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PREFACE

Circuit analysis is not only fundamental to the entire breadth of electrical and computer To the Student

engineering—the concepts studied here extend far beyond those boundaries. For this reason

it remainsthe starting point for many future engineers who wish to work in thisfield. The text ®
and al the supplementary materials associated with it will aid you in reaching this goal. We

strongly recommend while you are here to read the Preface closely and view all the resources

available to you as alearner. And one last piece of advice, learning requires practice and rep-

etition, take every opportunity to work one more problem or study one more hour than you

planned. In the end, you'll be thankful you did.

The Tenth Edition has been prepared based on a careful examination of feedback received To the

from instructors and students. The revisions and changes made should appeal to a wide vari-
ety of instructors. We are aware of significant changes taking place in the way this material
is being taught and learned. Consequently, the authors and the publisher have created a for-
midable array of traditional and non-traditional learning resources to meet the needs of stu-
dents and teachers of modern circuit analysis.

Instructor

+ A four-color design is employed to enhance and clarify both text and illustrations. This Highlights of the
sharply improves the pedagogical presentation, particularly with complex illustrations. Tenth Edition

For example, see Figure 2.5 on page 31.

« New chapter previews provide motivation for studying the material in the chapter. See
page 25 for a chapter preview sample. Learning objectives for each chapter have been
updated and appear as part of the new chapter openers.

e End of chapter homework problems have been substantially revised and augmented.
There are now approximately 1400 problems in the Tenth Edition, of which over 400
are new! Multiple-choice Fundamentals of Engineering (FE) Exam problems also
appear at the end of each chapter.

e Practical applications have been added for nearly every topic in the text. Since these are
items students will naturally encounter on aregular basis, they serve to answer ques-
tions such as, “Why is thisimportant?’ or “How am | going to use what | learn from
this course?’ For atypical example application, see page 333.
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Organization

Text Pedagogy

e Problem Solving videos have been created showing students step-by-step how to solve
all Learning Assessment problems within each chapter. Thisis a specia feature that
should significantly enhance the learning experience for each subsection in a chapter.
The problem-solving videos (PSVs) are now also available for the Apple iPod.

e In order to provide maximum flexibility, online supplements contain solutions to exam-
plesin the book using MATLAB, PSPICE or MultiSim. The worked examples can be
supplied to students as digital files, or one or more of them can be incorporated into
custom print editions of the text, depending upon the instructor’s preference.

« Problem-Solving Strategies have been retained in the Tenth Edition. They are utilized
as a guide for the solutions contained in the PSVs.

e The WileyPLUS resources have been greatly updated and expanded, with additional
algorithmic problems, problem-solving videos and much more. New Reading Quiz
questions give instructors the opportunity to track student reading and measure their
comprehension. New Math Skills Assessments provide faculty with tools to assess stu-
dents' mastery of essential mathematical concepts. Not only can faculty measure their
students’ math comprehension at the beginning of the term, they aso now have
resources to which they can direct students to help them reinforce areas where they
need to upgrade their skills.

This text is suitable for a one-semester, a two-semester or a three-quarter course sequence.
The first seven chapters are concerned with the analysis of dc circuits. An introduction to
operational amplifiers is presented in Chapter 4. This chapter may be omitted without any
loss of continuity; afew examples and homework problemsin later chapters must be skipped.
Chapters 8-12 are focused on the analysis of ac circuits beginning with the analysis of single-
frequency circuits (single-phase and three-phase) and ending with variable-frequency circuit
operation. Calculation of power in single-phase and three-phase ac circuits is also presented.
The important topics of the Laplace transform, Fourier transform, and two-port networks are
covered in Chapters 13-16.

The organization of the text provides instructors maximum flexibility in designing their
courses. One instructor may choose to cover the first seven chapters in a single semester,
while another may omit Chapter 4 and cover Chapters 1-3 and 5-8. Other instructors have
chosen to cover Chapters 1-3, 5-6, and sections 7.1 and 7.2 and then cover Chapters 8 and
9. The remaining chapters can be covered in a second semester course.

The pedagogy of this text is rich and varied. It includes print and media and much thought
has been put into integrating its use. To gain the most from this pedagogy, please review the
following elements commonly available in most chapters of this book.

Learning Objectives are provided at the outset of each chapter. This tabular list tells the
reader what is important and what will be gained from studying the material in the chapter.

Examples are the mainstay of any circuit analysis text and numerous examples have always
been a trademark of this textbook. These examples provide a more graduated level of pres-
entation with simple, medium and challenging examples. Besides regular examples, numer-
ous Design Examples and Application Examples are found throughout the text. See for
example, page 343.

Hints can often be found in the page margins. They facilitate understanding and serve as
reminders of key issues. See for example, page 6.



L earning Assessments are acritical learning tool in this text. These exercises test the cumu-
|ative concepts to that point in a given section or sections. Not only is the answer provided,
but a problem-solving video accompanies each of these exercises, demonstrating the solution
in step-by-step detail. The student who masters these is ready to move forward. See for
example, page 7.

Problem-Solving Strategies are step-by-step problem-solving techniques that many stu-
dents find particularly useful. They answer the frequently asked question, “where do |
begin?’ Nearly every chapter has one or more of these strategies, which are a kind of sum-
mation on problem-solving for concepts presented. See for example, page 121.

The Problems have been greatly revised for the 10th Edition. This edition has over 400 new
problems of varying depth and level. Any instructor will find numerous problems appropri-
ate for any level class. There are approximately 1400 problems in the 10th Edition! Included
with the Problems are FE Exam Problems for each chapter. If you plan on taking the FE
Exam, these problems closely match problems you will typicaly find on the FE Exam.

Circuit Simulation and Analysis Software represents a fundamental part of engineering
circuit design today. Software such as PSPICE®, MultiSim® and MATLAB® allow engi-
neers to design and simulate circuits quickly and efficiently. As an enhancement with enor-
mous flexibility, al three of these software packages can be employed in the 10th edition. In
each case, online supplements are available that contain the solutions to numerous examples
in each of these software programs. Instructors can opt to make this material available online
or as part of acustomized print edition, making this software an integral and effective part of
the presentation of course material.

The rich collection of material that is provided for this edition offers a distinctive and
helpful way for exploring the book’s examples and exercises from a variety of simulation
techniques.

WileyPLUS is an innovative, research-based, online environment for effective teaching and
learning.

WHAT DO STUDENTS RECEIVE WITH WILEYPLUS?

A Research-based Design. WileyPLUS provides an online environment that integrates rele-
vant resources, including the entire digital textbook, in an easy-to-navigate framework that
helps students study more effectively.

e WileyPLUS adds structure by organizing textbook content into smaller, more manage-
able “chunks’.

e Related media, examples, and sample practice items reinforce the learning objectives.

e |nnovative features such as calendars, visual progress tracking and self-evaluation tools
improve time management and strengthen areas of weakness.

One-on-one Engagement. With WileyPLUS, students receive 24/7 access to resources that
promote positive learning outcomes. Students engage with related examples (in various
media) and sample practice items, including:

¢ FE Exam Questions

e Reading Quiz Questions

e Circuit Solutions

e Learning Assessments

e Math Skills Assessments

PREFACE XVII

WileyPLUS
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Supplements

Measurable Outcomes. Throughout each study session, students can assess their progressand
gain immediate feedback. WileyPLUS provides precise reporting of strengths and weak-
nesses, as well as individualized quizzes, so that students are confident they are spending
their time on the right things. With WileyPLUS, students always know the exact outcome of
their efforts.

WHAT DO INSTRUCTORS RECEIVE WITH WILEYPLUS? WileyPLUS provides
reliable, customizable resources that reinforce course goals inside and outside of the class-
room as well as visibility into individual student progress. Pre-created materials and activi-
ties help instructors optimize their time.

Customizable Course Plan: WileyPLUS comes with a pre-created Course Plan designed by
a subject matter expert uniquely for this course. Simple drag-and-drop tools make it easy to
assign the course plan as-is or modify it to reflect your course syllabus.

Pre-created Activity Typesinclude:

e Questions

* Readings and Resources

e Presentation

e Print Tests

e Concept Mastery

Course Materials and Assessment Content:

e Lecture Notes

e PowerPoint Slides

e Image Gallery

e Instructor’'s Manual

e Gradable Reading Assignment Questions (embedded with online text)

e Question Assignments: al end-of-chapter problems coded agorithmically with hints, links
to text, whiteboard/show work feature and instructor controlled problem solving help.

Gradebook: WileyPLUS provides instant access to reports on trends in class performance,
student use of course materials and progress towards learning objectives, helping inform
decisions and drive classroom discussions.

WileyPLUS. Learn more at www.wileyplus.com.

Powered by proven technology and built on a foundation of cognitive research, WileyPLUS
has enriched the education of millions of students, in over 20 countries around the world.

The supplements list is extensive and provides instructors and students with a wealth of tra-
ditional and modern resources to match different learning needs.

Problem-Solving Videos are offered again in the 10th Edition in an iPod-compatible format.
The videos provide step-by-step solutions to Learning Assessments. Videos for Learning
Assessments will follow directly after a chapter feature called Problem-Solving Strategy.
Students who have used these videos with past editions have found them to be very helpful.

The Solutions Manual for the 10th Edition has been completely redone, checked and dou-
ble-checked for accuracy. Although it is hand-written to avoid typesetting errors, it is the
most accurate solutions manual ever created for this textbook. Qualified instructors who
adopt the text for classroom use can download it off Wiley’s Instructor’'s Companion Site.



Power Point Lecture Slides are an especialy valuable supplementary aid for some instruc-
tors. While most publishers make only figures available, these slides are true lecture tool s that
summarize the key learning points for each chapter and are easily editable in PowerPoint.
The slides are available for download from Wiley’s Instructor Companion Site for qualified
adopters.

Over the more than two decades that this text has been in existence, we estimate more than
one thousand instructors have used our book in teaching circuit anaysis to hundreds of thou-
sand of students. As authors there is no greater reward than having your work used by so
many. We are grateful for the confidence shown in our text and for the numerous evaluations
and suggestions from professors and their students over the years. This feedback has helped
us continuously improve the presentation. For this Tenth edition, we especially thank Jim
Rowland from the University of Kansas for his assistance with the chapter openers and
Stephen Haddock with Auburn University for his assistance with PSPICE®, M ultiSim® and
MATLAB® supplemental materials. The authors also wish to express a special thanks to
Sandy Johnson for her diligence and dedication in the preparation of this 10th edition.

We were fortunate to have an outstanding group of faculty who has participated in reviews,
surveys and focus groups for this edition. They are:

Jorge Aravena, Louisiana State University

James Conrad, University of North Carolina, Charlotte
Paul King, Vanderbilt University

Gordon Lee, San Diego State University

Tokunbo Ogunfunmi, Santa Clara University

Michael Polis, Oakland University

The preparation of this book and the materialsthat support it have been handled with both
enthusiasm and great care. The combined wisdom and leadership of our colleagues at Wiley
has resulted in a tremendous team effort that has addressed every aspect of the presentation.
This team included the following individuals:

Executive Publisher, Don Fowley
Associate Publisher, Dan Sayre
Executive Media Editor, Tom Kulesa
Executive Marketing Manager, Chris Ruel
Senior Production Editor, Valerie Vargas
Senior Designer, Kevin Murphy
Production Manager, Dorothy Sinclair
Senior Photo Editor, Lisa Gee

Media Editor, Lauren Sapira

Editorial Assistant, Katie Singelton

Each member of this team played a vita role in preparing the package that is the Tenth
Edition of Basic Engineering Circuit Analysis. We are most appreciative of their many
contributions.

As in the past, we are most pleased to acknowledge the support that has been provided
by numerous individuals to earlier editions of this book. Our Auburn colleagues who have
helped are:

Thomas A. Baginski
Travis Blalock
Henry Cobb
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CHAPTER

BASIC CONCEPTS

Courtesy NASA, 2009

Hubble Space Telescope If you were asked to identify the
top engineering achievements that depend on currents, volt-
ages, and power in electrical systems, would NASA’s Hubble
Space Telescope make your list? It should. Launched over 20
years ago into an orbit 375 miles above the Earth’s surface,
the Hubble Telescope avoids distorting effects of the atmos-
phere and gives significant new data about the universe. It
features multiple channels having many intricate electrical
systems that detect different wavelengths of light and
enables us to examine our solar system as well as remote
galaxies. The success of the Hubble Space Telescope program
has led to other NASA plans. In February 2010, the Solar

Review the Sl system of units and standard prefixes

Know the definitions of basic electrical
quantities: voltage, current, and power

Know the symbols for and definitions of
independent and dependent sources

Be able to calculate the power absorbed by a circuit
element using the passive sign convention

Dynamics Observatory was launched to aid in studying our
sun’s dynamic processes including high resolution measure-
ments of solar flares; it is the first mission of NASA’s Living
with a Star program.

Sophisticated as it is, the power of the Hubble Space
Telescope is rooted in the fundamental concepts you will begin
to study in this chapter—charge, current, voltage, power, and
batteries. These core principles are the fundamental building
blocks of your understanding of electrical engineering and your
ability to analyze and design more complicated electrical sys-
tems. Just as the Hubble has led to even greater innovations,
we cannot imagine today what else may lie ahead for you.




2 CHAPTER 1 BASIC CONCEPTS

1.1

System of Units

Figure 1.1 «%
Standard Sl prefixes.

1.2

Basic Quantities

(b)

Figure 1.2

Conventional current flow:
(a) positive current flow;
(b) negative current flow.

The system of units we employ isthe international system of units, the Systéme I nternational
des Unités, which is normally referred to as the Sl standard system. This system, which is
composed of the basic units meter (m), kilogram (kg), second (s), ampere (A), kelvin (K),
and candela (cd), is defined in all modern physics texts and therefore will not be defined here.
However, we will discuss the units in some detail as we encounter them in our subsequent
analyses.

The standard prefixesthat are employed in S| are shown in Fig. 1.1. Note the decimal rela-
tionship between these prefixes. These standard prefixes are employed throughout our study
of electric circuits.

Circuit technology has changed drastically over the years. For example, in the early 1960s
the space on a circuit board occupied by the base of a single vacuum tube was about the size
of a quarter (25-cent coin). Today that same space could be occupied by an Intel Pentium
integrated circuit chip containing 50 million transistors. These chips are the engine for a host
of electronic equipment.

102 10° 10% 10° 1 108 108 10°  10%?

pico (p) nano (n) micro () milli (m) kilo (k) mega (M) giga (G) tera (T)

Before we begin our analysis of electric circuits, we must define terms that we will employ.
However, in this chapter and throughout the book our definitions and explanations will be as
simple as possible to foster an understanding of the use of the material. No attempt will be
made to give complete definitions of many of the quantities because such definitions are not
only unnecessary at this level but are often confusing. Although most of us have an intuitive
concept of what is meant by a circuit, we will smply refer to an electric circuit as an inter-
connection of electrical components, each of which we will describe with a mathematical
model.

The most elementary quantity in an analysis of electric circuitsis the electric charge. Our
interest in electric charge is centered around its motion, since charge in motion resultsin an
energy transfer. Of particular interest to us are those situations in which the motion is confined
to a definite closed path.

An electric circuit is essentially a pipeline that facilitates the transfer of charge from
one point to another. The time rate of change of charge constitutes an electric current.
Mathematically, the relationship is expressed as

d t
i(t) = % or q(t) = [ i(x) dx 11

00

where i and ¢ represent current and charge, respectively (lowercase letters represent time
dependency, and capital letters are reserved for constant quantities). The basic unit of current
isthe ampere (A), and 1 ampereis 1 coulomb per second.

Although we know that current flow in metallic conductors results from electron motion,
the conventional current flow, which isuniversally adopted, represents the movement of positive
charges. It is important that the reader think of current flow as the movement of positive
charge regardless of the physical phenomenathat take place. The symbolism that will be used
to represent current flow isshowninFig. 1.2. I, = 2 A inFig. 1.2aindicates that at any point
in the wire shown, 2 C of charge pass from left to right each second. I, = =3 A inFig. 1.2b
indicatesthat at any point in the wire shown, 3 C of charge pass from right to left each second.
Therefore, it is important to specify not only the magnitude of the variable representing the
current but also its direction.
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i(7) ()

(a) (b)

The two types of current that we encounter often in our daily lives, alternating current (ac)
and direct current (dc), are shown asafunction of timein Fig. 1.3. Alternating current isthe
common current found in every household and is used to run the refrigerator, stove, washing
machine, and so on. Batteries, which are used in automobiles and flashlights, are one source
of direct current. In addition to these two types of currents, which have awide variety of uses,
we can generate many other types of currents. We will examine some of these other types
later in the book. In the meantime, it is interesting to note that the magnitude of currentsin
elements familiar to us ranges from soup to nuts, as shown in Fig. 1.4.

We have indicated that charges in motion yield an energy transfer. Now we define the
voltage (also called the electromotive force, or potential) between two pointsin acircuit asthe
differencein energy level of aunit charge located at each of the two points. Voltageisvery sim-
ilar to agravitational force. Think about a bowling ball being dropped from aladder into atank
of water. As soon as the ball is released, the force of gravity pullsit toward the bottom of the
tank. The potentia energy of the bowling ball decreases asit approaches the bottom. The grav-
itational force is pushing the bowling ball through the water. Think of the bowling ball as a
charge and the voltage as the force pushing the charge through a circuit. Charges in motion
represent a current, so the motion of the bowling ball could be thought of as a current. The
water in the tank will resist the motion of the bowling ball. The motion of chargesin an elec-
tric circuit will be impeded or resisted as well. We will introduce the concept of resistance in
Chapter 2 to describe this effect.

Work or energy, w(¢) or W, is measured in joules (J); 1 joule is 1 newton meter (N - m).
Hence, voltage [v(r) or V] ismeasured in volts (V) and 1 volt is 1 joule per coulomb; that is,
1 volt = 1 joule per coulomb = 1 newton meter per coulomb. If a unit positive charge is
moved between two points, the energy required to move it is the difference in energy level
between the two points and is the defined voltage. It is extremely important that the variables
used to represent voltage between two points be defined in such away that the solution will
let us interpret which point is at the higher potential with respect to the other.

106
Lightning bolt
104
Large industrial motor current
102
- Typical household appliance current
< 100
4 Causes ventricular fibrillation in humans
@ 102
g Human threshold of sensation
© 104
£
S 106
= Integrated circuit (IC) memory cell current
(@] 10-8
10-10
10-12
Synaptic current (brain cell)
10-14
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Figure 1.3

Two common types

of current: (a) alternating
current (ac); (b) direct
current (dc).

Figure 1.4

Typical current magnitudes.
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Figure 1.5
Voltage representations.

Figure 1.6

Typical voltage magnitudes.

@) (b) (©

In Fig. 1.5a the variable that represents the voltage between points A and B has been
defined as 'V}, and it is assumed that point A is at a higher potential than point B, asindicated
by the + and — signs associated with the variable and defined in the figure. The + and — signs
define a reference direction for V;. If V; = 2V, then the difference in potential of points A
and B is2 V and point A is at the higher potential. If a unit positive charge is moved from
point A through the circuit to point B, it will give up energy to the circuit and have 2 J less
energy when it reaches point B. If a unit positive charge is moved from point B to point A,
extraenergy must be added to the charge by the circuit, and hence the charge will end up with
2 Jmore energy at point A than it started with at point B.

For the circuitin Fig. 1.5b, V, = —5V meansthat the potential between points A and B is
5V and point B is at the higher potential. The voltagein Fig. 1.5b can be expressed as shown
in Fig. 1.5c. In this equivalent case, the difference in potential between points A and B is
V, = 5V, and point B is at the higher potential.

Note that it isimportant to define a variable with a reference direction so that the answer
can be interpreted to give the physical condition in the circuit. We will find that it is not
possible in many cases to define the variable so that the answer is positive, and we will also
find that it is not necessary to do so.

As demonstrated in Figs. 1.5b and ¢, a negative number for a given variable, for example,
V, inFig. 1.5b, gives exactly the same information as a positive number, that is, V, in Fig. 1.5¢,
except that it has an opposite reference direction. Hence, when we define either current or volt-
age, it is absolutely necessary that we specify both magnitude and direction. Therefore, it is
incomplete to say that the voltage between two pointsis 10 V or the current in alineis 2 A,
since only the magnitude and not the direction for the variables has been defined.

The range of magnitudes for voltage, equivalent to that for currentsin Fig. 1.4, is shown
in Fig. 1.6. Once again, note that this range spans many orders of magnitude.

8
10 Lightning bolt
106 High-voltage transmission lines
Voltage on a TV picture tube
104 . )
Large industrial motors
ac outlet plug in U.S. households
— 102
b Car battery
2 00 Voltage on integrated circuits
g 1 Flashlight battery
c
& 102
8 Voltage across human chest produced by the
S heart (EKG)
104
Voltage between two points on human scalp (EEG)
1076
Antenna of a radio receiver
108
1010
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Light bulb

At this point we have presented the conventions that we employ in our discussions of
current and voltage. Energy is yet another important term of basic significance. Let's
investigate the voltage—current relationships for energy transfer using the flashlight shown in
Fig. 1.7. The basic elements of a flashlight are a battery, a switch, alight bulb, and connect-
ing wires. Assuming agood battery, we all know that the light bulb will glow when the switch
is closed. A current now flows in this closed circuit as charges flow out of the positive ter-
minal of the battery through the switch and light bulb and back into the negative terminal of
the battery. The current heats up the filament in the bulb, causing it to glow and emit light.
The light bulb converts electrical energy to thermal energy; as a result, charges passing
through the bulb lose energy. These charges acquire energy as they pass through the battery
as chemical energy is converted to electrical energy. An energy conversion process is occur-
ring in the flashlight as the chemical energy in the battery is converted to electrical energy,
which is then converted to thermal energy in the light bulb.

1
0 | — Battery

- Vballery +

Let's redraw the flashlight as shown in Fig. 1.8. There is a current | flowing in this dia-
gram. Since we know that the light bulb uses energy, the charges coming out of the bulb have
less energy than those entering the light bulb. In other words, the charges expend energy as
they move through the bulb. This is indicated by the voltage shown across the bulb. The
charges gain energy as they pass through the battery, which isindicated by the voltage across
the battery. Note the voltage—current relationships for the battery and bulb. We know that the
bulb is absorbing energy; the current is entering the positive terminal of the voltage. For the
battery, the current is leaving the positive terminal, which indicates that energy is being
supplied.

This is further illustrated in Fig. 1.9, where a circuit element has been extracted from a
larger circuit for examination. In Fig. 1.9a, energy is being supplied to the element by
whatever is attached to the terminals. Note that 2 A, that is, 2 C of charge are moving from
point A to point B through the element each second. Each coulomb loses 3 J of energy asit
passes through the element from point A to point B. Therefore, the element is absorbing 6 J
of energy per second. Note that when the element is absorbing energy, a positive current
enters the positive terminal. In Fig. 1.9b energy is being supplied by the element to whatever
is connected to terminals A-B. In this case, note that when the element is supplying energy,
apositive current enters the negative terminal and leaves viathe positive terminal. In this con-
vention, a negative current in one direction is equivalent to a positive current in the opposite
direction, and vice versa. Similarly, a negative voltage in one direction is equivalent to a pos-
itive voltage in the opposite direction.

BASIC QUANTITIES 5

Figure 1.7
Flashlight circuit.

Figure 1.8

Flashlight circuit with
voltages and current.

Figure 1.9

Voltage—current relationships
for (a) energy absorbed and
(b) energy supplied.
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1.1

Figure 1.10
Diagram for Example 1.1.

i(1)

+

v(t)

Figure 1.11

Sign convention for power.

[hint]

The passive sign convention
is used to determine whether
power is being absorbed or
supplied.

Suppose that your car will not start. To determine whether the battery is faulty, you turn on
the light switch and find that the lights are very dim, indicating aweak battery. You borrow
afriend’s car and a set of jumper cables. However, how do you connect his car’s battery to
yours? What do you want his battery to do?

Essentialy, his car's battery must supply energy to yours, and therefore it should be
connected in the manner shown in Fig. 1.10. Note that the positive current leaves the posi-
tive terminal of the good battery (supplying energy) and enters the positive terminal of the
weak battery (absorbing energy). Note that the same connections are used when charging a
battery.

In practical applications there are often considerations other than simply the electrical
relations (e.g., safety). Such is the case with jump-starting an automobile. Automobile
batteries produce explosive gases that can be ignited accidentally, causing severe physical
injury. Be safe—follow the procedure described in your auto owner’s manual .

We have defined voltage in joules per coulomb as the energy required to move a positive
charge of 1 C through an element. If we assume that we are dealing with adifferential amount
of charge and energy, then

o= & 12
dg '
Multiplying this quantity by the current in the element yields
- o () g
i), 13

which is the time rate of change of energy or power measured in joules per second, or watts
(W). Since, in general, both v and i are functions of time, p is aso a time-varying quantity.
Therefore, the change in energy from time ¢, to time ¢, can be found by integrating Eq. (1.3);

that is,
ty ty
Aw=/pdt=/vidt 1.4
i i

At this point, let us summarize our sign convention for power. To determine the sign of
any of the quantities involved, the variables for the current and voltage should be arranged as
shown in Fig. 1.11. The variable for the voltage v(t) is defined as the voltage across the ele-
ment with the positive reference at the same terminal that the current variable () is entering.
This convention is called the passive sign convention and will be so noted in the remainder
of this book. The product of » and i, with their attendant signs, will determine the magnitude
and sign of the power. If the sign of the power is positive, power is being absorbed by the ele-
ment; if the sign is negative, power is being supplied by the element.
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Given the two diagrams shown in Fig. 1.12, determine whether the element is absorbing or

supplying power and how much.
1.2
4A —2A
= +
- +
2V 2V 2V 2V
+ —
+ —
Figure 1.12
(a) (b) Elements for Example 1.2.

In Fig. 1.12a the power is P = (2 V)(—4 A) = —8 W. Therefore, the element is supplying
power. In Fig. 1.12b, the power is P = (2 V)(—2 A) = —4 W. Therefore, the element is

supplying power.

7

E1.1 Determine the amount of power absorbed or supplied by the elementsin Fig. E1.1. ANSWER:
(& P=—-48W,;
(b) P =8W.

Figure E1.1

We wish to determine the unknown voltage or current in Fig. 1.13.

1.3

SA =7
A A
Vi=2 P=-20wW 5V P =140w 5V
B +B ’
© © Figure 1.13
(@ (b) Elements for Example 1.3.

In Fig. 1.13a, a power of —20 W indicates that the element is delivering power. Therefore,
the current enters the negative terminal (terminal A), and from Eq. (1.3) the voltage is 4 V.
Thus, B isthe positive terminal, A isthe negative terminal, and the voltage between them is
4\V.

In Fig 1.13b, apower of +40 W indicates that the element is absorbing power and, there-
fore, the current should enter the positive terminal B. The current thus has a value of —8 A,
as shown in the figure.
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E1.2 Determine the unknown variablesin Fig. E1.2. ANSWER:
@ Vv =-20V;
(b) I =—5A.

Vlz?
+

=
I+ 0

)|
~
|
N)

Figure E1.2

@

I=2A
P=40wW P =-50wW 4
10V 10V

(b)

1.3

Circuit Elements

Finally, it isimportant to note that our electrical networks satisfy the principle of conser-
vation of energy. Because of the relationship between energy and power, it can be implied
that power is also conserved in an electrical network. Thisresult was formally stated in 1952
by B. D. H. Tellegen and is known as Tellegen’s theorem—the sum of the powers absorbed
by al elementsin an electrical network is zero. Another statement of this theorem isthat the
power supplied in a network is exactly equal to the power absorbed. Checking to verify that
Tellegen's theorem is satisfied for a particular network is one way to check our calculations
when analyzing electrical networks.

Thus far we have defined voltage, current, and power. In the remainder of this chapter we will
define both independent and dependent current and voltage sources. Although we will
assume ideal elements, we will try to indicate the shortcomings of these assumptions as we
proceed with the discussion.

In general, the elements we will define are termina devices that are completely charac-
terized by the current through the element and/or the voltage acrossit. These elements, which
we will employ in constructing electric circuits, will be broadly classified as being either
active or passive. The distinction between these two classifications depends essentially on
one thing—whether they supply or absorb energy. As the words themselves imply, an active
element is capable of generating energy and a passive element cannot generate energy.

However, later we will show that some passive elements are capable of storing energy.
Typical active elements are batteries and generators. The three common passive elements are
resistors, capacitors, and inductors.

In Chapter 2 we will launch an examination of passive elements by discussing the resis-
tor in detail. Before proceeding with that element, wefirst present some very important active
elements.

1. Independent voltage source 3. Two dependent voltage sources
2. Independent current source 4. Two dependent current sources

INDEPENDENT SOURCES An independent voltage source is a two-termina element
that maintains a specified voltage between its terminals regardless of the current through it
asshown by thev-i plotin Fig. 1.14a The general symbol for an independent source, acircle,
is also shown in Fig. 1.14a As the figure indicates, terminal A is v(¢) volts positive with
respect to terminal B.

In contrast to the independent voltage source, the independent current source is a two-
terminal element that maintains a specified current regardless of the voltage across its
terminals, asillustrated by the v-i plot in Fig. 1.14b. The general symbol for an independent
current source is also shown in Fig. 1.14b, where i(7) is the specified current and the arrow
indicates the positive direction of current flow.
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Figure 1.14

Symbols for (a) independent
voltage source, (b) independ-
ent current source.

v v
i i
A A
v(7) i(r)
B B
@ ()

In their normal mode of operation, independent sources supply power to the remainder of
the circuit. However, they may also be connected into a circuit in such away that they absorb
power. A simple example of this latter case is a battery-charging circuit such as that shown
in Example 1.1.

It is important that we pause here to interject a comment concerning a shortcoming of the
models. In general, mathematical models approximate actual physical systemsonly under acer-
tain range of conditions. Rarely does a model accurately represent a physical system under
every set of conditions. To illustrate this point, consider the model for the voltage source in
Fig. 1.14a. We assume that the voltage source delivers v volts regardless of what is connected
to itsterminals. Theoreticaly, we could adjust the external circuit so that an infinite amount of
current would flow, and therefore the voltage source would deliver an infinite amount of power.
Thisis, of course, physically impossible. A similar argument could be made for the independ-
ent current source. Hence, the reader is cautioned to keep in mind that models have limitations
and thus are valid representations of physical systems only under certain conditions.

For example, can the independent voltage source be utilized to model the battery in an
automobile under all operating conditions? With the headlights on, turn on the radio. Do the
headlights dim with the radio on? They probably won't if the sound system in your automo-
bile was installed at the factory. If you try to crank your car with the headlights on, you will
notice that the lights dim. The starter in your car draws considerable current, thus causing the
voltage at the battery terminals to drop and dimming the headlights. The independent volt-
age source is a good model for the battery with the radio turned on; however, an improved
model is needed for your battery to predict its performance under cranking conditions.

Determine the power absorbed or supplied by the elements in the network in Fig. 1.15.

6V
I=2A1tr—~
L] I=2A
+
24V 2 |18V
[=2A

1.4

Figure 1.15
Network for Example 1.4.
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[hint]
Elements that are

connected in series have
the same current.

The current flow is out of the positive terminal of the 24-V source, and therefore this
element is supplying (2)(24) = 48 W of power. The current is into the positive terminals
of elements 1 and 2, and therefore elements 1 and 2 are absorbing (2)(6) = 12 W and
(2)(18) = 36 W, respectively. Note that the power supplied is equal to the power
absorbed.

E1.3 Find the power that is absorbed or supplied by the elementsin Fig. E1.3. ANSWER: Current source
supplies 36 W, element
I=3A +|18—Vr 1 absorbs 54 W, and
. L] I=3A element 2 supplies 18 W.
12v(1l)3a 6V
— +

Figure E1.3

Figure 1.16

Four different types of
dependent sources.

DEPENDENT SOURCES In contrast to the independent sources, which produce a
particular voltage or current completely unaffected by what is happening in the remainder of
the circuit, dependent sources generate avoltage or current that is determined by a voltage or
current at a specified location in the circuit. These sources are very important because they
are an integral part of the mathematical models used to describe the behavior of many elec-
tronic circuit elements.

For example, metal-oxide-semiconductor field-effect transistors (MOSFETS) and bipolar
transistors, both of which are commonly found in a host of electronic equipment, are mod-
eled with dependent sources, and therefore the analysis of electronic circuits involves the use
of these controlled elements.

In contrast to the circle used to represent independent sources, a diamond is used to
represent a dependent or controlled source. Fig. 1.16 illustrates the four types of dependent
sources. The input terminals on the left represent the voltage or current that controls the
dependent source, and the output terminals on the right represent the output current or volt-
age of the controlled source. Note that in Figs. 1.16a and d, the quantities . and 8 are dimen-
sionless constants because we are transforming voltage to voltage and current to current. This
isnot the case in Figs. 1.16b and c; hence, when we employ these elements a short time later,
we must describe the units of the factors r and g.

is
‘o) o)
+
vs V= pog
o) o)
(b)

is
o)
+
Vg I = gug
o)

©) (d)
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Given the two networks shown in Fig. 1.17, we wish to determine the outputs.

In Fig. 1.17athe output voltageisV, = wVs or V, = 20 Vg = (20)(2 V) = 40 V. Note that
the output voltage has been amplified from 2 V at the input terminalsto 40 V at the output
terminals; that is, the circuit is a voltage amplifier with an amplification factor of 20.

O O
+ +
Vg=2Vv <J>20V5 v, V,
o o
(b)

In Fig. 1.17b, the output current is I, = BI; = (50)(1 mA) = 50 mA; that is, the circuit has
acurrent gain of 50, meaning that the output current is 50 times greater than the input current.

Ig=1mA 10

1.5

Figure 1.17
Circuits for Example 1.5.

E1.4 Determine the power supplied by the dependent sourcesin Fig. E1.4.

I,=2A —4A
@S4v <ﬂ>10VS +

Figure E1.4

ANSWER:
(a) Power supplied = 80 W;
(b) power supplied = 160 W.

Calculate the power absorbed by each element in the network of Fig. 1.18. Also verify that

Tellegen's theorem is satisfied by this network.

1A +%/—
L=
oy R e
ryy L2 ITA
24v<i> 16v+ 1:| 12V<i>
3A C11A 2A

Let’s calculate the power absorbed by each element using the sign convention for power.
P =(16)(1) = l6 W
P = (4)(1) = 4W
P = (12)(1) = 12W

1.6

Figure 1.18
Circuit used in Example 1.6.
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P, = (8)(2) = 16W
Py = (12)(2) = 24 W
Pyy = (24)(=3) = -12W
Note that to calculate the power absorbed by the 24-V source, the current of 3 A flowing up
through the source was changed to a current —3 A flowing down through the 24-V source.
Let’'s sum up the power absorbed by all elements: 16 + 4 + 12 + 16 + 24 — 72 =10
This sum is zero, which verifies that Tellegen’s theorem is satisfied.

Use Tellegen’s theorem to find the current 1, in the network in Fig. 1.19.

1 7 6V,
° Q Ix =2A
—/
2A
LBV _lav
el
1, 9A 11A
+
|:3 10V <+ 4v <j> 8l,
Figure 1.19 B
Circuit used in Example 1.7. 3A 8A

First, we must determine the power absorbed by each element in the network. Using the sign
convention for power, we find

P2A = (6)(=2) = —12W

P = (6)(1,) = 61,W
P2=(12)( 9) = —108 W
P, = (10)(=3) = 30 W

P4V = (4)(—8) = —32W

(=
= (81,)(11) = (16)(11) = 176 W
Applying Tellegen's theorem yields
—12 + 61, — 108 — 30 — 32 + 176 = 0

or
61, + 176 = 12 + 108 + 30 + 32
Hence,
I, = 1A
E1.5 Find the power that is absorbed or supplied by the circuit elements in the network in ANSWER:

Py = 96 W supplied;
P, = 32 W absorbed;
Py = 64 W absorbed.

Fig. EL5.

Figure E1.5



E1.6 Find the power that is absorbed
or supplied by the network elementsin
Fig. EL6.

Figure E1.6

E1.7 Find |, in Fig. E1.7 using
Tellegen’s theorem.

Figure E1.7

SECTION 1.3 CIRCUIT ELEMENTS

ANSWER:
P24V = 36 W wppllaj,

v ©

P,y = 18 W absorbed,
Py, = 4.5 W supplied,
P, =9 W absorbed,

P, = 13.5 W absorbed.

2]
1A 2A ANSWER:
l,=—2A.
+ -
0V CD I, |:3 15V
N N =
[1] 25V C‘) 5A

13

The charge that enters the BOX is shown in Fig. 1.20. Calculate and sketch the current flow-
ing into and the power absorbed by the BOX between 0 and 10 milliseconds.

1.8

t (ms)

(1)
12V BOX
q(1) (mC)
3 —
2 —
14—
5 6
! ! ! ! !
T T T T T
1 3 4 7 8 9 10
_1 —
_2 —
_3 —

Figure 1.20

Diagrams for Example 1.8.
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Figure 1.21

Charge and current
waveforms for Example 1.8.

BASIC CONCEPTS

0<tr=1ms

1=¢tr=2ms

2=r=3ms

3=t=5ms

5=r=6ms

dq(t
Recall that current is related to charge by i(¢) = Z(t )
the charge waveform.
i(t) =0
3X10° —-1x107
l(t) = 3 3 = 2A
2 X107 —=1X10
i(t) =0
-2 X107 -3 %107
i(r) = - — = —25A
S5X 107 =3 X 10~
i(1) =0
2 X107 — (=2 X 107)
i(t) = = 1.33A

9X 103 -6 X103
i(t) =0

t=9ms

6=r=9ms

———. The current is equal to the slope of

The current is plotted with the charge waveform in Fig. 1.21. Note that the current is zero
during times when the charge is a constant value. When the charge is increasing, the cur-

rent is positive, and when the charge is decreasing, the current is negative.

q(r) (mC), i(r) (A)
2 —
1 A
| > | / |
1 2 3 zlt ; ;3 1|o t (ms)

_1 —
72 —
73 —

The power absorbed by the BOX is12 - i(t).

p(t) = 12%0 = 0

p(t) = 1252 = 24 W

p(t) = 1250 = 0

p(t) = 12%(—2.5) =—30 W
p(t) = 1250 = 0

p(t) = 12%133 = 16 W

p(t) = 12%0 = 0

0r=1ms
1=t=2ms
2=t=3ms
3=r=5ms
S5=t=6ms
6=r=9ms
t=9ms

The power absorbed by the BOX isplotted in Fig. 1.22. For thetimeintervals, 1 = ¢ = 2ms
and 6 =t = 9 ms, the BOX is absorbing power. During the timeinterval 3 = r = 5ms, the
power absorbed by the BOX is negative, which indicates that the BOX is supplying power

to the 12-V source.
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4 p(t) (W) Figure 1.22
36 Power waveform for
Example 1.8.
24
12
5 6
| | | |
I I I I
1 2 3 4 7 8 9 10 t(ms)
_12 —
_24 -
736 -
E1.8 The power absorbed by the BOX in Fig. El.8 is i(2) ANSWER: 395.1 mJ,
p(t) = 2.5 * W. Compute the energy and charge deliv- 8.8 mC.

ered to the BOX inthetimeinterval 0 <t < 250 ms.
50etV BOX

Figure E1.8

E1.9 The energy absorbed by the BOX in Fig. El.9 is given below. Calculate and sketch the current
flowing into the BOX. Also calculate the charge that enters the BOX between 0 and 12 seconds.

i)

10V BOX

w(7) (J)

1 2 3 4 5 6 t(s)
_25 -

Figure E1.9
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ANSWER: Q=0.

i) (A)
0.25
0.125-
4 5 6 7 8
I I I I I I I
1 2 3 9 10 11 12 f(s)
~0.125
~0.25

1.9

Figure 1.23

Charging a Motorola RAZR®
and Apple iPod® from USB
ports. (Courtesy of Mark
Nelms and Jo Ann Loden)

A Universal Serial Bus (USB) port is a common feature on both desktop and notebook
computers as well as many handheld devices such as MP3 players, digital cameras, and cell
phones. The USB 2.0 specification (www.ush.org) permits data transfer between a comput-
er and a peripheral device at rates up to 480 megabits per second. One important feature of
USB isthe ability to swap peripheral s without having to power down a computer. USB ports
are also capable of supplying power to external peripherals. Fig. 1.23 shows a Motorola
RAZR® and an Apple iPod® being charged from the USB ports on a notebook computer.
A USB cable is a four-conductor cable with two signal conductors and two conductors for
providing power. The amount of current that can be provided over a USB port is defined in
the USB specification in terms of unit loads, where one unit load is specified to be 100 mA.
All USB ports default to low-power ports at one unit load, but can be changed under soft-
ware control to high-power ports capable of supplying up to five unit loads or 500 mA.
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A 680 mAh lithium-ion battery is standard in a Motorola RAZR®. If this battery
iscompletely discharged (i.e., 0 mAh), how long will it take to recharge the battery
toits full capacity of 680 mAh from alow-power USB port? How much chargeis
stored in the battery at the end of the charging process?

A third-generation iPod® with a 630 mAh lithium-ion battery is to be recharged
from a high-power USB port supplying 150 mA of current. At the beginning of the
recharge, 7.8 C of charge are stored in the battery. The recharging process halts when
the stored charge reaches 35.9 C. How long does it take to recharge the battery?

A low-power USB port operates at 100 mA. Assuming that the charging current
from the USB port remains at 100 mA throughout the charging process, the time
required to recharge the battery is 680 mAh/100 mA = 6.8 h. The charge stored in
the battery when fully charged is 680mAh - 60 s/h = 40,800 mAs = 40.8 As =
40.8 C.

The charge supplied to the battery during the recharging process is
359 — 7.8 = 28.1 C. This corresponds to 28.1 As = 28,100 mAs - 1h/60s =
468.3 mAh. Assuming a constant charging current of 150 mA from the high-power
USB port, the time required to recharge the battery is 468.3 mAh/150 mA = 3.12 h.

SUMMARY
m The standard prefixes employed m The passive sign convention The passivesign
p=10" kK = 10° convention states that if the voltage and current associated
I s with an element are as shown in Fig. 1.11, the product of
n= 1076 M =10 v and i, with their attendant signs, determines the
w=10 G =10 magnitude and sign of the power. If the sign is positive,
m= 10" T = 10" power is being absorbed by the element, and if the sign is

negative, the element is supplying power.

m The relationships between current and

m Independent and dependent sources An
charge

ideal independent voltage (current) source is a two-terminal
element that maintains a specified voltage (current) between
its terminals, regardless of the current (voltage) through
(across) the element. Dependent or controlled sources
generate a voltage or current that is determined by a voltage
or current at a specified location in the circuit.

d t
i(t) = (:j(tt) or q(t) = [ i(x) dx

m The relationships among power, energy,
current, and voltage

dw ) m Conservation of energy The electric circuits
P="q = vl under investigation satisfy the conservation of energy.
Aw = / tzp di = / IZQ)i dt m Tellegen’s theorem The sum of the powers
" 7 absorbed by all elementsin an electrical network is zero.

PROBLEMS

1.1 If the current in an electric conductor is 2.4 A, how
many coulombs of charge pass any point in a 30-second
interval ?

1.2 Determine the time interval required for a 12-A battery
charger to deliver 4800 C.

1.3 A lightning bolt carrying 30,000 A lasts for 50 micro-
seconds. If the lightning strikes an airplane flying at
20,000 feet, what is the charge deposited on the plane?

1.4 If al12-V battery delivers 100 Jin 5's, find (&) the amount
of charge delivered and (b) the current produced.
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1.5 The current in a conductor is 1.5 A. How many coulombs of
charge pass any point in atime interva of 1.5 minutes?

1.6 If 60 C of charge pass through an electric conductor in
30 seconds, determine the current in the conductor.

1.7 Determine the number of coulombs of charge produced by
a 12-A battery charger in an hour.

1.8 Five coulombs of charge pass through the element in
Fig. P1.8 from point A to point B. If the energy absorbed by
the element is 120 J, determine the voltage across the
element.

+0

=

DOl

Figure P1.8

1.9 The current that enters an element is shown in
Fig. P1.9. Find the charge that enters the element
inthetimeinterval 0 < r < 20 s.

1.11 The charge entering the positive terminal of an element is
given by the expression ¢(#) = —12¢ 2 mC. The power
delivered to the element is p(r) = 2.4¢¥ W. Compute
the current in the element, the voltage across the element,
and the energy delivered to the element in the time
interval 0 < ¢ < 100 ms.

1.12 The voltage across an element is 12¢ > V. The current
entering the positive terminal of the element is2¢ > A.
Find the energy absorbed by the element in 1.5 s starting
fromt = 0.

1.13 The power absorbed by the BOX in Fig. P1.13is
2e 2 W. Calculate the amount of charge that enters the
BOX between 0.1 and 0.4 seconds.

4e7tv BOX

Figure P1.13

1.14 The power absorbed by the BOX in Fig. P1.14 is

i(1) mA 0.1e* W. Calculate the energy absorbed by the BOX
during this same time interval.
10
0 10 20 7
t(s) 10e-2ty BOX
Figure P1.9
1.10 The charge entering the positive terminal of an element is
q(t) = =30e™* mC. If the voltage across the element is Figure P1.1
120e7%' V, determine the energy delivered to the element § 14
inthetimeinterval 0 < r < 50 ms.
1.15 The energy absorbed by the BOX in Fig. P1.15 is shown below. How much charge enters
the BOX between 0 and 10 milliseconds?
w(r) (mJ)
15
i(1)
10
15V BOX
5 -
I I I .
1 2 4 5 6 7 8 9 10 t(ms)
75 —
,10 -
,15 -
Figure P1.15
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1.16 The charge that entersthe BOX in Fig. P1.16 is shown in the graph below. Caculate and sketch
the current flowing into and the power absorbed by the BOX between 0 and 10 milliseconds.

i(t)

12v BOX

q(t) (mC)

1 2 3 4 6 7 8 9 10 t(ms)

Figure P1.16

@ 1.17 The energy absorbed by the BOX in Fig. P1.17 is given below. Calculate and sketch the
current flowing into the BOX. Also calculate the charge which enters the BOX between 0
and 12 seconds.

i(1)

oV BOX

w(7) (J)

1 2 3 4 5 9 t(s)

—2.54

Figure P1.17
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1.18 The charge entering the upper terminal of the BOX in Fig. P1.18 is shown below. How much
energy is absorbed by the BOX between 0 and 9 seconds?

i(1)
12V BOX
q(1) (C)

1_
0.5 —

i i i i /I\ i i i i

1 2 3 4 5 M t(s)
_05_
_l_
_15_
Figure P1.18

1.19 The energy absorbed by the BOX in Fig. P1.19 is shown in the graph below. Calculate and
sketch the current flowing into the BOX between 0 and 10 milliseconds.

i(1)

12v BOX

4 w(r) (m])

30
20

10

i

—10

—20

—30

Figure P1.19



1.20 Determine the amount of power absorbed or supplied
by the element in Fig. P1.20 if

(@ V,=9VandI =2A
(b) V,=9VandI = -3A
(© V,=—12Vadl =2A
(d V,=—-12VandI = —3A

+0

Vi

Figure P1.20

1.21 Calculate the power absorbed by element A in
Fig. P1.21.

3A

15V A:l
+

Figure P1.21

1.22 Calculate the power supplied by element A in Fig. P1.22.

2A

+
20V A:l

Figure P1.22

1.23 Element A in the diagram in Fig. P1.23 absorbs 30 W of
power. Calculate V,.

2A

Figure P1.23
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1.24 Element B in the diagram in Fig. P1.24 supplies 60 W of
power. Calculate |,

24V B]
+

I

X

Figure P1.24

1.25 Element B in the diagram in Fig. P1.25 supplies 72 W of
power. Calculate V,.

3A

+

Vale]

Figure P1.25

1.26 Element B in the diagram in Fig. P1.26 supplies 72 W of
power. Calculate |,.

+
18V B]

Figure P1.26

1.27 (a) InFig. P1.27 (a), P, = 36 W. Is element 2 absorbing
or supplying power, and how much?

(b) InFig. P1.27 (b), P, = —48 W. Is element 1 absorb-
ing or supplying power, and how much?

iZV 1 ?_V
HE 0:

() (b)
Figure P1.27
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1.28 Two elements are connected in series, as shown in
Fig. P1.28. Element 1 supplies 24 W of power. Is ele-
ment 2 absorbing or supplying power, and how much?

+
ey
2 ]ov
+
Figure P1.28

1.29 Element 2 in Fig. P1.29 absorbed 32 W. Find the power
absorbed or supplied by elements 1 and 3.

Figure P1.29

1.30 Choose I, such that the power absorbed by element 2 in
Fig. PL30is7 W.

Figure P1.30

1.31 Find the power that is absorbed or supplied by the circuit
elementsin Fig. P1.31.

T
L1
+
20V 2A Cj 14V
2A
@)
8V
IL,=4A + -
* 1]
L1

16V§T> 4A

(b)

Figure P1.31

1.32 Find the power that is absorbed or supplied by the net-
work elementsin Fig. P1.32.

8V

I,=2A +|T|* 2A
L1
12v<+> <1L> 2l,
2A
@
24V 20V

(b)
Figure P1.32

1.33 Compute the power that is absorbed or supplied by the
elementsin the network in Fig. P1.33.

A 1l
I, =4A 1 A 2A
L= oA A
+ +
36V Ci) |:2 24V |:3 28V
Figure P1.33
1.34 Find the power that is absorbed or supplied by element 2
inFig. P1.34.
2V
4V X
2A + -
] >
L= N

o6

Figure P1.34

2A

1.35 Find I, in the network in Fig. P1.35.

12V e
ey DZN
L1 5 A N ) A
+ +
36v<j> |:2 24V |:3 28V

Figure P1.35



1.36 Determine the power absorbed by element 1 in Fig. P1.36.

;L l2v L8V
— 1] 2]
L= L=12a

(O

+

24 v7<l> 2l,

[s]sov

Figure P1.36
1.37 Find the power absorbed or supplied by element 1 in
Fig. P1.37.
L8V LAV
2] B

IX
18V Ci)
Ix

2A

O

Figure P1.37
@ 1.38 Find the power absorbed or supplied by element 3in
Fig. P1.38.
4V 12V
T -
L \ an
JF
2A |:2 16V
- +
Cr) 12v <j> 2V, |:4 20V
N _
S 1L A
2A
Figure P1.38
1.39 Find the power absorbed or supplied by element 1 in Fig.
P1.39.
4V 12V
T )
L] \_ 4A
+ + + +
aly <T> 12V [2] 8V |:3 20V |:4 20V
- 4A 2A I, -

Figure P1.39
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1.40 Find V, in the network in Fig. P1.40 using Tellegen's

theorem.
+16V7
22 ) Py [s]
+I_|_ / +I_I7 L2
12V 24V X

(@)

Figure P1.40

1.41 Find I, in the circuit in Fig. P1.41 using Tellegen's

theorem.
4V 8V 18V 12V

223 e I e IO e I
LA L LI I

Cj 24V

[ v

Figure P1.41

1.42 |sthe source V; in the network in Fig. P1.42 absorbing
or supplying power, and how much?

6V B VS
S IV
10V|::| 9A 16V
+ +
3A

6 A

[ Jov

Figure P1.42

1.43 Find 7, in the network in Fig. P1.43 using Tellegen's

theorem.
8V
AT
L 4A
+
24v<i> |:2 10V I, =2A
6V, B +
Py
13] |:4 _16V
1+
41x<j> |:5 6V
8V -
3A —I?I"r 1A
L—13a
Figure P1.43
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@ 1.44 Cadculate the power absorbed by each element in the
circuit in Fig. P1.44. Also verify Tellegen's theorem is

CHAPTER 1

BASIC CONCEPTS

1.46 Inthecircuit in Fig. P1.46, element 1 absorbs 40 W, ele-
ment 2 supplies 50 W, element 3 supplies 25 W, and ele-

satisfied by this circuit. ment 4 absorbs 15 W. How much power is supplied by
; element 5?
3Ly 24V
AN i 1] 2]
P 1> 17 L L
24 5] [+] [5]
L2V L8V _ov
1] 2] ]
LI 2A] aal=d L 4A
+ N Figure P1.46
24v Cf) 12V CD 6A 6V [3] 15V CLD
4A - C Y = 2A

Figure P1.44

1.45 Calculate the power absorbed by each element in the cir-
cuit in Fig. P1.45. Also verify that Tellegen's theoremis

satisfied by this circuit.
10V
4A 1
3
L1
5V 5V
- + -
2 4
1A L] L1354
15v<i>
+

40V CLD
5A

5V 1:|
+

30V gD

Figure P1.45
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Courtesy of Tesla Motors

Tesla Roadster Green technologies come in many colors.
The 2010 Tesla Roadster, for example, comes in Fusion Red,
Arctic White, Racing Green and Electric Blue, to name a few.
An environmentally friendly sports car that seats two, this
convertible has rocket acceleration and hugs the road like a
dream; it’s the world’s first high-performance electric car.
The Roadster contains over 6,800 safe, rechargeable lithium-
ion batteries that weigh about 1,000 pounds in total. Itis
twice as efficient as hybrid cars that combine a gasoline
engine and an electric motor to provide propulsion, but its
fantastic performance comes at a cost of over $100,000.
Choosing between an all-electric vehicle and a hybrid
requires trade-offs on a wide range of criteria: performance,
cost, efficiency, effects on the environment, safety, and relia-

Be able to use Ohm’s law to solve electric circuits

Be able to apply Kirchhoff’s current law and
Kirchhoff’s voltage law to solve electric circuits

Know how to analyze single-loop and single-
node-pair circuits

Know how to combine resistors in series and
parallel

Be able to use voltage and current division to
solve simple electric circuits

Understand when and how to apply wye-delta
transformations in the analysis of electric circuits

Know how to analyze electric circuits contain-
ing dependent sources

bility. Handling qualities may be highly important to some,
cost and efficiency to others.

As a student of circuit analysis, you will make trade-offs in
choosing between methods of analysis for different circuit
topologies. This chapter describes fundamental laws that
apply to all circuits regardless of their complexity. Ohm’s law
governs the most common relationship between voltage and
current for circuits that are linear. Circuits having a single
power source with resistances having the same currents and
others having the same voltage will be analyzed using the
series-parallel method. You’ll learn more techniques in the
chapters that follow, as you begin to master the same princi-
ples used by the designers of the Tesla Roadster.

25
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CHAPTER 2

2.1

Ohm’s Law

[hint]

The passive sign convention
will be employed in
conjunction with Ohm’s law.

Figure 2.1

(@) Symbol for a resistor;
(b) some practical devices.
(1), (2), and (3) are high-
power resistors. (4) and (5)
are high-wattage fixed
resistors. (6) is a high-
precision resistor. (7)—-(12)
are fixed resistors with
different power ratings.
(Photo courtesy of Mark
Nelms and Jo Ann Loden)

i(r)

v(t)

(@)

RESISTIVE CIRCUITS

Ohm’s law is named for the German physicist Georg Simon Ohm, who is credited with
establishing the voltage—current relationship for resistance. As a result of his pioneering
work, the unit of resistance bears his name.

Ohm'slaw states that the voltage across a resistance is directly proportional to the current
flowing through it. The resistance, measured in ohms, is the constant of proportionality
between the voltage and current.

A circuit element whose electrical characteristic is primarily resistive is called a resistor
and is represented by the symbol shown in Fig. 2.1a. A resistor is a physical device that can
be purchased in certain standard values in an electronic parts store. These resistors, which
find use in a variety of electrical applications, are normally carbon composition or wire-
wound. In addition, resistors can be fabricated using thick oxide or thin metal films for use
in hybrid circuits, or they can be diffused in semiconductor integrated circuits. Some typical
discrete resistors are shown in Fig. 2.1b.

The mathematical relationship of Ohm’s law isillustrated by the equation

v(t) = Ri(t), whereR = 0 21
or equivalently, by the voltage—current characteristic shown in Fig. 2.2a. Note carefully the
relationship between the polarity of the voltage and the direction of the current. In addition,
note that we have tacitly assumed that the resistor has a constant value and therefore that the
voltage—current characteristic is linear.

The symbol () is used to represent ohms, and therefore,

10 =1V/A

Although in our analysis we will always assume that the resistors are linear and are thus
described by a straight-line characteristic that passes through the origin, it is important that
readers realize that some very useful and practical elements do exist that exhibit a nonlinear
resistance characteristic; that is, the voltage—current relationship is not a straight line.

(b)
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v(t) A v(t) 4 Figure 2.2

Graphical representation of

the voltage—current relation-
R ship for (a) a linear resistor

: and (b) a light bulb.

i(t) i(0)

(@) (b)

The light bulb from the flashlight in Chapter 1 is an example of an element that exhibits
anonlinear characteristic. A typical characteristic for alight bulb is shown in Fig. 2.2b.

Since aresistor is a passive element, the proper current—voltage relationship is illustrated
in Fig. 2.1a. The power supplied to the terminals is absorbed by the resistor. Note that the
charge moves from the higher to the lower potentia as it passes through the resistor and
the energy absorbed is dissipated by the resistor in the form of heat. Asindicated in Chapter 1,
the rate of energy dissipation is the instantaneous power, and therefore

p(t) = v(1)i(t) 2.2
which, using Eq. (2.1), can be written as

p(t) = Ri*(t) = @ 2.3

This equation illustrates that the power is anonlinear function of either current or voltage and
that it is always a positive quantity.

Conductance, represented by the symbol G, is another quantity with wide application in
circuit analysis. By definition, conductance is the reciprocal of resistance; that is,

G = 1 24
R
The unit of conductance is the siemens, and the relationship between unitsis
1S=1A/V
Using Eq. (2.4), we can write two additional expressions,
i(t) = Go(r) 25
and
o) = "2 = G 26

Eq. (2.5) is another expression of Ohm’s law.
Two specific values of resistance, and therefore conductance, are very important: R = 0
and R = oo.
In examining the two cases, consider the network in Fig. 2.3a. The variable resistance
symbol is used to describe a resistor such as the volume control on aradio or television set.
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Figure 2.3

Short-circuit and open-circuit

2.1

descriptions.

Figure 2.4

Circuits for Examples 2.1

to 2.4.

RESISTIVE CIRCUITS

i(f) i(t) i(t)

+ + +

o ZR (t) (t)

@ (b) ()

As the resistance is decreased and becomes smaller and smaller, we finally reach a point
where the resistance is zero and the circuit is reduced to that shown in Fig. 2.3b; that is, the
resistance can be replaced by a short circuit. On the other hand, if the resistance is increased
and becomes larger and larger, we finally reach apoint whereit is essentially infinite and the
resistance can be replaced by an open circuit, as shown in Fig. 2.3c. Note that in the case of
a short circuit where R = 0,
v(t) = Ri(t)
=0

Therefore, v(¢) = 0, athough the current could theoretically be any value. In the open-
circuit case where R = oo,

i(t) = v(t)/R
=0
Therefore, the current is zero regardless of the value of the voltage across the open terminals.

In the circuit in Fig. 2.4a, determine the current and the power absorbed by the resistor.

Using Eq. (2.1), we find the current to be
[ =V/R=12/2k = 6 MA
Note that because many of the resistors employed in our analysis are in k), we will use k
in the equations in place of 1000. The power absorbed by the resistor is given by Eq. (2.2) or
(2.3) as
P =VI=(12)(6 X 107°) = 0.072W
= I’R = (6 X 107)*(2k) = 0.072W
= V?/R = (12)*/2k = 0.072 W

1 I
12 VC—D 5 2 kQ Ci Ve 3,;3 iﬂs.e -
(@) (b)
I =05mA N I
VSCJLD <$>G: 50 pS VSCD‘”HA ‘§§= 80 mwW

(c) (d)
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The power absorbed by the 10-k() resistor in Fig. 2.4b is 3.6 mW. Determine the voltage
and the current in the circuit.

Using the power relationship, we can determine either of the unknowns:

Vi/R =P
Vi = (3.6 X 107)(10k)
Ve =6V
and
I’R =P
1> = (3.6 X 1073)/10k
I =0.6mA

Furthermore, once V; is determined, | could be obtained by Ohm’s law, and likewise once
I is known, then Ohm'’s law could be used to derive the value of V. Note carefully that the
equations for power involve the terms 1> and V3. Therefore, I = —0.6 mA and Vi = —6 V
also satisfy the mathematical equations and, in this case, the direction of both the voltage and
current is reversed.

Given thecircuit in Fig. 2.4c, we wish to find the value of the voltage source and the power
absorbed by the resistance.

The voltageis

Vs =1/G = (0.5 % 107)/(50 X 10°) = 10V
The power absorbed is then

P =1?/G = (0.5 X 1072)?/(50 X 107°) = 5mwW
Or we could simply note that

R =1/G = 20kQ
and therefore
Vs = IR = (0.5 X 107%)(20k) = 10V

and the power could be determined using P = I°R = V&/R = V4l.

Given the network in Fig. 2.4d, we wish to find R and V.

Using the power relationship, we find that
R=P/I*= (80 X 107)/(4 X 107)° = 5kQ
The voltage can now be derived using Ohm'’s law as
Vs = IR = (4 X 107°)(5k) = 20V

The voltage could also be obtained from the remaining power relationships in Egs. (2.2)
and (2.3).

OHM'S LAW 29

2.2

2.3

2.4
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Before leaving thisinitial discussion of circuits containing sources and a single resistor,
it isimportant to note a phenomenon that we will find to be true in circuits containing many
sources and resistors. The presence of a voltage source between a pair of terminals tells us
precisely what the voltage is between the two terminals regardless of what is happening in
the balance of the network. What we do not know is the current in the voltage source.
We must apply circuit analysis to the entire network to determine this current. Likewise, the
presence of a current source connected between two terminals specifies the exact value of
the current through the source between the terminals. What we do not know is the value
of the voltage across the current source. This value must be calculated by applying circuit
analysis to the entire network. Furthermore, it is worth emphasizing that when applying
Ohm's law, the relationship V = IR specifies a relationship between the voltage directly
across aresistor R and the current that is present in this resistor. Ohm'’s law does not apply
when the voltage is present in one part of the network and the current existsin another. This
is a common mistake made by students who try to apply V = IR to aresistor R in the
middle of the network while using aV at some other location in the network.

E2.1 Given the circuitsin Fig. E2.1, find (a) the current | and the power absorbed by the resiss  ANSWER: (a) | = 0.3 mA,
tor in Fig. E2.13, and (b) the voltage across the current source and the power supplied by the  p = 3.6 mw;

sourcein Fig. E2.1b.

Figure E2.1

(b) Vs = 3.6V,
P = 2.16 mW.

L

12 ij) <$>40 ko Vg CD 0.6 mA 3, 6 kQ

@) (b)

E2.2 Giventhecircuitsin Fig. E2.2, find (a) R and Vs in the circuit in Fig. E2.2a, and (b) find ANSWER: (a) R = 10 kQ,

| and Rin the circuit in Fig. E2.2b. Vs =4V,
(b) I = 20.8 MA,
R = 576 Q.

Figure E2.2

0.4 mA CD Vs %ﬁ —16mw C’_D 12V 3»1'15: 0.25W
+

@) (b)

E2.3 The power absorbed by G, in Fig. E2.3 is 50 mW. Find G,. ANSWER: G, = 500 pS.

Figure E2.3

10V CJ_D %Gx
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The circuits we have considered previously have all contained a single resistor, and we have
analyzed them using Ohm’s law. At this point we begin to expand our capabilities to handle
more complicated networks that result from an interconnection of two or more of these sim-
ple elements. We will assume that the interconnection is performed by electrical conductors
(wires) that have zero resistance—that is, perfect conductors. Because the wires have zero
resistance, the energy in the circuit isin essence lumped in each element, and we employ the
term lumped-parameter circuit to describe the network.

To aid us in our discussion, we will define a number of terms that will be employed
throughout our analysis. Aswill be our approach throughout thistext, we will use examples
to illustrate the concepts and define the appropriate terms. For example, the circuit shown

@

ir(1) i3(2)

i1(1) D SR o SR

vt
R3 - @ O

Or o wol Inil®

SRy Ci (1) S Rs

i7(?) is(?)

®
(@) (b)

in Fig. 2.5a will be used to describe the terms node, loop, and branch. A node is simply a
point of connection of two or more circuit elements. The reader is cautioned to note that,
although one node can be spread out with perfect conductors, it is still only one node. This
isillustrated in Fig. 2.5b, where the circuit has been redrawn. Node 5 consists of the entire
bottom connector of the circuit.

If we start at some point in the circuit and move along perfect conductors in any direction
until we encounter a circuit element, the total path we cover represents a single node.
Therefore, we can assume that anode is one end of acircuit element together with al the per-
fect conductors that are attached to it. Examining the circuit, we note that there are numerous
paths through it. A loop is simply any closed path through the circuit in which no node
is encountered more than once. For example, starting from node 1, one loop would contain the
dements R, v,, R,, and i;; another loop would contain R,, v;, v,, R,, and i;; and so on.
However, the path R, v, Rs, v,, R;, and i, is not aloop because we have encountered node 3
twice. Finaly, abranchisaportion of acircuit containing only asingle element and the nodes
at each end of the element. The circuit in Fig. 2.5 contains eight branches.

Given the previous definitions, we are now in a position to consider Kirchhoff’s laws,
named after German scientist Gustav Robert Kirchhoff. These two laws are quite simple but
extremely important. We will not attempt to prove them because the proofs are beyond our
current level of understanding. However, we will demonstrate their usefulness and attempt to
make the reader proficient in their use. Thefirst law is Kirchhoff’s current law (KCL), which
states that the algebraic sum of the currents entering any node is zero. In mathematical form
the law appears as

é i(t) =0 2.7

j=1

2.2

Kirchhoff’s Laws

Figure 2.5
Circuit used to illustrate KCL.

[hint]

KCL is an extremely important
and useful law.



32

CHAPTER 2

2.5

RESISTIVE CIRCUITS

where i;(7) is the jth current entering the node through branch j and N is the number of
branches connected to the node. To understand the use of this law, consider node 3 shown in
Fig. 2.5. Applying Kirchhoff’s current law to this node yields

(1) = iy(t) + is(2) = iz(1) = 0
We have assumed that the algebraic signs of the currents entering the node are positive and,

therefore, that the signs of the currents leaving the node are negative.
If we multiply the foregoing equation by —1, we obtain the expression

—ix(t) + ig(r) = is(r) +i(2) = 0

which simply states that the algebraic sum of the currents leaving a node is zero. Alternatively,
we can write the equation as

ir(r) + is(r) = iy(r) + is(2)
which states that the sum of the currents entering a node is equal to the sum of the currents
leaving the node. Both of these italicized expressions are aternative forms of Kirchhoff’'s
current law.

Once again it must be emphasized that the latter statement means that the sum of the
variablesthat have been defined entering the nodeis equal to the sum of the variables that have
been defined leaving the node, not the actual currents. For example, i;(¢) may be defined enter-
ing the node, but if its actual value is negative, there will be positive charge leaving the node.

Note carefully that Kirchhoff’s current law states that the algebraic sum of the currents
either entering or leaving a node must be zero. We now begin to see why we stated in
Chapter 1 that it iscritically important to specify both the magnitude and the direction of acur-
rent. Recall that current is charge in motion. Based on our background in physics, charges can-
not be stored at a node. In other words, if we have a number of charges entering a node, then
an equal number must be leaving that same node. Kirchhoff’s current law is based on this prin-
ciple of conservation of charge.

Finaly, it is possible to generalize Kirchhoff’s current law to include a closed surface. By
a closed surface we mean some set of elements completely contained within the surface that
are interconnected. Since the current entering each element within the surface is equal to that
leaving the element (i.e., the element stores no net charge), it follows that the current enter-
ing an interconnection of elements is equal to that leaving the interconnection. Therefore,
Kirchhoff’s current law can also be stated as follows: The algebraic sum of the currents
entering any closed surface is zero.

Let us write KCL for every node in the network in Fig. 2.5, assuming that the currents
leaving the node are positive.

The KCL equations for nodes 1 through 5 are

—iy(t) + (1) +is(t) =0

i(t) — iy(t) +is(t) = 0

—i(t) + iy(t) = is(t) + iz(r) = 0

—i3(t) + is(t) — ig(t) = 0

—ig(1) — i5(t) + is(r) = 0
Note carefully that if we add the first four equations, we obtain the fifth equation. What
doesthistell us? Recall that this means that this set of equationsis not linearly independent.
We can show that the first four equations are, however, linearly independent. Store this idea

in memory because it will become very important when we learn how to write the equations
necessary to solve for al the currents and voltages in a network in the following chapter.
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The network in Fig. 2.5 is represented by the topological diagram shown in Fig. 2.6. We
wish to find the unknown currents in the network.

2.6

@
L 60 mA 20 mA
Iy ® Is
@) @
Is 40 mA 30 mA
Figure 2.6
Topological diagram for the
® circuit in Fig. 2.5.

Assuming the currents|eaving the node are positive, the KCL equations for nodes 1 through
4 are

—I, + 0.06 + 0.02 = 0
L—IL+1,=0

—0.06 + I, — Is + 0.04 = 0
—0.02+ I, —003=0

The first equation yields /1, and the last equation yields /5. Knowing I5, we can immediately
obtain I, from the third equation. Then the values of 7, and I, yield the value of I, from the
second equation. Theresultsare 7, = 80 mA, I, = 70 mA, Is = 50 mA, and I, = —10 mA.
As indicated earlier, dependent or controlled sources are very important because we
encounter them when analyzing circuits containing active elements such as transistors. The
following example presents a circuit containing a current-controlled current source.

Let us write the KCL equations for the circuit shown in Fig. 2.7.

Ry 2.7

vIV\IA

i1(1)

R 0 @ N

@ VW \4—/ ®
506 (1) )
CJ_FD v1(0) Rs 2 Ry

is(1) i5(0) ia(t) Figure 2.7
. Circuit containing a
@ dependent current source.
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2.8

Figure 2.8

Diagram used to demon-
strate KCL for a surface.

The KCL equations for nodes 1 through 4 follow:
(1) + ip(t) —is(t) = 0
—iy(t) + i5(t) — 50i,(t) = 0
=i, (¢) + 50iy(¢) + iy(z) = 0
is(t) = i3(r) = iy(r) = 0
If we added the first three equations, we would obtain the negative of the fourth. What does
thistell us about the set of equations?

Kirchhoff’s second law, called Kirchhoff’s voltage law (KVL), states that the algebraic sum of
the voltages around any loop is zero. As was the case with Kirchhoff’s current law, we will defer
the proof of this law and concentrate on understanding how to apply it. Once again the reader is
cautioned to remember that we are dealing only with lumped-parameter circuits. These circuits
are conservative, meaning that the work required to move a unit charge around any loop is zero.

In Chapter 1, we related voltage to the difference in energy levels within a circuit and
talked about the energy conversion process in a flashlight. Because of this relationship
between voltage and energy, Kirchhoff’s voltage law is based on the conservation of energy.

Recall that in Kirchhoff’s current law, the algebraic sign was required to keep track of whether
the currents were entering or leaving anode. In Kirchhoff’svoltage law, the algebraic signisused
to keep track of the voltage polarity. In other words, as we traverse the circuit, it is necessary to

Let usfind 7, and 7, in the network represented by the topological diagram in Fig. 2.6.

This diagram is redrawn in Fig. 2.8; node 1 is enclosed in surface 1, and nodes 3 and 4 are
enclosed in surface 2. A quick review of the previous example indicates that we derived a
vaue for I, from the value of I;. However, I is now completely enclosed in surface 2. If we
apply KCL to surface 2, assuming the currents out of the surface are positive, we obtain

I, — 0.06 — 0.02 — 0.03 + 0.04 =0
or

which we obtained without any knowledge of Is. Likewise for surface 1, what goes in must
come out and, therefore, I, = 80 mA. Thereader is encouraged to cut the network in Fig. 2.6
into two pieces in any fashion and show that KCL is always satisfied at the boundaries.

Surface 1
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E2.4 Given the networksin Fig. E2.3, find (a) 7, in Fig. E2.4a and (b) I, in Fig. E2.4b. ANSWER:
50 mA (@ I, = —50 mA;
(b) I; = 70 mA.
® () 2 = 2
I 10 mA 40 mA 20 mA
(@) (b)
Figure E2.4

E2.5 Find () /, in the network in Fig. E2.5a and (b) 7, and , in the circuit in Fig. E2.5b.

VWA

L

12 mA

ANSWER: (a) 7, =6 mA;
(b) I, =8 mA and
L =5mA.

% CD 10 mA ‘5 3 3 Cf)

4 mA L 3mA I 4mA

VWA

() (b)
Figure E2.5

E2.6 Find the current i, in the circuitsin Fig. E2.6.

CD 44 mA 3 R 1Oix<l> E& o CD 120 mA <§>R2

Iy Iy 12 mA

() (b)
Figure E2.6

ANSWER: (3)i, = 4 mA;
(b) i, = 12 mA.

sum to zero the increases and decreases in energy level. Therefore, it isimportant we keep track
of whether the energy level isincreasing or decreasing as we go through each element.

In applying KVL, we must traverse any loop in the circuit and sum to zero the increases
and decreases in energy level. At this point, we have a decision to make. Do we want to con-
sider a decrease in energy level as positive or negative? We will adopt a policy of consider-
ing a decrease in energy level as positive and an increase in energy level as negative. As we
move around a loop, we encounter the plus sign first for a decrease in energy level and a
negative sign first for an increase in energy level.

Finaly, we employ the convention V,, to indicate the voltage of point a with respect
to point b: that is, the variable for the voltage between point a and point b, with point a
considered positive relative to point b. Since the potentia is measured between two points, it
is convenient to use an arrow between the two points, with the head of the arrow located at the
positive node. Note that the double-subscript notation, the + and — notation, and the single-
headed arrow notation are all the same if the head of the arrow is pointing toward the positive
terminal and the first subscript in the double-subscript notation. All of these equivalent forms
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2.9

Figure 2.9

Circuit used to
illustrate KVL.

2.10

Figure 2.10
Circuit used to explain KVL.

Consider the circuit shown in Fig. 2.9. If V; and V;, are known quantities, let us find V.

ty, - N
433 5V +
30V Ci) Rzg VR,
R _
RS
- aF
f 43 € 15V @

Starting at point « in the network and traversing it in a clockwise direction, we obtain the
equation
+Ve, =5+ Vo, — 15+ V,, —30=0

which can be written as
Vi, + Vi, + Vo, =5+ 15+ 30

= 50
Now suppose that V; and Vi, are known to be 18 VV and 12V, respectively. Then Vi = 20 V.

Consider the network in Fig. 2.10.

a +VR17 b VR, c +VR37 d
Vm‘ v’\/\l‘ v’\/\l‘
Ry R, Rj3
d +
Ry 3 Vg,

Omv O
O

f
L et us demongtrate that only two of the three possible loop equations are linearly independent.

Note that this network has three closed paths: the left loop, right loop, and outer loop.
Applying our policy for writing KVL equations and traversing the left loop starting at point
a, we obtain

Vi, + Vo, —16—24=0

The corresponding equation for the right loop starting at point b is
Ve, + Vo, + 8+ 16 =V, =0

The equation for the outer loop starting at point ais
Ve, + Vo, + Vo, +8—24=0

Note that if we add the first two equations, we obtain the third equation. Therefore, as we
indicated in Example 2.5, the three equations are not linearly independent. Once again, we
will address this issue in the next chapter and demonstrate that we need only the first two
equations to solve for the voltages in the circuit.
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for labeling voltages are shown in Fig. 2.11. The usefulness of the arrow notation stems from
the fact that we may want to label the voltage between two points that are far apart in a
network. In this case, the other notations are often confusing.
Figure 2.11

Equivalent forms for labeling
voltage.

a a
o— o—¢

Vo=V [1] V=V, |:1 v, Vi=V, [1]?/0 Ve=Va=V, V,|1| V,

+ 0

o o o— o—
b b

() (b) (c) (d)

Consider the network in Fig. 2.12a. Let us apply KVL to determine the voltage between two
points. Specificaly, in terms of the double-subscript notation, let usfind V,, and V...

2.11

16V 12V 16V 12V
+ - p + - p

Ry e R3 e .
f VWA VWA 3 7 N\,‘+ Figure 2.12
10V 6V 10V Network used in
(a) (b) Example 2.11.

The circuit is redrawn in Fig. 2.12b. Since points a and ¢ as well as ¢ and ¢ are not physi-
cally close, the arrow notation is very useful. Our approach to determining the unknown
voltage is to apply KVL with the unknown voltage in the closed path. Therefore, to deter-
mine V,, we can use the path aefa or abcdea. The equations for the two paths in which V,,
is the only unknown are
V,+10—24=0
and
16-124+4+6-V,=0

Note that both equations yield V,, = 14 V. Even before calculating V,,, we could calculate
V.. using the path cdec or cefabc. However, sinceV,, is now known, we can also use the path
ceabc. KVL for each of these pathsis

4+6+V,=0
-V,.+10—-24+16—-12=0
and
V.- V,+16 —12=0

Each of these equationsyieldsV,. = —10 V.

In general, the mathematical representation of Kirchhoff’s voltage law is [ h int ]
N KVL is an extremely important
> vt) =0 2.8 and useful law.
j=1

where v;(¢) isthe voltage across the jth branch (with the proper reference direction) in aloop
containing N voltages. This expression is analogous to Eq. (2.7) for Kirchhoff’s current law.
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Given the network in Fig. 2.13 containing a dependent source, let us write the KVL equa-
tions for the two closed paths abda and bcdb.

2.12

a C
et
R
! + 20 Vg, +

Figure 2.13

Network containing a
dependent source. d

Thetwo KVL eguations are
Ve, ¥ Vo, = Vs =0

20Vg, + Vi, — Vo, = 0

E2.7 Find I, and I, in Fig. E2.7. ANSWER: Ix=2mA,

|1: 4 mA.
I
a VWA
3 oma 3 <L 151,
I, 1mA
Figure E2.7
E2.8 FindV,, and V,, in the network in Fig. E2.8. ANSWER: V,, =26V,
. V,, = 10V.
a
O w—
p 4Vt
24V
+<
6VS Ci 6V
. VWA VWA
Figure E2.8 f +t8v- e “t12v- d

E2.9 FindV,, inthe circuit in Fig. E2.9.

a. VR, _b+VR2: e
VWA VWA :
+
Vbd 10 VRl

12v C“_LD

Figure E2.9

ANSWER: V,, = 11V.
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Before proceeding with the analysis of simple circuits, it is extremely important that we
emphasize a subtle but very critical point. Ohm’s law as defined by the equation V = IR
refersto the relationship between the voltage and current as defined in Fig. 2.14a. If the direc-
tion of either the current or the voltage, but not both, is reversed, the relationship between the
current and the voltage would be V = —IR. In a similar manner, given the circuit in
Fig. 2.14b, if the polarity of the voltage between the terminals A and B is specified as shown,
then the direction of the current I is from point B through R to point A. Likewise, in
Fig. 2.14c, if the direction of the current is specified as shown, then the polarity of the voltage
must be such that point D is at a higher potential than point C and, therefore, the arrow rep-
resenting the voltage V is from point C to point D.

I A
7 ”

1% SR 1% SR
- + I

B

@) (b) (©

VOLTAGE DIVISION At thispoint we can begin to apply the laws presented earlier to the
analysis of simple circuits. To begin, we examine what is perhaps the smplest circuit—a
single closed path, or loop, of elements.

Applying KCL to every node in a single-loop circuit reveals that the same current flows
through all elements. We say that these elements are connected in series because they carry
the same current. We will apply Kirchhoff’s voltage law and Ohm'’s law to the circuit to
determine various quantities in the circuit.

Our approach will beto begin with asimple circuit and then generalize the analysisto more
complicated ones. The circuit shown in Fig. 2.15 will serve asabasis for discussion. This cir-
cuit consists of an independent voltage source that is in series with two resistors. We have
assumed that the current flows in a clockwise direction. If this assumption is correct, the
solution of the equations that yields the current will produce a positive value. If the current is
actually flowing in the opposite direction, the value of the current variable will smply be
negative, indicating that the current isflowing in adirection opposite to that assumed. We have
al'so made voltage polarity assignments for v; and v, . These assignments have been made
using the convention employed in our discussion of Ohm’s law and our choice for the direc-
tion of i(#)—that is, the convention shown in Fig. 2.14a.

Applying Kirchhoff’s voltage law to this circuit yields

—0(t) + vg + v, =0
or
V(1) = vg, + Vg,
However, from Ohm'’s law we know that
Vg, = Ryi(t)

Vg, = Ryi(t)
Therefore,
v(t) = Ryi(t) + Ryi(t)

Solving the equation for i(7) yields

v(1)
R + R,

i(t) = 2.9

SINGLE-LOOP CIRCUITS
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[hint]

The subtleties associated
with Ohm’s law, as described
here, are important and must
be adhered to in order to
ensure that the variables
have the proper sign.

Figure 2.14
Circuits used to explain
Ohm’s law.

2.3

Single-Loop

Circuits
i(r)
R13,;R1
()
Ry %JRZ

Figure 2.15

Single-loop circuit.
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[hint]

The manner in which voltage
divides between two
series resistors.

2.13

Figure 2.16
Voltage-divider circuit.

Knowing the current, we can now apply Ohm'’s law to determine the voltage across each
resistor:

Vg, = Ryi(?)

=Rl[ o) } 2.10

R, + R,

_ K
R, + R,

(1)
Similarly,

R
2 R, + R,

Vg (1) 211

Though simple, Egs. (2.10) and (2.11) are very important because they describe the oper-
ation of what is called a voltage divider. In other words, the source voltage v(t) is divided
between the resistors R, and R, in direct proportion to their resistances.

In essence, if we are interested in the voltage across the resistor R,, we bypass the calcu-
lation of the current i(z) and simply multiply the input voltage v(r) by the ratio

R,
R + R,

Asillustrated in Eq. (2.10), we are using the current in the calculation, but not explicitly.
Note that the equations satisfy Kirchhoff’s voltage law, since

R
(2
R + R,

R
(1) + (1) +
R, + R,

(1) =0

Consider the circuit shown in Fig. 2.16. The circuit is identical to Fig. 2.15 except that R,
is a variable resistor such as the volume control for aradio or television set. Suppose that
‘/S = 9V, Rl = 90kQ, andR2 = 30kQ.

Vs Ci

Let us examine the change in both the voltage across R, and the power absorbed in this
resistor as R, is changed from 90 k() to 15 k().

Since thisis a voltage-divider circuit, the voltage V, can be obtained directly as

R,
Vy= Vs
R + R,

- {ﬁ}”)

=225V
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Now suppose that the variable resistor is changed from 90 k() to 15 k(). Then

P U
2 | 30k + 15k

=6V

The direct voltage-divider calculation is equivalent to determining the current 7 and
then using Ohm’s law to find V,. Note that the larger voltage is across the larger resist-
ance. This voltage-divider concept and the simple circuit we have employed to describe it
are very useful because, as will be shown later, more complicated circuits can be reduced
to this form.

Finaly, let us determine the instantaneous power absorbed by the resistor R, under the
two conditions R, = 90 k() and R, = 15 kQ. For the case R, = 90 k(}, the power absorbed
by R, is

9

2
P, =1I°R, = (ﬁ) (30k)

0.169 mwW

9 2
() 6o
1.2 mW

In the second case

P

The current in the first case is 75 A, and in the second case it is 200 wA. Since the
power absorbed is a function of the sguare of the current, the power absorbed in the two
cases is quite different.

Let us now demonstrate the practical utility of this simple voltage-divider network.

Consider the circuit in Fig. 2.17a, which is an approximation of a high-voltage dc transmis-
sion facility. We have assumed that the bottom portion of the transmission line is a perfect
conductor and will justify this assumption in the next chapter. The load can be represented by
a resistor of value 183.5 (). Therefore, the equivalent circuit of this network is shown in
Fig. 2.17b.

Line resistance is 0.04125 Q/mile 2 KA
O A\ O
16.5 Q +

2 kA
<
Ci) 400 kv Load [:l C_r 400KV Vigag S 18350

Perfect conductor

400-mile transmission line

(a) (b)

(o}

Let us determine both the power delivered to the load and the power losses in the line.

Using voltage division, the load voltage is
Vo [ 183.5
2 1 183.5 + 16.5
= 367 kV

]400k

2.14

Figure 2.17

A high-voltage dc
transmission facility.

41
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Figure 2.18

Equivalent circuits with
multiple sources.

The input power is 800 MW and the power transmitted to the load is
Pt = I’Riom
= 734 MW
Therefore, the power loss in the transmission line is
Pine = Py = Bow = Ileine
= 66 MW

Since P = VI, suppose now that the utility company supplied power at 200 kV and 4 KA. What
effect would this have on our transmission network? Without making a single caculation, we
know that because power is proportiond to the square of the current, there would be a large

increase in the power lossin the line and, therefore, the efficiency of the facility would decrease
substantialy. That is why, in general, we transmit power at high voltage and low current.

MULTIPLE-SOURCE/RESISTOR NETWORKS At this point we wish to extend our
analysis to include a multiplicity of voltage sources and resistors. For example, consider the
circuit shown in Fig. 2.18a. Here we have assumed that the current flows in a clockwise
direction, and we have defined the variable i(¢) accordingly. This may or may not be the
case, depending on the value of the various voltage sources. Kirchhoff’s voltage law for this
circuitis
Fog, + 0y(1) = v3(t) + g, + Vu(1) + vs(1) — V() =0

or, using Ohm’s law,

(Ry + Ro)i(1) = v,(t) — 0y(r) + v3(r) — vy(t) — ws(1)
which can be written as
(R, + Ry)i(t) = v(t)
where
(1) = (1) + v3(t) = [0a(r) + v(t) + s5(1)]
so that under the preceding definitions, Fig. 2.18ais equivalent to Fig. 2.18b. In other words,
the sum of several voltage sourcesin series can be replaced by one source whose value is the

algebraic sum of the individual sources. This analysis can, of course, be generalized to acir-
cuit with N series sources.

. UR, vy(0)
l(t)+v/vv\ @
Ry
a0() w0
i &
A%
< + <
o5 (%) Regor,  o((F) SR,
@

(a) (b)
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+ le + vRZ _ + 'UR3 —
v’\/\l‘ v’\/\l‘ V%A
Ry Ry R3 N
i(?) Ry SR,
i(1)
v(t) (£
) +
Rssor, o(0(2)

Ry -
VMA

(@) (®)

Now consider the circuit with N resistors in series, as shown in Fig. 2.19a. Applying
Kirchhoff’s voltage law to this circuit yields

v(t) = vk, + Vg, + o F g,
Rii(t) + Rui(t) + -+ + Ryi(t)

and therefore,

v(t) = Rgi(r) 2.12
where

Ry=R, + R, + -+ Ry 2.13

and hence,

. (1)

t) = — .
i(1) R 2.14

Note also that for any resistor R, in the circuit, the voltage across R; is given by the expression

R;

?)R, = —
i RS

(1) 2.15

which is the voltage-division property for multiple resistorsin series.

Equation (2.13) illustrates that the equivalent resistance of N resistorsin seriesis simply
the sum of the individual resistances. Thus, using Eg. (2.13), we can draw the circuit in
Fig. 2.19b as an equivalent circuit for the one in Fig. 2.19a.

Given the circuit in Fig. 2.20a, let us find 1, V,,, and the power absorbed by the 30-kQ)
resistor. Finaly, let us use voltage division to find V...

a 10kQ p  20kQ ¢ 40kQ  p
VWA VWA
Ci) 6V Ci) 12V CI) 6V 20 kQ)
I 30k
VWA
e d c

(@) (b)

SINGLE-LOOP CIRCUITS

Figure 2.19
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SRy=Ri +Ry+R3+ ... + Ry

Equivalent circuits.

Figure 2.20

2.15

Circuit used in Example 2.15.
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2.16

Figure 2.21
Circuit used in
Example 2.16.

RESISTIVE CIRCUITS

KVL for the network yields the equation

10kI + 20kl + 12 + 30kl — 6 = 0
60kl = —6
I =-0.1mA

Therefore, the magnitude of the current is 0.1 mA, but its direction is opposite to that
assumed.

The voltage V,,, can be calculated using either of the closed paths abdea or bcdb. The
equations for both cases are

10kI + V,, + 30kl — 6 = 0
and

20kI + 12 = V,y = 0

Using! = —0.1 mA in either equationyieldsV,, = 10 V. Finally, the power absorbed by the
30-kQ) resistor is

P =1I’R =03mW
Now from the standpoint of determining the voltage V,., we can simply add the sources

since they are in series, add the remaining resistors since they are in series, and reduce the
network to that shown in Fig. 2.20b. Then

20k
20k + 40k
=2V

Ve (=6)

A dc transmission facility is modeled by the approximate circuit shown in Fig. 2.21. If the
load voltage is known to be V.4 = 458.3 kV, we wish to find the voltage at the sending end
of the line and the power loss in the line.

1 L Rline
v’\/\l‘
20 Q +

Ci) Vg Rloadg, 220 Q Vioad = 458.3 kV

Knowing the load voltage and load resistance, we can obtain the line current using
Ohm's law:

I, = 458.3k/220
= 2.083 kA

The voltage drop acrossthe lineis
Vine = (1) (Riine)
= 41.66 kV
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Now, using KVL,
Vs = Viine + Vi
= 500 kV

Notethat since the network issimply avoltage-divider circuit, we could obtain Vs immediately
from our knowledge of Rjjner Riegs @8N Vigeg: That i,

Rioad

——— |V,
Rioad + Rline] S

and V; is the only unknown in this equation.
The power absorbed by thelineis

|

Pline = IiRIine
= 86.79 MW

SINGLE-LOOP CIRCUITS
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Step 1. Define acurrent i(t). We know from KCL that there is only one current for a
single-loop circuit. This current is assumed to be flowing either clockwise or
counterclockwise around the loop.

Step 2. Using Ohm'’s law, define a voltage across each resistor in terms of the defined
current.

Step 3. Apply KVL to the single-loop circuit.

Step 4. Solvethe single KVL equation for the current i(t). If i(t) is positive, the current

is flowing in the direction assumed; if not, then the current is actually flowing
in the opposite direction.

Single-Loop Circuits

E2.10 Find I and V,, in the circuit in Fig. E2.10.

b 12V
a m ©
VWA =
80 kQ 7 1
CJ_D 6V % 40 kQ
Figure E2.10 “

E2.11 Inthe network in Fig. E2.11, if V,, is 3V, find V.

a b 25k0 ¢
O
Vs
2 20k0 215k
Figure E2.11 ¢

ANSWER: | = —0.05 mA
and ‘/bd = 10V.

ANSWER: V; = 9 V.
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2.4

Single-Node-Pair
Circuits

Figure 2.22

Simple parallel circuit.

[hint]

The parallel resistance
equation.

CURRENT DIVISION An important circuit is the single-node-pair circuit. If we apply KVL to
every loop in asingle-node-pair circuit, we discover that all of the elements have the same volt-
age across them and, therefore, are said to be connected in paralel. We will, however, apply
Kirchhoff’s current law and Ohm'’s law to determine various unknown quantities in the circuit.

Following our approach with the single-loop circuit, we will begin with the simplest case
and then generalize our analysis. Consider the circuit shown in Fig. 2.22. Here we have an
independent current source in parallel with two resistors.

xo(f) 2R 2R, (1)

>

i1(1) i (1)

Since dl of the circuit elements are in parallel, the voltage v(t) appears across each of
them. Furthermore, an examination of the circuit indicates that the current i(¢) is into the
upper node of the circuit and the currents i,(z) and i,(z) are out of the node. Since KCL
essentially states that what goes in must come out, the question we must answer is how ()
and i,(z) divide the input current i(z).

Applying Kirchhoff’s current law to the upper node, we obtain

i(r) = i,(r) + ir(2)

and, employing Ohm'’s law, we have

() =
)= %" "%

o
v(r)
R

P

o) |, o)

where
1_1,1 216
R, R, R, '

14

RiR,
R, =
R + R,

2.17

Therefore, the equivalent resistance of two resistors connected in parallel is equal to the
product of their resistances divided by their sum. Note also that this equivalent resistance R,
is always less than either R, or R,. Hence, by connecting resistors in parallel we reduce the
overall resistance. In the special case when R, = R,, the equivalent resistanceis equal to half
of the value of the individual resistors.

The manner in which the current i(¢) from the source divides between the two branches
is called current division and can be found from the preceding expressions. For example,

(1) = R,i(1)

RR,
= ——(t .
R, + Rzl( ) 218
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and
. v(1)
i(t) = R,
. R, .
i(t) = R + R, i(1) 2.19
and
. (1)
i(t) = R,
R
= L i(r) 2.20
R, + R,

Egs. (2.19) and (2.20) are mathematical statements of the current-division rule.

Given the network in Fig. 2.23a, let usfind 7;, I,, and V.

First, it isimportant to recognize that the current source feeds two parallel paths. To empha-
size this point, the circuit is redrawn as shown in Fig. 2.23b. Applying current division,
we obtain

40k + 80k

= 9 X 107°
! [60k + (40k +—80k)](09 0)

= 0.6 MA

and
60k

= 0.9 X 107
: {60k + (40k +-80k)]( ? )

=03 mA

Note that the larger current flows through the smaller resistor, and vice versa. In addition,
notethat if the resistances of the two paths are equal, the current will divide equally between
them. KCL is satisfied since I, + I, = 0.9 mA.

The voltage V, can be derived using Ohm’s law as

V, = 80K,
=24V

The problem can also be approached in the following manner. The total resistance seen by
the current source is 40 k(), that is, 60 k() in parallel with the series combination of 40 k)
and 80 k2, as shown in Fig. 2.23c. The voltage across the current source is then

Vi = (0.9 X 107%)40k
=36V

Now that V; is known, we can apply voltage division to find V,:
. __( 80k )V
© \ 80k + 40k ) '

80k
B (120k>36

=24V

SINGLE-NODE-PAIR CIRCUITS

47
[hint]

The manner in which

current divides between
two parallel resistors.

2.17
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< <
CD 09mA  360KQ S40k0

I 40kQ
2w Vi
0.9 mACD v, e0ke3 80ke3 V, soka S Vo CD 09mA V3 40k0

(CY

Figure 2.23
Circuits used in Example 2.17.

2.18

Figure 2.24

Circuits used in
Example 2.18.

(b) (c)

A typical car stereo consists of a 2-W audio amplifier and two speakers represented by
the diagram shown in Fig. 2.24a. The output circuit of the audio amplifier isin essence a
430-mA current source, and each speaker has a resistance of 4 (). Let us determine the
power absorbed by the speakers.

The audio system can be modeled as shown in Fig. 2.24b. Since the speakers are both 4-Q)
devices, the current will split evenly between them, and the power absorbed by each speaker is

P =1IR
(215 x 107)°(4)
184.9 mwW

40

Audio I: I: 430 mA CD 240
amplifier S

VWA

(a) (b)

E2.12 Find the currents 7, and 7, and the power absorbed by the 40-k) resistor in the network ANSWER: [, = 12 mA,

inFig. E2.12.

Figure E2.12

I, = —4 mA, and
P40 kQ = 5.76 W
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+ ir(1) is(1) +

oD 38 D Duo 3R Do i 3R BR300

@ (b)

Figure 2.25

Equivalent circuits.

MULTIPLE-SOURCE/RESISTOR NETWORKS Let us now extend our anayss to
include a multiplicity of current sources and resistorsin paralel. For example, consider the cir-
cuit shown in Fig. 2.25a. We have assumed that the upper nodeisv(¢) volts positive with respect
to the lower node. Applying Kirchhoff’s current law to the upper node yields

i(1) = ip() = i5(1) + ig(r) = is(r) = ig(r) = 0

or
i(0) = is(0) + iy(t) — ig(2) = ix(1) + is(2)

The terms on the left side of the equation all represent sources that can be combined
algebraically into a single source; that is,

io(1) = ir(1) — i5() + iy(r) — (1)

which effectively reduces the circuit in Fig. 2.25a to that in Fig. 2.25b. We could, of course,
generdize this analysis to a circuit with N current sources. Using Ohm'’s law, we can express
the currents on the right side of the equation in terms of the voltage and individual resistances
so that the KCL equation reduces to

i(t) = (;l + é)v(r)

Now consider the circuit with N resistors in parallel, as shown in Fig. 2.26a. Applying
Kirchhoff’s current law to the upper node yields

. . . Figure 2.26
10 1i(t) in(t) g

+ d d +< Equivalent ci its.
v(t)CDiO(z) §R1 %Rz S,RN i, (1) D o(0) s,Rp quivalent circuits

(a) (b)

i(1) = iy(1) + iy(t) + -+ iy(1)
1 1 1
==+ —+- 4+ — o) 2.21
R, R, Ry
or
(1)
i (1) = .
i(1) R, 2.22
where
1_s1 223
R = ’
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2.19

so that as far as the source is concerned, Fig. 2.26a can be reduced to an equivalent circuit,
as shown in Fig. 2.26h.
The current division for any branch can be calculated using Ohm'’s law and the preceding
equations. For example, for the jth branch in the network of Fig. 2.26a,
. v(t)
ij(t) = &

Using Eq. (2.22), we obtain
R
i(1) = —i(1) 2.24
! R;

which defines the current-division rule for the general case.

Given the circuit in Fig. 2.27a, we wish to find the current in the 12-k() load resistor.

To simplify the network in Fig. 2.27a, we add the current sources algebraically and combine
the parallel resistorsin the following manner:

11 1

R, 18 9k 12k

R, = 4kQ

Using these values we can reduce the circuit in Fig. 2.27a to that in Fig. 2.27b. Now,
applying current division, we obtain

I, = —{L}(l X 107)

4k + 12K
= —025mA
1 mA 2 mA I 1,
S 18k0 D S ok CD S 12k0 D SR =12k0 CD Saka  312k0
4 mA 1 mA

Figure 2.27

Circuits used
in Example 2.19.

(@) (b)

Single-Node-Pair
Circuits

Step 1. Define a voltage v(t) between the two nodes in this circuit. We know from
KVL that there is only one voltage for a single-node-pair circuit. A polarity is
assigned to the voltage such that one of the nodes is assumed to be at a higher
potential than the other node, which we will call the reference node.

Step 2. Using Ohm'’s law, define a current flowing through each resistor in terms of the
defined voltage.

Step 3. Apply KCL at one of the two nodes in the circuit.

Step 4. Solve the single KCL equation for v(t). If v(t) is positive, then the
reference node is actually at alower potential than the other node; if not,
the reference node is actually at a higher potential than the other node
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E2.13 Find the power absorbed by the 6-kQ resistor in the network in Fig. E2.13.

4 mA

6 mA C,) 3} 4 kO 6 kQ CD <5}12kQ

Figure E2.13

ANSWER: P = 2.67 mW.

We have shown in our earlier developments that the equivalent resistance of N resistorsin
seriesis

R¢=R, + R, + -+ Ry 2.25
and the equivalent resistance of N resistorsin parallel isfound from

Lo 226
Rp '

Let us now examine some combinations of these two cases.

We wish to determine the resistance at terminals A-B in the network in Fig. 2.28a.

Starting at the opposite end of the network from the terminals and combining resistors as
shown in the sequence of circuits in Fig. 2.28, we find that the equivalent resistance at the
terminalsis 5 kQ).

2.5

Series and
Parallel Resistor
Combinations

2.20

2kQ 2kQ 10 kQ 2kQ 2kQ
A O——MW———— M VWA——s A O—— M ——a—— M
6kQ < 6kQ 6 kO J 12k0 = 10k0 +
Rap—+» 4k 1k0 Rap——+ 4k 6kQ S (6KkQin parallel
[ with 3 kQ)
Bo v Bo ‘ Wy
9 kO 2kQ 9 kO
(a) (b)
2kQ 2kQ
A O—— W A O—— W
d J 6kQ=2kKQ + J J 12k0 =9ka +
Rap —+ 4ax0 S S 6kQ (6 kQ in parallel Rap —+ 4axka g (6 kQ in parallel
[ [ with 12 k() 1 " with 6 kQ)
Bo VWA Bo
9 kO
() (d)
2kQ
A O——AM—r9
Rap — » < 3kQ = (4kQ in parallel with 12 kQ)
Figure 2.28
Bo—mow« ¢

(e)

Simplification of a resistance
network.
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E2.14 Find the equivalent resistance at the terminals A-B in the network in Fig. E2.14.

ANSWER: R, = 22 kQ).

6 kQ 3 kQ
A o—— VWA
18 kQ 5 6 kQ
Rap —»
10 kQ
Figure E2.14 Bo

Simplifying Resistor
Combinations

When trying to determine the equivalent resistance at apair of terminals of a network com-
posed of an interconnection of numerous resistors, it is recommended that the analysis
begin at the end of the network opposite the terminals. Two or more resistors are combined
to form a single resistor, thus simplifying the network by reducing the number of compo-
nents as the analysis continues in a steady progression toward the terminals. The simplifi-
cation involves the following:

Step 1.

Step 2.

Resistors in series. Resistors R, and R, are in series if they are connected end
to end with one common node and carry exactly the same current. They can
then be combined into a single resistor Ry, where R¢ = R, + R,.

Resistors in parallel. Resstors R, and R, arein paraldl if they are connected to
the same two nodes and have exactly the same voltage across their terminals. They
can then be combined into asingle resistor R, where R, = R,R,/(R, + R,).

These two combinations are used repeatedly, as needed, to reduce the network to a
single resistor at the pair of terminals.

E2.15 Find the equivalent resistance at the terminals A-B in the circuit in Fig. E2.15.

ANSWER: R,z = 3 k.

4KkQ 4 kQ)
Ao VWA VWA
Rup—» ok 3 2K 12 kQ ‘g 8 kQ
Figure E2.15 B o
E2.16 Find Ry in Fig. E2.16. ANSWER: R, = 12 k.
A 4 kO 3 kO 2 kQ)
O VWA VWA VWA
Rap —» 8 kQ 12k 2610 32k
. C vw VW V,\/\/A
Figure E2.16 B 4 kQ 4 kQ 2 kQ
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A standard dc current-limiting power supply shown in Fig. 2.29a provides 0-18 V at 3 A to
aload. The voltage drop, V;, across aresistor, R, is used as a current-sensing device, fed
back to the power supply and used to limit the current |. That is, if the load is adjusted so 2 . 2 1
that the current tries to exceed 3 A, the power supply will act to limit the current to that
value. The feedback voltage, V;, should typically not exceed 600 mV.
If we have abox of standard 0.1-Q), 5-W resistors, let us determine the configuration of
these resistors that will provide V, = 600 mV when the current is 3 A.

O—
+ i J
—o— $ 3 3
+ 0A J 010
@« |Vr SR R
power — R—
supply 0A $
Load 010 3’ 3’ s’
o | All resistors
_ o———— 0.10Q

@) (b) ©

Figure 2.29

Circuits used in
Example 2.21.

Using Ohm'’s law, the value of R should be

=02Q

Therefore, two 0.1-() resistors connected in series, as shown in Fig. 2.29b, will provide the
proper feedback voltage. Suppose, however, that the power supply current is to be limited
to 9 A. The resistance required in this case to produce V; = 600 mV is

= 0.0667

We must now determine how to interconnect the 0.1-() resistor to obtain R = 0.0667 ().
Since the desired resistance is less than the components available (i.e., 0.1-Q), we must
connect the resistors in some type of parallel configuration. Since all the resistors are of
equal value, note that three of them connected in parallel would provide a resistance of
one-third their value, or 0.0333 (). Then two such combinations connected in series, as
shown in Fig. 2.29¢, would produce the proper resistance.
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Finally, we must check to ensure that the configurations in Figs. 2.29b and ¢ have not
exceeded the power rating of the resistors. In the first case, the current I = 3 A is present
in each of the two series resistors. Therefore, the power absorbed in each resistor is

P =1I°R
= (3)*(0.1)
=09W

which is well within the 5-W rating of the resistors.

In the second case, the current I = 9 A. The resistor configuration for Rinthiscaseisa
series combination of two sets of three parallel resistors of equal value. Using current
division, we know that the current | will split equally among the three parallel paths and,
hence, the current in each resistor will be 3 A. Therefore, once again, the power absorbed
by each resistor is within its power rating.

RESISTOR SPECIFICATIONS Some important parameters that are used to specify
resistors are the resistor’s value, tolerance, and power rating. The tolerance specifications for
resistors are typically 5% and 10%. A listing of standard resistor values with their specified
tolerancesis shown in Table 2.1.

The power rating for aresistor specifies the maximum power that can be dissipated by the
resistor. Some typical power ratings for resistorsare 1/4 W, 1/2 W, 1 W, 2 W, and so forth,
up to very high values for high-power applications. Thus, in selecting aresistor for some par-
ticular application, one important selection criterion is the expected power dissipation.

TABLE 2.1 Standard resistor values for 5% and 10% tolerances (values available with a 10%
tolerance shown in boldface)

1.0 10 100 1.0k 10k 100k 1.0M 10M
1.1 11 110 1.1k 11k 110k 1a1M 11M
1.2 12 120 1.2k 12k 120k 1.2M 12M
1.3 13 130 1.3k 13k 130k 1.3M 13M
1.5 15 150 1.5k 15k 150k 1.5M 15M
1.6 16 160 1.6k 16k 160k 1.6M 16M
1.8 18 180 1.8k 18k 180k 1.8M 18M
2.0 20 200 2.0k 20k 200k 2.0M 20M
2.2 22 220 2.2k 22k 220k 2.2M 22M
2.4 24 240 2.4k 24k 240k 2.4M
2.7 27 270 2.7k 27k 270k 2.7M
3.0 30 300 3.0k 30k 300k 3.0M
33 33 330 3.3k 33k 330k 3.3M
3.6 36 360 3.6k 36k 360k 3.6M
3.9 39 390 3.9k 39k 390k 3.9M
4.3 43 430 4.3k 43k 430k 4.3M
4.7 47 470 4.7k 47k 470k 4.7M
5.1 51 510 5.1k 51k 510k 5.1M
5.6 56 560 5.6k 56k 560k 5.6M
6.2 62 620 6.2k 62k 620k 6.2M
6.8 68 680 6.8k 68k 680k 6.8M
75 75 750 7.5k 75k 750k 7.5M
8.2 82 820 8.2k 82k 820k 8.2M

9.1 91 910 9.1k 91k 910k 9.1M
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Given the network in Fig. 2.30, we wish to find the range for both the current and power
dissipation in the resistor if R isa2.7-k() resistor with a tolerance of 10%.

Using the equations / = V /R = 10/R and P = V*/R = 100/R, the minimum and maxi-
mum values for the resistor, current, and power are outlined next.

Minimum resistor value = R(1 — 0.1) = 0.9 R = 2.43 kQ)

Maximum resistor value = R(1 + 0.1) = 1.1 R = 2.97 kQ)

Minimum current value = 10/2970 = 3.37 mA

Maximum current value = 10/2430 = 4.12 mA

Minimum power value = 100,/2970 = 33.7 mW

Maximum power value = 100,/2430 = 41.2 mW

Thus, the ranges for the current and power are 3.37 mA to 4.12 mA and 33.7 mW to
41.2 mW, respectively.

Given the network shown in Fig. 2.31: () find the required value for the resistor R; (b) use
Table 2.1 to select a standard 10% tolerance resistor for R; (c) using the resistor selected in
(b), determine the voltage across the 3.9-k() resistor; (d) calculate the percent error in the
voltage V;, if the standard resistor selected in (b) is used; and (€) determine the power rat-
ing for this standard component.

Using KVL, the voltage across R is 19 V. Then using Ohm'’s law, the current in the loop is
| = 5/3.9k = 1.282 mA
The required value of R isthen
R = 19/0.001282 = 14.82 kQ)

As shown in Table 2.1, the nearest standard 10% tolerance resistor is 15 k(). 24V Ci)

Using the standard 15-k() resistor, the actual current in the circuit is
I = 24/18.9k = 1.2698 mA

10V C_D <$>R

Figure 2.30
Circuit used in Example 2.22.

2.23

+
3.9 kQ) V1 =5V

and the voltage across the 3.9-k() resistor is Figure 2.31

V = IR = (0.0012698)(3.9k) = 4.952 V
The percent error involved in using the standard resistor is
% Error = (4.952 — 5)/5 X 100 = —0.96%
The power absorbed by the resistor R is then
P = IR = (0.0012698)*(15k) = 24.2 mW

Therefore, even a quarter-watt resistor is adequate in this application.

At this point we have learned many techniques that are fundamental to circuit analysis.
Now we wish to apply them and show how they can be used in concert to analyze circuits.
We will illustrate their application through a number of examples that will be treated in
some detail.

Circuit used in Example 2.23.

2.6

Circuits with
Series-Parallel
Combinations

of Resistors
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We wish to find all the currents and voltages labeled in the ladder network shown in

2.2 Fig. 2.32a
° 4 I I3 Is I I3
VWA VWA VWA VWA VWA
ok b 3k Iy 9 kQ ok b 3kQ
+ +d +
12v<+> V,36k0  VpSake  V,.S3k0 12v<+> V,36k0  V,33ka
L I Is
@ (b)
1 3 1 S
I 1mA +9V_ 7mA+2V §mAH3V
vIV\IA A\ 4 /N v’\/\l‘ v’\/\l‘
9 kQ 9 kQ 1A 3K0 3 ma 9kQ
i < +< 2 + S +<
12v<+> V, S 3ko 12v<i> 3V3S 6k %v§4k9 %Vésm
© @ ,
Figure 2.32

Analysis of a ladder network.

To begin our analysis of the network, we start at the right end of the circuit and combine the
resistors to determine the total resistance seen by the 12-V source. Thiswill alow usto cal-
culate the current 7,. Then employing KVL, KCL, Ohm’s law, and/or voltage and current
division, we will be able to calculate all currents and voltages in the network.

At theright end of the circuit, the 9-k() and 3-k(} resistors are in series and, thus, can be
combined into one equivalent 12-k() resistor. Thisresistor isin parallel with the 4-k() resis-
tor, and their combination yields an equivalent 3-k() resistor, shown at the right edge of the
circuit in Fig. 2.32b. In Fig. 2.32b the two 3-k() resistors are in series, and their combina-
tion isin paralel with the 6-kQ resistor. Combining all three resistances yields the circuit
shown in Fig. 2.32c.

Applying Kirchhoff’s voltage law to the circuit in Fig. 2.32c yields

I,(9k + 3k) = 12
I, = 1T mA
V, can be calculated from Ohm's law as
Vv, = I,(3k)
=3V
or, using Kirchhoff’s voltage law,
V, =12 — 9KkI,
=12-9
=3V

Knowing 7, and V,, we can now determine all currents and voltages in Fig. 2.32b. Since
V., = 3V, the current 1, can be found using Ohm'’s law as

_3
ok
1

= —mA
2

L
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Then, using Kirchhoff’s current law, we have
L =15L+L
=3 1 =3
1 X 107 =5><10~ + I

1
=—-mA
2

Pl
\

Note that the I; could also be calculated using Ohm’s law:

V, = (3k + 3K)L
3

ok

1

= —mA
2

L =

Applying Kirchhoff’s voltage law to the right-hand loop in Fig. 2.32b yields

V, =V, = 3k
3y, =2
)

3

V, ==V
)

or, sinceV, is equal to the voltage drop across the 3-k() resistor, we could use Ohm'’s law as

3

2

We are now in a position to calculate the final unknown currents and voltagesin Fig. 2.32a.
Knowing V,, we can calculate 7, using Ohm'’s law as

‘/b = 4k14

oo

Then, from Kirchhoff’s current law, we have

13:14+15
1

3
—X102==X 107+ L
2 8 >

1
I.=—mA
>

We could also have calculated 15 using the current-division rule. For example,

AP . S
> 4k + (9k + 3k)

1
= —mA
8

57
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Finally, V. can be computed as

V. = I5(3k)
3

==V
8

V. can aso be found using voltage division (i.e., the voltage V, will be divided between the
9-kQ) and 3-k() resistors). Therefore,

Note that Kirchhoff’s current law is satisfied at every node and Kirchhoff’s voltage law
is satisfied around every loop, as shown in Fig. 2.32d.

The following example is, in essence, the reverse of the previous example in that we
are given the current in some branch in the network and are asked to find the value of the
input source.

Given thecircuit in Fig. 2.33 and I, = 1/2 mA, let us find the source voltage V,.

2.25

If I, = 1/2 mA, then from Ohm'slaw, V, = 3 V.V, can now be used to calculate I; = 1 mA.
Kirchhoff’s current law applied at node y yields

L=5L+1I
1.5 mA

Then, from Ohm'’s law, we have
V, = (1.5 X 107%)(2k)
=3V
SinceV, + V, isnow known, 5 can be obtained:

1_%+%
3k + 1k
= 1.5mA

Applying Kirchhoff’s current law at node x yields
L =1+ I
=3mA

Now KVL applied to any closed path containing v, will yield the value of this input source.
For example, if the path is the outer loop, KVL yields

—V, + 6KI, + 3KIs + 1KIs + 4KI, = 0

Sincel;, = 3mA and I5 = 1.5 mA,
V, =36V
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If we had selected the path containing the source and the points x, y, and z, we would obtain

~V, + 6kI, + V, + V, + 4kI, = 0

Once again, this equation yields

V, =36V

+
Va3 2k0
-1,
VOC—F y+ S 1kQ
skaS Vs Sekn
13 — I4

Vm‘
4kQ z

Figure 2.33

Example circuit for analysis.

Step 1.

Step 2.

Step 3.

Systematically reduce the resistive network so that the resistance seen by the
source is represented by a single resistor.

Determine the source current for a voltage source or the source voltage if a
current source is present.

Expand the network, retracing the simplification steps, and apply Ohm’s law,

KVL, KCL, voltage division, and current division to determine all currents and
voltages in the network.

Analyzing Circuits
Containing a
Single Source and
a Series-Parallel
Interconnection
of Resistors

E2.17 Find V, in the network in Fig. E2.17.

Figure E2.17

20 kO 40 kQ
A% VWA

12V Cf) 30k03 20kQ S v,

> >

E2.18 Find Vg in the circuit in Fig. E2.18.

Figure E2.18

20 kQ)
A%

< <
Vg Ci 360k $120k0
0.1 mA

ANSWER: V, = 2 V.

ANSWER: V5 =9 V.
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E2.19 Find I in the circuit in Fig. E2.19.

ANSWER: 5 = 0.3 mA.

Figure E2.19

90 k2
W
+
60kQ3 k03 3V

E2.20 FindV, inFig. E2.20.

ANSWER: V; = 12 V.

+
Vi S3ka
- CT) 25mA 6K Cl) 15 mA
S6k0
Figure E2.20
E2.21 Find I, in Fig. E2.21. ANSWER: I, = — 4 mA.
4kQ
12k0S CD 9mA
3K0Z §6 kQ
Iy
Figure E2.21
E2.22 FindV,, Vy, and \, in Fig. E2.22. ANSWER: V, = 3.33V,
V= —4V,V, = 4V.
S10k0 S20k0 Sk V;Sake
4 4 kQ)
. A
Figure E2.22 + +
Vo Z5k0 Z10k0 16V<1L> 12k0 3 8ka 2 v,
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E2.23 Find V, and V; in Fig. E2.23.

Z10ko S6kQ
4K N @ 12k02 v,
20 mA
Vo §4 kQ i
Figure E2.23 _
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ANSWER: V,=—60V,
V,=10V.

To provide motivation for thistopic, consider the circuit in Fig. 2.34. Note that this network has
essentialy the same number of elements as contained in our recent examples. However, when
we attempt to reduce the circuit to an equivalent network containing the source V; and an equiv-
alent resistor R, we find that nowhereis aresistor in series or parallel with another. Therefore,
we cannot attack the problem directly using the techniques that we have learned thus far. We
can, however, replace one portion of the network with an equivalent circuit, and this conversion
will permit us, with ease, to reduce the combination of resistors to a single equivalent resist-
ance. This conversion is called the wye-to-delta or delta-to-wye transformation.

I
a
Ry R,
de y ¢
Ry Rs c VWA b
Rj3
Re (@
Figure 2.34 Figure 2.35
Network used to illustrate the Delta and wye resistance
need for the wye == delta networks.

transformation.

Consider the networks shown in Fig. 2.35. Note that the resistors in Fig. 2.35a form a
A (delta) and the resistors in Fig. 2.35b form a'Y (wye). If both of these configurations are
connected at only threeterminalsa, b, and ¢, it would be very advantageous if an equivalence
could be established between them. It is, in fact, possible to relate the resistances of one net-
work to those of the other such that their terminal characteristics are the same. Thisrelation-
ship between the two network configurations is called the Y-A transformation.

The transformation that relates the resistances R;, R,, and R; to the resistances R, R, and
R. is derived as follows. For the two networks to be equivalent at each corresponding pair of
terminals, it is necessary that the resistance at the corresponding terminals be equa (e.g., the
resistance at terminals a and b with ¢ open-circuited must be the same for both networks).

2.7

Wye == Delta
Transformations

(b)
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Therefore, if we equate the resistances for each corresponding set of terminals, we obtain
the following equations:

Ry(R, + R)
R,=R,+R,=——"

R, + R, + R,

Ry(R, + R,)
R,=R,+R. = —— " 227
b b R, + R, + R,

R(R, + R
R,=R +R, = (R; + &)

“ R + R+ R,

Solving this set of equations for R,, R,, and R, yields

R — R\R,
“ R + R, + R,
Ry R
Ry=— > — 2.28
"R+ R, + Ry
R\ R,

R,=——"—
R+ R, + Ry
Similarly, if we solve Eq. (2.27) for R;, R,, and R;, we obtain

_ R,R, + R,R, + R,R,

R,
R,R, + R,R. + R,R.
R, = 2.29
R.
R,R, + R,R, + R,R,
R, = n

a

Equations (2.28) and (2.29) are genera relationships and apply to any set of resistances
connected ina 'Y or A. For the balanced case where R, = R, = R.and R, = R, = R, the
equations above reduce to

1
Ry = SR 2.30
and
RA = 3RY 231

It is important to note that it is not necessary to memorize the formulas in Egs. (2.28)
and (2.29). Close inspection of these equations and Fig. 2.35 illustrates a definite pattern
to the relationships between the two configurations. For example, the resistance
connected to point a in the wye (i.e., R)) is equal to the product of the two resistorsin
the A that are connected to point a divided by the sum of all the resistances in the delta.
R, and R, are determined in a similar manner. Similarly, there are geometrical patterns
associated with the equations for calculating the resistors in the delta as a function of
those in the wye.

Let us now examine the use of the delta == wye transformation in the solution of a
network problem.
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Given the network in Fig. 2.36a, let us find the source current Ig.

. 2.26
o Figure 2.36
12 kQ 5 18 kQ 5 Circuits used in
Example 2.26.
6 k)
Ci) 12V VWA
4kQ 3, 9 kO 3,

(@) (b)

Note that none of the resistors in the circuit are in series or paralel. However, careful
examination of the network indicates that the 12k-, 6k-, and 18k-ohm resistors, aswell asthe
4k-, 6k-, and 9k-ohm resistors each form adeltathat can be converted to awye. Furthermore,
the 12k-, 6k-, and 4k-ohm resistors, as well asthe 18k-, 6k-, and 9k-ohm resistors, each form
awye that can be converted to a delta. Any one of these conversions will lead to a solution.
We will perform a delta-to-wye transformation on the 12k-, 6k-, and 18k-ohm resistors,
which leadsto the circuit in Fig. 2.36h. The 2k- and 4k-ohm resistors, like the 3k- and 9k-ohm

resistors, are in series and their parallel combination yields a 4k-ohm resistor. Thus, the
source current is

Iy = 12/(6k + 4k)
=12mA
E2.24 Determine the total resistance Ry in the circuit in Fig. E2.24. ANSWER: R; = 34 kQ.
6 kQ)
O VWA
54 kQ 36 kQ
Rr—
18 kQ)
2 kQ
Figure E2.24 ¢} VWA
E2.25 Find V, in the network in Fig. E2.25. ANSWER: V, = 24 V.
12 kQ § § 12 kQ
12 kQ)
4 mA CT) VWA
+
12 kQ § 5 12 kQ v,
Figure E2.25 o
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E2.26 Find |, in Fig. E2.26. ANSWER: |, = —1.2A.

18 O

VWA

%189,

1;3/8 CD 3A

1203 360
Figure E2.26 5
2 8 In Chapter 1 we outlined the different kinds of dependent sources. These controlled sources
° are extremely important because they are used to model physical devices such as npn and pnp
[ ]

bipolar junction transistors (BJTs) and field-effect transistors (FETS) that are either metal-
Circuits with oxide-semiconductor field-effect transistors (MOSFETS) or insulated-gate field-effect tran-
sistors (IGFETS). These basic structures are, in turn, used to make analog and digital devices.
Dependent A typical analog device is an operational amplifier (op-amp). This device is presented in
Sources Chapter 4. Typical digital devices are random access memories (RAMS), read-only memo-
ries (ROMs), and microprocessors. We will now show how to solve simple one-loop and
one-node circuits that contain these dependent sources. Although the following examples are
fairly simple, they will serve to illustrate the basic concepts.

Circuits with  step 1. When writing the KVL and/or KCL equations for the network, treat the
Dependent Sources dependent source as though it were an independent source.

Step 2. Write the equation that specifies the relationship of the dependent source to the
controlling parameter.

Step 3. Solve the equations for the unknowns. Be sure that the number of linearly inde-
pendent equations matches the number of unknowns.

The following four examples will each illustrate one of the four types of dependent
sources: current-controlled voltage source, current-controlled current source, voltage-
controlled voltage source, and voltage-controlled current source.

Let us determine the voltage V, in the circuit in Fig. 2.37.

2.27

I; 3kQ /\
— M —+
N +
V, = 2000 I}
Figure 2.37 12v Cf) 5kQ S v,
Circuit used in _

Example 2.27.
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Applying KVL, we obtain
—12 + 3k, — Vu + 5kI, = 0
where
Va = 20001,

and the units of the multiplier, 2000, are ohms. Solving these equations yields

I, = 2mA
Then
V, = (5K
=10V

Given the circuit in Fig. 2.38 containing a current-controlled current source, let us find the

voltage V,,.

kO "

2

10 mA CD o S3ka <T> al, Vg
A3 L i

Applying KCL at the top node, we obtain

v, v,
S+ 3 _ur =0

10 X 107 +
0 0 2k + 4k 3k

where
Vs
I =—
3k

Substituting this expression for the controlled source into the KCL equation yields

L, Vs Vs 4V
102+ =4+ = - ——=
O ek Tk w0
Solving this equation for Vg, we obtain
VS =12 V

The voltage V, can how be obtained using a simple voltage divider; that is,

v—{i“k ]v
o |2k + 4k |S

=8V

The network in Fig. 2.39 contains a voltage-controlled voltage source. Wewish to find V, in

this circuit.
I 3kQ
WY AN
N +
2V,

A

12V CJ_D 1k0 S Vo

\'4

2.28

Figure 2.38
Circuit used in
Example 2.28.

2.29

Figure 2.39
Circuit used in
Example 2.29.
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2.30

Figure 2.40

Example circuit containing a
voltage-controlled current
source.

Applying KVL to this network yields

—12 + 3kl + 2V, + 1kl = 0
where

v, = 1kI
Hence, the KVL equation can be written as

=12 + 3kl + 2kI + 1kI =0

or
I =2mA
Therefore,
v, = 1kI
=2V

An equivalent circuit for a FET common-source amplifier or BJT common-emitter
amplifier can be modeled by the circuit shown in Fig. 2.40a. We wish to determine an
expression for the gain of the amplifier, which is the ratio of the output voltage to the
input voltage.

i) Ry
) +
o0 () Rzgvg(t)<1> gmve®) 3Ry IRy ZRs 0,00
()
i1(7) 5&,
) +
N
w0 () st,vg(t)<1> gmved) 2R, vy(0)

(b)

Note that although this circuit, which contains a voltage-controlled current source, appears to
be somewhat complicated, we are actualy in a position now to solve it with techniques we
have studied up to this point. The loop on the Ieft, or input to the amplifier, is essentialy
detached from the output portion of the amplifier on the right. The voltage across R, is v,(¢),
which controls the dependent current source.
To simplify the analysis, let us replace the resistors R;, R,, and Rs with R, such that
1 1 1 1

_= — 4+ — + —

R, Ry R, Rs
Then the circuit reduces to that shown in Fig. 2.40b. Applying Kirchhoff’s voltage law to
the input portion of the amplifier yields

v(t) = il(t)(Rl + RZ)
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and
V(1) = ir(t)R,

Solving these equations for v,(z) yields

R,
v, (1) = vyt
(1) = g Ul

From the output circuit, note that the voltage v,(z) is given by the expression
v()(t) = _gmvg([)RL
Combining this equation with the preceding one yields

—¢ R, R
v,(1) = —STE2 4 (1)

R, + R,
Therefore, the amplifier gain, which is the ratio of the output voltage to the input voltage,
is given by
vr)(t) _ ngLRZ

v (1) R, + R,

Reasonable values for the circuit parameters in Fig. 2.40a are R, = 100 Q, R, = 1 kQ,
gn = 0.04S, Ry = 50k, and R, = Rs; = 10 k(). Hence, the gain of the amplifier under
these conditionsis
v,(1)  —(0.04)(4.545)(10°)(1)(10°)
() (11)(10°)
= —165.29

Thus, the magnitude of the gain is 165.29.

At this point it is perhaps helpful to point out again that when analyzing circuits with
dependent sources, we first treat the dependent source as though it were an independent source
when we write a Kirchhoff’s current or voltage law equation. Once the equation is written,
we then write the controlling egquation that specifies the relationship of the dependent source
to the unknown variable. For instance, the first equation in Example 2.28 treats the dependent
source like an independent source. The second eguation in the example specifies the relation-
ship of the dependent source to the voltage, which is the unknown in the first equation.
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E2.27 Find V, in the circuit in Fig. E2.27. ANSWER: V, = 12 V.
1+Va _ 2V
WA o
4 kQ N T

VWA
™

6V Ci) 8 kQ

Figure E2.27
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E2.28 Find V, in the network in Fig. E2.28. ANSWER: V, = 8 V.
1 kO 3»
+
Vo <T> Vs 2 6ka $—o0 1)2ma
2000 < T
2 kQ § v,
Figure E2.28 _
E2.29 Find V, in Fig. E2.29. ANSWER: V,=-12V.
2V,
10 kQ 5 kQ
e @ A
+ 1% -
12V C_D A C_F) 36V
N
Figure E2.29 g"fé
E2.30 Find V, in Fig. E2.30. ANSWER: V,=-32/3V.
V
4 kQ) - X +
MW @ MW
T 1sv 8 ka
05V, <1L> Vi CI) 50V
Figure E2.30 - 8 ‘/I\(/{f
E2.31 Find 1,in Fig. E2.31. ANSWER: I,=-15mA.
Ix
10 mA CD 21, <T> 2 kQ § 3mA CD § 5 kQ <2’10 kQ
Figure E2.31
E2.32 FindV, in Fig. E2.32. ANSWER: V,=16V.
Iy +

4KQ 2 6 mA CD 6kaS 05l <T> <2’12 k¥ v,

A

Figure E2.32
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E2.33 If the power supplied by the 3-A current source in Fig. E2.33 is 12 W, find V5 and the
power supplied by the 10-V source.

6 Q

5O

Figure E2.33
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ANSWER: Vs=42
V, =30 W.

In addition to the resistors shown in Fig 2.1, three types are employed in the modern elec-
tronics industry: thick-film, thin-film, and silicon-diffused resistors.

THICK-FILM RESISTORS Thick-film resistor components are found on all modern
surface mount technology (SMT) printed circuit boards. They come in a variety of shapes,
sizes, and values. A table of standard sizes for thick-film chip resistorsis shown in Table 2.2,
and some examples of surface mount thick-film ceramic resistors can be seen in Fig. 2.41.

Thick-film resistors are considered “low-tech,” when compared with thin-film and sili-
con-diffused components, because they are manufactured using a screen printing process
similar to that used with T-shirts. The screens utilized in thick-film manufacturing use amuch
finer mesh and are typically made of stainless steel for a longer lifetime. The paste used in
screen printing resistors consists of a mixture of ruthenium oxides (RuO,) and glass.

TABLE 2.2 Thick-film chip resistor standard sizes

SIZE CODE SIZE (MILS) POWER RATING (WATTS)

0201
0402
0603
0805
1206

20 X 10 1/20
1/16
1/10
1/8
120 X 60 1/4
200 X 100 1/2

250 X 120 1

40 X 20
60 X 30
80 X 50

2010
2512

\4

Chip Resistors

AV

Chip Capacitors

2.9

Resistor
Technologies
for Electronic
Manufacturing

Figure 2.41
A printed circuit board show-
ing surface mount thick-film

ceramic resistors. (Courtesy
of Mike Palmer)
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Figure 2.42
Thick-film chip resistor
cross-section.

Protective

coating Electrode (Inner)

/ Electrode
Alumina _—  (Between)

substrate K

Thick film \ Electrode (Outer)

resistive element

Once the paste is screen printed, it is fired at temperatures around 850°C, causing the
organic binders to vaporize and to allow the glass to melt and bind the metal and glassfiller
to the substrate. The substrates are typically 95% aumina ceramic. After firing, conductors
are screen printed and fired to form the contacts used to solder the resistors. A second layer
of glassis screen printed and fired to seal and protect the resistor. A cross-section of a typi-
cal thick-film resistor is shown in Fig. 2.42. Notice that the conductors are “wrapped” around
the substrate to alow them to be soldered from the bottom or top and allow the solder to
“wic” up the side to form a more reliable mechanical and electrical contact.

Thick-film resistors have typical “as fired” tolerances of +/— 10% to +/— 20%. These
wide tolerances are due to the fact that the screen printing process does not afford good geom-
etry transfer or consistent thickness. To obtain abetter tolerance (i.e., +/— 0.5% to +/— 1.0%),
the resistors can be trimmed with a YAG laser to remove a portion of the resistor and change
its value. The resistor is constantly measured during the cutting process to make sure the
resistance is within the specified tolerance.

THIN-FILM RESISTORS Thin-film resistors are fabricated by depositing a thin layer
(hundreds of angstroms, where one angstrom is one ten-billionth of a meter) of Tantalum
Nitride (TaN) or Nichrome (NiCr) onto a silicon or highly polished alumina ceramic sub-
strate. Using a photolithography process, the metal film is patterned and etched to form the
resistor structure. Thin-film metals have alimited resistivity (the reciprocal of conductivity—
a measure of a material’s ability to carry an electric current). This low resistivity limits the
practical range of thin-film resistors due to the large areas required. Both TaN and NiCr have
similar characteristics, but TaN is more chemically and thermally resistant and will hold up
better to harsh environments. Sputtered metal thin films are continuous and virtually defect
free, which makes them very stable, low-noise components that have negligible nonlinearity
when compared with the more porous thick-film materials.

Thin-film resistors are available in standard SM T packages, but are also available aswire-
bondable chipsthat can be directly patterned onto integrated circuits. A cross-sectional draw-
ing of the thin-film chip on ceramic or silicon is shown in Fig 2.43. Because of the addition-
a sophistication involved in fabrication, thin-film resistors are more expensive than thick-
film resistors. However, they have a number of important characteristics that make them the
preferred devices for a number of microwave applications. Like thick-film resistors, these
components can also be laser-trimmed to obtain a desired value within a specified tolerance.
Since the sputtered metal film is extremely thin, the power requirement for the laser is very
low, which in turn ensures that there will be minimal micro-cracking and therefore an
increased level of stability.

SILICON-DIFFUSED RESISTORS Silicon-diffused resistors are part of virtualy all
integrated circuits (1Cs). They are passive devicesthat are implemented to support or enhance
the capabilities of active devices, such as transistors and diodes. Both passive and active
devices are manufactured at the same time using the same technology (e.g., CMOS—com-
plementary metal-oxide semiconductor). The resistors are made by diffusing a dopant, such
as boron or phosphorus, into a silicon substrate at high temperature. This process is very



SECTION 2.9 RESISTOR TECHNOLOGIES FOR ELECTRONIC MANUFACTURING 71

Protective Coat Epoxy Figure 2.43

Thin-film chip resistor

Sputtered Resistive cross-section.

Metal Film

Terminations (Nickel
& Solder Plating)

Electrode Thin Film

High Purity Alumina
Substrate

expensive and is the reason silicon-diffused resistors cost more than thin- or thick-film resis-
tors. A photo of an integrated silicon resistor is shown in Fig. 2.44. Notice that the resistor is
completely integrated within alarger circuit, because it is not economically feasible to make
discrete silicon-diffused resistors. Table 2.3 compares some of the characteristics of thick-
film, thin-film, and silicon-diffused resistors.

Silicon resistors have aresistance range on the order of 5-6k ohms/sg. The term “ ohms per
square” means a dimensionless square area of resistive material, having an ohmic value equal

Diffused
Resistors

Figure 2.44
Silicon-diffused resistors.
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2.10

Application
Examples

to the sheet resistivity of the material. For example, a 10-ohm sheet resistivity material would
congtitute a 10-ohm resistor whether the material was 1 mil by 1 mil or 1 inch by 1 inch.
Dividing the length of the resistor by its width yields the number of squares, and multiplying
the number of squares by the sheet resistance yields the resistance value. The total resistance
values are limited because of the high cost of silicon area, and there are other circuit design
techniques for implementing high-valued resistors through the judicious use of transistors.
These devices suffer from large changesin value over temperature and some resistance change
with applied voltage. As aresult of these poor characteristics, thin-film resistors mounted on
the surface of the silicon are used in place of diffused resistorsin critical applications.

TABLE 2.3 Characteristics of resistor types

CHARACTERISTIC THICK-FILM THIN-FILM SILICON-DIFFUSED

Sheet resistance 5 — 500k ohms/sq 25 — 300 ohms/sq 5 — 6k ohms/sq
Sheet tolerance (as fired) +/-20% +/-10% +/—2%

Sheet tolerance (final) +/-1% +/-1% N/A

Relative cost Low High Higher

Throughout this book we endeavor to present awide variety of examples that demonstrate the
usefulness of the material under discussion in a practical environment. To enhance our
presentation of the practical aspects of circuit analysis and design, we have dedicated sections,
such asthis one, in most chapters for the specific purpose of presenting additional application-
oriented examples.

APPLICATION
EXAMPLE 2.31

SOLUTION

The eyes (heating elements) of an electric range are frequently made of resistive nichrome
strips. Operation of the eye is quite simple. A current is passed through the heating element
causing it to dissipate power in the form of heat. Also, a four-position selector switch,
shown in Fig. 2.45, controls the power (heat) output. In this case the eye consists of two
nichrome strips modeled by the resistors R, and R,, where R, < R,.

1. How should positions A, B, C, and D be labeled with regard to high, medium, low, and
off settings?

2. If we desire that high and medium correspond to 2000 W and 1200 W power dissipa-
tion, respectively, what are the values of R, and R,?

3. What is the power dissipation at the low setting?

Position A is the off setting since no current flows to the heater elements. In position B, cur-
rent flows through R, only, while in position C current flowsthrough R, only. Since R, < R,,
more power will be dissipated when the switch is at position C. Thus, position C isthe medi-
um setting, B is the low setting, and, by elimination, position D is the high setting.

When the switch is at the medium setting, only R, dissipates power, and we can write R, as

Vi 2302
R =—=
P, 1200

or
R, = 44.08 Q
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On the high setting, 2000 W of total power isddivered to R, and R,. Since R, dissipates 1200 W,
R, must dissipate the remaining 800 W. Therefore, R, is

Vi 2302
R2 = - =
P, 800
or
R, = 66.13Q

Finally, at the low setting, only R, is connected to the voltage source; thus, the power dissi-
pation at this setting is 800 W.

Figure 2.45

Simple resistive heater
C selector circuit.

ox
o

Vg = 230V C_F)

Have you ever cranked your car with the headlights on? While the starter kicked theengine,  APPLICATION
you probably saw the headlights dim then return to normal brightness once the engine was EXAMPLE 2.32
running on its own. Can we create a model to predict this phenomenon? :

Yes, we can. Consider the conceptua circuit in Fig. 2.46a and the model circuit in  SOLUTION
Fig. 2.46b, which isolates just the battery, headlights, and starter. Note the resistor Ry ;.
It is included to model several power loss mechanisms that can occur between the battery
and the loads, that is, the headlights and starter. First, there are the chemical processes with-
in the battery itself which are not 100% efficient. Second, there are the electrical connec-
tions at both the battery posts and the loads. Third, the wiring itself has some resistance,
although thisis usually so small that it is negligible. The sum of these losses is modeled by
Ruat, @nd we expect the value of R to be small. A reasonable value is 25 mQ).

Next we address the starter. When energized, a typical automobile starter will draw
between 90 and 120 A. We will use 100 A as a typical number. Finally, the headlights will
draw much less current—perhaps only 1 A. Now we have values to use in our model A conceptual (a) model and
circuit. (b) circuit for examining the

effect of starter current on
headlight intensity.

Figure 2.46

Headlights Rpatt Vi
W

+12V-—

Vbatt
MO AONO™

Ignition

Headlight switch
switch

(@) (b)
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Assume first that the starter is off. By applying KCL at the node labeled V;, we find that
the voltage applied to the headlights can be written as
Vi = Voat — L Rpa

Substituting our model values into this equation yields V, = 11.75 V—very close to 12 V.
Now we energize the starter and apply KCL again:

Vi = Voar — (IHL + Istart)Rban
Now the voltage across the headlights is only 9.25 V. No wonder the headlights dim!
How would corrosion or loose connections on the battery posts change the situation? In this

case, we would expect the quality of the connection from battery to load to deteriorate,
increasing R, and compounding the headlight dimming issue.

APPLICATION
EXAMPLE 2.33

Figure 2.47

The Wheatstone bridge
circuit.

SOLUTION

A Wheatstone bridge circuit is an accurate device for measuring resistance. This circuit,
shown in Fig. 2.47, is used to measure the unknown resistor R,. The center leg of the cir-
cuit contains a galvanometer, which is a very sensitive device that can be used to measure
current in the microamp range. When the unknown resistor is connected to the bridge, R; is
adjusted until the current in the galvanometer is zero, at which point the bridge is balanced.
In this balanced condition

so that

Engineers also use this bridge circuit to measure strain in solid material. For example, a
system used to determine the weight of atruck is shown in Fig. 2.48a. The platform is sup-
ported by cylinders on which strain gauges are mounted. The strain gauges, which measure
strain when the cylinder deflects under |oad, are connected to a Wheatstone bridge as shown
in Fig. 2.48b. The strain gauge has a resistance of 120 ) under no-load conditions and
changes value under load. The variable resistor in the bridgeisacalibrated precision device.

Weight is determined in the following manner. The AR, required to balance the bridge
represents the A strain, which when multiplied by the modulus of elasticity yields the
A stress. The A stress multiplied by the cross-sectional area of the cylinder produces the
A load, which is used to determine weight.

Let us determine the value of R, under no load when the bridge is balanced and its value
when the resistance of the strain gauge changes to 120.24 () under load.

Using the balance equation for the bridge, the value of R; at no load is

R,
R3 =% Rx
R,



SECTION 2.11 DESIGN EXAMPLES 75

_ <%>(120)

109.0909 Q)

Under load, the value of R, is
100

R, = | —](120.24
3 (m)< 0.24)
109.3091 Q)

Therefore, the AR5 is

AR; = 109.3091 — 109.0909

= 0.2182 Q)

IC_IWS_O O / Platform

@

R =100 Q R, =1100

Strain gauge

Rx

(b)

Most of this text is concerned with circuit analysis; that is, given a circuit in which all the
components are specified, analysis involves finding such things as the voltage across some
element or the current through another. Furthermore, the solution of an analysis problem is
generaly unique. In contrast, design involves determining the circuit configuration that will
meet certain specifications. In addition, the solution is generally not unique in that there may
be many ways to satisfy the circuit/performance specifications. It is also possible that there
is no solution that will meet the design criteria

In addition to meeting certain technical specifications, designs normally must also meet
other criteria, such as economic, environmental, and safety constraints. For example, if acir-
cuit design that meets the technical specifications is either too expensive or unsafe, it is not
viable regardless of its technical merit.

At this point, the number of elements that we can employ in circuit design islimited prima-
rily to the linear resistor and the active elements we have presented. However, as we progress
through the text we will introduce a number of other elements (for example, the op-amp,
capacitor, and inductor), which will significantly enhance our design capability.

We begin our discussion of circuit design by considering a couple of simple examples that
demonstrate the selection of specific components to meet certain circuit specifications.

Figure 2.48
Diagrams used in
Example 2.33.

2.11

Design Examples
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DESIGN
EXAMPLE 2.34

SOLUTION

Figure 2.49
12-V to 9-V converter circuit
for powering panel lighting.

An electronics hobbyist who has built his own stereo amplifier wants to add a back-lit dis-
play panel to his creation for that professional look. His panel design requires seven light
bulbs—two operate at 12 V /15 mA and fiveat 9 V /5 mA. Luckily, his stereo design already
has a quality 12-V dc supply; however, there is no 9-V supply. Rather than building a new
dc power supply, let us use the inexpensive circuit shown in Fig. 2.49ato design a 12-V to
9-V converter with the restriction that the variation in V;, be no more than 45%. In particu-
lar, we must determine the necessary values of R, and R,.

First, lamps L, and L, have no effect on V;. Second, when lamps L;—L, are on, they each
have an equivalent resistance of
Vy 9

Rgq=—=——=18kQ
<1 0005

Aslong asV, remains fairly constant, the lamp resistance will also be fairly constant. Thus,
the requisite model circuit for our design is shown in Fig. 2.49b. The voltage V, will be at
its maximum value of 9 + 5% = 9.45V when L—L, are all off. In this case R, and R, are
in series, and V; can be expressed by simple voltage division as

R,
V, = 945 = 12[ ]

R, + R,
R3S
bl IR D S
12v<i>
Ry3V;
Ly L, Ly Ly Ls Lg Ly
. . .(a) . . .
R 3

IS O S |
6 R S Sl S
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Rearranging the equation yields

R
— =027
R,

A second expression involving R, and R, can be developed by considering the case when

L+L; are dl on, which causes V; to reach its minimum value of 9-5%, or 8.55 V. Now, the

effective resistance of the lamps is five 1.8-k() resistors in parallel, or 360 (). The corre-
sponding expression for V; is

V, =855 = 12[&}

R, + (R,//360)

which can be rewritten in the form
360R,

+ 360 + R,

E 1.4

360 T 855
Substituting the value determined for R,/ R, into the preceding equation yields

R, = 360[1.4 — 1 — 0.27]
or
R, = 4810
and so for R,
R, = 1783 Q
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Let's design a circuit that produces a 5-V output from a 12-V input. We will arbitrarily fix
the power consumed by the circuit at 240 mW. Finally, we will choose the best possible
standard resistor values from Table 2.1 and calculate the percent error in the output voltage
that results from that choice.

DESIGN
EXAMPLE 2.35

The simple voltage divider, shown in Fig. 2.50, is ideally suited for this application. We SOLUTION
know that V, is given by
R
V, = V[ : }
R, + R,
which can be written as
Vin
R| == R2 7{) - 1
Since dl of the circuit’s power is supplied by the 12-V source, the total power is given by
%3
P = T — =024
R, + R,
Using the second equation to eliminate R,, we find that R, has a lower limit of Ry
VoVin . (5)(12) . 12v( T
Ry= =% = = 2= = 2500 CD N
Substituting these results into the second equation yields the lower limit of R, that is Ry3 Vo=5V
Vin
R, = Rz{— - 1] = 350 ()
Vo
Figure 2.50

Thus, we find that a significant portion of Table 2.1 is not applicable to this design.
However, determining the best pair of resistor valuesis primarily atrial-and-error operation

A simple voltage divider
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that can be enhanced by using an Excel spreadsheet as shown in Table 2.4. Standard resis-
tor values from Table 2.1 were entered into Column A of the spreadsheet for R,. Using the
equation above, theoretical values for R, were calculated using R, = 1.4-R,. A standard
resistor value was selected from Table 2.1 for R, based on the theoretical calculation in
Column B. V, was calculated using the simple voltage-divider equation, and the power
absorbed by R, and R, was calculated in Column E.

Note that a number of combinations of R, and R, satisfy the power constraint for this
circuit. The power absorbed decreases as R, and R, increase. Let's select R, = 1800 () and
R, = 1300 (), because this combination yields an output voltage of 5.032 V that is closest
to the desired value of 5 V. The resulting error in the output voltage can be determined from
the expression
5032 -5

5

It should be noted, however, that these resistor values are nominal, that is, typical values.
To find the worst-case error, we must consider that each resistor as purchased may be as much
as+5% off the nominal value. In this application, since V, is already greater than the target of
5V, the worst-case scenario occurs when V, increases even further, that is, R, is 5% too low
(1710 Q) and R, is 5% too high (1365 ). The resulting output voltageis 5.32 V, which yields
a percent error of 6.4%. Of course, most resistor values are closer to the nomina value than
to the guaranteed maximum/minimum values. However, if weintend to build this circuit with
a guaranteed tight output error such as 5% we should use resistors with lower tolerances.

How much lower should the tolerances be? Our first equation can be altered to yield the
worst-case output voltage by adding atolerance, A, to R, and subtracting the tolerance from
R,. Let’s choose a worst-case output voltage of V. = 525V, that is, a 5% error:

Percent error = { }100% = 0.64%

TABLE 2.4 Spreadsheet calculations for simple voltage divider

[~ | s ] c ] o | £
R1 Vo

1 R2 R1 theor Pabs

2 300 420 430 4.932 0.197
3 330 462 470 £4.950 0.180
4 360 504 510 4.966 0.166
5 390 546 560 4.926 0.152
6 430 602 620 4.914 0.137
7 470 658 680 4.904 0.125
8 510 714 750 4.857 0.114

9 560 784 750 5.130 0.110

10 620 868 910 4.863 0.094
11 680 952 910 5.132 0.091
12 750 1050 1000 5.143 0.082
13 820 1148 1100 5.125 0.075
14 910 1274 1300 4.941 0.065
15 1000 1400 1300 5.217 0.063
16 1100 1540 1500 5.077 0.055
17 1200 1680 1600 5.143 0.051
18 1300 1820 1800 5.032 0.046
19 1500 2100 2000 5.143 0.041
20 1600 2240 2200 5.053 0.038
21 1800 2520 2400 5.143 0.034
22 2000 2800 2700 5.106 0.031
23 2200 3080 3000 5.077 0.028
24 2400 3360 3300 5.053 0.025
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o Ry(1 + A) } ~ { 1300(1 + A) }
V()max =325 = Vm|: - 1800(

Rl — A) + Ry(1 + A) 1 — A) + 1300(1 + A)

The resulting value of A is0.037, or 3.7%. Standard resistors are available in tolerances of
10, 5, 2, and 1%. Tighter tolerances are available but very expensive. Thus, based on nom-
inal values of 1300 ) and 1800 (), we should utilize 2% resistors to ensure an output volt-
age error |ess than 5%.
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In factory instrumentation, process parameters such as pressure and flowrate are measured,
converted to electrical signals, and sent some distance to an electronic controller. The con-
troller then decides what actions should be taken. One of the main concerns in these sys-
tems is the physical distance between the sensor and the controller. An industry standard
format for encoding the measurement value is caled the 420 mA standard, where the
parameter range is linearly distributed from 4 to 20 mA. For example, a 100 psi pressure
sensor would output 4 mA if the pressure were 0 psi, 20 mA at 100 psi, and 12 mA at 50 psi.
But most instrumentation is based on voltages between 0 and 5 V, not on currents.

Therefore, let us design a current-to-voltage converter that will output 5V when the cur-
rent signal is 20 mA.

Thecircuit in Fig. 2.51ais avery accurate model of our situation. The wiring from the sen-
sor unit to the controller has some resistance, R, If the sensor output were a voltage pro-
portional to pressure, the voltage drop in the line would cause measurement error even if the
sensor output were an ideal source of voltage. But, since the data are contained in the cur-
rent value, R, does not affect the accuracy at the controller as long as the sensor acts as
an ideal current source.

As for the current-to-voltage converter, it is extremely simple—a resistor. For 5V at
20 mA, we employ Ohm’s law to find

R = S = 250 Q)
0.02

The resulting converter is added to the system in Fig. 2.51b, where we tacitly assume that
the controller does not load the remaining portion of the circuit.

Note that the model indicates that the distance between the sensor and controller could
be infinite. Intuitively, this situation would appear to be unreasonable, and it is. Losses that
would take place over distance can be accounted for by using a more accurate model of the
sensor, as shown in Fig. 2.52. The effect of this new sensor model can be seen from the
equations that describe this new network. The model equations are

Vs Vs

DESIGN
EXAMPLE 2.36

SOLUTION

Figure 2.51

The 4- to 20-mA control
loop (a) block diagram,

Iy = Rs + Ryire + 250 (b) with the current-to-
voltage converter.
Sensor Sensor
___nj(_)g_e_l__ Rwire ___nlgfj?_l__ Rwire
VWA
250 O Controller

AW |
1 1

1 1

i oV Controller i

| converter i

! !

| 1

T 1

| L
1 1 -

(@) (b)
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Figure 2.52 Vg Ruire
A more accurate model U
for the 4- to 20-mA i |
control loop. Improved | /¢ CT) ‘5 Rg! @ ‘5 Controller
sensor | > ! >
model | ] S0 )
and
I _ Vs
S0 Riyire + 250
Combining these equations yields
Isignal _ 1
Ig { + Ryire + 250
Rs

Thus, we see that it is the size of Ry relative to (Rye + 250 Q) that determines the
accuracy of the signal at the controller. Therefore, we want Ry as large as possible. Both the
maximum sensor output voltage and output resistance, Ry, are specified by the sensor man-
ufacturer.

We will revisit this current-to-voltage converter in Chapter 4.

DESIGN

The network in Fig. 2.53 is an equivalent circuit for a transistor amplifier used in a stereo

EXAMPLE 2.37 preamplifier. The input circuitry, consisting of a 2-mV source in series with a 500-() resis-

tor, models the output of a compact disk player. The dependent source, R,,, and R, model
the transistor, which amplifies the signal and then sends it to the power amplifier. The
10-kQ) load resistor models the input to the power amplifier that actually drives the
speakers. We must design a transistor amplifier as shown in Fig. 2.53 that will provide an
overal gain of —200. In practice we do not actually vary the device parameters to achieve
the desired gain; rather, we select a transistor from the manufacturer’s data books that will
satisfy the required specification. The model parameters for three different transistors are
listed as follows:

Manufacturer’s transistor parameter values

Part Number R;, (kQ) R, (k) g (MA/V)
1 1.0 50 50
2.0 75 30
8.0 8o 20

Design the amplifier by choosing the transistor that produces the most accurate gain.
What is the percent error of your choice?

SOLUTION The output voltage can be written

Vo = _ng(Rn//RL)
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Using voltage division at the input to find V,

_ Rin
V=V ——
R, + Ry

Combining these two expressions, we can solve for the gain:

Vo Rin )
Ay =2 =—-g| ——|(R,//R
14 VS gm<Rin + Rs ( 0// L)

Using the parameter values for the three transistors, we find that the best alternativeis tran-
sistor number 2, which has a gain error of

211.8 — 200

X 1 =5.
200 ) 00% = 5.9%

Percent error = (

e : Figure 2.53
| + | 4 Transistor amplifier circuit
i < < i < model.
Vg=2mv <+> {Rin3V gV 1> R,3 | Ry =10k23V,
SUMMARY
m Ohm’s law V=IR m The current-division rule The currentisdivided
between two parallel resistors in reverse proportion to their

m The passive sign convention with Ohm’s

Iaw The current enters the resistor terminal with the
positive voltage reference. m The equivalent resistance of a network of

resistors Combine resistorsin series by adding their
resistances. Combine resistors in paralel by adding their
conductances. The wye-to-delta and delta-to-wye

resistance.

m Kirchhoff’s current law (KCL) Thealgebraic
sum of the currents leaving (entering) anode is zero.

m Kirchhoff’s voltage law (KVL) Theagebraic transformations are also an aid in reducing the complexity
sum of the voltages around any closed path is zero. of anetwork.

m Solving a single-loop circuit Determinetheloop ™ Short circuit Zero resistance, zero voltage;
current by applying KVL and Ohm's law. the current in the short is determined by the rest

of the circuit.
m Solving a single-node-pair circuit Determine
the voltage between the pair of nodes by applying KCL and
Ohm'’s law.

m Open circuit Zero conductance, zero current; the
voltage across the open terminals is determined by the rest
of the circuit.

m The voltage-division rule The voltageisdivided
between two series resistorsin direct proportion to their
resistance.
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PROBLEMS

2.1 Determine the current and power dissipated in the resistor
inFig. P2.1.

9V { ) >
Figure P2.1

2.2 Determine the current and power dissipated in the
resistorsin Fig. P2.2.

20
<
12V 5» 05S
Figure P2.2

2.3 Determine the voltage across the resistor in Fig. P2.3 and
the power dissipated.

2A( i ) 1 120
Figure P2.3

2.4 Given the circuit in Fig. P2.4, find the voltage across each
resistor and the power dissipated in each.

50
6A ( i ) >
Figure P2.4

2.5 Inthe network in Fig. P2.5, the power absorbed by R, is
20 mW. Find R,.

2 mA ) sz
Figure P2.5

2.6 Inthe network in Fig. P2.6, the power absorbed by G, is
20 mW. Find G,.

12 mA ( i ) <$>Gx
Figure P2.6

12Q

2.7 A model for a standard two D-cell flashlight is shown in
Fig. P2.7. Find the power dissipated in the lamp.

1-Q lamp

L€

15V

1

15V

v

2.8 An automobile uses two halogen headlights connected as
shown in Fig. P2.8. Determine the power supplied by the
battery if each headlight draws 3 A of current.

Figure P2.7

12V

Figure P2.8

2.9 Many years ago a string of Christmas tree lights was man-
ufactured in the form shown in Fig. P2.9a. Today the
lights are manufactured as shown in Fig. P2.9b. Isthere a
good reason for this change?

(o)
N\

(o)
N\

(o)
N\

@

(b)
Figure P2.9
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2.10 Find 7, in the network in Fig. P2.10. 2.13 Find 7, inthecircuit in Fig. P2.13.

]
vI\/\IA vI\/\IA vI\/\IA
6 mA
< < < 4 mA
3 CD 20mA 3 3 VA VWA
1 d
1 4 mA C—D CT) 19 mA 5,
Figure P2.10
2 mA

2.11 Find /; in the network in Fig. P2.11.

I Figure P2.13

V%A Vm‘
6 mA
® 2 :
2 mA 2.14 Find I, in the network in Fig. P2.14.
vI\/\IA v’\/\l‘

Figure P2.11

2.12 Find /, and 7, in the network in Fig. P2.12.

2l <T> ‘g»

83

I I 4mA I,
vIV\IA vI\/\IA vI\/\IA
8 mA i
< < < Figure P2.14
€ g g g
4 mA 2 mA
Figure P2.12
2.15 Determine [, in the circuit in Fig. P2.15.
I, Iy
26ko CDemA <l 31, 3mA 32k 23k0

Figure P2.15

2.16 Find [, and 7, in thecircuit in Fig. P2.16. 2.17 Find [, in the network in Fig. P2.17.

VWA

5mA

VWA
v’\/\lA

@

h~ 2 mA
\ W
© g
1, 3mA

Figure P2.16

I
D)
V%A
_/
4 mA
2 mA
Vm‘

Figure P2.17
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2.18 Find I,, I,, and I, in the network in Fig. P2.18.

3mA
12 mA CD 3» 3,
et

VWA

VWA

Figure P2.18

2.19 Find /[, inthecircuit in Fig. P2.19.

al,

A
N

4 mA

2D

VWA VWA

RN

VWA

Figure P2.19

@ 2.20 Find 1, in the network in Fig. P2.20.

g

o

Okt

2.22 Inthe network in Fig. P2.22, Find I, |, and I; and show

that KCL is satisfied at the boundary.

VWA
N
N
S
N
—
IN
3
>

N
3
>
D)
/
N
N
N
N
N
VW

’ 4 mA

Figure P2.22

2.23 FindV,, in the circuit in Fig. P2.23.

a b [
vI\/\IA @
toav T

6V

+
12v<t> <gzv

Figure P2.23

2.24 FindV,, in the network in Fig. P2.24.

v’\/\l‘

v’\/\l‘

oo (D

6 mA

Ix

VWA

Figure P2.20

2.21 Find Iy, I, and |5 in the network in Fig. P2.21.

2o (D

VWA

I

VWA

oI, <1>

v’\/\l‘ v’\/\l‘

VWA

Figure P2.21

a A b A c
—3v * - 2v *
4v<j> Cj)lzv

v’\/\l‘
e + 3v ~ d

Figure P2.24

2.25 Find V};, and V. in the circuit in Fig. P2.25.

a b c d
b s
/ 1y - /

_ 12V 3V N
2v s Esv
+ p—
VWA - A
g -2V t f —1vt ¢

Figure P2.25



2.26 FindV,, and V., in the circuit in Fig. P2.26.

a b c
VWA G
av Y
+ —
<
6vVS Ssv
- +

12v

G

Figure P2.26

2.27 Given the circuit diagram in Fig. P2.27, find the
fOIIOWIng VOltageS: Vda! Vbh’ ‘{;c’ ‘éﬁi Va! ‘{w! V;h Vhfi W‘bl

and V..
8V 12V
N e b _ —i+ ¢
L L
i
[] [] [ Jzov
d — e i f -
L L
+ + +
16V|::| [jsv []14v
_ — _ — _
g tLd-n LI+
12V 4v
Figure P2.27

@ 2.28 Find V, and V, in the circuit in Fig. P2.28.

+ + +
‘gvy 12V Vfg
Y,

v’\/\lA
<

©

O
<

Figure P2.28
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2.29 Find V, and V, in the circuit in Fig. P2.29.

Ve +
vI\/\IA
A
VW + -
] +
6V
2v () w3 SV
Figure P2.29

2.30 FindV;, V, and V3 in the network in Fig. P2.30.

+
V.3 6V C:) <1L> 2V,
- -V +

A 2

+* vI\/\IA
+ N + +

4v
Vl é é 6V é V3
Figure P2.30

2.31 FindV, in the network in Fig. P2.31.

+/‘v/€~_ D>
40 N+ 50
4V,
12v<1> Va

Figure P2.31

2.32 Find V, inthe circuit in Fig. P2.32.

85

1 Vi +
— M @ WN—e
40 Sy 120

21, <t> + Vo - <t> Ve

Figure P2.32

&
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@ 2.33 The 10-V source absorbs 2.5 mW of power. Calculate

Ve @nd the power absorbed by the dependent voltage

L a b c
source in Fig. P2.33. 3 VWA A%
3kQ 1 kQ

12V Ci>4v

2.37 FindV,, in the network in Fig. P2.37.

Figure P2.37

2.38 Find V, inthecircuit in Fig. P2.38.

Figure P2.33 24V
' ()
/
+
@ 2.34 Find Vy, V,, and V; in the network in Fig. P2.34. V. 3 4kQ 3 6 kQ)
+

AR, " Oev v On

/‘3 A
N\ W

o
<
e
/
=
v’\/\l
N

Figure P2.38

2.39 Find V,, in the network in Fig. P2.39.

Figure P2.34 Y
() 28
U VW a

2.35 The 10-V sourcein Fig. P.2.35 is supplying 50 W. ) J
Determine R;. 5, 30 $, 40

60 9V
(4o

10V C_D SRy 24R, _

> > Figure P2.39
Figure P2.35

2.40 Find V, and the power supplied by the 15-V sourcein
the circuit in Fig. P2.40.

2.36 FindV, andV, in Fig. P2.36.
36 Fi 1 2INFIg 5 kO }qx 2kQ
50 VW !

9 \u W
| 6kQ S Vy 15V Cj)
2A CDVZ 100 2V

- A /\\

F— A\
AN\ 4kQ \—/ 8 kQ
50 25V

Vv

A

Figure P2.36 Figure P2.40



2.41 Find V] in the network in Fig. P2.41.

Ve
VWA VWA
10 kQ) + 5 kQ

Ci) 25V Vi <i> %

Figure P2.41

@ 2.42 Find the power supplied by each source, including the
dependent source, in Fig. P2.42.

3mA

10 kQ 5 kQ
AN \@ AN
15V C_D V, <J£> 3Vy
A \N\\
3kQ 1kQ
Figure P2.42

2.43 Find the power absorbed by the dependent voltage
source in the circuit in Fig. P2.43.

2V,

10 kQ 5kQ
ANV @ ANV
20V Cj) CI 10V
VX
>
2 2kQ
<
ANV ANV
10 kQ 3kQ
Figure P2.43

2.44 Find the power absorbed by the dependent source in the
circuit in Fig. P2.44.

4 kO

10 kQ

<i> 2000 I,

6 kQ

10 kQ
Figure P2.44
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2.45 The 100-V sourcein the circuit in Fig. P2.45 is
supplying 200 W. Solve for V..

300 50 50
M AMA AN
100V C_D Ci) v,
A A
20 Q 40 Q

Figure P2.45

2.46 Find the value of V, in Fig. P2.46 such that V, = 0.

10 O 20 Q
NN NN
+
20V Cf) 1%} Cf) v,
Figure P2.46

2.47 Find I, in the network in Fig. P2.47.

12 mA CD 2kQ 6 kQ S3k0
IO
Figure P2.47
2.48 Find I, in the network in Fig. P2.48.
6 kQ 12 mA 12 kQ S 12k0
IO
Figure P2.48

2.49 Find the power supplied by each source in the circuit in
Fig. P2.49.

4mA<D 103 2k03 2mA<D 5k0 2

Figure P2.49
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2.50 Find the current 7, in the circuit in Fig. P2.50. 2.52 Find 7, in the network in Fig. P2.52.
S 4k0 CD?mA Ziko  Z2k0 CDsmA S5k0 803
Ia
6 kQ

vIV\IA
+
S
(o))
>
AN
w
5

Figure P2.50

40 5 V,
2.51 Find 7, in the network in Fig. P2.51. I
o _
) ) Figure P2.52
4k 3 S12k0
I 2.53 Determine 7, in the circuit in Fig. P2.53.
o
12 mA CD Seko Iy
1
) " 6 mA 3mA L
kQ < < <
g2 Vig ek CD <l> CD S 2k S 3k0
- 31,

Figure P2.51 Figure P2.53

2.54 Find the power absorbed by the dependent source in the network in Fig. P2.54.

+
S 4k0 [>2va Zike S2k0 VA<DsmA S5k
Figure P2.54
2.55 Find R,; in the circuit in Fig. P2.55.
A
O VWA VWA VWA
9 kO 2 kQ 2 kQ

Ry —= 12k0 3 2 4k0 22k

o

B

Figure P2.55
2.56 Find R, in the network in Fig. P2.56.

A 2kQ
o WWA———— WA
1kQ
Raop——  4kQ 3k S 6kO
o
B

Figure P2.56



2.57 Find R, inthecircuit in Fig. P2.57.

A
O A% A% VWA
2 kO 2kQ 1kQ
Rip — 2 2k0 szkn
2kQ 2kQ 1kQ
O A% VWA AA A
B
Figure P2.57
@ 2.58 Find R, in the network in Fig. P2.58.
A
40 ‘5 6 Q
Rap —
80 < <§> 10 O
B
20
Figure P2.58
@ 2.59 Find R, inthe circuit in Fig. P2.59.
A v’\/\l‘
60
203 2120
Rup —= ——WA
AB 10 O
20 <§> <§ 6 Q
B

Figure P2.59

2.60 Find R, in the network in Fig. P2.60.

A

Rap —

B

Figure P2.60

12 Q

<
élkﬂ

PROBLEMS 89
2.61 Find R, in the circuit in Fig. P2.61.

A v’\/\l‘
6 Q

260 360

VWA
\4

12Q

Rip — VWA

B v’\/\l‘
90

Figure P2.61

2.62 Find R, in the network in Fig. P2.62.

A v’\/\l‘
6 Q

Sea 3120

>

—W—rt

Rap—=
920

< <

<
2651 269 gen

14 O

Figure P2.62

2.63 Find the equivalent resistance R,, in the network in

Fig. P2.63.
5, 120
120
v’\/\l‘
%uﬂ éun
oTo
Req
120 5 5 120 5 120

Figure P2.63

&
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2.64 Find the equivalent resistance looking in at terminals a-b in the circuit in Fig. P2.64.

120 100
M AW
40 100
M AW
80
803 803 S120 S180
70 8.0
AMA—O O—AW
a
803 803 S100 S 200
< < 5 Q <
60 90
40 60
Figure P2.64

2.65 Given the resistor configuration shown in Fig. P2.65,
find the equivalent resistance between the following sets
of terminals; (1) aand b, (2) band ¢, (3) aandc, (4) d
and e, (5) aand e, (6) cand d, (7) aand d, (8) cand g,

(9) band d, and (10) b and e.

a
o

§ 50 0 2 50
b d
O—n

e
> >

g 40 120 § 40
C
o
Figure P2.65

2.66 Seventeen possible equivalent resistance values may
be obtained using three resistors. Determine the
seventeen different values if you are given resistors
with standard values; 47 ), 33 (), and 15 ().

2.67 Find 1, and V, in the circuit in Fig. P2.67.

VI\/\IA vm‘
2 kO 8 kQ
12V Ci) S 6ko
L
Figure P2.67

$>4kQ

2.68 Find I, and V, in the circuit in Fig. P2.68.

6V CJ_D

WA
Il 2 kQ)
<
$12k0
>

<$>4KQ

Figure P2.68



2.69 FindV,, and V,, inthe circuit in Fig. P2.69.
a " Vap b

VWA VWA

2Q 50

20V CLD

40

VWA

Vdc

VWA
¢ 2Q

Figure P2.69

2.70 Find V, and |, in the network in Fig. P2.70.

16 kO
M

10 k9§

15V Cj)

Iy

Figure P2.70

2.71 Find I, in the network in Fig. P2.71.

+

8k 2V,

VWA
6 kQ

<glz KQ
IO

<glz KQ

am(D

<§>12 KQ

Figure P2.71

2.72 Determine I, in the circuit in Fig. P2.72.

6 k)

VWA VWA

VWA

12 kQ 4 kO

2 kQ

<

4k 3

>

§16 kQ
12V

Figure P2.72

2.73 Determine V, in the network in Fig. P2.73.

5kQ

<
5, 3kQ o
Vo

18 mA CD

1kQ

CD 30 mA

Figure P2.73
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2.74 CdculateV,, in Fig. P2.74.

20 Q 120 b
ANV . A \r .
75v<j> 150 3082 250
ANV 4 A
Vab
Figure P2.74

2.75 Calculate Vg in Fig. P2.75.

/x B
A \4 ANV ANV

Vag

40 4Q 20

Z60 240 360 CDZA

A ANV A\Mv A\N\v
20 40 20
Figure P2.75
2.76 Calculate V,, and V, in Fig. P2.76.
/ Vab S T
a b
2'A'A% VWA MV
20 6Q 40
6A<I> 150 60 Vi 40
40
Figure P2.76
2.77 Caculate Vg in Fig. P2.77.
/VAB\
A B
ANV ANV ANV
8 kQ 6 kQ 6 kQ
40 g 2120 22k0
CI) 18V
Figure P2.77
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Figure P2.80

2.78 Calculate Vg and I, in Fig. P2.78. 2.82 If I, = 5mA inthecircuit in Fig. P2.82, find ;.
VAB\
Q- B I,=5mA
NN——VWN——"VN—2 ) J
8 kQ 5 kQ 4kQ [SCD 2ako 22k
23 kQ
S12k0 S6k0 S 4ko S10k0 S 6kQ ,
: ¥ : S Figure P2.82
T)aov . R ,
2.83 If I, = 2 mA inthecircuit in Fig. P2.83, find V.
vI\/\IA
I 1kQ
Figure P2.78 Vg . 3KkQ 3, 12 kQ
@ 2.79 Calculate Va5 and 1, in Fig. P2.79. 1,
7 kQ
ANV ANV
L 6 kQ Figure P2.83
2 kQ
2.84 Find the value of Vy in the network in Fig. P2.84 such
A that the power supplied by the current source is 0.
6kQ S 6kQ S 8k S >
vIV\IA vI\/\IA
Vas
3KkQ / Cj) 18V 3A CD Vg Ci
B VWA W%
20 6 Q)
Figure P2.
§ 79 Figure P2.84
2.80 FindV,, in Fig. P2.80.
2.85 Inthe network in Fig. P2.85,V, = 6 V. Find I,
220k0 2300 A MA
3kQ 1kQ
100V CiD - Vap + I CD 7kQ Vo3 20 S2k0
$100 k0 S50k
Figure P2.85

2.86 Find the value of V; in the network in Fig. P2.86 such

2.81 If V, = 4V inthe network in Fig. P2.81, find V. that v, = 0.
8 kQ % 20
vI\/\IA + VMVA
T + -/
) 20
vs(* 403 V=4V Ve320 240 203 (%)
Vi

Figure P2.81

Figure P2.86




2.87 If V{ = 5V inthecircuit in Fig. P2.87, find I;.

V=5V
J’_ —

a3

>

s

VWA

gﬁkﬂ

33k0

Figure P2.87

2.88 Inthe network in Fig. P2.88, V; = 12 V. Find V.

Vs C_D

4kQ
VWA VWA VWA
2kQ tv o 1kQ
< < <
6kQ S 4k S 3k S

Figure P2.88

2.89 Giventhat V, = 4V inthe network in Fig. P2.89,

+

find V.

v Sy 3ke 2kQ
3k0 3 3120 2mA<D 1k 3V, = av
Figure P2.89

2.90 If Vg=15V, find Vy in Fig. P2.90.

ANV
4Q

CJ_D V, 3A CD

ANV
40
40

O

<

ANV

Q}zA 5Q§VR

3Q

Figure P2.90
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2.91 If V,=4V inFig. P2.91, calculate V,.

30 40
ANV ANV
+
593> 24V<i> ZQ§V2
I _
ANV ANV
16 Q 20
1503 S20 <T> 21
)
/
Vx
Figure P2.91

2.92 Find the value of 1, in the network in Fig. P2.92.

12V
)
—/
vI\/\IA vI\/\IA
20 20 +
3, 20 CTD Iy 2 Q% av
Figure P2.92

2.93 Find the value of I, in the circuit in Fig. P2.93.

u®

<

>

<

240

>

V%A
40

240

O

603

\'

Figure P2.93

93
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@ 2.94 Find in value of the current source |, in the network in 2.98 Given I, = 2 mA inthecircuit in Fig. P2.98, find 1.

Fig. P2.94.
203 Ci)sv 330 340 GVCJ_D 21k 2 2k0
20 6V
. ‘ N
2A IA
IACD 320 ClL)GV S20 av 1k 3 2k0 3 31k
— IO
Figure P2.94 Figure P2.98
2.95 Given V,= 12V, find the value of |, in the circuit in
Fig. P2.95.
Ix
20 3» <i> 21y % 940 %4 Q 2.99 Given I, = 2 mA inthe network in Fig. P2.99, @
find V,.
: 70
+
2A
(1) 240 (v 30 v, )
< 6 mA CD Ci) Va S 1k
= 6V
/) A
Figure P2.95 N\ m\'ﬂ
2.96 Find the value of V, in the network in Fig. P2.96, such 1KQ < > <
that the 5-A current source supplies 50 W. é Zka é 5» 2k
20 : I,
V, Figure P2.99
40
vI\/\IA VW_
40

Y6

Q 5A

2.100 Given 'V, in the network in Fig. P2.100, find 1.

Figure P2.96
2.97 The 5-A current source in Fig. P2.97 supplies 150 W. )
Calculate Vi, 1k 2 D1 2110
150 50 20Q
=0 e )
25V 1kQ v +
+ S < <
VAC*) 340 502 CDSA GVG_F) §2k9 Sika  V,=av
. _
20

Figure P2.97

Figure P2.100
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2.101 Find the value of V, in the circuit in Fig. P2.101 such 2.104 Giventhat V; = 4V, find V, and R in the circuit in @

that the power supplied by the 5-A source is 60 W. Fig. P2.104.
Vi Va 16V
I i A\
/ / -/
4 mA
103 310 4k S S Rp S6ko
3A 8V 5mA
TR ) TR
N NGZZE NG
1m§ Vlg’zm §2m
40 -
v’\/\l‘
J Figure P2.104
SVCiD 220 203 CDSA
1 1 2.105 Find the power absorbed by the network in Fig. P2.105.

Figure P2.101
12 kQ %

2.102 The 3-A current source in Fig. P2.102 is absorbing
12 W. Determine R.

Figure P2.105

é 2.106 Find the value of g in the network in Fig. P2.106 @
10 such that the power supplied by the 3-A source
is20 W.

203 12VC_D CDBA 10 20
, © s

R
20 20

Figure P2.106

<

Figure P2.102 2.107 Find the power supplied by the 24-V source in the

circuitin Fig. P2.107.

2.103 If the power supplied by the 50-V source in Fig. P2.103 12 KQ < 2 12k0
is100 W, find R. 5» 5,
50 20 < 4
AV ANV 12K g G S12k0
24V

5ov<i> CDzA > R 12 kné <§>12 kQ

A

Figure P2.103 Figure P2.107
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2.108 Find 7, in the circuit in Fig. P2.108.
1203 3 120
vI\/\IA
120
80Q <§> % 14 Q
IO

Cf) 24V

Figure P2.108

2.109 Find [, in the circuit in Fig. P2.109.
20 [,
v’V\IA v’V\IA
90 30
36V Ci) 120 3 40
120 50
VWA VWA
18 Q

Figure P2.109

2.110 Determine the value of V, in the network in Fig. P2.110.

12 kQ)

Vm‘

<

6kQ S

>

<
18 |<Q§>

403

>

12V CLD

Figure P2.110

2.111 Find V, in the circuit in Fig. P2.111.
Ig
. 5>
3kQ N
2000 I

e

Figure P2.111

2.112 Find V, in the network in Fig. P2.112.

1
. a\
2 kQ) \/
2V,

Yo

Figure P2.112

2.113 Find I, in thecircuit in Fig. P2.113.

21, <T> 20 % CD 6A

Figure P2.113

2.114 Find |, inthe circuit in Fig. P2.114.

<
20

10

v

Figure P2.114

2.115 Find V, in thecircuit in Fig. P2.115.
Vo

Q

w®  On DY

10

20

VWA

Figure P2.115



2.116 Find V, inthe network in Fig. P2.116.

4A CTD

6Q

30

6 Q)

Figure P2.116

@ 2.117 Find V, in the network in Fig. P2.117.

v,
0

l o D
22y,

|-

20

AN
4;
=
()]
2
vI\/\IA

Figure P2.117

2.120 A typical transistor amplifier is shown in Fig. P2.120. Find the amplifier gain G (i.e., theratio

of the output voltage to the input voltage).

100 Q 4kQ
< <
Vg = 250 mv Ci) 5kQS 50003 <;>
4 x 1051
Iy
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2.118 Find [, I,, and L; in the circuit in Fig. P2.118.

I

5L

"o

8 ()

MN

CD 2A

O

Figure P2.118

2.119 Find 7, in the network in Fig. P2.119.

IO

40

VWA

vI\/\IA

80

s

v

Figure P2.119

Figure P2.120

@ 2.121 Find the value of k in the network in Fig. P2.121, such that the power supplied by the 6-A sourceis 108 W.

40

6Q

v’\/\l‘

Figure P2.121
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2.122 Find the power supplied by the dependent current

RESISTIVE CIRCUITS

sourcein Fig. P2.122.

2 A CD

10(1;

>

<

502V,

>

+

<l 0.4V,

2.124 The power supplied by the 2-A current source in
Fig. P2.124 is 50 W, calculate k.

50 Il

5ovCJ_F> 2A<D

<

20 40
\ AN AN
>
2 50

L

Figure P2.124

2.125 Given the circuit in Fig. P2.125, solve for the value

10 QT of k.
30 kQ
¢ V%A
V. _
Figure P2.122 " 2 /5%/
vI\/\IA + -
30 kQ —/
@ 2.123 If the power absorbed by the 10-V sourcein
Fig. P2.123is40 W, caculate I VWW
10 kQ
60 40 50 KV, <T> CD 3mA
WA—— A
18 kQ
> > VI\/VA
0.6V, <“_L> 3100 CD 1503V, 10V
_ 9 kQ
vI\/\IA
Figure P2.123 Figure P2.125
TYPICAL PROBLEMS FOUND ON THE FE EXAM
2FE-1 What is the power generated by the source in the 2FE-2 Find V,, in the circuit in Fig. 2PFE-2.
network in Fig. 2PFE-1? a—-s5vVv
a 28w b. 10V
b. 1.2W c 15V
c.3.6 W d —-10V
d24W a
5 kQ
100
50
4A
()
120V Cj) ) Vab
150
10 Q

Figure 2PFE-1

b

Figure 2PFE-2

&



2FE-3 If R,, = 10.8 Q) in the circuit in Fig. 2PFE-3,

whatisR, ?
a 120
b. 20 Q
c. 8Q
d. 18Q
C ANV
40
Req_’ 28(2 §R2
C ANV
2Q

Figure 2PFE-3

2FE-4 Find the equivalent resistance of the circuit in
Fig. 2PFE-4 at the terminals A-B.

a 4kQ
b. 12 kQ)
c. 8kQ
d. 20 kQ

L]
12 kQ)

6 kQ
Rap— 6 kQ

12 kQ)

12 kQ

12 kQ)

4 kQ
v’\/\l‘

O
B

Figure 2PFE-4
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2FE-6 Find the power supplied by the 40 V source in the cir-

cuit in Fig. 2PFE-6.
a 120 W
b. 232 W
c. 212 W
d. 184 W

2003 4ov<t> 2503 10003

<

50 Q

3A CD

100V

Figure 2PFE-6

2FE-7 What isthe current I, in the circuit in Fig. 2PFE-77?

a 0.84 mA
b. —1.25 mA
c. 2.75mA
d. —0.22 mA

V%A vI\/\IA

3kQ 4kQ

C;) 12V 5 12 kQ
6k 3
6k S 5 3kQ 5 6 kQ
IO

Figure 2PFE-7

2FE-8 Find the voltage V, in the network in Fig. 2PFE-8.

2FE-5 The 100 V source is absorbing 50 W of power in the

network in Fig. 2PFE-5. What is R?

a 1727 Q
b. 9.42 Q
c. 19250
d 15.12 Q
100 100
ANV ANV
R
5A CD C_r) 100V
200V

Figure 2PFE-5

a 24V
b. 10V
c.3V
d 12V

1kQ 2k

W W

+
3k 24maA CD sk 3V,
A
6 k02

VMA

12 kQ
Figure 2PFE-8
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2FE-9 What is the voltage V, in the circuit in Fig. 2PFE-9?

azVv
b. 8V
c.5V
d 12V
ANV
10 +
2A<D 2Q§ 4ACD 3Q§V0

Figure 2PFE-9

2FE-10 Find the current 7, in Fig. 2PFE-10.

al/2A
b. 5/3 A
c. 3/2A
d. 8/3A

10 10

Ix
12v<j> 30
100
ANV
20

Figure 2PFE-10

8Q



CHAPTER

NODAL AND LOOP
ANAILYSIS TECHNIQUES

Courtesy of UPI/Ed Turner/Boeing/NewsCom

Boeing Dreamliner Truly a dream come true, the Boeing 787
Dreamliner brings big-jet ranges to mid-size airplanes. A pleasure
for both cross-country and intercontinental commercial travelers,
this super-efficient airplane can carry 210 to 330 passengers on
long-range flights from nearly 3,000 miles to over 9,000 miles.
Featuring composite materials, it boasts unmatched efficiency,
requiring 20% less fuel than its competitors. In various design
stages for nearly six years, the final assembly plant opened in
2007 in Washington State and first flight occurred in late 2009.
Inside its efficient hull lies state of the art electronics.
Based on an open architecture, the Dreamliner has health-
monitoring systems that allow the airplane to self-monitor and

report maintenance requirements to ground computer systems.

A wireless broadband link sends this real-time diagnostic data
to technicians on the ground. The goal is safer operations
with predicted mechanical problems and shorter repair times.

Be able to calculate all currents and voltages in
circuits that contain multiple nodes and loops

Learn to employ Kirchhoff’s current law (KCL) to
perform a nodal analysis to determine all the node
voltages in a circuit

Learn to employ Kirchhoff’s voltage law (KVL) to
perform a loop analysis to determine all the loop
currents in a network

Be able to ascertain which of the two analysis
techniques should be utilized to solve a particular
problem

An active gust alleviation system that automatically adjusts
wing flaps using sensor data of turbulence at the aircraft’s
nose improves flight control.

The design of the Dreamliner is based on fundamental laws
that lead to algorithms most efficiently implemented on comput-
ers. The two basic circuit analysis techniques described in this
chapter follow this same pattern. Nodal analysis is based on bal-
ancing currents coming into and out of nodes in the circuits. Mesh
or loop analysis is based on balancing voltage increases and
drops around closed paths in the circuits. Both methods clearly
follow the fundamental laws introduced in Chapter 2. Unlike a
branch-by-branch analysis that yields large numbers of simple
equations, these two methods use network topology to provide a
minimum number of equations. Just as the Dreamliner outstrips
its predecessors in efficiency and range, these all-encompassing
techniques can easily handle more complex linear circuits.
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3.1

Nodal Analysis

Figure 3.1

Circuit with known node
voltages.

In anoda analysis, the variables in the circuit are selected to be the node voltages. The node
voltages are defined with respect to a common point in the circuit. One node is selected as
the reference node, and all other node voltages are defined with respect to that node. Quite
often this node is the one to which the largest number of branches are connected. It is com-
monly called ground because it is said to be at ground-zero potential, and it sometimes rep-
resents the chassis or ground line in a practical circuit.

We will select our variables as being positive with respect to the reference node. If one or
more of the node voltages are actually negative with respect to the reference node, the analy-
siswill indicateit.

In order to understand the value of knowing all the node voltages in a network, we consider
once again the network in Fig. 2.32, which isredrawn in Fig. 3.1. The voltages, V, V,, V,, and
V., are dl measured with respect to the bottom node, which is selected as the reference and
|abeled with the ground symbol J,- Therefore, the voltage at node 1 is Vg = 12 V with respect
to the reference node 5; the voltage at node 2 isV, = 3 V with respect to the reference node 5,
and so on. Now note carefully that once these node voltages are known, we can immediately cal-
culate any branch current or the power supplied or absorbed by any element, since we know the
voltage across every element in the network. For example, the voltage V; across the leftmost
9-k() resistor is the difference in potential between the two ends of the
resistor; that is,

Vi=Vs—Va
=12-3
=9V

This equation is realy nothing more than an application of KVL around the leftmost loop; that is,
Ve+Vi+V,=0

In asimilar manner, we find that

Vi=V, -V,
and
Vi=V, - V.
Then the currents in the resistors are
IzﬂzVs—Va
"ok 9k
B ViV
53T T
BV, - W
5=5 ™ "ok
In addition,
_Y.-0
h 6k
v, — 0
I =4

since the reference node 5 is at zero potential.

V,=3V Vb=%v VC:%V
Vs Vi @ Va_ ® LVs_
+ awn AN + @
L ok +| Bk +| I5 gpq +
+ < <
12v<_> 6 k) §4kn §>3kQ
12 _ 14 —

ip



SECTION 3.1

Thus, as a general rule, if we know the node voltages in a circuit, we can calculate the
current through any resistive element using Ohm'’s law; that is,

i = 31

asillustrated in Fig. 3.2.

Now that we have demonstrated the value of knowing all the node voltages in a network,
let us determine the manner in which to calculate them. In anodal analysis, we employ KCL
equations in such away that the variables contained in these equations are the unknown node
voltages of the network. As we have indicated, one of the nodes in an N-node circuit is
selected asthereference node, and the voltages at all theremaining N — 1 nonreference nodes
are measured with respect to this reference node. Using network topology, it can be shown that
exactly N — 1 linearly independent KCL equations are required to determine the N — 1
unknown node voltages. Therefore, theoretically once one of the nodes in an N-node circuit
has been selected as the reference node, our task is reduced to identifying the remaining
N — 1 nonreference nodes and writing one KCL equation at each of them.

In a multiple-node circuit, this process results in a set of N — 1 linearly independent
simultaneous equations in which the variables are the N — 1 unknown node voltages. To
help solidify this idea, consider once again Example 2.5. Note that in this circuit only four
(i.e., any four) of the five KCL equations, one of which iswritten for each node in this five-
node network, are linearly independent. Furthermore, many of the branch currents in this
example (those not contained in a source) can be written in terms of the node voltages as
illustrated in Fig. 3.2 and expressed in Eq. (3.1). It isin this manner, as we will illustrate in
the sections that follow, that the KCL equations contain the unknown node voltages.

It isinstructive to treat nodal analysis by examining several different types of circuits and
illustrating the salient features of each. We begin with the simplest case. However, as a
prelude to our discussion of the details of nodal analysis, experience indicates that it is worth-
whileto digress for amoment to ensure that the concept of node voltage is clearly understood.

At the outset it is important to specify a reference. For example, to state that the voltage
at node A is 12 V means nothing unless we provide the reference point; that is, the voltage
at node A is 12 V with respect to what? The circuit in Fig. 3.3 illustrates a portion of a
network containing three nodes, one of which is the reference node.

NODAL ANALYSIS 103

Figure 3.2
Circuit used to illustrate

Ohm’s law in a multiple-node
network.

Figure 3.3
An illustration of node
voltages.
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[hint]

Employing the passive sign
convention.

Figure 3.4
A three-node circuit.

NODAL AND LOOP ANALYSIS TECHNIQUES

The voltage V; = 4V is the voltage at node 1 with respect to the reference node 3.
Similarly, the voltage V, = —2 V isthe voltage at node 2 with respect to node 3. In addition,
however, the voltage at node 1 with respect to node 2 is+6 V, and the voltage at node 2 with
respect to node 1 is—6 V. Furthermore, since the current will flow from the node of higher
potential to the node of lower potential, the current in R, is from top to bottom, the current
in R, is from left to right, and the current in R; is from bottom to top.

These concepts have important ramifications in our daily lives. If a man were hanging in
midair with one hand on one line and one hand on another and the dc line voltage of each
line was exactly the same, the voltage across his heart would be zero and he would be safe.
If, however, he let go of one line and let his feet touch the ground, the dc line voltage would
then exist from his hand to his foot with his heart in the middle. He would probably be dead
the instant his foot hit the ground.

In the town where we live, a young man tried to retrieve his parakeet that had escaped its
cage and was outside sitting on a power line. He stood on a metal ladder and with a metal
pole reached for the parakeet; when the metal pole touched the power line, the man waskilled
instantly. Electric power is vital to our standard of living, but it is also very dangerous. The
material in this book does not qualify you to handle it safely. Therefore, aways be extreme-
ly careful around electric circuits.

Now as we begin our discussion of nodal analysis, our approach will be to begin with sim-
ple cases and proceed in a systematic manner to those that are more challenging. Numerous
examples will be the vehicle used to demonstrate each facet of this approach. Finally, at the
end of this section, we will outline a strategy for attacking any circuit using nodal analysis.

CIRCUITS CONTAINING ONLY INDEPENDENT CURRENT SOURCES Consider
the network shown in Fig. 3.4. Note that this network contains three nodes, and thus we know
that exactly N — 1 =3 — 1 = 2 linearly independent KCL equations will be required to
determine the N — 1 = 2 unknown node voltages. First, we select the bottom node as the
reference node, and then the voltage at the two remaining nodes labeled v, and v, will be
measured with respect to this node.

The branch currents are assumed to flow in the directions indicated in the figures. If one
or more of the branch currents are actually flowing in a direction opposite to that assumed,
the analysis will simply produce a branch current that is negative.

Applying KCL at node 1 yields

—iy+ i +i, =0
Using Ohm’'slaw (i = Gv) and noting that the reference node is at zero potential, we obtain
—iy + G(v, — 0) + Gy(v, — v,) = 0
or
(Gl + Gz)'l)l - Gz?)z = iA
KCL at node 2 yields
—iy +ip+i3=0
or
—Gy(v, — vy) + iz + G(v, —0) =0
which can be expressed as
—Gyv; + (G, + Gy)v, = —i

) i v%\; @ i3
D @ e
i Ip
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Therefore, the two equations for the two unknown node voltages v, and v, are

(G, + Gy)v; — Gyv, = iy
3.2
Gy, + (G, + G3)v, = —ip
Note that the analysis has produced two simultaneous equations in the unknowns v, and v,.
They can be solved using any convenient technique, and modern calculators and personal
computers are very efficient tools for this application.

In what follows, we will demonstrate three techniques for solving linearly independent
simultaneous equations: Gaussian elimination, matrix analysis, and the MATLAB mathe-
matical software package. A brief refresher that illustrates the use of both Gaussian elimina-
tion and matrix analysisin the solution of these equationsis provided in the Problem-Solving
Companion for this text. Use of the MATLAB software is straightforward, and we will
demonstrate its use as we encounter the application.

The KCL equations at nodes 1 and 2 produced two linearly independent simultaneous
equations:

—i,ti+i,=0
—i, +ig+i3=0
The KCL equation for the third node (reference) is
tiy— i —ig—i3=0

Note that if we add the first two equations, we obtain the third. Furthermore, any two of the
equations can be used to derive the remaining equation. Therefore, in this N = 3 node circuit,
only N—1=2 of the equations are linearly independent and required to determine the
N — 1= 2 unknown node voltages.

Notethat anoda analysisemploys KCL in conjunction with Ohm’slaw. Once the direction of
the branch currents has been assumed, then Ohm'slaw, asillustrated by Fig. 3.2 and expressed by
Eqg. (3.1), is used to express the branch currents in terms of the unknown node voltages. We can
assume the currents to be in any direction. However, once we assume a particular direction, we
must be very careful to write the currents correctly in terms of the node voltages using Ohm’slaw.

Suppose that the network in Fig. 3.4 has the following parameters. I, = 1 mA,
R, = 12k, R, = 6 kQ), I, = 4mA, and R; = 6 k(). Let us determine all node voltages
and branch currents.

For purposes of illustration we will solve this problem using Gaussian elimination, matrix
analysis, and MATLAB. Using the parameter values Eq. (3.2) becomes

V[l—i- 1]—V[1]1X103
12k 6k 2lek |

—V[i}+V[L+L}——4XIO’3
' ek 2ok 6k

where we employ capital letters because the voltages are constant. The equations can be
written as
Vi W

"2 w1073

4k 6k ! 10

Vl V2 =3
— L 2o 4 x 107

ok 3k 0

Using Gaussian elimination, we solve the first equation for V; in terms of V,:

V—V<g>+4
1 23
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This value is then substituted into the second equation to yield
=il

<3V +4>+&——4><1o—3
6k \3 ? 3k

or
V, = —15V

Thisvaluefor V, is now substituted back into the equation for V; in terms of V,, which yields

2
=S RS
=—6V
The circuit equations can also be solved using matrix analysis. The general form of the
matrix equation is

GV =1
wherein this case
o1
4k k V, 1 X103
G= Sl v=| " | adi = 073
L1 14 —4 X 10
6k 3k
The solution to the matrix equation is
V=G
and therefore,
1o
Vi| | 4k ok 1 X107
Vs -1 1 —4 x 107
6k 3k

To calculate the inverse of G, we need the adjoint and the determinant. The adjoint is
AdjG =

1 1 —1\/—-1
ol = (3)(5) - (&)

b
18k>

Vi ,| 3k 6k 1x10°
= 18k _3
14 1 1 [[-4X%10

= 18Kk?

and the determinant is

Therefore,
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Knowing the node voltages, we can determine all the currents using Ohm’s law:

vV, -6 1
L ——=——=——mA
TR, 12k 2
Vi—-V, —6-(=15) 3
J5 = = = —mA
27 ek ok M
e V155
P 6k 6k 2

Fig. 3.5 illustrates the results of al the calculations. Note that KCL is satisfied at every node.

Vi=-6V Vy=-15V

TN 5

< <
1mA<T> 12k0 3 4mA < 6kQ

> >

1

5 mA

e

Let us now examine the circuit in Fig. 3.6. The current directions are assumed as shown
in the figure.

We note that this network has four nodes. The node at the bottom of the circuit is select-
ed as the reference node and labeled with the ground symbol. Since N=4, N — 1= 3linearly
independent KCL equations will be required to determine the three unknown nonreference
node voltages labeled v,, v,, and v,.

At node 1, KCL yields

i\ =iyt i,—i3=0

or
ﬂ—i +Ul_7)2_v3_1)1:0
R, ' R Ry
<1+1+1> 1 1
Vil — —_ — ) — U/ — U3 =
"R "R, R >R, R, "
At node 2, KCL yields
—i, +i, —is=0
or
B T T T 7)2:0
R, R, R;
1 1 1 1
Uy +tol —+—+— | —v—=0
R, R, R, R ’ Rs
R3 i3
vIV\IA
V1 iz R2 (%) R5 i5 V3
vIV\IA . vIV\IA
@ @ ©
RS D). Ry V).
1 g Ip
il i4

NODAL ANALYSIS
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Circuit used in Example 3.1

Figure 3.6
A four-node circuit.
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At node 3, the equation is
iy +is+ig=0

or
Vs — U v ()
3 1 3 2+l.B:0
R; Rs
1 L <1+1>
vV — D |l —t ] =-
1R3 2R5 SR; R ;]

R, R, Ry R, R
1 1 1 1 1
_0174_”2(74_74_7)_1)37:0 3.3
R, R, R, Rs R;
1+ <1+1>
() Vy — U i = 1
qu 2R5 3 R3 RS B

Note that our analysis has produced three simultaneous equations in the three unknown node
voltages v,, v,, and v;. The equations can also be written in matrix form as

[ 1 1 1 1 1]
R, R, Ry R, R
[N S WS N R S | .
R, R R, R Ry || |7 ° 34
L IR U U U b o
L R% RS R3 RS

At this point it is important that we note the symmetrical form of the equations that
describe the two previous networks. Egs. (3.2) and (3.3) exhibit the same type of symmetri-
cal form. The G matrix for each network isasymmetrical matrix. This symmetry is not acci-
dental. The node equations for networks containing only resistors and independent current
sources can always be written in this symmetrical form. We can take advantage of this fact
and learn to write the equations by inspection. Notein the first equation of (3.2) that the coef-
ficient of v, isthe sum of al the conductances connected to node 1 and the coefficient of v,
is the negative of the conductances connected between node 1 and node 2. The right-hand
side of the equation is the sum of the currents entering node 1 through current sources. This
equation is KCL at node 1. In the second equation in (3.2), the coefficient of v, isthe sum of
all the conductances connected to node 2, the coefficient of v, is the negative of the conduc-
tance connected between node 2 and node 1, and the right-hand side of the equation is the
sum of the currents entering node 2 through current sources. This equation is KCL at node
2. Similarly, in thefirst equation in (3.3) the coefficient of v, isthe sum of the conductances
connected to node 1, the coefficient of v, is the negative of the conductance connected
between node 1 and node 2, the coefficient of v, is the negative of the conductance con-
nected between node 1 and node 3, and the right-hand side of the equation is the sum of the
currents entering node 1 through current sources. The other two equations in (3.3) are
obtained in a similar manner. In general, if KCL is applied to node j with node voltage v;,
the coefficient of v; is the sum of all the conductances connected to node j and the coeffi-
cients of the other node voltages (e.g., vy, v_,-H) are the negative of the sum of the con-
ductances connected directly between these nodes and node j. The right-hand side of the
equation is equal to the sum of the currents entering the node via current sources.
Therefore, the left-hand side of the equation represents the sum of the currents leaving
node j and the right-hand side of the equation represents the currents entering node j.
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Let us apply what we have just learned to write the equations for the network in Fig. 3.7 by
inspection. Then given the following parameters, we will determine the node voltages using
MATLAB: R, = R, = 2kQ, R; = R, = 4kQ, Rs = 1 kQ, i, = 4mA, andi, = 2 mA. 3.2

Ry Figure 3.7
AL Circuit used in Example 3.2.
o @ ip . ) v’\;?\/‘ o5
4
Ry3 R3 % CD 3 5
!B
L

The equations are

1 1 1 1 1
V|l ty o+ + =0
R, R, R, R, R

which can also be written directly in matrix form as

11 1
R, R, R,
o L.l L PR T
R3 R4 R4 v2 = lA - lB
1 11 1 LY 0
R P PR PR _l’_ -
3 R R Ry Rs|

Both the equations and the G matrix exhibit the symmetry that will always be present in cir-
cuits that contain only resistors and current sources.
If the component values are now used, the matrix equation becomes

_ | _
2k 2k L Zlk v, —0.004
0 —_ L — — v, | = 0.002
4k 4k 4k ’
Vs 0
U U TS T O b
2k 4k 2k 4k 1k
or
0.001 0 —0.0005 v —0.004
0 0.0005 —0.00025 v, | = 0.002
—0.0005 —0.00025 0.00175 V3 0

This equation isin theform of Gv =i. Therefore, v = G 1i. Performing this operation yields
the following voltages:

v, =—4.3636 V

v, =3.6364 V

v3=—0.7273V
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E3.1 Write the node equations for the circuit in Fig. E3.1.

ema(D)

Figure E3.1

E3.2 Find al the node voltages in the network in Fig. E3.2 using MATLAB.

Figure E3.2

E3.3 Usenoda analysisto find V, in Fig. E3.3.

ANSWER:
1 1
% V. — V- —V=4X10"
S VP ak T 12k ’
12 kQ
Lyt Lty =2 x107
6 kQ S 6k0 CDZmA 12k ' 4k 2 ’
L

ANSWER: V; = 54286V,

oon(D

V, = 2.000 V,
1kQ
W V, = 3.1429 V.
2kQ V,  4kQ
Vl VWA o VWA V3
X
4 mA C) 1kQ CD 2 mA
ANSWER: V,=279 V.
2 mA
D
_/
6 kO 2kQ
WA W
+
<§>st S 6k Sk Vo

Figure E3.3

CIRCUITS CONTAINING DEPENDENT CURRENT SOURCES The presence of a
dependent source may destroy the symmetrical form of the nodal equations that define the
circuit. Consider the circuit shown in Fig. 3.8, which contains a current-controlled current
source. The KCL equations for the nonreference nodes are

. Uy VT Y
Bi, + — + =0
R, R,
and
vV, — 0
4, — iy =0
R,

wherei, = v,/R;. Simplifying the equations, we obtain
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(G, + Gy)v; — (G, — BG3)v, = 0
—Gyv, + (G, + Gy)v, = iy

il BN

Note that the presence of the dependent source has destroyed the symmetrical nature of the
node equations.

or in matrix form

V1 vy Figure 3.8
'I\RAZ' Circuit with a dependent
) source.
<l> SR R; CD is
Bio .
lO
L
L et us determine the node voltages for the network in Fig. 3.8, given the following parameters:
=2 R, = 6 kQ) I =
B , =06 iy =2mA 3 . 3
Using these values with the equations for the network yields
v+ tv =0
4k 1 2k
Ly sty —axi07
6k ' 2k
Solving these equations using any convenient method yields Vv, = —24/5V and
V, = 12/5V. We can check these answers by determining the branch currents in the net-
work and then using that information to test KCL at the nodes. For example, the current
from top to bottom through R; is
L1254
° Ry 3k 5k
Similarly, the current from right to left through R, is
LoV _12/5-(224/5) 6
R, 6k 5k
All the results are shown in Fig. 3.9. Note that KCL is satisfied at every node.
Vi =%‘v 12=5£kA v2=%v Figure 3.9
VWA 3 Circuit used in
6 kQ Example 3.3.

21, = 2 <l> S 12k0 3kQ CD DA

=2 =&
11_5kA 1 A
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Let us determine the set of linearly independent equations that when solved will yield the
node voltages in the network in Fig. 3.10. Then given the following component values, we

3 ° 4 will compute the node voltages using MATLAB: R, = 1kQ, R, = R; = 2KkQ,
R, = 4KkQ, i, =2mA, iz =4mA anda = 2.

Figure 3.10 i
e O
Circuit containing a /
voltage-controlled
current source. vy vy L Uy _ 3
v’\/\l‘ v’\/\l‘
Ry R,
< <
Rg <% Rz w(

Applying KCL at each of the nonreference nodes yields the equations

Gsv + Gy(v, — 1) — i, =0
in + Gi(v, — v) + av, + Gy(v, — v;) = 0
G2(1)3 = vz) + Gyv; —ig =0

where v, = v, — v;. Simplifying these equations, we obtain

(G, + Ga)vy — Givy = is
—Gv, + (G, + a + Gy)v, — (a0 + Gy)vs = —iy
—G,y0, + (G, + Gy)v3 = iy

Given the component values, the equations become

) 1 _
®Tx Tk 0 ,
o1, _<2+L> v, 0.002
K Kk 2k x| 2 |= _00(')00(1
0 S B U '
B 2k 2k 4k
or
0.0015 —0.001 0 v, 0.002
—0.001 2.0015 —2.0005 v, | =[ —0.002
0 —0.0005 0.00075 3 0.004

Once again, the circuit equations resulting from a nodal analysis or in the form Gv =i, and
the results obtained from perfoming the operation v =Gt i are

v, =11.9940 V
v,=15.9910 V
v = 15.9940 VV
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E3.4 Find the node voltagesin the circuit in Fig. E3.4. ANSWER: V=16V,

Vi v, V,=-8V.

VWA a
10 kQ
< 2[ <
10k0 3 CD ‘ S 10k
I, 4 mA
Figure E3.4 Je-
E3.5 Find the voltage V, in the network in Fig. E3.5. ANSWER: V, = 4 V.
Vv
LA
AN b
Vx < <
2mA CD 3kQ 6000 312k sk v,

Figure E3.5 Je-
E3.6 FindV,in Fig. E3.6 using nodal analysis. ANSWER: V,=0.952 V.

2 mA

S

6 kQ 2kQ Iy
YW W\
+
21y <T> <5»31@ <gem <§>le Vo

Figure E3.6

CIRCUITS CONTAINING INDEPENDENT VOLTAGE SOURCES Asisour practice,
in our discussion of this topic we will proceed from the simplest case to more complicated
cases. The simplest case is that in which an independent voltage source is connected to the
reference node. The following example illustrates this case.

Consider the circuit shown in Fig. 3.11a. Let usdetermine all node voltages and branch currents.

This network has three nonreference nodes with labeled node voltages V;, V,, and V;. Based 3 ° 5
on our previous discussions, we would assume that in order to find all the node voltages we

would need to write a KCL equation at each of the nonreference nodes. The resulting three

linearly independent simultaneous equations would produce the unknown node voltages.

However, note that V;, and V; are known quantities because an independent voltage sourceis

connected directly between the nonreference node and each of these nodes. Therefore,

V, = 12V and V; = —6 V. Furthermore, note that the current through the 9-kQ resistor is

[12 — (=6)]/9k = 2 mA from left to right. We do not know V, or the current in the remain-

ing resistors. However, since only one node voltage is unknown, a single-node equation will

produce it. Applying KCL to this center node yields
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[hint]

Any time an independent
voltage source is connected
between the reference node
and a nonreference node,
the nonreference node volt-
age is known.

Figure 3.11
Circuit used in
Example 3.5.

B=t =
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0o V-V,
s 3

12k

=0 or

6k 12k

from which we obtain

3
V, ==V
)

V,-12 Vv, V-
12k

(-06)

6k ok 0

Once all the node voltages are known, Ohm'’s law can be used to find the branch currents
shown in Fig. 3.11b. The diagram illustrates that KCL is satisfied at every node.
Note that the presence of the voltage sourcesin this example has simplified the analysis,

since two of the three linear independent equationsareV, = 12V and V; =

—6 V. We will

find that as a general rule, whenever voltage sources are present between nodes, the node
voltage equations that describe the network will be simpler.

2
9 kO KA 9ko
v’\/\l‘ va
7 5
12k0 V, 12kQ s @ T
Vi WM———— W V3 @ WW——F—— W
12kQ 12kQ
12V C_D 6 kQ CI) 6V 12V C_D 6 kQ <+ 6V
23 1 21
8" i 8k
L

E3.7 Usenodal analysisto find the current 7, in the network in Fig. E3.7.

Figure E3.7

GVCi

E3.8 Find V, in Fig. E3.8 using nodal analysis.

6kQ 6kﬂ
3kQ J_’)sv
é

m

N
>

oon(D

Figure E3.8

6 kQ 2kQ
VWA VWA
<
V
S 3k 21k0 o

-
N

3
ANSWER: I, = 7' mA.

ANSWER: V,=3.89 V.
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Next let us consider the case in which an independent voltage source is connected between
two nonreference nodes.

Suppose we wish to find the currents in the two resistors in the circuit of Fig. 3.12a.

If we try to attack this problem in a brute-force manner, we immediately encounter a prob-
lem. Thus far, branch currents were either known source values or could be expressed as
the branch voltage divided by the branch resistance. However, the branch current through
the 6-V source is certainly not known and cannot be directly expressed using Ohm's law.
We can, of course, give this current a name and write the KCL equations at the two non-
reference nodesin terms of this current. However, this approach is no panacea because this
technique will result in two linearly independent simultaneous equations in terms of three
unknowns—that is, the two node voltages and the current in the voltage source.

To solve this dilemma, we recall that N-1 linearly independent equations are required to
determine the N-1 nonreference node voltages in an N-node circuit. Since our network has
three nodes, we need two linearly independent equations. Now note that if somehow one of
the node voltages is known, we immediately know the other; that is, if V; is known, then
Vv, =V, — 6. If V, is known, then v, = V, + 6. Therefore, the difference in potential
between the two nodes is constrained by the voltage source and, hence,

VI_V2:6

This constraint equation is one of the two linearly independent equations needed to deter-
mine the node voltages.

Next consider the network in Fig. 3.12b, in which the 6-V sourceis completely enclosed
within the dashed surface. The constraint equation governs this dashed portion of the net-
work. The remaining equation is obtained by applying KCL to this dashed surface, which
is commonly called a supernode. Recall that in Chapter 2 we demonstrated that KCL must
hold for a surface, and this technique eliminates the problem of dealing with a current
through a voltage source. KCL for the supernode is

—6x10‘3+£+£+4x10‘3=0
6k 12k
Solving these equations yields vV, = 10V and V, = 4V and, hence, I, = 5/3 mA and
L, = 1/3mA. A quick check indicates that KCL is satisfied at every node.

Note that applying KCL at the reference node yields the same equation as shown above.
The student may feel that the application of KCL at the reference node saves one from
having to deal with supernodes. Recall that we do not apply KCL at any node—even the ref-
erence node—that contains an independent voltage source. Thisidea can beillustrated with
the circuit in the next example.

V2 / V]
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12 kQ)

®

@

6 mA

4 mA ~
I~

NV

o

=
¢
I——— A ——

S

/MW

(<2 ]

=

=)
o /F
@)

\

\

\
—— A

(b)

Figure 3.12

Circuits used in Example 3.6.
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Let us determine the current 7, in the network in Fig. 3.13a.
3.7

Examining the network, we note that node voltages V, and V, are known and the node volt-
ages V; and V; are constrained by the equation

i—-V=12
The network is redrawn in Fig. 3.13b.
Figure 3.13 v, SVi+12
Example circuit with ! \
supernodes. J J b ': ]
2k9§ <+>12v S 2k 2k0 3 ' Cf)lZV; S 2k
V, . V3 . Vy l:\ V3 7 R
WV VW WV —~AWV
1kQ 1kQ 1kQ v .- 1k0
GVC:D 22k0 Ct) 12V 6v<;>
IO
L

Since we want to find the current 1, V; (in the supernode containing v, and V;) is writ-
tenasV; + 12. The KCL equation at the supernode is then

V3+12—(—6)+V3+12—12+V3—(—6)+V3—12 Vi
2k 2k 1k 1k

2k
Solving the equation for V; yields

_6
7
1, E ——mA
E3.9 Use nodal analysisto find 1, in the network in Fig. E3.9. ANSWER: 7, = 3.8 mA.
12V
VWA T \._D v’\/\IA
2 kQ) 2 kQ)
GVCiD 1kQ <§sz <+ av
Io
Figure E3.9 J?_
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E3.10 FindV, in Fig. E3.10 using nodal analysis.

2 mA
&
2y 2 KO
N\ W "
8 mA <3kQ <6kQ <1kQ o
©) $ 3 StV

Figure E3.10
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ANSWER: V,=5.6 V.

CIRCUITS CONTAINING DEPENDENT VOLTAGE SOURCES As the following
exampleswill indicate, networks containing dependent (controlled) sources are treated in the
same manner as described earlier.

We wish to find 1, in the network in Fig. 3.14.

Since the dependent voltage source is connected between the node labeled V; and the
reference node,
V, = 2KI,
KCL at the node labeled V, is
V=V

[2
=0
2k

1k

_4.
k
where
Vi
I = —
1k
Solving these equations yields V, = 8V and V; = 16 V. Therefore,
Vi—V
I =
? 2k
=4 mA

2 kO

2k1x<i> ézkn 4mA <élkﬂ

i

Figure 3.14
Circuits used in
Example 3.8.

3.8
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Let usfind the current I, in the network in Fig. 3.15.

3.9

This circuit contains both an independent voltage source and a voltage-controlled voltage
source. Note that v, = 6 V, V, = V,, and a supernode exists between the nodes labeled V;
and V,.
Applying KCL to the supernode, we obtain
Vi—V Wi Vo V=V

ok 12k ek T 12k

=0

where the constraint equation for the supernode is
Vi—V, =12V,

Thefina equation is

Solving these equations, we find that

and, hence,

Figure 3.15 6 kQ

Circuit used in
Example 3.9.

Finally, let us consider two additional circuits that, for purposes of comparison, we will
examine using more than one method.

Let us find V, in the network in Fig. 3.16a. Note that the circuit contains two voltage
sources, one of which is a controlled source, and two independent current sources. The

3 ° 1 0 circuit isredrawn in Fig. 3.16b in order to label the nodes and identify the supernode sur-
rounding the controlled source. Because of the presence of the independent voltage
source, the voltage at node 4 is known to be 4 V. We will use this knowledge in writing
the node equations for the network.
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Since the network has five nodes, four linear independent equations are sufficient to
determine al the node voltages. Within the supernode, the defining equation is

Vi— VW, =2V,
where
.=V,
and thus
% = 3%

Furthermore, we know that one additional equation is
Vi=4

Thus, given these two equations, only two more equations are needed in order to solve for
the unknown node voltages. These additional equations result from applying KCL at the
supernode and at the node labeled V;. The equations are

_g+&+Vx—Vs+3Vx—Vs+3Vx—4:
k 1k 1k 1k 1k
V3—3Vx+Vs—Vx:g
1k 1k k
Combining the equations yields the two equations
8V, — 2V, = 6
—4V, +2V; =2

Solving these equations, we obtain
V.=2V and V;=5V
Vo= V. = V= TV
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+ 2V

< < x
<ir> 2Vy 1ka 3V, $1kQ <+>

@

We wish to find Z, in the network in Fig. 3.17a. Note that this circuit contains three voltage
sources, one of which is a controlled source and another is a controlled current source.
Because two of the voltage sources are connected to the reference node, one node voltage
is known directly and one is specified by the dependent source. Furthermore, the difference
in voltage between two nodes is defined by the 6-V independent source.

(b)

Figure 3.16

Circuit used in Example 3.10.

3.11
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The network isredrawnin Fig. 3.17b in order to label the nodes and identify the supernode.
Since the network has six nodes, five linear independent equations are needed to determinethe
unknown node voltages.

The two equations for the supernode are

i—12 v
+

-V

Vi—=V,=-6

1k

+ 21, +

The three remaining equations are

V2:
V,j:

Vs =V,
1k

V4 - V3

1k

12

2V,

Vs _
1k

21

Vs

+ =+

1k

V4 -
1k

The equations for the control parameters are

Vi=V - 12
Vs

I,=—

ok

Combining these equations yields the following set of equations:
-2V, + 5V, — Vs = =36
V,—V,=-6
-3V, +2V; = 0

Solving these equations by any convenient means yields

Vv, =-38V
V,=-32V
V; = —48V

Then, sinceV, = 2V,,V, = —100 V. I, is—48 mA. The reader is encouraged to verify that
KCL is satisfied at every node.

+
V31K 21k0 T)6v <> V31K 21k0 Y <>
i g < <+> l 2 Ix i > > <+> l 2 IX
1kQ 1kQ 1kQ V.
A A WA V2 A— "y Var s Vs
1kQ 1k0 =] 1k0
12v(+ <J_r> 21k S1ka  12v(* <j> 21kQ 21k0
C) > C) ZVX >
va Ix IO Ix IO
1 1
(@) (b)
Figure 3.17

Circuit used in Example 3.11.
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Step 1.

Step 2.

Step 3.

Determine the number of nodes in the circuit. Select one node as the reference
node. Assign a node voltage between each nonreference node and the reference
node. All node voltages are assumed positive with respect to the reference node.
For an N-node circuit, there are N — 1 node voltages. Asaresult, N — 1
linearly independent equations must be written to solve for the node voltages.

Write a constraint equation for each voltage source—independent or dependent—
in the circuit in terms of the assigned node voltages using KVL. Each
constraint equation represents one of the necessary linearly independent
equations, and N, voltage sources yield N, linearly independent equations. For
each dependent voltage source, express the controlling variable for that source
in terms of the node voltages.

A voltage source—independent or dependent—may be connected between a
nonreference node and the reference node or between two nonreference nodes.
A supernode is formed by a voltage source and its two connecting nonrefer-
ence nodes.

Use KCL to formulate the remaining N — 1 — N, linearly independent equa-
tions. First, apply KCL at each nonreference node not connected to a voltage
source. Second, apply KCL at each supernode. Treat dependent current sources
like independent current sources when formulating the KCL equations. For
each dependent current source, express the controlling variable in terms of the
node voltages.

Nodal Analysis
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E3.11 Use nodal analysisto find 1, in the circuit in Fig. E3.11.

2000 I,
i /N "
v
4mA<T> S2k0 2mA S2k0
Ix IO
Figure E3.11 Je-
E3.12 FindV,in Fig. E3.12 using nodal analysis.
2/r11<
NI

Figure E3.12

ANSWER: I, = %mA.

ANSWER: V,=6.29 V.
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3.2

Loop Analysis

Figure 3.18

Figure 2.5 redrawn with
loop currents.

We found that in a nodal analysis the unknown parameters are the node voltages and
KCL was employed to determine them. Once these node voltages have been calculated, all
the branch currents in the network can easily be determined using Ohm'’s law. In contrast to
this approach, a loop analysis uses KVL to determine a set of loop currents in the circuit.
Once these loop currents are known, Ohm'’s law can be used to calculate any voltagesin the
network. Via network topology we can show that, in general, thereareexactly B — N + 1
linearly independent KVL equations for any network, where B is the number of branchesin
the circuit and N is the number of nodes. For example, if we once again examine the circuit
in Fig. 2.5, we find that there are eight branches and five nodes. Thus, the number of lin-
early independent KVL equations necessary to determine all currents in the network is
B—N+1=8—5+1=4. Thenetwork in Fig. 2.5 is redrawn as shown in Fig. 3.18
with 4 loop currents labeled as shown. The branch currents are then determined as

@

ir(1) i3(1)
i1(7) D @ g,Rl @ <5,R2

. (1 .
NG @”16 50 o

| - O
RS @ © @ SR

i6(1) i7(1) ig(1)
®

0(1) = ia(1)

ip(1) = ia(r) — ip(1)
i5(1) = ig(1)

iy(1) = ix(1) — ic(1)
is(1) = ig(t) — ip(7)
io(1) = —ic(1)

i7(1) = ic(r) — ip(r)
i5(r) = —ip(r)

All the circuits we will examine in this text will be planar, which simply means that we
can draw the circuit on a sheet of paper in such away that no conductor crosses another con-
ductor. If a circuit is planar, the loops are more easily identified. For example, recal in
Chapter 2 that we found that a single equation was sufficient to determine the current in acir-
cuit containing a single loop. If the circuit contains N independent loops, we will show (and
the general topological formulaB — N + 1 can be used for verification) that N independent
simultaneous equations will be required to describe the network.

Our approach to loop analysiswill mirror the approach used in nodal analysis(i.e., wewill
begin with simple cases and systematically proceed to those that are more difficult). Then at
the end of this section we will outline a general strategy for employing loop analysis.

CIRCUITS CONTAINING ONLY INDEPENDENT VOLTAGE SOURCES To begin
our analysis, consider the circuit shown in Fig. 3.19. We note that this network has seven branch-
es and six nodes, and thus the number of linearly independent KVL equations necessary to
determine all currents in the circuitis B — N +1 =7 — 6 + 1 = 2. Since two linearly
independent KV L equations are required, we identify two independent loops, A-B-E-F-A and
B-C-D-E-B. We now define a new set of current variables called loop currents, which can be
used to find the physical currents in the circuit. Let us assume that current i, flows in the first
loop and that current i, flows in the second loop. Then the branch current flowing from B to E
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A .u_ B 2 ¢
O
Ry + +
Us1<+> i R3<$,v3 @R@,M
R, ~ Rs -
VWA v’\/\l‘

F -+ E - Vs+ D

through R; isi; — i,. The directions of the currents have been assumed. As was the case in the
nodal analysis, if the actual currents are not in the direction indicated, the values cal culated will
be negative.

Applying KVL to thefirst loop yields

toy, v+ v, — vy, =0
KVL applied to loop 2 yields
+tvg, + v, 05— ;=0
where v, = i\R,, v, = i\R,, vy = (iy — i) Ry, v4 = i,R,, and vs = i,Rs.
Substituting these values into the two KVL equations produces the two simultaneous
equations required to determine the two loop currents; that is,

il(Rl + Ry + R3> - iZ(R3) = Vsi

—i\(Ry) + ir(Ry + R, + Rs) = —v5,
or in matrix form

R + R, + Ry —R; i | | v
_R3 R3 + R4 + R5 i2 _'Usz

At this point, it isimportant to define what is called a mesh. A mesh isa specia kind of loop
that does not contain any loopswithin it. Therefore, as we traverse the path of amesh, we do not
encircleany circuit elements. For example, the network in Fig. 3.19 contains two meshes defined
by the paths A-B-E-F-A and B-C-D-E-B. The path A-B-C-D-E-F-Aisaloop, but it is hot amesh.
Since the majority of our analysisin this section will involve writing KV L equations for meshes,
we will refer to the currents as mesh currents and the analysis as a mesh analysis.

Consider the network in Fig. 3.20a. We wish to find the current 1,.

We will begin the analysis by writing mesh equations. Note that there are no + and — signs
on theresistors. However, they are not needed, since we will apply Ohm’slaw to each resis-
tive element as we write the KVL equations. The equation for the first mesh is

—12 + 6kl + 6k(I; — I,) = 0
The KVL equation for the second mesh is
6k(l, — I) + 3k, + 3 =0
Where]o == Il - 12.
Solving the two simultaneous equationsyields7; = 5/4 mA and I, = 1/2 mA. Therefore,
I, = 3/4 mA. All the voltages and currents in the network are shown in Fig. 3.20b. Recall
from nodal analysis that once the node voltages were determined, we could check our analy-

sisusing KCL at the nodes. In this case, we know the branch currents and can use KVL around
any closed path to check our results. For example, applying KVL to the outer loop yields

e 243432
2 2

0=0
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Figure 3.19
A two-loop circuit.

[hint]

The equations employ the
passive sign convention.

3.12
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Figure 3.20

Circuits used in
Example 3.12.

Since we want to calculate the current 1,, we could use loop analysis, as shown in
Fig. 3.20c. Note that the loop current 1, passes through the center leg of the network and,
therefore, I, = I,. The two loop equations in this case are

—12 + 6k(I, + L) + 6kl = 0
and
—12 + 6k(L + L) + 3k, + 3 =10

Solving these equations yields I, = 3/4 mA and I, = 1/2 mA. Since the current in the
12-V sourceis I, + I, = 5/4 mA, these results agree with the mesh analysis.

Finally, for purposes of comparison, let us find I, using nodal analysis. The presence of
the two voltage sources would indicate that thisis a viable approach. Applying KCL at the
top center node, we obtain

vV, — 12 V, V,—3

+ = + =
ok okt Y
and hence,
v, =2V
2
and then
v, 3
I,=—=—mA
6k 4

Note that in this case we had to solve only one equation instead of two.

15 3
V, + 2V- V, + o
v’\/\l‘ . VMA v’\/\l‘ . v’\/\l‘
6 kQ 3kQ 5 mA 6 kQ 3kQ 1A
) 4 + 2
12v<j> @ @ Cj)sv 12VCJ_r 6 kQ %mA Cj)sv
1, % mA Y
1 T
(@) (b)
6kQ  V, 3kQ
VA W
12v<j> I <§6k0 I <i>3v
—] >
IO

Once again we are compelled to note the symmetrical form of the mesh equations that
describe the circuit in Fig. 3.19. Note that the coefficient matrix for this circuit is symmetrical.

Since this symmetry is generally exhibited by networks containing resistors and inde-
pendent voltage sources, we can learn to write the mesh equations by inspection. In the first
equation, the coefficient of i, is the sum of the resistances through which mesh current 1
flows, and the coefficient of i, is the negative of the sum of the resistances common to mesh
current 1 and mesh current 2. The right-hand side of the equation is the algebraic sum of the
voltage sources in mesh 1. The sign of the voltage source is positive if it aids the assumed
direction of the current flow and negative if it opposes the assumed flow. The first equation
is KVL for mesh 1. In the second eguation, the coefficient of i, is the sum of all the
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resistances in mesh 2, the coefficient of i, is the negative of the sum of the resistances com-
mon to mesh 1 and mesh 2, and the right-hand side of the equation is the algebraic sum of
the voltage sources in mesh 2. In general, if we assume all of the mesh currents to be in the
same direction (clockwise or counterclockwise), then if KVL is applied to mesh j with mesh
current i;, the coefficient of i; is the sum of the resistances in mesh j and the coefficients of
the other mesh currents (e.g., ijy,i jﬂ) are the negatives of the resistances common to these
meshes and mesh j. The right-hand side of the equation is equal to the algebraic sum of the
voltage sources in mesh j. These voltage sources have a positive sign if they aid the current
flow i; and a negative sign if they oppose it.

Let us write the mesh equations by inspection for the network in Fig. 3.21. Then we will
use MATLAB to solve for the mesh currents.

The three linearly independent simultaneous equations are

(4k + 6K)I, — (0)I, — (6K)I, = —6
—(0)1, + (9K + 3K)L, — (3K)L, = 6
—(6K)I, — (3K)L, + (3k + 6k + 12K)I, = 0

or in matrix form

10k 0 -6k [ -6
0 12k 3k |l L|=]|6
—6k -3k 21k || L 0

and the solution of this matrix equation is

| =RV

Performing the indicated operation yields the following loop currents:

i, =—0.6757 mA
i, = 0.4685 mA
iy =—0.1261 mA
4 kQ
vI\/\IA
O
6 kQ)
O
6V

okn 3 @ 3 @ 21240
3kQ

LOOP ANALYSIS 125

3.13

Figure 3.21
Circuit used in
Example 3.13.
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CIRCUITS CONTAINING INDEPENDENT CURRENT SOURCES Just as the pres
ence of a voltage source in a network simplified the nodal analysis, the presence of a current
source simplifies aloop analysis. The following examplesillustrate the point.

E3.13 Use mesh equations to find V, in the circuit in Fig. E3.13. ANSWER: V. = 2 v
PV, =TV
6V
w—1r—C)
4 kQ) L
2 kQ
2k03 6k0 3 v,
3V
Figure E3.13
E3.14 FindV, in Fig. E3.14 using mesh analysis. ANSWER: V,=8.96V.
3 kQ 4 kQ)
A% VWA
2k0 3 4k03 C;)uv
6 kQ
——A—
< arF
3kQ
10V Cﬁ) 6 k&fé v,
8V
Figure E3.14 -

Let usfind both v, and V; in the circuit in Fig. 3.22.

3 S 1 4 Although it appears that there are two unknown mesh currents, the current 7; goes directly
through the current source and, therefore, 7, is constrained to be 2 mA. Hence, only the
current I, is unknown. KVL for the rightmost mesh is

And, of course,
[ =2x%x107
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These equations can be written as

— 2KI, + 8k, = 2
I =2/k

Solving these equation for |, yields |, = 3/4kA and thus

9
V, =6k, = -V
o0 6 2 2
To obtain V; we apply KVL around any closed path. If we use the outer loop, the KVL
equation is

—V, + 4KI, — 2 + 6k, = 0

And therefore,
21

V. = —
)

\Y,

Note that since the current 7; is known, the 4-k() resistor did not enter the equation in
finding V,. However, it appears in every loop containing the current source and, thus, is
used in finding V.

Vi

VWA
4 kQ

em (D (1)

——AM——t
N
=
N
&) \P<
W
(o))
x
o)
N

We wish to find V, in the network in Fig. 3.23.

Since the currents 1, and I, pass directly through a current source, two of the three required

equations are
I =4 %107

L =-2Xx107
The third equation is KVL for the mesh containing the voltage source; that is,
4k(l, — L) + 2k(l; — L) + 6kI; —3 =0

These equations yield

1
mA
4

and hence,

3
V, = 6kI; =3 = —V
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Figure 3.22

Circuit used in
Example 3.14.

3.15
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Figure 3.23
Circuit used in
Example 3.15.

3.16
[hint]

In this case the 4-mA current
source is located on the
boundary between two mesh-
es. Thus, we will demonstrate
two techniques for dealing
with this type of situtation.
One is a special loop tech-
nique, and the other is known
as the supermesh approach.

2mA CD L 3} 4KkQ C;) 3V

What we have demonstrated in the previous example is the general approach for dealing
with independent current sources when writing KVL equations; that is, use one loop through
each current source. The number of “window panes’ in the network tells us how many equa-
tions we need. Additional KVL equations are written to cover the remaining circuit elements
in the network. The following example illustrates this approach.

Let usfind 7, in the network in Fig. 3.24a.

First, we select two loop currents 7, and 7, such that 7, passes directly through the 2-mA
source, and 7, passes directly through the 4-mA source, as shown in Fig. 3.24b. Therefore,
two of our three linearly independent equations are

I, =2x%x1073

L =4x107
Theremaining loop current I; must pass through the circuit elements not covered by the two
previous equations and cannot, of course, pass through the current sources. The path for this
remaining loop current can be obtained by open-circuiting the current sources, as shown in
Fig. 3.24c. When all currents are labeled on the original circuit, the KVL equation for this
last loop, as shown in Fig. 3.24d, is

—6+ 1kl + 2k(L + B) + 2k(B+ L — L) + k(B — L) =0
Solving the equations yields
=2

L =—mA
; 3

and therefore,

—4
10211_12_13:TmA

Next consider the supermesh technique. In this case the three mesh currents are specified
as shown in Fig. 3.24e, and since the voltage across the 4-mA current source is unknown,
it is assumed to be V,. The mesh currents constrained by the current sources are

I, =2x%x1073
L —L=4x107
The KVL equations for meshes 2 and 3, respectively, are
2KL, + 2k(l, — L) =V, =0
-6+ 1k + V. + k(L — L) =0
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fe—v\ 1kQ % 1kQ
NS W NS W
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(e) 0]
Adding the last two equations yields
—6 + IKLy + 2KL, + 2k(L, — 1) + 1k(, — 1) = 0

Note that the unknown voltage V, has been eliminated. The two constraint equations,
together with this latter equation, yield the desired result.

The purpose of the supermesh approach is to avoid introducing the unknown voltage V...
The supermesh is created by mentally removing the 4-mA current source, as shown in
Fig. 3.24f. Then writing the KV L equation around the dotted path, which defines the super-
mesh, using the original mesh currents as shown in Fig. 3.24e, yields

—6 + 1KL + 2KL, + 2k(I, — 1) + 1k(, — 1) = 0

Note that this supermesh equation is the same as that obtained earlier by introducing the
voltage V,.

LOOP ANALYSIS

Figure 3.24
Circuits used in
Example 3.16.
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33

E3.15 Find V, in the network in Fig. E3.15. ANSWER: V, = ?V.
+ Vo -
4 mA
TR
> VWA
N 6 kQ
2 kQ % 4 kQ % 5V
Figure E3.15
) . - 32
E3.16 FindV, inthe network in Fig. E3.16. ANSWER: V, = ?V.
4 mA
TR
—/
VWA VWA
2 kQ 1 kQ
2 mAC,) <i>4v sS4k V,
Figure E3.16 o
E3.17 FindV, in Fig. E3.17 using loop analysis. ANSWER: V,=9.71 V.
3 kO 4kQ
VWA ; VWA
2k03 2 mA G—D 12v
6 kQ)
3kQ
10V Ci) 6kQSV,
8V
Figure E3.17 -

E3.18 FindV, in Fig. E3.17 using mesh analysis. ANSWER: V,=9.71V.
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CIRCUITS CONTAINING DEPENDENT SOURCES We dedl with circuits containing
dependent sources just as we have in the past. First, we treat the dependent source as though
it were an independent source when writing the KVL equations. Then we write the control-
ling equation for the dependent source. The following examples illustrate the point.

Let usfind v, in the circuit in Fig. 3.25, which contains a voltage-controlled voltage source.

The equations for the loop currents shown in the figure are
— 2V, + 2k(I, + L) + 4kI, = 0
— 2V, + 2k(l, + I,) — 3 + 6kl, =0

where
V, = 4KI,
These equations can be combined to produce
— 2kI, + 2k, = 0
— 6kl + 8kl, =3

These equations can be placed in the form Rl =V, where

—2000 2000 iy 0
R= = V=
—6000 8000 in 3

The solution is | = RV, and this operation yields

i,=15mA
i,=1.5mA

and therefore,
V, = 6kl, =9V

For comparison, we will also solve the problem using nodal analysis. The presence of the
voltage sources indicates that this method could be simpler. Treating the 3-V source and its

connecting nodes as a supernode and writing the KCL equation for this supernode yields
V,—2V, V., V,+3

+ = +
2k 4k 6k

where
V,=V. +3
These equations aso yield vV, = 9 V.
3V
s M
v’V\IA +
2k0 N

+
2Vx<i> L| Zax Seka  V,

LOOP ANALYSIS 131

Figure 3.25
Circuit used in
Example 3.17.

3.17
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Let usfind V, in the circuit in Fig. 3.26, which contains a voltage-controlled current source.

3.18

The currents 7, and 1, are drawn through the current sources. Therefore, two of the equations

needed are
\Z
I =
2000
I,=2x107°

The KVL equation for the third mesh is

-3+ 2k(l; — ) + 6ki; = 0
where
V, =4k (L, - L)
Combining these equations yields
— L +2L=0
L =2/k
— 2kl + 8kl = 3

The equations can be expressed in matrix form as IR=V, where

-1 2 0 i 0
R= 0 1 0 =i, and V= 0.002
—2000 0 8000 i3 3
Performing the operation | = RV, produces the currents
i,=2.0mA
i;=1.375mA
And hence, V, = 8.25 V.
Fi .26
igure 3.2 N
Circuit used in 1% -1
Example 3.18. ﬁ <T> L §> 2kQ

Ve

- x4+ .

WA Ly Zeka V,
4kQ :

@D ] O

-

The network in Fig. 3.27 contains both a current-controlled voltage source and a voltage-

3 1 9 controlled current source. Let us use MATLAB to determine the loop currents.
[
The equations for the loop currents shown in the figure are
L4
"k
LoV
P2k

—1KZ, + 2K(E — L) + 1k(E — 1) =0
k(L — ) + 1k(Il, - L) + 12 =10
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where
V., =2k(l, — 1)
I,=1,—1
Combining these equations yields
=4
k
L+L-L=0
1k, + 3kl — 2kI, = 8
1kl + 1kI; — 2kI, = 12

In matrix form the equations are

1o o o[y &
11 -1 o ||ng <
0 1k 3k -2 || 5|7]°
0 1k 1k —2k || 1, .

12

The equations are in the form Rl = V, and the solutionto | = RV is
i;=40mA
i,=6.0mA
i3=—2.0mA
i,=—1.0mA

Figure 3.27
2kQ - .
< \% Circuit used in
wm® (0 3 (0 D7
- /{//\x/ =l ECHVYY
2 kQ) 1kQ

=
&
®
A%
®
©
<

At this point we will again examine the circuit in Example 3.10 and analyze it using loop
equations. Recall that because the network has two voltage sources, the nodal analysis was
somewhat simplified. In a similar manner, the presence of the current sources should 3 ° 2 0
simplify aloop analysis.
Clearly, the network has four loops, and thus four linearly independent equations are
required to determine the loop currents. The network isredrawn in Fig. 3.28 where theloop cur-
rents are specified. Note that we have drawn one current through each of the independent cur-
rent sources. This choice of currents smplifies the analysis since two of the four equations are

I = 2/k
13 = _2/k
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Figure 3.28

Circuit used in
Example 3.20.

3.21

Figure 3.29

Circuit used in
Example 3.21.

The two remaining KVL equations for loop currents 1, and 1, are
=2V, + 1kL + (I, — L)1k = 0
(I, + I, — )1k — 2V, + 1kI, + 4 = 0

where
Vx = 1k(11 - 13 - 14)

Substituting the equations for 7, and I; into the two KVL equations yields
2kI, + 2kI, = 6

4kl, = 8
Solving these equations for 7, and 7,, we obtain
14 = 2 mA
L, = 1mA
and thus
vV, =1V
+

2Vx<i> @Voglka S1ko
ONO M st B
Vy %1 m@ CT)%A CJ_F>4V

Let us once again consider Example 3.11. In this case we will examine the network using
loop analysis. Although there are four sources, two of which are dependent, only one of
them is a current source. Thus, from the outset we expect that a loop analysis will be more
difficult than anodal analysis. Clearly, the circuit contains six loops. Thus, six linearly inde-
pendent equations are needed to solve for all the unknown currents.

The network is redrawn in Fig. 3.29 where the loops are specified. The six KVL equa-
tions that describe the network are

kL + k(L — L) + 1k(l, — 1) =0
k(L —5L)—6+1k(L—I)=0

13 = 21x
"l1ko J1ko 6V
% NORROICIONS
1kQ 1kQ 1kQ
J1ko )
AOEOE {15
2V
* Ix IO
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—12 + 1k(Il, — L) + 2V, = 0
-2V, + 1k(Ils — L) + 1k(I; — 1,) = 0
1k(I, — I5) + 1k(I, — L) + 1k, = 0
And the control variables for the two dependent sources are
Vx = _1k11
Ix = 15 - Io

Substituting the control parameters into the six KVL equations yields

3, -L, 0 —I, 0 0 =0
-, +2, 0 0 -I, 0 =6/k
0 0 L 0 =2, 42, =0
=3, 0 0 +L O 0 =12/k
2, L, 0O 0 42y —-I, =0
0 0 0 0 =3I +5I, 0
which can be written in matrix form as
3 =10 -1 0 ol[n] [ o ]
-1 2 0 0 -1 0 I, 6/k
0 0 1 0 -2 2 || _| o
-3 0 0 1 0 0 ||5| |12/k
2 -1 0 0 2 -11||I 0
Lo 0 0 0 -3 55, ] Lo |

The solution to the matrix equations Rl =V is

i; =50.0mA

i,=—12.0 mA
i;=—64.0 mA
i,=162.0 mA
is=—80.0 mA
ig=—48.0 mA

As afinal point, it is very important to examine the circuit carefully before selecting an
analysis approach. One method could be much simpler than another, and alittle time invested
up front may save alot of time in the long run. For an N-node circuit, N — 1 linearly inde-
pendent equations must be formulated to solve for N — 1 node voltages. An N-loop circuit
requires the formulation of N linearly independent equations. One consideration in the selec-
tion of a method should be the number of linearly independent equations that must be for-
mulated. The same circuit was solved in Example 3.10 using nodal analysis and in Example
3.20 using loop analysis. Thecircuit in Fig. 3.16 has four unknown node voltages. Asaresult,
four linearly independent equations are required. Because there are two voltage sources, two
constraint equations are needed. It was pointed out in Example 3.20 that this same circuit has
four loops which requires four linearly independent equations. The two current sources
produce two constraint equations.

The effort required to solve this circuit using either nodal or loop anaysis is similar.
However, thisis not true for many circuits. Consider the circuit in Fig. 3.30. This circuit has
eight loops. Selection of the loop currents such that only one loop current flows through the
independent current source leaves us with seven unknown loop currents. Since this circuit has
seven nodes, there are six node voltages, and we must formulate six linearly independent

LOOP ANALYSIS
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equations. By judicious selection of the bottom node as the reference node, four of the node

voltages are known, leaving just two unknown node voltages—the node voltage across the

. current source and the node voltage across the 3-() and 6-() resistors. Applying KCL at these

Figure 3.30 0 nodes yields two equations that can be solved for the two unknown node voltages. Even

A circuit utilized ina  with the use of a modern calculator or a computer program such as MATLAB, the solution

discussion of the selection  of two simultaneous equations requires less effort than the solution of the seven simultane-
of an analysis technique.  ous equations that the loop analysis would require.

20 20 20 20
20V<t> 4Q 2 4Q lﬁV# 12v 3Q 6Q 20V

>

Loop Analysis Step 1. Determine the number of independent loops in the circuit. Assign aloop cur-
rent to each independent loop. For an N-loop circuit, there are N-loop currents.
As aresult, N linearly independent equations must be written to solve for the
loop currents.

If current sources are present in the circuit, either of two techniques can be

employed. In the first case, one loop current is selected to pass through one
of the current sources. The remaining loop currents are determined by open-
circuiting the current sources in the circuit and using this modified circuit to
select them. In the second case, a current is assigned to each mesh in the circuit.

Step 2. Write a constraint equation for each current source—independent or dependent—
in the circuit in terms of the assigned loop current using KCL. Each constraint
equation represents one of the necessary linearly independent equations, and N
current sources yield N linearly independent equations. For each dependent
current source, express the controlling variable for that source in terms of the
loop currents.

Step 3. Use KVL to formulate the remaining N — N linearly independent equations.
Treat dependent voltage sources like independent voltage sources when formu-
lating the KVVL equations. For each dependent voltage source, express the
controlling variable in terms of the loop currents.

E3.19 Use mesh analysisto find V, in the circuit in Fig. E3.19. ANSWER: V, = 12 V.

2 kQ

0 M
W W

20001, <J_r> S4ka S22V,

Figure E3.19
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E3.20 Use loop analysis to solve the network in Example 3.5 and compare the time and effort
involved in the two solution techniques.

E3.21 Use noda analyss to solve the circuit in Example 3.15 and compare the time and effort
involved in the two solution strategies.

E3.22 FindV,in Fig. E3.22 using mesh analysis.

3 kO 4 kO
A% ' VWA

2k 3 4KQ

>

+
3kQ
0V Ci) 6 ksfﬁ> v,
0.5V,
Figure E3.22 _
E3.23 FindV, in Fig. E3.23 using mesh analysis.
3kQ 4kQ
VWA VWA
2k03 ol l> C—D 12V
6 kQ
A%
< aF
3kQ
10V CJ_FD 6ka3V,
8V
Figure E3.23 Ly -

ANSWER: V,=6.97 V.

ANSWER: V,=9V.

3.3

Application
Example

[ ]

A conceptual circuit for manually setting the speed of a dc electric motor is shown in
Fig. 3.31a. The resistors R, and R, are inside a component called a potentiometer, or pot,
which is nothing more than an adjustable resistor, for example, a volume control. Turning
the knob changes the ratio @ = R,/(R, + R;), but the total resistance, Ry = R, + R, is

APPLICATION
EXAMPLE 3.22
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Figure 3.31

(@) A simple dc motor
driver and (b) the circuit
model used to analyze it.

SOLUTION

unchanged. In this way the pot forms a voltage divider that sets the voltage Vg The
power amplifier output, V;,, is four times Vg, Power amplifiers can output the high cur-
rents needed to drive the motor. Finally, the dc motor speed is proportional to V,,; that is,
the speed in rpm is some constant k times V. Without knowing the details of the power
amplifier, can we analyze this system? In particul ar, can we devel op arelationship between
rpm and «?

5V = Ry S Ta=1 Power
TRpOt R < a=0 V+ amp + 1
~ B 1% dc
) speed \VlVipeed = 4| "M motor
= = = J?- J?-
(@)
Power amp
model
oo el
! !
| 1
| 1
Ry Ta =1 : y |
1 i 1 aF
r—d
5V = Ryol 3 la=0 + 4V5peedf<_> : VM
R2 Vspeed : : N
o ! X
1 1 I | - U =
— = = ! I "
(b)

Since the power amplifier output voltage is proportional to its input, we can model the
amplifier as a simple dependent source. The resulting circuit diagram is shown in
Fig. 3.31b. Now we can easily devel op arelationship between motor speed and the pot posi-
tion, a. The equations that govern the operation of the motor, power amplifier, and the volt-
age divider are

speed (rpm) = K, Vy

Vir = Veeen
R, R,

Vipeod = 5 =5 = Sa
R + R, Roo

Ry = aRpy R = (1~- a)Rpot

Combining these relationships to eliminate Vy,. yields arelationship between motor speed
and «, that is, rpm = 20q. If, for example, the motor constant K, is 50 rpm/V, then

rpm = 1000

This relationship specifies that the motor speed is proportional to the pot knob position.
Since the maximum value of « is 1, the motor speed ranges from 0 to 1000 rpm.

Note that in our model, the power amplifier, modeled by the dependent source, can
deliver any current the motor requires. Of course, this is not possible, but it does demon-
strate some of the tradeoffs we experience in modeling. By choosing a simple model, we
were able to devel op the required relationship quickly. However, other characteristics of an
actual power amplifier have been omitted in this model.
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3.4

Design Example

An 8-V source is to be used in conjunction with two standard resistors to design a voltage DESIGN

divider that will output 5V when connected to a 100-p.A load. While keeping the consumed EXAMPLE 3.23
power as low as possible, we wish to minimize the error between the actual output and the

required 5 volts.

The divider can be modeled as shown in Fig. 3.32. Applying KCL at the output nodeyields SOLUTION
the equation

i—-V%_ %
==
R, R,
Using the specified parameters for the input voltage, desired output voltage, and the current

source, we obtain
3 3R,
R=353 (100 )R,
By trial and error, we find that excellent values for the two standard resistors are
R, = 10kQ and R, = 27 k(). Large resistor values are used to minimize power consump-
tion. With this selection of resistors the output voltage is 5.11 V, which is a percent error of

only 2.15%.
Figure 3.32
J A simple voltage-divider
Ry é circuit with a 100-p.A load.
Vs
©
8V i Io
R3 v, (1)
100 p.A
SUMMARY
Nodal Analysis for an N-node Circuit A voltage source—independent or dependent—may be

connected between a nonreference node and the reference
node or between two nonreference nodes. A supernode is
formed by a voltage source and its two connecting nonrefer-
ence nodes.

m Determine the number of nodes in the circuit. Select one
node as the reference node. Assign a node voltage between
each nonreference node and the reference node. All node
voltages are assumed positive with respect to the reference
node. For an N-node circuit, there are N — 1 node voltages. ® Use KCL to formulate the remaining N — 1 — N, linearly

Asaresult, N — 1 linearly independent equations must be independent equations. First, apply KCL at each nonrefer-
written to solve for the node voltages. ence node not connected to a voltage source. Second, apply
) ) ) KCL at each supernode. Treat dependent current sources like
m Write a constraint equation for each voltage source— independent current sources when formulating the KCL
md_ependent or dependent_—| n the circuit in term_s of the equations. For each dependent current source, express the
assigned node voltages using KV'L.. Each constraint controlling variable in terms of the node voltages.

equation represents one of the necessary linearly independent
equations, and N, voltage sourcesyield N, linearly
independent equations. For each dependent voltage source, m Determine the number of independent loops in the circuit.
express the controlling variable for that source in terms of Assign aloop current to each independent loop. For an
the node voltages. N-loop circuit, there are N-loop currents. As aresult,

Loop Analysis for an N-loop Circuit
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N linearly independent equations must be written to solve
for the loop currents.

m If current sources are present in the circuit, either of two

techniques can be employed. In the first case, one loop cur-
rent is selected to pass through one of the current sources.
The remaining loop currents are determined by open-
circuiting the current sources in the circuit and using this
modified circuit to select them. In the second case, a current
is assigned to each mesh in the circuit.

m Write a constraint equation for each current source—

independent or dependent—in the circuit in terms of the

PROBLEMS

NODAL AND LOOP ANALYSIS TECHNIQUES

assigned loop currents using KCL. Each constraint equation
represents one of the necessary linearly independent equa-
tions, and N, current sourcesyield N, linearly independent
equations. For each dependent current source, express the
controlling variable for that source in terms of the loop
currents.

m UseKVL to formulate the remaining N — N, linearly inde-
pendent equations. Treat dependent voltage sources like
independent voltage sources when formulating the KVL
equations. For each dependent voltage source, express the
controlling variable in terms of the loop currents.

0

3.1 Find I, inthecircuitin Fig. P3.1.

D)

—>

N

4 mA

3kQ <$>4KQ

v’\/\l‘

o

Figure P3.1

3.2 Find I, in the network in Fig. P3.2.

D)

—>

N

6 mA

24k

skng’ 12k9<§ $4kQ

]

Figure P3.2

3.3 Find I, inthecircuitin Fig. P3.3.

6 mA
-
/

2kQ
VWA

1kQ
VWA

D

g}SkQ

1,

son(D

Figure P3.3

3.4 Usenoda analysisto find V, in the circuit in Fig P3.4.

2 kQ
Vm‘
+
6 mA
303 V; D () 32wk 2 2k0
4 mA
Figure P3.4

3.5 Find V; and V, in the circuit in Fig. P3.5 using nodal

anaysis.
O
6 mA
v’\/\l‘
+ 4kQ  +
4mA<T> ViSeko  V,33k0 S6ko
Figure P3.5
3.6 Use nodal analysisto find both V; and V, in the
circuit in Fig 3.6.
)
—/
2 mA
V V.
1 A 2
6 kQ 2kQ +
(D 12 mA 3KQ 6 kO ke v,

Figure P3.6



3.7 Find |, inthe circuit in Fig. P3.7 using nodal analysis.

I, 2k0

VWA

1 kO 4 mA

6 mA

2 kQ

L
Figure P3.7
3.8 Find I, in the network in Fig. P3.8 using

4 mA

D)

nodal analysis.

NG

2 kQ

VWA

1 kQ

2 mA CD 1k0 3

Do

I—————¢
Q’N

Figure P3.8

3.9 Find 7, in the circuit in Fig. P3.9.

Do

2k0 3 CD 4mA
1kQ [
WA—Z
2mA CD ‘5» 2 kQ
Figure P3.9

3.10 Find |, in the circuit in Fig. P3.10 using nodal analysis.

MA
8 kO
2k03 2mA
1mA CD VWA
3kQ
6 kQ 5
IO

Figure P3.10

PROBLEMS

3.11 Use noda analysisto find I, in the network in

Fig. P3.11.
2 mA
QO
4mA CD 4kQ 5
2k0 3 W
1 4kQ
6 mA CD 12 kQ 5
IO
Figure P3.11

3.12 Find V, in the network in Fig. P3.12 using nodal

analysis.
+ VvV, -
v’V\IA v’V\IA
6 kQ 12 kO

12v<j> ésm

Figure P3.12

3.13 Find V, inthe circuit in Fig. P3.13 using nodal

anaysis.
1kQ
W
2kQ 2kQ
VWA VWA
+
< <
S 1kQ Ci) 12V ik Vo
> >

Figure P3.13

141
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3.14 Usenoda analysisto find V, in the circuit in Fig. P3.14.

2k 4kQ
+
12V Cj) CD 2mA S 2k0 v,

Figure P3.14

@ 3.15 Find I, in the network in Fig. P3.15 using nodal

analysis.

1kQ

1 kQ

v’\/\l‘

2k0 ],

VWA

4mA (D

VWA

Qe

Ci 2mA

Figure P3.15

3.16 Find I, in the circuit in Fig. P3.16 using nodal analysis.

2kQ
VMA
2kQ 1kQ
12V CJ_FD Cl) 2 mA
1,

el

Figure P3.16

3.17 Find V, in the circuit in Fig. P3.17 using nodal analysis.

NODAL AND LOOP ANALYSIS TECHNIQUES

3.18 FindV, inthecircuit in Fig. P3.18 using nodd analysis.

+
1k 2 CD 2 mA
VWA S2ka Vo
2 kQ
12V C_r) 3, 1kQ
Figure P3.18

3.19 Find I, in the circuit in Fig. P3.19 using nodal analysis.

12V Ci) 5 2kQ
1
W— 21k0
2 kQ 1
1kQ ‘é QR 2 mA
L
Figure P3.19

3.20 FindV, in the network in Fig. P3.20 using nodal
analysis.

12V
C
-/
1 kQ 2kQ
v’V\IA v’V\IA
+
<§>2k9 CT>4mA élkﬂ Vo
Figure P3.17

>

Vv

Figure P3.20

1k 3 C_D 12V
2kQ
CT) 4mA W
+
1k0 2 2k 3 Vo
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3.21 Find V, in the circuit in Fig. P3.21 using nodal analysis. 3.24 Find I, in the circuit in Fig. P3.24 using nodal analysis.

1kQ
v’\/\l‘
< <
2k g 1kQ S av
g g 2 kQ /-\
A 2 kQ VWA NG
<+> 12V AMA >

4mA CD 1k0 2 v, Ct) = Zue GD "

>

Figure P3.21 Figure P3.24

3.25 Use nodal analysis to solve for the node voltages in the

3.22 FindV, in the network in Fig. P3.22 using nodal circuit in Fig. P3.25. Also calculate the power supplied
anaysis. by the 2-mA current source.
12 kQ
VIV\IA
2k 3 Ci) 4v
1 6 kQ 4 kQ
vm‘ VI\NA

Cj) 12V 3,5& )
4mA CD 2k0 2 v, C—D 12v CD 2mA CI) 24V

>

Figure P3.25
Figure P3.22

3.26 Use nodal analysis to determine the node voltages
defined in the circuit in Fig. P3.26.

3.23 Find 7, inthecircuit in Fig. P3.23 using nodal analysis.

Vi
J 0.5S< 2av (1 C)s A
1k 3 ézm g 4V<+> psm
12V V3
V. VWA VWA \%
() C—F)ev 2 4
k_/ — 2S 1S
) 0.5 53 3mA <+>12v
2k0 3 glkn / g QR " -
(4]
1

Figure P3.23 Figure P3.26
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3.27 Usenodal analysis to solve for the node voltages in the
circuit in Fig. P3.27. Also calculate the power supplied
by the 2-mA current source.

2 mA
O
5 2 kQ
vI\/\IA vI\/\IA
2kQ 4kQ
Ci 12V Ci)s v C_D 16V

Figure P3.27
3.28 Usenoda analysisto find V, in the network in
Fig. P3.28.
1k0 3 S 2k0 S1k0
vIV\IA vIV\IA
2 kQ 1 kQ +
12V Ci) CD 2mA T 1k v,
A

Figure P3.28

@ 3.29 Use nodal analysisto find V, in the circuit in Fig. P3.29.

3 2kQ Ct) 6V 1kQ CD 2mA
>
()
Z :
4mA 12v
<
32k0 S1ko 1kQ 2ika V,

Figure P3.29

3.30 Use nodd analysisto find V, in the circuit in Fig. P3.30.

Figure P3.30

NODAL AND LOOP ANALYSIS TECHNIQUES

3.31 FindV, in the network in Fig. P3.31.

22k Ci)ev (F)1zv 21k0
> >
2kQ
o e
2V
22kQ C; 4v 1kQ
Figure P3.31

3.32 Find |, in the network in Fig. P3.32 using nodal analysis.

C_D 12V

%2 kQ

Iy

1kQ 1kQ
VWA VWA
+ vV, -

v

Figure P3.32

3.33 Find I, in the network in Fig. P3.33 using nodal analysis.

I, 1kO

1k ]

Ci) 12V

VWA

VW

Dem G

Figure P3.33

3.34 Find V, in the network in Fig. P3.34 using nodal

analysis.

1kQ

2 kQ
VWA

vl\/\IA

2 kQ

V%A

e Pom

Figure P3.34

@



@ 3.35 Find V, in the circuit in Fig. P3.35 using nodal
analysis.

1kQ
vI\/\IA

Figure P3.35

3.36 Find V, in the network in Fig. P3.36 using nodal

analysis.
L
1kQ 3, 1kQ ‘§>
W SV,

1kQ

12V Ci) <T> 21, I,

Figure P3.36

@ 3.37 Find |, in the network in Fig. P3.37 using nodal

analysis.
IO
1k 3 21k0
> 4 Vx >
N n
o1, O
2 mA CT) 1k 2V,

Figure P3.37

PROBLEMS

3.38 Find I, in the network in Fig. P3.38 using nodal
analysis.

2V, (& (D2m

+ Vi
WA 21k
1kQ :

1 kQ 3 Ci) 6V I,

Figure P3.38

3.39 Find V, in the network in Fig. P3.39 using nodal

145

analysis.
+
Cj) 12V CD 2mA
I, J
VWA Sika V,
1 kQ g
1k 3 <T> 21,
Figure P3.39
3.40 Usenodal analysisto find V, in the circuit in
Fig. P3.40.
12V
(i-_\ Vo 1kQ
- VW
T

<L>41x nglkﬂ

IX

1KQ 2mA CD 2 Vx<4_r>

I———AN—t

Figure P3.40

3.41 Usenodal analysisto find V, in the circuit in

Fig. P3.41.
4 mA
&
A q A
Vw u v’V\I

D
N
N
N
MA
=
vIV\IA
VWA

Figure P3.41
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3.42 Usenodal anaysisto find V, in the network in

Fig. P3.42.
4 mA
O
1 kQ N\ 1 kQ 1 kQ
—/ WA —+ VWA VWA
N\ |
12V +
<i>2vx S1k0 CDZmA Ve 103V,
Figure P3.42
@ 3.43 Usenodal analysisto find V,in the circuit in
Fig. P3.43.
2V,
N
AVZ
1kQ 12V 1 kQ 1 kQ
P A Q o A )
_\/W u vl\/\l VW_ 4
+
CD4mA Cl)ZmA V, 1|<Q§> 1kQ<$> V,
<

Figure P3.43

@ 3.44 Usenoda anaysisto find I, in the circuit in Fig. P3.44.

Vi

Do

1 kQ

<§>le

vI\/\IA
+ Vi

O

V2 1kQ Ix
VMA

1kQ

IO

Figure P3.44

I———

<t> 2V,

V3

Do

3.45 Find |, in the circuit in Fig. P3.45 using nodal

analysis.
vIV\IA
12 kQ
12 kQ 3) CD 12 mA <l> al, <5}12 KQ
I, 1,
Figure P3.45
3.46 Find V,inthecircuit in Fig. P3.46.
vI\/\IA v’\/\l‘
+ 1kQ 2 kQ +
2V, <
Vxé 1kQ CD 2 mA = sk,

Figure P3.46

3.47 Usenodal analysisto find V, in the circuit in Fig. P3.47.
In addition, find all branch currents and check your
answers using KCL at every node.

A > WA—p
12k 2k
20001,
6v<1> S 40 CDzmA S 40
]x
Figure P3.47

+
Vo

3.48 Determine V, in the network in Fig. P3.48 using nodal

analysis.

2l <l> 1k 3
I, 1kQ
—— WA W
1k0
1k0 3 12v<1> 1k0 3
Figure P3.48
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3.52 Usenodal analysis to determine the node voltages defined @

@ 3.49 Use nodal analysisto find Vy, V,, Vs, and V, in the
inthe circuit in Fig. P3.52.

circuit in Fig. P3.49.

12V
AR\
/
vV, V, Va
W W
60 80
100 v v,
< VWA
CD 3A 340 Va
2V
A 4A Cl)
L +

Figure P3.49 =
Figure P3.52

3.50 Use noda analysis to determine the node voltages defined  3.53 Find I, in the network in Fig. P3.53 using mesh analysis.

in the circuit in Fig. P3.50.

1
Vi Vs W L
|14 30 6 kQ 4kQ
Vazuo  eva (Dsa V@ gea Oav
+
Va
1] VWA VWA V3 .
60 90 Figure P3.53
Cj 12V 270 <l>41A
3.54 Find |, inthecircuit in Fig. P3.54.
vI\/\IA vI\/\IA
L 4kQ 4kQ
Figure P3.50 3}2 kQ
24V Ci) 1, ‘5» 2kQ
@ 3.51 Use noda analysisto determine the node voltages defined
in the circuit in Fig. P3.51. Cﬁ) 6V
Vs
_ I,
40 Figure P3.54
503y, Vy CD 3A
0.5V, 3.55 Find V, in the network in Fig. P3.55 using mesh analysis.
+
Vl — M VA V3 4V 12V
80 V) 60 A D
N\ N\ .
21, <T> 3 kO CJ_D 12V
4 |<Q§> 4 ksfg sS4k V,
J?_ —
Figure P3.51 Figure P3.55
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3.56 Find |, inthe circuit in Fig. P3.56. 3.60 Use mesh analysisto find V, in the network in
6V Fig. P3.60.
6 kQ ~ 12 kQ
vI\/\IA \__I/ vl\/\lA vI\/\IA vW
3kQ 2kQ +
3v<i> 212k0 S6ko C;)sv 12v C_r) S 6k CD 2mA V,
1, -
Figure P3.56 Figure P3.60
3.57 Use mesh analysisto find the power dissipated in the 3.61 Find V, in the network in Fig. P3.61 using loop analysis.
6-kQ) resistor in Fig. P3.57.
2kQ 4 kQ
vI\/\IA vI\/\IA <
6 VC_D 2k 3 <T>4 mA
8k0 3 <+>8V 1kQ + Vo -
> — vIV\IA vI\/\IA
2kQ 4 kQ 2 kQ
vI\/\IA vI\/\IA < <
S2k0 S1k0 CDemA
Ci 12V 3}6 kQ Ci)lev
Figure P3.61

Figure P3.57
3.62 Find V, inthe circuit in Fig. P3.62 using loop analysis.
2 mA
3.58 Find V, inthecircuit in Fig. P3.58 using mesh analysis. NI
6V 4mA 6V
S o=
1kQ 1kQ 1KQ S Vo22ka 21kQ
v’V\IA VMA 5} 0 5} 5}
+
+
< + <
1kQ 5, 12v C—) 5, 2kQ Vo Figure P3.62
Figure P3.58 3.63 Find I, in the circuit in Fig. P3.63 using loop analysis.
2mA
&
3.59 Useloop analysisto find V, in the network in Fig. P3.59.
2kQ 1 kQ
VWA VWA @ VWA VWA
2kQ 2 kQ +
12V
<5’1 kQ CDz mA 1 |<Q§> v, 4mA CD ‘5,2 kQ CI)GV

_ I,

Figure P3.59 Figure P3.63



3.64 Find I, in the network in Fig. P3.64 using loop analysis.

2mA
5
2k 1k
160 3 CT>4mA 32k

Figure P3.64

@ 3.65 Find V, in the network in Fig. P3.65 using loop analysis.

Figure P3.65

3.66 FindV, in the circuit in Fig. P3.66 using loop analysis.

Figure P3.66

3.67 Find |, inthe network in Fig. P3.67 using loop analysis.

vI\/\IA
1kQ
12V
. )
v’\/\l +
1kQ N
1k9§> 1kQ<$> CDemA
IO
Figure P3.67
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3.68 Find I, in the network in Fig. P3.68 using loop analysis.

6 kQ)
WA
6 kQ) 6 kQ)
WA WA
6V C;) 5mA S 6k0
>
1 o

Figure P3.68

3.69 Useloop analysisto find V, in the circuit in Fig. P3.69.

/o)
—
/
6 mA
+ Vo _
VWA o VWA
12 kQ) 6 kQ)
12V <I|> 12 kQ) q> 2 mA

Figure P3.69

3.70 Using loop analysis, find V, in the network in

Fig. P3.70.
2 kQ é 4 mA 1kQ
6V
- -
N\ N, N
12V
2k S 1kQ 1kQ Vo
Figure P3.70
3.71 Find I, inthecircuit in Fig. P3.71.
IO
6V CJ_D 22k0 24k0
2mA [ k@) [
O
6 kQ ‘5» (P 1mA §> 2 kQ

Figure P3.71
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3.72 Useloop analysisto find I, in the network in Fig. P3.72.  3.76 Using loop analysis, find |, in the circuit in Fig. P3.76.

1kQ
VWA :
1kQ T 4 mA 1kQ 1kQ
> >

12V CJ_FD 1kQ CD 2 mA 1kQ % 1KQ
vI\/\IA + Vw‘
1kQ 1kQ _/
V%A vI\/\IA < < <
I, 1k S S1kQ CDzmA 3 1k0
1k0 ? 4mA ? 1k0 1,
Figure P3.76

Figure P3.72

3.73 Find 7, inthecircuit in Fig. P3.73 using loop analysis.

3.77 Find the mesh currents in the network in Fig. P3.77.

2kQ

4mA CD 1kQ 3 Ci) 6V W

1 kQ

1kQ 2 KO > m
MA —m—t CD 6ma 2MA CD @ 3 @ C—) 12v
(0]
> > AW AW I 21k0
zmACD 1 g Siko 2kQ) 20 @ 2

1kQ

6V Ci) 3 21ko
I 1 1 1
Figure P3.73 3 4

@ 3.74 Find 1, in the network in Fig. P3.74 using loop analysis. Figure P3.77

1kQ 3, CD 2 mA i»l kQ

3.78 Useloop analysisto find V, in the network in Fig. P3.78.
¢ - CT) 6 mA
_/ -/ I, 4 I\I;\(’) N
v A +
) 6V 12V ) D 0
2k0 3 CD4mA 31k ) 12v |
I S 2k0 <T> S2ka Vo
° 21,
Figure P3.74
) . o . ) Figure P3.78
@ 3.75 FindV, inthecircuit in Fig. P3.75 using loop analysis.
2 kQ 3» Cl) 4 mA C;) 4v Cl) 2mA  3.79 FindV,inthecircuit in Fig. P3.73 using nodd analysis.
1kQ + Vo - AMA O
VIV\’A v’\/\l‘ ,/\/\/A v T
1kQ 1kQ 1kQ Ed +
p V < d
2 mA CD Ct) 6V CD ama 32k - <“_L> S 1k0 3 2k0 v,

Figure P3.75 Figure P3.79



3.80 Usenodal analysisto find V, in Fig. P3.80.

™o

N
\/21 v +
3} 10 kQ 3}10 kQ Vo
I, -

Figure P3.80

3.81 Find the power supplied by the 2-A current source in the
network in Fig. P3.81 using loop analysis.

I X
VWA

40

Ci)lov Sa0 <T>2Ix 350 CDzA

Figure P3.81

3.82 Find |, in the network in Fig. P3.82.

M AN
2kQ
4000/,
2|<Q§> <$>4kQ <5}12 kQ CDlz mA
Ix IO
Figure P3.82

3.83 Find V, in the circuit in Fig. P3.83 using loop analysis.

P

O

+
>0 1kQ
< < V
S 1k S 1k0 1kQ ,

I, _

Figure P3.83

PROBLEMS

3.84 Find V, in the network in Fig. P3.84 using nodal

analysis.
Ix
VMA
10kQ
4ooolx<;> S10k0 CD ama S10k0

Figure P3.84

3.85 Find |, in the circuit in Fig. P3.85 using loop analysis.

21,
N
\/
1, 1kQ 1kQ
VWA vI\/\IA
GVCiD ‘5»2 kQ CDz mA
Ix

Figure P3.85

3.86. Use mesh analysisto find V, in the circuit in

Fig. P3.86.
6V,
AN
\/
8 kQ o mA
. N\
v’\/\l
+ \_-7 +
% 12 kQ % Vi <5}12 ke Vo
4KkQ
Figure P3.86
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+
Vo

&

3.87 Using mesh analysis, find V, in the circuit in Fig. P3.87. @

|4
2600 <T> 32k
A S ako
+
6 mA CD V,S4ko

Figure P3.87

Vo
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@ 3.88 Find V, in the network in Fig. P3.88 . 3.92 Using loop analysis, find v, in the circuit in Fig. P3.92. @
v’\/\l‘
1kQ +
160 3 CDlZmA SV, ko 3 1k 3Lk 31k
N LA
VWA VWA - 'V_Q \_“1) VW——o
1kQ 1kQ + 2k0 *
V, : 21k0 CD‘”“A 4mACD 2k0 2k SV, ‘glm V,
1000 > _

Figure P3.88 Figure P3.92

@ 3.89 Using loop analysis, find v, in the circuit in Fig. P3.89.

+
2kQ 1kQ 1kQsSV,
2k ~ - 3.93 Using loop analysis, find |, in the network in Fig. P3.93. @
N4 £
2 mA
12V 2V, 1kQ Vv,
_ - k03 1k0 3 <;> 2V, Siko
Figure P3.89 I, 1kQ 1kQ
VWA VWA VWA
@ 3.90 Using loop analysis, find v in the circuit in Fig. P3.90. 1kQ Lo +
’ 2 mA CD <T>21x Ci) 12v 1k SV,
21, | 1 kaé> CD 2 mA
A Iy %,\'/‘3 Figure P3.93
1kQ +

< o <
1k S 12VQ‘F> leT v,

Figure P3.90

3.94 Useloop anaysisto find I, in the circuit in Fig. P3.94. @
@ 3.91 Using loop analysis, find v, in the network in Fig. P3.91.

21,
AN
1|(Q<€ CT>4mA glkﬂ N
% + Vi - 1kQ
AAA vm‘ va
1kQ NS + 1kQ
J J i p h
2V0<j> 21k0 22k0 A C—) Siko <f> 2Vy
_ Io Ix

Figure P3.91 Figure P3.94
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3.95 Find |, inthecircuit in Fig. P3.95 using loop analysis. 3.98 Solve for the mesh currents defined in the circuit in

Fig. P3.98.
2 mA 20 40
D) VWA VWA
—/ 14
+ Ve - 1kQ 19%@2‘/A<J—r> @ CDZA
WA WA
2kQ Iy 80 50

IR& 31k SV, - VII\//: 1
<> <> QVCjD @ <T>3IA@<5,29

Figure P3.98

Figure P3.95

3.99 Solve for the mesh currents defined in the circuit in

Fig. P3.99.
3.96 Find |, in the circuit in Fig. P3.96 using loop analysis. 3\/%, jv%
240
L, + %
2Vx<i> 31k Ci)ev ViS50 @ @ 330
+ V. - _
v’\/\l‘ vll\/\lxA 3Ix <t>
1 kQ 1kQ
< 70 80
2mA CD 32k <l> 21, VWA WA

I, 2V, <;> @2 95 @ C_D 12V
Iy

Figure P3.99

Figure P3.96

3.100 Solve for the mesh currents defined in the circuit in

@ 3.97 Find V, inthe circuit in Fig. P3.97 using loop analysis. Fig. P3.100.
10V
. 2Q
@ WA
- Ve o+
2kQ 21k CD 2 mA
> > 14

2 X + V.
21y <T> o\ WA 70 20 40
+ \/ 1 kO VWA VWA VWA

e g OO (), () ORORT

Figure P3.97 Figure P3.100
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@ 3.101 Using loop analysis, find I, in the circuit in Fig. P3.101.  3.104 Use both nodal and loop analyses to determine |, in the @
circuitin Fig. P3.104.

1k S Cj)lz v S1k0 CD 6 mA

1|<Q§> 1k9<§ <:L> 2V, ‘§>1 KQ

I, 1kQ
VW VWA VWA I, 1kQ 1kQ
1kQ 1kQ i VWA VA VWA
A < < 1 kQ 1, .
2Vx<+> 103 <T> 2[, 1kQ3V, )
I - 2 mA CD <T>21x Ci) 12V 1k 3V,
X

Figure P3.101
Figure P3.104

@ 3.102 Use mesh analysis to determine the power delivered

by the indepenent 3-V source in the network in 3.105 Use both nodal and loop analyses to find V, in the @
Fig. P3.102. circuit in Fig. P3.105.
A /—\
VW —>
100 O \—/
40 mA < ) ]
200 0 6 Vx<i> 1k0 3 S1ko S1ko S1ko
2V 12V
> —4—ww
N N L 2k +
4mACT> 32k 2k0 3V, Sk V,

Figure P3.102 Figure P3.105
@ 3.103 Use mesh analysis to find the power delivered by the 3.106 Find |, in the network in Fig. P3.106 using nodal @
current-control voltage source in the circuit in analysis.
Fig. P3.103.

60 Vs CDSA 360 k03 G_r)lzv 31k CDemA

1, 1k0
u VW VW VW
\/ I, 1kQ 1kQ n
V < < — < <
5 <T> $320 S10 2vx<+> 1k S <T> 2l, 1kQ 3V,
I, -

Figure P3.103 Figure P3.106
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3FE-1 Find V, in the circuit in Fig. 3PFE-1.

c. 933V
d 225V

a 333V
b. 825V

VWA
6 Q

VWA
2Q

1Q

e . Qv

20

VWA

v’\/\lA
I

Figure 3PFE-1

3FE-2 Determine the power dissipated in the 6-ohm resistor in
the network in Fig. 3PFE-2.

a 82w
b. 15.3W

c. 44W
d. 135W

Figure 3PFE-2

3FE-3 Find the current 7, in the 4-ohm resistor in the circuit in

Fig. 3PFE-3.
a 20A c. 7A
b. 12 A d 14A
12V
30
5 :
+
603 ZACT V, 340 <J_r>2Vx
— Ix

Figure 3PFE-3

3FE-4 Determine the voltage V, in the circuit in

Fig. 3PFE-4.
a —3.28V c. —6.43V
b. 414V d 225V
_/ N
240 §> 20 <l> 103
I, 21,

Figure 3PFE-4

3FE-5 What isthe voltage V; in the circuit in Fig. 3PFE-5?

O

a -7V c. —2V
b. 5V d 4V
M vl /__1\ Y,
10 P 20
10V
303 SACD 4n
L

Figure 3PFE-5



CHAPTER

OPERATIONAL AMPLIFIERS

Learn how to model the op-amp device
Learn how to analyze a variety of circuits that employ
op-amps

Understand the use of op-amps in a number of
practical applications

Robotic Surgery Robotic-assisted surgery may well be the
most significant story in medical circles since the Jarvik artifi-
cial heart hit the headlines years ago. Using small surgical
cuts, this minimally invasive procedure leads to faster recov-
ery and less pain, bleeding, and risk of infection. You can
expect to leave the hospital after an overnight stay and walk
within a day following kidney or bladder removal, once con-
sidered major surgeries. Robotic-assisted techniques have
even been extended to certain heart surgeries.

Robotics allows surgeons to work at a console only a few
feet away from the operating table, remotely manipulating
robotic arms at the bedside. The primary advantage is
reducing the impact of hand tremors on surgical instruments.
Combining computers and robotics also lets surgeons run

156

Courtesy of NewsCom

practice sessions beforehand on computer simulations,
further increasing their accuracy in a field where precision is
literally a matter of life or death.

In this chapter, you will study the operational amplifier,
or op-amp, a key building block in robotics. Nodal analysis
and Ohm’s law are all that you need to analyze this basic
electronic component. An active device that receives external
power, the op-amp appears in common configurations for
inverting, amplifying, and summing voltage signals. The
op-amp also provides design separation for cascaded stages.
Surgeons at the forefront of healthcare rely on electronic
designers for pioneering tools. With the op-amp at your
command, you can begin to create designs that could prove
to be life-savers.



SECTION 4.2

It can be argued that the operational amplifier, or op-amp asit is commonly known, isthe single
most important integrated circuit for analog circuit design. It is a versatile interconnection of
transistors and resistors that vastly expands our capabilities in circuit design, from engine con-
trol systemsto cellular phones. Early op-amps were built of vacuum tubes, making them bulky
and power hungry. The invention of the transistor at Bell Labsin 1947 alowed engineersto cre-
ate op-amps that were much smaller and more efficient. Still, the op-amp itself consisted of indi-
vidual transistors and resistors interconnected on a printed circuit board (PCB). When the man-
ufacturing process for integrated circuits (ICs) was developed around 1970, engineers could
finaly put al of the op-amp transistors and resistors onto asingle IC chip. Today, it is common
to find as many as four high-quality op-amps on asingle IC for as little as $0.40. A sample of
commercial op-ampsisshownin Fig. 4.1.

Why are they called operational amplifiers? Originaly, the op-amp was designed to
perform mathematical operations such as addition, subtraction, differentiation, and integra-
tion. By adding simple networks to the op-amp, we can create these “building blocks’ aswell
as voltage scaling, current-to-voltage conversion, and myriad more complex applications.

(@) (b)
Figure 4.1
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4.1

Introduction

A selection of op-amps. On the left (a) is a discrete op-amp assembled on a printed circuit board (PCB). On the right,
top-down, a LM324 DIP, LMC6492 DIP, and MAX4240 in a SO-5 package (small outline/s pins). The APEX PAo3 with its lid
removed (b) showing individual transistors and resistors. (Left, Courtesy of Mark Nelms and Jo Ann Loden; right, Courtesy

of Milt Perrin, Apex Microtechnology Corp.)

How can we, understanding only sources and resistors, hope to comprehend the perform-
ance of the op-amp? The answer lies in modeling. When the bells and whistles are
removed, an op-amp isjust areally good voltage amplifier. In other words, the output volt-
age is ascaled replica of the input voltage. Modern op-amps are such good amplifiers that
it is easy to create an accurate, first-order model. As mentioned earlier, the op-amp is very
popular and is used extensively in circuit design at all levels. We should not be surprised
to find that op-amps are available for every application—Iow voltage, high voltage, micro-
power, high speed, high current, and so forth. Fortunately, the topology of our model is
independent of these issues.

We start with the general-purpose LM324 quad (four in a pack) op-amp from National
Semiconductor, shown in the upper right corner of Fig. 4.1a. The pinout for the LM 324 is shown
in Fig. 4.2 for aDIP (Dua Inline Pack) style package with dimensions in inches. Recognizing
therearefour identical op-ampsin the package, we will focus on amplifier 1. Pins3 and 2 are the
input pins, IN 1+ and IN 1—, and are caled the noninverting and inverting inputs, respectively.
The output is at pin 1. A relationship exists between the output and input voltages,

V, = A,(IN, — IN.) 41

4.2

Op-Amp Models
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Figure 4.2 I 0.78

The pinout (a) and 4 13 12 11 10 9 8
. . ) OUT 4 IN4—IN 4+ Vg IN3— IN3+ IN3
dimensional diagram

— ) ) ) )

(b) of the LM324 quad -
op-amp. Note the pin pitch 4|j I—JB
(distance pin-to-pin) Ny +

is 0.1 inches—standard )
for DIP packages.

N
i

o
(@)
=

|<_

1t 15 — o1 —| f—0.06

— J J J LJ J J
OUT 1IN 1- IN 1+ Vo IN 2— IN 2+ OUT 2
1 2 3 4 5 6 7

@) (b)

where all voltages are measured with respect to ground and A, is the gain of the op-amp.
(The location of the ground terminal will be discussed shortly.) From Eg. (4.1), we see that
when IN, increases, so will V,. However, if IN_ increases, then V, will decrease—hence the
names noninverting and inverting inputs. We mentioned earlier that op-amps are very good
voltage amplifiers. How good? Typical values for A, are between 10,000 and 1,000,000!

Amplification requires power that is provided by the dc voltage sources connected to pins
4 and 11, called V¢ and Vi, respectively. Fig. 4.3 shows how the power supplies, or rails,
are connected for both dual- and single-supply applications and defines the ground node to
which al input and output voltages are referenced. Traditionally, V¢ is a positive dc voltage
with respect to ground, and V¢ is either a negative voltage or ground itself. Actual values for
these power supplies can vary widely depending on the application, from as little as one volt
up to several hundred.

How can we model the op-amp? A dependent voltage source can produce V,! What about
the currents into and out of the op-amp terminals (pins 3, 2, and 1)? Fortunately for us, the
currents are fairly proportional to the pin voltages. That sounds like Ohm'’s law. So, we model
the 1-V performance with two resistors, one at the input terminals (R;) and another at the
output (R,). The circuit in Fig. 4.4 brings everything together.

Figure 4.3 v |
Schematics showing the IN, — cc = Vee IN, Vee
power supply connections IN o >—O out IN =Vce
and ground location for - % = = - I
EE \4
(a) dual-supply and | EE VEE 1

(b) single-supply

implementations. @) (b)
Figure 4.4 o YW O
. . + + Ro +
A simple model for the gain
characteristics of an op-amp. i(2) ‘$Ri
n <
IN, (1) - <i> V(1)

+ onin
IN_(1) _
O — O
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Rny R,
VW .
+
Vs(D) ol 3R, R1 2 0,(1)
T ApVin 1

What values can we expect for A,, R;, and R,? We can reason through this issue with the
help of Fig. 4.5 where we have drawn an equivalent for the circuitry that drives the input
nodes and we have modeled the circuitry connected to the output with a single resistor, R; .
Since the op-amp is supposed to be a great voltage amplifier, let’s write an equation for the
overal gain of the circuit V,/V;. Using voltage division at the input and again at the output,
we quickly produce the expression

i ]
Vo LR+ R LR+ R,

To maximize the gain regardless of the values of Ry, and R, , we make the voltage divi-
sion ratios as close to unity as possible. The ideal scenario requiresthat A, be infinity, R; be
infinity, and R, be zero, yielding a large overall gain of A,. Table 4.1 shows the actual
values of A,, R;, and R, for a sampling of commercial op-amps intended for very different
applications. While A, R;, and R, are not ideal, they do have the correct tendencies.

The power supplies affect performance in two ways. First, each op-amp has minimum
and maximum supply ranges over which the op-amp is guaranteed to function. Second,
for proper operation, the input and output voltages are limited to no more than the sup-
ply voltages.* If the inputs/output can reach within afew dozen millivolts of the supplies,
then the inputs/output are called rail-to-rail. Otherwise, the inputs/output voltage
limits are more severe—usually a volt or so away from the supply values. Combining the
model in Fig. 4.4, the valuesin Table 4.1, and these I/O limitations, we can produce the
graph in Fig. 4.6 showing the output—input relation for each op-amp in Table 4.1. From
the graph we see that LM C6492 and MAX4240 have rail-to-rail outputs while the LM 324
and PAO3 do not.

TABLE 4.1 A list of commercial op-amps and their model values

MANUFACTURER | PART NO. | A, (V/V) R (MQ) R, () COMMENTS

National LM324 100,000 1.0 General purpose, up to = 16 V
supplies, very inexpensive

National LMC6492 50,000 107 150 Low voltage, rail-to-rail inputs
and outputs’

Maxim MAX4240 20,000 45 160 Micro-power (1.8 V supply

@ 10 pA), rail-to-rail inputs
and outputs

Apex PAo3 125,000 10° 2 High-voltage, = 75V and high-
output current capability, 30 A.
That’s 2 kW!

"Rail-to-rail is atrademark of Motorola Corporation. This feature is discussed further in the following paragraphs.

*Op-amps are available that have input and/or output voltage ranges beyond the supply rails. However, these devices
constitute a very small percentage of the op-amp market and will not be discussed here.
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Figure 4.5

A network that depicts an
op-amp circuit. Vs and Ry,
model the driving circuit,
while the load is modeled by
R.. The circuit in Fig. 4.4 is
the op-amp model.
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Figure 4.6

Transfer plots for the
op-amps listed in
Table 4.1. The supply
voltages are listed in
the plot legends. Note
that the LMC6492 and
MAX4240 have rail-to-
rail output voltages
(output voltage range
extends to power sup-
ply values), while the
LM324 and PAo3 do
not.
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[
o
N

L
v
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B
)

Output voltage, v, (V)
o

4.1

Figure 4.7
An op-amp input-output
characteristic.

Even though the op-amp can function within the minimum and maximum supply volt-
ages, because of the circuit configuration, an increase in the input voltage may not yield a
corresponding increase in the output voltage. In this case, the op-amp is said to be in satura-
tion. The following example addresses this issue.

The input and output signals for an op-amp circuit are shown in Fig. 4.7. We wish to deter-
mine (@) if the op-amp circuit is linear and (b) the circuit’s gain.

We know that if the circuit islinear, the output must be linearly related, that is,
proportional, to the input. An examination of the input and output waveformsin Fig. 4.7
clearly indicates that in theregion s = 1.25 to 2.5 and 4 to 6 ms the output is constant
while the input is changing. In this case, the op-amp circuit isin saturation and therefore
not linear.

In the region where the output is proportiona to the input, that is, z = 0 to 1 ms, the
input changes by 1 V and the output changes by 3.3 V. Therefore, the circuit’'s gain is 3.3.

Voltage (V)
Output

3

z Input

1

0

1234567t(ms)
-1
Input

= Output

—3
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. Figure 4.8
Vi R; Circuit (@) and model (b) for

R, + the unity gain buffer.

b s ® AV <t> v,

@ (b)

To introduce the performance of the op-amp in a practical circuit, consider the network in
Fig. 4.8acalled aunity gain buffer. Notice that the op-amp schematic symbol includes the power
supplies. Substituting the model in Fig. 4.4 yields the circuit in Fig. 4.8b, containing just resis-
tors and dependent sources, which we can easily analyze. Writing loop equations, we have

Vi = IR + IR, + AV,
Vo = IR, + A Vip
Vo = IR

Solving for the gain, V,/V;, we find

Vo 1
Vs R,
S+
R() + A(JRi
For R, << R, we have ©
Vo 1 °
e
s oL
A,
And, if A, isindeed >> 1,
A Figure 4.9
VS =1 Ideal model for an opera-

tional amplifier. Model
The origin of the name unity gain buffer should be apparent. Table 4.2 showsthe actual gain ~ parameters:
vauesfor Vy; = 1V using the op-amps listed in Table 4.1. Notice how closethe gainistounity i, =i =o,v, = v..
and how small the input voltage and current are. These results lead us to smplify the op-amp in
Fig. 4.4 significantly. We introduce the ideal op-amp model, where A, and R; areinfiniteand R,
is zero. This produces two important results for analyzing op-amp circuitry, listed in Table 4.3.

TABLE 4.2 Unity gain buffer performance TABLE 4.3 Consequences of the ideal op-amp
for the op-amps listed in Table 4.1 model on input terminal 1/V values
LM324 0.999990 9.9999 9.9998 A, = 00 input voltage — oV
LMC6492 0.999980 19.999  1.9999 x 10 © R — oo input current — oA
MAX4240 0.999950 49.998 1.1111
PAo3 0.999992 79999 79999 x 10°°

From Table 4.3 we find that the ideal model for the op-amp is reduced to that shown in
Fig. 4.9. The important characteristics of the model are as follows. (1) since R; is extremely
large, the input currents to the op-amp are approximately zero (i.e., i, = i = 0); and (2) if the
output voltage is to remain bounded, then as the gain becomes very large and approaches infin-
ity, the voltage across the input terminals must simultaneously become infinitesimally small so
thatasA, — oo, v, — v_ — 0(i.e, v, — v_ = 0orov, = v_). Thedifference between these
input voltages is often called the error signal for the op-amp (i.e., v, — v_ = v,).
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0A

Figure 4.10

An ideal op-amp configured
as a unity gain buffer.

Ry Vee
VI\/\IA

The ground terminal J__ shown on the op-amp is necessary for signal current return, and
it guarantees that Kirchhoff’s current law is satisfied at both the op-amp and the ground node
in the circuit.

In summary, then, our ideal model for the op-amp is smply stated by the following conditions:

i,=i =0
* 42
V. = U

These simple conditions are extremely important because they form the basis of our analysis
of op-amp circuits.

Let's use the ideal model to reexamine the unity gain buffer, drawn again in Fig. 4.10,
where the input voltage and currents are shown as zero. Given that V;, is zero, the voltage at
both op-amp inputsis V;. Since the inverting input is physically connected to the output, V, is
also Vs—unity gain!

Armed with the ideal op-amp model, let’s change the circuit in Fig. 4.10
dlightly as shown in Fig. 4.11 where Vi and R are an equivalent for the cir-
cuit driving the buffer and R, models the circuitry connected to the output.

I, There are three main points here. First, the gain is still unity. Second, the op-

+
oV oA

+ amp requires no current from the driving circuit. Third, the output current
(I, = V,/R,)comes from the power supplies, through the op-amp and out of
the output pin. In other words, the load current comes from the power sup-

Figure 4.11

A unity gain buffer with
a load resistor.

2 v plies, which have plenty of current output capacity, rather than the driving cir-
1kQ ¢ cuit, which may have very little. Thisisolation of current is called buffering.
An obvious question at this point isthis: if V, = Vi, why not just connect
Vs to V, via two parallel connection wires, why do we need to place an op-
- amp between them? The answer to this question is fundamental and provides
us with some insight that will aid usin circuit analysis and design.
Consider the circuit shown in Fig. 4.12a. In this case V, is not equal to Vg
because of the voltage drop across Rg:

Vo=V — IR

However, in Fig. 4.12b, the input current to the op-amp is zero and, therefore, Vi appears at
the op-amp input. Since the gain of the op-amp configurationis 1, V, = Vs.In Fig. 4.12a the
resistive network’sinteraction with the source caused the voltage V, to be lessthan V;. In other
words, the resistive network loads the source voltage. However, in Fig. 4.12b the
op-amp isolates the source from the resistive network; therefore, the voltage follower is
referred to as a buffer amplifier because it can be used to isolate one circuit from another. The
energy supplied to the resistive network in the first case must come from the source Vi, where-
asin the second case it comes from the power supplies that supply the amplifier, and little or
no energy is drawn from V.

Ry | Rg 1
VWA O A%
+  —
— +
1% Resistive VS +> Jr' Resistive
o network - Vo network

() (b)
Figure 4.12

Illustration of the isolation capability of a voltage follower.
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input terminals, using the ideal op-amp model conditions. Thus, the technique is straight-

As a genera rule, when analyzing op-amp circuits we write nodal equations at the op-amp 4 3
forward and simple to implement. °

Fundamental
Op-Amp Circuits

Let us determine the gain of the basic inverting op-amp configuration shown in Fig. 4.13a

using both the nonideal and ideal op-amp models. 4 2
[ ]
R,
Ry
v’V\IA @ @
@ © + @
ve(+
S <_> Vo
() (b)
MA
® R,
o@— —W @ VWA —VWW—s @
& i R, + Ry - R, +
e 3R <+> R;3 <i
vy 2 l A(U+ - U_) Vy Vs Ct) [ A(’U+ -0 ) Vo
;: ® = Av, v,
- v_ - _
o - © ©
(c) (d)
U1 Vo
vIV\IA vIV\IA .
Ry Ry +
_ R,
vs Ci) R; <§> Ve v,
Av,
+
Figure 4.13 oE
Op-amp circuit. )

Our model for the op-amp is shown genericaly in Fig. 4.13b and specifically in terms of the
parameters R;, A, and R, in Fig. 4.13c. If the model isinserted in the network in Fig. 4.13a,
we obtain the circuit shown in Fig. 4.13d, which can be redrawn as shown in Fig. 4.13e.
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The node equations for the network are
V) — () V) — 0,
7S + et + 1 @ - 0
R, R; R,
v() - vl v(} - Ave
+
R, R

=0

0

where v, = —v,. The equations can be written in matrix form as
11 1 ( 1 )
— 4+ —+ = —|{— Vg
R, R; R, R, R E
( 1 A ) 11 ||, :
—=-= +— 0

R, R,) R, R

0

Solving for the node voltages, we obtain

1 1 1
- + - - 'US
vl l R2 Rr) R2 E
v, Al 1 A 1 1 1 :
—+ — + — 0
R2 R() Rl Ri R()
where
(1 1 1)(1 1) (1)(1 A>
A=l—+—+—||—+— | — |— - —
R, R, R,J\R, R, R,J\R, R,
Hence,

which can be written as

U, _(Rz/R1>

T Al

If we now employ typical values for the circuit parameters (e.g., A = 10°, R, = 10%Q,
R, =10, R, = 1 kQ, and R, = 5 k(}), the voltage gain of the network is

o

,
— = —4.9996994 ~ —5.000
Vs

However, theideal op-amp hasinfinite gain. Therefore, if wetake the limit of the gain equa-
tionas A — oo, we obtain

. vn R2
lim|{— | =—-—=-5.000
A0 Vg Rl

Note that the ideal op-amp yielded a result accurate to within four significant digits of that
obtained from an exact solution of atypica op-amp model. These results are easily repeated
for the vast array of useful op-amp circuits.

We now analyze the network in Fig. 4.13a using the ideal op-amp model. In this model,

do= =)

vy = V-
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Asshownin Fig. 4.13a, v, = 0 and, therefore, v- = 0. If we now write a node equation at
the negative terminal of the op-amp, we obtain

vs—0 v,—-0

=0
R, R,
or
Vo _ RZ
Vg B R,

and we have immediately obtained the results derived previously.

Notice that the gain isasimple resistor ratio. This fact makes the amplifier very versatile in
that we can control the gain accurately and ater its value by changing only one resistor. Also,
the gain is essentially independent of op-amp parameters. Since the precise values of A, R;,
and R, are sensitive to such factors as temperature, radiation, and age, their elimination results
in a gan that is stable regardless of the immediate environment. Since it is much easier to
employ theidea op-amp model rather than the nonideal model, unless otherwise stated we will
use the ideal op-amp assumptions to analyze circuits that contain operationa amplifiers.

Step 1. Usetheidea op-amp model: A, = oo, R; = o0, R, = 0. Op-Amp Circuits
e i, =i =0 e v, = v
Step 2. Apply nodal analysis to the resulting circuit.

Step 3. Solve nodal equations to express the output voltage in terms of the op-amp
input signals.

Let us now determine the gain of the basic noninverting op-amp configuration shownin Fig. 4.14.

4.3

Vin o——m— Figure 4.14
— 1 The non-
= inverting op-amp
configuration.

/ Rp
R, i
Once again, we employ the ideal op-amp model conditions, that is, v = v, and i_ = i,.
Using the fact that i = 0 and v_ = v;,, the KCL equation at the negative terminal of the
op-amp is
% _ Uy — Vin
R, Ry
or
< 1 1 ) v,
Vin + —
R, R Ry
Thus,
R
Yo _ 4 8k
Vin R,

Note the similarity of this case to the inverting op-amp configuration in the previous exam-
ple. We find that the gain in this configuration is also controlled by a simple resistor ratio
but is not inverted; that is, the gain ratio is positive.
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The remaining examples, though slightly more complicated, are analyzed in exactly the
same manner as those outlined above.

Gain error in an amplifier is defined as

tual gain — idea gai
4.4 e - [amtsn— dmign)
ideal gain
We wish to show that for a standard noninverting configuration with finite gain A, the gain
error is
GE = —100%
1+ A8

where3 = R,/(R, + R,).

The standard noninverting configuration and its equivalent circuit are shown in Fig. 4.15a
and b, respectively. The circuit equations for the network in Fig. 4.15b are

Vg = Uiy + vy, Vin=— and v, =

The expression that relates the input and output is

SRR
vS_UUA+B =0, A

o

and thus the actual gainis
v()

v 1+ AP

Recall that the ideal gain for this circuit is (R, + R,)/R, = 1/B. Therefore, the gain

error is
_ 4 1
GE=|1+A,8 B [100%
1/B
which, when simplified, yields
=]l
GE — 00%
1+ A,B
Figure 4.15 Vs o o X v,
Circuits used in Example 4.4. +
Vin onin
vO

U1 VWA

>
—AWW—e—O |
>
[\ )

(@) (b)
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Consider the op-amp circuit shown in Fig. 4.16. Let us determine an expression for the

output voltage.
4.5
Ry Figure 4.16
A gure 4.
Differential amplifier
R, operational
o Yy, ) amplifier circuit.
+ —
O—W—9—>
+  R; Uy 1y J?. *
(%] <
) R, Yo
5 _ _
L
The node equation at the inverting terminal is
v -V Y,V
Rl R2 = 1_

At the noninverting terminal KCL yields

v, — V. Uy

= — 4+
R, R,
However, i, = i = 0 and v, = v_. Substituting these values into the two preceding equa-
tionsyields
VU v, — U
+ =0
R, R,
and
1)2 — V_ - &
R, R,

Solving these two equations for v, results in the expression
R R R R
1)0:*2(1 +71>74v2_721)1
R, R,) Ry + R,
Notethat if R, = R, and Ry = R,, the expression reduces to

R
v() = E?(/Lh - vl)

Therefore, this op-amp can be employed to subtract two input voltages.

The circuit shown in Fig. 4.17ais a precision differential voltage-gain device. It is used to
provide asingle-ended input for an anal og-to-digital converter. We wish to derive an expres-
sion for the output of the circuit in terms of the two inputs. 4 ° 6

To accomplish this, we draw the equivalent circuit shown in Fig. 4.17b. Recall that the volt-
age across the input terminals of the op-amp is approximately zero and the currentsinto the
op-amp input terminals are approximately zero. Note that we can write node equations for
node voltages v, and v, in terms of v, and v,. Since we are interested in an expression for
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v, in terms of the voltages v, and v,, we simply eliminate the v, terms from the two node
equations. The node equations are

vl_va+vl_7)a+v1_vz
R, R, R¢
UV, =V, Uy — Y Uy

+ +—==0
R Rg R,

=0

Combining the two equations to eliminate v,,, and then writing v, in terms of v, and v,, yields

R 2R
v, = (v — vz)<1 + 2+ —2>

R, Rg
Figure 4.17 Y10—» v
. epe ——O 1)0 o~ o
Instrumentation amplifier =
circuit. =
%RZ SR,
V1 V1
n = 0
SRy SR
V2 O— 5 < <
?_. Y 2Rg —1% 3Rg
SRy SRy
() U
I = 0
< R2 < R2
(a) (b)
E4.1 Find 1, in the network in Fig. E4.1. ANSWER: [, = 8.4 mA.
¥ Vo
212k0
L2 CtD <5}10 kQ

2 kQ

H———W
DN

Figure E4.1
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E4.2 Determine the gain of the op-amp circuit in Fig.

1

E4.2.

<

SR

Vs G_“)

Figure E4.2

E4.3 Determine both the gain and the output voltage of the op-amp configuration shown in

Fig. E4.3.

(O

100 kQ

3}1 kQ

Figure E4.3

E4.4 Find 1, 1, |5, and 1, in Fig. E4.4.

I—— M
=

5 kQ —

1 mA

FUNDAMENTAL OP-AMP CIRCUITS 169

Figure E4.4

E4.5 Find V,intermsof V, and V, in Fig. E4.5. If V; =V, =4V, find V. If the op-amp
power suppliesare £15V and V, = 2 V, what is the allowable range of V,?

Vi 5kQ 10 kQ

Figure E4.5 =

v, R
ANSWER: —2 =1 + —2.
% R

S 1

ANSWER: V, = 0.101 V;
gain=101.

ANSWER:
|1: O, |2: 125 mA,
l,=—05mA, I,= 0.75 mA.

ANSWER: V,=—2V, +
35V, 6V, -4V =
V,=11V.

(continues on the next page)
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E4.6 Find V,and V; in Fig. E4.6. ANSWER: V,=-9V,
Vy=—48V.
2kQ 3kQ
ANV ANV
5 kQ V.
- ol v,
[t el
5V = = 10 kO
= SKQ%
Figure E4.6 =+ =
E4.7 Find V,in Fig. E4.7. ANSWER:
R, R
v, VO=KR—3+R—3+1J
o— VO 2 4
— R R
1 1+2 -2\,
- R) R
ANV ANV
L R R
Rl R4

Figure E4.7

4.7

The two op-amp circuits shown in Fig. 4.18 produce an output given by the equation

V, =8V, — 4V,
where
IV=V,=2V and 2V =V,=3V

We wish to determine (a) the range of V, and (b) if both of the circuits will produce the full
range of V, given that the dc suppliesare £10 V.

Giventhat V, = 8V, — 4V, and therange for bothV,andV, as1V =V, =2V and
2V =V, =3V,wefind that

Vomac = 8(2) — 4(2) =8V and V,pm, = 8(1) — 4(3) = -4V

and thus therange of V, is—4 V to +8 V.

Consider first the network in Fig. 4.18a. The signal at V.., which can be derived using the
network in Example 4.5, is given by the equation V, = 2V, — V,. V, isamaximum
whenV, = 2V andV, = 2V, that is, V. = 2(2) — 2 = 2 V. The minimum value
for V. occurswhenV, = 1VandV, = 3V, thatis, Vi, = 2(1) — 3 = —1 V. Since
both the max and min values are within the supply range of £10 V, the first op-amp in
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Fig. 4.18awill not saturate. The output of the second op-amp in this circuit is given by
the expression V, = 4V.. Therefore, therange of V,is—4 V = V, = 8 V. Since this
range is also within the power supply voltages, the second op-amp will not saturate, and
this circuit will produce the full range of V.

Next, consider the network in Fig. 4.18b. The signal V, = —8V; and so therange of V, is
—16V =V, = —8V and the range of V, is outside the power supply limits. This circuit will
saturate and fail to produce the full range of V.

Vio—— Vy
L — Vo
vI\AIA =
10 kQ !
J 30 kQ
210kQ d
o 10 kQ
Vs o—
@
80 k()
v’V\IA
10 kQ
Vi o—W—=a—]
1 vy 10 kQ 10 kQ
= vI\AIA VMA
VMA
V,0 v, 10 kQ J Vv,

=

—5 [

(b)

If you review the op-amp circuits presented in this chapter to this point, you will note one
common characteristic of all circuits. The output is connected to the inverting input of the
op-amp through a resistive network. This connection where a portion of the output voltage is
fed back to the inverting input is referred to as negative feedback. Recall from the model of an
ideal op-amp that the output voltage is proportional to the voltage difference between the input
terminals. Feeding back the output voltage to the negative input terminal maintains this voltage
difference near zero to alow linear operation of the op-amp. As a result, negative feedback is
necessary for the proper operation of nearly al op-amp circuits. Our analysis of op-amp
circuits is based on the assumption that the voltage difference at the input terminals is zero.

Almost all op-amp circuits utilize negative feedback. However, positive feedback is uti-
lized in oscillator circuits, the Schmitt trigger, and the comparator, which will be discussed in
the following section. Let's now consider the circuit in Fig. 4.19. This circuit is very similar
to the circuit of Fig. 4.13a. However, there is one very important difference. In Fig. 4.19,
resistor R, is connected to the positive input terminal of the op-amp instead of the negative

Figure 4.18

Circuits used in
Example 4.7.

171
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Figure 4.19

Op-amp circuit with
positive feedback.

4.4

Comparators

Figure 4.20
(a) An ideal
comparator and
(b) its transfer
curve.

Ry
VWA
Vee
vs R 1 v
O—— MV 0
VEE

input. Connecting the output terminal to the positive input terminal results in positive feed-
back. Asaresult of the positive feedback, the output value of this op-amp circuit has two pos-
sible values V¢ or Vge. Analysis of this circuit using the ideal op-amp model presented in
this chapter does not predict this result. It is important to remember that the ideal op-amp
model may only be utilized when negative feedback is present in the op-amp circuit.

A comparator, a variant of the op-amp, is designed to compare the noninverting and invert-
ing input voltages. As shown in Fig. 4.20, when the noninverting input voltage is greater, the
output goes as high as possible, at or near V... On the other hand, if the inverting input volt-
age is greater, the output goes as low as possible, at or near V;;. Of course, an ideal op-amp
can do the same thing, that is, swing the output voltage as far as possible. However, op-amps
are not designed to operate with the outputs saturated, whereas comparators are. As aresult,
comparators are faster and less expensive than op-amps.

We will present two very different quad comparators in this text, National
Semiconductor’s LM 339 and Maxim's MAX917. Note that the LM 339 requires a resistor,
called a pull-up resistor, connected between the output pin and V... The salient features of
these products are listed in Table 4.4. From Table 4.4, it is easy to surmise that the LM339 is
a general -purpose comparator, whereas the MAX917 isintended for low-power applications
such as hand-held products.

S
=
I+
A\;L
+
Output voltage
o

= -15 -1 -05 0 0.5 1 15
Input voltage (V, — V_)

@ (b)

A common comparator application is the zero-crossing detector, shown in Fig. 4.21a
using a LM339 with +5 V supplies. As seen in Fig. 4.21b, when V; is positive, V, should be
near +5V and when Vs is negative, V, should be near —5 V. The output changes value on
every zero crossing!

TABLE 4.4 A listing of some of the features of the LM339 and MAX917 comparators

PRODUCT MIN. SUPPLY MAX. SUPPLY SUPPLY CURRENT MAX. OUTPUT CURRENT TYPICAL Rpyy_yp

LM339
MAX919 2.8V

36V 50 mA 3 kQ
5.5V 0.8 MA 8 mA NA
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Figure 4.21
(a) A zero-crossing

Input
6 = Qutput

3kQ 4
+5V .

2 2
3

+ 8 0r—

-5V % S
Vs Ci ! Q

= 4

= -6

L 1 Time

@) (b)

At this point, we have a new element, the op-amp, which we can effectively employ in both
applications and circuit design. This device is an extremely useful element that vastly
expands our capability in these areas. Because of its ubiquitous nature, the addition of the
op-amp to our repertoire of circuit elements permits us to deal with a wide spectrum of
practical circuits. Thus, we will employ it here, and also use it throughout this text.

detector and (b) the
corresponding input/
output waveforms.

4.5

Application
Examples

In alight meter, a sensor produces a current proportional to the intensity of the incident
radiation. We wish to obtain a voltage proportional to the light’s intensity using the circuit
inFig. 4.22. Thus, we select avalue of Rthat will produce an output voltage of 1V for each
10 A of sensor current. Assume that the sensor has zero resistance.

APPLICATION
EXAMPLE 4.8

Figure 4.22

Incident =
light

VAV Bt
sensor v,

R
Light intensity to voltage
converter.
il

Applying KCL at the op-amp input, SOLUTION

I1=V/R
Since V,/I is 10°,
R = 100 kQ

The circuit in Fig. 4.23 is an electronic ammeter. It operates as follows: the unknown
current, |, through R, produces a voltage, V;. V; is amplified by the op-amp to produce a
voltage, V,, which is proportional to I. The output voltage is measured with a simple
voltmeter. We want to find the value of R, such that 10V appears at V, for each milliamp
of unknown current.

APPLICATION
EXAMPLE 4.9



174 CHAPTER 4 OPERATIONAL AMPLIFIERS

SOLUTION Since the current into the op-amp + terminal is zero, the relationship between vV, and | is
Vi = IR,
The relationship between the input and output voltagesis

R,
V= V(1427
R

or, solving the equation for V, /1, we obtain

Vo R,
2 =Rl1+2
i R,

Using the required ratio V,/I of 10* and resistor values from Fig. 4.23, we can find that

R, = 9kQ
Figure 4.23 o
Electronic ammeter. 1
Unknown L
Unknown =
current ar
Voltmeter
+
VléRlile AN VO
— R2
) O + =©
Rl =1k é -
e}
APPLICATION Let us return to the dc motor control example in Chapter 3 (Example 3.22). We want to

define the form of the power amplifier that reads the speed control signal, Vg,e, and outputs
the dc motor voltage with sufficient current to drive the motor as shown in Fig. 4.24. Let us
make our selection under the condition that the total power dissipation in the amplifier
should not exceed 100 mW.

EXAMPLE 4.10

SOLUTION From Table 4.1 we find that the only op-amp with sufficient output voltage—that is, a max-
imum output voltage of (4)(5) = 20 V—for thisapplication isthe PAO3 from APEX. Since
the required gain is +4, we can employ the standard noninverting amplifier configuration
shown in Fig. 4.25. If the PAO3 is assumed to be ideal, then

Ry
VM:Vspeed]‘FRi :4Vspeed
A

There are, of course, an infinite number of solutions that will satisfy this equation.

Figure 4.24
The dc motor
example from 5y = R S @ 1 P;)r\;]vsr
Chapter 3. T RPOt R *da=-0 * VM/Vspeed =4 |
2 Vspeed i dc

0 J- IZM motor
= = = J_-
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In order to select reasonable values, we should consider the possibility of high currents
in R, and Rz when V,, is at its peak value of 20 V. Assuming that R;, for the PAO3 is much
greater than R, the currentsin Ry and R, essentially determine the total power dissipated.
The total power dissipated in R, and Ry is

1% 207 400
= =
R,+ Ry R,+Ry; R,+ Ry

Ptotal -

Since the total power should not exceed 100 mW, we can use 1/4 W resistors—an inexpen-
sive industry standard—uwith room to spare. With this power specification, we find that

V2 400
Ry + Ry = —% = —— = 4000
Ptotal 0.1
Also, since
R
1+-2=4
R,

then Rz = 3 R,. Combining this result with the power specification yields R, = 1 k) and
Ry = 3 kQ. Both are standard 5% tolerance values.

APPLICATION EXAMPLES

Figure 4.25

The power amplifier
configuration using the
PA03 op-amp.

175

An instrumentation amplifier of the form shown in Fig. 4.26 has been suggested. This
amplifier should have high-input resistance, achieve a voltage gain V,/(V, — V,) of 10,
employ the MAX4240 op-amp listed in Table 4.1, and operate from two 1.5V AA cell bat-
teriesin series. Let us analyze this circuit, select the resistor values, and explore the validity
of this configuration.

Differential amplifier

3V :--------------------‘.
T A

Vl — J_ E ’ — : +

- = 'RB = RA [ J__ : V

1 = o

3V = A VWA 1 10—

< Rl : = :?

RZ : !
1.5vj R, : :
B AA% ! 1
15V = | : RA RB = RA :
I ——WA W :
= O 7y V! !
Vs =3V L e a

APPLICATION

EXAMPLE 4.11

Figure 4.26

An instrumentation
amplifier using the
MAX4240 op-amp.
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4.6

SOLUTION

Design Examples

OPERATIONAL AMPLIFIERS

As indicated, the op-amp on the right side of the circuit is connected in the traditional
differential amplifier configuration. Example 4.5 indicates that the voltage gain for this
portion of the network is

b= - )|

Andif R, = Ry, the equation reduces to
V,=V.— Y,
If we can find arelationship between V;, V,, and V, and V,, then an expression for the over-
all voltage can be written. Applying KCL at node A yields
-V V-V

R R,

Ry Ry
Ve= W1+ | Wl
R R

In asimilar manner, at node B we obtain
- _h-V

R R,

R, R,
V,=—V| = |+ W1+
R R

By combining these equations, the output voltage can be expressed as

R, R, R, R,
Vo=V.=V,=Wl+21 =Vt - WiI+t—>
R R R R

If the resistors are selected such that R, = R,, then the voltage gain is

or

or

V,

0

=1+t
i— % R

For again of +10, weset R, = 4.5 R. To maintain low power, we will use fairly large values
for these resistors. We somewhat arbitrarily choose R = 100 k) and R, = R, = 450 k().
We can use 100 k() resistors in the differential amplifier stage as well.

Note that the voltage gain of the instrumentation amplifier is essentialy the same as
that of a generic differential amplifier. So why add the cost of two more op-amps? In this
configuration the inputs V; and V, are directly connected to op-amp input terminals; there-
fore, the input resistance of the intrumentation amplifier is extremely large. From Table 4.1
we see that R;,, for the MAX4240 is 45 M(). Thisis not the case in the traditional differen-
tial amplifier where the external resistor can significantly decrease the input resistance.

DESIGN

EXAMPLE 4.12

We are asked to construct an amplifier that will reduce a very large input voltage (i.e., Vi,
ranges between +680 V) to asmall output voltage in the range ¥5 V. Using only two resis-
tors, we wish to design the best possible amplifier.
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Since we must reduce +680 V to—5 V, the use of an inverting amplifier scemsto beappro- SOLUTION
priate. The input/output relationship for the circuit shown in Fig. 4.27 is

Since the circuit must reduce the voltage, R, must be much larger than R,. By trial and
error, one excellent choice for the resistor pair, selected from the standard Table 2.1, is
R, = 27kQ and R, = 200 Q. For V,, = 680 V, the resulting output voltage is 5.037 V,
resulting in a percent error of only 0.74%.

R, Figure 4.27
o W A standard inverting
I 1 - amplifier stage.
— +
L
Vin = VO

There is a requirement to design a noninverting op-amp configuration with two resistors DESIGN
under the following conditions: the gain must be +10, the input rangeis+2 V, and the total

power consumed by the resistors must be less than 100 mW. EXAMPLE 4.13
For the standard noninverting configuration in Fig. 4.28a, the gain is SOLUTION

V, R

Lo i <= 2

Vin Rl

For again of 10, wefind R,/R, = 9. If R, = 3kQ and R, = 27 kQ, then the gain require-
ment is met exactly. Obviously, a number of other choices can be made, from the standard
Table 2.1, with a 3/27 ratio. The power limitation can be formalized by referring to
Fig. 4.28b where the maximum input voltage (2 V) is applied. The total power dissipated by
theresistorsis

2 (20-2) 4 34

Pi=—t+—— = — +— <0l
KR, R, R, 9R,

The minimum value for R, is 400 ().

Figure 4.28
—iq + —iq + The noninverting op-amp
Vin = Y 2V = V, =20V configuration employed in
_ 2V _ Example 4.13.
R2 R2

(@) (b)
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DESIGN
EXAMPLE 4.14

SOLUTION

Figure 4.29
A standard weighted-
summer configuration.

We wish to design a weighted-summer circuit that will produce the output

vV, =—09V, — 0.1V,
The design specifications call for use of one op-amp and no more than three resistors.
Furthermore, we wish to minimize power while using resistors no larger than 10 k().

A standard weighted-summer configuration is shown in Fig. 4.29. Our problem is reduced
to finding values for the three resistors in the network.
Using KCL, we can write

A
I, + I, :_E
where
Vi V
L=-— ad L=-"
R, R,

Combining these relationships yields

Therefore, we require

R R
— =09 and — =0.1
R, R,
From these requirements, we see that the largest resistor is R, and that R is the smallest.
Also, note that the R/ R, ratio can be expressed as 27/30. Finally, to minimize power, we
should use the largest possible resistor values. Based on this information, the best resis-
tor values are R = 270 ), R, = 300 ), and R, = 2.7 kQ), which yield the desired per-
formance exactly.

I 1 R 1 R
VI\/\IA VMA
15)
Ry | — n
Vi Ci V2 1

DESIGN
EXAMPLE 4.15

SOLUTION

In Example 2.36, a 250-() resistor was used to convert a current in the 4- to 20-mA range
to avoltage such that a 20-mA input produced a5-V output. In this case, the minimum cur-
rent (4 mA) produces aresistor voltage of 1 V. Unfortunately, many control systems oper-
ate on a0- to 5-V rangerather than a 1- to 5-V range. Let us design anew converter that will
output 0V at 4 mA and 5V at 20 mA.

The simpleresistor circuit we designed in Example 2.36 is agood start. However, the volt-
age spanisonly 4V rather than the required 5 V, and the minimum valueis not zero. These
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facts imply that a new resistor value is needed and the output voltage should be shifted
down so that the minimum is zero. We begin by computing the necessary resistor value:

Vmax B Vmin _ 5-0
Iy — Iin 002 — 0.004

The resistor voltage will now range from (0.004)(312.5) to (0.02)(312.5), or 1.25t06.25 V.
We must now design a circuit that shifts these voltage levels so that the rangeis0to 5 V.
One possible option for the level shifter circuit is the differential amplifier shown in
Fig. 4.30. Recall that the output voltage of this device is

= 31250

R,
V. = (V — Vsh'f)*
0 1 jft R,

Since we have already chosen R for a voltage span of 5V, the gain of the amplifier should

bel(i.e, R, = R,). Clearly, the value of the required shift voltage is 1.25 V. However, we
can verify this value by inserting the minimum values into this last equation

R,

0 = [(312.5)(0.004) — Vgir] R

1

and find
Vaire = (312.5)(0.004) = 1.25V

There is one caveat to this design. We don’t want the converter resistor, R, to affect
the differential amplifier, or vice versa. This means that the vast majority of the
4-20 mA current should flow entirely through R and not through the differential ampli-
fier resistors. If we choose R, and R, >> R, this requirement will be met. Therefore,
we might select R, = R, = 100 kQ) so that their resistance values are more than 300

times that of R.
Differential amplifier with shifter Figure 4.30
. A 4-20 mA to o-5V
. converter circuit.
.t
Y '
4-20 mA Q rV,
SUMMARY
m Op-amps are characterized by m Op-amp problems are typically analyzed by writing node
High-input resistance equations at the op-amp input terminals
Low-output resistance m The output of a comparator is dependent on the difference
Very high gain in voltage at the input terminals

m Theidea op-amp is modeled using
=i =0

v, = v
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PROBLEMS

4.1 An amplifier hasagain of 15 and the input waveform
shown in Fig. P4.1. Draw the output waveform.

Vin(mV)
150
100
50

0 N

0.5 1 520 £(s)

-50

-100

-150

Figure P4.1

4.2 An amplifier has again of —5 and the output waveform
shown in Fig. P4.2. Sketch the input waveform.
0o(V)
A

12
10

6

1 2 3 4 5 6 7 8 9 ((ms)

Figure P4.2

4.3 An op-amp based amplifier has supply voltages of +5V
and a gain of 20.

(@ Sketch the input waveform from the output waveform
inFig. P4.3.

(b) Double the amplitude of your resultsin (a) and
sketch the new output waveform.

Vo(V)

. , /

25 50 75 100 125 t (ms)

Figure P4.3

4.4 For an ided op-amp, the voltage gain and input resistance

4.5

4.6

4.7

are infinite while the output resistance is zero. What are the
consequences for

(a) the op-amp’sinput voltage?

(b) the op-amp’sinput currents?

(c) the op-amp’s output current?

Revisit your answers in Problem 4.4 under the following
nonideal scenarios.

@) R, =00,Ry; =0,A, # 0.

(b) R, = 00, Royt > 0, A, = o0.

(€) Ry, # 00, Ry = 0, A, = o0.

Revisit the exact analysis of the inverting configuration in

Section 4.3.

(@) Find an expression for the gain if R, = 00, Ry = 0,
A, # oo.

(b) Plot theratio of thegainin (a) to the ideal gain versus
A, for1 = A, = 1000for an ideal gain of —10.

(c) From your plot, does the actual gain approach the
ideal value as A, increases or decreases?

(d) From your plot, what isthe minimum value of A, if
the actual gain iswithin 5% of the ideal case?

Revisit the exact analysis of the inverting amplifier in

Section 4.3.

(a) Find an expression for the voltage gain if R;, # oo,
Ryt =0, A, # oo.

(b) For R, = 27 kQ and R, = 3 kQ, plot theratio of the
actual gain to theideal gain for A, = 1000 and
1kQ = Ry, = 100 kQ.

(c) From your plot, does the ratio approach unity as Ry,
increases or decreases?

(d) From your plot in (b), what is the minimum va ue of
R, if the gain ratio isto be at least 0.98?



4.8 An op-amp based amplifier has+18 V suppliesand again
of —80. Over what input range is the amplifier linear?

4.9 Assuming an ideal op-amp, determine the voltage gain of the

circuit in Fig. P4.9.

20 kO
vl\/\IA
1kQ
w >—
N )
+
V1 Yo
Figure P4.9

4.10 Assuming an ideal op-amp, determine the voltage gain of
the circuit in Fig. P4.10.

—+
4kQ +
2kQ
V1 Cf) v,
200 kO

Figure P4.10

4.11 Assuming an ideal op-amp in Fig. P4.11, determine the
vaue of Ry that will produce a voltage gain of 26.

Figure P4.11

4.12 Assuming an ideal op-amp, find the voltage gain of the
network in Fig. P4.12.

18 kQ
v’\/\l‘
9 kQ
—W—e
1000 150 Q
O—WW——AM—
N
+
V1 v,
(e,
Figure P4.12

PROBLEMS

4.13 Assuming an ideal op-amp in Fig. P4.13, determine the

output voltage V,,
4kQ
Vw‘
1kQ
——AM—
JF
v

oy e 2 kQ v,

Figure P4.13

4.14 Determine the gain of the amplifier in Fig. P4.14. What
isthe valueof 1,?

Ry = 20 kQ
Vo

R1 = 3.3kQ

Vin=2V

Figure P4.14
4.15 For the amplifier in Fig. P4.15, find the gain and 1,.

I, Ry = 20 kQ
> VO
Ry = 3.3k
Vg=2V

Figure P4.15

4.16 Using the ideal op-amp assumptions, determine the

valuesof V, and I, in Fig. P4.16.

1
11V oo >
N ' Vo
VWA
J  10kQ
1kQ

Figure P4.16
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4.17 Using the ideal op-amp assumptions, determine 1, 1,
and I; in Fig. P4.17.

VWA =
Ry I + ’ Vo
1 mA L

Figure P4.17

@ 4.18 In auseful application, the amplifier drives aload. The
circuit in Fig. P4.18 models this scenario.

(@) SketchthegainV,/V; for 10 ) = R, = co.

(b) Sketch I, for10Q = R, = 0 if Vs = 0.1 V.

(c) Repeat (b)if Vy = 1.0 V.

(d) What isthe minimum value of R, if |I,| must be less
than 100 mA for V5| < 0.5V?

(e) What isthe current I, if R, is100 )? Repeat for

R, = 10 kQ.
1 -
S Ry = 27 kQ
Vg Ry = 3kQ
Figure P4.18

4.19 The op-amp in the amplifier in Fig. P4.19 operates with
+15V supplies and can output no more than 200 mA.
What is the maximum gain alowable for the amplifier if
the maximum value of Vg is1V?

Vg O

=

VWA <
Ry R Lﬁ, 50 O

R%

Figure P4.19

4.20 For the amplifier in Fig. P4.20, the maximum value of

Vs is 2 V and the op-amp can deliver no more than

100 mA.

(@) If £10 V supplies are used, what is the maximum
allowable value of R,?

(b) Repeat for +£3 V supplies.

(c) Discuss the impact of the supplies on the maximum
allowable gain.

Vso 2 oV, R =10kQ
Rff = SR,

Figure P4.20

4.21 For the circuit in Fig. P4.21,
(@) findV,intermsof vV, and V,.
() IfV, =2VandV, =6V, findV,.

(c) If the op-amp suppliesare+12V,andV, = 4V,
what is the allowable range of V,?

\%
1o T .V,
Vyo VWA 7

2 kO =

Figure P4.21

4.22 Find V, in the circuit in Fig. P4.22, assuming that the
op-amp isideal.

VWA
1 kQ 5 kQ

—VWWA =
> +

D - 2

Figure P4.22

4.23 The network in Fig. P4.23 is a current-to-voltage
converter or transconductance amplifier. Find v, /i
for this network.

s -

Figure P4.23

Ry = 100 kQ



4.24 Calculate the transfer function i,/v, for the network
shown in Fig. P4.24.

V] o——— iy

Figure P4.24

4.25 Determine the relationship between v, and i, in the
circuit shown in Fig. P4.25.

Rp
VWA
Ry
V10— =
r + io
Figure P4.25

4.26 Find V, in the network in Fig. P4.26 and explain what

effect R, has on the output.

10Q
A%

20

VWA -

> +
+ -
2V C_
10 Q R1 VO

Figure P4.26

4.27 Determine the expression for v, in the network in

Fig. P4.27.
R
vI\/\IA
R
YA O YW =
vpo—m |~ . v
Figure P4.27

4.28 Show that the output of the circuit in Fig. P4.28 is

R, R
V= [1+ 22 V=220
RTOR,

PROBLEMS

Figure P4.28

4.29 Find V, in the network in Fig. P4.29.

A
Ry )
VWAA——
+> =
5V C— 4v

Figure P4.29

183

4.30 Find the voltage gain of the op-amp circuit shown in

Fig. P4.30.

20 kO

v’\/\l‘

Figure P4.30

4.31 Determine the relationship between v, and v;, in the

circuit in Fig. P4.31.

Ry
vin O VWA +
RZ% vI\/zA
Rp

Figure P4.31

&
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4.32 Inthe network in Fig. P4.32, derive the expression for v,  4.36 Determine the expression for the output voltage, v,, of

in terms of the inputs v, and v,. the inverting-summer circuit shown in Fig. P4.36.
R1 RF
Rp V10 VWA VWA
Ry R
V10 VWA =~ 2
v N Vo V2 O——W ~
20 VWA 3 + b Vo
R2 = R3 =
U3 O——WW—— B
Ry
. = Figure P4.36
Figure P4.32

4.37 Determine the output voltage, v, of the noninverting
averaging circuit shown in Fig. P4.37.

4.33 For the circuit in Fig. P4.33, find the value of R, that Ry
produces a voltage gain of 10. V] O——VW—
R,
T V2 O——WWA n
- + _ Vo
= » R3 =
—+ VWA 3 O——/M——
Vi C—D 18 kQ) Vo A
Ry d Rp
_ ERI
Figure P4.33 ) Figure P4.37

4.38 Find the input/output relationship for the current
amplifier shown in Fig. P4.38.
Rp

40 kQ W
vm‘

5 kQ __l}_
VWA L
5V CJ_D J

4v Vo

4.34 FindV, inthecircuit in Fig. P4.34.

S20k0
Figure P4.38
Figure P4.34 4.39 FindV, inthecircuit in Fig. P4.39.
@ 4.35 FindV, inthe circuit in Fig. P4.35. %2,59
10 kQ VW
VWA VWA 40 kQ
100 kQ

— M
10 kQ
Oov i e
30 kQ L +
1OVCJ_F> )

12v 40 kQ

Figure P4.35 Figure P4.39




4.40 Find v, in the circuit in Fig. P4.40.

R
VIV\IA

%_.

Figure P4.40

4.41 Find the expression for v, in the differential amplifier

circuit shown in Fig. P4.41. vy
Rp
Ry
V1o VWA =
+ Yo
vIV\IA < L
Ry Rlé - -
V2 O—M— =
Rq 4

Figure P4.41

PROBLEMS

4.42 Find v, in the circuit in Fig. P4.42.

Figure P4.42
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4.43 Find the output voltage, v,, in the circuit in Fig. P4.43.

Ry
- WA ~
il R3 +
VW =
r,
R
S| R,
v’\/\l‘
——AW—e
Rj3

Figure P4.43

4.44 The electronic ammeter in Example 4.9 has been modified and is shown in Fig. P4.44. The selector switch alows the user to
change the range of the meter. Using valuesfor R, and R, from Example 4.9, find the values of R, and R that will yield a

10-V output when the current being measured is 100 mA and 10 mA, respectively.

: 1
k_> < < <
Unknown _ =
current éRA éRB §> Re=1 k) +
\oltmeter
o VWA Vo
o 0 R2 =9k()
4 O + -0
Rl =1k é -
Selector
switch
O

Figure P4.44

@
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4.45

4.46

4.47

4.48

4.49

4.50

CHAPTER 4 OPERATIONAL AMPLIFIERS

Given abox of 10-k(} resistors and an op-amp, design a
circuit that will have an output voltage of

V, = 2V — 4%,

Design an op-amp circuit that has a gain of —50 using
resistors no smaller than 1 k().

Design a two-stage op-amp network that has a gain
of —50,000 while drawing no current into its input
terminal. Use no resistors smaller than 1 kQ).

Design an op-amp circuit that has the following
input/output relationship:

V,= =5V, + 0.5V,

A voltage waveform with a maximum value of

200 mV must be amplified to a maximum of 10 V
and inverted. However, the circuit that produces the
waveform can provide no more than 100 pA. Design
the required amplifier.

An amplifier with again of w £+ 1% is needed. Using
resistor values from Table 2.1, design the amplifier.
Use as few resistors as possible.

4.51 Design an op-amp-based circuit to produce the
function

Vo =5V — 4V,

4.52 Design an op-amp-based circuit to produce the
function

Vo=5Vi—=Th

4.53 Show that the circuit in Fig. P4.53 can produce the
output

V,= K\Vi — KbV,

onlyfor0 =K, =K, + 1.

Ry
Vl C v’\/\lA —%_ V
o { 0
R, =
VI\/\IA
Ry

Figure P4.53
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4PFE-1 Given the summing amplifier shown in Fig. 4PFE-1, select the values of R, that will produce an output voltage of —3 V.

a 4.42 kQ b. 6.33 kQ)
c. 3.6 kQ d. 5.14 kQ
R,
4kQ
VWA =~
+
12 kQ =

2V

Figure 4PFE-1

4PFE-2 Determine the output voltage V, of the summing op-amp circuit shown in Fig. 4PFE-2.

a6Vv b. 18V
c. 9V d 10V
18 kQ
VA 36 kQ
6 kQ
VWA [~ 6 kQ
+ Vw —
+
+ 12 kQ = VWA
2v(2) P L
1V
+)av

Figure 4PFE-2

4PFE-3 What is the output voltage V, in Fig. 4PFE-3?

a —5V
c. 4V

b. 6V

d -7V

VWA
2Q

A%
3Q

GVCiD 40

VWA

Figure 4PFE-3
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4PFE-4 What value of R, in the op-amp circuit of Fig. 4PFE-4  4PFE-5 What isthe voltage V, in the circuit in Fig. 4PFE-5?

is required to produce a voltage gain of 50? a3V
a 135kQ b. 6V
b. 210 kQ c. 8V
c. 180 kQ d 5V
d. 245kQ
Vw‘
6 kQ
I
o v’\/\l‘ +
+ 2 kQ
Vo 5V Ci) =
N 8 kQ 1kQ 5 v,

2kQ

Figure 4PFE-4 Figure 4PFE-5



CHAPTER

ADDITIONAL ANATYSIS
TECHNIQUES

Courtesy egdigital/iStockphoto

Monitoring Devices Devices that monitor traffic flow on inter-
state roadways help reduce congestion near cities. For improved
traffic control, monitoring devices flash your speed as you
approach, warning you when you are over the limit and persuad-
ing you to slow down. Such devices are useful in construction
zones where reduced speeds are required to protect workers.

Electric circuits have similar tools: current-monitoring
devices that detect excessive currents and disconnect compo-
nents that would be damaged if power limitations are exceed-
ed. These circuit breakers in homes or office buildings have
cutoff features that can be reset to restore service.

Understand the concepts of linearity and equivalence
Know how to analyze electric circuits using the principle of
superposition

Be able to calculate a Thévenin equivalent circuit for a
linear circuit

Be able to calculate a Norton equivalent circuit for a linear
circuit

Understand when and how to use a source transformation

Be able to use the maximum power transfer theorem

Measuring and regulating current flow in a circuit is as
important as ensuring traffic flows freely. In this chapter, we
use the superposition concept to calculate currents flowing in
an electric circuit due to multiple sources. We form a simple
equivalent circuit for parts of circuits that remain fixed,
enabling a focus only on components to be changed for differ-
ent operating conditions. Once you’ve mastered these con-
cepts you’ll be better prepared to design circuits that keep the
current flowing under the legal limit.
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CHAPTER 5

5.1

Introduction

ADDITIONAL ANALYSIS TECHNIQUES

Before introducing additional analysis techniques, let us review some of the topics we have
used either explicitly or implicitly in our analyses thus far.

EQUIVALENCE Table5.1is a short compendium of some of the equivalent circuits that
have been employed in our analyses. Thislisting serves as a quick review aswe begin to look
at other techniques that can be used to find a specific voltage or current somewhere in a net-
work and provide additional insight into the network’s operation. In addition to the forms|ist-
ed in the table, it isimportant to note that a series connection of current sources or a parallel
connection of voltage sources is forbidden unless the sources are pointing in the same direc-
tion and have exactly the same values.

TABLE 5.1 Equivalent circuit forms

— 0
Ry
— SR +Ry
R
)
o —0
< < Rl R2
R R D —_—
2 23 F R+ Ry
o) )
o — 0
Vi
e -_— Ci Vl - Vz
v,(5)
O o

Vs Cf R é

LINEARITY All the circuits we have analyzed thus far have been linear circuits, which are
described by a set of linear algebraic equations. Most of the circuits we will analyze in the
remainder of the book will also be linear circuits, and any deviation from this type of network
will be specifically identified as such.

Linearity requires both additivity and homogeneity (scaling). It can be shown that the cir-
cuits that we are examining satisfy thisimportant property. The following example illustrates
one way in which this property can be used.



SECTION 5.1

For the circuit shown in Fig. 5.1, we wish to determine the output voltage V,,. However,
rather than approach the problem in a straightforward manner and calculate 1, then 7;, then
I, and so on, we will use linearity and simply assume that the output voltageisV,, = 1 V.

This assumption will yield a value for the source voltage. We will then use the actual value
of the source voltage and linearity to compute the actual value of V.

If we assumethat V,, = V, = 1V, then

Vs
12 =—=05mA

2k
V, can then be calculated as
V, = 4kl + V,
=3V
Hence,
_Y_
1] = 37k =1mA

Now, applying KCL,
IL,=1+1=15mA

Then
vV, = 2KI, +V,

=6V

Therefore, the assumptionthat V,,, = 1V produced a source voltage of 6 V. However, since
the actual source voltageis 12 V, the actual output voltageis1V(12/6) = 2 V.

Vo Ip Vi LV,

vIV\IA
12V CJ_D

4

2 kQ) 4 kQ) +

> v,
3kQ S 2k out
L I

I———AV—

INTRODUCTION 191

5.1

Figure 5.1
Circuit used
in Example 5.1.

E5.1 Use linearity and the assumption that 7, = 1 mA to compute the correct current , in the
circuitin Fig. E5.1if I = 6 mA.

VWA - VWA
4kQ 2 kQ
3} 8 kQ % 6 kQ 3} 3kQ
. 1 1,
Figure E5.1 | o

E5.2 Find V;in Fig. E5.2 using linearity and the assumption that V,= 1 V.

4kQ 4kQ 2k
AM————MWA————W
+
12k |
20V Cj) 8k k0 4k0Z V
o

Figure Es5.2 ' 3kQ

ANSWER: I, = 3mA.

ANSWER: V,= 5/3V.
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5.2

Superposition
To provide motivation for this subject, let us examine the simple circuit of Fig. 5.2a, in
which two sources contribute to the current in the network. The actual values of the sources
5 A 2 are left unspecified so that we can examine the concept of superposition.
The mesh equations for this network are
=3ki, (1) + 9kiy(t) = —v,(1)
Solving these equations for i,(¢) yields
o = 20 w0
: 5k 15k
In other words, the current i, (#) has a component due to v, (#) and acomponent due to v,(1).
In view of the fact that i,(#) has two components, one due to each independent source, it
would beinteresting to examine what each source acting alone would contributeto (). For
v,(¢) to act alone, v,(r) must be zero. Aswe pointed out in Chapter 2, v,(¢) = 0 meansthat
the source v,(7) is replaced with a short circuit. Therefore, to determine the value of ()
due to v,(¢) only, we employ the circuit in Fig. 5.2b and refer to this value of i;(z) asii(¢).
N vy(t) _ (1)
i(1) = =
3K + (3k)(6Kk) Sk
3k + 6k

Let us now determine the value of i,(#) dueto v,(t) acting alone and refer to this value as
i{(r). Using the network in Fig. 5.2c,

N v,(?) _ 20,(1)

i(t) = — =

P CL)i(C1) Rk
3k + 3k
Then, using current division, we obtain
Figure 5.2 (1) = —20,(1) ( 3k ) (1)
"(f) = =
Circuits used to illustrate 15k 3k + 3k 15k

superposition.

3kQ 6 kQ i) 3kQ 6 kQ (1) 3kQ 6k j5(t)
VWA VWA VIV\IA VWA VIV\IA VMA

3 kQ

0 0(®) @ 3 @ e u0() 2 3k0 23 (Du

@ (b) ©

Now, if we add the values of i{(¢) and i{(¢), we obtain the value computed directly; that is,

vy(1) vy(1)
sk 15k

i(r) = ii(1) +if (1) =

Note that we have superposed the value of ij(¢) on i{(r), or vice versa, to determine the
unknown current.



SECTION 5.2 SUPERPOSITION

What we have demonstrated in Example 5.2 is true in general for linear circuits and is a
direct result of the property of linearity. The principle of superposition, which provides us
with this ability to reduce a complicated problem to several easier problems—each contain-
ing only a single independent source—states that

In any linear circuit containing multiple independent sources, the current or voltage at any
point in the network may be calculated as the algebraic sum of the individual contributions of
each source acting alone.

When determining the contribution due to an independent source, any remaining voltage
sources are made zero by replacing them with short circuits, and any remaining current sources
are made zero by replacing them with open circuits.

Although superposition can be used in linear networks containing dependent sources, it is
not useful in this case since the dependent source is never made zero.

As the previous example indicates, superposition provides some insight in determining the
contribution of each source to the variable under investigation.

We will now demonstrate superposition with two examples and then provide a problem-
solving strategy for the use of this technique. For purposes of comparison, we will also solve
the networks using both node and loop analyses. Furthermore, we will employ these same
networks when demonstrating subsequent techniques, if applicable.

L et us use superposition to find V, in the circuit in Fig. 5.3a.

S1k0 CDz mA Seka  V, S1ko CDz mA 3ok V,

@) (b)
A ) 2k9 3V
v’\/\l + v’\/\l +
2kQ \3-{ T NG .
21k 2eka VvV, 13|l CD L| 26k V,
2 2 < > Figure 5.3
2mA
- - Circuits used

in Example 5.3.

© (d)

The contribution of the 2-mA source to the output voltage is found from the network in
Fig. 5.3b, using current division

1K+ 2k 2
L= (210 3)<1|<+ 2k + 6k> —3m

and .
V., =1,(6k) =4V

The contribution of the 3-V source to the output voltage is found from the circuit in
Fig. 5.3c. Using voltage division,

= 3< 6k )
¢ 1k + 2k + 6k
=2V
Therefore,
V,=V,+ V=6V

Although we used two separate circuits to solve the problem, both were very ssimple.

193
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If we use nodal analysisand Fig. 5.3ato find v, and recognize that the 3-V source and
its connecting nodes form a supernode, V, can be found from the node equation

L/ B ST S
1k + 2k 6k
whichyieldsV, = 6 V. In addition, loop analysis applied as shown in Fig. 5.3d produces
the equations
I, =-2x1073
and

3k(l, + L) =3+ 6kl,b=0
whichyield I, = 1 mA and henceV, = 6 V.

Consider now the network in Fig. 5.4a. Let us use superposition to find V.

+ +
GVCiD <§>4|<9 6v<i> <§>4|<9
2 kQ 2 kQ d
VWA 6 kQ 3 Vo W 6k S v,
2mA<T> 2 2k0 32k
> >
(@ (b)
+ +
Seke V), S 4kQ
+
- 2 kQ d
6V G_r) Vi 3 4KQ wy 6k S |4
S2k0 2mA<T> S2k0
2 kQ -
v’\/\l‘

() (d)

ES
VWA
+
@ AN
<
e
\\
@‘
I
]
1
\ \
IN <
=
)
+

5 ko
2mA<T> emg> 174 \ 0—6-—/;—%\{(\3—- Vi @ <gekn v,
2|<Q<$> CD LY 32k

(e) ®
Figure 5.4
Circuits used in Example 5.4.
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The contribution of the 6-V source to V, is found from the network in Fig. 5.4b, which is
redrawn in Fig. 5.4c. The 2 kQ2 + 6 kQ) = 8-k(} resistor and 4-k() resistor are in parallel,
and their combination is an 8/3-k() resistor. Then, using voltage division,

3 24
Vi=6l — | ==

Applying voltage division again,

V’—V( 6k )—ﬁ
o N6k +2k/) 7

The contribution of the 2-mA source is found from Fig. 5.4d, which isredrawn in Fig. 5.4e.
V7 issimply equal to the product of the current source and the parallel combination of the
resistors; that is,

Vi=(2x 10’3)<%k//6k> = ?v

Then
V=vitvi=Tv
7
A nodal analysis of the network can be performed using Fig. 5.4f. The equation for the
supernode is
v, -6)-Vi v,-V V
+ + = =
2k 4k 6k
The equation for the node labeled V; is

Vi-Vv, “W—(v,-6) v
+ +—=0
4k 2k 2k

-2 X 107 +

0

Solving these two equations, which already contain the constraint equation for the super-
node, yields v, = 48/7 V.
Once again, referring to the network in Fig. 5.4f, the mesh equations for the network are

-6+ 4k(l, — L) + 2k(, = L) =0
L, =2x107
2k(l, — L) + 4k(l, — I) + 6K, = 0
Solving these equations, we obtain I; = 8/7 mA and, hence, v, = 48/7 V.

Let us demonstrate the power of superposition in the analysis of op-amp circuits by deter-
mining the input/output relationship for the op-amp configuration shown in Fig. 5.5a.

The contribution of V] to the output V, is derived from the network in Fig. 5.5b where V; is
set to zero. This circuit is the basic inverting gain configuration and

Va = R

4 R,

The contribution due to V; is shown in Fig. 5.5¢c where V] is set to zero. This circuit is the
basic noninverting configuration and

v, R
2 +72

V2 R,

SUPERPOSITION
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Therefore, using superposition,

ew)e- (2]

Vo=11+—V— |5 [V

Thus, in this case, we have used what we learned in Chapter 4, via superposition, to imme-
diately derive the input/output relationship for the network in Fig. 5.5a.

Figure 5.5 R,
oy v’\/\l‘
(@) A superposition R
example circuit; (b) the _\N\l/\__
circuit with V, set to zero; - .
(c) the circuit with V; set n J?.
to zero. Vi C—) Vot
R, =
VMA
Rl = = =
VWA
(b)
1 +
VlCJ—D VzCJ_r Yo
1 +
= = = V?MA
@ v,(H) Ry Voo

Applying  Step 1. Inanetwork containing multiple independent sources, each source can be
Superposition applied independently with the remaining sources turned off.

Step 2. To turn off a voltage source, replace it with a short circuit, and to turn off a
current source, replace it with an open circuit.

Step 3. When the individual sources are applied to the circuit, all the circuit laws
and techniques we have learned, or will soon learn, can be applied to obtain a
solution.

Step 4. The results obtained by applying each source independently are then added
together algebraically to obtain a solution.

Superposition can be applied to a circuit with any number of dependent and independent
sources. In fact, superposition can be applied to such a network in a variety of ways. For
example, a circuit with three independent sources can be solved using each source acting
alone, as we have just demonstrated, or we could use two at a time and sum the result with
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that obtained from the third acting alone. In addition, the independent sources do not have to
assume their actual value or zero. However, it is mandatory that the sum of the different
values chosen add to the total value of the source.

Superposition is afundamental property of linear equations and, therefore, can be applied
to any effect that islinearly related to its cause. In thisregard it isimportant to point out that
although superposition applies to the current and voltage in alinear circuit, it cannot be used
to determine power because power is a nonlinear function.

SUPERPOSITION
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E5.3 Compute V, in circuit in Fig. E5.3 using superposition.

VWA VW——0
3 kQ 4 kQ +

12V Cj) CD 2mA 32k Y,

Figure E5.3

E5.4 Find V,in Fig. E5.4 using superposition.

2 mA
©
2y 20
) W— 0

>
8 mACD 3 3k0 6 kQ iV,

Figure Es.4

Es.5 Find |, in Fig. E5.5 using superposition.

6 kQ
O—
2 kQ
M\
4kQ 12V
2 kQ
2mA CD ; § 4kQ
o
Figure Es.5

ANSWER: V, = %v.

ANSWER: V,=5.6V.

ANSWER: |, = —2/3mA.
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Thévenin’s
and Norton’s
Theorems

Figure 5.6

ADDITIONAL ANALYSIS TECHNIQUES

Thus far we have presented a number of techniques for circuit analysis. At this point we will
add two theorems to our collection of tools that will prove to be extremely useful. The theo-
rems are named after their authors, M. L. Thévenin, a French engineer, and E. L. Norton, a
scientist formerly with Bell Telephone Laboratories.

Suppose that we are given a circuit and that we wish to find the current, voltage, or power
that is delivered to some resistor of the network, which we will call the load. Thévenin's
theorem tells us that we can replace the entire network, exclusive of the load, by an equiva-
lent circuit that contains only an independent voltage source in series with aresistor in such
a way that the current—voltage relationship at the load is unchanged. Norton's theorem
isidentical to the preceding statement except that the equivalent circuit is an independent cur-
rent source in parallel with aresistor.

Note that thisis a very important result. It tells us that if we examine any network from a
pair of terminals, we know that with respect to those terminals, the entire network is equiva-
lent to asimple circuit consisting of an independent voltage source in series with aresistor or
an independent current source in parallel with aresistor.

In developing the theorems, we will assume that the circuit shown in Fig. 5.6a can be split
into two parts, as shown in Fig. 5.6b. In general, circuit B is the load and may be linear or
nonlinear. Circuit A is the balance of the original network exclusive of the load and must be
linear. As such, circuit A may contain independent sources, dependent sources and resistors,
or any other linear element. We require, however, that a dependent source and its control vari-
able appear in the same circuit.

Circuit A deliversacurrent i to circuit B and produces a voltage v, across the input terminas
of circuit B. From the standpoint of the terminal relations of circuit A, we can replace circuit B
by a voltage source of v, volts (with the proper polarity), as shown in Fig. 5.6¢c. Since the
terminal voltage is unchanged and circuit A is unchanged, the terminal current i is unchanged.

Now, applying the principle of superposition to the network shown in Fig. 5.6¢, the total cur-
rent i shown in the figure is the sum of the currents caused by all the sourcesin circuit A and
the source v, that we have just added. Therefore, via superposition the current i can be written

i=i, + g 5.1

where i, is the current due to v, with al independent sources in circuit A made zero (i.e.,
voltage sources replaced by short circuits and current sources replaced by open circuits),
and iy, is the short-circuit current due to all sources in circuit A with v, replaced by a
short circuit.
Thetermsi, and v, are related by the equation
—v,

l(] =
Rty

52

where Ry, isthe equivalent resistance looking back into circuit A from terminals A-B with all
independent sources in circuit A made zero.

Concepts used to develop Thévenin’s theorem.

Original

circuit

@

i A i A
: \J
Circuit Circuit Circuit
A v, B A CJ_D v,
(linear) (linear)

=0 |
-Te)
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Substituting Eg. (5.2) into Eqg. (5.1) yields

o Vo y
1= — 1
Ra, < 53

Thisisagenera relationship and, therefore, must hold for any specific condition at terminals
A-B. As a specific case, suppose that the terminals are open-circuited. For this condition,
i = 0 and v, isequa to the open-circuit voltage v,.. Thus, Eq. (5.3) becomes

+ g 5.4

Hence,
Voe = Rinig 5.5

This equation states that the open-circuit voltage is equal to the short-circuit current timesthe
equivalent resistance looking back into circuit A with all independent sources made zero. We
refer to Ry, as the Thévenin equivalent resistance.

Substituting Eg. (5.5) into Eqg. (5.3) yields

P = —V, Voc
Rty Rm
or
V, = Vo — Rini 5.6

Let us now examine the circuits that are described by these equations. The circuit repre-
sented by Eq. (5.6) is shown in Fig. 5.7a. The fact that this circuit is equivalent at terminals
A-Bto circuit A in Fig. 5.6 is a statement of Thévenin's theorem. The circuit represented by
Eq. (5.3) is shown in Fig. 5.7b. The fact that this circuit is equivalent at terminas A-B to
circuit A in Fig. 5.6 is a statement of Norton’s theorem.

Having demonstrated that there is an inherent relationship between the Thévenin equiva-
lent circuit and the Norton equivalent circuit, we now proceed to apply these two important
and useful theorems. The manner in which these theorems are applied depends on the struc-
ture of the original network under investigation. For example, if only independent sources are
present, we can calculate the open-circuit voltage or short-circuit current and the Thévenin
equivalent resistance. However, if dependent sources are also present, the Thévenin equiva-
lent will be determined by calculating v, and i, since thisis normally the best approach for
determining Ry, in a network containing dependent sources. Finally, if circuit A contains no
independent sources, then both v,, and iy, will necessarily be zero. (Why?) Thus, we cannot
determine Ry, by vy./is, Since the ratio isindeterminate. We must ook for another approach.
Notice that if v, = 0, then the equivalent circuit is merely the unknown resistance Ry;,. If we
apply an external source to circuit A—atest source v,—and determine the current, i,, which

i Rt A i A
vVW—-0C O
+ +

Circuit . Circuit
6, Yo | B (D Rm B

<
Q

O |
O |

(a) (b)

Figure 5.7

(@) Thévenin and (b) Norton
equivalent circuits.
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flows into circuit A from v,, then Ry, can be determined from Ry, = v,/i,. Although the
numerical value of v, need not be specified, we could let v, = 1V and then Ry, = 1/i,.
Alternatively, we could use a current source as a test source and let i, = 1 A; then
v = (I)RThL

Before we begin our analysis of several examplesthat will demonstrate the utility of these
theorems, remember that these theorems, in addition to being another approach, often permit
us to solve several small problems rather than one large one. They allow us to replace a net-
work, no matter how large, at a pair of terminals with a Thévenin or Norton equivalent cir-
cuit. In fact, we could represent the entire U.S. power grid at a pair of terminals with one of
the equivalent circuits. Once thisis done, we can quickly analyze the effect of different loads
on anetwork. Thus, these theorems provide us with additional insight into the operation of a
specific network.

CIRCUITS CONTAINING ONLY INDEPENDENT SOURCES

Let us use Thévenin's and Norton's theorems to find Vv, in the network in Example 5.3.

Thecircuitisredravnin Fig. 5.8a To determine the Thévenin equivalent, we break the network
at the 6-k() load as shownin Fig. 5.8b. KV L indicates that the open-circuit voltage, V., isequal
to 3V plus the voltage V;, which is the voltage across the current source. The 2 mA from the
current source flows through the two resistors (where el se could it possibly go!) and, therefore,
Vi = (2 X 107%)(1k + 2k) = 6 V. Therefore, V,, = 9 V. By making both sources zero, we
can find the Thévenin equivalent resistance, Ry, using the circuit in Fig. 5.8c. Obvioudly,
R+, = 3 kQ. Now our Thévenin equivalent circuit, consisting of V,. and Ry, is connected back
to the original terminals of the load, as shown in Fig. 5.8d. Using a smple voltage divider, we
findthat v, = 6 V.

To determine the Norton equivalent circuit at the terminals of the load, we must find the
short-circuit current as shown in Fig. 5.8e. Note that the short circuit causes the 3-V source
to be directly across (i.e, in parallel with) the resistors and the current source. Therefore,
I, = 3/(1k + 2k) = 1 mA. Then, using KCL, I, = 3 mA. We have aready determined R,
and, therefore, connecting the Norton equivalent to the load resultsin the circuit in Fig. 5.8f.

Figure 5.8 Hence, V, is equal to the source current multiplied by the parallel resistor combination,
Circuits used in which is6 V.
Example 5.6.
2kQ N 2kQ N\ 2kQ
vI\N u + vl\/\l u f vw O
3V + 3V
103 CD 6k vV, 31k Vv CD Voe 31kQ R,
2 mA - 2mA
o o
(@ (b) (©)
3kQ 2kQ ~
VWA VWA I
+ pd +
3V
9 v(t) ko S Vo, 31ko CD D 3k0 S 6k S v,
_h 2 mA I, 3MA -

(d)

(e) ®
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Consider for amoment some salient features of this example. Note that in applying the theorems
there is no point in bresking the network to the left of the 3-V source, since the resistors in
parallel with the current source are already a Norton equivaent. Furthermore, once the network
has been smplified using a Thévenin or Norton equivalent, we ssimply have a new network with
which we can apply the theorems again. The following example illustrates this approach.

Let us use Thévenin's theorem to find v, in the network in Fig. 5.9a

If we break the network to the |eft of the current source, the open-circuit voltage V,,, isas
shown in Fig. 5.9b. Since there is no current in the 2-k() resistor and therefore no voltage
acrossit, Vg, isequal to the voltage across the 6-k() resistor, which can be determined by
voltage division as

6k
Voo, = 12<6k n 3k> =8V

The Thévenin equivalent resistance, Ry, , is found from Fig. 5.9c as

(3k)(6k)

= 4 kQ)
3k + 6k

RTh, = 2k +

Connecting this Thévenin equivalent back to the original network produces the circuit
shown in Fig. 5.9d. We can now apply Thévenin’s theorem again, and this time we break
the network to the right of the current source as shown in Fig. 5.9e. In this case V. is

Voo, = (2 X 107)(4k) + 8 = 16V

Figure 5.9
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Circuits used in Example 5.7.

3kQ 2kQ 4kQ 3kQ 2kQ
VWA——p—— W VWA VWA VYWA—0
+
< <
12v Ci) 6 k02 CD 8k 3 V, 12v Ci) 6k S Voe,
2 mA 3
@ (b)
3 kO 2 kQ 4 kQ 4 kQ
A% vW—-0 VWA VW
Jr
< <
6 kQ é <—RTh1 8V Ct) CT) 8 kQ 5, Vo
2 mA
0
© (d)
4 kQ 4 kQ 4 kO 4 kQ
W ——W—o0 VWA WA
+ +
8Yv C—D CD Voc, «~—Rmn, 16V Ci) gka 3 v,
2 mA
——0

(e) ®

()
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and R+, obtained from Fig. 5.9f is 4 k(). Connecting this Thévenin equivalent to the
remainder of the network produces the circuit shown in Fig. 5.99. Simple voltage division
applied to this final network yields v, = 8 V. Norton’s theorem can be applied in a similar
manner to solve this network; however, we save that solution as an exercise.

It is instructive to examine the use of Thévenin’s and Norton’s theorems in the solution of
the network in Fig. 5.4a, which isredrawn in Fig. 5.10a.

If we break the network at the 6-k() load, the open-circuit voltage is found from Fig. 5.10b.
The equations for the mesh currents are
—6 + 4kl + 2k(I, — L) = 0

and
L=2x10"

from which we easily obtain 7, = 5/3 mA. Then, using KVL, V. is
Vi = 4Kkl + 2KI,
= 4k<§ X 10*3> + 2k(2 X 107)

32

3

Ry, is derived from Fig. 5.10c and is

1
Ry = (2k//4k) + 2k = ?Okﬂ

Attaching the Thévenin equivalent to the load produces the network in Fig. 5.10d. Then
using voltage division, we obtain

yo2 6k
° 3 10
6k + —k
3
_ 48
7

In applying Norton's theorem to this problem, we must find the short-circuit current
shown in Fig. 5.10e. At this point the quick-thinking reader stops immediately! Three mesh
equations applied to the original circuit will immediately lead to the solution, but the three
mesh equations in the circuit in Fig. 5.10e will provide only part of the answer, specifi-
cally the short-circuit current. Sometimes the use of the theorems is more complicated than
a straightforward attack using node or loop analysis. This would appear to be one of those
situations. Interestingly, it is not. We can find I, from the network in Fig. 5.10e without using
the mesh equations. The techniqueissimple, but alittle tricky, and so weignoreit at thistime.
Having said all these things, let us now finish what we have started. The mesh equations for
the network in Fig. 5.10e are

—6 + 4K(I, — Ig) + 2k(, —2 X 107) =0
2K(Ig — 2 X 107) + 4K(Ie — 1) = 0
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where we have incorporated the fact that 7, = 2 X 1073 A. Solving these equations yields
I, = 16/5mA. Ry, has adready been determined in the Thévenin analysis. Connecting the
Norton equivalent to the load results in the circuit in Fig. 5.10f. Solving this circuit yields

Vv, = 48/7V.
+ +
6V 2 aka
2 kQ J
é 6 k() Vv, Voc
2 2k0
2 mA _ _
@) (b)
2 4k
10
2 kQ o
v <—R'Th VWA
+
<§>2kﬂ Cj)%v ‘gekn v,
© )
@ (1 g
2 kQ
VWA Iy
+
. 16 < 10 <
CD @ S 2k0 CTD?mA 3 Sk Seke v,
2 mA _
(e) ®

Figure 5.10
Circuits used in Example 5.8.
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E5.6 Use Thévenin's theorem to find V, in the network in Fig. E5.6.

6 kQ) 2 kQ)
VWA VWA
+
<
S 3kQ
>
6V Ci) § 4 kQ VO

Figure E5.6

LY

Es5.7 Find V, in the circuit in Fig. E5.6 using both Thévenin’s and Norton’s theorems. When
deriving the Norton equivalent circuit, break the network to the left of the 4-k() resistor. Why?

E5.8 FindV,in Fig. E5.8 using Thévenin's theorem.

2 mA
S
6 kQ 2 kQ
MV MN—2
6 kQ

8mA<> > 3k

Figure E5.8

E5.9 Findl,in Fig. E5.9 using Norton's theorem.

12V
3kQ
AN
g 2 mA
2kQ g
3kQ
10V Ci)
8V

Figure E5.9

ANSWER: V,= —3V.

ANSWER: V, = %V.

ANSWER: V, = 3.88V.

ANSWER: 1, = —0.857 mA.
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CIRCUITS CONTAINING ONLY DEPENDENT SOURCES Aswe have stated earlier,
the Thévenin or Norton equivalent of a network containing only dependent sources is Ry,
The following examples will serve to illustrate how to determine this Thévenin equivalent
resistance.

We wish to determine the Thévenin equivadent of the network in Fig. 5.11a at the terminals

A-B.
_ vV, N _ Vv, N 5 ° 9
vIV\IA vI\/\IA
1kQ 1kQ
2kQ 1kQ A 2kQ 1k L A
Y VA Vi VWA ’ VWA
+ 1,
2 1kQ <j>2vx 3 2k0 21k0 2V, 2 2k0 1v
_ I
B L B
(a) (b) .
Figure 5.11

Networks employed in Example 5.9.

Our approach to this problem will be to apply a 1-V source at the terminals as shown in
Fig. 5.11b and then compute the current I, and Ry, = 11,
The equations for the network in Fig. 5.11b are as follows. KVL around the outer loop
specifies that
V, +V,=1

The KCL equation at the node labeled V; is

Vi M- V-1
1k 2k 1k

0

Solving the equations for V, yields v, = 3/7 V. Knowing V,, we can compute the cur-
rents I;, I,, and I,. Their values are

_Y_

I, = T~

nE

P 1k

3

—mA

7

Vo 1

= —-mA
7

1
13:7:7mA
2

Therefore,

~
I
RES
+
S
+
S

and



206 CHAPTER 5

5.10

ADDITIONAL ANALYSIS TECHNIQUES

Let us determine Ry, at the terminals A-B for the network in Fig. 5.12a.

Our approach to this problem will be to apply a 1-mA current source at the terminals A-B and
compute the terminal voltage v, as shown in Fig. 5.12b. Then Ry, = V,/0.001.
The node eguations for the network are

Vl—zooolirKJrvl—Vz_O
2k 1k 3k
WwW-W W =
——— + —==1X 107
3k 2k 0
and
L%
o1k
Solving these equations yields
10
V,=—V
T
and hence,
)
- ™ 1x 107
Figure 5.12 0
Networks used = kQ
in Example 5.10.
2kQ 3kQ A Vi Vo A
VWA VWA VWA ? VWA O
2 kQ 3kQ
<J_r> 2000l, 3 1kQ S2k0 <t> 2000, 3 1kQ 22k0 CD
[x Ix 1 mA
B < B

5.11

@ (b)

CIRCUITS CONTAINING BOTH INDEPENDENT AND DEPENDENT SOURCES In
these types of circuits we must calculate both the open-circuit voltage and short-circuit cur-
rent to cal cul ate the Thévenin equivalent resistance. Furthermore, we must remember that we
cannot split the dependent source and its controlling variable when we break the network to
find the Thévenin or Norton equivalent.

We now illustrate this technique with a circuit containing a current-controlled voltage source.

Let us use Thévenin's theorem to find V, in the network in Fig. 5.13a

To begin, we break the network at points A-B. Could we break it just to theright of the 12-V
source? No! Why? The open-circuit voltage is calculated from the network in Fig. 5.13b.
Note that we now use the source 2000/, because this circuit is different from that in
Fig. 5.13a. KCL for the supernode around the 12-V source is

(Voe + 12) — (—20001%) Vet 12 Voo

1K 2K k0




where

yieldingV,. = -6V .

I, can be calculated from the circuit in Fig. 5.13c. Note that the presence of the short
circuit forces I to zero and, therefore, the network is reduced to that shown in Fig. 5.13d.

Therefore,

Then

Connecting the Thévenin equivalent circuit to the remainder of the network at terminals

SECTION 5.3

I =
—k
3
V.
R, = TOC
SC

1
= —-kQ
3

—18 mA

THEVENIN'S AND NORTON'S THEOREMS

A-B produces the circuit in Fig. 5.13e. At this point, simple voltage division yields

1k
v, = (-6) 1
1k + 1k + =k
3
12v )
A m A
vl\/\l ‘IF y vl\/\l
1kQ N 1kQ
<;> 2000, 3 2k0 S2k0 S1ko
Iy
B
@
12v )
A m
vl\/\l I Ny
1kQ N
<;> 20000y 3 2k0) S 2k0 I
I
B
(©)
A
1o 1kQ +
3 <
C;) 6V ik,

(e)

_ 18

(d)

_° Figure 5.13
! Circuits used
in Example 5.11.
12V
(O
v’\/\l‘ I -
+ 1 kQ U
v, <;> 20000, 3 2k 22k0
_ I
(b)
12V
4
N\
21ke 22k Iy
B

207

VOC
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Let usfind V, in the network in Fig. 5.14a using Thévenin's theorem.

5.12

and

V,. is determined from the network in Fig. 5.14b. Note that

LV
b2k
12=2mA

’

£ -
V;=4k<—'—2><103>

2k

Solving these equations yields 7, = 4 mA and, hence,

Ve = 2KI, + 3 = 11V

I isderived from the circuit in Fig. 5.14c. Note that if we collapse the short circuit, the net-
work isreduced to that in Fig. 5.14d. Although we have temporarily lost sight of 7., we can

+ +
2:)/_0)60<T> <§>Zkﬂ %<T>@ <5’2m
it : 1% ot %
:\;\(/l‘ 6k S o Z’\Qf) oc
® Dav 2D (2 Oav
2 mA
(@) (b)
V//
RO 1T
Vi 15 ;
Zl\ﬁ}’) Ne L} 13
2 mA CD @) 3V CD 2 mA <T> 0 32k0 GD 3V
_VE L
W
4kQ
() (d)
W
2kQ i
Cj) 11V g 6 kQ v,

Figure 5.14
Circuits used
in Example 5.12.

(e)
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easily find the branch currents and they, in turn, will yield I.. KCL at the node at the bot-
tom left of the network is

Ve | Vs 2 %X 1073
4k 2000
or
V' =8V
Then since
3
L=—=—mA
Pk
as shown in Fig. 5.14c,
Ie = =+ 1
<2000
11
= ?mA
Then
V.,
Ry = — = 2kQ
Iy

Connecting the Thévenin equivalent circuit to the remainder of the original network pro-
duces the circuit in Fig. 5.14e. Simple voltage division yields

(%)
o T\ 2k + 6k

_3
4

\Y

We will now reexamine a problem that was solved earlier using both nodal and loop analy-
ses. The circuit used in Examples 3.10 and 3.20 is redrawn in Fig. 5.15a. Since a depend-
ent source is present, we will have to find the open-circuit voltage and the short-circuit
current in order to employ Thévenin’'s theorem to determine the output voltage V.

Aswe begin the analysis, we note that the circuit can be somewhat simplified by first form-
ing a Thévenin equivalent for the leftmost and rightmost branches. Note that these two
branches are in parallel and neither branch contains the control variable. Thus, we can sim-
plify the network by reducing these two branches to one via a Thévenin equivalent. For the
circuit shown in Fig. 5.15b, the open-circuit voltage is

2
Voe, :E(lk) +4=6V

And the Thévenin equivalent resistance at the terminals, obtained by looking into the ter-
minals with the sources made zero, is

RThl =1 kQ

The resultant Thévenin equivalent circuit is now connected to the remaining portion of the
circuit producing the network in Fig. 5.15c.

Now we break the network shown in Fig. 5.15c at the output terminals to determine the
open-circuit voltage V,. as shown in Fig. 5.15d. Because of the presence of the voltage
sources, we will use a nodal analysis to find the open-circuit voltage with the help of a
supernode. The node equations for this network are

% = 37
Vi—6 V-2V, 2
+ =

1k 1k k

5.13
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2
2 A VWA
k CD 1kQ 2 C)
+ ®A T
nglkﬂ CT)%A <i>4v Ci>4v
@ N (b)
II Vl \\I
+ ," '
6V Ci 2V, <i> 1k SV, 6V Ct) 2V, <j> 5
vI\/\IA \‘\ -"—W—.
1kQ Jro1ke
I +
1k0 3 Vv, 31k0 CT)%A 1k0 3 V;ilkn CT)%A
<
(c) (d)
o w @
/! Y 2
6V Ci) : 2V <i> Isc2 ! ?A ISCz =
S @) @ @,
A S o 1 kQ_ _-- @ i A @
T k
1|<Q<$> V;‘leﬂ CT)%A %A %A
; —
(e) ®
1kQ
+
2V Ci 1kQ v,
(9)
Figure 5.15

Circuits used in Example 5.13.

ADDITIONAL ANALYSIS TECHNIQUES

=~
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and thus V. = 2V and V; = 6 V. Then, the open-circuit voltage, obtained using the KVL

equation

2
=2V 4+ Vo, + K (Ik) =0

Voo, = 2V

The short-circuit current is derived from the network shown in Fig. 5.15e. Once again we
employ the supernode, and the network equations are

V, = 3V}
=6 V-2vi 2
1k k kK

The node voltages obtained from these equationsare V; = 2V and V, = 6 V. Theline
diagram shown in Fig. 5.15f displays the node voltages and the resultant branch currents.
(Node voltages are shown in the circles, and branch currents are identified with arrows.)
The node voltages and resistors are used to compute the resistor currents, while the remain-
ing currents are derived by KCL. As indicated, the short-circuit current is

I, = 2 MA

Then, the Thévenin equivalent resistanceis

V.
R = —2 = 1kQ
2 ISC

23

The Thévenin equivalent circuit now consists of a2-V source in series with a 1-k() resistor.
Connecting this Thévenin equivalent circuit to the load resistor yields the network shown in
Fig. 5.15g. A simple voltage divider indicatesthat V, = 1 V.

Step 1. Remove the load and find the voltage across the open-circuit terminals, V.. All Applying Thévenin’s
the circuit analysis techniques presented here can be used to compute this voltage. Theorem

Determine the Thévenin equivalent resistance of the network at the open
terminals with the load removed. Three different types of circuits may be
encountered in determining the resistance, Rqy,.

Step 2.

€)]

(b)

(4]

If the circuit contains only independent sources, they are made zero by
replacing the voltage sources with short circuits and the current sources with
open circuits. Ry, is then found by computing the resistance of the purely
resistive network at the open terminals.

If the circuit contains only dependent sources, an independent voltage

or current source is applied at the open terminals and the corresponding
current or voltage at these terminals is measured. The voltage/current ratio
at the terminals is the Thévenin equivalent resistance. Since there is no
energy source, the open-circuit voltage is zero in this case.

If the circuit contains both independent and dependent sources, the
open-circuit terminals are shorted and the short-circuit current between
these terminals is determined. The ratio of the open-circuit voltage to the
short-circuit current is the resistance Ry,

Step 3. If theload is now connected to the Thévenin equivalent circuit, consisting of
V.. in series with Ry, the desired solution can be obtained.

The problem-solving strategy for Norton’s theorem is essentially the same as that for
Thévenin's theorem with the exception that we are dealing with the short-circuit current
instead of the open-circuit voltage.
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36
E5.10 Find V, in the circuit in Fig. E5.10 using Thévenin's theorem. ANSWER: V, = BV'
Vi _
o
4kQ +
24k
12 VCtD 3’ 6 kQ) Vo
AN Vx
2
Figure E5.10 o
E5.11 Find V, in Fig. E5.11 using Thévenin's theorem. ANSWER: V, = 6.29 V.
2 mA
&
4 KI,
L\ 2kQ I,
= MV
N +

8mACD §3kﬂ 6 kQ §1k9 Vv,

Figure E5.11

E5.12 Use Thévenin's theorem to find the power supplied by the 12-V sourcein Fig. E5.12. ANSWER: 8.73 mW.

2 mA
&
6 kQ) 2 kQ)
AV AMA—
6 kQ
8 mA C) § 3kQ §1 kQ
12V
Figure E5.12
E5.13 Find the Thévenin equivalent of the network at terminals A — B in Fig. E5.13. ANSWER: Ry, = 1619 (.
3kQ - Ve o+ A
ANV ANV
1 kQ
2 kO 3 <T> v, 22k
2000
Figure E5.13
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Having examined the use of Thévenin's and Norton’s theorems in a variety of different
types of circuits, it isinstructive to ook at yet one other aspect of these theorems that we find
useful in circuit analysis and design. This additional aspect can be gleaned from the Thévenin
equivalent and Norton equivalent circuits.

The relationships specified in Fig. 5.7 and Eq. (5.5) have specia significance because they
represent what is called a source transformation or source exchange. What these relationships
tell usisthat if we have embedded within anetwork a current sourcei in parallel with aresistor
R, we can replace this combination with a voltage source of value v = iR in series with the
resistor R. The reverse is also true; that is, a voltage source v in series with aresistor R can
be replaced with a current source of valuei = v/R in parallel with the resistor R. Parameters
within the circuit (e.g., an output voltage) are unchanged under these transformations.

We must emphasize that the two equivalent circuitsin Fig. 5.7 are equivalent only at the
two external nodes. For example, if we disconnect circuit B from both networks in Fig. 5.7,
the equivalent circuit in Fig. 5.7b dissipates power, but the one in Fig. 5.7a does not.

Wewill now demonstrate how to find Vv, in the circuit in Fig. 5.16a using the repeated appli-
cation of source transformation.

If we begin at the left end of the network in Fig. 5.16a, the series combination of the 12-V
source and 3-k{) resistor is converted to a 4-mA current source in parallel with the 3-kQ)
resistor. If we combine this 3-k() resistor with the 6-k() resistor, we obtain the circuit in
Fig. 5.16b. Note that at this point we have eliminated one circuit element. Continuing the
reduction, we convert the 4-mA source and 2-k() resistor into an 8-V source in series with
this same 2-kQ) resistor. The two 2-k() resistors that are in series are now combined to
produce the network in Fig. 5.16c. If we now convert the combination of the 8-V source and
4-kQ) resistor into a 2-mA source in parallel with the 4-kQ) resistor and combine the result-
ing current source with the other 2-mA source, we arrive at the circuit shown in Fig. 5.16d.
At this point, we can simply apply current division to the two parallel resistance paths and
obtain

THEVENIN'S AND NORTON’'S THEOREMS
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5.14

4k
= X103 ———M | =
=G X )<4k+4k+8k> ImA
and hence,
= 73 =
V,=(1x107)(8k) = 8V Figure 5.16
The reader is encouraged to consider the ramifications of working this problem using any  circuits used in
of the other techniques we have presented. Example 5.14.
VWA VWA VWA VWA VWA
3kQ 2 kQ 4kQ 4 2 kQ 4kQ 4
12VCJ£> 6ko S CDzmA Sska V, <D4mA S 2k0 CDZ mA Sska V,
(a) (b)
IO
VWA VWA VWA
4kQ 4 kQ + 4kQ +
sv (D) MDema 2@ v, (Dama  3ak Sska V,

(c) (d)
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Note that this systematic, sometimes tedious, transformation allows us to reduce the net-
work methodically to a simpler equivalent form with respect to some other circuit element.
However, we should also realize that this technique is worthless for circuits of the form
shown in Fig. 5.4. Furthermore, although applicable to networks containing dependent
sources, it is not as useful as other techniques, and care must be taken not to transform the
part of the circuit that contains the control variable.

4
Es5.14 Find V, in the circuit in Fig. E5.3 using source exchange. ANSWER: V, = 3 V.
E5.15 Findthel,in Fig. E5.15 using source transformations. ANSWER: |, = —1.94mA.
6 kQ 2kQ I,
MV aAA
6 kQ

Figure Es.15

8mAC‘> §3k9 §1kn C>4mA

12V

At this point let us pause for amoment and reflect on what we have learned; that is, let us
compare the use of node or loop analysis with that of the theorems discussed in this chapter.
When we examine a network for analysis, one of the first things we should do is count the
number of nodes and loops. Next we consider the number of sources. For example, are there
anumber of voltage sources or current sources present in the network? All these data, together
with the information that we expect to glean from the network, give a basis for selecting the
simplest approach. With the current level of computational power available to us, we can solve
the node or loop equations that define the network in aflash.

With regard to the theorems, we have found that in some cases the theorems do not neces-
sarily smplify the problem and a straightforward attack using node or loop analysisis as good
an approach as any. Thisis avalid point provided that we are ssimply looking for some partic-
ular voltage or current. However, the real value of the theoremsis the insight and understand-
ing that they provide about the physical nature of the network. For example, superposition
tells us what each source contributes to the quantity under investigation. However, a computer
solution of the node or loop equations does not tell us the effect of changing certain parameter
valuesin the circuit. It does not help us understand the concept of loading a network or theram-
ifications of interconnecting networks or the idea of matching a network for maximum power
transfer. The theorems help us to understand the effect of using a transducer at the input of an
amplifier with a given input resistance. They help us explain the effect of a load, such as a
speaker, at the output of an amplifier. We derive none of this information from a node or loop
analysis. In fact, as asimple example, suppose that a network at a specific pair of terminals has
aThévenin equivalent circuit consisting of avoltage source in series with a 2-k() resistor. If we
connect a 2-() resistor to the network at these terminals, the voltage across the 2-() resistor will
be essentially nothing. Thisresult isfairly obvious using the Thévenin theorem approach; how-
ever, anode or loop analysis gives us no clue as to why we have obtained this result.

We have studied networks containing only dependent sources. This is a very important
topic because all electronic devices, such as transistors, are modeled in this fashion. Motors
in power systems are also modeled in this way. We use these amplification devices for many
different purposes, such as speed control for automobiles.

In addition, it is interesting to note that when we employ source transformation as we did
in Example 5.14, we are simply converting back and forth between a Thévenin equivalent cir-
cuit and a Norton equivalent circuit.
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Finally, we have a powerful tool at our disposal that can be used to provide additional
insight and understanding for both circuit analysis and design. That tool is Microsoft Excel,
and it permits us to study the effects, on a network, of varying specific parameters. The fol-
lowing example will illustrate the simplicity of this approach.

We wish to use Microsoft Excel to plot the Thévenin equivalent parameters V,, and Ry, for
the circuit in Fig. 5.17 over the R, range O to 10 kQ).

6V 12V Ry Figure 5.17
F— —+
), Circuit used in
Example 5.15.
4 kﬂé Rxé Vo
o

The Thévenin resistance is easily found by replacing the voltage sources with short
circuits. Theresult is
4R

Ry, = 4//R, = = 5.7
Th //x 4+Rx

where R, and Ry, are in k(). Superposition can be used effectively to find V.. If the 12-V
source is replaced by a short circuit

e =~ 4]
oo R+ 4

Applying this same procedure for the 6-V source yields

Vi, = 12

and the total open-circuit voltage is

wva
Voo =12 — 6 5.8
R, +4

In Excel wewishto (1) vary R, between 0 and 10 kQ), (2) calculate Rr, and V,, at each R,
value, and (3) plot V,. and Ry, versus R,. We begin by opening Excel and entering column
headings as shown in Fig. 5.18a. Next, we enter azero in thefirst cell of the R, column at col-
umn-row location A4. To automaticaly fill the column with values, go to the Edit menu and
select Fill/Series to open the window shown in Fig. 5.18b, which has already been edited
appropriately for 101 data points. Theresult isaseriesof R, valuesfrom 0to 10 k() in 100 Q)
steps. To enter Eq. (5.8), go to location B4 (right under the V. heading). Enter the following
text and do not forget the equal sign:

=12-6*A4/ (AL+4)

Thisis Eq. (5.8) with R, replaced by the first value for R, which is at column-row location
A4. Similarly for Ry, enter the following expression at C4.

=4*A4/ (AL+4L)

To replicate the expression in cell B4 for al R, values, sdlect cell B4, grab the lower right
corner of the cell, hold and drag down to cell B104, and release. Repeat for Ry, by replicating
cel C4.

To plot the data, first drag the cursor across all cells between A4 and C104. Next, from
the Insert menu, select Chart. We recommend strongly that you choose the XY (Scatter)

5.15
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chart type. Excel will take you step by step through the basic formatting of your chart,
which, after some manipulations, might look similar to the chart in Fig. 5.18c.

(b)

15 . | 3
125 © 125
10 \‘ 12
2 75 | 7~ 11s 2
Q . - i .
@) N g 1 Q:ﬁ
51— 41
r — Voc 1
25 [ Rm— o5
. 0 L L L L ] 0
AL Gk 0 25 7.5 5 10
(@) The Excel spreadsheet for Example 5.15 showing the R (kQ)
desired column headings. (b) The Fill/Series window edited
for varying R, and (c) the final plot of V,. and Ry,. (c)

5.4

Maximum Power
Transfer

Figure 5.19

Equivalent circuit for
examining maximum power
transfer.

In circuit analysis we are sometimes interested in determining the maximum power that can be
ddivered to aload. By employing Thévenin's theorem, we can determine the maximum power
that a circuit can supply and the manner in which to adjust the load to effect maximum power
transfer.

Suppose that we are given the circuit shown in Fig. 5.19. The power that is delivered to
the load is given by the expression

2
Poed = 'Ry = ( - > R
load L R + RL L
We want to determine the value of R, that maximizes this quantity. Hence, we differentiate
this expression with respect to R, and eguate the derivative to zero:

dRoa (R + R,)v> — 20°R,(R + R,)

dR, (R + Ry

which yields
R, =R

In other words, maximum power transfer takes place when the load resistance R, = R.
Although this is a very important result, we have derived it using the simple network in
Fig. 5.19. However, we should recall that v and R in Fig. 5.19 could represent the Thévenin
equivalent circuit for any linear network
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Let usfind the value of R, for maximum power transfer in the network in Fig. 5.20a and the
maximum power that can be transferred to this load.

To begin, we derive the Thévenin equivalent circuit for the network exclusive of the load.
V,. can be calculated from the circuit in Fig. 5.20b. The mesh equations for the network are
I, =2x1073
3k(L — L)+ 6k, +3=0

Solving these equations yields 7, = 1/3 mA and, hence,

Vo = 4KI, + 6K,
=10V

R+, shown in Fig. 5.20c, is 6 kQ); therefore, R, = Ry, = 6 kQ for maximum power trans-
fer. The maximum power transferred to the load in Fig. 5.20d is

10 \? 25
PL = <ﬁ> (6k) = ZmW

O VWA O + Voc =
R,
4KQ 6 kQ 4kQ 6 kQ
VWA VWA VWA VWA
D oz O QW (EC
2 mA 3V 2 mA 3kQ 3V
@ (b)
R
l R} = 6KkQ
4KQ 6 kQ 0 o
VWA vm‘
d 6 kQ
$3k0 10V

(c) (d)

Let usfind R, for maximum power transfer and the maximum power transferred to this|oad
in the circuit in Fig. 5.21a.

We wish to reduce the network to the form shown in Fig. 5.19. We could form the Thévenin
equivalent circuit by breaking the network at the load. However, close examination of the net-
work indicates that our analysis will be simpler if we break the network to the left of the 4-kQ)
resistor. When we do this, however, we must realize that for maximum power transfer
R, = Ry, + 4 kQ. V. canbe calculated from the network in Fig. 5.21b. Forming a supernode
around the dependent source and its connecting nodes, the KCL equation for this supernodeis

V. — 20001!

v,
+ (-4 X 107%) + ==
1k + 3k ( ) 0

2k

MAXIMUM POWER TRANSFER

Figure 5.20
Circuits used in
Example 5.16.
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5.17
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Figure 5.21
Circuits used in
Example 5.17.
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where

VOC
==
X 2k

These equations yield V,. = 8 V. The short-circuit current can be found from the network in
Fig. 5.21c. It is here that wefind the advantage of breaking the network to the left of the 4-k()
resistor. The short circuit shorts the 2-k(Q) resistor and, therefore, 17 = 0. Hence, the circuit
isreduced to that in Fig. 5.21d, where clearly I, = 4 mA. Then

Vi
Ry = — = 2kQ
I
Connecting the Thévenin equivalent to the remainder of the original circuit produces the
network in Fig. 5.21e. For maximum power transfer R, = Ry, + 4 kQ = 6 k), and the
maximum power transferred is

AN N
VWA =-c VWA VWA —+
1kQ N 4kQ 1kQ N +
] 20001, | 2000 /', ]
3 3k0 CD S2k0 R, 33k CT Sake Ve
4 mA 4 mA ’
m Ix m. Ix B
@) (b)
AN
VW . + VMA
1kQ N 1kQ
2000 1"y | |
3 3k0 t S2ko Iy 3 3k0 CD 4mA I
4mA ,
m I/x
(©) (d)
VMA VMA
2 kQ) 4kQ
Ci) 8V R; = 6kQ

(e)

E5.16 Given the circuit in Fig. E5.16, find R, for maximum power transfer and the maximum ANSWER: R, = 6 kQ);

power transferred.

Figure E5.16

2
P, = —mW.
3
6V
2 kQ
D 9
N
ek(fg %12 kQ Ry
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E5.17 Find R for maximum transfer and the maximum power transferred to R_in Fig E5.17.  ANSWER: 14/9 kQ),
2/7 mW.

3 kQ 4 kQ
AAA N

12v<j> CDZmA §2 kQ <Z’RL

Figure E5.17

E5.18 Find R_for maximum transfer and the maximum power transferred to R in Fig E5.18.  ANSWER: 24/13 kQ),

27/26 mW.
+ Ve -
NV
4kQ
12v@> 4KkQ S6ko SR;
VX
2
Figure E5.18
Given the network in Fig. 5.22 with Vi, = 5V and R, = 2 (), let us graphically examine a
variety of aspects of maximum power transfer by plotting the parameters V., 1, Py, B, and
the efficiency = P,/ P,, as afunction of the resistor ratio R,/R,. 5 o 1 8
The parameters to be plotted can be determined by simple circuit analysis techniques. By
voltage division
_ R, _ R,
You = [Rl + RJV"‘ - {2 + RJ(S)
From Ohm'’s law
= Vin 5
R, +R, 2+R,
The input and output powers are
Pn =1V, = Vi __25 ooP =1V, —R[ 4 ]Z—R[LT
m MR+ R, 2+R, ot ot R R+ R, L2+ R,
R =20 Figure 5.22
W Ji Circuit used in maximum
+ power transfer analysis.

Vin =5V Cj) R; <§ Vout
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Figure 5.23

Maximum power transfer
parameter plots for the
network in Fig. 5.22. (The
units for voltage, current,
and power have volts,
amperes, and watts,

5.5

respectively.)

Application

Example
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Finally, the efficiency is

efficiency = Pou R R
o R, + R, 2+ R,

The resulting plots of the various parameters are shown in Fig. 5.23 for R, ranging from
0.1R, to 10R,. Note that as R, increases, V,,; increases toward V,, (5 V) as dictated by volt-
age division. Also, the current decreases in accordance with Ohm’slaw. Thus, for small val-
ues of R,, V., issmall, and when R, is large, | is small. As aresult, the output power (the
product of these two parameters) has a maximum at R,/R, = 1 as predicted by maximum
power transfer theory.

Maximum power does not correspond to maximum output voltage, current, or efficien-
cy. In fact, at maximum power transfer, the efficiency is always 0.5, or 50%. If you are an
electric utility supplying energy to your customers, do you want to operate at maximum
power transfer? The answer to this question is an obvious “No” because the efficiency is
only 50%. The utility would only be able to charge its customers for one-half of the energy
produced. It is not uncommon for a large electric utility to spend billions of dollars every
year to produce electricity. The electric utility is more interested in operating at maximum
efficiency.

5,
B Vout e
55 4
5 n
2 < B Poyt
£ 34
e |/
) L
g% 2
x © , Current
(Uh
=g 17& Pout/Pin ‘
{
07\ | ‘ | | | | | | I I
0 2 4 6 8 10
Ry/Ry

APPLICATION
EXAMPLE 5.19

On Monday afternoon, Connie suddenly remembers that she has a term paper due Tuesday
morning. When she sits at her computer to start typing, she discovers that the computer
mouse doesn’'t work. After disassembly and some inspection, she finds that the mouse con-
tains a printed circuit board that is powered by a 5-V supply contained inside the computer
case. Furthermore, the board is found to contain several resistors, some op-amps, and one
unidentifiable device, which is connected directly to the computer’s 5-V supply as shownin
Fig. 5.24a. Using a voltmeter to measure the node voltages, Connie confirms that all resis-
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tors and op-amps are functioning properly and the power supply voltage reaches the mouse
board. However, without knowing the mystery device's function within the circuit, she can-
not determine its condition. A phone call to the manufacturer reveals that the device is
indeed linear but is also proprietary. With some persuasion, the manufacturer’s representa-
tive agrees that if Connie can find the Thévenin equivalent circuit for the element at nodes
A-B with the computer on, he will tell her if it is functioning properly. Armed with asingle
1-kQ) resistor and a voltmeter, Connie attacks the problem.

To find the Thévenin equivalent for the unknown device, together with the 5-V source, SOLUTION
Conniefirst isolates nodes A and B from the rest of the devices on the board to measure the

open-circuit voltage. The resulting voltmeter reading is Vg = 2.4 V. Thus, the Thévenin

equivalent voltage is 2.4 V. Then she connects the 1-k() resistor at nodes A-B as shown in

Fig. 5.24b. The voltmeter reading isnow V,,; = 0.8 V. Using voltage division to expressV,,

in terms of V4., Ry, and R, in Fig. 5.24b yields the expression

el
08 = Vi =———

RTh A RTh = 2 kQ
Unknown 5 A Yy, o A A A oA
element
V=5v Ci) VThCi Riest = 1kQ 3» Vg =08V Ci) Vi = 24V
oB O —— OB
B
(@) (b) (c)
Figure 5.24

Solving the equations for R+, we obtain
Network used in

Ry = 2.0 kQ) Example 5.19.

Therefore, the unknown device and the 5-V source can be represented at the terminals A-B
by the Thévenin equivalent circuit shown in Fig. 5.24c. When Connie phones the manufac-
turer with the data, the representative informs her that the device has indeed failed.

5.6

Design Examples

We often find that in the use of electronic equipment, there is a need to adjust some quan- DESIGN

tity such as voltage, frequency, contrast, or the like. For very accurate adjustments, it is most EXAMPLE 5.20
convenient if coarse and fine-tuning can be separately adjusted. Therefore, let us design a :
circuit in which two inputs (i.e., coarse and fine voltages) are combined to produce a new

voltage of the form

1 1
Viune = |:§:|Vcoarse + [%]Vfine

Because the equation to be realized is the sum of two terms, the solution appearsto bean SOLUTION
excellent application for superposition. Sincethe gain factorsin the equation (i.e., 1/2 and 1,/20)
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are both less than one, a voltage divider with two inputs would appear to be alogical choice.
A typical circuit for thisapplication is shown in Fig. 5.25a. The two superposition subcircuits
are shown in Figs. 5.25b and c. Employing voltage division in the network in Fig. 5.25b
yields

2

Vcoarse

vtune_C o [ R//RZ :| o l
- L(R//R) + R

and therefore,

R//Rz = R,

In asimilar manner, we find that

Vtune_F: |: R//Rl :| _ L
Vfine (R//Rl) + R2

20
which requires that

R, = 19(R//R;)

R R,
vcoarse Ci) Ci Vfine Vcoarse Ci) Ci Vfine
+ +
Vtune_C R R2 R 1 Vtune_F

(@) (b) (©)

Figure 5.25

(@) The coarse/fine adjust-
ment circuit, (b) with Ve
set to zero and (c) with
Voarse Set to zero.

Note that the two constraint equations for the resistors have three unknowns—R, R;, and
R,. Thus, we must choose one resistor value and then solve for the two remaining values.
If we arbitrarily select R = 1k(), then R, = 900 Q) and R, = 9 k(). This completes the
design of the circuit. This example indicates that superposition is not only a useful analysis
tool but provides insight into the design of new circuits.

DESIGN Coaxial cable is often used in very-high-frequency systems. For example, it is commonly
EXAMPLE 5.21 used for signal transmission with cable television. In these systems resistance matching, the
kind we use for maximum power transfer, is critical. In the laboratory, a common apparatus
used in high-frequency research and development is the attenuator pad. The attenuator pad
is basically avoltage divider, but the equivalent resistance at both its input ports is careful-
ly designed for resistance matching. Given the network in Fig. 5.26 in which a source, mod-
eled by Vg and Ry (50 (2), drives an attenuator pad, which is connected to an equivalent load.

Figure 5.26 Attenuator pad

The model circuit for the
attenuator pad design.
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Let us design the pad so that it has an equivalent resistance of 50 ) and divides (i.e., atten-
uates) the input voltage by afactor of 10.

Since the attenuator or “T-Network” must have an equivalent resistance of 50 (), werequire  SOLUTION
that Rrp.in @and Ryp.ou b€ 50 €). Since these Thévenin resistance values are the same and the
circuit is symmetric, we can use the label R, twice to indicate that those resistors will be
the same value.
Rrnin = Ry + [Ry//(R, + 50)] = 50
Rrnow = Ry + [Ri//(Ry + 50)] = 50
Since the equations are identical, we refer to both Thévenin equivalent resistance parame-
terssimply as Ry, The Thévenin equivaent voltage, Vz;,, can be easily derived from the cir-
cuit in Fig. 5.27 a using voltage division.
o= )
™ USIR, + R, + 50
Rg Ry Ry Rth Figure 5.27
VWA VWA VWA O vy - .
=00 T (@) The circuit used in
+ finding V4, and (b) the
VSCJ_F SR Vin Vih C_F) RL? Vour Tesulting model.
-— 500 [ -
o
Ry

(@ (b)
From the Thévenin equivalent circuit in Fig. 5.27b, we find

L

Vw:VTh[W =7
T

Combining these equations yields the attenuation from V; to V,,,

Vou _ [VMV*} _ 1[ R, ] 1
Vs Vin IL Vs 2R, + R, + 50 10

The Thévenin equivalent resistance equation and this attenuation equation provide us
with two equations in the two unknowns R, and R,. Solving these equations yields
R, = 20.83 Q) and R, = 33.33 (). For precise resistance matching, these resistors must be
Very accurate.

With such low resistor values, the power dissipation can become significant as V; is
increased. For example, if Vo = 10V, V,, = 1V and the power dissipated in the R, resis-
tor connected to the input source is 333 mW. To keep the temperature of that resistor at rea-
sonable levels, the power rating of that resistor should be at least 0.5 W.

Let us design a circuit that will realize the following equation:

V, = =3V, — 20001

An examination of this equation indicates that we need to add two terms, one of which is
from a voltage source and the other from a current source. Since the terms have negative
signs, it would appear that the use of an inverting op-amp stage would be useful. Thus, one
possible circuit for this application appears to be that shown in Fig. 5.28.

DESIGN
EXAMPLE 5.22

SOLUTION
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Figure 5.28

Circuit used in
Example 5.25.

Figure 5.29

Circuits used in deriving a
Norton equivalent circuit.

The Norton equivalent circuit at the terminals A-B will provide a composite view of the
op-amp’s input. Superposition can also be used in conjunction with the Norton equivalent
to simplify the analysis. Using the network in Fig. 5.29a, we can determine the contribution
of Vs to the short-circuit current, I, which we call I

V.
Iy, = R—Sl
R, A R A R, A
VS CtD I sCq I S CT) I SCy ﬁ
—O
B B B

@ (b) (©

In asimilar manner, using Fig. 5.29b, we find that the contribution of I to the short-circuit
current is
Iy, = I

Employing superposition, the sum of these two currents yields the actual short-circuit current
V.
I, = R% + I
The Thévenin equivalent resistance at nodes A-B is obtained from the network in Fig. 5.29¢ as
Rm =R

The equivalent circuit isnow redrawn in Fig. 5.30 where we have employed theideal op-
amp conditions (i.e., Vi, = 0), and the current into the op-amp terminals is zero. Since V;,
is directly across R+, the current in this resistor is also zero. Hence, all the current I, will
flow through R,, producing the voltage

Vs R,
V,,:*Rz F]+IS :7R71VS71SR2
A comparison of this equation with the design requirement specifies that
R,
—2 =3 and R, = 20000
R,

which yields R, = 667 (). Combining a 1-k ) and a 2-k(} resistor in parallel will yield the
necessary 667 () exactly.
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R, Figure 5.30
VWA § -

I The required circuit

5 0A containing the Norton
oAy Vig=ov © 0 equivalent.
R 1
e Th - Vo
Fans are frequently needed to keep electronic circuits cool. They vary in size, power require- DESIGN

ment, input voltage, and air-flow rate. In a particular application, three fans are connected in
parallel to a 24-V source as shown in Fig. 5.31. A number of tests were run on this configura-
tion, and it was found that the air flow, fan current, and input voltage are related by the follow-
ing equations:

FCFM = 200[[: VF = 1001[:

where Fry representsthe air-flow rate in cubic feet per minute, V5 isthe fan voltage in volts,
and I is the fan current in amperes. Note that fan current is related to fan speed, which in
turnisrelated to air flow. A popular and inexpensive method for monitoring currentsin appli-
cations where high accuracy is not critical involves placing a low-value sense resistor in
series with the fan to “sense” the current by measuring the sense-resistor’s voltage.

+ IF

24V C—D Vi

We wish to design a circuit that will measure the air flow in this three-fan system.
Specifically, we want to

a. determine the value of the sense resistor, placed in series with each fan, such that its
voltage is 2% of the nominal 24-V fan voltage, and specify a particular 1% component
that can be obtained from the Digikey Corporation (Website: www.digikey.com).

b. design an op-amp circuit that will produce an output voltage proportional to total air
flow, in which 1 V corresponds to 50 CFM.

The fan's voltage—current relationship specifies that each fan has a resistance of 100 ().
Since the voltage across the sense resistor should be 2% of 24 V, or 0.48 V, the fan current,
derived from the network in Fig. 5.32, is

24 — 0.48

[, = ——"— = 2352 mA
F 100

and the required value of the sense resistor is

0.48
Renee = =2.04Q
SN 0.2352

EXAMPLE 5.23

Figure 5.31
A trio of 24-V fans.

SOLUTION
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Figure 5.32

The equivalent circuit
for one fan and its sense
resistor.

Figure 5.33
The complete air-flow
measurement system.

I
+< 4
Vi 31000

24v Ci)

+

R 2 Vsense
sense 2> 49y

The power dissipation in this component is only
Ponse = I3 Rense = 0.11 W

And thus a standard 1/4 W 2-Q) resistor will satisfy the specifications.

The op-amp circuit must be capable of adding the air-flow contributions of all three fans
and scaling the result such that 1 V corresponds to 50 CFM. A summing op-amp circuit
would appear to be alogica choice in this situation, and thus we select the circuit shown in
Fig. 5.33 where the second stage issimply an inverter that correctsfor the negative sign result-
ing from the summer output. In order to determine the summer’s gain, we calculate the
volts/CFM at the sense resistors. For asingle fan, the air flow is

FCFM = 200[1: = 47.04 CFM
And the volts per CFM at the input to the summer are

0.48V

————— = 0.0102 V/CFM
47.04 CFM /
Hence, the gain of the summer op-amp must be

V,  1V/50CFM
Vene  0.0102 V/CFM

=196 V/V

Thisisagain close to 2, and therefore we will use resistors that produce a 2:1 ratio, that is,
very close to 1.96. At this point, one additional consideration must be addressed. Note that
the resistors at the summer input are essentially connected in parallel with the senseresistors.
To ensure that al the fan current flows in the sense resistors, we select very large values for
the op-amp resistors. Let uschoose R, = R, = R; = 100 k) and then R, = 200 k).

I
+
Vi
_ IQ1
vI\/\IA R4 R
24V CJ_D 5@ o Ny
A4 5
R3 J__
VWA = s
< + < < J?-_ VO
RSCHSC ? Vsense ? ? o)
1 ‘

Finally, the values for Rs and R, can be somewhat arbitrary, aslong as they are equal. If we
select a value of 100 k), then only two different resistor values are needed for the entire
op-amp circuit.
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m Linearity: This property requires both additivity and
homogeneity. Using this property, we can determine the
voltage or current somewhere in a network by assuming
a specific value for the variable and then determining what
source value is required to produce it. The ratio of the
specified source value to that computed from the assumed
value of the variable, together with the assumed value of
the variable, can be used to obtain a solution.

m Inalinear network containing multiple independent
sources, the principle of superposition allows us to compute
any current or voltage in the network as the algebraic sum
of the individual contributions of each source acting alone.

m Superposition is alinear property and does not apply to
nonlinear functions such as power.
m Using Thévenin's theorem, we can replace some portion of

anetwork at a pair of terminals with a voltage source V. in
series with aresistor Ry,. V. is the open-circuit voltage at

the terminals, and Ry, is the Thévenin equivalent resistance
obtained by looking into the terminals with all independent
sources made zero.

Using Norton’s theorem, we can replace some portion of a
network at a pair of terminals with a current source Iy in
parallel with aresistor Ry, Iy is the short-circuit current at
the terminals, and Ry, is the Thévenin equivalent resistance.

Source transformation permits us to replace a voltage
source V in series with aresistance R by a current source

| = V/IRin parallel with the resistance R. The reverseis also
true. Thisis an interchange relationship between Thévenin
and Norton equivalent circuits.

Maximum power transfer can be achieved by selecting

the load R, to be equal to Ry, found by looking into the
network from the load terminals.

PROBLEMS

5.1 Use linearity and the assumption that V,= 1V to find
the actual value of V, in Fig. P5.1.

VWA
2kQ +
’ZkQ

<

2k S 4
i ZKQ? 1=12 mA
=

Figure P5.1

5.2 Using linearity and the assumption that I, = 1 mA, find
the actual value of |, in the network use Fig. P5.2.

VWA
6 kQ
4KQ
V.=24v [ <
<
sk 3 s S2k
>
6 kQ
3kQ 1,

Figure Ps5.2

5.3 Find I, in the network in Fig. P5.3 using linearity and the
assumption that 7, = 1 mA.

2 k0 2 k0
vm‘ vm‘
IO
<
12 mA CD 2k0 3 2603 o] 2kQ

Figure P5.3

ézkn v,

5.4 Find I, inthe circuit in Fig. P5.4 using linearity and the
assumption that 7, = 1 mA.

va VI\/\IA VI\/\IA
4kQ 4Kk 4kQ
< < <
12k03 <T>4mA Saka S2k0
IO
Figure P5.4

5.5 Find V, in the network in Fig. P5.5 using linearity and the
assumption that vV, = 1 V.

I I I
VWA VWA 3 VWA 3
3kQ + 3k + 3kQ L 7
8V<:> 3KQ 3 3kQ 3kQ V,
é 6 k) ¢
Vs V4
Figure P5.5
5.6 Find I, in the network in Fig. P5.6 using
superposition.
6 kQ 3kQ
v’\/\l‘ v’V\IA
GVC“_LD 2k0 3 CDzmA S3k0
IO

Figure P5.6
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5.7 Inthe network in Fig. P5.7 find I, using 5.12 Find V, in the circuit in Fig. P5.12 using superposition. @

superposition.
perp N v, B
6 k&} 6 kQ )
vl\/\l v’\/\l vI\/\IA
2kQ
C) 3 3 12V 6 mA
12V 6 kQ 6 mA 6 kQ
N 3 m 3 M) )
I, N N\
Figure P5.7 2k 3 2k0 3 % 2kQ
5.8 Find V, in the network in Fig. P5.8 using superposition.
+ VvV, - Figure P5.12
v’V\IA v’V\IA
3kQ 8 kQ ) _ o ) .
5.13 Find V,inthe circuit in Fig. P5.13 using superposition.
12VC_> 6kQ S CDZmA <2k
> > +
2kQ Vv
6 mA (%) - ({) 4 mA
Figure P5.8 4 kQ
.9 Find V, in the network in Fig. P5.9 using superposition. AAA VWA
5.9 o g g superp > KO 5 KO
+ V, - VWA
4KkQ 6 kQ 8 kQ 4kQ
WW———— MW WA Figure P5.13
2k 3 6 mA CD4mA 24k - S _ N
1 [ 5.14 Find |, in the circuit in Fig. P5.14 using superposition.

Figure P5.9 12V CiD 3,6 KO CD 6 mA

@ 5.10 FindV, inthe network in Fig. P5.10 using superposition.
6 kO 6 kO
Vo - W W
Lo 6 kQ
vI\/\IA 7 vI\/\IA vI\/\IA vIV\,A
6 kQ 6 kQ 6 kQ Figure P5.14
Gkﬂé 12V CDemA §6kﬂ
5.15 Find V, inthecircuit in Fig. P5.15 using superposition.
Figure Ps5.10
+
5.11 Find |, in the network in Fig. P5.11 using superposition. )
6 mA CD 6k
6 kQ d
12v <“_L> 32k0 CD 6 mA sk gV,
4,\';3 4,\'/‘3 12V C;) 6ka 3
2 kQ B
VWA
1, .
Figure Ps.15

Figure P5.11
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@ 5.16 Find |, inthecircuit in Fig. P5.16 using superposition. 5.20 Use superposition to find V, in the network in Fig. P5.20. @

6 k) n
VWA

12V

6V 12v (+ 6k V, T)ev
5 = © e

CDG A 6 kQ 6 kQ
m
6 kQ 6 kQ EGKQ CT)GmA §6k9

VWA VWA
I()

6 kQ .

vy Figure P5.20

Figure P5.16
5.21 Use superposition to find I, in the circuit in Fig. P5.21.

5.17 Use superposition to find I, in the circuit in Fig. P5.17.

12 mA 6k 2 <+ 12V ‘gekn
D) [
/ 6 kQ 6 kQ
—W———— W——¢
6 kQ 6 kQ 7
—— A WA o
IO

ema (] S12k0 1)ama
s 0 9

VWW VWA Figure P5.21
6 kQ 6 kQ
@ 5.22 Use superposition to find |, in the network in Fig. P5.22.
6 mA
Figure P5.17
12V Ci) CD 6 mA
5.18 Use superposition to find |, in the network in Fig. P5.18.
Lo 2 4kQ
6 kO —— Wt S
VWA 3k
6 mA 4mA 1, GVG—D 26k
6k 3 S 6k
[ 6 kQ
Figure P5.22
Figure P5.18 5.23 Use superposition to find \, in the circuit in Fig. P5.23.
+
@ 5.19 Use superposition to find V, in the circuit in Fig. P5.19. —
12V GD CD 6 mA
3kQ
— M — 3KkQ < Vv
J 3k 2 ¢
3k S 23k0 ] <
i i < 3kQ < 3kQ

Figure P5.19 Figure P5.23
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5.24 Find V, in Fig. P5.24 using superposition.

2 kQ 4kQ 2 kQ
MV MV MV
5 kQ
+ >
10V Ci) CD 10mA  22k0
V4 2 mA 9
Figure P5.24

@ 5.25 Find |, in Fig. P5.25 using superposition.

§8k9

O

2kQ 4kQ
MN 4'A'A%
CJ_D 8V
AN A\
2kQ 4kQ
Cir) 12v g 6 kQ
I
Figure P5.25

@ 5.26 Use superposition to calculate I, in Fig. P5.26.

12 kQ
AN
6kQ I, 4kQ
MV NN
12V CJ_D CD 2 mA C;) 24V
Figure P5.26

5.27 Calculate V, in Fig. P5.27 using superposition.

ADDITIONAL ANALYSIS TECHNIQUES

5.28 Find V, inthecircuit in Fig. P5.28 using superposition. @

2k03 CT>4mA S1k0
6V
0
N\ — .
12V
2|<Q<$> S1kQ <5>1|<Q v,

Figure P5.28

5.29 Use superposition to find 7, in the network in Fig. P5.29.

/\2 mA
—_—

4 mA T

—/

<

403

>

VWA

2k03

\4

om(®

4 kO

12 ksfg

IO

Figure P5.29

5.30 Use superposition to find I, in the circuit in Fig. P5.30.

2kﬂ<$>

3kQ

6 kQ

) %4kﬂ

12VCJ_r

Figure P5.30

5.31 Use superposition to find 7, in the circuit in Fig. P5.31.

V%A

6 kQ

v’\/\lA

§6k9

a

4 kQ

I
u

_/

4 mA

+ VvV, -
A AV AN
6 kQ 4kQ 10 kQ
2 kQ
10 kO
12V Ci) Ci) 18V
6 mA

Figure P5.27

e

2 mA
<

§3 kQ

IO

§2 kQ

Figure P5.31



5.32 Use Thévenin's theorem to find V, in the network in

Fig. P5.32.
6V 12v
e M
-/ N\ .
2k0 3 a0 3 2k03

Figure P5.32

5.33 Use Thévenin's theorem to find I ,in the circuit using
Fig. P5.33.

12v C—D 22k CD 6 mA
4kQ 4kQ
Y WA
IO
VIWA
2kQ

Figure P5.33

5.34 Use Thévenin's theorem to find V, in the circuit using

Fig. P5.34.
+ v, .
vm‘
2 kQ)
6 mA
M) 2\
N N
12V
2k 3 22k0 22k0

Figure P5.34

5.35 Use Thévenin's theorem to find V, in the circuit in

Fig. P5.35.
+
) sk Vo
3k 3 5 23k
6V
VWA VWA
6 kQ 6 kQ
S
6 mA

Figure P5.35
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5.36 Use Thévenin's theorem to find |, in the network in
Fig. P5.36.

ZmACD 21k

Figure P5.36

5.37 Find |, in the network in Fig. P5.37 using Thevenin's
theorem.

VWA
1 kQ

— WA VWA

1kQ 2 kQ
4mA CD

Figure P5.37

5.38 Find V, in the circuit in Fig. P5.38 using Thévenin's

theorem.
12V
D
N
+—— VWA
1kQ 2kQ +
32k0 CT>4mA kg v,

Figure P5.38

5.39 Find V, inthecircuit in Fig. P5.39 using Thévenin's

theorem.
+
1k0 3 CD 2 mA
—AM— ‘éz kQ V,

2 kQ

Ci) 12V

21k0
>

Figure P5.39
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5.40 Find |,in the circuit in Fig. P5.40 using Thévenin's

theorem

O

————tp

leg»

Figu

2 kQ

re P5.40

5.41 Find V,in the network in Fig. P5.41 using Thévenin's

theorem.

1k0 3 Ct) 12v
$——
2kQ T
1k0 3 2k03

Figure P5.41

@ 5.42 Find |,in the network in Fig. P5.42 using Thévenin's

theorem.

1 kn‘é

<

2k

12v

>

<
éZkQ

‘glm

o

IO

Figure

P5.42

ADDITIONAL ANALYSIS TECHNIQUES

5.43 Use Thévenin's theoremto find I, in Fig. P5.43.

4kQ
D

AN
_/

Iy
L 2 kO

k0 2 4k0
A AN

Figure P5.43

5.44 Calculate |, in Fig. P5.44 using Thévenin's theorem.

12 kQ
AN
6kQ ], 4kQ
—A\A\\ AN

W@ D Qe

Figure P5.44

5.45 Find 7, in the network in Fig. P5.45 using Thévenin's

theorem.
1kQ
MN
1mA 1kQ
S
C—D 6V % 1kQ CD 2 mA
1,

Figure P5.45



5.46 FindV, inthe network in Fig. P5.46 using Thévenin's
theorem.

<
CD 1mA S1ko CD 2 mA
0.5k 0.5k
vm‘ vm‘
+V, -

Figure P5.46

5.47 Use Thévenin's theorem to find I, in the network in
Fig. P5.47.

24V Ci)

-

<
gem

3k 3

>

—/

2 mA

2 mA

<
§2kn

Figure Ps5.47

@ 5.48 Use Thévenin's theorem to find 1, in the circuit in

Fig. P5.48.
V)
u { VW
N 4KQ
18V
6 kQ 5 26 kQ S 4kQ
6 kQ)
Vm‘
2 mA CD 1mA CD 3k 3
IO

Figure P5.48
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5.49 Given the linear circuit in Fig. P5.49, it is known that
when a 2-kQ load is connected to the terminals A-B, the
load current is 10 mA. If a 10-kQ load is connected to
the terminals, the load current is 6 mA. Find the current
in a 20-kQ load.

5.50

O A

Figure P5.49

O B

If an 8-kQ load is connected to the terminals of the

network in Fig. P5.50, V,; = 16 Q. If a2-kQ load is
connected to the terminals, V,; = 8 V. Find V,; if a
20-kQ load is connected to the terminals.

Figure P5.50

O A

5.51 Find 7, in the network in Fig. P5.51 using Norton's

theorem.

12V Ci)

6 kO 3kQ
3k 3 1mA<D 3k03

>

10

2\

Figure P5.51

5.52 Use Norton's theorem to find |, in the circuit in

Fig. P5.52.
}Z-K 4kQ 2k0
) W W
2k0 3 2k0 3 4mA<T> k03
IO

Figure P5.52
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5.53 Find |, in the network in Fig. P5.53 using Norton's

theorem.

CHAPTER 5

A

V4

12V Ci)

2k0 1,

vm‘ va

6 k0 3k0
2k0 2 4k03

>

Figure P5.53

5.54 Use Norton's theorem to find V, in the network

in Fig. P5.54.

24V Ci)

2kQ
VWA
VWA T
4 KO N
T 2 mA
<
V(,g 4KQ

Figure P5.54

5.55 Use Norton's theorem to find 7, in the circuit in

Fig. P5.55.

22k

1kQ

2o (D

v’\/\l‘

Figure P5.55

@ 5.56

theorem.

2k02

<

2k

< <T>4mA élkﬂ
6V
_/ _/
12V
> glkﬂ <§>le

Figure P5.56

Find V, in the circuit in Fig. P5.56 using Norton's

ADDITIONAL ANALYSIS TECHNIQUES

5.57 Use Norton's theorem to find I, in the network in

Fig. P5.57

24V CLD

D)

—

<
geka

3k 3

>

N

2 mA

2 mA

Figure P5.57

5.58 Use Norton's theorem to find /1, in the circuit in

Fig. P5.58.
) AA
N 4KQ
18V
6 kQ) g g 6 kQ) $> 4KkQ
6 kQ
Vm‘
2mA<D 1mA CD 3k 2

Figure P5.58

5.59 Find V, in the network in Fig. P5.59 using Thévenin's

theorem.

12V Ct)

ZVA
4 kO
v A
Ty N4
< <
2|<Q$> 4|<Q$>

Figure P5.59

+

Vo

5.60 Use Thévenin's theorem to find V, in the circuit in

Fig. P5.60.
I 6V
O
2kQ
1k9<$> 21x<T> 103

\'4

Figure P5.60

&

@



5.61 Use Thévenin's theorem to find 1, in the circuit in

Fig. P5.61.
IO
Vm‘ v’\/\l‘ vI\/\IA
8 k() 2 kQ) 12 kQ)

+
Ci) 12v v, 34k0 4kQ <j> 2V,

Figure P5.61

5.62 Use Thévenin's theorem to find V, in the circuit in
Fig. P5.62.

v’\/\l‘
1kQ +

12V
)
NS

1k03 1k0 3

.G

Figure P5.62

5.63 Find |, inthecircuit in Fig. P5.63 using Thévenin's

theorem.
1kQ
v’\/\l‘ vIV\IA
+ V- 1 kQ
12V Ci) 3 2kQ <i> 2V,
IO

Figure P5.63

5.64 Find V, inthe network in Fig. P5.64 using Thévenin's

theorem.
1000 1,
6 kQ 1kQ
VWA & VWA—e
+
- < <
3v<+> 2k0 S 1mA 2k03 V,
I, _

Figure P5.64
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5.65 Use Norton's theorem to find V, in the network in

Fig. P5.65.
2000 1,
6 kQ 4KkQ
vI\/\IA - + vI\/\IA .
\/ +
6V C;) 2k03  3mA CD a3 v,
I, _

Figure P5.65

5.66 Find V, inthecircuit in Fig. P5.66 using Thévenin's

theorem.
+ V, -
v’\/\l‘ v’\/\l‘ v’\/\l‘
4kQ 2 kQ 4kQ
+ J V
evC+> V.S 2k0 < —x <+>12v
- X 5» l 1000 -

Figure P5.66

5.67 Find V, in the network in Fig. P5.67 using Thévenin's

theorem.
g
Ci) 12v CD 2mA
—!x—\/vv\— 1 kQ g’ Vv,
1kQ
S1ko <T> 21,
Figure P5.67

5.68 Use Thévenin's theorem to find V, in the circuit in

Fig. P5.68.
4 mA
@
(IR O e |+
6V +
2VX<J_F> 1k0 3 Vi3 S v,

Figure P5.68

&

&
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@ 5.69 Use Thévenin's theorem to find V, in the circuit in

Fig. P5.69.

4 mA

S

12V
1kQ N\ 1kQ 1kQ
—vWW \_“l) VWA vVW—ore
+
+

<f>2vx S1k0 CDZmAV)%le

s v

Figure P5.69

5.70 Use Thévenin's theorem to find V, in the network in

Fig. P5.70.
2V,
— 4
1kQ ;Z\V 1kQ 1kQ
+—/W ) - VW VWA—ote ;
sma (1) (Dzm 32V 103 103 v,
Figure P5.70
@ 5.71 Find V, in the network in Fig. P5.71 using Norton's
theorem.
+
Ve b
<T E R
2kQ J
— W 3kQ g v,
+
1mA CD V, 33k
Figure P5.71
@ 5.72 Find I, in the network in Fig. P5.72 using Thévenin's
theorem.
10
Vw‘
2kQ
1k0 3 2Vx<j> 31k S1k0
+ <
4v<i> nglkn Ct)zv

Figure P5.72

ADDITIONAL ANALYSIS TECHNIQUES

theorem.

5.73 Find V, in the circuit in Fig. P5.73 using Thévenin's

<l 21, S1ko Q 2mA
IX
W oy
1kQ 1kQ +

Figure P5.73

5.74 Find V, in the network in Fig. P5.74 using Thévenin's

theorem.
< < < +
2k0 3 Sika  1kQ SV,
"0
2kQ B +
12V CJ_D 2 VX<I> 1kQ § v,

Figure P5.74

5.75 Find V, in the network of Fig. P5.75 using Thévenin's

theorem.
1kQ 1kQ
VI\/\IA v’\/\l‘
- Vx + +
< <
2k0 3 1mACD kg v,
1 kQ 1 kQ -
VI\/\IA v’\/\l‘
2V, <
. <T> 32k0 CD 4 mA

Figure P5.75

&

@

@



PROBLEMS 237

@ 5.76 Use Thévenin'stheorem to find I, in the circuit in 5.79 Use Thévenin's theorem to find V, in the network @
Fig. P5.76. in Fig. P5.79.
30
MV

Va 2 120 <i> 2Vy CD 5A i [ 2mA
'_\/\N\_' [ b
' o9 1kQ : +

MW MW

12v CJ_D <l> 41, T [ I, _

12
Figure P5.79
Figure P5.76
5.80 Find the Thévenin equivalent of the network in @
Fig. P5.80 at the terminals A-B.
1 kQ 2 kQ
VWA A% 7 O A
@ 5.77 Use Thévenin's theorem to find \, in the circuit in + .
Fig. P5.77. b x
V, S1k0 <T/ 1000 1kQ
20 40 _
M - A l _op
g Figure P5.80
10 <1L> 2V, CDz A
80 50 5.81 Find the Thévenin equivalent of the network in
A AN Fig. P5.81 at the terminals A-B.
_ +
Va + o 1000 /.
S 1
31, 20 V, VWA 4—\ +—O0A
o @ <O 2 <O
1kQ 3 2 kQ 3 2 kQ
Figure P5.77 1 1
IX
O B
Figure p5.81
. ] ] ) 5.82 Find the Thévenin equivalent circuit of the network in @
@ 5.78 U_se Thévenin's theorem to find I, in the network in Fig. P5.82 at the terminals A-B.
Fig. P5.78.
30 50
1kQ A% A%
VWA _ | 1a
+ ] ) Va § 120 <t>2 Va
VieS1ko 21k0
- T [ * 90
ANV ANV
+> 6V S 2KQ < 60 ,
C_ \/ s» 70 g
2V, <l> 41y
+
1k S C_) 2V I,
A B

Figure P5.78 Figure P5.82
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5.83 Find the Thévenin equivalent of the network below at the

CHAPTER 5

terminals A-B in Fig. P5.83.

1 kQ

21, l> §1k9 §1k9 1m§

Ix

ANV

A
O

Figure P5.83

o

5.84 Find I, in the network in Fig. P5.84 using Thévenin's

theorem.
4, <T> 31k
+ Vx - IY
V%A vI\/\IA r
1kQ 1kQ
6y CJ_D S1k
Figure P5.84

W

o

5.85 Use source transformation to find V, in the network

in Fig. P5.85.
e "
7 12 k)
6V 5
6kQ§ 4kQ<$V0 <1>24v

2o (D

>

Figure P5.85

5.86 Find I, in the network in Fig. P5.86 using source
transformation.

3kQ
VWA
1
<y @ WA
6 kQ 9 kQ
4 mA
+ < <
C_)ev $>1sz §4kn éSkQ

Figure P5.86

ADDITIONAL ANALYSIS TECHNIQUES

5.87 Find V, in the network in Fig. P5.87 using source
transformation.

vIV\IA vIV\IA
6 kQ 2 kQ
23k0
6V Ci) 3» 4kQ
C;) 12V
Figure P5.87

5.88 Use source transformation to find 7, in the network in

CJ_D 3V

Fig. P5.88.
A /_\ A
Vm I vm
4k A 6 kQ
6V
2k0 S 2mACD S2ko
IO
Figure P5.88

5.89 Find V, in the network in Fig. P5.89 using source
transformation.

+ V,
vl\/\lA vI\/\IA vI\/\IA
3kQ 3kQ 4kQ
23k0 Q 2mA 312k 312k C;)ev
Figure P5.89

5.90 Find I, in the network in Fig. P5.90 using source
transformation.

4 mA
&
3KkQ 4kQ
CD4mA <§>3k0 ‘5»12 kO CDZmA

I,
Ci) 12V

Figure P5.90



5.91 Find I, in the circuit in Fig. P5.91 using source

transformation.

s 2

A A /_\
W W + WA
6 kQ2 3kQ N 3kQ
12V
S4kQ
36k (Dzma 3310 33k

Figure P5.91

5.92 Use source exchange to find I, in the network in

Fig. P5.92.

20 mA CD ‘é 6 kO

<§>4kQ

v’V\IA
3kQ
v’V\IA
12 kQ
<
S 6kQ
>
I, 3k0
O

8V
Figure P5.92

5.93 Use acombination of Y—A transformation source trans-
formation to find |, in the circuit in Fig. P5.93.

6V

6 kQ 6 kQ
VWA 3 VWA
N /
(4]
< <
6 kQ $> % 4kQ 5, 3kQ
4kQ
v’\/\l‘
< <
6k S 4k g 2mA<T>
6 kQ = 4kQ

Figure P5.93
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5.94 Find V, inthe network in Fig. P5.94 using source

exchange.
6
-
12v(t) 6ke3  2k0 Vo 32ka (})ama
2kQ
2k03 CPZmA 12V 22k0
1kQ

Figure P5.94

5.95 Use source exchangeto find |, in the circuit in Fig. P5.95.

8V

1kQ 2mA l

6V

A

6 kQ

Figure P5.95

5.96 Use source exchangeto find I, in the network in

Fig. P5.96.
2 kQ 3kQ 1, 2 kQ
w® vl Do Oy
2kQ
12 kQ
4kQ3 38kQ 26kO 212k0
4kQ 8 k)

Figure P5.96

&

7

@
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5.97 Use source exchange to find I, in the network in

Fig. P5.97.
4 ki 3k
3k03 d)“mA 36 kO 24k
2 kO
L1 2ko
12V Cf) 32k0 26 k0 C;) 6V
2 ke
3 kO 3KO
ZmACP 34kQ 6k03 32k

Figure P5.97

5.98 Use source transformation to find 1, in the network
in Fig. P5.98.

6 k() 3 kQ
v’\/\l‘ . v’\/\l‘

12v<_

:) 6 kQ
12 kQ

+
fo
_ —
N
2 mA
V%A
3 kO

Figure P5.98

5.99 Using source transformation, find V, in the circuit

in Fig. P5.99.
WAA W—
6 k0 8 k0 T
1zv<f> sk0 S 43 v,
2k0 -
A—tp
©
2 mA

Figure P5.99

ADDITIONAL ANALYSIS TECHNIQUES

5.100 Using source transformation, find 7, in the circuit in
Fig. P5.100.

VWA
8 k)

<
2|<Q$>

2mA<I>
m@ 114

6k03

\'4

Figure P5.100

5.101 Use source transformation to find 7, in the circuit

in Fig. P5.101.
vI\/\IA
4kQ
‘ga kQ
4 mA 2 mA
12v<;> 33k0 S2ko
IO

Figure P5.101

5.102 Using source transformation, find 1, in the
network in Fig. P5.102.

C:BZmA
—/
4mA CD ak03
2k03 w
6 mA CD 12k03
IO

Figure P5.102



@ 5.103 Use source transformation to find 7, in the circuit in

Fig. P5.103.
2kQ 5 6V 6 kQ 5
o Do
3kQ
12V
12V C_F) 3 4KQ
IO

Figure P5.103

5.104 Use source transformation to find 7, in the circuit in
Fig. P5.104.

T v’\/\l‘
-/

4 kQ

v’\/\l‘

6 k() <g’ﬁkﬂ, §4kQ

6 kQ
VWA

son(D

1mA CD 3kQ ‘5»

IO

Figure P5.104

5.105 Using source transformation, find 7, in the circuit in

Fig. P5.105.
24v<i> <gekﬂ ézkn
2 mA
S S
2 mA
3kQ 5 34 KQ
IO

Figure P5.105

5.106 Find R, in the network in Fig. P5.106 in order to
achieve maximum power transfer.

VWA VWA
2kQ 2kQ

Cj)lzv gzkﬂ

32k SR,

Figure P5.106
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5.107 Inthe network in Fig. P5.107 find R, for maximum
power transfer and the maximum power transferred to

this load.
v’V\IA V%A
1kQ 2 kQ

S2k0 <T>4mA Sako R,

Figure P5.107

5.108 Find R, for maximum power transfer and the
maximum power that can be transferred to the load in

Fig. P5.108.
2 mA
S
v’V\IA v’V\IA
3kQ 2 kQ

Ci)ev <S}em R,

Figure P5.108

5.109 Calculate the maximum power that can be transferred
to R in Fig. P5.109.

—VW MV MV
6 kQ Ry 10 kQ

10 kQ
6V Ci)
3 mA

Figure P5.109

5.110 Find the value of R in Fig. P5.110 for maximum power
transfer and the maximum power that can be dissipated

inR,.
2 kQ 4 kQ
t 8V b RL
— \WN\——\VWN\—2¢
2 kQ 4 kQ

Figure Ps.110
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@ 5.111 Determine the value of R in Fig. P5.111 for maximum
power transfer. In addition, calculate the power dissipat-
ed in R, under these conditions.

Ry
AN

MV MV
150 20 Q

4A<D 1003 30v<f> Cf)zov gzon

Figure P5.111

5.112 Determine the value of R, in the network in Fig.
P5.112 for maximum power transfer.

5kQ 5kQ
VWA VWA

Ci) 12v 1007 <T> 3R,

Figure P5.112

5.113 Find R, for maximum power transfer and the
maximum power that can be transferred to the load
in Fig. P5.113.

VWA VWA
2kQ 3kQ

1mA CD Ji/xg,lkﬂ <l>‘11'0—‘gg SR

Figure Ps5.113

5.114 Find the value of R, in the network in Fig. P5.114 for
maximum power transfer.

+ Ve -
VWA VWA
20 40

4V, <i>

Figure P5.114

4Q
VWA

ADDITIONAL ANALYSIS TECHNIQUES

5.115 Find the value of R_in Fig. P5.115 for maximum power

transfer and the maximum power that can be transferred

toR.

2V

80 40 A
— A\ AN an
Vo« N

Figure P5.115

5.116 Find the value of R in Fig. P5.116 for maximum power
transfer and the maximum power that can be dissipated

inR.

AN °

R

Figure P5.116

5.117 Find the value of R_in Fig. P5.117 for maximum power
transfer. In addition, calculate the power dissipated in
R_ under these conditions.

4 kO 4 kO
AAA * MWV

R,

6 kQ 2mA <T 21,

Figure P5.117

5.118 Find the value of R_in Fig. P5.118 for maximum @
power transfer. In addition, calculate the power dissi-
pated in R_ under these conditions.

6 kO 3kQ
ANV ANV
+
Ry,
12V j) 3mAC> Vi3 2k

0.5V,

Figure P5.118
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@ 5.119 Calculate the maximum power that can be transferred 5.122 Solve the remaining problems using computational
to R, inthecircuit in Fig. P5.119. methods. Find 7, in the network in Fig. P5.122.
6 kQ 6 kQ
4Vy s VW
40
@ M‘ < <
12v<i> 6k S 6 mA S6k0
VWA —/ W I,
40 4+ 40 3
V.240 Figure P5.122
X
100V Ci) - 2R,
20V ) . —
5.123 Find V, in the network in Fig. P5.123.
- O
Figure P5.119 6V N 12 kQ
2mA CD 6 kQ <$> 4kQ 3} v, CJ_D 2av

@ 5.120 Find R, for maximum power transfer and the Figure P5.123

maximum power that can be transferred in the network

in Fig. P5.120.
2KkO 5.124 Find 1, in the circuit in Fig. P5.124.
vIV\IA
/-b Vw‘ v’V\IA
VIIV\IA vI\/\IA \—/ 4 kQ
T 4kQ R; 18V
1 mA C) + b
< < 6 kQ kQ 4kQ
£ <T> 2k0 S 2k 3V, g g6 g
2000 - 6 k2
Vw‘

Figure P5.120 > mA CD 1 mA CD 3 kg%

Figure P5.124
@ 5.121 Find the value of R_in Fig. P5.121 for maximum power
transfer and the maximum power that can be dissipated

inR.
R 5.125 Find V, in the network in Fig. P5.125.
20 40
Vm‘ . v’\/\l‘ Vm‘
Iy
+
210 t>2v, <T>2A 2k 3 Sike  1ke3 V,
R _
8 L
ANV ANV VW @
- Va + 2ka 2 mA *
9V<J_r> <T>3IA 220 12V<:L> 2Vx<f> 13 v,
1, -

Figure P5.121 Figure P5.125
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TYPICAL PROBLEMS FOUND ON THE FE EXAM

5PFE-1 Determine the maximum power that can be delivered
to theload R, in the network in Fig. 5PFE-1.

a 2mw
b. 10 mwW
c. 4mw
d 8mw

1 kQ
VWA

(D

1kQ
VWA

1kQ
VWA

Ry

12V Cf)

2k0,<§>

Figure 5PFE-1

5PFE-2 Find the value of theload R, in the network in
Fig. S5PFE-2 that will achieve maximum power transfer,
and determine that value of the maximum power.

a 225mw
b. 80.4 mw
c. 643 mw
d. 121.5mw
+ Ve -
VWA VWA
2 kQ 1kQ

12V CJ_D <§>RL <J_F> 2V,

Figure 5PFE-2

5PFE-3 Find the value of R, in the network in Fig. 5PFE-3
for maximum power transfer to thisload.

a 12.92Q
b. 822Q
c. 6.78Q
d. 10.53 Q

Ix

12V Ci)

VWA
3Q

Figure 5PFE-3

5PFE-4 What isthe current | in Fig. 5PFE-4?

a 8A
b. -4 A
c. OA
d 4A
MV
J 20

3Q§ 10ACD 493> 2ov<j> >

Figure 5PFE-4

5PFE-5 What is the open-circuit voltage V. at terminals a and
b of the circuit in Fig. 5PFE-5?
a 8V
b. 12V
c. 4V
d. 10V

MWV
30

—NVW

40
12V<I>

+

203

2n(D

A

Figure 5PFE-5
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Courtesy of UPI/Brian Kersey/NewsCom

Airport Scanners To be searched or not to be searched is
never the question. Air travelers demand security in the
skies and today’s technology makes it possible with just a
15-to-30 second body scan instead of an intrusive pat-down
that can take two to four minutes. Over 99% of airline pas-
sengers in major airports across the nation choose to use
body scanners when faced with the option. Scanners can
spot plastic and ceramic weapons and explosives that
evade metal detectors and could eventually replace metal
detectors at the nation’s 2,000 airport checkpoints.

Most travelers say they welcome any measure that
enhances safety, even if it means giving up some privacy.
Today’s new body scanners depend on millimeter wave tech-
nology or backscatter x-ray technology. The first produces an
image that resembles a fuzzy photo negative; the second a

Know how to use circuit models for inductors
and capacitors to calculate voltage, current,
and power

Be able to calculate stored energy for capacitors
and inductors

Understand the concepts of continuity of current
for an inductor and continuity of voltage for a
capacitor

Be able to calculate voltages and currents for
capacitors and inductors in electric circuits with
dc sources

Know how to combine capacitors and inductors
in series and parallel

chalk etching. Millimeter wave technology emits 10,000
times less radio frequency than a cell phone. Backscatter
technology uses high-energy x-rays as it moves through
clothing and other materials. In both cases, images used for
security are not retained but destroyed immediately.

This chapter introduces two new circuit elements:
capacitors and inductors that store energy in electric and
magnetic fields. Voltage and current relationships for
these components do not follow Ohm’s law but instead
connect voltages and currents to their derivatives and
integrals. Capacitors and inductors are central to the
study of alternating current circuits. They are also key
components in making body scanners work. The circuit
designs behind effective full-body scanners help make
everyone safer in the skies. What a feeling.

245
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6.1

Capacitors

Figure 6.1

A capacitor and its
electrical symbol.

[hint]

Note the use of the passive
sign convention.

Figure 6.2

Some typical capacitors.
(Courtesy of Mark Nelms and
Jo Ann Loden)

A capacitor isacircuit element that consists of two conducting surfaces separated by a non-
conducting, or dielectric, material. A simplified capacitor and its electrical symbol are shown
in Fig. 6.1.

There are many different kinds of capacitors, and they are categorized by the type of
dielectric material used between the conducting plates. Although any good insulator can
serve as a dielectric, each type has characteristics that make it more suitable for particular
applications.

For general applications in electronic circuits (e.g., coupling between stages of amplifica-
tion), the dielectric material may be paper impregnated with oil or wax, mylar, polystyrene,
mica, glass, or ceramic.

Ceramic dielectric capacitors constructed of barium titanates have a large
capacitance-to-volume ratio because of their high dielectric constant. Mica, glass, and ceram-
ic dielectric capacitors will operate satisfactorily at high frequencies.

Aluminum electrolytic capacitors, which consist of a pair of aluminum plates separated
by a moistened borax paste electrolyte, can provide high values of capacitance in small vol-
umes. They are typically used for filtering, bypassing, and coupling, and in power supplies
and motor-starting applications. Tantalum electrolytic capacitors have lower 1osses and more
stable characteristics than those of aluminum electrolytic capacitors. Fig. 6.2 shows a variety
of typical discrete capacitors.

In addition to these capacitors, which we deliberately insert in a network for specific
applications, stray capacitance is present any time there is a difference in potential between
two conducting materials separated by a dielectric. Because this stray capacitance can cause

i 44
O 1 dr

Dielectric

(@) (b)
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unwanted coupling between circuits, extreme care must be exercised in the layout of elec-
tronic systems on printed circuit boards.

Capacitance is measured in coulombs per volt or farads. The unit farad (F) is named after
Michael Faraday, a famous English physicist. Capacitors may be fixed or variable and typi-
cally range from thousands of microfarads (uF) to a few picofarads (pF).

Capacitor technology, initially driven by the moderninterest in electric vehicles, israpidly
changing, however. For example, the capacitor on the left in the photograph in Fig. 6.3 isa
double-layer capacitor, which is rated at 2.5 V and 100 F. An aluminum electrolytic
capacitor, rated at 25 V and 68,000 wF, is shown on the right in this photograph. The elec-
trolytic capacitor can store 0.5 6.8 X 1072 * 25% = 21.25 joules (J). The double-layer
capacitor can store 0.5 * 100 = 2.5 = 312.5 J. Let’s connect ten of the 100-F capacitors in
series for an equivalent 25-V capacitor. The energy stored in this equivalent capacitor is
3125 J. We would need to connect 147 electrolytic capacitors in parallel to store that much
energy.

Itisinteresting to cal culate the dimensions of asimple equivalent capacitor consisting of two
paralel plates each of area A, separated by a distance d as shown in Fig. 6.1. We learned in
basic physics that the capacitance of two parallel plates of area A, separated by distance d, is

g,A
C =—
d
where g, the permitivity of free space, is8.85 X 102 F/m. If we assume the plates are sep-
arated by a distance in air of the thickness of one sheet of oil-impregnated paper, which is
about 1.016 X 10~* m, then
(8.85 X 107'2)A

100 F = -
1.016 X 10

A = 1.148 X 10° m?

and since 1 square mileis equal to 2.59 X 10° square meters, the areais
A =~ 443 square miles

which is the area of amedium-sized city! It would now seem that the double-layer capacitor
in the photograph is much more impressive than it originally appeared. This capacitor is actu-
aly constructed using a high surface areamaterial such as powdered carbon which is adhered
to a metal foil. There are literally millions of pieces of carbon employed to obtain the
required surface area.

Suppose now that a source is connected to the capacitor shown in Fig. 6.1; then positive
charges will be transferred to one plate and negative charges to the other. The charge on the
capacitor is proportional to the voltage across it such that

qg=Cv 6.1

where C is the proportionality factor known as the capacitance of the element in farads.

The charge differential between the plates creates an electric field that stores energy.
Because of the presence of the dielectric, the conduction current that flows in the wires that
connect the capacitor to the remainder of the circuit cannot flow internally between the
plates. However, via electromagnetic field theory it can be shown that this conduction cur-
rent is equal to the displacement current that flows between the plates of the capacitor and is
present any time that an electric field or voltage varies with time.

Our primary interest is in the current—voltage terminal characteristics of the capacitor.
Since the current is

. _dq
T

CAPACITORS 247

Figure 6.3

A 100-F double-layer
capacitor and a 68,000-p.F
electrolytic capacitor.
(Courtesy of Mark Nelms and
Jo Ann Loden)
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then for a capacitor

=—(C
i dt( V)
which for constant capacitance is
i = C dl 6.2
l dt b
Eq. (6.2) can be rewritten as
dv = iid’[
C

Now integrating this expression from ¢ = —oo to some time 7 and assuming v(—oo) = 0
yields

v(t) = % Zti(x)dx 6.3

where () indicates the time dependence of the voltage. Eq. (6.3) can be expressed as two

integrals, so that
mo=1/%)m+l/%mm
c ) c
= (1) + L /i(x)dx 6.4
c /.

where v(1,) is the voltage due to the charge that accumulates on the capacitor from time
t = —ocototimetr = t,.

The energy stored in the capacitor can be derived from the power that is delivered to the
element. This power is given by the expression

dv(z)
p(t) = v(1)i(r) = Co(t) a 6.5
and hence the energy stored in the electric field is
[T do(x) t dv(x)
we(t) = /_OOCv(x) i dx = C[mv(x) i dx
v(1) 1 v(1)
= C/ v(x)do(x) = —Cv*(x)
v(—00) 2 v(—00)
= %Cvz(t) J 6.6

since v(r = —oo) = 0. The expression for the energy can also be written using Eq. (6.1) as

we(r) = 170

6.7

Egs. (6.6) and (6.7) represent the energy stored by the capacitor, which, in turn, is equal to
the work done by the source to charge the capacitor.

Now let's consider the case of adc voltage applied across a capacitor. From Eq. (6.2), we
see that the current flowing through the capacitor is directly proportional to the time rate of
change of the voltage across the capacitor. A dc voltage does not vary with time, so the cur-
rent flowing through the capacitor is zero. We can say that a capacitor is “an open circuit to
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dc” or “blocks dc.” Capacitors are often utilized to remove or filter out an unwanted dc volt-
age. In analyzing a circuit containing dc voltage sources and capacitors, we can replace the
capacitors with an open circuit and calculate voltages and currents in the circuit using our
many analysis tools.

Note that the power absorbed by a capacitor, given by Eq. (6.5), is directly proportional to
the time rate of change of the voltage across the capacitor. What if we had an instantaneous
change in the capacitor voltage? This would correspond to dv/dt = oo and infinite power.
In Chapter 1, we ruled out the possibility of any sources of infinite power. Since we only have
finite power sources, the voltage across a capacitor cannot change instantaneously. This will
be a particularly helpful idea in the next chapter when we encounter circuits containing
switches. This idea of “continuity of voltage” for a capacitor tells us that the voltage across
the capacitor just after a switch moves is the same as the voltage across the capacitor just
before that switch moves.

The polarity of the voltage across a capacitor being charged is shown in Fig. 6.1b. In the
ideal case, the capacitor will hold the charge for an indefinite period of time, if the sourceis
removed. If at some later time an energy-absorbing device (e.g., a flash bulb) is connected
across the capacitor, a discharge current will flow from the capacitor and, therefore, the
capacitor will supply its stored energy to the device.

If the charge accumulated on two parallel conductors charged to 12 V is 600 pC, what isthe
capacitance of the parallel conductors?

Using Eq. (6.1), we find that
0  (600)(1077)

Vv 12

= 50 pF

The voltage across a 5-wF capacitor has the waveform shown in Fig. 6.4a. Determine the
current waveform.

Note that
24
v(t) = t 0=t=6ms
6 X 107
—24
= t + 96 6=r<8ms
2 %1073
=0 Ems=rt
v(7) (V) i(7) (mA)

20

R 0 6 J 8 t (ms)
60

0 6 8 t (ms)

@ (b)
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6.1

6.2

Figure 6.4

Voltage and current wave-
forms for a

5-wF capacitor.
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Using Eq. (6.2), we find that

dv (1)
i(t) = C
i(1) at
= 5% 107%(4 X 10°) 0=t=6ms
=20 mA 0=tr=6ms
(1) =5X10%-12 X 10°) 6=r=8ms
= —60 mA 6=r<8ms
and
i(t) =0 8ms=r

Therefore, the current waveform is as shown in Fig. 6.4b and i(¢) = 0 for ¢+ > 8 ms.

Determine the energy stored in the electric field of the capacitor in Example6.2att = 6 ms.
6 ° 3 Using Eq. (6.6), we have

w(2) = %Cvz(t)
Attr = 6 ms,
w(6 ms) = %(5 X 10°°)(24)?

= 1440 pJ

E6.1 A 10-pF capacitor has an accumulated charge of 500 nC. Determine the voltage acrossthe  ANSWER: 0.05 V.
capacitor.

The current in an initially uncharged 4-F capacitor is shown in Fig. 6.5a. Let us derive the
waveforms for the voltage, power, and energy and compute the energy stored in the electric
6-4 field of the capacitor at r = 2 ms.

The equations for the current waveform in the specific time intervals are

16 X 107%
(y=—""->— 0=tr=2ms
2 %X 1073
=-8X10° 2ms=t=4ms
=0 4ms <t

Since v(0) = 0, the equation for v(z) inthetimeinterval 0 < r = 2 msis

1 ' —3 — 3.2
v(t) —(4)(106)[8(10 )de— 10°t

v(2ms) = 10%(2 X 107)° = 4mV

and hence,
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Voltage (mV)

Current (A)
4 -
155 3.5
10 | 3
2.5
5— 2 -
2 4 15
0 I T T T . 1
05 1 15 25 3 35 Time
_5 ] (ms) 0.5+
0
I I I | I I I
-10 05 1 15 2 25 35 4 Time
(ms)
(@) (b)
Energy (pJ)
A
Power (nW) 35
30
60 | o5 |
50 -
40 - 20
30 5]
20 |
10 — 10 -
0 T 1 ’ — 3{5
. 5
-10- 05 1 15 25 3 4 (T'mf
ms
207 o — T T T T T -
—30 - 05 1 15 2 25 3 35 4 [llime
(ms)
(c) (d)
Figure 6.5
Inthetimeinterval 2ms = ¢ = 4 ms, Waveforms used in
Example 6.4.
1 t
(1) =7/ — (8)(10%)dx + (4)(107°
007 Juy ~ B0+ (8)107)
= -2t +8 X 107

The waveform for the voltage is shown in Fig. 6.5b.

Since the power is p(¢) = v(1)i(t), the expression for the power in the time interval
0=1t=2msisp(t) = 8. In the time interval 2 ms = ¢ = 4 ms, the equation for the
power is

p(t) = —(8)(107%)(—2¢ + 8 X 107°)

= 16(10°)r — 64(107)

The power waveform is shown in Fig. 6.5¢. Note that during thetimeinterval 0 = r = 2ms,
the capacitor is absorbing energy and during the interval 2 ms = ¢ = 4 ms, it is delivering
energy.

The energy is given by the expression

ww=[ﬂwW+wm
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Inthetimeinterval 0 = r = 2 ms,

t
w(t) = /8x3 dx = 2¢*
0

Hence,
w(2 ms) = 32pJ

Inthetimeinterval 2 = r = 4 ms,

w(t) =/ [(16 X 107°)x — (64 X 107)]dx + 32 X 107
2

x107
= [(8 X 107°)x? — (64 X 107°)x ]3510 + 32 X 1072
= (8 X 107%)2 — (64 X 107°)r + 128 X 107

From this expression we find that w(2 ms) = 32 pJand w(4 ms) = 0. The energy wave-
form is shown in Fig. 6.5d.

E6.2 The voltage across a2-p.F capacitor is shown in Fig. E6.2. Determine the waveform for the

acitor current.
e ANSWER:
o(t) (V) 4 i(£) (mA)
12
12

| 6
|

o 1 2 3 4 5 6 t(ms) N 2 3 4 5 | 1(ms)

Figure E6.2

E6.3 Compute the energy stored in the electric field of the capacitor in Learning Assessment ANSWER: w = 144 pJ.
E6.2atr = 2 ms.

E6.4 The voltage across a 5-pF capacitor is shown in Fig. E6.4. Find the waveform for the
current in the capacitor. How much energy is stored in the capacitor at ¢ = 4 ms.

(1) (V)

10

P |
N
GO | e ———

} t (ms)

b I
R

-----— ©

Figure E6.4
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ANSWER: 250 pJ.

i(£) (mA)

25

} } } } t (ms)

—25

E6.5 Thewaveform for the current ina 1-nF capacitor is Fig. E6.5. If the capacitor has an initial
voltage of -5V, determine the waveform for the capacitor voltage. How much energy is stored in
the capacitor at + = 6 ms?

i(0) (uA)

10+

t (ms)

——— N
i

—10

Figure E6.5

ANSWER: 312.5nJ.

() (V)

154

| | t (ms)
9 10
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6.2

Inductors

@
Figure 6.6

Two inductors and their
electrical symbol

Figure 6.7

Some typical inductors.
(Courtesy of Mark Nelms
and Jo Ann Loden)

Aninductor isacircuit element that consists of a conducting wire usualy in the form of a coil.
Two typical inductors and their electrical symbol are shown in Fig. 6.6. Inductors are typically
categorized by the type of core on which they are wound. For example, the core material may
be air or any nonmagnetic material, iron, or ferrite. Inductors made with air or nonmagnetic
materials are widely used in radio, television, and filter circuits. Iron-core inductors are used in
electrical power supplies and filters. Ferrite-core inductors are widely used in high-frequency
applications. Note that in contrast to the magnetic core that confines the flux, as shown in
Fig. 6.6b, the flux lines for nonmagnetic inductors extend beyond the inductor itself, asillus-
trated in Fig. 6.6a. Like stray capacitance, stray inductance can result from any element carry-
ing current surrounded by flux linkages. Fig. 6.7 shows a variety of typical inductors.

From ahistorical standpoint, developments that led to the mathematical model we employ
to represent the inductor are as follows. It was first shown that a current-carrying conductor
would produce a magnetic field. It was later found that the magnetic field and the current that
produced it were linearly related. Finaly, it was shown that a changing magnetic field pro-
duced a voltage that was proportional to the time rate of change of the current that produced
the magnetic field; that is,

o(t) = L% 6.8

The constant of proportionality L is called the inductance and is measured in the unit henry,
named after the American inventor Joseph Henry, who discovered the relationship. As seen
in Eq. (6.8), 1 henry (H) is dimensionally equal to 1 volt-second per ampere.

Following the development of the mathematical equations for the capacitor, we find that
the expression for the current in an inductor is

i(t) = 7 [tv(x)dx 6.9

Flux lines

Flux lines

i(7)

(1) ] L

i(?)

(b) (c)
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which can also be written as

i(r) = i(ty) + % /Otv(x)dx 6.10

The power delivered to the inductor can be used to derive the energy stored in the element.
This power is equal to

p(t) = v(1)i(1)

- [L dio(ltt)]i(t) 6.11

Therefore, the energy stored in the magnetic field is

w, (1) = /JL dié;)}(x)dx

Following the development of Eq. (6.6), we obtain

1
wy (1) = ELiz(t) J 6.12

Now let’s consider the case of a dc current flowing through an inductor. From Eg. (6.8),
we see that the voltage across the inductor is directly proportional to the time rate of change
of the current flowing through the inductor. A dc current does not vary with time, so the volt-
age across the inductor is zero. We can say that an inductor is “a short circuit to dc.” In ana-
lyzing acircuit containing dc sources and inductors, we can replace any inductors with short
circuits and calculate voltages and currents in the circuit using our many analysis tools.

Note from Eg. (6.11) that an instantaneous change in inductor current would require infi-
nite power. Since we don’'t have any infinite power sources, the current flowing through an
inductor cannot change instantaneously. This will be a particularly helpful idea in the next
chapter when we encounter circuits containing switches. Thisidea of “ continuity of current”
for an inductor tells us that the current flowing through an inductor just after a switch moves
is the same as the current flowing through an inductor just before that switch moves.

Find the total energy stored in the circuit of Fig. 6.8a

60 Li=2mH 30 Lp=4mH
A [y vIV\IA [y
C{=20pF Cr =50 pF d
oV . CD 2 == 260
>
3A
(@
6 Q ILl A 3Q ILZ
A VWA
+ +
e} e} J
9V Vel CD 3A Ve 360
o_ _0 [

(b)

INDUCTORS 255

6.5

Figure 6.8

Circuits used in
Example 6.5.
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6.6

Thiscircuit has only dc sources. Based on our earlier discussions about capacitors and induc-
tors and constant sources, we can replace the capacitors with open circuits and the inductors
with short circuits. The resulting circuit is shown in Fig. 6.8b.

This resistive circuit can now be solved using any of the techniques we have learned in
earlier chapters. If we apply KCL at node A, we get

I, =1, +3
Applying KVL around the outside of the circuit yields
61, + 31, + 61, =9

Solving these equationsyields I;, = —1.2 A and I;, = 1.8 A. The voltages V., and V., can
be calculated from the currents:

Vey = =61, + 9 = 162V
Ve, = 61, = 6(1.8) = 108V

The total energy stored in the circuit is the sum of the energy stored in the two inductors
and two capacitors:

wy, = %(2 X 107)(-1.2)? = 1.44 mJ

Wy, = %(4 X 107)(1.8)* = 6.48 mJ

Wy = %(20 X 107°)(16.2)? = 2.62 mJ

Wy = %(50 X 107°)(10.8)% = 2.92mJ
The total stored energy is 13.46 mJ.

The inductor, like the resistor and capacitor, is a passive element. The polarity of the volt-
age across the inductor is shown in Fig. 6.6.

Practical inductors typically range from a few microhenrys to tens of henrys. From a cir-
cuit design standpoint it isimportant to note that inductors cannot be easily fabricated on an
integrated circuit chip, and therefore chip designs typically employ only active electronic
devices, resistors, and capacitors that can be easily fabricated in microcircuit form.

The current in a 10-mH inductor has the waveform shown in Fig. 6.9a. Determine the
voltage waveform.

Using Eq. (6.8) and noting that

20 X 107%
ity =——""—+ 0=t=2ms
2 X 1073
—20 X 107¢
i(t)y=—"""——"—+40X10° 2=t=4ms
2 X 107

and

i(t) =0 4ms <t

i(f) (mA) o(t) (mv)
ZY s , 100
| 2 4t (m;) 2 4 t (ms)
-100

Figure 6.9
Current and voltage wave-
forms for a 10-mH inductor.

(a) (b)
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we find that
20 X 1073
o(t) = (10 X 10°) ——— 0=tr=2ms
2 X 107
= 100 mV
and
—20 X 1073
o(t) = (10 X 10°%) ———— 2=r=4ms
2 %X 107
= —100 mV

and v(z) = 0 for+ > 4 ms. Therefore, the voltage waveform is shown in Fig. 6.9b.

The current in a2-mH inductor is
i(t) = 2sin377t A

Determine the voltage across the inductor and the energy stored in the inductor.

From Eqg. (6.8), we have
di(1)

?.)(l) = L?

(2 x 10*3)%(2 sin377t)

1.508 cos377t V
and from Eq. (6.12),

wy(t) = %Liz(t)

= %(2 X 107)(2sin377t)?

= 0.004 sin*377¢ J

The voltage across a 200-mH inductor is given by the expression

v(1)

(1 =3)emV =0
=0 t <0

Let us derive the waveforms for the current, energy, and power.

The waveform for the voltage is shown in Fig. 6.10a. The current is derived from Eq. (6.10) as
. _ 103 ' =2%%
i(t) = 200 /0(1 3x)e > dx

t t
= 5{/e3x dx — 3/xe73" dx}
0 0

t [ ef3x ]t }
=3 = 3x + 1
0 9 ( ) 0

=5t mA =0
=0 r<0

INDUCTORS 257
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A plot of the current waveform is shown in Fig. 6.10b.
The power is given by the expression

p(1) = v(2)i(r)

The equation for the power is plotted in Fig. 6.10c.

The expression for the energy is

= 2.5t%% nJ

=0

This equation is plotted in Fig. 6.10d.

Voltage (mV)

1.0
0.8
0.6
0.4
0.2

04

-0.2 -

L
15 2 25 3 35 Time (s)

Power (W)

0.2 4

0.15+

0.1+

0.05-

—0.05+

—0.1-

Figure 6.10

0.5 1.5 2 25 Time (s)

(©

Waveforms used in

Example 6.8.

Current (mA)
0.7 5
0.6
0.5
0.4
0.3
0.2
0.1+

= 5t(1 — 3t)e ® uW
=0

w(t) = %Liz(t)

t=0

<0

t=0
<0

0 T
0.5

Energy (nJ)

40 4
354
30
25
204
154
10
5

1

T T
15 2

(b)

T
2.5

3

35 Time (s)

T
25 Time (s)
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E6.6 The current in a 5-mH inductor has the waveform shown in Fig. E6.6. Compute the
waveform for the inductor voltage.

20

10

i(t) (ma)

o
D|loocooo
N
Wle===

! t (ms)

Figure E6.6

ANSWER:

100

(1) (mv)

E6.7 Compute the energy stored in the magnetic field of the inductor in Learning Assesment ~ ANSWER: W = 5

E6.6 at ¢

= 1.5ms.

E6.8 The current in a 2-H inductor is shown in Fig. E6.8. Find the waveform for the inductor
voltage. How much energy is stored in the inductor at + = 3 ms?

i(7) (mA)

e L

cooocooocoooodb @

—10

Figure E6.8

() (V)

10

w dboooo s

10

} { t (ms)
11 12

ANSWER: 25 pJ

12

—3.33

10

| t (ms)
11

62.5 nJ.
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E6.9 The voltage acrossa0.1-H inductor is shown in Fig. E6.9. Compute the waveform for the
current in the inductor if i(0) = 0.1A. How much energy is stored in the inductor at r = 7 ms?

v () (V)
10+
5 -
2 4 6 9
I I I I I I I I t (ms)
1 3 | 5 | 7 8 10
_5 | I I
710 -
Figure E6.9
ANSWER: 1.125 mJ.
i(7) ()
0.2
0.1
| | | |
I I I I
1 2 3 4
—0.1
—0.25+
E6.10 Find the energy stored in the capacitor and inductor in Fig. E6.10. ANSWER: 0.72 nJ, 0.5 pJ.
2 mA
©
10 nF 1H
IL )
I\
6 kQ
8mA<T> S 3k S 2k
12V

Figure E6.10
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CAPACITOR AND INDUCTOR SPECIFICATIONS There are a couple of important parame-
tersthat are used to specify capacitors and inductors. In the case of capacitors, the capac-
itance value, working voltage, and tolerance are issues that must be considered in their
application. Standard capacitor values range from a few pF to about 50 mF. Capacitors
larger than 1 F are available but will not be discussed here. Table 6.1 isalist of standard
capacitor values, which are typically given in picofarads or microfarads. Although both
smaller and larger ratings are available, the standard working voltage, or dc voltage rat-
ing, is typically between 6.3 V and 500 V. Manufacturers specify this working voltage
since it is critical to keep the applied voltage below the breakdown point of the dielec-
tric. Tolerance is an adjunct to the capacitance value and is usually listed as a percent-
age of the nominal value. Standard tolerance values are + 5%, + 10%, and + 20%.
Occasionally, tolerances for single-digit pF capacitors are listed in pF. For example,
5 pF + 0.25 pF.

TABLE 6.1 Standard capacitor values

10 100 1000 0.010 0.10 1.0 10 100 1000 10,000

12 120 1200 0.012 0.12 1.2 12 120 1200 12,000
1.5 15 150 1500 0.015 0.15 1.5 15 150 1500 15,000

18 180 1800 0.018 0.18 1.8 18 180 1800 18,000
2 20 200 2000 0.020 0.20 2.0 20 200 2000 20,000

22 220 2200 0.022 0.22 2.2 22 220 2200 22,000

27 270 2700 0.027 0.27 2.7 27 270 2700 27,000
3 33 330 3300 0.033 0.33 33 33 330 3300 33,000
4 39 390 3900 0.039 0.39 39 39 390 3900 39,000
5 47 470 4700 0.047 0.47 4.7 47 470 4700 47,000
6 51 510 5100 0.051 0.51 5.1 51 510 5100 51,000
7 56 560 5600 0.056 0.56 5.6 56 560 5600 56,000
8 68 680 6800 0.068 0.68 6.8 68 680 6800 68,000
9 82 820 8200 0.082 0.82 8.2 82 820 8200 82,000

The two principal inductor specifications are inductance and resistance. Standard com-
mercial inductances range from about 1 nH to around 100 mH. Larger inductances can, of
course, be custom built for a price. Table 6.2 lists the standard inductor values. The current
rating for inductors typically extends from a few dozen mA’s to about 1 A. Tolerances are
typicaly 5% or 10% of the specified value.

TABLE 6.2 Standard inductor values

10 100 1.0 10 100 1.0 10 100
1.2 12 120 1.2 12 120 1.2 12
1.5 15 150 1.5 15 150 1.5 15
1.8 18 180 1.8 18 180 1.8 18
2 20 200 2.0 20 200 2.0 20
2.2 22 220 2.2 22 220 2.2 22
2.7 27 270 2.7 27 270 2.7 27
3 33 330 3.3 33 330 3.3 33
4 39 390 3.9 39 390 39 39
5 47 470 4.7 47 470 4.7 47
6 51 510 5.1 51 510 5.1 51
7 56 560 5.6 56 560 5.6 56
8 68 680 6.8 68 680 6.8 68
9 82 820 8.2 82 820 8.2 82

INDUCTORS
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6.9

6.10

CAPACITANCE AND INDUCTANCE

Asindicated in Chapter 2, wire-wound resistors are simply coils of wire, and therefore it
isonly logical that inductors will have some resistance. The major difference between wire-
wound resistors and inductors is the wire material. High-resistance materials such as
Nichrome are used in resistors, and low-resistance copper is used in inductors. The resistance
of the copper wire is dependent on the length and diameter of the wire. Table 6.3 lists the
American Wire Gauge (AWG) standard wire diameters and the resulting resistance per foot
for copper wire.

TABLE 6.3 Resistance per foot of solid copper wire

AW No. | Diameter in) | may/i

12 0.0808 1.59
14 0.0641 2.54
16 0.0508 4.06
18 0.0400 6.50
20 0.0320 10.4
22 0.0253 16.5
24 0.0201 26.2
26 0.0159 41.6
28 0.0126 66.2
30 0.0100 105
32 0.0080 167
34 0.0063 267
36 0.0049 428
38 0.0039 684
40 0.0031 1094

We wish to find the possible range of capacitance values for a 51-mF capacitor that has a
tolerance of 20%.

The minimum capacitor value is 0.8C = 40.8 mF, and the maximum capacitor value is
1.2C = 61.2 mF.

The capacitor in Fig. 6.11ais a 100-nF capacitor with a tolerance of 20%. If the voltage
waveformisas shown in Fig. 6.11b, let us graph the current waveform for the minimum and
maximum capacitor values.

The maximum capacitor value is 1.2C = 120 nF, and the minimum capacitor value is
0.8C = 80 nF. The maximum and minimum capacitor currents, obtained from the equation

do(r)
dt

i(t) =C
are shown in Fig. 6.11c.
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4
3
2
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= \
N
Q 0
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i(t i
(1) S \ /
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The inductor in Fig. 6.12a is a 100-p.H inductor with a tolerance of 10%. If the current
waveform is as shown in Fig. 6.12b, let us graph the voltage waveform for the minimum

and maximum inductor values.

The maximum inductor value is 1.1L = 110 pH, and the minimum inductor value is
0.9L =90 pH. The maximum and minimum inductor voltages, obtained from the equation

are shown in Fig. 6.12c.

v(r) = L

di(r)

dt

Figure 6.11

Circuit and graphs used
in Example 6.10.

6.11
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Figure 6.12
Circuit and graphs *
used in Example 6.11. i(7) L } (f)
@)
— (1)
== ’U(Z) at Ly
150 150 — v(t) at Ly, 2
100 /\ /— 100 =5 —eemon 1
. 50 —~ 50 0
< L < L 17 =
T L/ \ / B \ e
.\ / =S A [
™~ 50 \/ ™ 50 — -2
-100 v -100 -3
_1507”H\HH\HH\HH\HH\HH _1507\ | | | | \7_4
0O 10 20 30 40 50 60 0O 10 20 30 40 50 60
Time (p.s) Time (ns)
(b) (©)
6 3 SERIES CAPACITORS If anumber of capacitors are connected in series, their equiva-
. lent capacitance can be calculated using KVL. Consider the circuit shown in Fig. 6.13a. For
° this circuit
Capacitor (1) = vi(1) + vy(2) + vs(r) + oo+ oy(D) 6.13
and Inductor but
Combinations L[
ombi u(n) =& [ in)d+ v{1o) 6.14
i Jiy
Figure 6.13 i) vi(t) () w3()

Equivalent circuit for
N series-connected
capacitors.

= F= + =

f v v v !
Cl C2 C3 !
u(t !
AN ) |
.~ [, !
~ — N+
Cn

@) (b)
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Therefore, Eq. (6.13) can be written as follows using Eq. (6.14):

N 1 t N
v(t) = (2 C>/i(z)dt + > uto) 6.15
i=1 Ci/ Juy i=1
1 t
= —/i(r)dt + (ty) 6.16
CS ty
where
N
(1) = X vto)
i=1
and
1 N1 1 1
a—;a—a+a+m+c—N 6.17

Thus, the circuit in Fig. 6.13b is eguivalent to that in Fig. 6.13a under the conditions stated
previously.

It is also important to note that since the same current flows in each of the series capaci-
tors, each capacitor gains the same charge in the same time period. The voltage across each
capacitor will depend on this charge and the capacitance of the element.

Determine the equival ent capacitance and theinitial voltage for the circuit shown in Fig. 6.14.

Note that these capacitors must have been charged before they were connected in series or
else the charge of each would be equal and the voltages would be in the same direction.
The equivalent capacitance is

1

1
=—+
Cs 2

1
+7
6

W | =

where all capacitance values are in microfarads.
Therefore, C; = 1 wF and, as seen from the figure, v(f,) = —3 V. Note that the total
energy stored in the circuit is

1
w(ty) = 5[2 X 107%(2)% +3 X 10°°(—4)> + 6 X 10°°(—1)?]
=31 pd
However, the energy recoverable at the terminalsis

wc(lo) = %Csvz(t)

= %[1 X 107°(=3)?]

=45pd

Figure 6.14

Circuit containing multiple
= capacitors with initial
voltages.

[hint]

Capacitors in series combine
like resistors in parallel.

6.12
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6.13

[hint]

Capacitors in parallel combine
like resistors in series.

Figure 6.15

Equivalent circuit for

N capacitors connected
in parallel.

6.14

Figure 6.16
Circuit containing
multiple capacitors
in parallel.

CAPACITANCE AND INDUCTANCE

Two previously uncharged capacitors are connected in series and then charged with a 12-V
source. One capacitor is 30 wF and the other is unknown. If the voltage across the 30-uF
capacitor is 8 V, find the capacitance of the unknown capacitor.

The charge on the 30-w.F capacitor is
Q0 =CV = 30pF)(8V) =240 C

Since the same current flows in each of the series capacitors, each capacitor gains the same
charge in the same time period:

0  240pC
Vo4V

= 60 pF

PARALLEL CAPACITORS To determine the equivalent capacitance of N capacitors
connected in parallel, we employ KCL. As can be seen from Fig. 6.15a,

i(1) = iy(r) + ir(r) + i5(t) + -+ iy(2) 6.18

dv(t) do(r) dv(r) dv(t)

TOTq TeTq TOTa T T Oy
N dv(r)

_<§q>dt
do(r)

=G g 6.19

where
Cp:C1+C2+C3+"'+CN 620

i(7)

i3(1) in(0)

= C;3 /J\CN

(@) (b)

CTOI 10
(1) —=C ==C =

Determine the equivalent capacitance at terminals A-B of the circuit shown in Fig. 6.16.

C, = 15pF

p

(1) ==4pF  ==6pF  ==2pF ==3pF
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E6.11 Two initially uncharged capacitors are connected as shown in Fig. E6.11. After aperiod ANSWER: C, = 4 uF.
of time, the voltage reaches the value shown. Determine the value of C,.

== 12 pF
Figure E6.11
E6.12 Compute the equivalent capacitance of the network in Fig. E6.12. ANSWER: C,, = 15 uF.
3k
T
2 nF 4 uF
Ceq—> T~ 2 pF
3k
| —f—1
Figure E6.12 12 pF
E6.13 Determine C; in Fig. E6.13. ANSWER: 1.667 pF.
A 6 uF 4 uF 6 puF
[ I I
{ It It
5 pF == 8 uF <2 pF
CT —_— =~6 pnF
i [ [
\ A v
B 3 nF 10 wF 6 nF

Figure E6.13

SERIES INDUCTORS If N inductors are connected in series, the equivalent inductance
of the combination can be determined as follows. Referring to Fig. 6.17aand using KVL, we

see that
v(t) = vi(t) + vy(2) + v3(r) + -+ + vy(2) 6.21
and therefore,
di(1) di(1) di(1) di(1)
v(t) = L, p + L, p + L, p + -+ N g 6.22

N di(1)

- ( 2 Lf) s

di(1)

= Ly~ 6.23
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[hint]

Inductors in series combine
like resistors in series.

Figure 6.17

Equivalent circuit
for N series-connected
inductors.

6.15

Figure 6.18

Circuit containing
multiple inductors.

where

N
L= YL=L +L,++Ly
i=1

i=

6.24

Therefore, under this condition the network in Fig. 6.17b is equivalent to that in Fig. 6.17a.

l(t) +7)1([)_ +1)2([)_ +U3(t)_
L, Ly
Ton(n”
()

Find the equivalent inductance of the circuit shown in Fig. 6.18.

The equivalent inductance of the circuit shown in Fig. 6.18 is
Ls=1H + 2H + 4H

= 7H
1H 2H
O agan! o
JF
(1) }4H
o

i(f)

(1) E Lg

(b)

PARALLEL INDUCTORS Consider the circuit shown in Fig. 6.19a, which contains N

parallel inductors. Using KCL, we can write

i(t) = iy(2) + ir)(t) + i3(2) + - + iy(2)

However,

1 t

i) = 1 [ o ifo)
j Jt

0

Substituting this expression into Eqg. (6.25) yields

i) = (i Li> / () dx + éij(to)

Jj=r =j

fo
1 t
=— [ v(x)dx + i(z
L [ i)

6.25

6.26

6.27

6.28
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where

and i(t,) is equal to the current in L, at t = #,. Thus, the circuit in Fig. 6.19b is equivalent to

that in Fig. 6.19a under the conditions stated previoudly.
(1)

* i1(2) i (1)

v(f) b f L

50 in)
L3 Ly

vy

(@)

Determine the equivalent inductance and the initial current for the circuit shown in

Fig. 6.20.

The equivalent inductance is

1 1 1 1
L 126 4
where al inductance values are in millihenrys:
L, =2mH
and the initial current isi(z,) = —1 A.
(1)
+ 3A 6A 2A
o(t) glzmH EBmH E4mH

The previous material indicates that capacitors combine like conductances, whereas

inductances combine like resistances.

00)

i(t)

(b)
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[hint]

Inductors in parallel combine
like resistors in parallel.

Figure 6.19

Equivalent circuits for
N inductors connected
in parallel.

6.16

Figure 6.20

Circuit containing
multiple inductors with
initial currents.

E6.14 Determine the equivalent inductance of the network in Fig. E6.14 if all inductors

are 6 mH.
o
Log—r
Figure E6.14 O—uuw

ANSWER: 9.429 mH.
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E6.15 Find L;in Fig. E6.15.

ANSWER: 5mH.

2 mH 4 mH 5 mH
Yy Y\ [y \n Yy,
OA
2mH§ 6mH§ Ly—» 12mH§ 4mH}
OB
. yy"m [fyynm [y
Figure E6.15 2 mH 3mH 2mH

Figure 6.21

Cross section of a
multilayer ceramic chip
capacitor.

CHIP CAPACITORS InChapter 2, we briefly discussed the resistorsthat are used in mod-
ern electronic manufacturing. An example of these surface mount devices was shown in
Fig. 2.41, together with some typical chip capacitors. Aswe will indicate in the material that
follows, modern el ectronics employs primarily resistors and capacitors and avoids the use of
inductors when possible.

Surface-mounted chip capacitors account for the majority of capacitors used in electron-
ics assembly today. These capacitors have alarge range of sizes, from as small as 10 milson
a side up to 250 mils on a side. All ceramic chip capacitors consist of a ceramic dielectric
layer between metal plates. The properties of the ceramic and metal layers determine the type
of capacitor, its capacitance, and reliability. A cut-away view of a standard chip capacitor is
shownin Fig. 6.21. Theinner metal electrodes are alternately connected to the opposing sides
of the chip where metal terminators are added. These terminators not only make connection
to the inner electrodes, but also provide a solder base for attaching these chips to printed

Ceramic dielectric

— Tin

Nickel

Copper

Inner electrodes (Ni/Cu)

circuit boards. The number of alternating layers, the spacing between them, along with the
dielectric constant of the ceramic material, will determine the capacitance value.

We indicated earlier that resistors are normally manufactured in standard sizes with
specific power ratings. Chip capacitors are also manufactured in this manner, and Table 6.4
provides a partial listing of these devices.

The standard sizes of chip capacitors are shown in Table 6.4.
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TABLE 6.4 Ceramic chip capacitor standard sizes

Size (Mils) Power Rating (Watts)

0201 20 X 10 1/20
0402 40 X 20 1/16
0603 60 X 30 1/10
0805 80 X 50 1/8
1206 120 X 60 1/4
2010 200 X 100 1/2
2512 250 X 120 1

CHIP INDUCTORS A chipinductor consists of a miniature ceramic substrate with either
awire wrapped around it or a thin film deposited and patterned to form a coil. They can be
encapsulated or molded with a material to protect the wire from the elements or left unpro-
tected. Chip inductors are supplied in a variety of types and values, with three typical con-
figurations that conform to the standard “ chip” package widely utilized in the printed circuit
board (PCB) industry.

The first type is the precision chip inductor where copper is deposited onto the ceramic
and patterned to form a coil, as shown in Fig. 6.22.

Copper (Cu)
Termination Base
2um
Nickel (Ni)
Barrier ’
Terminal
/ 3 um Electrode i
Tin (Sn) Ferrite
Etched Outerplating
Copper Alumina Internal
Call Substrate Medium
Figure 6.22 Figure 6.23
Precision chip inductor cross section. Ferrite chip inductor cross section

The second type is a ferrite chip inductor, which uses a series of coil patterns stacked
between ferrite layers to form a multiplayer coil as shown in Fig. 6.23.

The third type is a wire-wound open frame in which a wire is wound around a ceramic
substrate to form the inductor coil. The completed structure is shown in Fig. 6.24.

Each of these configurations displays different characteristics, with the wire-wound type
providing the highest inductance values (10 nH—4.7 uH)—and reasonable tolerances
(1-2%). The ferrite chip inductor gives a wide range of values (47 nH—33 uH) but has tol-
erances in the 5% range. The precision chip inductor has low inductance values
(1—100 nH) but very good tolerances (+/—0.1 nH).

Figure 6.24

Wire-wound chip inductor
cross section



272 CHAPTER 6 CAPACITANCE AND INDUCTANCE

6.4

RC Operational
Amplifier Circuits

[hint]

Two very important RC op-amp circuits are the differentiator and the integrator. These cir-
cuits are derived from the circuit for an inverting op-amp by replacing the resistors R, and
R,, respectively, by a capacitor. Consider, for example, the circuit shown in Fig. 6.25a. The
circuit equations are

d v, — V_

Cl 7('01 - /U,) + =i
dt R,

However, v_ = 0 and i_ = 0. Therefore,

The properties of the ideal dv, (1)
op-amp are v, = v_ and v,(1) = —R,C, . 6.30
i,=i =o. L
R G
N%/‘ )I
G . Ry , '
)I v_l - =l
v1(%) * ) v1(7) : v,
(@) (b)
Figure 6.25

Differentiator and integrator
operational amplifier circuits.

Thus, the output of the op-amp circuit is proportional to the derivative of the input.
The circuit equations for the op-amp configuration in Fig. 6.25b are

v — v
R,

+ CZ%(U,, —v) =i

but sincev_ = 0 andi_ = 0, the equation reduces to

o do,

Y

or

/U(l(t) =

—1 t
R1C2 [w’l)l(x) dX

1
R\C,

/vl(x) dx + v,(0) 6.31
0
If the capacitor isinitialy discharged, then »,(0) = 0; hence,

-1 4
’Uo(l‘) = Elv,(x) dx 6.32

Thus, the output voltage of the op-amp circuit is proportional to the integral of the input
voltage.
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The waveform in Fig. 6.26a is applied at the input of the differentiator circuit shown in
Fig. 6.25a If R, = 1 kQ) and C; = 2 pF, determine the waveform at the output of the
op-amp.

Using Eq. (6.30), we find that the op-amp output is

dv, (1)

Cdt

do, (1)
dt

dv,(¢)/dt = (2)10° for 0 = t < 5 ms, and therefore,

v,(t) = —R,C,

= —(2)107

v,(t) = =4V 0=r<5ms
dv,(¢)/dt = —(2)10°for 5 =< + < 10 ms, and therefore,
v,(t) =4V 5=r<10ms

Hence, the output waveform of the differentiator is shown in Fig. 6.26b.

v1(1) (V) o(1) (V)

il EEEEELS

6.17

Figure 6.26

Input and output waveforms
for a differentiator circuit.

.- [ 1

o
Gille===s

10 ¢ (ms) . 0 5

() (b)

If the integrator shown in Fig. 6.25b has the parameters R, = 5k() and C, = 0.2 .F, deter-
mine the waveform at the op-amp output if the input waveform isgiven asin Fig. 6.27aand
the capacitor isinitialy discharged.

The integrator output is given by the expression

v,(1) = % /O tvl(x)dx

which with the given circuit parametersis

v,(t) = —103/rv1(x)dx

Intheinterval 0 = r < 0.1s, v,(¢) = 20 mV. Hence,
v,(t) = —10°%(20)10% 0=t <0.ls
= —20¢
Atr = 0.1 s,v,(t) = =2 V. Intheinterval from 0.1 to 0.2 s, the integrator produces a pos-
itive slope output of 207 fromv,(0.1) = =2V tov,(0.2) = 0 V. Thiswaveformfromz = 0

tor = 0.2 sisrepeated intheinterval + = 0.2tot = 0.4 s, and therefore, the output wave-
form is shownin Fig. 6.27h.

= t (ms)

6.18
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v1(2) (mv)
2 V(1) (V)
0O 01 02 03 04
0 01 foz o3 o4, E E 1 (s)
-20 -2 : :
- ®) Figure 6.27

Input and output waveforms
for an integrator circuit.

E6.16 The waveform in Fig. E6.16 is applied to the input ANSWER:
terminals of the op-amp differentiator circuit. Determine the

differentiator output waveform if the op-amp circuit parameters

aeC, =2FandR, = 2Q.

(1) (V) 0o(1) (V)
6 24
\ 1 2
: & 4 ¢ (S)
2 3 4 (s) —24
Figure E6.16
[ ]
Application
Examples
APPLICATION In integrated circuits, wires carrying high-speed signals are closely spaced as shown by the

EXAMPLE 6.19 micrograph in Fig. 6.28. As aresult, a signal on one conductor can “mysteriously” appear
° on a different conductor. This phenomenon is called crosstalk. Let us examine this condi-

tion and propose some methods for reducing it.
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The origin of crosstalk is capacitance. In particular, it is undesired capacitance, often called
parasitic capacitance, that exists between wires that are closely spaced. The simple model
in Fig. 6.29 can be used to investigate crosstalk between two long parallel wires. A signal
isapplied to wire 1. Capacitances C, and C, are the parasitic capacitances of the conductors
with respect to ground, while C,, is the capacitance between the conductors. Recall that we
introduced the capacitor as two closely spaced conducting plates. If we stretch those plates
into thin wires, certainly the geometry of the conductors would change and thus the amount
of capacitance. However, we should still expect some capacitance between the wires.

W|re ere
., 02()

112(1) C12 ir(1)

Ul(t) I

In order to quantify the level of crosstalk, we want to know how much of the voltage on
wire 1 appears on wire 2. A nodal analysis at wire 2 yields

) = Clz[dv;iz) - dv;it)} _ (1) = Cz[dv;il)}

Solving for dv,(#)/dt, we find that

do,(1) [ Cp } dv,(7)
dt Cp+ G| d

Integrating both sides of this equation yields

Figure 6.28

SEM Image (Tom Way/
Ginger Conly. Courtesy of
International Business
Machines Corporation.
Unauthorized use not
permitted.)

SOLUTION

Figure 6.29

A simple model for
investigating crosstalk.
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Figure 6.30

Use of a ground wire in the
crosstalk model.

Figure 6.31

Electrical isolation using
a ground wire in crosstalk
model.

Note that it is a simple capacitance ratio that determines how effectively v,(7) is“coupled”
into wire 2. Clearly, ensuring that C,, is much less than C, is the key to controlling
crosstalk. How is this done? First, we can make C,, as small as possible by increasing the
spacing between wires. Second, we can increase C, by putting it closer to the ground
wiring. Unfortunately, the first option takes up more real estate, and the second one slows
down the voltage signals in wire 1. At this point, we seem to have a typical engineering
tradeoff: to improve one criterion, that is, decreased crosstalk, we must sacrifice another,
space or speed. One way to address the space issue would be to insert a ground connection
between the signal-carrying wires as shown in Fig. 6.30. However, any advantage achieved
with grounded wires must be traded off against the increase in space, since inserting
grounded wires between adjacent conductors would nearly double the width consumed

without them.
ere Ground ere
wire
1G

vy(f) ¢ I vz(t)

Redrawing the circuit in Fig. 6.31 immediately indicates that wires 1 and 2 are now elec-
trically isolated and there should be no crosstalk whatsoever—a situation that is highly
unlikely. Thus, we are prompted to ask the question, “Is our model accurate enough to
model crosstalk?’ A more accurate model for the crosstalk reduction scheme is shown in
Fig. 6.32 where the capacitance between signal wires 1 and 2 is no longer ignored. Once
again, we will determine the amount of crosstalk by examining the ratio v,(¢)/v,(¢).
Employing nodal analysis at wire 2 in the circuit in Fig. 6.33 yields

in(t) = cn[dv'(t) d%(t)} = iy(t) = (G, + Cc)[dvczjit)]

y

(1) C JIl l Uz(f)
1 | Ground _

= = wire =

Solving for dv,(#)/dt, we obtain

dv,(1) _ [ Cp } dv,(1)
dt Cp+ G+ Cy| dt

Integrating both sides of this equation yields
(&
w() = | e |u)

Note that this result is very similar to our earlier result with the addition of the C,; term.
Two benefits in this situation reduce crosstalk. First, C,, is smaller because adding the
ground wire moves wires 1 and 2 farther apart. Second, C,; makes the denominator of
the crosstalk equation bigger. If we assumethat C,; = C, and that C,, has been halved by the
extra spacing, we can expect the crosstalk to be reduced by afactor of roughly 4.
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&)

I
I\

Wire Ground Wire
1 wire 2

d I\ I\ 3
Cic G *
v1(7) Ci == Gy == vy(1)

L\
=
=
Y

Wire / /Wire
1 2
—_— ¢
v1(7) i) ¢ | ,‘|j|

Figure 6.32
A more accurate
crosstalk model.

Figure 6.33

A redrawn version of
the more accurate
crosstalk model.

An excellent example of capacitor operation isthe memory inside apersonal computer. This
memory, caled dynamic random access memory (DRAM), contains as many as 4 hillion
data storage sites called cells (circa 2007). Expect this number to roughly double every
2 years for the next decade or two. Let us examine in some detail the operation of a single
DRAM cdll.

Fig. 6.34a shows a simple model for aDRAM cell. Data are stored on the cell capacitor in
true/false (or 1/0) format, where a large-capacitor voltage represents a true condition and a

VI/O / VI/O
o

APPLICATION
EXAMPLE 6.20

SOLUTION

+

sense out /i leak cell Veel l(t) 1 leak cell

amps I450 fF 50 pAN” 50 fF T 50 pA~” 50 fF I”cell(t) s VI

@) (b)

low voltage represents a fal se condition. The switch closes to allow access from the proces-
sor to the DRAM cell. Current source /o iSan unintentional, or parasitic, current that mod-
els charge leakage from the capacitor. Another parasitic model element is the capacitance,
C.ui» the capacitance of the wiring connected to the output side of the cell. Both |o, and Cy;
have enormous impacts on DRAM performance and design.

Consider storing a true condition in the cell. A high voltage of 3.0 V is applied at node
1/0 and the switch is closed, causing the voltage on C, to quickly rise to 3.0 V. We open

out cell

450 fF 50 fF I

(©)
Figure 6.34

A simple circuit model
showing (a) the DRAM
memory cell, (b) the effect
of charge leakage from the
cell capacitor, and (c) cell
conditions at the beginning
of a read operation.
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the switch and the data are stored. During the store operation the charge, energy, and number
of electrons, n, used are

Q = CV = (50 x 107%)(3) = 150fC

W= %cv2 = (0.5)(50 x 107)(3%) = 22513

n=QJq =150 X 1075/(1.6 X 10~"°) = 937,500 electrons

Once data are written, the switch opens and the capacitor begins to discharge through 1.
A measure of DRAM quality is the time required for the data voltage to drop by haf, from
30V tol5V.Letuscal thistimetr,. For the capacitor, we know

1
Veai (1) = . /iceu dt v

cell

where, from Fig. 6.34b, iy (#) = —l,e- Performing the integral yields

Vol (1) = L/(_lleak)dt = _g;.akt + K

We know that at = 0, v, = 3 V. Thus, K = 3 and the cell voltageis

1
Vear(t) = 3 — éj
C

tV 6.33

Substituting ¢ = ,; and vy () = 1.5 V into Eq. (6.33) and solving for ¢, yields
ty = 15ms. Thus, the cell data are gonein only afew milliseconds! The solution is rewrit-
ing the data before it can disappear. This technique, called refresh, isamust for all DRAM
using this one-transistor cell.

To see the effect of C,,;, consider reading a fully charged (vce” = 3.0 V) true condition.
The 1/0 line is usually precharged to half the data voltage. In this example, that would be
1.5V asseen in Fig. 6.34c. (To isolate the effect of C,;, we have removed /,.) Next, the
switch is closed. What happens next is best viewed as a conservation of charge. Just before
the switch closes, the total stored charge in the circuit is

O1 = Oouit + Qcat = V10Cout T Vet Ceal
Or = (L5)(450 X 1075) + (3)(50 X 1075) = 825fC

When the switch closes, the capacitor voltages are the same (let us call it V) and the total
charge is unchanged:

Q7 = 825fC = V,Coy + V,Cean = V,(450 X 1075 + 50 X 107")
and
V, =165V

Thus, the change in voltage at V; o during the read operationisonly 0.15 V. A very sensitive
amplifier is required to quickly detect such a smal change. In DRAMs, these amplifiers are
called sense amps. How can v, change instantaneously when the switch closes? It cannot. In
an actual DRAM cell, atransistor, which has a small equivalent resistance, acts as the switch.
The resulting RC time constant is very small, indicating a very fast circuit. Recall that we are
not analyzing the cell’s speed—only the final voltage value, V,. Aslong as the power lost in the
switch is small compared to the capacitor energy, we can be comfortable in neglecting the
switch resistance. By the way, if a false condition (zero volts) were read from the cell, then v,
would drop from its precharged vaue of 1.5 V to 1.35 V—a negative change of 0.15 V. This
symmetric voltage change is the reason for precharging the 1/0 node to half the data voltage.
Review the effects of 1o and C,,.. You will find that eliminating them would greatly simplify
the refresh requirement and improve the voltage swing at node I/0O when reading data. DRAM
designers earn a very good living trying to do just that.
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6.6

Design Examples

We have all undoubtedly experienced a loss of electrical power in our office or our home.
When this happens, even for a second, we typically find that we have to reset al of our dig-
ital alarm clocks. Let’s assume that such a clock’sinternal digital hardware requires a current
of 1 mA at atypical voltage level of 3.0 V, but the hardware will function properly down to
2.4 V. Under these assumptions, we wish to design a circuit that will “hold” the voltage level
for a short duration, for example, 1 second.

We know that the voltage across a capacitor cannot change instantaneously, and hence its use
appears to be viable in this situation. Thus, we model this problem using the circuit in
Fig. 6.35 where the capacitor is employed to hold the voltage and the 1-mA source represents
the 1-mA load.

Asthe circuit indicates, when the power fails, the capacitor must provide all the power for
the digital hardware. The load, represented by the current source, will discharge the capaci-
tor linearly in accordance with the expression

Opens on

/ power outages
O
l 1-mA

3V ¢ I load

v(r) = 3.0 — é /i(t) dt

After 1 second, v(z) should be at least 2.4 V, that is, the minimum functioning voltage, and
hence

1 1
24 =30 — E/ (0.001) dt

Solving this equation for C yields
C = 1670 uF

Thus, from the standard capacitor valuesin Table 6.1, connecting three 560-p.F capacitorsin
parallel produces 1680 wE Al