N  1 3 . 3 T R A N S F O R M  P A I R S     671

t0 t0

�(t-t0)

f(t) f(t)

t

(a) (b)

0

1—a

t0- a—
2 t0+t0

a—
2

Figure 13.2

Representations of the
unit impulse.

EXAMPLE

13.2

EXAMPLE

13.3

Let us determine the Laplace transform of an impulse function.

The Laplace transform of the impulse function is

Using the sampling property of the delta function, we obtain

In the limit as and therefore

l C�(t) D = F(s) = 1

t0 S 0, e-t0 s
S 1,

l C�At - t0B D = e-t0 s

F(s) = 3
q

0
�At - t0Be-st dt

We will now illustrate the development of a number of basic transform pairs that are very
useful in circuit analysis. 13.3

Transform Pairs

Let us find the Laplace transform of f(t) = t.

The Laplace transform of the function f(t) = t is

Integrating the function by parts, we let

Then

du = dt  and  v = 3
 

 

e-st dt = - 
1

s
 e-st

u = t  and  dv = e-st dt

F(s) = 3
q

0
te-st dt

SOLUTION

SOLUTION
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EXAMPLE

13.4

A short table of useful Laplace transform pairs is shown in Table 13.1.
Once the transform pairs are known, we can easily move back and forth between the time

domain and the complex frequency domain without having to use Eqs. (13.1) and (13.4).

672 C H A P T E R  1 3 T H E  L A P L A C E  T R A N S F O R M

Therefore,

 =

1

s2
  � 7 0

 F(s) =

-t

s
 e-st 2q

0
+ 3

q

0
 
e-st

s
 dtt 4 

1
s2

[ h i n t ]

Let us determine the Laplace transform of the cosine function.

The Laplace transform for the cosine function is

 =

s

s2
+ �2

 =

1

2
 a 1

s - j�
+

1

s + j�
b  � 7 0

 = 3
q

0
 
e-(s - j�)t

+ e-(s + j�)t

2
 dt

 = 3
q

0

e+j�t
+ e-j�t

2
 e-st dt

 F(s) = 3
q

0
cos �t e-st dt

cos �t 4 
s

s2
+ �2

[ h i n t ]

TABLE 13.1 Short table of
Laplace transform pairs

f(t) F(s)

1

s + a
(s + a)2

+ b2e-at cos bt

b
(s + a)2

+ b2e-at sin bt

s
s2

+ b2cos bt

b
s2

+ b2sin bt

1
(s + a)n + 1

tne-at

n!

1
(s + a)2te-at

1
sn + 1

tn

n!

1
s2t

1
s + a

e-at

1
s

u(t)

�(t)

SOLUTION
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E13.1 If show that F(s) = 1/(s + a).

E13.2 If f(t) = sin �t, show that F(s) = �/(s2
+ �2).

f(t) = e-at,

Learning Assessments

A number of useful theorems describe important properties of the Laplace transform. We will
first demonstrate a couple of these theorems, provide a concise listing of a number of them,
and, finally, illustrate their usefulness via several examples.

The time-scaling theorem states that

13.5

The Laplace transform of is

Now let and Then

The time-shifting theorem states that

13.6

This theorem is illustrated as follows:

If we now let and then

The frequency-shifting, or modulation, theorem states that

13.7l Ce-atf(t) D = F(s + a)

 = e-t0s F(s) t0 � 0

 = e-t0 s

3
q

0
f(	)e-s	 d	

 l CfAt - t0BuAt - t0B D = 3
q

0
f(	)e-sA	 + t0B d	

d	 = dt,	 = t - t0

 = 3
q

t0

f At - t0Be-st dt

 l CfAt - t0BuAt - t0B D = 3
q

0
fAt - t0BuAt - t0Be-st dt

l CfAt - t0BuAt - t0B D = e-t0s F(s)         t0 � 0

 =

1

a
 F a s

a
b  a 7 0

 =

1

a
 3

q

0
f(	)e-(s�a)	 d	

 l Cf(at) D = 3
q

0
f(	)e-(	�a)s 

d	

a

d	 = a dt.	 = at

l Cf(at) D = 3
q

0
f(at)e-st dt

f(at)

l Cf(at) D =

1

a
 F a s

a
b           a 7 0

13.4
Properties of

the Transform
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13.5

By definition,

The three theorems we have demonstrated, together with a number of other important proper-
ties, are listed in a concise manner in Table 13.2. Let us now provide several simple examples
that illustrate how these properties can be used.

 = F(s + a)

 = 3
q

0
f(t)e-(s + a)t dt

 l Ce-atf(t) D = 3
q

0
e-atf(t)e-st dt

674 C H A P T E R  1 3 T H E  L A P L A C E  T R A N S F O R M

TABLE 13.2 Some useful properties of the Laplace transform

PROPERTY NUMBER f(t) F(s)

1. Magnitude scaling

2. Addition/subtraction

3. Time scaling

4. Time shifting

5. Frequency shifting

6. Differentiation

7. Multiplication by t

8. Division by t

9. Integration

10. Convolution F1(s) F2(s)3
t

0
f1(	)f2(t - 	) d	

1
s

 F(s)3
t

0
f(	) d	

3
q

s
F(	) d	

f(t)

t

(-1)n 
d n F(s)

dsntnf(t)

- 
d F(s)

ds
t f(t)

sn F(s) - sn - 1f(0) - sn - 2f 1(0) p - s0f n - 1(0)
dnf(t)

dtn

F(s + a)e-atf(t)

e-t0 s l C f At + t0B Df(t)uAt - t0B
e-t0 s F(s)f At - t0BuAt - t0B, t0 � 0

1
a

 F a s
a
b , a 7 0f(at)

F1(s) ; F2(s)f1(t) ; f2(t)

A F(s)Af(t)

Use the Laplace transform of cos �t to find the Laplace transform of 

Since the Laplace transform of cos �t is known to be

then using property number 5,

l Ce-at cos �t D =

s + a

(s + a)2
+ �2

l[cos �t] =

s

s2
+ �2

e-
t cos �t.

SOLUTION
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13.6SOLUTION
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Let us demonstrate property number 8.

If f(t) = te-at, then

Therefore,

Hence,

f1(t) =

f(t)

t
=

te-at

t
= e-at  and  F1(s) =

1

s + a

3
q

s
F(	) d	 = 3

q

s
 

1

(	 + a)2 d	 =

-1

	 + a
 2q

s
=

1

s + a

F(	) =

1

(	 + a)2

EXAMPLE

13.6

SOLUTION

Let us employ the Laplace transform to solve the equation

Applying property numbers 6 and 10, we obtain

This is the solution of the linear constant-coefficient integrodifferential equation in the
s-domain. However, we want the solution y(t) in the time domain. y(t) is obtained by per-
forming the inverse transform, which is the topic of the next section, and the solution y(t)
is derived in Example 13.9.

 Y(s) =

10(s + 2)

s˚As2
+ 4s + 5B

 Y(s) a s + 2 +

1

s + 2
b =

10
s

 sY(s) + 2Y(s) +

Y(s)

s + 2
=

10
s

dy(t)

dt
+ 2y(t) + 3

t

0
y(	)e-2(t - 	)

 d	 = 10u(t)  y(0) = 0

E13.3 Find F(s) if f(t) =

1

2
 At - 4e-2tB.

Learning Assessments
ANSWER:

F(s) =

1

2s2 -

2

s + 2
 .

E13.4 If determine F(s) using the 
time-shifting theorem.

f(t) = te-(t - 1)u(t - 1) - e-(t - 1)u(t - 1), ANSWER:

F(s) =

e-s

(s + 1)2 .

E13.5 Find F(s) if Use property number 2.f(t) = e-4tAt - e-tB. ANSWER:

F(s) =

1

(s + 4)2 -

1

s + 5
 .
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As we begin our discussion of this topic, let us outline the procedure we will use in applying
the Laplace transform to circuit analysis. First, we will transform the problem from the time
domain to the complex frequency domain (that is, s-domain). Next, we will solve the circuit
equations algebraically in the complex frequency domain. Finally, we will transform the solu-
tion from the s-domain back to the time domain. It is this latter operation that we discuss now.

The algebraic solution of the circuit equations in the complex frequency domain results in
a rational function of s of the form

13.8

The roots of the polynomial P(s) are called the zeros of the function 
F(s) because at these values of s, F(s) = 0. Similarly, the roots of the polynomial Q(s)

are called poles of F(s), since at these values of s, F(s) becomes infinite.
If F(s) is a proper rational function of s, then n 7 m. However, if this is not the case, we

simply divide P(s) by Q(s) to obtain a quotient and a remainder; that is,

13.9

Now P1(s)/Q(s) is a proper rational function of s. Let us examine the possible forms of the
roots of Q(s):

1. If the roots are simple, P1(s)/Q(s) can be expressed in partial fraction form as

13.10

2. If Q(s) has simple complex roots, they will appear in complex-conjugate pairs, and the
partial fraction expansion of P1(s)/Q(s) for each pair of complex-conjugate roots will
be of the form

13.11

where Q(s) = Q1(s)(s + a-j�)(s + 
 + j�) and in the complex conjugate of K1.

3. If Q(s) has a root of multiplicity r, the partial fraction expansion for each such root will
be of the form

13.12

The importance of these partial fraction expansions stems from the fact that once the func-
tion F(s) is expressed in this form, the individual inverse Laplace transforms can be obtained
from known and tabulated transform pairs. The sum of these inverse Laplace transforms then
yields the desired time function, 

SIMPLE POLES Let us assume that all the poles of F(s) are simple, so that the partial
fraction expansion of F(s) is of the form

13.13F(s) =

P(s)

Q(s)
=

K1

s + p1
+

K2

s + p2
+

p
+

Kn

s + pn

f(t) = l-1 CF(s) D .

P1(s)

Q 1(s)As + p1Br =

K11

As + p1B +

K12

As + p1B2 +
p

+

K1r

As + p1Br +
p

K*1

P1(s)

Q 1(s)(s + 
 - j�)(s + 
 + j�)
=

K1

s + 
 - j�
+

K*1
s + 
 + j�

+
p

P1(s)

Q(s)
=

K1

s + p1
+

K2

s + p2
+

p
+

Kn

s + pn

P(s)

Q(s)
= Cm - n sm - n

+
p

+ C2 s2
+ C1 s + C0 +

P1(s)

Q(s)

Ai.e., -p1 , -p2 p -pnB
Ai.e., -z1 , -z2 p -zmB

F(s) =

P(s)

Q(s)
=

am sm
+ am - 1 sm - 1

+
p

+ a1 s + a0

bn sn
+ bn - 1 sn - 1

+
p

+ b1 s + b0
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13.5
Performing the
Inverse
Transform
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13.8

SOLUTION

Then the constant can be computed by multiplying both sides of this equation by 
and evaluating the equation at s = -pi; that is,

13.14

Once all of the Ki terms are known, the time function can be obtained
using the Laplace transform pair:

13.15l-1 c 1

s + a
d = e-at

f(t) = l-1 CF(s) D

As + piBP(s)

Q(s)
 2  

s = -pi

= 0 +
p

+ 0 + Ki + 0 +
p

+ 0  i = 1, 2, p , n

As + piBKi
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Given that

let us find the function 

Expressing F(s) in a partial fraction expansion, we obtain

To determine , we multiply both sides of the equation by s to obtain the equation

Evaluating the equation at s = 0 yields 

or

Similarly,

or

Using the same approach, we find that and Hence F(s) can be written 

as

Then is

f(t) = a 36

40
+ 1e-2t

+

36

8
 e-4t

-

32

5
 e-5t bu(t)

f(t) = l-1 CF(s) D
F(s) =

36�40

s
+

1

s + 2
+

36�8

s + 4
-

32�5

s + 5

K3 = - 
32

5
 .K2 =

36

8

K1 = 1

(s + 2)F(s) 2  
S = -2

=

12(s + 1)(s + 3)

s(s + 4)(s + 5)
 2  

S = -2
= K1

K0 =

36

40

(12)(1)(3)

(2)(4)(5)
= K0 + 0 + 0 + 0

12(s + 1)(s + 3)

(s + 2)(s + 4)(s + 5)
= K0 +

K1˚s

s + 2
+

K2˚s

s + 4
+

K3˚s

s + 5

K0

12(s + 1)(s + 3)

s(s + 2)(s + 4)(s + 5)
=

K0

s
+

K1

s + 2
+

K2

s + 4
+

K3

s + 5

f(t) = l-1 CF(s) D .
F(s) =

12(s + 1)(s + 3)

s(s + 2)(s + 4)(s + 5)
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COMPLEX-CONJUGATE POLES Let us assume that F(s) has one pair of complex-
conjugate poles. The partial fraction expansion of F(s) can then be written as

13.16

The constant K1 can then be determined using the procedure employed for simple poles; that is,

13.17

In this case is in general a complex number that can be expressed as Then
Hence, the partial fraction expansion can be expressed in the form

13.18

The corresponding time function is then of the form

13.19

 = 2 @K1 @e-
t cos (�t + �) +
p

 = @K1 @e-
t Cej(�t + �)
+ e-j(�t + �) D +

p

 f(t) = l-1 CF(s) D = @K1 @ej�e-(
 - j�)t
+ @K1 @e-j�

 e-(
 + j�)t
+

p

 =

@K1 @ej�

s + 
 - j�
+

@K1 @e-j�

s + 
 + j�
+

p

 F(s) =

@K1 @ /�

s + 
 - j�
+

@K1 @ /-�

s + 
 - j�
+

p

K*1 = ∑K1∑/-� .
∑K1∑/� .K1

(s + 
 - j�)F(s) 2  
s = -
 + j�

= K1

F(s) =

P1(s)

Q 1(s)(s + 
 - j�)(s + 
 + j�)
=

K1

s + 
 - j�
+

K*1
s + 
 + j�

+
p
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E13.6 Find f(t) if F(s) = 10(s + 6)/(s + 1)(s + 3).

Learning Assessments
ANSWER:
f(t) = A25e-t

- 15e-3tBu(t).

E13.7 If F(s) = 12(s + 2)/s(s + 1), find f(t). ANSWER:
f(t) = A24 - 12e-tBu(t).

EXAMPLE

13.9
Let us determine the time function y(t) for the function

Expressing the function in a partial fraction expansion, we obtain

4 = K0

10(s + 2)

s2
+ 4s + 5

 2  
s = 0

= K0

 =

K0

s
+

K1

s + 2 - j1
+

K*1
s + 2 - j1

 
10(s + 2)

s(s + 2 - j1)(s + 2 + j1)

Y(s) =

10(s + 2)

sAs2
+ 4s + 5B

E13.8 Given F(s) = , find f(t).
s2

+ 5s + 1

s(s + 1)(s + 4)

ANSWER:
f(t) = A0.25 + e-t

- 0.25e-4tBu(t).

SOLUTION

Recall that

cos x =

ejx
+ e-jx

2

[ h i n t ]
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MULTIPLE POLES Let us suppose that F(s) has a pole of multiplicity r. Then F(s) can
be written in a partial fraction expansion of the form

13.20

Employing the approach for a simple pole, we can evaluate K1r as

13.21

To evaluate we multiply F(s) by as we did to determine ; however, prior
to evaluating the equation at , we take the derivative with respect to s. The proof
that this will yield can be obtained by multiplying both sides of Eq. (13.20) by 
and then taking the derivative with respect to s. Now when we evaluate the equation at

, the only term remaining on the right side of the equation is , and therefore,

13.22

K1r-2 can be computed in a similar fashion, and in that case the equation is

13.23
d2

ds2 C As + p1BrF(s) D 2  
s = -p1

= (2!)K1r - 2

d

ds
 C As + p1BrF(s) D 2  

s = -p1

= K1r - 1

K1r-1s = -p1

As + p1BrK1r-1

s = -p1

K1rAs + p1BrK1r-1

As + p1BrF(s) 2  
s = -p1

= K1r

 =

K11

s + p1
+

K12

As + p1B2 +
p

+

K1r

As + p1Br +
p

 F(s) =

P1(s)

Q 1(s)As + p1Br
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In a similar manner,

Therefore,

The partial fraction expansion of Y(s) is then

and therefore,
y(t) = C4 + 4.472e-2t cos (t - 153.43°) Du(t)

Y(s) =

4

s
+

2.236/-153.43°

s + 2 - j1
+

2.236/153.43°

s + 2 + j1

2.236/153.43° = K*1

 2.236/-153.43° = K1

 
10(s + 2)

s(s + 2 + j1)
 2  

s = -2 + j1
= K1

E13.9 Determine f(t) if F(s) = s/ As2
+ 4s + 8 B .

Learning Assessments
ANSWER:
f(t) = 1.41e-2t cos (2t + 45°)u(t).

E13.10 Given , find f(t).F(s) =

4(s + 3)

(s + 1)(s2
+ 2s + 5)

ANSWER:
f(t) = (2e- t

+ 2     e- tcos A2t - 135º))u(t).2
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EXAMPLE

13.10
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Given the following function F(s), let us determine the corresponding time function

Expressing F(s) as a partial fraction expansion, we obtain

Then

is now determined by the equation

In a similar fashion is computed from the equation

Therefore,

In addition,

Hence, F(s) can be expressed as

Now we employ the transform pair

and hence,

f(t) = A10e-t
- 10te-t

+ 10t2e-t
- 10e-2tBu(t)

l-1 c 1

(s + a)n + 1
d =

tn

n!
 e-at

F(s) =

10

s + 1
-

10

(s + 1)2 +

20

(s + 1)3 -

10

s + 2

 -10 = K2

 (s + 2)F(s) 2  
s = -2

= K2

10 = K11

 
20

(s + 2)3 2
 

s = -1
= 20 = 2K11

 
d2

ds2 C(s + 1)3F(s) D 2  
s = -1

= 2K11

K11

 
-10

(s + 2)2 2
 

s = -1
= -10 = K12

 
d

ds
 C(s + 1)3F(s) D 2  

s = -1
= K12

K12

 20 = K13

 (s + 1)3F(s) 2  
s = -1

= K13

 =

K11

s + 1
+

K12

(s + 1)2 +

K13

(s + 1)3 +

K2

s + 2

 F(s) =

10(s + 3)

(s + 1)3(s + 2)

F(s) =

10(s + 3)

(s + 1)3(s + 2)

f(t) = l-1 CF(s) D .

SOLUTION

The general expression for this case is

13.24

Let us illustrate this procedure with an example.

K1j =

1

(r - j)!
 

dr - j

dsr - j C As + p1BrF(s) D 2  
s = -p1
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Back in Chapter 7 we discussed the characteristic equation for a second-order transient
circuit. The polynomial is the characteristic equation for our circuit. The roots of
the characteristic equation, also called the poles of determine the time response for our
circuit. If has simple roots, then the time response will be characterized by decaying
exponential functions. Multiple roots produce a time response that contains decaying expo-
nential terms such as and The time response for simple complex-conjugate
roots is a sinusoidal function whose amplitude decays exponentially. Note that all of these time
responses decay to zero with time. Suppose our circuit response contained a term such as 
A quick plot of this function reveals that it increases without bound for Certainly, if our
circuit was characterized by this type of response, we would need eye protection as our circuit
destructed before us!

Earlier, in Eq. (13.8), we defined as the ratio of two polynomials. Let’s suppose that
in this equation. In this case, only is nonzero in Eq. (13.9). Recall that we perform

a partial fraction expansion on and use our table of Laplace transform pairs to
determine the corresponding time function for each term in the expansion. What do we do
with this constant Looking at our table of transform pairs in Table 13.1, we note that the
Laplace transform of the unit impulse function is a constant. As a result, our circuit response
would contain a unit impulse function. Earlier we noted that unit impulse functions don’t
exist in physical systems; therefore, for physical systems.m 6 n

C0˚?

P1(s)�Q(s)
C0m = n

F(s)

t 7 0.
3e2t.

t2e-at.e-at, te-at,

Q(s) = 0
F(s),

Q(s) = 0
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E13.11 Determine f(t) if F(s) = s�(s + 1)2.

Learning Assessments
ANSWER:
f(t) = Ae-t

- te-tBu(t).

E13.12 If find f(t).F(s) = (s + 2)�s2(s + 1), ANSWER:
f(t) = A-1 + 2t + e-tBu(t).

E13.13 Given , find f(t).F(s) =

100

s3(s + 5)

ANSWER:
f(t) = A0.8 - 4t + 10t2

- 0.8e- 5t) u(t).

13.6
Convolution

Integral

Convolution is a very important concept and has wide application in circuit and systems
analysis. We first illustrate the connection that exists between the convolution integral and
the Laplace transform. We then indicate the manner in which the convolution integral is
applied in circuit analysis.

Property number 10 in Table 13.2 states the following.
If

13.25

and

then

13.26

Our demonstration begins with the definition

l Cf(t) D = 3
q

0
c 3

t

0
f1(t - 	)f2(	) d	 d e-st dt

F(s) = F1(s)F2(s)

l Cf(t) D = F(s), l Cf1(t) D = F1(s)      and      l Cf2(t) D = F2(s)

f(t) = f1(t) z f2(t) = 3
t

0
f1(t - 	)f2(	) d	 = 3

t

0
f1(	)f2(t - 	) d	
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EXAMPLE

13.11

SOLUTION

We now force the function into the proper format by introducing into the integral within the
brackets the unit step function u(t-	). We can do this because

13.27

The first condition in Eq. (13.27) ensures that the insertion of the unit step function has no
impact within the limits of integration. The second condition in Eq. (13.27) allows us to
change the upper limit of integration from t to q. Therefore,

which can be written as

Note that the integral within the brackets is the time-shifting theorem illustrated in Eq. (13.6).
Hence, the equation can be written as

Note that convolution in the time domain corresponds to multiplication in the frequency
domain.

Let us now illustrate the use of this property in the evaluation of an inverse Laplace
transform.

 = F1(s)F2(s)

 = F1(s)3
q

0
f2(	)e-s	 d	

 l Cf(t) D = 3
q

0
f2(	)F1(s)e-s	 d	

l Cf(t) D = 3
q

0
f2(	) c 3

q

0
f1(t - 	)u(t - 	)e-st dt d  d	

l Cf(t) D = 3
q

0
c 3

q

0
f1(t - 	)u(t - 	)f2(	)d	 d e-st dt

u(t - 	) = b 1

0
  for 	 6 t

 for 	 7 t
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The transfer function for a network is given by the expression

The input is a unit step function Let us use convolution to determine the
output voltage vo(t).

Since and therefore

 = 2 C1 - e-5t Du(t) V

 =

10e-5t

5
 Ce5t

- 1 D

 = 10e-5t

3
t

0
e5	 d	

 vo(t) = 3
t

0
10u(	)e-5(t - 	) d	

H(s) =

10

(s + 5)
 , h(t) = 10e-5t

VS(s) =

1

s
 .

H(s) =

Vo(s)

VS(s)
=

10

s + 5
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Although we can employ convolution to derive an inverse Laplace transform, the example,
though quite simple, illustrates that this is a very poor approach. If the function F(s) is very
complicated, the mathematics can become unwieldy. Convolution is, however, a very powerful
and useful tool. For example, if we know the impulse response of a network, we can use con-
volution to determine the network’s response to an input that may be available only as an exper-
imental curve obtained in the laboratory. Thus, convolution permits us to obtain the network
response to inputs that cannot be written as analytical functions but can be simulated on a digital
computer. In addition, we can use convolution to model a circuit, which is completely unknown
to us, and use this model to determine the circuit’s response to some input signal.
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For comparison, let us determine vo(t) from H(s) and using the partial fraction
expansion method. can be written as

Evaluating the constants, we obtain K0 = 2 and . Therefore,

and hence
vo(t) = 2 C1 - e-5t Du(t) V

Vo(s) =

2
s

-

2

s + 5

K1 = -2

 =

10

s(s + 5)
=

K0

s
+

K1

s + 5

 Vo(s) = H(s)VS(s)

Vo(s)
Vs(s)

EXAMPLE

13.12

SOLUTION

To demonstrate the power of convolution, we will create a model for a “black-box” linear
band-pass filter, shown as a block in Fig. 13.3. We have no details about the filter circuitry
at all—no circuit diagram, no component list, no component values. As a result, our filter
model must be based solely on measurements. Using our knowledge of convolution and the
Laplace transform, let us discuss appropriate measurement techniques, the resulting model,
and how to employ the model in subsequent simulations.

Figure 13.3

Conceptual diagram for a
band-pass filter.

vo(t)
+

-

vin(t)
+

-

Linear
band-pass

filter

Because the filter is linear, vo(t) can be written

13.28

Thus, the function h(t) will be our model for the filter. To determine h(t), we must input
some vin(t), measure the response, vo(t), and perform the appropriate mathematics. One
obvious option for vin(t) is the impulse function, �(t), then Vin(s) is 1, and the output is the
desired model, h(t):

Unfortunately, creating an adequate impulse, infinite amplitude, and zero width in the lab-
oratory is nontrivial. It is much easier, and more common, to apply a step function such as
10 u(t). Then Vin(s) is 10/s, and the output can be expressed in the s-domain as

Vo(s) = H(s) c 10
s
d

vo(t) = h(t)

vo(t) = h(t) z vin(t)
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or

Since multiplication by s is equivalent to the time derivative, we have for h(t)

13.29

Thus, h(t) can be obtained from the derivative of the filter response to a step input!
In the laboratory, the input 10 u(t) was applied to the filter and the output voltage was

measured using a digital oscilloscope. Data points for time and vo(t) were acquired every
50 
s over the interval 0 to 50 ms, that is, 1,000 data samples. The digital oscilloscope
formats the data as a text file, which can be transferred to a personal computer where the
data can be processed. [In other words, we can find our derivative in Eq. (13.29),
dvo(t)/dt.] The results are shown in Table 13.3. The second and third columns in the table
show the elapsed time and the output voltage for the first few data samples. To produce
h(t), the derivative was approximated in software using the simple algorithm,

where is the sample time, 50 
s, and n is the sample number. Results for h(t) are shown
in the fourth column of the table. At this point, h(t) exists as a table of data points and the
filter is now modeled.

TS

dvo(t)

dt
L

¢Vo

¢t
=

Vo C(n + 1)TS D - Vo CnTS D
TS

h(t) = c 1

10
d dvo(t)

dt

H(s) = c s

10
dVo(s)

TABLE 13.3 The first five data samples of the step response and the evaluation of h(t)

N TIME(s) STEP RESPONSE (V) h(t)

0 0.00E�00 0.00E�00 3.02E�02

1 5.00E�05 1.51E–01 8.98E�02

2 1.00E–04 6.00E–01 9.72E�02

3 1.50E–04 1.09E�00 9.56E�02

4 2.00E–04 1.56E�00 9.38E�02

To test our model, h(t), we let the function vin(t) contain a combination of dc and
sinusoid components such as

13.30

How will the filter perform? What will the output voltage look like? To find out, we must
convolve h(t) and vin(t). A data file for vin(t) can be created by simply evaluating the func-
tion in Eq. (13.30) every 50 
s. This convolution can be performed using any convenient
computational method.

Plots of the resulting vo(t) and vin(t) are shown in Fig. 13.4. An examination of the out-
put waveform indicates that the 100-Hz component of vin(t) is amplified, whereas the dc and 
1234-Hz components are attenuated. That is, vo(t) has an amplitude of approximately 3 V
and an average value of near zero. Indeed, the circuit performs as a band-pass filter.
Remember that these waveforms are not measured; they are simulation results obtained from
our model, h(t).

b 1 sin C(2�)100t D + 1 sin C(2�)1234tD + 4

0
 0 � t 6 25 ms

t � 25 ms
vin(t) =
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Suppose that we wish to determine the initial or final value of a circuit response in the time
domain from the Laplace transform of the function in the s-domain without performing the
inverse transform. If we determine the function we can find the initial
value by evaluating f(t) as and the final value by evaluating f(t) as It would
be very convenient, however, if we could simply determine the initial and final values from
F(s) without having to perform the inverse transform. The initial- and final-value theorems
allow us to do just that.

The initial-value theorem states that

13.31

provided that f(t) and its first derivative are transformable.
The proof of this theorem employs the Laplace transform of the function 

Taking the limit of both sides as we find that

and since

then

which is, of course,
lim
t S 0

 f(t) = lim
S S q

 sF(s)

f(0) = lim
S S q

 sF(s)

3
q

0
 
df (t)

dt
 lim
S S q

 e-st dt = 0

lim
S S q

 3
q

0
 
df (t)

dt
 e-st dt = lim

S S q

CsF(s) - f(0) D
s S q,

3
q

0
 
df (t)

dt
 e-st dt = sF(s) - f(0)

df(t)�dt:

lim
t S 0

 f(t) = lim
S S q

 sF(s)

t S q.t S 0
f(t) = l-1 CF(s) D ,
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Figure 13.4

Plots of input and output wave-
forms reveal the nature of the
band-pass filter—particularly
attenuation of dc and higher-
frequency components.

13.7
Initial-Value
and Final-Value
Theorems
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EXAMPLE

13.13

The final-value theorem states that

13.32

provided that f(t) and its first derivative are transformable and that f(q) exists. This latter
requirement means that the poles of F(s) must have negative real parts with the exception
that there can be a simple pole at s = 0.

The proof of this theorem also involves the Laplace transform of the function :

Taking the limit of both sides as gives us

Therefore,

and

and hence,

f(q) = lim
t S q

 f(t) = lim
s S 0

 sF(s)

f(q) - f(0) = lim
s S 0

 sF(s) - f(0)

3
q

0
 
df (t)

dt
 dt = lim

s S 0
 CsF(s) - f(0) D

lim
s S 0

 3
q

0
 
df (t)

dt
 e-st dt = lim

s S 0
CsF(s) - f(0) D

s S 0

3
q

0
 
df (t)

dt
 e-st dt = sF(s) - f(0)

df (t)�dt

lim
t S q

 f(t) = lim
S S 0

 sF(s)
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Let us determine the initial and final values for the function

and corresponding time function

Applying the initial-value theorem, we have

The poles of are s = 0 and s = -1 ; j1, so the final-value theorem is applicable. Thus,

Note that these values could be obtained directly from the time function f(t).

 = 5

 = lim
s S 0

 
10(s + 1)

s2
+ 2s + 2

 f(q) = lim
s S 0

 sF(s)

F(s)

 = 0

 = lim
s S q

 
10(s + 1)

s2
+ 2s + 2

 f(0) = lim
s S q

 sF(s)

f(t) = 5 + 512 e-t cos (t - 135°)u(t)

F(s) =

10(s + 1)

sAs2
+ 2s + 2B

SOLUTION
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As a prelude to Chapter 14, in which we will employ the power and versatility of the Laplace
transform in a wide variety of circuit analysis problems, we will now demonstrate how the tech-
niques outlined in this chapter can be used in the solution of a circuit problem via the
differential equation that describes the network.
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13.8
Application
Example

APPLICATION
EXAMPLE 13.14

•
Consider the network shown in Fig. 13.5a. Assume that the network is in steady state prior
to t = 0. Let us find the current i(t) for t 7 0.

In steady state prior to t = 0, the network is as shown in Fig. 13.5b, since the inductor acts
like a short circuit to dc and the capacitor acts like an open circuit to dc. From Fig. 13.5b
we note that i(0) = 4 A and vC(0) = 4 V. For t 7 0, the KVL equation for the network is

Using the results of Example 13.1 and properties 7 and 10, the transformed expression
becomes

Using the initial conditions, we find that the equation becomes

or

and then

Therefore,

Note that this expression satisfies the initial condition i(0) = 4 A.
In the introduction to this chapter, we stated that the Laplace transform would yield both the

natural and forced responses for a circuit. Our solution to this problem contains only one term.
Is it the forced response or the natural response? Remember that the forced response always has
the same form as the forcing function or source. The source for this problem is a dc voltage
source, so the forced response should be a constant. In fact, the forced response is zero for our
circuit, and the natural response is the damped cosine function. Does a zero forced response
make sense? Yes! If we look at our circuit, the capacitor is going to charge up to the source volt-
age. Once the capacitor voltage reaches the source voltage, the current will become zero.

i(t) = 2(2.11)e-t cos (3t - 18.4°)u(t) A

 = 2.11/-18.4°

 K1 =

4(s + 2)

s + 1 + j3
 2  

s = -1 + j3

I(s) =

4(s + 2)

s2
+ 2s + 10

=

4(s + 2)

(s + 1 - j3)(s + 1 + j3)

12
s

= I(s) a 2 + s +

10
s
b - 4 +

4
s

12
s

= 2I(s) + sI(s) - i(0) +

10
s
 I(s) +

vC(0)

s

12u(t) = 2i(t) + 1 
di(t)

dt
+

1

0.1
 3

t

0
i(x) dx + vC(0)

SOLUTION

±
–12 V

i(t)

vC(t)

2 �

1 �

(a)

0.1 F

1 H

t=0

+

-

vC(0)
+

-

±
–12 V

i(0)

2 �

1 �

(b)

Figure 13.5
Circuits used in
Example 13.14.
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E13.14 Find the initial and final values of the function f(t) if 
is given by the expression 

F(s) =

(s + 1)2

s(s + 2)As2
+ 2s + 2B

F(s) = l Cf(t) D
Learning Assessments

ANSWER:

f(0) = 0 and f(q) =

1

4
 .

Step 1. Assume that the circuit has reached steady state before a switch is moved.
Draw the circuit valid for replacing capacitors with open circuits and
inductors with short circuits. Solve for the initial conditions: voltages across
capacitors and currents flowing through inductors. Remember that

and 

Step 2. Draw the circuit valid for Use circuit analysis techniques to determine
the differential or integrodifferential equation that describes the behavior of the
circuit.

Step 3. Convert this differential/integrodifferential equation to an algebraic equation
using the Laplace transform.

Step 4. Solve this algebraic equation for the variable of interest. Your result will be a
ratio of polynomials in the complex variable s.

Step 5. Perform an inverse Laplace transform to solve for the circuit response in the
time domain.

t 7 0.  .

iL(0-) = iL(0+) = iL(0).vC(0-) = vC(0+) = vC(0)

t = 0-

Problem-Solving Strategy
The Laplace

Transform and
Transient Circuits

E13.17 Assuming that the network in Fig. E13.17 is in steady state prior to t = 0, find i(t)
for t 7 0.

Learning Assessments
ANSWER:
i(t) = (3 - e-2t)u(t) A.

i(t)

1 �2 �

1 H

t=0

6 V ±
–

Figure E13.17

E13.15 Find the initial and final values of the time function f(t) if F(s) =

8s2
- 20s + 500

s(s2
+ 4s + 50B

ANSWER:
f(0) = 8; f(q) = 10 .

E13.16 Use the Laplace transform to find y(t) if

dy

dt
+ 4y(t) + 43

t

0
y(x)dx = 10u(t), y(0) = 10

ANSWER:
y(t) = (10e - 2t

- 10te - 2t) u(t).
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E13.18 In the circuit in Fig. E13.18, the switch opens at t = 0.
Use Laplace transforms to find v0(t) for t 7 0.

Figure E13.18

ANSWER:
v0(t) = (12 - 5e- 66.67t) u(t) V.

+
– 2.5 
F9 V 2 mA 

6 k�
t = 0

6 k� 6 k�vo(t)

+

–

E13.19 In the circuit in Fig. E13.19, the switch opens at t = 0.
Use Laplace transforms to find i(t) for t 7 0.

Figure E13.19

ANSWER:
i(t) = (-0.274e - 0.172t +  9.274e - 5.828t) u(t) A.

+
–

+
–

4 � 4 � 2 �

36 V

1 F

1 H 12 V

i (t )

t = 0

S U M M A R Y

■ In applying the Laplace transform, we convert an
integrodifferential equation in the time domain to 
an algebraic equation, which includes initial conditions,
in the s-domain. We solve for the unknowns in the 
s-domain and convert the results back to the time domain.

■ The Laplace transform is defined by the expression

■ Laplace transform pairs, as listed in Table 13.1, can be used
to convert back and forth between the time and frequency
domains.

■ The Laplace transform properties, as listed in Table 13.2, are
useful in performing the Laplace transform and its inverse.

■ The partial fraction expansion of a function in the s-domain
permits the use of the transform pairs in Table 13.1 and the
properties in Table 13.2 to convert the function to the time
domain.

■ The convolution of two functions in the time domain corre-
sponds to a simple multiplication of the two functions in the
s-domain.

■ The initial and final values of a time-domain function can
be obtained from its Laplace transform in the frequency
domain.

l Cf(t) D = F(s) = 3
q

0
f(t)e-st dt

•

P R O B L E M S
•

13.1 Demonstrate the following equalities:

(a)

(b)

(c)

13.2 Find the if f (t) is

13.3 Find F(s) if .

13.4 Find F(s) if .

13.5 Use the time-shifting theorem to determine ,
where .

13.6 If , find .

13.7 Use the time-shifting theorem to determine ,
where .f(t) = [e-(t - 2)

- e-2(t - 2)] u(t - 2)
l[f(t)]

F(s)f(t) = te-(t - a)u(t - a) - e-tu(t - a)

f(t) = [t - 1 + e-(t - 1)] u(t - 1)
l[f(t)]

f(t) = te - at u (t - 4)

f(t) = e-at sin �tu (t - 1)

f(t) = a + a2t + ae - at
+ a2 cos at.

l [f(t)]

l[t] =

1

s2
.

l[sin �t] =

�

s2
+ �2

.

l[e - at] =

1

s + a
.
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13.8 Use property number 7 to find if
.

13.9 Use property number 5 to find if

.

13.10 If , find .

13.11 Find the Laplace transform of the function
.

13.12 If , find .

13.13 If , find .

13.14 If , find .

13.15 If , find .

13.16 Given the following functions , find .

(a)

(b)

(c)

(d)

13.17 Given the following functions , find 

(a)

(b) .

13.18 Given the following functions , find 

(a)

(b)

13.19 Given the following functions , find .

(a)

(b)

(c)

(d)

13.20 Given the following functions , find .

(a)

(b)

13.21 Given the following functions , find .

(a)

(b)

13.22 Given the following functions , find .

(a)

(b)

13.23 Given the following functions , find the inverse
Laplace transform of each function.

(a)

(b)

13.24 Given the following functions , find .

(a)

(b)

13.25 Given the following functions , find the inverse
Laplace transform of each function.

(a)

(b)

13.26 Given the following functions , find .

(a)

(b)

13.27 Given the following functions , find .

(a)

(b)  F(s) =

10(s + 2)

s2
+ 4s + 5

 F(s) =

10

s2
+ 2s + 2

f(t)F(s)

 F(s) =

(s + 4)(s + 8)

s(s2
+ 4s + 8)

 F(s) =

s(s + 6)

(s + 3)(s2
+ 6s + 18)

f(t)F(s)

 F(s) =

s + 1

s(s2
+ 4s + 5)

 F(s) =

10(s + 1)

s2
+ 2s + 2

F(s)

 F(s) =

1

s2(s + 1)2

 F(s) =

s + 8

s2(s + 4)

f(t)F(s)

 F(s) =

s + 3

(s + 1)2(s + 3)

 F(s) =

s + 6

s2(s + 2)

F(s)

 F(s) =

s + 6

s(s + 2)2

 F(s) =

s + 3

s(s + 2)2

f(t)F(s)

 F(s) =

s + 6

s(s + 1)2

 F(s) =

s + 4

(s + 2)2

f(t)F(s)

 F(s) =

s + 4

s2

 F(s) =

s2
+ 4s + 8

(s + 1)(s + 4)2

f(t)F(s)

 F(s) =

(s + 3)(s + 6)

s(s2
+ 8s + 12)

 F(s) =

s2
+ 5s + 12

(s + 2)(s + 4)(s + 6)

 F(s) =

(s + 3)(s + 6)

s(s2
+ 10s + 24)

 F(s) =

s2
+ 7s + 12

(s + 2)(s + 4)(s + 6)

f(t)F(s)

 F(s) =

s2
+ s + 1

s(s + 1)(s + 2)

 F(s) =

s + 1

s(s + 2)(s + 3)

f(t).F(s)

 F(s) =

24

(s + 2)(s + 8)

 F(s) =

s + 10

(s + 4)(s + 6)
.

f(t).F(s)

 F(s) =

10s

(s + 1)(s + 6)

 F(s) =

4

(s + 3)(s + 4)

 F(s) =

24

(s + 2)(s + 3)

 F(s) =

s + 1

(s + 2)(s + 6)

f(t)F(s)

F(s)f(t) = d�dt(e-5t cos 2t)

F(s)f(t) = d�dt(te-5t sin 5t)

F(s)f(t) = t sin(�t)u(t - 1)

F(s)f(t) = t  cos �tu(t - 1)

f(t) = e-at�(t - 1)

F(s)f(t) = te-t cos(�t)(a2
+ 1)

f(t) = e-atu(t - 1)

l[f(t)]

f(t) = te-atu(t - 1)
l[f(t)]
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13.28 Given the following functions , find .

(a)

(b)

13.29 Given the following functions , find .

(a)

(b)

13.30 Given the following functions , find .

(a)

(b)

13.31 Find the inverse Laplace transform of the following
functions.

(a)

(b)

(c)

13.32 Find if is given by the following functions:

(a)

(b)

(c)

13.33 Find the inverse Laplace transform of the following
functions.

(a)

(b)

(c)

(d)

13.34 Find if is given by the following function:

13.35 Find the inverse Laplace transform of the function

13.36 Find if is given by the expression

13.37 Solve the following differential equations using Laplace
transforms.

(a)

(b)

13.38 Solve the following differential equations using Laplace
transforms.

(a)

(b)  
d2y(t)

dt2 +

4y(t)

dt
+ 4y(t) = u(t), y(0) = 0, y¿(0) = 1

 
d2y(t)

dt2 +

2dy(t)

dt
+ y(t) = e-2t, y(0) = y¿(0) = 0

 
dx(t)

dt
+ 6x(t) = 4u(t), x(0) = 2

 
dx(t)

dt
+ 4x(t) = e-2t, x(0) = 1

F(s) =

s2e - 2s 

(s2
+ 1)(s + 1)(S2

+ 2s - 2)

F(s)f(t)

 F(s) =

10s(s + 2)e - 4s

(s + 1)2(s2
+ 2s + 2)

 F(s) =

(s + 1)e-s

s(s + 2)(s2
+ 2s + 2)

F(s)f(t)

 F(s) =

(s + 1)e-4s

s2(s + 2)

 F(s) =

(s2
+ 2s + 1)e-2s

s(s + 1)(s + 2)

 F(s) =

e-10s

(s + 2)(s + 3)

 F(s) =

(s + 2)e-s

s(s + 2)

 F(s) =

se-s

(s + 4)(s + 8)

 F(s) =

10(s + 2)e-2s

(s + 1)(s + 4)

 F(s) =

2(s + 1)e-s

(s + 2)(s + 4)

F(s)f(t)

 F(s) =

1 - e-s

s + 2

 F(s) =

1 - e-2s

s

 F(s) =

e-s

s + 1

 F(s) =

s(s + 2)

s2
+ 2s + 2

 F(s) =

6s + 12

(s2
+ 4s + 5)(s2

+ 4s + 8)

f(t)F(s)

 F(s) =

(s + 2)2

s2
+ 4s + 5

 F(s) =

(s + 1)(s + 3)

(s + 2)(s2
+ 2s + 2)

f(t)F(s)

 F(s) =

(s + 4)(s + 8)

s(s2
+ 8s + 32)

 F(s) =

s(s + 6)

(s + 3)(s2
+ 6s + 18)

f(t)F(s)

13.39 Solve the following integrodifferential equation using Laplace
transforms.

13.40 Use Laplace transforms to find if
dy(t)

dt
+ 3y(t) + 23

t

o
y(x)dx = u(t), y(0) = 0, t 7 0.

y(t)

dy(t)

dt
+ 2y(t) + 3

t

o
y(	)d	 = 1 - e-2t, y(0) = 0, t 7 0

13.41 Use Laplace transforms to solve the following integro-
differential equation.

y(0) = 1, t 7 0

13.42 Find using convolution if is

13.43 Use convolution if if

 F(s) =

1

(s + 1)(s + 2)2

f(t)

 F(s) =

1

(s + 1)(s + 2)

F(s)f(t)

dy(t)

dt
+ 2y(t) + 3

t

o
y(Ò)e - 2(t - Ò) dÒ = 4u(t),
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13.44 Find using convolution if is

(a)

(b)

13.45 Determine the initial and final values of if is
given by the expressions

(a)

(b)

(c)

13.46 Find the initial and final values of the time function
if is given as

(a)

(b)

(c)

13.47 Find the final values of the time function 
given that

(a)

(b)

13.48 Find the final values of the time function 
given that

(a)

(b)

13.49 Find the initial and final values of the time function
if is given as

(a)

(b)

(c)

13.50 Determine the initial and final values of if is
given by the expressions

(a)

(b)

(c)

13.51 In the circuit in Fig. P13.51, the switch moves from
position 1 to position 2 at . Use Laplace trans-
forms to find for .

Figure P13.51

13.52 In the network in Fig. P13.52, the switch opens
at . Use Laplace transforms to find 
for .

Figure P13.52

i(t)

3 �6 �

3 H

12 V

t=0

±
–

t 7 0
i(t)t = 0

t=0 6 k�

6 k�

2

1

12 V 100 �F±
– v(t)

+

-

t 7 0v(t)
t = 0

 F(s) =

2s2

(s + 1)(s2
+ 2s + 2)

 F(s) =

2(s2
+ 2s + 6)

(s + 1)(s + 2)(s + 3)

 F(s) =

2(s + 2)

s(s + 1)

F(s)f(t)

 F(s) =

2s

s2
+ 2s + 3

 F(s) =

s2
+ 2s + 2

(s + 6)(s3
+ 4s2

+ 8s + 4)

 F(s) =

10(s + 2)

(s + 1)(s + 4)

F(s)f(t)

 F(s) =

2

s2
+ 4s + 8

 F(s) =

10(s + 6)

(s + 2)(s + 3)

f(t)

 F(s) =

10

s2
+ 4

 F(s) =

10(s + 1 )

(s + 2)(s - 3)

f(t)

 F(s) =

2s

s2
+ 2s + 2

 F(s) =

s2
+ 2s + 4

(s + 6)(s3
+ 4s2

+ 8s + 10)

 F(s) =

10(s + 2)

(s + 1)(s + 3)

F(s)f(t)

 F(s) =

2s2

(s + 1)(s2
+ 2s + 2)

 F(s) =

2(s2
+ 2s + 6)

(s + 1)(s + 2)(s + 3)

 F(s) =

2(s + 2)

s(s + 1)

F(s)f(t)

 F(s) =

10

(s + 1)(s + 3)2

 F(s) =

1

(s + 1)(s + 4)

F(s)f(t)

13.53 In the network in Fig. P13.53, the switch opens at . Use Laplace
transforms to find for .

Figure P13.53

t=0

3 k� 4 k�

2 k�12 V 100 �F±
–

vo(t)

+

-

vC(t)

+

-

t 7 0vo(t)
t = 0
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13.54 The switch in the circuit in Fig. P13.54 opens at .
Find for using Laplace transforms.

Figure P13.54

13.55 The switch in the circuit in Fig. P13.55 has been closed
for a long time and is opened at . Find for

using Laplace transforms.

Figure P13.55

13.56 In the network in Fig. P13.56, the switch opens at .
Use Laplace transforms to find for .

Figure P13.56

13.57 The switch in the circuit in Fig. P13.57 has been closed
for a long time and is opened at . Find for

using Laplace transforms.

Figure P13.57

13.58 The switch in the circuit in Fig. P13.58 has been closed
for a long time and is opened at . Find for

using Laplace transforms.

Figure P13.58

13.59 The switch in the circuit in Fig. P13.59 has been closed
for a long time and is opened at Find for

using Laplace transforms.

Figure P13.59

13.60 In the circuit shown in Fig. P13.60, switch action
occurs at . Determine the voltage 
using Laplace transforms.

Figure P13.60

3 �8 �

6 V12 V

t=0t=0

vo(t)
- +

±
–

±
–

— H1
2

— F1
4

vo(t), t 7 0t = 0

5 �5 �

5 �

1 H
0.04 F20 V

10 V

t=0

i(t)
±
–

–
±

t 7 0
i(t)t = 0.

2 �4 �

4 �

2 H 1 F

12 V

12 V

t=0

+-
i(t)

±
–

t 7 0
i(t)t = 0

±
–

-
+

6 V

4 �

4 �

24 V

i(t)

— H2
3

— F3
16

t=0

t 7 0,
i(t)t = 0

t=0

3 �

1 H1 A 0.5 F

iL(t)

t 7 0iL(t)
t = 0

±
–

0.5 H1 �

12 V

5 �

i(t)

2 F

t=0

t 7 0
i(t)t = 0

±
–

2 � 4 �t=0

3 �

2 �

2 H

12 V

i(t)

t 7 0i(t)
t = 0
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13PFE-1 The output function of a network is expressed using
Laplace transforms in the following form:

Find the output as a function of time.

a.

b.

c.

d.

13PFE-2 The Laplace transform function representing the
output voltage of a network is expressed as

Determine the value of at .

a.

b.

c.

d.

13PFE-3 The Laplace transform function for the output volt-
age of a network is expressed in the following form:

Determine the final value of this voltage, that is,
as .

a.

b.

c.

d.

13PFE-4 The output of a network is expressed as

Determine the output as a function of time.

a.

b.

c.

d.

13PFE-5 Solve the following differential equation using
Laplace transforms:

a.

b.

c.

d. c4e2t
- e4t

- 2e3t d u(t)

c e-2t
+ e-4t

- 2e-3t d u(t)

c 3e2t
+ e-4t

+ e3t d u(t)

c2e-2t
+ e-4t

- 3e-3t d u(t)

x(0) = 0 and 
dx(0)

dt
= 0

d2x(t)

dt2 + 6 
dx(t)

dt
+ 8x(t) = 2e-3t

c 1
2

e-4t
-

1

3
e-t

+

2

3
te-t d u(t)V

c 2
3

e-4t
+

1

4
te-t

-

1

3
e-t d u(t)V

c 3
4

e4t
-

2

3
te-t

+

1

3
tet d u(t)V

c- 8

9
 e-4t

+

8

9
e-t

-

2

3
te-t d u(t)V

Vo(s) =

2s

(s + 1)2(s + 4)

4 V

12 V

2 V

6 V

t S qvo(t)

Vo(s) =

12(s + 2)

s(s + 1)(s + 3)(s + 4)

0.24 V

0.33 V

0.45 V

0.64 V

t = 100 msvo(t)

Vo(s) =

120

s(s + 10)(s + 20)

c 3 + 2e2t
- 6et d u(t)V

c 6 + 6e-2t
- 12e-t d u(t)V

c2 + 4e2t
+ 8et d u(t)V

c 12 + 3e-2t
+ 4e-t d u(t)V

vo(t)

Vo(s) =

12

s(s2
+ 3s + 2)

•
T Y P I C A L P R O B L E M S F O U N D  O N  T H E F E E X A M
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CHAPTER 14

695

APPLICATION OF THE 
LAPLACE  TRANSFORM
TO CIRCUIT ANALYSIS

T H E L E A R N I N G  G O A L S
F O R  T H I S C H A P T E R  A R E :

■ Understand s-domain representations of basic circuit
elements, including initial conditions

■ Be able to construct the s-domain circuit for an electric circuit

■ Be able to apply circuit analysis techniques to solve for
voltages and/or currents in an s-domain circuit and know
how to use the inverse Laplace transform to determine the
voltages and/or currents in the time domain

■ Know how to determine the transfer function for 
an s-domain circuit

■ Be able to calculate a circuit’s response to unit step 
and impulse functions using a transfer function

■ Know how to calculate the steady-state response of a circuit
to a sinusoidal source using a transfer function

U
Undersea Robotic Vehicles Robots explore Earth’s frontiers

where no human can go—deep beneath the seas. Undersea

robotic vehicles make repairs at ocean depths, collect data for

oceanographers, and operate with efficient propulsion systems.

In environments unsuited for manned crafts, these undersea

vehicles can attempt to cap a gushing oil spill, examine exotic

flora on the ocean’s bottom, or produce a geological mapping of

volcanic hot spots. Whether roaming the decks of the sunken

Titanic nearly 25 years ago or navigating the sea floor over three

miles below the surface off the Pacific Northwest today, under-

sea robotic vehicles conduct high-resolution oceanographic sur-

veys that would be quite difficult otherwise.  

Advances in undersea robotic technology have been

astounding. A submersible 183-pound Solo-Trec robot runs on

energy from changes of water temperatures between different

ocean depths. Solo-Trec is the first undersea robotic vehicle to

be powered entirely by the ocean’s thermal energy. 

In this chapter, we continue our study of dynamic models

of circuits using Laplace transforms—much like the dynamic

models used in the design of undersea robotic vehicles. The

differences between these models are that circuit variables

are electrical voltages and currents and robotic vehicle vari-

ables are mechanical positions and velocities. Transient

analysis is handled efficiently for circuit models by using a

Courtesy of P. Auster/OAR/National Undersea Research
Program (NURP); University of Connecticut.
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Figure 14.1

RL series network.

14.1
Laplace Circuit
Solutions

To introduce the utility of the Laplace transform in circuit analysis, let us consider the RL
series circuit shown in Fig. 14.1. In particular, let us find the current, i(t).

Using Kirchhoff’s voltage law, we can write the time-domain differential equation,

The complementary differential equation is

14.1

and has the solution

Substituting into the complementary equation yields the relationship

or 

The particular solution is of the same form as the forcing function, 

Substituting into the original differential equation yields the expression

or

The final solution is the sum of and 

To find we must use the value of the current at some particular instant of time. For 
the unit step function is zero and so is the current. At t=0, the unit step goes to one;
however, the inductor forces the current to instantaneously remain at zero. Therefore, at
t=0, we can write

or

Thus, the current is

Let us now try a different approach to the same problem. Making use of Table 13.2, let us
take the Laplace transform of both sides of Eq. (14.1):

i(t) = 10A1 - e-1000tBu(t) mA

KC = -Kp = - 
1

100

i(0) = 0 = Kp + KC

t 6 0,KC,

i(t) = Kp + KC e-�t
=

1

100
+ KC e-1000t

iC(t),ip(t)

Kp = 1�R = 1�100

1 = RKp

ip(t)

ip(t) = Kp

vS(t):

� =

R

L
= 1000

R - �L = 0

iC(t)

iC(t) = KC e
-�t

L a di(t)

dt
b + Ri(t) = 0

vS(t) = L a di(t)

dt
b + Ri(t)

Laplace transform chart that directly includes initial condi-

tions, either capacitor voltages or inductor currents. Robotic

vehicle dynamics are expressed in block diagrams with inte-

gration blocks and gains. Transient analysis for this model

applies initial conditions on position and velocity variables

as impulse inputs to the blocks. Initial-condition operations

are built directly into the Laplace transform analysis proce-

dure from the beginning—a clear advantage for the analysis

of circuit or robotic dynamic models.

±
–vS(t)=1 u(t) V

R=100 �

L=100 mH

i(t)
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Since the initial value for the inductor this equation becomes

Now the circuit is represented not by a time-domain differential equation, but rather by an
algebraic expression in the s-domain. Solving for I(s), we can write

We find i(t) using the inverse Laplace transform. First, let us express I(s) as a sum of
partial products:

The inverse transform is simply

Given the circuit element values in Fig. 14.1, the current is

which is exactly the same as that obtained using the differential equation approach. Note care-
fully that the solution using the Laplace transform approach yields the entire solution in one step.

We have shown that the Laplace transform can be used to transform a differential equa-
tion into an algebraic equation. Since the voltage–current relationships for resistors, capaci-
tors, and inductors involve only constants, derivatives, and integrals, we can represent and
solve any circuit in the s-domain.

i(t) = 10A1 - e-1000tBu(t) mA

i(t) =

1

R
  A1 - e-Rt�LB

I(s) =

1�L

s c s +

R

L
d

=

1

sR
-

1

R c s +

R

L
d

I(s) =

VS (s)

sL + R
=

1

s[sL + R]

l CvS(t) D = VS(s) = L Cs I(s) D + R I(s)

i(0) = 0,

l CvS(t) D = VS(s) = L Cs I(s) - i(0) D + R I(s)

S E C T I O N  1 4 . 2 C I R C U I T  E L E M E N T  M O D E L S     697

The Laplace transform technique employed earlier implies that the terminal characteristics of
circuit elements can be expressed as algebraic expressions in the s-domain. Let us examine
these characteristics for the resistor, capacitor, and inductor.

The voltage–current relationship for a resistor in the time domain using the passive sign
convention is

14.2

Using the Laplace transform, we find that this relationship in the s-domain is

14.3

Therefore, the time-domain and complex frequency-domain representations of this ele-
ment are as shown in Fig. 14.2a.

The time-domain relationships for a capacitor using the passive sign convention are

14.4

14.5

The s-domain equations for the capacitor are then

14.6

14.7

and hence the s-domain representation of this element is as shown in Fig. 14.2b.

 I(s) = sCV(s) - Cv(0)

 V(s) =

I(s)

sC
+

v(0)

s

 i(t) = C 
dv(t)

dt

 v(t) =

1

C
 3

t

0
i(x) dx + v(0)

V(s) = RI(s)

v(t) = Ri(t)

14.2
Circuit Element

Models
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For the inductor, the voltage–current relationships using the passive sign convention are

14.8

14.9

The relationships in the s-domain are then

14.10

14.11

The s-domain representation of this element is shown in Fig. 14.2c.

 I(s) =

V(s)

sL
+

i(0)

s

 V(s) = sLI(s) - Li(0)

 i(t) =

1

L
 3

t

0
v(x) dx + i(0)

 v(t) = L 
di(t)

dt
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(a)

(b)

(c)

(d)

v(t) R R

i(t)

+

-

V(s)

I(s)

+

-

v(t) C

i(t)

+

-

V(s)

I(s)

+

-

±
–

1

sC
–––

v(0)
s–––

1

sC
Cv(0)–––V(s)

I(s)

+

-

i(0)
s–––sLV(s)

I(s)

+

-

v(t)

i(t)

L
sL

i(0) Li(0)

+

-

V(s)

I(s)

+

-
±
–

v1(t)

i1(t) i1(t)

L1 L2

+

-

v2(t)

+

-

M

V1(s)

I1(s)

L1s

L1i1(0)+Mi2(0) L2i2(0)+Mi1(0)

+

-

Ms

±–

V2(s)

I2(s)

L2s

+

-

± –

Figure 14.2

Time-domain and s-domain
representations of circuit
elements.
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Using the passive sign convention, we find that the voltage–current relationships for the
coupled inductors shown in Fig. 14.2d are

14.12

The relationships in the s-domain are then

14.13

Independent and dependent voltage and current sources can also be represented by their
transforms; that is,

14.14

and if which represents a current-controlled voltage source, then

14.15

Note carefully the direction of the current sources and the polarity of the voltage sources
in the transformed network that result from the initial conditions. If the polarity of the initial
voltage or direction of the initial current is reversed, the sources in the transformed circuit
that results from the initial condition are also reversed.

V1(s) = AI2(s)

v1(t) = Ai2(t),

 I2(s) = l C i2(t) D
 V1(s) = l Cv1(t) D

 V2(s) = L2 sI2(s) - L2 i2(0) + MsI1(s) - Mi1(0)

 V1(s) = L1 sI1(s) - L1 i1(0) + MsI2(s) - Mi2(0)

 v2(t) = L2 
di2(t)

dt
+ M 

di1(t)

dt

 v1(t) = L1 
di1(t)

dt
+ M 

di2(t)

dt
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Given the network in Fig. 14.3a, let us draw the s-domain equivalent circuit and find the
output voltage in both the s and time domains.

The s-domain network is shown in Fig. 14.3b. We can write the output voltage as

Vo(s) = cR��
1

sC
d IS(s)

SOLUTION

EXAMPLE

14.1

Step 1. Solve for initial capacitor voltages and inductor currents. This may require the
analysis of a circuit valid for drawn with all capacitors replaced by open
circuits and all inductors replaced by short circuits.

Step 2. Draw an s-domain circuit by substituting an s-domain representation for all
circuit elements. Be sure to include initial conditions for capacitors and
inductors if nonzero.

Step 3. Use the circuit analysis techniques presented in this textbook to solve for the
appropriate voltages and/or currents. The voltages and/or currents will be
described by a ratio of polynomials in s.

Step 4. Perform an inverse Laplace transform to convert the voltages and/or currents
back to the time domain.

t 6 0
s-Domain Circuits

Problem-Solving Strategy

14.3
Analysis

Techniques

Now that we have the s-domain representation for the circuit elements, we are in a position
to analyze networks using a transformed circuit.
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14.2
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or

Given the element values, becomes

Expanding into partial fractions yields

Performing the inverse Laplace transform yields the time-domain representation

vo(t) = 40 Ce-t
- e-4t Du(t) V

Vo(s) =

120

(s + 4)(s + 1)
=

40

s + 1
-

40

s + 4

Vo(s)

Vo(s) = a 40,000

s + 4
b a 0.003

s + 1
b =

120

(s + 4)(s + 1)

Vo(s)

Vo(s) = c 1�C

s + (1�RC)
d IS(s)

iS(t)=3e–tu(t) mA vo(t)

+

-

R=10 k� C=25 �F

(a) (b)

IS(s)= Vo(s)

+

-

R=10 k
3

s+1
–––

1

sC–––
40000

s–––=

Figure 14.3

Time-domain and
s-domain representations

of an RC parallel
network.

Now that we have demonstrated the use of the Laplace transform in the solution of a sim-
ple circuit, let us consider the more general case. Note that in Fig. 14.2 we have shown two
models for the capacitor and inductor when initial conditions are present. Let us now consider
an example in which we will illustrate the use of these models in deriving both the node and
loop equations for the circuit.

Given the circuits in Figs. 14.4a and b, we wish to write the mesh equations in the s-domain for
the network in Fig. 14.4a and the node equations in the s-domain for the network in Fig. 14.4b.

The transformed circuit for the network in Fig. 14.4a is shown in Fig. 14.4c. The mesh equa-
tions for this network are

The transformed circuit for the network in Fig. 14.4b is shown in Fig. 14.4d. The node equa-
tions for this network are

 = IA(s) -

i1(0)

s
+

i2(0)

s
- C1 v1(0)

aG1 +

1

sL1
+ sC1 +

1

sL2
bV1(s) - a 1

sL2
+ sC1 bV2(s)

 = L1 i1(0) -

v2(0)

s
- L2 i2(0) + VB(s)

- a 1

sC2
+ sL1 b I1(s) + a 1

sC2
+ sL1 + sL2 + R2 b I2(s)

 = VA(s) -

v1(0)

s
+

v2(0)

s
- L1 i1(0)

aR1 +

1

sC1
+

1

sC2
+ sL1 b I1(s) - a 1

sC2
+ sL1 b I2(s)

Note that the equations
employ the same conven-
tion used in dc analysis.

[ h i n t ]

SOLUTION
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 = C1 v1(0) -

i2(0)

s
- C2 v2(0) + IB(s)

 - a 1

sL2
+ sC1 bV1(s) + a 1

sL2
+ sC1 + G2 + sC2bV2(s)

(a)

v1(0)

i1(0)

i2(0)
v2(0)

vB(t)vA(t)

+

-

+

-R1

C1

L1

L2

C2

R2

±
–

±
–

(b)

v2(0)iA(t) iB(t)G1 G2 C2

C1

L1

L2

-

+

v1(0)
+-

i1(0)

i2(0)

Figure 14.4

Circuits used in Example 14.2.

(c)

VA(s) VB(s)

R1 R2sL2

sL1

L1i1(0)

L2i2(0)

I2(s)

–± –±

–
±

±
–

±
–

±
–

v2(0)
s–––

v1(0)
s–––1

sC1
–––

I1(s)

1

sC2
–––
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EXAMPLE

14.3

Example 14.2 attempts to illustrate the manner in which to employ the two s-domain rep-
resentations of the inductor and capacitor circuit elements when initial conditions are present.
In the following examples, we illustrate the use of a number of analysis techniques in
obtaining the complete response of a transformed network. The circuits analyzed have been
specifically chosen to demonstrate the application of the Laplace transform to circuits with a
variety of passive and active elements.
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i2(0)
s–––

i1(0)
s–––

1

sC1
–––

1

sC2
—

IA(s) IB(s)

V1(s) V2(s)

G1

C1v1(0)

C2v2(0)
sL1

sL2

G2

(d)

Figure 14.4

(continued)

Let us examine the network in Fig. 14.5a. We wish to determine the output voltage 

As a review of the analysis techniques presented earlier in this text, we will solve this
problem using nodal analysis, mesh analysis, superposition, source exchange, Thévenin’s
theorem, and Norton’s theorem.

The transformed network is shown in Fig. 14.5b. In our employment of nodal analysis,
rather than writing KCL equations at the nodes labeled and we will use only
the former node and use voltage division to find the latter.

KCL at the node labeled is

Solving for we obtain

V1(s) =

4(s + 3)(2s + 1)

sAs2
+ 2s + 1B

V1(s)

- 
4

s
+

V1(s) -

12

s

s
+

V1(s)

1

s
+ 2

= 0

V1(s)

Vo(s),V1(s)

vo(t).

SOLUTION
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4
s–

1
s–

2s Vo(s)

+

-

12
s2–

4
s– Voc(s)

+

-

±
–

1
s–

12
s–

3

s

(e) (f)

(c) (d)

4
s–

1
s–

3

2s V'o(s)

+

-

1
s–

12
s–

3

2

s

V"o(s)

+

-

±
–

(a) (b)

±
–

3 �

2 �

1 H

12u(t) V

4u(t) A

1 F

vo(t)

+

-

±
–

3

2

s

V1(s)

I1(s)
Vo(s)

+

-

4
s–

1
s–

12
s–

I2(s)

(g) (h)

ZTh(s)

1
s–

3

s ±
– 2 Vo(s)

+

-

4s+12
s–––

s2+1
s–––

(j)(i)

1
s–

2s Vo(s)

+

-

4s+12
s2–––

4
s– Isc(s)

±
–

12
s–

3

s

Figure 14.5

Circuits used in Example 14.3.
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Now employing voltage division,

In our mesh analysis we note that the current goes through the current source, and
therefore KVL for the right-hand loop is

However, and hence

Therefore,

The 3-� resistor never enters our equations. Furthermore, it will not enter our other
analyses either. Why?

In using superposition, we first consider the current source acting alone as shown in
Fig. 14.5c. Applying current division, we obtain

With the voltage source acting alone, as shown in Fig. 14.5d, we obtain

Hence,

In applying source exchange, we transform the voltage source and series inductor into a cur-
rent source with the inductor in parallel as shown in Fig. 14.5e. Adding the current sources
and applying current division yields

 =

a 12

s
+ 4 b (2)

s +

1

s
+ 2

 Vo(s) = a 12

s2
+

4

s
b £

s

s +

1

s
+ 2
§ (2)

 =

8(s + 3)

(s + 1)2

 Vo(s) = Vœ

o(s) + Vfl

o(s)

 =

24

s2
+ 2s + 1

 Vfl

o(s) = ≥
12

s

s +

1

s
+ 2

¥ (2)

 =

8s

s2
+ 2s + 1

 Vœ

o(s) = ≥
4

s
 (s)

s +

1

s
+ 2

¥ (2)

Vo(s) =

8(s + 3)

(s + 1)2

I2(s) =

4(s + 3)

(s + 1)2

I1(s) = 4�s,

12

s
- CI2(s) - I1(s) Ds -

I2(s)

s
- 2I2(s) = 0

I1(s)

 =

8(s + 3)

(s + 1)2

 Vo(s) = V1(s) £
2

1

s
+ 2
§ = V1(s) a 2s

2s + 1
b
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To apply Thévenin’s theorem, we first find the open-circuit voltage shown in Fig. 14.5f.
is then

The Thévenin equivalent impedance derived from Fig. 14.5g is

Now, connecting the Thévenin equivalent circuit to the load produces the circuit shown in
Fig. 14.5h. Then, applying voltage division, we obtain

In applying Norton’s theorem, for simplicity we break the network to the right of the first
mesh. In this case, the short-circuit current is obtained from the circuit in Fig. 14.5i, that is,

The Thévenin equivalent impedance in this application of Norton’s theorem is 
Connecting the Norton equivalent circuit to the remainder of the original network yields the
circuit in Fig. 14.5j. Then

Finally, can now be transformed to can be written as

Evaluating the constants, we obtain

 16 = K11

 8(s + 3)|S = -1 = K11

Vo(s) =

8(s + 3)

(s + 1)2
=

K11

(s + 1)2
+

K12

s + 1

Vo(s)vo(t).Vo(s)

 =

8(s + 3)

(s + 1)2

 Vo(s) =

4s + 12

s2 £
s

s +

1

s
+ 2
§ (2)

Z Th(s) = s.

 =

4s + 12

s2

 Isc(s) =

12

s

s
+

4

s

 =

8(s + 3)

(s + 1)2

 Vo(s) =

4s + 12

s £
2

s2
+ 1

s
+ 2
§

 =

s2
+ 1

s

 Z Th(s) =

1

s
+ s

 =

4s + 12

s

 Voc(s) = a 4

s
b (s) +

12

s

Voc(s)

 Vo(s) =

8(s + 3)

(s + 1)2
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EXAMPLE

14.4 SOLUTION
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and

Therefore,

vo(t) = A16te-t
+ 8e-tBu(t) V

 8 = K12

 
d

ds
 C8(s + 3) D 2  

S = -1
= K12

Consider the network shown in Fig. 14.6a. We wish to determine the output voltage 

As we begin to attack the problem, we note two things. First, because the source 12u(t) is
connected between and we have a supernode. Second, if is known, 
can be easily obtained by voltage division. Hence, we will use nodal analysis in conjunc-
tion with voltage division to obtain a solution. Then for purposes of comparison, we will
find using Thévenin’s theorem.vo(t)

vo(t)v2(t)v2(t),v1(t)

vo(t).

(b)

12
s

Supernode

–

2
s–2 1

s
– ±

V1(s)

Vo(s)

V2(s)

2I(s)

I(s)

+

-

(a)

+

1
2

F–2 � 1 �

1 H
12u(t) V

– ±
v1(t)

vo(t)

v2(t)

2i(t)

i(t) -

(c)

12
s–

2
s–2

– ±

Voc(s)
2I'(s)

I'(s)

+

-

(d)

12
s–

2
s–2

– ±

2I"(s)
I"(s)

Isc(s)

(e)

s

±
– 1 Vo(s)

+

-

12
s–

2
s+3–––

Figure 14.6

Circuits used in
Example 14.4.
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The transformed network is shown in Fig. 14.6b. KCL for the supernode is

However,

and

Substituting the last two equations into the first equation yields

or

Employing a voltage divider, we obtain

To apply Thévenin’s theorem, we break the network to the right of the dependent current
source as shown in Fig. 14.6c. KCL for the supernode is

where

Solving these equations for yields

The short-circuit current is derived from the network in Fig. 14.6d as

where

Solving these equations for yields

Isc(s) =

6(s + 3)

s

Isc(s)

Ifl(s) =

12

s

2

Isc(s) = 2Ifl(s) +

12

s

(2) a 2

s
b

2 +

2

s

Voc(s) =

12

s

Voc(s)

Iœ(s) = -
°Voc(s) -

12

s

2
¢

Voc(s) -

12

s

2
+

Voc(s) -

12

s

2

s

- 2Iœ(s) = 0

 =

12(s + 3)

sAs2
+ 4s + 5B

 Vo(s) = V2(s) 
1

s + 1

V2(s) =

12(s + 1)(s + 3)

sAs2
+ 4s + 5B

cV2(s) -

12

s
d  s + 3

2
+

V2(s)

s + 1
= 0

V1(s) = V2(s) -

12

s

I(s) = -

V1(s)

2

V1(s)

2
+ V1(s) 

s

2
- 2I(s) +

V2(s)

s + 1
= 0 Summing the currents leaving

the supernode.

[ h i n t ]
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The Thévenin equivalent impedance is then

If we now connect the Thévenin equivalent circuit to the remainder of the original network,
we obtain the circuit shown in Fig. 14.6e. Using voltage division,

or

To obtain the inverse transform, the function is written as

Evaluating the constants, we obtain

and

Therefore,

vo(t) = C7.2 + 7.58e-2t cos (t + 161.57°) Du(t) V

 3.79/161.57° = K1

 
12(s + 3)

s(s + 2 + j1)
 2  

S = -2+j1
= K1

 
36

5
= K0

 
12(s + 3)

s2
+ 4s + 5

 2  
S = 0

= K0

=

K0

s
+

K1

s + 2 - j1
+

K*1
s + 2 + j1

12(s + 3)

s(s + 2 - j1)(s + 2 + j1)

Voc(s) =

12(s + 3)

s(s + 2 - j1)(s + 2 + j1)

 =

12(s + 3)

sAs2
+ 4s + 5B

 Voc(s) =

1

2

s + 3
+ s + 1

 a 12

s
b

 =

2

s + 3

 =

12

s

6(s + 3)

s

 ZTh(s) =

Voc(s)

Isc(s)

E14.1 Find in the network in Fig. E14.1 using node
equations.

io(t)

Learning Assessments
ANSWER:
io(t) = 6.53e-t�4 cos C A115�4Bt - 156.72° Du(t) A.

12u(t) V

2u(t) A1 F 1 H 2 �

–±

io(t)
Figure E14.1
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E14.3 Find in the network in Fig. E14.3 using loop equations.vo(t)

E14.2 Find for t � 0 in Fig. E14.2 using nodal analysis.vo(t)

ANSWER:
vo(t) = A4 - 8.93e-3.73t

+ 4.93e-0.27tBu(t) V.

ANSWER:
vo(t) = A10.64e-0.75t cosA0.97t - 19.84°B Bu(t) V.

2

±–

Vo(s)I2(s)

+

-

2
s

s2

–

12
s–

1
s– I1(s)

Figure E14.3

E14.6 Use Thévenin’s theorem to determine for t � 0 in Fig. E14.6.vo(t) ANSWER:
vo(t) = A21.5 + 12.29e-1.267tBu(t) V.

+
–

+–

vo(t)

+

–

vx(t)

0.2Vx(t)

+

–

1 � 1 �

2 �

1 F

50u(t) V

Figure E14.6

+

–

+
–

vo(t)

1 �

2 �2 H3u(t ) A

10u(t) V

0.5 F

Figure E14.2

E14.4 Find for t � 0 in Fig. E14.2 using mesh analysis.vo(t) ANSWER:
vo(t) = A10.64e-0.75t cosA0.97t - 19.84°B Bu(t) V.

E14.5 Use Thévenin’s theorem to determine for t � 0 in Fig. E14.2.vo(t) ANSWER:
vo(t) = A10.64e-0.75t cosA0.97t - 19.84°B Bu(t) V.

We will now illustrate the use of the Laplace transform in the transient analysis of circuits.
We will analyze networks such as those considered in Chapter 7. Our approach will first be
to determine the initial conditions for the capacitors and inductors in the network, and then
we will employ the element models that were specified at the beginning of this chapter
together with the circuit analysis techniques to obtain a solution. The following example
demonstrates the approach.
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Let us determine the output voltage of the network shown in Fig. 14.7a for t>0.

At t=0 the initial voltage across the capacitor is 1 V, and the initial current drawn through
the inductor is 1 A. The circuit for is shown in Fig. 14.7b with the initial conditions.
The transformed network is shown in Fig. 14.7c.

The mesh equations for the transformed network are

which can be written in matrix form as

Solving for the currents, we obtain

The output voltage is then

This function can be written in a partial fraction expansion as

s +

7

2

s2
+

3

2
s + 1

=

K1

s +

3

4
- jA17�4B

+

K*1

s +

3

4
+ jA17�4B

 =

s +

7

2

s2
+

3

2
s + 1

 =

2

s
a 2s - 1

2s2
+ 3s + 2

b +

1

s

 Vo(s) =

2

s
 I2(s) +

1

s

 = D 4s2
+ 6s + 8

sA2s2
+ 3s + 2B

2s - 1

2s2
+ 3s + 2

T
 =

s

2s2
+ 3s + 2

 C s2
+ s + 2

s

s

s

s + 1

S D s + 4

s
-(s + 1)

s

T
 = C s + 1

-s

-s

s2
+ s + 2

s

S -1D s + 4

s
-(s + 1)

s

Tc I1(s)

I2(s)
d

C s + 1

-s

-s

s2
+ s + 2

s

S B I1(s)

I2(s)
R = D s + 4

s
-(s + 1)

s

T
 -sI1(s) + a s +

2

s
+ 1 b I2(s) =

-1

s
- 1

 (s + 1)I1(s) - sI2(s) =

4

s
+ 1

t 7 0

EXAMPLE

14.5 SOLUTION

irwin14_695-750hr.qxd  23-08-2010  16:35  Page 710



S E C T I O N  1 4 . 3 A N A LY S I S  T E C H N I Q U E S     711

E14.7 Solve Learning Assessment E7.3 using Laplace transforms.

Learning Assessments
ANSWER:
i1(t) = (1e-9t)u(t) A.

E14.8 Solve Learning Assessment E7.6 using Laplace transforms. ANSWER:

vo(t) = a 6 -

10

3
 e-2t b u(t) V.

Evaluating the constants, we obtain

Therefore,

vo(t) = c4.29e-(3�4)t cos a 17

4
 t - 76.5° b d u(t) V

 2.14/-76.5° = K1

 

s +

7

2

s +

3

4
+ jA17�4B

 4  
S = -(3�4)+jA17�4B

= K1

(a)

vo(t)

+

-

4 V 1 H

1 �1 �

1 V

t=0

t=0

±
–

±
–

1
2 F–

(c)

Vo(s)I2(s)

+

-

1 1

1

s

±
–

±
–

–
±

I1(s)4
s–

2
s–

1
s–

(b)

vo(t)iL(0)=1 A vC(0)=1 V

+

-

+

-
1 H

1 � 1 �

4u(t) 1
2 F–±

–

Figure 14.7

Circuits employed in Example 14.5.
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E14.10 Find for t � 0 in Fig. E14.10.vo(t)

E14.9 Find for t � 0 in Fig. E14.9.i0(t)

ANSWER:
vo(t) = A-2.93e-4.13t

- 9.07e-14.54tBu(t) V.

+
–

t=0
6 � 4 �

12 �

10 �

+
– 12 V

10 V

2 H 2 H

1 H

Vo(t)

+

–
Figure E14.10

E14.11 The input voltage for the circuit in Fig. E14.11 is given in
the plot. Determine the output voltage vo(t)

ANSWER:
vo(t) = [A4 - 4e-1.5tBu(t) - A4 - 4e-1.5At - 1BBu(t-1)] V.

12

1 t(s)

vi(t) (V)

+
– vo(t)vi(t)

+

–

2 �

2 � 2 �

2 H

Figure E14.11

t=0

+
–

+
–

8 � 2 �

3/8 F10 V 20 V

1/3 H i0(t)

Figure E14.9

ANSWER:
i0(t) = (-2e-2t

+ e-4t)u(t) A.

14.4
Transfer Function

In Chapter 12 we introduced the concept of network or transfer function. It is essentially
nothing more than the ratio of some output variable to some input variable. If both variables are
voltages, the transfer function is a voltage gain. If both variables are currents, the transfer
function is a current gain. If one variable is a voltage and the other is a current, the transfer func-
tion becomes a transfer admittance or impedance.

In deriving a transfer function, all initial conditions are set equal to zero. In addition, if the
output is generated by more than one input source in a network, superposition can be
employed in conjunction with the transfer function for each source.
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To present this concept in a more formal manner, let us assume that the input/output rela-
tionship for a linear circuit is

If all the initial conditions are zero, the transform of the equation is

or

This ratio of to is called the transfer or network function, which we denote as
H(s); that is,

or

14.16

This equation states that the output response is equal to the network function mul-
tiplied by the input Note that if and therefore the impulse
response is equal to the inverse Laplace transform of the network function. This is an
extremely important concept because it illustrates that if we know the impulse response of a
network, we can find the response due to some other forcing function using Eq. (14.16).

At this point, it is informative to review briefly the natural response of both first-order and
second-order networks. We demonstrated in Chapter 7 that if only a single storage element
is present, the natural response of a network to an initial condition is always of the form

where x(t) can be either v(t) or i(t), X0 is the initial value of x(t), and � is the time constant
of the network. We also found that the natural response of a second-order network is con-
trolled by the roots of the characteristic equation, which is of the form

where is the damping ratio and is the undamped natural frequency. These two key
factors, and control the response, and there are basically three cases of interest.

CASE 1,  > 1: OVERDAMPED NET WORK The roots of the characteristic equation are

, and, therefore, the network response is of the form

CASE 2, < 1: UNDERDAMPED NETWORK The roots of the characteristic equation are

, and, therefore, the network response is of the form

CASE 3, � 1 : CRITICALLY DAMPED NET WORK The roots of the characteristic
equation are , and, hence, the response is of the form

x(t) = K1 te-�0 t
+ K2 e-�0 t

s1 , s2 = -�0

�

x(t) = Ke-��0 t cos A�0 21 - �2 t + �B
s1 , s2 = -��0 ; j�0 21 - �2

�

x(t) = K1 e-A��0 +�0 2�2
-1B  t

+ K2 e-A��0 -�0 2�2
-1B  t

s1 , s2 = -��0 ; �0 2�2
- 1

�

�0 ,�
�0�

s2
+ 2��0 s + �2

0 = 0

x(t) = X0 e-t��

Xi(s) = 1,xi(t) = 	(t)Xi(s).
Yo(s)

Yo(s) = H(s)Xi(s)

Yo(s)

Xi(s)
= H(s)

Xi(s)Yo(s)

Yo(s)

Xi(s)
=

am sm
+ am - 1 sm - 1

+
p

+ a1 s + a0

bn sn
+ bn - 1 sn - 1

+
p

+ b1 s + b0

= Aam sm
+ am - 1 sm - 1

+
p

+ a1 s + a0BXi(s)Abn sn
+ bn - 1 sn - 1

+
p

+ b1 s + b0BYo(s)

= am 
dmxi(t)

dt m
+ am - 1 

dm - 1xi(t)

dt m - 1 +
p

+ a1 
dx i(t)

dt
+ a0 xi(t)

bn 
dnyo(t)

dt n
+ bn - 1 

dn - 1yo(t)

dt n - 1 +
p

+ b1 
dyo(t)

dt
+ b0 yo(t)
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The reader should note that the characteristic equation is the denominator of the transfer
function H(s), and the roots of this equation, which are the poles of the network, determine
the form of the network’s natural response.

A convenient method for displaying the network’s poles and zeros in graphical form is the
use of a pole-zero plot. A pole-zero plot of a function can be accomplished using what is
commonly called the complex or s-plane. In the complex plane the abscissa is s and the ordi-
nate is Zeros are represented by 0’s, and poles are represented by *’s. Although we are
concerned only with the finite poles and zeros specified by the network or response function,
we should point out that a rational function must have the same number of poles and zeros.
Therefore, if n>m, there are n-m zeros at the point at infinity, and if n<m, there are
m-n poles at the point at infinity. A systems engineer can tell a lot about the operation of
a network or system by simply examining its pole-zero plot.

In order to correlate the natural response of a network to an initial condition with the
network’s pole locations, we have illustrated in Fig. 14.8 the correspondence for all three
cases: overdamped, underdamped, and critically damped. Note that if the network poles are
real and unequal, the response is slow and, therefore, x(t) takes a long time to reach zero. If
the network poles are complex conjugates, the response is fast; however, it overshoots and is
eventually damped out. The dividing line between the overdamped and underdamped cases
is the critically damped case in which the roots are real and equal. In this case the transient
response dies out as quickly as possible, with no overshoot.

j�.
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(c)

t

x(t) j�

�

(a)

t

x(t) j�

�

(b)

t

x(t) j�

�

Figure 14.8

Natural response of a
second-order network
together with network

pole locations for the three
cases: (a) overdamped,
(b) underdamped, and

(c) critically damped.

If the impulse response of a network is let us determine the response to an
input 

The transformed variables are

Therefore,

and hence,
vo(t) = 10Ae-t

- e-2tBu(t) V

 =

10

(s + 1)(s + 2)

 Vo(s) = H(s)Vi(s)

 Vi(s) =

10

s + 2

 H(s) =

1

s + 1

vi(t) = 10e-2tu(t) V.
vo(t)h(t) = e-t,EXAMPLE

14.6
SOLUTION
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The transfer function is important because it provides the systems engineer with a great
deal of knowledge about the system’s operation, since its dynamic properties are governed
by the system poles.

Let us derive the transfer function for the network in Fig. 14.9a.Vo(s)�Vi(s) EXAMPLE

14.7

s-plane j� j� j�

�

(c)

j 1—
4

–j 1—
4

1– —
4 1– —

4

–0.427

–0.073

(e)

s-plane

�

(d)

s-plane

�

(a)

±
–

1 �

1 � C

1 H

vo(t)vi(t)=u(t) V

+

-

(b)

±
–

1

1

s

Vo(s)I2(s)

+

-

1

sC
–––1

s–– I1(s)

Figure 14.9

Networks and pole-zero plots used in Example 14.7.

Our output variable is the voltage across a variable capacitor, and the input voltage is a
unit step. The transformed network is shown in Fig. 14.9b. The mesh equations for the
network are

and the output equation is

From these equations we find that the transfer function is

Since the transfer function is dependent on the value of the capacitor, let us examine the
transfer function and the output response for three values of the capacitor.

a. C=8 F

=

1

16

a s +

1

4
- j 

1

4
b a s +

1

4
+ j 

1

4
b

 
Vo(s)

Vi(s)
=

1

16

a s2
+

1

2
 s +

1

8
b

Vo(s)

Vi(s)
=

1�2C

s2
+

1

2
 s + 1�C

Vo(s) =

1

sC
 I2(s)

 -I1(s) + a s +

1

sC
+ 1 b I2(s) = 0

 2I1(s) - I2(s) = Vi(s)

SOLUTION
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The output response is

As illustrated in Chapter 7, the poles of the transfer function, which are the roots of the char-
acteristic equation, are complex conjugates, as shown in Fig. 14.9c; therefore, the output
response will be underdamped. The output response as a function of time is

Note that for large values of time the transient oscillations, represented by the second term
in the response, become negligible and the output settles out to a value of This can
also be seen directly from the circuit since for large values of time the input looks like a dc
source, the inductor acts like a short circuit, the capacitor acts like an open circuit, and the
resistors form a voltage divider.

b. C=16 F

The output response is

Since the poles of the transfer function are real and equal as shown in Fig. 14.9d, the out-
put response will be critically damped. is

c. C=32 F

The output response is

The poles of the transfer function are real and unequal, as shown in Fig. 14.9e and, there-
fore, the output response will be overdamped. The response as a function of time is

Although the values selected for the network parameters are not very practical, remember that
both magnitude and frequency scaling, as outlined in Chapter 12, can be applied here also.

vo(t) = A0.5 + 0.103e-0.427t
- 0.603e-0.073tBu(t) V

Vo(s) =

1

64

s(s + 0.427)(s + 0.073)

=

1

64

(s + 0.427)(s + 0.073)
 
Vo(s)

Vi(s)
=

1

64

s2
+

1

2
 s +

1

32

vo(t) = c 1
2

- a t

8
+

1

2
b e-t�4 d u(t) V

vo(t) = l-1 CVo(s) D

Vo(s) =

1

32

s a s +

1

4
b

2

=

1

32

a s +

1

4
b

2
 
Vo(s)

Vi(s)
=

1

32

s2
+

1

2
 s +

1

16

1�2 V.

vo(t) = c 1
2

+

1

12
 e-t�4 cos a t

4
+ 135° b d u(t) V

Vo(s) =

1

16

s a s +

1

4
- j 

1

4
b a s +

1

4
+ j 

1

4
b
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For the network in Fig. 14.10a let us compute (a) the transfer function, (b) the type of damp-
ing exhibited by the network, and (c) the unit step response.

Recall that the voltage across the op-amp input terminals is zero and therefore KCL at the
node labeled in Fig. 14.10b yields the following equation:

Since the current into the negative input terminal of the op-amp is zero, KCL requires that

Combining the two equations yields the transfer function

which can be expressed in the form

Since the roots are real and unequal, the step response of the network will be overdamped.
The step response is

Therefore,
vo(t) = A-1 - 0.17e-2.62t

+ 1.17e-0.38tBu(t) V

 =

-1

s
+

-0.17

s + 2.62
+

1.17

s + 0.38

 Vo(s) =

-1

s(s + 2.62)(s + 0.38)

Vo(s)

VS(s)
=

-1

(s + 2.62)(s + 0.38)

Vo(s)

VS(s)
=

-1

s2
+ 3s + 1

sVo(s) = - 
V1(s)

1

VS(s) - V1(s)

1
= sV1(s) +

V1(s) - Vo(s)

1
+

V1(s)

1

V1(s)
SOLUTION

(a)

1 �

1 �

1 �

1 F

1 F

vo(t)vS(t)
+

-

1
s––

1
s––

±
–

(b)

1

1

1

Vo(s)VS(s)

V1(s)

+

-

±
–

–
±

–
±

Figure 14.10

Circuits used in
Example 14.8.

E14.12 If the unit impulse response of a network is known to be
determine the unit step response.10�9 Ae-t

- e-10tB,

Learning Assessments
ANSWER:

x(t) = a 1 -

10

9
 e-t

+

1

9
 e-10t b u(t).
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E14.13 The transfer function for a network is

Determine the pole-zero plot of H(s), the type of damping exhibited by the
network, and the unit step response of the network.

H(s) =

s + 10

s2
+ 4s + 8

ANSWER: The network is underdamped;

x(t) = c 10

8
+ 1.46e-2t cos (2t - 210.96°) d u(t).

–10

j�
j2

–j2

�
–2

x

x

Recall from our previous discussion that if a second-order network is underdamped, the
characteristic equation of the network is of the form

and the roots of this equation, which are the network poles, are of the form

The roots and when plotted in the s-plane, generally appear as shown in Fig. 14.11, where

and as shown in Fig. 14.11,

The damping ratio and the undamped natural frequency are exactly the same quantities as
those employed in Chapter 12 when determining a network’s frequency response. We find
that these same quantities govern the network’s transient response.

� = cos 


 �0 = undamped natural frequency

 � = damping ratio

s2,s1

s1 , s2 = -��0 ; j�0 21 - �2

s2
+ 2��0 s + �2

0 = 0

�0

�
–��0

–

√1–�2j�0

√1–�2j�0

�

j�

X

X

Figure 14.11

Pole locations for a 
second-order underdamped
network.

E14.14 Find the transfer function for the network in Fig. E14.14.

ANSWER: .-

1

R1C1 
 

s +

1

R2C2

s a s +

C1 + C2

R2C1C2
b

–
+

vs(t) +
–

vo(t)

R2

C1

C2

R1

Figure E14.14

Figure E14.13
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Let us examine the effect of pole position in the s-plane on the transient response of the
second-order RLC series network shown in Fig. 14.12.

The voltage gain transfer function is

For this analysis we will let rad/s for and 1.0. From the
preceding equation we see that

and

If we arbitrarily let L =10 mH then C=25 �F. Also, for �=0.25, 0.50, 0.75, and
1.0, R=10 �, 20 �, 30 �, and 40 �, respectively. Over the range of � values, the network
ranges from underdamped to critically damped. Since poles are complex for underdamped
systems, the real and imaginary components and the magnitude of the poles of are
given in Table 14.1 for the � values listed previously.

Fig. 14.13 shows the pole-zero diagrams for each value of �. Note first that all the poles
lie on a circle; thus, the pole magnitudes are constant, consistent with Table 14.1. Second,
as � decreases, the real part of the pole decreases while the imaginary part increases. In fact,
when � goes to zero, the poles become imaginary.

A simulation of a unit step transient excitation for all four values of R is shown in
Fig. 14.14. We see that as � decreases, the overshoot in the output voltage increases.
Furthermore, when the network is critically damped (�=1), there is no overshoot at all.
In most applications excessive overshoot is not desired. To correct this, the damping ratio,
�, should be increased, which for this circuit would require an increase in the resistor
value.

Gv(s)

R = 2� 
B

L

C

LC =

1

�2
0

= 2.5 * 10-7

� = 0.25, 0.50, 0.75,�0 = 2000

Gv(s) =

1

LC

s2
+ s a R

L
b +

1

LC

=

�2
0

s2
+ 2��0 s + �2

0

SOLUTION

TABLE 14.1 Pole locations for �=0.25 to 1.0

DAMPING RATIO REAL IMAGINARY MAGNITUDE

1.00 2000.0 0.0 2000.0

0.75 1500.0 1322.9 2000.0

0.50 1000.0 1732.1 2000.0

0.25 500.0 1936.5 2000.0

±
– vin(t) vo(t)

L R

C
+

-

Figure 14.12

RLC series network.

EXAMPLE

14.9
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X
X

X

X
X

X

X
X

�=0.25
�=0.50

�=0.75

�=1.0

�=0.75

�=0.50
�=0.25

–j2000

–j1000

j1000

j2000

� (rad/s)
–1000

� (rad/s)

–2000

�=0.25

�=0.50

�=0.75

�=1.0

RLC series transient response

2.0

1.5

1.0

0.5

0
0 2 4 6 8 10

t (ms)

vo(t) (V)

Figure 14.13

Pole-zero diagrams for � � 0.25 to 1.0.

Figure 14.14

Transient response output for � � 0.25 to 1.0.

Let us revisit the Tacoma Narrows Bridge disaster examined in Example 12.12. A photo-
graph of the bridge as it collapsed is shown in Fig. 14.15.

In Chapter 12 we assumed that the bridge’s demise was brought on by winds oscillating
back and forth at a frequency near that of the bridge (0.2 Hz). We found that we could

Figure 14.15

Tacoma Narrow Bridge as
it collapsed on November

7, 1940. (Special
Collection Division,

University of Washington
Libraries, UW21413.

Photo by Farguharson.)

EXAMPLE

14.10
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create an RLC circuit, shown in Fig. 12.30, that resonates at 0.2 Hz and has an output volt-
age consistent with the vertical deflection of the bridge. This kind of forced resonance never
happened at Tacoma Narrows. The real culprit was not so much wind fluctuations but the
bridge itself. This is thoroughly explained in the paper “Resonance, Tacoma Narrows
Bridge Failure, and Undergraduate Physics Textbooks,” by K. Y. Billah and R. H. Scalan
published in the American Journal of Physics, vol. 59, no. 2, pp. 118–124, in which the
authors determined that changes in wind speed affected the coefficients of the second-order
differential equation that models the resonant behavior. In particular, the damping ratio, �,
was dependent on the wind speed and is roughly given as

14.17

where U is the wind speed in mph. Note, as shown in Fig. 14.16, that � becomes negative at
wind speeds in excess of 35 mph—a point we will demonstrate later. Furthermore, Billah and
Scalan report that the bridge resonated in a twisting mode, which can be easily seen in
Fig. 12.29 and is described by the differential equation

or
14.18

where 
(t) is the angle of twist in degrees and wind speed is implicit in � through
Eq. (14.17). Billah and Scalan list the following data obtained either by direct observation
at the bridge site or through scale model experiments afterward:

We will start the twisting oscillations using an initial condition on 
(0) and see whether the
bridge oscillations decrease or increase over time. Let us now design a network that will
simulate the true Tacoma Narrows disaster.

First, we solve for in Eq. (14.18):

14.19
or



$

 = -(0.01156 - 0.00033U)
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Figure 14.16

Damping ratio versus wind
speed for the second-order
twisting model of the
Tacoma Narrows Bridge.
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We now wish to model this equation to produce a voltage proportional to We can
accomplish this using the op-amp integrator circuit shown in Fig. 14.17.

The circuit’s operation can perhaps be best understood by first assigning the voltage 
to be proportional to where 1 V represents Thus, the output of the first
integrator, , must be

or, since and 

So is proportional to and 1 V equals Similarly, the output of the second
integrator must be

where is proportional to and 1 V equals 1 degree. The outputs of the integrators
are then fed back as inputs to the summing op-amp. Note that the dependent sources, and

re-create the coefficient on in Eq. (14.17); that is,

To simulate various wind speeds, we need only change the gain factor of Ewind . Finally, we
can solve the circuit for 

which matches Eq. (14.19) if

and

or
Rf

R2
= 1

Rf

R2
 CE� - Ewind D = 2��0

Rf

R1
= �2
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Figure 14.17

Circuit diagram for
Tacoma Narrows Bridge

simulations.
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Thus, if and the circuit will simulate the bridge’s twisting
motion. We will start the twisting oscillations using an initial condition (0) and see whether
the bridge oscillations decrease or increase over time.

The first simulation is for a wind speed of 20 mph and one degree of twist. The corre-
sponding output voltage is shown in Fig. 14.18. The bridge twists at a frequency of 0.2 Hz
and the oscillations decrease exponentially, indicating a nondestructive situation.

Fig. 14.19 shows the output for 35-mph winds and an initial twist of one degree. Notice
that the oscillations neither increase nor decrease. This indicates that the damping ratio is zero.

Finally, the simulation at a wind speed of 42 mph and one degree initial twist is shown
in Fig. 14.20. The twisting becomes worse and worse until after 45 minutes, the bridge is
twisting ;12.5 degrees, which matches values reported by Billah and Scalan for collapse.

The dependency of the damping ratio on wind speed can also be demonstrated by
investigating how the system poles change with the wind. The characteristic equation
for the system is

or

The roots of the characteristic equation yield the pole locations. Fig. 14.21 shows the sys-
tem poles at wind speeds of 20, 35, and 42 mph. Note that at 20 mph, the stable situation is
shown in Fig. 14.18, and the poles are in the left-half of the s-plane. At 35 mph ( ) the
poles are on the axis and the system is oscillatory, as shown in Fig. 14.19. Finally, at
42 mph, we see that the poles are in the right half of the s-plane, and from Fig. 14.20 we
know this is an unstable system. This relationship between pole location and transient
response is true for all systems—right-half plane poles result in unstable systems.

j�

� = 0

s2
+ (0.01156 - 0.00033U)s + 1.579 = 0

s2
+ 2��0 s + �2

0 = 0
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Figure 14.18

Tacoma Narrows Bridge
simulation at 20-mph wind
speed and one degree twist
initial condition.
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Figure 14.19

Tacoma Narrows Bridge
simulation at 35-mph
winds and one degree of
initial twist.
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Tacoma Narrows Bridge
simulation at 42-mph

wind speed and one
degree of initial twist.
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Polo-zero plot for Tacoma
Narrows Bridge

second-order model at
wind speeds of 20, 35,

and 42 mph.
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Figure 14.22

RLC high-pass filter.

In Chapter 12 we introduced the Bode plot as an analysis tool for sinusoidal frequency-
response studies. Let us now investigate the relationship between the s-plane pole-zero plot
and the Bode plot. As an example, consider the transfer function of the RLC high-pass filter
shown in Fig. 14.22.

The transfer function is

Using the element values, we find that the transfer function becomes

We see that the transfer function has two zeros at the origin (s=0) and two complex-conjugate
poles The standard pole-zero plot for this function is shown in Fig. 14.23a. A
three-dimensional s-plane plot of the magnitude of is shown in Fig. 14.23b. Note carefully
that when and when the function is infinite.s = -1 ; j2,s = 0, Gv(s) = 0

Gv(s)
s = -1 ; j2.

Gv(s) =

s2

s2
+ 2s + 5

=

s2

(s + 1 + j2)(s + 1 - j2)

Gv(s) =

sL

sL + R +

1

sC

=

s2

s2
+ s a R

L
b +

1

LC

14.5
Pole-Zero
Plot/Bode Plot
Connection
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Recall that the Bode plot of a transfer function’s magnitude is in reality a plot of the mag-
nitude of the gain versus frequency. The frequency domain, where corresponds to
the -axis in the s-plane obtained by setting , the real part of s, to zero. Thus, the frequency
domain corresponds directly to that part of the s-domain where , as illustrated in the
three-dimensional plot in Fig. 14.23c.

Let us develop the Bode plot by first rotating Fig. 14.23c such that the real axis is perpendi-
cular to the page as shown in Fig. 14.23d. Note that the transfer function maximum occurs at

which is the magnitude of the complex pole frequencies. In addition,
the symmetry of the pole around the real axis becomes readily apparent. As a result of this sym-
metry, we can restrict our analysis to positive values of with no loss of information. This plot
for is shown in Fig. 14.23e where frequency is plotted in Hz rather than rad/s. Finally,
converting the transfer function magnitude to dB and using a log axis for frequency, we produce
the Bode plot in Fig. 14.23f.

� � 0
j�,

� = 15 = 2.24 rad�s,

� = 0
�j�

s = j�,

(c)

7

1

2

3

4

5

6

M
ag

ni
tu

de
 o

f G
v(

s)

Real axis
(rad/s)

Imaginary axis
(rad/s)0

–6 –5 –4 –3 –2 –1 0

–5
0

5

10

Figure 14.23

Figures used to demonstrate
pole-zero plot/Bode plot
connection.
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(continued)
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The transient terms disappear
in steady state.

[ h i n t ]

14.6
Steady-State

Response

In Section 14.3 we have demonstrated, using a variety of examples, the power of the
Laplace transform technique in determining the complete response of a network. This com-
plete response is composed of transient terms, which disappear as and steady-state
terms, which are present at all times. Let us now examine a method by which to determine
the steady-state response of a network directly. Recall from previous examples that the 
network response can be written as

14.20

where is the output or response, is the input or forcing function, and is the
network function or transfer function defined in Section 12.1. The transient portion of
the response results from the poles of and the steady-state portion of the
response results from the poles of the input or forcing function.

As a direct parallel to the sinusoidal response of a network as outlined in Section 8.2, we
assume that the forcing function is of the form

14.21

which by Euler’s identity can be written as

14.22

The Laplace transform of Eq. (14.21) is

14.23

and therefore,

14.24

At this point we tacitly assume that does not have any poles of the form If,
however, this is the case, we simply encounter difficulty in defining the steady-state response.

Performing a partial fraction expansion of Eq. (14.24) yields

14.25

The first term to the right of the equal sign can be expressed as

14.26

since is a complex quantity with a magnitude and phase that are a function of 
Performing the inverse transform of Eq. (14.26), we obtain

14.27

and hence the steady-state response is

14.28

Since the actual forcing function is which is the real part of the steady-
state response is the real part of Eq. (14.28):

14.29

In general, the forcing function may have a phase angle 
. In this case, 
 is simply added
to so that the resultant phase of the response is �Aj�0B + 
.�Aj�0B

yss(t) = XM @HAj�0B @  cos C�0t + �Aj�0B D

XM ej�0 t ,XM cos �0(t),

yss(t) = XM @HAj�0B @ej A�0 t + �Aj�0BB

 = XM @HAj�0B @eAj�0 t + � Aj�0BB +
p

 y(t) = XM @HAj�0B @ej�0 t ej� Aj�0B +
p

j�0. HAj�0B
Y(s) =

XM @HAj�0B @ej�Aj�0B

s - j�0
+

p

Y(s) =

XM HAj�0B
s - j�0

+ terms that occur due to the poles of H(s)

As - j�kB.H(s)

Y(s) = H(s) a XM

s - j�0
b

X(s) =

XM

s - j�0

x(t) = XM cos �0 t + jXM sin �0 t

x(t) = XM ej�0 t

H(s),Y(s)

H(s)X(s)Y(s)

Y(s) = H(s)X(s)

t S q,
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For the circuit shown in Fig. 14.24a, we wish to determine the steady-state voltage for
if the initial conditions are zero.

As illustrated earlier, this problem could be solved using a variety of techniques, such as node
equations, mesh equations, source transformation, and Thévenin’s theorem. We will employ
node equations to obtain the solution. The transformed network using the impedance values
for the parameters is shown in Fig. 14.24b. The node equations for this network are

Solving these equations for we obtain

Note that this equation is in the form of Eq. (14.20), where H(s) is

Since the forcing function is then and Hence,

Therefore,

and, hence, the steady-state response is

The complete (transient plus steady-state) response can be obtained from the expression

 =

10s3

As2
+ 4B A3s2

+ 4s + 4B

 =

s2

3s2
+ 4s + 4

 a 10s

s2
+ 4

b
 Vo(s) =

s2

3s2
+ 4s + 4

 Vi(s)

 = 3.54 cos (2t + 45°) V

 voss(t) = VM @H(j2) @  cos C2t + �(j2) D

 �(j2) = 45°

 @H(j2) @ = 0.354

 = 0.354/45°

 H(j2) =

(j2)2

3(j2)2
+ 4(j2) + 4

�0 = 2.VM = 1010 cos 2t u(t),

H(s) =

s2

3s2
+ 4s + 4

Vo(s) =

s2

3s2
+ 4s + 4

 Vi(s)

Vo(s),

 - a s

2
bV1(s) + a s

2
+ 1 bVo(s) = 0

 a 1

2
+

1

s
+

s

2
bV1(s) - a s

2
bVo(s) =

1

2
 Vi(s)

t 7 0
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SOLUTION

±
–vi(t)=10 cos 2t u(t) V
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Figure 14.24

Circuits used in
Example 14.11.
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Determining the inverse Laplace transform of this function using the techniques of Chapter
13, we obtain

Note that as the second term approaches zero, and thus the steady-state response is

which can easily be checked using a phasor analysis.

voss(t) = 3.54 cos (2t + 45°) V

t S q

+ 1.44e-(2�3)t cos a 212

3
 t - 55° b  Vvo(t) = 3.54 cos (2t + 45°)

E14.15 Determine the steady-state voltage in the network in Fig. E14.15 for
if the initial conditions in the network are zero.t 7 0

voss(t)

Learning Assessments
ANSWER:
voss(t) = 3.95 cos˚(2t - 99.46¡) V.

±
–12 cos 2t u(t) V vo(t)

+

-

1 �

1 F

1 H

2 �

Figure E14.15

E14.16 Find the steady-state response in Fig. E14.16.voss(t) ANSWER:
voss(t) = 2.98 cos (2t + 153.43°) V.

vo(t)

+

–

4 � 2 �

1 H 1/4 F1/4 F 2 cos 2t A

Figure E14.16

APPLICATION
EXAMPLE 14.12

•
The Recording Industry Association of America (RIAA) uses standardized recording and
playback filters to improve the quality of phonographic disk recordings. This process is
demonstrated in Fig. 14.25. During a recording session, the voice or music signal is passed
through the recording filter, which de-emphasizes the bass content. This filtered signal is then
recorded into the vinyl. On playback, the phonograph needle assembly senses the recorded
message and reproduces the filtered signal, which proceeds to the playback filter. The purpose
of the playback filter is to emphasize the bass content and reconstruct the original voice/music
signal. Next, the reconstructed signal can be amplified and sent on to the speakers.

14.7
Application

Example
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Let us examine the pole-zero diagrams for the record and playback filters.

The transfer function for the recording filter is

where the time constants are and K is a constant
chosen such that has a magnitude of 1 at 1000 Hz. The resulting pole and zero
frequencies in radians/second are

Fig. 14.26a shows the pole-zero diagram for the recording filter.

 �p = 1��p = 3.14 krad�s

 �z2 = 1��z2 = 313.46 rad�s

 �z1 = 1��z1 = 13.33 krad�s

GvR(s)
�p = 318 �s;�z2 = 3180 �s;�z1 = 75 �s,

GvR(s) =

KA1 + s�z1B(1 + s�z2)

1 + s�p

SOLUTION

Voice/music
signal

Recording
filter

Vinyl disk

Phonograph
Inside the same cabinet

Speaker

Amp Playback
filter

Figure 14.25

Block diagram for
phonograph disk

recording and playback.
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Figure 14.26

Pole-zero diagrams
for RIAA phonographic

filters.
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The playback filter transfer function is the reciprocal of the record transfer function.

where the time constants are now and is 
Pole and zero frequencies, in radians/second, are

which yields the pole-zero diagram in Fig. 14.26b. The voice/music signal eventually pass-
es through both filters before proceeding to the amplifier. In the s-domain, this is equivalent
to multiplying by both and In the pole-zero diagram, we simply super-
impose the pole-zero diagrams of the two filters, as shown in Fig. 14.26c. Note that at each
pole frequency there is a zero and vice versa. The pole-zero pairs cancel one another, yield-
ing a pole-zero diagram that contains no poles and no zeros. This effect can be seen
mathematically by multiplying the two transfer functions, which yields a
product independent of s. Thus, the original voice/music signal is reconstructed and fidelity
is preserved.

GvR(s)Gvp(s),

Gvp(s).GvR(s)Vs(s)

 �z = 1��p = 3.14 krad�s

 �p2 = 1��z2 = 313.46 rad�s

 �p1 = 1��z1 = 13.33 krad�s

1�K.Ao�z = 318 �s,�p2 = 3180 �s,�p1 = 75 �s,

Gvp(s) =

1

GvR(s)
=

AoA1 + s�zB
A1 + s�p1B A1 + s�p2B

DESIGN
EXAMPLE 14.13

In a large computer network, two computers are transferring digital data on a single wire at
a rate of 1000 bits/s. The voltage waveform, vdata , in Fig. 14.27 shows a possible sequence
of bits alternating between “high” and “low” values. Also present in the environment is a
source of 100 kHz (628 krad/s) noise, which is corrupting the data.

It is necessary to filter out the high-frequency noise without destroying the data wave-
form. Let us place the second-order low-pass active filter of Fig. 14.28 in the data path so
that the data and noise signals will pass through it.

The filter’s transfer function is found to be

Gv(s) =  
Vo(s)

Vdata(s)
 =  

- aR3

R1
b a 1

R2 R3 C1 C2
b

s2
+ s a 1

R1 C1
+

1

R2 C1
+

1

R3 C1
b +

1

R2 R3 C1 C2

SOLUTION

vdata (t) (V)

t (ms)
2 51 40

0

5

3

Figure 14.27

1000 bits/s digital data
waveform.

14.8
Design Examples
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To simplify our work, let From our work in Chapter 12, we know that
the characteristic equation of a second-order system can be expressed

Comparing the two preceding equations, we find that

and therefore,

The poles of the filter are at

To eliminate the 100-kHz noise, at least one pole should be well below 100 kHz, as shown
in the Bode plot sketched in Fig. 14.29. By placing a pole well below 100 kHz, the gain of
the filter will be quite small at 100 kHz, effectively filtering the noise.

If we arbitrarily choose an overdamped system with and �=2, the
resulting filter is overdamped with poles at and The
pole-zero diagram for the filter is shown in Fig. 14.30.

If we let R=40 k�, then we may write

or

Also,

� = 2 =
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2
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C1 C2 = 10-18
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40,0001C1 C2
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Figure 14.28

Second-order
low-pass filter.

1000
f (kHz)–40

M
ag

ni
tu

de
 o

f G
v(

s)
 (

dB
)

–20

0

0.1 1 10 100

Figure 14.29

Bode plot sketch
for a second-order

low-pass filter.
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which can be expressed as

Solving for and yields

The circuit used to simulate the filter is shown in Fig. 14.31. The sinusoidal source has a
frequency of 100 kHz and is used to represent the noise source.

Plots for the input to the filter and the output voltage for 2 ms are shown in Fig. 14.32.
Note that output indeed contains much less of the 100-kHz noise. Also, the fast rise and fall
times of the data signal are slower in the output voltage. Despite this slower response, the
output voltage is fast enough to keep pace with the 1000-bits/s transfer rate.

Let us now increase the data transfer rate from 1000 to 25,000 bits/s, as shown in
Fig. 14.33. The total input and output signals are plotted in Fig. 14.34 for 200 �s. Now the
output cannot keep pace with the input, and the data information is lost. Let us investigate
why this occurs. We know that the filter is second order with poles at and If we repre-
sent the data input as a 5-V step function, the output voltage is

where K is a constant. Since the filter is overdamped, and are real and positive. A par-
tial fraction expansion of is of the form

yielding the time-domain expression

vo(t) = CK1 + K2 e-s1 t
+ K3 e-s2 t Du(t) V

Vo(s) =

K1

s
+

K2

As + s1B +

K3

As + s2B

Vo(s)
s2s1

Vo(s) = Gv(s) a 5

s
b =

K

As + s1B As + s2B  a
5

s
b

s2.s1

 C2 = 1.33 nF

 C1 = 0.75 nF
C2C1

C2

C1
=

16

9

X X

j�

�

–100 k –1 k

�p2 �p1

–10 k

Figure 14.30

Pole-zero diagram for
low-pass filter.

±
–

±
–

v(2)

C1

R3

R2

Op=amp model

C2R1

Rin
1 M�

Ro

50 �

Egain

100,000vin

vin

-

+ vo(t)

+

-

2 sin (�t)

vdata (t) ±
–

Figure 14.31

Circuit for second-order
filter.
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vo(t)

v(2)

Second-order filter for data transfer

8.0

4.0

–4.0

0

0 0.4 0.8 1.2 1.6 2.0 2.4
t (ms)

v(t) (V)Figure 14.32

Simulation output
for node 2 and .vo (t)

vdata(t) (V)

t (�s)

5

0
0 40 80 120 160 200

Figure 14.33

25,000-bits/s digital
data waveform.

vo(t)

–4.0

v(2)

0

–2.0

2.0

4.0

6.0

8.0

0 40 80 120 160 200 240
t (�s)

Second-order filter for data transferv(t) (V)Figure 14.34

Simulation output
for node 2 and with
25,000-bits/s data trans-

fer rate.

vo (t)

where are real constants. The exponential time constants are the reciprocals
of the pole frequencies.

Since exponentials reach steady state in roughly 5 , the exponential associated with 
affects the output for about 50 s and the exponential will reach steady state after about
750 s. From Fig. 14.33 we see that at a 25,000-bits s data transfer rate, each bit (a “high”
or “low” voltage value) occupies a 40- s time span. Therefore, the exponential associated
with and thus is still far from its steady-state condition when the next bit is trans-
mitted. In short, is too small.s1

vo(t),s1 ,
�

��

�1�

�2�

 �2 =

1

s2
=

1

93.3k
= 10.7 �s

 �1 =

1

s1
=

1

6.7k
= 149 �s

K1 , K2 , and K3
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Let us remedy this situation by increasing the pole frequencies and changing to a
critically damped system, �=1. If we select the poles will be at

or 19.9 kHz—both below the 100-kHz noise we wish to filter out.
Fig. 14.35 shows the new pole positions moved to the left of their earlier positions, which
we expect will result in a quicker response to the pulse train.

Now the expressions for and � are

or

Also,

which can be expressed

Solving for and yields

A simulation using these new capacitor values produces the input–output data shown in
Fig. 14.36. Now the output voltage just reaches the “high” and “low” levels just before vdata

makes its next transition and the 100-kHz noise is still much reduced. 

 C2 = 133.3 pF

 C1 = 300 pF

C2C1

C2

C1
=

4

9

� = 1 =

3

2
 
B

C2

C1

C1 C2 = 4 * 10-20

�0 = 125,000 =

1

40,0001C1 C2

�0

vdata

s1 = s2 = -125 krad�s
�0 = 125 krad�s,

X XX X

j�

�

–10 k 1 k

�p2

�p1

Original poles

–100 k

Figure 14.35

Pole-zero diagram for both
original and critically
damped systems.

Second-order filter for data transfer

–4.0

0

4.0

8.0

v(2)

vo(t)

0 40 80 120 160 200 240

v(t) (V)

t (�s)

Figure 14.36

Simulation outputs for
node 2 and for the
critically damped system.

vo(t)
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The circuit in Fig. 14.37 is an existing low-pass filter. On installation, we find that its out-
put exhibits too much oscillation when responding to pulses. We wish to alter the filter in
order to make it critically damped.

First, we must determine the existing transfer function, 

14.30

where the term is just the parallel combination of the resistor and capacitor. Given

our component values, the transfer function is

14.31

and the resonant frequency and damping ratio are

14.32

The network is indeed underdamped. From Eq. (14.32), we find that raising the damping
ratio by a factor of 4 to 1.0 requires that R be lowered by the same factor of 4 to This
can be done by adding a resistor, in parallel with R as shown in Fig. 14.38. The required
resistor value can be obtained by solving Eq. (14.33) for 

14.33

The solution is RX = 6.67 �.

Req = 5 =

RRX

R + RX
=

20RX

20 + RX

RX :
RX ,

5 �.

�0 =

1

1LC
= 105 rad�s and 2��0 =

1

RC
1 � =

5 * 104

2�0
=

5 * 104

2 * 105 = 0.25

H(s) =

1010

s2
+ A5 * 104Bs + 1010

R

1 + sRC

H(s) =

VO

VS
=

R

1 + sRC

R

1 + sRC
+ sL

=

1

LC

s2
+

s

RC
+

1

LC

H(s):

DESIGN
EXAMPLE 14.14

SOLUTION

vo(t)
C

L=100 �H

1 �F

R

20 �

+

-

vS(t)

+

-

Figure 14.37

A second-order low-pass
filter.

vo(t)
C

L=100 �H

1 �F

R

20 �
RX

+

-

vS(t)

+

-

Figure 14.38

The addition of a resistor
to change the damping

ratio of the network.
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DESIGN
EXAMPLE 14.15

The circuit in Fig. 14.39 is called a Wein bridge oscillator. Its output voltage is a sine wave
whose frequency can be tuned. Let us design this circuit for an oscillation frequency of 10 kHz.

This network looks odd for two reasons. First, there is no input signal! Second, we have not
seen an op-amp circuit in which the output is connected back to the noninverting input ter-
minal. However, we do know that if the op-amp is working properly, its input currents are
zero and the difference in voltage between the two input terminals is zero. We will employ
these constraints to write two transfer functions from the op-amp output back to each of the
op-amp inputs. The first is defined as

14.34

and the second is

14.35

where is the parallel R-C network and is the series R-C network. Thus,

14.36

Substituting Eq. (14.36) into (14.35) yields

14.37

Since the voltage across the op-amp inputs is zero, and, thus, 
Note that in Eq. (14.34) is just a resistor ratio and is therefore real. The op-amp forces
the same to be true for at the frequency of oscillation! Now look at Eq. (14.37). Its
numerator is purely imaginary. If is to be real, then its denominator must also be purely
imaginary. The result is

We arbitrarily select and find

We still must determine values for and Examine once again the fact that
At 10 kHz, becomes

Hpos(s) =

sRC

s2(RC)2
+ 3sRC + 1

=

sRC

3sRC
=

1

3

Hpos(s)Hpos(s) = Hneg(s).
R2 .R1

R =

1

2
Cf
=

1

2
A10-8B A104B = 1.59 k�

C = 10 nF

(j�)2(RC)2
+ 1 = 0 1 � =

1

RC
1 f =

1

2
RC

Hpos(s)
Hpos(s)

Hneg(s)
Hpos(s) = Hneg(s)!Vneg = Vpos

Hpos(s) =

Vpos

VO
=

R

1 + sRC

R

1 + sRC
+

1 + sRC

sC

=

sRC

s2(RC)2
+ 3sRC + 1

Z1 =

R�sC

(1�sC) + R
=

R

1 + sRC
 and Z2 = R +

1

sC
=

1 + sRC

sC

Z2Z1

Hpos(s) =

Vpos

VO
=

Z1

Z1 + Z2

Hneg(s) =

Vneg

VO
=

R1

R1 + R2

SOLUTION

vo(t)

C

C

R

R

R2
R1

vpos(t)

+

-

vneg(t)
+

-

±
–

Figure 14.39

The classic Wein bridge
oscillator.
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The same must be true for :

The only possible solution is Arbitrarily selecting we find

What happens if does not equal in the constructed circuit? If is
larger, the oscillations will die out. But if is larger, the oscillations grow until the op-
amp output reaches the power supply limits. At that point, the output is more of a square wave
than a sinusoid. Since it is physically impossible to ensure that and are exact-
ly the same at 10 kHz, engineers usually replace with a nonlinear resistor whose resistance
decreases with increasing temperature. In this way, if the output oscillations begin to grow,
more power is dissipated in the nonlinear resistance, decreasing its value. This decrease in
resistance will increase and bring the oscillator back to a balanced operating point.Hneg(s)

R2

Hneg(s)Hpos(s)

Hpos(s)
Hneg(s)Hneg(s)Hpos(s)

R2 = 3.18 k�.
R1 = R = 1.59 k�,R2 = 2R1 .

Hneg(s) =

R1

R1 + R2
=

1

3

Hneg(s)

S U M M A R Y
•

■ The use of s-domain models for circuit elements permits us
to describe them with algebraic, rather than differential,
equations.

■ All the dc analysis techniques, including the network
theorems, are applicable in the s-domain. Once the 
s-domain solution is obtained, the inverse transform is used
to obtain a time domain solution.

■ The roots of the network’s characteristic equation (i.e., the
poles) determine the type of network response. A plot of these
roots in the left half of the s-plane provides an immediate
indication of the network’s behavior. The relationship
between the pole-zero plot and the Bode plot provides further
insight.

■ The transfer (network) function for a network is expressed as

where is the network response and is the input
forcing function. If the transfer function is known, the

output response is simply given by the product 
If the input is an impulse function so that the
impulse response is equal to the inverse Laplace transform
of the network function.

■ The dc properties of the storage elements, L and C, can be
used to obtain initial and final conditions. The initial
conditions are required as a part of the s-domain model,
and final conditions are often useful in verifying a
solution.

■ The Laplace transform solution for the network response is
composed of transient terms, which disappear as 
and steady-state terms, which are present at all times.

■ The network response can be expressed as

■ The transient portion of the response results from the
poles of and the steady-state portion of the response
results from the poles of the forcing function X(s).

H(s),
Y(s)

Y(s) = H(s)X(s)

t S q,

X(s) = 1,
H(s)X(s).

X(s)Y(s)

H(s) =

Y(s)

X(s)

P R O B L E M S
•

14.1 Find the input impedance of the network in
Fig. P14.1.

Figure P14.1

14.2 Find the input impedance of the network in
Fig. P14.2 (a) when the terminals are open circuited
and (b) when the terminals are short circuited.

Figure P14.2

2 �1 �

2 H

1 F

Z(s)

A B

A' B'

B-B¿

B-B¿

Z(s)

1 � 1 F

2 �

2 �

1 �
2 HZ(s)

Z(s)
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14.3 Find , , in the network in Fig. P14.3.

Figure P14.3

14.4 Find , , in the network in Fig. P14.4.

Figure P14.4

14.5 Find , , in the network in Fig. P14.5 using
node equations.

Figure P14.5

14.6 Use Laplace transforms and nodal analysis to find 
for in the network shown in Fig. P14.6. Assume
zero initial conditions.

Figure P14.6

14.7 Use Laplace transforms to find for in the
network shown in Fig. P14.7. Assume zero initial
conditions.

Figure P14.7

14.8 For the network shown in Fig. P14.8, find 
, .

Figure P14.8

14.9 For the network shown in Fig. P14.9, find , ,
using node equations.

Figure P14.9

14.10 Use nodal analysis to find , , in the network
in Fig. P14.10.

Figure P14.10

14.11 Find , , in the network shown in Fig. P14.11
using nodal analysis.

Figure P14.11

1 �1 �

1 �12u(t) V

6u(t) V

4e–tu(t) V
1 H

1 F

vo(t)

+

-

±
–

±
–

–±

t 7 0vo(t)

1 �

2 �

1 �

2u(t) A

4u(t) V

1 H
1 F

vo(t)

+

-

±
–

t 7 0vo(t)

1 �

1 �4u(t) V 2u(t) A±
–

1 H
1
2 F––

vo(t)

+

-

t 7 0vo(t)

1 F

1 �

2 �4u(t) V e–tu(t) V±
–

±
–

1 H

1 �

io(t)

t 7 0io(t)

1 � 2 �

1 F 10u(t) V5u(t) V

v(t)
+ -

±
–

±
–

t 7 0v(t)

1 H12u(t) V 6u(t) V

i1(t)2 �

±
–

±
–

1
2 F––

t 7 0
i1(t)

2 �

e–tu(t) V ±
–

1 H

1
2 F–– vo(t)

+

-

t 7 0vo(t)

+

–

2 � 2 �

1 �4 �

1 H

1 F vo(t)12u(t) A

t 7 0vo(t)

+

–

vo(t)

+

–

2 � 2 �

1 �
1 H

1
2  F

4u(t) V

t 7 0vo(t)

irwin14_695-750hr.qxd  23-08-2010  16:36  Page 739



740 C H A P T E R  1 4 A P P L I C A T I O N  O F  T H E  L A P L A C E  T R A N S F O R M  T O  C I R C U I T  A N A LY S I S

14.12 For the network shown in Fig. P14.12, find , ,
using loop equations.

Figure P14.12

14.13 For the network shown in Fig. P14.13, find , ,
using mesh equations.

Figure P14.13

14.14 Use loop equations to find , , in the network
shown in Fig. P14.14.

Figure P14.14

1 �1 �

2 �

1 F

1 H

2u(t) A

io(t)

e–tu(t) A

t 7 0io(t)

1 �

1 � 1 �

2 � 1 H

4u(t) V
2u(t) A

1
2 F––

vo(t)

+

-

±
–

–

t 7 0vo(t)

1 �

1 �4u(t) V 2u(t) A±
–

1 H 1
2 F––

vo(t)

+

-

t 7 0vo(t) 14.15 Given the network in Fig. P14.15, find ,
using mesh equations.

Figure P14.15

14.16 Use mesh analysis to find , , in the network
in Fig. P14.16.

Figure P14.16

14.17 Use loop analysis to find for in the network
in Fig. P14.17.

Figure P14.17

1 �

1 � 1 �

1 F

1 H

6u(t) A

2u(t) A

4 e–tu(t) A

vo(t)

+

-

t 7 0vo(t)

1 �1 F

1 H 1 �

4u(t) A

ix(t)

vo(t)

+

-

ix(t)
2

–––

t 7 0vo(t)

1 �

1 � 2 � 2 H

4u(t) V 1 F±
–

io(t)

e–tu(t) A

t 7 0io(t)

14.18 Use mesh analysis to find , for in the network in Fig. P14.18.

Figure P14.18

14.19 Use mesh analysis to find , for in the network in Fig. P14.19.

Figure P14.19

+– +

–

1 � 2 � 1 H

4u(t) V

v1(t)

2v1(t) V vo(t)

t 7 0vo(t)

+

–

+–
1 F

1 H1 �

1 �

1 �

e–2tu(t) V

2u(t) V vo(t)

t 7 0vo(t)
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14.26 Use Thévenin’s theorem to find , , in 
Fig. P14.26.

Figure P14.26

14.27 Use Thévenin’s theorem to find , in 
Fig. P14.27.

Figure P14.27

14.28 Use Thévenin’s theorem to find , , in 
Fig. P14.28.

t 7 0io(t)

1 �

1 � 2 � 2 H

4u(t) V 1 F±
–

io(t)

e–tu(t) A

t 7 0,io(t)

+

–

+
–4u(t) V 2u(t) A

1 �

1 �

1 H
1
2 F

vo(t)

t 7 0vo(t)14.20 Use superposition to find , , in the network
shown in Fig. P14.20.

Figure P14.20

14.21 Use superposition to find , , in the network
in Fig. P14.21.

Figure P14.21

14.22 Use superposition to find , , in the network
in Fig. P14.22.

Figure P14.22

14.23 Use source transformation to find , in the
circuit in Fig. P14.23.

Figure P14.23

14.24 Use source transformation to solve Problem 14.21.

14.25 Use Thévenin’s theorem to find , in 
Fig. P14.25.

Figure P14.25

2 �

2 �2u(t) V 2u(t) A±
–

2 H 1 F

vo(t)

+

-

t 7 0,vo(t)

2 �

2 �2u(t) V 2u(t) A±
–

2 H 1 F

vo(t)

+

-

t 7 0,vo(t)

1 �

2 �

1 �

2u(t) A

4u(t) V

1 H
1 F

vo(t)

+

-

±
–

t 7 0vo(t)

1 �

1 �

1 H

2u(t) A4u(t) V vo(t)

+

-

±
–

1
2 F––

t 7 0vo(t)

1 �

1 �

1 H

2u(t) A4u(t) V vo(t)

+

-

±
–

1
2 F––

t 7 0vo(t)

+

–

1 �

1 �

2 � 2 H

1 F4u(t) V e– tu(t) A

io(t)

Figure P14.28

14.29 Use Thévenin’s theorem to determine , , in
the circuit shown in Fig. P14.29.

Figure P14.29

1 �

1 �1 �

1 �

1 H

1 F

io(t)

2u(t) A

e–tu(t) A

t 7 0io(t)
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14.30 Use Thévenin’s theorem to find , , in the
network in Fig. P14.30.

Figure P14.30

14.31 Find , , in the network in Fig. P14.31 using
Thévenin’s theorem.

Figure P14.31

14.32 Use Thévenin’s theorem to find , , in the
network in Fig. P14.32.

Figure P14.32

1 �

2 �2 H

2u(t) A

4u(t) V
vo(t)

+

-

1
2 F––

+-

e–2tu(t) A

t 7 0vo(t)

1 �

2 �

1 H4u(t) V

2u(t) A

vo(t)

+

-

1
2 F––

±
–

t 7 0vo(t)

1 �1 �

1 �

1 H
1 F

2u(t) A

1u(t) V ±
– vo(t)

+

-

t 7 0vo(t) 14.33 Use Thévenin’s theorem to find , , in the 
network in Fig. P14.33.

Figure P14.33

14.34 Use Thévenin’s theorem to find , , in the
network shown in Fig. P14.34.

Figure P14.34

14.35 Use Thévenin’s theorem to find , , in the 
network shown in Fig. P14.35.

Figure P14.35

14.36 Find , , in the network shown in 
Fig. P14.36. Assume that the circuit has reached steady 
state at .

Figure P14.36

4 �

4 �15 V 4 �

2 H
t=0

vo(t)

+

-

±
–

t = 0-

t 7 0vo(t)

10 �

10 �

10u(t) V 4v2(t) v2(t) 10 �

2 F

±
–

ix(t)

ix(t)

io(t)

±
–

+

-

t 7 0i0(t)

1 �

1 �

1 H

vo(t)

+

vA(t)

2vA(t)

2u(t) A

+

-

-

±
–

t 7 0vo(t)

+

–

1 F

1 H

1 �

1 � vo(t)ix(t)

ix(t)

4u(t) A

2

t 7 0vo(t)

irwin14_695-750hr.qxd  23-08-2010  16:36  Page 742



P R O B L E M S     743

14.42 Find , , in the network in Fig. P14.42.

Figure P14.42

14.43 Find , for , in the network in Fig. P14.43.

Figure P14.43

14.44 Find , for , in the network in Fig. P14.44.

Figure P14.44

14.45 Find , for , in the network in Fig. P14.45.

Figure P14.45

1 � 1 �

1 �±
–

1 H

2 H2 H4u(t) V vo(t)

+

-

t 7 0vo(t)

2 k�

100 �F

2 k�2 k�

8 k�3 k�4 k�

4 k� 4 k�12 V

24 V

t=0

vo(t)

+

-

±
–

±
–

t 7 0vo(t)

4 k�
2 k�

6 k�

12 k�

12 V

4 V
600 �F

t=0

vo(t)

+

-±
–

±
–

t 7 0vo(t)

12 k�

4 k�

6 k�

100 �F

3 k�

io(t)

16 V

12 V±
–

±
–

t=0

t 7 0io(t)14.37 Find , , in the circuit in Fig. P14.37.

Figure P14.37

14.38 Find , , in the network shown in Fig. P14.38.

Figure P14.38

14.39 Find , , in the circuit in Fig. P14.39.

Figure P14.39

14.40 Find , , in the circuit shown in Fig. P14.40.

Figure P14.40

14.41 Find , , in the network in Fig. P14.41.

Figure P14.41

6 A 6 �

3 �2 �

4 �

4 H
t=0

vo(t)

+

-

t 7 0vo(t)

2 �

1 �

1 �1 F10 V

1 H

±
–

t=0

t=0

vo(t)
+

-

t 7 0vo(t)

3 �

3 �

4 �

2 �

12 V

24 V

2 H

±
–

±
–

t=0
vo(t)

+

-

t 7 0vo(t)

3 �4 �

2 �

1 �1 F

12 V 2 H

t=0
io(t)

±
–

t 7 0io(t)

3 �

3 �

4 �

2 �

12 V

24 V

2 H

±
–

±
–

t=0
vo(t)

+

-

t 7 0vo(t)
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14.50 Given the network in Fig. P14.50, determine the value 
of the output voltage as .

Figure P14.50

14.51 Determine the initial and final values of the voltage 
in the network in Fig. P14.51.

Figure P14.51

14.52 Determine the initial and final values of the voltage 
in the network in Fig. P14.52.

Figure P14.52

vo(t)

+

-

2 �2 �

2 H

1 F4u(t) A

vo(t)

vo(t)

+

-

4 �3 �

6 �36u(t) V ±
– 1 F

vo(t)

1 � 2 �

1 H

1
2 F–– vo(t)6u(t) A

+

-

t S q

14.46 Find , for , in the network in Fig. P14.46.

2 � 6 � 8 �

±
– vo(t)

+

-

8 H4 H 4 �

2 H

10u(t) V
1
2 F––

t 7 0vo(t)

Figure P14.46

14.47 Find , for , in the network in Fig. P14.47.

Figure P14.47

14.48 Find , for , in the network in Fig. P14.48.

Figure P14.48

14.49 For the network shown in Fig. P14.49, determine the 
value of the output voltage as .

Figure P14.49

1 �2 �

2 �

1 H

1
2 F––

12u(t)V vo(t)

+

-

±
–

t S q

vo(t)

+

-

1 : 2

Ideal

2 � 4 �

4 �12u(t) V±
–

1 F 1
4 F––

t 7 0vo(t)

vo(t)

+

-

1 F

1 �

2 H

2 : 1

Ideal

12u(t) V

8 �

±
–

t 7 0vo(t)
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14.53 Find the initial and final values of the current in the network in Fig. P14.53.

Figure P14.53

14.54 Determine the output voltage in the network in Fig. P14.54a if the
input is given by the source in Fig. P14.54b.

Figure P14.54

(b)

6

0 1 t(s)

vi(t) (V)

vi(t)
1 �

2 �

3 �

(a)

1 �

1 F vo(t)

+

-

±
–

vo(t)

1 �

2 �

1 �

10 V

1 H

4 A1 F

t=0
t=0

io(t)±
–

io(t)

14.56 Determine the output voltage, , in the circuit in
Fig. P14.56a if the input is given by the source
described in Fig. P14.56b.

Figure P14.56

(b)

(a)

1

0 1 t(s)

vi(t) (V)

1 �1 �

1 �

1 �

1 F

1 H

vo(t)vi(t)

+

-

±
–

vo(t)14.55 Find the output voltage, , , in the network in
Fig. P14.55a if the input is represented by the wave-
form shown in Fig. P14.55b.

Figure P14.55

(b)

(a)

12

0 1 t(s)

io(t) (A)

1 � 1 �

2 �1 �

1 H

6 � vo(t)io(t)

+

-

t 7 0vo(t)
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14.57 Determine the transfer function for the
network shown in Fig. P14.57.

Figure P14.57

14.58 Find the transfer function for the network
shown in Fig. P14.58.

Figure P14.58

14.59 Find the transfer function for the network shown in 
Fig. P14.59.

Figure P14.59

vo(t)
CR1

R2

+

-

vs(t) ±
–

±
–

vi(t)
1 �

2 �

3 �1 �

1 F vo(t)

+

-

±
–

Vo(s)�Vi(s)

2 �2 � 1 Fii(t)

io(t)

1 H

Io(s)�Ii(s) 14.60 Find the transfer function for the network shown in
Fig. P14.60.

Figure P14.60

14.61 Find the transfer function for the network in
Fig. P14.61.

Figure P14.61

vo(t)

R1

R2

C

vs(t) ±
–

±
–

vo(t)

R1

R2

C

vs(t) ±
–

±
–

14.62 Find the transfer function for the network in Fig. P14.62.

Figure P14.62

vo(t)

v1(t)

C1
R1

R3C2

R2vs(t)
–
±

±
–

irwin14_695-750hr.qxd  23-08-2010  16:36  Page 746



P R O B L E M S     747

14.64 Determine the transfer function for the network shown in Fig. P14.64. If a step
function is applied to the network, what type of damping will the network exhibit?

Figure P14.64

vs(t) ±
–

vo(t)v1(t)

1 F

1 F

1 �

1 �

1 �
–
±

14.63 Find the transfer function for the network in Fig. P14.63. If a step function is applied to 
the network, will the response be overdamped, underdamped, or critically damped?

Figure P14.63

vo(t)

vs(t)

1 � 1 �

1 F

1 F±
–

±
–

14.67 The transfer function of the network is given by the
expression

Determine the damping ratio, the undamped natural
frequency, and the type of response that will be
exhibited by the network.

14.68 The voltage response of a network to a unit step 
input is

Is the response critically damped?

Vo(s) =

10

s(s2
+ 8s + 18)

G(s) =

100s

s2
+ 22s + 40

14.65 The voltage response of the network to a unit step input is

Is the response overdamped?

14.66 The transfer function of the network is given by the
expression

Determine the damping ratio, the undamped natural fre-
quency, and the type of response that will be exhibited
by the network.

G(s) =

100s

s2
+ 13s + 40

Vo(s) =

2(s + 1)

s(s2
+ 10s + 25)

14.69 For the network in Fig. P14.69, choose the value of C for critical damping.

Figure P14.69

vo(t)

+

-

vs(t) 1 F 1 �6 H

C
±
–
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14.71 Find the steady-state response for the circuit
shown in Fig. P14.71.

Figure P14.71

14.72 Find the steady-state response for the network in
Fig. P14.72.

Figure P14.72

14.73 Determine the steady-state response for the
network in Fig. P14.73.

Figure P14.73

1 � 2 �1
2 H––

4 cos 2t V

2v1(t)

v1(t)

vo(t)

+

-

– ±

vo(t)

12 cos t V

– ±

1 �2 � 1 F

2 �1 �

1 H vo(t)

+

-

vo(t)

10 cos t A

1 �1 �

2 �

1 F1 H vo(t)

+

-

vo(t) 14.74 Determine the steady-state response for the network
in Fig. P14.74.

Figure P14.74

14.75 Find the steady-state response for the network
shown in Fig. P14.75.

Figure P14.75

14.76 Find the steady-state response , , in the 
network in Fig. P14.76.

Figure P14.76

4 cos t u(t) A

1 �

1 �

1 �1 H

1 F

vo(t)

+

-

vx(t)

2vx(t)

+

-

t 7 0vo(t)

4 cos 2t V

i1(t) 2i1(t)

1 �

2 �1 H

1
2 F––

io(t)

+- -+

io(t)

12 cos 2t Vi1(t)

2i1(t)2 � 1 �1 H

1
2 F––

io(t)

±
–

io(t)

14.70 For the filter in Fig. P14.70, choose the values of and to place poles at 
and .

Figure P14.70

vs(t)

100 k�

100 k�

C1 C2 vo(t)

+

-

±
–

±
–

±
–

s = -5 rad�s
s = -2C2C1
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T Y P I C A L P R O B L E M S F O U N D  O N  T H E F E E X A M
•

14PFE-1 A single-loop, second-order circuit is described by
the following differential equation:

Which is the correct form of the total (natural plus
forced) response?

a.

b.

c.

d.

14PFE-2 If all initial conditions are zero in the network in
Fig. 14PFE-2, find the transfer function .

Figure 14PFE-2

a.

b.

c.

d.

14PFE-3 The initial conditions in the circuit in Fig. 14PFE-3
are zero. Find the transfer function .

Figure 14PFE-3

a.

b.

c.

d.
s + 3

s2
+ 2s + 10

s

s2
+ 5s + 7

s + 2 

s2
+ 3s + 1

s(s + 4)

s2
+ 4s + 3

4 �

1 H

io(t)

iS(t) 1
3 F––

Io(s)�Is(s)

s + 2

s2
+ 5s + 8

s

s2
+ s + 2

s

s2
+ 2s + 5

s + 1

s2
+ 4s + 6

2 �

2 H

vs(t) vo(t)

+

-

±
–

1
4 F––

Vo(s)�Vs(s)

v(t) = K1 + K2e
-t cos t + K3e

-t sin t

v(t) = K1 + K2te
-t

v(t) = K1 cos t + K2 sin t

v(t) = K1 + K2e
-t

2
dv2(t)

dt2
+ 4

dv(t)

dt
+ 4v(t) = 12u(t) t 7 0

14.77 Find the steady-state response , , in the network in Fig. P14.77.

Figure P14.77

4 cos 2t u(t) V

8 cos 2t u(t) V 1 �1 �

1 �1 H

1 F

io(t)

2io(t)

vo(t)

+

-

±
–

±
–

–±

t 7 0vo(t)
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14PFE-4 In the circuit in Fig. 14PFE-4, use Laplace trans-
forms to find the current . Assume zero initial
conditions and that .

Figure 14PFE-4

a.

b.

c.

d.

14PFE-5 Assuming that the initial inductor current is zero in
the circuit in Fig. 14PFE-5, find the transfer function

.

Figure 14PFE-5

a.

b.

c.

d.
s

s + 2

s2

s + 8

s2

2s + 5

s

s2
+ 1

4 �

2 Hvs(t) ±
– vo(t)

+

-

Vo(s)�Vs(s)

4s

(s2
+ 1)(s2

+ 3s + 5)

2s2

s2
+ 7s + 9

4s2

(s2
+ 1)(s2

+ 2s + 4)

2s

s2
+ 4s + 5

2 �

1 H

vs(t) ±
–

1
4 F––

i(t)

vs(t) = 4 cos t u(t)
I(s)
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T H E L E A R N I N G  G O A L S
F O R  T H I S C H A P T E R  A R E :

■ Be able to determine the trigonometric and exponential
Fourier series for a periodic signal and understand the
effects of waveform symmetry on the coefficients of a
trigonometric Fourier series

■ Be able to calculate the steady-state response of an electric
circuit when excited by a periodic voltage or current signal

■ Know how to calculate average power in an electric circuit
excited by a periodic voltage or current signal

■ Be able to determine Fourier transform pairs for signals
common to electric circuit analysis and use the Fourier
transform to calculate the response of an electric circuit

■ Be able to apply Parseval’s theorem

Artificial Pacemakers for Hearts To find happiness, the Tin

Man in the Wizard of Oz thought he only needed a heart – but

a healthy one. Most hearts have a natural pacemaker and are

healthy. For irregular heartbeats or heart blocks, artificial

pacemakers may be needed to maintain an adequate heart

rate. These pacemakers use electrodes contacting the heart

muscle to deliver electrical impulses that regulate the beating

of the heart. Optimum pacing modes for individual patients

can be programmed into a microprocessor externally.

Stimulus signals are either periodic impulses over a brief

range (pacemaker) or sudden jolts to shock the heart into a

steady pattern (defibrillator). A pacemaker and defibrillator

can be combined into a single implantable device. 

Pacemakers can be single-chamber, dual-chamber, or 

rate-responsive. In a single-chamber unit the atrium or the 

ventricle has a single electrode; dual-chamber units have 

electrodes in each chamber to improve synchronization. In the

rate-responsive pacemaker, sensors detect the body’s activity

and automatically adjust the pacing rate. Pacemakers contain 

a lithium battery power source, sensing amplifier, computer

logic, and output circuitry that delivers the pacing signal to the

electrodes. 

15
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A periodic function is one that satisfies the relationship

for every value of t where is the period. As we have shown in previous chapters, the sinu-
soidal function is a very important periodic function. However, many other periodic functions
have wide applications. For example, laboratory signal generators produce the pulse-train and
square-wave signals shown in Figs. 15.1a and b, respectively, which are used for testing cir-
cuits. The oscilloscope is another laboratory instrument, and the sweep of its electron beam
across the face of the cathode ray tube is controlled by a triangular signal of the form shown
in Fig. 15.1c.

The techniques we will explore are based on the work of Jean Baptiste Joseph Fourier.
Although our analyses will be confined to electric circuits, it is important to point out that the
techniques are applicable to a wide range of engineering problems. In fact, it was Fourier’s
work in heat flow that led to the techniques that will be presented here.

In his work, Fourier demonstrated that a periodic function f(t) could be expressed as a
sum of sinusoidal functions. Therefore, given this fact and the fact that if a periodic function
is expressed as a sum of linearly independent functions, each function in the sum must be
periodic with the same period, and the function f(t) can be expressed in the form

15.1f(t) = a0 + a
q

n = 1
Dn cos An�0 t + �nB

T0

f(t) = fAt + nT0B,  n = ;1, ;2, ;3, p

f(t)

t2T0T0 3T0

(c)

A

(b)

f(t)

t

A

–A

2T0T0

f(t)

T1 T0 T0+T1 2T0 2T0+T1 t

A

(a)

Figure 15.1

Some useful periodic
signals.

This chapter introduces you to Fourier series and Fourier

transforms—the basic frequency techniques for finding

responses for periodic and non-periodic voltages and currents

in dynamic systems. Fourier series describe periodic signals.

We consider three forms of Fourier series, symmetry proper-

ties, and power spectra at the fundamental frequency and its

harmonics. Fourier transforms describe non-periodic signals.

We treat Fourier transforms as an extension of Laplace trans-

forms, relating them to time-domain representations of

sources and circuits. The key to keeping an impaired heart

beating, or re-starting a stopped heart, is the delivery of appro-

priate periodic or non-periodic voltages to a delicate organ

embedded in a living person. Few systems are as dynamic—or

as important—as that.

15.1
Fourier Series
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where and is the average value of the waveform. An examination of this
expression illustrates that all sinusoidal waveforms that are periodic with period have been
included. For example, for n=1, one cycle covers seconds, and is called
the fundamental. For n=2, two cycles fall within seconds, and the term

is called the second harmonic. In general, for n=k, k cycles fall within
seconds, and is the kth harmonic term.
Since the function can be written in exponential form using Euler’s iden-

tity or as a sum of cosine and sine terms of the form cos and sin as demonstrated
in Chapter 8, the series in Eq. (15.1) can be written as

15.2

Using the real-part relationship employed as a transformation between the time domain and
the frequency domain, we can express f(t) as

15.3

15.4

15.5

15.6

These equations allow us to write the Fourier series in a number of equivalent forms. Note
that the phasor for the nth harmonic is

15.7

The approach we will take will be to represent a nonsinusoidal periodic input by a sum of
complex exponential functions, which because of Euler’s identity is equivalent to a sum of
sines and cosines. We will then use (1) the superposition property of linear systems and
(2) our knowledge that the steady-state response of a time-invariant linear system to a sinu-
soidal input of frequency is a sinusoidal function of the same frequency to determine the
response of such a system.

To illustrate the manner in which a nonsinusoidal periodic signal can be represented by a
Fourier series, consider the periodic function shown in Fig. 15.2a. In Figs. 15.2b–d we can
see the impact of using a specific number of terms in the series to represent the original func-
tion. Note that the series more closely represents the original function as we employ more
and more terms.

EXPONENTIAL FOURIER SERIES Any physically realizable periodic signal may be
represented over the interval by the exponential Fourier series

15.8

where the are the complex (phasor) Fourier coefficients. These coefficients are derived as
follows. Multiplying both sides of Eq. (15.8) by and integrating over the interval to

we obtain

 = ck T0

 3
t1 + T0

t1

f(t)e-jk�0 t dt = 3
t1 + T0

t1

a a
q

n = -q

cn ejn�0 t b e-jk�0 t dt

t1 + T0 ,
t1e-jk�0 t

cn

f(t) = a
q

n = -q

cn ejn�0 t

t1 6 t 6 t1 + T0

�0

Dn/�n = 2cn = an - jbn

 = a0 + a
q

n = 1
(an cos n�0 t + bn sin n�0 t)

 = a0 + a
q

n = 1
Re C Aan - jbnBejn�0 t D

 = a0 + a
q

n = 1
ReA2cn ejn�0 tB

 f(t) = a0 + a
q

n = 1
Re C ADn/�nBejn�0 t D

f(t) = a0 + a
q

n = -q

n Z 0

cn ejn�0 t
= a

q

n = -q

cn ejn�0 t

n�0 tn�0 t
cos An�0 t + �kB

Dk cos Ak�0 t + �kBT0

D2 cos A2�0 t + �2B
T0

D1 cos A�0 t + �1BT0

T0

a0�0 = 2��T0

irwin15_751-800hr.qxd  23-08-2010  16:36  Page 753



754 C H A P T E R  1 5 F O U R I E R  A N A LY S I S  T E C H N I Q U E S

since

Therefore, the Fourier coefficients are defined by the equation

15.9

The following example illustrates the manner in which we can represent a periodic signal
by an exponential Fourier series.

cn =

1

T0
 3

t1 + T0

t1

f(t)e-jn�0 t dt

3
t1 + T0

t1

ej(n - k)�0 t dt = b0

T0
  for n Z k

for n = k

2.8

2.4

2.0

1.6

1.2

0.8

0.4

0.0

–0.4
–0.8 –0.4 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

(c)

f(t)

t t

f(t)

(a)

2

0 1 2 3

2.1

1.8

1.5

1.2

0.9

0.6

0.3

0.0

–0.8 –0.4 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

(b)

f(t)

tt

2.8

2.4

2.0

1.6

1.2

0.8

0.4

0.0

–0.8 –0.4 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2

(d)

–0.4

–0.3

f(t)

Figure 15.2

Periodic function (a) and its
representation by a fixed
number of Fourier series

terms, (b) 2 terms,
(c) 4 terms, (d) 100 terms.

We wish to determine the exponential Fourier series for the periodic voltage waveform
shown in Fig. 15.3.

Figure 15.3

Periodic voltage waveform.

t

v(t)

V

0

–V

T
2-— T

4-— T
4
— T

2
—

EXAMPLE

15.1
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The Fourier coefficients are determined using Eq. (15.9) by integrating over one complete
period of the waveform,

corresponds to the average value of the waveform. This term can be evaluated using the
original equation for Therefore,

Therefore,

This equation can be written as

Since a number plus its complex conjugate is equal to two times the real part of the number,
v(t) can be written as

or

Note that this same result could have been obtained by integrating over the interval 
to 3T�4.

-T�4

v(t) = a
q

n = 1
n odd

 
4V

n�
 sin 

n�

2
 cos n�0 t

v(t) = a
q

n = 1
n odd

2 Re a 2V

n�
 sin 

n�

2
 ejn�0 t b

 = a
q

n = 1
n odd

a 2V

n�
 sin 

n�

2
b ejn�0 t

+ a 2V

n�
 sin 

n�

2
b *

e-jn�0 t

 v(t) = a
q

n = 1
n odd

 
2V

n�
 sin 

n�

2
 ejn�0 t

+ a
-q

n = -1
n odd

 
2V

n�
 sin 

n�

2
 ejn�0 t

v(t) = a
q

n = -q

n Z 0
n odd

 
2V

n�
 sin 

n�

2
 ejn�0 t

 =

1

T
 c- 

VT

4
+

VT

2
-

VT

4
d = 0

 =

1

T
 £ 3

- 
T
4

- 
T
2

- V dt + 3
T
4

- 
T
4

 V dt + 3
T
2

T
4

- V dt §

 c0 =

1

T
 3

T
2

- 
T
2

v(t) dt

cn .
c0

 =

2V

n�
 sin 

n�

2
  for n odd

 = 0  for n even

 =

V

n�0 T
 c4 sin 

n�

2
- 2 sin (n�) d

 =

V

jn�0 T
 A2ejn��2

- 2e-jn��2
+ e-jn�

- e+jn�B
 =

V

jn�0 T
 B+e-jn�0 t 2 -T�4

-T�2
- e-jn�0 t 2 T�4

-T�4
+ e-jn�0 t 2 T�2

T�4
R

 +3
T�4

-T�4
Ve-jn�0 t dt + 3

T�2

T�4
- Ve-jn�0 t dt

 =

1

T
 3

-T�4

-T�2
- Ve-jn�0 t dt

 cn =

1

T
 3

T�2

-T�2
f(t)e-jn�0 t dt

SOLUTION
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TRIGONOMETRIC FOURIER SERIES Let us now examine another form of the Fourier
series. Since

15.10

we will examine this quantity and separate it into its real and imaginary parts. Using Eq.
(15.9), we find that

15.11

Using Euler’s identity, we can write this equation in the form

 =

2

T0
 3

t1 + T0

t1

f(t)cos n�0 t dt - j 
2

T0
 3

t1 + T0

t1

f(t) sin n�0 t dt

 2cn =

2

T0
 3

t1 + T0

t1

f(t) (cos n�0t - j sin n�0t) dt

2cn =

2

T0
 3

t1 + T0

t1

f(t)e-jn�0 t dt

2cn

2cn = an - jbn

E15.1 Find the Fourier coefficients for the waveform in Fig. E15.1.

Learning Assessments
ANSWER:

c0 =

1

2
 .cn =

1 - e-jn�

j2�n
 ;

1

v(t)

–1 0 1 2 3 4 tFigure E15.1

E15.2 Find the Fourier coefficients for the waveform in Fig. E15.2. ANSWER:

c0 = 2.a2 sin 
2�n

3
- sin 

n�

3
b ;cn =

2

n�

4

v(t)

–4 0 1–3 –2 –1 2 3 4 5 6 7 8

2

tFigure E15.2

E15.3 Find the exponential Fourier series for the waveform
shown in Fig. E15.3.

ANSWER:

0.159e-j90°ej�t
+ 0.225e-j135°ej1.5�t

+ . . .V.

0.675ej45°e-j0.5�t
+ 0.25 + 0.675e-j45°ej0.5�t

+

v(t) = . . . + 0.225ej135°e-j1.5�t
+ 0.159ej90°e-j�t

+

v(t)

t

2

–1

1

2 3

4 5

6 7

8

Figure E15.3
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From Eq. (15.10) we note then that

15.12

15.13

These are the coefficients of the Fourier series described by Eq. (15.6), which we call the
trigonometric Fourier series. These equations are derived directly in most textbooks using
the orthogonality properties of the cosine and sine functions. Note that we can now evaluate

and since

15.14

we can derive the coefficients for the cosine Fourier series described by Eq. (15.1). This form
of the Fourier series is particularly useful because it allows us to represent each harmonic of
the function as a phasor.

From Eq. (15.9) we note that , which is written as is

15.15

This is the average value of the signal f(t) and can often be evaluated directly from the
waveform.

SYMMETRY AND THE TRIGONOMETRIC FOURIER SERIES If a signal exhibits
certain symmetrical properties, we can take advantage of these properties to simplify the cal-
culations of the Fourier coefficients. There are three types of symmetry: (1) even-function
symmetry, (2) odd-function symmetry, and (3) half-wave symmetry.

Even-Function Symmetry A function is said to be even if

15.16

An even function is symmetrical about the vertical axis, and a notable example is the function
Note that the waveform in Fig. 15.3 also exhibits even-function symmetry. Let us

now determine the expressions for the Fourier coefficients if the function satisfies Eq. (15.16).
If we let in Eq. (15.15), we obtain

which can be written as

If we now change the variable on the first integral (i.e., let ), then 
and the range of integration is from to 0. Therefore, the preceding equa-

tion becomes

15.17

 =

2

T0
 3

T0�2

0
f(t) dt

 =

1

T0
 3

T0�2

0
f(x) dx +

1

T0
 3

T0�2

0
f(t) dt

 a0 =

1

T0
 3

0

T0�2
f(x)(-dx) +

1

T0
 3

T0�2

0
f(t) dt

x = T0�2dt = -dx,
f(-x) = f(x),t = -x

a0 =

1

T0
 3

0

-T0�2
f(t) dt +

1

T0
 3

T0�2

0
f(t) dt

a0 =

1

T0
 3

T0�2

-T0�2
f(t) dt

t1 = -T0�2

cos n�0 t.

f(t) = f(-t)

a0 =

1

T
 3

t1 + T0

t1

f(t) dt

a0 ,c0

2cn = Dn/�n

cn , an , bn ,

 bn =

2

T0
 3

t1 + T0

t1

f(t) sin n�0 t dt

 an =

2

T0
 3

t1 + T0

t1

f(t) cos n�0 t dt
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The other Fourier coefficients are derived in a similar manner. The an coefficient can be
written

Employing the change of variable that led to Eq. (15.17), we can express the preceding
equation as

15.18

Once again, following the preceding development, we can write the equation for the 
coefficient as

The variable change employed previously yields

15.19

The preceding analysis indicates that the Fourier series for an even periodic function con-
sists only of a constant term and cosine terms. Therefore, if f(t) is even, and from
Eqs. (15.10) and (15.14), are real and are multiples of 180°.

Odd-Function Symmetry A function is said to be odd if

15.20

An example of an odd function is sin Another example is the waveform in Fig. 15.4a.
Following the mathematical development that led to Eqs. (15.17) to (15.19), we can show
that for an odd function the Fourier coefficients are

15.21

15.22

15.23

Therefore, if f(t) is odd, and, from Eqs. (15.10) and (15.14), are pure imaginary
and are odd multiples of 90°.�n

cnan = 0

 bn =

4

T0
 3

T0�2

0
f(t) sin n�0 t dt

 an = 0  for all n 7 0

 a0 = 0

n�0 t.

f(t) = -f(-t)

�ncn

bn = 0

bn = 0

 =

-2

T0
 3

T0�2

0
f(x) sin n�0 x dx +

2

T0
 3

T0�2

0
f(t) sin n�0 t dt

 bn =

2

T0
 3

0

T0�2
f(x) sin A-n�0 xB(-dx) +

2

T0
 3

T0�2

0
f(t) sin n�0 t dt

bn =

2

T0
 3

0

-T0�2
f(t) sin n�0 t dt + 3

T0�2

0
f(t) sin n�0t dt

bn

an =

4

T0
 3

T0�2

0
f(t) cos n�0 t dt

 =

2

T0
 3

T0�2

0
f(x) cos n�0 x dx +

2

T0
 3

T0�2

0
f(t) cos n�0 t dt

 an =

2

T0
 3

0

T0�2
f(x) cos A-n�0 xB(-dx) +

2

T0
 3

T0�2

0
f(t) cos n�0 t dt

an =

2

T0
 3

0

-T0�2
f(t) cos n�0 t dt +

2

T0
 3

T0�2

0
f(t) cos n�0 t dt

irwin15_751-800hr.qxd  23-08-2010  16:36  Page 758



S E C T I O N  1 5 . 1 F O U R I E R  S E R I E S     759

Half-Wave Symmetry A function is said to possess half-wave symmetry if

15.24

Basically, this equation states that each half-cycle is an inverted version of the adjacent half-
cycle; that is, if the waveform from to 0 is inverted, it is identical to the waveform from
0 to The waveforms shown in Figs. 15.4a and c possess half-wave symmetry.

Once again we can derive the expressions for the Fourier coefficients in this case by
repeating the mathematical development that led to the equations for even-function symme-
try using the change of variable and Eq. (15.24). The results of this develop-
ment are the following equations:

15.25

15.26

15.27

15.28

The following equations are often useful in the evaluation of the trigonometric Fourier series
coefficients:

15.29

 3
 

 

x cos ax dx =

1

a2
 cos ax +

1

a
 x sin ax

 3
 

 

x sin ax dx =

1

a2
 sin ax -

1

a
 x cos ax

 3
 

 

cos ax dx =

1

a
 sin ax

 3
 

 

sin ax dx = - 
1

a
 cos ax

 bn =

4

T0
 3

T0�2

0
f(t) sin n�0 t dt   for n odd

 an =

4

T0
 3

T0�2

0
f(t) cos n�0 t dt   for n odd

 an = bn = 0   for n even

 a0 = 0   

t = x + T0�2

T0�2.
-T0�2

f(t) = -f a t -

T0

2
b

T0
2

—–
–T0

4
—–

t

v(t)
V

–V

T0
2

– —–
T0
4

—–

(a)

T0
2

– —–
T0
2

—–

f(t)

t

2

1

(b)

f(t)

t

– —3
2

– —1
2

1
2
—

(c)

T0
2

– —–

T0
2

—–

Figure 15.4

Three waveforms; (a) and
(c) possess half-wave
symmetry.
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We wish to find the trigonometric Fourier series for the periodic signal in Fig. 15.3.

The waveform exhibits even-function symmetry and therefore

The waveform exhibits half-wave symmetry and therefore

Hence,

The reader should compare this result with that obtained in Example 15.1.

 =

4V

n�
 sin 

n�

2
  for n odd

 =

8V

n2�
 sin 

n�

2
  for n odd

 =

4V

n�0 T
 a sin 

n�

2
- sin n� + sin 

n�

2
b

 =

4V

n�0 T
 a sin n�0 t 2 T�4

0
- sin n�0 t 2 T�2

T�4
b

 =

4

T
 a 3

T�4

0
V cos n�0 t dt - 3

T�2

T�4
V cos n�0 t dt b

 an =

4

T0
 3

T�2

0
f(t) cos n�0 t dt  for n odd

an = 0  for n even

 bn = 0  for all n

 a0 = 0
SOLUTION

Let us determine the trigonometric Fourier series expansion for the waveform shown in
Fig. 15.4a.

The function not only exhibits odd-function symmetry, but it possesses half-wave symmetry
as well. Therefore, it is necessary to determine only the coefficients for n odd. Note that

The coefficients are then

The evaluation of these integrals is tedious but straightforward and yields

Hence, the Fourier series expansion is

v(t) = a
q

n = 1
n odd

 
8V

n2 �2
 sin 

n�

2
 sin n�0 t

bn =

8V

n2�2
 sin 

n�

2
  for n odd

+

4

T0
 3

T0�2

T0�4
a2V -

4Vt

T0
b  sin n�0 t dtbn =

4

T0
 3

T0�4

0
 
4Vt

T0
 sin n�0 t dt

bn

v(t) = d 4Vt

T0

2V -

4Vt

T0

0 � t � T0�4

T0�4 6 t � T0�2

bn

SOLUTION

EXAMPLE

15.2

EXAMPLE

15.3
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E15.4 Determine the type of symmetry exhibited by the waveform
in Figs. E15.2 and E15.4.

Learning Assessments
ANSWER: Figure E15.2, even symmetry;
Fig. E15.4, half-wave symmetry.

E15.5 Find the trigonometric Fourier series for the voltage wave-
form in Fig. E15.2.

ANSWER:

v(t) = 2 + a
q

n = 1
 

4

n�
 a2 sin 

2�n

3
- sin 

n�

3
b  cos 

n�

3
 t.

E15.6 Find the trigonometric Fourier series for the voltage
waveform in Fig. E15.4.

ANSWER:

+

2

n�
 (2 - cos n�) sin 

n�

2
 t.

v(t) = a
q

n = 1
n odd

 
2

n�
 sin 

n�

2
 cos 

n�

2
 t

2

v(t)

t

1

–4 0 1–3 –2 –1 2 3 4 5 6–1

–2Figure E15.4

E15.7 Determine the triigonometric Fourier series for
the waveform shown in Fig. E15.3.

ANSWER:

0.318 sin (�t) - 0.318 cos (1.5�t) + 0.318 sin (1.5�t) + . . . V.

v(t) = 0.25 + 0.955 cos (0.5�t) + 0.955 sin (0.5�t) +

We wish to find the trigonometric Fourier series expansion of the waveform in Fig. 15.4b.

Note that this waveform has an average value of 3/2. Therefore, instead of determining the
Fourier series expansion of f(t), we will determine the Fourier series for f(t)-3/2,
which is the waveform shown in Fig. 15.4c. The latter waveform possesses half-wave sym-
metry. The function is also odd and therefore

Therefore, the Fourier series expansion for is

or

f(t) =

3

2
+ a

q

n = 1
n odd

 
2

n�
 sin n�0 t

f(t) -

3

2
= a

q

n = 1
n odd

 
2

n�
 sin n�0 t

f(t) - 3�2

 =

2

n�
  for n odd

 =

-2

n�0 T0
 (cos n� - 1)

 =

2

T0
 a -1

n�0
 cos n�0 t 2 T0�2

0
b

 bn =

4

T0
 3

T0�2

0
 
1

2
 sin n�0 t dt

SOLUTION

EXAMPLE

15.4
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TIME-SHIFTING Let us now examine the effect of time-shifting a periodic waveform
f(t) defined by the equation

Note that

15.30

Since corresponds to a phase shift, the Fourier coefficients of the time-shifted func-
tion are the Fourier coefficients of the original function, with the angle shifted by an amount
directly proportional to frequency. Therefore, time shift in the time domain corresponds to
phase shift in the frequency domain.

e-jn�0 t0

 f(t - t0) = a
q

n = -q

Acn e-jn�0 t0Bejn�0 t

 f(t - t0) = a
q

n = -q

cn ejn�0At - t0B

f(t) = a
q

n = -q

cn ejn�0 t

Let us time-delay the waveform in Fig. 15.3 by a quarter period and compute the Fourier series.

The waveform in Fig. 15.3 time delayed by is shown in Fig. 15.5. Since the time delay
is 

Therefore, using Eq. (15.30) and the results of Example 15.1, the Fourier coefficients for
the time-shifted waveform are

and therefore,

If we compute the Fourier coefficients for the time-shifted waveform in Fig. 15.5, we obtain

 =

2V

jn�
  for n odd

 =

1

T0
 3

0

-T0�2
- V e-jn�0 t dt +

1

T0
 3

T0�2

0
V e-jn�0 t dt

 cn =

1

T0
 3

T0�2

-T0�2
f(t)e-jn�0 t dt

v(t) = a
q

n = 1
n odd

 
4V

n�
 sin 

n�

2
 cos (n�0 t - n 90°B

cn =

2V

n�
 sin 

n�

2
 /-n 90°  n odd

n�0 td = n 
2�

T0
 
T0

4
= n 

�

2
= n 90°

T0�4,
T0�4

Figure 15.5

Waveform in Fig. 15.3
time-shifted by T0/4.

v(t)

t

T0—–
2

V

–V

T0

T0
2

– —–

SOLUTION

EXAMPLE

15.5
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Therefore,

Since n is odd, we can show that this expression is equivalent to the one obtained
earlier.

cn =

2V

n�
 /-90°  n odd

In general, we can compute the phase shift in degrees using the expression

15.31

so that a time shift of one-quarter period corresponds to a 90° phase shift.
As another interesting facet of the time shift, consider a function that is nonzero in

the interval and is zero in the interval For purposes of illustra-
tion, let us assume that is the triangular waveform shown in Fig. 15.6a. is
then shown in Fig. 15.6b. Then the function f(t) defined as

15.32

is shown in Fig. 15.6c. Note that f(t) has half-wave symmetry. In addition, note that if

then

15.33
 
= c aqn = -q

2cn e jn�0 t

0

n odd

n even

 f(t) = f1(t) - f1 a t -

T0

2
b = a

q

n = -q

cnA1 - e-jn�Be jn�0 t

f1(t) = a
q

n = -q

cn e-jn�0 t

f(t) = f1(t) - f1 a t -

T0

2
b

f1At - T0�2Bf1(t)
T0�2 6 t � T0 .0 � t � T0�2

f1(t)

phase shift(deg) = �0 td = (360°) 
td

T0

t

f(t)=f1(t)-f1

T0
2

–T0 T00

A

(c)

f1(t)

t

A

0

(a)

t – 

A

–A

q r

tT0T0—–
2

T0—–
2

T0– —–
2

T0 —–
2

–T0T0T0– —–
2

–T0 —
2

–3T0—
2

3T0

f1 

(b)

—–
–T0

2
—–

t – q rT0—–
2

Figure 15.6

Waveforms that illustrate
the generation of half-wave
symmetry.
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Therefore, we see that any function with half-wave symmetry can be expressed in the form
of Eq. (15.32), where the Fourier series is defined by Eq. (15.33), and is the Fourier
coefficient for f1(t).

cn

E15.8 If the waveform in Fig. E15.1 is time-delayed 1 s, we obtain the waveform in Fig. E15.8.
Compute the exponential Fourier coefficients for the waveform in Fig. E15.8 and show that they
differ from the coefficients for the waveform in Fig. E15.1 by an angle n(180°).

Learning Assessment
ANSWER:

cn = - a 1 - e-jn�

j2�n
b .

c0 =

1

2
 ;

v(t)

t (s)0–1 1 2 3 4

1

Figure E15.8

WAVEFORM GENERATION The magnitude of the harmonics in a Fourier series is inde-
pendent of the time scale for a given waveshape. Therefore, the equations for a variety of
waveforms can be given in tabular form without expressing a specific time scale. Table 15.1
is a set of commonly occurring periodic waves where the advantage of symmetry has been
used to simplify the coefficients. These waveforms can be used to generate other waveforms.
The level of a wave can be adjusted by changing the average value component; the time can
be shifted by adjusting the angle of the harmonics; and two waveforms can be added to pro-
duce a third waveform. For example, the waveforms in Figs. 15.7a and b can be added to
produce the waveform in Fig. 15.7c.

f1(t)

t

A

–A

T0– ——
2

T0——
2

(a)

f2(t)

T0– ——
2

T0——
2

A

–A t

(b)

t

T0– ——
2

T0——
2

2A

–2A

f3(t)=f1(t)+f2(t)

(c)

Figure 15.7

Example of waveform
generation.
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TABLE 15.1 Fourier series for some common waveforms

–T0

f(t)

t

A

T0 2T0

f(t)

t–T0 T0–T0+� T0+��

A
0

f(t)

t

A

T0– ——
T0
2

——
T0
2

f(t)

A

t
0 T0

–A
——
2

——
T0
2

f(t)

t

A

–A

——
T0
2

——
–T0

2

——
–T0

4

——
T0
2

f(t)

A

t
–A

——
T0
2

——
–T0

2

 f(t) = a
q

n = 1
(-1)n + 1 

2A
n�

 sin n�0 t

 f(t) = a
q

n = 1
n odd

 
8A

n2 �2 sin 
n�

2
 sin n�0 t

 f(t) = a
q

n = -q

 
A

n�
 sin 

n��

T0
 ejn�0Ct - (��2)D

 f(t) = a
q

n = 1
n odd

 
4A

n�
 sin n�0 t

 f(t) =

2A
�

+ a
q

n = 1
 

4A

�A1 - 4n2B  cos n�0 t

 f(t) =

A
�

+

A
2

 sin �0 t + a
q

n = 2
n even

 
2A

�A1 - n2B  cos n�0 t

(Continues on the next page)
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TABLE 15.1 (Continued)

f(t)

A

tT0——
2

T0

f(t)

A

tT0 2T0
0

f(t)

t

A

–A
T0——
2

T0

f(t)

t

A

T0 2T0

T0 2T0

f(t)

t

Ae–(�/T0)t

 f(t) =

A
2

+ a
q

n = -q

n Z 0
n odd

 
-2A
n2 �2 ejn�0 t

 f(t) =

A
2

+ a
q

n = 1
 
-A
n�

 sin n�0 t

 f(t) = a
q

n = 1
 
-4A

�2 n2 cos n�0 t +

2A
�n

 sin n�0 t

 f(t) =

A
2

+ a
q

n = 1
 

A
�n

 sin n�0 t

 f(t) = a
q

n = -q

 
AA1 - e-�B
� + j2�n

 ejn�0 t
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E15.9 Two periodic waveforms are shown in Fig. E15.9. Compute the exponential
Fourier series for each waveform, and then add the results to obtain the Fourier series for
the waveform in Fig. E15.2.

Learning Assessment
ANSWER:

 a sin 
n�

3
- sin 

2n�

3
b  ejn�0 t.

 v2(t) =

4

3
+ a

q

n = -q

-

4

n�
 

 v1(t) =

2

3
+ a

q

n = -q

n Z 0

 
2

n�
 sin 

n�

3
 ejn�0 t;

t–1 0 1 2 3 4 5 6 7

2

v1(t)

t

v2(t)

–2 –1 0 1 2 3 4 5

4

Figure E15.9

FREQUENCY SPECTRUM The frequency spectrum of the function f(t) expressed as a
Fourier series consists of a plot of the amplitude of the harmonics versus frequency, which we
call the amplitude spectrum, and a plot of the phase of the harmonics versus frequency, which
we call the phase spectrum. Since the frequency components are discrete, the spectra are called
line spectra. Such spectra illustrate the frequency content of the signal. Plots of the amplitude
and phase spectra are based on Eqs. (15.1), (15.3), and (15.7) and represent the amplitude and
phase of the signal at specific frequencies.

The Fourier series for the triangular-type waveform shown in Fig. 15.7c with A=5 is given
by the equation

We wish to plot the first four terms of the amplitude and phase spectra for this signal.

Since the first four terms for this signal are

Therefore, the plots of the amplitude and phase versus � are as shown in Fig. 15.8.

 D7/�7 = - 
40

49�2
- j 

20

7�
= 0.91/-95°

 D5/�5 = - 
40

25�2
- j 

20

5�
= 1.3/-97°

 D3/�3 = - 
40

9�2
- j 

20

3�
= 2.2/-102°

 D1/�1 = - 
40

�2
- j 

20
�

= 7.5/-122°

Dn/�n = an - jbn ,

v(t) = a
q

n = 1
n odd

a 20

n�
 sin n�0 t -

40

n2 �2
 cos n�0 t b

SOLUTION

EXAMPLE

15.6
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STEADY-STATE NET WORK RESPONSE If a periodic signal is applied to a network,
the steady-state voltage or current response at some point in the circuit can be found in the
following manner. First, we represent the periodic forcing function by a Fourier series. If the
input forcing function for a network is a voltage, the input can be expressed in the form

v(t) = v0 + v1(t) + v2(t) +
p

–20°
–40°
–60°
–80°

–100°
–120°
–140°

�

�n
�0 3�0 5�0 7�0

1

3
4
5
6
7
8
9

2

Dn

�0 3�0 5�0 7�0 �

Figure 15.8

Amplitude and phase
spectra.

E15.10 Determine the trigonometric Fourier series for the voltage waveform in Fig. E15.10 and
plot the first four terms of the amplitude and phase spectra for this signal.

Learning Assessments
ANSWER:

D4 = -j(1�4�).
D3 = -j(1�3�);
D2 = -j(1�2�);
D1 = -j(1��);

a0 = 1�2 ;

v(t)

t

1

–1 0 1 2Figure E15.10

E15.11 The discrete line spectrum for a periodic function is
shown in Fig. E15.11. Determine the expression for f(t).

ANSWER:

.0.35cos(160�t - 90°)
0.5 cos(120�t - 45°) +

cos(80�t - 90°) +

f(t) = 0.25 + 1.35 cos(40�t - 135°) +

–45°

–90°

–135°

�n

–180°

20 40 60 80

f (Hz)

Dn

f (Hz)20

0.25

0.35

0.5

1.0

1.35

40 60 80Figure E15.11
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and therefore represented in the time domain as shown in Fig. 15.9. Each source has its own
amplitude and frequency. Next we determine the response due to each component of
the input Fourier series; that is, we use phasor analysis in the frequency domain to determine
the network response due to each source. The network response due to each source in the fre-
quency domain is then transformed to the time domain. Finally, we add the time-domain
solutions due to each source using the Principle of Superposition to obtain the Fourier series
for the total steady-state network response.

AVERAGE POWER We have shown that when a linear network is forced with a nonsinu-
soidal periodic signal, voltages and currents throughout the network are of the form

and

If we employ the passive sign convention and assume that the voltage across an element and
the current through it are given by the preceding equations, then from Eq. (9.6),

15.34

Note that the integrand involves the product of two infinite series. However, the
determination of the average power is actually easier than it appears. First, note that the prod-
uct when integrated over a period and divided by the period is simply Second,
the product of and any harmonic of the current or and any harmonic of the voltage
when integrated over a period yields zero. Third, the product of any two different harmonics
of the voltage and the current when integrated over a period yields zero. Finally, nonzero
terms result only from the products of voltage and current at the same frequency. Hence,
using the mathematical development that follows Eq. (9.6), we find that

15.35P = Vdc Idc + a
q

n = 1
 
Vn In

2
 cos A�vn

- �inB

IdcVdc

Vdc Idc .Vdc Idc

 =

1

T
 3

t0 + T

t0

v(t)i(t) dt

 P =

1

T
 3

t0 + T

t0

p(t) dt

i(t) = Idc + a
q

n = 1
In cos An�0 t - �inB

v(t) = Vdc + a
q

n = 1
Vn cos An�0 t - �vn

B

±
–

±
–

±
–

v0

v1(t)

vj(t)

Network

Figure 15.9 

Network with a periodic
voltage forcing function.
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We wish to determine the steady-state voltage in Fig. 15.10 if the input voltage v(t)
is given by the expression

Note that this source has no constant term, and therefore its dc value is zero. The amplitude
and phase for the first four terms of this signal are given in Example 15.6, and therefore the
signal v(t) can be written as

From the network we find that

Therefore, since 

The individual components of the output due to the components of the input source are
then

Hence, the steady-state output voltage can be written as

 +  0.03 cos (10t - 181.3°) + 0.016 cos (14t - 181°) +
p V

 vo(t) = 0.84 cos (2t - 185.4°) + 0.09 cos (6t - 182.5°)

vo(t)

 VoA7�0B =

0.91/-95°

4 + j56
= 0.016/-181° V

 VoA5�0B =

1.3/-97°

4 + j40
= 0.03/-181.3° V

 VoA3�0B =

2.2/-102°

4 + j24
= 0.09/-182.5° V

 VoA�0B =

7.5/-122°

4 + j8
= 0.84/-185.4° V

Vo(n) =

V(n)

4 + j8n

�0 = 2,

 Vo = (1)I1 = 1 �
V(1 + 2j�)

4 + 4j�
 

1

1 + 2j�
=

V
4 + 4j�

 I1 =

I(1�j�)

2 + 1�j�
=

I
1 + 2j�

 I =

V

2 +

2�j�

2 + 1�j�

=

V(1 + 2j�)

4 + 4j�

 + 1.3 cos (10t - 97°) + 0.91 cos (14t - 95°) +
p

 v(t) = 7.5 cos (2t - 122°) + 2.2 cos (6t - 102°)

v(t) = a
q

n = 1
n odd

a 20

n�
 sin 2nt -

40

n2 �2
 cos 2nt b  V

vo(t)

SOLUTION

±
– vo(t)

i(t)

v(t)

+

-

i1(t)

1 F 1 �

1 �2 �

Figure 15.10

RC circuit employed in
Example 15.7.

EXAMPLE

15.7
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In the network in Fig. 15.11, v(t)=42+16 cos (377t+30°) ± 12 cos (754t-20°) V.
We wish to compute the current i(t) and determine the average power absorbed by the
network.

The capacitor acts as an open circuit to dc, and therefore At rad/s,

Hence,

At rad/s,

Hence,

Therefore, the current i(t) is

and the average power absorbed by the network is

 = 7.77 W

 +  
(12)(0.75)

2
 cos (-20° + 26.49°)

 P = (42)(0) +

(16)(0.64)

2
 cos (30° - 79.88°)

 + 0.75 cos (754t + 26.49°) A

 i(t) = 0.64 cos (377t + 79.88°)

I754 =

12/20°

16 + j15.08 - j13.26
= 0.75/-26.49° A

 j�L = j(754)(20)10-3
= j15.08 �

 
1

j�C
=

1

j(754)(100)(10)-6
= -j13.26 �

� = 754

I377 =

16/30°

16 + j7.54 - j26.53
= 0.64/79.88° A

 j�L = j(377)(20)10-3
= j7.54 �

 
1

j�C
=

1

j(377)(100)(10)-6
= -j26.53 �

� = 377IDC = 0. SOLUTION

±
–

i(t)

v(t)

16 � 20 mH

100 �F

Figure 15.11 

Network used in
Example 15.8.

EXAMPLE

15.8
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E15.12 Determine the expression for the steady-state current i(t) in
Fig. E15.12 if the input voltage is given by the expression

vS(t) =

20
�

+ a
q

n = 1
 

-40

�A4n2
- 1B  cos 2nt V

vS(t)

Learning Assessments

E15.13 At the input terminals of a network, the voltage v(t) and the current
i(t) are given by the following expressions:

Find the average power absorbed by the network.

 i(t) = 1.8 cos (377t + 45°) + 1.2 cos (754t + 100°) A

 v(t) = 64 + 36 cos (377t + 60°) - 24 cos (754t + 102°) V

ANSWER:

+ a
q

n = 1
 

-40

�A4n2
- 1B  

1

An
 cos A2nt - �nB A.

i(t) = 2.12

ANSWER:
Pave = 16.91 W.

±
–

i(t)

vS(t) 2 �

1 �

— F1
2

Figure E15.12

E15.14 Determine the first three terms of the steady-state current i(t) in
Fig. E15.14 if the input voltage is given by 

v(t) =

30
�

+ 15 sin 10t + a
q

n = 1
n even

 
60

�A1 - n2B  cos 10nt V.

ANSWER:

1.45 cos (20t + 166°) A.

 i(t) = 3.18 + 4.12 cos (10t + 106°) +

+
–

3 � 2 �

0.1 H 0.1 Fv(t)

i(t)

Figure E15.14

Step 1. Determine the Fourier series for the periodic forcing function, which is now
expressed as a summation of harmonically related sinusoidal functions.

Step 2. Use phasor analysis to determine the network response due to each sinusoidal
function acting alone.

Step 3. Use the Principle of Superposition to add the time domain solution from each
source acting alone to determine the total steady-state network response.

Step 4. If you need to calculate the average power dissipated in a network element,
determine the average power dissipated in that element due to each source
acting alone and then sum these for the total power dissipation from the
periodic forcing function.

Steady-State
Response to

Periodic Forcing
Functions

Problem-Solving Strategy
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fp(t)

t
–T——
2

–T T

(b)

f(t)

t
–T——
2

T——
2

T——
2

(a)

Figure 15.12 

Aperiodic and periodic
signals.

E15.15 Find the average power absorbed by the network in Fig. E15.15 if 

 i(t) = 1.2 cos (377t - 30°) + 0.8 cos (754t + 45°) A

 v(t) = 20 + 5 cos  377t + 3.5 cos (754t - 20°) V and
ANSWER: P 	 3.19 W.

i(t)

+
–v(t)

Figure E15.15

The preceding sections of this chapter have illustrated that the exponential Fourier series can
be used to represent a periodic signal for all time. We will now consider a technique for rep-
resenting an aperiodic signal for all values of time.

Suppose that an aperiodic signal f(t) is as shown in Fig. 15.12a. We now construct a new
signal that is identical to f(t) in the interval but is periodic with period T,
as shown in Fig. 15.12b. Since is periodic, it can be represented in the interval to

by an exponential Fourier series;

15.36

where

15.37

and

15.38�0 =

2�

T

cn =

1

T
 3

T�2

-T�2
fp(t)e-jn�0 t dt

fp(t) = a
q

n = -q

cn ejn�0 t

q

-qfp(t)
-T�2 to T�2fp(t)

15.2
Fourier

Transform

At this point we note that if we take the limit of the function as the periodic
signal in Fig. 15.12b approaches the aperiodic signal in Fig. 15.12a; that is, the repetitious
signals centered at and in Fig. 15.12b are moved to infinity.

The line spectrum for the periodic signal exists at harmonic frequencies , and the
incremental spacing between the harmonics is

15.39

As the lines in the frequency spectrum for come closer and closer together,
approaches the differential and can take on any value of . Under these condi-

tions, the line spectrum becomes a continuous spectrum. Since as in
Eq. (15.37), we will examine the product where

cn T = 3
T�2

-T�2
fp(t)e-jn�0 t dt

cn T,
T S q, cn S 0

�n�0d�,¢�
fp(t)T S q

¢� = (n + 1)�0 - n�0 = �0 =

2�

T

An�0B
+T-T

T S q,fp(t)
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In the limit as 

which in view of the previous discussion can be written as

This integral is the Fourier transform of which we will denote as and hence

15.40

Similarly, can be expressed as

which in the limit as becomes

15.41

Eqs. (15.40) and (15.41) constitute what is called the Fourier transform pair. Since is
the Fourier transform of f(t) and f(t) is the inverse Fourier transform of they are nor-
mally expressed in the form

15.42

15.43

SOME IMPORTANT TRANSFORM PAIRS There are a number of important Fourier
transform pairs. In the following material we derive a number of them and then list some of
the more common ones in tabular form.

 f(t) = F-1 CF(�) D =

1

2�
 3

q

-q

F(�)ej�t d�

 F(�) = F Cf(t) D = 3
q

-q

f(t)e-j�t dt

F(�),
F(�)

f(t) =

1

2�
 3

q

-q

F(�)ej�t d�

T S q

 = a
q

n = -q

Acn TBejn�0t  
¢�

2�

 = a
q

n = -q

Acn TBejn�0t  
1

T

 fp(t) = a
q

n = -q

cn ejn�0t 

fp(t)

F(�) = 3
q

-q

 f(t)e-j�t dt

F(�),f(t) ,

lim
T S q

Acn TB = 3
q

-q

 f(t)e-j�t dt

lim
T S q

Acn TB = lim
T S q3

T�2

-T�2
 fp(t)e-jn�0 t dt

T S q,

We wish to derive the Fourier transform for the voltage pulse shown in Fig. 15.13a.

Using Eq. (15.42), the Fourier transform is

 = V� 
sin (���2)

���2

 = V 
e-j���2

- e+j���2

-j�

 =

V

-j�
 e-j�t 2 ��2

-��2

 F(�) = 3
��2

-��2
Ve-j�t dt

SOLUTION

EXAMPLE

15.9
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2�
�
—

�

Envelope

0

2�——
T0

V�——
T0

cn

(d)

0�– ——
2

�——
2

V

v(t)

t

(a)

v(t)

t

V

0�– ——
2

�——
2

–T0 T0

5�

(b)

F(�)

4�– ——
�

2�– ——
�

0 4�——
�

2�
�

——

(c)

�

V�

Figure 15.13

Pulses and their spectra.

Therefore, the Fourier transform for the function

is

A plot of this function is shown in Fig. 15.13c. Let us explore this example even further.
Consider now the pulse train shown in Fig. 15.13b. Using the techniques that have been
demonstrated earlier, we can show that the Fourier coefficients for this waveform are

The line spectrum for is shown in Fig. 15.13d.
The equations and figures in this example indicate that as and the periodic

function becomes aperiodic, the lines in the discrete spectrum become denser and the
amplitude gets smaller, and the amplitude spectrum changes from a line spectrum to a con-
tinuous spectrum. Note that the envelope for the discrete spectrum has the same shape as
the continuous spectrum. Since the Fourier series represents the amplitude and phase of the
signal at specific frequencies, the Fourier transform also specifies the frequency content of
a signal.

T0 S q

T0 = 5�

cn =

V�

T0
 
sin An�0 ��2B

n�0 ��2

F(�) = V� 
sin (���2)

���2

f(t) = f
0

V

0

-q 6 t � - 
�

2

- 
�

2
6 t �

�

2

�

2
6 t 6 q
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Find the Fourier transform for the unit impulse function 

The Fourier transform of the unit impulse function is

Using the sampling property of the unit impulse, we find that

and if then

Note then that the for is constant for all frequencies. This is an impor-
tant property, as we shall see later.

f(t) = �(t)F(�)

F(�) = 1

a = 0,
F(�) = e-j�a

F(�) = 3
q

-q

�(t - a)e-j�t dt

�(t - a)

�(t).

SOLUTION

We wish to determine the Fourier transform of the function 

In this case note that if then

Therefore, and represent a Fourier transform pair.F(�) = 2��(� - �0)f(t) = e j�0t

 = ej�0t 

 f(t) =

1

2�
 3

q

-q

2��A� - �0Bej�t d�

F(�) = 2�� A� - �0B,
f(t) = ej�0 t  .

SOLUTION

E15.16 If find F(�).f(t) = sin �0 t,

Learning Assessment
ANSWER:
F(�) = �j C�A� + �0B - �A� - �0B D .

TABLE 15.2 Fourier transform pairs

f(t) F(�)

�0

(j� + a)2
+ �2

0
e-at sin �0 tu(t), a 7 0

j� + a

(j� + a)2
+ �2

0
e-at cos �0 tu(t), a 7 0

2a
a2

+ �2e-�∑t∑, a 7 0

1
a + j�

e-at u(t), a 7 0

j��A� + �0B - j��A� - �0Bsin �0 t

��A� - �0B + ��A� + �0Bcos �0 t

2��A� - �0Bej�0 t

2�A�(�)A

e-j�a�(t - a)

A number of useful Fourier transform pairs are shown in Table 15.2.

EXAMPLE

15.10

EXAMPLE

15.11
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defined by the equation

has a number of important properties. Table 15.3 provides a short list of a number of these
properties.

The proofs of these properties are generally straightforward; however, as an example we
will demonstrate the time convolution property.

If and then

If we now let then

15.44

We should note very carefully the time convolution property of the Fourier transform.
With reference to Fig. 15.14, this property states that if 
and then:

15.45Vo(�) = H(�)Vi(�)

Vo(�) = F Cvo(t) D ,
H(�) = F Ch(t) D ,Vi(�) = F Cvi(t) D ,

 = F1(�)F2(�)

 = 3
q

x = -q

f1(x)e-j�x

3
q

u = -q

f2(u)e-j�u du dx

 F c 3
q

-q

f1(x)f2(t - x) dx d = 3
q

x = -q

f1(x)3
q

u = -q

f2(u)e-j�(u + x) du dx

u = t - x,

 = 3
q

x = -q

f1(x)3
q

t = -q

f2(t - x)e-j�t dt dx

 F c 3
q

-q

f1(x)f2(t - x) dx d = 3
q

t = -q3
q

x = -q

f1(x)f2(t - x) dx e-j�t dt

F Cf2(t) D = F2(�),F Cf1(t) D = F1(�)

F(�) = 3
q

-q

f(t)e-j�t dt

TABLE 15.3 Properties of the Fourier transform

f(t) F(�) PROPERTY

Linearity

Time-scaling

Time-shifting

Modulation

Differentiation

Convolution
1

2�
 3

q

-q

F1(x)F2(� - x) dxf1(t)f2(t)

F1(�)F2(�)3
q

-q

f1(x)f2(t - x) dx

(j)n 
dn F(�)

d�ntnf(t)

(j�)n F(�)
dn f(t)

dtn

FA� - �0Bej�t0 f(t)

e-j�t0 F(�)f At - t0B

1
a

 F a�

a
b , a 7 0f(at)

F1(�) ; F2(�)f1(t) ; f2(t)

AF(�)Af(t)
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E15.17 Determine the output in Fig. E15.17 if the signal the network
impulse response and all initial conditions are zero.h(t) = e-2tu(t),

vi(t) = e-tu(t) V,vo(t)

Learning Assessments
ANSWER:
vo(t) = Ae-t

- e-2tBu(t) V.

vi(t) vo(t)h(t)
Figure E15.17

E15.18 Use the transform technique to find in Fig. E15.18
if v(t) = 15 cos 10t V.

vo(t) ANSWER:
vo(t) = 4.12 cos A10t + 74°B V.

+
–

3 �

2 �0.1 H

0.1 F

v(t) vo(t)

±

–
Figure E15.18

Vo(�)=H(�) Vi(�)Vi(�) H(�)
Figure 15.14 

Representation of the time
convolution property.

where represents the input signal, is the network transfer function, and 
represents the output signal. Eq. (15.45) tacitly assumes that the initial conditions of the net-
work are zero.

Vo(�)H(�)Vi(�)

PARSEVAL’S THEOREM A mathematical statement of Parseval’s theorem is

15.46

This relationship can be easily derived as follows:

The importance of Parseval’s theorem can be seen if we imagine that f(t) represents the
current in a 1-� resistor. Since f2(t)is power and the integral of power over time is energy, 
Eq. (15.46) shows that we can compute this 1-� energy or normalized energy in either the
time domain or the frequency domain.

 = 3
q

-q

 
1

2�
 @F(�) @ 2 d�

 = 3
q

-q

 
1

2�
 F(�)F*(�) d�

 = 3
q

-q

 
1

2�
 F(�)F(-�) d�

 =

1

2�
 3

q

-q

F(�)3
q

-q

f(t)e-j(-�)t dt d�

 3
q

-q

f2(t) dt = 3
q

-q

f(t) 
1

2�
 3

q

-q

F(�)ej�t d� dt

3
q

-q

f2(t) dt =

1

2�
 3

q

-q

@F(�) @ 2 d�
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Using the transform technique, we wish to determine in Fig. 15.15 if 
(a) and (b) 

a. In this case since then

for the network is

From Eq. (15.45),

Hence, from Table 15.2, we see that

b. In this case, since 

The output voltage in the frequency domain is then

Using the inverse Fourier transform gives us

Employing the sampling property of the unit impulse function, we obtain

This result can be easily checked using phasor analysis.

 = 4.90 cos (2t - 11.31°) V

 = 25 a ej2t

10.2ej11.31°
+

e-j2t

10.2e-j1.31°
b

 vo(t) = 25 a ej2t

10 + j2
+

e-j2t

10 - j2
b

vo(t) = F-1 CVo(�) D =

1

2�
 3

q

-q

50� 
�(� - 2) + �(� + 2)

10 + j�
 ej�t d�

Vo(�) =

50� C�(� - 2) + �(� + 2) D
(10 + j�)

Vi(�) = 5��(� - 2) + 5��(� + 2) V

vi(t) = 5 cos 2t,

vo(t) = 6.25 Ce-2tu(t) - e-10tu(t) D  V

 =

50

8
 a 1

2 + j�
-

1

10 + j�
b  

 =

50

(2 + j�)(10 + j�)

 Vo(�) = H(�) Vi(�)

 =

10

10 + j�

 H(�) =

R

R + j�L

H(�)

Vi(�) =

5

2 + j�
 V

vi(t) = 5e-2tu(t) V,

vi(t) = 5 cos 2t V.vi(t) = 5e-2tu(t) V
vo(t)

SOLUTION

±
– vo(t)vi(t)

+

-

L=1 H

R=10 �

Figure 15.15

Simple RL circuit.
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780 C H A P T E R  1 5 F O U R I E R  A N A LY S I S  T E C H N I Q U E S

Consider the network shown in Fig. 15.16a. This network represents a simple low-pass fil-
ter, as shown in Chapter 12. We wish to illustrate the impact of this network on the input
signal by examining the frequency characteristics of the output signal and the relationship
between the 1-� or normalized energy at the input and output of the network.

The network transfer function is

The Fourier transform of the input signal is

Then, using Eq. (15.45), the Fourier transform of the output is

Using the techniques of Chapter 12, we note that the straight-line log-magnitude plot
(frequency characteristic) for these functions is shown in Figs. 15.16b–d. Note that the low-
pass filter passes the low frequencies of the input signal but attenuates the high frequencies.

Vo(�) =

1

(1 + 0.2j�)(1 + 0.05j�)

Vi(�) =

20

20 + j�
=

1

1 + 0.05j�

H(�) =

1�RC

1�RC + j�
=

5

5 + j�
=

1

1 + 0.2j�

(a) (b)

20 �

–20 dB/decade

|Vi(�)|(dB)

5 �

–20 dB/decade

|H(�)|(dB)

(c)

0

|Vo(�)|(dB)

5 �

–20 dB/decade

–40 dB/decade

20

0

0

(d)

vi(t)=20e–20tu(t) V

R=20 k�

C=10 �F
vo(t)

+

-

+

-

Figure 15.16

Low-pass filter, its frequency characteristic, and its output spectra.

APPLICATION
EXAMPLE 15.13

15.3
Application
Examples

SOLUTION
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E15.19 Compute the total 1-� energy content of the signal using both the
time-domain and frequency-domain approaches.

vi(t) = e-2tu(t) V

Learning Assessments
ANSWER: W = 0.25 J.

E15.20 Compute the 1-� energy content of the signal in the frequency
range from 0 to 1 rad/s.

vi(t) = e-2tu(t) V ANSWER: W = 0.07 J.

The normalized energy at the filter input is

The normalized energy at the filter output can be computed using Parseval’s theorem. Since

and

is an even function, and therefore

However, we can use the fact that

Then

 = 2.0 J

 =

104

375
 a 1

�
b c 1

5
 a�

2
b -

1

20
 a�

2
b d

 Wo =

1
�

 a 3
q

0
 
104�375

�2
+ 25

 d� - 3
q

0
 

104�375

�2
+ 400

 d� b

104

A�2
+ 25B A�2

+ 400B =

104�375

�2
+ 25

-

104�375

�2
+ 400

Wo = 2 a 1

2�
b 3

q

0
 

104 d�

A�2
+ 25B A�2

+ 400B

@Vo(�) @ 2

@Vo(�) @ 2 =

104

A�2
+ 25B A�2

+ 400B

Vo(�) =

100

(5 + j�)(20 + j�)

 = 10 J

 =

400

-40
 e-40t 2q

0

 Wi = 3
q

0
A20e-20tB2 dt

E15.21 Determine the total 1-� energy content of the output in Fig. E15.21 if
vi(t) = 5e2t u(t) V.

vo(t) ANSWER: W = 5.21 J.

+
– 10 �

1 H

vi (t) Vo(t)

+

–
Figure E15.21
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782 C H A P T E R  1 5 F O U R I E R  A N A LY S I S  T E C H N I Q U E S

��LP

|H(�)|

��LP

|Vo(�)|

(b)

0

|Vi(�)|

��T

(a)

(e)

��BE1 ��BE
2

�BE1
�BE2

�T

|Vo(�)||H(�)|

|Vo(�)|

��HP �T

(c) (d)

��BP1
��BP2

�BP1
�BP2

��HP

|H(�)| |Vo(�)||H(�)|

Figure 15.17

Frequency spectra for the input and output of ideal low-pass, high-pass,band-pass, and band-
elimination filters.

Example 15.13 illustrates the effect that has on the frequency spectrum of the
input signal. In general, can be selected to shape that spectrum in some prescribed
manner. As an illustration of this effect, consider the ideal frequency spectrums shown in
Fig. 15.17. Figure 15.17a shows an ideal input magnitude spectrum and
the output magnitude spectrum which are related by Eq. (15.45), are shown in
Figs. 15.17b–e for ideal low-pass, high-pass, band-pass, and band-elimination filters,
respectively.

We note that by using Parseval’s theorem we can compute the total energy content of a
signal using either a time-domain or frequency-domain approach. However, the frequency-
domain approach is more flexible in that it permits us to determine the energy content of a
signal within some specified frequency band.S U M M A

@Vo(�) @ ,
@H(�) @@Vi(�) @ .

H(�)
H(�)

In AM (amplitude modulation) radio, there are two very important waveforms—the signal,
and the carrier. All of the information we desire to transmit, voice, music, and so on,

is contained in the signal waveform, which is in essence transported by the carrier.
Therefore, the Fourier transform of contains frequencies from about 50 Hz to
20,000 Hz. The carrier, is a sinusoid oscillating at a frequency much greater than those
in For example, the FCC (Federal Communications Commission) rules and regulations
have allocated the frequency range 540 kHz to 1.7 MHz for AM radio station carrier fre-
quencies. Even the lowest possible carrier frequency allocation of 540 kHz is much greater
than the audio frequencies in In fact, when a station broadcasts its call letters and fre-
quency, they are telling you the carrier’s frequency, which the FCC assigned to that station!

In simple cases, the signal, is modified to produce a voltage of the form

v(t) = CA + s(t) D  cos A�c tB
s(t),

s(t).

s(t).
c(t),

s(t)

s(t),
APPLICATION
EXAMPLE 15.14
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where A is a constant and is the carrier frequency in This voltage, with the
signal “coded” within, is sent to the antenna and is broadcast to the public whose radios “pick
up” a faint replica of the waveform 

Let us plot the magnitude of the Fourier transform of both and given that is

where is 1000 Hz, the carrier frequency is 900 kHz, and the constant A is unity.

The Fourier transform of is

and is shown in Fig. 15.18.
The voltage can be expressed in the form

The Fourier transform for the carrier is

The term can be written as

Using the property of modulation as given in Table 15.3, we can express the Fourier trans-
form of as

Employing we find

Finally, the Fourier transform of is

which is shown in Fig. 15.19. Notice that is centered about the carrier frequency. This
is the effect of modulation.

S(�)

     + �A� + �a - �cB + �A� - �a + �cB + �A� + �a + �cB F
 V(�) =

�

2
 E2�A� - �cB + 2�A� + �cB + �A� - �a - �cB

v(t)

     + �A� - �a + �cB + �A� + �a + �cB F
 =

�

2
 E�A� - �a - �cB + �A� + �a - �cB

 F Cs(t) cos A�c tB D = F Ccos A�a tB cos A�c tB D
S(�),

F Cs(t) cos A�c tB D =

1

2
 ESA� - �cB + SA� + �cB F

s(t) cos A�c tB

s(t) cos A�c tB = s(t) e ej�c t
+ e-j�c t

2
f

s(t) cos A�c tB
F Ccos A�c tB D = ��A� - �cB + ��A� + �cB

v(t) = C1 + s(t) D  cos A�c tB = cos A�c tB + s(t) cos A�c tB
v(t)

S(�) = F Ccos A�a tB D = ��A� - �aB + ��A� + �aB
s(t)

fa

s(t) = cos A2�fa tB
s(t)v(t)s(t)

v(t).

v(t),rad�s.�c

SOLUTION

0 1000

�

–1000

S(f)

f (Hz)

Figure 15.18

Fourier transform
magnitude for s(t) versus
frequency.

0 901900899

�

�/2

–901–900–899

V(f)

f (kHz)

Figure 15.19

Fourier transform of the
transmitted waveform 
versus frequency.

v(t)
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784 C H A P T E R  1 5 F O U R I E R  A N A LY S I S  T E C H N I Q U E S

Harmonics can be quite detrimental in a power distribution system. As an example, consider
the scenario shown in Fig. 15.20, where a nonlinear three-phase load creates harmonic
currents on the lines. Table 15.4 shows the magnitude of the current for each of the har-
monics. If the resistance of each line is what is the total power loss in the system? In
addition, how much of the power loss is caused by the harmonic content?

The power loss in a line at any single frequency is

Using this equation, we can calculate the power loss in a line for the fundamental and each
harmonic frequency. The results of this calculation are shown in Table 15.5. The power lost
in each line is simply the sum of each of the powers shown in Table 15.5. Since this is a
three-phase system, the total power that is lost in the lines is simply

Note that the harmonics account for 301.8 W, or 9.14% of the total power that is lost.

Ptotal = 3[1000 + 0.5 + 90 + 0.1 + 10] = 3301.8 W

Pline =

I2
line

2
 Rline

0.2 �,

SOLUTION

Rline

Rline

Rline

3–phase
source

Nonlinear
load

Figure 15.20 

A simple model for a
three-phase distribution

system connecting a
nonlinear load.

TABLE 15.4 Harmonic line current content for a nonlinear load

HARMONIC MAGNITUDE (A)

Fundamental 100

1st 5

2nd 30

3rd 1

4th 10

TABLE 15.5 Line power loss at the fundamental and each
harmonic frequency

HARMONIC P (W)

Fundamental 1000

1st 0.5

2nd 90

3rd 0.1

4th 10

APPLICATION
EXAMPLE 15.15
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Electrical sources such as batteries, solar panels, and fuel cells produce a dc output voltage.
An electrical load requiring an ac voltage can be powered from a dc source using a device
called an inverter, which converts a dc voltage to an ac voltage. Inverters can produce
single-phase or three-phase ac voltages. Single-phase inverters are often classified as pure
or true sine wave inverters or modified sine wave inverters. The output from a pure sine
wave inverter is shown in Fig. 15.21. This waveform was discussed in Chapter 8 and could
be described by volts. Fig. 15.22 is the output voltage from a modified
sine wave inverter. Note that this waveform is more square wave than sine wave.

Let’s determine the Fourier components of the modified sine wave inverter output volt-
age using the waveform in Fig. 15.23. Note that this waveform consists of one positive pulse
of width centered about and a negative pulse of the same width centered about 
Close examination of this waveform reveals that it is an odd function with half-wave sym-
metry. Therefore,

 bn = 0 for n even

  an = 0 for all n

 a0 = 0

3T�4.T�4t�

v(t) = 170 sin 377t

Figure 15.21

Output voltage for a pure
sine wave inverter.

Figure 15.22

Output voltage for a
modified sine wave
inverter.
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We can find for n odd using

The waveform has a value of between and and zero
elsewhere over the interval from 0 to . Therefore,

Integrating yields

Recalling that and evaluating the function at the limits produces

The expression in brackets is . Using the appropriate
trigonometric identities, we have

-cos(� + 
) + cos(� - 
)

bn =

2Vin

�
c-cos a n�0T

4
+

n�0t�

2
b + cos a n�0T

4
-

n�0t�

2
b d

�0T = 2p

bn =

4Vin

n�0T
 c-cos n�0t d

T�4 + t��2

T�4 - t��2

bn =

4Vin

T 3
T�4 + t��2

T�4 - t��2
sin n�0 t dt

bn =

4

T3
T�4 + t��2

T�4 - t��2
Vin sin n�0 t dt

T�2
t = T�4 + ��2t = T�4 - ��2Vin

bn =

4

T0
 3

T0�2

0
f(t) sin n�0t dt

bn

v(t)

t�

t�

t–T

Vin

–Vin

3T/4–3T/4 T/4–T/4–T/2 T/2 T

Figure 15.23

Waveform for determining
Fourier components of

the modified sine wave
inverter output voltage.

-cos(� + 
) + cos(� - 
) = 2 sin � sin 


-cos(� + b) + cos(� - 
) = -cos � cos 
 + sin � sin 
 + cos � cos 
 + sin � sin 


The expression for bn, which is valid n odd, becomes

Let’s define and again utilize :

bn =

4Vin

n�
c sin a n�

2
b sin a n�

2
b d

�0T = 2��0t� = �

bn =

4Vin

n�
c sin a n�0T

4
b sin a n�0t�

2
b d
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Using this expression,

Now let’s plot the absolute value of , and as � varies between 0º and 180º for
volt as shown in Fig. 15.24. Note that —the coefficient of the first harmonic or

fundamental—is zero for and reaches a maximum value of volts for
. Examination of this plot reveals that the absolute value of the third harmonic is

zero for . The expression for contains the term , which has a value of
zero for . If we chose , the amplitude of the fifth harmonic would be zero.
This example illustrates that it is possible to eliminate one harmonic from the Fourier series
for the output voltage by proper selection of the angle �.

� = 72°� = 120°
sin(3��2)b3� = 120°

� = 180°
4�� = 1.273� = 0°

b1Vin = 1
b5b1, b3

b5 =

4Vin

5�
 sin a 5�

2
b sin a 5�

2
b =

4Vin

5�
 sin a 5�

2
b

b3 =

4Vin

3�
 sin a 3�

2
b sin a 3�

2
b = -  

4Vin

3�
 sin a 3�

2
b

b1 =

4Vin

�
 sin a�

2
b sin a �

2
b =

4Vin

�
 sin a �

2
b

Figure 15.24

Plot of harmonic amplitude
versus the angle �.

Two nearby AM stations are broadcasting at carrier frequencies

and
f2 = 960 kHz

f1 = 900 kHz
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To simplify the analysis, we will assume that the information signals, and are
identical. It follows that the Fourier transforms and are also identical, and a
sketch of what they might look like is shown in Fig. 15.25.

The broadcast waveforms are

and

An antenna in the vicinity will “pick up” both broadcasts. Assuming that and are
of equal strength at the antenna, the voltage received is

where K is a constant much less than 1. (Typical antenna voltages are in the �V-to-mV
range). A sketch of the Fourier transform of is shown in Fig. 15.26.

Before passing on to amplifying and decoding circuitry, we must first employ a
tuner to select a particular station. Let us design an RLC band-pass filter that contains a
variable capacitor to serve as our tuner. Such a circuit is shown in Fig. 15.27.

The transfer function is easily found to be

As shown in Chapter 12, the center frequency and bandwidth can be expressed in hertz as

fo =

1

2�  1LC

Gv(s) =

Vo(s)

Vr(s)
=

s a R

L
b

s2
+ s a R

L
b +

1

LC

vr(t)
vr(t)

vr(t) = K Cv1(t) + v2(t) D

v2(t)v1(t)

v2(t) = C1 + s2(t) D  cos (�2 tB
v1(t) = C1 + s1(t) D  cos (�1 tB

S2(�)S1(�)
s2(t),s1(t)

SOLUTION

f (kHz)

S (f)

–20 200

Figure 15.25 

Sketch of an arbitrary AM
Fourier transform.

f (kHz)–960–940 –920 –900 0 900 920 940 960

Vr(f)Figure 15.26 

Fourier transform of the
antenna waveform .vr(t)

±
–

L C

R vo(t)

+

-

vr(t)

Figure 15.27 

RLC band-pass
filter-tuner circuit.
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and

Since the two carrier frequencies are separated by only 60 kHz, the filter bandwidth should
be less than 60 kHz. Let us arbitrarily choose a bandwidth of 10 kHz and Based
on this selection, our design involves determining the resulting L and C values. From the
expression for bandwidth,

or

Placing the center frequency at 900 kHz, we find C to be

or

To tune to 960 kHz we need only change C to 172.6 pF and the bandwidth is unchanged.
A Bode plot of the magnitude of tuned to 960 kHz is shown in Fig. 15.28. Note that the
broadcast at 900 kHz, though attenuated, is not completely eliminated. If this is a problem, we
can either narrow the bandwidth through R and/or L or design a more complex tuner filter.

Gv(s)

C = 196.4 pF

C =

1

L C2�fo D 2

L = 159.2 �H

L =

1

2�
 

R

BW

R = 10 �.

BW =

1

2�
 
R

L

0

G
ai

n 
m

ag
ni

tu
de

0.2

0.4

0.6

0.8

1.0

0.80 0.85 0.90 0.95 1.00 1.05 1.10

Frequency (MHz)

Figure 15.28

Bode plot for RLC tuner
circuit of Fig. 15.27.

The signal expressed in Eq. (15.47) describes a 10-kHz signal swamped in noise that has
two frequency components—1 kHz and 100 kHz. From the equation we see that the signal
amplitude is only 1/10 that of the noise components. Let us use the circuit in Fig. 15.29 to
design a band-pass filter such that the signal amplitude is 100 times that of the noise com-
ponents. Assume that the op-amps are ideal.

15.47

Note that the band-pass filter in Fig. 15.29 consists of two identical cascaded stages. We
need only determine the gain of a single stage, since the total gain is

A(j�) = A1(j�)A1(j�) = CA1(j�) D 2
A1(j�),

 + 0.01 sin C(2�)104t D + 0.1 sin C(2�)105t D  V
 vS(t) = 0.1 sin C(2�)103t D

SOLUTION
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Applying KCL at the first op-amp’s inverting input, we have

or

15.48

Using KCL at node A yields

Multiplying both sides by and collecting terms produces

Substituting from Eq. (15.48) and solving for the gain, 

Finally, we rearrange the gain expression in the form

15.49

which matches the general form of a band-pass filter given by the expression

15.50

Comparing Eqs. (15.49) and (15.50), we find

15.51

There are two requirements for the filter performance. First, given the signal and noise
amplitudes at the filter input, producing the desired ratio of signal to noise components at

 Q =

1

2
 
B

R2

R1
   Ao =

-R2

2R1

 �0 =

1

C1R1 R2

   
�0

Q
=

2

CR2
 

Vo

VS
=

Ao c�0

Q
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+ c�0
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- c 1
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+ c 2

CR2
d j� +

1

C2R1 R2

A1(j�) =
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=

-j�CR2

-�2C2R1 R2 + j�2CR1 + 1

A1(j�) = Vo�VS ,

VS = VA C2j�CR1 + 1 D - Voj�CR1

R1

VS - VA

R1
= AVA - VoBj�C + VAj�C

VA =

-Vo

j�CR2

VAj�C =

-Vo
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±
–

R1

R2
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R1

C
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C
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A
+

vo
-
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-

Stage one Stage two
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+

Figure 15.29 

A two-stage, fourth-
order band-pass filter.
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the output requires the ratio of the center frequency gain, to the gains at 1 kHz and
100 kHz to be 1000/1. Since the band-pass gain is symmetric about the center frequency on
a log axis, the gains at 1 kHz and 100 kHz will be the same. Thus, we will focus on the gain
at 1 kHz only. From Eq. (15.50) the ratio of the single-stage gain at and is

For simplicity’s sake, we will assume that Solving for Q yields

or, employing Eq. (15.51),

Thus, the gain requirement forces Arbitrarily choosing fixes at
The second requirement is that must equal 10 kHz. From Eq. (15.51) and our

resistor values, we have

which yields C=2.5 nF.
The resulting Bode plot is shown in Fig. 15.30a where the center frequency is at 10 kHz,

the gain at 10 kHz is roughly 400, and the gains at 1 kHz and 100 kHz are 0.4—a ratio of
1000/1. Output voltage results from a transient analysis are shown in Fig. 15.30b for 10
cycles of the 10 kHz signal. Appropriately, the waveform is a 4-V sine wave at 10 kHz with
little visible distortion. 
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-Ao �2
0

10Q2�2
0 -

�2
0

100
+ j 

�2
0

10Q
2

�0�10�0

Ao ,

(a)

5000

3750

2500

1250

100Hz 100KHz 1.0MHz1.0KHz

Frequency

(1. 000K, 402.29m) (100. 00K, 413.20m)

(10. 00K, 399.30)

10KHz
00

U(Uo)

Figure 15.30

(a) Results from a frequency
analysis showing the ampli-
fication of the signal over
the noise, (b) transient
simulation results, and
(c) the corresponding FFT.
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The Fourier components of the output are obtained through use of the Fast Fourier
Transform and from the result in plot, shown in Fig. 15.30c, we confirm that the signal
amplitude is 1000 times longer than the noise components. It should be mentioned that the
FFT in Fig. 15.30c is the result of a 5-ms transient simulation (i.e., 50 cycles at 10 kHz). In
general, the more cycles in the transient analysis, the better is the frequency resolution of
the FFT. Op-amps with gains of 106 and supply rails of ; 15 V were used in the simulation. 

(b)

–5.0V

0V

5.0V

2.00ms 2.25ms

Time

2.50ms 2.75ms 3.00ms

V(Vo)

(c)

0V

2.0V

4.0V

100Hz 1.0KHz 10KHz 100KHz 1.0MHz

FrequencyV(Vo)

(1. 000K, 44.73m) (100. 00K, 41.48m)

(10. 00K, 3.831)

Figure 15.30 

(continued)

The circuit shown in Fig. 15.31 is a notch filter. At its resonant frequency, the L-C series circuit
has zero effective impedance, and, as a result, any signal at that frequency is short-circuited.
For this reason, the filter is often referred to as a trap.

Consider the following scenario. A system operating at 1 kHz has picked up noise at a fun-
damental frequency of 10 kHz, as well as some second- and third-harmonic junk. Given this
information, we wish to design a filter that will eliminate both the noise and its attendant
harmonics.

DESIGN
EXAMPLE 15.19
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The key to the trap is setting the resonant frequency of the L-C series branch to the fre-
quency we wish to eliminate. Since we have three frequency components to remove,
10 kHz, 20 kHz, and 30 kHz, we will simply use three different L-C branches as shown in
Fig. 15.32 and set to trap at 10 kHz, at 20 kHz, and at 30 kHz. If we arbi-
trarily set the value of all inductors to and calculate the value of each capacitor, we
obtain

The three traps shown in Fig. 15.32 should eliminate the noise and its harmonics.

C3 =

1

(2�)2A9 * 108B A10-5B = 2.81 �F

C2 =

1

(2�)2A4 * 108B A10-5B = 6.34 �F

C1 =

1

(2�)2f2L
=

1

(2�)2A108B A10-5B = 25.3 �F

10 �H
L3 C3L2 C2L1 C1

SOLUTION

+

-

R

C

L

vo(t)

+

-

vin(t)

Figure 15.31

A notch filter, or trap,
utilizing a series L-C branch.

+

-

R

C3

L3

C2

L2

C1

L1

vo(t)

+

-

vin(t)

Figure 15.32

The notch filter in Fig. 15.31
expanded to remove three
different frequency
components.

S U M M A R Y
•

■ A periodic function, its representation using a Fourier
series, and some of the useful properties of a Fourier series
are outlined here.

■ A periodic function

is the period

■ Exponential Fourier series of a periodic
function

■ Trigonometric Fourier series of a periodic
function

and

 a0 =

1

T0
 3

t1 + T0

t1

f(t) dt

  bn =

2

T0
 3

t1 + T0

t1

f(t) sin n�0 t dt,

 an =

2

T0
 3

t1 + T0

t1

f(t) cos n�0 t dt,

 f(t) = a0 + a
q

n = 1
Aan cos n�0 t + bn sin n�0 tB

f(t) = a
q

n = -q

cn ejn�0t ,  cn =

1

T0
 3

t1 + T0

t1

f(t)e-jn�0t  dt

f(t) = fAt + nT0B, n = 1, 2, 3, p  and T0
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■ Even symmetry of a periodic function

and

■ Odd symmetry of a periodic function

■ Half-wave symmetry of a periodic function

for n even

■ Time-shifting of a periodic function

■ Frequency spectrum of a periodic function
A Fourier series contains discrete frequency components,
called line spectra.

■ Steady-state response of a periodic
function input The periodic function input is
expressed as a Fourier series, and phasor analysis is used to
determine the response of each component of the series.
Each component is transformed to the time domain, and
superposition is used to determine the total output.

The Fourier transform, its features and properties, as well
as its use in circuit analysis, are outlined here.

■ Fourier transform for an aperiodic function

■ Fourier transform pairs and properties 
The Fourier transform pairs in Table 15.2 and the
properties in Table 15.3 can be used together to transform
time-domain functions to the frequency domain and 
vice versa.

■ Parseval’s theorem for determining the
energy content of a signal

■ Network response to an aperiodic input
An aperiodic input x(t) can be transformed to the
frequency domain as Then using the network trans-
fer function the output can be computed as

y(t) can be obtained transforming
to the time domain.Y(�)

Y(�) = H(�)X(�).
H(�),

X(�).

3
q

-q

f2(t) dt =

1

2�
 3

q

-q

@F(�) @ 2 d�

F(�) = 3
q

-q

f(t)e-j�t and f(t) =

1

2�
 3

q

-q

F(�)ej�t d�

f(t - t0) = a
q

n = -q

Acn e-jn�0t 0Bejn�0 t

 bn =

4

T0
 3

T0�2

0
f(t) sin n�0 t dt  for n odd and a0 = 0

 an =

4

T0
 3

T0�2

0
f(t) cos n�0 t dt  for n odd

 an = bn = 0,

 f(t) = -f At - T0�2B

 an = 0, bn =

4

T0
 3

T0�2

0
f(t) sin n�0 t dt, and a0 = 0

 f(t) = -f(-t)

 a0 =

2

T0
 3

T0�2

0
f(t) dt

 bn = 0,

 an =

4

T0
 3

T0�2

0
f(t) cos n�0 t dt, 

 f(t) = f(-t)

P R O B L E M S
•

15.1 Find the exponential Fourier series for the periodic pulse
train shown in Fig. P15.1.

Figure P15.1

0 0.1 1 1.1

10

v(t)

t

15.2 Find the exponential Fourier series for the periodic signal 
shown in Fig. P15.2.

Figure P15.2

0

6

f(t)

1 2 3 4 5 6 7 8 9 10
T0

t

15.3 Find the exponential Fourier series for the signal shown
in Fig. P15.3.

Figure P15.3

15.4 Find the exponential Fourier series for the signal shown
in Fig. P15.4.

Figure P15.4

0 t1

1

f(t)

2 3 4 5 6

0 2 4 6 8 10

±1

–1

f(t)

t

irwin15_751-800hr.qxd  23-08-2010  16:37  Page 794



P R O B L E M S     795

15.5 Compute the exponential Fourier series for the waveform
that is the sum of the two waveforms in Fig. P15.5 by
computing the exponential Fourier series of the two
waveforms and adding them.

Figure P15.5

15.6 Given the waveform in Fig. P15.6, determine the type
of symmetry that exists if the origin is selected at
(a) and (b) .

Figure P15.6

15.7 What type of symmetry is exhibited by the two wave-
forms in Fig. P15.7?

Figure P15.7

0 1 4 52
3

6

f1(t)

t

(a)

(b)

f2(t)

t0 1 2
3

4 5

l1 l2

l2l1

(a)

2

t

v1(t)

–5 0

3

1

–4 –3 –2 –1 1 2 3 4 5 6

(b)

v2(t)

t–5 0–4 –3 –2 –1 1 2 3 4 5 6

2

1

15.8 Find the trigonometric Fourier series for the periodic
waveform shown in Fig. P15.8.

Figure P15.8

15.9 Find the trigonometric Fourier series for the waveform
shown in Fig. P15.9.

Figure P15.9

15.10 Given the waveform in Fig. P15.10, show that

Figure P15.10

15.11 Find the trigonometric Fourier series coefficients for the
waveform in Fig. P15.11.

Figure P15.11

15.12 Find the trigonometric Fourier series coefficients for the
waveform in Fig. P15.12.

Figure P15.12

v(t)

0 3

1

421 t

v(t)

0–1 1 3 4 5

1

t

f(t)

0 2T0T0 t

A

f(t) =

A

2
+ a

q

n = 1

-A

n�
 sin 

2n�

T0
t

v(t)

0 1 2 3 4

–1

–2

1

2

t

f(t)

1

2

t

–T0
4

—

–T0
2

—
T0
4

—

T0
2

—
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15.13 Find the trigonometric Fourier series coefficients for the
waveform in Fig. P15.13.

Figure P15.13

15.14 Find the trigonometric Fourier series coefficients for the
waveform in Fig. P15.14.

Figure P15.14

15.15 Derive the trigonometric Fourier series for the
waveform shown in Fig. P15.15.

Figure P15.15

15.16 Find the trigonometric Fourier series coefficients for the
waveform in Fig. P15.16.

Figure P15.16

15.17 Find the trigonometric Fourier series for the waveform
shown in Fig. P15.17.

Figure P15.17

v(t)

t0

–�

–� � 2� 3�

�

t

v(t)

0
1

3

1

2
4 5

v(t)

±10

–10

0 �–� t

v(t)

1
1

20 3 4

–1
t

v(t)

1
1

20 3 4

–1
t

15.18 Find the trigonometric Fourier series coefficients for the
waveform in Fig. P15.18.

Figure P15.18

15.19 Derive the trigonometric Fourier series for the function
shown in Fig. P15.19.

Figure P15.19

15.20 Derive the trigonometric Fourier series of the waveform
shown in Fig. P15.20.

Figure P15.20

15.21 Derive the trigonometric Fourier series for the function
as shown in Fig. P15.21.

Figure P15.21

15.22 The amplitude and phase spectra for a periodic function
that has only a small number of terms is shown in Fig.

P15.22. Determine the expression for .

Figure P15.22

2
4
6
8

1 2 3 4 n

Dn �n

1 2 3
4

n

±80°

–45°

v(t) if T0 = 0.1 s
v(t)

v(t)

t0 � 2�

A

v(t) = A|sin t|

f(t)

t0 2

A

1 3

v(t)

t
–V

±V

–T0
2

T0
2

—

—

v(t)

20 3 4

–1

2

6
t
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15.23 The discrete line spectrum for a periodic function is
shown in Fig. P15.23. Determine the expression for .

Figure P15.23

15.24 Plot the first four terms of the amplitude and phase spec-
tra for the signal

15.25 Determine the steady-state response of the current in
the circuit shown in Fig. P15.25 if the input voltage is
described by the waveform shown in Problem 15.15.

Figure P15.25

15.26 If the input voltage in Problem 15.25 is

find the expression for the steady-state current .

15.27 Find the steady-state current i(t) in the network in Fig.
P15.27a. If the input signal is shown in P15.27b. 

Figure P15.27

1 �

2 �vs(t)

i(t)

±

–

— F1
2

(a)

(b)

t

vs(t)

–5

±5

2
—�–

4
—�–

4
—�

2
—�

io(t)

vs(t) = 1 -

2
� a

q

n = 1

1

n
 sin 0.2�nt V

±
–

1 �

2 �

io(t)

vS(t) 2 H

io(t)

f(t) = a
q

n = 1
n odd

-2

n�
 sin 

n�

2
 cos n�0t +

6

n�
 sin n�0t

0
1
2
3
4
5

10 20 30 40 50 f (Hz)

Dn �n

10 20 30 40 50 f (Hz)

90°

f(t)
f(t) 15.28 Determine the first three terms of the steady-state 

voltage in Fig. P15.28 if the input voltage is a
periodic signal of the form

Figure P15.28

15.29 Determine the steady-state voltage in the network
in Fig. P15.29a if the input current is given in Fig.
P15.29b.

Figure P15.29

15.30 Determine the steady-state voltage in the circuit
shown in Fig. P15.30a if the input signal is shown in
Fig. P15.30b.

Figure P15.30

(a)

(b)

±
– vo(t)vs(t)

+

-

1 F1 H 2 �

1 �

vs(t) V

0 t1

1

2

2 3 4 5-1-2-3

vo(t)

i(t)

0 1 2 3 t(s)

12A

vo(t)

+

-

i(t)

i2(t)i1(t)

1 � 1 �

1 �

2 �

1 F1 H

(a)

(b)

vo(t)

±
–

1 �

1 �

i(t)

v(t) vo(t)1 F

1 H

+

-

v(t) =

1

2
+ a

q

n = 1

1

n�
(cos n� - 1)sin nt V

vo(t)
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15.31 The current is(t) shown in Fig. P15.31a is applied to the cir-
cuit shown in Fig. P15.31b. Determine the expression for
the steady-state current io(t) using the first four harmonics.

Figure P15.31

15.32 Find the average power absorbed by the network in
Fig. P15.32 if

Figure P15.32

15.33 Find the average power absorbed by the network in
Fig. P15.33 if 

Figure P15.33

±
–

30 mH24 �

12 � 50 �Fv(t)

+ 24 cos(754t - 60°)V

v(t) = 60 + 36 cos(377t + 45°)

±
–v(t)

i(t)

Network

-0.2 cos(754t - 80°) + 0.1 cos(1131t - 60°)A

i(t) = 0.2 + 0.4 cos(377t - 150°)

v(t) = 12 + 6 cos(377t - 10°) + 4 cos(754t - 60°)V

100 k�is(t)

io(t)

(b)

 1.6 �F

(a)

is(t) (A)

t

5

1

–5

—1
2

—3
2

15.34 Find the average power absorbed by the 12-� resistor
in the network in Fig. P15.33 if 

.

15.35 Determine the Fourier transform of the waveform
shown in Fig. P15.35.

Figure P15.35

15.36 Derive the Fourier transform for the following functions:

(a)

(b)

15.37 Show that

15.38 Find the Fourier transform of the function

15.39 Use the transform technique to find in the net-
work in Fig. P15.29a if (a) 
and (b) .

15.40 The input signal to a network is . The
transfer function of the network is .
Find the output of the network if the initial condi-
tions are zero.

15.41 Determine in the circuit shown in Fig. P15.41
using the Fourier transform if the input signal is

.

Figure P15.41

+

-

1 �

1 �

1 H

1 F2 � vo(t)iS(t)

is(t) = (e-2t
+ cos t)u(t) A

vo(t)

vo(t)
H(j�) = 1�(j� + 4)

vi(t) = e-3tu(t)V

i(t) = 12 cos 4t A
i(t) = 4(e-t

- e-2t)u(t) A
vo(t)

f(t) = 12e-2|t|cos 4t

F[f1(t)f2(t)] =

1

2�3
q

-q

F1(x)F2(� - x)dx

f(t) = e-2t sin 4tu(t)

f(t) = e-2t cos 4tu(t)

v(t)

A

tT

–T

–A

+ 12.5 cos(754t - 45°)V

v(t) = 50 + 25 cos(377t + 45°)
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15.42 User the Fourier transform to find in the network in
Fig. P15.42 if 

Figure P15.42

15.43 Use the transform technique to find in the net-
work in Fig. P15.43 if (a) and 

(b) .

Figure P15.43

15.44 The input signal for the network in Fig. P15.44 is
. Determine the total 1-� energy

content of the output .

Figure P15.44

vo(t)

+

-

vi(t)

+

-

1 �

1 F

vo(t)
vi(t) = 10e-5tu(t) V

3 �

1 �

1 �

2 �6 �vi(t)
±

–
vo(t)

+

–

1 F

vi(t) = 4(e - 2t
+ 2e - 2t)u(t) V

vi(t) = 4e-tu(t) V
vo(t)

1 �

1 �vs(t)

i(t)

+

–

1 H

vi(t) = 2e-tu(t).
i(t) 15.45 Compute the 1-� energy content of the signal in

Fig. P15.44 in the frequency range from to
.

15.46 Determine the 1-� energy content of the signal
in Fig. P15.44 in the frequency range from 

0 to .

15.47 Compare the 1-� energy at both the input and output of
the network in Fig. P15.47 for the given input forcing
function .

Figure P15.47

15.48 The waveform shown in Fig. P15.48 demonstrates what
is called the duty cycle; that is, D illustrates the fraction
of the total period that is occupied by the pulse.
Determine the average value of this waveform.

Figure P15.48

t

Vp

0 T0 2T0

DT0 DT0(1–D)T0 (1–D)T0

vo(t)ii(t)

+

-

1 �

1 F1 �

ii(t) = 2e-4tu(t) A

1 rad�s
vo(t)

� = 4 rad�s
� = 2

vo(t)
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a.

b.

c.

d. 7.35 cos(2t + 50.12°) + 4.61 cos(4t + 21.24°) + 2.28 cos(6t - 10.61°) + p V

4.95 cos(2t - 25.43°) + 3.19 cos(4t + 60.34°) + 1.78 cos(6t - 20.19°) + p V

10.82 cos(2t + 35.63°) + 6.25 cos(4t + 18.02°) + 2.16 cos(6t + 30.27°) + p V

8.54 cos(2t + 26.57°) + 4.63 cos(4t + 14.04°) + 3.14 cos(6t + 9.46°) + p V

15PFE-4 Find the average power absorbed by the 
network in Fig. 15PFE-4, if

.

Figure 15PFE-4

a. 

b. 

c. 

d. 

15PPFE-5 Find the average value of the waveform shown in 
Fig. 15PFE-5.

Figure 15PFE-5

a. 

b. 

c. 

d. 2 V

8 V

4 V

6 V

v(t) (V)

2

10

4 6 8
–2

t(s)

218.83 W

150.36 W

205.61 W

175.25 W

±
– 10 mH

2 �

vs(t)

i(t)

vs(t) = 20 + 10 cos(377t + 60°) + 4 cos(1131t + 45°)V

15PFE-1 Given the waveform in Fig. 15PFE-1, determine if
the trigonometric Fourier coefficient has zero
value or nonzero value and why.

Figure 15PFE-1

a. for n even due to half-wave symmetry
b. for all n due to odd symmetry
c. is finite and nonzero for all n
d. is finite and nonzero for n even

15PFE-2 Given the waveform in Fig. 15PFE-2, describe the
type of symmetry and its impact on the trigonomet-
ric Fourier coefficient .

Figure 15PFE-2

a. for n even due to odd symmetry; is
nonzero for n odd

b. is nonzero for all n
c. for all n due to half-wave symmetry
d. for n even due to half-wave symmetry; 

is nonzero for n odd

15PFE-3 Determine the first three nonzero terms of the volt-
age in the circuit in Fig. 15PFE-3 if the input
voltage is given by the expression

Figure 15PFE-3
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– 1 H

1 �

vs(t) vo(t)

+
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vs(t) =

1

2
+ a

q

n = 1
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3T0
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A

t

bn
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t

f(t)
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A
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— T
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—

T
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Courtesy of Kyu Oh/iStockphoto

H
High Definition Television You can see more clearly now—up

to five times more clearly. That’s what you get from today’s

high definition television with one to two million picture ele-

ments (pixels) per frame. Thinking back to when you first expe-

rienced HDTV, you may wonder how you could ever have been

satisfied with standard television—itself leaps ahead of your

grandparent’s black-and-white TV that received broadcasts dur-

ing only a few hours of the day.

Resolution is the main reason why HDTV gives such a super-

sharp picture.  High resolution is achieved in HDTV broadcast

systems by transmitting millions of pixels at a high frame rate.

You enjoy HDTV not only because of the high-resolution broad-

cast system but because your HDTV has sophisticated internal

electronics that convert these received digital video com-

pressed signals to a superior picture quality. It’s the ultimate

input-output system for entertainment.

In this chapter, we describe two-port networks in terms of

input and output voltages and currents.  Four sets of two-port

parameters are examined, including a hybrid set that is espe-

cially useful for describing electronic device characteristics.

16
T H E L E A R N I N G  G O A L S
F O R  T H I S C H A P T E R  A R E :

■ Know how to calculate admittance, impedance, hybrid, and
transmission parameters for two-port networks

■ Be able to convert between admittance, impedance, hybrid,
and transmission parameters

■ Understand the interconnection of two-port
networks to form more complicated networks

CHAPTER
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We show how to solve for each set using open-circuit and

short-circuit operations, and we provide a table to convert from

one set to another easily. We look at series, parallel, and cas-

cade network interconnections in terms of these parameter

sets. High definition television can be viewed as a two-port

network—internal variables are hidden. You focus on receiving

broadcast signals as inputs to your HDTV and picture quality as

its output. Later, you will learn these electronic details but

already you can begin to work with the simple two-ports of this

chapter—an elementary opening to the world of consumer elec-

tronics in HDTV.

802 C H A P T E R  1 6 T W O - P O R T  N E T W O R K S

Linear
network

A

B
(a)

A

B

C

D
(b)

Linear
network

Figure 16.1

(a) Single-port network;

(b) two-port network.

We say that the linear network in Fig. 16.1a has a single port—that is, a single pair of ter-
minals. The pair of terminals A-B that constitute this port could represent a single element
(e.g., R, L, or C), or it could be some interconnection of these elements. The linear network
in Fig. 16.1b is called a two-port. As a general rule the terminals A-B represent the input
port, and the terminals C-D represent the output port.

In the two-port network shown in Fig. 16.2, it is customary to label the voltages and cur-
rents as shown; that is, the upper terminals are positive with respect to the lower terminals,
the currents are into the two-port at the upper terminals, and, because KCL must be satisfied
at each port, the current is out of the two-port at the lower terminals. Since the network is
linear and contains no independent sources, the principle of superposition can be applied to
determine the current which can be written as the sum of two components, one due to 
and one due to Using this principle, we can write

where and are essentially constants of proportionality with units of siemens. In a sim-
ilar manner can be written as

Therefore, the two equations that describe the two-port network are

16.1

or in matrix form,

Note that subscript 1 refers to the input port and subscript 2 refers to the output port, and the
equations describe what we will call the Y parameters for a network. If these parameters

and are known, the input/output operation of the two-port is completely
defined.

y22y11 , y12 , y21 ,

B I1

I2
R = B y11

y21

y12

y22
R BV1

V2
R

 I2 = y21 V1 + y22 V2

 I1 = y11 V1 + y12 V2

I2 = y21 V1 + y22 V2

I2

y12y11

I1 = y11 V1 + y12 V2

V2 .
V1I1 ,

16.1
Admittance
Parameters
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From Eq. (16.1) we can determine the Y parameters in the following manner. Note from
the equations that is equal to divided by with the output short-circuited (i.e.,

).

16.2

Since is an admittance at the input measured in siemens with the output short-circuited, it
is called the short-circuit input admittance. The equations indicate that the other Y parame-
ters can be determined in a similar manner:

16.3

and are called the short-circuit transfer admittances, and is called the short-
circuit output admittance. As a group, the Y parameters are referred to as the short-circuit
admittance parameters. Note that by applying the preceding definitions, these parameters
could be determined experimentally for a two-port network whose actual configuration is
unknown.

y22y21y12

 y22 =

I2

V2

2  
V1 = 0

 y21 =

I2

V1

2  
V2 = 0

 y12 =

I1

V2

2  
V1 = 0

y11

y11 =

I1

V1

2  
V2 = 0

V2 = 0
V1I1y11
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Linear
networkV1

I1 I2

+

-

V2

+

-

Figure 16.2

Generalized two-port
network.

We wish to determine the Y parameters for the two-port network shown in Fig. 16.3a.
Once these parameters are known, we will determine the current in a 4-� load, which is
connected to the output port when a 2-A current source is applied at the input port.

From Fig. 16.3b, we note that

Therefore,

As shown in Fig. 16.3c,

and hence,

Also, is computed from Fig. 16.3b using the equation

I2 = - 
V1

2

y21

y12 = - 
1

2
 S

I1 = - 
V2

2

y11 =

3

2
 S

I1 = V1 a 1

1
+

1

2
b

EXAMPLE

16.1
SOLUTION
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and therefore,

Finally, can be derived from Fig. 16.3c using

and

Therefore, the equations that describe the two-port itself are

These equations can now be employed to determine the operation of the two-port for some
given set of terminal conditions. The terminal conditions we will examine are shown in
Fig. 16.3d. From this figure we note that

Combining these with the preceding two-port equations yields

or in matrix form

Note carefully that these equations are simply the nodal equations for the network in
Fig. 16.3d. Solving the equations, we obtain and therefore I2 = -  2�11 A .V2 = 8�11 V

≥
3

2

- 
1

2

- 
1

2

13

12

¥ BV1

V2
R = B 2

0
R

 0 = - 
1

2
 V1 +

13

12
 V2

 2 =

3

2
 V1 -

1

2
 V2

I1 = 2 A and V2 = -4I2

 I2 = - 
1

2
 V1 +

5

6
 V2 I1 =

3

2
 V1 -

1

2
 V2

y22 =

5

6
 S

I2 = V2 a 1

3
+

1

2
b

y22

y21 = - 
1

2
 S

(a)

V1

I1

1 �

2 �

3 �

+

-

I2

V2

+

-

(b)

V1

I1

1 �

2 �

3 �

+

-

I2

V2=0

(c)

I1

1 �

2 �

3 �

I2

V2

+

-

(d)

V12 A V2

I1

1 �

2 �

3 � 4 �

+

-

I2

V1=0

+

-

Figure 16.3

Networks employed in
Example 16.1.
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E16.1 Find the Y parameters for the two-port network shown in Fig. E16.1.

Learning Assessments
ANSWER:

y12 = y21 = - 
1

21
 S; y22 =

1

7
 S.

y11 =

1

14
 S;

E16.2 If a 10-A source is connected to the input of the two-port network in Fig. E16.1, find
the current in a 5-� resistor connected to the output port.

ANSWER: I2 = -4.29 A.

21 �

42 � 10.5 �

Figure E16.1

E16.3 Find the Y parameters for the two-port
network shown in Fig. E16.3.

ANSWER:

y21 = 16.9  mS; y22 = 7.74  �S.

y11 = 282.2  �S; y12 = -704  nS;

50 �

20 k�

500 �I1

60I1

Figure E16.3

Once again, if we assume that the two-port network is a linear network that contains no inde-
pendent sources, then by means of superposition we can write the input and output voltages
as the sum of two components, one due to and one due to 

16.4

These equations, which describe the two-port network, can also be written in matrix form as

16.5

Like the Y parameters, these Z parameters can be derived as follows:

16.6

In the preceding equations, setting or is equivalent to open-circuiting the input or
output port. Therefore, the Z parameters are called the open-circuit impedance parameters. 

is called the open-circuit input impedance, is called the open-circuit output impedance,
and and are termed open-circuit transfer impedances.z21z12

z22z11

I2 = 0I1

 z22 =

V2

I2

2  
I1 = 0

 z21 =

V2

I1

2  
I2 = 0

 z12 =

V1

I2

2  
I1 = 0

 z11 =

V1

I1

2  
I2 = 0

BV1

V2
R = B z11

z21

z12

z22
R B I1

I2
R

 V2 = z21 I1 + z22 I2

 V1 = z11 I1 + z12 I2

I2 :I1

16.2
Impedance
Parameters
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(a)

V1

I1 2 �

–j4 �

j2 �

+

-

I2

V2

+

-

(b)

V1

I1 2 �

4 �

1 �

–j4 �

j2 �

+

-

I2

V2

+

-

±
–12  0° V

Figure 16.4

Circuits employed in
Example 16.2.

E16.4 Find the Z parameters for the network in Fig. E16.4. Then compute the current in a 4-�
load if a source is connected at the input port.12/0°–V

Learning Assessments
ANSWER:
I2 = -0.73/0° A.

12 � 3 �

6 �

Figure E16.4

We wish to find the Z parameters for the network in Fig. 16.4a. Once the parameters are known,
we will use them to find the current in a 4-� resistor that is connected to the output terminals
when a source with an internal impedance of is connected to the input.

From Fig. 16.4a we note that

The equations for the two-port network are, therefore,

The terminal conditions for the network shown in Fig. 16.4b are

Combining these with the two-port equations yields

It is interesting to note that these equations are the mesh equations for the network. 
If we solve the equations for we obtain which is the current in the
4-� load.

I2 = 1.61/137.73° A,I2 ,

 0 = -j4I1 + (4 - j2)I2

 12/0° = (3 - j4)I1 - j4I2

 V2 = -4I2

 V1 = 12/0° - (1)I1

 V2 = -j4I1 - j2I2

 V1 = (2 - j4)I1 - j4I2

 z22 = -j4 + j2 = -j2 �

 z21 = -j4 �

 z12 = -j4 �

 z11 = 2 - j4 �

1 + j0 �12/0°–V

SOLUTION
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E16.5 Determine the Z parameters for the two-port network shown in Fig. E16.5.

Figure E16.5

ANSWER:

z22 = 5 - j4 �.
z21 = 5 - j8 �;z12 = 5 �;
 z11 = 15 �;

5 �

–j4 �

10 �I1

2I1

An equivalent circuit for the op-amp in Fig. 16.5a is shown in Fig. 16.5b. We will deter-
mine the hybrid parameters for this network.

Parameter is derived from Fig. 16.5c. With the output shorted, is a function of only
and and

h11 = Ri +

R1 R2

R1 + R2

R2Ri , R1 ,
h11h11 SOLUTION

EXAMPLE

16.3

16.3
Hybrid

Parameters

Under the assumptions used to develop the Y and Z parameters, we can obtain what are com-
monly called the hybrid parameters. In the pair of equations that define these parameters, and

are the independent variables. Therefore, the two-port equations in terms of the hybrid param-
eters are

16.7

or in matrix form,

16.8

These parameters are especially important in transistor circuit analysis. The parameters are
determined via the following equations:

16.9

The parameters and represent the short-circuit input impedance, the
open-circuit reverse voltage gain, the short-circuit forward current gain, and the open-
circuit output admittance, respectively. Because of this mix of parameters, they are called
hybrid parameters. In transistor circuit analysis, the parameters and are
normally labeled and ho .hi , hr , hf ,

h22h11 , h12 , h21 ,

h22h11 , h12 , h21 ,

 h22 =

I2

V2

2  
I1 = 0

 h21 =

I2

I1

2  
V2 = 0

 h12 =

V1

V2

2  
I1 = 0

 h11 =

V1

I1

2  
V2 = 0

BV1

I2
R = B h11

h21

h12

h22
R B I1

V2
R

 I2 = h21 I1 + h22 V2

 V1 = h11 I1 + h12 V2

I2

V1
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Fig. 16.5d is used to derive Since and the relationship between and
is a simple voltage divider:

Therefore,

KVL and KCL can be applied to Fig. 16.5c to determine The two equations that relate
to are

Therefore,

Finally, the relationship between and in Fig. 16.5d is

and therefore,

h22 =

Ro + R1 + R2

RoAR1 + R2B

V2

I2
=

RoAR1 + R2B
Ro + R1 + R2

V2I2

h21 = - aARi

Ro
+

R1

R1 + R2
b

 I2 =

-AVi

Ro
-

I1 R1

R1 + R2

 Vi = I1 Ri

I1I2

h21 .

h12 =

R1

R1 + R2

V1 =

V2 R1

R1 + R2

V2

V1I1 = 0, Vi = 0h12 .

(b)(a)

±
–

V2
R2

R1

+

-

V1

+

-

V1
AVi

I1

+

+ -

-

Ri Ro

R1

R2
Vi I2

V2

+

-

±
–

(c)

AVi

Ro

+ -
Vi

R1

R2

V2=0V1

I1

+

-

I2

±
–

(d)

AVi

RiRi Ro

+ -
Vi

R1

R2

V1

I1=0

+

-

V2

+

-

I2

±
–

Figure 16.5

Circuit employed in
Example 16.3.
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E16.6 Find the hybrid parameters for the network shown in Fig. E16.4.

Learning Assessments
ANSWER:

h22 =

1

9
 S.h21 = - 

2

3
 ;h12 =

2

3
 ;

h11 = 14 �;

E16.8 Find the hybrid parameters for the two-port network shown in Fig. E16.3. ANSWER:

h22 = 49.88  �S.

h21 = 59.85;h12 = 2.49 * 10- 3;

h11 = 3543.6 �;

E16.7 If a 4-� load is connected to the output port of the network examined in Learning
Assessment E16.6, determine the input impedance of the two-port with the load connected.

ANSWER: Zi = 15.23 �.

The network equations are, therefore,

 I2 = - aARi

Ro
+

R1

R1 + R2
b I1 +

Ro + R1 + R2

RoAR1 + R2B  V2

 V1 = aRi +

R1 R2

R1 + R2
b I1 +

R1

R1 + R2
 V2

16.4
Transmission

Parameters

The final parameters we will discuss are called the transmission parameters. They are
defined by the equations

16.10

or in matrix form,

16.11

These parameters are very useful in the analysis of circuits connected in cascade, as we will
demonstrate later. The parameters are determined via the following equations:

16.12

A, B, C, and D represent the open-circuit voltage ratio, the negative short-circuit transfer
impedance, the open-circuit transfer admittance, and the negative short-circuit current ratio,
respectively. For obvious reasons the transmission parameters are commonly referred to as
the ABCD parameters.

 D =

I1

-I2

2  
V2 = 0

 C =

I1

V2

2  
I2 = 0

 B =

V1

-I2

2  
V2 = 0

 A =

V1

V2

2  
I2 = 0

BV1

I1
R = BA

C
B
D
R B V2

-I2
R

 I1 = CV2 - DI2

 V1 = AV2 - BI2
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E16.9 Compute the transmission parameters for the two-port network in Fig. E16.1.

Learning Assessments
ANSWER:

D =

3

2
 .C =

1

6
 S;

B = 21 �;A = 3;

E16.10 Find the transmission parameters for the two-port network
shown in Fig. E16.5.

ANSWER:

D = 0.64 + j0.225.C = 0.056 + j0.09 S;

B = 4.61 + j3.37 �;A = 0.843 + j1.348;

E16.11 Find Vs if V rms in the network shown in Fig. E16.11. V2 = 220/0° ANSWER: V rms. Vs = 1015.9/-137.63°

We will now determine the transmission parameters for the network in Fig. 16.6.

Let us consider the relationship between the variables under the conditions stated in the
parameters in Eq. (16.12). For example, with can be written as

or

Similarly, with the relationship between and is

or

In a similar manner, we can show that and D = 1 + j�.C = j�

B =

V1

-I2
= 2 + j�

-I2 =

V1

1 +

1�j�

1 + 1�j�
 

 a 1�j�

1 + 1�j�
b

V1I2V2 = 0,

 A =

V1

V2

2  
I2 = 0

= 1 + j�

 V2 =

V1

1 + 1�j�
 a 1

j�
b

I2 = 0, V2

EXAMPLE

16.4 SOLUTION

I1 1 � 1 �

1 F

I2

V2

+

-

V1

+

-

Figure 16.6 

Circuit used in
Example 16.4

Figure E16.11

+
–

VS V1

+

–

V2

+

–

I1 I2

Two–port
network

10 kVA
0.8 lag

5:1

Ideal

1 � j2 �

BV1

I1
R = B0.333 + j0.333

j0.1667

-(1.333 + j6)

-(0.333 + j0.333))
R BV2

I2
R
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TABLE 16.1 Two-port parameter conversion formulas

B h11

h21

h12

h22
RD B

D

- 
1
D

¢T

D
C
D

TD 1
y11

y21

y11

-y12

y11

¢Y

y11

TD ¢ Z

z22

-z21

z22

z12

z22

1
z22

T

D -¢H

h21

-h22

h21

-h11

h21

-1
h21

TcA B
C D

dD -y22

y21

-¢Y

y21

-1
y21

-y11

y21

TD z11

z21

1
z21

¢Z

z21

z22

z21

T

D 1
h11

h21

h11

-h12

h11

¢H

h11

TD D
B

- 
1
B

-¢T

B
A
B

TB y11

y21

y12

y22
RD z22

¢Z

-z21

¢Z

-z12

¢Z

z11

¢Z

T

D ¢H

h22

-h21

h22

h12

h22

1
h22

TD A
C
1
C

¢T

C
D
C

TD y22

¢Y

-y21

¢Y

-y12

¢Y

y11

¢Y

TB z11

z21

z12

z22
R

E16.12 Determine the Y parameters for a two-port if the Z parameters are

Z = B 18

6

6

9
R

Learning Assessment
ANSWER:

y22 =

1

7
 S.

 y12 = y21 = - 
1

21
 S;

y11 =

1

14
 S;

16.6
Interconnection

of Two-Ports

Interconnected two-port circuits are important because when designing complex systems it is
generally much easier to design a number of simpler subsystems that can then be intercon-
nected to form the complete system. If each subsystem is treated as a two-port network, the
interconnection techniques described in this section provide some insight into the manner in
which a total system may be analyzed and/or designed. Thus, we will now illustrate tech-
niques for treating a network as a combination of subnetworks. We will, therefore, analyze a

If all the two-port parameters for a network exist, it is possible to relate one set of parameters
to another since the parameters interrelate the variables and 

Table 16.1 lists all the conversion formulas that relate one set of two-port parameters to
another. Note that and refer to the determinants of the matrices for the Z, Y,
hybrid, and ABCD parameters, respectively. Therefore, given one set of parameters for a
network, we can use Table 16.1 to find others.

¢T¢Z , ¢Y , ¢H ,

I2 .V1 , I1 , V2 , 16.5
Parameter

Conversions
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V1a

V1b

V1 V2

I1a

I1b

V2a

V2b

I2a

I2b

Na

Nb

Figure 16.8 

Series interconnection
of two-ports.

V2V1

I1a

I1 I2

I2a

I1b

V1b V2b

V1a V2a

I2b

Na
y11a y12a
y21a y22a

Nb
y11b y12b
y21b y22b

Figure 16.7

Parallel interconnection
of two-ports.

two-port network as an interconnection of simpler two-ports. Although two-ports can be
interconnected in a variety of ways, we will treat only three types of connections: parallel,
series, and cascade.

For the two-port interconnections to be valid, they must satisfy certain specific require-
ments that are outlined in the book Network Analysis and Synthesis by L. Weinberg
(McGraw-Hill, 1962). The following examples will serve to illustrate the interconnection
techniques.

In the parallel interconnection case, a two-port N is composed of two-ports and con-
nected as shown in Fig. 16.7. Provided that the terminal characteristics of the two networks

and are not altered by the interconnection illustrated in the figure, then the Y parame-
ters for the total network are

16.13

and hence to determine the Y parameters for the total network, we simply add the Y param-
eters of the two networks and 

Likewise, if the two-port N is composed of the series connection of and as shown
in Fig. 16.8, then once again, as long as the terminal characteristics of the two networks and

are not altered by the series interconnection, the Z parameters for the total network are

16.14

Therefore, the Z parameters for the total network are equal to the sum of the Z parameters for
the networks and Nb .Na

B z11

z21

z12

z22
R = B z11a + z11b

z21a + z21b

z12a + z12b

z22a + z22b
R

Nb

Na

Nb ,Na

Nb .Na

B y11

y21

y12

y22
R = B y11a + y11b

y21a + y21b

y12a + y12b

y22a + y22b
R

NbNa

NbNa
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Finally, if a two-port N is composed of a cascade interconnection of and as shown
in Fig. 16.9, the equations for the total network are

16.15

Hence, the transmission parameters for the total network are derived by matrix multiplication
as indicated previously. The order of the matrix multiplication is important and is performed
in the order in which the networks are interconnected.

The cascade interconnection is very useful. Many large systems can be conveniently
modeled as the cascade interconnection of a number of stages. For example, the very
weak signal picked up by a radio antenna is passed through a number of successive stages
of amplification—each of which can be modeled as a two-port subnetwork. In addition,
in contrast to the other interconnection schemes, no restrictions are placed on the param-
eters of and in obtaining the parameters of the two-port resulting from their inter-
connection.

NbNa

BV1

I1
R = BAa

Ca

Ba

Da
R BAb

Cb

Bb

Db
R B V2

-I2
R

Nb ,Na

V1

I1 I1a I1bI2a I2I2a

+

-
V1a

+

-
V2a

+

-
V2

+

-
V2b

+

-
V1b

+

-
Na Nb

Figure 16.9
Cascade interconnection
of networks.

We wish to determine the Y parameters for the network shown in Fig. 16.10a by considering it
to be a parallel combination of two networks as shown in Fig. 16.10b. The capacitive network
will be referred to as and the resistive network will be referred to as 

The Y parameters for are

and the Y parameters for are

Hence, the Y parameters for the network in Fig. 16.10 are

To gain an appreciation for the simplicity of this approach, you need only try to find the Y
parameters for the network in Fig. 16.10a directly.

 y21 = - a 1

5
+ j 

1

2
b  S   y22 =

2

5
+ j 

1

2
 S

 y11 =

3

5
+ j 

1

2
 S   y12 = - a 1

5
+ j 

1

2
b  S

 y21b = - 
1

5
 S   y22b =

2

5
 S

 y11b =

3

5
 S   y12b = - 

1

5
 S

Nb

 y21a = -j 
1

2
 S   y22a = j 

1

2
 S

 y11a = j 
1

2
 S   y12a = -j 

1

2
 S

Na

Nb .Na ,

SOLUTION

EXAMPLE

16.5
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Let us determine the Z parameters for the network shown in Fig. 16.10a. The circuit is
redrawn in Fig. 16.11, illustrating a series interconnection. The upper network will be
referred to as and the lower network as 

The Z parameters for are

and the Z parameters for are

Hence the Z parameters for the total network are

We could easily check these results against those obtained in Example 16.5 by applying the
conversion formulas in Table 16.1.

 z21 =

5 - 2j

3 - 2j
 �   z22 =

5 - 6j

3 - 2j
 �

 z11 =

5 - 4j

3 - 2j
 �   z12 =

5 - 2j

3 - 2j
 �

z11b = z12b = z21b = z22b = 1 �

Nb

 z21a =

2

3 - 2j
 �   z22a =

2 - 4j

3 - 2j
 �

 z11a =

2 - 2j

3 - 2j
 �   z12a =

2

3 - 2j
 �

Na

Nb .Na , 

SOLUTION

EXAMPLE

16.6

–j2 �

1 � 2 �

1 �

Figure 16.11

Network in Fig. 16.10a
redrawn as a series

interconnection of
two networks.

1 �

(a) (b)

2 �

–j2 �

–j2 �

1 � 2 �1 �

1 �

Figure 16.10

Network composed of the parallel combination of
two subnetworks.
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Let us derive the two-port parameters of the network in Fig. 16.12 by considering it to be a
cascade connection of two networks as shown in Fig. 16.6.

The ABCD parameters for the identical T networks were calculated in Example 16.4 to be

Therefore, the transmission parameters for the total network are

Performing the matrix multiplication, we obtainBA
C

B
D
R = B 1 + 4j� - 2�2

2j� - 2�2

4 + 6j� - 2�2

1 + 4j� - 2�2R
BA

C
B
D
R = B 1 + j�

j�

2 + j�

1 + j�
R B 1 + j�

j�

2 + j�

1 + j�
R

 C = j�   D = 1 + j�

 A = 1 + j�   B = 2 + j�

1 � 2 � 1 �

1 F 1 F

Figure 16.12

Circuit used in
Example 16.7.

Fig. 16.13 is a per-phase model used in the analysis of three-phase high-voltage transmission
lines. As a general rule in these systems, the voltage and current at the receiving end are
known, and it is the conditions at the sending end that we wish to find. The transmission
parameters perfectly fit this scenario. Thus, we will find the transmission parameters for a
reasonable transmission line model, and, then, given the receiving-end voltages, power, and
power factor, we will find the receiving-end current, sending-end voltage and current, and the
transmission efficiency. Finally, we will plot the efficiency versus the power factor.

High-
voltage

substation
(sending

end)

C C

R L

Lower-
voltage

substation
(receiving

end)

Transmission line model

150-mile-long
transmission line

VL=300 kV

P=600 MW

pf=0.95 lagging

Figure 16.13

A �-circuit model
for power transmission
lines.

APPLICATION
EXAMPLE 16.8

16.7
Application

Examples
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Given a 150-mile-long transmission line, reasonable values for the -circuit elements
of the transmission line model are and The
transmission parameters can be easily found using the circuits in Fig. 16.14. At 60 Hz,
the transmission parameters are

To use the transmission parameters, we must know the receiving-end current, Using stan-
dard three-phase circuit analysis outlined in Chapter 11, we find the line current to be

where the line-to-neutral (i.e., phase) voltage at the receiving end, is assumed to have
zero phase. Now, we can use the transmission parameters to determine the sending-end volt-
age and power. Since the line-to-neutral voltage at the receiving end is 
the results are

+ A0.9590/0.27°B A1.215/-18.19°B = 1.12/-9.71° kA

I1 = CV2 - DI2 = A975.10 * 10-6/90.13°B A173.21/0°B
 + A100.00/84.84°B A1.215/-18.19°B = 241.92/27.67° kV

V1 = AV2 - BI2 = A0.9590/0.27°B A173.21/0°B
300�13 = 173.21 kV,

V2 ,

I2 = - 
600/cos-1(pf)

13(300)(pf)
= -1.215/-18.19° kA

I2 .
 B = 100.00/84.84° �   D = 0.9590/0.27°

 A = 0.9590/0.27°   C = 975.10/90.13° �S

L = 264.18 mH.C = 1.326 �F, R = 9.0 � ,
�SOLUTION

±
– V2V1 ZCZC

ZLR

+

-

I2
±
–V1 ZC

ZLR

V2I1 ZCZC

ZLR

+

-

I2I1 ZC

ZLR

 D =

I1

-I2

2
V2 = 0

=

ZC + ZL + R

ZC
= 0.950/0.27°

 
-I2

I1

2
V2 = 0

=

ZC

ZC + ZL + R

 C =

V2

I1

2
I2 = 0

=

2 ZC + ZL + R

Z2
C

= 975.10/90.13° �S

 
V2

I1

2
I2 = 0

=

Z2
C

2 ZC + ZL + R

 B =

V1

-I2

2
V2 = 0

= ZL + R = 100.00/84.84° �

 
-I2

V1

2
V2 = 0

=

1

ZL + R

 A =

V1

V2

2
I2 = 0

=

ZC + ZL + R

ZC
= 0.9590/0.27°

 
V2

V1

2
I2 = 0

=

ZC

ZC + ZL + R

Figure 16.14

Equivalent circuits used to determine the transmission parameters.
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At the sending end, the power factor and power are

Finally, the transmission efficiency is

This entire analysis can be easily programmed into an Excel spreadsheet. A plot of the trans-
mission efficiency versus power factor at the receiving end is shown in Fig. 16.15. We see
that as the power factor decreases, the transmission efficiency drops, which increases the
cost of production for the power utility. This is precisely why utilities encourage industrial
customers to operate as close to unity power factor as possible.

 � =

P2

P1
=

600

650.28
= 92.3%

 P1 = 3V1I1(pf) = (3)(241.92)(1.12)(0.80) = 650.28 MW

 pf = cos A27.67 - (-9.71)B = cos (37.38) = 0.80 lagging

Tr
an

sm
is

si
on

 e
ffi

ci
en

cy

0.65 0.75 0.85 0.95 1.05

Receiving-end power factor

50

60

70

80

90

100 Figure 16.15

The results of an Excel sim-
ulation showing the effect
of the receiving-end power
factor on the transmission
efficiency. Because the
Excel simulation used more
significant digits, slight dif-
ferences exist between the
values in the plot and those
in the text.

We have available the noninverting op-amp circuit shown in Fig. 16.16 with the following
parameters: and To deter-
mine the possible applications for this network configuration, we will determine the effect of
the load on the gain and the gain error (a comparison of the actual gain with the ideal gain).

In Example 16.3, the hybrid parameters for the noninverting op-amp were found to be

 h21 = - cARi

Ro
+

R1

R1 + R2
d   h22 =

Ro + R1 + R2

RoAR1 + R2B

 h11 = Ri +

R1 R2

R1 + R2
   h12 =

R1

R1 + R2

RL

R2 = 49 k�.R1 = 1 k�,Ro = 500 �,Ri = 1 M�,A = 20,000,

SOLUTION

±
–

±
–

V1 V2

+

-

I1
I2

R2

R1

RL

Figure 16.16 
The classic noninverting
gain configuration 
with load.

APPLICATION
EXAMPLE 16.9

irwin16_801-828hr.qxd  23-08-2010  16:38  Page 817



818 C H A P T E R  1 6 T W O - P O R T  N E T W O R K S

If we solve the hybrid parameter two-port Eq. (16.7) for we obtain

Since the op-amp is connected to a load then

Combining these expressions, we obtain the equation for the gain,

Using the parameter values, the equation becomes

16.16

If the term involving remains small compared to unity, then the gain will be largely inde-
pendent of 

It is convenient to view the gain of the amplifier with respect to its ideal value of

From Eq. (16.16), if is infinite, the gain is only 49.88. This deviation from the ideal per-
formance is caused by nonideal values for the op-amp gain, input resistance, and output resist-
ance. We define the gain error as

16.17

A plot of the gain and the gain error versus is shown in Fig. 16.17. Note that as the load
resistance decreases, the gain drops and the error increases—consistent with Eq. (16.17). In
addition, as increases, the gain asymptotically approaches the ideal value, never quite
reaching it.

To identify specific uses for this amplifier, recognize that at a gain of 50, a 0.1-V input
will produce a 5-V output. Three possible applications are as follows:

1. Low-budget audio preamplifier—Amplifies low voltages from tape heads and phono-
graph needle cartridges to levels suitable for power amplification to drive speakers.

2. Sensor amplifier—In many sensors—for example, temperature-dependent resistors—
changes in the electrical characteristic (resistance) can be much less than changes in
the environmental parameter (temperature). The resulting output voltage changes are
also small and usually require amplification.

3. Current sensing—Monitoring large currents can be done inexpensively by using low-
value sense resistors and a voltmeter. By Ohm’s law, the resulting voltage is 
where I is the current of interest. A voltmeter can be used to measure the voltage and,
knowing the value of the current can be determined. The power lost in the sense
resistor is Thus, low power loss implies low sense voltage values, which most
inexpensive voltmeters cannot accurately measure. Our simple amplifier can boost the
sense voltage to more reasonable levels.

I2Rsense .
Rsense ,

IRsense

RL

RL

Gain error =

Aactual - Aideal

Aideal
=

0.998

1 +

1.247

RL

- 1

RL

Aideal =

V2

V1

2  
ideal op–amp

= 1 +

R2

R1
= 1 +

49

1
= 50

RL .
RL

V2

V1
=

4 * 107

8.02 * 105
+

106

RL

=

49.88

1 +

1.247

RL

V2

V1
=

-h21

h11 h22 - h12 h21 +

h11

RL

I2 = - 
V2

RL

RL ,

V2 =

-h21 V1 + h11 I2

h11 h22 - h12 h21

V2 ,
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V
ol

ta
ge

 g
ai

n,
 (

V
2

/V
1)

G
ai

n 
er

ro
r 

(%
)

1 10

Load resistance, RL (k�)

40

50

45

55 0.0

–2.0

–4.0

–6.0

–8.0

–10.0

–12.0
100 1000 10000 100000

Gain
Gain error

Figure 16.17 

The gain and gain error
of the noninverting gain
configuration described
in Example 16.9.

For a particular application, we need an amplifier with a gain of 10,000 when connected to
a 1-k� load. We have available to us some noninverting op-amps that could be used for this
application.

The noninverting op-amp, together with some available components that, based on the results
of the previous example (i.e., the ideal gain formula), should yield a gain of 10,000, are shown
in Fig. 16.18. Using the hybrid parameter equations for the amplifier, as outlined in the
previous example, yields

 h21 = -4.000 * 107   h22 = 2.000 mS

 h11 = 1.001 M�   h12 = 1.000 * 10-4

SOLUTION

±
–

±
–

V1 V2

+

-

I1
I2

R2

R1

RL

Figure 16.18 

A single-stage amplifier
that should have a gain
of 10,000.

A � 20,000 R1 � 1 k�

Ri � 1 M� R2 � 9.999 M�

Ro � 500 �

OP-AMP SPECIFICATIONS COMPONENTS

DESIGN
EXAMPLE 16.10

16.8
Design Example
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Using Table 16.1, we can convert to the transmission parameters:

Based on the hybrid parameter values above, we find

The circuit is now modeled by the two-port equations

Since we can write the equation for as

and the gain as

Although the ideal model predicts a gain of 10,000, the actual gain for infinite is only
6667—a rather large discrepancy! A careful analysis of the parameters indicates two prob-
lems: (1) the gain of the op-amp is on the same order as the circuit gain, and (2) is actually
larger than Recall that the ideal op-amp assumptions are that both A and should
approach infinity, or, in essence, A should be much larger than the overall gain and should
be the largest resistor in the circuit—neither condition exists. We will address these issues by
cascading two op-amps. We will design each stage for a gain of 100 by selecting to be
99 k�, thus alleviating the two issues above. Since the stages are cascaded, the ideal
overall gain should be 

The transmission parameters with the new values of are

Since the two stages are cascaded, the transmission parameter equations that describe the
overall circuit are

or

where the subscripts a and b indicate the first and second op-amp stages. Since the stages
are identical, we can just use A, B, C, and D. Still, and the gain is

V2

V1
=

1

A2
- BC +

AB - BD
RL

V2 = -I2 RL ,

BV1

I1
R = BAa Ab - Ba Cb

Ca Ab - Da Cb

Aa Bb - Ba Db

Ca Bb - Da Db
R B V2

-I2
R

BV1

I1
R = BAa

Ca

Ba

Da
R BAb

Cb

Bb

Db
R B V2

-I2
R

 C = 5.025 * 10-11   D = 2.500 * 10-8

 A = 1.005 * 10-2   B = 2.502 * 10-2

R2

100 * 100 = 10,000.

R2

Ri

RiRi .
R2

RL

V2

V1
=

1

A +

B
RL

=

6667

1 +

166.7

RL

V1 = AV2 +

B
RL

 V2

V1V2 = -I2 RL ,

BV1

I1
R = BA

C
B
D
R B V2

-I2
R

 C = 5.000 * 10-11   D = 2.500 * 10-8

 A = 1.501 * 10-4   B = 2.502 * 10-2

 C =

-h22

h21
  D =

-1

h21

 A =

-¢H

h21
=

h12 h21 - h11 h22

h21
   B =

-h11

h21
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Using our transmission parameter values, when is infinite, the gain is 9900.75, an error
of less than 1%. This is a significant improvement over the single-stage amplifier. Fig. 16.19
shows the single- and two-stage gains versus load resistance, As decreases, the supe-
riority of the two-stage amp is even more marked.

RLRL .

RL

V
ol

ta
ge

 g
ai

n,
 (

V
2/

V
1)

1 10 100 1000 10000 100000

Load resistance, RL (k�)

0

12000

10000

8000

6000

4000

2000
Single stage
Two stage

Figure 16.19 

The voltage gain of the
single- and two-stage
op-amp circuits versus
load resistance.

S U M M A R Y
•

■ Four of the most common parameters used to describe a
two-port network are the admittance, impedance, hybrid,
and transmission parameters.

■ If all the two-port parameters for a network exist, a set of
conversion formulas can be used to relate one set of two-
port parameters to another.

■ When interconnecting two-ports, the Y parameters are
added for a parallel connection, the Z parameters are added
for a series connection, and the transmission parameters in
matrix form are multiplied together for a cascade
connection.

P R O B L E M S
•

16.1 Given the two networks in Fig. P16.1, find the Y
parameters for the circuit in (a) and the Z parameters
for the circuit in (b).

Figure P16.1

16.2 Find the Y parameters for the two-port network shown in
Fig. P16.2.

Figure P16.2

16.3 Find the Y parameters for the two-port network shown in
Fig. P16.3.

Figure P16.3

12 � 3 �

6 �

12 �

12 � 12 �

(a)

V1

I1 I2

+

-

V2

+

-

ZL

(b)

V1

I1 I2

+

-

V2

+

-

ZL
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16.4 Determine the Y parameters for the network shown in
Fig. P16.4.

Figure P16.4

16.5 Determine the admittance parameters for the network
shown in Fig. P16.5.

Figure P16.5

16.6 Find the Y parameters for the two-port network in
Fig. P16.6.

Figure P16.6

16.7 Find the Z parameters for the network in Fig. P16.6.

16.8 Find the Z parameters for the two-port network in
Fig. P16.8.

Figure P16.8

V1

I1

42 �

21 �

10.5 �

+

-

I2

V2

+

-

�V1V1

I1 I2

+

-

V2

+

-

Z2

-
+Z1

V1 gV1

I1

+

-

I2

V2

C2

C1 C3 R

+

-

V1

I1 3 � 6 �

6 �

+

-

I2

V2

+

-

16.9 Find the Z parameters for the two-port network shown in
Fig. P16.9 and determine the voltage gain of the entire
circuit with a 4-k� load attached to the output.

Figure P16.9

60I1

20 k�

500 �

50 � 4 k�V1

I1

Vo

+

-

±
–

16.10 Determine the input impedance of the network shown
in Fig. P16.10 in terms of the Z parameters and the load
impedance Z.

Figure P16.10

Z

I1 I2

Z11 Z12

Z21 Z22

V1 V2

16.11 Find the voltage gain of the two-port network in Fig.
P16.10 if a 12-k� load is connected to the output port.

16.12 Find the input impedance of the network in Fig. P16.10.

16.13 Find the Y parameters for the network in Fig. P16.13.

AV1

R

–
+

V2

+

–

LC3

C2

C1

V1

+

–

Figure P16.13

16.14 Find the Z parameters for the network in Fig. P16.14.

Figure P16.14

-+
I1 I2

V2

�V1
R1 R3

R2

+

-

V1

+

-
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16.15 Find the Z parameters of the two-port network in
Fig. P16.15.

Figure P16.15

16.16 Given the network in Fig. P16.16, (a) find the Z param-
eters for the transformer, (b) write the terminal equation
at each end of the two-port, and (c) use the information
obtained to find V2.

Figure P16.16

j4 � j3 �

j1 �

4 �

2 �

12  0° V
±

–

±

–
V2

V1

I1 I2

+

-

V2

+

-

j�M

j�L1 j�L2

16.18 Find the Z parameters for the two-port network shown
in Fig. P16.18.

16.17 Find the Z parameters for the network in Fig. P16.17.

Figure P16.17

V1

±

V2

±

––

VA

0.04 VA

± –

1 k�

2 k�

50 k�

Figure P16.18

40I1

1 k�

20 �SV1 (3)10–4 V2

I1 I2

+

-

V2

+

-

±
–

16.19 Find the Z parameters of the two-port network in
Fig. P16.19.

Figure P16.19

16.20 Determine the Z parameters for the two-port network in
Fig. P16.20.

Figure P16.20

16.21 Draw the circuit diagram (with all passive elements
in ohms) for a network that has the following Y 
parameters:

16.22 Draw the circuit diagram for a network that has the
following Z parameters:

[Z] = B6 - j2

4 - j6

4 - j6

7 + j2
R

[Y] = ≥
3

2

- 
1

2

- 
1

2

5

6

¥

R1

R2 1 : n

Ideal

V1

I1 I2

+

-

V2

+

-

j�M

j�L1 j�L2
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16.31 Given the network in Fig. P16.31, find the transmission parameters for the
two-port network and then find using the terminal conditions.

Figure P16.31

±
–

±
–

j1 �

2 �

j2 �

–j2 � 4 � Io

j4 � 6  30° V12  0° V

Io

16.23 Show that the network in Fig. P16.23 does not have a set of
Y parameters unless the source has an internal impedance.

Figure P16.23

16.24 Compute the hybrid parameters for the network in
Fig. E16.1.

16.25 Find the hybrid parameters for the network in Fig. P16.2.

16.26 Find the hybrid parameters for the network in
Fig. P16.26.

Figure P16.26

16.27 Consider the network in Fig. P16.27. The two-port network
is a hybrid model for a basic transistor. Determine the volt-
age gain of the entire network, if a source with
internal resistance is applied at the input to the two-port
network and a load is connected at the output port.RL

R1

VSV2�VS ,

6 �12 �

6 �

6 �

V1

I1

Io

2Io

I2

+

-

V2

R2

R1

+

-

±
–

16.28 Determine the hybrid parameters for the network
shown in Fig. P16.28.

Figure P16.28

16.29 Find the ABCD parameters for the networks in
Fig. P16.1.

16.30 Find the transmission parameters for the network in
Fig. P16.30.

Figure P16.30

–j1 �

1 �

V1

I1 R1

+

-

I2

R2

�I1

V2

+

-

1

j�C
––––

Figure P16.27

RL

R1 1 k�

V1VS h12V2

h11

h21I1

I1 I2

+

-

V2

+

-

±
–

±
–

1

h22
–––
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16.32 Find the voltage gain for the network in
Fig. P16.32 using the ABCD parameters.

Figure P16.32

16.33 Find the input admittance of the two-port in Fig. P16.33
in terms of the Y parameters and the load 

Figure P16.33

16.34 Find the voltage gain for the network in
Fig. P16.34 using the Z parameters.

Figure P16.34

16.35 Draw the circuit diagram (with all passive elements
in ohms) for a network that has the following Y
parameters:

16.36 Draw the circuit diagram for a network that has the
following Z parameters:

[Z] = c 6 + j4 4 + j6

4 + j6 10 + j6
d

[Y] = ≥
5

11
-

2

11

-

2

11

3

11

¥

ZLV2

+

-

V1

+

-

I1 I2

Z
parameters

known

V2�V1

YLYin

Two–port
Y

parameters
known

YL.

ZLV2

+

-

V1

+

-

I1 I2

ABCD
parameters

known

V2�V1 16.37 Following are the hybrid parameters for a network:

Determine the Y parameters for the network.

16.38 If the Y parameters for a network are known to be

find the Z parameters.

16.39 Find the Z parameters in terms of the ABCD parameters.

16.40 Find the hybrid parameters in terms of the Z parameters.

16.41 Find the transmission parameters for the two-port in
Fig. P16.41.

Figure P16.41

16.42 Find the transmission parameters for the two-port in
Fig. P16.42.

j4 � j3 �

j1 �

–j1 �

1 �

B y11

y21

y12

y22
R = ≥

5

11

- 
2

11

- 
2

11

3

11

¥

B h11

h21

h12

h22
R = ≥

11

5

- 
2

5

2

5

1

5

¥

Figure P16.42

j4 � j3 �

j1 �

–j1 �–j1 �

1 �

1 �

16.43 Find the transmission parameters for the two-port in
Fig. P16.43 and then use the terminal conditions to
compute Io.

Figure P16.43

6  0° V

1 � 2 �

(4–j4)V 

1:2

–j1 � –j1 �

Io

±
–

±
–
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16.44 Find the Y parameters for the network in Fig. P16.44.

Figure P16.44

16.45 Determine the Y parameters for the network shown
in Fig. P16.45.

Figure P16.45

16.46 Find the Y parameters for the two-port network in
Fig. P16.46.

Z1 Z2

Z5Z4

Z3Z6

Z1

Z1

Z2

Z2

16.48 Find the Y parameters for the two-port in Fig. P16.48.

Figure P16.48

16.49 Find the transmission parameters of the network in
Fig. E16.4 by considering the circuit to be a cascade
interconnection of three two-port networks as shown
in Fig. P16.49.

Figure P16.49

16.50 Find the ABCD parameters for the circuit in Fig. P16.50.

Figure P16.50

16.51 Find the Y parameters for the two-port in Fig. P16.51.

Figure P16.51

j1 �

j4 � j6 �

–j6 �

12 �

12 �

12 �

1 F

1 H1 �

12 � 3 �

6 �

Nb NcNa

j1 �

j2 � j3 �

–j1 �

2 �1 �

Figure P16.46

1 �

1 �

1 �

1 F

1 F1 F

1 �

V2

+

–

V1

I1

+

–

I2

16.47 Find the Y parameters of the two-port network
in Fig. P16.47. Find the input admittance of the network
when the capacitor is connected to the output port.

Figure P16.47

2 �

2 � 2 �

j2 �

–j2 �Yin
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16.52 Find the Z parameters for the two-port network in Fig. P16.52 and then determine for the specified 
terminal conditions.

Figure P16.52

16.53 Determine the output voltage in the network in Fig. P16.53 if the Z parameters for the two-
port are

Figure P16.53

16.54 Determine the output voltage in the network in Fig. P16.54 if the Z parameters for the two-
port are

Figure P16.54

16.55 Find the transmission parameters of the two-port in Fig. 16.55 and then use the terminal conditions
to compute Io.

Figure P16.55

1 : 2

Ideal

±
–

Io

–j3 �–j6 �10 � 9 �

–45° V24
12

–––

+
–

Vo

+

–

Two–
port

I1 I2 4 �

2 � j2 �Ix

2Ix

–j1 �

6  30° V ±
–

Z = B5

4

4

12
R

Vo

–±

Vo

+

-

1 �–j2 �j1 �

VA VB

2  60° A

12  30° V

Two–port

Z = B3

2

2

3
R

Vo

±
–

j1 �

j2 � j3 �

–j2 �

Io

–j4 � 3 �4 �

2 �

24  0° V

Io
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T Y P I C A L P R O B L E M S F O U N D  O N  T H E F E E X A M
•

16PFE-1 A two-port network is known to have the following
parameters:

If a 2-A current source is connected to the input termi-
nals as shown in Fig.16PFE-1, find the voltage across
this current source.

Figure 16PFE-1

a. b.

c. d.

16PFE-2 Find the Thévenin equivalent resistance at the output
terminals of the network in Fig. 16PFE-1.

a. b.

c. d.

16PFE-3 Find the Y parameters for the two-port network
shown in Fig. 16PFE-3.

Figure 16PFE-3

a.

b.

c.

d. y11 =

3

56
 S, y21 = y12 = - 

1

28
 S, y22 =

3

28
 S

y11 =

3

25
 S, y21 = y12 = - 

1

15
 S, y22 =

4

15
 S

y11 =

7

48
 S, y21 = y12 = - 

3

16
 S, y22 =

7

16
 S

y11 =

5

32
 S, y21 = y12 = - 

5

14
 S, y22 =

9

14
 S

16 � 4 �

8 �

6 �12 �

9 �3 �

6 V24 V

12 V36 V

2 A Two–port

y11 =

1

14
 S y12 = y21 = - 

1

21
 S y22 =

1

7
 S

16PFE-4 Find the Z parameters of the network shown in
Fig. 16PFE-4.

Figure 16PFE-4

a.

b.

c.

d.

16PFE-5 Calculate the hybrid parameters of the network in 
Fig. 16PFE-5.

Figure 16PFE-5

a.

b.

c.

d. h11 =

32

9
 �, h21 = - 

2

9
, h12 =

2

9
, h22 =

1

18
 S

h11 =

19

4
 �, h21 = - 

3

4
, h12 =

3

4
, h22 =

5

8
 S

h11 =

16

5
 �, h21 = - 

1

5
, h12 =

1

5
, h22 =

3

10
 S

h11 =

28

3
 �, h21 = - 

2

3
, h12 =

2

3
, h22 =

1

6
 S

8 � 2 �

4 �

z11 =

27

6
 �, z21 = z12 =

7

6
 �, z22 =

13

6
 �

z11 =

36

7
 �, z21 = z12 =

12

7
 �, z22 =

18

7
 �

z11 =

22

5
 �, z21 = z12 =

7

5
 �, z22 =

9

5
 �

z11 =

19

3
 �, z21 = z12 

5

3
 �, z22 =

7

3 
 �

I1 I2

V2V1

+

-

+

-

12 � 3 �

6 �
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COMPLEX NUMBERS

829

Complex numbers are typically represented in three forms: exponential, polar, or rectangular.
In the exponential form a complex number A is written as

1

The real quantity z is known as the amplitude or magnitude, the real quantity � is called the
angle as shown in Fig. 1, and j is the imaginary operator �, which is the angle
between the real axis and A, may be expressed in either radians or degrees.

The polar form of a complex number A, which is symbolically equivalent to the expo-
nential form, is written as

2

and the rectangular representation of a complex number is written as

3

where x is the real part of A and y is the imaginary part of A.
The connection between the various representations of A can be seen via Euler’s identity,

which is

4

Fig. 2 illustrates that this function in rectangular form is a complex number with a unit
amplitude.

ej�
= cos � +  j sin �

A = x + jy

A = z/�

j = 2-1.

A = zej�

Real axis

Imaginary
axis

z
A

�

A=zej�

Figure 1

The exponential form of a
complex number.

APPENDIX
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Real axis

Unit circle

Imaginary
axis

�
sin �

cos �

1

Figure 2
A graphical interpretation

of Euler’s identity.

Real axis

Imaginary
axis

z
A

�
y=z sin �

x=z sin �

Figure 3

The relationship between
the exponential and

rectangular representation
of a complex number.

x+jy

y = z sin �z = 2x2
+ y2z = 2x2

+ y2

x = z cos �� =  tan-1y�x� =  tan-1y�x

z/�zej�

EXPONENTIAL POLAR RECTANGULAR

Using this identity, we can write the complex number A as

5

which, as shown in Fig. 3, can be written as

Equating the real and imaginary parts of these two equations yields

6

From these equations we obtain

7

Therefore,

8

In addition,

and hence

9

The interrelationships among the three representations of a complex number are as follows:

� =  tan-1 
y

x

z sin �

z cos �
=  tan � =

y

x

z = 2x2
+ y2

x2
+ y2

= z2 cos2 � + z2 sin2 � = z2

y = z sin �

x = z cos �

A = x + jy

A = zej�
= z cos � + jz sin �
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We will now show that the operations of addition, subtraction, multiplication, and division
apply to complex numbers in the same manner that they apply to real numbers.

The sum of two complex numbers and is

10

That is, we simply add the individual real parts, and we add the individual imaginary parts to
obtain the components of the resultant complex number.

 = Ax1 + x2B + jAy1 + y2B
 A + B = x1 + jy1 + x2 + jy2

B = x2 + jy2A = x1 + jy1

Let us calculate the difference if and 

Converting both numbers from polar to rectangular form,

Then
A - B = (4 + j3) - (3 + j4) = 1 - j1 = 12 /-45°

 B = 5/53.1° = 3 + j4

 A = 5/36.9° = 4 + j3

B = 5/53.1°.A = 5/36.9°A - B

Suppose we wish to calculate the sum if and 

We must first convert from polar to rectangular form.

Therefore,

 = 9.9/45°

 A + B = 4 + j3 + 3 + j4 = 7 + j7

 B = 5/53.1° = 3 + j4

 A = 5/36.9° = 4 + j3

B = 5/53.1°.A = 5/36.9°A + B

Addition and subtraction
of complex numbers are
most easily performed
when the numbers are in
rectangular form.

[ h i n t ]

The difference of two complex numbers and is

11

That is, we simply subtract the individual real parts, and we subtract the individual imag-
inary parts to obtain the components of the resultant complex number.

 = Ax1 - x2B + jAy1 - y2B
 A - B = Ax1 + jy1B - Ax2 + jy2B

B = x2 + jy2A = x1 + jy1

The product of two complex numbers and is

12AB = Az1e
j�1B Az2ej(�2)B = z1z2/�1 + �2

B = z2/�2 = x2 + jy2A = z1/�1 = x1 + jy1
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832 A P P E N D I X

Given and we wish to calculate the product in both polar and
rectangular forms.

 = 25/90°

 = 25j

 = 12 + j16 + j9 + j212

 = (4 + j3)(3 + j4)

 AB = (5/36.9°)(5/53.1°) = 25/90°

B = 5/53.1°,A = 5/36.9°

Multiplication and division
of complex numbers are
most easily performed
when the numbers are in
exponential or polar form.

[ h i n t ]

Given and we wish to calculate the product AB.

and
AB = (2.828/45°)(5/53.1°) = 14.14/98.1°

 B = 3 + j4 = 5/53.1°

 A = 2 + j2 = 2.828/45°

B = 3 + j4,A = 2 + j2

The quotient of two complex numbers and is

13
A
B

=

z1e
j�1

z2e
j�2

=

z1

z2
 ej(�1 - �2)

=

z1

z2
 /�1 - �2

B = z2/�2 = x2 + jy2A = z1/�1 = x1 + jy1

Given and we wish to determine the quotient A/B in both polar
and rectangular forms.

 = 1.84 - j0.79

 = 2/-23.1°

 
A
B

=

10/30°

5/53.1°

B = 5/53.1°,A = 10/30°

Given and we wish to calculate the quotient A/B.

and
A
B

=

5/53.1°

2.236/63°
= 2.236/-9.9°

 B = 1 + j2 = 2.236/63°

 A = 3 + j4 = 5/53.1°

B = 1 + j2,A = 3 + j4
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If let us compute 1/A.

and

or

 =

3 - j4

25
= 0.12 - j0.16

 
1

A
=

1

3 + j4
=

3 - j4

(3 + j4)(3 - j4)

1

A
=

1/0°

5/53.1°
= 0.2/-53.1°

A = 3 + j4 = 5/53.1°

A = 3 + j4,
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A
AC-DC converter, 645–646
AC steady-state analysis

analysis techniques, 396–408
application examples, 408–410
basic AC analysis, 385
design examples, 410–413
impedance and admittance, 383–389
Kirchhoff’s laws and, 393–396
phasor diagrams, 390–393
phasor relationships for circuit elements,

379–383
phasors, 377–379
sinusoidal and complex forcing functions,

373–377
sinusoids, 370–372

Active filters, 627–645
Admittance, 386–389
Admittance parameters, two-port networks and,

802–805
Air conditioner current, 473–474
Airport scanners, 245
Alternating current (ac), defined, 3
Aluminum electrolytic capacitors, 246
AM (amplitude modulation) radio, 782–783
American Wire Gauge (AWG) standard, 262
Ampère’s law, 492
Amplifier equivalent network, 583
Amplifier frequency-response requirements,

583
Amplifier input bias current, 640
Analog-to-digital converter (ADC), 653
Aperiodic signals, 773
Apparent power, 450, 452
Apple iPod, 16
Applied voltage, current response to in

electrical network, 373
Arbitrary AM Fourier transform, 788
Artificial pacemakers, 751
Attenuator pad design, 222–223
Automatic gain control, 641–642
Automobile ignition system, 347–349
Average power, 437–442, 769

B
Balanced three-phase circuit, 545
Balanced three-phase voltage source, 547
Balanced three-phase voltages, 545
Balanced wye-wye connection, 548–552
Band-elimination filters, 782
Band-pass filters, 620, 623, 683–685, 782
Band-rejection filters, 620, 623
Bandwidth, 622
Bass boost amplifier, 654

Bipolar junction transistors (BJTs), 64
Bipolar transistors, 10
Biquad filter, 643
Bode diagram

constant term, 588
poles or zeros at the origin, 588
quadratic poles or zeros, 589–590
simple poles or zeros, 588–589

Bode plots
asymptotic for first-order low-pass filter, 643
connection, 724–726
deriving the transfer function from, 595–597
frequency response using, 586–595
for parallel resonant tuned amplifier,

647–648
for RLC tuner circuit, 789
for second-order low-pass filter, 732
for single- and two-stage filters, 649–651
of Tow-Thomas low-pass filter, 645
variable-frequency networks and, 625

Boost converter, 339–341
Branch, 31
Break frequency, 588
Buffer amplifiers, 162
Bulk electrical energy transmission, 516–517

C
Camera flash charging circuits, 333–334
Capacitor bank, 459
Capacitors, 246–253

aluminum electrolytic capacitors, 246
ceramic dielectric capacitors, 246
chip capacitors, 270
continuity of voltage and, 249
current and voltage waveforms and, 249–253
dc voltage and, 248–249
design examples and, 279–280
double-layer, 279
electrical symbol and, 246
frequency-dependent impedance of, 579–580
parallel capacitors, 266–267
series capacitors, 264–266
specifications for, 261–262
stray capacitance, 246–247
typical capacitors, 246
voltage and current waveforms, 249–250
voltage-current relationships for, 382–383

Carrier waveform, 782–783
Cascade interconnections, 813
Ceramic chip capacitor standard sizes, 271
Ceramic dielectric capacitors, 246
Characteristic equation, 321, 713
Charge, 2
Chebyshev filter, 648–649
Chip capacitors, 270

Chip inductors, 271
Christmas tree lights, 523–524
Circuit analysis

application example, 729–731
Laplace circuit solutions, 696–697
pole-zero plot/Bode plot connection,

724–726
steady-state response, 727–729
transfer function and, 712–724
transient analysis, 709–712

Circuit breaker, 366
Circuits

dependent sources, 10–11, 64–69
elements, 8–17
independent sources, 8–10
Laplace transform and, 697–699
phasor relationships and, 379–383
s-domain representations and, 698–699
second-order filters and, 733
with series-parallel combinations of resistors,

55–61
time constant and, 297
time-domain representations and, 698

Clothes dryers, 474–475
Coarse/find adjustment circuit, 222
Coaxial cables, 222–223
Compact discs (CDs), 649–651
Comparators, 172–173
Complementary solution, 299
Complex forcing function, 373–377
Complex numbers, 829–833
Complex or s-plane, 714
Complex power, 452–457
Conductance, 386
Constant forcing function, 330–331
Constant term, Bode diagram and, 588
Constraint equations, 115
Continuity of current, inductor, 255
Continuity of voltage, capacitor, 249
Control loops, 79–80
Conventional current flow, 2
Converter circuit, powering panel lighting and,

76
Convolution integral, 681–685
Cosine Fourier series, 757
Cosine waveforms with various phase angles,

372
Coupled noise, 520–521
Critically damped responses, 322, 716
Crosstalk, 274–277
Current division, 46–48
Current flow, 2
Current magnitudes, 3
Current sensing, 818
Current-to-voltage converter, 79

834

INDEX
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Current waveforms
capacitors and, 249–253
inductors and, 256–258

Cutoff frequencies, 622

D
Damping ratio

exponential, 321–322
quadratic poles and zeros and, 589
resistor addition and, 736
transfer function and, 713
transient response and, 719
wind speed and, 721–724

Data transfer, filtering of, 731–735
Decoupling capacitors, 345
Defibrillators, 349–350
Delta-connected loads, 548, 554–556
Delta-connected source, 552–554
Delta-to-wye transformations, 61–64
Delta-wye network, 553
Dependent source circuits, 64–69

loop analysis and, 131–136
nodal analysis and, 110–112
Norton’s theorem and, 205–206
Thévenin’s theorem and, 205–206

Dependent voltage sources, 10, 117–120
Differential operational circuits, 167, 

272
Differential equation approach, 300–305
Digital data waveform, 731, 734
Direct current (dc)

capacitors and, 248–249
defined, 3
inductors and, 255

Double-layer capacitors, 279
Driving point functions, 584–585
Duty cycle, boost converter gain and, 341
Dynamic random access memory (DRAM),

277–278

E
Effective value of periodic waveform, 

447–450
EKG systems, 469
Electric charge, 2
Electric circuit, 2
Electric current, 2
Electric equipment, shocks and, 467
Electric lawn mower, 472–473
Electric meters, 464
Electric toothbrush, 518–520
Electrical isolation using ground wire in

crosstalk model, 276
Electrical shock, 464–472
Electromotive force, 3
Electronic manufacturing, resistor technologies

for, 69–72
Elna American Inc., 279
Energy, 5
Energy absorbed, 5
Energy analysis, mutually coupled networks

and, 503–505
Energy supplied, 5
Energy transfer in resonant circuit, 604
Equivalence, 190

Equivalent circuits
for inverting and noninverting operational

amplifier circuits, 628
with multiple sources, 42
transmission parameters and, 815–817

Equivalent impedance, 388–389
Error signal for op-amp, 161
Euler’s equation, 375–376
Euler’s identity, graphical interpretation of, 830
Even-function symmetry, Fourier series and,

757–758
Exponential Fourier series, 753–756
Exponential representation of complex number,

830

F
Faraday’s law, 492–493, 515
Fast Fourier Transform, 792
Faulty circuits, 466
Ferrite chip inductor cross section, 271
Ferrite-core inductors, 254
Field-effect transistors (FETs), 64
Filter networks

active filters, 627–645
passive filters, 620–627

Final-value theorem, 686
First-order circuits, 298–319

differential equation approach, 300–305
general form of response equations, 298–300
problem-solving strategy, 306–307
pulse response and, 316–319
step-by-step approach, 306

First-order low-pass OTA-C filter, 642–643
Flash circuit, camera, 297–298
Flashlight circuit, 5
Floating simulated resistor, 640
Flux linkage, 492–493
FM radio antenna, 646–648
Forced response, 299
Fossil-fuel generating facility, 543–544
Four-node circuit, 107
Fourier analysis techniques

application examples, 780–787
design examples, 787–793
Fourier series, 752–773
Fourier transform, 773–779

Fourier series, 752–773
average power and, 769
exponential Fourier series, 753–756
frequency spectrum and, 767–768
steady-state network response and, 768–769
symmetry and trigonometric Fourier series,

757–761
time-shifting and, 762–764
trigonometric Fourier series, 756–757
waveform generation and, 764–766

Fourier transform, 773–779
important transform pairs, 774–776
Parseval’s theorem and, 778–779
properties of, 777–778

Frequency-dependent impedance of capacitor,
579–580

Frequency-dependent impedance of inductor,
579

Frequency-dependent impedance of RLC series
network, 581

Frequency domain analysis, 378
Frequency-independent impedance of resistor,

578
Frequency-response plots, 608–609, 630–631
Frequency scaling, 619–620
Frequency-shifting theorem, 673–674
Frequency spectrum, Fourier series and,

767–768
Fundamental, 753
Fundamental op-amp circuits, 163–172
Fuse, 366

G
Gain error in amplifier, 166
General impedance converter, 409–410
General impedance relationship, 383
Ground conductor, 465
Ground-fault interrupters, 466–467
Ground wire in crosstalk model, 276

H
Half-power frequency, 622
Half-wave symmetry, Fourier series and, 759
Harmonic amplitude, 787
Harmonics, 784
Headlight intensity, starter current and, 73
Heart pacemaker equivalent circuit, 336
Heart pacemaker output voltage waveform, 337
Heating element, varying temperature of,

343–344
Henry, Joseph, 254
Henry unit, 254
High definition television, 801–802
High-frequency noise filtering, 731–735
High-pass filters, 620–621, 782
High-voltage dc transmission facility, 41
High-voltage lines, 470
High-voltage pulse generator, 334–335
High-voltage transmission lines, 815–819
Household three-wire network and appliance

usage, 462–463
Hubble space telescope, 1
Hybrid parameters, two-port networks and,

807–809
Hydroelectric generating facility, 542–543

I
Ideal inductor, 492
Ideal op-amp model, 161–162
Ideal transformer, 506–515
Ignition current as function of time, 348–349
Impedance and admittance, 383–389
Impedance parameters, two-port networks and,

805–807
Impedance scaling, 619
Independent source circuits, 8–10

loop analysis and, 126–130
nodal analysis and, 104–110
Norton’s theorem and, 200–204, 206–211
Thévenin’s theorem and, 200–204, 206–211

Independent voltage sources, 8–10
loop analysis and, 122–125
nodal analysis and, 113–116
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Inductive kick, 338–339
Inductively coupled noise, 520–521
Inductors, 254–264

chip inductors, 271
current and voltage waveforms, 256–258
dc current flowing through, 255
electrical symbol and, 254
ferrite-core inductors, 254
frequency-dependent impedance of, 579
iron-core inductors, 254
parallel inductors, 268–269
series inductors, 267–268
specifications for, 261–262
stray inductance, 254
typical inductors, 254
voltage-current relationships for, 381

Initial-value theorem, 685
Input impedance, 508
Input terminal I/V values, 161
Input waveforms for differentiator circuit, 273
Instantaneous power, 436–437
Instrumentation amplifier circuit, 168
Insulated-gate field-effect transistors (IGFETs),

64
Integrator operational amplifier circuits, 272
Interconnected two-port circuits, 811–815
Inverse Laplace transform, 676–681

complex-conjugate poles, 678–679
multiple poles, 679–680
simple poles, 676–677

Inverters, 785–787
Iron-core inductors, 254
Isolation capability, voltage follower, 162

K
Kirchhoff’s current law (KCL), 31–32,

103–120. See also Nodal analysis
Kirchhoff’s laws, 31–39, 393–396
Kirchhoff’s voltage law (KVL), 34–40,

122–136, 625, 696. See also Loop analysis
Kirchoff, Gustav Robert, 31
kth harmonic term, 753

L
Labeling, voltage, 37
Ladder networks, 56
Laplace transform

application example, 687–688
circuit element models, 697–699
circuit solutions and, 696–697
convolution integral and, 681–685
definition of, 668
final-value theorem, 686
frequency-shifting theorem and, 673–674
initial-value theorem and, 685
inverse transform, 676–681
problem-solving strategy, 688
singularity functions and, 669–671
steady-state response and, 727–729
time-scaling theorem and, 673
time-shifting theorem and, 673
transfer function and, 712–724
transform pairs, 671–672
transform properties, 673–675
transient analysis of circuits and, 709–712

unit impulse function and, 670–671
unit step function and, 669–670

Light bulb, voltage-current relationship for, 27
Line power loss, harmonic frequency and, 784
Line voltages, 548
Linear resistors, 26–27
Linear variable differential transformer

(LVDT), 521–523
Linearity, 190–192
LM339 comparators, 172–173
LM324 quad op-amp, 157–159
LMC6492 op-amps, 159–160
Loop analysis, 122–137, 397–398, 402

circuits containing dependent sources,
131–136

circuits containing independent current
sources, 126–130

circuits containing only independent voltage
sources, 122–125

problem-solving strategy and, 136
Loop currents, 122
Loops, 31
Loss-pass filters, 780–782
Lossless elements, 438
Low-budget audio preamplifier, 818
Low defibrillator waveform, 349
Low-pass filters, 620–621, 630, 649–651
Lown, Bernard, 349
Lown defibrillator, 349–350
Lumped-parameter circuit, 31

M
Magnetic levitation train, 491
Magnetically coupled coils, 494–495
Magnetically coupled networks

design examples, 521–525
energy analysis, 503–505
ideal transformer, 506–515
mutual inductance, 492–503
safety considerations, 515–516

Magnitude adjuster, 568
Magnitude scaling, 619
MAX917 comparators, 172–173
MAX4240 op-amps, 159–160, 175
Maximum average power transfer, 442–446
Maximum power transfer, 216–221

design examples and, 221–226
equivalent circuit for, 216
parameter plots and, 220

Mesh, 123
Mesh analysis, 123
Metal-oxide-semiconductor field-effect

transistors (MOSFETs), 10, 64
Micro-aerial robots, 667–668
Microprocessors, 64
Mixed-mode circuitry, 653
Modulation theorem, 673–674
Motorola RAZR, 16
Multilayer ceramic chip capacitor, 270
Multiple-source/resistor networks

single-loop circuits and, 42–45
single-node-pair circuits and, 42–45

Music and frequency, 577
Mutual inductance, 492–503, 500

N
National Electrical Safety Code, 472
Natural frequencies, 321
Natural response, 299
Negative current flow, 2
Negative feedback, omp-amp circuits and,

171–172
Negative short-circuit current ratio, 809
Negative short-circuit transfer impedance, 809
Network analysis, transformed circuits and,

699–709
Network frequency response, 603
Network pole locations, 714–715
Network transfer functions, 584–585
Neutral conductor, 465
Nichrome (NiCr), 70
Nodal analysis, 102–121, 396–397, 401–402

circuits containing dependent current
sources, 110–112

circuits containing dependent voltage
sources, 117–120

circuits containing independent voltage
sources, 113–116

circuits containing only independent current
sources, 104–110

Ohm’s law and, 103
problem solving strategy, 121
reference node, 102

Node voltages
circuits with known, 102
illustration, 103

Nodes, 31
Noise, 520–521
Noninverting gain configuration with load,

817–818
Noninverting op-amps, 177, 819–821
Nonlinear load, harmonic line current content

for, 784
Nonlinear resistance characteristics, 26
Norton analysis, 400–404
Norton’s theorem, 198–216, 510, 705–708

circuits containing both independent and
dependent sources, 206–211

circuits containing only dependent sources,
205–206

circuits containing only independent sources,
200–204

design examples and, 221–226
equivalent circuits, 199–200
problem-solving strategy, 211
source transformation and, 213–214

Notch filter, 651–652, 792–793
Nuclear generating facility, 544
Nyquist criterion, 649

O
Odd-function symmetry, Fourier series and,

758–759
Ohm, Georg Simon, 26
Ohm’s laws, 26–30, 39–40, 42, 44, 103
Open-circuit descriptions, 28
Open-circuit impedance parameters, 805
Open-circuit input impedance, 805
Open-circuit output admittance, 807
Open-circuit output impedance, 805
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Open-circuit reverse voltage gain, 807
Open-circuit transfer admittance, 809
Open-circuit transfer impedances, 805
Open-circuit voltage ratio, 809
Operational amplifiers (op-amp)

4-20 mA to 0-5 V converter circuit, 179
application examples, 173–176
buffer amplifier, 162
circuit with integrator and summer, 280
commercial op-amps and model values, 159
comparators, 172–173
design examples and, 176–179
filter circuit, 629–630
fundamental op-amp circuits, 163–172
ideal op-amp model, 161–162
input-output characteristics, 160
input terminal I/V values, 161
models, 157–162
negative and positive feedback and, 171–172
noninverting configuration, 165, 177
selection of, 157
standard inverting amplifier stage, 177
standard weighted-summer configuration,

178
subcircuits, 630
transfer plots for, 160
unity gain buffer performance, 161–162

Operational transconductance amplifier (OTA),
637–643

OTA integrator, 639
OTA simulated resistor, 639
OTA voltage summer, 639

Output voltage, sine wave inverter and,
785–787

Output waveforms for differentiator circuit, 273
Overdamped responses, 321, 716

P
Pacemaker equivalent network

during capacitor charge cycle, 336
during capacitor discharge cycle, 337

Panel lighting, converter circuit for powering,
76

PA03 op-amps, 159–160, 175
Parallel capacitors, 266–267
Parallel circuit, 387, 390
Parallel combination of two subnetworks, 814
Parallel inductors, 268–269
Parallel interconnection of two-ports, 812
Parallel resonance, 611–619
Parallel resonant tuned amplifier, 647
Parallel RLC circuit, 612
Parameter conversions, two-port networks and,

811
Parseval’s theorem, 778–779, 781
Particular integral solution, 299
Passive element impedance, 384
Passive filters, 620–627
Passive sign convention, 6
Passive summer circuit, 412
Periodic signals, 752, 773
Phase and line voltages in balanced wye-wye

system, 549
Phase angle, 370–371
Phase angle generator, 568–569

Phasor diagrams, 379, 390–393
Phasor relationships for circuit elements,

379–383
Phasors, 377–379
Planar circuits, defined, 122
“Pole pig,” 517
Pole-zero diagrams, 733, 735
Pole-zero plot/Bode plot connection, 724–726
Pole-zero plots, 714–715, 719–720
Poles and zeros, 585–586
Poles or zeros at the origin, 588
Polyphase circuits

application examples, 562–565
design examples, 566–569
power factor correction, 561–562
power relationships, 557–561
source/load connections, 548–557
three-phase circuits, 542–547
three-phase connections, 547–548

Pools, electric shocks and, 468
Positive current flow, 2
Positive feedback, omp-amp circuits and,

171–172
Potential energy, 3
Potentiometers, 343
Power balance, 439
Power factor, 450–452
Power factor angle, 450
Power factor correction, 457–461, 561–562
Power outage ride-through circuit, 279
Power ratings, power factor correction

capacitors and, 565
Power relationships, 557–561

circuit used to explain, 452
diagram for illustrating, 453

Power transmission lines, 544, 815–819
Power triangle, 454
Practical parallel resonant circuit, 616
Precision chip inductor cross section, 271
Prefixes, 2
Printed circuit board, 69
Pulse generator

high-voltage, 334–335
output voltage, 335

Pulse response, 316–319
Pulse train, 318
Pulses and their spectra, 775

Q
Quadratic poles or zeros, Bode diagram and,

589–590
Quadrature component, 454
Quadrature power, 452

R
Radio frequency noise pickup, 408–409
Railgun, 341–342
Random access memories (RAMs), 64
RC operational amplifier circuits, 272–274
RC parallel network, 699–700
Reactive or quadrature power, 452
Read-only memories (ROM), 64
Real or average power, 452
Recording Industry Association of America

(RIAA), 729–731

Rectangular representation of complex number,
830

Reference node, 102
Required reactive power per watt, 565
Residential utility transformer, 517–518
Resistance per foot of solid copper wire, 262
Resistive circuits

application examples, 72–75
circuits with series-parallel combinations of

resistors, 55–61
design examples, 75–81
Kirchhoff’s laws, 31–39
Ohm’s law, 26–30
resistor technologies for electronic

manufacturing, 69–72
series and parallel resistor combinations,

51–55
silicon-diffused resistors, 70–72
single-loop circuits, 39–45
single-node-pair circuits, 46–50
thick-film resistors, 69–70
thin-film resistors, 70
wye-to-delta transformations, 61–64

Resistor combinations
circuits with dependent sources, 64–69
series and parallel combinations, 51–55
simplifying, 52

Resistors
frequency-independent impedance of, 578
power ratings and, 54–55
specifications and, 54–55
symbols and, 26
technologies for electronic manufacturing,

69–72
tolerance and, 54–55
values and, 54–55
voltage-current relationships and, 380

Resonant circuits, 597–619
parallel resonance, 611–619
resonant frequency, 597
series resonance, 597–611

Rheostats, 343
RL circuits, 373
RL series network, 696
RLC band-pass filter-tuner circuit, 788
RLC high-pass filter, 724
RLC series network, 581, 719
RLC series resonant network, 599
RLC series transient response, 720
rms values, 447–450
Robotic surgery, 156
Rotomolding manufacturing process, 

459–460

S
s-domain circuits, 698–699
s-domain representations, 699–700
s-plane, 714
Safety devices, 471–472
Safety guidelines, 471
Sampling property, 670
Scaling, 619–620
Sea ice measurements, 296
Second harmonic, 753
Second-order band pass filter, 634–635
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Second-order circuits, 319–332
analysis technique and, 323–328
basic circuit equation, 319–320
network response, 322
problem-solving strategy, 323
response equations, 320–322

Second-order filter for data transfer, 732–735
Second-order low-pass filter, 632, 732, 736
Second-order network, natural response of, 714
Second-order underdamped network, 718
Sensor amplifier, 818
Series and parallel resistor combinations,

51–55
Series capacitors, 264–266
Series circuits, 599
Series inductors, 267–268
Series interconnection of two-ports, 812
Series-parallel combinations of resistors, 55–61
Series resonance, 597–611
Series resonant circuit, 606
Series RLC circuit, 597–598
Series RLC circuit excited at its resonant

frequency, 603
Short-circuit admittance parameters, 803
Short-circuit descriptions, 28
Short-circuit forward current gain, 807
Short-circuit input admittance, 803
Short-circuit input impedance, 807
Short-circuit output admittance, 803
Short-circuit transfer admittances, 803
Sign convention for power, 6
Signal waveform, 782–783
Silicon-controlled rectifier, 336
Silicon-diffused resistors, 70–72
Simple parallel circuit, 46
Simple pole or zero, Bode diagram and,

588–589
Simple resistive heater selector circuit, 73
Simple voltage divider, 77–79
Single-loop circuits, 39–45

multiple-source/resistor networks, 42–45
voltage division, 39–41

Single-node-pair circuits, 46–50
current division, 46–48
multiple-source/reisistor networks, 49–50

Single-phase three-wire circuits, 461–464
Single-phase transformers, 517
Single-pole low-pass filter, 650–651
Single-stage amplifier gain, 819–821
Single-stage tuned amplifier, 615–616
Singular function, 316
Singularity functions, 669–671
Sinusoidal and complex forcing functions,

373–377
Sinusoidal frequency analysis, 586–597

deriving the transfer function from Bode
plot, 595–597

frequency response using a Bode plot,
586–595

Sinusoids, 370–372
Smart power grids, 369
Snubber circuit, 339
Solar mirror arrays, 435
Source exchange, 213–214, 398–399
Source/load connections

balanced wye-wye connection, 548–552

delta-connected load, 554–556
delta-connected source, 552–554

Standard capacitor values, 261
Standard inductor values, 261
Standard inverting amplifier stage, 177
Standard SI prefixes, 2
Standard weighted-summer configuration, 178
Starter current, headlight intensity and, 73
State-variable approach, 300
Steady-state ac superposition, 413
Steady-state network response, Fourier series

and, 768–769
Steady-state power analysis

average power, 437–442
complex power, 452–457
design examples, 476–477
effective or rms values, 447–450
instantaneous power, 436–437
maximum average power transfer, 442–446
power factor, 450–452
power factor correction, 457–461
safety considerations, 464–472
single-phase three-wire circuits, 461–464

Steady-state response, 727–729
Steady-state solution, 299
Step function input, 329–330
Stray capacitance, 246–247
Stray inductance, 254
Subcircuits within three-phase emulator, 568
Supernodes, 115–116
Superposition, 192–199, 398
Suppermesh approach, 129
Surface mount technology (SMT), 69
Susceptance, 386
Switched inductor network, 338–339
Symmetry and trigonometric Fourier series,

757–761
even-function symmetry, 7570758
half-wave symmetry, 759
odd-function symmetry, 758–759

System poles, 586
Système International des Unités, 2
Systems of units, 2

T
T-Network, 223
Tacoma Narrows Bridge, 609–611, 720–724
Tantalum nitride (TaN), 70
Tesla Roadster, 25
Thévenin analysis, 399–403
Thévenin equivalent circuit, 645
Thévenin’s theorem, 198–216, 510–511, 705

application example and, 220–221
circuits containing both independent and

dependent sources, 206–211
circuits containing only dependent sources,

205–206
circuits containing only independent sources,

200–204
design examples and, 221–226
developmental concepts, 198
equivalent circuits, 199–200
Microsoft Excel and, 215–216
problem-solving strategy, 211
source transformation, 213–214

Thick-film chip resistor
cross-section, 70
standard sizes, 69

Thick-film resistors, 69–70
Thin-film resistors, 70
Three-node circuits, 104
Three-phase circuits, 542–547
Three-phase connections, 547–548
Three-phase emulator, 567–569
Three-phase power transformer, 545
Three-phase system for line loss calculation,

560
Three-phase terminology, 570
Time constant, circuit, 299–300
Time convolution property, 778
Time-domain representations, 698–700
Time-scaling theorem, 673
Time-shifting, Fourier series and, 762–764
Time-shifting theorem, 673
Tow-Thomas filter, 643–645
Transfer functions, 584, 712–724
Transform pairs, 671–672
Transform properties, 673–675
Transformer employing magnetic core, 

506
Transistor amplifier circuit model, 80–81
Transmission parameters, two-port networks

and, 809–810
Treble boost circuit, 655
Trigonometric Fourier series, 756–757

even-function symmetry and, 757–758
half-wave symmetry, 759
odd-function symmetry, 758–759
symmetry and, 757–761

Troubleshooting device, 471
24-V fans, 225–226
Twisting oscillations, 721–724
Two coils magnetically coupled, 493
Two-integrator biquad filter, 643
Two-loop circuits, 123
Two-port networks

admittance parameters, 802–805
application examples and, 815–819
hybrid parameters and, 807–809
impedance parameters, 805–807
interconnection of two-ports, 811–815
parameter conversions and, 811
transmission parameters and, 809–810

Two-quadrant analog multiplier, 641
Two-stage, fourth-order band-pass filter, 790
Two-stage buffered filter, 650–651
Typical current magnitudes, 3–4

U
Undamped natural frequency, 321, 713
Underdamped responses, 321, 716–718
Undersea robotic vehicles, 695–696
Unit impulse function, 670–671
Unit step function, 316, 669–670
Unity gain buffer, 161–162
Universal serial bus (USB) ports, 16
Unmanned aerial vehicles (UAV), 667–668
Utility poles, 517–518
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V
Variable-frequency network performance

application examples, 645–649
design examples, 649–655
filter networks, 620–645
resonant circuits, 597–619
scaling, 619–620
sinusoidal frequency analysis, 586–597
variable-frequency response analysis,

578–586
Variable-frequency response analysis, 578–586

network functions, 584–585
poles and zeros, 585–586

Voltage
defining, 3
division, 39–41, 77–79

equivalent forms for labeling, 37
gain, 584
gain transfer function, 719
ratings, 565
representations, 4

Voltage-current relationships, 5, 
26–27

for capacitor, 382–383
for inductor, 381
for resistors, 380

Voltage waveforms
capacitors and, 249–253
inductors and, 256–258

W
Wall transformers, 524–525

Waveform generation, Fourier series and,
764–766

Wein bridge oscillator, 737–738
Wheatstone bridge circuit, 74
Wind farms, 541
Wind speed, 721–724
Wire-wound chip inductor cross-section, 271
Wye-connected loads, 548
Wye-to-delta transformations, 61–64

Z
Zero-crossing detector, 173
Zeros of transfer function, 585–586
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Accreditation Criteria Covered in this Text
Engineering educators are paying increasing attention to student learning outcomes.
In a world of fast-paced technological change, it is no longer possible for students to
master in an undergraduate program all they will need to know to succeed in their
careers. The half-life of the knowledge students acquire grows shorter daily. More
than ever, practicing engineers need to be prepared to be lifelong learners, adaptive to
new technologies and challenges, applying their knowledge and skills to novel
situations. What remains essential is that undergraduates develop a solid foundation
in the engineering concepts specific to their discipline. Just as important, they must
develop the skill of applying those concepts to solving realistic problems, and become
adept at adapting solutions and approaches to unfamiliar challenges. 

Employers, professional societies, and accreditation bodies increasingly seek to
measure students’ learning in terms of the abilities they can demonstrate. In the U.S.,
the Accreditation Board for Engineering and Technology (ABET) describes these
abilities as a list of criteria used in their periodic evaluation of engineering programs.
This book is designed to support, in every way possible, student learning outcomes
that are aligned with these criteria. The print and digital material in this textbook is
designed to provide an integrated teaching and learning system in support of the
following learning objectives that students should be able to demonstrate upon
graduation:

An ability to apply knowledge of mathematics, basic science, and engineering to solve
problems encompassing a number of fundamental areas, one of which is circuits.

Throughout this text, the student is required to apply mathematics to solve a wide
variety of circuit problems. Algebra, trigonometry, determinants, matrices, differential
equations, and transform models—Laplace and Fourier—are all employed. New to
this edition are a set of math skills assessments that provide faculty with the tools to
assess student mastery of essential mathematical concepts. Moreover, students can
use these modules to assess their own strengths and bolster their areas of weakness. 

An ability to design an electrical component or system to meet desired needs.

Numerous design examples and problems are employed throughout the text. The
desired specifications are given and the students must apply the knowledge they have
attained up to that point to determine a method of attack that will arrive at a viable
solution. These are interesting problems that quite often have more than one solution,
and thus the student becomes acquainted with the types of issues and tradeoffs that
face engineers in practice on a daily basis.
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An ability to identify and formulate a problem when faced with a situation that calls
for an engineering solution.

The text contains a variety of applications, examples, and problems that call for an
engineering solution. Both the examples and problems span a wide spectrum and
range from fairly simple issues to some that are very complicated. The depth and
breadth of these examples and problems provide the student with the type of
experience needed to identify and formulate problems that require an engineering
solution.

A proficiency in the use of computers and modern tools and skills to solve circuit
problems.

An application of the fundamental laws of circuit analysis and design will inevitably
yield a set of mathematical equations. While it is always possible to solve these
equations in a brute force manner, the application of modern mathematical tools will
typically be much more efficient and less prone to errors. These tools are typically
implemented in software and thus the tremendous processing power of the digital
computer can be applied to yield a solution. A variety of new and efficient tools are
employed in this text to quickly solve a wide spectrum of problems. For example, this
text offers supplementary material on employing three modern tools commonly used
in industry—PSPICE, MATLAB, and Multisim—which can be accessed online or
integrated into custom versions of the text. The knowledge gained in the use of one or
more of these tools at this early stage in the engineering curriculum will be extremely
valuable since these tools are typically employed in many of the courses that will
follow a circuits course. 

An appreciation of the need for, and an ability to learn new concepts as required for
continuing practice in the profession.

One quickly finds that the concepts learned early in this text are applied later to solve
more complicated problems. In addition, the material learned early on is the basis for
the development of new concepts and techniques that are needed to support the
growth required for continued advancement. A natural extension of this process is, of
course, the continued enhancement of students’ knowledge and abilities that will
eventually support their success as engineering professionals.
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