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The Encyclopedia of Algorithms provides researchers, students, and
practitioners of algorithmic research with a mechanism to efficiently
and accurately find the names, definitions, and key results of important
algorithmic problems. It also provides further readings on those problems.

This encyclopedia covers a broad range of algorithmic areas; each area
is summarized by a collection of entries. The entries are written in a clear
and concise structure so that they can be readily absorbed by the readers and
easily updated by the authors. A typical encyclopedia entry is an in-depth
mini-survey of an algorithmic problem written by an expert in the field. The
entries for an algorithmic area are compiled by area editors to survey the
representative results in that area and can form the core materials of a course
in the area.

This 2nd edition of the encyclopedia contains a wide array of impor-
tant new research results. Highlights include works in tile self-assembly
(nanotechnology), bioinformatics, game theory, Internet algorithms, and
social networks. Overall, more than 70 % of the entries in this edition and
new entries are updated.

This reference work will continue to be updated on a regular basis via a
live site to allow timely updates and fast search. Knowledge accumulation
is an ongoing community project. Please take ownership of this body of
work. If you have feedback regarding a particular entry, please feel free to
communicate directly with the author or the area editor of that entry. If you
are interested in authoring a future entry, please contact a suitable area editor.
If you have suggestions on how to improve the Encyclopedia as a whole,
please contact me at kao@northwestern.edu. The credit of this Encyclopedia
goes to the area editors, the entry authors, the entry reviewers, and the project
editors at Springer, including Melissa Fearon, Michael Hermann, and Sylvia
Blago.


kao@northwestern.edu
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Problem Definition

The Abelian hidden subgroup problem is the
problem of finding generators for a subgroup K
of an Abelian group G, where this subgroup is
defined implicitly by a function f : G — X,
for some finite set X. In particular, f has the
property that f(v) = f(w) if and only if the
© Springer Science+Business Media New York 2016
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cosets (we are assuming additive notation for the
group operation here.) v+ K and w4 K are equal.
In other words, f is constant on the cosets of the
subgroup K and distinct on each coset.

It is assumed that the group G is finitely
generated and that the elements of G and X have
unique binary encodings. The binary assumption
is only for convenience, but it is important to
have unique encodings (e.g., in [22] Watrous
uses a quantum state as the unique encoding of
group elements). When using variables g and &
(possibly with subscripts), multiplicative notation
is used for the group operations. Variables x and
¥ (possibly with subscripts) will denote integers
with addition. The boldface versions x and y will
denote fuples of integers or binary strings.

By assumption, there is computational means
of computing the function f, typically a circuit or
“black box” that maps the encoding of a value g
to the encoding of f(g). The theory of reversible
computation implies that one can turn a circuit
for computing f(g) into a reversible circuit for
computing f(g) with a modest increase in the
size of the circuit. Thus, it will be assumed that
there is a reversible circuit or black box that
maps (g,z) — (g,z2 ® f(g)), where @ denotes
the bit-wise XOR (sum modulo 2), and z is any
binary string of the same length as the encoding
of f(g).

Quantum mechanics implies that any
reversible gate can be extended linearly to a
unitary operation that can be implemented in
the model of quantum computation. Thus, it
is assumed that there is a quantum circuit or



black box that implements the unitary map
Ur:lg)lz) —1g) |z f(g)).

Although special cases of this problem have
been considered in classical computer science,
the general formulation as the hidden subgroup
problem seems to have appeared in the context of
quantum computing, since it neatly encapsulates
a family of black-box problems for which quan-
tum algorithms offer an exponential speedup (in
terms of query complexity) over classical algo-
rithms. For some explicit problems (i.e., where
the black box is replaced with a specific function,
such as exponentiation modulo N), there is a
conjectured exponential speedup.

Abelian Hidden Subgroup Problem:

Input: Elements g1, g2,...,8» € G that gen-
erate the Abelian group G. A black box that
implements Uy : |my,ma,...,myu)|y) =

|my,ma,....my)| f(g) ®y) where g =
g1 g5 ... gn" and K is the hidden subgroup

corresponding to f.
Output: Elements &y, /5, ..
erate K.

.,h; € G that gen-

Here we use multiplicative notation for the
group G in order to be consistent with Kitaev’s
formulation of the Abelian stabilizer problem.
Most of the applications of interest typically use
additive notation for the group G.

It is hard to trace the precise origin of this
general formulation of the problem, which simul-
taneously generalizes “Simon’s problem” [20],
the order-finding problem (which is the quantum
part of the quantum factoring algorithm [18]), and
the discrete logarithm problem.

One of the earliest generalizations of Simon’s
problem, order-finding problem, and discrete log-
arithm problem, which captures the essence of the
Abelian hidden subgroup problem, is the Abelian
stabilizer problem which was solved by Kitaev
using a quantum algorithm in his 1995 paper [14]
(and also appears in [15, 16]).

Let G be a group acting on a finite set X.
That is, each element of G acts as a map from
X to X in such a way that for any two elements
g.h e G,g(h(z)) = (gh)(z) forall z € X. For
a particular element z € X, the set of elements

Abelian Hidden Subgroup Problem

that fix z (i.e., the elements g € G such that
g(z) = z) form a subgroup. This subgroup is
called the stabilizer of z in G, denoted Stg(2).

Abelian Stabilizer Problem:

Input: Elements g1,g2,...,8» € G that
generate the group G. An element z € X.
A black box that implements U, x)
|my,ma,....,mu)|2) > |my,ma,...,my)

my m> mp
.. 8n -

|g(z)) where g = g1 ' &)
Output: Elements /1, h,,...,h; € G that gen-

erate Stg(z2).

Let f; denote the function from G to X that
maps ¢ € G to g(z). One can implement Uy,
using Ug,x). The hidden subgroup correspond-
ing to f; is Stg(z). Thus, the Abelian stabilizer
problem is a special case of the Abelian hidden
subgroup problem.

One of the subtle differences (discussed in
Appendix 6 of [12]) between the above for-
mulation of the Abelian stabilizer problem and
the Abelian hidden subgroup problem is that
Kitaev’s formulation gives a black box that for
any g,h € G maps |my,...,my)| fz(h)) —

|m1 mp _mo
P .

-mn) | fz(hg)), where ¢ = g1'' &,
g The algorithm given by Kitaev is essentially

one that estimates eigenvalues of shift operations
of the form | f;(h)) +— | fz(hg)). In general,
these shift operators are not explicitly needed,
and it suffices to be able to compute a map of the
form |y) — | fz(h) @ y) for any binary string y.

Generalizations of this form have been known
since shortly after Shor presented his factoring
and discrete logarithm algorithms (e.g., [23]
presents the hidden subgroup problem for a large
class of finite Abelian groups or more generally
in [11] for finite Abelian groups presented as a
product of finite cyclic groups. In [17] the natural
Abelian hidden subgroup algorithm is related to
eigenvalue estimation.)

Other problems which can be formulated in
this way include:

Deutsch’s Problem:

Input: A black box that implements Uy
|x)|b) — |x)|b D f(x)), for some function
f that maps Z, = {0, 1} to {0, 1}.
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Output: “constant” if f(0) = f(1) and “bal-
anced” if f(0) # f(1).

Note that f(x) = f(y)ifandonlyifx —y €
K, where K is either {0} or Z, = {0,1}. If K =
{0}, then f is 1 —1 or “balanced,” and if K = Z,,
then f is constant [5,6].

Simon’s Problem:

Input: A black box that implements Uy
|x) |b) = |x)|b & f(x)) for some function
f from Z% to some set X (which is assumed to
consist of binary strings of some fixed length)
with the property that f(x) = f(y) if and
onlyifx —y € K = {0, s} for some s € Z.
Output: The “hidden” string s.

The decision version allows K = {0} and
asks whether K is trivial. Simon [20] presents
an efficient algorithm for solving this problem
and an exponential lower bound on the query
complexity. The solution to the Abelian hidden
subgroup problem is a generalization of Simon’s
algorithm.

Key Results

Theorem (ASP) There exists a quantum algo-
rithm that, given an instance of the Abelian stabi-
lizer problem, makes n 4+ O(1) queries to U(g, x)
and uses poly(n) other elementary quantum and
classical operations, with probability at least %
output values h1, hs, ..., h; such that Stg(z) =
(h1) @ (h2) & -+ (hp).

Kitaev first solved this problem (with a
slightly higher query complexity, because
his eigenvalue estimation procedure was not
optimal). An eigenvalue estimation procedure
based on the Quantum Fourier Transform
achieves the n + O(1) query complexity [5].

Theorem (AHSP) There exists a quantum algo-
rithm that, given an instance of the Abelian hid-
den subgroup problem, makes n+ O(1) queries to
Uy and uses poly(n) other elementary quantum
and classical operations, with probability at least

% output values hy,hs,...,h; such that K =
(h1) @ (h2) @ -+ ().

In some cases, the success probability can
be made 1 with the same complexity, and in
general the success probability can be made
1 — € using n + O(log(1/€)) queries and
poly(n,log(1/€)) other elementary quantum and
classical operations.

Applications

Most of these applications in fact were known
before the Abelian stabilizer problem or hidden
subgroup problem were formulated.

Finding the order of an element in a group:
Let a be an element of a group H (which does
not need to be Abelian), and let r be the smallest
positive integer so that a” = 1.

Consider the function f from G = Z to the
group H where f(x) = a* for some element a of
H.Then f(x) = f(y)ifandonlyifx—y € rZ.
The hidden subgroup is K = rZ and a generator
for K gives the order r of a.

Finding the period of a periodic function:
Consider a function f from G = Z to a set X
with the property that for some positive integer 7,
we have f(x) = f(y)ifandonlyifx —y € rZ.
The hidden subgroup of f is K = rZ and a
generator for K gives the period r.

Order finding is a special case of period find-
ing and was also solved by Shor’s algorithm
[18].

Discrete Logarithms: Let a be an element of a
group H (which does not need to be Abelian),
with ¢” = 1, and suppose b = a* from
some unknown k. The integer k is called the
discrete logarithm of b to the base a. Consider
the function f from G = Z, x Z, to H satis-
fying f(x1,x2) = a*b*2. Then f(x1,x3) =
f(r1, y2) if and only if (x1,x2) — (y1,¥2) €
{(t,—tk),t = 0,1,...,r — 1} which is the
subgroup ((1,—k)) of Z, x Z,. Thus, finding a
generator for the hidden subgroup K will give



the discrete logarithm k. Note that this algorithm
works for H equal to the multiplicative group of
a finite field, or the additive group of points on an
elliptic curve, which are groups that are used in
public-key cryptography.

Recently, Childs and Ivanyos [3] presented
an efficient quantum algorithm for finding dis-
crete logarithms in semigroups. Their algo-
rithm makes use of the quantum algorithms for
period finding and discrete logarithms as subrou-
tines.

Hidden Linear Functions: Let o be some per-
mutation of Zy for some integer N. Let & be a
function from G = Z x Z to Zy, h(x,y) =
x +ay mod N. Let f = o o h. The hidden
subgroup of f is {((—a, 1)). Boneh and Lipton
[1] showed that even if the linear structure of A
is hidden (by o), one can efficiently recover the
parameter a with a quantum algorithm.

Self-Shift-Equivalent Polynomials: Given a
polynomial P in [ variables X1, X», ..., X; over
Fy, the function f that maps (aj.as,....q;) €
qu to P(X] —a, X, —as,...,.X; — a;) is
constant on cosets of a subgroup K of ]Ffl. This
subgroup K is the set of shift-self-equivalences
of the polynomial P. Grigoriev [10] showed how
to compute this subgroup.

Decomposition of a Finitely Generated
Abelian Group: Let G be a group with a unique
binary representation for each element of G, and
assume that the group operation, and recognizing
if a binary string represents an element of G or
not, can be done efficiently.

Given a set of generators g1, g2,..., g, for a
group G, output a set of elements i1, ko, ..., hy,
| < n, from the group G such that G =
(g1) ® (g2) @ ... ® (g1). Such a generating set
can be found efficiently [2] from generators of
the hidden subgroup of the function that maps
(my,ma,....my) > g g5 .. gn™.

This simple algorithm directly leads to an
algorithm for computing the class group and
class number of a quadratic number field, as
pointed out by Watrous [22] in his paper that
shows how to compute the order of solvable
groups. Computing the class group of a more
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general number field is a much more difficult
task: this and related problems have been suc-
cessfully tackled in a series of elegant work
summarized in » Quantum Algorithms for Class
Group of a Number Field.

Such a decomposition of Abelian groups was
also applied by Friedl, Ivanyos, and Santha [9] to
test if a finite set with a binary operation is an
Abelian group, by Kedlaya [13] to compute the
zeta function of a genus g curve over a finite field
IF, in time polynomial in g and ¢, and by Childs,
Jao, and Soukharev [4] in order to construct
elliptic curve isogenies in subexponential time.

Discussion: What About Non-Abelian
Groups?

The great success of quantum algorithms for
solving the Abelian hidden subgroup problem
leads to the natural question of whether it
can solve the hidden subgroup problem for
non-Abelian groups. It has been shown that
a polynomial number of queries suffice [8];
however, in general there is no bound on
the overall computational complexity (which
includes other elementary quantum or classical
operations).

This question has been studied by many re-
searchers, and efficient quantum algorithms can
be found for some non-Abelian groups. However,
at present, there is no efficient algorithm for
most non-Abelian groups. For example, solving
the HSP for the symmetric group would directly
solve the graph automorphism problem.
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Problem Definition

Concrete Voronoi diagrams are usually defined
for a set S of sites p that exert influence over
the points z of a surrounding space M. Often, in-
fluence is measured by distance functions dp(z)
that are associated with the sites. For each p, its
Voronoi region is given by

VR(p, S)
=1{zeM;dp(z)<dy(z)forallge S \ {p}},

and the Voronoi diagram V(S) of S is the decom-
position of M into Voronoi regions; compare the
entry » Voronoi Diagrams and Delaunay Trian-
gulations of this Encyclopedia.

Quite different Voronoi diagrams result de-
pending on the particular choices of space, sites,
and distance measures; see Fig. 1. A great num-
ber of other types of Voronoi diagrams can be
found in the monographs [1] and [14]. In each
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Abstract Voronoi
Diagrams, Fig. 1 Voronoi
diagrams of points in the
Euclidean and Manhattan
metric and of disks (or
additively weighted points) °
in the Euclidean plane

case, one wants to quickly compute the Voronoi
diagram, because it contains a lot of distance in-
formation about the sites. However, the classical
algorithms for the standard case of point sites in
the Euclidean plane do not apply to more general
situations.

To free us from designing individual algo-
rithms for each and every special case, we would
like to find a unifying concept that provides struc-
tural results and efficient algorithms for gener-
alized Voronoi diagrams. One possible approach
studied in [5, 6] is to construct the lower envelope
of the 3-dimensional graphs of the distance func-
tions d,(z), whose projection to the XY -plane
equals the Voronoi diagram.

Key Results

A different approach is given by abstract Voronoi
diagrams that are not based on the notions of sites
and distance measures (as their definitions vary
anyway). Instead, AVDs are built from bisecting
curves as primary objects [7].

LetS ={p,q,r,...} beasetofn indices, and
for p #q € S,let J(p,q) = J(q, p) denote an
unbounded curve that bisects the plane into two
unbounded open domains D(p, q) and D(g, p).
We require that each J(p,q) is mapped to a
closed Jordan curve through the north pole, under
stereographic projection to the sphere. Now we
define Voronoi regions by

VR(p,S) = () D(p.9)

qeS\{p}

Abstract Voronoi Diagrams

and the abstract Voronoi diagram by

V(S) :== R*\ | VR(p.9).
PES

The system J of the curves J(p,q) is called
admissible if the following axioms are fulfilled
for every subset T of S of size three.

Al. Each Voronoi region VR(p, T') is pathwise
connected.

A2. Each point of R? lies in the closure of a
Voronoi region VR(p, T).

These combinatorial properties should not be
too hard to check in a concrete situation because
only triplets of sites need to be inspected. Yet,
they form a strong foundation, as was shown
in [8]. The following fact is crucial for the proof
of Theorem 1. It also shows that AVDs can be
seen as lower envelopes of surfaces in dimen-
sion 3.

Lemmal For all p,q,r in S, we have
D(p,q) N D(q,r) C D(p,r). Consequently,
for each point z € R? not contained in any curve
of J, the relation

p<z:q % z2€D(p.q)

is an ordering of the sites in S at z.

Theorem 1 If J is admissible, then axioms Al
and A2 hold for all subsets T of S. Moreover, the
abstract Voronoi diagram V(S) is a planar graph
of size O(n).
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Of the classical algorithm for constructing
Voronoi diagrams, the randomized incremental
construction method works best for abstract
Voronoi diagrams [8, 10].

Theorem 2 If J is admissible, then V(S) can be
constructed in an expected number of O(nlogn)
many steps and in expected linear space.

Here basic operations like computing an intersec-
tion of two bisecting curves are counted as one
step.

Applications

To show that a concrete type of Voronoi diagram
is under the roof of abstract Voronoi diagrams,
one needs to prove that its bisector system is
admissible.

Let d be a metric in the plane that enjoys
the following properties. Each d-disk contains a
Euclidean disk and vice versa; for any two points
a, b, there exists a point ¢ different from a and b
such that d(a,b) = d(a,c) + d(c, b) holds; for
any two points a, b, their metric bisector

By(a,b) = {zeR?* d(a,z) =d(b,2)}

is itself a curve that maps to a closed Jordan curve
through the north pole by stereographic projec-
tion to the sphere, or, in case By (p, ¢) contains 2-
dimensional pieces, its boundary consists of two
such curves.

The first two properties ensure that any two
points can be connected by a d-straight path
along which d-distances add up. The third
condition ensures that we can choose from
B4 (p, q) suitable bisecting curves. Let us call
metric d very nice if also a fourth condition is
fulfilled. Given three points a, pg, p1, there exist
d-straight paths from a to py and from a to
p1 that have only point ¢ in common, or each
d-straight path from a to p; contains p;_; for
i = 0ori = 1. All convex distance functions
(gauges) are very nice.

Theorem 3 Very nice metrics have admissible
point bisector curves.

Other applications of AVDs include points with
additive weights, both the regular and the Haus-
dorff Voronoi diagram of disjoint convex sites
with respect to a convex distance function, and
some types of city Voronoi diagrams; see [1] for
further details.

Generalizations

How to dynamize abstract Voronoi diagrams
has been studied in [12]. Special cases of 3-
dimensional abstract Voronoi diagrams have been
discussed in [11]; they include all convex distance
functions whose unit spheres are ellipsoids.
It is well known that for the vertices of a
convex polygon, the Voronoi diagram can be
constructed in linear time. This result has been
generalized to AVDs in [9] and [4]. In [3] the
path-connectedness of abstract Voronoi regions
(axiom Al) has been relaxed. If a region of three
sites can have up to s connected components, the
abstract Voronoi diagram can still be constructed
in expected time O(s%n 2?23 m;/j), where m ;
denotes the average number of faces per region
in any subdiagram of j sites from S.

In an order-k Voronoi diagram, all points of
space M are placed in one region that shares the
same k nearest sites in S. For k = n—1, this con-
cept has been generalized to furthest site abstract
Voronoi diagrams in [13]. Here the furthest (or
inverse) region of p € § is the intersection of all
domains D(g, p), where g € S\{p}.If all regular
Voronoi regions are nonempty, then the furthest
site AVD is a tree of size O(n), even though some
regions may be disconnected.

General order-k abstract Voronoi diagrams
have been studied in [2]. If all regular Voronoi
regions are nonempty and if bisecting curves
are in general position, a tight upper complexity
bound of 2k (n—k) can be shown. Fortunately, the
nonemptiness of the regular regions need only be
tested for all subsets of S of size 4.
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Problem Definition

Most classic machine learning methods depend
on the assumption that humans can annotate all
the data available for training. However, many
modern machine learning applications (including
image and video classification, protein sequence
classification, and speech processing) have mas-
sive amounts of unannotated or unlabeled data.
As a consequence, there has been tremendous in-
terest both in machine learning and its application
areas in designing algorithms that most efficiently
utilize the available data while minimizing the
need for human intervention. An extensively used
and studied technique is active learning, where
the algorithm is presented with a large pool of
unlabeled examples (such as all images available
on the web) and can interactively ask for the
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labels of examples of its own choosing from the
pool, with the goal to drastically reduce labeling
effort.

Formal Setup

We consider classification problems (such
as classifying images by who is in them or
classifying emails as spam or not), where the goal
is to predict a label y based on its corresponding
input vector x. In the standard machine learning
formulation, we assume that the data points
(x,y) are drawn from an unknown underlying
distribution Dxy over X x Y; X is called the
feature (instance) space and ¥ = {0, 1} is the
label space. The goal is to output a hypothesis
function & of small error (or small 0/1 loss),
where err(h) = P y)~pyylh(x) # ¥l
In the passive learning setting, the learning
algorithm is given a set of labeled examples
(x1,91)s---, (xm, ym) drawn i.id. from Dyy
and the goal is to output a hypothesis of small
error by using only a polynomial number of
labeled examples. In the realizable case [10]
(PAC learning), we assume that the true label of
any example is determined by a deterministic
function of the features (the so-called target
function) that belongs to a known concept class
C (e.g., the class of linear separators, decision
trees, etc.). In the agnostic case [10, 13], we do
not make the assumption that there is a perfect
classifier in C, but instead we aim to compete
with the best function in C (i.e., we aim to
identify a classifier whose error is not much
worse than opt (C), the error of the best classifier
in C). Both in the realizable and agnostic settings,
there is a well-developed theory of Sample
Complexity [13], quantifying in terms of the so-
called VC-dimension (a measure of complexity of
a concept class) how many training examples we
need in order to be confident that a rule that does
well on training data is a good rule for future data
as well.

In the active learning setting, a set of labeled
examples (X1, ¥1),..., (Xm, Yym) is also drawn
i.id. from Dyy; the learning algorithm is per-
mitted direct access to the sequence of x; values
(unlabeled data points), but has to make a label
request to obtain the label y; of example Xx;.

The hope is that we can output a classifier of
small error by using many fewer label requests
than in passive learning by actively directing the
queries to informative examples (while keeping
the number of unlabeled examples polynomial).
It has been long known that, in the realiz-
able case, active learning can sometimes provide
an exponential improvement in label complexity
over passive learning. The canonical example [6]
is learning threshold classifiers (X = [0, 1] and
C = {ljoq) | a € [0,1]}). Here we can actively
learn with only O(log(1/€)) label requests by
using a simple binary search-like algorithm as
follows: we first draw N = O((1/€)log(1/8))
unlabeled examples, then do binary search to
find the transition from label 1 to label 0, and
with only O(log(N)) queries we can correctly
infer the labels of all our examples; we finally
output a classifier from C consistent with all
the inferred labels. By standard VC-dimension
based bounds for supervised learning [13], we are
guaranteed to output an e-accurate classifier. On
the other hand, for passive learning, we provably
need £2(1/¢) labels to output a classifier of error
at most € with constant probability, yielding the
exponential reduction in label complexity.

Key Results

While in the simple threshold concept class
described above active learning always provides
huge improvements over passive learning, things
are more delicate in more general scenarios.
In particular, both in the realizable and in
the agnostic case, it has been shown that for
more general concept spaces, in the worst case
over all data-generating distributions, the label
complexity of active learning equals that of
passive learning. Thus, much of the literature was
focused on identifying non-worst case, natural
conditions about the relationship between the
data distribution and the target, under which
active learning provides improvements over
passive. Below, we discuss three approaches,
under which active learning has been shown to
reduce the label complexity: disagreement-based
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techniques, margin-based techniques and cluster-
based techniques.

Disagreement-Based Active Learning
Disagreement-based active learning was the
first method to demonstrate the feasibility of
agnostic active learning for general concept
classes. The general algorithmic framework
of disagreement-based active learning in the
presence of noise was introduced with the A2
algorithm by Balcanetal. [2]. Subsequently,
several researchers have proposed related
disagreement-based algorithms with improved
sample complexity, e.g., [5,8, 11].

At a high level, A% operates in rounds. It
maintains a set of candidate classifiers from the
concept class C and in each round queries labels
aiming to efficiently reduce this set to only few
high-quality candidates. More precisely, in round
i, A2 considers the set of surviving classifiers
C; C C, and asks for the labels of a few random
points that fall in the region of disagreement of
C;. Formally, the region of disagreement of a set
of classifiers C; is DIS(C;) = {x € X | 3f, g €
C; : f(x) # g(x)}. Based on these queried la-
bels from DIS(C;), to obtain C; 41, the algorithm
then throws out hypotheses that are suboptimal.
The key ingredient is that A2 only throws out
hypotheses, for which it is statistically confident
that they are suboptimal.

Balcan et al. [2] show that AZ provides
exponential improvements in the label sample
complexity in terms of the 1/e-parameter
when the noise rate n is sufficiently small,
both for learning thresholds and for learning
homogeneous linear separators in R<, one
of the most widely used and studied classes
in machine learning. Following up on this,
Hanneke [9] provided a generic analysis of the
A? algorithm that applies to any concept class.
This analysis quantifies the label complexity
of A2 in terms of the so-called disagreement
coefficient of the class C. The disagreement
coefficient is a distribution-dependent sample
complexity measure that quantifies how fast the
region of disagreement of the set of classifiers
at distance r of the optimal classifier collapses
as a function r. In particular, [9] showed that
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the label complexity of the A? algorithm is
0(92(2—5 + 1) (d log(1/€)+log(1/8)) log(1 /e)),
where v is the best error rate of a classifier
in C, d is the VC-dimension of C, and @ is
the disagreement-coefficient. As an example,
for homogeneous linear separators, we have
6 = 6(+/d) under uniform marginal over the
unit ball. Here, the disagreement-based analysis

yields a label complexity of O (d 2‘;—; log(1/ e))

in the agnostic case and O (d 3/2 log(1/€)) in the
realizable case.

Margin-Based Active Learning

While the disagreement-based active learning
line of work provided the first general
understanding of the sample complexity benefits
with active learning for arbitrary concept classes,
it suffers from two main drawbacks: (1) methods
and analyses developed in this context are often
suboptimal in terms of label complexity, since
they take a conservative approach and query even
points on which there is only a small amount of
uncertainty, (2) the methods are computationally
inefficient. Margin-based active learning is
a technique that overcomes both the above
drawbacks for learning homogeneous linear
separators under log-concave distributions. The
technique was first introduced by Balcan et al. [3]
and further developed by Balcan et al. [4], and
Awasthi et al. [1].

At a high level, like disagreement-based meth-
ods, the margin-based active learning algorithm
operates in rounds, in which a number of labels
are queried in some subspace of the domain
and a set of candidate classifiers for the next
round is identified. The crucial idea to reduce
the label complexity is to design a more ag-
gressive querying strategy by carefully choosing
where to query instead of querying in all of
the current disagreement region. Concretely, in
round k the algorithm has a current hypothesis
wg, and the set of candidate classifiers for the
next round consists of all homogeneous halfs-
paces that lie in a ball of radius ry around wy
(in terms of their angle with wg). The algorithm
then queries points for labels near the decision
boundary of wy; that is, it only queries points
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The margin-based active learning algorithm after iteration
k. The algorithm samples points within margin yx of the
current weight vector wi and then minimizes the hinge
loss over this sample subject to the constraint that the new
weight vector wi 41 is within distance 7, from wy

that are within a margin yy of wg; see Fig. 1. To
obtain w41, the algorithm finds a loss minimizer
among the current set of candidates with respect
to the queried examples of round k. In the realiz-
able case, this is done by 0/1-loss minimization.
In the presence of noise, to obtain a compu-
tationally efficient procedure, the margin-based
technique minimizes a convex surrogate loss.
Balcan et al. [3] and Balcan and Long [4]
showed that by localizing aggressively, namely
by setting the margin parameter to y; = @(Zlk),
one can actively learn with only O(d log(1/€))
label requests in the realizable case, when the
underlying distribution is isotropic log-concave.
A key idea of their analysis is to decompose,
in round k, the error of a candidate classifier
w as its error outside margin y; of the current
separator plus its error inside margin yx, and
to prove that for the above parameters, a small
constant error inside the margin suffices to re-
duce the overall error by a constant factor. For
the constant error inside the margin only 6(d)
labels need to be queried, and since in each
round the overall error gets reduced by a con-
stant factor, O (log(1/€)) rounds suffice to reduce
the error to €, yielding the label complexity of
O(d log(1/€)). Passive learning here provably
requires $£2(d/e) labeled examples. Thus, the

1

dependence on 1/¢ is exponentially improved,
but without increasing the dependence on d (as
in the disagreement-based method for this case,
see above).

Building on this work, [1] gave the first
polynomial-time active learning algorithm for
learning linear separators to error € in the
presence of agnostic noise (of rate O(¢)) when
the underlying distribution is an isotropic log-
concave distribution in R?. They proposed to
use a normalized hinge loss minimization (with
normalization factor i) for selecting the next
classifier wg4; in round k. Awasthi et al. [1]
show that by setting the parameters appropriately
(namely, 7p = O(1/2F) and rp = O(1/2F)),
the algorithm again achieves error € using only
O(log(1/€)) rounds, with O(d?) label requests
per round. This yields a query complexity of
poly(d,log1/e). The key ingredient for the
analysis of this computationally efficient version
in the noisy setting is proving that by constraining
the search for wy; to vectors within a ball of
radius ry around wyg, the hinge-loss acts as a
sufficiently faithful proxy for the 0/1-loss.

A recent work [14] proposes an elegant gener-
alization of [3,4] to more general concept spaces
and shows an analysis that is always tighter than
disagreement-based active learning (though their
results are not computationally efficient).

Cluster-Based Active Learning
The methods described above (disagreement-
based and margin-based active learning) use
active label queries to efficiently identify a clas-
sifier from the concept class C with low error. An
alternative approach to agnostic active learning is
to design active querying methods that efficiently
find a (approximately) correct labeling of the
unlabeled input sample. Here, “correct labeling”
refers to the hidden labels y; in the sample
(x1,91)s+... (xm, ym) from the distribution
Dxy (as defined in the formal setup section).
The so labeled sample can then be used as input to
a passive learning algorithm to learn an arbitrary
concept class.

Cluster-based active learning is a method
for the latter approach and was introduced
by Dasgupta and Hsu [7]. The idea is to use
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a hierarchical clustering (cluster tree) of the
unlabeled data, and check the clusters for label
homogeneity by starting at the root of the tree (the
whole data set) and working towards the leaves
(single data points). The label homogeneity of a
cluster is estimated by choosing data points for
label query uniformly at random from the cluster.
If a cluster is considered label homogeneous
(with sufficiently high confidence), all remaining
unlabeled points in that cluster are labeled with
the majority label. If a cluster is detected to be
label heterogeneous, it is split into its children
in the cluster tree and processed later. The key
insight in [7] is that since the cluster tree is fixed
before any labels were seen, the induced labeled
subsample of a child cluster can be considered
a sample that was chosen uniformly at random
from the points in that child-cluster. Thus, the
algorithm can reuse labels from the parent cluster
without introducing any sampling bias. The label
efficiency of this paradigm crucially depends
on the quality of input hierarchical clustering.
Intuitively, if the cluster tree has a small pruning
with label homogeneous clusters, the procedure
will make only few label queries.

Urner et al. [12] proved label complexity re-
ductions with this paradigm under a distributional
assumption. They analyze a version (PLAL) of
the above paradigm that uses hierarchical clus-
terings induced by spatial trees on the domain
[0, 1]¢ and provide label query bounds in terms of
the Probabilistic Lipschitzness of the underlying
data-generating distribution. Probabilistic Lips-
chitzness quantifies a marginal-label relatedness
in the sense of close points being likely to have
the same label. For a distribution with determin-
istic labels (Pr[Y = 1 | X = x] € {0, 1} for all
x), the Probabilistic Lipschitzness is a function ¢
that bounds, as a function of A, the mass of points
x for which both labels 0 and 1 occur in the ball
B A (X )

Urner et al. [12] show that, independently of
the any data assumptions, (with probability 1 —§)
PLAL labels a (1 — €)-fraction of the input points
correctly. They further show that using PLAL as
a preprocedure, if the data-generating distribution
has deterministic labels and its Probabilistic Lip-
schitzness is bounded by ¢ (1) = A" for some

Active Learning - Modern Learning Theory

n € N, then classes C of bounded VC-dimension
on domain X = [0,1]¢ can be learned with

~ n+2d
o ((%) "+@ | many labels, while any passive

proper learner (i.e., a passive learner that outputs
a function from C) requires to see £2(1/€2) many
labels. Further, [12] show that PLAL can be used
to reduce the number of labels needed for nearest
neighbor classification (i.e., labeling a test point
by the label of its nearest point in the sample)

1\ 2
from £2 ((é)Hd”l) to O ((%)Hn(fw))_

Cross-References

PAC Learning

Recommended Reading

1. Awasthi P, Balcan M-F, Long PM (2014) The power
of localization for efficiently learning linear separa-
tors with noise. In: Proceedings of the 46th annual
symposium on the theory of computing (STOC), New
York

2. Balcan MF, Beygelzimer A, Langford J (2006) Ag-
nostic active learning. In: Proceedings of the 23rd in-
ternational conference on machine learning (ICML),
Pittsburgh

3. Balcan M-F, Broder A, Zhang T (2007) Margin
based active learning. In: Proceedings of the 20th
annual conference on computational learning theory
(COLT), San Diego

4. Balcan M-F, Long PM (2013) Active and passive
learning of linear separators under log-concave dis-
tributions. In: Proceedings of the 26th conference on
learning theory (COLT), Princeton

5. Beygelzimer A, Hsu D, Langford J, Zhang T (2010)
Agnostic active learning without constraints. In:
Advances in neural information processing systems
(NIPS), Vancouver

6. Cohn D, Atlas L, Ladner R (1994) Improving gen-
eralization with active learning. In: Proceedings of
the 11th international conference on machine learning
(ICML), New Brunswick

7. Dasgupta S, Hsu D (2008) Hierarchical sampling
for active learning. In: Proceedings of the 25th in-
ternational conference on machine learning (ICML),
Helsinki

8. Dasgupta S, Hsu DJ, Monteleoni C (2007) A general
agnostic active learning algorithm. In: Advances
in neural information processing systems (NIPS),
Vancouver

9. Hanneke S (2007) A bound on the label complexity
of agnostic active learning. In: Proceedings of the


http://www.springerreference.com/docs/html/chapterdbid/178836.html
http://dx.doi.org/10.1007/978-1-4939-2864-4_276

Active Self-Assembly and Molecular Robotics with Nubots

24th international conference on machine learning
(ICML), Corvallis

10. Kearns MJ, Vazirani UV (1994) An introduction to
computational learning theory. MIT, Cambridge

11. Koltchinskii V (2010) Rademacher complexities and
bounding the excess risk in active learning. J Mach
Learn 11:2457-2485

12. Urner R, Wullf S, Ben-David S (2013) Plal: cluster-
based active learning. In: Proceedings of the 26th
conference on learning theory (COLT), Princeton

13. Vapnik VN (1998) Statistical learning theory. Wiley,
New York

14. Zhang C, Chaudhuri K (2014) Beyond disagreement-
based agnostic active learning. In: Advances in neural
information processing systems (NIPS), Montreal

Active Self-Assembly and Molecular
Robotics with Nubots

Damien Woods
Computer Science, California Institute of
Technology, Pasadena, CA, USA

Keywords

Molecular robotics; Rigid-body motion; Self-
assembly

Years and Authors of Summarized
Original Work

2013; Woods,
Winfree, Yin

2013; Chen, Xin, Woods

2014; Chen, Doty, Holden, Thachuk, Woods,
Yang

Chen, Goodfriend, Dabby,

Problem Definition

In the theory of molecular-scale self-assembly,
large numbers of simple interacting components
are designed to come together to build
complicated shapes and patterns. Many models
of self-assembly, such as the abstract Tile
Assembly Model [6], are cellular automata-like
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crystal growth models. Indeed such models have
given rise to a rich theory of self-assembly as
described elsewhere in this encyclopedia. In
biological organisms we frequently see much
more sophisticated growth processes, where self-
assembly is combined with active molecular
components that change internal state and even
molecular motors that have the ability to push
and pull large structures around. Molecular
engineers are now beginning to design and build
molecular-scale DNA motors and active self-
assembly systems [2]. We wish to understand,
at a high level of abstraction, the ultimate
computational capabilities and limitations of
such molecular-scale rearrangement and growth.
The nubot model, put forward in [8], is akin
to an asynchronous nondeterministic cellular
automaton augmented with nonlocal rigid-body
movement. Unit-sized monomers are placed
on a 2D triangular grid. Monomers undergo
state changes, appear, and disappear using local
rules, as shown in Fig. 1. However, there is
also a nonlocal aspect to the model: rigid-body
movement that comes in two forms, movement
rules and random agitations.

A movement rule r, consisting of a pair of
monomer states A, B and two unit vectors, iS a
programmatic way to specify unit-distance trans-
lation of a set of monomers in one step. See Fig. 2
for an example. If A and B are in a prescribed
orientation, one is nondeterministically chosen
to move unit distance in a prescribed direction.
The rule r is applied in a rigid-body fashion:
roughly speaking, if A is to move right, it pushes
anything immediately to its right and pulls any
monomers that are bound to its left which in turn
push and pull other monomers, all in one step.
The rule may not be applicable if it is blocked
(i.e., if movement of A would force B to also
move), which is analogous to the fact that an
arm cannot push its own shoulder. The other,
somewhat related, form of movement is called
agitation: at every point in time, every monomer
on the grid may move unit distance in any of the
six directions, at unit rate for each (monomer,
direction) pair. An agitating monomer will push
or pull any monomers that it is adjacent to, in a
way that preserves rigid-body structure and all in
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Active Self-Assembly and Molecular Robotics with
Nubots, Fig. 1 Overview of the nubot model. (a) A
nubot configuration showing a single nubot monomer
on the triangular grid. (b) Examples of nubot monomer
rules. Rules r1-r6 are local cellular automaton-like rules,
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whereas r7 effects a nonlocal movement that may translate
other monomers as shown in Fig.2. Monomers contin-
uously undergo agitation, as shown in Fig.3. A flexible
bond is depicted as an empty red circle and a rigid bond is
depicted as a solid red disk (from [8])

{cosNorte

(0,0 (0,0

Active Self-Assembly and Molecular Robotics with
Nubots, Fig. 2 Movement rule. (a) Initial configuration.
(b) Movement rule with one of two results depending on
the choice of arm or base. (¢) Result if the monomer with
state 2 is the arm or (d) monomer with state 1 is the arm.
The shaded monomers are the movable set. The affect on

(0,0)

rigid (filled red disks), flexible (hollow red circles), and
null bonds is shown. (e) A configuration for which the
movement rule is blocked: movement of 1 or 2 would
force the other to move; hence the rule is not applicable
(from [3])
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Active Self-Assembly and Molecular Robotics with
Nubots, Fig. 3 Example agitations. Starting from the
centre configuration, there are 48 possible agitations (8
monomers, 6 directions each) each with equal probability.
The right configuration is the result of agitation of the

one step as shown in Fig. 3. Unlike movement,
agitations are never blocked. Rules are applied
asynchronously and in parallel. Taking its time
model from stochastic chemical kinetics, a nubot
system evolves as a continuous time Markov
process.

For intuition, we describe motion in terms of
pushing and pulling. However movement and ag-
itation are actually intended to model a nanoscale
environment with diffusion, Brownian motion,
convection, turbulent flow, cytoplasmic stream-
ing, and other uncontrolled inputs of energy that
interact monomers in all directions, moving large
molecular assemblies in a random fashion (i.e.,
agitation) and allowing motors to simply latch
and unlatch large assemblies into position (i.e.,
the movement rule).

Key Results

Assembling simple structures, namely, lines and
squares, has proven to be a fruitful way to explore
the power of the nubot model for a few reasons.
Firstly, it helps us develop a number of tech-
niques and intuitions for the model. Secondly,
lines and squares get used again and again in
more general results that show the full power of
the model. Thirdly, the efficiency of assembling
simple shapes has been a de facto benchmark
problem for a number of self assembly models
(although this benchmark often does not give the
full story). In a variety of models, such as the
abstract Tile Assembly Model, cellular automata,
and some robotics models, it takes time £2(n) to
assemble a length 7 line. In the nubot model this

monomer in state 2 in direction —, the left is the result
of the agitation of the monomer in state 1 in direction <.
The shaded monomers are the agitation set — monomers
that are moved by the agitation (from [4])

is achieved in merely O(logn) expected time and
O(logn) states.

Theorem 1 ([8]) For each n € N, there is a
set of nubot rules N''™ such that starting from
a single monomer N,ime assembles a length n
line in O(logn) expected time, n x 2 space, and
O(logn) states.

One can trade time for states by giving a slightly
slower method with fewer states:

Theorem 2 ([3]) There is a set of nubot rules
N such that for each n € N, from a line of
O(logn) “binary” monomers (each in state 0 or
1), N assembles a length n line in O(log? n)
expected time, n x O(1) space, and O(1)
states.

An n x n square can be built by growing a
horizontal line and then 7 vertical lines, showing
that assembly of squares with nubots is exponen-
tially faster than the @ (n) expected time seen in
the abstract Tile Assembly Model [1]:

Theorem 3 ([8]) For each n € N, there is a
set of nubot rules Ny ™ such that starting from
a single monomer, ./\/',fquare assembles a n X n
square in O(logn) expected time, n X n space,
and O(logn) states.

The results above, and all of those in [3, 8],
crucially make use of the rigid-body movement
rule: the ability for a single monomer to control
the movement of large objects quickly and at
a time and place of the programmer’s choos-
ing. However, in a molecular-scale environment,
molecular motion is happening in a largely un-
controlled and fundamentally random manner,
all of the time. The agitation nubot model does
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not have the movement rule, but instead permits
such uncontrolled random agitation (movement).
Although this form of movement is challenging
to control in a precise manner, the following
result shows we can use it to achieve sublinear
expected time growth of a length » line in only
O(n) space:

Theorem 4 ([4]) There is a set of nubot rules
Nine, such that ¥Yn € N, starting from a line of
llog, 1| + 1 monomers, each in state 0 or 1, Niipe
in the agitation nubot model assembles an n x 1
line in O(n'/? log n) expected time, n x 5 space,
and O(1) monomer states.

For a square we can do much better, achieving
polylogarithmic expected time:

Theorem 5 ([4]) There is a set of nubot rules
Niquares such that Nn € N, starting from
a line of |log,n] + 1 monomers, each in
state 0 or 1, ./\/'squm in the agitation nubot
model assembles an n x n square in O(log?n)
expected time, n x n space, and O(1) monomer
states.

This section concludes with three results
on general-purpose computation and shape
construction with the nubot model. First we
have a computability-theoretic result: any finite
computable connected shape can be quickly self-
assembled.

Theorem 6 ([8]) An arbitrary connected com-
putable 2D shape of size < /n X /n can be
assembled in expected time O(log®>n + t(|nl))
using O(s + logn) states. Here, t(|n|) is the time
required for a program-size s Turing machine to
compute, given a pixel index as a binary string
of length |n| = |log, n] + 1, whether or not the
pixel is present in the shape.

For complicated computable shapes the
construction for Theorem 6 necessarily requires
computation workspace outside of the shape’s
bounding box. The next result is of a more
resource-bounded style and, roughly speaking,
states that 2D patterns with efficiently com-
putable pixel colors can be assembled using
nubots in merely polylogarithmic expected time
while staying inside the pattern’s bounding box.
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Theorem 7 ([8]) An arbitrary finite computable
2D pattern of size < n x n, wheren = 2P p €
N, with pixels whose color is computable on
a polynomial time O(|n|%) (inputs are binary
strings of length |[n| = O(logn)), linear space
O(|n|), program-size s Turing machine, can be
assembled in expected time O(log“ln), with
O(s + logn) monomer states and without grow-
ing outside the pattern borders.

The results cited so far can be used to compare
the nubot model to other models of self-assembly
and tell us that nubots build shapes and patterns
in a fast parallel manner. The next result quan-
tifies this parallelism in terms of a well-known
parallel model from computational complexity
theory: NC is the class of problems solved by
uniform polylogarithmic depth and polynomial-
size Boolean circuits.

Theorem 8 ([3]) For each language L € NC,
there is a set of nubot rules N, that decides L in
polylogarithmic expected time, constant number
of monomer states, and polynomial space in the
length of the input string of binary monomers
(in state 0 or 1). The output is a single binary
monomer.

This result stands in contrast to sequential ma-
chines like Turing machines, that cannot read all
of an n-bit input string in polylogarithmic time,
and “somewhat parallel” models like cellular au-
tomata and the abstract Tile Assembly Model,
that cannot have all of n bits influence a single
output bit decision in polylogarithmic time [5].
Thus, adding the nubot rigid-body movement
primitive to an asynchronous nondeterministic
cellular automaton drastically increases its paral-
lel processing abilities.

Open Problems

Some future research directions are discussed
here and in [3, 4, 8]. It remains as future work
to look at other topics such as fault tolerance,
self-healing, dynamical tasks, or systems that
continuously respond to the environment.
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The Complexity of Assembling Lines

Theorem 1 states that a line can be grown in
expected time O(logn), space O(n) x O(1),
and O(logn) states, and Theorem 2 trades time
for states to get expected time O(log®n), space
O(n) x O(1), and O(1) states. What is the com-
plexity (expected time x states) of assembling a
line in the nubot model? Is it possible to meet
the lower bound of expected time X states =
£2(logn)? In this problem, the input should be a
set of monomers with space x states = O(logn).

Computational Power

Theorem 8 gives a lower bound on the compu-
tational complexity of the nubot model. What is
the exact power of polylogarithmic expected time
nubots? The answer may differ on whether we
begin from a small collection of monomers (as
in Theorem 8) or a large prebuilt structure. One
challenge, for the upper bound, involves finding
better Turing machine space, or circuit depth,
bounds on computing multiple applications of the
movable set on a large nubots grid.

Synchronization and Composition of

Nubot Algorithms

Synchronization is a method to quickly send
signals using nonlocal rigid-body motion [3, 8].
The nubot model is asynchronous, but synchro-
nization can be used to set discrete stages, or
checkpoints, during a complicated construction.
This in turn facilitates composition of nubot al-
gorithms (run algorithm 1, synchronize, run al-
gorithm 2, synchronize, etc.) and many of the
results cited here use it for exactly that reason.
However, synchronization-less constructions of-
ten exhibit a kind of independence where growth
proceeds everywhere in parallel, without waiting
on signals from distant components. Such sys-
tems are highly distributed, easy to analyze, and
perhaps more amenable to laboratory implemen-
tation. Intuitively, this seems like the right way
to program molecules. The proof of Theorem 7
does not use synchronization which shows that
without it a very general class of (efficiently)
computable patterns can be grown and indeed
the proof gives methods to compose nubot al-
gorithms without resorting to synchronization.
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It remains as future work to formalize both this
notion of synchronization-less “independence”
and what we mean by “composition” of nubot
algorithms. What conditions are necessary and
sufficient for composition of nubot algorithms?
What classes of shapes and patterns can be as-
sembled using without synchronization or other
forms of rapid long-range communication?

Agitation Versus the Movement Rule

Is it possible to simulate the movement rule using
agitation? More formally, is it the case that for
each nubot program N/, there is an agitation
nubot program A/, that acts just like A/ but with
some m X m scale-up in space, and a k factor
slowdown in time, where m and k are (constants)
independent of A and its input? As motivation,
note that every self-assembled molecular-scale
structure was made under conditions where ran-
dom jiggling of monomers is a dominant source
of movement! Our question asks if we can pro-
grammably exploit this random molecular motion
to build structures quicker than without it.

Intrinsic Universality and Simulation

Is the nubot model intrinsically universal? Specif-
ically, does there exist a set of monomer rules U,
such that any nubot system A can be simulated
by “seeding” U with a suitable initial configura-
tion? Here the simulation should have a spatial
scale factor m that is a function of the number of
states in the simulated system N Is the agitation
nubot model intrinsically universal? Our hope
would be that simulation could be used to tease
apart the power of different notions of movement
(e.g., to understand if nubot-style movement is
weaker or stronger than other notions of robotic
movement), in the way it has been used to char-
acterize and separate the power of other self-
assembly models [7].

Brownian Nubots

With nubots, under agitation, or multiple parallel
movement rules, larger objects move faster. This
is intended to model an environment with uncon-
trolled and rapid fluid flows. But in Brownian
motion, larger objects move slower: what is the
power of nubots with such a rate model, for
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example, with rate equal to object size? Although
assembly in such a model may be slower than
with the usual model, many of the same program-
ming principles should apply, and indeed it will
still be possible to assemble objects in a parallel
distributed fashion.
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Adaptive Partitions

Problem Definition

Adaptive partition is one of major techniques
to design polynomial-time approximation
algorithms, especially polynomial-time approx-
imation schemes for geometric optimization
problems. The framework of this technique
is to put the input data into a rectangle and
partition this rectangle into smaller rectangles
by a sequence of cuts so that the problem is also
partitioned into smaller ones. Associated with
each adaptive partition, a feasible solution can be
constructed recursively from solutions in smallest
rectangles to bigger rectangles. With dynamic
programming, an optimal adaptive partition is
computed in polynomial time.

Historical Note

The adaptive partition was first introduced to
the design of an approximation algorithm by Du
et al. [4] with a guillotine cut while they studied
the minimum edge-length rectangular partition
(MELRP) problem. They found that if the par-
tition is performed by a sequence of guillotine
cuts, then an optimal solution can be computed
in polynomial time with dynamic programming.
Moreover, this optimal solution can be used as a
pretty good approximation solution for the origi-
nal rectangular partition problem. Both Arora [1]
and Mitchell et al. [12,15] found that the cut does
not need to be completely guillotine. In other
words, the dynamic programming can still run
in polynomial time if subproblems have some
relations but the number of relations is small.
As the number of relations goes up, the approxi-
mation solution obtained approaches the optimal
one, while the run time, of course, goes up. They
also found that this technique can be applied to
many geometric optimization problems to obtain
polynomial-time approximation schemes.

Key Results

The MELRP was proposed by Lingas et al. [10]
as follows: Given a rectilinear polygon possibly
with some rectangular holes, partition it into
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rectangles with minimum total edge length. Each
hole may be degenerated into a line segment or a
point.

There are several applications mentioned in
[10] for the background of the problem: process
control (stock cutting), automatic layout systems
for integrated circuit (channel definition), and
architecture (internal partitioning into offices).
The minimum edge-length partition is a natural
goal for these problems since there is a cer-
tain amount of waste (e.g., sawdust) or expense
incurred (e.g., for dividing walls in the office)
which is proportional to the sum of edge lengths
drawn. For very large-scale integration (VLSI)
design, this criterion is used in the MIT place-
ment and interconnect (PI) system to divide the
routing region up into channels — one finds that
this produces large “natural-looking” channels
with a minimum of channel-to-channel interac-
tion to consider.

They showed that while the MELRP in general
is nondeterministic polynomial-time (NP)-hard,
it can be solved in time O(n*) in the hole-
free case, where n is the number of vertices
in the input rectilinear polygon. The polynomial
algorithm is essentially a dynamic programming
based on the fact that there always exists an opti-
mal solution satisfying the property that every cut
line passes through a vertex of the input polygon
or holes (namely, every maximal cut segment is
incident to a vertex of input or holes).

A naive idea to design an approximation al-
gorithm for the general case is to use a forest
connecting all holes to the boundary and then to
solve the resulting hole-free case in O(n*) time.
With this idea, Lingas [9] gave the first constant-
bounded approximation; its performance ratio
is41.

Motivated by a work of Du et al. [6] on
application of dynamic programming to opti-
mal routing trees, Du et al. [4] initiated an idea
of adaptive partition. They used a sequence of
guillotine cuts to do rectangular partition; each
guillotine cut breaks a connected area into at least
two parts. With dynamic programming, they were
able to show that a minimum-length guillotine
rectangular partition (i.e., one with minimum
total length among all guillotine partitions) can
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be computed in O(n°) time. Therefore, they
suggested using the minimum-length guillotine
rectangular partition to approximate the MELRP
and tried to analyze the performance ratio. Un-
fortunately, they failed to get a constant ratio in
general